
z/OS

UNIX System Services
Command Reference

SA22-7802-04

���

z/OS

UNIX System Services
Command Reference

SA22-7802-04

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 855.

Fourth Edition, September, 2002

This is a major revision of SA22–7802–02.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xiii

Tables . xv

Permuted Index . xvii

About This Document . xxxv
Who Should Use This Document xxxv
Finding More Information about Other Products xxxv

Summary of changes . xxxix

Chapter 1. Introduction to Shell Commands and DBCS 1
Reading the Command Descriptions 1
Using the Doublebyte Character Set (DBCS) 7

Chapter 2. Shell Command Descriptions 11
alias — Display or create a command alias 11
ar — Create or maintain library archives 14
asa — Interpret ASA/FORTRAN carriage control 17
at — Run a command at a specified time 18
autoload — Indicate function name not defined 21
automount — Configure the automount facility 21
awk — Process programs written in the awk language 26
basename — Return the nondirectory components of a pathname 42
batch — Run commands when the system is not busy 43
bc — Use the arbitrary-precision arithmetic calculation language 44
bg — Move a job to the background 59
bpxmtext — Display reason code text 60
break — Exit from a loop in a shell script 61
c++ — Compile, link-edit and assemble z/OS C and z/OS C++ source code and

create an executable file . 62
c89 — Compile, link-edit and assemble a z/OS C program and create an

executable file . 62
cal — Display a calendar for a month or year 101
calendar — Display all current appointments 102
cancel — Cancel print queue requests (stub command) 103
captoinfo — Print the terminal entries in the terminfo database 104
cat — Concatenate or display text files 105
cc — Compile, link-edit and assemble z/OS C source code and create an

executable file . 106
cd — Change the working directory 107
chaudit — Change audit flags for a file 109
chcp — Set or query ASCII/EBCDIC code pages for the terminal 111
chgrp — Change the group owner of a file or directory 114
chmod — Change the mode of a file or directory 115
chmount — Change the mount attributes of a file system 118
chown — Change the owner or group of a file or directory 119
chroot — Change the root directory for the execution of a command. 121
chtag — Change file tag information 123
cksum — Calculate and write checksums and byte counts 126
cmp — Compare two files . 127
col — Remove reverse line feeds 128

© Copyright IBM Corp. 1996, 2002 iii

: (colon) — Do nothing, successfully 130
comm — Show and select or reject lines common to two files 130
command — Run a simple command 131
compress — Lempel-Ziv file compression 133
confighfs — Invoke vfs_pfsctl HFS functions 135
configstk — Configure the AF_UEINT stack 136
configstrm — Set and query the STREAMS physical file system configuration 138
continue — Skip to the next iteration of a loop in a shell script 140
cp — Copy a file . 140
cpio — Copy in/out file archives 152
cron daemon — Run commands at specified dates and times 155
crontab — Schedule regular background jobs 158
csplit — Split text files . 160
ctags — Create tag files for ex, more, and vi 162
cu — Call up another system (stub only) 164
cut — Cut out selected fields from each line of a file 165
cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source code

and create an executable file 166
date — Display the date and time 166
dbx — Use the debugger . 170
? subcommand for dbx: Search backward for a pattern 172
/ subcommand for dbx: Search forward for a pattern 173
alias subcommand for dbx: Display and assign subcommand aliases 173
args subcommand for dbx: Display program arguments 173
assign subcommand for dbx: Assign a value to a variable 174
case subcommand for dbx: Change how dbx interprets symbols 174
catch subcommand for dbx: Start trapping a signal 175
clear subcommand for dbx: Remove all stops at a given source line 176
cleari subcommand for dbx: Remove all breakpoints at an address 176
condition subcommand for dbx: Display a list of active condition variables 177
cont subcommand for dbx: Continue program execution 177
delete subcommand for dbx: Remove traces and stops 178
detach subcommand for dbx: Continue program execution without dbx control 179
display memory subcommand for dbx: Display the contents of memory. . . . 179
down subcommand for dbx: Move the current function down the stack 181
dump subcommand for dbx: Display the names and values of variables in a

procedure . 181
edit subcommand for dbx: Invoke an editor 182
file subcommand for dbx: Change the current source file 183
func subcommand for dbx: Change the current function 183
goto subcommand for dbx: Run a specified source line 183
gotoi subcommand for dbx: Change the program counter address 184
help subcommand for dbx: Display a subcommand synopsis 184
history subcommand for dbx: Display commands in a history list 185
ignore subcommand for dbx: Stop trapping a signal 185
list subcommand for dbx: Display lines of the current source file 186
listfiles subcommand for dbx: Display the list of source files 187
listfuncs subcommand for dbx: Display the list of functions 187
listi subcommand for dbx: List instructions from the program. 188
map subcommand for dbx: Display load characteristics 188
move subcommand for dbx: Change the next line to be displayed 189
multproc subcommand for dbx: Enable or disable multiprocess debugging 189
mutex subcommand for dbx: Display a list of active mutex objects 190
next subcommand for dbx: Run the program up to the next source line. . . . 191
nexti subcommand for dbx: Run the program up to the next machine

instruction . 192

iv z/OS V1R4.0 UNIX System Services Command Reference

object subcommand for dbx: Load an object file 192
onload subcommand for dbx: Evaluate stop/trace after dll load 193
print subcommand for dbx: Print the value of an expression 193
prompt subcommand for dbx: Change the dbx command prompt 194
quit subcommand for dbx: End the dbx debugging session 194
readwritelock subcommand for dbx: Display a list of active read/write lock

objects . 194
record subcommand for dbx: Append user’s commands to a file 195
registers subcommand for dbx: Display the value of registers 196
rerun subcommand for dbx: Begin running a program with the previous

arguments . 197
return subcommand for dbx: Continue running a program until a return is

reached . 197
run subcommand for dbx: Run a program 198
set subcommand for dbx: Define a value for a dbx variable 198
sh subcommand for dbx: Pass a command to the shell for execution 202
skip subcommand for dbx: Continue from the current stopping point 203
source subcommand for dbx: Read subcommands from a file 203
status subcommand for dbx: Display the active trace and stop subcommands 204
step subcommand for dbx: Run one or more source lines. 204
stepi subcommand for dbx: Run one or more machine instructions 205
stop subcommand for dbx: Stop execution of a program 205
stopi subcommand for dbx: Stop at a specified location 206
thread subcommand for dbx: Display a list of active threads 207
trace subcommand for dbx: Print tracing information. 208
tracei subcommand for dbx: Turn on tracing. 209
unalias subcommand for dbx: Remove an alias 210
unset subcommand for dbx: Delete a variable 211
up subcommand for dbx: Move the current function up the stack 211
use subcommand for dbx: Set the list of directories to be searched 211
whatis subcommand for dbx: Display the type of program components 212
where subcommand for dbx: List active procedures and functions. 213
whereis subcommand for dbx: Display the full qualifications of symbols . . . 213
which subcommand for dbx: Display the full qualification of an identifier . . . 214
dd — Convert and copy a file 214
df — Display the amount of free space in the file system 218
diff — Compare two text files and show the differences 220
dircmp — Compare directories 225
dirname — Return the directory components of a pathname. 225
· (dot) — Run a shell file in the current environment 226
dspcat — Display all or part of a message catalog 227
dspmsg — Display selected messages from message catalogs 228
du — Summarize usage of file space 229
echo — Write arguments to standard output 230
ed — Use the ed line-oriented text editor 232
egrep — Search a file for a specified pattern 239
env — Display or set environment variables for a process 240
eval — Construct a command by concatenating arguments 241
ex — Use the ex text editor . 242
exec — Run a command and open, close, or copy the file descriptors 243
exit — Return to the shell’s parent process or to TSO/E 244
expand — Expand tabs to spaces 245
export — Set a variable for export 246
expr — Evaluate arguments as an expression 247
exrecover daemon — Retrieve vi and ex files 250
extattr — Set, reset, and display extended attributes for files 253

Contents v

false — Return a nonzero exit code. 254
fc — Process a command history list 255
fg — Bring a job into the foreground 257
fgrep — Search a file for a specified pattern 258
file — Determine file type . 258
filecache — Manage file caches 260
find — Find a file meeting specified criteria 261
fold — Break lines into shorter lines. 268
functions — Display or assign attributes to functions 269
fuser — List process IDs of processes with open files 269
gencat — Create or modify message catalogs 271
getconf — Get configuration values 274
getfacl — Display owner, group, and access control list (ACL) entries 278
getopts — Parse utility options 280
grep — Search a file for a specified pattern 282
hash — Create a tracked alias 285
head — Display the first part of a file 286
history — Display a command history list 287
iconv — Convert characters from one codeset to another 288
id — Return the user identity 290
inetd daemon — Provide Internet Service Management 291
infocmp — Compare or print the terminal description 295
integer — Mark each variable with an integer value 298
ipcrm — Remove message queues, semaphore sets, or shared memory IDs 299
ipcs — Report status of the interprocess communication facility 300
jobs — Return the status of jobs in the current session 305
join — Join two sorted textual relational databases 306
kill — End a process or job, or send it a signal. 308
[(left bracket) — Test for a condition 311
let — Evaluate an arithmetic expression 312
lex — Generate a program for lexical tasks 313
line — Copy one line of standard input 316
link — Create a hard link to a file. 316
ln — Create a link to a file . 317
locale — Get locale-specific information 321
localedef — Define the locale environment 325
logger — Log messages . 327
logname — Return a user’s login name 329
lp — Send a file to a printer. 330
lpstat — Show status of print queues (stub command) 331
ls — List file and directory names and attributes 332
mail — Read and send mail messages 338
mailx — Send or receive electronic mail 341
make — Maintain program-generated and interdependent files 359
makedepend — Generate source dependency information 381
man — Display sections of the online reference manual 388
mesg — Allow or refuse messages 390
mkcatdefs — Preprocess a message source file 391
mkdir — Make a directory . 393
mkfifo — Make a FIFO special file 395
mknod — Make a FIFO or character special file 396
more — Display files on a page-by-page basis. 397
mount — Logically mount a file system 401
mv — Rename or move a file or directory 404
newgrp — Change to a new group 415
nice — Run a command at a different priority 416

vi z/OS V1R4.0 UNIX System Services Command Reference

nl — Number lines in a file . 417
nm — Display symbol table of object, library, or executable files 419
nohup — Start a process that is immune to hangups 422
obrowse — Browse an HFS file 423
od — Dump a file in a specified format 423
oedit — Edit an HFS file . 427
pack — Compress files by Huffman coding 428
passwd — Change user passwords 430
paste — Merge corresponding or subsequent lines of a file 431
patch — Change a file using diff output 433
pathchk — Check a pathname. 436
pax — Interchange portable archives 437
pcat — Unpack and display Huffman packed files 453
pg — Display files interactively 453
pr — Format a file in paginated form and send it to standard output 457
print — Return arguments from the shell 460
printenv — Display the values of environment variables 461
printf — Write formatted output 462
ps — Return the status of a process 464
pwd — Return the working directory name 471
r — Process a command history list. 472
read — Read a line from standard input 472
readonly — Mark a variable as read-only 474
renice — Change priorities of a running process 475
return — Return from a shell function or . (dot) script 476
rlogind — Validate rlogin requests 477
rm — Remove a directory entry 479
rmdir — Remove a directory 480
runcat — Pipe output from mkcatdefs to gencat 481
sed — Start the sed noninteractive stream editor 482
set — Set or unset command options and positional parameters 487
setfacl — Set, remove, and change access control lists (ACLs) 491
sh — Invoke a shell . 496
shedit — Interactive command and history editing in the shell 523
shift — Shift positional parameters 529
sleep — Suspend execution of a process for an interval of time 531
skulker — Remove old files from a directory 531
sort — Start the sort-merge utility 534
spell — Detect spelling errors in files 540
split — Split a file into manageable pieces 542
stop — Suspend a process or job 543
strings — Display printable strings in binary files 544
strip — Remove unnecessary information from an executable file 545
stty — Set or display terminal options 546
su — Change the user ID associated with a session 553
sum — Compute checksum and block count for file 556
suspend — Send a SIGSTOP to the current shell 557
sysvar — Display static system symbols 558
tabs — Set tab stops . 558
tail — Display the last part of a file 560
talk — Talk to another user . 561
tar — Manipulate the tar archive files to copy or back up a file 563
tcsh — Invoke a C shell . 570
@ (at) built-in command for tcsh: Print the value of tcsh shell variables. . . . 616
% (percent) built-in command for tcsh: Move jobs to the foreground or

background . 616

Contents vii

alloc built-in command for tcsh: Show the amount of dynamic memory acquired 617
bindkey built-in command for tcsh: List all bound keys 617
builtins built-in command for tcsh: Prints the names of all built-in commands 619
bye built-in command for tcsh: Terminate the login shell 619
chdir built-in shell command for tcsh: Change the working directory 619
complete built-in command for tcsh: List completions 619
dirs built-in command for tcsh: Print the directory stack. 623
echotc built-in command for tcsh: Exercise the terminal capabilities in args 624
filetest built-in command for tcsh: Apply the op file inquiry operator to a file 625
glob built-in command for tcsh: Write each word to standard output 625
hashstat built-in command for tcsh: Print a statistic line on hash table

effectiveness . 625
hup built-in command for tcsh: Run command so it exits on a hang-up signal 626
limit built-in command for tcsh: Limit consumption of processes 626
log built-in command for tcsh: Print the watch tcsh shell variable 627
login built-in command for tcsh: Terminate a login shell. 627
logout built-in command for tcsh: Terminate a login shell 627
ls-F built-in command for tcsh: List files 628
notify built-in command for tcsh: Notify user of job status changes 629
onintr built-in command for tcsh: Control the action of the tcsh shell on

interrupts . 629
popd built-in command for tcsh: Pop the directory stack 630
pushd built-in command for tcsh: Make exchanges within directory stack . . . 630
rehash built-in command for tcsh: Recompute internal hash table 631
repeat built-in command for tcsh: Execute command count times 631
sched built-in command for tcsh: Print scheduled event list 632
setenv built-in command for tcsh: Set environment variable name to value 632
settc built-in command for tcsh: Tell tcsh shell the terminal capability cap value 633
setty built-in command for tcsh: Control tty mode changes 633
source built-in command for tcsh: Read and execute commands from name 634
telltc built-in command for tcsh: List terminal capability values 634
uncomplete built-in command for tcsh: Remove completions whose names

match pattern . 634
unhash built-in command for tcsh: Disable use of internal hash table 635
unlimit built-in command for tcsh: Remove resource limitations 635
unsetenv built-in command for tcsh: Remove environmental variables that

match pattern . 635
watchlog built-in command for tcsh: Print the watch shell variable 636
where built-in command for tcsh: Report all instances of command 636
which built-in command for tcsh: Display next executed command 636
tee — Duplicate the output stream 636
test — Test for a condition . 637
tic — Put terminal entries in the terminfo database 641
time — Display processor and elapsed times for a command 642
times — Get process and child process times 643
touch — Change the file access and modification times 644
tput — Change characteristics of terminals 646
tr — Translate characters . 648
trap — Intercept abnormal conditions and interrupts 650
true — Return a value of 0 . 651
tso — Run a TSO/E command from the shell 652
tsort — Sort files topologically 656
tty — Return the user’s terminal name 657
type — Tell how the shell interprets a name 658
typeset — Assign attributes and values to variables 658
uconvdef — Create binary conversion tables 660

viii z/OS V1R4.0 UNIX System Services Command Reference

ulimit — Set process limits . 661
umask — Set or return the file mode creation mask 663
unalias — Remove alias definitions 664
uname — Display the name of the current operating system. 665
uncompress — Undo Lempel-Ziv compression of a file. 666
unexpand — Compress spaces into tabs 667
uniq — Report or filter out repeated lines in a file 668
unlink — Removes a directory entry 670
unmount — Remove a file system from the file hierarchy 671
unpack — Decode Huffman packed files 672
unset — Unset values and attributes of variables and functions 674
uucc — Compile UUCP configuration files 675
uucico daemon — Process UUCP file transfer requests 676
uucp — Copy files between remote UUCP systems 678
uucpd daemon — Invoke uucico for TCP/IP connections from remote UUCP

systems . 681
uudecode — Decode a transmitted binary file 682
uuencode — Encode a file for safe transmission 683
uulog — Display log information about UUCP events 684
uuname — Display list of remote UUCP systems 686
uupick — Manage files sent by uuto and uucp 687
uustat — Display status of pending UUCP transfers 688
uuto — Copy files to users on remote UUCP systems 692
uux — Request command execution on remote UUCP systems 693
uuxqt daemon — Carry out command requests from remote UUCP systems 696
vi — Use the display-oriented interactive text editor 698
wait — Wait for a child process to end. 728
wall — Broadcast a message to logged-in users 729
wc — Count newlines, words, and bytes 730
whence — Tell how the shell interprets a command name 731
who — Display information about current users 731
whoami — Display your effective user name 733
write — Write to another user 734
xargs — Construct an argument list and run a command 735
yacc — Use the yacc compiler 739
zcat — Uncompress and display data 742

Chapter 3. TSO/E Commands 745
BPXBATCH — Run shell commands, shell scripts, or executable files 746
ISHELL — Invoke the ISPF shell 748
MKDIR — Make a directory . 748
MKNOD — Create a character special file 750
MOUNT — Logically mount a file system 751
OBROWSE — Browse an HFS file 757
OCOPY — Copy an MVS data set member or HFS file to another member or

file . 758
OEDIT — Edit an HFS file . 763
OGET — Copy an HFS file into an MVS data set. 764
OGETX — Copy HFS files from a directory to an MVS PDS or PDSE 767
OHELP — Display online z/OS UNIX System Services publications 771
OMVS — Invoke the z/OS shell 772
OPUT — Copy an MVS data set member into an HFS file 785
OPUTX — Copy members from an MVS PDS or PDSE to an HFS directory 787
OSHELL — Invokes BPXBATCH from TSO/E 790
OSTEPLIB — Build a list of files 791
UNMOUNT — Remove a file system from the file hierarchy 792

Contents ix

Appendix A. OS/390 Shell Command Summary 797
General Use . 797
Controlling Your Environment 797
Daemons . 798
Managing Directories . 798
Managing Files . 799
Printing Files . 800
Computing and Managing Logic 800
Controlling Processes . 800
Writing Shell Scripts . 801
Developing or Porting Application Programs 801
Communicating with the System or Other Users 801
Working with Archives . 802
Working with UUCP . 802

Appendix B. tcsh Shell Command Summary 803
General Use . 803
Controlling Your Environment 803
Managing Directories . 804
Computing and Managing Logic 804
Managing Files . 804
Controlling Processes . 804

Appendix C. Regular Expressions (regexp) 805
Summary . 808
Examples . 808

Appendix D. Running Shell Scripts or Executable Files under MVS
Environments . 811

BPXBATCH. 811
Using OSHELL to Run Shell Commands and Scripts from MVS 817

Appendix E. BPXCOPY: Copying a Sequential or Partitioned Data Set or
PDSE Member into an HFS File 819

BPXCOPY . 819

Appendix F. Localization . 825

Appendix G. Stub Commands 827

Appendix H. File Formats . 829
cpio — Format of cpio archives 829
magic — Format of the /etc/magic file 830
pax — Format of pax archives and special header summary files 832
queuedefs — Queue description for at, batch, and cron 834
tags — Format of the tags file 835
tar — Format of tar archives 836
utmpx — Format of login accounting files. 838
uucp — Format of UUCP working files. 839

Appendix I. Setting the Local Time Zone with the TZ Environment
Variable . 843

TZ Environment Variable . 843

Appendix J. Environment Variables 845

x z/OS V1R4.0 UNIX System Services Command Reference

Appendix K. Specifying MVS Dataset Names in the Shell Environment 849
Utilities Supporting MVS Dataset Names 849

Appendix L. Automatic Codeset Conversion: Default Status for Specific
Commands. 851

Appendix M. Accessibility . 853
Using assistive technologies 853
Keyboard navigation of the user interface. 853

Notices . 855
Trademarks. 856
Acknowledgments . 857

Index . 859

Contents xi

xii z/OS V1R4.0 UNIX System Services Command Reference

Figures

1. Example of a Special Header Summary File . 833

© Copyright IBM Corp. 1996, 2002 xiii

xiv z/OS V1R4.0 UNIX System Services Command Reference

Tables

1. Locales Supplied by z/OS UNIX System Services 4
2. The Order of Operations for awk . 30
3. c89, cc, and c++ Programs and Reference Documentation 63
4. Possible txtflag / CCSID Combinations . 125
5. Automatic Conversion and File Tag Behavior: UNIX to UNIX Copying 144
6. Automatic Conversion and File Tag Behavior: MVS to UNIX Copying 144
7. Autoconversion and File Tag Behavior: UNIX to MVS Copying 145
8. cp Format: File to File and File ... (multiple files) to Directory 148
9. cp Format: File to File . 148

10. cp Format: File... (multiple files) to Directory . 149
11. Fields in the Configuration File (inetd daemon) 293
12. Explanation of the ipcs Command Listing . 300
13. Internal Table Sizes (lex command) . 314
14. –O c=codeset Option and mv. 407
15. mv Format: File to File and File ... (multiple files) to Directory 410
16. mv Format: File to File . 411
17. mv Format: File... (multiple files) to Directory . 411
18. Max UID/GID Values . 447
19. Shell Operators (sh command) . 509
20. Built-in Shell Variables (sh command). 517
21. Shell Variables for Automatic Conversion (sh command) 520
22. Standard Input/Output Syntax for tcsh Shell . 590
23. tcsh Built-in Shell Variables . 600
24. tcsh Environment Variables . 612
25. tcsh Shell Variables for Automatic Conversion. 613
26. Various Formats of the OMVS CONVERT Command (OMVS command) 773
27. Locales, Their Conversion Tables, and Default Escape Characters (OMVS command) 774
28. Regular Expression Features (regexp) . 808
29. Archive File: ASCII Header. 829
30. Archive File: UNIX-Compatible Format . 836
31. Archive File: USTAR Format . 836
32. Miscellaneous Environment Variables . 845
33. Commands that Allow Automatic Conversion by Default 851
34. Commands that Disallow Automatic Conversion by Default 851

© Copyright IBM Corp. 1996, 2002 xv

xvi z/OS V1R4.0 UNIX System Services Command Reference

Permuted Index

The permuted index is a guide to the command descriptions. It helps you explore
the shell and TSO/E commands and what they can do for you.

Each line in the permuted index is taken from the title of a command—its “purpose
line.” The words of the purpose are shifted to get entries for the index. For example,
the purpose of the comm shell command is:

comm — Show and select or reject lines common to two files

This produces the following permuted index entries:

and select or reject lines common to two files. Show comm
reject lines common to two files. Show and select or comm

Show and select or reject lines common to two files. comm
files. Show and select or reject lines common to two comm

to two files. Show and select or reject lines common comm
lines common to two files. Show and select or reject comm

The permuted index is sorted alphabetically in the middle column by each
significant word in the title line. The first column contains whatever is left of the title
line—either before or after the word or words in the middle column. The last column
contains the place where you would go to find the information you are seeking. The
purpose line of the title always begins after the command name. The purpose line
always ends with a period.

The permuted index lets you look up commands according to significant words in
their purpose lines. For example, suppose you want to show lines common to two
files, and you don’t know which command does this. Looking up the word show in
the middle column of the permuted index, you find three entries:

lines common to two files. Show and select or reject comm
export attributes for variables, or show currently exported variables. Set the export

two text files and show the differences. Compare diff

Each index entry is associated with a command description (given in the third
column). By looking at the purpose lines, you should be able to determine which
command does what you want and go directly to the appropriate description—in this
case, the comm command.

If you had looked in the permuted index under the word file or files, you would have
found 47 entries. Again, by looking at the purpose lines, you should be able to
determine which command does what you want. You could also have looked under
lines, reject, or select. With any of these words, you would have found the
appropriate command: comm.

a shell function or . (dot) script. Return from return
interrupts. Intercept abnormal conditions and trap

group and ACL entries. Display owner, getfacl
change ACLs. Set, remove, and setfacl

sent by uuto and uucp. Manage files uupick
Change the file access and modification times. touch

Configure the AF_UEINT stack. configstk
Create a tracked alias. hash

Remove alias definitions. unalias

© Copyright IBM Corp. 1996, 2002 xvii

create a command alias. Display or alias
Display all current appointments. calendar
Display all or part of a message catalog. dspcat

messages. Allow or refuse mesg
Display owner, group and ACL entries. getfacl

Set, remove and and change ACLs. setfacl
Call up another system. cu
Talk to another user. talk

Write to another user. write
current appointments. Display all calendar

language. Use the arbitrary-precision arithmetic calculation bc
up a file. Manipulate the tar archive files to copy or back tar

in/out file archives. Copy cpio
maintain library archives. Create or ar

portable archives. Interchange pax
a command. Construct an argument list and run xargs

expression. Evaluate arguments as an expr
shell. Return arguments from the print
output. Write arguments to standard echo

command by concatenating arguments. Construct a eval
Use the arbitrary-precision arithmetic calculation language. bc

Evaluate an arithmetic expression. let
Interpret ASA/FORTRAN carriage control. asa

Set or query ASCII/EBCDIC code pages for the terminal. chcp
values to functions. Assign attributes and functions
values to variables. Assign attributes and typeset
to functions. Assign attributes and values functions
to variables. Assign attributes and values typeset
Change the mount attributes of a file system. chmount

functions. Unset values and attributes of variables and unset
directory names and attributes. List file and ls

a file. Change audit flags for chaudit
Configure the automount facility. automount
written in the awk language. Process programs awk

tar archive files to copy or back up a file. Manipulate the tar
Schedule regular background jobs. crontab

job to the background. Move a bg
page-by-page basis. Display files on a more

Copy files between remote UUCP systems. uucp
Create binary conversion tables. uconvdef

a transmitted binary file. Decode uudecode
printable strings in binary files. Display strings

Compute checksum and block count for file. sum
into the foreground. Bring a job fg
to logged-in users. Broadcast a message wall

HFS file. Browse an OBROWSE
of files. Build a list OSTEPLIB

when system is not busy. Run commands batch
write checksums and byte counts. Calculate and cksum

words, and bytes. Count newlines, wc
an executable file. Compile C/MVS™ source code and create c89/cc/c++

and byte counts. Calculate and write checksums cksum
the arbitrary-precision arithmetic calculation language. Use bc

Display calendar for a month or year. cal
another system. Call up cu

from remote UUCP systems. Carry out command requests uuxqt
Interpret ASA/FORTRAN carriage control. asa

from other sites. Carry out command requests uuxqt
modify message catalogs. Create or gencat

xviii z/OS V1R4.0 UNIX System Services Command Reference

part of the message catalog. Display all or dspcat
diff output. Change a file using patch

for a file. Change audit flags chaudit
terminals. Change characteristics of tput

tag information. Change file chtag
of a running process. Change priorities renice

working directory. Change the cd
and modification times. Change the file access touch

a file or directory. Change the group owner of chgrp
a file or directory. Change the mode of chmod

of a file system. Change the mount attributes chmount
of a file or directory. Change the owner or group chown

for the execution of a command. Change the root directory chroot
new group. Change to a newgrp
passwords. Change user password

Create a character special file. MKNOD
a FIFO or character special file. Make mknod
Translate characters. tr

to another. Convert characters from one code set iconv
pathname. Check a pathchk

Compute checksum and block count for file. sum
Calculate and write checksums and byte counts. cksum

Get process and child process times. times
Wait for a child process to end. wait

Run a command and open, close, or copy the file descriptors. exec
Compile C/MVS source code and create an executable file. c89/cc/c++

Set or query code pages for the terminal. chcp
Convert characters from one code set to another. iconv

Display reason code text. bpxmtext
nonzero exit code. Return a false

files by Huffman coding. Compress pack
or create a command alias. Display alias

in the shell. Interactive command and history editing shedit
the file descriptors. Run a command and open, close, or copy exec

Run a command at a different priority. nice
Run a command at a specified time. at

arguments. Construct a command by concatenating eval
Request command execution on remote UUCP systems. uux

Run a TSO/E command from the shell. TSO
Process a command history list. fc
Process a command history list. history
Process a command history list. r

the shell interprets a command name. Tell how whence
parameters. Set or unset command options and positional set

Carry out command requests from remote UUCP systems. uuxqt
for the execution of a command. Change the root directory chroot

list and run a command. Construct an argument xargs
elapsed times for a command. Display processor and time

a simple command. Run command
Run shell commands, shell scripts, or executable files. BPXBATCH

is not busy. Run commands when system batch
and select or reject lines common to two files. Show comm

Report status of the interprocess communication facility. ipcs
directories. Compare dircmp

the terminal description. Compare and print infocmp
files. Compare two cmp

and show the differences. Compare two text files diff
terminfo database entries. Compile term descriptions into tic

configuration files. Compile UUCP uucc

Permuted Index xix

and create an executable file. Compile C/MVS source code c89/cc/c++
the yacc compiler. Use yacc

Return the nondirectory components of a pathname. basename
Return the directory components of a pathname. dirname

spaces into tabs Compress unexpand
by Hoffman coding Compress files pack

Lempel-Ziv file compression. compress
Undo Lempel-Ziv compression of a file. uncompress

block count for file. Compute checksum and sum
a text file. Concatenate or display cat

a command by concatenating arguments. Construct eval
for a condition. Test test

Intercept abnormal conditions and interrupts. trap
STREAMS physical file system configuration. Set and query the configstrm

Get configuration values. getconf
Compile UUCP configuration files. uucc
AF_EINT stack. Configure the configstk

automount facility. Configure the automount
Invoke uucico for TCP/IP connections from remote UUCP systems. uucpd

by concatenating arguments. Construct a command eval
and run a command. Construct an argument list xargs

ASA/FORTRAN carriage control. Interpret asa
a file. Convert and copy dd

Create binary conversion tables uconvdef
on remote UUCP systems. Copy files to users uuto

from one code set to another. Convert characters iconv
file. Copy a cp

Convert and copy a file. dd
an MVS™ data set. Copy an HFS file into OGET

member into an HFS file. Copy an MVS data set OPUT
member or HFS file to another member or file. Copy an MVS data set OCOPY

between remote UUCP systems. Copy files uucp
to users on remote UUCP systems. Copy files uuto

partitioned data set (PDS) or PDSE. Copy HFS file from a directory to an MVS OGETX
PDSE to an HFS directory. Copy members from an MVS PDS or OPUTX

file archives. Copy in/out cpio
standard input. Copy one line of line

Manipulate the tar archive files to copy or back up a file. tar
command and open, close, or copy the file descriptors. Run a exec

of a file. Merge corresponding or subsequent lines paste
checksum and block count for file. Compute sum

and bytes. Count newlines, words, wc
checksums and byte counts. Calculate and write cksum

special file. Create a character MKNOD
alias. Display or create a command alias

to a file. Create a link ln
C/MVS source code and create an executable file. Compile c89/cc/c++

alias. Create a tracked hash
tables. Create binary conversion uconvdef

to a file. Create a hard link link
library archives. Create or maintain ar

message catalogs. Create or modify gencat
ex, more, and vi. Create tag files for ctags

return the file mode creation mask. Set or umask
file meeting specified criteria. Find a find

Display all current appointments. calendar
shell file in the current environment. Run a (dot)
shell file in the current environment. Run a ·

the name of the current operating system. Display uname

xx z/OS V1R4.0 UNIX System Services Command Reference

to the current process. Send a SIGSTOP suspend
of jobs in the current session. Return the status jobs

information about current users. Display who
each line of a file. Cut out selected fields from cut

file recovery. daemon. vi exrecover
display data. Uncompress and zcat

term descriptions into database entries. Compile tic
from a directory to an MVS partitioned data set (PDS) or PDSE. Copy HFS files OGETX

HFS file. Copy an MVS data set member into an OPUT
member or file. Copy an MVS data set member or HFS file to another OCOPY

file into an MVS data set. Copy an HFS OGET
sorted, textual relational databases. Join two join

Display the date and time. date
the debugger. Use dbx

binary file. Decode a transmitted uudecode
packed files Decode Huffman unpack

locale environment. Define the localedef
name not defined. Indicate function autoload

alias definitions. Remove unalias
Generate source dependency information. makedepend
print the terminal description. Compare and infocmp

Compile term descriptions into terminfo database entries. tic
close, or copy the file descriptors. Run a command and open, exec

in files. Detect spelling errors spell
type. Determine file file

Change a file using diff output. patch
files and show the differences. Compare two text diff

Run commands at a different priority. nice
Compare directories. dircmp

Remove old files from a directory. skulker
pathname. Return the directory components of a dirname

command. Change the root directory for the execution of a chroot
Remove a directory entry. rm

Removes a directory entry. unlink
the working directory name. Return pwd
List file and directory names and attributes. ls

(PDS) or PDSE. Copy HFS files from a directory to an MVS partitioned data set OGETX
the working directory. Change cd

of a file or directory. Change the group owner chgrp
of a file or directory. Change the mode chmod

group of a file or directory. Change the owner or chown
PDS or PDSE to an HFS directory. Copy members from an MVS OPUTX

a directory. Make mkdir
a directory. Make MKDIR
a directory. Remove rmdir

a file or directory. Rename or move mv
for a month or year Display a calendar cal

appointments. Display all current calendar
message catalog. Display all or part of a dspcat

from message catalogs. Display selected messages dspmsg
environment for a process. Display environments, or set an env

interactively. Display files pg
page-by-page basis. Display files on a zcat
about current users. Display information who

UUCP systems. Display list of uuname
about UUCP events. Display log information uulog

publications. Display online OHELP
a command alias. Display or create alias

in binary files. Display printable strings strings

Permuted Index xxi

times for a command. Display processor and elapsed time
text. Display reason code bpxmtext

online reference manual. Display sections of the man
symbols. Display static system sysvar

UUCP transfers. Display status of pending uustat
executable files. Display symbol table of object, library, or nm

space in the file system. Display the amount of free df
and time. Display the date date

of a file. Display the first part head
of a file. Display the last part tail

the current operating system. Display the name of uname
pending UUCP transfers. Display the status of uustat

user name. Display your effective whoami
environment variables. Display the values of printenv

Uncompress and display data. zcat
Unpack and display Huffman packed files. pcat

Set or display terminal options. stty
Concatenate or display text files. cat

Use the display-oriented text editor. vi
a specified format. Dump a file in od

output stream. Duplicate the tee
Cut out selected fields from each line of a file. cut

Integer value. Mark each variable with an integer
Set or query ASCII/ EBCDIC code pages for the terminal. chcp

editor. Use the ed line-oriented text ed
HFS file. Edit an OEDIT

command and history editing in the shell. Interactive shedit
sed noninteractive stream editor. Start the sed

interactive text editor. Use the display-oriented vi
line-oriented text editor. Use the ed ed

Display your effective user name. whoami
text editor. Use the ex ex

command. Display processor and elapsed times for a time
or receive electronic mail. Send mailx

for safe transmission. Encode a file uuencode
or send it a signal. End a process or job, kill

child process to end. Wait for a wait
into terminfo database entries. Compile term descriptions tic

and ACL entries. Display owner, group getfacl
Print the terminal entries in the termcap file. captoinfo

a directory entry. Remove rm
a directory entry. Removes unlink

environments, or set an environment for a process. Display env
the locale environment. Define localedef

file in the current environment. Run a shell (dot)
file in the current environment. Run a shell ·

for a process. Display environments, or set an environment env
Display the values of environment variables. printenv

Detect spelling errors in files. spell
arithmetic expression. Evaluate an let

an expression. Evaluate arguments as expr
about UUCP events. Display log information uulog

Create tag files for ex, more, and vi. ctags
Use the ex text editor. ex

C/MVS source code and create an executable file. Compile c89/cc/c++
information from an executable file. Remove unnecessary strip

object, library, or executable files. Display symbol table of nm
Run shell commands, shell scripts, or executable files. BPXBATCH

the root directory for the execution of a command. Change chroot

xxii z/OS V1R4.0 UNIX System Services Command Reference

an interval of time. Suspend execution of a process for sleep
Request command execution on remote UUCP systems. uux

a nonzero exit code. Return false
in the shell script. Exit from a loop break

to spaces. Expand tabs expand
variable for export. Set a export

an arithmetic expression. Evaluate let
as an expression. Evaluate arguments expr

Set, reset, and display extended attributes for files. extattr
Configure the automount facility. automount

interprocess communication facility. Report status of the ipcrm
regular file feeds. Remove col

a file. Cut out selected fields from each line of cut
file. Make a FIFO or character special mknod

Make a FIFO special file. mkfifo
times. Change the file access and modification touch
and attributes. List file and directory names ls

Copy in/out file archives. cpio
Manage file caches. filecache

Lempel-Ziv file compression. compress
open, close, or copy the file descriptors. Run a command and exec

pattern. Search a file for a specified egrep
pattern. Search a file for a specified fgrep
pattern. Search a file for a specified grep

transmission. Encode a file for ssafe uuencode
file system from the file hierarchy. Remove a unmount
file system from the file hierarchy. Remove a UNMOUNT

format. Dump a file in a specified od
it to standard output. Format a file in paginated form and send pr

environment. Run a shell file in the current (dot)
environment. Run a shell file in the current ·

set. Copy an HFS file into an MVS data OGET
Split a file into manageable pieces. split

criteria. Find a file meeting specified find
Set or return the file mode creation mask. umask

the mode of a file or directory. Change chmod
group owner of a file or directory. Change the chgrp

owner or group of a file or directory. Change the chown
or move a file or directory. Rename mv

vi file recovery daemon. exrecover
Summarize usage of file space. du

attributes of a file system. Change the mount chmount
of free space in the file system. Display the amount df

mount a file system. Logically mount
mount a file system. Logically MOUNT

query the STREAMS physical file system configuration. Set and configstrm
Remove a file system from the file hierarchy. unmount
Remove a file system from the file hierarchy. UNMOUNT

information. Change file tag chtag
printer. Send a file to a lp

an MVS data set member or HFS file to another member or file. Copy OCOPY
Process UUCP file transfer requests. uucico

Determine file type. file
Change a file using diff output. patch

an HFS file. Browse OBROWSE
flags for a file. Change audit chaudit

and create an executable file. Compile C/MVS source code c89/cc/c++
block count for file. Compute checksum and sum

display a text file. Concatenate or cat

Permuted Index xxiii

copy a file. Convert and dd
a file. Copy cp

set member into an HFS file. Copy an MVS data OPUT
HFS file to another member or file. Copy an MVS data set member or OCOPY

link to a file. Create a ln
character special file. Create a MKNOD

hard link to a file. Create a link
from each line of a file. Cut out selected fields cut
transmitted binary file. Decode a uudecode

part of a file. Display the first head
part of a file. Display the last tail
an HFS file. Edit OEDIT

FIFO special file. Make a mkfifo
or character special file. Make a FIFO mknod

to copy or back up a file. Manipulate the tar archive files tar
subsequent lines of a file. Merge corresponding or paste

in a file. Number lines nl
in the termcap file. Print the terminal entries captoinfo

message source file. Preprocess a mkcatdefs
from an executable file. Remove unnecessary information strip
repeated lines in a file. Report or filter out uniq

of a file. Undo Lempel-Ziv compression uncompress
differences. Compare two text files and show the diff

UUCP systems. Copy files between remote uucp
Compress files by Huffman coding. pack

Remove old files from a directory. skulker
partitioned data set (PDS) or PDSE. Copy HFS files from a directory to an MVS OGETX

Display files interactively. pg
Create tag files for ex, more and vi. ctags

basis. Display files on a page-by-page more
Manage files sent by uuto and uucp. uupick

a file. Manipulate the tar archive files to copy or back up tar
Sort files topologically. tsort

on remote UUCP systems. Copy files to users uuto
Split files. csplit

list of files. Build a OSTEPLIB
two files. Compare cmp

configuration files. Compile UUCP uucc
Huffman packed files. Decode unpack
spelling errors in files. Detect spell

in binary files. Display printable strings in strings
library, or executable Files. Display symbol table of object, nm

processes with open files. files. List process IDs of fuser
and interdependent files. Maintain program-generated make

shell scripts, or executable files. Run shell commands, BPXBATCH
reject lines common to two files. Show and select or comm

Huffman packed files. files. Unpack and display pcat
a file. Report or filter out repeated lines in uniq

meeting specified criteria. Find a file find
file. Display the first part of a head

file. Change audit flags for a chaudit
job into the foreground. Bring a fg

Format a file in paginated form and send it to standard output. pr
and send it to standard output. Format a file in paginated form pr

in a specified format. Dump a file od
Write formatted output. printf

Interpret ASA/ FORTRAN carriage control. asa
system. Display the amount of free space in the file df

Indicate function name not defined. autoload

xxiv z/OS V1R4.0 UNIX System Services Command Reference

Return from a shell function or . (dot) script. return
Assign attributes and values to functions. functions

vfs_pfsctl HFS functions. Invoke confighfs
attributes of variables and functions. Unset values and unset

mkcatdefs to gencat. Pipe output from runcat
for lexical tasks. Generate a program lex

dependency information. Generate source makedepend
Display owner, group and ACL entries. getfacl

directory. Change the owner or group of a file or chown
or directory. Change the group owner of a file chgrp

a new group. Change to newgrp
that is immune to hangups. Start a utility nohup

Create a hard link to a file. link
PDS or PDSE to an HFS directory. Copy members from an MVS OPUTX

data set. Copy an HFS file into an MVS OGET
Copy an MVS data set member or HFS file to another member or file. OCOPY

Browse an HFS file. OBROWSE
Edit an HFS file. OEDIT

data set member into an HFS file. Copy an MVS OPUT
partitioned data set (PDS) or PDSE. Copy HFS files from a directory to an MVS OGETX

Invoke vfs_pfsctl HFS functions. confighfs
from the file hierarchy. Remove a file system unmount
from the file hierarchy. Remove a file system UNMOUNT

Interactive command and history editing in the shell. shedit
a command history list. Process fc
a command history list. Process history
a command history list. Process r
a name. Tell how the shell interprets type

a command name. Tell how the shell interprets whence
Compress files by Huffman coding. pack

Decode Huffman packed files. unpack
Unpack and display Huffman packed files. pcat

the user identity. Return id
not defined. Indicate function name autoload

files. List process IDs of processes with open fuser
or shared memory IDs. Remove message queues, semaphore sets, ipcrm

a utility that is immune to hangups. Start nohup
Display information about current users. who
file tag information. Change chtag

file. Remove unnecessary information from an executable strip
locale-specific information. Get locale

Display log information on UUCP events. uucp
of standard input. Copy one line line

source dependency information. Generate makedepend
locale-specific information. Get locale

archives. Copy in/out file cpio
line of standard input. Copy one line

line from standard input. Read a read
variable with an integer value. Mark each integer

in the shell. Interactive command and history editing shedit
files interactively. Display pg

Use the display-oriented interactive text editor. vi
and interrupts. Intercept abnormal conditions trap

archives. Interchange portable pax
program-generated and interdependent files. Maintain make

carriage control. Interpret ASA/FORTRAN asa
Tell how the shell interprets a command name. whence

Report status of the interprocess communication facility. ipcrs
how the shell interprets a name. Tell type

Permuted Index xxv

conditions and interrupts. Intercept abnormal trap
of a process for an interval of time. Suspend execution sleep

shell. Invoke a sh
tcsh shell. Invoke a tcsh

from remote UUCP systems. Invoke uucico for TCP/IP connections uucpd
HFS functions. Invoke vfs_pfsctl confighfs

ISPF shell. Invoke the ISHELL
shell. Invoke the OMVS

Invoke the ISPF shell. ISHELL
shell script. Skip to the next iteration of a loop in a continue

foreground. Bring a job into the fg
background. Move a job to the bg

signal. End a process or job, or send it a kill
Schedule regular background jobs. crontab

Return the status of jobs in the current session. jobs
textual relational databases. Join two sorted, join

in the awk language. Process programs written awk
arbitrary-precision arithmetic calculation language. Use the bc

file. Display the last part of a tail
of a file. Undo Lempel-Ziv compression uncompress
compression. Lempel-Ziv file compress
a program for lexical tasks. Generate lex

or maintain library archives. Create ar
Display symbol table of object, library, or executable files. nm

process limits. Set ulimit
Remove reverse line feeds. col

input. Read a line from standard read
out selected fields from each line of a file. Cut cut

standard input. Copy one line of line
Use the ed line-oriented text editor. ed

Show and select or reject lines common to two files. comm
Number lines in a file. nl

or filter out repeated lines in a file. Report uniq
lines. Break lines into shorter fold

Merge corresponding or subsequent lines of a file. paste
into shorter lines. Break lines fold

Create a hard link to a file. link
file. Create a link to a ln

command. Construct an argument list and run a xargs
names and attributes. List file and directory ls

Build a list of files. OSTEPLIB
Display list of UUCP systems. uuname

processes with open files. list process IDs of fuser
command history list. Process a fc
command history list. Process a history
command history list. Process a r

Define the locale environment. localedef
Get locale-specific information. locale

messages. Log logger
Broadcast a message to logged-in users. wall

UUCP events. Display log information about uulog
file system. Logically mount a mount
file system. Logically mount a MOUNT

a user’s login name. Return logname
Exit from a loop in a shell script. break

to the next iteration of a loop in a shell script. Skip continue
Read and send mail messages. mail

receive electronic mail. Send or mailx
Create or maintain library archives. ar

xxvi z/OS V1R4.0 UNIX System Services Command Reference

interdependent files. Maintain program-generated and make
directory. Make a mkdir
directory. Make a MKDIR

special file. Make a FIFO mkfifo
character special file. Make a FIFO or mknod

file caches. Manage filecache
sent by uuto and uucp. Manage files uucpd

Split a file into manageable pieces. split
copy or back up a file. Manipulate the tar archive files to tar

online reference manual. Display sections of the man
as read-only. Mark a variable readonly

with an integer value. Mark each variable integer
the file mode creation mask. Set or return umask

Find a file meeting specified criteria. find
Copy an MVS data set member into an HFS file. OPUT

set member or HFS file to another member or file. Copy an MVS data OCOPY
to another member or file. Copy an MVS data set member or HFS file OCOPY

to an HFS directory. Copy members from an MVS PDS or PDSE OPUTX
semaphore sets, or memory IDs. Remove message queues, ipcrm

lines of a file. Merge corresponding or subsequent paste
Display selected messages from message catalogs. dspmsg

Display all or part of a message catalog. dspcat
Create or modify message catalogs. gencat
Display selected messages from message catalogs. dspmsg

shared message IDs. Remove message queues, semaphore sets, or ipcrm
Preprocess a message source file. mkcatdefs
Broadcast a message to logged-in users. wall

Log messages. logger
refuse messages. Allow or mesg

send mail messages. Read and mail
Pipe output from mkcatdefs to gencat. runcat

or directory. Change the mode of a file chmod
Create or modify message catalogs. gencat

file access and modification times. Change the touch
Display a calendar for a month or year. cal

Create tag files for ex, more, and vi. ctags
system. Logically mount a file mount
system. Logically mount a file MOUNT

file system. Change the mount attributes of a chmount
directory. Rename or move a file or mv

to the background. Move a job bg
an HFS file. Copy an MVS data set member into OPUT

another member or file. Copy an MVS data set member or HFS file to OCOPY
HFS file into an MVS data set. Copy an OGET

Copy HFS files from a directory to an MVS partitioned data set (PDS) or PDSE. OGETX
directory. Copy members from an MVS PDS or PDSE to an HFS OPUTX

online publications. Display OHELP
effective user name. Display your whoami

Indicate function name not defined. autoload
operating system. Display the name of the current uname

file and directory names and attributes. List ls
to a new group. Change newgrp

bytes. Count newlines, words, and wc
pathname. Return the nondirectory components of a basename

Start the sed noninteractive stream editor. sed
Return a nonzero exit code. false

function name not defined. Indicate autoload
Do nothing, successfully. (colon)
Do nothing, successfully. :

Permuted Index xxvii

in a file. Number lines nl
Display symbol table of object, library, or executable files. nm

Remove old files from a directory. skulker
Copy one line of standard input. line

publications. Display online OHELP
Display sections of the online reference manual. man

descriptors. Run a command and open, close, or copy the file exec
of processes with open files. List process IDs fuser

Display online publications. OHELP
Invoke the &oshell;. OMVS

name of the current operating system. Display the uname
Set or unset command options and positional parameters. set

utility options. Parse getopts
display terminal options. Set or stty

mkdefs to gencat. Pipe output from runcat
Duplicate the output stream. tee

using diff output. Change a file patch
in paginated form and send it to standard output. Format a file pr

formatted output. Write printf
to standard output. Write arguments echo

ACL entries. Display owner, group and getfacl
directory. Change the group owner of a file or chgrp
file or directory. Change the owner or group of a chown

Decode Huffman packed files. unpack
Unpack and display Huffman packed files. pcat

Display files on a page-by-page basis. more
Set or query ASCII/EBCDIC code pages for the terminal. chcp

standard output. Format a file in paginated form and send it to pr
command options and positional parameters. Set or unset set

positional parameters. Shift shift
Return to the shell’s parent process or to TSO/E. exit

options. Parse utility getopts
Display all or part of a message catalog. dspcat

HFS files from a directory to an MVS partitioned data set (PDS) or PDSE. Copy OGETX
Change user passwords. password

a pathname. Check pathchk
components of a pathname. Return the directory dirname

for a specified pattern. Search a file egrep
for a specified pattern. Search a file fgrep
for a specified pattern. Search a file grep

directory. Copy members from an MVS PDS or PDSE to an HFS OPUTX
from a directory to an MVS PDS or PDSE. Copy HFS files OGETX

Display status of pending UUCP requests. uustat
Copy members from an MVS PDS or PDSE to an HFS directory. OPUTX

to an MVS partitioned data set (PDS) or PDSE. Copy HFS files from a directory OGETX
into manageable pieces. Split a file split

Configure the AF_UEINT stack. configstk
Set and query the STREAMS physical file system configuration. configstrm

from mkcatdefs to gencat. Pipe output runcat
Display the status of pending UUCP transfers. uustat

Interchange portable archives. pax
Shift positional parameters. shift

unset command options and positional parameters. Set or set
message source file. Preprocess a mkcatdefs

Compare and print the terminal description. infocmp
in the termcap file. Print the terminal entries captoinfo

Display printable strings in binary files. strings
file to a printer. Send a lp
Change priorities of a running process. renice

xxviii z/OS V1R4.0 UNIX System Services Command Reference

at a different priority. Run a command nice
history list. Process a command fc
history list. Process a command history
history list. Process a command r

the awk language. Process programs written in awk
file transfer requests. Process UUCP uucico

process times. Get process and child times
time. Suspend execution of a process for an interval of sleep

open files. List process IDs of processes with fuser
to the shell’s parent process or to TSO/E. Return exit

Set process limits. ulimit
it a signal. End a process or job, or send kill

process and child process times. Get times
for a child process to end. Wait wait

priorities of a running process. Change renice
an environment for a process. Display environments, or set env

status of a process. Return the ps
to a process. Send a SIGSTOP stop

to the current process. Send a SIGSTOP suspend
List process IDs of processes with open files. fuser

for a command. Display processor and elapsed times time
tasks. Generate a program for lexical lex

files. Maintain program-generated and interdependent make
awk language. Process programs written in the awk

z/OS publications. Display online OHELP
for the terminal. Set or query ASCII/EBCDIC code pages chcp

query the STREAMS physical file system configuration. Set and configstrm
Remove message queues, semaphore sets, or shared memory IDs. ipcrm

from standard input. Read a line read
mail messages. Read and send mail

variable as read-only. Mark a readonly
Display reason code text. bpxmtext

Send or receive electronic mail. mailx
vi file recovery daemon. exrecover

of the online reference manual. Display sections man
Allow or refuse messages. mesg

Schedule regular background jobs. crontab
files. Show and select or reject lines common to two comm

two sorted, textual relational databases. Join join
command requests from remote UUCP systems. Carry out uuxqt

files between remote UUCP systems. Copy uucp
files to users on remote UUCP systems. Copy uuto

for TCP/IP connections from remote UUCP systems. Invoke uucico uucico
command execution on Remote UUCP systems. Request uux

directory. Remove a rmdir
directory entry. Remove a rm

file system from the file hierarchy. Remove a unmount
file system from the file hierarchy. Remove a UNMOUNT

definitions. Remove alias unalias
ACLs. Set remove and change setfacl

shared memory IDs. Remove message queues, semaphore sets, or ipcrm
from a directory. Remove old files skulker

line feeds. Remove reverse col
an executable file. Remove unnecessary information from strip

directory entry. Removes a unlink
file or directory. Rename or move a mv

Report or filter out repeated lines in a file. uniq
lines in a file. Report or filter out repeated uniq

on remote UUCP systems. Request command execution uux

Permuted Index xxix

file transfer requests. Process UUCP uucico
Carry out command requests from other sites. uuxqt

Initiate UUCP requests from TCP/IP from remote systems. uucpd
interprocess communication facility. Report status of the ipcrs

exit code. Return a nonzero false
login name. Return a user’s logname

of 0. Return a value true
the shell. Return arguments from print

or . (dot) script. Return from a shell function return
user identity. Return the id

of a pathname. Return the directory components dirname
creation mask. Set or return the file mode umask

of a pathname. Return the nondirectory components basename
of a process. Return the status ps

in the current session. Return the status of jobs jobs
terminal name. Return the user’s tty

directory name. Return the working pwd
parent process or to TSO/E. Return to the shell’s exit

Remove reverse line feeds. col
of a command. Change the root directory for the execution chroot

simple command. Run a command
or copy the file descriptors. Run a command and open, close, exec

a different priority. Run a command at nice
in the current environment. Run a shell file (dot)
in the current environment. Run a shell file ·

from the shell. Run a TSO/E command tso
system is not busy. Run commands when batch

shell scripts, or executable files. Run shell commands, BPXBATCH
an argument list and run a command. Construct xargs

Change priorities of a running process. renice
Encode a file for safe transmission. eencode

background jobs. Schedule regular crontab
in a shell script. Exit from a loop break

function or . (dot) script. Return from a shell return
of a loop in a shell script. Skip to the next iteration continue

Run shell commands, shell scripts, or executable files. BPXBATCH
a specified pattern. Search a file for egrep
a specified pattern. Search a file for fgrep
a specified pattern. Search a file for grep

manual. Display sections of the online reference man
editor. Start the sed noninteractive stream sed

to two files. Show and select or reject lines common comm
of a file. Cut out selected fields from each line cut

Display selected messages from message catalogs. dspmsg
Remove message queues semaphore sets, or shared memory IDs. ipcrm

to a printer. Send a file lp
to a process. Send a SIGSTOP stop

to the current process. Send a SIGSTOP suspend
a process or job, or send it a signal. End kill

file in paginated form and send it to standard output. Format a pr
Read and send mail messages. mail

electronic mail. Send or receive mailx
Manage files sent by uuto and uucp. uupick

jobs in the current session. Return the status of jobs
process. Display environments, or set an environment for a env
physical file system configuration. Set and query the STREAMS configstrm

file. Copy an MVS data set member into an HFS OPUT
terminal options. Set or display stty

code pages for the terminal. Set or query ASCII/EBCDIC chcp

xxx z/OS V1R4.0 UNIX System Services Command Reference

ACLs. Set, remove and change setfacl
extended attributes for files. Set, reset, and display extattr

file mode creation mask. Set or return the umask
options and positional parameters. Set or unset command set

limits. Set process ulimit
stops. Set tab tabs

into an MVS data set. Copy an HFS file OGET
Remove message queues, semaphore sets or shared memory IDs. ipcrs

semaphore sets, or shared memory IDs. Remove message queues, ipcrs
or executable files. Run shell commands, shell scripts, BPXBATCH

current environment. Run a shell file in the (dot)
current environment. Run a shell file in the ·

script. Return from a shell function or . (dot) return
Tell how the shell interprets a name. type

from a loop in a shell script. Exit break
iteration of a loop in a shell script. Skip to the next continue
Run shell commands, shell scripts, or executable files. BPXBATCH
TSO/E. Return to the shell’s parent process or to exit
history editing in the shell. Interactive command and shedit

the ISPF shell. Invoke ISHELL
the z/OS shell. Invoke OMVS

a shell. Invoke sh
tcsh shell. Invoke a tcsh

from the shell. Return arguments print
from the shell. Run a TSO/E command tso

parameters. Shift positional shift
lines into shorter lines. Break fold

lines common to two files. Show and select or reject comm
two text files and show the differences. Compare diff

job, or send it a signal. End a process or kill
Send a SIGSTOP to a process. stop

process. Send a SIGSTOP to the current suspend
Run a simple command. command

from other sites. Carry out command requests uuxqt
a loop in a shell script. Skip to the next iteration of continue

Start the sort-merge utility. sort
databases. Join two sorted, textual relational join

topologically. Sort files tsort
executable file. Compile C/MVS source code and create an c89/cc/c++

information. Generate source dependency chtag
Preprocess a message source file. mkcatdefs

usage of file space. Summarize du
Display the amount of free space in the file system. df

Expand tabs to spaces. expand
Compress spaces into tabs. unexpand

a character special file. Create MKNOD
a FIFO special file. Make mkfifo

FIFO or character special file. Make a mknod
a file meeting specified criteria. Find find

file in a specified format. Dump a od
file for a specified pattern. Search a egrep
file for a specified pattern. Search a fgrep
file for a specified pattern. Search a grep

command at a specified time. Run a at
Detect spelling errors in files. spell

into manageable pieces. Split a file split
files. Split text csplit

Configure the AF_UEINT stack configstk
one line of standard input. Copy line

Permuted Index xxxi

a line from standard input. Read read
arguments to standard output. Write echo

form and send it to standard output. Format a file in paginated pr
is immune to hangups. Start a utility that nohup

sort-merge utility. Start the sort
Display static system symbols. sysvar

process. Return the status of a ps
current session. Return the status of jobs in the jobs

Display status of pending UUCP transfers. uustat
facility. Report status of the interprocess communication ipcrm

Set tab stops. tabs
the sed noninteractive stream editor. Start sed

the output stream. Duplicate tee
configuration. Set and query the STREAMS physical file system configstrm

Display printable strings in binary files. strings
file. Merge corresponding or subsequent lines of paste

nothing, successfully. Do (colon)
nothing, successfully. Do (colon)

file space. Summarize usage of du
for an interval of time. Suspend execution of a process sleep

or executable files. Display symbol table of object, library, nm
Display static system symbols. sysvar

the STREAMS physical file system configuration. Set and query configstrm
a file system from the file hierarchy. Remove unmount
a file system from the file hierarchy. Remove UNMOUNT

Run commands when system is not busy. batch
Display static system symbols. sysvar

another system. Call up cu
of a file system. Change the mount attributes chmount

free space in the file system. Display the amount of df
of the current operating system. Display the name uname

a file. system. Logically mount mount
a file system. Logically mount MOUNT

remote UUCP systems. Carry out command requests from uucp
remote UUCP systems. Copy files between uucp
remote UUCP systems. Copy files to users on uucp

from remote UUCP systems. Invoke uucico for TCP/IP connections uucpd
list of UUCP systems. Display uuname

remote UUCP systems. systems. Request command execution on uux
or executable files. Display symbol table of object, library, nm

Create binary conversion tables. uconvdef
Set tab stops. tabs

Compress spaces into tabs. unexpand
Set tab stops. tabs

Expand tabs to spaces. expand
Create tag files for ex, more, and vi ctags

Change file tag information. chtag
another user. Talk to talk

back up a file. Manipulate the tar archive files to copy or tar
Invoke a tcsh shell. tcsh

terminal entries in the termcap file. Print the captoinfo
terminfo database entries. Compile term descriptions into tic

print the terminal description. Compare and infocmp
Print the terminal entries in the termcap file. captoinfo

the user’s terminal name. Return tty
or display terminal options. Set stty

code pages for the terminal. Set or query ASCII/EBCDIC chcp
characteristics of terminals. Change tput

Compile term descriptions into terminfo database entries. tic

xxxii z/OS V1R4.0 UNIX System Services Command Reference

a condition. Test for test
reason code text. Display bpxmtext

display-oriented interactive text editor. Use the vi
ed line-oriented text editor. Use the ed

ex text editor. Use the ex
or display a text file. Concatenate cat

Split text files. csplit
the differences. Compare two text files and show diff

Join two sorted, textual relational databases. join
date and time. Display the date

at a specified time. Run a command at
process for an interval of time. Suspend execution of a sleep

Display processor and elapsed times for a command. time
access and modification times. Change the file touch

and child process times. Get process times
files topologically. Sort tsort

Create a tracked alias. hash
Process UUCP file transfer requests. uucico

pending UUCP transfers. Display the status of uustat
characters. Translate tr

for safe transmission. Encode a file uuencode
Decode a transmitted binary file. uudecode

Run a TSO/E command from the shell. tso
parent process or to TSO/E. Return to the shell’s exit

Determine file type. file
display data. Uncompress and zcat

OCS object. Configure, unconfigure, or query an ocsconfig
of a file. Undo Lempel-Ziv compression uncompress

executable file. Remove unnecessary information from an strip
Huffman packed files. Unpack and display pcat

positional parameters. Set or unset command options and set
of variables and functions. Unset values and attributes unset

Call up another system. cu
Summarize usage of file space du

arithmetic calculation language. Use the arbitrary-precision bc
debugger. Use the dbx
text editor. Use the display-oriented interactive vi

line-oriented text editor. Use the ed ed
text editor. Use the ex ex

compiler. Use the yacc yacc
effective user name. name. Display your whoami

operating system. Display the name of the current uname
Change user passwords. password

to another user. Talk to talk
to another user. Write to write

message to logged-in users. Broadcast a wall
Copy files to users on remote UUCP systems. uuto

Return a user’s login name. logname
Return the user’s terminal name. tty

Parse utility options. getopts
to hangups. Start a utility that is immune nohup

the sort-merge utility. Start sort
remote UUCP systems. Invoke uucico for TCP/IP connections from uucpd

by uuto and uucp. Manage files sent uuto
Compile UUCP configuraton files. uucc

log information about UUCP events. Display uulog
Process UUCP file transfer requests. uucico

from remote UUCP systems. Carry out command requests uuxqt
remote UUCP systems. Copy files between uucp

Permuted Index xxxiii

remote UUCP systems. Copy files to users uuto
of UUCP systems. Display list uuname

TCP/IP connections from remote UUCP systems. Invoke uucico for uucpd
on remote UUCP systems. Request command execution uux
of pending UUCP transfers. Display status uustat

Manage files sent by uuto and uucp. uuto
Return a value of 0. true

variables and functions. Unset values and attributes of unset
Display the values of environment variables. printenv

Assign attributes and values to functions. functions
Assign attributes and values to variables. typeset

configuration values. Get getconf
Mark a variable as read-only. readonly

Set a variable for export. export
value. Mark each variable with an integer integer

values and attributes of variables and functions. Unset unset
and values to variables. Assign attributes typeset

values of environment variables. Display the printenv
ex, more, and vi. Create tag files for ctags

daemon. vi file recovery exrecover
Invoke vfs_pfsctl HFS functions. confighfs

process to end. Wait for a child wait
process from which the shell was. Return to the parent exit

to the parent process from which the shell was. Return exit
Count newlines, words, and bytes. wc

Return the working directory name. pwd
Change the working directory. cd

standard output. Write arguments to echo
counts. Calculate and write checksums and byte cksum

output. Write formatted printf
another user. Write to write

language. Process programs written in the awk awk
Use the yacc compiler. yacc

for a month or year. Display a calendar cal
Display your effective user name. whoami

xxxiv z/OS V1R4.0 UNIX System Services Command Reference

About This Document

This document presents the information you need to use a z/OS system with the
shell and utilities feature as well as TSO/E (Time Sharing Option Extensions)
commands for using z/OS UNIX System Services (z/OS UNIX). These features
provide an application program interface (API) and a shell interface based on open
systems standards.

z/OS UNIX System Services (z/OS UNIX) gives the z/OS operating system an open
standards interface. It consists of two features:

v Shell and Utilities, which you can use to enter shell commands, write shell
scripts, and work with the file system.

v Debugger, which an application programmer can use to debug a z/OS UNIX
System Services application program written in C language.

This document describes how to use the shell commands, utilities, and TSO/E
commands.

Who Should Use This Document
This document is for application programmers, system programmers, and end users
working on a z/OS system and using the shell.

Finding More Information about Other Products

Where to find more information
Where necessary, this document references information in other documents about
the elements and features of z/OS™. For complete titles and order numbers for all
z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications
The UNIX library is available on the z/OS Collection Kit, SK2T-6700. This softcopy
collection contains a set of z/OS and related unlicensed product documents. The
CD-ROM collection includes the IBM Library Reader™, a program that enables
customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:
http://www.ibm.com/servers/eserver/zseries/zos/

© Copyright IBM Corp. 1996, 2002 xxxv

Select “Library”.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xxxvi z/OS V1R4.0 UNIX System Services Command Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

IBM Systems Center publications
IBM systems centers produce redbooks that can be helpful in setting up and using
UNIX System Services. You can order these publications through normal channels,
or you can view them with a web browser from this URL:
http://www.redbooks.ibm.com/

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of UNIX topics. You must order them separately. A selected list of
these documents is on the UNIX web site at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html/

z/OS UNIX porting information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,
at this URL:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html/

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

UNIX courses
For a current list of courses that you can take, go to:
http://www.ibm.com/services/learning/

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

UNIX home page
The UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for UNIX. All this code works in our environment at the
time we make it available, but is not officially supported. Each tool has a README
file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the UNIX home page. From the
home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp.

Restrictions
Because the tools are not officially supported, there are no known
enhancements and no APARs can be accepted.

About This Document xxxvii

UNIX customization wizard
If you’d like help with customizing UNIX, then check out our Web-based wizard. You
can access it at:
http://www.ibm.com/servers/eserver/zseries/zos/wizards/

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF® security setup for UNIX. Whether you are installing UNIX for the
first time or are a current user who wishes to verify settings, you can use this
wizard.

Beginning with OS/390® R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2R8, as well.

Discussion list
Customers and IBM participants also discuss UNIX on the mvs-oe discussion list.
This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:
subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

xxxviii z/OS V1R4.0 UNIX System Services Command Reference

Summary of changes

Summary of changes
for SA22-7802-04
z/OS Version 1 Release 4

This document contains information previously presented in z/OS UNIX® System
Services Command Reference, SA22-7802-02, which supports z/OS Version 1
Release 3.

The following summarizes the changes to that information.

Changed information

v The following shell commands have been updated:

– automount

– c89

– chmod

– df

– find

– getfacl

– inetd

– mkdir

– mount

– rlogind

– ps

– tcsh

v The following TSO commands have been updated:

– MOUNT

v BPXBATCH has been updated.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

© Copyright IBM Corp. 1996, 2002 xxxix

xl z/OS V1R4.0 UNIX System Services Command Reference

Chapter 1. Introduction to Shell Commands and DBCS

This part is an introduction to the shell commands and the doublebyte character set
(DBCS).

Reading the Command Descriptions
Each shell command appears in alphabetic order. The description for each
command is divided into several sections, which are explained in the following
paragraphs. Some of these sections apply only to a few command descriptions.
Also, some command descriptions include special sections that are not explained
here.

Format Section
The Format section provides a quick summary of the command’s format, or syntax.
The syntax was chosen to conform to general UNIX usage. For example, here is
the format of the ls command:
ls [–AabCcdFfgiLlmnopqRrstuWx1] [pathname ...]

The format takes the form of a command line as you might type it into the system; it
shows what you can type in and the order in which you should do it. The parts
enclosed in square brackets are optional; you can omit them if you choose. Parts
outside the square brackets must be present for the command to be correct.

The format begins with the name of the command itself. Command names always
appear in bold Courier (typewriter) font.

After the command name comes a list of options, if there are any. A typical z/OS
shell command option consists of a dash (–) followed by a single character, usually
an uppercase or lowercase letter. For example, you might have –A or –a.

Note: The case of letters is important; for example, in the format of ls, –a and –A
are different options, with different effects.

If you are going to specify several options for the same command, you can put all
the option characters after the same dash. Or you can put each option after its own
dash. Or you can rearrange the order of options. For example,
ls -A -a ls -Aa ls -a -A ls -aA

are all equivalent.

The format line shows options like in bold Courier (typewriter) font. In the
description of ls, all options are shown in one long string after the single dash. But
another common option form is:
-x value

where –x is a dash followed by a character, and value provides extra information for
using that option. For example, here is the format for the sort command, which
takes unsorted input and sorts it:
sort [–cmu]
[–o outfile]
[–t char]
[–yn]
[–zn]
[–bdfiMnr]

© Copyright IBM Corp. 1996, 2002 1

[-k startpos[,endpos]] ...
[file ...]

sort [–cmu]
[–o outfile]
[–tchar]
[–yn]
[–zn]
[–bdfiMnr]

[+startposition[–endposition]] ...
[file ...]

You can see that there are two possibilities here; you would need to choose which
of the two versions of sort met your requirements. In either possibility, however, we
have the option:
–o outfile

This option tells the sort command where to save its sorted output. The form of the
option is –o, followed by a space, followed by outfile. In a command format,
anything appearing in italic serif font is a placeholder for information that you are
expected to supply. Sometimes after the format, the kind of information expected in
place of the placeholder is explained. In our sort example, outfile stands for the
name of a file where you want sort to store its output. For example, if you wanted
to store the output in the file sorted.dat, you would specify:
sort -o sorted.dat

(followed by the rest of the command).

The format for sort also contains an option of the form:
–tchar

This is similar to the option form we were just discussing, except that there is no
space between the –t and char. As before, char in italics is a placeholder; in this
case, it stands for any single character. If you want to use the –t option for sort,
you just type –t followed immediately by another character, as in:
sort -t:

In this case, we use a colon (:) in the position of the placeholder char.

The end of the sort format is:
[file ...]

This means a list of one or more filenames; the ellipsis (....) stands for repetitions of
whatever immediately precedes it. Since there are square brackets around the
previous list, you can omit the list if you like.

The format of ls ended in:
[pathname ...]

As you might guess, this means that an ls command can end with an optional list of
one or more pathnames. What’s the difference between this and our sort example?
A pathname (specified with pathname) can be the name of either a file or a
directory; a filename (specified with file) is always the name of a file.

2 z/OS V1R4.0 UNIX System Services Command Reference

The order of items on the command line is important. When you type a command
line, you should specify its parts in the order they appear in the command format.
The exceptions to this are options marked with a dash (–); they do not have to be
given in the exact order shown in the format. However, all the – options must
appear in the correct area of the command line. For example, you can specify:
ls -l -t myfiles
ls -t -l myfiles

but you won’t get correct results if you specify:
ls myfiles -l -t ***incorrect***

or:
ls -l myfiles -t ***incorrect***

and so on. If you enter the last example, for instance, ls interprets –t as the
pathname of a file or directory, and the command will try to list the characteristics of
that item.

As a special notation, most z/OS shell commands let you specify two dashes (––)
to separate the options from the nonoption arguments; –– means: “There are no
more options.” Thus, if you really have a directory named –t, you could specify:
ls –– –t

to list the contents of that directory.

Description Section
The Description section describes what the command does. For a particularly
complex command, this section may be divided into a large number of subsections,
each dealing with a particular aspect of the command.

The Description section often mentions the standard input (stdin) and the standard
output (stdout). The standard input is usually the workstation keyboard; the
standard output is usually the display screen. The process of redirection can
change this. Redirection is explained in z/OS UNIX System Services User’s Guide.

The shell differentiates between hex, octal, and decimal as follows:
v Any number that starts with 0x is hex.
v Any number that starts with 0 is octal.
v Any number that does not start with 0x or 0 is decimal.

Inside the Description section, the names of files and directories are presented in
normal bold font. The names of environment variables are also presented in
NORMAL BOLD font, capitalized.

Options Section
The Options section describes each of the options used by the command.

Examples Section
The Examples section is present in many command descriptions, giving examples
of how the z/OS shell can be used. This book tries to give a mix of simple
examples that show how the commands work on an elementary level, and more
complex examples that show how the commands can perform complicated tasks.

Chapter 1. Introduction to Shell Commands and DBCS 3

Trying the Examples in This Book
Before you try to run any of the examples in this book, you need to know that the
z/OS shell uses the EBCDIC Latin1/Open System Interconnection Code Page
01047. Characters entered on a workstation keyboard and passed to the shell by
z/OS do not have the same hexadecimal encoding as the code page the shell uses.
You may need to customize your keyboard so that those characters have the
encoding the shell uses. See z/OS UNIX System Services User’s Guidefor more
information about code page conversion, about using a keyboard with customized
characters, and for a copy of code page 01047.

Environment Variables Section
The Environment Variables section lists the environment variables that affect the
command, if any, and describes the purposes that those variables serve. For
example, the ls command description lists two environment variables— COLUMNS
and TZ—and informs you that COLUMNS is the terminal width and that TZ contains
information about the local time zone.

Localization Section
All shell commands are affected by the following special localization variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

The Localization section describes how the locale-related environment variables
affect the behavior of the command. These environment variables allow you to
access locale information, including alternate character sets; alternate numeric,
monetary, and date and time formats; and foreign language translations of common
messages. Locales make it easier for users around the world to use the shell and
utilities.

z/OS UNIX System Services supports the IBM-supplied locales listed in Table 1.
User-generated locales using code page 1047 are also supported.

Table 1. Locales Supplied by z/OS UNIX System Services
Country or Region Language Locale Name
Bulgaria Bulgarian Bg_BG.IBM-1025
Czech Republic Czech Cs_CZ.IBM-870
Denmark Danish Da_DK.IBM-277
Denmark Danish Da_DK.IBM-1047
Switzerland German De_CH.IBM-500
Switzerland German De_CH.IBM-1047
Germany German De_DE.IBM-273
Germany German De_DE.IBM-1047
Greece Ellinika El_GR.IBM-875
United Kingdom English En_GB.IBM-285
United Kingdom English En_GB.IBM-1047
Japan English En_JP.IBM-1027
United States English En_US.IBM-037
United States English En_US.IBM-1047
Spain Spanish Es_ES.IBM-284
Spain Spanish Es_ES.IBM-1047
Finland Finnish Fi_FI.IBM-278
Finland Finnish Fi_FI.IBM-1047
Belgium French Fr_BE.IBM-500
Belgium French Fr_BE.IBM-1047

4 z/OS V1R4.0 UNIX System Services Command Reference

Table 1. Locales Supplied by z/OS UNIX System Services (continued)
Country or Region Language Locale Name
Canada French Fr_CA.IBM-037
Canada French Fr_CA.IBM-1047
Switzerland French Fr_CH.IBM-500
Switzerland French Fr_CH.IBM-1047
France French Fr_FR.IBM-297
France French Fr_FR.IBM-1047
Croatia Croatian Hr_HR.IBM-870
Hungary Hungarian Hu_HU.IBM-870
Iceland Icelandic Is_IS.IBM-871
Iceland Icelandic Is_IS.IBM-1047
Italy Italian It_IT.IBM-280
Italy Italian It_IT.IBM-1047
Israel Hebrew Iw_IL.IBM-424
Japan Japanese Ja_JP.IBM-939
Japan Japanese Ja_JP.IBM-1027
Korea Korean Ko_KR.IBM-933
Belgium Dutch Nl_BE.IBM-500
Belgium Dutch Nl_BE.IBM-1047
Netherlands Dutch Nl_NL.IBM-037
Netherlands Dutch Nl_NL.IBM-1047
Norway Norwegian No_NO.IBM-277
Norway Norwegian No_NO.IBM-1047
Poland Polish Pl_PL.IBM-870
Brazil Brazilian Pt_BR.IBM-037
Brazil Brazilian Pt_BR.IBM-1047
Portugal Portugese Pt_PT.IBM-037
Portugal Portugese Pt_PT.IBM-1047
Romania Romanian Ro_RO.IBM-870
Russia Russian Ru_RU.IBM-1025
Serbia Serbian(Latin) Sh_SP.IBM-870
Slovakia Slovak Sk_SK.IBM-870
Slovenia Slovenian Sl_SI.IBM-870
Serbia Serbian(Cyrillic) Sr_SP.IBM-1025
Sweden Swedish Sv_SE.IBM-278
Sweden Swedish Sv_SE.IBM-1047
Turkey Turkish Tr_TR.IBM-1026
People’s Republic of China Simplified Chinese Zh_CN.IBM-935
Taiwan Traditional Chinese Zh_TW.IBM-937

For more information on locales, see Appendix F.

Files Section
The Files section lists any supplementary files (files not specified on the command
line) that the command refers to. Such files usually provide information the
command needs; the command accesses these files during its operation. If the files
cannot be found, the command issues a message to this effect.

Files documented in this section may be temporary files, output files, databases,
configuration files, and so on.

The z/OS C runtime library supports a file naming convention of // (the filename can
begin with exactly two slashes). However, z/OS UNIX System Services does not
support this convention. Do not use this convention (//) unless it is specifically

Chapter 1. Introduction to Shell Commands and DBCS 5

indicated (as in the description for the c89 command). z/OS UNIX System Services
does support the POSIX file naming convention, where the filename can be
selected from the set of character values excluding the slash and the null character.

Usage Notes Section
The Usage Notes section gives additional notes for those using the shell. The
purpose of the Usage Notes section is similar to that of the Caution section (see
“Caution Section”)—to provide important information that the reader should not
overlook. However, the Usage Notes section usually deals with issues that are more
benign than what the Caution section deals with.

Exit Values Section
The Exit Values section presents the error messages that the shell may display,
along with a description of what caused the message and a possible action you can
take to avoid getting that message. Occasionally, this section refers you to another
command description for more information on an error message.

This section also contains information about the exit status returned by the
command. You can test this status to determine the result of the operation that the
command was asked to perform.

Limits Section
The Limits section lists any limits on the operation of the shell. Some limits are
implicit rather than explicit and may be lower than the explicitly stated limit.

Portability Section
The Portability section includes two types of information:

v Availability of a version of the command on existing UNIX systems (System V,
BSD)

v Compatibility with industry standards—for example, the POSIX.2 Draft Standard
or the X/Open Portability Guide, Issue 4 (XPG4**).

Caution Section
The Caution section contains important advice for users. In z/OS shell
documentation, the Caution section is often aimed at those who are familiar with
UNIX systems. Since the z/OS shell primarily conforms to the emerging POSIX
standards, its behavior may not precisely match the corresponding UNIX
commands. The Caution section may point out discrepancies in behavior that may
catch experienced POSIX or UNIX users by surprise.

Related Information
The Related Information section refers to other command descriptions that may
contain information relevant to the command description you have just read. For
example, consider the head command; by default, head displays the first 10 lines
of each file given on the command line. Its Related Information section refers you to
tail, the command that displays the last 10 lines of a file.

6 z/OS V1R4.0 UNIX System Services Command Reference

Using the Doublebyte Character Set (DBCS)
z/OS UNIX supports the doublebyte character set (DBCS). It also supports a DBCS
locale. The name of the IBM-supplied DBCS locale is Ja_JP. This locale uses the
IBM-939 coded-character set, which is a doublebyte character set.

This section discusses the following:
v Requirements for using DBCS
v When you must use SBCS characters and not DBCS characters
v When you can use DBCS characters
v Byte sequences that are not permitted in DBCS strings
v Displaying DBCS characters
v Switching locales
v Problems with DBCS filenames containing DBCS characters

Requirements for Using DBCS
If you plan to use DBCS interactively, you must work at a terminal that supports
DBCS, such as a PS/55, and follow the procedures for the terminal emulator being
used. It is not necessary, however, to be at a terminal that supports DBCS if you
just want to use files that contain DBCS data.

To use DBCS, you need to do the following:

1. Specify special logmodes to access TSO/E and VTAM support for DBCS.
Typically, the system programmer has already set these up and provided you
with instructions.

2. Issue the TSO/E PROFILE PLANGUAGE(JPN) command, if required, to receive
TSO/E messages in the Japanese language.

3. On the OMVS command, use the null character conversion table (the default)
for character conversion. You do not need to specify the CONVERT operand on
the OCOPY, OGETX, OPUT, and OPUTX commands.

4. Access the shell using the OMVS command with the DBCS operand (which is
the default setting).

You can also access the shell by using the rlogin program. The default
conversion is from ISO8859-1 to IBM-1047; users can change their conversion
to use different code pages by using the chcp command.

5. Define singlebyte escape characters for typing escape sequences.

6. Enable the shell and utilities for the DBCS locale, including having all shell and
utility messages in Japanese, by entering the following commands:
export LC_ALL=Ja_JP
exec sh

To receive shell and utility messages in Japanese, but not put your terminal in
DBCS mode, enter the following command:
export LC_MESSAGES=Ja_JP

When You Must Use SBCS and Not DBCS Characters

You must use the singlebyte character set (SBCS) when specifying the following:

v User names.

v System, device, group, and terminal names.

v User names and passwords.

v Shell command-line options.

Chapter 1. Introduction to Shell Commands and DBCS 7

v Shell commands and their operands.

v Environment variables (DBCS characters are not exportable).

v Delimiters such as space, slash (/), curly brackets { }, tab, parentheses, dot (.),
and any other shell special characters.

v Encoding for <newline> or null cannot be embedded in a DBCS character’s code.
There are other rules that define valid DBCS data:

– The DBCS blank is 0x4040.

– The first byte of the code defining the DBCS character must be in the range
0x41 to 0xFE.

– The second byte must be in the range 0x41 to 0xFE.

All others are invalid. This effectively covers the <newline> and null escape
sequences, since they cannot be part of a valid DBCS character.

For more information on invalid DBCS characters, see “Byte Sequences That Are
Not Permitted in DBCS Strings”.

v Although filenames with DBCS characters are tolerated, you should not create
filenames with DBCS characters. Doing so makes the file nonportable across
locales, and problems may occur if filenames are subsequently used in a
singlebyte locale. Instead, use the POSIX portable filename character set and
singlebyte filenames.

IBM will not support any customer problems with DBCS filenames.

For more information on DBCS filenames, see “Problems with Filenames
Containing DBCS Characters” on page 9.

When You Can Use DBCS Characters
When in the DBCS locale, you can use DBCS to specify the following:

v sh command-line arguments, although arguments expressed as numeric values
must use SBCS characters.

v Text in data files. Files containing DBCS text are processed correctly by the shell
and the utilities (such as ed and grep) if the DBCS locale is active. These files
can be either DBCS text or mixed text (combinations of SBCS and DBCS). Both
types of file can exist in the file system along with files that contain only
singlebyte text.

Byte Sequences That Are Not Permitted in DBCS Strings
If you create invalid DBCS text, you may see an “illegal byte sequence” message
when processing that text. The shell or command issues this error message, and
the command stops processing in most cases.

Valid DBCS strings must start with “shift out” (SO [0x0E]) and end with “shift in” (SI
[0x0F]). The first byte of the code defining the DBCS character must be in the
range 0x41 to 0xFE. The second byte must be in the range 0x41 to 0xFE. The
exception is that DBCS blank is 0x4040. All others codes are invalid.

Normal terminal operations do not produce invalid DBCS strings. To prevent invalid
DBCS characters and strings:

v Do not use commands that operate on the data as byte strings instead of
character strings. For example, head is a utility that could truncate a DBCS string
or character in an inappropriate place, thus creating an invalid DBCS string.
Using pipes between utilities can also result in invalid DBCS strings unless you
pay attention to how each command handles the data.

8 z/OS V1R4.0 UNIX System Services Command Reference

v Do not edit text in nontext mode such as having the TSO/E editor with in HEX
ON mode.

If the shell command is operating on a character string and not on a byte string,
and the shell is in a locale that supports DBCS, and if the utility encounters an
invalid DBCS string, such as the ones described in this section—you get an “illegal
byte sequence” message and the utility may fail.

Note: <newline> (\n [0x15]) causes the shift state of any subsequent character
sequence to start in the initial state (shifted into the SBCS mode). This may
apply when a command is processing a DBCS string and encounters
<newline> before a “shift in.”

For information on rules for creating DBCS data, refer to DBCS Design
Guide—System/370 Software , GG18-9095.

Displaying DBCS Characters
In a doublebyte environment, column positions are always based on the width of
narrow characters. Normally, characters are “thin”; they take up only one column
position when displayed. In contrast, some DBCS characters are “thick”; they take
up two column positions when displayed.

The number of actual characters that are displayed by the command in the column
area depends on the thickness of the characters. This applies to such commands
as ls, fold, and pr, which display DBCS characters in column positions.

Switching Locales
By default, the shell starts in the POSIX locale and cannot handle DBCS text until
the locale is changed, typically with the shell command export LC_ALL=Ja_JP. This
export command affects the current shell environment with the following exception:
if you change the locale to DBCS, the shell’s LC_CTYPE locale category remains in
the locale until is replaced via the exec command (exec /bin/sh).

Even if you change the locale to DBCS by using export LC_ALL=Ja_JP, the shell’s
LC_CTYPE variable remains in the previous locale (initially POSIX) until the shell is
exec’d again with exec sh.

Always follow the export LC_ALL=your locale with exec sh to be sure the shell and
utilities are running in the desired locale. This is true even if you place the export
LC_ALL=your_locale in your login profile.

Problems with Filenames Containing DBCS Characters
The file system treats all filenames as if they contained SBCS characters. However,
when you use the shell in the DBCS locale, filename and pathname comparison is
performed in wide mode. That is, all the characters in the name are converted to
wide characters before comparison. By doing this, the shift codes are removed from
the comparison and, therefore, a match can be found with the filenames.

For example, if you have such DBCS filenames as:
db/so dbfile1 si
db/so dbfile2 si

where so and si are the shift codes that shift out to DBCS and back to SBCS, then
when in the DBCS locale (Ja_JP),
ls db/so file si *

Chapter 1. Introduction to Shell Commands and DBCS 9

lists both files.

When in the POSIX locale, DBCS strings are treated as byte strings. Comparison is
performed byte by byte. For example:
ls db/so file si *

shows the comparison string ending with an “e si”. The files in the directory would
have to end with an “e si” in order to find a match. Neither of the filenames in the
example would be found.

10 z/OS V1R4.0 UNIX System Services Command Reference

Chapter 2. Shell Command Descriptions

This part describes all the commands for the z/OS shell. The descriptions are listed
in alphabetic order. For instructions on how to read the command descriptions, see
Reading the Command Descriptions.

The z/OS shell is based on the KornShell that originated on a UNIX system. As
implemented for z/OS UNIX System Services, this shell conforms to POSIX
standard 1003.2-1992.

Note: This book assumes that your z/OS system includes the Resource Access
Control Facility (RACF). Instead of RACF, your system could have an
equivalent security product.

alias — Display or create a command alias

Format
alias [–tx] [name[=value] ...]
alias –r

tcsh shell: alias [name [wordlist]]

Description
When the first word of a shell command line is not a shell keyword, alias causes
the shell to check for the word in the list of currently defined aliases. If it finds a
match, the shell replaces the alias with its associated string value. The result is a
new command line that might begin with a shell function name, a built-in command,
an external command, or another alias.

When the shell performs alias substitution, it checks to see if value ends with a
blank. If so, the shell also checks the next word of the command line for aliases.
The shell then checks the new command line for aliases and expands them,
following these same rules. This process continues until there are no aliases left on
the command line, or recursion occurs in the expansion of aliases.

Calling alias without parameters displays all the currently defined aliases and their
associated values. Values appear with appropriate quoting so that they are suitable
for reinput to the shell.

Calling alias with parameters of the form name=value creates an alias for each
name with the given string value.

If you are defining an alias where value contains a backslash character, you must
precede it with another backslash. The shell interprets the backslash as the escape
character when it performs the expansion. If you use double quotes to enclose
value, you must precede each of the two backslashes with an additional backslash,
because the shell escapes characters—that is, the shell does not interpret the
character as it normally does—both when assigning the alias and again when
expanding it.

To avoid using four backslashes to represent a single backslash, use single quotes
rather than double quotes to enclose value, because the shell does not escape

© Copyright IBM Corp. 1996, 2002 11

characters enclosed in single quotes during assignment. As a result, the shell
escapes characters in single quotes only when expanding the alias.

Calling alias with name without any value assignment displays the function name
(name) and its associated string value (value) with appropriate quoting.

DBCS Recommendation: We recommend that you use singlebyte characters when
specifying an alias name, because the POSIX standard states that alias names
must contain only characters in the POSIX portable character set.

alias in the tcsh shell
Without arguments, alias in the tcsh shell prints all aliases. With name, alias prints
the alias for name. With name and wordlist, alias assigns wordlist as the alias of
name. wordlist is command and filename substituted. name may not be alias or
unalias.

See also “unalias in the tcsh shell” on page 664.

Options
–r Removes all tracked aliases.

–t Makes each name on the command line a tracked alias. Each tracked alias
resolves to its full pathname; the shell thus avoids searching the PATH
directories whenever you run the command. The shell assigns the full
pathname of a tracked alias to the alias the first time you invoke it; the shell
reassigns a pathname the first time you use the alias after changing the
PATH variable.

When you enter the command:
set –h

each subsequent command you use in the shell automatically becomes a
tracked alias. Running alias with the –t option, but without any specified
names, displays all currently defined tracked aliases with appropriate
quoting.

–x Marks each alias name on the command line for export. If you specify –x
without any names on the command line, alias displays all exported
aliases. Only exported aliases are passed to a shell that runs a shell script.

Several aliases are built into the shell. Some of them are:
alias autoload="typeset –fu"
alias functions="typeset –f"
alias hash="alias –t"
alias history="fc –l"
alias integer="typeset –i"
alias nohup="nohup "
alias r="fc –s"
alias stop="kill –STOP"
alias suspend="stop \$\$"

You can change or remove any of these aliases, and the changes will remain in
effect for the current shell and any shell scripts or child shells invoked implicitly from
the command. These aliases are reset to their default built-in values each time a
new shell is invoked from the command line.

alias

12 z/OS V1R4.0 UNIX System Services Command Reference

Example
The command:
alias ls="ls –C"

defines ls as an alias. From this point onward, when you issue an ls command, it
produces multicolumn output by default.

alias in the tcsh shell examples
To alias the !! history command, use \!-1 instead of \!\!. For example:
alias mf ’more \!-1$’

creates an alias for looking at the file named by the final argument of the previously
entered command. Example output would be the following:
alias mf ’more \!-1$’
echo "We love tcsh." > file1
mf

We love tcsh.
"file1" (EOF)

where mf pulls the last argument of the previous command (file1), and then
displays that file using the more command.

Localization
alias uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F, “Localization” on page 825 for more information.

Usage Notes
1. alias is a built-in shell command.

2. Because exported aliases are only available in the current shell environment
and to the child processes of this environment, they are not available to any
new shell environments that are started (via the exec sh command, for
example). To make an alias available to all shell environments, define it as a
nonexported alias in the ENV file, which is executed whenever a new shell is
run.

Exit Values
0 Successful completion
1 Failure because an alias could not be set
2 Failure because of an incorrect command-line option

If you define alias to determine the values of a set of names, the exit value is the
number of those names that are not currently defined as aliases.

alias

Chapter 2. Shell Command Descriptions 13

Portability
POSIX.2 User Portability Extension, UNIX KornShell.

The –t and –x options are extensions to the POSIX standard.

Related Information
fc, hash, nohup, set, sh,typeset, unalias, tcsh

ar — Create or maintain library archives

Format
ar –d[–Ilv] archive member...
ar –m[–abIilsv] [posname] archive member ...
ar –p[–Ilsv] archive member...
ar –q[–clsv] [–F format] archive member ...
ar –r[abcIilsuv] [–F format] [posname] archive member ...
ar –t[Ilsv] archive[member...]
ar –u[–abcIiklsv] [–F format] [posname] archive member ...
ar –x[–CIlsTv] archive [member...] ...

Description
ar maintains archive libraries. The archive library is a collection of files, usually
object files. Using ar, you can create a new library, add members to an existing
library, delete members from a library, extract members from a library, and print a
table of contents for a library.

A library member is an arbitrary file. Normally, these files are object files, suitable
for use by a linkage editor.

If any members of a library are object files, ar creates and maintains an external
symbol index for link-editing.

Member names in an archive are only the final component of any pathname. When
creating a new library member (member) as given on the command line, ar uses
the full pathname given. When storing the member name in the library, or
comparing a member name, ar uses only the final component.

Options
The format shows the main functions of ar, which are defined as follows:

–d Deletes each named member from the archive and regenerates the symbol
table.

–m Moves the named archive member in the archive. The new position is
specified by –a, –b, i, or posname. If a location is not specified, the
member is moved to the end of the archive.

–p Displays each member specified to the standard output (stdout). If you did
not specify any members, ar displays all members.

–q Quickly appends the specified file to the archive. With this option, ar does
not check to see if file is already a member of the archive.

–r Replaces or adds file to archive. If archive does not exist, ar creates it and
prints a message. When ar replaces an existing member, the archive order

alias

14 z/OS V1R4.0 UNIX System Services Command Reference

is not changed. If file is not replacing a member, it is added to the end of
the archive unless –a, –b, or –i is used. This option regenerates the symbol
table.

–t Displays a table of contents that lists members, or every member if member
is not specified. ar prints a message for each member it doesn’t find. By
default, ar prints the member name for all selected members. With the
verbose (–v) option, ar prints more information for all selected members.

–x Extracts each specified member from the archive and copies it to a file. If
member is specified as a full pathname, it is copied to that pathname. If no
member is specified, all members are extracted. The archive remains
unchanged.

The following options change the behavior of the main functions:

–a Places file in the archive after the member specified by posname. If no
member is named, file is added to the end of the archive.

–b Places file in the archive before the member specified by posname. If no
member is named, file is placed at the beginning of the archive.

–C Prevents ar from overwriting existing files with extracted files. This option is
used only with extraction (–x).

–c Suppresses the message normally printed when ar creates a new archive
file. You can use this only in conjunction with the –r and –q options.

–F format
Specifies the archive format to be used by a new archive. You can use this
option only when creating a new archive with the –r and –q options.

–I Ignores the case of letters when searching the archive for specified member
names. Normally, the case is significant.

–i Inserts file into the archive before the member specified by posname. If
posname isn’t specified, ar inserts file at the beginning of the archive. This
option is the same as –b.

–l This option is ignored. It requests that temporary files generated by ar be
put in the directory rather than in the default temporary file directory. It is
provided for backward compatibility with other versions of ar

–s Regenerates the external symbol table regardless of whether the command
modifies the archive.

–T When used with –x, allows extraction of members with names longer than
the file system supports. Normally this is an error, and ar does not extract
the file. Most file systems truncate the filename to the appropriate length.

–u Replaces the archive member only if the member file’s modification time is
more recent than the archive member time. –u implies –r, so it isn’t
necessary to specify –r also.

–v Gives verbose output. With –d, –q, –r, and –x, this option prints the
command letter and the member name affected before performing each
operation. With –t, ar prints more information about archive members using
a format similar to ls –l. With –p, ar writes the name of the member to
stdout, before displaying the contents of the file.

ar

Chapter 2. Shell Command Descriptions 15

Operands
archive

Specifies the pathname of the archive file.

member
Specifies the pathname of the file that is to be acted upon (placed, deleted,
searched for, and so on) in the archive library.

Examples
1. To add a member fioacc.o to the archive file /u/turner/bin/cliserpgm.a, specify:

ar –rc /u/turner/bin/cliserpgm.a fioacc.o

2. To display the members of the archive file /u/turner/bin/cliserpgm.a, specify:
ar –tv /u/turner/bin/cliserpgm.a

3. To delete the member repgen.o from the archive file /u/turner/bin/cliserpgm.a
and regenerate the external symbol table for the archive, specify:
ar –ds /u/turner/bin/cliserpgm.a repgen.o

Environment Variables
ar uses the following environment variable:

TMPDIR
The pathname of the directory being used for temporary files. If it is not set,
z/OS UNIX uses /tmp.

Localization
ar uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F, “Localization” on page 825 for more information.

Files
ar creates temporary files in the working directory and in the directory named by the
TEMPDIR environment variable. These files are intermediate versions of the archive
file being created or updated. Consequently, they normally are the same size as the
archive file being manipulated.

Usage Note
Within the external symbol table, all symbols for a given member are kept together.
Symbols of more recently added or modified members are located before symbols
of older (not as recently modified) members in the archive. The modification time of
an archive member determines its relative age.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to create the extracted file
v An error writing to the extracted file

ar

16 z/OS V1R4.0 UNIX System Services Command Reference

v The requested module not found on appending
v An error opening the module on appending
v An incorrect module on appending
v Inability to access the module on appending
v A module not found on table or extraction

2 Incorrect command-line arguments or options

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

For backward compatibility, you can omit the dash (–) preceding the options if the
options appear only as the first argument after the command name.

The following options are XPG extensions to the POSIX standard: –a, –b, –C, –i,
–l, –m, –q, –s, and –T.

The –F and the –I options are extensions to the POSIX and XPG standards.

Related Information
c89, make, nm

asa — Interpret ASA/FORTRAN carriage control

Format
asa [file ...]

Description
Historically, printouts created by programs use the first character of each line to
control the spacing between that line and the previous one. For example, if the first
character is a space, the rest of that line immediately follows the previous line; if it
is a 1, that line should begin on a new page, and so on.

asa reads input in this format and writes it out in a normal text format, using
newlines, formfeeds, and carriage returns to achieve the same effects as the
carriage control characters.

If you specify files on the command line, asa reads input from these files;
otherwise, it reads the standard input (stdin). asa writes output to the standard
output (stdout).

It does not copy newline characters in the input to the output. Instead, it uses the
first character of each line to determine how to print the rest of the line. asa
interprets the first character as follows:

Space Outputs the rest of the line without change.

0 Outputs a newline character before printing line.

1 Outputs a formfeed (start a new page) sequence before printing line.

+ Outputs a carriage return sequence so that line is output over the previous
line. If + starts the first line, it’s treated as a space.

ar

Chapter 2. Shell Command Descriptions 17

Localization
asa uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F, “Localization” on page 825 for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Write error on stdout
v Inability to open the input file

2 Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

at — Run a command at a specified time

Format
at [–m] [–f file] [–q queue] –t time
at [–m] [–f file] [–q queue] timespec
at –r [–q queue] at_job ...
at –l [–q queue] [at_job ...]

Description
at lets you set up a series of commands to be run later. It reads the commands
from the standard input (stdin) or from a file specified with the –f option. When the
commands run, they have the same environment variables, working directory, file
creation mask, and so on that are set up when you run the at command; however,
at does not usually preserve open file descriptors, traps, or priority inherited from
the working environment.

Usually, you redirect the standard output (stdout) from these commands to files so
you can read the files after the system runs the commands. at mails the standard
output (stdout) and standard error output (stderr) to you if you do not redirect
them.

The at command displays an at-job identifier when you submit commands, along
with the time that the system is to run the commands.

at, batch, and crontab submit jobs to cron; the data in these jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Since it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the job may not be interpreted
correctly. You can get around this by calling setlocale() in the job itself.

asa

18 z/OS V1R4.0 UNIX System Services Command Reference

Options
–f file Reads commands from file rather than from standard input (stdin).

–l Reports on standard output (stdout) all jobs you have scheduled and when
the system is to run them if you do not specify at_job. If you specify
at_jobs, this option reports information on only those jobs.

–m Sends you mail after your job has finished running. If you did not redirect
the stdout and stderr, at also mails these to you. If stdout or stderr is
non-null, at mails this output to you even if you do not specify –m.

–q queue
Specifies the queue your at job is to be recorded in or removed from.
queue can be any singlebyte character except a space, a tab, a null
character, or a number sign (#). By default, at stores all its jobs in a queue
called a, and batch stores all its jobs in a queue called b. If used with this
option, –l reports information only on at jobs in queue.

–r at_job
Removes previously scheduled at jobs. The at_job arguments must be the
identifiers assigned to the jobs when you set them up with at.

–t time
Specifies the time for the system to run the job. You specify time in the
same format as the time argument for touch.

When you do not use the –t option, you can use a timespec argument to specify
the time. A timespec argument consists of three parts: a time, a date, and an
increment (in that order). You must always specify the time, but you can omit the
date, the increment, or both. Following are possible time formats:

Format Meaning

hhmm hh hours, mm minutes, 24-hour clock

hh:mm hh hours, mm minutes, 24-hour clock

h:mm h hours, mm minutes, 24-hour clock

h:m h hours, m minutes, 24-hour clock

hh:mm zone zone is time zone

hh:mmam Morning, 12-hour clock

hh:mmam zone Morning, 12-hour clock in given time zone

hh:mmpm Afternoon, 12-hour clock

hh:mmpm zone Afternoon, 12-hour clock in given time zone

noon Noon

midnight Midnight

next Current time, next day that meets date and increment

now Current time today

All minute specifications are optional. For example, to specify an at job to run at
1:00 p.m., you can enter
at 1pm

at

Chapter 2. Shell Command Descriptions 19

Currently, the z/OS shell only supports the time zones GMT, CUT, UTC, and ZULU,
all of which stand for Coordinated Universal Time (often called Greenwich Mean
Time). If you do not specify a zone, at interprets times with respect to the TZ
variable.

Appendix I, “Setting the Local Time Zone with the TZ Environment Variable” on
page 843 explains how to set the local time zone with the TZ environment variable.

Possible date formats are shown in the following list:

Format Meaning

month day month is the full name, or the three-letter abbreviation (as in
January or Jan)

month day, year
day and year given as appropriate numbers

weekday weekday is the full name or the three-letter abbreviation (as in
Monday or Mon)

today Current day

tomorrow Next day

The increment is added to the time and date you specify with the preceding parts of
timespec. It has the format + n units where n is a number and units is one of the
following:
minute minutes hour hours
day days week weeks
month months year years

Here are some sample time specifications:
0655
1855
18:55
6:55pm
6:55 pm Jan 10
now + 3 hours
noon tomorrow
midnight Friday

Environment Variables
at uses the following environment variables:

SHELL
Contains the name of the shell used to invoke the at job.

TZ Specifies the default time zone for all times given on the command line. If
you include a time zone as part of time or timespec, it overrides the value
of TZ.

Appendix I, “Setting the Local Time Zone with the TZ Environment Variable”
on page 843 explains how to set the local time zone with the TZ
environment variable.

Usage Note
at jobs that contain a line consisting of just the string "!!!ATEOF!!!" fail with
unexpected results.

at

20 z/OS V1R4.0 UNIX System Services Command Reference

Localization
at uses the following localization variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

The keywords midnight, noon, today, and tomorrow are valid only in the POSIX
locale. See Appendix F, “Localization” on page 825 for more information.

Exit Values
0 Successful completion
>0 Returned if the command fails for any reason

If an error occurs, at does not schedule, remove, or list the job.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
batch, bg, cron, crontab, touch, tcsh

Appendix I, “Setting the Local Time Zone with the TZ Environment Variable” on
page 843 also explains how to set the local time zone with the TZ environment
variable.

autoload — Indicate function name not defined

Format
autoload name ...

Description
autoload is an alias for typeset –fu. Like typeset –fu, autoload indicates that the
functions named in the command line are not yet defined.

See “typeset — Assign attributes and values to variables” on page 658 and
“Command Execution” on page 503 for more information.

Related Information
typeset, functions, sh

automount — Configure the automount facility

Format
automount [–q] [–s] [Master filename]

at

Chapter 2. Shell Command Descriptions 21

Description

automount is used to configure the automount facility. This facility can
automatically mount file systems at the time they are accessed, and also unmount
them later. (For information on setting up the automount facility, refer to z/OS UNIX
System Services Planning.)

When run with no arguments, automount reads the /etc/auto.master file to
determine all directories that are to be configured for automounting and the
filenames that contain their configuration specifications.

If you run automount with the [master filename] argument, that filename is used
instead of /etc/auto.master.

automount should be run from the /etc/rc script with no arguments. This processes
the installation’s default automount configuration file.

automount requires superuser authority.

Options
–q Displays the current automount policy.

–s Checks the syntax of the configuration file. No automount is performed.

Examples
1. The following example shows how automatic unmount can be avoided for a

directory:
name wjs
duration nolimit

Keywords that are not specified on a specific entry are inherited from the
generic entry, if present. If the generic entry is not present, or if keys are not
specified, the defaults are used. If the filesystem key cannot be resolved, the
entry is considered invalid.

2. The following is an example of a /etc/auto.master file that is used to specify /u
as automount-managed and the specifications for that directory in /etc/u.map:
/u /etc/u.map

Files
automount uses these files:

/etc/auto.master
Specifies a list of directories to be configured, along with their MapName
files.

Each line in this file contains two pathnames separated by at least one
space: the directory name to be managed and the pathname of the
MapName file. Both of these pathnames should be absolute.

The pathname of the managed directory is used as a filesystem name
prefixed with *AMD. This restricts the length of the pathname of a managed
directory to 40 characters. If pathnames need to be longer, you can use
symbolic links to resolve all or part of the pathname.

automount

22 z/OS V1R4.0 UNIX System Services Command Reference

MapName
The MapName file contains the mapping between a subdirectory of a
directory managed by automount and the mount parameters.

The file is organized as a set of specifications. Each specification contains
one or more lines. Each line is of the form keyword argument. Each
specification must begin with the keyword name.

Blank lines and lines beginning with the characters /* are considered
comments and are ignored.

A generic entry can be specified as the first specification by using the name
of *. The generic specification provides defaults for subsequent specific
specifications. When the automounter tries to resolve a lookup request, it
attempts to find a specific entry. If a specific entry does not exist for the
name being looked up, it attempts to use the generic entry.

The following is an example of a generic entry:
name *
type HFS
filesystem OMVS.HFS.USER.<uc_name>
mode rdwr
duration 30
delay 10
parm SYNC(60)
tag text,819

Four special symbols are supported to provide name substitution:
<asis_name> used to represent the name exactly, as is.
<uc_name> used to represent the name in uppercase characters.
<sysname> or &SYSNAME. used to substitute the system name.

Recommendation: IBM recommends that you use &SYSNAME..
<sysname> is only temporarily supported for compatibility.

You can use these when specifying a file system name or file system
parameter that has a specific form with the name inserted as a qualifier.

Following is a list of supported keywords. You can enter keywords using
mixed case letters. Some arguments require mixed case.

Rule: allocany, allocuser, and lowercase are valid on any specification,
but are meaningful only on the generic entry.

allocany allocation-spec
Specifies the allocation parameters when using automount to
allocate an HFS data set. allocany will cause an allocation if the
HFS data set does not exist for any name looked up in the
automount managed directory.

allocation–spec
A string that specifies allocation keywords. The following
keywords can be specified in the string:

space(primary–alloc[,secondary alloc])
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num–volumes)
unit(unit–name)

automount

Chapter 2. Shell Command Descriptions 23

storclas(storage–class)
mgmtclas(management–class)
dataclas(data–class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)
new

allocuser allocation–spec
Specifies the allocation parameters when using automount to
allocate an HFS data set. allocuser will cause an allocation to
occur only if the name looked up matches the userid of the current
user.

allocation–spec
A string that specifies allocation keywords. The following
keywords can be specified in the string:

space(primary–alloc[,secondary alloc])
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num–volumes)
unit(unit–name)
storclas(storage–class)
mgmtclas(management–class)
dataclas(data–class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)
new

delay The minimum amount of time in minutes to leave the file system
mounted after the duration has expired and the file system is no
longer in use. The default is 0.

Rule: In a shared HFS environment, do not use the default
automount delay time of 0. In this environment, specify a delay
time of at least 10.

duration
The minimum amount of time in minutes to leave the file system
mounted. The default is nolimit.

filesystem
The name of the file system to mount. This argument is
case-sensitive. For the HFS file system, this argument must be
specified in uppercase.

lowercase [Yes|No]
Indicates the case for names that can match the * specification.
This keyword is valid on any specification, but is only meaningful on
the generic entry.

Yes Only names composed of lowercase characters can match

automount

24 z/OS V1R4.0 UNIX System Services Command Reference

the * specification (numbers and special characters may
also be used). When this is specified, uppercase characters
are not allowed.

No Any names can match the * specification. This is the
default.

mode The mount mode for the file system (rdwr or read). The default is
rdwr.

name The name of the directory to be mounted. This key is required and
must be the first key specified for the entry. If the first entry
specifies name *, it is treated as the generic entry for the
automount-managed directory.

parm The file system-specific parameter. This argument is case-sensitive.
For example, the following parameters can be specified for an HFS
file system:
parm SYNC(t),NOWRITEPROTECT

security [Yes|No]
Specifies security checking which should be done for files in the
filesystem. You can specify these values:

Yes Normal security checking will be done. This is the default.

No Specifies that security checks will not be enforced for files
in this filesystem. Any user may access or change any file
or directory in any way.

Security auditing will still be performed if the installation is
auditing successes.

The SETUID, SETGID, APF, and Program Control mode
bits may be turned on in files from this filesystem, but will
not be honored while it is mounted with NOSECURITY.
When an HFS is mounted with the NOSECURITY option
enabled, any new files or directories that are created will be
assigned an owner of UID 0, no matter what UID issued the
request.

Rule: The installation should normally take the default
(Yes).

For more information on mounting with no security and on
the MOUNT statement in BPXPRMxx, see z/OS UNIX
System Services Planning. Security keywords on the TSO
MOUNT command are also discussed in “MOUNT —
Logically mount a file system” on page 751.

setuid [Yes|No]
Specifies whether the setuid/setgid mode bits are to be respected
for executables run from this file system. You can specify these
values:

Yes The setuid/setgid modes or respected. This is the default.

No The setuid/setgid modes are ignored.

tag (text|notext,ccsid)
Specifies whether file tags for untagged files in the mounted file
system are implicitly set. Either text or notext, and CCSID (coded
character set identifier) must be specified when tag is specified:

automount

Chapter 2. Shell Command Descriptions 25

|
|
|
|
|
|
|

text Specifies that each untagged file is implicitly marked as
containing pure text data that can be converted.

notext Specifies that none of the untagged files in the file system
are automatically converted during file reading and writing.

ccsid Identifies the coded character set identifier to be implicitly
set for the untagged file. ccsid is specified as a decimal
value from 0 to 65535. However, when text is specified, the
value must be between 0 and 65535. Other than this, the
value is not checked as being valid and the corresponding
code page is not checked as being installed.

For more information on file tagging, see z/OS UNIX
System Services Planning. Additional information about the
TAG parameter can be found in “MOUNT — Logically
mount a file system” on page 751.

type The file system type name. The default is HFS.

Usage Note
When a new HFS data set is created, the permissions for its root directory will be
set to the default for new HFS data sets (700), and the owner will be set to the
effective UID and GID of the user that causes the allocation to occur.

Related Information
chmount, mount, unmount

awk — Process programs written in the awk language

Format
awk [–F ere] [–f prog] [–v var=value ...] [program] [var=value ...] [file ...]

Description
awk is a file-processing language that is well suited to data manipulation and
retrieval of information from text files. If you are unfamiliar with the language, you
may find it helpful to read the awk information in z/OS UNIX System Services
User’s Guide before reading the following material.

An awk program consists of any number of user-defined functions and rules of the
form:
pattern {action}

There are two ways to specify the awk program:

v Directly on the command line. In this case, program is a single command-line
argument, usually enclosed in single quotes (') to prevent the shell from
attempting to expand it.

v By using the –f prog option.

You can specify program directly on the command line only if you do not use any –f
prog arguments.

Options
awk recognizes the following options:

automount

26 z/OS V1R4.0 UNIX System Services Command Reference

–F ere Is an extended regular expression to use as the field separator.

–f prog
Runs the awk program contained in the file prog. When more than one –f
option appears on the command line, the resulting program is a
concatenation of all programs you specify.

–v var=value
Assigns value to var before running the program.

Files that you specify on the command line with the file argument provide the input
data for awk to manipulate. If you specify no files or you specify a dash (–) as a
file, awk reads data from standard input (stdin).

You can initialize variables on the command line using:
var=value

You can intersperse such initializations with the names of input files on the
command line. awk processes initializations and input files in the order they appear
on the command line. For example, the command:
awk -f progfile a=1 f1 f2 a=2 f3

sets a to 1 before reading input from f1 and sets a to 2 before reading input from f3.

Variable initializations that appear before the first file on the command line are
performed immediately after the BEGIN action. Initializations appearing after the
last file are performed immediately before the END action. For more information on
BEGIN and END, see “Patterns” on page 35.

The –v option lets you assign a value to a variable before the awk program begins
execution (that is, before the BEGIN action). For example, in:
awk -v v1=10 -f prog datafile

awk assigns the variable v1 its value before the BEGIN action of the program (but
after default assignments made to such built-in variables as FS and OFMT; these
built-in variables have special meaning to awk, as described later).

awk divides input into records. By default, newline characters separate records;
however, you can specify a different record separator if you want.

One at a time, and in order, awk compares each input record with the pattern of
every rule in the program. When a pattern matches, awk performs the action part of
the rule on that input record. Patterns and actions often refer to separate fields
within a record. By default, white space (usually blanks, newlines, or horizontal tab
characters) separates fields; however, you can specify a different field separator
string using the –F ere option).

You can omit the pattern or action part of an awk rule (but not both). If you omit
pattern, awk performs the action on every input record (that is, every record
matches). If you omit action, awk writes every record matching the pattern to the
standard output (stdout).

awk considers everything after a # in a program line to be a comment. For
example:
This is a comment

awk

Chapter 2. Shell Command Descriptions 27

To continue program lines on the next line, add a backslash (\) to the end of the
line. Statement lines ending with a comma (,), double or-bars (||), or double
ampersands (&&) continue automatically on the next line.

Variables and Expressions
There are three types of variables in awk: identifiers, fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter
or an underscore. These characters must be from the POSIX portable character
set. (Data can come from other character sets.)

For a description of fields, see “Input” on page 31.

Arrays are associative collections of values called the elements of the array.
Constructs of the form:
identifier[subscript]

where subscript has the form expr or expr,expr,..., refer to array elements. Each
such expr can have any string value. For multiple expr subscripts, awk
concatenates the string values of all expr arguments with a separate character
SUBSEP between each. The initial value of SUBSEP is set to \042 (code page
01047 field separator).

We sometimes refer to fields and identifiers as scalar variables to distinguish them
from arrays.

You do not declare awk variables, and you do not need to initialize them. The value
of an uninitialized variable is the empty string in a string context and the number 0
in a numeric context.

Expressions consist of constants, variables, functions, regular expressions, and
subscript-in-array conditions combined with operators. (Subscript-in-array conditions
are described in Subscript in Array) Each variable and expression has a string value
and a corresponding numeric value; awk uses the value appropriate to the context.

When converting a numeric value to its corresponding string value, awk performs
the equivalent of a call to the sprintf() function where the one and only expr
argument is the numeric value and the fmt argument is either %d (if the numeric
value is an integer) or the value of the variable CONVFMT (if the numeric value is
not an integer). The default value of CONVFMT is %.6g. If you use a string in a
numeric context, and awk cannot interpret the contents of the string as a number, it
treats the value of the string as zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "a literal string". Literal strings can contain
the following escape sequences:

Escape Character Sequence

\a Audible bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

awk

28 z/OS V1R4.0 UNIX System Services Command Reference

\t Horizontal tab

\v Vertical tab

\ooo Octal value ooo

\xdd Hexadecimal value dd

\/ Slash

\" Quote

\c Any other character c

awk supports full regular expressions. (See Appendix C, “Regular Expressions
(regexp)” on page 805 for more information.) When awk reads a program, it
compiles characters enclosed in slash characters (/) as regular expressions. In
addition, when literal strings and variables appear on the right side of a ~ or ~
operator, or as certain arguments to built-in matching and substitution functions,
awk interprets them as dynamic regular expressions.

Note: When you use literal strings as regular expressions, you need extra
backslashes to escape regular expression metacharacters, because the
backslash is also the literal string escape character. For example the regular
expression:
/e .g\7./

when written as a string is:
"e .g .."

Subscript in Array
awk defines the subscript-in-array condition as:
index in array

where index looks like expr or (expr,...,expr). This condition evaluates to 1 if the
string value of index is a subscript of array, and to 0 otherwise. This is a way to
determine if an array element exists. When the element does not exist, the
subscript-in-array condition does not create it.

Symbol Table
You can access the symbol table through the built-in array SYMTAB.
SYMTAB[expr] is equivalent to the variable named by the evaluation of expr.

For example, SYMTAB["var"] is a synonym for the variable var.

Environment
An awk program can determine its initial environment by examining the ENVIRON
array. If the environment consists of entries of the form name=value, then
ENVIRON[name] has string value "value". For example, the following program is
equivalent to the default output of env:
BEGIN {

for (i in ENVIRON)
printf("%s=%s\n", i, ENVIRON[i])

exit
}

Operators
awk follows the usual precedence order of arithmetic operations, unless overridden
with parentheses; a table giving the order of operations appears later in this section.

awk

Chapter 2. Shell Command Descriptions 29

The unary operators are +, −, ++, and − −, where you can use the ++ and − −
operators as either postfix or prefix operators, as in C. The binary arithmetic
operators are +, −, *, /, %, and ^.

The conditional operator
expr ? expr1 : expr2

evaluates to expr1 if the value of expr is nonzero, and to expr2 otherwise.

If two expressions are not separated by an operator, awk concatenates their string
values.

The tilde operator ~ yields 1 (true) if the regular expression on the right side
matches the string on the left side. The operator !~ yields 1 when the right side has
no match on the left. To illustrate:
$2 ~ /[0-9]/

selects any line where the second field contains at least one digit. awk interprets
any string or variable on the right side of ~ or !~ as a dynamic regular expression.

The relational operators are <, <=, >, >=, ==, and !=. When both operands in a
comparison are numeric, awk compares their values numerically; otherwise, it
compares them as strings. An operand is numeric if it is an integer or floating-point
number, if it is a field or ARGV element that looks like a number, or if it is a variable
created by a command-line assignment that looks like a number.

The Boolean operators are || (or), && (and), and ! (not). awk uses short-circuit
evaluation when evaluating expressions. With an && expression, if the first operator
is false, the entire expression is false and it is not necessary to evaluate the second
operator. With an || expression, a similar situation exists if the first operator is true.

You can assign values to a variable with:
var = expr

If op is a binary arithmetic operator, var op= expr is equivalent to var = var op expr,
except that var is evaluated only once.

See Table 2 for the precedence rules of the operators.

Table 2. The Order of Operations for awk
Operators Order of Operations
(A) Grouping
$i V[a] Field, array element
V++ V-- ++V --V Increment, decrement
A^B Exponentiation
+A -A !A Unary plus, unary minus, logical

NOT
A*B A/B A%B Multiplication, division, remainder
A+B A-B Addition, subtraction
A B String concatenation
A<B A>B A<=B A>=B
A!=B A= =B

Comparisons

A ~B A! ~B Regular expression matching
A in V Array membership
A && B Logical AND
A || B Logical OR

awk

30 z/OS V1R4.0 UNIX System Services Command Reference

Table 2. The Order of Operations for awk (continued)
Operators Order of Operations
A ? B : C Conditional expression
V=B V+=B V-=B V*=B
V/=B V%=B V^=B

Assignment

Notes:

1. A, B, C are any expression.

2. i is any expression yielding an integer.

3. V is any variable.

Command-Line Arguments
awk sets the built-in variable ARGC to the number of command-line arguments.
The built-in array ARGV has elements subscripted with digits from zero to ARGC−1,
giving command-line arguments in the order they appeared on the command line.

The ARGC count and the ARGV vector do not include command-line options
(beginning with -) or the program file (following –f). They do include the name of
the command itself, initialization statements of the form var=value, and the names
of input data files.

awk actually creates ARGC and ARGV before doing anything else. It then “walks
through” ARGV, processing the arguments. If an element of ARGV is an empty
string, awk skips it. If it contains an equals sign (=), awk interprets it as a variable
assignment. If it is a minus sign (−), awk immediately reads input from stdin until it
encounters the end of the file. Otherwise, awk treats the argument as a filename
and reads input from that file until it reaches the end of the file.

Note: awk runs the program by “walking through” ARGV in this way; thus, if the
program changes ARGV, awk can read different files and make different
assignments.

Input
awk divides input into records. A record separator character separates each record
from the next. The value of the built-in variable RS gives the current record
separator character; by default, it begins as the newline (\n). If you assign a
different character to RS, awk uses that as the record separator character from that
point on.

awk divides records into fields. A field separator string, given by the value of the
built-in variable FS, separates each field from the next. You can set a specific
separator string by assigning a value to FS, or by specifying the –F ere option on
the command line. You can assign a regular expression to FS. For example:
FS = "[,:$]"

says that commas, colons, or dollar signs can separate fields. As a special case,
assigning FS a string containing only a blank character sets the field separator to
white space. In this case, awk considers any sequence of contiguous space or tab
characters a single field separator. This is the default for FS. However, if you assign
FS a string containing any other character, that character designates the start of a
new field. For example, if we set FS=\t (the tab character),
texta \t textb \t \t \t textc

awk

Chapter 2. Shell Command Descriptions 31

contains five fields, two of which contain only blanks. With the default setting, this
record only contains three fields, since awk considers the sequence of multiple
blanks and tabs a single separator.

The following list of built-in variables provides various pieces of information about
input:

NF Number of fields in the current record

NR Number of records read so far

FILENAME Name of file containing current record

FNR Number of records read from current file

Field specifiers have the form $n, where n runs from 1 through NF. Such a field
specifier refers to the nth field of the current input record. $0 (zero) refers to the
entire current input record.

The getline function can read a value for a variable or $0 from the current input,
from a file, or from a pipe. The result of getline is an integer indicating whether the
read operation was successful. A value of 1 indicates success; 0 indicates that the
end of the file was encountered; and −1 indicates that an error occurred. Possible
forms for getline are:

getline
Reads next input record into $0 and splits the record into fields. NF, NR,
and FNR are set appropriately.

getline var
Reads the next input record into the variable var. awk does not split the
record into fields (which means that the current $n values do not change),
but sets NR and FNR appropriately.

getline <expr
Interprets the string value of expr to be a filename. awk reads the next
record from that file into $0, splits it into fields, and sets NF appropriately. If
the file is not open, awk opens it. The file remains open until you close it
with a close function.

getline var <expr
Interprets the string value of expr to be a filename, and reads the next
record from that file into the variable var, but does not split it into fields.

expr | getline
Interprets the string value of expr as a command line to be run. awk pipes
output from this command into getline, and reads it into $0, splits it into
fields, and sets NF appropriately. See System Function for additional
details.

expr | getline var
Runs the string value of expr as a command and pipes the output of the
command into getline. The result is similar to getline var <expr.

You can have only a limited number of files and pipes open at one time. You can
close files and pipes during execution using the close(expr) function. The expr
argument must be one that came before | or after < in getline, or after > or >> in
print or printf.

awk

32 z/OS V1R4.0 UNIX System Services Command Reference

If the function successfully closes the pipe, it returns zero. By closing files and
pipes that you no longer need, you can use any number of files and pipes in the
course of running an awk program.

Built-in Arithmetic Functions
atan2(expr1, expr2)

Returns the arctangent of expr1/expr2 in the range of −Π through Π.

exp(expr), log(expr), sqrt(expr)
Returns the exponential, natural logarithm, and square root of the numeric
value of expr. If you omit (expr), these functions use $0 instead.

int(expr)
Returns the integer part of the numeric value of expr. If you omit (expr), the
function returns the integer part of $0.

rand() Returns a random floating-point number in the range 0 through 1.

sin(expr), cos(expr)
Returns the sine and cosine of the numeric value of expr (interpreted as an
angle in radians).

srand(expr)
Sets the seed of the rand function to the integer value of expr. If you omit
(expr), awk uses the time of day as a default seed.

Built-in String Functions
len = length (expr)

Returns the number of characters in the string value of expr. If you omit
(expr), the function uses $0 instead. The parentheses around expr are
optional.

n = split(string, array, regexp)
Splits the string into fields. regexp is a regular expression giving the field
separator string for the purposes of this operation. This function assigns the
separate fields, in order, to the elements of array; subscripts for array begin
at 1. awk discards all other elements of array. split returns the number of
fields into which it divided string (which is also the maximum subscript for
array).

regexp divides the record in the same way that the FS field separator string
does. If you omit regexp in the call to split, it uses the current value of FS.

str = substr(string, offset, len)
Returns the substring of string that begins in position offset and is at most
len characters long. The first character of the string has an offset of 1. If
you omit len, substr returns the rest of string.

pos = index(string, str)
Returns the position of the first occurrence of str in string. The count is in
characters. If index does not find str in string, it returns 0.

pos = match(string, regexp)
Searches string for the first substring matching the regular expression
regexp, and returns an integer giving the position of this substring counting
from 1. If it finds no such substring, match returns zero. This function also
sets the built-in variable RSTART to pos and the built-in variable RLENGTH
to the length of the matched string. If it does not find a match, match sets
RESTART to 0, and RLENGTH to −1. You can enclose regexp in slashes or
specify it as a string.

awk

Chapter 2. Shell Command Descriptions 33

n = sub(regexp, repl, string)
Searches string for the first substring matching the regular expression
regexp, and replaces the substring with the string repl. awk replaces any
ampersand (&) in repl with the substring of string which matches regexp.
You can suppress this special behavior by preceding the ampersand with a
backslash. If you omit string, sub uses the current record instead. sub
returns the number of substrings replaced (which is 1 if it found a match,
and 0 otherwise).

n = gsub(regexp, repl, string)
Works the same way as sub, except that gsub replaces all matching
substrings (global substitution). The return value is the number of
substitutions performed.

str = sprintf(fmt, expr, expr...)
Formats the expression list expr, expr, ... using specifications from the string
fmt, and then returns the formatted string. The fmt string consists of
conversion specifications that convert and add the next expr to the string,
and ordinary characters that sprintf simply adds to the string. These
conversion specifications are similar to those used by the ANSI (see
SC09-4812 IBM Open Class Library Reference, Vol.1).

Conversion specifications have the form
%[-][0][x][.y]c

where
- Left-justifies the field; default is right justification.
0 (Leading zero) prints numbers with leading zero.
x Is the minimum field width.
y Is the precision.
c Is the conversion character.

In a string, the precision is the maximum number of characters to be printed from
the string; in a number, the precision is the number of digits to be printed to the
right of the decimal point in a floating-point value. If x or y is * (asterisk), the
minimum field width or precision is the value of the next expr in the call to sprintf.

The conversion character c is one of following:
d Decimal integer
i Decimal integer
o Unsigned octal integer
x,X Unsigned hexadecimal integer
u Unsigned decimal integer
f,F Floating point
e,E Floating point (scientific notation)
g,G The shorter of e and f (suppresses nonsignificant zeros)
c Single character of an integer value; first character of string
s String

The lowercase x specifies alphabetic hex digits in lowercase, whereas the
uppercase X specifies alphabetic hex digits in uppercase. The other
uppercase-lowercase pairs work similarly.

n = ord(expr)
Returns the integer value of first character in the string value of expr. This
is useful in conjunction with %c in sprintf.

awk

34 z/OS V1R4.0 UNIX System Services Command Reference

str = tolower(expr)
Converts all letters in the string value of expr into lowercase, and returns
the result. If you omit expr, tolower uses $0 instead. This function uses the
value of the locale or the LC_CTYPE environment variable.

str = toupper(expr)
Converts all letters in the string value of expr into uppercase, and returns
the result. If you omit expr, toupper uses $0 instead. This function uses the
value of the locale or the LC_CTYPE environment variable.

System Function
status = system(expr)

Runs the string value of expr as a command. For example, system(″tail ″
$1) calls the tail command, using the string value of $1 as the file that tail
examines. The standard command interpreter runs the command, as
discussed in the Portability Section, and the exit status returned depends
on that command interpreter.

User-Defined Functions
You can define your own functions using the form:
function name(parameter-list) {

statements
}

A function definition can appear in the place of a pattern {action} rule. The
parameter-list argument contains any number of normal (scalar) and array variables
separated by commas. When you call a function, awk passes scalar arguments by
value, and array arguments by reference. The names specified in parameter-list are
local to the function; all other names used in the function are global. You can define
local variables by adding them to the end of the parameter list as long as no call to
the function uses these extra parameters.

A function returns to its caller either when it runs the final statement in the function,
or when it reaches an explicit return statement. The return value, if any, is specified
in the return statement (see “Actions” on page 36).

Patterns
A pattern is a regular expression, a special pattern, a pattern range, or any
arithmetic expression.

BEGIN is a special pattern used to label actions that awk performs before reading
any input records. END is a special pattern used to label actions that awk performs
after reading all input records.

You can give a pattern range as:
pattern1,pattern2

This matches all lines from one that matches pattern1 to one that matches pattern2,
inclusive.

If you omit a pattern, or if the numeric value of the pattern is nonzero (true), awk
runs the resulting action for the line.

awk

Chapter 2. Shell Command Descriptions 35

Actions
An action is a series of statements ended by semicolons, newlines, or closing
braces. A condition is any expression; awk considers a nonzero value true, and a
zero value false. A statement is one of the following or any series of statements
enclosed in braces:
expression statement, e.g. assignment
expression

if statement
if (condition)

statement
[else

statement]

while loop
while (condition)

statement

do-while loop
do

statement
while (condition)

for loop
for (expression1; condition; expression2)

statement

The for statement is equivalent to:
expression1
while (condition) {

statement
expression2

}

The for statement can also have the form:
for (i in array)

statement

awk runs the statement (specified with the statement argument) once for each
element in array; on each repetition, the variable i contains the name of a subscript
of array, running through all the subscripts in an arbitrary order. If array is
multidimensional (has multiple subscripts), i is expressed as a single string with the
SUBSEP character separating the subscripts.

The statement break exits a for or a while loop immediately. continue stops the
current iteration of a for or while loop and begins the next iteration (if there is one).
next ends any processing for the current input record and immediately starts
processing the next input record. Processing for the next record begins with the first
appropriate rule. exit[(expr)] immediately goes to the END action if it exists; if
there is no END action, or if awk is already running the END action, the awk
program ends. awk sets the exit status of the program to the numeric value of expr.
If you omit (expr), the exit status is 0. return [expr] returns from the execution of a
function.

If you specify an expr, the function returns the value of the expression as its result;
otherwise, the function result is undefined. delete array[i] deletes element i from the
given array. print expr, expr, ... is described in Output. printf fmt, expr, expr, ... is
also described in Output.

Output
The print statement prints its arguments with only simple formatting. If it has no
arguments, it prints the entire current input record. awk adds the output record

awk

36 z/OS V1R4.0 UNIX System Services Command Reference

separator ORS to the end of the output that each print statement produces; when
commas separate arguments in the print statement, the output field separator OFS
separates the corresponding output values. ORS and OFS are built-in variables,
whose values you can change by assigning them strings. The default output record
separator is a newline, and the default output field separator is a space.

The variable OFMT gives the format of floating-point numbers output by print. By
default, the value is %.6g; you can change this by assigning OFMT a different string
value. OFMT applies only to floating-point numbers (ones with fractional parts).

The printf statement formats its arguments using the fmt argument. Formatting is
the same as for the built-in function sprintf. Unlike print, printf does not add output
separators automatically. This gives the program more precise control of the output.

The print and printf statements write to stdout. You can redirect output to a file or
pipe.

If you add >expr to a print or printf statement, awk treats the string value of expr
as a filename, and writes output to that file. Similarly, if you add >>expr, awk sends
output to the current contents of the file. The distinction between > and >> is
important only for the first print to the file expr. Subsequent outputs to an already
open file append to what is there already.

You cannot use such ambiguous statements as:
print a > b c

Use parentheses to resolve the ambiguity.

If you add |expr to a print or printf statement, awk treats the string value of expr
as an executable command and runs it with the output from the statement piped as
input into the command.

As mentioned earlier, you can have only a limited number of files and pipes open at
any time. To avoid going over the limit, use the close function to close files and
pipes when you no longer need them.

print and printf are also available as functions with the same calling sequence, but
no redirection.

Examples
1. The following example:

awk ’{print NR ":" $0}’ input1

outputs the contents of the file input1 with line numbers prepended to each
line.

2. The following is an example using var=value on the command line:
awk ’{print NR SEP $0}’ SEP=":" input1

awk can also read the program script from a file as in the command line:
awk –f addline.awk input1

which produces the same output when the file addline.awk contains:
{print NR ":" $0}

awk

Chapter 2. Shell Command Descriptions 37

3. The following program appends all input lines starting with January to the file
jan (which may or may not exist already), and all lines starting with February
or March to the file febmar:
/^January/ {print >> "jan"}
/^February|^March/ {print >> "febmar"}

4. This program prints the total and average for the last column of each input
line:

{s += $NF}
END {print "sum is", s, "average is", s/NR}

5. The next program interchanges the first and second fields of input lines:
{

tmp = $1
$1 = $2
$2 = tmp
print

}

6. The following inserts line numbers so that output lines are left-aligned:
{printf "%–6d: %s\n", NR, $0}

7. The following prints input records in reverse order (assuming sufficient
memory):
{

a[NR] = $0 # index using record number
}
END {

for (i = NR; i>0; --i)
print a[i]

}

8. The following program determines the number of lines starting with the same
first field:
{

++a[$1] # array indexed using the first field
}
END { # note output will be in undefined order

for (i in a)
print a[i], "lines start with", i

}

You can use the following program to determine the number of lines in each
input file:
{

++a[FILENAME]
}
END {

for (file in a)
if (a[file] == 1)

print file, "has 1 line"
else

print file, "has", a[file], "lines"
}

9. The following program illustrates how you can use a two-dimensional array in
awk. Assume the first field of each input record contains a product number, the
second field contains a month number, and the third field contains a quantity
(bought, sold, or whatever). The program generates a table of products versus
month.
BEGIN {NUMPROD = 5}
{

array[$1,$2] += $3
}

awk

38 z/OS V1R4.0 UNIX System Services Command Reference

END {
print "\t Jan\t Feb\tMarch\tApril\t May\t" \

"June\tJuly\t Aug\tSept\t Oct\t Nov\t Dec"
for (prod = 1; prod <= NUMPROD; prod++) {

printf "%-7s", "prod#" prod
for (month = 1; month <= 12; month++){

printf "\t%5d", array[prod,month]
}
printf "\n"

}
}

10. As the following program reads in each line of input, it reports whether the line
matches a predetermined value:
function randint() {

return (int((rand()+1)*10))
}
BEGIN {

prize[randint(),randint()] = "$100";
prize[randint(),randint()] = "$10";
prize[1,1] = "the booby prize"
}

{
if (($1,$2) in prize)

printf "You have won %s!\n", prize[$1,$2]
}

11. The following example prints lines, the first and last fields of which are the
same, reversing the order of the fields:
$1==$NF {

for (i = NF; i > 0; --i)
printf "%s", $i (i>1 ? OFS : ORS)

}

12. The following program prints the input files from the command line. The infiles
function first empties the passed array, and then fills the array. The extra
parameter i of infiles is a local variable.
function infiles(f,i) {

for (i in f)
delete f[i]

for (i = 1; i < ARGC; i++)
if (index(ARGV[i],"=") == 0)

f[i] = ARGV[i]
}
BEGIN {

infiles(a)
for (i in a)

print a[i]
exit

}

13. Here is the standard recursive factorial function:
function fact(num) {

if (num <= 1)
return 1

else
return num * fact(num - 1)

}
{ print $0 " factorial is " fact($0) }

14. The following program illustrates the use of getline with a pipe. Here, getline
sets the current record from the output of the wc command. The program
prints the number of words in each input file.
function words(file, string) {

string = "wc " fn
string | getline

awk

Chapter 2. Shell Command Descriptions 39

close(string)
return ($2)

}
BEGIN {

for (i=1; i<ARGC; i++) {
fn = ARGV[i]
printf "There are %d words in %s.",

words(fn), fn
}

}

Environment Variables
awk uses the following environment variable:

PATH Contains a list of directories that awk searches when looking for commands
run by system(expr), or input and output pipes.

Any other environment variable can be accessed by the awk program itself.

Localization
awk uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_NUMERIC
v LC_SYNTAX
v NLSPATH

See Appendix F, “Localization” on page 825 for more information.

Exit Values
0 Successful completion

1 Any of the following errors:
v Parser internal stack overflow
v Syntax error
v Function redefined
v Internal execution tree error
v Insufficient memory for string storage
v Unbalanced parenthesis or brace
v Missing script file
v Missing field separator
v Missing variable assignment
v Unknown option
v Incorrect character in input
v Newline in regular expression
v Newline in string
v EOF in regular expression
v EOF in string
v Cannot open script file
v Inadmissible use of reserved keyword
v Attempt to redefine built-in function
v Cannot open input file
v Error on print
v Error on printf

awk

40 z/OS V1R4.0 UNIX System Services Command Reference

v Getline in END action was not redirected
v Too many open I/O streams
v Error on I/O stream
v Insufficient arguments to printf or sprintf()
v Array cannot be used as a scalar
v Variable cannot be used as a function
v Too many fields
v Record too long
v Division (/ or %) by zero
v Syntax error
v Cannot assign to a function
v Value required in assignment
v Return outside of a function
v Can delete only array element or array
v Scalar cannot be used as array
v SYMTAB must have exactly one index
v Impossible function call
v Function call nesting level exceeded
v Wrong number of arguments to function
v Regular expression error
v Second parameter to “split” must be an array
v sprintf string longer than allowed number of characters
v No open filename
v Function requires an array
v Is not a function
v Failed to match
v Incorrect collation element
v Trailing \ in pattern
v Newline found before end of pattern
v More than 9 \(\) pairs
v Number in [0–9] incorrect
v [] imbalance or syntax error
v () or \(\) imbalance
v { } or \{ \} imbalance
v Incorrect endpoint in range
v Out of memory
v Incorrect repetition
v Incorrect character class type
v Internal error
v Unknown regex error

When an awk program ends because of a call to exit(), the exit status is the value
passed to exit().

Limits
Most constructions in this implementation of awk are dynamic, limited only by
memory restrictions of the system.

The maximum record size is guaranteed to be at least LINE_MAX as returned by
getconf. The maximum field size is guaranteed to be LINE_MAX, also.

The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated programs may result in an overflow of this stack, causing an error.

Input must be text files.

awk

Chapter 2. Shell Command Descriptions 41

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The ord function is an extension to traditional implementations of awk. The
toupper and tolower functions and the ENVIRON array are in POSIX and the
UNIX System V Release 4 version of awk. This version is a superset of New awk,
as described in The AWK Programming Language by Aho, Weinberger, and
Kernighan.

The standard command interpreter that the system function uses and that awk uses
to run pipelines for getline, print, and printf is system-dependent. On z/OS UNIX,
this interpreter is always /bin/sh.

Related Information
ed, egrep, sed, vi

For more information about regexp, see Appendix C.

basename — Return the nondirectory components of a pathname

Format
basename name [suffix]

Description
basename strips off the leading part of a pathname, leaving only the final
component of the name, which is assumed to be the filename. To accomplish this,
basename first checks to see if name consists of nothing but slash (/) characters.
If so, basename replaces name with a single slash and the process is complete. If
not, basename removes trailing slashes. If slashes still remain, basename strips off
all leading characters up to and including the final slash. Finally, if you specify suffix
and the remaining portion of name contains a suffix that matches suffix, basename
removes that suffix.

Examples
The command:
basename src/dos/printf.c

produces:
printf.c

Localization
basename uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

awk

42 z/OS V1R4.0 UNIX System Services Command Reference

1 Failure due to any of the following:
v Unknown command-line option
v Incorrect number of arguments

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
dirname

batch — Run commands when the system is not busy

Format
batch

Description
batch lets you run commands in batch mode. It reads the commands from the
standard input (stdin). The system records the commands and runs them at a time
when the system load is relatively low (that is, when the system is not busy).

The batch command is equivalent to
at –q b –m now

For more details, see at.

at, batch, and crontab submit jobs to cron; the data in those jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Since it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the job may not be interpreted
correctly. You may be able to get around this by calling setlocale() in the job itself.

Environment Variables
batch uses the following environment variable:

SHELL
Contains the name of the shell command interpreter used to invoke the
batch job.

Localization
batch uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 Returned if the command fails for any reason

basename

Chapter 2. Shell Command Descriptions 43

If an error occurs, batch does not schedule the job.

Portability
POSIX.2 User Portability Extension.

Related Information
at, bg, crontab

bc — Use the arbitrary-precision arithmetic calculation language

Format
bc [–i] [–l] [file]

Description
bc is a programming language that can perform arithmetic calculations to arbitrary
precision. You can use it interactively, by entering instructions from the terminal. It
can also run programs taken from files.

The file arguments you specify on the command line should be text files containing
bc instructions. bc runs the instructions from those files, in the order that they
appear on the command line, and then runs instructions from the standard input
(stdin). bc ends when it runs a quit instruction or reaches the end of the file on
stdin.

bc is a simple but complete programming language with a syntax reminiscent of the
C programming language. This version of bc is a superset of the standard language
available on most systems. It has a number of additional features intended to make
the language more flexible and useful. Features unique to this implementation are
noted.

Input consists of a series of instructions that assign values to variables or make
calculations. It is also possible to define subprograms called functions, which
perform a sequence of instructions to calculate a single value.

bc displays the result of any line that calculates a value, but does not assign it to a
variable. For example, the instruction:
2+2

displays:
4

By default, bc displays the result of any evaluated instruction followed by a newline.
bc also saves the last value displayed in a special variable . (dot), so that you can
use it in subsequent calculations.

Options
bc supports the following options.

–i Puts bc into interactive mode with a displayed prompt. In this mode, bc
displays a prompt, which is “:”—waiting for input. In addition, it handles
errors somewhat differently. Normally, when bc encounters an error while

batch

44 z/OS V1R4.0 UNIX System Services Command Reference

processing a file, the interpreter displays the error message and exits. In
interactive mode, the interpreter displays the message and returns to the
prompt mode to allow debugging.

–l Loads a library of standard mathematical functions before processing any
other input. This library also sets the scale to 20. For a description of the
functions in the –l library, see “Built-in Functions” on page 55.

Numbers
Numbers consist of an optional minus (−) sign or an optional plus (+) sign followed
by a sequence of zero or more digits, followed by an optional decimal point (.),
followed by a sequence of zero or more digits. Valid digits are 0 through 9, and the
hexadecimal digits A through F. The uppercase letters represent the values from 10
through 15. There must be at least one digit, either before or after the decimal point.
If not, bc interprets the decimal point as the special variable ..

A number can be arbitrarily long and can contain spaces. Here are some valid
numbers with an input base of 10:
0 0. .0 -3.14159 +09. -12 1 000 000

Here are some valid numbers with an input base of 16 (ibase=16):
0 FF FF.3 -10.444 A1

See “Bases” on page 46 for more information.

A final point is that you cannot break up numbers with commas; you can write
1000000 or 1 000 000, but 1,000,000 results in an error message.

Identifiers
Identifiers can include sequences containing any number of letters, digits, or the
underscore (_) character but must start with a lowercase letter. Spaces are not
allowed in identifiers.

In the POSIX locale, valid identifiers can include sequences containing any number
of letters, digits, or the underscore (_) character but must start with a lowercase
letter, as defined by the current locale.

For other locales, the character map for that locale determines which characters are
valid in an identifier. If you want identifiers to be portable between locales, use
characters from the POSIX character set. The use of identifiers longer than one
character is an extension of this implementation. Identifiers are used as names for
variables, functions, or arrays:

v A variable holds a single numeric value. You can declare variables that are local
to a function using the auto statement. (See “Functions” on page 53). All other
variables are global and you can use them inside any function or outside all
functions. You do not need to declare global variables. bc creates variables as it
requires them, with an initial value of zero. (Remember that there is also the
special variable . [dot], which contains the result of the last calculation.)

v A function is a sequence of instructions that calculates a single value. A list of
zero or more values enclosed in parentheses always follow a function name, as
in my_func(3.14159). See “Functions” on page 53.

v An array is a list of values. Values in the list are called elements of the array.
These elements are numbered, beginning at zero. We call such a number a
subscript, or index, of the array. Subscripts always appear in square brackets

bc

Chapter 2. Shell Command Descriptions 45

after the array. For example, a[0] refers to element zero in the array a. The first
element of the array always has the subscript 0. If a subscript value is a
floating-point number, the fractional part is discarded to make the subscript into
an integer. For example, the following expressions all refer to the same element:
a[3] a[3.2] a[3.999]

The maximum number of elements in a bc array is in the range from 0 to
{BC_DIM_MAX}−1 inclusive. Unlike with many languages, you don’t need to
declare the size of an array. Elements are created dynamically as required, with
an initial value of zero.

Since parentheses always follow function names and square brackets always follow
array names, bc can distinguish between all three types of names—variable names,
function names, and array names. Therefore, you can have variables, functions,
and arrays with the same name. For example, foo may be a variable whereas foo()
is a function and foo[] is an array.

Built-in Variables
bc has a number of built-in variables that are used to control various aspects of the
interpreter. These are described in the following sections.

Scale
The scale value is the number of digits to be retained after the decimal point in
arithmetic operations. For example, if the scale is 3, each calculation retains at least
three digits after the decimal point. This means that:
5 / 3

has the value:
1.666

If –l is specified, the scale is set to 20; otherwise, the default scale is zero.

The variable scale holds the current scale value. To change scales, assign a new
value to scale, as in:
scale = 5

Since scale is just a regular bc variable, it can be used in the full range of bc
expressions.

The number of decimal places in the result of a calculation is affected not only by
the scale, but also by the number of decimal places in the operands of the
calculation. discusses this. “Arithmetic Operations” on page 47 discusses this.

There is also a function scale, which can determine the scale of any expression.
For example, scale(1.1234) returns the result 4, which is the scale of the number
1.1234. The result of the scale function is always an integer (that is, it has the
scale of 0).

The maximum value for scale is given by the configuration variable
{BC_SCALE_MAX} and the minimum value is 0.

Bases
bc lets you specify numbers in different bases—for example, octal (base 8) or
hexadecimal (base 16). You can input numbers in one base and output them in a

bc

46 z/OS V1R4.0 UNIX System Services Command Reference

different base, simplifying the job of converting from one base to another. bc does
this using the built-in variables ibase and obase.

ibase is the base for input numbers. It has an initial value of 10 (normal decimal
numbers). To use a different base for inputting numbers, assign an integer to ibase,
as in:
ibase = 8

This means that all future input numbers are to be in base 8 (octal). The largest
valid input base is 16, and the smallest valid input base is 2. There is no
mechanism provided to represent digits larger than 15, so bases larger than 16 are
essentially useless. When the base is greater than 10, use the uppercase letters as
digits. For example, base 16 uses the digits 0 through 9, and A through F. The digits
are allowed in any number, regardless of the setting of ibase but are largely
meaningless if the base is smaller than the digit. The one case where this is useful
is in resetting the input base to 10. The constant A always has the value 10 no
matter what ibase is set to, so to reset the input base to 10, type:
ibase = A

obase is the base in which numbers are output. It has an initial value of 10 (normal
decimal numbers). To change output bases, assign an appropriate integer to obase.

If the output base is 16 or less, bc displays numbers with normal digits and
hexadecimal digits (if needed). The output base can also be greater than 16, in
which case each digit is printed as a decimal value and digits are separated by a
single space. For example, if obase is 1000, the decimal number 123 456 789 is
printed as:
123 456 789

Here, the digits are decimal values from 0 through 999. As a result, all output values
are broken up into one or more chunks with three digits per chunk. Using output
bases that are large powers of 10, you can arrange your output in columns; for
example, many users find that 100 000 makes a good output base, because
numbers are grouped into chunks of five digits each.

Long numbers are output with a maximum of 70 characters per line. If a number is
longer than this, bc puts a backslash (\) at the end of the line, indicating that the
number is continued on the next line.

Internal calculations are performed in decimal, regardless of the input and output
bases. Therefore the number of places after the decimal point are dictated by the
scale when numbers are expressed in decimal form.

The maximum value for obase is given by the configuration variable
{BC_BASE_MAX}.

Arithmetic Operations
bc provides a large number of arithmetic operations. Following standard arithmetic
conventions, some operations are calculated before others. For example,
multiplications take place before additions unless you use parentheses to group
operations. Operations that take place first are said to have a higher precedence
than operations that take place later.

Operations also have an associativity. The associativity dictates the order of
evaluation when you have a sequence of operations with equal precedence. Some

bc

Chapter 2. Shell Command Descriptions 47

operations are evaluated left to right, whereas others are evaluated right to left. The
following list shows the operators of bc from highest precedence to lowest.

bc Operator Associativity

() Left to right

Unary ++ −− Not applicable

Unary − ! Not applicable

^ Right to left, or Left to right

+ − Left to right

= ^= *= /= %= +=
Right to left

== <= >= != < >
None

&& Left to right

|| Left to right

bc’s order of precedence is not the same as C’s. In C, the assignment operators
have the lowest precedence.

The following list describes what each operation does. In the descriptions, A and B
can be numbers, variables, array elements, or other expressions. V must be either a
variable or an array element.

(A) Indicates that this expression—A—should be evaluated before any other
operations are performed on it.

-A Is the negation of the expression.

!A Is the logical complement of the expression. If A evaluates to zero, !A
evaluates to 1. If A is not zero, !A evaluates to zero. This operator is unique
to this version of bc.

++V Adds 1 to the value of V. The result of the expression is the new value of V.

− −V Subtracts 1 from the value of V. The result of the expression is the new
value of V.

V++ Adds 1 to the value of V, but the result of the expression is the old value of
V.

V− − Subtracts 1 from the value of V, but the result of the expression is the old
value of V.

A ^ B Calculates A to the power B. B must be an integer. The scale of the result of
A^B is:
min(scale(A) * abs(B), max(scale, scale(A)))

where min calculates the minimum of a set of numbers and max calculates
the maximum.

A * B Calculates A multiplied by B. The scale of the result is:
min(scale(A) + scale(B), max(scale, scale(A), scale(B)))

A / B Calculates A divided by B. The scale of the result is the value of scale.

bc

48 z/OS V1R4.0 UNIX System Services Command Reference

A % B Calculates the remainder from the division of A by B. This is calculated in
two steps. First, bc calculates A/B to the current scale. It then obtains the
remainder through the formula:
A - (A / B) * B

calculated to the scale:
max(scale + scale(B), scale(A))

A + B Adds A plus B. The scale of the result is the maximum of the two scales of
the operands.

A−B Calculates A minus B. The scale of the result is the maximum of the two
scales of the operands.

The next group of operators are all assignment operators. They assign values to
objects. An assignment operation has a value: the value that is being assigned.
Therefore, you can write such operations as a=1+(b=2). In this operation, the value
of the assignment in parentheses is 2 because that is the value assigned to b.
Therefore, the value 3 is assigned to a. The possible assignment operators are:

V = B Assigns the value of B to V.

V ^= B Is equivalent to V=V^B.

V *= B Is equivalent to V=V*B.

V /= B Is equivalent to V=V/B.

V %= B Is equivalent to V=V%B.

V += B Is equivalent to V=V+B.

V −= B Is equivalent to V=V-B.

The following expressions are called relations, and their values can be either true
(1) or false (0). This version of bc lets you use the relational operators in any
expression, not just in the conditional parts of if, while, or for statements. These
operators work exactly like their equivalents in the C language. The result of a
relation is 0 if the relation is false and 1 if the relation is true.

A == B Is true if and only if A equals B.

A <= B Is true if and only if A is less than or equal to B.

A >= B Is true if and only if A is greater than or equal to B.

A != B Is true if and only if A is not equal to B.

A < B Is true if and only if A is less than B.

A > B Is true if and only if A is greater than B.

A && B Is true if and only if A is true (nonzero) and B is true. If A is not true,
the expression B is never evaluated.

A || B Is true if A is true or B is true. If A is true, the expression B is never
evaluated.

Comments and White Space
A comment has the form:
/* Any string */

bc

Chapter 2. Shell Command Descriptions 49

Comments can extend over more than one line of text. When bc sees /* at the
start of a The only effect a comment has is to indicate the end of a token. As an
extension, this version of bc also provides an additional comment convention using
the # character. All text from the # to the end of the line is treated as a single blank,
as in:
2+2 # this is a comment

bc is free format. You can freely insert blanks or horizontal tab characters to
improve the readability of the code. Instructions are assumed to end at the end of
the line. If you have an instruction that is so long you need to continue it on a new
line, put a backslash (\) as the very last character of the first line and continue on
the second, as in:
a = 2\
+ 3

The \ indicates that the instruction continues on the next line, so this is equivalent
to:
a = 2 + 3

Instructions
A bc instruction can be an expression that performs a calculation, an assignment, a
function definition, or a statement. If an instruction is not an assignment, bc
displays the result of the instruction when it has completed the calculation. For
example, if you enter:
3.14 * 23

bc displays the result of the calculation. However, with:
a = 3.14 * 23

bc does not display anything, because the expression is an assignment. If you do
want to display the value of an assignment expression, simply place the expression
in parentheses.

The following list shows the instruction forms recognized by bc:

expression
Calculates the value of the expression.

“string”
Is a string constant. When bc sees a statement of this form, it displays the
contents of the string. For example:
"Hello world!"

tells bc to display Hello world! A newline character is not output after the
string. This makes it possible to do things like:
foo = 15
"The value of foo is "; foo

With these instructions, bc displays
The value of foo is 15

statement ; statement ...
Is a sequence of statements on the same line. In bc, a semicolon (;) and a
newline are equivalent. They both indicate the end of a statement. bc runs
these statements in order from left to right.

bc

50 z/OS V1R4.0 UNIX System Services Command Reference

{statement}
Is a brace-bracketed statement. Brace brackets are used to group
sequences of statements together, as in:
{

statement
statement

...
}

Brace brackets can group a series of statements that are split over several
lines. Braces are usually used with control statements like if and while.

break Can be used only inside a while or for loop. break ends the loop.

for (initexp ; relation ; endexp) statement
Is equivalent to:
initexp
while (relation) {

statement
endexp

}

where initexp and endexp are expressions and relation is a relation. For
example:
a = 0
for (i = 1; i <= 10; ++i) a += i

is equivalent to the while example given earlier.

Note: All three items inside the parentheses must be specified. Unlike C,
bc does not let you omit any of these expressions.

if (relation)statement
Tests whether the given relation is true. If so, bc runs the statement;
otherwise, bc skips over the statement and goes to the next instruction. For
example:
if ((a%2) == 0) "a is even"

displays a is even if a has an even value.

if (relation) statement1 elsestatement2
Is similar to the simple if statement. It runs statement1 if relation is true and
otherwise runs statement2. It may be used as follows:
if ((a%2) == 0) "a is even" else "a is odd"

Note: There is no statement separator between “a is even” and the else
keyword. This differs from the C language.

Here is another example:
if (a<10) {

"a "
"is "; "less than 10 "
a

} else {
"a is"
" greater than 10 "
a

}

bc

Chapter 2. Shell Command Descriptions 51

Note: The braces must be on the same line as the if and the else keywords. This
is because a new line or a semicolon right after (relation) indicates that the
body of the statement is null. One common source of errors in bc programs
is typing the statement body portion of an if statement on a separate line. If
–i is used, the interpreter displays a warning when if statements with null
bodies are encountered.

while (relation)statement
Repeatedly runs the given statement while relation is true. For example:
i = 1
a = 0
while (i <= 10) {

a += i
++i

}

adds the integers from 1 through 10 and stores the result in a.

If relation is not true when bc encounters the while loop, bc does not run
statement at all.

print expression , expression ...
Displays the results of the argument expressions. Normally, bc displays the
value of each expression or string it encounters. This makes it difficult to
format your output in programs. For this reason, the z/OS shell version of
bc has a print statement to give you more control over how things are
displayed. print lets you display several numbers on the same line with
strings. This statement displays all its arguments on a single line. A single
space is displayed between adjacent numbers (but not between numbers
and strings). A print statement with no arguments displays a newline. If the
last argument is null, subsequent output continues on the same line. Here
are some examples of how to use print:
/* basic print statement */
print "The square of ", 2, "is ", 2*2
The square of 2 is 4

/* inserts a space between adjacent numbers */
print 1,2,3
1 2 3

/* note - no spaces */
print 1,"",2,"",3
123

/* just print a blank line */
print

/* two statements with output on same line */
print 1,2,3, ; print 4, 5, 6
1 2 3 4 5 6

quit Ends bc. In other implementations of bc, the interpreter exits as soon as it
reads this token. This version of bc treats quit as a real statement, so you
can use it in loops, functions, and so on.

sh ... Lets you send a line to the system command interpreter for execution, as
in:
sh more <foo

This command passes everything from the first nonblank character until the
end of the line to the command interpreter for execution.

void expression
Throws away, or “voids,” the result of the evaluation of expression instead

bc

52 z/OS V1R4.0 UNIX System Services Command Reference

of displaying it. This instruction is useful when using ++ and -- operators, or
when you want to use a function but don’t want to use the return value for
anything. For example:
void foo++

increments foo but does not display the result. The void statement is
unique to this version of bc.

Several other types of statements are relevant only in function definitions. These
are described in the next section.

Functions
A function is a subprogram to calculate a result based on argument values. For
example, the following function converts a temperature given in Fahrenheit into the
equivalent temperature in Celsius:
define f_to_c(f) {

return ((f-32) * 5 / 9)
}

This defines a function named f_to_c() that takes a single argument called f. The
body of the function is enclosed in brace brackets. The opening brace must be on
the same line as the define keyword. The function body consists of a sequence of
statements to calculate the result of the function. An expression of the form:
return (expression)

returns the value of expression as the result of the function. The parentheses
around the expression are optional.

To activate the subprogram you use a function call. This has the form:
name(expression,expression,...)

where name is the name of the function, and the expressions are argument values
for the function. You can use function call anywhere you might use any other
expression. The value of the function call is the value that the function returns. For
example, with the function f_to_c(), described earlier, f_to_c(41) has the value 5
(since 41 Fahrenheit is equivalent to 5 Celsius).

The general form of a function definition is:
define name(parameter,parameter,...) {

auto local, local, ...
statement
statement

...
}

Each parameter on the first line can be a variable name or an array name. Array
names are indicated by putting square brackets after them. For example, if cmpvec
is a function that compares two vectors, the function definition might start with:
define cmpvec(a[],b[]) {

Parameters do not conflict with arrays or variables of the same name. For example,
you can have a parameter named a inside a function, and a variable named a
outside, and the two are considered entirely separate entities. Assigning a value to
the variable does not change the parameter and vice versa. All parameters are
passed by value. This means that a copy is made of the argument value and is

bc

Chapter 2. Shell Command Descriptions 53

assigned to the formal parameter. This also applies to arrays. If you pass an array
to a function, a copy is made of the whole array, so any changes made to the array
parameter do not affect the original array.

A function may not need any arguments. In this case, the define line does not have
any parameters inside the parentheses, as in:
define f() {

The auto statement declares a sequence of local variables. When a variable or
array name appears in an auto statement, the current values of those items are
saved and the items are initialized to zero. For the duration of the function, the
items have their new values. When the function ends, the old values of the items
are restored.

However, bc uses dynamic scoping rules, unlike C which uses lexical scoping rules.

See “Usage Notes” on page 57 for more details.

For example:
define addarr(a[],l) {

auto i, s
for (i=0; i < l; ++i) s += a[i]
return (s)

}

is a function that adds the elements in an array. The argument l stands for the
number of elements in the array. The function uses two local names: a variable
named i and a variable named s. These variables are “local” to the function addarr
and are unrelated to objects of the same name outside the function (or in other
functions). Objects that are named in an auto statement are called autos. Autos are
initialized to 0 each time the function is called. Thus, the sum s is set to zero each
time this function is called. You can also have local arrays, which are specified by
placing square brackets after the array name in the auto statement.
define func_with_local_array() {

auto local_array[];
for(i=0; i<100; i++) local_array[i] = i*2

}

This example defines a local array called local_array. Local arrays start out with no
elements in them.

If a function refers to an object that is not a parameter and not declared auto, the
object is assumed to be external. External objects may be referred to by other
functions or by statements that are outside of functions. For example:
define sum_c(a[],b[],l) {

auto i
for (i=0; i < l; ++i) c[i] = a[i] + b[i]

}

refers to an external array named c, which is the element-by-element sum of two
other arrays. If c did not exist prior to calling sum_c, it is created dynamically. After
the program has called sum_c, statements in the program or in functions can refer
to array c.

Functions usually require a return statement. This has the form:
return (expression)

bc

54 z/OS V1R4.0 UNIX System Services Command Reference

The argument expression is evaluated and used as the result of the function. The
expression must have a single numeric value; it cannot be an array.

A return statement ends a function, even if there are more statements left in the
function. For example:
define abs(i) {

if (i < 0) return (-i)
return (i)

}

is a function that returns the absolute value of its argument. If i is less than zero,
the function takes the first return; otherwise, it takes the second.

A function can also end by running the last statement in the function. If so, the
result of the function is zero. The function sum_c is an example of a function that
does not have a return statement. The function does not need a return statement,
because its work is to calculate the external array c, not to calculate a single value.
Finally, if you want to return from a function, but not return a value you can use
return() or simply return. If there are no parameters to the return statement, a
default value of zero is returned.

Built-in Functions
bc has a number of built-in functions that perform various operations. These
functions are similar to user-defined functions. You do not have to define them
yourself, however; they are already set up for you. These functions are:

length(expression)
Calculates the total number of decimal digits in expression. This includes
digits both before and after the decimal point. The result of length() is an
integer. For example, length(123.456) returns 6.

scale(expression)
Returns the scale of expression. For example, scale(123.456) returns 3.
The result of scale() is always an integer. Subtracting the scale of a
number from the length of a number lets you determine the number of digits
before the decimal point.

sqrt(expression)
Calculates the square root of the value of expression. The result is
truncated in the least significant decimal place (not rounded). The scale of
the result is the scale of expression, or the value of scale(), whichever is
larger.

You can use the following functions if –l is specified on the command line. If it is
not, the function names are not recognized. There are two names for each function:
a full name, and a single character name for compatibility with POSIX.2. The full
names are the same as the equivalent functions in the standard C math library.

arctan(expression) or a(expression)
Calculates the arctangent of expression, returning an angle in radians. This
function can also be called as atan(expression).

bessel(integer,expression) or j(integer,expression)
Calculates the Bessel function of expression, with order integer. This
function can also be called as jn(integer,expression).

cos(expression) or c(expression)
Calculates the cosine of expression, where expression is an angle in
radians.

bc

Chapter 2. Shell Command Descriptions 55

exp(expression) or e(expression)
Calculates the exponential of expression (that is, the value e to the power
of expression).

ln(expression) or l(expression)
Calculates the natural logarithm of expression. This function can also be
called as log(expression).

sin(expression) or s(expression)
Calculates the sine of expression, where expression is an angle in radians.

Examples
1. Here is a simple function to calculate the sales tax on a purchase. The amount

of the purchase is given by purchase, and the amount of the sales tax (in per
cent) is given by tax.
define sales_tax(purchase,tax) {

auto old_scale
scale = 2
tax = purchase*(tax/100)
scale = old_scale
return (tax)

}

For example:
sales_tax(23.99,6)

calculates 6% tax on a purchase of $23.99. The function temporarily sets the
scale value to 2 so that the monetary figures have two figures after the decimal
point. Remember that bc truncates calculations instead of rounding, so some
accuracy may be lost. It is better to use one more digit than needed and
perform the rounding at the end. The round2 function, shown later in this
section, rounds a number to two decimal places.

2. Division resets the scale of a number to the value of scale. You can use this to
extract the integer portion of a number, as follows:
define integer_part(x) {

a local to save the value of scale
auto old_scale
save the old scale, and set scale to 0
old_scale = scale; scale=0
divide by 1 to truncate the number
x /= 1
restore the old scale
scale=old_scale
return (x)

}

3. Here is a function you can define to return the fractional part of a number:
define fractional_part(x) {return (x - integer_part(x))}

4. The following function lets you set the scale of number to a given number of
decimal places:
define set_scale(x, s)

{ auto os
os = scale
scale = s
x /= 1
scale = os
return (x) }

bc

56 z/OS V1R4.0 UNIX System Services Command Reference

You can now use set_scale() in a function that rounds a number to two decimal
places:
define round2(num) {

auto temp;
if(scale(num) < 2) return (set_scale(num, 2))
temp = (num - set_scale(num, 2)) * 1000
if(temp > 5) num += 0.01
return (set_scale(num,2))

}

This is a very useful function if you want to work with monetary values. For
example, you can now rewrite sales_tax() to use round2():
define sales_tax(purchase,tax) {

auto old_scale
scale = 2
tax = round2(purchase*(tax/100))
scale = old_scale
return (tax)

}

5. Here is a function that recursively calculates the factorial of its argument:
define fact (x) {

if(x < 1) return 1
return (x*fact(x-1))

}

You can also write the factorial function iteratively:
define fact (x) {

auto result
result = 1
while(x>1) result *= x--
return (result)

}

With either version, fact(6) returns 720.

6. Here is another recursive function, that calculates the nth element of the
Fibonacci sequence:
define fib(n) {

if(n < 3) {
return (1)

} else {
return (fib(n-1)+fib(n-2))

}
}

Usage Notes
1. Unlike the C language, which uses lexical scoping rules, bc uses dynamic

scoping, which is most easily explained with an example:
a=10
define f1() {

auto a;
a = 13;
return (f2())

}
define f2() {

return (a)
}
f1()
13
f2()
10

bc

Chapter 2. Shell Command Descriptions 57

If f1() is called, bc prints the number 13, instead of the number 10. This is
because f1() hides away the old (global) value of a and then sets it to 13. When
f2() refers to a, it sees the variable dynamically created by f1() and so prints 13.
When f1() returns, it restores the old value of a. When f2() is called directly,
instead of through f1(), it sees the global value for a and prints 10. The
corresponding C code prints 10 in both cases.

2. Numbers are stored as strings in the program and converted into numbers each
time they are used. This is important because the value of a “constant” number
may change depending on the setting of the ibase variable. For example,
suppose the following instructions are given to bc:
define ten() {

return (10)
}
ten()
10
ibase=16
ten()
16

In this example, when the base is set to 10, ten() returns the decimal value 10.
However, when the input base is changed to 16, the function returns the
decimal value 16. This can be a source of confusing errors in bc programs.

3. The library of functions loaded using the –l option is stored in the file
/usr/lib/lib.b under your root directory. This is a simple text file that you can
examine and change to add new functions as desired.

Files
bc uses the following file:

/usr/lib/lib.b
File containing the library of functions loaded with –l

Localization
bc uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following errors:
v Break statement found outside loop
v Parser stack overflow
v Syntax error
v End of file in comment
v End of file in string
v Numerical constant is too long
v String is too long
v Empty evaluation stack
v Cannot pass scalar to array

bc

58 z/OS V1R4.0 UNIX System Services Command Reference

v Cannot pass array to scalar
v Incorrect array index
v Built-in variable cannot be used as a parameter or auto variable
v name is not a function
v Incorrect value for built-in variable
v Shell command failed to run
v Division by 0
v Incorrect value for exponentiation operator
v Attempt to take square root of negative number
v Out of memory

2 Unknown command-line option

Limits
The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated programs may result in an overflow of this stack, causing an error.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The following are extensions to the POSIX standard:

v The –i option

v The &&and || operators

v The if ... else ... statement

v Identifiers of more than one character or containing characters outside the
POSIX character set

v The print statement

v The sh statement

v The optional parentheses in the return statement

In a doublebyte environment, remember that only numbers and operators from the
POSIX character set can be used. Identifiers can use characters from the current
locale; if you want scripts to be portable, use only characters from the POSIX
character set.

bg — Move a job to the background

Format
bg [job...]

tcsh shell: bg [%job ...]

Description

bg runs one or more jobs in the background. The job IDs given on the command
line identify these jobs, which should all be ones that are currently stopped. If you
do not specify any job IDs, bg uses the most recently stopped job.

bg works only if job control is enabled; see the –m option of set for more
information. Job control is enabled by default in the z/OS shell.

bc

Chapter 2. Shell Command Descriptions 59

bg in the tcsh shell
In the tcsh shell, bg puts the specified jobs (or, without arguments, the current job)
into the background, continuing each if it is stopped. job may be a number, a string,
’’, %, + or - .

In the tcsh shell, %job & is a synonym of the bg command.

Localization
bg uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
bg is a built-in shell command.

Exit Values
0 Successful completion
>0 Failure because a job argument is incorrect or there is no current job

If an error occurs, bg exits and does not place the job in the background.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
at, batch, fg, jobs, set, tcsh

bpxmtext — Display reason code text

Format
bpxmtext reason_code

Description
bpxmtext displays the description and action text for a reason code returned from
the kernel. Non-kernel reason codes such as those returned by HFS or NFS are not
supported by this command. This command is intended as an aid for problem
determination.

reason_code is specified as 8 hexadecimal characters. Leading zeros may be
omitted.

Usage Notes
If no text is available for the reason code, a blank line is displayed.

An argument that is not 1–8 hex digits will result in a usage message. This
message will not be translated.

bg

60 z/OS V1R4.0 UNIX System Services Command Reference

Examples
The command:
bpxmtext 058800B0

produces data displayed in the following format:
BPXFSUMT 08/18/98
JRUserNotPrivileged: The requester of the service is not privileged

Action: The service requested required a privileged user. Check the
documentation for the service to understand what privilege is required.

Exit Values
0 Successful completion

2 Failure due to an argument that is not 1–8 hex digits

break — Exit from a loop in a shell script

Format
break [number]

tcsh shell: break

Description

break exits from a for, select, while, or until loop in a shell script. If number is
given, break exits from the given number of enclosing loops. The default value of
number is 1.

break in the tcsh shell
In the tcsh shell, break causes execution to resume after the end of the nearest
enclosing foreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all on one line.

Localization
break uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
break is a special built-in shell command.

Exit Value
break always exits with an exit status of 0.

Portability
POSIX.2, X/Open Portability Guide.

bpxmtext

Chapter 2. Shell Command Descriptions 61

Related Information
continue, sh, tcsh

c++ — Compile, link-edit and assemble z/OS C and z/OS C++ source
code and create an executable file

See c89/cc/c++.

Note: When working in the shell, to view man page information about c++, type:
man c89.

c89 — Compile, link-edit and assemble a z/OS C program and create
an executable file

Format
c89 | cc | c++ | cxx [–+CcEFfgOpqrsVv012]

[–D name[=value]]... [–U name]...
[–e function] [–u function]...
[–W phase,option[,option]...]...
[–o outfile]
[–I directory]... [–L directory]...
[file.C]... [file.i]... [file.c]... [file.s]...
[file.o]... [file.x]... [file.p]... [file.I]... [file.a]... [–l libname]...

Note: The I option signifies an uppercase i, not a lowercase L.

Description
c89 and cc compile, assemble, and link-edit z/OS C programs; c++ does the same
for z/OS C++ programs.

v c89 should be used when compiling C programs that are written according to
Standard C.

v cc should be used when compiling C programs that are written according to
Common Usage C.

v c++ must be used when compiling C++ programs. Prior to z/OS V1R2, the C++
compiler supported the Draft Proposal International Standard for Information
Systems — Programming Language C++ (X3J16). As of z/OS V1R2, the C++
compiler supports the ISO 1998 standard. c++ can compile both C++ and C
programs, and can also be invoked by the name cxx (all references to c++
throughout this document apply to both names).

c89, cc, and c++ call other programs for each step of the compilation, assemble
and link-editing phases. The list below contains the following: the step name, the
documention which describes the program you use for that step and the book which
describes any messages issued by that program, and prefixes to those messages:

break

62 z/OS V1R4.0 UNIX System Services Command Reference

Table 3. c89, cc, and c++ Programs and Reference Documentation

Step Name Book Describing
Options and
How to Call
Program

Book Containing
Messages Issued
by Program

Prefix of
Messages Issued
by Program

ASSEMBLE HLASM
Programmer’s
Guide

HLASM
Programmer’s
Guide

ASMA

COMPILE, IPACOMP,
TEMPINC, IPATEMP,
IPALINK

z/OS C/C++
User’s Guide

z/OS C/C++ User’s
Guide for OS/390
V2R10 and z/OS
V1R1; z/OS C/C++
Messages for z/OS
V1R2

CBC for OS/390
V2R10 and z/OS
V1R1; CCN for
z/OS V1R2

PRELINK z/OS Language
Environment
Programming
Guide and z/OS
C/C++ User’s
Guide

z/OS Language
Environment
Debugging Guide

EDC

LINKEDIT (Program
Management Binder)

z/OS DFSMS
Program
Management

z/OS MVS System
Messages, Vol 8
(IEF-IGD)

IEW2

Execution of any Language Environment program (including c89 and the z/OS
C/C++ compiler) can result in run-time messages. These messages are described
in z/OS Language Environment Run-Time Messages and have an EDC prefix. In
some cases c89 issues messages with Language Environment messages
appended to them. Messages issued by c89 have an FSUM3 prefix.

In order for c89, cc, and c++ to perform C and C++ compiles, the z/OS C/C++
Optional Feature must be installed on the system. The z/OS C/C++ Optional
Feature provides a C compiler, a C++ compiler, C++ Class Libraries, and some
utilities. See z/OS Introduction and Release Guide for further details. Also see
{_CLIB_PREFIX} and {_CLIB_PREFIX} in “Environment Variables” on page 76 for
information about the names of the z/OS C/C++ Optional Feature data sets that
must be made available to c89/cc/c++.

First, c89, cc, and c++ perform the compilation phase (including preprocessing) by
compiling all source file operands (file.C, file.i, and file.c, as appropriate). For c++, if
automatic template generation is being used (which is the default), then z/OS C++
source files may be created or updated in the tempinc subdirectory of the working
directory during the compilation phase (the tempinc subdirectory will be created if it
does not already exist). Then, c89, cc, and c++ perform the assemble phase by
assembling all operands of the file.s form. The result of each compile step and each
assemble step is a file.o file. If all compilations and assemblies are successful, or if
only file.o and/or file.a files are specified, c89, cc, and c++ proceed to the
link-editing phase. For c++, the link-editing phase begins with an automatic
template generation step when applicable. For IPA (Interprocedural Analysis)
optimization an additional IPA link step comes next. The link-edit step is last. See
the environment variable {_STEPS} under “Environment Variables” on page 76 for
more information about the link-editing phase steps.

In the link-editing phase, c89, cc, and c++ combine all file.o files from the
compilation phase along with any file.o files that were specified on the command

c89, cc, and c++

Chapter 2. Shell Command Descriptions 63

line. For c++, this is preceded by compiling all z/OS C++ source files in the
tempinc subdirectory of the working directory (possibly creating and updating
additional z/OS C++ source files during the automatic template generation step).
After compiling all the z/OS C++ source files, the resulting object files are combined
along with the file.o files from the compilation phase and the command line. Any
file.a files, file.x files and –l libname operands that were specified are also used.

The usual output of the link-editing phase is an executable file. For c89, cc, and
c++ to produce an executable file, you must specify at least one operand which is
of other than –l libname form. If –r is used, the output file is not executable.

For more information about automatic template generation, see z/OS C/C++ User’s
Guide and z/OS C/C++ Programming Guide. Note that the c++ command only
supports using the tempinc subdirectory of the working directory for automatic
template generation.

IPA is further described under the –W option on page 71.

Options
–+ Specifies that all source files are to be recognized as C++ source files. All

file.s, file.o, and file.a files will continue to be recognized as assembler
source, object, and archive files respectively. However, any C file.c or file.i
files will be processed as corresponding C++ file.C or file.i files, and any
other file suffix which would otherwise be unrecognized will be processed
as a file.C file.

This option effectively overrides the environment variable
{_EXTRA_ARGS}. This option is only supported by the c++ command.

–C Specifies that C and C++ source comments should be retained by the
preprocessor. By default all comments are removed by the preprocessor.
This option is ignored except when used with the –E option.

–c Specifies that only compilations and assemblies be done. Link-edit is not
done.

–D name[=value]
Defines a C or C++ macro for use in compilation. If only name is provided,
a value of 1 is used for the macro it specifies. For information about macros
that c89/cc/c++ automatically define, see Usage Note 5 on page 95. Also
see Usage Note 13 on page 96.

–E Specifies that output of the compiler preprocessor phase be copied to
stdout. Compilation into object and link-edit are not done.

–e function
Specifies the name of the function to be used as the entry point of the
program. This can be useful when creating a fetchable program, or a non–C
or non–C++ main, such as a COBOL program. Non–C++ linkage symbols
of up to 1024 characters in length may be specified. You can specify an
S-name by preceding the function name with double slash (//). (For more
information about S-names, see Usage Note 23 on page 99.)

Specify a null S-name (″-e //″) so that no function name is identified by
c89/cc/c++ as the entry point of the program. In that case, the Program
Management Binder (link editor) default rules will determine the entry point
of the program. For more information about the Program Management
Binder and the ENTRY control statement, see z/OS DFSMS Program
Management.

c89, cc, and c++

64 z/OS V1R4.0 UNIX System Services Command Reference

The function //ceestart is the default. When the default function entry point
is used, a binder ORDER control statement is generated by c89/cc/c++ to
cause the CEESTART code section to be ordered to the beginning of the
program. Specify the name with a trailing blank to disable this behavior, as
in "//ceestart ".

–F Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by c89 and c++.

–f Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by c89 and c++.

Historical implementations of C/C++ used this option to enable floating-point
support. Floating-point is automatically included in z/OS C/C++. However, in
z/OS C/C++, two types of floating-point support are available:

HEXADECIMAL
Base 16 zSeries hexadecimal format. The zSeries hexadecimal
format is referred to as the hexadecimal floating-point format, and is
unique to zSeries hardware. This is the default.

IEEE754
Base 2 IEEE-754 binary format. The IEEE-754 binary format is
referred to as binary floating-point format. The IEEE-754 binary
format is the more common floating point format used on other
platforms.

If you are porting an application from another platform, transmitting
floating-point numbers between other platforms or workstations, or your
application requires the larger exponent range provided by IEEE-754 binary
format, then you should consider using IEEE floating-point. The z/OS
C/C++ User’s Guide contains more information on the FLOAT compiler
option. The following is an example of compiling with IEEE-754 binary
floating point format:
c89 -o outfile -Wc,’float(ieee)’ file.c

–g Specifies that the output file (executable) is to contain symbolic information
and is to be loaded into read/write storage, which is required for
source-level debugging with dbx, the debugger.

When specified for the compilation phase, the object file contains symbolic
information for source-level debugging.

When specified for the link-editing phase, the executable file is marked as
being serially reusable and will always be loaded into read/write storage.

dbx requires that all the executables comprising the process be loaded into
read/write storage so that it can set break points in these executables.
When dbx is attached to a running process, this cannot be guaranteed
because the process was already running and some executables were
already loaded. There are two techniques that will guarantee that all the
executables comprising the process is loaded into read-write storage:

1. Specify the –g option for the link-editing phase of each executable. After
this is done, the executable is always loaded into read/write storage.

Because the executable is marked as being serially reusable, this
technique works except in cases where the executable must be marked
as being reentrant. For example:

v If the executable is to be used by multiple processes in the same
user space.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 65

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|

v If the executable is a DLL that is used on more than one thread in a
multithreaded program.

In these cases, use the following technique instead:

2. Do not specify the –g option during the link-editing phase so that the
executable will be marked as being reentrant. Before invoking the
program, export the environment variable _BPX_PTRACE_ATTACH
with a value of YES. After you do this, then executables will be loaded
into read/write storage regardless of their reusability attribute.

If you compile an MVS data set source using the –g option, you can use
dbx to perform source-level debugging for the executable file. You must first
issue the dbx use subcommand to specify a path of double slash (//),
causing dbx to recognize that the symbolic name of the primary source file
is an MVS data set. For information on the dbx command and its use
subcommand, see “use subcommand for dbx: Set the list of directories to
be searched” on page 211.

For more information on using dbx, see z/OS UNIX System Services
Programming Tools.

The z/OS UNIX System Services web page also has more information
about dbx. Go to
http://www.s390.ibm.com/servers/eserver/zseries/zos/unix/

For more information on the _BPX_PTRACE_ATTACH environment
variable, see z/OS UNIX System Services Programming: Assembler
Callable Services Reference.

The GONUMBER option is automatically turned on by the –g option, but
can also be turned on independently. There is no execution path overhead
incurred for turning on this option, only some additional space for the saved
line number tables.

The GONUMBER option generates tables that correspond to the input
source file line numbers. These tables make it possible for Debug Tools and
for error trace back information in CEE dumps to display the source line
numbers. Having source line numbers in CEE dumps improves
serviceability costs of applications in production. The z/OS C/C++ User’s
Guide contains more information on the GONUMBER compiler option. The
following is an example of compiling with the GONUMBER compiler option.
c89 -o outfile -Wc,’GONUM’ file.c

–I directory

Note: The I option signifies an uppercase i, not a lowercase L.
–I specifies the directories to be used during compilation in searching for
include files (also called header files).

Absolute pathnames specified on #include directives are searched exactly
as specified. The directories specified using the –I option or from the usual
places are not searched.

If absolute pathnames are not specified on #include directives, then the
search order is as follows:

c89, cc, and c++

66 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|
|

1. Include files enclosed in double quotes (") are first searched for in the
directory of the file containing the #include directive. Include files
enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the
–I option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See
Usage Note 4 on page 94 for a description of the usual places.)

You can specify an MVS data set name as an include file search directory.
Also, MVS data set names can explicitly be specified on #include
directives. You can indicate both by specifying a leading double slash (//).
For example, to include the include file DEF that is a member of the MVS
PDS ABC.HDRS, code your C or C++ source as follows:
#include <//'abc.hdrs(def)'>

MVS data set include files are handled according to z/OS C/C++ compiler
conversion rules (see Usage Note 4 on page 94). When specifying an
#include directive with a leading double slash (in a format other
than#include<//'dsname'> and #include<//dd:ddname>), the specified
name is paired only with MVS data set names specified on the –I option.
That is, when you explicitly specify an MVS data set name, any hierarchical
file system (HFS) directory names specified on the –I option are ignored.

–L directory
Specifies the directories to be used to search for archive libraries specified
by the –l operand. The directories are searched in the order specified,
followed by the usual places. You cannot specify an MVS data set as an
archive library directory.

For information on specifying C370LIB libraries, see the description of the
–l libname operand. Also see Usage Note 7 on page 95 for a description of
the usual places.

–0, –O (–1), –2
Specifies the level of compiler optimization (including inlining) to be used.
The level –1 (number one) is equivalent to –O (letter capital O). The level
–2 gives the highest level of optimization. The default is –0 (level zero), no
optimization and no inlining, when not using IPA (Interprocedural Analysis).

When optimization is specified, the default is ANSIALIAS. ANSIALIAS
default specifies whether type-based aliasing is to be used during
optimization. That is, the optimizer assumes that pointers can only be used
to access objects of the same type. Type-based aliasing improves
optimization. Applications that use pointers that point to objects of a
different type will need to specify NOANSIALIAS when the optimization
compiler option is specified. If your application works when compiled with
no optimization and fails when compiled with optimization, then try
compiling your application with both optimization and NOANSIALIAS
compiler options. The z/OS C/C++ User’s Guide contains more information
on ANSIALIAS. The following is an example of a compile with the highest
level of optimization and no type-based aliasing:
c89 -o outfile -2 -Wc,NOANSIALIAS file.c

When optimization is specified, you may want to obtain a report on the
amount of inlining performed and increase or decrease the level of inlining.
More inlining will improve application performance and increase application
memory usage. The z/OS C/C++ User’s Guide contains more information

c89, cc, and c++

Chapter 2. Shell Command Descriptions 67

on the INLINE compiler option. The following is an example of a compile
with optimization with no report generated, a threshold of 500 abstract code
units, and a limit of 2500 abstract code units:
c89 -o outfile -2 -Wc,’inline(auto,noreport,500,2500)’ file.c

When using IPA, the default is –O (level 1) optimization and inlining. IPA
optimization is independent from and can be specified in addition to this
optimization level. IPA is further described under the –W option on page 71.

If you compile your program to take advantage of dbx source-level
debugging and specify –g (see the –g option on page 65), you will always
get –0 (level zero) optimization regardless of which of these compiler
optimization levels you specify.

In addition to using optimization techniques, you may want to control
writable strings by using the #pragma strings(readonly) directive or the
ROSTRING compiler option. As of z/OS Version 1 Release 2, ROSTRING is the
default.

For more information on this topic, refer to the chapter on reentrancy in
z/OS C/C++ in z/OS C/C++ Programming Guide or the description of the
ROSTRING option in the z/OS C/C++ User’s Guide.

–o outfile
Specifies the name of the c89/cc/c++ output file.

If the –o option is specified in addition to the –c option, and only one
source file is specified, then this option specifies the name of the output file
associated with the one source file. See file.o under “Operands” on page 73
for information on the default name of the output file.

Otherwise the –o option specifies the name of the executable file produced
during the link-editing phase. The default output file is a.out.

–p Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by c89 and c++.

–q Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by c89 and c++.

–r Specifies that c89/cc/c++ is to save relocation information about the object
files which are processed. When the output file (as specified on –o) is
created, it is not made an executable file. Instead, this output file can later
be used as input to c89/cc/c++. This can be used as an alternative to an
archive library.

IPA Usage Note:

When using -r and link-editing IPA compiled object files, you must link-edit
with IPA (see the description of IPA under the -W option). However, the -r
option is typically not useful when creating an IPA optimized program. This
is because link-editing with IPA requires that all of the program information
is available to the link editor (that is, all of the object files). It is not
acceptable to have unresolved symbols, especially the program entry point
symbol (which is usually main). The -r option is normally used when you
wish to combine object files incrementally. You would specify some object
files during the initial link-edit that uses -r. Later, you would specify the
output of the initial link-edit, along with the remaining object files in a final
link-edit that is done without using -r. In such situations where you wish to
combine IPA compiled object files, there is an alternative which does not

c89, cc, and c++

68 z/OS V1R4.0 UNIX System Services Command Reference

involve the link editor. That alternative is to concatenate the object files into
one larger file. This larger file can later be used in a final link-edit, when the
remainder of the object files are also made available. (This concatenation
can easily be done using the cp or cat utilities.)

–s Specifies that the compilation phase is to produce a file.o file that does not
include symbolic information, and that the link-editing phase produce an
executable that is marked reentrant. This is the default behavior for
c89/cc/c++.

–U name
Undefines a C or C++ macro specified with name. This option affects only
macros defined by the –D option, including those automatically specified by
c89/cc/c++. For information about macros that c89/cc/c++ automatically
define, see Usage Note 5 on page 95. Also see Usage Note 13 on page
96.

–u function
Specifies the name of the function to be added to the list of symbols which
are not yet defined. This can be useful if the only input to c89/cc/c++ is
archive libraries. Non–C++ linkage symbols of up to 255 characters in
length may be specified. You can specify an S-name by preceding the
function name with double slash (//). (For more information about
S-names, see Usage Note 23 on page 99.) The function //ceemain is the
default for non-IPA link-editing, and the function main is the default for IPA
link-editing. However if this -u option is used, or the DLL link editor option
is used, then the default function is not added to the list.

–V This verbose option produces and directs output to stdout as compiler,
assembler, IPA linker, prelinker, and link editor listings. If the –O or –2
options are specified and cause c89/cc/c++ to use the compiler INLINE
option, then the inline report is also produced with the compiler listing. Error
output continues to be directed to stderr. Because this option causes
c89/cc/c++ to change the options passed to the steps producing these
listings so that they produce more information, it may also result in
additional messages being directed to stderr. In the case of the compile
step, it may also result in the return code of the compiler changing from 0
to 4.

–v This verbose option causes pseudo-JCL to be written to stdout before the
compiler, assembler, IPA linker, prelinker, and link editor programs are run.
It provides information about exactly which compiler, prelinker, and link
editor options are being passed, and also which data sets are being used. If
you want to obtain this information without actually invoking the underlying
programs, specify the –v option more than once on the c89/cc/c++
command string. For more information about the programs which are
executed, see Usage Note 14 on page 97.

–W phase, option[,option]...
Specifies options to be passed to the steps associated with the compile,
assemble, or link-editing phases of c89/cc/c++. The valid phase codes are:
0 Specifies the compile phase (used for both non-IPA and IPA

compilation).
a Specifies the assemble phase.
c Same as phase code 0.
I Enables IPA (Interprocedural Analysis) optimization.

Unlike other phase codes, the IPA phase code I does not require
that any additional options be specified, but it does allow them. In

c89, cc, and c++

Chapter 2. Shell Command Descriptions 69

order to pass IPA suboptions, specify those suboptions using the
IPA phase code. For example, to specify that an IPA compile should
save source line number information, without writing a listing file,
specify:
c89 -W I,list file.c

To specify that an IPA link-edit should write the map file to stdout,
specify:
c89 -W I,map file.o

l Specifies the link-editing phase.
v To pass options to the prelinker, the first link-editing phase option

must be p or P. All the following options are then prelink options.
For example, to write the prelink map to stdout, specify:
c89 –W l,p,map file.c

Note: The prelinker is no longer used in the link-editing phase in
most circumstances. If it is not used, any options passed
are accepted but ignored. See the environment variable
{_STEPS} under “Environment Variables” on page 76 for
more information about the link-editing phase prelink step.

v To pass options to the IPA linker, the first link-editing phase
option must be i or I. All the following options are then IPA link
options. For example, to specify the size of the SPILL area to be
used during an IPA link-edit, you could specify:
c89 –W l,I,"spill(256)" file.o

v To link-edit a DLL (Dynamic Link Library) the link-editing phase
option DLL must be specified. For example:
c89 –o outdll –W l,dll file.o

Most z/OS C/C++ extensions can be enabled by using this option. Those
which do not directly pass options through to the underlying steps, or
involve files which are extensions to the compile and link-edit model, are
described here:

DLL (Dynamic Link Library)
A DLL is a part of a program that is not statically bound to the
program. Instead, linkage to symbols (variables and functions) is
completed dynamically at execution time. DLLs can improve
storage utilization, because the program can be broken into smaller
parts, and some parts may not always need to be loaded. DLLs can
improve maintainability, because the individual parts can be
managed and serviced separately.

In order to create a DLL, some symbols must be identified as being
exported for use by other parts of the program. This can be done
with the z/OS C/C++ #pragma export compiler directive, or by
using the z/OS C/C++ EXPORTALL compiler option. If during the
link-editing phase some of the parts have exported symbols, the
executable which is created is a DLL. In addition to the DLL, a
definition side-deck is created, containing link-editing phase
IMPORT control statements which name those symbols which were
exported by the DLL. In order for the definition side-deck to be
created, the DLL link editor option must be specified. This definition
side-deck is subsequently used during the link-editing phase of a
program which is to use the DLL. See the file.x operand under
Operands on page 75 for information on where the definition

c89, cc, and c++

70 z/OS V1R4.0 UNIX System Services Command Reference

side-deck is written. In order for the program to refer to symbols
exported by the DLL, it must be compiled with the DLL compiler
option. For example, to compile and link a program into a DLL, you
could specify:
c89 –o outdll –W c,dll,expo –W l,dll file.c

To subsequently use file.x definition side-decks, specify them along
with any other file.o object files specified for c89/cc/c++ link-editing
phase. For example:
c89 –o myappl –W c,dll myappl.c outdll.x

In order to run an application which is link-edited with a definition
side-deck, the DLL must be made available (the definition side-deck
created along with the DLL is not needed at execution time). When
the DLL resides in the HFS, it must be in either the working
directory or in a directory named on the LIBPATH environment
variable. Otherwise it must be a member of a data set in the search
order used for MVS programs.

IPA (interprocedural analysis)
IPA optimization is independent from and can be used in addition to
the c89/cc/c++ optimization level options (such as –O). IPA
optimization can also improve the execution time of your
application. IPA is a mechanism for performing optimizations across
function boundaries, even across compilation units. It also performs
optimizations not otherwise available with the C/C++ compiler.

When phase code I is specified for the compilation phase, then IPA
compilation steps are performed. When phase code I is specified
for the link-editing phase, or when the first link-editing phase (code
l) option is i or I, then an additional IPA link step is performed prior
to the prelink and link-edit steps.

With conventional compilation and link-editing, the object code
generation takes place during the compilation phase. With IPA
compilation and link-editing, the object code generation takes place
during the link-editing phase. Therefore, you might need to request
listing information about the program (such as with the –V option)
during the link-editing phase.

Unlike the other phase codes, phase code I does not require that
any additional options be specified. If they are, they should be
specified for both the compilation and link-editing phases.

No additional preparation needs to be done in order to use IPA. So
for example to create the executable myIPApgm using c89 with
some existing source program mypgm.c, you could specify:
c89 –W I –o myIPApgm mypgm.c

When IPA is used with c++, and automatic template generation is
being used, phase code I will control whether the automatic
template generation compiles are done using IPA. If you do not
specify phase code I, then regular compiles will be done. Specifying
i as the first option of the link-editing phase option (that is, -W i,I),
will cause the IPA linker to be used, but will not cause the IPA
compiler to be used for automatic template generation unless phase
code I (that is, -W I) is also specified.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 71

XPLINK (Extra Performance Linkage)
z/OS XPLINK provides improved performance for many C/C++
programs. The C/C++ XPLINK compiler option instructs the C/C++
compiler to generate high performance linkage for subroutine calls.
It does so primarily by making subroutine calls as fast and efficient
as possible, by reducing linkage overhead, and by passing function
call parameters in registers. Furthermore, it reduces the data size
by eliminating unused information from function control blocks.

An XPLINK-compiled program is implicitly a DLL-compiled program
(the C/C++ DLL compiler option need not be specified along with
the XPLINK option). XPLINK improves performance when crossing
function boundaries, even across compilation units, since XPLINK
uses a more efficient linkage mechanism.

For more information about the z/OS C/C++ XPLINK compiler
option, refer to z/OS C/C++ User’s Guide. For more information
about Extra Performance Linkage, refer to z/OS Language
Environment Programming Guide.

To use XPLINK, you must both compile and link-edit the program
for XPLINK. All C and C++ source files must be compiled XPLINK,
as you cannot statically link together XPLINK and non-XPLINK C
and C++ object files (with the exception of non-XPLINK ″OS″
linkage). You can however mix XPLINK and non-XPLINK
executables across DLL and fetch() boundaries.

To compile a program as XPLINK, specify the z/OS C/C++ XPLINK
compiler option. If there are any exported symbols in the executable
and you want to produce a definition side-deck, specify the DLL link
editor option. To indicate that different libraries should be
concatenated, specify the XPLINK on c89. Here is an example of
compiling and link-editing an XPLINK application in one command:
c89 -o outxpl -W c,XPLINK -W l,XPLINK,dll file.c

In order to execute an XPLINK program, the SCEERUN2 as well as
the SCEERUN data set must be in the MVS program search order
(see the {_PLIB_PREFIX} environment variable).

You cannot use –W to override the compiler options that correspond to
c89/cc/c++ options, with the following exceptions:

v Listing options (corresponding to –V)

v Inlining options (corresponding to –O and –2)

v Symbolic options (corresponding to –s and –g); symbolic options can be
overridden only when neither –s nor –g is specified.

Notes:

1. Most compiler, prelinker, and IPA linker options have a positive and
negative form. The negative form is the positive with a prepended NO
(as in XREF and NOXREF).

2. The compiler #pragma options directives as well as any other
#pragma directives which are overridden by compiler options, will have
no effect in source code compiled by c89/cc/c++.

3. Link editor options must be specified in the name=value format. Both
the option name and value must be spelled out in full. If you do not

c89, cc, and c++

72 z/OS V1R4.0 UNIX System Services Command Reference

specify a value, a default value of YES is used, except for the following
options, which if specified without a value, have the default values
shown here:

ALIASES ALIASES=ALL

COMPAT COMPAT=CURRENT

Note: The Binder default is COMPAT=MIN. For
downward compatibility (when
-Wc,’target(release)’ is used), COMPAT should
also be used (for example, -Wl,compat=min, or
the specific program object format level
supported by the target deployment system, if it
is known). For more information, see the
Downward Compatability section of z/OS C/C++
User’s Guide.

DYNAM DYNAM=DLL

LET LET=8

LIST LIST=NOIMPORT

Note: References throughout this document to the link editor are
generic references. c89/cc/c++ specifically uses the Program
Management binder for this function.

4. The z/OS C/C++ compiler is described in z/OS C/C++ User’s Guide.
Related information about the z/OS C/C++ runtime library, including
information about DLL and IPA support, is described in z/OS C/C++
Programming Guide. Related information about the z/OS C and z/OS
C++ languages, including information about compiler directives, is
described in C/C++ Language Reference.

5. Since some compiler options are z/OS C–only and some compiler
options are z/OS C++–only, you may get warning messages and a
compiler return code of 4, if you use this option and compile both C and
C++ source programs in the same c++ command invocation.

6. The prelinker is described in z/OS C/C++ User’s Guide.

7. The z/OS C/C++ User’s Guide also describes C/C++ compiler options.
Any messages produced by it (CCN messages) are documented in
z/OS C/C++ Messages.

8. You may see runtime messages (CEE or EDC) in executing your
applications. These messages are described in z/OS Language
Environment Debugging Guide.

9. The link editor (the Program Management binder) is described in z/OS
DFSMS Program Management. The Program Management binder
messages are described in z/OS MVS System Messages, Vol 8
(IEF-IGD).

Operands
c89/cc/c++ generally recognize their file operand types by file suffixes. The suffixes
shown here represent the default values used by c89/cc/c++. See “Environment
Variables” on page 76 for information on changing the suffixes to be used.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 73

|
|
|
|
|
|
|
|
|

Unlike c89 and c++, which report an error if given an operand with an unrecognized
suffix, cc determines that it is either an object file or a library based on the file itself.
This behavior is in accordance with the environment variable {_EXTRA_ARGS}.

file.a Specifies the name of an archive file, as produced by the ar command, to
be used during the link-editing phase. You can specify an MVS data set
name, by preceding the file name with double slash (//), in which case the
last qualifier of the data set name must be LIB. The data set specified must
be a C370LIB object library or a load library. See the description of the –l
libname operand for more information about using data sets as libraries.

file.C Specifies the name of a C++ source file to be compiled. You can specify an
MVS data set name by preceding the file name with double slash (//), in
which case the last qualifier of the data set name must be CXX. This
operand is only supported by the c++ command.

file.c Specifies the name of a C source file to be compiled. You can specify an
MVS data set name by preceding the file name with double slash (//), in
which case the last qualifier of the data set name must be C. (The
conventions formerly used by c89 for specifying data set names are still
supported. See the environment variables {_OSUFFIX_HOSTRULE} and
{_OSUFFIX_HOSTQUAL} for more information.)

file.I Specifies the name of a IPA linker output file produced during the
c89/cc/c++ link-editing phase, when the –W option is specified with phase
code I. IPA is further described under the –W option on page 71. By default
the IPA linker output file is written to a temporary file. To have the IPA linker
output file written to a permanent file, see the environment variable
{_TMPS} under Environment Variables.

When an IPA linker output file is produced by c89/cc/c++, the default name
is based upon the output file name. See the –o option under Options on
page 68, for information on the name of the output file.

If the output file is named a.out, then the IPA linker output file is named a.I,
and is always in the working directory. If the output file is named //a.load,
then the IPA linker output file is named //a.IPA. If the output file specified
already has a suffix, that suffix is replaced. Otherwise the suffix is
appended. This file may also be specified on the command line, in which
case it is used as a file to be link-edited.

file.i Specifies the name of a preprocessed C or C++ source file to be compiled.
You can specify an MVS data set name, by preceding the file name with
double slash (//), in which case the last qualifier of the data set name must
be CEX.

When using the c++ command, this source file is recognized as a C++
source file, otherwise it is recognized as a C source file. c++ can be made
to distinguish between the two. For more information see the environment
variables {_IXXSUFFIX} and {_IXXSUFFIX_HOST}.

file.o Specifies the name of a C, C++, or assembler object file, produced by
c89/cc/c++, to be link-edited.

When an object file is produced by c89/cc/c++, the default name is based
upon the source file. If the source file is named file.c, then the object file is
named file.o, and is always in the working directory. If the source file were a
data set named //file.C, then the object file is named //file.OBJ.

c89, cc, and c++

74 z/OS V1R4.0 UNIX System Services Command Reference

If the data set specified as an object file has undefined (U) record format,
then it is assumed to be a load module. Load modules are not processed
by the prelinker.

You can specify an MVS data set name to be link-edited, by preceding the
file name with double slash (//), in which case the last qualifier of the data
set name must be OBJ. If a partitioned data set is specified, more than one
member name may be specified by separating each with a comma (,), for
example:
c89 //file.OBJ(mem1,mem2,mem3)

file.p Specifies the name of a prelinker composite object file produced during the
c89/cc/c++ link-editing phase. By default the composite object file is written
to a temporary file. To have the composite object file written to a permanent
file, see the environment variable {_TMPS} under Environment Variables.

When a composite object file is produced by c89/cc/c++, the default name
is based upon the output file name. See the –o option under Options on
page 68, for information on the name of the output file.

If the output file is named a.out, then the composite object file is named
a.p, and is always in the working directory. If the output file is named
//a.load, then the composite object file is named //a.CPOBJ. If the output file
specified already has a suffix, that suffix is replaced. Otherwise the suffix is
appended. This file may also be specified on the command line, in which
case it is used as a file to be link-edited.

file.s Specifies the name of an assembler source file to be assembled. You can
specify an MVS data set name, by preceding the file name with double
slash (//), in which case the last qualifier of the data set name must be
ASM.

file.x Specifies the name of a definition side-deck produced during the
c89/cc/c++ link-editing phase when creating a DLL (Dynamic Link Library),
and used during the link-editing phase of an application using the DLL.
DLLs are further described under the –W option.

When a definition side-deck is produced by c89/cc/c++, the default name is
based upon the output file name. See the –o option under Options on page
68, for information on the name of the output file.

If the output file is named a.dll, then the definition side-deck is named a.x,
and is always in the working directory. If the output file is named //a.DLL,
then the definition side-deck is named //a.EXP. If the output file specified
already has a suffix, that suffix is replaced. Otherwise the suffix is
appended.

You can specify an MVS data set name to be link-edited, by preceding the
file name with double slash (//), in which case the last qualifier of the data
set name must be EXP. If a partitioned data set is specified, more than one
member name may be specified by separating each with a comma (,), for
example:
c89 //file.EXP(mem1,mem2,mem3)

–l libname
Specifies the name of an archive library. c89/cc/c++ searches for the file
liblibname.a in the directories specified on the –L option and then in the
usual places. The first occurrence of the archive library is used. For a
description of the usual places, see Usage Note 7 on page 95.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 75

You can also specify an MVS data set; you must specify the full data set
name, because there are no rules for searching library directories.

The data set specified must be a C370LIB object library or a load library. If
a data set specified as a library has undefined (U) record format, then it is
assumed to be a load library. For more information about the z/OS C/C++
Object Library Utility, z/OS C/C++ Programming Guide. For more
information about how load libraries are searched, see Usage Note 7 on
page 95.

Environment Variables
You can use environment variables to specify necessary system and operational
information to c89/cc/c++. When a particular environment variable is not set,
c89/cc/c++ uses the default shown. For information about the JCL parameters used
in these environment variables, see z/OS MVS JCL User’s Guide.

At the beginning of each environment variable description below, the name of the
variable is shown in a symbolic notation. At the end of the description, the actual
variable names used by the utilities are listed. The symbolic name is the same as
the actual variable names, but omits the prefix and is enclosed in curly braces
({_variable_name}) to indicate that it is a symbolic name. Throughout the remainder
of this command description, only the symbolic names are shown, but you must use
the actual name when setting these variables. This means to specify cc
environment variables, the name shown must be prefixed with _CC (for example,
_CC_ACCEPTABLE_RC). To specify c89 environment variables, the name shown
must be prefixed with _C89 (for example, _C89_ACCEPTABLE_RC). To specify
c++ environment variables, the name shown must be prefixed with _CXX (for
example, _CXX_ACCEPTABLE_RC).

Note: c89/cc/c++ can accept parameters only in the syntax indicated here. A null
values indicate that c89/cc/c++ is to omit the corresponding parameters
during dynamic allocation. Numbers in parentheses following the
environment variable name correspond to usage notes, which begin on Page
94, and indicate specific usage information for the environment variable.

{_ACCEPTABLE_RC}
The maximum allowed return code (result) of any step (compile, assemble,
IPA link, prelink, or link-edit). If the result is between zero and this value
(inclusive), then it is treated internally by c89/cc/c++ exactly as if it were a
zero result, except that message FSUM3065 is also issued. The default
value is:
"4"

When used under c89/cc/c++, the prelinker by default returns at least a 4
when there are duplicate symbols or unresolved writable static symbols (but
not for other unresolved references). The link editor returns at least a 4
when there are duplicate symbols, and at least an 8 when there are
unresolved references and automatic library call was used.

Actual Variable Names: _C89_ACCEPTABLE_RC, _CC_ACCEPTABLE_RC,
_CXX_ACCEPTABLE_RC

{_ASUFFIX} (15)
The suffix by which c89/cc/c++ recognizes an archive file. This environment
variable does not affect the treatment of archive libraries specified as –l
operands, which are always prefixed with lib and suffixed with ·a. The
default value is:

c89, cc, and c++

76 z/OS V1R4.0 UNIX System Services Command Reference

"a"

Actual Variable Names: _C89_ASUFFIX, _CC_ASUFFIX, _CXX_ASUFFIX

{_ASUFFIX_HOST} (15)
The suffix by which c89/cc/c++recognizes a library data set. This
environment variable does not affect the treatment of data set libraries
specified as –l operands, which are always used exactly as specified. The
default value is:
"LIB"

Actual Variable Names: _C89_ASUFFIX_HOST, _CC_ASUFFIX_HOST,
_CXX_ASUFFIX_HOST

{_CCMODE}
Controls how c89/cc/c++ does parsing. The default behavior of c89/cc/c++
is to expect all options to precede all operands. Setting this variable allows
compatibility with historical implementations (other cc commands). When
set to 1, c89/cc/c++ operates as follows:
v Options and operands can be interspersed.
v The double dash (––) is ignored.

Setting this variable to 0 results in the default behavior. The default value is:
"0"

Actual Variable Names: _C89_CCMODE, _CC_CCMODE, _CXX_CCMODE

{_CLASSLIB_PREFIX} (14,17)
The prefix for the following named data sets used during the compilation
phase and execution of your C++ application.

To be used, the following data sets must be cataloged:

v The data sets {_CLASSLIB_PREFIX}.SCLBH.+ contain the z/OS C++
Class Library include (header) files.

v The data set {_CLASSLIB_PREFIX}.SCLBSID contains the z/OS C++
Class Library definition side-decks.

The following data sets are also used:

The data sets {_CLASSLIB_PREFIX}.SCLBDLL and
{_CLASSLIBIB_PREFIX}.SCLBDLL2 contain the z/OS C++ Class Library
DLLs and messages.

The preceding data sets contain MVS programs that are invoked during the
execution of a C++ application built by c++. To be executed correctly, these
data sets must be made part of the MVS search order. Regardless of the
setting of this or any other c++ environment variable, c++ does not affect
the MVS search order. These data sets are listed here for information only,
to assist in identifying the correct data sets to be added to the MVS
program search order.

The default value is the value of the environment variable:
_CXX_CLIB_PREFIX

Actual Variable Name: _CXX_CLASSLIB_PREFIX

{_CLASSVERSION}
The version of the C++ Class Library to be invoked by c++. The setting of

c89, cc, and c++

Chapter 2. Shell Command Descriptions 77

this variable allows c++ to control which C++ Class Library named data
sets to be used during the c++ processing phases. It also sets default
values for other environment variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See z/OS C/C++
Run-Time Library Reference for a description of the _librel() function. The
default value is the same as the value for the _CVERSION environment
variable. If _CVERSION is not set, then the default value will be:
The result of the C/C++ Run-Time library _librel() function.

Actual Variable Names: _CXX_CLASSVERSION

{_CLIB_PREFIX} (14,17)
The prefix for the following named data sets used during the compilation
phase.

The following data sets are also used:

The data sets {_CLIB_PREFIX}.SCBCCMP and
{_CLIB_PREFIX}.SCCNCMP contain the compiler programs called by
c89/cc/c++.

The preceding data sets contain MVS programs that are invoked during the
execution of c89/cc/c++ and during the execution of a C/C++ application
built by c89/cc/c++. To be executed correctly, these data sets must be
made part of the MVS search order. Regardless of the setting of this or any
other c89/cc/c++ environment variable, c89/cc/c++ does not affect the
MVS search order. These data sets are listed here for information only, to
assist in identifying the correct data sets to be added to the MVS program
search order.

The default value is:
"CBC"

Actual Variable Names: _C89_CLIB_PREFIX, _CC_CLIB_PREFIX,
_CXX_CLIB_PREFIX

{_CMEMORY}
A suggestion as to the use of compiler C/C++ Runtime Library memory
files. When set to 0, c89/cc/c++ will prefer to use the compiler
NOMEMORY option. When set to 1, c89/cc/c++ will prefer to use the
compiler MEMORY option. When set to 1, and if the compiler MEMORY
option can be used, c89/cc/c++ need not allocate data sets for the
corresponding work files. In this case it is the responsibility of the user to
not override the compiler options (using the –W option) with the
NOMEMORY option or any other compiler option which implies the
NOMEMORY option.

The default value is:
"1"

Actual Variable Names: _C89_CMEMORY, _CC_CMEMORY, _CXX_CMEMORY

{_CMSGS} (14)
The Language Environment national language name used by the compiler
program. A null value will cause the default Language Environment
NATLANG runtime name to be used, and a non-null value must be a valid
Language Environment NATLANG runtime option name (Language

c89, cc, and c++

78 z/OS V1R4.0 UNIX System Services Command Reference

Environment runtime options are described in z/OS Language Environment
Programming Guide . The default value is:
"" (null)

Actual Variable Names: _C89_CMSGS, _CC_CMSGS_RC, _CXX_CMSGS

{_CNAME} (14)
The name of the compiler program called by c89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
default value is:
"CCNDRVR"

If c89/cc/c++ is being used with {_CVERSION} set to a release prior to
z/OS v1r2, the default value will be:
"CBCDRVR"

Actual Variable Names: _C89_CNAME, _CC_CNAME, _CXX_CNAME

{_CSUFFIX} (15)
The suffix by which c89/cc/c++ recognizes a C source file. The default
value is:
"c"

Actual Variable Names: _C89_CSUFFIX, _CC_CSUFFIX, _CXX_CSUFFIX

{_CSUFFIX_HOST} (15)
The suffix by which c89/cc/c++ recognizes a C source data set. The default
value is:
"C"

Actual Variable Names: _C89_CSUFFIX_HOST, _CC_CSUFFIX_HOST,
_CXX_CSUFFIX_HOST

{_CSYSLIB} (4, 16)
The system library data set concatenation to be used to resolve #include
directives during compilation.

Normally #include directives are resolved using all the information specified
including the directory name. When c89/cc/c++ can determine that the
directory information can be used, such as when the include (header) files
provided by Language Environment are installed in the default location (in
accordance with {_INCDIRS}), then the default concatenation is:
"" (null)

When c89/cc/c++ cannot determine that the directory information can be
used, then the default concatenation is:
"{_PLIB_PREFIX}.SCEEH.H"
"{_PLIB_PREFIX}.SCEEH.SYS.H"
"{_PLIB_PREFIX}.SCEEH.ARPA.H"
"{_PLIB_PREFIX}.SCEEH.NET.H"
"{_PLIB_PREFIX}.SCEEH.NETINET.H"

When this variable is a null value, then no allocation is done for compiler
system library data sets. In this case, the use of //DD:SYSLIB on the –I
option and the #include directive will be unsuccessful. Unless there is a
dependency on the use of //DD:SYSLIB, it is recommended that for
improved performance this variable be allowed to default to a null value.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 79

Actual Variable Names: _C89_CSYSLIB, _CC_CSYSLIB, _CXX_CSYSLIB

{_CVERSION}
The version of the C/C++ compiler to be invoked by c89/cc/c++. The
setting of this variable allows c89/cc/c++ to control which C/C++ compiler
program is invoked. It also sets default values for other environment
variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See z/OS C/C++
Run-Time Library Reference for a description of the _librel() function. The
default value is:
The result of the C/C++ Run-Time library _librel() function.

In order for c89/cc/c++ to use the OS/390 Version 2 Release 10 C/C++
compiler and C++ Class Library, this variable should be set to the value:
0x220A0000

Actual Variable Names: _C89_CVERSION, _CC_CVERSION, _CXX_CVERSION

{_CXXSUFFIX} (15)
The suffix by which c++ recognizes a C++ source file. The default value is:
"C"

This environment variable is only supported by the c++ command.

Actual Variable Name: _CXX_CXXSUFFIX

{_CXXSUFFIX_HOST} (15)
The suffix by which c++ recognizes a C++ source data set. The default
value is:
"CXX"

This environment variable is only supported by the c++ command.

Actual Variable Names:_CXX_CXXSUFFIX_HOST

{_DAMPLEVEL}
The minimum severity level of dynamic allocation messages returned by
dynamic allocation message processing. Messages with severity greater
than or equal to this number are written to stderr. However, if the number is
out of the range shown here (that is, less than 0 or greater than 8), then
c89/cc/c++ dynamic allocation message processing is disabled. The default
value is:
"4"

Following are the values:
0 Informational
1–4 Warning
5–8 Severe

Actual Variable Names: _C89_DAMPLEVEL, _CC_DAMPLEVEL, _CXX_DAMPLEVEL

{_DAMPNAME} (14)
The name of the dynamic allocation message processing program called by
c89/cc/c++. It must be a member of a data set in the search order used for

c89, cc, and c++

80 z/OS V1R4.0 UNIX System Services Command Reference

MVS programs. The default dynamic allocation message processing
program is described in z/OS MVS Programming: Authorized Assembler
Services Guide. The default value is:
"IEFDB476"

Actual Variable Names: _C89_DAMPNAME, _CC_DAMPNAME, _CXX_DAMPNAME

{_DCBF2008} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format fixed unblocked and minimum block size of 2008. The
block size must be in multiples of 8, and the maximum depends on the
phase in which it is used but can be at least 5100. The default value is:
"(RECFM=F,LRECL=4088,BLKSIZE=4088)"

Actual Variable Names: _C89_DCBF2008, _CC_DCBF2008, _CXX_DCBF2008

{_DCBU} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format undefined and data set organization partitioned. This DCB
is used by c89/cc/c++ for the output file when it is to be written to a data
set. The default value is:
"(RECFM=U,LRECL=0,BLKSIZE=6144,DSORG=PO)"

Actual Variable Names: _C89_DCBU, _CC_DCBU, _CXX_DCBU

{_DCB121M} (21)
The DCB parameters used by c89/cc/c++for data sets with the attributes of
record format fixed blocked and logical record length 121, for data sets
whose records may contain machine control characters. The default value
is:
"(RECFM=FBM,LRECL=121,BLKSIZE=3630)"

Actual Variable Names: _C89_DCB121M, _CC_DCB121M, _CXX_DCB121M

{_DCB133M} (21)
The DCB parameters used by c89/cc/c++for data sets with the attributes of
record format fixed blocked and logical record length 133, for data sets
whose records may contain machine control characters. The default value
is:
"(RECFM=FBM,LRECL=133,BLKSIZE=3990)"

Actual Variable Names: _C89_DCB133M, _CC_DCB133M, _CXX_DCB133M

{_DCB137} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format variable blocked and logical record length 137. The default
value is:
"(RECFM=VB,LRECL=137,BLKSIZE=882)"

Actual Variable Names: _C89_DCB137, _CC_DCB137, _CXX_DCB137

{_DCB137A} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format variable blocked and logical record length 137, for data
sets whose records may contain ISO/ANSI control characters. The default
value is:
"(RECFM=VB,LRECL=137,BLKSIZE=882)"

c89, cc, and c++

Chapter 2. Shell Command Descriptions 81

Actual Variable Names: _C89_DCB137A, _CC_DCB137A, _CXX_DCB137A

{_DCB3200} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format fixed blocked and logical record length 3200. The default
value is:
"(RECFM=FB,LRECL=3200,BLKSIZE=12800)"

Actual Variable Names: _C89_DCB3200, _CC_DCB3200, _CXX_DCB3200

{_DCB80} (21)
The DCB parameters used by c89/cc/c++ for data sets with the attributes
of record format fixed blocked and logical record length 80. This value is
also used when c89/cc/c++ allocates a new data set for an object file. The
default value is:
"(RECFM=FB,LRECL=80,BLKSIZE=3200)"

Actual Variable Names: _C89_DCB80, _CC_DCB80, _CXX_DCB80

{_ELINES}
This variable controls whether the output of the -E option will include #line
directives. #line directives provide information about the source file names
and line numbers from which the preprocessed source came. The
preprocessor only inserts #line directives where it is necessary. When set
to 1, the output of the c89/cc/c++ -E option will include #line directives
where necessary. When set to 0, the output will not include any #line
directives. The default value is:
"0"

Actual Variable Names: _C89_ELINES, _CC_ELINES, _CXX_ELINES

{_EXTRA_ARGS}
The setting of this variable controls whether c89/cc/c++ treats a file
operand with an unrecognized suffix as an error, or attempts to process it.
When the c++ command –+ option is specified, all suffixes which otherwise
would be unrecognized are instead recognized as C++ source, effectively
disabling this environment variable. See page 64 for information about the
–+ option.

When set to 0, c89/cc/c++ treats such a file as an error and the command
will be unsuccessful, because the suffix will not be recognized.

When set to 1, c89/cc/c++ treats such a file as either an object file or a
library, depending on the file itself. If it is neither an object file nor a library
then the command will be unsuccessful, because the link-editing phase will
be unable to process it. The default value for c89 and c++ is:
"0"

The default value for cc is:
"1"

Actual Variable Names: _C89_EXTRA_ARGS, _CC_EXTRA_ARGS,
_CXX_EXTRA_ARGS

{_ILCTL} (14)
The name of the control file used by the IPA linker program. By default the
control file is not used, so the –W option must be specified to enable its
use, as in:

c89, cc, and c++

82 z/OS V1R4.0 UNIX System Services Command Reference

c89 -WI,control ...

The default value is:
"ipa.ctl"

Actual Variable Names: _C89_ILCTL, _CC_ILCTL, _CXX_ILCTL

{_ILMSGS} (14)
The name of the message data set member, or the Language Environment
national language name, used by the IPA linker program. The default value
is whatever {_CMSGS} is. So if {_CMSGS} is set or defaults to "" (null),
the default value is:
"" (null)

Actual Variable Names: _C89_ILMSGS, _CC_ILMSGS, _CXX_ILMSGS

{_ILNAME} (14)
The name of the IPA linker program called by c89/cc. It must be a member
of a data set in the search order used for MVS programs. The default value
is whatever {_CNAME} is. So if {_CNAME} is set or defaults to
"CCNDRVR" the default value is:
"CCNDRVR"

Actual Variable Names: _C89_ILNAME, _CC_ILNAME, _CXX_ILNAME

{_ILSUFFIX} (15)
The suffix c89/cc uses when creating an IPA linker output file. The default
value is:
"I"

Actual Variable Names: _C89_ILSUFFIX, _CC_ILSUFFIX, _CXX_ILSUFFIX

{_ILSUFFIX_HOST} (15)
The suffix c89/cc uses when creating an IPA linker output data set. The
default value is:
"IPA"

Actual Variable Names: _C89_ILSUFFIX_HOST, _CC_ILSUFFIX_HOST,
_CXX_ILSUFFIX_HOST

{_ILSYSLIB} (7, 16)
The system library data set list to be used to resolve symbols during the
IPA link step of the link-editing phase of non-XPLINK programs. The default
value is whatever {_PSYSLIB} is set or defaults to, followed by whatever
{_LSYSLIB} is set or defaults to.

Actual Variable Names: _C89_ILSYSLIB, _CC_ILSYSLIB, _CXX_ILSYSLIB

{_ILSYSIX} (7, 16)
The system definition side-deck list to be used to resolve symbols during
the IPA link step of the link-editing phase in non-XPLINK programs. The
default value is whatever {_PSYSIX} is set or defaults to.

Actual Variable Names: _C89_ILSYSIX, _CC_ILSYSIX, _CXX_ILSYSIX

{_ILXSYSLIB} (7, 16)
The system library data set list to be used to resolve symbols during the
IPA link step of the link-editing phase when using XPLINK (see XPLINK
(Extra Performance Linkage) in “Options” on page 64). The default value is
whatever {_LXSYSLIB} is set or defaults to.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 83

Actual Variable Names: _C89_ILXSYSLIB, _CC_ILXSYSLIB, _CXX_ILXSYSLIB

{_ILXSYSIX} (7, 16)
The system definition side-deck list to be used to resolve symbols during
the IPA link step of the link-editing phase when using XPLINK (see XPLINK
(Extra Performance Linkage) in “Options” on page 64). The default value is
whatever {_LXSYSIX}} is set or defaults to.

Actual Variable Names: _C89_ILXSYSIX, _CC_ILXSYSIX, _CXX_ILXSYSIX

{_INCDIRS} (22)
The directories used by c89/cc/c++ as a default place to search for include
files during compilation (before searching {_INCLIBS} and {_CSYSLIB}). If
c++ is not being used the default value is:
"/usr/include"

If c++ is being used the default value is:
/usr/include /usr/lpp/ioclib/include

Actual Variable Names: _C89_INCDIRS, _CC_INCDIRS, _CXX_INCDIRS

{_INCLIBS} (22)
The directories used by c89/cc/c++ as a default place to search for include
files during compilation (after searching {_INCDIRS} and before searching
{_CSYSLIB}). The default value depends on whether or not c++ is being
used. If c++ is not being used the default value is:
"//'{_PLIB_PREFIX}.SCEEH.+'"

If c++ is being used, the default value is:
"//’{_PLIB_PREFIX}.SCEEH.+’ //’{_CLIB_PREFIX}.SCLBH.+’"

Actual Variable Names: _C89_INCLIBS, _CC_INCLIBS, _CXX_INCLIBS

{_ISUFFIX} (15)
The suffix by which c89/cc/c++ recognizes a preprocessed C source file.
The default value is:
"i"

Actual Variable Names: _C89_ISUFFIX, _CC_ISUFFIX, _CXX_ISUFFIX

{_ISUFFIX_HOST} (15)
The suffix by which c89/cc/c++ recognizes a preprocessed (expanded) C
source data set. The default value is:
"CEX"

Actual Variable Names: _C89_ISUFFIX_HOST, _CC_ISUFFIX_HOST,
_CXX_ISUFFIX_HOST

{_IXXSUFFIX} (15)
The suffix by which c++ recognizes a preprocessed C++ source file. The
default value is:
"i"

This environment variable is only supported by the c++ command.

Actual Variable Names: _CXX_IXXSUFFIX

c89, cc, and c++

84 z/OS V1R4.0 UNIX System Services Command Reference

{_IXXSUFFIX_HOST} (15)
The suffix by which c++ recognizes a preprocessed (expanded) C++ source
data set. The default value is:
"CEX"

This environment variable is only supported by the c++ command.

Actual Variable Names: _CXX_IXXSUFFIX_HOST

{_LIBDIRS} (22)
The directories used by c89/cc/c++ as the default place to search for
archive libraries which are specified using the –l operand. The default value
is:
"/lib /usr/lib"

Actual Variable Names: _C89_LIBDIRS, _CC_LIBDIRS, _CXX_LIBDIRS

{_LSYSLIB} (7, 16)
The system library data set concatenation to be used to resolve symbols
during the IPA link step and the link-edit step of the non-XPLINK link-editing
phase. The {_PSYSLIB} libraries always precede the {_LSYSLIB} libraries
when resolving symbols in the link-editing phase. The default value is the
concatenation:
"{_PLIB_PREFIX}.SCEELKEX"
"{_PLIB_PREFIX}.SCEELKED"
"{_SLIB_PREFIX}.CSSLIB"

Actual Variable Names: _C89_LSYSLIB, _CC_LSYSLIB, _CXX_LSYSLIB

{_LXSYSLIB} (7, 16)
The system library data set concatenation to be used to resolve symbols
during the IPA link step and the link-editing phase when using XPLINK (see
XPLINK (Extra Performance Linkage) in “Options” on page 64). The default
value is the concatenation:
"{_PLIB_PREFIX}.SCEEBIND"
"{_SLIB_PREFIX}.CSSLIB"

Actual Variable Names: _C89_LXSYSLIB, _CC_LXSYSLIB, _CXX_LXSYSLIB

{_LXSYSIX} (7, 16)
The system definition side-deck list to be used to resolve symbols during
the link-editing phase when using XPLINK (see XPLINK (Extra Performance
Linkage) in “Options” on page 64). A definition side-deck contains
link-editing phase IMPORT control statements naming symbols which are
exported by a DLL. The default value depends on whether or not c++ is
being used. If c++ is not being used, the default value is the list:
"{_PLIB_PREFIX}.SCEELLIB(CELHS003,CELHS001)"

If c++ is being used with {_PVERSION} and {_CLASSVERSION} defaulted
to the current z/OS release, the default value is the list concatenation:
"{_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP,C128)"
"{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

If c++ is being used with {_PVERSION} and {_CLASSVERSION} set to a
release prior to z/OS Version 1 Release 2, the default value is the list
concatenation:
"{_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP)"
"{_CLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

c89, cc, and c++

Chapter 2. Shell Command Descriptions 85

Actual Variable Names: _C89_LSYSLIB, _CC_LSYSLIB, _CXX_LSYSLIB

{_MEMORY}
A suggestion as to the use of C/C++ Runtime Library memory files by
c89/cc/c++. When set to 0, c89/cc/c++ uses temporary data sets for all
work files. When set to 1, c89/cc/c++ uses memory files for all work files
that it can. The default value is:
"1"

Actual Variable Names: _C89_MEMORY, _CC_MEMORY, _CXX_MEMORY

{_NEW_DATACLAS} (18)
The DATACLAS parameter used by c89/cc/c++ for any new datasets it
creates. The default value is:
"" (null)

Actual Variable Names: _C89_NEW_DATACLAS, _CC_NEW_DATACLAS,
_CXX_NEW_DATACLAS

{_NEW_DSNTYPE} (18, 20)
The DSNTYPE parameter used by c89/cc/c++ for any new data sets it
creates. The default value is:
"" (null)

Actual Variable Names: _C89_NEW_DSNTYPE, _CC_NEW_DSNTYPE,
_CXX_NEW_DSNTYPE

{_NEW_MGMTCLAS} (18)
The MGMTCLAS parameter used by c89/cc/c++ for any new datasets it
creates. The default value is:
"" (null)

Actual Variable Names: _C89_NEW_MGMTCLAS, _CC_NEW_MGMTCLAS,
_CXX_NEW_MGMTCLAS

{_NEW_SPACE} (18, 19)
The SPACE parameters used by c89/cc/c++for any new data sets it
creates. A value for the number of directory blocks should always be
specified. When allocating a sequential data set, c89/cc/c++ automatically
ignores the specification. The default value is:
"(,(10,10,10))"

Actual Variable Names: _C89_NEW_SPACE, _CC_NEW_SPACE, _CXX_NEW_SPACE

{_NEW_STORCLAS} (18)
The STORCLAS parameter used by c89/cc/c++for any new data sets it
creates. The default value is:
"" (null)

Actual Variable Names: _C89_NEW_STORCLAS, _CC_NEW_STORCLAS,
_CXX_NEW_STORACLAS

{_NEW_UNIT} (18)
The UNIT parameter used by c89/cc/c++ for any new data sets it creates.
The default value is:
"" (null)

Actual Variable Names: _C89_NEW_UNIT, _CC_NEW_UNIT, _CXX_NEW_UNIT

c89, cc, and c++

86 z/OS V1R4.0 UNIX System Services Command Reference

{_OPERANDS} (22)
These operands are parsed as if they were specified after all other
operands on the c89/cc/c++ command line. The default value is:
"" (null)

Actual Variable Names: _C89_OPERANDS, _CC_OPERANDS, _CXX_OPERANDS

{_OPTIONS} (22)
These options are parsed as if they were specified before all other options
on the c89/cc/c++ command line. The default value is:
"" (null)

Actual Variable Names: _C89_OPTIONS, _CC_OPTIONS, _CXX_OPTIONS

{_OSUFFIX} (15)
The suffix by which c89/cc/c++ recognizes an object file. The default value
is:
"o"

Actual Variable Names: _C89_OSUFFIX, _CC_OSUFFIX, _CXX_OSUFFIX

{_OSUFFIX_HOST} (15)
The suffix by which c89/cc/c++ recognizes an object data set. The default
value is:
"OBJ"

Actual Variable Names: _C89_OSUFFIX_HOST, _CC_OSUFFIX_HOST,
_CXX_OSUFFIX_HOST

{_OSUFFIX_HOSTQUAL}
The data set name of an object data set is determined by the setting of this
option. If it is set to 0, then the suffix {_OSUFFIX_HOST} is appended to
the source data set name to produce the object data set name. If it is set to
1, then the suffix {_OSUFFIX_HOST} replaces the last qualifier of the
source data set name to produce the object data set name (unless there is
only a single qualifier, in which case the suffix is appended). The default
value is:
"1"

Note: Earlier versions of c89 always appended the suffix, which was
inconsistent with the treatment of files in the hierarchical file system.
It is recommended that any existing data sets be converted to use
the new convention.

Actual Variable Names: _C89_OSUFFIX_HOSTQUAL, _CC_OSUFFIX_HOSTQUAL,
_CXX_OSUFFIX_HOSTQUAL

{_OSUFFIX_HOSTRULE}
The way in which suffixes are used for host data sets is determined by the
setting of this option. If it is set to 0, then data set types are determined by
the rule described in the note which follows. If it is set to 1, then the data
set types are determined by last qualifier of the data set (just as a suffix is
used to determine the type of hierarchical file system file). Each host file
type has an environment variable by which the default suffix can be
modified. The default value is:
"1"

c89, cc, and c++

Chapter 2. Shell Command Descriptions 87

Notes:

1. Earlier versions of c89 scanned the data set name to determine if it was
an object data set. It searched for the string OBJ in the data set name,
exclusive of the first qualifier and the member name. If it was found, the
data set was determined to be an object data set, and otherwise it was
determined to be a C source data set. It is recommended that any
existing data sets be converted to use the new convention. Also,
because the earlier convention only provided for recognition of C source
files, assembler source cannot be processed if it is used.

2. The c++ command does not support this environment variable, as the
earlier convention would not provide for recognition of both C++ and C
source files. Therefore regardless of its setting, c++ always behaves as
if it is set to "1".

Actual Variable Names: _C89_OSUFFIX_HOSTRULE, _CC_OSUFFIX_HOSTRULE,
_CXX_OSUFFIX_HOSTRULE

{_PLIB_PREFIX} (14,17)
The prefix for the following named data sets used during the compilation,
assemble, and link-editing phases, and during the execution of your
application.

To be used, the following data sets must be cataloged:

v The data sets {_PLIB_PREFIX}.SCEEH.+ contain the include (header)
files for use with the runtime library functions (where + can be any of H,
SYS.H, ARPA.H, NET.H, and NETINET.H).

v The data set {_PLIB_PREFIX}.SCEEMAC contains COPY and MACRO
files to be used during assembly.

v The data sets {_PLIB_PREFIX}.SCEEOBJ and
{_PLIB_PREFIX}.SCEECPP contain runtime library bindings which exploit
constructed reentrancy, used during the link-editing phase of non-XPLINK
programs.

v The data set {_PLIB_PREFIX}.SCEELKEX contains C runtime library
bindings which exploit L-names used during the link-editing phase of
non-XPLINK programs. For more information about L-names, see usage
note 23 on page 99.

v The data set {_PLIB_PREFIX}.SCEELKED contains all other Language
Environment runtime library bindings, used during the link-editing phase
of non-XPLINK programs.

v The data set {_PLIB_PREFIX}.SCEEBIND contains all static Language
Environment runtime library bindings, used during the link-editing phase
of XPLINK programs.

v The data set {_PLIB_PREFIX}.SCEEBIND2 contains all static Language
Environment runtime library bindings, used during the link-editing phase
of XPLINK programs.

v The data set {_PLIB_PREFIX}.SCEELIB contains the definition
side-decks for the runtime library bindings (CELHS003 and CELHSCPP),
and the Language Environment Callable Services (member CELHS001),
used during the link-editing phase of XPLINK programs.

The following data sets are also used:

v The data sets {_PLIB_PREFIX}.SCEERUN and
{_PLIB_PREFIX}.SCEERUN2 contains the runtime library programs.

c89, cc, and c++

88 z/OS V1R4.0 UNIX System Services Command Reference

The above data sets contain MVS programs that are invoked during the
execution of c89/cc/c++ and during the execution of a C/C++ application
built by c89/cc/c++. To be executed correctly, these data sets must be
made part of the MVS search order. Regardless of the setting of this or any
other c89/cc/c++ environment variable, c89/cc/c++ does not affect the
MVS program search order. These data sets are listed here for information
only, to assist in identifying the correct data sets to be added to the MVS
program search order. The default value is:
"CEE"

Actual Variable Names: _C89_PLIB_PREFIX, _CC_PLIB_PREFIX,
_CXX_PLIB_PREFIX

{_PMEMORY}
A suggestion as to the use of prelinker C/C++ Runtime Library memory
files. When set to 0, c89/cc/c++ uses the prelinker NOMEMORY option.
When set to 1, c89/cc/c++ uses the prelinker MEMORY option. The default
value is:
"1"

_C89_PMEMORY, _CC_PMEMORY, _CXX_PMEMORY

{_PMSGS} (14)
The name of the message data set used by the prelinker program. It must
be a member of the cataloged data set {_PLIB_PREFIX}.SCEEMSGP. The
default value is:
"EDCPMSGE"

Actual Variable Names: _C89_PMSGS, _CC_PMSGS, _CXX_PMSGS

{_PNAME} (14)
The name of the prelinker program called by c89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
prelinker program is shipped as a member of the
{_PLIB_PREFIX}.SCEERUN data set. The default value is:
"EDCPRLK"

Actual Variable Names: _C89_PNAME, _CC_PNAME, _CXX_PNAME

{_PSUFFIX} (15)
The suffix c89/cc/c++ uses when creating a prelinker (composite object)
output file. The default value is:
"p"

Actual Variable Names: _C89_PSUFFIX, _CC_PSUFFIX, _CXX_PSUFFIX

{_PSUFFIX_HOST} (15)
The suffix c89/cc/c++ uses when creating a prelinker (composite object)
output data set. The default value is:
"CPOBJ"

Actual Variable Names: _C89_PSUFFIX_HOST, _CC_PSUFFIX_HOST,
_CXX_PSUFFIX_HOST

{_PSYSIX} (16)
The system definition side-deck list to be used to resolve symbols during
the non-XPLINK link-editing phase. A definition side-deck contains
link-editing phase IMPORT control statements naming symbols which are

c89, cc, and c++

Chapter 2. Shell Command Descriptions 89

exported by a DLL. The default value when c++ is not being used is null. If
c++ is being used with {_PVERSION} and {_CLASSVERSION} set or
defaulted to the current z/OS release, the default value is the list
concatenation:
"{_PLIB_PREFIX}.SCEELIB(C128)"
"{_CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

If c++ is being used with {_PVERSION} and {_CLASSVERSION} set to a
release prior to z/OS Version 1 Release 2, the default value is the list:
"{_CLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

Actual Variable Names: _C89_PSYSIX, _CC_PSYSIX, _CXX_PSYSIX

{_PSYSLIB} (16)
The system library data set list to be used to resolve symbols during the
non-XPLINK link-editing phase. The {_PSYSLIB} libraries always precede
the {_LSYSLIB} libraries when resolving symbols in the link-editing phase.
The default value depends on whether or not c++ is being used. If c++ is
not being used, the default value is the list containing the single entry:
"{_PLIB_PREFIX}.SCEEOBJ"

If c++ is being used, the default value is the list:
"{_PLIB_PREFIX}.SCEEOBJ"
"{_PLIB_PREFIX}.SCEECPP"

Actual Variable Names: _C89_PSYSLIB, _CC_PSYSLIB, _CXX_PSYSLIB

{_PVERSION} (27)
The version of the Language Environment to be used with c89/cc/c++. The
setting of this variable allows c89/cc/c++ to control which Language
Environment named data sets are used during the c89/cc/c++ processng
phases. These named data sets include those required for use of the
C/C++ Run-Time Library as well as the ISO C++ Library. It also sets default
values for other environment variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See z/OS C/C++
Run-Time Library Reference for a description of the _librel() function. The
default value is:
The result of the C/C++ Run-Time library _librel() function

Actual Variable Names: _C89_PVERSION, _CC_PVERSION, _CXX_PVERSION

{_SLIB_PREFIX} (17)
The prefix for the named data sets used by the link editor (CSSLIB) and the
assembler system library data sets (MACLIB and MODGEN). The data set
{_SLIB_PREFIX}.CSSLIB contains the z/OS UNIX assembler callable
services bindings. The data sets {_SLIB_PREFIX}.MACLIB and
{_SLIB_PREFIX}.MODGEN contain COPY and MACRO files to be used
during assembly. These data sets must be cataloged to be used. The
default value is:
"SYS1"

Actual Variable Names: _C89_SLIB_PREFIX, _CC_SLIB_PREFIX,
_CXX_SLIB_PREFIX

c89, cc, and c++

90 z/OS V1R4.0 UNIX System Services Command Reference

{_SNAME} (14)
The name of the assembler program called by c89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
default value is:
"ASMA90"

Actual Variable Names: _C89_SNAME, _CC_SNAME, _CXX_SNAME

{_SSUFFIX} (15)
The suffix by which c89/cc/c++ recognizes an assembler source file. The
default value is:
"s"

Actual Variable Names: _C89_SSUFFIX, _CC_SSUFFIX, _CXX_SSUFFIX

{_SSUFFIX_HOST} (15)
The suffix by which c89/cc/c++ recognizes an assembler source data set.
The default value is:
"ASM"

Actual Variable Names: _C89_SSUFFIX_HOST, _CC_SSUFFIX_HOST,
_CXX_SSUFFIX_HOST

{_SSYSLIB} (16)
The system library data set concatenation to be used to find COPY and
MACRO files during assembly. The default concatenation is:
"{_PLIB_PREFIX}.SCEEMAC"
"{_SLIB_PREFIX}.MACLIB"
"{_SLIB_PREFIX}.MODGEN"

Actual Variable Names: _C89_SSYSLIB, _CC_SSYSLIB, _CXX_SSYSLIB

{_STEPS}
The steps that are executed for the link-editing phase can be controlled with
this variable. For example, the prelinker step can be enabled, so that the
inputs normally destined for the link editor instead go into the prelinker, and
then the output of the prelinker becomes the input to the link editor.

This variable allows the prelinker to be used in order to produce output
which is compatible with previous releases of c89/cc/c++. The prelinker is
normally used by c89/cc/c++ when the output file is a data set which is not
a PDSE (partitioned data set extended).

Note: The Prelinker and XPLINK are incompatible. When using the link
editor XPLINK option, the Prelinker cannot be used. Thus, specifying
the Prelinker on this variable will have no effect.

The format of this variable is a set of binary switches which either enable
(when turned on) or disable (when turned off) the corresponding step.
Turning a switch on will not cause a step to be enabled if it was not already
determined by c89/cc/c++ that any other conditions necessary for its use
are satisfied. For example, the IPA link step will not be executed unless the
–W option is specified to enable the IPA linker. Enabling the IPA linker is
described under the –W option on page 71.

Considering this variable to be a set of 32 switches, numbered left-to-right
from 0 to 31, the steps corresponding to each of the switches are as
follows:

c89, cc, and c++

Chapter 2. Shell Command Descriptions 91

0-27 Reserved
28 TEMPINC/IPATEMP
29 IPALINK
30 PRELINK
31 LINKEDIT

For example, to override the default behavior of c89/cc/c++ and cause the
prelinker step to be run (this is also the default when the output file is a
data set which is not a PDSE), set this variable to:
"0xffffffff" or the equivalent, -1

The default value when the output file is an HFS file or a PDSE data set is:
"0xfffffffD" or the equivalent, -3

Note: The IPATEMP step is the IPA equivalent of the TEMPINC (automatic
template generation) step, just as the IPACOMP step is the IPA
equivalent of the COMPILE step. See the description of IPA under
the -W option for more information.

Actual Variable Names: _C89_STEPS, _CC_STEPS, _CXX_STEPS

{_SUSRLIB} (16)
The user library data set concatenation to be used to find COPY and
MACRO files during assembly (before searching {_SSYSLIB}). The default
value is:
"" (null)

Actual Variable Names: _C89_SUSRLIB, _CC_SUSRLIB, _CXX_SUSRLIB

{_TMPS}
The use of temporary files by c89/cc/c++ can be controlled with this
variable.

The format of this variable is a set of binary switches which either cause a
temporary file to be used (when turned on) or a permanent file to be used
(when turned off) in the corresponding step.

The correspondence of these switches to steps is the same as for the
variable {_STEPS}. Only the prelinker and IPA linker output can be
captured using this variable.

For example, to capture the prelinker output, set this variable to:
"0xfffffffD" or the equivalent, -3

The default value is:
"0xffffffff" or the equivalent, -1

Actual Variable Names: _C89_TMPS, _CC_TMPS, _CXX_TMPS

{_WORK_DATACLAS} (18)
The DATACLAS parameter used by c89/cc/c++ for unnamed temporary
(work) data sets. The default value is:
"" (null)

Actual Variable Names: _C89_WORK_DATACLAS, _CC_WORK_DATACLAS,
_CXX_WORK_DATACLAS

c89, cc, and c++

92 z/OS V1R4.0 UNIX System Services Command Reference

{_WORK_DSNTYPE} (18, 20)
The DSNTYPE parameter used by c89/cc/c++ for unnamed temporary
(work) data sets. The default value is:
"" (null)

Actual Variable Names: _C89_WORK_DSNTYPE, _CC_WORK_DSNTYPE,
_CXX_WORK_DSNTYPE

{_WORK_MGMTCLAS} (18)
The MGMTCLAS parameter used by c89/cc/c++ for unnamed temporary
(work) data sets. The default value is:
"" (null)

Actual Variable Names: _C89_WORK_MGMTCLAS, _CC_WORK_MGMTCLAS,
_CXX_WORK_MGMTCLAS

{_WORK_SPACE} (18, 19)
The SPACE parameters used by c89/cc/c++ for unnamed temporary (work)
data sets. The default value is:
"(32000,(30,30))"

Actual Variable Names: _C89_WORK_SPACE, _CC_WORK_SPACE,
_CXX_WORK_SPACE

{_WORK_STORCLAS} (18)
The STORCLAS parameter used by c89/cc/c++ for unnamed temporary
(work) data sets. The default value is:
"" (null)

Actual Variable Names: _C89_WORK_STORCLAS, _CC_WORK_STORCLAS,
_CXX_WORK_STORCLAS

{_WORK_UNIT} (18)
The UNIT parameter used by c89/cc/c++ for unnamed temporary (work)
data sets. The default value is:
"SYSDA"

Actual Variable Names: _C89_WORK_UNIT, _CC_WORK_UNIT, _CXX_WORK_UNIT

{_XSUFFIX} (15)
The suffix by which c89/cc/c++ recognizes a definition side-deck file of
exported symbols. The default value is:
"x"

Actual Variable Names: _C89_XSUFFIX, _CC_XSUFFIX, _CXX_XSUFFIX

{_XSUFFIX_HOST} (15)
The suffix by which c89/cc/c++ recognizes a definition side-deck data set of
exported symbols. The default value is:
"EXP"

Actual Variable Names: _C89_XSUFFIX_HOST, _CC_XSUFFIX_HOST,
_CXX_XSUFFIX_HOST

Files
libc.a C/C++ Runtime Library function library (see Usage Note 7 on page 95).

c89, cc, and c++

Chapter 2. Shell Command Descriptions 93

libm.a C/C++ Runtime Library math function library (see Usage Note 7 on page
95).

libl.a lex function library.

liby.a yacc function library.

/dev/fd0, /dev/fd1, ...
Character special files required by c89/cc/c++. For installation information,
see z/OS UNIX System Services Planning.

/usr/include
The usual place to search for include files (see Usage Note 4 on page 94).

/lib The usual place to search for runtime library bindings (see Usage Note 7
on page 95).

/usr/lib
The usual place to search for runtime library bindings (see Usage Note 7
on page 95).

Usage Notes
1. To be able to specify an operand that begins with a dash (–), before specifying

any other operands that do not, you must use the double dash (––)
end-of-options delimiter. This also applies to the specification of the –l
operand. (See the description of environment variable {_CCMODE} for an
alternate style of argument parsing.)

2. When invoking c89/cc/c++ from the shell, any option-arguments or operands
specified that contain characters with special meaning to the shell must be
escaped. For example, some –W option-arguments contain parentheses.
Source files specified as PDS member names contain parentheses; if they are
specified as fully qualified names, they contain single quotes.

To escape these special characters, either enclose the option-argument or
operand in double quotes, or precede each character with a backslash.

3. Some c89/cc/c++ behavior applies only to hierarchical files (and not to data
sets).

v If the compile or assemble is not successful, the corresponding object file
(file.o) is always removed.

v If the DLL option is passed to the link-editing phase, and afterwards the
file.x file exists but has a size of zero, then that file is removed.

4. MVS data sets may be used as the usual place to resolve C and C++
#include directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,
searching for these include files can be specified on the –I option as
//DD:SYSLIB. (See the description of environment variable {_CSYSLIB} for
information.

When include files are MVS PDS members, z/OS C/C++ uses conversion rules
to transform the include (header) file name on a #include preprocessor
directive into a member name. If the "//'dataset_prefix.+'" syntax is not used for
the MVS data set which is being searched for the include file, then this
transformation strips any directory name on the #include directive, and then
takes the first 8 or fewer characters up to the first dot (·).

If the "//'dataset_prefix.+'" syntax is used for the MVS data set which is being
searched for the include file, then this transformation uses any directory name
on the #include directive, and the characters following the first dot (·), and
substitutes the "+" of the dataset being searched with these qualifiers.

c89, cc, and c++

94 z/OS V1R4.0 UNIX System Services Command Reference

In both cases the data set name and member name are converted to
uppercase and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed
into the hierarchical file system in the default location (in accordance with the
{_INCDIRS} environment variable), then the compiler will use those files to
resolve #include directives during compilation. c89/cc/c++ by default searches
the directory /usr/include as the usual place, just before searching the data
sets just described. See the description of environment variables {_CSYSLIB},
{_INCDIRS}, and {_INCLIBS} for information on customizing the default
directories to search.

5. Feature test macros control which symbols are made visible in a source file
(typically a header file). c89/cc/c++ automatically defines the following feature
test macros along with the errno macro, according to whether or not cc was
invoked.

v Other than cc
–D "errno=(*__errno())"
–D _OPEN_DEFAULT=1

v cc
–D "errno=(*__errno())"
–D _OPEN_DEFAULT=0
–D _NO_PROTO=1

c89/cc/c++add these macro definitions only after processing the command
string. Therefore, you can override these macros by specifying –D or –U
options for them on the command string.

6. The default LANGLVL and related compiler options are set according to
whether cc, c89, or c++ (cxx) was invoked. These options affect various
aspects of the compilation, such as z/OS C/C++ predefined macros, which are
used like feature test macros to control which symbols are made visible in a
source file (typically a header file), but are normally not defined or undefined
except by this compiler option. They can also affect the language rules used
by the compiler. For more information about the compiler options listed here,
see z/OS C/C++ User’s Guide . For more information about z/OS C/C++
predefined macros, see C/C++ Language Reference. The options are shown
here in a syntax that the user can specify on the c89/cc/c++ command line to
override them:
v c89 (also c++ (cxx) when using a C++ compiler older than z/OS v1r2)

–W "c,langlvl(ansi),noupconv"
v c++ (cxx)

–W "c,langlvl(extended,nolibext,nolonglong)
v cc

–W "c,langlvl(commonc),upconv"

7. By default the usual place for the –L option search is the /lib directory followed
by the /usr/lib directory. See the description of environment variable
{_LIBDIRS} for information on customizing the default directories to search.

The archive libraries libc.a and libm.a exist as files in the usual place for
consistency with other implementations. However, the runtime library bindings
are not contained in them.

Instead, MVS data sets installed with the Language Environment runtime
library are used as the usual place to resolve runtime library bindings. In the
final step of the link-editing phase, any MVS load libraries specified on the –l
operand are searched in the order specified, followed by searching these data
sets. See the {_PLIB_PREFIX} description, as well as descriptions of the
environment variables featured in the following list.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 95

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: This list of environment variables affects the link-editing phase of c89,
but only for non-XPLINK link-editing. See XPLINK (Extra Performance
Linkage) in “Options” on page 64.

{_ILSYSLIB}
{_ILSYSIX}
{_LSYSLIB}
{_PSYSIX}
{_PSYSLIB}

This list of environment variables affects the link-editing phase of c89, but only
for XPLINK link-editing. See XPLINK (Extra Performance Linkage) in “Options”
on page 64.

{_ILXSYSLIB}
{_ILXSYSIX}
{_LXSYSLIB}
{_LXSYSIX}

8. Because archive library files are searched when their names are encountered,
the placement of –l operands and file.a operands is significant. You may have
to specify a library multiple times on the command string, if subsequent
specification of file.o files requires that additional symbols be resolved from
that library.

9. When the prelinker is used during the link-editing phase, you cannot use as
input to c89/cc/c++ an executable file produced as output from a previous use
of c89/cc/c++. The output of c89/cc/c++ when the –r option is specified (which
is not an executable file) may be used as input.

10. All MVS data sets used by c89/cc/c++ must be cataloged (including the
system data sets installed with the z/OS C/C++ compiler and the Language
Environment runtime library).

11. c89/cc/c++ operation depends on the correct setting of their installation and
configuration environment variables (see “Environment Variables” on page 76).
Also, they require that certain character special files are in the /dev directory.
For additional installation and configuration information, see z/OS UNIX
System Services Planning.

12. Normally, options and operands are processed in the order read (from left to
right). Where there are conflicts, the last specification is used (such as with –g
and –s). However, some c89/cc/c++ options will override others, regardless of
the order in which they are specified. The option priorities, in order of highest
to lowest, are as follows:

–v specified twice
The pseudo-JCL is printed only, but the effect of all the other options
and operands as specified is reflected in the pseudo-JCL.

–E Overrides –0, –O, –1, –2, –V, –c, –g and –s (also ignores any file.s
files).

–g Overrides –0, –O, –1, –2, and –s.

–s Overrides –g (the last one specified is honored).

–0, –O, –1, –2, –V, –c
All are honored if not overridden. –0, –O, –1, and –2, override each
other (the last one specified is honored).

13. For options that have option-arguments, the meaning of multiple specifications
of the options is as follows:

c89, cc, and c++

96 z/OS V1R4.0 UNIX System Services Command Reference

–D All specifications are used. If the same name is specified on more than
one –D option, only the first definition is used.

–e The entry function used will be the one specified on the last –e option.

–I All specifications are used. If the same directory is specified on more
than one –I option, the directory is searched only the first time.

–L All specifications are used. If the same directory is specified on more
than one –L option, the directory is searched only the first time.

–o The output file used will be the one specified on the last –o option.

–U All specifications are used. The name is not defined, regardless of the
position of this option relative to any –D option specifying the same
name.

–u All specifications are used. If a definition cannot be found for any of
the functions specified, the link-editing phase will be unsuccessful.

–W All specifications are used. All options specified for a phase are
passed to it, as if they were concatenated together in the order
specified.

14. The following environment variables can be at most eight characters in length.
For those whose values specify the names of MVS programs to be executed,
you can dynamically alter the search order used to find those programs by
using the STEPLIB environment variable.

c89/cc/c++ environment variables do not affect the MVS program search
order. Also, for c89/cc/c++ to work correctly, the setting of the STEPLIB
environment variable should reflect the Language Environment library in use at
the time that c89/cc/c++ is invoked.

For more information on the STEPLIB environment variable, see z/OS UNIX
System Services Planning. It is also described under the sh command. Note
that the STEPLIB allocation in the pseudo-JCL produced by the –v verbose
option is shown as a comment, and has no effect on the MVS program search
order. Its appearance in the pseudo-JCL is strictly informational.

{_CMSGS}
{_CNAME}
{_DAMPNAME}
{_ILNAME}
{_ILMSGS}
{_PMSGS}
{_PNAME}
{_SNAME}

15. The following environment variables can be at most 15 characters in length.
You should not specify any dots (·) when setting these environment variables
since they would then never match their corresponding operands:

{_ASUFFIX}
{_ASUFFIX_HOST}
{_CSUFFIX}
{_CSUFFIX_HOST}
{_CXXSUFFIX}
{_CXXSUFFIX_HOST}
{_ISUFFIX}
{_ISUFFIX_HOST}
{_ILSUFFIX}
{_ILSUFFIX_HOST}
{_IXXSUFFIX}

c89, cc, and c++

Chapter 2. Shell Command Descriptions 97

{_IXXSUFFIX_HOST}
{_OSUFFIX}
{_OSUFFIX_HOST}
{_PSUFFIX}
{_PSUFFIX_HOST}
{_SSUFFIX}
{_SSUFFIX_HOST}
{_XSUFFIX}
{_XSUFFIX_HOST}

16. The following environment variables are parsed as colon-delimited data set
names, and represent a data set concatenation or a data set list. The
maximum length of each specification is 1024 characters:

{_CSYSLIB}
{_ILSYSLIB}
{_ILSYSIX}
{_ILXSYSLIB}
{_ILXSYSIX}
{_LSYSLIB}
{_LXSYSLIB}
{_LXSYSIX}
{_PSYSIX}
{_PSYSLIB}
{_SSYSLIB}
{_SUSRLIB}

17. The following environment variables can be at most 44 characters in length:
{_CLASSLIB_PREFIX}
{_CLIB_PREFIX}
{_PLIB_PREFIX}
{_SLIB_PREFIX}

18. The following environment variables can be at most 63 characters in length:
{_NEW_DATACLAS}
{_NEW_DSNTYPE}
{_NEW_MGMTCLAS}
{_NEW_SPACE}
{_NEW_STORCLAS}
{_NEW_UNIT}
{_WORK_DATACLAS}
{_WORK_DSNTYPE}
{_WORK_MGMTCLAS}
{_WORK_SPACE}
{_WORK_STORCLAS}
{_WORK_UNIT}

19. The following environment variables are for specification of the SPACE
parameter, and support only the syntax as shown with their default values
(including all commas and parentheses). Also as shown with their default
values, individual subparameters can be omitted, in which case the system
defaults are used.

{_NEW_SPACE}
{_WORK_SPACE}

20. The following environment variables are for specification of the DSNTYPE
parameter, and support only the subparameters LIBRARY or PDS (or null for
no DSNTYPE):

{_NEW_DSNTYPE}
{_WORK_DSNTYPE}

c89, cc, and c++

98 z/OS V1R4.0 UNIX System Services Command Reference

21. The following environment variables can be at most 127 characters in length:
{_DCBF2008}
{_DCBU}
{_DCB121M}
{_DCB133M}
{_DCB137}
{_DCB137A}
{_DCB3200}
{_DCB80}

These environment variables are for specification of DCB information, and
support only the following DCB subparameters, with the noted restrictions:
RECFM

Incorrect values are ignored.
LRECL

None
BLKSIZE

None
DSORG

Incorrect values are treated as if no value had been specified.

22. The following environment variables are parsed as blank-delimited words, and
therefore no embedded blanks or other white-space is allowed in the value
specified. The maximum length of each word is 1024 characters:

{_INCDIRS}
{_INCLIBS}
{_LIBDIRS}
{_OPTIONS}
{_OPERANDS}

23. An S-name is a short external symbol name, such as produced by the z/OS
C/C++ compiler when compiling z/OS C programs with the NOLONGNAME option.
An L-name is a long external symbol name, such as produced by the z/OS
C/C++ compiler when compiling z/OS C programs with the LONGNAME option.

24. The C/C++ Runtime Library supports a file naming convention of // (the
filename can begin with exactly two slashes). c89/cc/c++ indicate that the file
naming convention of // can be used.

However, the Shell and Utilities feature does not support this convention. Do
not use this convention (//) unless it is specifically indicated (as here in
c89/cc/c++). The z/OS Shell and Utilities feature does support the POSIX file
naming convention where the filename can be selected from the set of
character values excluding the slash and the null character.

25. When coding in C and C++, c89, cc, and c++, by default, produce reentrant
executables. For more information, see z/OS C/C++ Programming Guide.
When coding in assembler language, the code must not violate reentrancy. If it
does, the resulting executable may not be reentrant.

26. When shell variable _MAKE_BI is set to YES, sh will use the built-in c89, cc,
c++, and make commands instead of /bin/make, /bin/c89, /bin/cc, and
/bin/c++. make will also call the built-in c89, cc, and c++ commands, instead
of /bin/c89, /bin/cc, and /bin/c++. For more information, see z/OS UNIX
System Services Planning. “Built-in Commands” on page 515 describes UNIX
built-in commands.

27. The {_CVERSION}, {_PVERSION} and {_CLASSVERSION} environment
variables are set to a hex string in the format 0xPVVRRMMMM where P is
product, VV is version, RR is release and MMMM is modification level.

c89, cc, and c++

Chapter 2. Shell Command Descriptions 99

To use the z/OS V1R2 compiler, specify CVERSION=0x44020000. To use the
OS/390 V2R10 compiler, specify CVERSION=0x220A0000. To use the z/OS
V1R2 class library, specify CLASSVRESION=0x44020000. And to use the
OS/390 V2R10 class library, specify CVERSION=0x220A0000.

Note: You can use the OS/390 V2R10 class library with either the z/OS V1R2
compiler or the OS/390 V2R10 compiler, but to do so, you must target
back to OS/390 V2R10. Otherwise, you won’t be able to get to the V3
headers.

Localization
c89/cc/c++ use the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

Exit Values
0 Successful completion.

1 Failure due to incorrect specification of the arguments.

2 Failure processing archive libraries:

v Archive library was not in any of the library directories specified.

v Archive library was incorrectly specified, or was not specified, following
the –l operand.

3 Step of compilation, assemble, or link-editing phase was unsuccessful.

4 Dynamic allocation error, when preparing to call the compiler, assembler,
IPA linker, prelinker, or link editor, for one of the following reasons:
v The file or data set name specified is incorrect.
v The file or data set name cannot be opened.

5 Dynamic allocation error, when preparing to call the compiler, assembler,
prelinker, IPA linker, or link editor, due to an error being detected in the
allocation information.

6 Error copying the file between a temporary data set and a hierarchical file
system file (applies to the –2 option, when processing assembler source
files, and –r option processing).

7 Error creating a temporary control input data set for the link-editing phase.

8 Error creating a temporary system input data set for the compile or
link-editing phase.

Portability
For c89, X/Open Portability Guide, POSIX.2 C-Language Development Utilities
Option.

For cc, POSIX.2 C-Language Development Utilities Option, UNIX systems.

The following are extensions to the POSIX standard:

v The —v, —V, —0, —1, and —2 options

v DLL support

v IPA optimization support

c89, cc, and c++

100 z/OS V1R4.0 UNIX System Services Command Reference

v The behavior of the —o option in combination with the —c option and a single
source file.

Features have been added to z/OS releases, which have made it easier to port
applications from other platforms to z/OS and improve performance. For
compatibility reasons, these portability and performance enhancements could not be
made the default. If you are porting an application from another platform to z/OS,
you may want to start by specifying the following options:
c89 -o HelloWorld -2 -Wc,NOANSIALIAS -Wc,XPLINK
-Wl,XPLINK -Wc,’FLOAT(IEEE)’ -Wc,’GONUM’ HelloWorld.c

Note: The above string is one line (had to be split to fit page). A space exists
between -Wc,XPLINK and -Wl,XPLINK (where l in Wl is a lowercase L, not
an uppercase i).

Related Information
ar, dbx, file, lex, make, makedepend, nm, strings, strip, yacc

cal — Display a calendar for a month or year

Format
cal [month] [year]

Description
cal displays a calendar on standard output (stdout).

v With no arguments, cal displays a calendar for the current month of the current
year.

v If one argument is given and it is numeric, cal interprets it as a year (for
example, 1991); if a single argument is not numeric, cal interprets it as the name
of a month, possibly abbreviated (for example, apr).

v If two arguments are given, cal assumes that the first argument is the month
(either a number from 1 to 12 or a month name) and the second is the year.

Localization
cal uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
Year numbers less than 100 refer to the early Christian era, not the current century.
This command prints the Gregorian calendar, handling September 1752 correctly.
Many cultures observe other calendars.

Exit Values
0 Successful completion.

1 Failure due to any of the following:
v An incorrect command-line argument

c89, cc, and c++

Chapter 2. Shell Command Descriptions 101

v An incorrect date
v A year outside the range 1 to 9999 A.D.

Portability
X/Open Portability Guide, UNIX systems.

calendar — Display all current appointments

Format
calendar [–]

Note: The calendar utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX-branded systems.

Description
If you do not specify any options, calendar displays all current appointments on
standard output (stdout). It searches the file calendar in the current directory,
looking for lines that match either today’s date or tomorrow’s date. On Friday,
Saturday, or Sunday, tomorrow extends through to Monday. Each appointment must
fit on a single line, with the date formatted as one of:
January 27
1/27
jan 27

Note: The name of the month can be abbreviated to three letters. Also, the case is
not significant and the month can be given numerically.

Options
– Searches the RACF data base to find user IDs. calendar uses the mailx

command (or, alternatively, the command named in the MAILER
environment variable) to send mail to the corresponding user for any
appointments that are found to be current. Because calendar cannot
determine each user’s locale, it runs in the POSIX locale when this option is
used; otherwise it runs in the user’s locale, processing data in single-byte
mode.

Examples
If today is Friday April 7th and the following calendar file is found in the current
directory:
tue mar 7 1:00 pm dentist
Sat April 8 Trip to the zoo
mon april 10 3:30 pm job interview
4/11 vacation starts

calendar prints the following:
Sat April 8 Trip to the zoo
mon april 10 3:30 pm job interview

Environment Variable
calendar uses the following environment variable:

cal

102 z/OS V1R4.0 UNIX System Services Command Reference

MAILER
Contains the name of the command that calendar uses to send mail. If this
variable is not set, calendar uses /bin/mail as the default mail command.

Files
calendar uses the following file:
calendar

File used in the current directory, or user’s home directory.

Localization
calendar uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v An incorrect command-line argument
v An inability to open the calendar file

Portability
X/Open Portability Guide, UNIX systems

The MAILER environment variable is an extension to traditional implementations of
calendar.

Related Information
mailx

cancel — Cancel print queue requests (stub command)

Format
cancel [print_ID ...] printer ...
cancel print_ID ... [printer ...]

Note: The cancel utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX-branded systems.

Description
cancel cancels print queue requests. print_ID specifies the particular job (or jobs) to
be canceled; the print_ID number is reported by lp when the job is submitted, or by
lpstat.

cancel is recognized, but its functions are not supported.

calendar

Chapter 2. Shell Command Descriptions 103

If you are using the z/OS Print Server feature, your system automatically uses that
version of the cancel command. For more information about the OS/390 Print
Server commands, see z/OS Infoprint Server User’s Guide.

captoinfo — Print the terminal entries in the terminfo database

Format
captoinfo [–1vV] [–w width] [file ...]

Description
captoinfo prints all of the terminal entries in the terminfo database to standard
output (stdout) in terminfo format. You can either look at the output or send it to a
file that can be processed by tic.

The Curses application uses the terminfo database, which contains a list of terminal
descriptions. This enables you to manipulate a terminal’s display regardless of the
terminal type. To create the terminfo database, use tic. For information on defining
the terminfo database, see z/OS UNIX System Services Planning.

For more information about curses, see z/OS C Curses.

Options
1 Single-column output
V Print the program version
v Print debugging information (verbose) to standard error (stderr)
w Specifies the width of the output
filename

Specifies the termcap entries to be processed

Examples
1. This example shows how to print all the terminal entries in the file

/etc/termcap.src in terminfo format. The entry for a vt52 is shown. Issue:
captoinfo /etc/termcap.src

You get the following display:
captoinfo: obsolete 2 character name ’dv’ removed.

synonyms are: ’vt52|dec vt52’
#
vt52|dec vt52,

xon,
cols#80, lines#24,
bel=^¬, clear=-E-310-E-321, cub1=^½, cud1=^-,
cuf1=-E-303,
cup=-E-350%-227-361%’-s’%+%-203%-227-362%’-s’%+%-203,
cuu1=-E-301, ed=-E-321, el=-E-322, ind=^-,
kbs=^½, kcub1=-E-304, kcud1=-E-302, kcuf1=-E-303,
kcuu1=-E-301, ri=-E-311,

END OF TERMCAP

2. To print all the terminal entries in the file /etc/termcap.src in terminfo format
with each entry on a separate line, issue:
captoinfo –1 /etc/termcap.src

You get the following display:

cancel

104 z/OS V1R4.0 UNIX System Services Command Reference

captoinfo: obsolete 2 character name ’dv’ removed.
synonyms are: ’vt52|dec vt52’

#
vt52|dec vt52,

xon,
cols#80,
lines#24,
clear=-E-310-E-321,
cub1=^½,
cud1=^-,
cuf1=-E-303,
cup=-E-350%-227-361%’-s’%+%-203%-227-362%’-s’%+%-203,
cuu1=-E-301,
ed=-E-321,
el=-E-322,
ind=^-,
kbs=^½,
kcub1=-E-304,
kcud1=-E-302,
kcuf1=-E-303,
kcuu1=-E-301,
ri=-E-311,

END OF TERMCAP

3. This example shows how to write all the terminal entries in the file
/etc/termcap.src to the file /test/terminfo.ti. The resulting file can be processed
by tic. Notice that the error messages are written to stderr.
captoinfo /etc/termcap.src 1> /test/terminfo.ti

You get the following:
captoinfo: obsolete 2 character name ’dv’ removed.

synonyms are: ’vt52|dec vt52’
#

Related Information
infocmp, tic

cat — Concatenate or display text files

Format
cat [–su] [–v [et]] [file ...]

Description
cat displays and concatenates files. It copies each file argument to the standard
output (stdout). If you specify no files or specify a dash (–) as a filename, cat
reads the standard input (stdin).

Note: You can use cat in conjunction with the scrolling facility of the OMVS TSO/E
command to browse data files.

Options
–e Displays a $ character at the end of each line. This option works only if you

also specify –v.

–s Does not produce an error message if cat cannot find or read a specified
file.

captoinfo

Chapter 2. Shell Command Descriptions 105

–t Displays tabs as ^I. This option works only if you also specify –v.

–u Does not buffer output.

–v Displays all characters including those that are unprintable characters. With
a doublebyte character set, an unprintable wide character is converted back
to its doublebyte representation. Each byte is then checked as if it were a
singlebyte character. If the character is unprintable, one of the following
three representations is used:
v M–X is used for character X if the significant bit is set.
v ^X is used for the control character X (for example, ^A for CTRL-A).
v \xxx represents a character with the octal value xxx.

The \xxx form is used if neither of the other representations can be used.

Localization
cat uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v An incorrect command-line argument
v Inability to open the input file
v End of the file detected on stdout
v The input file is the same as the output file

2 An incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –s, –t, and –v options are extensions of the POSIX standard.

Related Information
cp, more, mv

cc — Compile, link-edit and assemble z/OS C source code and create
an executable file

See c89/cc/c++.

Notes:

1. The cc utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the c89 utility be used instead because it may
provide greater functionality and is considered the standard for portable UNIX
applications as defined by POSIX.2 IEEE standard 1003.2-1992.

cat

106 z/OS V1R4.0 UNIX System Services Command Reference

2. When working in the shell, to view man page information about cc, type: man
c89.

cd — Change the working directory

Format
cd [directory]
cd old new
cd –

tcsh shell: cd [-p] [-l] [-n|-v] [name]

Description

The command cd directory changes the working directory of the current shell
execution environment (see sh) to directory. If you specify directory as an absolute
pathname, beginning with /, this is the target directory. cd assumes the target
directory to be the name just as you specified it. If you specify directory as a
relative pathname, cd assumes it to be relative to the current working directory.

If the variable CDPATH is defined in the shell, the built-in cd command searches for
a relative pathname in each of the directories defined in CDPATH. If cd finds the
directory outside the working directory, it displays the new working directory.

Use colons to separate directories in CDPATH. In CDPATH, a null string represents
the working directory. For example, if the value of CDPATH begins with a separator
character, cd searches the working directory first; if it ends with a separator
character, cd searches the working directory last.

In the shell, the command cd - is a special case that changes the current working
directory to the previous working directory by exchanging the values of the variables
PWD and OLDPWD.

Note: Repeating this command toggles the current working directory between the
current and the previous working directory.

Calling cd without arguments sets the working directory to the value of the HOME
environment variable, if the variable exists. If there is no HOME variable, cd does
not change the working directory.

The form cd old new is an extension to the POSIX standard and optionally to the
Korn shell. The shell keeps the name of the working directory in the variable PWD.
The cd command scans the current value of PWD and replaces the first occurrence
of the string old with the string new. The shell displays the resulting value of PWD,
and it becomes the new working directory.

If either directory is a symbolic link to another directory, the behavior depends on
the setting of the shell’s –o logical option. See the set command for more
information.

cd in the tcsh shell
If a directory name is given, cd changes the tcsh shell’s working directory to name.
If not, it changes the directory to home. If name is ’-’ it is interpreted as the previous
working directory. If name is not a subdirectory of the current directory (and does
not begin with /, ./ or ../), each component of the tcsh variable cdpath is checked to

cc

Chapter 2. Shell Command Descriptions 107

see if it has a subdirectory name. Finally, if all else fails but name is a tcsh shell
variable whose value begins with /, then this is tried to see if it is a directory (see
also the implicitcd tcsh shell variable).

Options for the cd tcsh built-in command are:

-l Output is expanded explicitly to home or the pathname of the home
directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Prints the final directory stack.

-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence. -p is accepted
but does nothing.

Environment Variables
cd uses the following environment variables:

CDPATH
Contains a list of directories for cd to search in when directory is a relative
pathname.

HOME Contains the name of your home directory. This is used when you do not
specify directory on the command line.

OLDPWD
Contains the pathname of the previous working directory. This is used by
cd –.

PWD Contains the pathname of the current working directory. This is set by cd
after changing to that directory.

Localization
cd uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
cd is a built-in shell command.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v No HOME directory
v No previous directory
v A search for directory failed
v An old-to-new substitution failed

2 An incorrect command-line option

cd

108 z/OS V1R4.0 UNIX System Services Command Reference

Messages
Possible error messages include:

dir bad directory
cd could not locate the target directory. This does not change the working
directory.

Restricted
You are using the restricted version of the shell (for example, by specifying
the –r option for sh). The restricted shell does not allow the cd command.

No HOME directory
You have not assigned a value to the HOME environment variable. Thus,
when you run cd in order to return to your home directory, cd cannot
determine what your home directory is.

No previous directory
You tried the command cd – to return to your previous directory; but there
is no record of your previous directory.

Pattern old not found in dir
You tried a command of the form cd old new. However, the name of the
working directory dir does not contain any string matching the regular
expression old.

Portability
POSIX.2, X/Open Portability Guide.

All UNIX systems feature the first form of the command.

The cd old new form of the command is an extension of the POSIX standard.

Related Information
dirs, popd, pushd, set, sh, tcsh

chaudit — Change audit flags for a file

Format
chaudit [–Fdai] attr pathname ...

Description

chaudit changes the audit attributes of the specified files or directories. Audit
attributes determine whether or not accesses to a file are audited by the system
authorization facility (SAF) interface.

Note: chaudit can be used only by the file owner or a superuser for
non-auditor-requested audit attributes. It takes a user with auditor authority to
change the auditor-requested audit attributes.

Options
–F If you specify a directory as a pathname on the command, chaudit

changes the audit characteristics of all files in that directory. Subdirectory
audit characteristics are not changed.

cd

Chapter 2. Shell Command Descriptions 109

–d If you specify a directory as a pathname on the command, chaudit
changes the audit characteristics of all the subdirectories in that directory.
File audit characteristics are not changed.

–a Auditor-requested audit attributes are to be changed for the files or
directories specified. If –a is not specified, user-requested audit attributes
are changed.

–i Does not issue error messages concerning file access authority, even if
chaudit encounters such errors.

The symbolic form of the attr argument has the form:
[operation]
op auditcondition[op auditcondition ...]

The operation value is any combination of the following:
r Sets the file to audit read attempts.
w Sets the file to audit write attempts.
x Sets the file to audit execute attempts.

The default is all of the above (rwx).

The op part of a symbolic mode is an operator telling whether chaudit should turn
file auditing on or off. The possible values are:
+ Turns on specified audit conditions.
- Turns off specified audit conditions.
= Turns on the specified audit conditions and turns off all others.

The auditcondition part of a symbolic mode is any combination of the following:
s Audit on successful access if the audit attribute is on.
f Audit on failed access if the audit attribute is on.

You can specify multiple symbolic attr values if you separate them with commas.

Examples
1. The command:

chaudit –s file

changes the file file so that successful file accesses are not audited.

2. The command:
chaudit rwx=sf file1

changes the file file1 so that all successful and unsuccessful file accesses are
audited.

3. The command:
chaudit r=f file2

changes the file file2 so that unsuccessful file read accesses are audited.

4. The command:
chaudit r-f,w+s file3

changes the file file3 to not audit unsuccessful file read accesses and to audit
successful write accesses.

chaudit

110 z/OS V1R4.0 UNIX System Services Command Reference

Localization
chaudit uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to access a specified file
v Inability to change the audit attributes for a specified file
v Inability to not read the directory containing item to change
v Irrecoverable error when using the –F or –d option

2 Failure due to any of the following:
v Missing or incorrect attr argument
v Too few arguments

Messages
Possible error messages include:

fatal error during -F or -d option
You specified the –F or –d option, but some file or directory in the directory
structure was inaccessible. This may happen because of permissions or
because you have removed a removable unit.

read directory name
You do not have read permissions on the specified directory.

Portability
None. This is a security extension that comes with OpenMVS services.

Related Information
chmod, chown, ls

chcp — Set or query ASCII/EBCDIC code pages for the terminal

Format
chcp [–r | –q]
chcp [–s] [–a ASCII_cp] [–e EBCDIC_cp]

Description
chcp sets, resets, or queries the current ASCII/EBCDIC code conversion in effect
for the controlling terminal. Use it when the terminal requires ASCII data and the
shell application uses EBCDIC. Do not use chcp if you are logged on through the
TSO/E OMVS command. The _BPX_TERMPATH environment variable enables
shell scripts to tell if the user logged on from TSO, rather from rlogin or telnet.

chaudit

Chapter 2. Shell Command Descriptions 111

Options
–a ASCII_cp

The name of the ASCII code page used by the terminal. EBCDIC data from
the shell application is converted to this ASCII code page before it is sent
out to the terminal. Data from the terminal is converted from this ASCII
code page to EBCDIC before the application receives it.

The name of the ASCII code page is case-sensitive.

For a list of code pages supported by the shell, see z/OS C/C++
Programming Guide.

–e EBCDIC_cp
The name of the EBCDIC code page used for this session. EBCDIC data
from the shell application is converted from this EBCDIC code page to
ASCII before it is sent out to the terminal. ASCII data from the terminal is
converted to this EBCDIC code page before the application receives it.

The name of the EBCDIC code page is case-sensitive.

For a list of code pages supported by the z/OS shell, see z/OS C/C++
Programming Guide.

–q Queries the current ASCII and EBCDIC code pages for this terminal. The
results are written to stdout. You cannot use any other options if you use
the –q option.

–r Resets the ASCII/EBCDIC conversion for the terminal to the default code
pages. The default ASCII code page is ISO8859-1, and the default EBCDIC
code page is IBM-1047.

You cannot use –r with any other options.

–s Specifies that the ASCII/EBCDIC conversion for the terminal is to use the
code pages specified by the –a and –e options. You cannot use –s with any
other options other than –a or –e. Either –a or e (or both) must also be
specified if –s is used.

The chcp query output is written to stdout. For example, if you enter
chcp –q

You get the following output:
Current ASCII code page = ISO8859-1
Current EBCDIC code page = IBM-1047

Examples
1. To set the ASCII and EBCDIC code pages to IBM-eucJP and IBM-939, enter:

chcp –a IBM-eucJP –e IBM-939

2. To change just the EBCDIC code page to IBM-277, enter:
chcp –seIBM-277

3. To change just the ASCII code page to IBM-850, enter:
chcp –a IBM-850

4. To reset ASCII/EBCDIC code page conversion to the default code pages for this
terminal, enter:
chcp –r

5. To query the current ASCII and EBCDIC code pages for this terminal, enter:
chcp –q

chcp

112 z/OS V1R4.0 UNIX System Services Command Reference

Usage Notes
1. Do not use chcp when you are logged on from the TSO/E OMVS command

because the OMVS command does not do any ASCII/EBCDIC code page
conversion.

Shell scripts can test _BPX_TERMPATH environment variable and bypass chcp
when the user is logged on through OMVS. (The _BPX_TERMPATH
environment variable enables shell scripts to tell if the user logged on from
TSO/E rather than from rlogin or telnet.)

Before starting the session, the TSO/E OMVS command sets
_BPX_TERMPATH to “OMVS”.

Sample shell script code:

Issue chcp only if not using TSO/E OMVS command

if
test "$_BPX_TERMPATH" != "OMVS"
then
chcp –a IBM-850 –e IBM-1047
fi

2. After running chcp –s to change the EBCDIC code page for the session, you
may also need to alter or set the following environment variables to match the
new code page:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

3. The code page names supplied with the –a and –e options are passed to
iconv_open() without any uppercase or lowercase conversion. Code page
converters that convert between the specified ASCII and EBCDIC code pages
must be available for iconv().

4. If ASCII/EBCDIC conversion is not active for this terminal, both the ASCII and
EBCDIC code pages must be specified on the chcp –s command. At other
times, omit –a when just the EBCDIC code page needs to be changed. Omit –e
when just the ASCII code page needs to be changed.

5. All code pages with names not known to chcp are considered to be singlebyte
(SBCS) user-defined code pages. User-defined multibyte code pages are not
supported.

6. chcp cannot check user-defined code page names to make sure that –a really
specifies an ASCII code page and –e specifies an EBCDIC code page. In this
case, specifying the wrong code pages may cause terminal input and output to
be completely unreadable. It may also be impossible to enter any more shell
commands.

7. chcp operates on the controlling terminal.

8. chcp should not be run as a background job.

9. The –d option specifies that special debugging information be printed. Specify
this option only when requested by IBM.

chcp

Chapter 2. Shell Command Descriptions 113

Localization
chcp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Incorrect command-line arguments or options

2 Any of the following errors:

v There is no controlling terminal.

v The controlling terminal does not support ASCII/EBCDIC code page
conversion (the TSO/E OMVS command, for example).

v iconv_() fails when passed the code page names specified on the
command line.

v chcp cannot build SBCS conversion tables using iconv() when required.

v An I/O error occurred on the controlling terminal.

v Either the –a or –e was omitted and the chcp –s command was run
while the terminal code page conversion is in binary mode.

Portability
None. chcp is not described in any standard.

Related Information
lm, rlogin

chgrp — Change the group owner of a file or directory

Format
chgrp [–fhR] group pathname ...

Description
chgrp sets the group ID to group for the files and directories named by the
pathname arguments. group can be a group name from a group database, or it can
be a numeric group ID (GID).

Note: chgrp can be used only by the file owner or a superuser. The file owner
must have the new group as his or her group or one of the supplementary
groups.

chgrp also turns off the set-user-ID bit and set-group -ID bit of the named files and
directories.

chcp

114 z/OS V1R4.0 UNIX System Services Command Reference

Options
–f Does not issue an error message if chgrp cannot change the group ID. In

this case, chgrp always returns a status of 0.

–h Does not attempt to follow the symbolic link (or external link), but instead
makes changes to the symbolic link (or external link) itself.

–R If a pathname on the command line is the name of a directory, chgrp
changes the group ID of all files and subdirectories in that directory. If
chgrp cannot change some file or subdirectory in the directory, it continues
to try to change the other files and subdirectories in the directory, but exits
with a nonzero status.

Localization
chgrp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 You specified –f, or chgrp successfully changed the group ownership of all

the specified files and directories.

1 Failure due to any of the following:
v Inability to access a specified file
v Inability to change the group of a specified file
v An irrecoverable error was encountered when you specified the –R

option

2 Failure due to any of the following:
v The command line contained an unknown option or too few arguments
v chgrp did not recognize the specified group

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –h options are an extension of the POSIX standard.

Related Information
chmod, chown

chmod — Change the mode of a file or directory

Format
chmod [–fhR] mode pathname

Description
chmod changes the access permissions, or modes, of the specified file or directory.
(Modes determine who can read, write, or search a directory or file.)

chgrp

Chapter 2. Shell Command Descriptions 115

Notes:

1. chmod can be used only by the file owner or a superuser.

2. Users with read access to SUPERUSER.FILESYS.CHANGEPERMS (a
UNIXPRIV class profile), can use the chmod command to change the
permission bits of any file.

Options
–f Does not issue error messages concerning file access permissions, even if

chmod encounters such errors.

–h Suppresses a mode change for the file or directory pointed to by the
encountered symbolic link (or external link). Symbolic link (or external link)
permissions cannot be changed on a z/OS system.

–R Recursively change file mode bits. For each file operand that names a
directory, chmod will change the file mode bits of the directory and all files
in the file hierarchy below it. (-R does not resolve symbolic or external
links).

chmod never changes the permissions of symbolic links (or external links),
because, on a z/OS system, the permissions on symbolic links (and external links)
are never used. However, for each symbolic link listed on the command line,
chmod changes the permissions of the pointed-to file. In contrast, chmod ignores
symbolic links encountered during recursive directory traversals.

You can specify the mode value on the command line in either symbolic form or as
an octal value.

The symbolic form of the mode argument has the form:
[who] op permission[op permission ...]

The who value is any combination of the following:
u Sets owner (user or individual) permissions.
g Sets group permissions.
o Sets other permissions.
a Sets all permissions; this is the default. If a who value is not specified, the

default is a, modified by umask.

The op part of a symbolic mode is an operator that tells chmod to turn the
permissions on or off. The possible values are:
+ Turns on a permission.
− Turns off a permission.
= Turns on the specified permissions and turns off all others.

The permission part of a symbolic mode is any combination of the following:

r Read permission. If this is off, you cannot read the file.

x Execute permission. If this is off, you cannot run the file.

X Execute or search permission for a directory; or execute permission for a
file only when the current mode has at least one of the execute bits set.

w Write permission. If this is off, you cannot write to the file.

s If in owner permissions section, the set-user-ID bit is on; if in group
permissions section, the set-group-ID bit is on.

chmod

116 z/OS V1R4.0 UNIX System Services Command Reference

Note: A superuser or the file owner can use a chmod command or chmod()
function to change two options for an executable file. The options
are set in two file mode bits:

v Set-user-ID (S_ISUID) with the setuid option

v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID,
or both, plus the saved UID, saved GID, or both, for the process
running the program are changed to the owning UID, GID, or both,
for the file. This change temporarily gives the process running the
program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a
file is changed or if the file is written in, the bits are turned off. In
shell scripts, these bits are ignored.

If the RACF profile named FILE.GROUPOWNER.SETGID exists in
the UNIXPRIV class, then the set-group-ID bit for a directory
determines how the group owner is initialized for new objects
created within the directory:

v If the set-gid bit is on, then the owning GID is set to that of the
directory.

v If the set-gid bit is off, then the owning GID is set to the effective
GID of the process.

t This represents the sticky bit. For a file, the sticky bit causes a search for
the program in the user’s STEPLIB, the link pack area, or link list
concatenation. For a directory, the sticky bit allows files in a directory or
subdirectories to be deleted or renamed only by the owner of the file, by the
owner of the directory, or by a superuser.

You can specify multiple symbolic names if you separate them with commas.

Absolute modes are octal numbers specifying the complete list of attributes for the
files; you specify attributes by ORing together these bits.
4000 Set-user-ID bit
2000 Set-group-ID bit
1000 Sticky bit
0400 User read
0200 User write
0100 User execute (or list directory)
0040 Group read
0020 Group write
0010 Group execute
0004 Other read
0002 Other write
0001 Other execute

Examples
chmod –w orgcht

removes write permission from orgcht.
chmod a=rwx aprsal

turns on read, write, and execute permissions, and turns off the set-user-ID bit,
set-group-ID bit, and sticky-bit attributes. This is equivalent to chmod 0777 aprsal.

chmod

Chapter 2. Shell Command Descriptions 117

|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

Localization
chmod uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to access a specified file
v Inability to change the modes on a specified file
v Inability to read the directory containing the item to change
v An irrecoverable error was encountered when using the –R option

2 Failure due to any of the following:
v Missing or incorrect mode argument
v Too few arguments

Messages
Possible error messages include:

function not implemented
This error may occur if the directory is under automount control.

irrecoverable error during –R option
The –R option was specified, but some file or directory in the directory
structure was inaccessible. This may happen because of permissions.

read directory name
Read permissions are not on the specified directory.

Portability
POSIX.2, X/Open Portability Guide.

The –f and –h options and the t permission are extensions of the POSIX standard.

Related Information
ls, setfacl, umask

chmount — Change the mount attributes of a file system

Format
chmount [–R [–D | –d destsys] [–a yes|no|unmount]pathname...

Description
The chmount shell command, located in /usr/sbin, changes the mount attributes of
a specified file system.

chmod

118 z/OS V1R4.0 UNIX System Services Command Reference

Note: A chmount user must have UID(0) or at least have READ access to the
SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options
–a yes|no|unmount

In a shared HFS environment, –a yes allows the system to automatically
move logical ownership for a specified file system due to a system outage.
–a no disables this move function. –a umount specifies that this file system
is to be unmounted when the file system’s owner leaves the sysplex.

–D Reassigns logical ownership of a file system to any available file system
participating in shared HFS.

–d destsys
To designate a specific reassignment, use –d destsys, where destsys
becomes the logical owner of a file system in a shared HFS environment.

–R Changes the attributes of a specified file system and all file systems
mounted below it in the file system hierarchy.

pathname... specifies the pathnames to use for locating the file systems that need
attributes changed.

Example
To move ownership of the file system that contains /u/wjs to SY1:
chmount -d SY1 /u/wjs

Exit Values
0 Successful completion

Related Information
mount, unmount

chown — Change the owner or group of a file or directory

Format
chown [–fhR] owner[:group] pathname ...

Description
chown sets the user ID (UID) to owner for the files and directories named by
pathname arguments. owner can be a user name from the user data base, or it can
be a numeric user ID. (If a numeric owner exists as a user name in the user data
base, the user ID number associated with that user name is used.) If there is no
change to the UID, then specify – – –1.

If you include a group name (that is, if you specify owner followed immediately by a
colon (:) and then group with no intervening spaces, such as owner:group) chown
also sets the group ID (GID) to group for the files and directories named. group can
be a group name from the security facility group data base, or it can be a numeric
group ID. If a numeric group exists as a group name in the group data base, the
group ID number associated with that group is used. If there is no change to the
GID, then specify –1 (or do not specify the :group).

chmount

Chapter 2. Shell Command Descriptions 119

Note: Only a superuser can change the UID. To change the GID, you must either
be a superuser, or the effective user ID of the process must be equal to the
user ID of the file owner, and the owner argument is also equal to the user
ID of the file owner or –1, and the group argument is the calling process’s
effective group ID or one of its supplementary group IDs.

chown also turns off the set-user-ID bit and set-group -ID bit of the named files and
directories.

Options
–f Does not issue an error message if chown cannot change the owner. In

this case, chown always returns a status of zero. Other errors may cause a
nonzero return status.

–h Does not attempt to follow the symbolic link (or external link), but instead
makes the changes on the symbolic link (or external link) itself.

–R If pathname on the command line is the name of a directory, chown
changes all the files and subdirectories in that directory to belong to the
specified owner (and group, if :group is specified).

If a symbolic link is specified or encountered during the traversal of a file
hierarchy, chown changes the directory referenced by the symbolic link and
all files in the file hierarchy below it.

If chown cannot change some file or subdirectory in the directory, it
continues to try to change the other files and subdirectories in the directory,
but exits with a nonzero status.

Localization
chown uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 You specified –f, or chown successfully changed the ownership of all the

specified files and directories.

1 Failure due to any of the following:
v Inability to access a specified file.
v Inability to change the owner of a specified file.
v Inability to read the directory containing the directory entry of the file.
v An irrecoverable error was encountered when using the –R option.

2 Failure due to any of the following:
v The command line contained an incorrect option.
v The command line had too few arguments.
v An owner was specified with a user ID that the system did not recognize.

chown

120 z/OS V1R4.0 UNIX System Services Command Reference

Message
function not implemented

This error may occur if the directory is under automount control.

Portability
POSIX.2, UNIX systems.

The –f and –h optio ns are an extension of the POSIX standard.

Related Information
chgrp, chmod

chroot — Change the root directory for the execution of a command

Format
chroot directory command

Description
If you have appropriate privileges, the chroot command changes the root directory
to the directory specified by the directory parameter of a specific command. The
new root directory will also contain its children.

In order to use chroot, you must either be a superuser (UID=0), or be a member of
the BPX.SUPERUSER facility class.

The directory path name is always relative to the current root. If a nested chroot
command is in effect, the directory path name is still relative to the current (new)
root of the running process.

In order for your process to operate properly after the chroot is issued, you need to
have in your new root all the files that your program depends on. For example, if
your new root is /tmp and you issue an ls, you will get a not found error. To use ls
with /tmp as your new root, you will need a /tmp/bin with ls in it before you issue
the chroot command.

In addition, utilities that depend on locale-sensitive files (/usr/lib/nis/*) may be
unsuccessful if these files are not in the new root file system.

After chroot is issued, your current working directory is the new root (directory),
chroot does not change environment variables.

directory
Specifies the new root directory

command
Specifies a command to run with the chroot command

Examples
1. To run the ls command with the /tmp directory as the root file system, enter:

mkdir /tmp/bin
cp /bin/ls /tmp/bin
chroot /tmp ls

chown

Chapter 2. Shell Command Descriptions 121

2. To run a child shell with another file system as the root file system (assuming
that /tmp is the mount point of a file system), enter:
mkdir /tmp/bin
cp /bin/sh /tmp/bin
chroot /tmp sh or chroot /tmp /bin/sh

This makes the directory name / (slash) refer to the /tmp for the duration of the
/bin/sh command. It also makes the original root file system inaccessible. The
file system on the /tmp file must contain the standard directories of a root file
system.

Running the /bin/sh command creates a child shell that runs as a separate
process from your original shell. Press the END OF FILE (Crtl-D) key sequence
or type exit to end the child shell and go back to where you were in the original
shell. This restores the environment of the original shell, including the meanings
of the . (current directory) and the / (root directory).

3. To create a file relative to the original root, not the new one, enter:
chroot Directory Command > file

For example, chroot /tmp ls > /bin/file will create the file in /bin/file.

Note: Redirection is handled by the current shell before chroot is executed.

4. To create a file relative to the new root, enter:
chroot Directory ’Command > file’

For example, chroot /tmp ’ls > /bin/file’ will create the file in /tmp/bin/file.

5. Examples of how the current root changes:
Given the standard directories of the file system plus:

echo $PATH
/bin
ls /tmp/bin
bin file2 sh
ls /tmp/bin/bin
file1 sh

whence file2
#
whence file1
#

chroot /tmp ’whence file1’
#
chroot /tmp ’type file2’
/bin/file2

chroot /tmp/bin ’type file1’
/bin/file1

Exit Values
0 The command completed successfully

1 Failure due to any of the following:
v chroot seteuid failed
v User not authorized to issue chroot

2 Failure due to any of the following:
v Cannot chdir to directory specified

chroot

122 z/OS V1R4.0 UNIX System Services Command Reference

v chroot cannot change root
v Unable to execute the shell
v Incorrect command syntax

Note: If the SHELL environment variable is set, chroot uses its value to invoke the
shell.

Limits
chroot may only be used by a superuser (UID=0) or a member of the
BPX.SUPERUSER facility class.

chtag — Change file tag information

Format
chtag –b | –r [–hqRv] pathname...
chtag –c codeset [–hqRv] pathname...
chtag –m | –t [–c codeset] [–hqRv]pathname...
chtag –p [–hqRv]pathname...

Note: To use chtag, you must have write permission to the file or be a superuser.

Description
chtag allows you to set, modify, remove, or display information in a file tag. A file
tag is composed of a text flag (txtflag) and a codeset:

codeset
The codeset represents the coded character set in which text data is
encoded. The codeset can be used for uniformly encoded text files or files
that contain mixed text/binary data.

txtflag The txtflag indicates whether or not a file contains uniformly encoded or
non-uniformly encoded text data.

txtflag = ON indicates the file has uniformly encoded text data
txtflag = OFF indicates the file has non-uniformly encoded text data

Only files with txtflag = ON and a valid codeset are candidates for automatic
conversion. If txtflag = OFF and a codeset is associated with it, automatic
conversion will not take effect. However, user applications can take advantage of
the associated codeset information and perform code set conversion by themselves.

For information about enabling automatic conversion, see the ″Using Enhanced
ASCII Functionality″ chapter of z/OS UNIX System Services Planning.

Options
–b Indicates that the file contains only binary (non-uniformly encoded) data.

Automatic conversion is disabled with this option.

–b is mutually exclusive with the –c, –m, –t, or –r options.

–c codeset
Allows the user to modify the codeset associated with the file. codeset can
be a character code set name known to the system, or the numeric coded
character set identifier (CCSID) (if a numeric codeset name exists, the
CCSID associated with that name will be used). –c is mutually exclusive
with the –r and –b options.

chroot

Chapter 2. Shell Command Descriptions 123

–h Does not change file tag information if the file is a symbolic link (or an
external link).

–m Indicates that the file contains mixed text and binary data. The data is not
uniformly encoded, but to identify the encoding of portions of the file that
are text, this option allows the specifications of a codeset with the –c
option. This option sets txtflag = OFF. When used without –c, the existing
character codeset associated with the file is retained.

Automatic conversion is disabled with this option. However, user
applications can independently convert any text data residing in the file by
knowing the codeset associated with it. –m is mutually exclusive with the
–b, –t and –r options.

–p Prints file tag information associated with a file. If no codeset name is
associated with the CCSID in the file tag, the numeric CCSID will be
presented instead.

Sample output looks like:

t IBM-1047 T=on file1
- untagged T=on file2
b binary T=off file3
m ISO-8859-1 T=off file4
- untagged T=off file5
b binary T=on file6

Where:

t = text
b = binary
m = mixed
– = untagged

Note: Codesets which are aliases of each other exist which may cause the
test to fail, since the file inquiry operator may return an alias of the
codeset you are testing.

–q Suppresses warning messages.

–r Removes any tagging information associated with the file and sets the
status of the file to ″untagged″. This option disables automatic conversion
for the files. –r is mutually exclusive with the –b, –c, –m, and –t options.

–R If you specify a directory as a pathname, chtag changes the file tag
information on all of the files and subdirectories under that directory. chtag
will not follow symlinks to directories (or external links), but will follow
symlinks to files as long as the –h option is not used.

–t Indicates that the specified file contains pure (uniformly encoded) text data.
Used alone, this option sets txtflag = ON and retains the existing character
codeset associated with the file. To set or change the codeset, use the –c
option. Files that are tagged with this option and contain a valid codeset are
candidates for automatic conversion. –t is mutually exclusive with the –b,
–m, and –r options.

–v Gives verbose output. Displays what state the file tag is currently in, and
what state the user is trying to change it to. This option is only useful for the
–t, –b, –m, –r and –c options. Output will be displayed in the following
format:

chtag

124 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

txtflag Char Set Char Set ---> txtflag Char Set Char Set Filename
Name Type Name Type

If the character set name is unknown, the CCSID will be used. Sample output will
look like the following:
chtag -mvc IBM-1047 file3.c
t ISO-8859 A ---> m IBM-1047 E file3.c

Where:

A = ASCII
E = EBCDIC
? = unknown

Examples
1. To specify a text file with IBM-1047 codeset, issue:

chtag -tc IBM-1047 filename

2. To specify a binary file, issue:
chtag -b filename

3. To specify a file of mixed binary and text data, with a new codeset of
ISO8859-1, issue:
chtag -mc ISO8859-1 filename

4. To remove the tag from a file issue:
chtag -r filename

Usage Notes
Table 4 illustrates how the different combinations of txtflag and Character Code Set
/ CCSID affect a file’s candidacy for automatic conversion. txtflag indicates whether
this field is turned ON, OFF, binary or untagged. Character Code Set / CCSID
indicates whether the stored codeset is valid, invalid, or does not exist. Candidate
for Automatic Conversion indicates whether this file is a candidate for automatic
conversion.

Table 4. Possible txtflag / CCSID Combinations

txtflag Character Code Set / CCSID Candidate for Automatic
Conversion

t (on) Defined Yes (text file)

t (on) Defined No

b (off) –– No

m (off) Defined No (mixed data)

–– (off) –– No

Exit Values
0 Successful completion

1 chtag failed to change the tag of a specified file for the following reasons:

v Calling process does not have appropriate privileges to change file
attributes

v Invalid txtflag / Character Code Set combination was issued

2 Incorrect command line syntax

chtag

Chapter 2. Shell Command Descriptions 125

Related Information
iconv, ls

cksum — Calculate and write checksums and byte counts

Format
cksum [–ciprt] [file ...]

Description
cksum calculates and displays a checksum for each input file. (A checksum is an
error-checking technique used by many programs as a quick way to compare files
that have been moved from one location to another to ensure that no data has
been lost.) It also displays the number of 8-bit bytes in each file.

If you do not specify any files on the command line, or if you specify – as the
filename, cksum reads the standard input (stdin).

The output has the form:
checksum bytecount filename

Options
cksum can calculate checksums in a variety of ways. The default is compatible with
the POSIX.2 standard. You can specify other algorithms with the following options.
The POSIX standard does not recognize these algorithms; they are provided for
compatibility with the UNIX sum command.

–c Uses a standard 16-bit cyclic redundancy check (CRC-16).

–i Uses the CCITT standard cyclic redundancy check (CRC-CCITT). Data
communication network protocols often use a cyclic redundancy check to
ensure proper transmission. This algorithm is more likely to produce a
different sum for inputs—the only difference is byte order.

–p Uses the POSIX.2 checksum algorithm. This is the default.

–r Enables the use of an alternate checksum algorithm that has the advantage
of being sensitive to byte order.

–t Produces a line containing the total number of bytes of data read as well as
the checksum of the concatenation of the input files.

Localization
cksum uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:

chtag

126 z/OS V1R4.0 UNIX System Services Command Reference

v Inability to open input file
v An error reading the input file

2 Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide.

All the listed options are extensions of the POSIX standard.

Related Information
cmp, diff, ls, sum, wc

cmp — Compare two files

Format
cmp [–blsx] file1 file2 [seek1[seek2]]

Description
cmp compares two files. If either filename is –, cmp reads the standard input
(stdin) for that file. By default, cmp begins the comparison with the first byte of
each file. If you specify seek1 and/or seek2, cmp uses it as a byte offset into file1
or file2 (respectively), and comparison begins at that offset instead of at the
beginning of the files. The comparison continues (1 byte at a time) until a difference
is found, at which point the comparison ends and cmp displays the byte and line
number where the difference occurred. cmp numbers bytes and lines beginning
with 1.

Options
–b Compares single blocks at a time. Normally, cmp reads large buffers of

data into memory for comparison.

–l Causes the comparison and display to continue to the end; however, cmp
attempts no resynchronization. cmp displays the byte number (in decimal)
and the differing bytes (in octal) for each difference found.

–s Suppresses output and returns a nonzero status if the files are not identical.

–x Displays the differing bytes shown by the –l option in hex; normally cmp
displays them in octal.

Localization
cmp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 The files were identical
1 The files were not identical

cksum

Chapter 2. Shell Command Descriptions 127

2 Failure because of an error opening or reading an input file

Messages
Possible error messages include:

EOF on filename
cmp reached the end of the file on the specified file before reaching the
end of the file on the other file.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –b and –x options and the seek pointers are extensions of the POSIX
standard.

Related Information
comm, diff, uniq

col — Remove reverse line feeds

Format
col [–bfpx] [file ...]

Note: The col utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX-branded systems.

Description
col processes control characters for vertical line feeds and writes the processed
text to the standard output. It is intended to be used as a filter between a program
such as nroff and an output device that cannot handle reverse line feeds.

Where possible, blank characters (spaces) are converted to tabs; tab stops are
assumed to be every eight characters.

col also removes all escape sequences except for those shown in the following list.
ESC is the ASCII escape character, octal code 033.

Character ASCII Control Character

Backspace 010

Carriage-return
015

Newline 012

Vertical Tab 013

SO 016

SI 017

Space 040

Tab 011

cmp

128 z/OS V1R4.0 UNIX System Services Command Reference

Reverse line feed
ESC-7

Reverse half-line feed
ESC-8

Forward half-line feed
ESC-9

The ASCII control characters SO and SI denote the beginning and end of text in an
alternative character set. The set of each input character is remembered. col
generates SO and SI characters as needed to output each character in the correct
character set.

Options
–b Ignores backspace (CRTL-H) characters. If two characters are supposed to

appear in the same space, the first character is ignored and the second is
output.

–f Allows forward half-line motions. Normally these are changed to forward
full-line motions.

–x Prevents conversion of spaces to tab characters.

Localization
col uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
1. col ignores vertical motions that back up over the first line, so you may get

unexpected results if the first line contains superscripts.

2. Because –f allows escape sequences, it may cause unexpected results on
terminals.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Incorrect command-line option
v Insufficient memory

Portability
UNIX systems.

This implementation does not handle doublebyte characters.

col

Chapter 2. Shell Command Descriptions 129

: (colon) — Do nothing, successfully

Format
: [argument ...]

tcsh shell: :

Description
The : (colon) command is used when a command is needed, as in the then
condition of an if command, but nothing is to be done by the command. This
command simply yields an exit status of zero (success). This can be useful, for
example, when you are evaluating shell expressions for their side effects.

: (colon) in the tcsh shell
Performs as indicated above for the z/OS version of : (colon).

Example
: ${VAR:="default value"}

sets VAR to a default value if and only if it is not already set.

Usage Notes
colon is a special built-in shell command.

Localization
colon uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
Because this command always succeeds, the only possible exit status is:

0 Successful completion

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sh, tcsh, true

comm — Show and select or reject lines common to two files

Format
comm [–123] file1 file2

: (colon)

130 z/OS V1R4.0 UNIX System Services Command Reference

Description
comm locates identical lines within files sorted in the same collating sequence, and
produces three columns; the first contains lines found only in the first file, the
second lines only in the second file, and the third lines that are in both files.

Options
–1 Suppresses lines that appear only in file1
–2 Suppresses lines that appear only in file2
–3 Suppresses lines that appear both in file1 and file2

The options suppress individual columns. Thus, to list only the lines common to
both files, use:
comm -12

To find lines unique to one file or the other, use:
comm -3

Observe that comm -123 displays nothing.

Localization
comm uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure because of an error opening or reading an input file
2 Failure that generated a usage message, such as naming only one input

file

Incorrect command-line options are reported but do not affect the exit status value.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
cmp, diff, sort, uniq

command — Run a simple command

Format
command [–p] command-name [argument...]
command [–V|–v] command-name

comm

Chapter 2. Shell Command Descriptions 131

Description
command causes the shell to suppress its function lookup and execute the given
command-name and arguments as though they made up a standard command line.
In most cases, if command-name is not the name of a function, the results are the
same as omitting command. If, however, command-name is a special built-in
command, (see sh), some unique properties of special built-in commands do not
apply:

v A syntax error in the command does not cause the shell running the command to
stop.

v Variable assignments specified with the special built-in command do not remain
in effect after the shell has run the command.

Options
–p Searches for command-name using the system default PATH variable.

–v Writes a string indicating the pathname or command that the shell uses to
invoke command-name.

–V Writes a string indicating how the shell interprets command-name. If
command-name is a command, a regular built-in command, or an
implementation-provided function found using the PATH variable, the string
identifies it as such and includes the absolute pathname. If command-name
is an alias, function, special built-in command, or reserved word, the string
identifies it as such and includes its definition if it is an alias. If the
command is a tracked alias, the string identifies it as cached.

Example
Typically, you use command when you have a command that may have the same
name as a function. For example, here’s a definition of a cd function that not only
switches to a new directory but also uses lc to list the contents of that directory:
function cd {

command cd $1
lc

}

Inside the function, we use command to get at the real cd. If we didn’t do this, the
cd function would call itself in an infinite recursion.

Localization
command uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
command is a built-in shell command.

Exit Values
If you specified –v, possible exit status values are:
0 Successful completion

command

132 z/OS V1R4.0 UNIX System Services Command Reference

1 command could not find command-name, or an error occurred
2 Failure due to incorrect command-line argument

If you did not specify –v, possible exit status values are:
126 command found command-name, but failed to invoke it.
127 An error occurred in the command or it could not find command-name.

Otherwise, the exit status of command is the exit status of command-name.

Portability
POSIX.2.

Related Information
sh

compress — Lempel-Ziv file compression

Format
compress [–cDdfVv] [–b bits] [file ...]

Description
compress compresses each input file using Lempel-Ziv compression techniques. If
you do not specify any input files, compress reads data from standard input (stdin)
and writes the compressed result to standard output (stdout).

The output files have the same names as the input files but with a .Z suffix. For
example, abc is compressed into abc.Z. If the .Z file already exists and you did not
specify the –f option, compress gives an error and asks whether it should overwrite
the existing file.

compress uses the modified Lempel-Ziv algorithm described in A Technique for
High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no.
6 (June 1984), pp.8-19. compress first replaces common substrings in the file by
9-bit codes starting at 257. After it reaches code 512, compress begins with 10-bit
codes and continues to use more bits until it reaches the limit set by the –b option.

After attaining the bits limit, compress periodically checks the compression ratio. If
it is increasing, compress continues to use the existing code dictionary. However, if
the compression ratio decreases, compress discards the table of substrings and
rebuilds it from scratch. This allows the algorithm to compensate for files, such as
archives, where individual components have different information content profiles.

Options
–b bits

Limits the maximum number of bits of compression to bits. The value bits
can be an integer from 9 to 16. The default is 16.

–c Writes the output to stdout. When you use this option, you can only specify
one file on the command line.

–D Allows an extra degree of compression to be done for files such as sorted
dictionaries where subsequent lines normally have many characters in
common with the preceding line.

command

Chapter 2. Shell Command Descriptions 133

–d Decompresses argument files instead of compressing them. This works by
overlaying the compress program with the uncompress program. For this
to work, uncompress must be available somewhere in your search path
(given by the PATH environment variable). Decompressing files this way is
slower than calling uncompress directly.

–f Forces compression even if the resulting file is larger or the output file
already exists. When you do not specify this option, files which are larger
after compression are not compressed. compress does not print an error
message if this happens.

–V Prints the version number of compress.

–v Prints statistics giving the amount of compression achieved. Statistics give
the name of each file compressed and the compression ratio, expressed as
a percentage. If the file resulting from compression is larger than the
original, the compression ratio is negative.

Localization
compress uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to one of the following:
v Missing number of bits after the –b option
v Incorrect number of bits specified
v Failed to execute uncompress
v Unknown option
v Dictionary option—same count of string exceeded
v Output path or file name too long
v Cannot stat file
v Argument file not a regular file: unchanged
v Argument file has other links: unchanged
v No space for compression tables

2 One or more files were not compressed because the compressed version
was larger than the original

Limits
This implementation of compress is limited to a maximum of 16-bit compression.

Portability
A binary-compatible version of compress with more options is often found on UNIX
systems.

The –D option is an extension to traditional implementations of compress. The –D,
–d and –V options are extensions of the POSIX standard.

compress

134 z/OS V1R4.0 UNIX System Services Command Reference

For portability, you should restrict the number of bits in the code (–b option) to a
value between 9 and 14.

Related Information
cpio, pack, pax, tar, uncompress, unpack, zcat

confighfs — Invoke vfs_pfsctl HFS functions

Format
confighfs [–l] [–v n] [–f n] [–q] [pathname] [–x[n] size pathname]

Note: The l option signifies a lowercase L, not an uppercase i.

Description
confighfs gives interactive shell users the ability to invoke vfs_pfsctl HFS functions.
The vfs_pfsctl function is used to pass control information to the PFS (physical file
system). For more information on vfs_pfsctl, see the z/OS UNIX System Services
File System Interface Reference. Detailed information on its use can be found in
z/OS DFSMS: Using Data Sets.

confighfs resides in the following directory: /usr/lpp/dfsms/bin/. This directory is
not part of the default search path definition. Therefore, the directory must be
included in the command specification when invoking the command.

Options
–l Query HFS limits.

Note: l signifies a lowercase L, not an uppercase i.

–v n Set virtual storage max to n (where n is in MB). Requires superuser
authority.

–f n Set fixed storage min to n (where n is in MB). Requires superuser authority.

–q Query your global statistics.

pathname
Query file system statistics for the file system containing each of the path
names specified.

–x size pathname
Extend the specified file system, where size is the amount to be extended
suffixed by the extend unit of M, T, or C (for megabytes, tracks, or
cylinders), and the pathname is a full or simple pathname to a file or
directory in the file system to extend. Requires superuser authority.

–xn size pathname
Extend the specified file system to a new volume with the same rules as
above. Requires superuser authority.

The following are internal debug options:

–dn Prints incoming and outgoing pfsctl buffers (where n is 0, 1, or 2).

–t Skips issuing the pfsctl.

compress

Chapter 2. Shell Command Descriptions 135

Examples

Note: On systems running shared HFS, this command should only be issued on
the server system (file system owner) for the file system pointed to by the
pathname. Issuing it on client systems results in fields of zeros. See z/OS
UNIX System Services Planning for more information on UNIX in a Sysplex.

1. To set virtual and fixed HFS buffer limits:
> confighfs –v 128 –f 32

2. To extend the file system for your current directory 100 cylinders:
> confighfs –x 100c .

3. If you need to get stats for the root file system and the file system mounted over
/tmp, you would do the following:
> confighfs / /tmp .

Note: The . (period) in examples two and three above indicates the current
directory.

Usage Notes
1. If an HFS encounters an Out of Space condition during SYNC processing

producing message IGW022S, then the following can result:

a. If confighfs is used to successfully extend the file system (by specifying
confighfs -x size pathname, for example) and the extent was large enough
to accomodate the pages required to complete the SYNC processing,
confighfs reinvokes the SYNC function to complete its update and then
resets the HFS Out of Space error flag. It will no longer be necessary to
unmount and remount the file system to use it further. Once the error flag is
reset, all file system functions will work properly again.

b. If the extend size is not large enough to provide the amount of space
required to complete the SYNC process, confighfs will issue the following
response:
Inadequate space added to HFS. At least another nn tracks required.

Note: The above results only apply when the IGW022S message indicates
an Error Loc: EXTEND value. If it indicates an Error Loc: ARPN
value, it will go into the Out of Space error state and require an
unmount followed by a mount to reset the error condition and make
the HFS reusable. The updates applied to the HFS since the last
successful SYNC will also be lost.

2. Unlike most z/OS UNIX commands, which reside in /bin, confighfs is found in
the /usr/lpp/dfsms/bin directory.

Note: Starting with z/OS V1R3, you can symbolically link to the actual location
of confighfs. The symbolic link is found in /usr/sbin:
/usr/sbin/confighfs -> /usr/lpp/dfsms/bin/confighfs

configstk — Configure the AF_UEINT stack

Format
configstk {–s} Configuration_file_name

confighfs

136 z/OS V1R4.0 UNIX System Services Command Reference

Description
configstk is used to configure the AF_UEINT stack. This command should initially
be run from the /etc/rc script, which is executed as part of z/OS UNIX System
Services initialization. It should also be run each time the AF_UEINT network
topology changes after z/OS UNIX services have been initialized.

This command requires superuser authority.

Option
–s Does syntax checking only.

Files
configstk uses the following file:

Configuration_file_name
Specifies the configuration for the AF_UEINT stack. As with any
system-wide configuration file, it should have the appropriate permissions
set.

Syntax for Configuration Files
This file has two types of specifications, HOME and GATEWAY. Be careful when
modifying the configuration file to insure that the F_UEINT environment is not
corrupted due to user error.

HOME ip_address BUFFERS(number) blocking
This statement is required but you can only specify it once. The entire
statement must be on a single line.

ip_address
Defines the single virtual IP address to be used by all RS/6K clients
when accessing the z/OS host, independent of how many RS/6K
gateways are connected to a given z/OS image. This
implementation differs from the standard IP model which defines an
IP address per physical adapter.

number
Defines the maximum number of 32K page-fixed buffers (in OMVS
private memory) that are to be used by the protocol stack. The
number specified is be distributed equally among the read and write
flows. As new ESCON® fibers are added to the configuration,
additional IO buffers are required. Thruput decreases and overhead
increases if the number specified is too restrictive. You should
initially specify a value of 10 times the number of defined gateways
for low-to-average use and increase it proportionally as the number
of users increase). The maximum number of buffers allocated is the
larger of six times the number of active gateways, or the number
specified. A decrease in the number is not honored until the next
IPL.

blocking
Indicates whether the internal blocking algorithm should be
activated for outgoing packets. The default is BLOCKING.
Specifying NOBLOCKING causes the internal optimization routines,
which attempt to group multiple packets into a single blocked I/O, to
be bypassed (such as single packet per block written on demand).

configstk

Chapter 2. Shell Command Descriptions 137

Specifying BLOCKING minimizes the z/OS overhead and
maximizes the ESCON channel bandwidth, but can delay the
packet delivery slightly.

GATEWAY device_number checksum
At least one of these statements is required and up to 32 can be specified.
The entire statement must be on a single line. This statement maps the
target RS/6K IP addresses to the gateway that will process the request. The
device number to define the gateway must be the first of an even-odd pair
of subchannels (both configured thru a single ESCON fiber) between the
z/OS image and the RS/6K gateway. Multiple target IP addresses can be
mapped to a given gateway. A given target IP address can be mapped to at
most one gateway.

device_number
Specifies the hex address of device to be configured. This number
must be four hex digits and must be an even number.

checksum
Indicates whether a reliable communications path exists between
the communicating applications. Specify CHECKSUM if any portion
of the path between the communicating applications is unreliable
(such as a LAN). Specify NOCHECKSUM if the entire path is
reliable (such as a SP2® fast switch or ESCON).

A list of IP addresses immediately follows this statement, one IP address
per line. At least one IP address must be specified for each gateway
device. Up to 256 IP addresses can be specified in the configuration file.

Blank lines are permitted and lines beginning with /* are treated as
comments.

Examples
/* configure AF_UEINT sockets

/* name the ip address for this node, default to blocking enabled
home 10.32.166.20 buffers(20)

/* configure device 324
gateway 0324 nochecksum
10.34.166.20
10.34.166.24
10.34.166.26

/* configure device b28
gateway 0b28 checksum
10.36.166.20
10.36.166.22
10.36.166.24
10.36.166.26

configstrm — Set and query the STREAMS physical file system
configuration

Format
configstrm [–bimv] [–h high_mem | ?] [–l loadmod]... [–t trace_opt | ?]... [–u
loadmod]

configstk

138 z/OS V1R4.0 UNIX System Services Command Reference

Note: The l option signifies a lowercase L, not an uppercase i.

Description
configstrm sets and queries the STREAMS physical file system configuration. It
can be used to view statistics and change configuration options for the STREAMS
physical file system without changing your BPXPRMxx member and re-IPLing.

Options
–b Print current buffer pool utilization.

–h high_mem
Set and query the maximum allowed storage utilization and query the
current utilization. high_mem is specified in kilobytes.

–i Print internal diagnostic information.

–l loadmod
Load a new device driver set.

Note: l signifies a lowercase L, not an uppercase i.

–m Print device major information.

–t trace_opt
Set and query trace options. The valid trace options are:

all | none
Enables or disables all trace points.

proc | noproc
Enables or disables procedure entry and exit trace points.

data | nodata
Enables or disables data trace points.

nw | nonw
Enables or disables Netware trace points.

code | nocode
Enables or disables code trace points.

diag | nodiag
Enables or disables diagnostic trace points.

–u loadmod
Unload a device driver.

–v Avoid output truncation when information is excessive.

Usage Notes
1. Must be a superuser to use the configstrm command.

2. configstrm can be used to dynamically configure the physical file system for
Netware.

Example
To display device information for the configured STREAMS device drivers, issue:
configstrm -m

configstrm

Chapter 2. Shell Command Descriptions 139

continue — Skip to the next iteration of a loop in a shell script

Format
continue [n]

Description
continue skips to the next iteration of an enclosing for, select, until, or while loop
in a shell script. If a number n is given, execution continues at the loop control of
the nth enclosing loop. The default value of n is 1.

Usage Note
continue is a special built-in shell command.

Localization
continue uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 The value of n given was not an unsigned decimal greater than 0.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
break, sh, tcsh

cp — Copy a file

Format
cp [–cfimMUv] [–p|F format|B|T|X] [–P params]file1 file2
cp [–ACcfimMUv] [–p|F format|B|T|X] [–S suffix] file ... directory
cp –R [–cfimp] source... directory
cp –r [–cfimp] source... directory

Automatic Conversion and File Tag Specific Options:

cp [–Z] [–O u | c=codeset]

Description
cp copies files to a target named by the last argument on its command line. If the
target is an existing file, cp overwrites it; if it does not exist, cp creates it. If the
target file already exists and does not have write permission, cp denies access and
continues with the next copy.

continue

140 z/OS V1R4.0 UNIX System Services Command Reference

If you specify more than two pathnames, the last pathname (that is, the target) must
be a directory. If the target is a directory, cp copies the sources into that directory
with names given by the final component of the source pathname.

You can also use cp to copy files to and from MVS data sets. If you specify more
than one file to be copied, the target (last pathname on command line) must be
either a directory or a partitioned data set. If the target is an MVS partitioned data
set, the source cannot be a UNIX directory.

cp does not support the copying to or from GDGs. To use those MVS data sets,
user must specify the real data set name.

When copying records, the string ″ \n″ is copied the same way as the string ″\n″:
both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record
containing a single blank to the file (the default behavior of z/OS C/C++). All other
blanks in your output are read back as blanks, and any empty (zero-length) records
are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN
is set to Y before calling cp, an empty record is treated as a single newline and is
not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to
the file as an empty record, and a single blank will be represented by ″ \n″.

You can copy:
v One file to another file in the working directory
v One file to a new file on another directory
v A set of directories and files to another place in your file system
v A UNIX file to an MVS data set
v An MVS data set to a filesystem
v An MVS data set to an MVS data set

Options
–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned
off if –A is the last option specified.

–B Specifies that the data to be copied contains binary data. When you specify
–B, cp operates without any consideration for <newline> characters or
special characteristics of DBCS data (this type of behavior is typical when
copying across a UNIX system). –B is mutually exclusive with –F, –X, and
–T, i.e., you will get an error if you specify more than one of these options.

–C Specifies truncating the filename(s) to 8 characters to meet the restriction in
the MVS data set member.

–c (UNIX to UNIX only)
Prompts you to change the diskette if there is not enough room to complete
a copy operation. This option has no effect on systems without floppy
drives.

Note: The parent directories must already exist on the new target diskette.

–F format
Specifies if a file is binary or text and for text files, specifies the end-of-line
delimeter. Also sets the file format to format if the target is a UNIX file. For
text files, when copying from UNIX to MVS, the end-of-line delimeter will be
stripped. When copying from MVS to UNIX, the end-of-line delimeter will be
added (Code page IBM-1047 will be used to check for end-of-line
delimeters).

cp

Chapter 2. Shell Command Descriptions 141

|
|

If setting format fails, a warning will be displayed. However, cp will continue
to copy any remaining files specified to be copied.

–F is mutually exclusive with –B, –X, –p, and –T. If you specify one of
these options with –F, you will get an error. If –F is specified more than
once, the last –F specified will be used.

For format you can specify:
not not specified
bin binary data

Or the following text data delimeters:
nl newline
cr carriage return
lf line feed
crlf carriage return followed by line feed
lfcr line feed followed by carriage return
crnl carriage return followed by new line

–f (UNIX to UNIX only)
Attempts to replace files that do not have write permission.

–i When copying to a UNIX target, –i asks you if you want to overwrite an
existing file, whether or not the file is read-only.

–M Specifies that some characters of the filename are translated when copying
between a UNIX file and an MVS data set member. Characters are
translated as follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice
versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–m (UNIX to UNIX only)
Sets the modification and access time of each destination file to that of the
corresponding source file. Normally, cp sets the modification time of the
destination file to the present.

–P params
Specifies the parameters needed to create a sequential data set if one does
not already exist. You can specify the RECFM, LRECL, BLKSIZE, and
SPACE in the format the CRTL fopen() function uses. However, LRECL
and BLKSIZE can be used for variable record format only.

SPACE=(units,(primary,secondary) where the following values are
supported for units:
v any positive integer indicating BLKSIZE
v CYL (mixed case)
v TRK (mixed case)

For example:
SPACE=(500,(100,500)) units, primary, secondary
SPACE=(500,100) units and primary only

Note: CRTL fopen() arguments: LRECL specifies the length, in bytes, for
fixed-length records and the maximum length for variable-length
records. BLKSIZE specifies the maximum length, in bytes, of a
physical block of records. RECFM refers to the record format of a
data set and SPACE indicates the space attributes for MVS data
sets.

cp

142 z/OS V1R4.0 UNIX System Services Command Reference

–p Preserves the modification and access times (as the –m option does); in
addition, it preserves file mode, owner, and group owner, if authorized. It
also preserves extended attributes. It preserves the ACLs of files and
directories, if possible. The ACLs are not preserved if a file system does not
support ACLs, or if you are copying files to MVS

–p is mutually exclusive with –F. If you specify both, you will get an error
message.

–R (UNIX to UNIX only)
“Clones” the source trees. cp copies all the files and subdirectories
specified by source... into directory, making careful arrangements to
duplicate special files (FIFO, character special). cp will traverse directories
by following symbolic links through the file hierarchy.

–r (UNIX to UNIX only)
“Clones” the source trees, but makes no allowances for special files (FIFO,
character special). Consequently, cp attempts to read from a device rather
than duplicate the special file. This is similar to, but less useful than, the
preferred –R.

–S d=suffix|a=suffix

v d=suffix

Removes the specifed suffix from a file.

v a=suffix

Appends the specified suffix to a file.

–S has precedence over –M and –C. It also turns off the –A option (if –S is
the last specified option).

–T Specifies that the data to be copied contains text data. See “Usage Notes”
on page 149 for details on how to treat text data. This option looks for
IBM-1047 end-of-line delimeters, and is mutually exclusive with –F, –X, and
–B. That is, you will get an error if you specify more than one of these
options.

Note: –T is ignored when copying across UNIX file systems.

–U Keeps filenames in uppercase when copying from MVS data set members
to UNIX files. The default is to make filenames lowercase.

–v Verbose

–X Specifies that the data to be copied is an executable. Cannot be used in
conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs
on the target. The return code will be zero.

Note: If you do not specify either –F|B|T or X, cp will first check the format of the
MVS data set indicated and then try to determine the type of file.

Automatic Conversion and File Tag Specific Options
–Z Suppresses failure when default behavior is used to set file tag. For

a description of the default behavior, see “Automatic Conversion
and File Tag Behavior for cp” on page 144.

–O u | c=codeset
Allow automatic conversion on source and target files.

–O u If the target exists and is not empty nor already

cp

Chapter 2. Shell Command Descriptions 143

tagged, cp will not change the target’s tag in order
for the target to be a candidate for automatic
conversion.

For new targets and existing untagged empty files
this option does not take effect and cp will behave
the same as the default. For a description of the
default behavior, see “Automatic Conversion and
File Tag Behavior for cp”.

When using cp to copy from a UNIX file to a MVS
dataset, if the source is a tagged text file, then it
may be a candidate for automatic conversion.

For cp executables from or to MVS, the automatic
conversion is disabled for both source and target.

–O c=codeset For a detailed description of the behavior of this
option on cp, see “Automatic Conversion and File
Tag Behavior for cp”.

cp will fail if it cannot set the tag to text or codeset.
This prevents text files from becoming corrupted.

Attention: If automatic conversion is not set
properly or if the source is not tagged properly, the
target may end up with a tag codeset that does not
match the file content.

Automatic Conversion and File Tag Behavior for cp
The behavior is as follows:

Table 5. Automatic Conversion and File Tag Behavior: UNIX to UNIX Copying

Default w/Option -O u w/Option -O cc

Automatic
Conversion

Turned off Allowed for source &
target

Allowed for source & target

File Tagging Target is tagged
same as the
source

Target’s tag is
unchanged

Note: The source or
target is a candidate
for automatic
conversion when its
txtflag is tagged
TEXT

Set target’s txtflag to TEXT
and its codeset to what is
specified by -O cc

Table 6. Automatic Conversion and File Tag Behavior: MVS to UNIX Copying

Option If the source is: Automatic
Conversion

File Tagging

w/out -O option
(default)

Text Turned off Target is set to
UNTAG

cp

144 z/OS V1R4.0 UNIX System Services Command Reference

Table 6. Automatic Conversion and File Tag Behavior: MVS to UNIX Copying (continued)

-O u Text Allowed for target

Note: The source
and/or target are
candidates for
automatic conversion
when their txtflags are
tagged TEXT

Target’s tag is
unchanged

-O cc Text Allowed for target Set target’s txtflag
to TEXT and its
codeset to what is
specified by -O cc

w/out -O option
(default)

Binary Turned off Target is set to
UNTAG

-O u Binary Turned off Target’s tag is
unchanged

-O cc Binary Turned off Set target’s txtflag
to BINARY and its
codeset to what is
specified by -O cc

w/out -O option
(default)

Executable Turned off Target is set to
UNTAG

-O u Executable Turned off Target’s tag is
unchanged

-O cc Executable Turned off Target’s txtflag is
set to BINARY and
its codeset to what
is specified by -O
cc

Table 7. Autoconversion and File Tag Behavior: UNIX to MVS Copying

Option If the source is: Automatic
Conversion

File Tagging

w/out -O option
(default)

Text Turned off Does not apply

-O u Text Allowed for source

Note: The source is
a candidate for
automatic
conversion when its
txtflag is tagged
TEXT

Does not apply

-O cc Text Turned off Does not apply

w/out -O option
(default)

Binary Turned off Does not apply

-O u Binary Allowed for source

Note: Only files
tagged as text are
candidates for
autoconversion

Does not apply

-O cc Binary Turned off Does not apply

cp

Chapter 2. Shell Command Descriptions 145

Table 7. Autoconversion and File Tag Behavior: UNIX to MVS Copying (continued)

w/out -O option
(default)

Executable Turned off Does not apply

-O u Executable Turned off Does not apply

-O cc Executable Turned off Does not apply

The –p option on cp does not affect file tagging.

Limits and Requirements
General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).
For example, to specify the fully qualified data set names ’turbo.gammalib’ and
’turbo.gammalib(pgm1)’, you write:
"//’turbo.gammalib’"
"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:
//turbo

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid
parsing by the shell, the name should be quoted or minimally, the parenthesis
should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:
"//turbo(pgm1)"

or escape the parenthesis:
//turbo\(pgm1\)

As indicated above, a fully qualified name must be single-quoted (as is done
within TSO). To prevent the single quotes from being interpreted by the shell,
they must be escaped or the name must be placed within regular quotation
marks. See the ’turbo.gammalib’ examples above.

3. If you specify a UNIX file as source and the MVS data set (target) does not
exist, a sequential data set will be created. If the partitioned data set exists, the
UNIX file will be copied to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory
must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set
as source if the target is a partitioned data set.

6. To copy all members from a partitioned data set, you may specify the partitioned
data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).
Lowercase characters will be converted to uppercase during any copies to MVS
data sets.

v Data set names can contain numeric characters 0–9 and special characters @,
#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is
longer than 8 characters or uses characters that are not allowed in an MVS data
set name, the file is not copied. You may use the –C option to truncate names to
8 characters.

cp

146 z/OS V1R4.0 UNIX System Services Command Reference

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the
file is copied as binary.

2. If you specify a PDSE that is in undefined record format, the first file
successfully copied determines in what format files will be copied. Note that
PDSE does not allow mixture. So if the first successfully copied file is an
executable, the PDSE will have program objects only and all other files will fail.
On the other hand, if the first file is data, then all files are copied as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are
saved as PDS load modules. All other files are copied as binary.

4. If you specify an MVS data set that is either in variable length or fixed record
length and you have not set the file format, text files are copied as text, binaries
as binary, and executables as binary. (IBM-1047 end-of-line delimeters are
detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or
text.

Limitations: MVS data set to UNIX

1. If an HFS file does not exist, one is created using 666 mode value:
666 mode value: owner(rw-) group(rw-) other(rw-)

whether data is binary or text. If the data to be copied is a shell script or
executable, an HFS file is created using 777 mode value:
777 mode value: owner(rwx) group(rwx) other(rwx)

2. If an HFS exists and the file format is set, cp copies the file as that format.
Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects
(PDSE) are copied since they are the same as executables;

v data within data sets of undefined record format are copied as binary if the
data is not a program object or load module;

v and data found within data sets of fixed length or variable record length are
copied as text. (IBM-1047 end-of-line delimeters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

2. If target and source are in undefined record format (and neither is a sequential
data set), cp will attempt to copy the data as a load module. If that fails, then
cp will copy the data as binary.

3. If target and source are in undefined record format and either is a sequential
data set, cp copies the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined
record format, cp copies the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable
record length, cp copies the data as binary.

6. If both source and target are in fixed or variable record length, cp copies the
data as text.

Limitations: Copying executables into a PDS

1. A PDS may not store load modules that incorporate program management
features.

cp

Chapter 2. Shell Command Descriptions 147

2. c89, by default, produces objects using the highest level of program
management.

3. If you plan on copying a load module to a PDS, you may use a pre-linker which
produces output compatible with linkage editor. Linkage editor generated output
can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options
with cp.

Table 8. cp Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffip ABCMPSTUX

UNIX File/Sequential Data
Set

BFiPT ACfMpSU X

UNIX File/PDS or PDSE
Member

BFiTX ACfMPpSU

Sequential Data Set/UNIX
File

BFfiTU ACMPpS X

Sequential Data
Set/Sequential Data Set

BFiPT ACfMpSU X

Sequential Data Set/PDS
or PDSE Member

BFiT ACfMPpSU X

PDS or PDSE
Member/UNIX File

BFfiTUX ACMPpS

PDS or PDSE
Member/Sequential Data
Set

BFiPT ACfMpSU X

PDS or PDSE
Member/PDS or PDSE
Member

BFiTX ACfMPpSU

UNIX File/UNIX Directory ACFipS BMPTUX

PDSE or PDSE
Member/UNIX Directory

BFfiMSTUX ACMPp

UNIX File/Partitioned Data
Set

ABCFiMSTX fPpU

PDS or PDSE
Member/PartitionedData
Set

BFiTX ACfMPpSU

Partitioned Data Set/UNIX
Directory

ABCFfiMSTUX Pp

The tables that follow indicate the kind of copies allowed using cp.

Table 9. cp Format: File to File

Source Target Allowed

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

Yes

UNIX Directory UNIX Directory No (unless cp is used with
–R or –r)

cp

148 z/OS V1R4.0 UNIX System Services Command Reference

Table 9. cp Format: File to File (continued)

Source Target Allowed

Partitioned Data Set UNIX Directory (dir) NOTE:
results in each member of
data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File or Partitioned Data
Set Member

UNIX Directory (must exist)
or Partitioned Data Set

Yes

Partitioned Data Set Member Partitioned Data Set Yes

Table 10. cp Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File
or Partitioned Data Set
Member

UNIX Directory or Partitioned
Data Set

Yes

Any combination of UNIX
Directory or Sequential Data
Set

Partitioned Data Set or UNIX
Directory

No

Partitioned Data Set UNIX Directory Yes

Partitioned Data Set Partitioned Data Set No

Usage Notes
UNIX to MVS

1. To copy from UNIX to a partitioned data set, you must allocate the data set
before doing the cp.

2. If an MVS data set does not exist, cp will allocate a new sequential data set of
variable record format.

3. For text files, all <newline> characters are stripped during the copy. Each line
in the file ending with a <newline> character is copied into a record of the MVS
data set. If text file format is specified or already exists for the source file, that
file format will be used for end-of-line delimeter instead of <newline>. Note that
cp looks for IBM-1047 end-of-line delimeters in data.

You cannot copy a text file to an MVS data set that has an undefined record
format:

v For an MVS data set in fixed record format, any line copied longer than the
record size will cause cp to fail with a displayed error message and error
code. If the line is shorter than the record size, the record is padded with
blanks.

v For an MVS data set in variable record format: Any line copied longer than
the largest record size will cause cp to fail with a displayed error message
and error code. Record length is set to the length of the line.

4. For binary files, all copied data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size
equal to the record length. Each chunk is put into one record. The last
record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of
size equal to the largest record length. Each chunk is put into one record.
The length of the last record is equal to length of the data left.

cp

Chapter 2. Shell Command Descriptions 149

v For an MVS data set in undefined record format, data is cut into chunks of
size equal to the block size. Each chunk is put into one record. The length
of the last record is equal to the length of the data left.

5. For load modules, the partitioned data set specified must be in undefined
record format otherwise the executable will not be copied.

6. If more than one filename is the same, the file is overwritten on each
subsequent copy.

7. If a UNIX filename contains characters that are not allowed in an MVS data
set, it will not be copied. If the UNIX filename has more than 8 characters, it
can not be copied to an MVS data set member. (See the –ACMS options for
converting filenames)

8. You are not allowed to copy files into data sets with spanned records.

9. PDSE cannot have a mixture of program objects and data members. PDS
allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be
copied to an MVS data set.

11. If a file is a symbolic link, cp will copy the resolved file, not the link itself.

12. UNIX file attributes are lost when copying to MVS. If you wish to preserve file
attributes, you should use the pax utility.

MVS to UNIX

1. If the specified target HFS file exists, the new data overwrites the existing data.
The mode of the file is unchanged.

2. If the specified HFS file does not exist, it will be created using 666 mode value
if binary or text (this is subject to umask). If the data to be copied is a shell
script or executable, the HFS file will be created with 777 mode value (also
subject to umask).

3. When you copy MVS data sets to UNIX text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the
<newline> character is appended after the trailing blanks. If the file format
option is specified or the target file has the file format set, that file format is
used as the end-of-line delimeter instead of <newline>.

4. When you copy MVS data sets to UNIX binary files, the <newline> character is
not appended to the record.

5. You cannot use cp to copy data sets with spanned record lengths.

Examples
1. To specify –P params for a non-existing sequential target:

cp -P "RECFM=U,space=(500,100)"file "//’turbo.gammalib’"

2. To copy file f1 to a fully qualified sequential data set ’turbo.gammalib’ and treat
it as a binary:
cp -F bin f1 "//’turbo.gammalib’"

3. To copy all members from a fully qualified PDS ’turbo.gammalib’ to an existing
UNIX directory dir:
cp "//turbo.gammalib’" dir

4. To drop .c suffixes before copying all files in UNIX directory dir to an existing
PDS ’turbo.gammalib’:
cp -S d=.c dir/* "//’turbo.gammalib’"

cp

150 z/OS V1R4.0 UNIX System Services Command Reference

Environment Variable
cp uses the following envrionment variable when copying records to or from MVS
data sets:

_EDC_ZERO_RECLEN
If set to Y before calling cp, an empty record (zero-length) is treated as a
single newline and is not ignored. Also, a single newline is written to the file
as an empty record, and a single blank will be represented by ” \n”. If you
do not set this environment variable when copying records, then the string
” \n” is copied the same way as the string ”\n”: both are read and written as
”\n”, where ”\n” indicates that z/OS C/C++ will write a record containing a
single blank to the file (the default behavior of z/OS C/C++). All other blanks
in the output are read back as blanks, and any empty records are ignored.

Localization
cp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v An argument had a trailing slash (/) but was not a directory
v Inability to find a file
v Inability to open an input file for reading
v Inability to create or open an output file
v A read error occurred on an input file
v A write error occurred on an output file
v The input and output files were the same file
v An irrecoverable error when using –r or –R. Possible irrecoverable –r or

–R errors include:
– Inability to access a file
– Inability to change permissions on a target file
– Inability to read a directory
– Inability to create a directory
– A target that is not a directory
– Source and destination directories are the same

2 Failure due to any of the following:
v An incorrect command-line option
v Too few arguments on the command line
v A target that should be a directory but isn’t
v No space left on target device
v Insufficient memory to hold the data to be copied
v Inability to create a directory to hold a target file

cp

Chapter 2. Shell Command Descriptions 151

Messages
Possible error messages include:

cannot allocate target string
cp has no space to hold the name of the target file. Try to release some
memory to give cp more space.

name is a directory (not copied)
You did not specify –r or –R, but one of the names you asked to copy was
the name of a directory.

target name?
You are attempting to copy a file with the –i option, but there is already a
file with the target name. If you have specified –f, you can write over the
existing file by typing y and pressing <Enter>. If you do not want to write
over the existing file, type n and press <Enter>. If you did not specify –f and
the file is read-only, you are not given the opportunity to overwrite it.

source name and target name are identical
The source and the target are actually the same file (for example, because
of links). In this case, cp does nothing.

unreadable directory name
cp cannot read the specified directory—for example, because you do not
have appropriate permission.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –f and –m options are extensions of the POSIX standard.

Related Information
cat, cpio, ln, mv, rm

cpio — Copy in/out file archives

Format
cpio –o [–aBcvyz] [–C blocksize] [–O file] [–V volpat]
cpio –i [–BbcdfmrsStuvqyz] [–C blocksize] [–I file] [–V volpat] [pattern ...]
cpio –p [–aBdlmruv] directory

Note: The cpio utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the pax utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
cpio reads and writes files called cpio archives. A cpio archive is a concatenation
of files and directories preceded by a header giving the filename and other file
system information. With cpio, you can create a new archive, extract contents of an
existing archive, list archive contents, and copy files from one directory to another.

Options
Every call to cpio must specify one and only one of the following selector options:

cp

152 z/OS V1R4.0 UNIX System Services Command Reference

–i Reads an existing archive (created with the –o option) from the standard
input (stdin). Unless you specify the –t option, cpio extracts all files
matching one or more of the given pattern arguments from the archive.
Patterns are the same as those used by filename generation (see sh).
When you do not specify a pattern argument, the default pattern * is used;
as a result, cpio extracts all files.

–o Writes a new archive to the standard output (stdout), using the list of files
read from stdin. Such a list might be produced by the ls or find
commands. For example:
ls . | cpio –o >arch

uses ls to list the files of the working directory and then pipes this list as
input to cpio. The resulting archive contains the contents of all the files,
and is written to arch.

–p Is shorthand for:
cpio –o | (cd directory; cpio –i)

where cpio –i is performed in the given directory. You can use this option to
copy entire file trees.

Consult the syntax lines to determine which of the following additional options can
be applied with a particular selector option:

–a Resets the access time (of each file accessed for copying to the archive) to
what it was before the copy took place.

–B Uses buffers of 5120 bytes for input and output rather than the default
512-byte buffers.

–b Causes 16-bit words to be swapped within each longword and bytes to be
swapped within each 16-bit word of each extracted file. This facilitates the
transfer of information between different processor architectures. This is
equivalent to specifying both the –s and –S options.

–C blocksize
Sets the buffer size to a specified blocksize, rather than the default
512-byte buffers.

–c Reads and writes header information in ASCII form. Normally, cpio writes
the header information in a compact binary format. This option produces an
archive more amenable to transfer through nonbinary streams (such as
some data communication links) and is highly recommended for those
moving data between different processors.

–d Forces the creation of necessary intermediate directories when they do not
already exist.

–f Inverts the sense of pattern matching. More precisely, cpio extracts a file
from the archive if and only if it does not match any of the pattern
arguments.

–I file Causes input to be read from the specified file, rather than from stdin.

–l Gives permission to create a link to a file rather than making a separate
copy.

–m Resets the modification time of an output file to the modification time of the
source file. Normally, when cpio copies data into a file, it sets the
modification time of the file to the time at which the file is written. This
option has no effect on directories.

cpio

Chapter 2. Shell Command Descriptions 153

–O file Causes output to be written to the specified file, rather than to stdout.

–q Assumes all created files are text. This means that any \r (carriage return)
characters are stripped, and only the \n (newlines) are retained.

Do not use the –q option for converting text to a system-independent
format, because that would require all files to be read twice.

–r Lets you rename files as cpio works. When extracting, cpio displays the
name of the component it is about to extract and gives you the chance to
specify a name for the extracted file. If you enter . as the name, cpio
processes the file or directory with no modification to the name. If you just
press Enter, cpio skips the file.

–S For portability reasons, swaps pairs of 16-bit words within longwords (a
32-bit or 64-bit word) only when extracting files. This option does not affect
the headers.

–s For portability reasons, swaps pairs of bytes within each 16-bit word only
when extracting files. –s does not affect the headers.

–t Prevents files extraction, producing instead a table of filenames contained
in the archive. See the description of the –v option.

–u Copies an archive file to a target file even if the target is newer than the
archive. Normally, cpio does not copy the file.

–V volpat
Provides automatic multivolume support. cpio writes output to files, the
names of which are formatted using volpat. The current volume number
replaces any occurrence of # in volpat. When you invoke cpio with this
option, it asks for the first number in the archive set, and waits for you to
type the number and a carriage return before its precedes with the
operation. cpio issues the same sort of message when a write error or read
error occurs on the archive; the reasoning is that this kind of error means
that cpio has reached the end of the volume and should go on to a new
one.

–v Provides more verbose information than usual. cpio prints the names of
files as it extracts them from or adds them to archives. When you specify
both –v and –t, cpio prints a table of files in a format similar to that
produced by the ls –l command.

–y When used with –V, does not ask for a volume number to begin with, but
does ask if it gets a read or write error.

–z Performs Lempel-Ziv compression. Output is always a 16-bit compression.
On input, any compression up to 16-bit is acceptable.

Usage Notes
1. Use the pax command if you need to use multibyte patterns when searching for

filenames.

2. The POSIX 1003.1 standard defines formats for cpio archives that limit the
UIDs and GIDs that can be stored to the maximum value of 262143. Values
larger than this will not be properly restored.

3. The byte and word swapping done by the –b, –S, and –s options is effective
only for the file data written. With or without the –c option, header information is
always written in a machine-invariant format.

cpio

154 z/OS V1R4.0 UNIX System Services Command Reference

Localization
cpio uses the following localization environment variable:
v LANG
v LC_ALL
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v An incorrect option
v Incorrect command-line arguments
v Out of memory
v Compression error
v Failure on extraction
v Failure on creation

Portability
X/Open Portability Guide, non-Berkeley UNIX systems after Version 7.

The –q, –V, –y, and –z options are specific to the z/OS shell.

Related Information
compress, cp, dd, find, ls, mv, pax, tar, cpio, uncompress

Also see the pax file format description in Appendix H.

cron daemon — Run commands at specified dates and times

Format
cron

Description
cron is a clock daemon that runs commands at specified dates and times. You can
specify regularly scheduled commands as described in crontab. You can also
submit jobs that are to be run only once using the at command. cron runs
commands with priorities and limits set by the queuedefs file. cron uses the value
from queuedefs to lower the priority for non-UID=0 users only. The priority is
unchanged for UID=0 users.

cron only examines crontab files and at command files when initializing or when a
file changes using crontab or at. This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

The setuid bit for cron should never be set; however, it must be started by a user
with appropriate privileges to issue the setuid call for any UID. Because cron never
exits, it should only be run once, normally during the system initialization process.
cron automatically forks and runs itself in the background, in a new shell session.
cron uses the pid file to prevent more than one cron running at the same time.

cpio

Chapter 2. Shell Command Descriptions 155

When matching the date and time expressions given in crontab entries, cron uses
the time zone in effect when the system started the daemon. As a result, you
should ensure that the TZ environment variable is set at this time. For information
on setting the TZ environment variable, see Appendix I. For at jobs, cron uses the
value of TZ in effect when you submitted the job.

at, batch, and crontab submit jobs to cron; the data for those jobs can contain
doublebyte characters. When the jobs are executed, the data in the jobs are
interpreted in the locale that cron is using. Because it is strongly recommended that
cron be started in the POSIX locale, doublebyte characters in the jobs may not be
interpreted correctly. You can get around this by calling the setlocale() system call
in the job itself.

cron handles the following externally generated signals in a special way:

SIGTERM
Causes cron to exit. You can cause cron to exit with the following
command:
kill –TERM pid

where pid is the cron’s PID number. To find the cron’s PID number, you can
use:
ps -e | grep cron

SIGUSR1
Is sent by either at or crontab to indicate a new at job or an updated
crontab entry. cron does not delete at jobs until they finish running. If the
cron daemon is terminated while at jobs are running, cron runs them again
when the daemon is restarted.

SIGUSR2
Writes internal cron queue information to the log file.

The following is an example of output to a cron log from ’kill -USR2 5’. The
output was written to the log on a test system when the queuedefs job limit of 5
was exceeded. The number of jobs that are running is 5 (the limit is 500):
Queue `c’ 5j2n15w:
queued 4, running 5, jobs 5
Next try for queued jobs 13 seconds
RUNNING: uid/gid: 0/512: pid 33554441: sleep 10000 RUNNING: uid/gid: 0/512:
pid 385875972: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
67108876: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
33554445: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
67108879: echo start; sleep 10000; echo end QUEUED: uid/gid: 0/512: echo Hello!
QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end
QUEUED: uid/gid: 0/512: echo Hello!
QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end

cron uses a number of files in the /usr/lib/cron directory to determine which users
may and may not use the at and crontab commands.

v The file at.allow contains the list of users who have permission to use at.

v The file at.deny contains the list of users who do not have permission to use at.

If these files do not exist, only the superuser can use the at command. To allow all
users access to at, there must be a null at.deny file and no at.allow file.

cron uses the files cron.allow and cron.deny in a similar manner.

v cron.allow contains the list of users who have permission to use crontab.

cron daemon

156 z/OS V1R4.0 UNIX System Services Command Reference

v cron.deny contains the list of users who do not have permission to use crontab.

If these files do not exist, only the superuser can use crontab. To allow all users
access to crontab, there must be a null cron.deny file and no cron.allow file.

Files
cron uses the following files which reside in a system-defined directory:

/usr/spool/cron
The main cron directory.

/usr/spool/cron/atjobs
A directory containing at files.

/usr/spool/cron/crontabs
A directory containing crontab files.

/usr/spool/cron/log
A file that maintains a history of the commands being run. The systems
administrator should truncate this file periodically.

/usr/spool/cron/pid
A file that cron uses to ensure that only one version of cron is currently
running on the system. This file must be unique per system which is
particularly important when you are setting up a sysplex. For more
information about customizing cron when setting up a sysplex see
″Customizing cron, uucp, and mail Utilities for a Read-Only Root HFS″ and
″Customizing the cron and uucp Utilities″ in z/OS UNIX System Services
Planning.

/usr/lib/cron/at.allow
Contains a list of the users who can use the at command (one per line).

/usr/lib/cron/at.deny
Contains a list of the users who cannot use the at command (one per line).

/usr/lib/cron/cron.allow
Contains a list of the users who can use the crontab command (one per
line).

/usr/lib/cron/cron.deny
Contains a list of the users who cannot use the crontab command (one per
line).

/usr/lib/cron/queuedefs
The queue description file (see the description of queuedefs in 834).

Related Information
at, crontab

Appendix I also explains how to set the local time zone with the TZ environment
variable.

For more information about customizing cron see ″Customizing cron, uucp, and
mail Utilities for a Read-Only Root HFS″ and ″Customizing the cron and uucp
Utilities″ in z/OS UNIX System Services Planning.

cron daemon

Chapter 2. Shell Command Descriptions 157

crontab — Schedule regular background jobs

Format
crontab [–e|–l|–r] [–u user] [file]

Description
crontab creates or changes your crontab entry. The crontab is a system facility that
automatically runs a set of commands for you on a regular schedule. For example,
you might set up your crontab entry so it runs a job every night at midnight, or once
a week during low-use hours. This job could perform regular maintenance chores,
for example, backing up files or getting rid of unnecessary work files.

To set up a crontab entry, use:
crontab file

If you omit the file argument, crontab takes input from standard input (stdin).

Note: In this mode, you must provide your entire crontab file. This replaces any
other existing crontab entries. If you issue crontab with no options, do not
enter the end-of-file character or you will end up with an empty crontab file.
Press INTERRUPT instead.

Input consists of six fields, separated by blanks. All blank lines and any input that
contains a # as the first non-blank character are ignored. The first five give a date
and time in the following form:

v A minute, expressed as a number from 0 through 59

v An hour, expressed as a number from 0 through 23

v A day of the month, expressed as a number from 1 through 31

v A month of the year, expressed as a number from 1 through 12

v A day of the week, expressed as a number from 0 through 6 (with 0 standing for
Sunday)

Important Note: All times use a system default time zone. Your system
administrator can tell you what it is. The cron daemon does not
use the value of the environment variable TZ when crontab is
invoked.

Any of these fields may contain an asterisk (*) standing for all possible values. For
example, if you have an * as the day of the month, the job runs every day of the
month. A field can also contain a set of numbers separated by commas, or a range
of numbers, with the first number followed by a minus sign – followed by the second
number. If you give specific days for both day of the month and day of the week,
the two are ORed together. Here are some examples:

0 0 * * * -- Midnight every day
0 0 * * 1-5 -- Midnight every weekday
0 0 1,15 * * -- Midnight on 1st and 15th of month
0 0 1 * 5 -- Midnight on 1st of month and every Friday

The sixth field of a crontab entry is a string that your shell executes at the specified
time. When the shell executes this string, it sets the HOME, LOGNAME, PATH, and
SHELL environment variables to default values for you.

crontab

158 z/OS V1R4.0 UNIX System Services Command Reference

If the string in your crontab entry contains percent characters %, the shell interprets
them as newline characters, splitting your string in several logical lines. The first
logical line (up to the first %) is interpreted as the command you want to execute;
subsequent logical lines are used as standard input to the command. If any real
(not logical) line in the file is blank or begins with #, the shell ignores the line (treats
it as a comment).

To obtain the output of the command in your crontab entry, redirect the standard
output (stdout) and the standard error (stderr) into a file. If you do not do this, the
system mails you the output from the command.

at, batch, and crontab submit jobs to cron; the data for those jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Because it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the jobs may not be
interpreted correctly. You can get around this by calling setlocale() in the job itself.

Options
–e Lets you edit your crontab entry. crontab invokes an editor to edit the entry.

If you have an EDITOR environment variable defined, crontab assumes
that the variable’s value is the name of the editor you want to use. If you do
not have EDITOR defined, crontab uses vi.

If you do not have a crontab entry, crontab sets up a blank entry for you.
When you exit from the editor, crontab uses the edited entry as your new
entry.

–l Displays your current crontab entry on stdout.

–r Removes (deletes) your current crontab entry.

–u user
Uses the crontab entry of user. This requires the appropriate privileges.

You can specify only one of the –e, –l, or –r options.

Environment Variables
cron uses the following environment variables:

EDITOR
Specifies the editor that the –e option invokes. The default editor is vi.

HOME Is set to your user ID’s home directory (not necessarily the current value of
HOME) when the commands in your crontab entry are run.

LOGNAME
Is set to your user ID when the commands in your crontab entry are run.

PATH Is set to a system-wide default value when the commands in your crontab
entry are run.

TZ Is not used in time calculations. The cron daemon does, however, use this
variable when cron is first started, usually when the system is started.

Localization
crontab uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE

crontab

Chapter 2. Shell Command Descriptions 159

v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Returned if the command fails for any reason. In this case, crontab does
not change your crontab entry.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –u option is an extension to the POSIX standard.

Related Information
at, batch, bg, cron

Also see the queuedef file format description in Appendix H.

csplit — Split text files

Format
csplit [–Aaks] [–f prefix] [–n number] file arg arg ...

Description
csplit takes a text file as input and breaks up its contents into pieces, based on
criteria given by the arg value on the command line. For example, you can use
csplit to break up a text file into chunks of ten lines each, then save each of those
chunks in a separate file. See “Splitting Criteria” on page 161 for more information.
If you specify – as the file argument, csplit uses the standard input (stdin).

The files created by csplit normally have names of the form
xxnumber

where number is a 2-digit decimal number that begins at zero and increments by
one for each new file that csplit creates.

csplit also displays the size, in bytes, of each file that it creates.

Options
–A Uses uppercase letters in place of numbers in the number portion of

created filenames. This generates names of the form xxAA, xxAB, and so on.

–a Uses lowercase letters in place of numbers in the number portion of created
filenames. This generates names of the form xxaa, xxab, and so on.

–f prefix
Specifies a prefix to use in place of the default xx when naming files. If it
causes a filename longer than NAME_MAX bytes, an error occurs and csplit
exits without creating any files.

crontab

160 z/OS V1R4.0 UNIX System Services Command Reference

–k Leaves all created files intact. Normally, when an error occurs, csplit
removes files that it has created.

–n number
Specifies the number of digits in the number portion of created filenames.

–s Suppresses the display of file sizes.

Splitting Criteria
csplit processes the args on the command line sequentially. The first argument
breaks off the first chunk of the file, the second argument breaks off the next chunk
(beginning at the first line remaining in the file), and so on. Thus each chunk of the
file begins with the first line remaining in the file and goes to the line given by the
next arg.

arg values can take any of the following forms:

/regexp/
Takes the chunk as all the lines from the current line up to but not including
the next line that contains a string matching the regular expression regexp.
After csplit obtains the chunk and writes it to an output file, it sets the
current line to the line that matched regexp.

/regexp/offset
Is the same as the previous criterion, except that the chunk goes up to but
not including the line that is a given offset from the first line containing a
string that matches regexp. The offset can be a positive or negative integer.
After csplit has obtained the chunk and written it to an output file, it sets
the current line to the line that matched regexp.

Note: This current line is the first one that was not part of the chunk just
written out.

%regexp%
Is the same as /regexp/, except that csplit does not write the chunk to an
output file. It simply skips over the chunk.

%regexp%offset
Is the same as /regexp/offset, except csplit does not write the chunk to an
output file.

linenumber
Obtains a chunk beginning at the current line and going up to but not
including the linenumberth line. After split writes the chunk to an output file,
it sets the current line to linenumber.

{number}
Repeats the previous criterion number times. If it follows a regular
expression criterion, it repeats the regular expression process number more
times. If it follows a linenumber criterion, csplit splits the file every
linenumber lines, number times, beginning at the current line. For example,
csplit file 10 {10}

obtains a chunk from line 1 to line 9, then every 10 lines after that, up to
line 109.

csplit

Chapter 2. Shell Command Descriptions 161

Errors occur if any criterion tries to "grab" lines beyond the end of the file, if a
regular expression does not match any line between the current line and the end of
the file, or if an offset refers to a position before the current line or past the end of
the file.

Localization
csplit uses the following localization variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v csplit could not open the input or output files
v A write error on the output file

2 Failure due to any of the following:
v Unknown command-line option
v The prefix name was missing after –f
v The number of digits was missing after –n
v The input file was not specified
v No arg values were specified
v The command ran out of memory
v An arg was incorrect
v The command found end-of-file before it was expected
v A regular expression in an arg was badly formed
v A line offset/number in an arg was badly formed
v A {number} repetition count was misplaced or badly formed
v Too many filenames were generated when using –n
v Generated file names would be too long

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –A and –a options are extensions to the POSIX standard.

Related Information
awk, sed

For more information about regexp, see Appendix C.

ctags — Create tag files for ex, more, and vi

Format
ctags [–aBFwx] [–f tagfile] sourcefile ...

csplit

162 z/OS V1R4.0 UNIX System Services Command Reference

Description
ctags creates a file named tags in the current directory. It summarizes the locations
of various objects in the C source files named on the command line. All files with a
.c or .h suffix are treated as C source files.

For C source code, ctags summarizes function, macro and typedef definitions. See
Appendix H for a description of the format of the tags file.

The tags file is used by ex, more, and vi to support the tag command. The tag
command can be used to edit the file containing a name in the tags file.

For ex and vi, the command is:
: tag name

For more, the command is:
:tname

After these commands are run, the tags file is searched for name. If it is found, the
file associated in the tags file with that name is loaded and the line containing the
name is made the current line.

Options
–a Appends output to the existing tags file rather than overwriting the file.

–B Produces a tags file that searches backward from the current position to
find the pattern matching the tag.

–F Searches for tag patterns in the forward direction. This is the default.

–f Generates a file named tagfile rather than the default tags file.

–w Suppresses warning messages.

–x Produces a report on the standard output. The report gives the definition
name, the line number of where it appears in the file, the name of the file in
which it appears, and the text of that line. ctags arranges this output in
columns and sorts it in order by tag name according to the current locale’s
collation sequence. This option does not produce a tags file.

Localization
ctags uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLECT
v LC_CTYPE
v LC_MESSAGES
v LC_TIME

See Appendix F for more information.

Files
ctags uses the following file:

tags Output tags file

ctags

Chapter 2. Shell Command Descriptions 163

Usage Notes
1. It can be difficult to recognize a function definition in C source code. Because

ctags does not know which C preprocessor symbols are defined, there may be
some misplaced function definition information if sections of code within
#if...#endif are not complete blocks.

2. ctags invokes the sort internally.

3. ctags makes special provision for the main() function, which may occur in
several C source files. The tags file contains an entry for the first main() routine
found. For all occurrences of main(), including the first, the tags file contains an
entry for Mname, where name is the name of the input source file, with the .c
suffix and any leading pathname components removed. For example, a tags file
created for a C source code file named foo.c would contain an entry for Mfoo,
which represents the main() routine in foo.c).

4. ctags uses sort to sort the file by tag name, according to the POSIX locale’s
collation sequence.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Unknown command-line option
v Cannot create the output file
v Cannot open the output file
v One of the input files was unrecognized

Portability
POSIX.2, X/Open Portability Guide, 4.2BSD and higher.

This utility only understands characters from the POSIX locale.

The –B, –F, and –w options are extensions to the POSIX and XPG standards.

Related Information
more, sort, vi

See the tags file format description in Appendix H.

cu — Call up another system (stub only)

Format
cu [–dehot] [–l device_name] [–s speed] [system_name | phone_num]
cu –n [–dehot] [–l device_name] [–s speed]

Note: The cu utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX- branded systems.

Description
cu connects to remote systems specified in the UUCP configuration file. You can
use it for simple terminal connections, or to do simple file transfer with no error
checking.

ctags

164 z/OS V1R4.0 UNIX System Services Command Reference

cu is recognized, but its functions are disabled. Traditionally, it is used for simple
terminal connections to remote systems specified in the UUCP configuration file. cu
requires a direct connection (such as with a modem) to the remote system, but this
is not supported by z/OS.

cut — Cut out selected fields from each line of a file

Format
cut –b list [–n] [file...]
cut –c list [file...]
cut –f list [–d char] [–s] [file...]

Description
cut reads input from files, each specified with the file argument, and selectively
copies sections of the input lines to the standard output (stdout). If you do not
specify any file, or if you specify a file named –, cut reads from standard input
(stdin).

Options
–b list Invokes byte position mode. After this comes a list of the byte positions you

want to display. This list may contain multiple byte positions, separated by
commas (,) or blanks or ranges of positions separated by dashes (–). Since
the list must be a single argument, shell quoting is necessary if you use
blanks. You can combine these to allow selection of any byte positions of
the input.

Attention: When using the –b option with doublebyte characters, you
should also specify the –n option to ensure that entire characters are
displayed. If you do not specify the –n option, cut simply assumes that the
low byte of a range is the first byte of a character and that the high byte of
a range is the last byte of a doublebyte character, possibility resulting in the
misinterpretation of the characters represented by those byte positions.

–c list Invokes character-position mode. After this comes a list of character
positions to retain in the output. This list can contain many character
positions, separated by commas (,) or blanks or ranges of positions
separated by a dash (–). Since the list must be a single argument, shell
quoting is necessary if you use blanks. You can combine these to allow
selection of any character positions of the input.

–d char
Specifies char as the character that separates fields in the input data; by
default, this is the horizontal tab.

–f list Invokes field delimiter mode. After this comes a list of the fields you want to
display. You specify ranges of fields and multiple field numbers in the same
way you specify ranges of character positions and multiple character
positions in –c mode.

–n Does not split characters. If the low byte in a selected range is not the first
byte of a character, cut extends the range downward to include the entire
character; if the high byte in a selected range is not the last byte of a
character, cut limits the range to include only the last entire character
before the high byte selected. If –n is selected, cut does not list ranges that
do not encompass an entire character, and these ranges do not cause an
error.

cu

Chapter 2. Shell Command Descriptions 165

–s Does not display lines that do not contain a field separator character.
Normally, cut displays lines that do not contain a field separator character
in their entirety.

Example
cd /bin
ls –al | cut –c 42–48,54–66

prints a directory listing containing file creation dates and filenames of files in the
working directory.

Localization
cut uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Cannot open the input file
v Out of memory

2 Failure due to any of the following:
v An incorrect command-line argument
v You did not specify any of –b, –c, or –f
v You omitted the list argument
v Badly formed list argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
paste, uname

cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source
code and create an executable file

See c89/cc/c++.

Note: When working in the shell, to view man page information about cxx, type:
man c89.

date — Display the date and time

Format
date [–cu] [+format]

cut

166 z/OS V1R4.0 UNIX System Services Command Reference

Description
date displays the operating system’s idea of the current date and time. The
following example shows the default format of the date:
Wed Feb 26 14:01:43 EST 1986

Options
date accepts the following options:

–c Displays the date and displays the time according to Greenwich Mean Time
(Coordinated Universal Time) using CUT as the time zone name.

–u Displays the date and displays the time according to Greenwich Mean Time
(Coordinated Universal Time) using GMT as the time zone name.

If the argument to date begins with a + character, date uses format to display the
date. date writes all characters in format, with the exception of the % and the
character that immediately follows it, directly to the standard output. After date
exhausts the format string, it outputs a newline character. The % character
introduces a special format field similar to the printf() function in the C library. date
supports the following field descriptors:

%A The full weekday name (for example, Sunday).

%a The three-letter abbreviation for the weekday (for example, Sun).

%B The full month name (for example, February).

%b The three-letter abbreviation for the month name (for example, Feb).

%C The first two digits of the year (00 to 99).

%c The local representation of the date and time (see %D and %T).

%D The date in the form mm/dd/yy.

%d The two-digit day of the month as a number (01 to 31).

%e The day of the month in a two-character, right-justified, blank-filled field.

%H The two-digit hour (00 to 23).

%h The three-letter abbreviation for the month (for example, June).

%I The hour in the 12-hour clock representation (01 to 12).

%j The numeric day of the year (001 to 366).

%M The minute (00 to 59).

%m The month number (01 to 12).

%n The newline character.

%p The local equivalent of a.m. or p.m.

%r The time in a.m.–p.m. notation (11:53:29 a.m.).

%S The seconds (00 to 61). There is an allowance for two leap seconds.

%T The time (14:53:29).

%t A tab character.

%U The week number in the year, with Sunday being the first day of the week
(00 to 53).

date

Chapter 2. Shell Command Descriptions 167

%W The week number in the year, with Monday being the first day of the week
(00 to 53).

%w The weekday number, with Sunday being 0.

%X The local time representation (see %T).

%x The local date representation (see %D).

%Y The year.

%y The two-digit year.

%Z The time zone name (for example, EDT).

%% A percent-sign character.

The date command also supports the following modified field descriptors to indicate
a different format as specified by the locale indicated by LC_TIME. If the current
locale does not support a modified descriptor, date uses the unmodified field
descriptor value.

%EC The name of the base year (period) in the current locale’s alternate
representation.

%Ec The current locale’s alternate date and time representation.

%Ex The current locale’s alternate date representation.

%EY The full alternate year representation.

%Ey The offset from %EC (year only) in the current locale’s alternate
representation.

%Od The day of the month using the current locale’s alternate numeric symbols.

%Oe The day of the month using the current locale’s alternate numeric symbols.

%OH The hour (24-hour clock) using the current locale’s alternate numeric
symbols.

%OI The hour (12-hour clock) using the current locale’s alternate numeric
symbols.

%OM The minutes using the current locale’s alternate numeric symbols.

%Om The month using the current locale’s alternate numeric symbols.

%OS The seconds using the current locale’s alternate numeric symbols.

%OU The week number of the year (0–53) (with Sunday as the first day of the
week) using the current locale’s alternate numeric symbols.

%OW The week number of the year (0–53) (with Monday as the first day of the
week) using the current locale’s alternate numeric symbols.

%Ow The weekday as a number using the current locale’s alternate numeric
symbols (Sunday=0).

%Oy The year (offset from %C) using the current locale’s alternate numeric
symbols.

Example
The command:
date ’+%a %b %e %T %Z %Y’

date

168 z/OS V1R4.0 UNIX System Services Command Reference

produces the date in the default format—as shown at the start of this command
description.

Environment Variable
date uses the following environment variables:

TZ Gives the time zone for date to use when displaying the times. This is
ignored if you specify either the –c or the –u option.

For information on setting the local time zone with the TZ environment
variable, see Appendix I.

Localization
date uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

>0 Failure due to any of the following:
v An incorrect command-line option
v Too many arguments on the command line
v A bad date conversion
v A formatted date that was too long
v You do not have permission to set the date

Messages
Possible error messages include:

Bad format character x
A character following “%” in the format string was not in the list of field
descriptors.

No permission to set date
The system has denied you the right to set the date.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –c option is an extension of the POSIX standard.

Related Information
touch

Appendix I also explains how to set the local time zone with the TZ environment
variable.

date

Chapter 2. Shell Command Descriptions 169

dbx — Use the debugger

Format
dbx [–a ProcessID][–A ProcessID] [–c file] [–C dump–filename] [–d NestingDepth]
[–f] [–I directory] [–r] [–u] [ObjectFile[ProgramArguments]]

Description
dbx provides an environment to debug and run programs. dbx provides a symbolic
debug program for C programs, allowing you to carry out operations such as the
following:
v Examine object files
v Provide a controlled environment for running a program
v Set breakpoints at selected statements or run the program one line at a time
v Debug using symbolic variables and display them in their correct format
v View an MVS dump

The ObjectFile argument is an object (executable) file produced by a compiler.
When compiling your program to produce the information the dbx command needs,
use the –g (generate symbol table) option on the c89/cc/c++ command.

Note: If the object file is not compiled with the –g option on the c89/cc/c++
command, or if the user compiles with optimization, the capabilities of the
dbx command are limited.

The dump–filename argument is an MVS dump that exists in an HFS or an MVS
data set.

When the dbx command is started, it checks for a .dbxsetup file in the user’s
working directory. If the file is not found, dbx checks the user’s $HOME directory. If
a .dbxsetup file exists, its subcommands run before most of dbx’s initialization is
complete. This allows tailoring of dbx’s operational behavior before the debug
program is loaded via set subcommands. Use an editor to create a .dbxsetup file.

Also on start-up, dbx checks for a .dbxinit file in the user’s working directory. If the
file is not found, dbx checks the $HOME directory. If a .dbxinit file exists, its
subcommands run at the beginning of the debug sesssion. To create a .dbxinit file,
use an editor.

You can use the man command to view manual descriptions of dbx subcommands.
To do this, you must prefix all subcommands with dbx. For example, to view a
description of the dbx alias subcommand, you would enter the following:
man dbxalias

Options
–a ProcessID

Attaches the debug program to a running process. The debug program
becomes active as soon as the process wakes up. To attach the debug
program, you need authority to use the kill command on this process.

–A ProcessID
Reattaches the debug program to a running process that is already being
debugged by dbx. Use this option to reattach a child process that was
created when a debugged parent process did a fork while multiprocess

dbx

170 z/OS V1R4.0 UNIX System Services Command Reference

debugging mode was active. To reattach to the debug program, you need
authority to use the kill command on this process.

–c file Runs the dbx subcommands in the file before reading from standard input.

–C dump–filename
Puts dbx in dump reading (core file) processing mode.

–d NestingDepth
Sets the limit for the nesting of program blocks. The default nesting depth
limit is 25.

–f Starts dbx in lazy reading mode. After the dbx session is started, only the
required symbol table information is read. No session has been started.
Using this flag speeds up dbx startup (especially for debugging large
executables) and reduces memory usage by dbx.

–I directory
Includes directory in the list of directories searched for source files. The
default is to look for source files in the working directory and in the directory
where the object file is located. The search path is also set with the use
subcommand.

–r Runs the object file immediately. If it ends successfully, the dbx debug
program is exited. Otherwise, the debug program is entered and the reason
for termination is reported.

–u Causes the dbx command to prepend filename symbols with an @. This
flag reduces the possibility of ambiguous symbol names.

Note: Unless –r is specified, the dbx command prompts the user and waits for a
command. However, you can specify program arguments on dbx even when
–r is not used. For example:
dbx myprog p1 p2 p3

Expression Handling
Specify expressions in dbx with a subset of C syntax. A prefix * or a postfix ^
denotes indirection. Specify portions of an array by separating the lower and upper
bounds with .. (two periods).

Use [] (square brackets) or () (parentheses) to enclose array subscripts. Use the
field reference operator . (period) with pointers and records.

Note: The field reference operator . (period) makes the C operator → unnecessary
(although it is supported).

When displaying variables and expressions, the dbx command resolves names first
using the static scope of the current function. The dynamic scope is used if the
name is not defined in the first scope. If static and dynamic searches do not yield a
result, an arbitrary symbol is chosen and the system prints the message (using
Module.Variable). The Module.Variable construction is the name of an identifier
qualified with a block name. Override the name resolution procedure by qualifying
an identifier with a block name. Source files are treated as modules named by the
filename without the language suffix (such as the .c suffix on a C language
program).

The dbx command debug program checks types of expressions. Override types of
expressions by using TypeName (Expression). When there is no corresponding

dbx

Chapter 2. Shell Command Descriptions 171

named type, use the &TypeName special construct to represent a pointer to the
named type. Represent a pointer to enum, struct, or union tag with the
$$TagName construct.

A condition can be any dbx expression that evaluates to a true or false value. This
pertains to four dbx subcommands: stop, stopi, trace, and tracei.

The following operators are valid in expressions:

Expression Operators

exp (exponentiation) Algebraic +, −, *, / (floating), div (integral), mod

Bitwise −, |, bitand, xor, ^, <<, >>

Logical or, and, not, ||, &&;

Comparison <, >, <=, >=, <> or !=, = or ==

Other sizeof

Files
a.out The object file; a.out contains object code. This is the default program

object if nothing is specified for the dbx command.

.dbxinit
Contains initial commands.

Related Information
c89/cc/c++

? subcommand for dbx: Search backward for a pattern

Format
? [RegularExpression]

Description
The ? subcommand searches backward in the current source file for the pattern
specified by the RegularExpression argument. Entering the ? subcommand with no
arguments causes dbx to search backward for the previous regular expression.

Usage Note
The ? subcommand can be run only while the dbx debug program is running.

Examples
1. To search backward in the current source file for the letter z, enter:

?z

2. To repeat the previous search, enter:
?

Related Information
The / (search) subcommand.

dbx

172 z/OS V1R4.0 UNIX System Services Command Reference

/ subcommand for dbx: Search forward for a pattern

Format
/ [RegularExpression]

Description
The / subcommand searches forward in the current source file for the pattern
specified by the RegularExpression argument. Entering the / subcommand with no
arguments causes dbx to search forward for the previous regular expression.

Usage Note
The / subcommand can be run only while the dbx debug program is running.

Examples
1. To search forward in the current source file for the number 12, enter:

/ 12

2. To repeat the previous search, enter:
/

Related Information
The ? (search) subcommand.

alias subcommand for dbx: Display and assign subcommand aliases

Format
alias [name] [string]

Description
The alias subcommand creates aliases for dbx subcommands. The name
argument is the alias being created. The string argument is a series of dbx
subcommands that, after the execution of this subcommand, can be referred to by
name. If the alias subcommand is used without aliases, it displays all current
aliases.

Usage Note
The alias subcommand can be run only while the dbx debug program is running.

Examples
1. To set tracef1 to be an alias for trace in f1, enter:

alias tracef1 "trace in f1"

2. To define a stopf alias with file and line arguments to allow shorthand for
setting a breakpoint within a file, enter:
alias stopf(file, line) "stop at \"file\":line"

args subcommand for dbx: Display program arguments

Format
args

dbx: /

Chapter 2. Shell Command Descriptions 173

Description
The args subcommand displays the argument count and a list of arguments that
are passed to the user’s program when dbx starts debugging the program.

Usage Note
The args subcommand can be run only while the dbx debug program is running.

Examples
To display the current arguments, enter:
args

Related Information
The rerun and run subcommands.

assign subcommand for dbx: Assign a value to a variable

Format
assign [variable=expression]

Description
The assign subcommand assigns the value specified by the expression argument
to the variable specified by the variable argument.

Usage Notes
1. The assign subcommand can be run only while the dbx debug program is

running.

2. Functions cannot be specified with the expression argument.

Examples
1. To assign the value 5 to a variable x, enter:

assign x = 5

2. To assign the value of a variable y to a variable x, enter:
assign x = y

3. To assign a value to a storage location, enter:
assign 0x02e0f7f0 = 0xff

4. To assign a value to a register, enter:
assign $r7 = 123

5. To change the exit_status of a specific thread, enter:
assign $t1.exit_status=&$void(0x2d95840);

case subcommand for dbx: Change how dbx interprets symbols

Format
case [default | mixed | lower | upper]

dbx: args

174 z/OS V1R4.0 UNIX System Services Command Reference

Description
The case subcommand changes how the dbx debug program interprets symbols.
Use case if a symbol needs to be interpreted in a way not consistent with the
default behavior.

Entering case with no parameters displays the current case mode.

Options
default

Varies with the current language.
mixed Causes symbols to be interpreted as they actually appear.
lower Causes symbols to be interpreted as lowercase.
upper Causes symbols to be interpreted as uppercase.

Usage Note
The case subcommand can be run only while the dbx debug program is running.

Examples
1. To instruct dbx to interpret symbols as they actually appear, enter:

case mixed

2. To instruct dbx to interpret symbols as uppercase, enter:
case upper

catch subcommand for dbx: Start trapping a signal

Format
catch [signalnumber | signalname]

Description
The catch subcommand starts the trapping of a specified signal before that signal
is sent to the application program. This subcommand is useful when the application
program being debugged handles such signals as interrupts. The signal to be
trapped can be specified by number or by name using either the signalnumber or
the signalname argument, respectively. Signal names are case-insensitive, and the
SIG prefix is optional. All signals are caught by default except the SIGDUMP,
SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals. If no arguments are
specified, the current list of signals to be caught is displayed.

Usage Note
The catch subcommand can be run only while the dbx debug program is running.

Examples
1. To display a current list of signals to be caught by dbx, enter:

catch

2. To trap signal SIGALRM, enter:
catch SIGALRM

or:
catch ALRM

dbx: case

Chapter 2. Shell Command Descriptions 175

or:
catch 14

Related Information
The ignore subcommand.

clear subcommand for dbx: Remove all stops at a given source line

Format
clear [sourceline]

Description
The clear subcommand removes all stops at a given source line. The sourceline
argument can be specified in two formats:
v As an integer
v As a filename string followed by a : (colon) and an integer

Usage Note
The clear subcommand can be run only while the dbx debug program is running.

Example
To remove breakpoints set at line 19, enter:
clear 19

Related Information
The cleari and delete subcommands.

cleari subcommand for dbx: Remove all breakpoints at an address

Format
cleari address

Description
The cleari subcommand clears all the breakpoints at the address specified by the
address argument.

Usage Note
The cleari subcommand can be run only while the dbx debug program is running.

Examples
1. To remove a breakpoint set at address 0X100001B4, enter:

cleari 0x100001b4

2. To remove a breakpoint set at the address of the main() procedure, enter:
cleari Created by ActiveSystems 10/25/96 Entity not defined.

Related Information
The clear and delete subcommands.

dbx: catch

176 z/OS V1R4.0 UNIX System Services Command Reference

condition subcommand for dbx: Display a list of active condition
variables

Format
condition [number ...]
condition wait
condition nowait

Description
The condition subcommand displays a list of active condition variables for the
application program. All active condition variables are listed unless you use the
number parameter to specify the condition variables you want listed. You can also
select condition variables with or without waiters by using the wait or nowait
options.

In order to capture the condition variables, dbx must be debugging your program
before the condition variable is created. You must have coded your application in
one of the following ways:

v Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see z/OS
C/C++ Programming Guide .

Usage Note
The condition subcommand can be run only while the dbx debug program is
running.

Examples
1. To display all condition variables, enter:

condition

2. To display condition variables number 1 and number 4, enter:
condition 1 4

3. To display all condition variables with waiters, enter:
condition wait

4. To display all condition variables without waiters, enter:
condition nowait

cont subcommand for dbx: Continue program execution

Format
cont [signalnumber | signalname]

dbx: condition

Chapter 2. Shell Command Descriptions 177

Description
The cont subcommand continues the execution of the program from the current
stopping point until either the program finishes, another breakpoint is reached, a
signal is received that is trapped by the dbx command, or an event occurs (such as
a fork, an exec, or a program abend).

If a signal is specified, either by the number specified in the signalnumber argument
or by the name specified in the signalname argument, the program continues as if
that signal had been received by the focus thread.

If a signal is not specified, the dbx debug program variable $sigblock is set, and a
signal caused the debugged program to stop, then the program resumes execution.
If a signal is not specified, the dbx debug program variable $sigblock is not set,
and a signal caused the debugged program to stop, then typing in the cont
command with no signal causes the program to continue as if it had received the
original signal.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is
specified, the program continues as if it had not been stopped.

Usage Note
The cont subcommand can be run only while the dbx debug program is running.

Examples
1. To continue program execution from the current stopping point, enter:

cont

2. To continue program execution as though it had received the signal SIGQUIT,
enter:
cont SIGQUIT

Related Information
The step, next, goto, and skip subcommands.

delete subcommand for dbx: Remove traces and stops

Format
delete [all | number...]

Description
The delete subcommand removes traces and stops from the program. You can
specify the traces and stops to be removed through the number arguments, or you
can remove all traces and stops by using the all option. To display the numbers
associated by the dbx debug program with a trace or stop, use the status
subcommand.

Option
all Removes all traces and stops.

Usage Note
The delete subcommand can be run only while the dbx debug program is running.

dbx: cont

178 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To remove all traces and stops from the program, enter:

delete all

2. To remove traces and stops for event number 4, enter:
delete 4

Related Information
The status, clear, and cleari subcommands.

detach subcommand for dbx: Continue program execution without dbx
control

Format
detach [signalnumber | signalname]

Description
The detach subcommand continues the execution of a program from the current
stopping point without control of dbx.

If a signal is specified, either by the number specified in the signalnumber argument
or by the name specified in the signalname argument, the program continues
without dbx control as if that signal had been received by the focus thread. If the
signal is not specified, the program continues with no signal and without dbx
control.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is
specified, the program continues without dbx control as if it had not been stopped.

Usage
The detach subcommand can be run only while the dbx debug program is running.

Examples
1. To continue program execution from the current stopping point without dbx in

control, enter:
detach

2. To continue program execution without dbx control as though it had received
the signal SIGQUIT, enter:
detach SIGQUIT

Related Information
The cont subcommand.

display memory subcommand for dbx: Display the contents of
memory

Format
address, address/ [b | Bd | Bf | Bq | c | d | D | f | g | h | i | I | ld| lo |lx | o | O | q |
s | S | W | x | X] [>file]

dbx: delete

Chapter 2. Shell Command Descriptions 179

address/ [count] [b| Bd | Bf | Bq | c | d | D | f | g | h | i | I | ld | lo | lx | o | O | q |
s | S | o | W | X] [>file]

Description
The display memory subcommand, which does not have a keyword to start the
command, displays a portion of memory controlled by the following factors:

v The range of memory displayed is controlled by specifying:

–- Two address arguments, in which case all lines between those two
addresses are displayed (address/address), or

–- One address argument, where the display starts, and count, which
determines the number of lines displayed from address
(address/count).

. Used in place of the first address argument, this displays from the
point where you left off (see example 3 on page 181).

Specify symbolic addresses by preceding the name with an & (ampersand).
Addresses can be expressions made up of other addresses and the operators +, −,
and * (indirection). Any expression enclosed in parentheses is interpreted as an
address.

v The format in which the memory is displayed is controlled by the mode
argument. The default for the mode argument is the current mode. The
initial value of mode is X. The possible modes include:
b Prints a byte in octal
Bd Prints a double-precision binary real number
Bf Prints a single-precision binary real number
Bq Prints a long double-precision binary real number
c Prints a byte as a character
d Prints a short word in decimal
D Prints a long word in decimal
f Prints a single-precision real number
g Prints a double-precision real number
h Prints a byte in hexadecimal
i Prints the machine instruction
I Prints a wint_t character
ld Prints a long long in decimal
lo Prints a long long in octal
lx Prints prints a long long in hexidecimal
o Prints a short word in octal
O Prints a long word in octal
q Prints a long double precision floating-point number
s Prints a string of characters terminated by a null byte
S Prints a wchar_t string
W Prints a wint_t string
x Prints a short word in hexadecimal
X Prints a long word in hexadecimal

Option
>file Redirects output to the specified file.

Usage Note
The display memory subcommand can be run only while the dbx debug program
is running.

dbx: display memory

180 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To display one long word of memory content in hexadecimal starting at the

address 0X3FFFE460, enter:
0x3fffe460 / x

2. To display 2 bytes of memory content as characters starting at the address of
variable y, enter:
&y/2c

3. To display from the point where you left off, when using . (period) in place of
one of the addresses, enter:
0x100 / 2 which displays 2 words starting at x’100’

followed by:
. / 3 which displays 3 words starting at x’108’

down subcommand for dbx: Move the current function down the stack

Format
down [count]

Description
The down subcommand moves the current function down the stack count number
of levels. The current function is used for resolving names. The default for the count
argument is 1.

Usage Note
The down subcommand can be run only while the dbx debug program is running.

Examples
1. To move one level down the stack, enter:

down

2. To move three levels down the stack, enter:
down 3

Related Information
The up and where subcommands.

dump subcommand for dbx: Display the names and values of
variables in a procedure

Format
dump [procedure] [>file]

Description
The dump subcommand displays the names and values of all variables in the
specified procedure. If the procedure argument is . (dot), all active variables are
displayed. If the procedure argument is not specified, the current procedure is used.
If the >file option is used, the output is redirected to the specified file.

dbx: display memory

Chapter 2. Shell Command Descriptions 181

Option
>file dump output to the specified file.

Usage Note
The dump subcommand can be run only while the dbx debug program is running.
dump redirects output to the specified file.

Examples
1. To display names and values of variables in the current procedure, enter:

dump

2. To display names and values of variables in the add_count procedure, enter:
dump add_count

3. To redirect names and values of variables in the current procedure to the
var.list file, enter:
dump > var.list

edit subcommand for dbx: Invoke an editor

Format
edit [procedure | file]

Description
The edit subcommand invokes an editor on the specified file. The file can be
specified through the file argument or through the procedure argument (in which
case the editor is invoked on the file containing that procedure). If no file is
specified, the editor is invoked on the current source file. The default editor is the
ed editor. Override the default by resetting the EDITOR environment variable to the
name of the desired editor.

Usage Note
The edit subcommand can be run only while the dbx debug program is running.

Examples
1. To invoke an editor on the current source file, enter:

edit

2. To invoke an editor on the main.c file, enter:
edit main.c

3. To invoke an editor on the file containing the do_count procedure, enter:
edit do_count

Related Information
The ed editor.

The list subcommand for the dbx command.

dbx: dump

182 z/OS V1R4.0 UNIX System Services Command Reference

file subcommand for dbx: Change the current source file

Format
file [file]

Description
The file subcommand changes the current source file to the file specified by the file
argument; it does not write to that file. If the file argument is not specified, the file
subcommand displays the name of the current source file.

Usage Note
The file subcommand can be run only while the dbx debug program is running.

Examples
1. To change the current source file to the main.c file, enter:

file main.c

2. To display the name of the current source file, enter:
file

func subcommand for dbx: Change the current function

Format
func [procedure]

Description
The func subcommand changes the current function to the procedure or function
specified by the procedure argument. If the procedure argument is not specified, the
default current function is displayed. Changing the current function implicitly
changes the current source file to the file containing the new function; the current
scope used for name resolution is also changed.

Usage Notes
The func subcommand can be run only while the dbx debug program is running.

Examples
1. To change the current function to the do_count procedure, enter:

func do_count

2. To display the name of the current function, enter:
func

goto subcommand for dbx: Run a specified source line

Format
goto sourceline

dbx: file

Chapter 2. Shell Command Descriptions 183

Description
The goto subcommand causes the specified source line to be run next. Normally,
the source line must be in the same function as the current source line. To override
this restriction, use the set subcommand with the $unsafegoto variable.

Usage Note
The goto subcommand can be run only while the dbx debug program is running.

Example
To change the next line to be executed to line 6, enter:
goto 6

Related Information
The cont, gotoi, and set subcommands.

gotoi subcommand for dbx: Change the program counter address

Format
gotoi address

Description
The gotoi subcommand changes the program counter address to the address
specified by the address argument.

Usage Note
The gotoi subcommand can be run only while the dbx debug program is running.

Example
To change the program counter address to address 0X100002B4, enter:
gotoi 0x100002b4

Related Information
The goto subcommand.

help subcommand for dbx: Display a subcommand synopsis

Format
help [subcommand] [topic]

Description
The help subcommand displays a synopsis of common dbx subcommands.

Usage Note
The help subcommand can be run only while the dbx debug program is running.

Examples
To obtain a synopsis of common dbx subcommands, enter one of the following:

dbx: goto

184 z/OS V1R4.0 UNIX System Services Command Reference

help
help subcommand
help topic

The help subcommand with no arguments lists available dbx subcommands and
topics.

help subcommand, where subcommand is one of the dbx subcommands, displays
a synopsis and brief description of the subcommand. help topic—where topic is
execution, expression, files, machine, scope, usage, or variables—displays a
synopsis and brief description of the topic.

history subcommand for dbx: Display commands in a history list

Format
history

Usage Note
The history subcommand displays the commands in the history list. As each
command is entered, it is appended to the history list. A mechanism for history
substitution is provided through the exclamation (!) operator. The allowable forms
are !! for a previous command, !n for the nth command, and !string for the previous
command that starts with string. The number of commands retained and displayed
is controlled by the dbx internal variable $historywindow.

ignore subcommand for dbx: Stop trapping a signal

Format
ignore [signalnumber | signalname]

Description
The ignore subcommand stops the trapping of a specified signal before that signal
is sent to the program. This subcommand is useful when the program being
debugged handles such signals as interrupts.

The signal to be trapped can be specified by:
v Number, with the signalnumber argument
v Name, with the signalname argument

Signal names are not case-sensitive. The SIG prefix is optional.

If neither the signalnumber nor the signalname argument is specified, all signals
except the SIGDUMP, SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals are
ignored by default. The dbx debug program cannot catch SIGKILL or SIGDUMP. If
no arguments are specified, the list of currently ignored signals is displayed.

Usage Note
The ignore subcommand can be run only while the dbx debug program is running.

Examples
To cause dbx to ignore alarm clock timeout signals sent to the program, enter:
ignore sigalrm

dbx: help

Chapter 2. Shell Command Descriptions 185

or:
ignore alrm

or:
ignore 14

Related Information
The catch subcommand.

list subcommand for dbx: Display lines of the current source file

Format
list [procedure | SourcelineExpression] [,SourcelineExpression]

Description
The list subcommand displays a specified number of lines in the source file. The
number of lines displayed are specified in one of two ways:

v By specifying a procedure using the procedure argument. In this case, the list
subcommand displays lines before the first executable line of source in the
specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the
SourcelineExpression argument. Use the current filename or source filename if
specified.

The SourcelineExpression argument should consist of a valid line number
followed by an optional + or − and an integer. In addition, a SourcelineExpression
of $ can be used to denote the current line number, and a SourcelineExpression
of @ can be used to denote the next line number to be listed.

All lines from the first line number specified to the second line number specified,
inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, ten lines are printed, beginning with the line
number specified in the SourcelineExpression argument.

If the list subcommand is used without arguments, the default number of lines are
printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

Usage Note
The list subcommand can be run only while the dbx debug program is running.

Examples
1. To list the lines 1 through 10 in the current file, enter:

list 1,10

2. To list 10, or $listwindow, lines around the first executable line in the main
procedure, enter:
list main

3. To list 11 lines around the current line, enter:
list $-5,$+5

dbx: ignore

186 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
The edit, listi, move, and set subcommands.

listfiles subcommand for dbx: Display the list of source files

Format
listfiles [loadmap-index]

Description
The listfiles subcommand displays the list of files associated with each module in
the load map.

If the listfiles subcommand is used without arguments, the files for every module in
the load map will be listed.

Usage Notes
The listfiles subcommand can be run only while the dbx debug program is running.

Examples
1. To list all files in all modules, enter:

listfiles

2. To list the files only for module with index 0 in the loadmap, enter:
listfiles 0

Related Information
The listfuncs and map subcommands.

listfuncs subcommand for dbx: Display the list of functions

Format
listfuncs [filename]

Description
The listfuncs subcommand displays a list of functions associated with each file in
the program.

If the listfuncs subcommand is used without arguments, the function for every file in
the program will be listed.

Usage Notes
The listfuncs subcommand can be run only while the dbx debug program is
running.

Examples
1. To list all functions in all files, enter:

listfuncs

2. To list the function only for file mypgm.c, enter:
listfuncs mypgm.c

dbx: list

Chapter 2. Shell Command Descriptions 187

Related Information
The func subcommand.

listi subcommand for dbx: List instructions from the program

Format
listi [procedure | at | sourceline | address] [,address]

Description
The listi subcommand displays a specified set of instructions from the source file.
The instructions displayed are specified by:

v Providing the procedure argument, in which case the listi subcommand lists
instructions from the beginning of procedure until the list window is filled.

v Using the atsourceline option, in which case the listi subcommand displays
instructions beginning at the specified source line and continuing until the list
window is filled.

v Specifying a beginning and ending address using the address arguments, in
which case all instructions between the two addresses, inclusive, are displayed.

If the listi subcommand is used without options or arguments, the next $listwindow
instructions are displayed. To change the current size of the list window, use the set
$listwindow=value subcommand.

Option
at sourceline

Specifies a starting source line for the listing.

Usage Note
The listi subcommand can be run only while the dbx debug program is running.

Examples
1. To list the next 10, or $listwindow, instructions, enter:

listi

2. To list the machine instructions beginning at source line 10, enter:
listi at 10

3. To list the instructions between addresses 0X10000400 and 0X10000420, enter:
listi 0x10000400, 0x10000420

Related Information
The list and set subcommands.

map subcommand for dbx: Display load characteristics

Format
map [>file]

dbx: listfuncs

188 z/OS V1R4.0 UNIX System Services Command Reference

Description
The map subcommand displays characteristics for each loaded portion of the
program. This information includes the name, text origin, text length, text end, text
subpool, data origin, data length, data subpool, and file descriptor for each loaded
module. The data origin, data length, data subpool, and file descriptor do not
contain meaningful information.

Option
>file Redirects output to the specified file.

Usage Note
The map subcommand can be run only while the dbx debug program is running.

Example
To examine the characteristics of the loaded portions of the application, enter:
map

move subcommand for dbx: Change the next line to be displayed

Format
move sourceline

Description
The move subcommand changes the next line to be displayed to the line specified
by the sourceline argument. This subcommand changes the value of the @
variable.

Usage Note
The move subcommand can be run only while the dbx debug program is running.

Example
To change the next line to be listed to line 12, enter:
move 12

Related Information
The list subcommand.

multproc subcommand for dbx: Enable or disable multiprocess
debugging

Format
multproc
multproc [on]
multproc [off]

dbx: map

Chapter 2. Shell Command Descriptions 189

Description
The multproc subcommand enables or disables multiprocess debugging.
Multiprocess debugging is disabled when the dbx debug program is started. If no
options are specified, the multproc subcommand returns the current status of
multiprocess debugging.

Options
on Enables multiprocess debugging.
off Disables multiprocess debugging.

Usage Note
The multproc subcommand can be run only while the dbx debug program is
running.

Examples
1. To check the current status of multiprocess debugging, enter:

multproc

2. To enable multiprocess debugging, enter:
multproc on

3. To disable multiprocess debugging, enter:
multproc off

Related Information
The fork() function.

mutex subcommand for dbx: Display a list of active mutex objects

Format
mutex [number ...]
mutex lock
mutex unlock
mutex wait
mutex nowait

Description
The mutex subcommand displays a list of active mutex objects for the application
program. All active mutex objects are listed unless you use the number parameter
to specify the mutex objects you want listed. You can also select only locked or
unlocked mutexes, or mutexes with or without waiters, by using the lock, unlock,
wait, or nowait options.

In order to capture the mutex variables, dbx must be debugging your program
before the mutex variable is created. You must have coded your application in one
of the following ways:

v Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

dbx: multproc

190 z/OS V1R4.0 UNIX System Services Command Reference

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see z/OS
C/C++ Programming Guide .

Usage Note
The mutex subcommand can be run only while the dbx debug program is running.

Examples
1. To display all mutex objects, enter:

mutex

2. To display mutex objects number 1 and number 4, enter:
mutex 1 4

3. To display all locked mutex objects, enter:
mutex lock

4. To display all unlocked mutex objects, enter:
mutex unlock

5. To display all mutex objects with waiters, enter:
mutex wait

6. To display all mutex objects without waiters, enter:
mutex nowait

next subcommand for dbx: Run the program up to the next source line

Format
next [number]

Description
The next subcommand runs the application program up to the next source line. The
number argument specifies the number of times the next subcommand runs. If the
number argument is not specified, next runs once only.

Usage Notes
1. The next subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a next subcommand. Then dbx unholds the threads after the
next subcommand finishes.

Examples
1. To continue execution up to the next source line, enter:

next

2. To continue execution up to the third source line following the current source
line, enter:
next 3

Related Information
The cont, goto, nexti, and step subcommands.

dbx: mutex

Chapter 2. Shell Command Descriptions 191

nexti subcommand for dbx: Run the program up to the next machine
instruction

Format
nexti [number]

Description
The nexti subcommand runs the application program up to the next instruction. The
number argument specifies the number of times the nexti subcommand is to be
run. If the number argument is not specified, nexti runs only once.

Usage Notes
1. The nexti subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a nexti subcommand. Then dbx unholds the threads after the
nexti subcommand finishes.

Examples
1. To continue execution up to the next machine instruction, enter:

nexti

2. To continue execution up to the third machine instruction following the current
machine instruction, enter:
nexti 3

Related Information
The gotoi, next, and stepi subcommands.

object subcommand for dbx: Load an object file

Format
object filename

Description
The object subcommand loads the specified object file for execution, without the
overhead of reloading dbx.

Usage Note
The object subcommand can be run only while the dbx debug program is running.

Example
To complete debugging of the current program, and to start debugging a new
program without reloading dbx, enter:
object myprog

dbx: nexti

192 z/OS V1R4.0 UNIX System Services Command Reference

onload subcommand for dbx: Evaluate stop/trace after dll load

Format
v onload delete [all | number ...]

v onload list

v onload stop at sourceline

v onload stop in procedure

v onload trace at sourceline

v onload trace in procedure

Description
The onload subcommand defers building of stop or trace events until the procedure
or sourceline is defined in the program dbx is debugging. dbx will evaluate the
onload list after a DLL is loaded and generate stop/trace events if the procedure or
sourcefile is now known to dbx after symbolics for the DLL are processed. If the
procedure or sourceline is already known to dbx, then a normal stop or trace event
will be generated and no event will be added to the onload list.

Usage Note
The onload subcommand can be run only while the dbx debug program is running.

Examples
To defer the building of a stop or trace event, enter:
onload stop in myfunc
onload stop in myclass::memfunc
onload stop in myclassvar.memfunc
onload stop in "mypgm.c":52
onload trace in myfunc
onload trace in myclass::memfunc
onload trace in myclassvar.memfunc
onload trace in "mypgm.c":52

Related Information
The stop and trace subcommands.

print subcommand for dbx: Print the value of an expression

Format
print [expression,...] [(parameters)]

Description
The print subcommand prints the value of a list of expressions, specified by the
expression arguments.

Usage Note
The print subcommand can be run only while the dbx debug program is running.

Examples
1. To display the value of x and the value of y shifted left 2 bits, enter:

print x, y << 2

dbx: onload

Chapter 2. Shell Command Descriptions 193

2. To display a specific condition variable, enter:
print $c1

3. To display the number of waiters for a specific mutex object, enter:
print $m1.num_wait

4. To display the exit value of a specific thread, enter:
print $t1.exit_status

Related Information
The assign and set subcommands.

prompt subcommand for dbx: Change the dbx command prompt

Format
prompt [“string”]

Description
The prompt subcommand changes the dbx command prompt to the string
specified by the string argument.

Usage Note
The prompt subcommand can be run only while the dbx debug program is running.

Example
To change the prompt to dbx>, enter:
prompt "dbx>"

quit subcommand for dbx: End the dbx debugging session

Format
quit

Description
The quit subcommand ends the dbx debugging session.

Usage Note
The quit subcommand can be run only while the dbx debug program is running.

Example
To exit the dbx debug program, enter:
quit

readwritelock subcommand for dbx: Display a list of active read/write
lock objects

Format
readwritelock [number ...]
readwritelock lock

dbx: print

194 z/OS V1R4.0 UNIX System Services Command Reference

readwritelock unlock
readwritelock holder
readwrite noholder

Description
The readwritelock subcommand displays a list of active read/write lock objects for
the application program. All active read/write lock objects are listed unless you use
the number parameter to specify the read/write lock objects you want listed. You
can also select only locked or unlocked read/write locks, or read/write locks with or
without holders, by using the lock, unlock, holder, or noholder options.

In order to capture the read/write lock variables, dbx must be debugging your
program before the read/write lock variable is created. You must have coded your
application in one of the following ways:

v Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

v Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see z/OS
C/C++ Programming Guide .

Or:

v Specify test(all) in the _CEE_RUNOPTS environment variable:
export _CEE_RUNOPTS="test(all)"

Usage Note
The readwritelock subcommand can be run only while the dbx debug program is
running.

Examples
1. To display all read/write lock objects, enter:

readwritelock

2. To display read/write lock objects number 1 and number 4, enter:
readwritelock 1 4

3. To display all locked read/write lock objects, enter:
readwritelock lock

4. To display all unlocked read/write lock objects, enter:
readwritelock unlock

5. To display all read/write lock objects with holders, enter:
readwritelock holder

6. To display all read/write lock objects without holders, enter:
mutex noholders

record subcommand for dbx: Append user’s commands to a file

Format
record filename

dbx: readwritelock

Chapter 2. Shell Command Descriptions 195

Description
The record subcommand appends the user’s command lines to the specified file
until a record command is entered with no parameters.

The record subcommand is started by specifying a file name on the record
command. A second record command with no parameters will stop the current
record process and close the file.

Usage Notes
The record subcommand can be run only while the dbx debug program is running.

Examples
1. To start recording the dbx commands to file /tmp/mycmds, enter:

record /tmp/mycmds

2. To stop the previous recording to file /tmp/mycmds, enter:
record

Related Information
The source subcommand.

registers subcommand for dbx: Display the value of registers

Format
registers [>file]

Description
The registers subcommand displays the values of general-purpose registers,
system control registers, floating-point registers, and the current instruction register,
such as the program status word (PSW) for z/OS.

v General-purpose registers are denoted by the $rnumber variable, where the
number argument indicates the number of the register.

v Floating-point registers are denoted by the $frnumber variable. By default, the
floating-point registers are not displayed. To display the floating-point registers,
use the unset $noflregs dbx subcommand.

Option
>file Redirects output to the specified file.

Usage Note
The registers subcommand can be run only while the dbx debug program is
running.

Example
To display the registers, enter:
registers

Related Information
The set and unset subcommands.

dbx: record

196 z/OS V1R4.0 UNIX System Services Command Reference

rerun subcommand for dbx: Begin running a program with the
previous arguments

Format
rerun [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

Description
The rerun subcommand begins execution of the object file. The values specified
with the arguments argument are passed as command-line arguments. If the
arguments argument is not specified, the arguments from the last run or rerun
subcommand are reused.

Options
<file Redirects input so that input is received from file.

>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file
Appends output and standard error to file.

Usage Note
The rerun subcommand can be run only while the dbx debug program is running.

Example
To rerun the program with the previously entered arguments, enter:
rerun

Related Information
The run subcommand.

return subcommand for dbx: Continue running a program until a
return is reached

Format
return [procedure]

Description
The return subcommand causes the program to run until a return to the procedure
specified by the procedure argument is reached. If the procedure argument is not
specified, execution ceases when the current procedure returns.

Usage Note
The return subcommand can be run only while the dbx debug program is running.

dbx: rerun

Chapter 2. Shell Command Descriptions 197

Examples
1. To continue execution to the calling routine, enter:

return

2. To continue execution to the main routine, enter.
return main

run subcommand for dbx: Run a program

Format
run [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

Description
The run subcommand begins execution of the object file. The values specified with
the arguments argument are passed as command-line arguments.

Options
<file Redirects input so that input is received from file.

>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file
Appends output and standard error to file.

Usage Note
The run subcommand can be run only while the dbx debug program is running.

Example
To run the application with the arguments blue and 12, enter:
run blue 12

Related Information
The rerun subcommand.

set subcommand for dbx: Define a value for a dbx variable

Format
set [variable=expression]

Description
The set subcommand defines a value, which is specified by the expression
argument, for the dbx debug program variable, which is specified by the variable
argument. The name of the variable should not conflict with names in the program

dbx: return

198 z/OS V1R4.0 UNIX System Services Command Reference

being debugged. A variable is expanded to the corresponding expression within
other commands. If the set subcommand is used without arguments, the variables
currently set are displayed.

Variables
The following variables are set with the set subcommand:

$asciichars
When set, any dbx operation that displays the value of a character will
interpret the binary representation of the character as ascii.

$asciistrings
When set, any dbx operation that displays the value of a string will interpret
the binary representation of the string as ascii.

$c<n> Condition variables

$catchbp
Catches breakpoints during the execution of the next command.

$columns
Specifies the number of columns used to display arrays. Currently this is
only defined for FORTRAN.

$current
Defined as a constant with the value of the focus thread.

$cv_events
When set, dbx notifies the user but does not stop when a condition variable
event is processed. The following trace information is sent to the user for
the different events:

(dbx) cont
.
.
cv initialize, object=0x2e04567
cv wait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708
cv unwait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708
cv destroy, object=0x2e04567
.
.

$dll_loads
Set by default. When set, dbx processes symbolics for dlls as they are
loaded.

$dll_loadstop
Set by default. When set, dbx will attempt to stop the function call that
caused the dll to be loaded. If the dll was loaded due to a variable
reference or an explicit load, dbx will stop at the source line that caused
the dll to be loaded.

$expandunions
Displays values of each part of variant records or unions.

$flprecision
Determines the precision in bytes of floating-point registers when used in
expressions.

$fr<n>
Hexidecimal floating-point register.

dbx: set

Chapter 2. Shell Command Descriptions 199

$frb<n>
Binary floating-point register

$frame
Uses the stack frame pointed to by the address designated by the value of
$frame for doing stack tracebacks and accessing local variables.

$hexchars
Prints characters as hexadecimal values.

$hexin
Interprets addresses in hexadecimal.

$hexints
Prints integers as hexadecimal values.

$hexstrings
Prints character pointers in hexadecimal.

$historywindow
Specifies the number of subcommands to display and retain in the history
list.

$hold_next
When set, dbx automatically holds all threads except the focus thread
during the next, nexti, step, or stepi command execution. If not set, all
threads resume execution and may reach the breakpoint set by the next,
nexti, step, or stepi command execution.

$KERNEL_dlls
When set, dbx will use kernel interfaces to process and recognize DLLS.
This flag is mutually exclusive with $LE_dlls.

$l<n> Read/write locks variables.

$LE_dlls
When set, dbx will use LE interfaces to process and recognize DLLs. This
flag is mutually exclusive with $KERNEL_dlls.

$LE-hookstep
When set, dbx will process source level stepping using an LE interface
instead of machine instruction trace.

$listwindow
Specifies the number of lines to list around a function and to list when the
list subcommand is used without parameters.

$lv_events
When set, dbx notifies the user but does not stop when a read/write lock
object event is processed. The following trace information is sent to the
user for the different events:

(dbx) cont
.
.
lv initialize, object=0x2d04567
lv wait, object=0x2d04567, thid=0x0102030405060708
lv unwait, object=0x2d04567, thid=0x0102030405060708
lv lock, object=0x2d04567, thid=0x0102030405060708
lv unlock, object=0x2d04567, thid=0x0102030405060708
lv relock, object=0x2d04567, thid=0x0102030405060708
lv unrelock, object=0x2d04567, thid=0x0102030405060708
lv destroy, object=0x2d04567
.
.

dbx: set

200 z/OS V1R4.0 UNIX System Services Command Reference

$m<n>
Specifies mutex variables.

$mv_events
When set, dbx notifies the user but does not stop when a mutex object
event is processed. The following trace information is sent to the user for
the different events:

(dbx) cont
.
.
mv initialize, object=0x2d04567
mv wait, object=0x2d04567, thid=0x0102030405060708
mv unwait, object=0x2d04567, thid=0x0102030405060708
mv lock, object=0x2d04567, thid=0x0102030405060708
mv unlock, object=0x2d04567, thid=0x0102030405060708
mv relock, object=0x2d04567, thid=0x0102030405060708
mv unrelock, object=0x2d04567, thid=0x0102030405060708
mv destroy, object=0x2d04567
.
.

$noargs
Omits arguments from subcommands, such as where, up, down, and
dump.

$noflregs
Omits the display of floating-point registers from the registers
subcommand.

$noflbregs
Omits the display of binary floating-point registers from the registers
subcommand.

$octin Interprets addresses in octal.

$octints
Prints integers in octal.

$pc Program counter register.

$psw First word of the Program Status Word register.

$psw0
First word of the Program Status Word register.

$psw1
Second word of the Program Status Word register.

$r<n> General register.

$repeat
Repeats the previous command if no command was entered.

$showbases
When set, dbx will show base class data when a derived class is printed.

$sigblock
Blocks all signals from reaching the program being debugged.

$sticky_debug
When set, dbx will recognize sticky bit programs and DLLs in the loadmap.

$t<n> Thread variables

dbx: set

Chapter 2. Shell Command Descriptions 201

$tv_events
When set, dbx notifies the user but does not stop when a thread object
event is processed. The following trace information is sent to the user for
the different events:

(dbx) cont
.
.
IPT create, thid=0x1234567890123456, stack=5200
IPT exit, thid=0x1234567890123456
tv create, thid=0x1234567890123456, created thid=0x1234567890123422,

stack=5200
tv created, thid=0x1234567890123456, stack=5200
tv exit, thid=0x1234567890123456
tv wait, thid=0x1234567890123456, joining thid=0x1234567890123422
tv unwait, thid=0x1234567890123456, joined thid=0x1234567890123422

$unsafeassign
Turns off strict type checking between the two sides of an assign
subcommand.

$unsafebounds
Turns off subscript checking on arrays.

$unsafecall
Turns off strict type checking for arguments to subroutines or function calls.

$unsafegoto
Turns off the goto subcommand destination checking.

$vardim
Specifies the dimension length to use when printing arrays with unknown
bounds. The default value is 10. This variable is not supported.

$vectint
Displays the vector register contents as integer values. (This is the default).
This variable is not supported.

Usage Notes
1. The $unsafe variables limit the usefulness of the dbx debug program in

detecting errors.

2. The set subcommand can be run only while the dbx debug program is running.

Examples
1. To change the default number of lines to be listed to 20, enter:

set $listwindow=20

2. To disable type checking on the assign subcommand, enter:
set $unsafeassign

Related Information
The unset subcommand.

sh subcommand for dbx: Pass a command to the shell for execution

Format
sh [command]

dbx: set

202 z/OS V1R4.0 UNIX System Services Command Reference

Description
The sh subcommand passes the command specified by the command parameter to
the shell for execution. The SHELL environment variable determines which shell is
used. The default is the sh shell. If no argument is specified, control is transferred
to the shell.

Usage Note
The sh subcommand can be run only while the dbx debug program is running.

Examples
1. To run the ls command, enter:

sh ls

2. To escape to a shell, enter:
sh

skip subcommand for dbx: Continue from the current stopping point

Format
skip [number]

Description
The skip subcommand continues execution of the application program from the
current stopping point. A number of breakpoints equal to the value of the number
argument are skipped, and execution then ceases when the next breakpoint is
reached or when the program finishes. If the number argument is not specified, it
defaults to a value of 1.

Usage Note
The skip subcommand can be run only while the dbx debug program is running.

Example
To continue execution until the second breakpoint is encountered, enter:
skip 1

Related Information
The cont subcommand.

source subcommand for dbx: Read subcommands from a file

Format
source file

Description
The source subcommand reads dbx subcommands from the file specified by the
file argument.

Usage Note
The source subcommand can be run only while the dbx debug program is running.

dbx: sh

Chapter 2. Shell Command Descriptions 203

Example
To read the dbx subcommands in the cmdfile file, enter:
source cmdfile

status subcommand for dbx: Display the active trace and stop
subcommands

Format
status [>file]

Description
The status subcommand displays the trace and stop subcommands currently
active. The > option sends the output of the status subcommand to a file specified
in the file argument.

Option
>file Redirects output to file.

Usage Note
The status subcommand can be run only while the dbx debug program is running.

Examples
1. To display the currently active trace and stop subcommands, enter:

status

2. To stop at line 52 only when thread $t2 reaches that line, enter:
stop at 52 if $t2==$current

Related Information
The clear, delete, stop, and trace subcommands.

step subcommand for dbx: Run one or more source lines

Format
step [number]

Description
The step subcommand runs source lines of the program. Specify the number of
lines to be run with the number argument. If the number argument is omitted, it
defaults to a value of 1.

Usage Notes
1. The step subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a step subcommand. Then dbx unholds the threads after the
step subcommand finishes.

dbx: source

204 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To continue execution for one source line, enter:

step

2. To continue execution for five source lines, enter:
step 5

Related Information
The cont, goto, next, and stepi subcommands.

stepi subcommand for dbx: Run one or more machine instructions

Format
stepi [number]

Description
The stepi subcommand runs instructions of the program. Specify the number of
instructions to be run in the number argument. If the number argument is omitted, it
defaults to 1.

Usage Notes
1. The stepi subcommand can be run only while the dbx debug program is

running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a stepi subcommand. Then dbx unholds the threads after the
stepi subcommand finishes.

Examples
1. To continue execution for one machine instruction, enter:

stepi

2. To continue execution for five machine instructions, enter:
stepi 5

Related Information
The gotoi, nexti, and step subcommands.

stop subcommand for dbx: Stop execution of a program

Format
stop if condition
stop [variable] at sourceline [if condition]
stop [variable] in procedure [if condition]
stop variable [if condition]

Description
The stop subcommand stops execution of the program when certain conditions are
fulfilled. The program is stopped when:
v The condition is true, if the ifcondition option is used.
v The sourceline line number is reached, if the atsourceline option is used.
v The procedure is called, if the inprocedure option is used.

dbx: step

Chapter 2. Shell Command Descriptions 205

v The variable is changed, if the variable argument is specified.

The dbx debug program associates event numbers with each stop subcommand.
To view these numbers, use the status subcommand. To turn stop off, use the
delete or clear subcommand.

Options
atsourceline

Specifies the line number.

ifcondition
Specifies the condition, such as true.

inprocedure
Specifies the procedure to be called.

Usage Note
The stop subcommand can be run only while the dbx debug program is running.

Examples
1. To stop execution at the first executable statement in the main procedure, enter:

stop in main

2. To stop execution when the value of the x variable is changed on line 12 of the
execution, enter:
stop x at 12

3. To stop execution at a specified line (line 23), when the value of the variable
(myvar) is greater than 2, enter:
stop at 23 if myvar > 2

4. To stop at line 52 only when thread $t2 reaches that line, enter:
stop at 42 if $t2==$current

Related Information
The stopi, delete, clear, and trace subcommands.

stopi subcommand for dbx: Stop at a specified location

Format
stopi address [if condition]
stopi [address] at address [if condition]
stopi [address] in procedure [if condition]

Description
The stopi subcommand sets a stop at the specified location.

v With the ifcondition option, the program stops when the condition is true.

v With the address argument, the program stops when the contents of address
change.

v With the ataddress option, a stop is set at the specified address.

v With the inprocedure option, the program stops when the procedure specified
with the procedure argument is called.

dbx: stop

206 z/OS V1R4.0 UNIX System Services Command Reference

Options
ifcondition

Specifies the condition, such as true.

inprocedure
Specifies the procedure to be called.

ataddress
Specifies the machine instruction address.

Usage Note
The stopi subcommand can be run only while the dbx debug program is running.

Examples
1. To stop execution at address 0X100020F0, enter:

stopi at 0x100020f0

2. To stop execution when the contents of address 0X100020F0 change, enter:
stopi 0x100020f0

3. To stop at address 0x2d04567 only when thread $t2 reaches that address,
enter:
stopi at 0x2d04567 if $t2=$current

Related Information
The stop subcommand.

thread subcommand for dbx: Display a list of active threads

Format
thread [number ...]
thread hold [number ...]
thread unhold [number ...]
thread info [number ...]
thread current [number ...]
thread activ
thread async
thread dead
thread pcanc

Description
The thread subcommand displays a list of active threads for the application
program. All active threads are listed unless you use the number parameter to
specify the threads you want listed. You can also select threads by their states
using the activ, async, dead, or pcanc options.

You can use the info option to display full information about a thread, and threads
can be held or unheld with the hold or unhold options. The focus thread is
defaulted to the running thread; dbx uses it as the context for normal dbx
subcommands such as register. You can use the current option to switch the dbx
focus thread.

dbx: stopi

Chapter 2. Shell Command Descriptions 207

Examples
1. To display all thread objects, enter:

thread

2. To display thread objects number 1 and 2, enter:
thread 1 2

3. To display all active threads, enter:
thread activ

4. To display all threads in dead state, enter:
thread dead

5. To display all threads in async state (that is, threads with a cancelability type of
PTHREAD_INTR_ASYNCHRONOUS) that are waiting to be scheduled), enter:
thread async

Because this thread was created with the PTATASYNCHRONOUS attribute
and the limit was reached, this thread was queued for execution. For example,
if the thread limit is set to ten and there are 12 threads, two of them will be
shown as async for the dbx thread command.

6. To display all threads in pcanc state (that is, threads that have been requested
to be canceled by pthread_cancel(), enter:
thread pcanc

7. To hold all threads, enter:
thread hold

8. To hold thread number 1 and 4, enter:
thread hold 1 4

9. To unhold thread number 1 and 4, enter:
thread unhold 1 4

10. To display the focus thread, enter:
thread current

11. To set the focus thread to thread number 1, enter:
thread current 1

12. To get information about thread number 3, enter:
thread info 3

trace subcommand for dbx: Print tracing information

Format
trace [if condition]
trace procedure [if condition]
trace [variable] at sourceline [if condition]
trace [variable] in procedure [if condition]
trace sourceline [if condition]
trace expression at sourceline [if condition]

Description
The trace subcommand prints tracing information for the specified procedure,
function, source line, expression, or variable when the program runs. A condition
can be specified. The dbx debug program associates a number with each trace
subcommand. To view these numbers, use the status subcommand. To turn tracing
off, use the delete subcommand.

dbx: thread

208 z/OS V1R4.0 UNIX System Services Command Reference

Options
atsourceline

Specifies the source line at which to find the expression being traced.

ifcondition
Specifies a condition for the beginning of the trace. The trace begins only
ifcondition is true.

inprocedure
Specifies the procedure in which to find the procedure or variable being
traced.

Usage Note
The trace subcommand can be run only while the dbx debug program is running.

Examples
1. To trace each call to the printf() procedure, enter:

trace printf

2. To trace each execution of line 22 in the hello.c file, enter:
trace "hello.c":22

3. To trace changes to the x variable within the main procedure, enter:
trace x in main

4. To trace at line 52 only when mutex $m1 is not held, enter:
trace at 52 if $m2.lock == 0

Related Information
The tracei subcommand.

tracei subcommand for dbx: Turn on tracing

Format
tracei [if condition]
tracei address [at address] [if condition]
tracei address [in procedure] [if condition]
tracei expression at address [if condition]

Description
The tracei subcommand turns on tracing when:

v The contents of the storage at the address change, if the address argument is
specified.

v The instruction at the specified address is executed, if the ataddress option is
specified.

v The procedure specified by procedure is active, if the inprocedure option is
included.

v The condition specified by the condition argument is true, if the ifcondition option
is included.

dbx: trace

Chapter 2. Shell Command Descriptions 209

Options
ataddress

Specifies an address. Tracing is enabled when the contents of this address
change.

ifcondition
Specifies a condition, the meeting of which causes tracing to be enabled.

inprocedure
Specifies a procedure. Tracing is enabled when this procedure is active.

Usage Note
The tracei subcommand can be run only while the dbx debug program is running.

Examples
1. To trace each instruction run, enter:

tracei

2. To trace each time the instruction at address 0X100020F0 is run, enter:
tracei at 0x100020f0

3. To trace each time the contents of memory location 0X20004020 change while
the main procedure is active, enter:
tracei 0x20004020 in main

4. To trace at address 0x2d04567 only when thread $t2 reaches that address,
enter:
tracei at 0x2d04567 if $t2=$current

Related Information
The trace subcommand.

unalias subcommand for dbx: Remove an alias

Format
unalias name

Description
The unalias subcommand removes the alias specified by the name argument.

Usage Note
The unalias subcommand can be run only while the dbx debug program is running.

Example
To remove an alias named printx, enter:
unalias printx

Related Information
The alias subcommand.

dbx: tracei

210 z/OS V1R4.0 UNIX System Services Command Reference

unset subcommand for dbx: Delete a variable

Format
unset name

Description
The unset subcommand deletes the dbx debug program variable associated with
the name specified by the name argument.

Usage Note
The unset subcommand can be run only while the dbx debug program is running.

Example
To delete the variable inhibiting the display of floating-point registers, enter:
unset $noflregs

Related Information
The set subcommand.

up subcommand for dbx: Move the current function up the stack

Format
up [count]

Description
The up subcommand moves the current function up the stack count number of
levels. The current function is used for resolving names. The default for the count
argument is 1.

Usage Note
The up subcommand can be run only while the dbx debug program is running.

Examples
1. To move the current function up the stack two levels, enter:

up 2

2. To display the current function on the stack, enter:
up 0

Related Information
The down subcommand.

use subcommand for dbx: Set the list of directories to be searched

Format
use [directory...]

dbx: unset

Chapter 2. Shell Command Descriptions 211

Description
The use subcommand sets the list of directories to be searched when the dbx
debug program looks for source files. If the use subcommand is specified without
arguments, the current list of directories to be searched is displayed.

If the C primary source is in an MVS data set, the use subcommand can be
specified with a double-slash (//) argument to indicate that the source file be sought
outside the hierarchical file system.

Usage Note
The use subcommand can be run only while the dbx debug program is running.

Examples
1. To change the list of directories to be searched to the working directory, the

parent directory, and /tmp, enter:
use . .. /tmp

2. To change the list of directories to be searched to look for the C source as an
MVS data set, enter:
use //

Related Information
The edit and list subcommands.

whatis subcommand for dbx: Display the type of program components

Format
whatis name

Description
The whatis subcommand displays the declaration of name, where the name
argument designates a variable, procedure, or function name, optionally qualified
with a block name.

Usage Notes
1. Variables declared with the const attribute (in your C program) are displayed

without the const attribute.

2. The whatis subcommand can be run only while the dbx debug program is
running.

Examples
1. To display the declaration of the x variable, enter:

whatis x

2. To display the declaration of the main function, enter:
whatis main

3. To display the declaration of the x variable within the main function, enter:
whatis main.x

4. To display the declaration of a specific condition variable, $c1, enter:
whatis $c1

5. To display the declaration of a specific mutex object, $m1, enter:

dbx: use

212 z/OS V1R4.0 UNIX System Services Command Reference

whatis $m1

6. To display the declaration of a specific thread, $t1, enter:
whatis $t1

where subcommand for dbx: List active procedures and functions

Format
where [>file]

Description
The where subcommand displays a list of active procedures and functions. By
using the >file option, you can redirect the output of this subcommand to the
specified file.

Options
>flag Redirects output to the specified file.

Usage Note
The where subcommand can be run only while the dbx debug program is running.

Example
To display the list of active routines, enter:
where

Related Information
The up and down subcommands.

whereis subcommand for dbx: Display the full qualifications of
symbols

Format
whereis identifier

Description
The whereis subcommand displays the full qualifications of all the symbols whose
names match the specified identifier. The order in which the symbols print is not
significant.

Usage Note
The whereis subcommand can be run only while the dbx debug program is
running.

Example
To display the qualified names of all symbols named x, enter:
whereis x

Related Information
The which subcommand.

dbx: whatis

Chapter 2. Shell Command Descriptions 213

which subcommand for dbx: Display the full qualification of an
identifier

Format
which identifier

Description
The which subcommand displays the full qualification of the given identifier. The full
qualification consists of a list of the outer blocks with which the identifier is
associated.

Usage Note
The which subcommand can be run only while the dbx debug program is running.

Example
To display the full qualification of the x symbol, enter:
which x

Related Information
The whereis subcommand.

dd — Convert and copy a file

Format
dd [bs=size] [cbs=size] [conv=conversion] [count=n] [ibs=size] [if=file]
[imsg=string] [iseek=n] [obs=s] [of=file] [omsg=string] [seek=n] [skip=n]>

Description
dd reads and writes data by blocks. It can convert data between formats. It is
frequently used for such devices as tapes that have discrete block sizes, or for fast
multisector reads from disks. dd performs conversions to accommodate
nonprogrammable terminals, which require deblocking, conversion to and from
EBCDIC, and fixed-length records.

dd processes the input data as follows:

1. dd reads an input block.

2. If this input block is smaller than the specified input block size, dd pads it to the
specified size with null bytes. When you also specify a block or unblock
conversion, dd uses spaces instead of null bytes.

3. If you specified bs=s and requested no conversion other than sync or noerror,
dd writes the padded (if necessary) input block to the output as a single block
and omits the remaining steps.

4. If you specified the swab conversion, dd swaps each pair of input bytes. If there
is an odd number of input bytes, dd does not attempt to swap the last byte.

5. dd performs all remaining conversions on the input data independently of the
input block boundaries. A fixed-length input or output record may span these
boundaries.

dbx: which

214 z/OS V1R4.0 UNIX System Services Command Reference

6. dd gathers the converted data into output blocks of the specified size. When dd
reaches the end of the input, it writes the remaining output as a block (without
padding if conv=sync is not specified). As a result, the final output block may be
shorter than the output block size.

Options
bs=size

Sets both input and output block sizes to size bytes. You can suffix this
decimal number with w, b, k, or x number, to multiply it by 2, 512, 1024, or
number, respectively. You can also specify size as two decimal numbers
(with or without suffixes) separated by x to indicate the product of the two
values. Processing is faster when ibs and obs are equal, since this avoids
buffer copying. The default block size is 1B. bs=size supersedes any
settings of ibs=size or obs=size.

If you specify bs=size and you request no other conversions than noerror,
notrunc, or sync, dd writes the data from each input block as a separate
output block; if the input data is less than a full block and you did not
request sync conversion, the output block is the same size as the input
block.

cbs=size
Sets the size of the conversion buffer used by various conv options.

conv=conversion[, conversion, ...]
conversion can be any one of the following:

ascii Converts EBCDIC input to ASCII for output; it is provided for
compatibility purposes only.

To copy a file and convert between a shell code page and ASCII,
use iconv, not dd.

block Converts variable-length records to fixed-length records. dd treats
the input data as a sequence of variable-length records (each
terminated by a newline or an EOF character) independent of the
block boundaries. dd converts each input record by first removing
any newline characters and then padding (with spaces) or
truncating the record to the size of the conversion buffer. dd reports
the number of truncated records on standard error (stderr). You
must specify cbs=size with this conversion.

Note: When working with doublebyte characters, dd truncates the
record after the last complete doublebyte character that will
fit in the conversion buffer. dd then pads the record with
spaces if it is shorter than the conversion buffer size.

convfile
Uses convfile as a translation table if it is not one of the
conversion formats listed here and it is the name of a file of exactly
256 bytes.

You can perform multiple conversions at the same time by
separating arguments to conv with commas; however, some
conversions are mutually exclusive (for example, ucase and lcase).

Notes:

1. When you specify one or more of the character set conversions
(ascii, ebcdic, ibm, or convfile), dd assumes that all

dd

Chapter 2. Shell Command Descriptions 215

characters are singlebyte characters, regardless of the locale.
Do not use these conversions with doublebyte character sets.

2. When working with DBCS text, dd treats the input and output
files as character strings and handles DBCS characters
correctly (no splitting and retaining of proper shift states). This
happens only if any of the conversion options (block, unblock,
ucase, or lcase) are specified. Otherwise, DBCS strings can be
corrupted with the seek, count, or iseek processing.

ebcdic
Converts ASCII input to EBCDIC for output; it is provided for
compatibility purposes only.

To copy a file and convert between a shell code page and ASCII,
use iconv, not dd.

ibm Like ebcdic, converts ASCII to EBCDIC; it is provided for
compatibility purposes only.

To copy a file and convert between code page 01047 (used in the
z/OS shell) and ASCII, use iconv, not dd.

lcase Converts uppercase input to lowercase.

noerror
Ignores errors on input.

notrunc
Does not truncate the output file. dd preserves blocks in the output
file that it does not explicitly write to.

swab Swaps the order of every pair of input bytes. If the current input
record has an odd number of bytes, this conversion does not
attempt to swap the last byte of the record.

sync Specifies that dd is to pad any input block shorter than ibs to that
size with NUL bytes before conversion and output. If you also
specified block or unblock, dd uses spaces instead of null bytes for
padding.

ucase Converts lowercase input to uppercase.

unblock
Converts fixed-length records to variable-length records by reading
a number of bytes equal to the size of the conversion buffer,
deleting all trailing spaces, and appending a newline character. You
must specify cbs=size with this conversion.

count=n
Copies only n input blocks to the output.

ibs=size
Sets the input block size in bytes. You specify it in the same way as with
the bs option.

if=file Reads input data from file. If you don’t specify this option, dd reads data
from standard input (stdin).

imsg=string
Displays string when all data has been read from the current volume,
replacing all occurrences of %d in string with the number of the next volume
to be read. dd then reads and discards a line from the controlling terminal.

dd

216 z/OS V1R4.0 UNIX System Services Command Reference

iseek=n
seeks to the nth block of the input file. The distinction between this and the
skip option is that iseek does not read the discarded data. There are some
devices, however, such as tape drives and communication lines, on which
seeking is not possible, so only skip is appropriate.

obs=size
Sets the output block size in bytes. You specify it in the same way as the
bs value. The size of the destination should be a multiple of the value
chosen for size. For example, if you choose obs=10K, the destination’s size
should be a multiple of 10K.

of=file Writes output data to file. If you don’t specify this option, dd writes data to
standard output (stdout). dd truncates the output file before writing to it,
unless you specified the seek=n operand. If you specify seek=n, but do not
specify conv=notrunc, dd preserves only those blocks in the output file over
which it seeks. If the size of the seek plus the size of the input file is less
than the size of the output file, this can result in a shortened output file.

omsg=string
Displays string when dd runs out of room while writing to the current
volume. Any occurrences of %d in string are replaced with the number of the
next volume to be written. dd then reads and discards a line from the
controlling terminal.

seek=n
Initially seeks to the nth block of the output file.

Note: Use caution when working with DBCS characters and the seek
option. Seeking into the output file that contains DBCS characters
can cause the DBCS string in the output file to be corrupted. Be sure
that the seek count is not aligned with an existing DBCS string in the
output file. Otherwise, part of the existing DBCS string either is
written over with singlebyte data or has extra shift codes from the
input file’s DBCS data.

skip=n
Reads and discards the first n blocks of input.

Example
Entering:
dd if=in of=out conv=ascii cbs=80 ibs=6400 obs=512

converts 80-byte fixed-length EBCDIC card images in 6400-byte input blocks to
variable-length ASCII lines, 512 bytes to the output block.

Localization
dd uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

dd

Chapter 2. Shell Command Descriptions 217

Exit Values
0 Successful completion

1 Failure due to any of the following:
v I/O errors on read/write
v Incorrect command-line option
v Incorrect arguments to a conversion

2 Failure resulting in a usage message such as:
v An option that should contain = does not
v Unknown or incorrect command-line option

Messages
Possible error messages include:

badly formed number number
A value specified as a number (for example, a block size) does not have
the form of a number as recognized by dd. For example, you may have
followed the number with a letter that dd does not recognize as a block-size
unit (w, b, k).

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The conv=ascii, conv=ebcdic, conv=ibm, conv=convfile, iseek, imsg, and
omsg options plus the w suffix described in the bs= option are all extensions of the
POSIX standard.

Related Information
cp, cpio, iconv, mv, tr

df — Display the amount of free space in the file system

Format
df [–kPStv][filename] ...

Description
df shows the amount of free space left on a file system. Space can have the
following values:

Space Used
Total amount of space allocated to existing files in the file system.

Space Free
Total amount of space available in file system for the creation of new files
by unprivileged users.

Space Reserved
Space reserved by the system which is not normally available to a user.

Total Space
Includes space used, space free, and space reserved.

dd

218 z/OS V1R4.0 UNIX System Services Command Reference

df measures space in units of 512-byte disk sectors. You can specify a particular
file system by naming any filename on that file system. If you do not give an
argument, df reports space for all mounted file systems known to the system, in the
following format:

v File system root

v File system name

v Space available and total space

The total space reported is the space in the already allocated extents (primary
and any already allocated secondary extents) of the HFS data set that holds this
file system. Therefore, the total space may increase as new extents are
allocated.

v Number of free files (inodes).

This number is only meaningful for file systems created using DFSMS 1.3.0 and
later. For file systems created with earlier versions of DFSMS, this number will
always be 4 294 967 295.

v File system status

Options
–k Uses 1024-byte (1KB) units instead of the default 512-byte units when

reporting space information.

–P Lists complete information on space used, in the following order:
v File system name
v Total space
v Space used
v Space free
v Percentage of space used
v File system root

–S Display SMF accounting fields.

–t Display total allocated file slots, in addition to the total number of free files
that are already displayed.

–v Lists more detailed information on the file system status.
v File system root
v File system name
v Space available and total space
v Number of free files (inodes)
v File system status
v File system type, and mode bits
v File system mount parm data
v File system mount tag value
v Whether ACLs are supported by the security product and file system.
v Aggregate Name, if one exists

For systems in a shared HFS environment, the following additional fields
are displayed:
v File system ID (owner/mounted file system server)
v File system ID issuing a quiesce request
v File system automove status (yes-Y, no-N, include-I, exclude-E or

unmount-U)
v File system client status
v System list and Include/Exclude indicator, if system list exists

df

Chapter 2. Shell Command Descriptions 219

|

|
|

|

Example
If you issue a df –v on a file system whose owner is participating in shared HFS,
status information such as the following will be displayed:

Mounted on Filesystem Avail/Total Files Status
/u/billyjc (OMVS.ZFS.BILLYJC) 365824/3165120 4294924769 Available
ZFS, Read/Write, Device: 17,ACLS=Y, No SUID, Exported, No Security
FSFULL(90,1)
File System owner: AQFT Automove=E Client=N
System List (Exclude): sysname1 sysname2 sysnameN
Quiesce Owner : AQTS Quiesce Jobname : MEGA Quiesce PID: 16777321
Filetag : T=on codeset=ISO8859-1
Aggregate Name: POSIX.ZFS.ETC

Localization
df uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to access filename
v Inability to access device
v device is not a device

2 Incorrect command-line option

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
du, ls

diff — Compare two text files and show the differences

Format
diff [–befHhimnrsw] [–C n] [–c[n]] [–Difname] path1 path2

Description
The diff command attempts to determine the minimal set of changes needed to
convert a file whose name is specified by the path1 argument into the file specified
by the path2 argument.

Input files must be text files. If either (but only one) filename is –, diff uses a copy
of the standard input (stdin) for that file. If exactly one of path1 or path2 is a
directory, diff uses a file in that directory with the same name as the other filename.
If both are directories, diff compares files with the same filenames under the two
directories; however, it does not compare files in subdirectories unless you specify

df

220 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|
|
|
|
|
|
|

the –r option. When comparing two directories, diff does not compare character
special files, or FIFO special files with any other files.

By default, output consists of descriptions of the changes in a style like that of the
ed text editor. A line indicating the type of change is given. The three types are a
(append), d (delete), and c (change). The output is symmetric: A delete in path1 is
the counterpart of an append in path2. diff prefixes each operation with a line
number (or range) in path1 and suffixes each with a line number (or range) in
path2. After the line giving the type of change, diff displays the deleted or added
lines, prefixing lines from path1 with < and lines from path2 with >.

Options
Options that control the output or style of file comparison are:

–b Ignores trailing blanks and tabs and considers adjacent groups of blanks
and tabs elsewhere in input lines to be equivalent.

For example, if one file contained a string of three spaces and a tab at a
given location while the other file contained a string of two spaces at the
same location, diff would not report this as a difference.

–C n Shows n lines of context before and after each change. diff marks lines
removed from path1 with –, lines added to path2 with +, and lines changed
in both files with !.

–c[n] Is equivalent to –Cn, but n is optional. The default value for n is 3. diff
marks lines removed from path1 with –, lines added to path2 with +, and
lines changed in both files with !.

–Difname
Displays output that is the appropriate input to the C preprocessor to
generate the contents of path2 when ifname is defined, and the contents of
path1 when ifname is not defined.

–e Writes out a script of commands for the ed text editor, which converts path1
to path2. diff sends the output to the standard output (stdout).

–f Writes a script to stdout (but it will be in a form not suitable for use with the
ed editor) showing the modifications necessary to convert path1 to path2 in
the reverse order of that produced by the –e option. The commands
produced will be reversed from that produced by –e, and the line number
ranges will be separated by spaces, rather than commas. This option
conflicts with the –m option.

–H Uses the half-hearted (–h) algorithm only if the normal algorithm runs out of
system resources.

–h Uses a fast, half-hearted algorithm instead of the normal diff algorithm. This
algorithm can handle arbitrarily large files; however, it is not particularly
good at finding a minimal set of differences in files with many differences.

–i Ignores the case of letters when doing the comparison.

–m Produces the contents of path2 with extra formatter request lines
interspersed to show which lines were added (those with vertical bars in the
right margin) and deleted (indicated by a * in the right margin).

–M Is an IBM internal option and is not supported.

–n Is an IBM internal option and is not supported.

–N Is an IBM internal option and is not supported.

diff

Chapter 2. Shell Command Descriptions 221

–r Compares corresponding files under the directories, and recursively
compares corresponding files under corresponding subdirectories under the
directories. You can use this option when you specify two directory names
on the command line.

–s Compares two directories, file by file, and prints messages for identical files
between the two directories.

–w Ignores white space when making the comparison.

Examples
The following example illustrates the effect of the –c option on the output of the diff
command. The following two files, price1 and price2, are compared with and
without the use of the –c option.

The contents of price1 are as follows:
Company X Price List:
$ 0.39 -- Package of Groat Clusters
$ 5.00 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child’s Riding Hood (Red)
$ 35.00 -- Genuine Placebos
$ 45.00 -- Case of Simulated Soy Bean Oil
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot
$125.00 -- Emperor’s New Clothes

The contents of price2 are as follows:
Company X Price List:
$ 0.39 -- Package of Groat Clusters
$ 5.49 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 17.00 -- Simulated Naugahyde cleaner
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child’s Riding Hood (Red)
$ 35.00 -- Genuine Placebos
$ 45.00 -- Case of Simulated Soy Bean Oil
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot

The command:
diff price1 price2

results in the following output:
3c3
< $ 5.00 -- Candy Apple Sampler Pack

> $ 5.49 -- Candy Apple Sampler Pack
5a6
> $ 17.00 -- Simulated Naugahyde cleaner
13d13
< $125.00 -- Emperor’s New Clothes

The addition of the –c option, as in:
diff -c price1 price2

diff

222 z/OS V1R4.0 UNIX System Services Command Reference

results in the following output:
*** price1 Wed Oct 1 13:59:18 1997
--- price2 Wed Oct 1 14:03:36 1997

*** 1,8 ****
Company X Price List:

$ 0.39 -- Package of Groat Clusters
! $ 5.00 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child’s Riding Hood (Red)

--- 1,9 ----
Company X Price List:

$ 0.39 -- Package of Groat Clusters
! $ 5.49 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)

+ $ 17.00 -- Simulated Naugahyde cleaner
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child’s Riding Hood (Red)

*** 10,13 ****

$ 45.00 -- Case of Simulated Soy Bean Oil
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot

- $125.00 -- Emperor’s New Clothes
--- 11,13 ----

diff –c marks lines removed from price1 with –, lines added to price1 with + and
lines changed in both files with !. In the example, diff shows the default three lines
of context around each changed line. One line was changed in both files (marked
with !), one line was added to price1 (marked with +), and one line was removed
from price1 (marked with –).

Note: If there are no marks to be shown in the corresponding lines of the file being
compared, the lines are not displayed. Lines 11 to 13 of price2 are
suppressed for this reason.

Localization
diff uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 No differences between the files compared.

1 diff compared the files and found them to be different.

diff

Chapter 2. Shell Command Descriptions 223

2 Failure due to any of the following:
v Incorrect command-line argument
v Inability to find one of the input files
v Out of memory
v Read error on one of the input files

4 At least one of the files is a binary file containing embedded NUL (\0) bytes
or newlines that are more than LINE_MAX bytes apart.

Messages
Possible error messages include:

file filename: no such file or directory
The specified filename does not exist. filename was either typed explicitly,
or generated by diff from the directory of one file argument and the
basename of the other.

Files file1 and file2 are identical
The –s option was specified and the two named files are identical.

Common subdirectories: name and name
This message appears when diff is comparing the contents of directories,
but you have not specified –r. When diff discovers two subdirectories with
the same name, it reports that the directories exist, but it does not try to
compare the contents of the two directories.

Insufficient memory (try diff –h)
diff ran out of memory for generating the data structures used in the file
differencing algorithm. (See “Limits”.) The –h option of diff can handle any
size file without running out of memory.

Internal error—cannot create temporary file
diff was unable to create a working file that it needed. Ensure that you
either have a directory /tmp or that the environment contains a variable
TMPDIR, which names a directory where diff can store temporary files.
Also, ensure that there is sufficient file space in this directory.

Missing ifdef symbol after -D
You did not specify a conditional label on the command line after the –D
option.

Only one file may be –
Of the two input files normally found on the command line of diff, only one
can be the standard input (stdin).

Too many lines in filename
A file of more than the maximum number of lines (see “Limits”) was given to
diff.

Limits
The longest input line is 1024 bytes. Except under –h, files are limited to INT_MAX
lines. INT_MAX is defined in limits.h.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –D, –f, –H, –h, –i, –m, –s, and –w options, and the n argument to the –c
option, are extensions of the POSIX standard.

diff

224 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
cmp, comm, patch

J. W. Hunt and M. D. McIlroy, An Algorithm for Differential File Comparison, Report
41, from Computing Science, Bell Laboratories, Murray Hill, NJ 07974, (June 1976),
9 pages.

dircmp — Compare directories

Format
dircmp [–d] [–s] [–wn] dir1 dir2

Note: The dircmp utility is fully supported for compatibility with older UNIX
systems. However, it is recommended that diff –r be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
dircmp examines dir1 and dir2 and generates listings about the contents of the
directories. Listings of files that are unique to each directory are generated for all
the options. If no option is entered, a list is output indicating whether the filenames
common to both directories have the same contents.

Options
–d Compare the contents of files with the same name in both directories and

output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diff.

–s Suppress messages about identical files.

–wn Change the width of the output line to n characters. The default width is 72.

Localization
dircmp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Related Information
cmp, diff

dirname — Return the directory components of a pathname

Format
dirname pathname

diff

Chapter 2. Shell Command Descriptions 225

Description
dirname deletes the trailing part of a filename. The result is the pathname of the
directory that contains the file. This is useful in shell scripts. dirname does not try
to validate the pathname. For validation, use pathchk.

dirname follows these rules:
1. If pathname is //, return it.
2. Otherwise, if it is all slashes, return one slash.
3. Otherwise, remove all trailing slashes.
4. If there are no slashes remaining in pathname, return period (.).
5. Otherwise, remove trailing nonslash characters.
6. If the remaining string is //, return it.
7. Otherwise, remove any trailing slashes.
8. If the resulting string is empty, return period (.).
9. Otherwise, return the resulting string.

Examples
The command:
dirname src/lib/printf.c

produces:
src/lib

Localization
dirname uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failed
2 Unknown command-line option

Portablity
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
basename, pathchk

· (dot) — Run a shell file in the current environment

Format
. file [argument ...]

dirname

226 z/OS V1R4.0 UNIX System Services Command Reference

Description
. (dot) runs a shell script in the current environment and then returns. Normally, the
shell runs a command file in a child shell so that changes to the environment by
such commands as cd, set, and trap are local to the command file. The . (dot)
command circumvents this feature.

If there are slashes in the filename, . (dot) looks for the named file. If there are no
slashes . (dot) uses the search PATH variable to find file. This may surprise some
people when they use dot to run a file in the working directory, but their search
rules are not set up to look at the working directory. As a result, the shell doesn’t
find the shell file. If you have this problem, you can use:
. ./file

This indicates that the shell file you want to run is in the working directory. Also, the
file need not be executable, even if it is looked for on the PATH. If you specify an
argument list argument ..., . (dot) sets the positional parameters to this list before
execution.

Usage Notes
1. . (dot) is a special built-in shell command.

2. The file specified is treated as a shell script containing shell commands. Files
which are not shell scripts (e.g. REXX execs, executable programs) should not
be specified as file.

Localization
. (dot) uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
1 The path search failed
2 Failure because of an incorrect command-line option

Otherwise, the exit status is the exit status of the last command run from the script.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
cd, set, sh, trap

dspcat — Display all or part of a message catalog

Format
dspcat [–gt] CatalogName [SetNumber [MessageNumber]]

· (dot)

Chapter 2. Shell Command Descriptions 227

Description
dspcat displays a particular message, all of the messages in a set, or all of the
messages in a catalog. Messages are displayed as they are specified in the
message catalog; no substitution of variables takes place.

It directs the messages to standard output (stdout).

It has the following parameters:

v The CatalogName parameter specifies a message catalog.

v The SetNumber parameter specifies a set in the catalog specified by the
CatalogName parameter. If you specify a nonexistent SetNumber value, all
messages in the catalog are displayed.

v The MessageNumber parameter specifies a particular message in the set
specified by the SetNumber parameter.

If you include all three parameters, dspcat displays a particular message. If you do
not include the MessageNumber parameter, or if the MessageNumber value is in
error, all the messages in the set are displayed. If you specify only the
CatalogName parameter, all the messages in the catalog are displayed. You must
include the SetNumber parameter if you include the MessageNumber parameter.

Use the NLSPATH environment variable to find the specified message catalog if
slash (/) characters are not used in the value of the CatalogName parameter.

Options
–g Formats the output so it can be used as input to the gencat command. The

MessageNumber parameter is not valid when –g is specified.

–t Displays the timestamp of the message catalog.

Examples
To display message number 2 in set number 1 of test.cat, enter:
dspcat test.cat 1 2

dspmsg — Display selected messages from message catalogs

Format
dspmsg [–d] [–s SetNumber] CatalogName MessageNumber
[’DefaultMessage’[Arguments]]

Description
dspmsg displays either the text of a particular message from a message catalog
generated with the gencat command or, if the message cannot be retrieved, a
default message supplied as a parameter to the command. dspmsg directs the
message to standard output. This command is intended for use in shell scripts as a
replacement for the echo command.

The NLSPATH environment variable and the LANG category are used to find the
specified message catalog if / (slash) characters are not used in the value of the
CatalogName parameter. If the catalog named by the CatalogName parameter is
not found or if the message named by the MessageNumber parameter (and

dspcat

228 z/OS V1R4.0 UNIX System Services Command Reference

optional SetNumber value) is not found, then the supplied DefaultMessage value
is displayed. If a DefaultMessage value is not specified, a system-generated error
message is displayed.

dspmsg allows up to ten string arguments to be substituted into the message if it
contains the %s or %n$s, fprintf() conversion specification. Only string variables are
allowed. If arguments are specified, then a DefaultMessage must also be specified.

Missing arguments for conversion specifications result in a dspmsg error message.
Normal fprintf() subroutine control character escape codes (for example, –n) are
recognized.

Options
–d If you are receiving the default message, use this option to request

debugging information on why dspmsg cannot get the message from the
message catalog.

–s SetNumber
Specifies an optional set number. The default value for the SetNumber
variable is 1.

Examples
To display set number 1, message number 2 of the test.cat catalog, enter:
dspmsg –s 1 test.cat 2 ’message %s not found’ 2

If the message is not found, message 2 not found is displayed.

du — Summarize usage of file space

Format
du [–a|–s[–krtx] [pathname ...]

Description
du reports the amount of file space used by the files indicated by the given
pathname. If the pathname is a directory, du reports the total amount of file space
used by all files in that directory and in each subdirectory in its hierarchy. If you do
not specify a pathname, du assumes the current directory. Files with multiple links
are only counted once. On systems supporting symbolic links, only the disk space
used by the symbolic link is counted.

du measures file space in 512-byte units.

Options
–a Generates a report for all files in pathname.

–k Displays file sizes in 1024-byte (1KB) units.

–r Reports files that cannot be opened and directories that cannot be read;
this is the default.

–s Does not display file size totals for subdirectories.

–t Displays the total amount of space used by all pathnames examined.

dspmsg

Chapter 2. Shell Command Descriptions 229

–x Displays file sizes for only those files contained on the same device as
pathname.

Usage Notes
du computes file space in units of 512 bytes. The actual disk space used by files
and directories may be more, since some systems allocate space in units of some
multiple of a sector. On UNIX System V, it is usually two sectors; on UNIX Version
7, it is one sector.

z/OS UNIX System Services allocates files in blocks of 4096 bytes.

Localization
du uses the following localization variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Incorrect command-line option
v Cannot access a directory
v Cannot read a directory
v Cannot access file information

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –t option is an extension to the POSIX standard.

Related Information
df, find, ls

echo — Write arguments to standard output

Format
echo argument ...

tcsh shell: echo [-n] word ...

Description
echo writes its arguments, specified with the argument argument, to standard
output. echo accepts these C-style escape sequences:
\a Bell
\b Backspace
\c Removes any following characters, including \n and \r.
\f Form feed

du

230 z/OS V1R4.0 UNIX System Services Command Reference

\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\0num The byte with the numeric value specified by the zero to three-digit octal

num.
\– Backslash

echo follows the final argument with a newline unless it finds \c in the arguments.
Arguments are subject to standard argument manipulation.

echo in the tcsh shell
In the tcsh shell, echo writes each word to the shell’s standard output, separated by
spaces and terminated with a newline.

tcsh echo accepts these C-style escape sequences:
\a Bell
\b Backspace
\e Escape
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab
\nnn The EBCDIC character corresponding to the octal number nnn

See “tcsh — Invoke a C shell” on page 570.

Examples
1. One important use of echo is to expand filenames on the command line, as in:

echo *.[ch]

This displays the names of all files with names ending in .c or .h—typically C
source and include (header) files. echo displays the names on a single line. If
there are no filenames in the working directory that end in .c or .h, echo simply
displays the string *.[ch].

2. echo is also convenient for passing small amounts of input to a filter or a file:
echo 'this is\nreal handy' > testfile

Usage Note
echo is a built-in shell command.

Localization
echo uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Value
echo always returns the following exit status value:

echo

Chapter 2. Shell Command Descriptions 231

0 Successful completion

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

The POSIX.2 standard does not include escape sequences, so a strictly conforming
application cannot use them. printf is suggested as a replacement.

Related Information
sh, tcsh

ed — Use the ed line-oriented text editor

Format
ed [–bs] [–p prompt] [file]

Description
ed is a line-oriented text editor that lets you manipulate text files interactively. ed
reads the text of a file into memory and stores it in an area called a buffer. Various
subcommands let you edit the text in the buffer. You can also write the contents of
the buffer back out to the file, thereby overwriting the old contents of the file.

Options
–b Lets you edit larger files by restricting the amount of memory dedicated to

paging. This frequently makes ed run slower.

–p prompt
Displays the given prompt string prompting you to input a subcommand. By
default, ed does not usually prompt for subcommand input. See the
description of the P subcommand for more on subcommand prompting (see
“Subcommands” on page 233).

–s Puts ed into a quiet mode, in which e, E, r, and w, subcommands do not
display file size counts; the q and e subcommands do not check buffer
modification; and ! is not displayed after calling the shell to run a
subcommand. This mode is particularly useful when you invoke ed from
within a shell script.

If the optional file argument is present on the command line, ed reads the specified
file into the editor by simulating an efile subcommand.

Addresses
You can prefix subcommands in ed with zero, one, or two addresses. These
addresses let you refer to single lines or ranges of lines in the buffer. You do not
need to specify addresses for certain subcommands that use default addresses.
Consult the description for a particular subcommand. You can construct each
address out of the following components:

. The single dot character represents the current line in the buffer. Many
subcommands set the current line; for example the e command sets it to
the last line of the new file being edited.

$ The dollar sign refers to the last line in the buffer.

echo

232 z/OS V1R4.0 UNIX System Services Command Reference

n The number n refers to the nth line in the buffer.

/regexp/
This searches for a line containing a string that matches the regular
expression, regexp. (For information on regular expressions, see
Appendix F.) The search begins at the line immediately following the current
line. It proceeds forward through the buffer; if ed reaches the end of the
buffer without finding a match, it wraps around to the first line of the buffer
and continues the search. If ed does not find a match, the search ends
when it reaches the original current line. If it does find a match, the address
/regexp/ refers to the first matching line. If you omit regexp, the last used
regular expression becomes the object of the search. You can omit the
trailing /. Within regexp, \/ represents a literal slash and not the regexp
delimiter.

?regexp?
This is similar to the previous address form, except that the search goes
backward through the buffer. If the search reaches the first line in the buffer
without finding a match, ed wraps around and continues searching
backward from the last line in the buffer. If you omit regexp, the last used
regular expression becomes the object of the search. You can omit the
trailing ?. Within regexp, \? represents a literal question mark and not the
regexp delimiter.

'/ The address is the line marked with the mark name l. The name l must be
a lowercase letter set by the k subcommand.

You can combine these basic addresses with numbers using the + and – operators,
with the usual interpretation. Missing left operands default to . (dot); missing right
operands default to 1. Missing right operands also have a cumulative effect; so an
address of – – refers to the current line number less two.

You can specify address ranges in the following ways:

a1,a2 Specifies a range of addresses from address a1 to address a2, inclusive. If
you omit a1 and a2 (that is, the comma alone is specified), this is
equivalent to the range 1,$.

a1;a2 Is similar to the previous form except that ed resets the current line after
calculating the first address, a1, so that the second address, a2, is relative
to a1. If you omit a1 and a2 (that is, the semicolon alone is specified), this
is equivalent to .;$. If you specify only a1 and the command requires both
a1 and a2, the command operates as though you specified a range of:
a1;. command

> Is equivalent to .,.+22 (that is, page forward), except that it never attempts
to address any line beyond $.

< Is equivalent to .–22,. (that is, page backward), except that it never
addresses any line before line 1.

Subcommands
An ed command has the form [address] command

All commands end with a newline; you must press <Enter>. Most commands allow
only one command on a line, although you can modify commands by appending the
ln, n, and p commands.

ed

Chapter 2. Shell Command Descriptions 233

Subcommands generally take a maximum of zero, one, or two addresses,
depending upon the particular subcommand. In the following descriptions, we show
commands with their default addresses (that is the addresses used when you don’t
specify any addresses) in a form that shows the maximum number of permitted
addresses for the command. In any of the subcommands that take a file argument,
file can be a pathname or:
!command-line

If you use the ! form, ed runs the given command line, reading its standard output
(stdout) or writing its standard input (stdin), depending on whether the ed
command does reading or writing.

ed accepts the following subcommands:

.a Appends text after the specified line. Valid addresses range from 0 (text is
placed at the beginning of the buffer, before the first line) to $ (text is placed
after the last line of the buffer). ed reads lines of text from the workstation
until a line consisting solely of an unescaped . (dot) is entered. ed sets the
current-line indicator to the last line appended.

.,.c Changes the addressed range of lines by deleting the lines and then
reading new text in the manner of the a or i subcommands.

.,.d Deletes the addressed range of lines. The line after the last line deleted
becomes the new current line. If you delete the last line of the buffer, ed
sets the current line to the new last line. If no lines remain in the buffer, it
sets the current line to 0.

E[file] Is similar to the e command, but ed gives no warning if you have changed
the buffer.

e [file] Replaces the contents of the current buffer with the contents of file. If you
did not specify file, ed uses the remembered filename, if any. In all cases,
the e subcommand sets the remembered filename to the file that it has just
read into the buffer. ed displays a count of the bytes in the file unless it is in
quiet mode. If you have changed the current buffer since the last time its
contents were written, ed warns you if you try to run an e subcommand,
and does not run the subcommand. If you enter the e subcommand a
second time, ed goes ahead and runs the command.

f [file] Changes the remembered filename to file. ed displays the new
remembered filename. If you do not specify file, ed displays the current
remembered filename.

1,$G/regexp/
Is similar to the g command except that when ed finds a line that matches
regexp, it prints the line and waits for you to type in the subcommand to be
run. You cannot use the a, c, i, g, G, v, and V subcommands. If you enter
&, the G subcommand reruns the last subcommand you typed in. If you just
press <Enter>, G does not run any subcommand for that line.

1,$g/regexp/command
Performs command on all lines that contain strings matching the regular
expression regexp. This subcommand works in two passes. In the first
pass, ed searches the given range of lines and marks all those that contain
strings matching the regular expression regexp. The second pass actually
performs command on those lines. You cannot use !, g, G, V, or v as
command. command consists of one or more ed subcommands, the first of
which must appear on the same line as the g subcommand. All lines of a
multiline command list, except the last, must end with a backslash (\). If

ed

234 z/OS V1R4.0 UNIX System Services Command Reference

command is empty, ed assumes it to be the p subcommand. If no lines
match regexp, ed does not change the current line number; otherwise, the
current line number is the one set by the last subcommand in command.
Instead of the slash (/) to delimit regexp, you can use any character other
than space or newline.

H Tells ed to display more descriptive messages when errors occur. If ed is
already printing descriptive messages, H returns to terse error messages.
Normally, ed indicates error messages by displaying a ?. When you turn on
descriptive error messages with this subcommand, ed also displays the
descriptive message for the most recent ? message.

h Provides a brief explanation of the last error that occurred. This does not
change the current line number.

.i Works similarly to the a subcommand, except that ed places the text before
the addressed line. Valid addresses range from line 1 to $ (the last line). ed
sets the current line number to the last inserted line.

.,.+1j Joins a range of lines into one line. To be precise, the j command removes
all newline characters from the addressed range of lines, except for the last
one. ed sets the current line number to the resulting combined line.

.kx Marks the addressed line with the mark name x, which is any single
lowercase letter of the alphabet. This lets you refer to a marked line with
the construct 'x. This is called an absolute address, because it always
refers to the same line, regardless of changes to the buffer.

.,.l Displays the addressed range of lines, representing nonprintable (control)
characters in a visible manner. ed sets the current line to the last line so
displayed. You can append this subcommand to most other commands, to
check on the effect of those subcommands.

.,.ma Moves the addressed lines to the point immediately following the line given
by the address a. The address a must not be in the range of addressed
lines. If address a is 0, ed moves the lines to the beginning of the buffer.
The last line moved becomes the new current line.

.,.n Displays the addressed lines in a way similar to the p command, but ed
puts the line number and a tab character at the beginning of each line. The
last line displayed becomes the new current line. You can append n to any
subcommand (except for E, e, f, Q, r, w, or !) so that you can check on the
effect that the subcommands had.

P Turns on subcommand prompting if it is not already on. If you specified the
–p prompt option on the ed command line, ed displays the prompt string
whenever it is ready for you to type in another subcommand. If you did not
include the –p option, ed uses the * character as a prompt. If subcommand
prompting is currently turned on, issuing the P subcommand turns it off.

.,.p Displays (prints) the addressed lines. The last line displayed becomes the
new current line. You can append p to most subcommands, so that you can
check on the effect that the subcommands had.

You can append p to any subcommand (except for E, e, f, Q, r, w, or !) so
that you can check on the effect that the subcommands had.

Q Quits unconditionally, without checking for buffer changes.

q Causes the editor to exit. If you have made changes to the buffer since the
last save and you try to quit, ed issues a warning. Entering the q
subcommand again lets you quit, regardless of unsaved changes.

ed

Chapter 2. Shell Command Descriptions 235

$r [file]
Reads the contents of the file into the buffer after the addressed line. If the
address is 0, ed places the text before the first line in the buffer. If you do
not specify file, ed uses the remembered filename; if no remembered
filename exists, file becomes the new remembered name. If file contains
bytes that are not valid in the current character set, they are replaced by
the rubout character.

The r subcommand displays the number of bytes read from file unless you
specified the –s option. The last line read from the file becomes the new
current line. If file is replaced by !, the rest of the line is considered a shell
command line, the output of which is to be read.

.,.s/regexp/new/[flags]
Searches the specified range of lines for strings matching the regular
expression regexp. Normally the s subcommand replaces the first such
matching string in each line with the string new. The s subcommand sets
the current line to the last line on which a substitution occurred. If ed makes
no such replacements, ed considers it an error.

flags can be one of the following:
n Replaces the nth matching string in the line instead of the first one.
g Replaces every matching string in each line, not just the first one.
l Displays the new current line in the format of the l subcommand.
n Displays the new current line in the format of the n subcommand.
p Displays the new current line in the format of the p subcommand.

You can use any single printable character other than space or newline
instead of / to separate parts of the subcommand provided that you use the
same character to delimit all parts of the subcommand. You can omit the
trailing delimiter.

You can include a newline in the new string by putting a \ immediately in
front of the newline. This is a good way to split a line into two lines. If new
consists only of the % character, s uses the new string from the previous s
command. If & appears anywhere in new, ed replaces it with the text
matching the regexp. If you want new to contain a literal ampersand, or
percent sign, put a backslash (\) in front of the & or % character.

.,.ta Copies the addressed lines to the point after the line given by the address
a. The address a must not fall in the range of addressed lines. If address a
is 0, ed copies the lines to the beginning of the buffer. This sets the current
line to the last line copied.

u Rolls back the effect of the last subcommand that changed the buffer. For
the purposes of u, subcommands that change the buffer are: a, c, d, g, G,
i, j, m, r, s, t, v, V, and (of course) u. This means that typing u repeatedly
switches the most recent change back and forth. This subcommand sets
the current line number to the value it had immediately before the
subcommand being undone started.

1,$V/regexp/
Is similar to the G subcommand, except that this subcommand gives you
the chance to edit only those lines that do not match the given regular
expression.

1,$v/regexp/commands
Is similar to the g (global) command, except that ed applies the given
commands only to lines that do not match the given regular expression.

ed

236 z/OS V1R4.0 UNIX System Services Command Reference

1,$W [file]
Is similar to the w subcommand, except that this command appends data to
the given file if the file already exists.

1,$w [file]
Writes the addressed lines of the buffer to the named file. This does not
change the current line. If you do not provide file, ed uses the remembered
filename; if there is no remembered filename, file becomes the remembered
name. If the output file does not exist, ed creates it. ed displays the number
of characters written unless you had specified the –s option.

X Prompts you to enter an encryption key. All subsequent e, r, and w
subcommands use this key to decrypt or encrypt text read from or written to
files. To turn encryption off, issue an X subcommand and press <Return> in
response to the prompt for an encryption key.

!command
Runs command as if you typed it to your chosen command interpreter. If
command contains the % character, ed replaces it with the current
remembered filename. If you want a subcommand to contain a literal %, put
a backslash (\) in front of the character. As a special case, typing !! reruns
the previous command.

$= Displays the line number of the addressed line. This does not change the
current line.

.= Displays the current line number.

.+1.,.+1
If you supply zero, one, or two addresses without an explicit subcommand,
ed displays the addressed lines in the mode of the last print subcommand:
p, l, or n. This sets the current line number to the last line displayed.

Environment Variables
ed uses the following environment variables:

COLUMNS
Contains the terminal width in columns. ed folds lines at that point. If it is
not set, ed uses the appropriate value from the terminfo database or if that
is not available, it uses a default of 80.

HOME Contains the pathname of your home directory.

SHELL
Contains the full pathname of the current shell.

TMPDIR
The pathname of the directory being used for temporary files. If it is not set,
ed uses /tmp.

Files
ed uses the following files:

/tmp/e*
This is the paging file. It holds a copy of the file being edited. You can
change the directory for temporary files using the environment variable
TMPDIR.

ed.hup
ed writes the current buffer to this file when it receives a hangup signal.

ed

Chapter 2. Shell Command Descriptions 237

Localization
ed uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Addressed line out of range
v Only one filename is allowed
v No space for the line table
v Temporary file error
v Badly constructed regular expression
v No remembered regular expression
v File read error
v Out of memory
v Unknown command
v Command suffix not permitted
v No match found for regular expression
v Wrong number of addresses for the subcommand
v Not enough space after the subcommand
v The name is too long
v Badly formed name
v Subcommand redirection is not permitted
v Restricted shell
v No remembered filename
v The mark name must be lowercase
v The mark name is not defined
v m and t subcommands require a destination address
v The destination cannot straddle source in m and t
v A subcommand not allowed inside g, v, G, or V
v The x subcommand has become X (uppercase)
v The global command is too long
v Write error (no disk space)

2 Usage error

Messages
The error messages are issued only if h or H subcommands are used after ed
displays ?. Possible error messages include:

Destination cannot straddle source in m and t
The range of lines being moved or copied by m or t cannot include the
destination address.

Global command too long
There is a limit on the length of a global instruction (g or v). See Limits for
this limit.

ed

238 z/OS V1R4.0 UNIX System Services Command Reference

m and t require destination address
You must follow the m or t subcommands with an address indicating where
you want to move or copy text. You omitted this address.

No remembered filename
You tried to run a subcommand that used a remembered filename (for
example, you used w to write without specifying an output filename).
However, there is no remembered filename at present. Run the
subcommand again, but specify a filename this time.

Restricted shell
The command line invoked the restricted form of ed, but you tried an action
that was not allowed in the restricted editor (the ! subcommand).

Temporary file error
You ran out of space on disk or encountered other errors involving the page
file stored in the temporary file.

Warning: file not saved
You entered a subcommand to quit editing the current file, for example, q or
e to edit a new file; however, you have changed the file since the last time
you saved it. ed is suggesting that you save the file before you exit it;
otherwise, your recent changes will be lost. To save the file, use the w
command. If you really do not want to save the recent changes, use q to
quit or e to edit a new file.

?file An error occurred during an attempt to open or create file. This is applicable
to the e, r, and w subcommands.

? An unspecified error occurred. Use the h or H subcommand for more
information. If the input to ed comes from a script rather than from a
workstation, ed exits when any error occurs.

Limits
ed allows a limit of 1024 bytes per line and 28 000 lines per file. It does not allow
the NUL ('\0') character. The maximum length of a global command is 256
characters, including newlines.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The addresses < and >, the –b option, and the W and X subcommands are
extensions of the POSIX standard.

Related Information
awk, diff, env, ex, grep, sed, vi

See Appendix C for more information about regexp.

egrep — Search a file for a specified pattern

Format
egrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Note: The egrep utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that grep –e be used instead because it may

ed

Chapter 2. Shell Command Descriptions 239

provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
See grep.

env — Display or set environment variables for a process

Format
env [–i] [variable=value ...] [command argument ...]
env [–] [variable=value ...] [command argument ...]

Description
If you enter env with no arguments, it displays the environment variable that it
received from its parent (presumably the shell).

Arguments of the form variable=value let you add new environment variables or
change the value of existing environment variables.

If you specify command, env calls command with the arguments specified with the
argument argument that appear on the command line, passing the accumulated
environment variable to this command. The command is run directly as a program
found in the search PATH, and is not interpreted by a shell.

In a doublebyte locale, environment variable values may contain doublebyte
characters. The equal sign (=) must be singlebyte.

Options
env supports the following two options, both of which have the same effect.

–i Specifies that the environment variable inherited by env not be used.

– Specifies that the environment variable inherited by env not be used.

Examples
Compare the output of the following two examples:
env foo=bar env
env –i foo=bar env

Localization
env uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:

egrep

240 z/OS V1R4.0 UNIX System Services Command Reference

v Not enough memory
v Name is too long

2 Incorrect command-line argument

126 env found command but could not invoke it

127 env was unable to find command

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

printenv on Berkeley UNIX systems works like env.

Related Information
env, sh

eval — Construct a command by concatenating arguments

Format
eval [argument ...]

tcsh shell: eval argument ...

Description
The shell evaluates each argument as it would for any command. eval then
concatenates the resulting strings, separated by spaces, and evaluates and
executes this string in the current shell environment.

eval in the tcsh shell
In the tcsh shell, eval treats the arguments as input to the shell and executes the
resulting command(s) in the context of the current shell. This is usually used to
execute commands generated as the result of command or variable substitution,
since parsing occurs before these substitutions. See “tcsh — Invoke a C shell” on
page 570.

Examples
The command:
for a in 1 2 3
do

eval x$a=fred
done

sets variables x1, x2, and x3 to fred. Then:
echo $x1 $x2 $x3

produces: fred fred fred

Usage Note
eval is a special built-in shell command.

Localization
eval uses the following localization environment variables:
v LANG

env

Chapter 2. Shell Command Descriptions 241

v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Value
The only possible exit status value is:

0 You specified no arguments or the specified arguments were empty strings

Otherwise, the exit status of eval is the exit status of the command that eval runs.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
exec, sh, tcsh

ex — Use the ex text editor

Format
ex [–eRrsvx] [+ command] [–c command] [–t tag] [–w size] [file ...]

Description
ex is the line-editor mode of the vi text editor.

Options
The ex internal commands are described in vi. It supports the following options:

+command
Begins the editing session by running the specified editor command. To
specify multiple commands, separate them with an “or” bar (|).

–c command
Begins editing by executing the specified editor command. You can specify
multiple commands by separating them with an “or” bar (|). command can
be any ex command except those that enter input mode, such as insert or
append.

–e Invokes ex. This option is intended for use with vi.

–r Lets you recover named files after an editor or system fails. If you don’t
specify a file argument, ex lists all recoverable files and then exits.

–R Sets read-only mode.

–s Suppresses all interactive feedback (quiet mode). This is for batch mode
operation; ex assumes the terminal cannot display text and ignores the
value of TERM. ex also ignores all startup files and ignores the value of
EXINIT.

–t tag Edits the file containing the specified tag and sets the virtual position in the
edit buffer to point of definition for the tag.

–v Invokes vi.

eval

242 z/OS V1R4.0 UNIX System Services Command Reference

–w size
Sets the option variable window equal to size.

–x Uses encryption.

Localization
ex uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

–x is an extension to the POSIX standard.

Related Information
ed, vi

exec — Run a command and open, close, or copy the file descriptors

Format
exec [–a name] [command_line]

tcsh shell: exec command

Description
The command_line argument for exec specifies a command line for another
command. exec runs this command without creating a new process. Some people
picture this action as overlaying the command on top of the currently running shell.
Thus, when the command exits, control returns to the parent of the shell.

Input and output redirections are valid in command_line. You can change the input
and output descriptors of the shell by giving only input and output redirections in the
command. For example:
exec 2>errors

redirects the standard error stream to errors in all subsequent commands ran by
the shell.

If you do not specify command_line, exec returns a successful exit status.

exec in the tcsh shell
In the tcsh shell, exec executes the specified command in place of the currrent
shell. See “tcsh — Invoke a C shell” on page 570.

Option
–a name

The shell passes name as the zero’th argument (argv[0]) to command_line.

ex

Chapter 2. Shell Command Descriptions 243

–a name can be used to replace the current shell with a new login shell, by
specifying name as a shell with a prefix of a dash (–).

Example
To replace the current shell process with a new login shell (which will run the login
profiles), specify:
exec -a -sh /bin/sh

Usage Note
exec is a special built-in shell command.

Localization
exec uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
If you specify command_line, exec does not return to the shell. Instead, the shell
exits with the exit status of command_line or one of the following exit status values:

1–125 A redirection error occurred.

126 The command in command_line was found, but it was not an executable
utility.

127 The given command_line could not be run because the command could not
be found in the current PATH environment.

If you did not specify command_line, exec returns with an exit value of zero.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sh, tcsh

exit — Return to the shell’s parent process or to TSO/E

Format
exit [expression]

tcsh shell: exit [expr]

Description
exit ends the shell. If there is an expression, the value of the expression is the exit
status of the shell.

exec

244 z/OS V1R4.0 UNIX System Services Command Reference

The value of expression should be between 0 and 255. For values outside this
range, the exit status will be the least significant 8 bits of the value of the
expression. The EXIT trap is raised by the exit command, unless exit is being
called from inside an EXIT trap.

If you have a shell background job running, you cannot exit from the shell until it
completes. However, you can switch to subcommand mode and exit.

exit in the tcsh shell
The shell exits either with the value of the specified expression or, without
expression, with the value of the status variable. The value of expression should be
between 0 and 255. See “tcsh — Invoke a C shell” on page 570.

Usage Note
exit is a special built-in shell command.

Localization
exit uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
exit returns the value of the arithmetic expression specified by the expression
argument to the parent process as the exit status of the shell. If you omit
expression, exit returns the exit status of the last command run.

Related Information
return, sh, tcsh

The exit() ANSI C function, the _exit callable service, and the _exit() POSIX C
function are unrelated to the exit shell command.

expand — Expand tabs to spaces

Format
expand [–t tablist] [file ...]
expand [–number] [–number,number ...] [file ...]

Description
expand reads text input from the files specified on the command line, converts tabs
into spaces, and writes the result to the standard output (stdout). If you do not
specify any files on the command line, expand reads from the standard input
(stdin).

expand preserves backspace characters. By default, tab stops are set every eight
columns. A tab after the last tabstop is replaced by a space.

exit

Chapter 2. Shell Command Descriptions 245

Options
The first syntax of expand supports the following option:

–t tablist
Sets tab stops at positions indicated by tablist. Numbers in tablist must be
in ascending order (origin 0) and separated by commas or blanks; however,
the list must be one argument so you need shell quoting if you are using
blanks. The list can consist of a single number, in which case tabs are set
every tablist positions apart.

The second syntax of expand (which the POSIX standard considers obsolete)
supports the following options:

–number
Sets tab stops every number columns.

–number,number ...
Sets tab stops at each column number (origin 0).

Localization
expand uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Cannot open the input file
v Insufficient memory
v Incorrect tab stop specification

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, 4.2BSD and higher.

Related Information
pr, unexpand

export — Set a variable for export

Format
export [name [=value] ...]
export –p

Description
export marks each variable name so that the current shell makes it automatically
available to the environment of all commands run from that shell. Exported
variables are thus available in the environment to all subsequent commands.
Several commands (for example, cd, date and vi) look at environment variables for
configuration or option information.

expand

246 z/OS V1R4.0 UNIX System Services Command Reference

Variable assignments of the form name=value assign value to name as well as
marking name for export. The name can contain only the underscore and
alphanumeric characters from the portable character set.

Calling export without arguments lists, with appropriate quoting, the names and
values of all variables in the format Variable=″value″. If you reinput this format to
another shell, variables are assigned appropriately but not exported. The –p option
lists variables in a format suitable for reinput to the shell (see the description of the
–p option).

Option
–p Lists variables in a form that is suitable for reinput to the shell:

export name="value"

Usage Note
export is a special built-in shell command.

Localization
export uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to incorrect command-line argument

2 Failure, usually due to incorrect an incorrect command-line argument, that
results in a usage message

Portability
POSIX.2, X/Open Portability Guide.

Assigning a value to name, and the behavior given for calling export with
arguments are extensions of the POSIX standard.

Related Information
cd, date, set, sh, typeset, vi

expr — Evaluate arguments as an expression

Format
expr –W expression

Description
The set of arguments passed to expr constitutes an expression to be evaluated.
Each command argument is a separate token of the expression. expr writes the

export

Chapter 2. Shell Command Descriptions 247

result of the expression on the standard output. This command is primarily intended
for arithmetic and string manipulation on shell variables.

expr supports the following operators. Operators explained together have equal
precedence; otherwise, they are in increasing order of precedence. expr stores an
expression as a string and converts it to a number during the operation. If the
context requires a Boolean value, a numeric value of 0 (zero) or a null string ("") is
false, and any other value is true. Numbers have an optional leading sign, followed
by either a hexadecimal, an octal, or a decimal number. The shell differentiates
between hex, octal, and decimal as follows:
v Any number that starts with 0x is hex.
v Any number that starts with 0 is octal.
v Any number that does not start with 0x or 0 is decimal.

Numbers are manipulated as long integers.

expr1 | expr2
Results in the value expr1 if expr1 is true; otherwise, it results in the value
of expr2.

expr1 & expr2
Results in the value of expr1 if both expressions are true; otherwise, it
results in 0.

expr1 <= expr2 | expr1 < expr2 | expr1 = expr2 | expr1 != expr2 | expr1 >= expr2 |
expr1 > expr2

If both expr1 and expr2 are numeric, expr compares them as numbers;
otherwise, it compares them as strings. If the comparison is true, the
expression results in 1; otherwise, it results in 0.

expr1 + expr2 | expr1 – expr2
Performs addition or subtraction on the two expressions. If either
expression is not a number, expr exits with an error.

expr1 * expr2 | expr1 / expr2 | expr1 % expr2
Performs multiplication, division, or modulus on the two expressions. If
either expression is not a number, expr exits with an error.

expr1 : re | match expr1 re
matches the regular expression re against expr1 treated as a string. The
regular expression is the same as that accepted by ed, except that the
match is always anchored—that is, there is an implied leading ^. Therefore,
expr does not consider ^ to be a metacharacter. If the regular expression
contains \(...\), \) and it matches at least part of expr1, expr results in only
that part; if there is no match, expr results in 0. If the regular expression
doesn’t contain this construct, the result is the number of characters
matched. The function match performs the same operation as the colon
operator.

substr expr1 expr2 expr3
Results in the substring of expr1 starting at position expr2 (origin 1) for the
length of expr3.

index expr1 expr2
Searches for any of the characters in expr2 in expr1 and results in the
offset of any such character (origin 1), or 0 if no such characters are found.

length expr1
Results in the length of expr1.

(expr) Groups expressions.

expr

248 z/OS V1R4.0 UNIX System Services Command Reference

Option
–W Allows the expression to use hex and octal numbers.

Usage Note
The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated expressions may result in an overflow of this stack, causing an error.

Examples
1. The example

fname=src/fn_abs.c
expr $fname : u*_\(.*\)\.cu.

returns abs.

2. The example
a=`expr $a + 1`

adds 1 to the value of the shell variable a.

Localization
expr uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 The result of expression is true.
1 The result of expression is false.
2 Failure due to any of following:

v Not enough memory.
v Command-line syntax error.
v Too few arguments on the command line.
v Incorrect regular expression.
v Regular expression is too complicated.
v Nonnumeric value found where a number was expected.

Messages
Possible error messages include:

internal tree error
Syntax errors or unusual expression complexity make it impossible for expr
to evaluate an expression. If an expression has syntax errors, correct them;
if not, simplify the expression (perhaps by breaking it into parts).

expr

Chapter 2. Shell Command Descriptions 249

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

In the shell, let largely supersedes this command.

match, substr, length, and index are not documented on all UNIX systems,
though they do appear to exist. They are extensions of the POSIX standard.

Related Information
ed, let, sh, test

See Appendix C for more information about regexp.

exrecover daemon — Retrieve vi and ex files

Format
exrecover [–s] [name_file ...]
exrecover [–v]

Description
The exrecover daemon recovers text files from working files created by vi and ex.
(These working files are in one or more temporary directories.) It is normally
invoked from a system startup file before these working files are purged.

Options
–s Suppresses error messages.

–v Displays the version number of exrecover.

Environment Variables
exrecover uses the following environment variables:

TMP_VI
Contains a directory pathname that can be specified by an administrator as
a location for vi temporary files. This is useful if the current default directory
for these files (usually /tmp) is implemented as a TFS. In this case, all vi
temporary files that the exrecover daemon uses for recovery would be
gone after a system crash.

IBM recommends that this environment variable be set by a system
administrator as opposed to a user setting it for their environment. If the
latter occurs and the user sets the TMP_VI directory to something different
than what exrecover recognizes as TMP_VI, the user will need to run the
exrecover daemon manually to allow the temporary files to be converted to
the recoverable files used by vi (located in /etc/recover/$LOGNAME).

Note: A system administrator should NOT set TMP_VI to
/etc/recover/$LOGNAME. Also, the administrator should not set
TMP_VI to any directory where a pathname component is an
environment variable with a user’s value different than the
initialization process’s value (for example, $HOME). vi temporary
files are converted into a form recoverable by vi when exrecover is
run during IPL. Since exrecover is issued during IPL, it is owned by
the initialization process and will therefore contain different values for

expr

250 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

certain environment variables, if those environment variables are set.
Throughout the file system, there may exist some temporary files
that can only be converted by exrecover. This conversion can be
done manually by a system administrator (to recover files owned by
all users) or by a single user (to recover only their own files).

TMPDIR
The default directory. When this environment variable is set, exrecover
looks in this directory for the ex and vi working files.

TMP If TMPDIR is not set, TMP specifies the directory to be searched when
looking for the ex and vi working files.

If both TMPDIR and TMP are not set, exrecover uses the directory that the C/C++
Run-Time Library function tempnam() would use.

Localization
exrecover uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Files
exrecover uses the following files:

/tmp/VIl*
Line table files.

/tmp/VIn*
Name files.

/tmp/VIt*
Paged text files.

/etc/recover
The directory containing subdirectories of user names whose files have
been recovered. Only users with the appropriate privileges, such as the
system administrator, can create the /etc/recover directory.

/etc/recover/$LOGNAME/VIn*
Contains the name of the file that was being edited.

/etc/recover/$LOGNAME/VIt*
Contains the recovered text of the file that corresponds to the VIn* file

Note: Using a TFS for vi temporary files will make it impossible to recover vi files
after a system crash. vi writes temporary files to TMP_VI or TMPDIR (or
/tmp by default), and if the system crashes, those files can be recovered by
the exrecover command, which automatically runs from /etc/rc. If the files
are written to a TFS, then they will be wiped out when the system is IPLed.
See TMP_VI description under Environment Variables section of this
command.

exrecover daemon

Chapter 2. Shell Command Descriptions 251

|
|
|
|
|

|
|
|
|
|
|
|

Usage Notes
1. To recover all the files in the temporary directory, this command must be run

with appropriate permissions (for example, superuser privileges) so the
recovered files can be stored in the /etc/recover directory with the appropriate
ownerships and permissions.

For example, the following is a shell script to recover the files from TMPDIR,
where TMPDIR is the default directory:
export TMPDIR=/tmp
exrecover

2. If it is invoked by a nonprivileged user (for example, a user who is not a root
user), then only those files owned by that user are recovered. Because vi and
ex create their working files in directories specified by the TMPDIR or TMP
environment variables, one of these environment variables must be set before
exrecover can be issued.

For example, the following is a shell script that recovers files from $HOME/tmp:
export TMPDIR=$HOME/tmp
exrecover

3. exrecover is also invoked by vi or ex when you issue the ex preserve
command or when exrecover receives a SIGHUP signal. The working files
created by vi and ex are found in a default temporary directory (such as /tmp)
or in the directory specified by the TMPDIR or in the directory specified by the
TMP_VI, TMPDIR, or TMP environment variable. Three working files are
created:

name_file
Contains the actual name of the vi file. The names of all name_files
begin with VIn.

line_table_file
Contains a dummy page followed by data that gives, in line number
order, the offset for each line of text in the corresponding
paged_text_file. The page size is typically 1K, but may vary on some
systems. The names of all line table files begin with VIl.

paged_text_file
Contains lines of text that are at most LINE_MAX bytes in length. Lines
shorter than LINE_MAX byte are ended by a newline. The names of all
paged text files begin with VIt.

4. You can also run the program by specifying name_file on the command line. For
example:
exrecover /tmp/VInaaaa.111 /tmp/VInbbbb.222 ...

exrecover searches for a name_file and tries to open the associated line table
and paged text files. If all these files are found, exrecover builds, from the line
table and paged text files, a text file and stores it in the directory
/etc/recover/$LOGNAME.

It also stores a corresponding name_file to identify the file that was recovered
and sends mail, using the mailx utility, to the owner of the file indicating the
date, time, and name of the file recovered. You can retrieve recovered files in
one of the following ways:
vi –r file [issued from a shell command line]
ex –r file [issued from a shell command line]
:recover file [issued from within a vi session]

exrecover daemon

252 z/OS V1R4.0 UNIX System Services Command Reference

Each command loads the most recent occurrence of the file recovered from a
system failure or the ex preserve command. If vi successfully loads the file, it
removes the preserved file.

Exit Values
0 Successful completion

1 Failure due to any of the following:

v Memory allocation error

v No working files were found

v No /etc/recover directory errors that affect the overall operation of the
exrecover command

v An incomplete set of working files were found

2 Usage error

3 An error occurred while recovering a specific file. Some, but not all, files
were recovered.

Related Information
ex, vi

extattr — Set, reset, and display extended attributes for files

Format
extattr [+apsl] [−apsl] file ...

Note: l is a lower case L, not an upper case i.

Description
extattr sets, resets, and displays extended attributes for files.

Options
The following extended attributes are defined:

a When this attribute is set (+a) on an executable program file (load module),
it behaves as if loaded from an APF-authorized library. For example, if this
program is exec()ed at the job step level and the program is linked with the
AC=1 attribute, the program will be executed as APF-authorized.

To be able to use the extattr command for the +a option, you must have at
least READ access to the BPX.FILEATTR.APF FACILITY class profile. For
more information, see z/OS UNIX System Services Planning.

l When this attribute is set (+l) on an executable program file (load module),
it will be loaded from the shared library region.

To be able to use the extattr command for the +l option, you must have at
least READ access to the BPX.FILEATTR.SHARELIB FACILITY class. For
more information, see z/OS UNIX System Services Planning.

Note: l is a lower case L, not an upper case i.

p When this attribute is set (+p) on an executable program file (load module),
it causes the program to behave as if an RDEFINE had been done for the

exrecover daemon

Chapter 2. Shell Command Descriptions 253

load module to the PROGRAM class. When this program is brought into
storage, it does not cause the environment to be marked dirty.

To be able to use the extattr command for the +p option, you must have at
least READ access to the BPX.FILEATTR.PROGCTL FACILITY class. For
more information, see z/OS UNIX System Services Planning.

s When this attribute is not set (–s), the _BPX_SHAREAS=YES and
_BPX_SHAREAS=REUSE environment variable settings are ignored when
the file is spawn()ed. Use of the _BPX_SHAREAS=MUST setting and the
–s option will result in a spawn() failure. By default, this attribute is set (+s)
for all executable files.

Note: To specify any of these attributes, the user must be the owner of the file or
have superuser authority.

Example
To have the c89 and tso utilities not run in an address space shared with other
processes, issue:
extattr -s /bin/c89 /bin/tso

Related Information
ls, ISHELL

false — Return a nonzero exit code

Format
false [argument ...]

Description
false returns an exit status value of 1 (failure). It ignores any arguments given on
the command line. This can be useful in shell scripts.

Usage Note
false is a built-in shell command.

Localization
false uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Value
false always returns an exit status value of 1.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

exrecover daemon

254 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
sh

fc — Process a command history list

Format
fc [–r] [–e editor] [first[last]]
fc –l [–nr] [first[last]]
fc –s [old=new] [specifier]

Description
fc displays, edits, and reenters commands that have been input to an interactive
shell. fc stands for “fix commands.” If the variable HISTSIZE is not defined, 128
commands are accessible. The number of commands that are accessible is
determined by the HISTSIZE variable.

The shell stores these commands in a history file. When the HISTFILE environment
variable is defined as the name of a writable file, the shell uses this as the history
file. Otherwise, the history file is $HOME /.sh_history, if HOME is defined and the
file is writable. If the HOME variable is not defined, or the file is not writable, the
shell attempts to create a temporary file for the history. If a temporary file cannot be
created, the shell does not keep a history file.

Note: A shell shares history (commands) with all shells that have the same history
file. A login shell truncates the history file if it is more than HISTSIZE lines
long.

Normally, the shell does not keep a history of commands run from a profile file or
the ENV file. By default, however, it begins recording commands in the history file
when it encounters a function definition in either of these setup files. This means
that the HISTSIZE and HISTFILE variables must be set up appropriately before the
first function definition. If you do not want the history file to begin at this time, use:
set -o nolog

For further information, see sh and set. Any variable assignment or redirection that
appears on the fc command line affects both the fc command itself and the
commands that fc produces.

The first form of fc in “Format” puts you into an editor with a range of commands to
edit. When you leave the editor, fc inputs the edited commands to the shell.

The first and last command in the range are specified with first and last. There are
three ways to specify a command.

v If the command specifier is an unsigned or positive number, fc edits the
command with that number.

v If the command specifier is a negative number –n, fc edits the command that
came n commands before the current command.

v If the command specifier is a string, fc edits the most recent command beginning
with that string.

The default value of last is first. If you specify neither first nor last, the default
command range is the previous command entered to the shell.

false

Chapter 2. Shell Command Descriptions 255

Options
–e editor

Invokes editor to edit the commands. If you do not specify the –e option, fc
assumes that the environment variable FCEDIT, if defined, contains the
name of the editor for fc to use. If FCEDIT is not defined, fc invokes ed to
edit the commands.

–l Displays the command list. This option does not edit or reenter the
commands. If you omit last with this option, fc displays all commands from
the one indicated by first through to the previous command entered. If you
omit both first and last with this option, the default command range is the
16 most recently entered commands.

–n Suppresses command numbers when displaying commands.

–r Reverses the order of the commands in the command range.

–s Reenters exactly one command without going through an editor. If a
command specifier is given, fc selects the command to reenter as
described earlier; otherwise, fc uses the last command entered. To perform
a simple substitution on the command before reentry, use a parameter of
the form old=new. The string new replaces the first occurrence of string old.
fc displays the (possibly modified) command before reentering it.

Environment Variables
fc uses the following environment variables:

FCEDIT
Contains the default editor to be used if none is specified with the –e
option.

HISTFILE
Contains the pathname of the history file.

HISTSIZE
Gives the maximum number of previous commands that are accessible.

Files
/tmp Used to store temporary files. You can use the TMPDIR environment

variable to dictate a different directory to store temporary files.

$HOME/.sh_history
This default history file is created.

Localization
fc uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

fc

256 z/OS V1R4.0 UNIX System Services Command Reference

Usage Notes
1. fc is a built-in shell command.

2. r is a built-in alias for fc –s. history is a built-in alias for fc –l.

Exit Values
0 If you specified –l, this indicates successful completion.

1 Failure due to any of the following:
v Missing history file
v Inability to find the desired line in the history file
v Inability to create temporary file

2 An incorrect command-line option or argument

If fc runs one or more commands, the exit status of fc is the exit status of the last
run command.

Messages
Possible error messages include:

Cannot create temporary file
fc must create a temporary file to do some operations, such as editing. It
prints this message when it cannot create its temporary file—for example,
because the disk is full.

No command matches string
You asked to edit a command beginning with a particular string, but there
was no such command in the history file.

Portability
POSIX.2.

Related Information
alias, ed, print, read, sh, vi

fg — Bring a job into the foreground

Format
fg [%job-identifier]

tcsh shell: fg [%job ...]

Description
fg restarts a suspended job or moves a job from the background to the foreground.
To identify the job, you give a job-identifier (preceded by %) as given by the jobs
command.

If you do not specify job-identifier, fg uses the most recent job to be suspended
(with the kill command) or placed in the background (with the bg command). fg is
available only if you have enabled job control. See the –m option of set for more
information.

fc

Chapter 2. Shell Command Descriptions 257

fg in the tcsh shell
In the tcsh shell, fg brings the specified jobs (or, without arguments, the current job)
into the foreground, continuing each if it is stopped. job may be ’’, %, +, –, a
number, or a string. See also the run-fg-editor editor command described in “tcsh
— Invoke a C shell” on page 570.

Localization
fg uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 No current job

Messages
Possible error messages include:
Not a stopped job

Job was not stopped.

Portability
POSIX.2 User Portability Extension.

Related Information
bg, jobs, kill, ps, tcsh

fgrep — Search a file for a specified pattern

Format
fgrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Note: The fgrep utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that grep –f be used instead because it may
provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
See grep.

file — Determine file type

Format
file [–c] [–f filelist] [–m magic] file ...

fg

258 z/OS V1R4.0 UNIX System Services Command Reference

Description
file determines the format of each file by inspecting the attributes and (for an
ordinary file) reading an initial part of the file. file compares each file on the
command line to templates found in a system-maintained magic file to determine
their file type.

file then divides files that do not match a template in the magic file into text files
and binary data. Then, by reading an initial segment of the text files and making an
informed guess based on the contents, file further divides text files into various
types such as C programs, assembler programs, files of commands to the shell,
and yacc or lex programs.

file displays the name of each file along with the file type that it believes the file to
be.

Options
–c Only checks the template file of magic numbers for validity of format.

–f filelist
Examines the files listed in the file filelist.

–m magic
Uses the file magic rather than the default file of filetype templates.

Localization
file uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Files
file uses the following file:

/etc/magic
Default template file of magic numbers.

For file to work, you need to copy the magic file from the /samples directory to the
/etc directory.

For more information on enabling file, see “Enabling the file Utility” in z/OS UNIX
System Services Planning. Additional information on the magic file can be found in
“magic — Format of the /etc/magic file” on page 830.

Usage Notes
LC_SYNTAX only affects the interpretation of the input file that did not match any
magic file template. It does not affect the interpretation of the magic file.

Because of this, an input file that contains characters from a code page other than
IBM-1047 cannot match the magic file, which contains IBM-1047 characters.

file

Chapter 2. Shell Command Descriptions 259

Exit Values
0 Successful completion

1 Failure due to any of the following:
v A missing filelist after –f
v More than one –f option on the command line
v Cannot find the magic file
v Incorrect command-line option
v Too few command-line arguments
v Cannot access a specified file
v Cannot open filelist
v Cannot open the magic file
v A format error in the magic file
v Out of memory for reading or magic entries
v A bad number in the magic file
v A misplaced > in the magic file.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

All options are extensions to the POSIX standard.

Related Information
See Appendix H for more information about the magic file format.

filecache — Manage file caches

Format
/usr/sbin/filecache –a file...

/usr/sbin/filecache –d file...

/usr/sbin/filecache [–p | –q | –r]

Description
filecache manages the kernel file cache for files that are only read. To prime the
file cache at system startup, you can run this command from the /etc/rc script to
automatically load the file cache with files known to be used for read access only.
Files can be either data or executable files residing in a local file system (such as
HFS file systems). Specify all file names as full pathnames.

This command requires superuser authority.

Options
–a Adds the specified files to the file cache.

–d Deletes the specified files from the file cache.

–p Purges all files in the file cache.

–q Lists the files in the file cache.

–r Refreshes all files in the file cache.

file

260 z/OS V1R4.0 UNIX System Services Command Reference

Examples
To load the message catalogs for the shell and most utilities into the cache:
/usr/sbin/filecache -a /usr/lib/nls/msg/C/fom* /usr/lib/nls/msg/C/fsum*

Usage Notes
v When specifying file on the filecache command, use the full pathname.

v Files that have been modified may no longer be eligible for caching until the file
system that the file resides in is unmounted and then re-mounted, or until the
system is IPLed.

find — Find a file meeting specified criteria

Format
find path ... expression

Description
find searches a given file hierarchy specified by path, finding files that match the
criteria given by expression. Each directory, file, and special file is “passed through”
expression. If you use the –exec, –ok, or –cpio primary, expression runs a
specified command on each file found. A nonexistent expression or an expression
with commands to run automatically uses the –print primary to display the name of
any file that matches the criteria of expression.

find builds expression from a set of primaries and operators; juxtaposition of two
primaries implies a logical AND operator.

Operators and Primaries
find supports the following operators:

–a Used between primaries for a logical AND. You can omit this operator to get
the same result, since logical AND is assumed when no operator is used
between two primaries.

–o Used between primaries for a logical OR.

! Precedes an expression in order to negate it.

You can group primaries and operators using parentheses. You must delimit all
primaries, operators, numbers, arguments, and parentheses with white space. Each
number noted in the primary list is a decimal number, optionally preceded by a plus
or minus sign. If a number is given without a sign, find tests for equality; a plus
sign implies “greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

Options
This section lists the primaries that find supports.

Tip: If you use the ACL primaries, with the exception of -acl, performance may be
affected.

–aaudit auditmask
The -aaudit primary is used to match the auditor audit bits. See –audit
auditmask.

file

Chapter 2. Shell Command Descriptions 261

-acl c Matches if the type of ACL is the same as the type given by the character
c. Possible values of the character are:
a Access ACL (matches only if there are extended ACL entries)
d Directory default ACL
f File default ACL

If acl c is not defined, then find matches any of the above type of ACLs
when other ACL primaries are used.

-acl_count number
Matches if the numbers of extended ACL entries for any of the types of
ACLs for the object is is number.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

-acl_entry acl_text
Matches if the ACL on the file contains an entry equivalent to acl_text
where acl_text is a single extended ACL entry. This primary matches using
user and group names rather than UID and GID numbers. If aliases exist
for a name, then it is possible a match may not occur. This behavior is
different than the -acl_user and -acl_group primaries which match based on
UID and GID. Extended ACL entries have the following format:
[d[efault]: | f[default]:]u[ser]:uid:[+|^]perm
[d[efault]: | f[default]:]g[roup]:gid:[+|^]perm

where:

d[efault] If specified, extended ACL refers to directory default ACL

f[default] If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user ID (UID)
or user name

g[roup] Extended ACL refers to a particular numeric group ID (GID)
or group name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

perm Permissions specified either in absolute form (string rwx
with - as a placeholder or octal form), or in relative format
(using the + or^ modifiers).

Rule: For relative permission settings, specifying "+perm"
means that you want the ACL entry to have that permission
turned on. Specifying "^perm" means that you want the ACL
entry to have that permission off. For example, specifying
the following will find files with an extended access ACL
entry for user Billy in which the permissions are either -w-
or rw-:
user:Billy:+w^x

If the permission field of acl_text is omitted, then the ACL
entries are searched to match only the ACL type, and user
or group portions of the user-supplied entry.

find

262 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|
|
|
|

|
|

|

||

||

||
|

||
|

||

||

||
|
|

|
|
|
|
|
|
|

|

|
|
|

If you want to find any of the base ACL entries (user, group,
or other), you can use the -perm primary.

The first field of an ACL entry may specify the type of ACL (access,
directory default, or file default) that will be processed. If the type is not
specified, the operation applies only to the access ACL. If you are updating
the ACL entries, you can specify the base ACL entries; however, specifying
the base ACL entries may cause the file or directory’s permission bits to
change if what is specified is different than the current settings.

-acl_group groupid
Matches if the object has an extended group ACL entry for groupid. groupid
can also be a group ID number.

If your security product supports ACLs, the group base ACL entry can be
matched using this primary. If a numeric group exists as a group name in
the group data base, the group ID number associated with that group is
used.

-acl_nogroup
Matches if a group ACL entry (for any type of ACL) exists in which a group
is not defined. The GID for at least one extended ACL entry for the file does
not have a group name associated with it.

-acl_nouser
Matches if a user ACL entry (for any type of ACL) exists in which a user is
not defined. The UID for at least one extended ACL entry for the file does
not have a user name associated with it.

-acl_user userid
Matches if the ACL of the object has an extended user ACL entry for userid.
userid can also be a user ID number.

If a numeric owner exists as a user name in the user data base, the user ID
number associated with that user name is used. If your security product
supports ACLs, the user base ACL entry can be matched, using this
primary.

–atime number
Matches if someone has accessed the file exactly number days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–audit auditmask
The -audit primary is used to match the user audit bits. auditmask can be
in octal or in symbolic form. The mask can be preceded by a - character (as
in the perm primary), but it is ignored. Symbolic mode is an
operation=condition list, separated by commas:
[rwx]=[sf]

where:
=sf Success or failure on any of rwx
r=s Success on read
r=s, x=sf

Success on read or exec, failure on exec
r, w=s Incorrect
x Incorrect

find

Chapter 2. Shell Command Descriptions 263

|
|

|
|
|
|
|
|

–cpio cpio-file
Writes the file found to the target file cpio-file in cpio format. This is
equivalent to:
find ... | cpio -o >cpio-file

This primary matches if the command succeeds.

–ctime number
Matches if someone has changed the attributes of the file exactly number
days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–depth
Processes directories after their contents. If present, this primary always
matches.

–exec command ;
Takes all arguments between –exec and the semicolon as a command line,
replacing any argument that is exactly {} (that is, the two brace characters)
with the current filename. It then executes the resulting command line,
treating a return status of zero from this command as a successful match,
nonzero as failure. You must delimit the terminal semicolon with white
space.

Rule: The semicolon is a shell metacharacter. To use it in expression, you
must escape it, either by enclosing it in single quotes or by preceding it with
–.

–ext c Matches when the regular file has the extended attribute specified by
character c. See “extattr — Set, reset, and display extended attributes for
files” on page 253 for details on extended attributes. Possible values of the
character are:
a Program runs APF authorized if linked AC = 1
l Program is loaded from the shared library region
p Program is considered program-controlled
s Program is allowed to run in a shared address space

–follow
Follows symbolic links. If present, this primary always matches.

–group name
Matches if the group owner is name. If name is not a valid group name, it is
treated as a group ID.

–inum number
Matches if the file has inode number number.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–level number
Does not descend below number levels.

find

264 z/OS V1R4.0 UNIX System Services Command Reference

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–links number
Matches if there are number links to the file.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–mtime number
Matches if someone has modified the file exactlynumber days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

–name pattern
Compares the current filename with pattern. If there is no match, the
expression fails. The pattern uses the same syntax as filename generation
(see sh). It matches as many trailing pathname components as specified in
pattern.

–ncpio cpio-file
Writes the file found to the target file cpio-file in cpio –c format. This is
equivalent to:
find ... | cpio -oc >cpio-file

This primary matches if the command succeeds.

–newer file
Compares the modification date of the found file with that of the file given.
This matches if someone has modified the found file more recently than file.

–nogroup
Matches if no defined group owns the file.

–none Indicates that some action has been taken; thus find does not invoke the
default –print action. If present, this primary always matches.

–nouser
Matches if no defined user owns the file.

–okcommand;
Is similar to –exec, but before find executes the command, it displays the
command to confirm that you want to go ahead. find executes the
command line only if your input matches the expression for “yes” (yes and
no expressions are defined in LC_MESSAGES). If you type the expression
for “no”, the primary does not match. You must delimit the terminal
semicolon with white space.

Rule: The semicolon is a shell metacharacter. To use it in expression, you
must quote it.

–perm[-] mask
By default, matches if the permissions on file are identical to the ones given
in mask. You can specify mask in octal or in symbolic mode (see chmod).
If you use symbolic mode, find assumes that you begin with no bits set in

find

Chapter 2. Shell Command Descriptions 265

mask, and that the symbolic mode is a recipe for turning the bits you want
on and off. A leading minus sign (−) is special. It means that a file matches
if at least all the bits in mask are set. As a result, with symbolic mode, you
cannot use a mask value that begins with a minus sign (−).

If you use octal mode, find uses only the bottom 12 bits of mask. With an
initial minus sign (−), find again matches only if at least all the limits in
mask are set in the file permissions lists.

–print Displays the current filename. This primary always matches.

–prune
Stops searching deeper into the tree at this point. If present, this primary
always matches. –prune has no effect if –depth is also specified.

–size number[c]
Matches if the size of the file is number blocks long, where a block is 512
bytes. If you include the suffix c, the file size is number bytes.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

File Tag Specific Options
–filetag c Matches if the file tag is the same as the one given by character c.

Possible values of the character are:
b Matches if the file is tagged as binary (txtflag = OFF and

ccsid = 0xFFFF)
n Matches if the file has txtflag = OFF
t Matches if the file is tagged as text (txtflag = ON)
u Matches if the file is untagged (ccsid = 0)

–filetag_codeset codeset
Matches if the file is tagged with the given codeset

Note: Codesets which are aliases of each other exist which may
cause the test to fail, since the file inquiry operator may
return an alias of the codeset you are testing.

Examples
1. To find all files with a suffix of .c that have the audit mode set to rwx (read,

write, execute), issue:
find / –name "*.c" –audit rwx=sf

The quotes are required around the "*.c" if you do not want the shell to expand
this value to all files with a suffix of .c from within the current directory.

2. To find all files with a suffix of .c and audit mode bits set to 777 (rwx), issue:
find / –name "*.c" –audit 777

3. To find all files with the extensions .c and .h, starting at the current point in the
directory hierarchy:
find . –name "*.[ch]"

4. To find all files that have the extension .Z and that have not been accessed in
the last three days:
find . –name "*.Z" –mtime +3

find

266 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

5. To find all files and directories starting at the current directory point, with an
extended ACL user entry for user Billy for any ACL (access, file default, or
directory default), issue:
find . -acl_user Billy

or
find . -acl_entry user:Billy -o -acl_entry d:u:Billy -o -acl_entry f:u:Billy

6. To find all files and directories (starting from the current directory) that have
more than 10 extended ACL entries for any of the ACL types, issue:
find . -acl_count +10

7. To find all files and directories containing access ACLs which have an
extended ACL entry for user Averi, starting from the current user’s home
directory:
find ~ -acl_entry user:Averi

8. To find all directories whose file default ACLs have a group entry for Lakers,
starting at the current point in the directory hierarchy:
find . -acl_entry fdefault:group:Lakers

9. To find all files for user Marc (in other words, all the files that Marc owns),
starting from his home directory:
find /u/marc -user marc

10. To find all directories (starting from current directory) which have file default
ACLs:
find . -acl f

11. To find all directories whose file default or directory default ACLs have a group
entry for Lakers, starting at the current point in the directory hierarchy:
find . -acl_entry fdefault:group:Lakers -o -acl_entry default:group:Lakers

Localization
find uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Not enough memory
v Incorrect character specified after –type
v Inability to get information on a file for –newer
v Incorrect permissions for –perm
v Inability to open a file for the –cpio option
v Unknown user or group name
v Unable to access the PATH variable
v Cannot run a command specified for –exec or –ok
v Syntax error

find

Chapter 2. Shell Command Descriptions 267

v Stack overflow caused by an expression that is too complex

2 Failure due to one of the following:
v Incorrect command-line option
v Not enough arguments on the command line
v Missing option
v Argument list that is not properly ended

Messages
Possible error messages include:

bad number specification in string
You specified an option that takes a numeric value (for example, –atime,
–ctime) but did not specify a valid number after the option.

cannot stat file name for -newer
You used a –newer option to compare one file with another; however, find
could not obtain a modification time for the specified file. Typically, this
happens because the file does not exist or you do not have appropriate
permissions to obtain this information.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Most UNIX systems do not have a default action of –print. Therefore, they do not
need the –none option. The –a operator is not documented on many UNIX
systems.

The following primaries are extensions of the POSIX standard: –aaudit, –acl,
–acl_count, –acl_entry, –acl_group, –acl_nogroup–acl_nouser, –acl_user,
–audit, –audit, –cpio, –follow, –level, –ncpio, –none

The aaudit and audit options are unique to the z/OS shell.

Related Information
chaudit, chmod, cpio, sh

fold — Break lines into shorter lines

Format
fold [–bs] [–w width] [–width] [file...]

Description
fold reads the standard input (stdin) or each file, if you specify any. Each input line
is broken into lines no longer than width characters. If you do not specify width on
the command line, the default line length is 80. The output is sent to the standard
output (stdout).

Options
–b Specifies width in bytes rather than in column positions; that is, fold does

not interpret tab, backspace, and carriage return characters. If the last byte
specified by width is part of a doublebyte character, fold does not break the
character. Instead, the line is broken before the doublebyte character.

find

268 z/OS V1R4.0 UNIX System Services Command Reference

–s Breaks each line at the last blank within width column positions. If there is
no blank that meets the requirement, fold breaks the line normally.

–w width
Specifies a maximum line length of width characters.

–width Is identical in effect to –w width.

Localization
fold uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure because the input file could not be opened
2 Invalid command-line option or a missing width argument

Portability
POSIX.2, 4.2BSD.

The –width option is an extension of the POSIX standard.

Related Information
pr

functions — Display or assign attributes to functions

Format
functions [*tux][name ...]

Note: * indicates a + or – character.

Description
functions is an alias for typeset –f.

See “typeset — Assign attributes and values to variables” on page 658 for more
information.

Related Information
typeset, sh

fuser — List process IDs of processes with open files

Format
fuser [–cfku] file ...

fold

Chapter 2. Shell Command Descriptions 269

Description
The fuser command writes to standard output the process IDs of all processes
running on the local system that have one or more named files open. file is the
pathname of the file for which information is to be reported, or, if the –c options is
used, the pathname of a file on the file system for which information is to be
reported.

The fuser command writes additional information to standard error, such as the
user name of the process and a character indicating how the process is using the
file. fuser only reports on local processes, not remote ones.

Option
–c fuser reports on all open files within the file system that the specified file is

a member of

–f fuser reports on only the named files. This is the default.

–k fuser sends the SIGKILL signal to each local process (with the exception of
the fuser process and parent processes of fuser). Only a superuser can
terminate a process that belongs to another user. This option is a z/OS
extension.

–u fuser writes to standard error the user name associated with each process
ID written to standard output.

Usage Notes
fuser will write the process ID for each process to standard output. fuser also
writes the following to standard error:

v The pathname of each file specified on the command line.

v An indicator of how the process is using this file (written after the process ID):

–c The process is using the file as its current directory.

–r The process is using the file as its root directory.

If no character follows the PID, this means that the process has the file open.

v When the –u option is specified, fuser writes the user name corresponding to the
process’ real user ID.

Examples
1. To list the process numbers of local processes using the /etc/magic file, enter:

fuser /etc/magic

which will give you the following output:
/etc/magic: 67109274 144

2. To display the user names associated with the processes accessing the file
/etc/magic:
fuser -u /etc/magic

Your output would be:
/etc/magic: 67109274(Steve) 144(Fred)

3. To terminate all of the processes using a given file system, enter either the
mount point name or the name of a file in that file system:
fuser -ku /u/home

fuser

270 z/OS V1R4.0 UNIX System Services Command Reference

or
fuser -kuc /u/home/code

Your output would look like:
/u/home/code: 111111c(Steve) 222222r(Erin) 333333(Garth)
444444c(Steve) 555555r(Renata) 66666c(Angie)

This command lists the process number and user name, and then sends a kill
signal to each process that is using the /u/home file system. Only a superuser
can terminate processes that belong to another user. You might want to use this
command if you are trying to unmount the /u/home file system and a process
that is accessing the file system prevents this.

Exit Values
0 Successful completion
1 An error

Related Information
kill, ps

gencat — Create or modify message catalogs

Format
gencat CatalogFile MessageFile ...

Description
gencat merges the message text source files MessageFile (usually *.msg) into a
formatted message catalog CatalogFile (usually *.cat). The file CatalogFile is
created if it does not already exist. If CatalogFile does exist, its messages are
modified according to the directives in the MessageFiles. If set and message
numbers are the same, the new message text defined in MessageFile replaces the
message text defined in CatalogFile.

You can specify any number of MessageFiles. gencat processes the MessageFiles
one after another, in the sequence specified. Each successive MessageFile
modifies the CatalogFile.

If – is specified for CatalogFile, standard output (stdout) is used. If – is specified for
MessageFile, standard input (stdin) is used.

gencat does not accept symbolic message identifiers. You must use mkcatdefs if
you want to use symbolic message identifiers.

Extended Description
The format of a message text source file is defined as follows. All characters must
be encoded as singlebyte characters except where noted. The fields of a message
text source line are separated by a single blank character. Any other blank
characters are considered as being a part of the subsequent field.

$set n comment
Specifies the set identifier of the following messages until the next $set or
end of file appears. The n denotes the set identifier, which is defined as a
number in the range 1–NL_SETMAX. Set identifiers must be in ascending

fuser

Chapter 2. Shell Command Descriptions 271

order within a single source file, but need not be contiguous. Any string
following the set identifier is treated as a comment. If no $set directive is
specified in a message text source file, all messages are located in default
message set NL_SETD.

$delset n comment
Deletes message set n from an existing message catalog. The n denotes
the set number, 1–NL_SETMAX. Any string following the set number is
treated as a comment.

$ comment
A line beginning with $ followed by a blank character is treated as a
comment.

m message-text
The m denotes the message identifier, which is defined as a number in the
range 1–NL_MSGMAX. Message identifiers must be in ascending order
within a single set, but need not be contiguous. The length of message-text
must be in the range –NL_TEXTMAX. The message text is stored in the
message catalog with the set identifier specified by the last $set directive,
and with message identifier m. If the message text is empty, and a blank
character field separator is present, an empty string is stored in the
message catalog. If a message source line has a message number, but not
a field separator or message text, the existing message with that number (if
any) is deleted from the catalog. The message text can contain doublebyte
characters.

$quote c
Specifies an optional quote character c, which can be used to surround
message-text so trailing spaces or null (empty) messages are visible in a
message source line. By default, or if an empty $quote directive is
supplied, no quoting of message-text is recognized. The quote character
can be a doublebyte character.

$timestamp
Specifies a time stamp that can be used to identity the subsequent .cat file
as having come from this file. The timestamp can be up to 20 characters
long and can be any format you wish. Usually it follows this format:
$timestamp 1994 137 19:09 UTC

The mkcatdefs command automatically generates a timestamp in the file it
creates for input to gencat.

Empty lines in a message text source file are ignored. Lines starting with any
character other than those defined above are considered invalid.

Text strings can contain the special characters and escape sequences defined in
the following table:

Description Sequence
Backspace \b
backslash \
Carriage-return \r
Double quote \"
Form-feed \f
Horizontal tab \t
Newline \n
Octal bit pattern \ddd

gencat

272 z/OS V1R4.0 UNIX System Services Command Reference

Description Sequence
Vertical tab \v

These sequences must be encoded as singlebyte characters.

The escape sequence \ddd consists of backslash followed by one, two, or three
octal digits, which are taken to specify the value of the desired character. If the
character following a backslash is not one of those specified, the backslash is
ignored.

A backslash (\) followed by a newline character is also used to continue a string on
the following line. Thus the following two lines describe a single message string:
1 This line continues \
to the next line

which is equivalent to:
1 This line continues to the next line

Portability of Message Catalogs
gencat works with the z/OS C runtime library function catgets() to correctly display
message text in the locale that the C program using catgets() is running in. gencat
adds information to the CatalogFile about the codeset that was in effect when
gencat processed the CatalogFile. gencat should be run with the same locale that
the recipients of the messages will be using. This should be the same locale that
was used to create the message text in MessageFile.

Message catalogs produced by gencat are binary-encoded, meaning that their
portability cannot be guaranteed between systems. Thus, just as C programs need
to be recompiled, so message catalogs must be re-created via gencat when moved
to another system.

Example
To generate a test.cat catalog from the source file test.msg, enter:
gencat test.cat test.msg

Localization
gencat uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

Exit Values
0 Successful completion
1 An error occurred

Portability
X/Open Portability Guide.

gencat

Chapter 2. Shell Command Descriptions 273

getconf — Get configuration values

Format
getconf –a
getconf system_var
getconf [–a] path_var pathname

Description

getconf writes the value of a configuration variable to the standard output (stdout).
You can specify the configuration variable using one of forms listed in the Format
section. If you use the first form, getconf writes the value of the variable
system_var. If you use the second form, getconf writes the value of the variable
path_var for the pathname given by pathname. The –a option prompts getconf to
display all current configuration variables, and their values, to stdout.

getconf writes numeric values in decimal format and nonnumeric values as simple
strings. If the value is not defined, getconf writes the string undefined to stdout.

Options
–a Writes out all the configuration variables for the current system, and their

values, to stdout. Path variables are written based on a pathname of dot
(.).

Configuration Variables
You can use the second form of getconf to find the value of the following
POSIX.1-1990 standard configuration variables for the specified pathname:

LINK_MAX
Specifies the maximum number of links that this file can have.

MAX_CANON
Specifies the maximum number of bytes in the workstation’s canonical input
queue (before line editing).

MAX_INPUT
Specifies the space available in the workstation’s input queue.

NAME_MAX
Specifies the largest filename size.

PATH Specifies the standard PATH setting.

_CS_PATH
Specifies the standard PATH setting.

PATH_MAX
Specifies the maximum number of bytes in a pathname.

PIPE_BUF
Specifies the largest atomic write to a pipe.

_POSIX_CHOWN_RESTRICTED
Specifies the restrictions that apply to file ownership changes.

_POSIX_NO_TRUNC
If set, it is an error for any pathname component to be longer than NAME_MAX
bytes.

getconf

274 z/OS V1R4.0 UNIX System Services Command Reference

_POSIX_VDISABLE
Specifies that processes are allowed to disable ending special characters.

You can use the first form of getconf to find the value of the following
POSIX.1-1990 standard configuration variables:

ARG_MAX
Specifies the maximum length of arguments for running a program,
including environment data.

CHILD_MAX
Specifies the maximum number of simultaneous processes allowed per real
user.

CLK_TCK
Specifies the number of intervals per second in the machine clock.

NGROUPS_MAX
Specifies the number of simultaneous group IDs per process.

OPEN_MAX
Specifies the maximum number of open files at any time per process.

STREAM_MAX
Specifies the number of streams that one process can have open at one
time.

TZNAME_MAX
Specifies the maximum number of bytes supported for the name of a time
zone (not of the TZ variable).

_POSIX_ARG_MAX
Specifies the minimum conforming value for ARG_MAX.

_POSIX_CHILD_MAX
Specifies the minimum conforming value for CHILD_MAX.

_POSIX_JOB_CONTROL
Specifies the POSIX job control supported.

_POSIX_LINK_MAX
Specifies the minimum conforming value for LINK_MAX.

_POSIX_MAX_CANON
Specifies the minimum conforming value for MAX_CANON.

_POSIX_MAX_INPUT
Specifies the minimum conforming value for MAX_INPUT.

_POSIX_NAME_MAX
Specifies the minimum conforming value for NAME_MAX.

_POSIX_NGROUPS_MAX
Specifies the minimum conforming value for NGROUPS_MAX.

_POSIX_OPEN_MAX
Specifies the minimum conforming value for OPEN_MAX.

_POSIX_PATH_MAX
Specifies the minimum conforming value for PATH_MAX.

_POSIX_PIPE_BUF
Specifies the minimum conforming value for PIPE_BUF.

getconf

Chapter 2. Shell Command Descriptions 275

_POSIX_SAVED_IDS
Specifies that processes have saved set-user-ID and saved set-group-ID
bits set.

_POSIX_SSIZE_MAX
Specifies the value that can be stored in an object of type ssize_t.

_POSIX_STREAM_MAX
Specifies the minimum conforming value for STREAM_MAX.

_POSIX_TZNAME_MAX
Specifies the minimum conforming value for TZNAME_MAX.

_POSIX_VERSION
Specifies the version of POSIX adhered to in this release.

You can use the first form of getconf to find the value of the POSIX.2 standard
configuration variables:

BC_BASE_MAX
Specifies the maximum ibase and obase values for the bc command.

BC_DIM_MAX
Specifies the maximum number of elements permitted in a bc array.

BC_SCALE_MAX
Specifies the maximum scale size allowed in bc.

BC_STRING_MAX
Specifies the maximum number of characters in a string in bc.

COLL_WEIGHTS_MAX
Specifies the maximum number of weights assignable to an entry of the
LC_COLLATE order keyword.

EXPR_NEST_MAX
Specifies the maximum number of expressions that you can nest inside
parentheses in an expression evaluated by expr.

LINE_MAX
Specifies the maximum number of bytes that a utility can accept as an input
line (either from the standard input or a text file) when the utility takes text
files as input. This number includes the trailing <newline>.

RE_DUP_MAX
Specifies the maximum number of repeated occurrences of a regular
expression when using the interval notation \{m,n\}.

(See Appendix C.)

POSIX2_C_BIND
Indicates if the system supports the C Language Bindings Option.

POSIX2_C_DEV
Indicates if the system supports the C Language Development Utilities
Option.

POSIX2_FORT_DEV
Indicates if the system supports the FORTRAN Development Utilities
Option.

POSIX2_FORT_RUN
Indicates if the system supports the FORTRAN Runtime Utilities Option.

getconf

276 z/OS V1R4.0 UNIX System Services Command Reference

POSIX2_LOCALEDEF
Indicates if the system supports the creation of locales.

POSIX2_SW_DEV
Indicates if the system supports the Software Development Utilities Option.

POSIX2_CHAR_TERM
Indicates if the system supports at least one terminal type capable of all
operations necessary for the User Portability Utilities Option. This parameter
name is correct only on if POSIX2_UPE is on.

POSIX2_UPE
Indicates if the system supports the User Portability Utilities Option.

POSIX2_VERSION
Specifies the version of POSIX.2 adhered to in this release.

POSIX2_BC_BASE_MAX
Specifies the minimum conforming value for BC_BASE_MAX.

POSIX2_BC_DIM_MAX
Specifies the minimum conforming value for BC_DIM_MAX.

POSIX2_BC_SCALE_MAX
Specifies the minimum conforming value for BC_SCALE_MAX.

POSIX2_BC_STRING_MAX
Specifies the minimum conforming value for BC_STRING_MAX.

POSIX2_COLL_WEIGHTS_MAX
Specifies the minimum conforming value for EQUIV_CLASS_MAX.

POSIX2_EXPR_NEST_MAX
Specifies the minimum conforming value for EXPR_NEST_MAX.

POSIX2_LINE_MAX
Specifies the minimum conforming value for LINE_MAX.

POSIX2_RE_DUP_MAX
Specifies the minimum conforming value for RE_DUP_MAX.

You can use the third form of getconf to find the value of the POSIX.2 standard
configuration variables:

_ACL Specifies that access control lists (ACLs) are supported by the security
product and file system.

_PC_ACL_ENTRIES_MAX
Specifies the maximum number of extended ACL entries that can be placed
in an access control list for the specified file.

This implementation of getconf also supports the following non-POSIX-conforming
name:

_CS_SHELL
Specifies the default shell (command interpreter).

_PC_ACL
Security product supports access control lists (ACLs).

_PC_ACL_ENTRIES_MAX
Maximum number of entries that can be placed in an access control list for
a specified file.

getconf

Chapter 2. Shell Command Descriptions 277

Example
This example uses getconf to find the minimum conforming value for PATH_MAX,
which is contained in the variable _POSIX_PATH_MAX. If you issue
getconf _POSIX_PATH_MAX

getconf displays
255

Localization
getconf uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

See Appendix F for more information.

Exit Values
0 The specified parameter_name was valid and getconf displayed its value

successfully.

>0 An error occurred.

Portability
POSIX.2, X/Open Portability Guide.

_CS_SHELL is an extension of the POSIX standard. Some symbols are supported
only on systems that support POSIX.2.

Related Information
bc, expr, sh

See Appendix C for more information about regexp.

getfacl — Display owner, group, and access control list (ACL) entries

Format

getfacl [–acdfhmoqs] [-e user] file ...

Description

getfacl displays the comment header, base ACL (access control list) entries, and
extended ACL entries, if there are any, for each file that is specified. It also resolves
symbolic links. You can specify whether to display access, file default, or directory
default. You can also change the default display format. The output can be used as
input to setfacl.

A comprehensive description of access control list entries can be found in z/OS
UNIX System Services Planning.

getconf

278 z/OS V1R4.0 UNIX System Services Command Reference

|

|

Options
–a Displays the access ACL entries. This is the default if -a, -d, or -f is not

specified.

–c Displays each ACL entry, using commas to separate the ACL entries
instead of newlines, which is the default. Does not display the header.

–d Displays the directory default ACL entries. If the file is not a directory, a
warning is issued.

–e user
Displays only the ACL entries for the specified types of access control lists
(-a, -d, -f) which affects the specified user’s access. If users look at the
output, they may be able to determine why the access is granted or denied.
The user can be an UID or username. The output includes the user’s entry,
if it exists, as well as entries for any group to which the user is connected.

–f Displays the file default ACL entries. If the file is not a directory, a warning
is issued.

–h Does not resolve the symbolic link. (ACLs are not allowed on symbolic
links, so the file will not have anything displayed.)

–m Specifies that the comment header (the first three lines of each file’s output)
is not to be displayed.

–o Displays only the extended ACL entries. Does not display the base ACL
entries.

–q Quiet mode. Suppresses the warning messages and gives a successful
return code if there are no other errors.

–s Skips files that only have the base ACL entries (such as owner, group,
other). Only files that have the extended ACL entries are displayed.

Examples
1. To display access ACL information for file file, issue:

getfacl file

Where the following is a sample of the output::
#file: file
#owner: WELLIE
#group: SYS
user::rwx <=== The owner’s permission bit setting
group::rwx <=== The group’s permission bit setting
other::rw- <=== Permission bit setting if neither user nor group
user: WELLIE2: rw-
group:SYS1:rwx

2. To display access, file default, and directory default ACL information for directory
directory, issue:
getfacl -a -f -d directory

Where the the following is a sample of the output:
#file: file
#owner: WELLIE
#group: SYS
user::rwx
group::rwx
other::rw-
user: WELLIE2: rw-

getfacl

Chapter 2. Shell Command Descriptions 279

group:SYS1:rwx
fdefault:user: WELLIE2: rw-
fdefault:group:SYS1:rwx
default:user:WELLIE4:---

3. To copy the ACL entries from file foo such that the file bar will have the same
ACL entries:
getfacl foo | setfacl -S - bar

Localization
getfacl uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 Failure

getfacl displays the ACL entries in the following order: access, file default, and
directory default. Errors will occur in the following situations:

v If a file is not a directory and the -d or -f option was used, you will get a warning
and getfacl will continue to the next file.

v If the user does not have access to a file, you will get a warning and getfacl will
continue to the next file.

Portability
An approved POSIX standard does not exist for getfacl.

Related Information
find, ls, setfacl

getopts — Parse utility options

Format
getopts opstring name [arg ...]

Description
getopts obtains options and their arguments from a list of parameters that follows
the standard POSIX.2 option syntax (that is, single letters preceded by a hyphen (–)
and possibly followed by an argument value). Typically, shell scripts use getopts to
parse arguments passed to them. When you specify arguments with the arg
argument on the getopts command line, getopts parses those arguments instead
of the script command-line arguments (see set).

Options
opstring

Gives all the option letters that the script recognizes. For example, if the

getfacl

280 z/OS V1R4.0 UNIX System Services Command Reference

script recognizes –a, –f, and –s, opstring is afs. If you want an option letter
to be followed by an argument value or group of values, put a colon after
the letter, as in a:fs. This indicates that getopts expects the –a option to
have the form –a value. Normally one or more blanks separate value from
the option letter; however, getopts also handles values that follow the letter
immediately, as in –avalue. opstring cannot contain a question mark (?)
character.

name Specifies the name of a shell variable. Each time you invoke getopts, it
obtains the next option from the positional parameters and places the
option letter in the shell variable name.

getopts places a question mark (?) in name if it finds an option that does
not appear in opstring, or if an option value is missing.

arg ... Each option on the script command line has a numeric index. The first
option found has an index of 1, the second has an index of 2, and so on.
When getopts obtains an option from the script command line, it stores the
index of the script in the shell variable OPTIND.

When an option letter has a following argument (indicated with a : in
opstring), getopts stores the argument as a string in the shell variable
OPTARG. If an option doesn’t take an argument, or if getopts expects an
argument but doesn’t find one, getopts unsets OPTARG.

When getopts reaches the end of the options, it exits with a status value of
1. It also sets name to the character ? and sets OPTIND to the index of the
first argument after the options. getopts recognizes the end of the options
by any of the following:
v Finding an argument that doesn’t start with –
v Finding the special argument ––, marking the end of options
v Encountering an error (for example, an unrecognized option letter)

OPTIND and OPTARG are local to the shell script. If you want to export
them, you must do so explicitly. If the script invoking getopts sets OPTIND
to 1, it can call getopts again with a new set of parameters, either the
current positional parameters or new arg values.

By default, getopts issues an error message if it finds an unrecognized
option or some other error. If you do not want such messages printed,
specify a colon as the first character in opstring.

Example
Following is an example of using getopts in a shell script:
Example illustrating use of getopts builtin. This
shell script would implement the paste command,
using getopts to process options, if the underlying
functionality was embedded in hypothetical utilities
hpaste and vpaste, which perform horizontal and
vertical pasting respectively.
#
paste=vpaste # default is vertical pasting
seplist="" # default separator is tab

while getopts d:s o
do case "$o" in

d) seplist="$OPTARG";;
s) paste=hpaste;;
[?]) print >&2 "Usage: $0 [-s] [-d seplist] file ..."

exit 1;;

getopts

Chapter 2. Shell Command Descriptions 281

esac
done
shift $OPTIND-1

perform actual paste command
$paste -d "$seplist" "$@"

Environment Variables
getopts uses the following environment variables:
OPTARG

Stores the value of the option argument found by getopts.
OPTIND

Contains the index of the next argument to be processed.

Localization
getopts uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

See Appendix F for more information.

Usage Note
getopts is a built-in shell command.

Exit Values
0 getopts found a script command line with the form of an option. This

happens whether or not it recognizes the option.

1 getopts reached the end of the options, or an error occurred.

2 Failure because of an incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide.

On UNIX systems, getopts is built in both the KornShell and Bourne shell.

Related Information
sh

grep — Search a file for a specified pattern

Format
grep [–bcEFilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]
egrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]
fgrep [–bcilnqsvx] [–e pattern] ... [–f patternfile] ... [pattern] [file ...]

Description
fgrep searches files for one or more pattern arguments. It does not use regular
expressions; instead, it directs string comparisons to find matching lines of text in
the input.

getopts

282 z/OS V1R4.0 UNIX System Services Command Reference

egrep works in a similar way, but uses extended regular expression matching. (For
information about regular expression matching, see Appendix C.) If you include
special characters in patterns typed on the command line, escape them by
enclosing them in apostrophes to prevent inadvertent misinterpretation by the shell
or command interpreter. To match a character that is special to egrep, put a
backslash (\) in front of the character. It is usually simpler to use fgrep when you
don’t need special pattern matching.

grep is a combination of fgrep and egrep. If you do not specify either –E or –F,
grep behaves like egrep, but matches basic regular expressions instead of
extended ones. You can specify a pattern to search with either the –e or –f option.
If you do not specify either option, grep (or egrep or fgrep) takes the first
non-option argument as the pattern for which to search. If grep finds a line that
matches a pattern, it displays the entire line. If you specify multiple input files, the
name of the current file precedes each output line.

Options
grep accepts all the following options while egrep and fgrep accept all but the –E
and –F options.

–b Precedes each matched line with its file block number.

–c Displays only a count of the number of matched lines and not the lines
themselves.

–E Matches using extended regular expressions (causes grep to behave like
egrep).

–e pattern
Specifies one or more patterns separated by newlines for which grep is to
search.

You can indicate each pattern with a separate –e option character, or with
newlines within pattern. For example, the following two commands are
equivalent:

grep –e pattern_one –epattern_two file
grep –e 'pattern_one
pattern_two' file

–F Matches using fixed strings (causes grep to behave like fgrep).

–f patternfile
Reads one or more patterns from patternfile. Patterns in patternfile are
separated by newlines.

–i Ignores the case of the strings being matched.

–l Lists only the filenames that contain the matching lines.

–n Precedes each matched line with its fileline number.

–q Suppresses output and returns the appropriate return code.

–s Suppresses the display of any error messages for nonexistent or
unreadable files.

–v Complements the sense of the match—that is, displays all lines not
matching a pattern.

–x Requires a string to match an entire line.

grep

Chapter 2. Shell Command Descriptions 283

Example
To display every line mentioning an astrological element:
egrep "earth|air|fire|water" astro.log

Localization
grep uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 At least one match for pattern was found.

1 No matches for pattern were found.

2 Failure due to any of the following:
v The –e option was missing pattern.
v The –f option was missing patternfile.
v Out of memory for input or to hold a pattern.
v patternfile could not be opened.
v Incorrect regular expression.
v Incorrect command-line option.
v The command line had too few arguments.
v The input file could not be opened.

If the program fails to open one input file, it tries to go on to look at any
remaining input files, but it returns 2 even if it succeeds in finding matches
in other input files.

Messages
Possible error messages include:

input lines truncated—result questionable
One or more input lines were longer than grep could handle; the line has
been truncated or split into two lines. Shorten the line or lines, if possible.
This message does not affect the exit status.

out of space for pattern string
grep did not have enough memory available to store the code needed to
work with the given pattern (regular expression). The usual cause is that the
pattern is very complex. Make the pattern simpler, or try to release memory
so that grep has more space to work with.

Limits
The longest input record (line) is restricted by the system variable LINE_MAX. It is
always at least 2048 bytes. fgrep may be able to handle lines longer than
LINE_MAX. Longer lines are treated as two or more records.

grep

284 z/OS V1R4.0 UNIX System Services Command Reference

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Only the grep command is part of the POSIX and X/Open standards. The egrep
and fgrep commands are extensions. The –b option is an extension of the POSIX
standard.

Related Information
ed, find

See Appendix C for more information about regexp.

hash — Create a tracked alias

Format
hash [name ...]
hash -r

Description
hash creates one or more tracked aliases. Each name on the command line
becomes an alias that is resolved to its full pathname; thus the shell avoids
searching the PATH directories for the command whenever you issue it. A tracked
alias is assigned its full pathname the first time that the alias is used. It is
reassigned a pathname the first time that it is used after the variable PATH is
changed or the shell command cd is used.

hash is a built-in alias defined with
alias hash=’alias -t’

If you specify hash without any arguments on the command line, hash displays the
current list of tracked aliases.

Option
–r Removes all current tracked aliases.

Usage Note
hash is a built-in shell command.

Localization
hash uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure because of an incorrect command-line option

grep

Chapter 2. Shell Command Descriptions 285

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
alias, sh

head — Display the first part of a file

Format
head [–bcklmn num] [file ...]
head [–num] [file ...]

Description
By default, head displays the first 10 lines of each file given on the command line.
If you do not specify file, head reads standard input (stdin).

Options
–b num

Displays the first num blocks (a block is 512 bytes) of each file.
–c num

Displays the first num bytes of each file.
–k num

Displays the first num kilobytes (1024 bytes) of each file.
–l num

Displays the first num lines of each file.
–m num

Displays the first num megabytes of each file.
–n num

Displays the first num lines of each file.
–num Displays the first num lines of each file.

Localization
head uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to open an input file
v Read error on stdin
v Write error on stdout

2 Failure due to any of the following:
v Unknown command-line option
v Missing or incorrect num in an –n option

hash

286 z/OS V1R4.0 UNIX System Services Command Reference

Messages
Possible error messages include:

Badly formed line or character count num
The value num, following a –b, –c, –k, –l, –m, or –n option, was not a valid
number.

Portability
POSIX.2, X/Open Portability Guide.

This program originated with Berkeley Software Distribution (BSD) and is a frequent
add-on to UNIX systems.

The POSIX.2 standard included only the –n num and –num options, though it
considers the latter obsolete.

Related Information
cat, sed, tail

history — Display a command history list

Format
history [first[last]]

tcsh shell:

history [-hTr] [n]

history -S|-L|-M [filename]

history -c

Description
history is an alias for fc –l. Like fc –l, history displays the list of commands that
have been input to an interactive shell. This command does not edit or reenter the
commands. If you omit last, history displays all commands from the one indicated
by first through to the previous command entered. If you omit both first and last with
this command, the default command range is the 16 most recently entered
commands.

See “fc — Process a command history list” on page 255 for more information.

history in the tcsh shell
In the tcsh shell, history, used alone, prints the history event list. If n is given only
the n most recent events are printed or saved.

Note: See “tcsh — Invoke a C shell” on page 570 for descriptions of the tcsh shell
variables and commands indicated below.

The tcsh shell history built-in command uses the following options:

v With -h, the history list is printed without leading numbers.

v With -T, timestamps are printed also in comment form. (This can be used to
produce files suitable for loading with history -L or source -h.)

v With -r, the order of printing is most recent first rather than oldest first.

head

Chapter 2. Shell Command Descriptions 287

v With -S, history saves the history list to filename. If the first word of the savehist
shell variable is set to a number, at most that many lines are saved. If the
second word of savehist is set to merge, the history list is merged with the
existing history file instead of replacing it (if there is one) and sorted by time
stamp. Merging is intended for an environment like the X Window System with
several shells in simultaneous use. Currently it only succeeds when the shells
quit one after another.

v With -L, the shell appends filename, which is presumably a history list saved by
the -S option or the savehist mechanism, to the history list. -M is like -L, but the
contents of filename are merged into the history list and sorted by timestamp. In
either case, histfile is used if filename is not given and ~/.history is used if
histfile is unset. history -L is exactly like source -h except that it does not
require a filename.

v With -c, clears the history list.

tcsh login shells do the equivalent of history -L on startup and, if savehist is set,
history -S before exiting. Because only ~/.tcshrc is normally sourced before
~/.history, histfile should be set in ~/.tcshrc rather than ~/.login. If histlit is set,
the first form (history [-hTr] [n]) and second form (history -S|-L|-M [filename]) print
and save the literal (unexpanded) form of the history list.

Related Information
fc, sh, tcsh

iconv — Convert characters from one codeset to another

Format
iconv [–sc] –f oldset –t newset [file ...]
iconv –l[–v]

File Tag Specific Options:
iconv [–F] [–M] [–T]

Description
iconv converts characters in file (or from stdin if no file is specified) from one code
page set to another. The converted text is written to stdout. See z/OS C/C++
Programming Guide for more information about the code sets supported for this
command.

If the input contains a character that is not valid in the source code set, iconv
replaces it with the byte 0xff and continues, unless the –c option is specified.

If the input contains a character that is not valid in the destination code set,
behavior depends on the system’s iconv() function. See z/OS C/C++ Run-Time
Library Reference for more information about the character used for converting
incorrect characters.

Also, z/OS C/C++ Programming Guide has a list of code pages supported by the
z/OS shell.

You can use iconv to convert singlebyte data or doublebyte data.

history

288 z/OS V1R4.0 UNIX System Services Command Reference

Options
–c Characters containing conversion errors are not written to the output. By

default, characters not in the source character set are converted to the
value 0xff and written to the output.

–f oldset
oldset can be either the codeset name or a pathname to a file containing an
external codeset.

–l Lists supported codesets and CCSIDs. (This option was accepted in
releases prior to V1R3, but was not supported.)

–s Suppresses all error messages about faulty encodings.

–t newset
Specifies the destination codeset for the output. newset can be either the
codeset name or a pathname to a file containing an external codeset.

–v Specifies verbose output.

File Tag Specific Options
–F Use the input file’s codeset (as defined in the file tag) as the source

codeset. If –f is also specified, and the oldset matches the file tag
or if there is no file tag codeset, then oldset is used as the source
codeset. If –F and –f are specified and oldset does not match the
file tag codeset, then iconv fails with an error.

–M Tag a new output file as mixed, that is, the text flag (txtflag) will be
off and the value for codeset will be the same as what’s specified
on the –t option.

–T Tag a new output file as text, that is, the txtflag will be on and the
value for codeset will be the same as what’s specified on the –t
option.

For more information on file tagging and codeset specifications, see z/OS UNIX
System Services Planning.

Localization
iconv uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Examples
1. To convert the file words.txt from the IBM-1047 standard codeset to the ISO

8859-1 standard codeset and store it in converted:
iconv –f IBM-1047 –t ISO8859-1 words.txt > converted

Also, for the exact conversion table names, refer to z/OS C/C++ Programming
Guide.

2. To convert the file mbcsdata, which is in code page IBM-932 (doublebyte
ASCII), to code page IBM-939 and put the output in a file called dbcsdata:

iconv

Chapter 2. Shell Command Descriptions 289

iconv –f IBM-932 –t IBM-939 mbcsdata > dbcsdata

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Insufficient memory
v Inability to open the input file
v Incorrect or unknown option

2 Input contained a character sequence that is not permitted in the source
codeset

Portability
X/Open Portability Guide.

–v is an extension to the POSIX.2 standard. The –c, –l, and –s options are
extensions to the XPG standard.

id — Return the user identity

Format
id [user]
id –G [–n] [user]
id –g [–nr] [user]
id –u [–nr] [user]

Description
id displays the user name and group affiliations of the user who issued the
command. Specifying a user argument on the command line displays the same
information for the given user instead of the person invoking id. In this case, you
require appropriate permissions.

The output has the format:
uid=runum(username) gid=rgnum(groupname)

where runum is the user’s real user ID (UID) number, username is the user’s real
user name, rgnum is the user’s real group ID (GID) number, and groupname is the
user’s real group name.

A user’s real and effective IDs may differ. In this case, there may be separate
entries for effective user ID (UID) with the format:
euid=eunum(euname)

where eunum is the effective user ID number and euname is the effective user
name. An entry for effective group ID has the format:
egid=egnum(egname)

where egnum is the effective group ID number and egname is the effective group
name.

If a user is a member of other supplemental groups, these are listed at the end of
the output, with this format:
groups=gnum(groupname)

iconv

290 z/OS V1R4.0 UNIX System Services Command Reference

where gnumis the user’s supplemental group ID number and groupname is the
user’s supplemental group name.

Options
–G Displays all different group IDs (effective, real, and supplementary) as

numbers separated by spaces.

–g Displays only the effective group ID number.

–n With –G, –g, or –u, displays the name rather than the number.

–r With –g or –u, displays the real ID rather than the effective one.

–u Displays only the effective user ID number.

Localization
id uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_NUMERIC
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 You specified an incorrect user with the –u option
2 Failure due to an incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
logname

inetd daemon — Provide Internet Service Management

Format
inetd [–d] [configuration file]

Description
The inetd daemon provides service management for a network. For example, it
starts the rlogind program whenever there is a remote login request from a
workstation.

The rlogind program is the server for the remote login command rlogin commonly
found on UNIX systems. It validates the remote login request and verifies the
password of the target user. It starts a z/OS shell for the user and handles
translation between ASCII and EBCDIC code pages as data flows between the
workstation and the shell.

id

Chapter 2. Shell Command Descriptions 291

When inetd is running and receives a request for a connection, it processes that
request for the program associated with that socket. For example, if a user tries to
log in from a remote system into the z/OS shell while inetd is running, inetd
processes the request for connection and then issues a fork() and execl() to the
rlogin program to process the rlogin request. It then goes back to monitoring for
further requests for those applications that can be found as defined in the
/etc/inetd.conf file.

Options
–d Specifies that the inetd daemon be started in debug mode. All debug

messages are written to stderr.

configuration file
Specifies that the inetd daemon be started with a configuration file other
than the default /etc/inetd.conf file.

Signals
inetd recognizes the following signals:

SIGTERM
Terminates inetd in an ordinary fashion and deletes /etc/inetd.pid. You can
restart inetd, if you want.

SIGINT
Same as SIGTERM.

SIGHUP
Rereads the inetd configuration file. This can be used to start new services,
or to restart services with a different port.

Other signals that normally end a process (such as SIGQUIT or SIGKILL) should
not normally be sent to inetd because the program will not have a chance to
remove /etc/init.pid.

Usage Notes
1. Buffer sizes should only be specified if the documentation for the daemon being

specified in the inetd.conf statement calls for something other than the default.

2.

The configuration file is field-sensitive, but not column-sensitive. Fields should
be arranged in the order shown in Table 11 on page 293. Continuation lines for
an entry must begin with a space or tab. Each entry must contain all fields. The
inetd daemon uses the configuration file entry to properly set up the
environment expected by the server. Specifying an incorrect value for one or
more of the parameters is likely to cause the server to fail.

inetd daemon

292 z/OS V1R4.0 UNIX System Services Command Reference

|
|

Table 11. Fields in the Configuration File (inetd daemon)

[ip_address:]service_name ip_address is a local IP, followed by a
colon. If specified, the address is used
instead of INADDR_ANY or the current
default. To specifically request
INADDR_ANY, use ″*:″. If ip_address
(or a colon) is specified, without any
other entries on the line, it becomes the
default for subsequent lines until a new
default is specified. service_name is a
well-known service name such as login
or shell. The name and protocol
specified must match one of the server
names defined in /etc/services. For
more information on /etc/services, see
z/OS Communications Server: IP
Configuration Reference. and z/OS
Communications Server: IP Migration

socket_type Stream or dgram

protocol[,sndbuf=n][,rcvbuf=n] protocol can be tcp or udp, or (for
IPv6) tcp6 or udp6. tcp4 and udp4 can
also be specified to explicitly request
IPv4. The protocol is used to further
qualify the service name. Both the
service name and the protocol should
match an entry in /etc/services, except
that, the ″4″ or the ″6″ should not be
included in the /etc/services entry. For
more information on /etc/services, see
z/OS Communications Server: IP
Configuration Reference and z/OS
Communications Server: IP Migration.
Note that, if tcp6 or udp6 is specified,
the socket will support IPv6 (that is,
AF_INET6 will be used.)

sndbuf and rcvbuf specify the size of
the send and receive buffers. The size
may be in bytes, or a ″k″ or ″m″ may be
added to indicate kilobytes or
megabytes respectively. sndbug and
rcvbuf can be used in either order.

inetd daemon

Chapter 2. Shell Command Descriptions 293

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

Table 11. Fields in the Configuration File (inetd daemon) (continued)

wait_flag [.max] Wait or nowait. Wait indicates the
daemon is single-threaded and another
request will not be serviced until the first
one completes.

If nowait is specified, the inet daemon
issues an accept when a connect
request is received on a stream socket.
If wait is specified, the inet daemon
does not issue the accept. It is the
responsibility of the server to issue the
accept if this is a stream socket.

max is the maximum number of users
allowed to request service in a 60
second interval. Default is 40. If
exceeded, the service’s port is shut
down.

login_name User ID and group that the forked
daemon is to execute under. inetd can
run a program with a UID that is not 0.
However, if the program that inetd runs
needs to change the identity of the
process to that of the user, then the
login_name must have been defined to
RACF via ADDUSER as a superuser
with a UID of 0 (UID 0) and the
login_name must have been defined to
RACF. This will allow inetd to use
special functions like setgid() and
setuid().

If the program that will be invoked by
inetd requires the use of special
functions like setuid() and seteuid(),
then it must be permitted to the
BPX.DAEMON class as in the following
example for login, which is a typical
ADDUSER command.

ADDUSER rlogind omvs(uid(0) home(/)

A typical permit command is:

permit bpx.daemon class(facility)
id(rlogind) access(read)

How you set up security for daemons is
the final determining factor. For more
information, see z/OS UNIX System
Services Planning.

server_program Full pathname of the service. For
example:

/usr/sbin/rlogind

is the full pathname for the rlogind
command.

server_arguments Maximum of 20 arguments. The first
argument is the server name.

inetd daemon

294 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
The inetd daemon creates a temporary file, /etc/inetd.pid, that contains the PID of
the currently executing inetd daemon. This PID value is used to identify syslog
records that originated from the inetd daemon process, and also to provide the PID
value for commands such as kill that require you to specify a PID, and to provide a
lock to prevent more than one inetd from being active at one time.

For more information on setting up the inetd configuration file and configuring
daemons in general, see z/OS UNIX System Services Planning or z/OS
Communications Server: IP Configuration Reference.

infocmp — Compare or print the terminal description

Format
infocmp [–ducn] [–ILC] [–1Vv] [–s d|i|l|c] [–A directory] [–B directory]
[term_names...]

Description
infocmp compares terminfo database entries, or prints a terminfo database entry.
Output is written to standard output (stdout).

The Curses application uses the terminfo database, which contains a list of terminal
descriptions. This enables you to manipulate a terminal’s display regardless of the
terminal type. To create the terminfo database, use tic. For information on defining
the terminfo database, see z/OS UNIX System Services Planning.

For more information about curses, see z/OS C Curses.

Options
d Prints the two terminal definitions showing the differences between the

capabilities.

u Prints the differences between the two terminal definitions.

c Prints entries that are common to the two terminfo databases.

n Does not print entries in either terminfo database.

I Prints the current terminal description using capname. (capname is the
short name for a capability specified in the terminfo source file.)

C Prints the current terminal description using termcap.

L Prints the current terminal description using variables (names that the
curses functions can use when working with the terminfo database)

1 Single-column output.

V Prints the program version.

v Prints debugging information (verbose) to stderr.

s Changes sort order of the fields printed.
d Sorts by database
i Sorts by terminfo
c Sorts by termcap
l Sorts by the variables (names that the curses function can use

when working with the terminfo database)

inetd daemon

Chapter 2. Shell Command Descriptions 295

A First terminfo database.

B Other terminfo database.

term_names
Names of entries to be processed.

Usage Notes
When displaying terminal database information for entries that are to be processed,
infocmp operates as follows:

1. If you omit term_names, infocmp locates the terminal database information
specified by the TERM environment variable and displays that as the entry’s
terminal database information.

2. If you specify a single term_name, infocmp displays terminal database
information for that named entry.

3. If you specify more than one term_name, infocmp displays the results of a
terminal database comparison between all of the specified term_names.

Examples
1. To print out the current terminal description using capname, issue:

infocmp

You will see:
infocmp ibm3101
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

ibm3101|IBM 3101-10,
am,
cols#80, lines#24,
bel=¬?, clear=¬.\322, cr=\r, cub1=\b, cud1=\n,
cuf1=¬.\303,

2. To print out the current terminal description using the curses capability names,
issue:
infocmp –L

You will get:
infocmp –L ibm3101
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

Terminal type ibm3101
ibm3101|IBM 3101-10

flags
auto_right_margin,

numbers
columns = 80, lines = 24,

strings
bell = ’¬?’, carriage_return = ’\r’, clear_all_tabs = ’¬.\310’,
clear_screen = ’¬.\322’, clr_eol = ’¬.\311’, clr_eos = ’¬.\321’,

3. To print out the current terminal description using capname, issue:
infocmp –I

You will get:

infocmp

296 z/OS V1R4.0 UNIX System Services Command Reference

infocmp –I ibm3101
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

ibm3101|IBM 3101-10,
am,
cols#80, lines#24,
bel=¬?, clear=¬.\322, cr=\r, cub1=\b, cud1=\n,
cuf1=¬.\303,

4. To print out the current terminal description using termcap, issue:
infocmp –C

You will get:
infocmp –C ibm3101
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

:am:bs:\
:.co#80:li#24:kn#2:\
:.cd=\EJ:.ce=\EI:.cl=\EK:\
:.c:.cm=\EY%p1%’ ’%+%c%p2%’

’%+%c:.ct=\EH:.ho=\EH:\
:.nd=\EC:.st=\E0:.up=\EA:

5. To print entries in single-column format, issue:
infocmp –1

You will get:
infocmp –C –1 ibm3101
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

:am:\
:bs:\
:co#80:\
:li#24:\
:kn#2:\
:.cd=\EJ:\
:.ce=\EI:\
:.cl=\EK:\

6. To print the two terminal definitions showing the difference between the
capabilities (F indicates False, entry not present; T indicates True, entry
present):
infocmp –d ibm3101 hft-c

You will get:
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

comparing ibm3101 to hft-c.
comparing booleans.
bw:F:T.
msgr:F:T.
xon:F:T.

comparing numbers.
it:-1:8.
lines:24:25.

comparing strings.
batt1:’NULL’,’\206\361’.
batt2:’NULL’,’\206\361\224\204’.

To print the capabilities that are different between the two terminal definitions.
The values for the first terminal definitions are shown.
infocmp –u ibm3101 hft-c

infocmp

Chapter 2. Shell Command Descriptions 297

You will get:
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

ibm3101|IBM 3101-10,
bw@, msgr@, xon@,
it@, lines#24,
batt1@, batt2@, blink@, bold@, box1@, box2@,
clear=¬.\322, colb0@, colb1@, colb2@, colb3@, colb4@,
colb5@, colb6@, colb7@, colf0@, colf1@, colf2@,
colf3@, colf4@, colf5@, colf6@, colf7@, cub@, cud@,
cuf@, cuf1=¬.\303,

7. To print the capabilities that are the same in both terminal definitions, issue:
infocmp –c ibm3101 hft-c

You will get:
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

comparing ibm3101 to hft-c.
comparing booleans.

am= T.
comparing numbers.

cols= 80.
comparing strings.

bel= ’¬?’.
cr= ’\r’.
cub1= ’\b’.
cud1= ’\n’.

8. To print the capabilities that are not found in either terminal definition, issue:
infocmp –u ibm3101 hft-c

You will get:
Reconstructed via infocmp from file:/usr/share/lib/terminfo/i
ibm3101|IBM 3101-10:\

comparing ibm3101 to hft-c.
comparing booleans.

!bce.
!ccc.
!chts.
!cpix.
!crxm.
!da.
!daisy.

Environment Variables
infocmp uses the following environment variable:

TERMINFO
Contains the pathname of the terminfo database.

TERM Contains the name of your terminal, that is, the current terminal definition.

Related Information
captoinfo, tic

integer — Mark each variable with an integer value

Format
integer [number]

infocmp

298 z/OS V1R4.0 UNIX System Services Command Reference

Description
integer is an alias for typeset –i. Like typeset –i, integer marks each variable as
having an integer value, thus making arithmetic faster. If number is given and is
nonzero, the output base of each variable is number. The default is decimal.

See “typeset — Assign attributes and values to variables” on page 658 for more
information.

Related Information
typeset, sh

ipcrm — Remove message queues, semaphore sets, or shared
memory IDs

Format
ipcrm [–m SharedMemoryID] [–M SharedMemoryKey] [–q QMessageID] [–Q
MessageKey] [–s SemaphoreID] [–S SemaphoreKey]

Description
ipcrm removes one or more message queues, semaphores set, or shared memory
identifiers.

Options
–m SharedMemoryID

Removes the shared memory identifier SharedMemoryID. The shared
memory segment and data structure associated with SharedMemoryID are
also removed after the last detach operation.

–M SharedMemoryKey
Removes the shared memory identifier, created with the key
SharedMemoryKey. The shared memory segment and data structure
associated with it are also removed after the last detach operation.

–q MessageID
Removes the message queue identifier MessageID and the message
queue and data structure associated with it.

–Q MessageKey
Removes the message queue identifier, created with the key MessageKey,
and the message queue and data structure associated with it.

–s SemaphoreID
Removes the semaphore identifier SemaphoreID and the set of
semaphores and data structure associated with it.

–S SemaphoreKey
Removes the semaphore identifier, created with the key SemaphoreKey,
and the set of semaphores and data structure associated with it.

The msgctl, shmctl, and semctl subroutines provide details of the remove
operations. You can use the ipcs command to find the identifiers and keys.

integer

Chapter 2. Shell Command Descriptions 299

Examples
1. To remove the shared memory segment associated with SharedMemoryID

18602, enter:
ipcrm –m 18602

2. To remove the message queue that was created with a key of 0xC1C2C3C3,
enter:
ipcrm –Q 0xC1C2C3C4

Exit Values
0 Successful completion
1 Incorrect command-line option

Related Information
ipcs

ipcs — Report status of the interprocess communication facility

Format
ipcs [–m] [–q] [–s] [–a | –b c o p t] [–w] [–x] [–y]

Description
ipcs writes to the standard output information about active interprocess
communication facilities. If you do not specify any flags, ipcs writes information in a
short form about currently active message queues, shared memory segments, and
semaphores.

The column headings and the meaning of the columns in an ipcs command listing
are listed in Table 12. The letters in parentheses indicate the command flags that
cause the corresponding heading to appear. (all) means that the heading is always
displayed. These flags determine what information is provided for each facility. They
do not determine which facilities are listed.

Table 12. Explanation of the ipcs Command Listing

Column Heading Meaning of the Column

T

(all except y)

The type of facility:
q Message queue
m Shared memory segment
s Semaphore

ID

(all except x,w,y)

The identifier for the facility entry

KEY

(all except y)

The key used as a parameter to the msgget subroutine, the semget
subroutine, or the shmget subroutine to make the facility entry. (The
key of a shared memory segment is changed to IPC_PRIVATE when
the segment is removed until all processes attached to the segment
detach it.)

ipcrm

300 z/OS V1R4.0 UNIX System Services Command Reference

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

MODE

(all except x,w,y)

The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows:

The first two characters can be the following:

R If a process is waiting in a msgrcv() system call.

S If a process is waiting in a msgsnd() system call.

D If the associated shared memory segment has been
removed. It disappears when the last process attached to
the segment detaches it.

The next nine characters are interpreted as three sets of three
characters each. The first set refers to the owner’s permissions; the
next to permissions of others in the user group of the facility entry;
and the last to all others. Within each set, the first character indicates
permission to read, the second character indicates permission to
write or alter the facility entry, and the last character is currently
unused.

The permissions are indicated as follows:
r If read permission is granted
w If write permission is granted
a If alter permission is granted
– If the indicated permission is not granted

OWNER (all) The login name or user ID of the owner of the facility entry.

GROUP (all) The name or group ID of the group that owns the facility entry.

CREATOR (a,c) The login name or user ID of the creator of the facility entry.

CGROUP (a,c) The group name or group ID of the creator of the facility entry.

CBYTES (a,x,o) The number of bytes in messages currently outstanding on the
associated message queue.

INFO (x) Provides additional extended state information. Under this field will
be returned one or more of the following codes (codes are not
mutually exclusive unless noted):

For shared memory output:

M megaroo

For semaphore output:
P PLO in use. Mutually exclusive with L.
L Latch in use. Mutually exclusive with P.
B Binary semaphore.

For message queue output:
P PLO in use. Mutually exclusive with L.
L Latch in use. Mutually exclusive with P.
R RCV type PID.
S Send type PID.
1 PLO1 flag on––IPC_PLO1 set on msgget()
2 PLO2 flag on––IPC_PLO2 set on msgget()

QNUM (a,o) The number of messages currently outstanding on the associated
message queue.

QBYTES (a,b) The maximum number of bytes allowed in messages outstanding on
the associated message queue.

ipcs

Chapter 2. Shell Command Descriptions 301

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

LSPID (p) The ID of the last process that sent a message to the associated
queue.

LRPID (p) The ID of the last process that received a message from the
associated queue.

STIME (a,t) The time when the last message was sent to the associated queue.

RTIME (a,t) The time when the last message was received from the associated
queue.

CTIME (a,t) The time when the associated entry was created or changed.

NATTCH (a,o) The number of processes attached to the associated shared memory
segment.

SEGSZPG (a,b) The size in PAGES of the associated shared memory segment.

CPID (p) The process ID of the creator of the shared memory entry.

LPID (p) The process ID of the last process to attach or detach the shared
memory segment.

ATIME (a,t) The time when the last attach was completed to the associated
shared memory segment.

DTIME (a,t) The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t) The time the last semaphore operation was completed on the set
associated with the semaphore entry.

RCVWAIT (x) A count of msgrcv() waiters.

SNDWAIT (x) A count of msgsnd() waiters.

MSGQPID (w) For the message Q report, up to 10 lines of data will be shown under
this heading.

MSGQTYPE (w) For the message Q report, up to 10 lines of data will be shown under
this heading.

RCVPID (w) The process ID of a msgrcv() waiter. A maximum of 10 process IDs
can be written.

RCVTYP (w) The message type of a msgrcv() waiter associated with RCVPID. A
maximum of 10 message type will be written. If the caller does not
have read access, this field is not displayed.

SNDPID (w) The process ID of a msgsnd() waiter. A maximum of 10 process IDs
can be written

SNDLEN (w) The message send length of a msgsnd() waiter associated with
SNDPID. A maximum of 10 message send lengths can be written.

TERMA (x) The number of times sem_val was changed during termination for
semaphore adjustments.

CNADJ (x) The current number of processes with semaphore adjustments.

SNCNT (x) The number of waiters waiting for a sem_val greater than zero.

SZCNT (x) The number of waiters waiting for a sem_val equal to zero.

WTRPID (w) The process IDs of a semop waiter. A maximum of 10 semop waiters
are written.

WTRNM (w) The semaphore number associated with WTRPID. A maximum of 10
semaphore numbers are written.

ipcs

302 z/OS V1R4.0 UNIX System Services Command Reference

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

WTROP (w) The semaphore operation value associated with WTRNM and
WTRPID. A maximum of 10 semaphore operation values are written.

AJPID (w) The process ID of a process with semaphore adjustments. A
maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustment associated
with AJPID. A maximum of 10 semaphore numbers are written.

AJPID (w) The process ID of a process with semaphore adjustments. A
maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustments associated
with AJPID. A maximum of 10 semaphore numbers are written.

AJVAL (w) The semaphore adjustment value associated with AJNUM and
AJPID. A maximum of 10 semaphore adjustment values are written.

ATPID (x) The process ID of a process that is attached to this shared memory
segment. A maximum of 10 process IDs are written.

ATADDR (x) The shared memory address where the process ATPID is attached to
this segment. A maximum of 10 addresses are written.

MNIDS (y) The system limit for maximum number of message queues,
semaphores, or shared memory IDs.

HWIDS (y) The most message queues, semaphores, or shared memory IDs
created.

CIDSA (y) The current number of message queues, semaphores, or shared
memory IDs available.

CPRIV (y) The current number of message queues, semaphores, or shared
memory IDs created with IPC_PRIVATE

CKEY (y) The current number of message queues, semaphores, or shared
memory IDs created with IPC_PRIVATE.

GETEX (y) The number of times msgget, semget, or shmget exceeded the
maximum number of IDs MNID.

MAXQB (y) The system limit for maximum number of bytes on a message queue.

QMNUM (y) The system limit for maximum number messages on a message
queue.

ENOMEM (y) The number of times msgsnd() calls returned ENOMEM.

MNSEMS (y) The system limit for maximum number of semaphores per set.

MNOPS (y) The system limit for maximum number of operations per semop.

CSBYTES (y) The current number of bytes used by the system for semaphores.

TPAGES (y) The system limit for number of system-wide shared memory pages

SPAGES (y) The system limit for number of pages per shared memory segment.

SEGPR (y) The system limit for number of segments per process.

CPAGES (y) The current number of system-wide shared memory pages

MAXSEG (y) The largest number of shared memory pages allocated to a single
shared memory segment.

Options
–a Uses the –b, –c, –o, and –t flags.

ipcs

Chapter 2. Shell Command Descriptions 303

–b Writes the maximum number of bytes in messages on queue for message
queues, the size of segments for shared memory, and the number of
semaphores in each semaphores set.

–c Writes the login name and group name of the user that made the facility.

–m Writes information about active shared memory segments.

–o Writes the following usage information:
v Number of messages on queue
v Total number of bytes in messages in queue for message queues
v Number of processes attached to shared memory segments

–p Writes the following:

v Process number of the last process to receive a message on message
queues

v Process number of the creating process

v Process number of last process to attach or detach on shared memory
segments

–q Writes information about active message queues.

–s Writes information about active semaphore set.

–t Writes the following:

v Time of the last control operation that changed the access permissions
for all facilities

v Time of the last msgsnd() and msgrcv() on message queues

v Time of the last shmat and shmdt on shared memory

v Time of the last semop on semaphore sets

–x Writes extended status in these fields:

ATADDR INFO RCVWAIT SZCNT

ATPID KEY SEGSZPG T

CNADJ OWNER SNCNT TERMA

GROUP QCBYTES SNDWAIT

–w Writes message queue wait status and semaphore adjustment status in
these fields:

AJNUM KEY RCVPID T

AJPID MSGQPID RCVTYP WTRNM

AJVAL MSGQTYP SNDLEN WTROP

GROUP OWNER SNDPID WTRPID

–y Writes summary and system limit status in these fields:

CIDSA ENOMEM MAXSEG SPAGES

CKEY GETEX MNIDS TPAGES

CPAGES HWIDS MNOPS

CPRIV QMNUM MNSEMS

CSBYTES MAXQB SEGPR

Example
Following is a sample output from entering ipcs without flags:

ipcs

304 z/OS V1R4.0 UNIX System Services Command Reference

IPC status as of Wed Apr 6 14:56:22 EDT 1994
Message Queues:
T ID KEY MODE OWNER GROUP
q 1234567890 0x4107001c -Rrw-rw---- root printq
Shared Memory:
T ID KEY MODE OWNER GROUP
m 0 0x0d07021e --rw------- root system
m 1 0x0d08c984 --rw-rw-rw- root system
Semaphores:
T ID KEY MODE OWNER GROUP
s 4096 0x0108c86e --ra------- root system
s 1 0x6208c8ef --ra-r--r-- root system
s 2 0x4d0b00a6 --ra-ra---- root system
s 24579 0x00bc614e --ra-ra-ra- xlin vendor
s 176132 0x00000058 --ra-ra-ra- xlin vendor

Exit Values
0 Successful completion
1 Failure due to incorrect command-line option

Related Information
ipcrm

jobs — Return the status of jobs in the current session

Format
jobs [–l|–p] [job-identifier...]

tcsh shell: jobs [-l]

Description
jobs produces a list of the processes in the current session. Each such process is
numbered for easy identification by fg or kill, and is described by a line of
information:
[job-identifier] default state shell_command

job-identifier
Is a decimal number that identifies the process for such commands as fg
and kill (preface job-identifier with % when used with these commands).

default Identifies the process that would be the default for the fg and bg
commands (that is, the most recently suspended process). If default is a +,
this process is the default job. If default is a –, this job becomes the default
when the current default job exits. There is at most one + job and one –
job.

state Shows a job as:

Running
If it is not suspended and has not exited

Done If it exited successfully

Done(exit status)
If it exited with a nonzero exit status

Stopped (signal)
If it is suspended; signal is the signal that suspended the job

ipcs

Chapter 2. Shell Command Descriptions 305

shell_command
Is the associated shell command that created the process.

jobs in the tcsh shell
In the tcsh shell, jobs lists the active jobs. With-l, lists process IDs in addition to the
normal information. See “tcsh — Invoke a C shell” on page 570.

Options
–l Displays the process group ID of a job (before state).
–p Displays the process IDs of all processes.

The –l and –p options are mutually exclusive.

Localization
jobs uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
jobs is a built-in shell command.

Exit Values
0 Successful completion
2 Failure due to an incorrect command-line argument

Portability
POSIX.2 User Portability Extension.

Related Information
bg, fg, kill, ps, wait, tcsh

join — Join two sorted textual relational databases

Format
join [–a n] [–e s] [–o list] [–t c] [–v n] [–1 n] [–2 n] file1 file2
join [–a n] [–e s] [–j[n] m] [–o list] [–t c] file1 file2

Description
join joins two databases. It assumes that both file1 and file2 contain textual
databases in which each input line is a record and that the input records are sorted
in ascending order on a particular join key field (by default the first field in each file).
If you specify – in place of file1 or file2, join uses the standard input (stdin) for that
file. If you specify – – in place of both file1 and file2, the output is undefined.

Conceptually, join computes the Cartesian product of records from both files. By
default, spaces or tabs separate input fields and join discards any leading or trailing
white space. (There can be no white-space-delimited empty input fields.) It then

jobs

306 z/OS V1R4.0 UNIX System Services Command Reference

generates output for those combined records in which the join key field (the first
field by default) matches in each file. The default output for join is the common join
key field, followed by all the other fields in file1, and then all the other fields in file2.
The other fields from each file appear in the same order they appeared in the
original file. The default output field separator is a space character.

Options
–a n Produces an output line for lines that do not match in addition to one for a

pair of records that does match. If you specify n as one of 1 or 2, join
produces unpaired records from only that file. If you specify both –a 1 and
–a 2, it produces unpaired records from both files.

–e string
Replaces an empty field with string on output. In a doublebyte locale, string
can contain doublebyte characters.

–j[n] m
Uses field number m as the join key field. By default, the join key field is
the first field in each input line. As with the –a option, if n is present, this
option specifies the key field just for that file; otherwise, it specifies it for
both files.

–o list Specifies the fields to be output. You can specify each element in list as
either n.m, where n is a file number (1 or 2) and m is a field number, or as
0 (zero), which represents the join field. You can specify any number of
output fields by separating them with blanks or commas. The
POSIX-compatible version of this command (first form in the syntax)
requires multiple output fields to be specified as a single argument;
therefore, shell quoting may be necessary. join outputs the fields in the
order you list them.

–t c Sets the field separator to the character c. Each instance of c introduces a
new field, making empty fields possible. In a doublebyte locale, c can be a
doublebyte character.

–v n Suppresses matching lines. If you specify n as one of 1 or 2, join produces
unpaired records from only that file. If you specify both –v 1 and –v 2, it
produces unpaired records from both files. This does not suppress any lines
produced using the –a option.

–1 n Uses the nth field of file1 as the join key field.

–2 n Uses the nth field of file2 as the join key field.

Examples
1. The following script produces a report about files in the working directory

containing filename, file mode, and an estimate at what the file contains:
file * | tr –s ':' ';' >temp1
ls –l | tr –s ' ' ' ';' >temp2
join –t';' –j2 9 –o 1.1 2.1 1.2 ---
temp1 temp2
rm temp[12]

2. This example uses the historical implementation of the join command. The third
line in the POSIX-compatible script could be:
join –t';' –2 9 –o 1.1,2.1,1.2 -- temp1 temp2

join

Chapter 2. Shell Command Descriptions 307

Localization
join uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Incorrect syntax
v The wrong number of command-line arguments
v Inability to open the input file
v Badly constructed output list
v Too many –o options on the command line

2 Failure due to an incorrect command-line argument

Messages
Most diagnostics deal with argument syntax and are self-explanatory. For example:

Badly constructed output list at list
Indicates that the list for a –o option did not have the proper syntax.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

POSIX considers the –j option to be obsolete.

Related Information
awk, comm, cut, paste, sort

kill — End a process or job, or send it a signal

Format
kill –l [exit_status]
kill [–s signal_name] [pid ...] [job-identifier ...]
kill [–signal_name] [pid ...] [job-identifier ...]
kill [–signal_number] [pid ...] [job-identifier ...]

tcsh shell:

kill [-signal] %job|pid ...

kill -l

Description
kill ends a process by sending it a signal. The default signal is SIGTERM.

join

308 z/OS V1R4.0 UNIX System Services Command Reference

kill in the tcsh shell
In the tcsh shell, kill [-signal] %job|pid ... sends the specified signal (or if none is
given, the TERM (terminate) signal) to the specified jobs or processes. job may be
a number, a string, ’’, %, + or - . Signals are either given by number or by name.
When using the tcsh kill command, do not use the first three characters (SIG) of
the signal_name. Enter the signal_name with uppercase characters. For example, if
you want to send the SIGTERM signal, you would enter kill -TERM pid not kill
-SIGTERM pid.

There is no default job. Specifying kill alone does not send a signal to the current
job. If the signal being sent is TERM or HUP (hangup), then the job or process is
sent a CONT (continue) signal as well.

kill -l lists the signal names. See “tcsh — Invoke a C shell” on page 570.

The signal_numbers and signal_names described in “Options” are also used with
the tcsh kill command.

Options
–l Displays the names of all supported signals. If you specify exit_status, and

it is the exit code of a ended process, kill displays the ending signal of that
process.

–s signal_name
Sends the signal signal_name to the process instead of the SIGTERM
signal. When using the kill command, do not use the first three characters
(SIG) of the signal_name. Enter the signal_name with uppercase
characters. For example, if you want to send the SIGABRT signal, enter:
kill –s ABRT pid

–signal_name
(Obsolete.) Same as –s signal_name.

–signal_number
(Obsolete.) A non-negative integer representing the signal to be sent to the
process, instead of SIGTERM.

The signal_number represents the signal_name shown below:

signal_number
signal_name

0 SIGNULL
1 SIGHUP
2 SIGINT
3 SIGQUIT
4 SIGILL
5 SIGPOLL
6 SIGABRT
7 SIGSTOP
8 SIGFPE
9 SIGKILL
10 SIGBUS
11 SIGSEGV
12 SIGSYS
13 SIGPIPE
14 SIGALRM
15 SIGTERM

kill

Chapter 2. Shell Command Descriptions 309

16 SIGUSR1
17 SIGUSR2
18 SIGABND
19 SIGCONT
20 SIGCHLD
21 SIGTTIN
22 SIGTTOU
23 SIGIO
24 SIGQUIT
25 SIGTSTP
26 SIGTRAP
27 SIGIOERR
28 SIGWINCH
29 SIGXCPU
30 SIGXFSZ
31 SIGVTALRM
32 SIGPROF
38 SIGDCE
39 SIGDUMP

Note: The signal_numbers (3 and 6) associated with SIGQUIT and SIGABRT,
respectively, differ from the values of SIGQUIT and SIGABRT used by the
z/OS kernel, but they are supported for compatibility with other UNIX
platforms. (The kill command will send the z/OS SIGQUIT or SIGABRT to
the process.) (This note is also true for kill in the tcsh shell.)

Options
job-identifier

Is the job identifier reported by the shell when a process is started with &. It
is one way to identify a process. It is also reported by the jobs command.
When using the job identifier with the kill command, the job identifier must
be prefaced with a percent (%) sign. For example, if the job identifier is 2,
the kill command would be entered as follows:
kill –s KILL %2

pid Is the process ID that the shell reports when a process is started with &.
You can also find it using the ps command. The pid argument is a number
that may be specified as octal, decimal, or hex. Process IDs are reported in
decimal. kill supports negative values for pid.

If pid is negative but not −1, the signal is sent to all processes whose
process group ID is equal to the absolute value of pid. The negative pid is
specified in this way:
kill –KILL –– –nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn
to nnnnnnn).
kill –s KILL –– –9812753

The format must include the –– before the –nn in order to specify the
process group ID.

If pid is 0, the signal is sent to all processes in the process group of the
invoker.

kill

310 z/OS V1R4.0 UNIX System Services Command Reference

The process to be killed must belong to the current user, unless he or she is the
superuser.

Localization
kill uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
kill is a built-in shell command.

Exit Values
0 Successful completion

1 Failure due to one of the following:
v The job or process did not exist
v There was an error in command-line syntax

2 Failure due to one of the following:
v Two jobs or processes did not exist
v Incorrect command-line argument
v Incorrect signal

>2 Tells the number of processes that could not be killed

Messages
Possible error messages include:

job-identifier is not a job
You specified an incorrect ID.

signal_name is not a valid signal
You specified a noninteger signal for kill, or you specified a signal that is
outside the range of valid signal numbers.

Portability
POSIX.2, X/Open Portability Guide.

Related Information
jobs, ps, sh, tcsh

[(left bracket) — Test for a condition
See the test command.

Note: When working in the shell, to view man page information about [(left
bracket), type: man left.

kill

Chapter 2. Shell Command Descriptions 311

let — Evaluate an arithmetic expression

Format
let expression ...
((expression))

Description
let evaluates each arithmetic expression from left to right, with normal algebraic
precedence (multiplication before addition, for example). let uses long integer
arithmetic with no checks for overflow. No output is generated; the exit status is 0 if
the last expression argument has a nonzero value, and 1 otherwise.

The following two lines are equivalent: the second form avoids quoting and
enhances readability. These two forms are extensions to the POSIX standard.
let "expression"
((expression))

The POSIX version of this command is as follows:
$((expression))

Expressions consist of named variables, numeric constants, and operators.
Characters in the names of named variables must come from the POSIX portable
character set.

See “Arithmetic Substitution” on page 509

Examples
Examples of the three forms of the let command are as follows:

1. The example
let a=7
echo $a

produces:
7

2. The example
echo $((a=7*9))

produces:
63

3. The example
((a=3*4))
echo $a

produces:
12

Usage Note
let is a built-in shell command.

let

312 z/OS V1R4.0 UNIX System Services Command Reference

Localization
let uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 The last argument evaluated to a nonzero value

1 The last argument evaluated to a zero value, or the expression contained a
syntax error or tried to divide by zero

Portability
POSIX.2. let and ((expression)) are extensions to the POSIX.2 standard. The
POSIX.2 portable facility for arithmetic expression evaluation is $((expression)). See
“Arithmetic Substitution” on page 509 for more information.

The (()) syntax only works if the set –o korn option is in effect.

Related Information
expr, sh, test

lex — Generate a program for lexical tasks

Format
lex [–achlntTv] [–o file.c] [–P proto] [–p prefix] [file.l ...]

Description
lex reads a description of a lexical syntax, in the form of regular expressions and
actions, from file.l. If you do not provide file.l, or if the file is named –, lex reads the
description from standard input (stdin). It produces a set of tables that, together
with additional prototype code from /etc/yylex.c, constitute a lexical analyzer to
scan those expressions. The resulting recognizer is suitable for use with yacc. You
can find detailed information regarding the use of lex in z/OS UNIX System
Services Programming Tools.

For a description of the typedefs, constants, variables, macros, and functions in the
table file, which can be used to access the lexical analyzer’s variables or to control
its operations, see z/OS UNIX System Services Programming Tools.

Options
–a Generates 8-bit tables instead of 7-bit tables. On systems with 8-bit

character sets (such as this one), this option is always enabled.

–c Generates C code. Because this is the default, this option is provided only
for compatibility with other implementations.

–h Prints a brief list of the options and quits.

–l Suppresses #line directives in the generated code.

let

Chapter 2. Shell Command Descriptions 313

–n Suppresses the display of table sizes by the –v option. If you did not
specify –v and their are no table sizes specified in file.1, lex behaves as
though you specified –n.

–o file.c
Writes the lexical analyzer (internal state tables) onto the named output file,
instead of the default file lex.yy.c.

–P proto
Uses the named code file, instead of the default prototype file /etc/yylex.c.

–p prefix
Uses the given prefix instead of the prefix yy in the generated code.

–T Writes a description of the analyzer onto the file l.output.

–t Writes the lexical analyzer onto standard output (stdout) instead of the file
lex.yy.c.

–v Displays the space used by the various internal tables. Normally lex
displays these statistics on stdout, but if you also specified the –t option, it
displays them on stderr. If you did not choose this option and file.1
specifies table sizes, lex still displays these statistics unless you specified
the –n option.

The lex library contains a number of functions essential for use with lex. These
functions are described in z/OS UNIX System Services Programming Tools . The
actual library to use depends on your system and compiler. For z/OS programs, you
should use –ll.

Some lex programs can cause one or more tables within lex to overflow. These
tables are the NFA, DFA, and move tables; lex displays an appropriate message if
an overflow occurs. You can change table sizes by inserting the appropriate line
into the definition section of the lex input, with the number size giving the number of
entries to use. This is shown in Table 13.

Table 13. Internal Table Sizes (lex command)
Line Table Size Affected Default
%esize Number of NFA entries 1000
%nsize Number of DFA entries 500
%psize Number of move entries 2500

You can often reduce the NFA and DFA space to make room for more move entries.

Locale
A locale is the subset of a user’s environment that depends on language and
cultural conventions. A locale defines such things as the definition of characters,
and the collation sequence of those characters. POSIX.2 defines a POSIX locale,
which is essentially USASCII.

Since lex generates code that is then compiled before being executed, it is difficult
for lex to act properly on collation information. The POSIX.2 standard therefore
does not require lex to accept any locales other than the POSIX locale. lex accepts
regular expressions in this locale only.

Files
lex uses the following files:

lex

314 z/OS V1R4.0 UNIX System Services Command Reference

l.output
Scanner machine description

lex.yy.c
Tables and action routines

/etc/yylex.c
The prototype lex scanner

/usr/lib/libl.a
lex function library

Localization
lex uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to create an output file
v Inability to open the file
v Missing output filename after –o
v Missing prefix after –p
v No lex rules
v No memory for DFA moves
v Out of NFA state space
v Out of DFA move space
v Out of DFA state space
v Push-back buffer overflow
v Read error on file
v Table too large for machine
v Too many character classes
v Too many translations
v Unknown option
v Write error on file
v Incomplete %{ declaration
v Token buffer overflow

Limits
The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated syntaxes may result in an overflow, causing an error.

Portability
POSIX.2, POSIX.2 C-Language Development Utilities Option, UNIX systems.

The –a, –h, –l, –o, –p, –P, and –T options are extensions of the POSIX standard.

lex

Chapter 2. Shell Command Descriptions 315

Related Information
yacc

For more information, see z/OS UNIX System Services Programming Tools

line — Copy one line of standard input

Format
line

Note: The line utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the read utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
line copies one input line from its standard input (stdin) to its standard output
(stdout). The end of the line is the first newline encountered. This is useful in shell
files that need small amounts of input (for example, responses to prompts).

Examples
echo “Enter name:\c”
NAME=`line`

Localization
line uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 A line was read successfully
1 line reached end-of-file before finding a newline character

Portability
X/Open Portability Guide, UNIX System V.

Related Information
cat, head, read, sh, tail

link — Create a hard link to a file

Format
link oldfile newfile

lex

316 z/OS V1R4.0 UNIX System Services Command Reference

Description
link creates a hard link to an existing file. A link is a new directory entry that refers
to the same file. This entry can be in the same directory that currently contains the
file or in a different directory. The result is that you get a new pathname that refers
to the file. You can access the file under the old or new pathname since both
pathnames are of equal importance. If you use rm to remove one pathname, the
other remains and the file contents are still available under that name. The contents
of the file do not disappear until the last remaining link associated with the file is
removed.

Following the format, new becomes a new pathname for the existing file old. If old
names a symbolic link, link creates a hard link to the file that results from resolving
the pathname contained in the symbolic link.

Links are allowed to files only, not to directories. A file can have any number of links
to it. Thus, you can establish any number of different pathnames for any file.

link is implemented as a shell built-in.

Localization
link uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v A file specified could not be found
v No write permission on the directory intended to contain the link
v No search permission on a pathname component of old or new
v No permission to access old
v The pathname of one of the arguments is a directory
v The new link file already exists

2 Failure due to incorrect number of arguments

Related Information
link, ln, rm

ln — Create a link to a file

Format
ln [–fiRrse] old new
ln [–fiRrse] old old ... dir

link

Chapter 2. Shell Command Descriptions 317

Description
ln creates a link to an existing file or set of files. A link is a new directory entry that
refers to the same file. This entry can be in the same directory that currently
contains the file or in a different directory. The result is that you get a new
pathname that refers to the file. You can access the file under the old pathname or
the new one. Both pathnames are of equal importance. If you use rm to remove
either name, the other one still remains and the file contents are still available under
that name. The contents of the file do not disappear until you remove the last link.

A file can have any number of links to it. Thus you can establish any number of
different pathnames for any file.

In the first form given in the syntax, new becomes a new pathname for the existing
file old. In the second form, ln creates entries for all the old files under the directory
dir. For example:
ln yourdir/* mydir

creates links under mydir to all the files under yourdir. The files have the same
names under mydir that they had under yourdir. ln always assumes this directory
form when the last operand on the command line is the name of a directory. In this
case, none of the old names can be a directory, unless —r or —R is specified.

There could already be a file with the same name as the link you are trying to set
up: a conflicting pathname. To deal with a conflicting pathname, ln follows these
steps.

v If you have specified –i, ln writes a prompt to stderr to ask if you want to get rid
of the conflicting pathname. If you answer affirmatively, ln attempts to remove it.

v Otherwise, if you have specified –f, ln attempts to remove the existing file without
a warning.

v Otherwise, ln prints a diagnostic message.

v ln gets to this point if it is going to get rid of the conflicting pathname. It therefore
attempts to get rid of the conflicting pathname in the same way that rm does. ln
deletes the file associated with the pathname if this pathname is the last link to
the file. If ln can’t get rid of the conflicting pathname, it does not attempt to
establish the new link; it simply prints an error message on stderr and goes on
to process any other files.

v If ln successfully gets rid of the conflicting pathname, it then establishes the link.

Options
–e Specifies that the link created by ln be an external link. One purpose for

creating an external link is to create a mount point that an NFS client can
use to access a data set through the DFSMS/MVS® Network File System
feature. The normal content of an external link is a name that refers to an
object outside the hierarchical file system, such as a data set. The data set
that the DFSMS/MVS Network File System feature uses can be any type of
MVS data set. For a partitioned data set, however, you specify a fully
qualified name in all caps. For example:
ln -e NOLL.PLIB.PGMA /u/noll/plib/pgma

External links can also be used to map an HFS file name to a PDS or
PDSE member name for an executable load module. An example of how
you would define the external link is:
ln -e MYPGM /u/smorg/mylongpgmname

ln

318 z/OS V1R4.0 UNIX System Services Command Reference

If an application attempts to access /u/smorg/mylongpgmname as an
executable file, the kernel will attempt to load MYPGM from the current
MVS search order (Job Pack Queue, STEPLIB/JOBLIB, LPA, LINK LIST).
The kernel services which behave this way for external links are:
v exec() (all flavors)
v spawn() (including _spawn2, spawnp, _spawnp2)
v loadhfs which is used for all DLL processing and locales

Note: For OS/390 releases prior to Release 6, an external link name
cannot be specified as a shell command. Starting in Release 6, an
external link can be used as a shell command to invoke a program
in the current MVS search order.

–f Gets rid of any conflicting pathnames without asking you for confirmation.

–i Checks with you before getting rid of conflicting pathnames. You must not
specify both –f and –i.

–R Links files recursively. That is, you can link an entire hierarchy of
subdirectories at once.

–r Is identical to –R.

–s Creates a symbolic link.

Note, for a symbolic link,old refers to the file you want to create the link to
(this file does not have to exist). new is the name of the symlink you are
creating. For example, if you have a file called f1 and you want to create a
symlink to it called my_sym, you input the following:
ln -s f1 my_sym

The locale settings for LC_COLLATE, LC_CTYPE, and LC_MESSAGES affect the
program’s interpretation of what constitutes a “yes” answer when ln asks if you
want to get rid of a conflicting pathname.

Examples
If you define /u/user1/name1 as a symbolic link to /u/user1/name2, and then
invoke name1:

1. The shell will spawn name1.

2. spawn() will access the file for name1 unaware that there is a symbolic link
already established. It will access the name2 file by its underlying vnode, not
the name2 handle.

3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for
name1 (the only name it has to work with).

Symbolic and external links with a sticky bit:

Note: DLLs, and all flavors of spawn() and exec(), follow the same processing as
described below. Where it says exec(), it covers all forms of module loading.

1. External links:

exec() does a stat() on the passed filename. stat() does the search, not exec().
If the filename is an external link, then stat() fails with a unique reason code
which causes exec() to read the external link. If the external link name is a valid
PDS member name (1–8 alphanumeric/special characters), then exec() will
attempt to locate the module in the MVS search order. If it cannot be found,
exec() fails.

ln

Chapter 2. Shell Command Descriptions 319

The external link is normally used when you want to set the sticky bit on for a
file name which is longer than 8 characters or contains characters unacceptable
for a PDS member name.

2. Symbolic links:

If the filename you specify is a symbolic link, and exec() sees the sticky bit on,
then it will truncate any dot qualifiers. So, as long as the base filename is an
acceptable PDS member name, the need to set up links in order to get exec()
to go to the MVS search order should not be an issue.

For example, if you have a file named java.jll, when you put the sticky bit on,
exec() will attempt to load JAVA. If exec() cannot find JAVA, it will revert to
using the java.jll file in the file system.

The important thing to understand is that exec() never sees the name that the
symbolic link resolves to even though it can see the stat() data for the final file.

Localization
ln uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 All requested links were established successfully.

1 Failure due to any of the following:
v An argument had a trailing / but was not the name of a directory.
v A file could not be found.
v An input file could not be opened for reading.
v An output file could not be created or opened for output.
v The new link file already exists.
v A link could not be established.
v A read error occurred on an input file.
v A write error occurred on an output file.
v The input and output files were the same file.
v Inability to access a file when using –r.
v Inability to read a directory when using –r.
v Inability to create a directory when using –r.
v A target is not a directory when using –r.
v Source and destination directory are the same when using –r.

2 Failure due to any of the following:
v Incorrect command-line option.
v Too few arguments on the command line.
v A target that should be a directory but isn’t.
v No space left on target device.
v Out of memory to hold the data to be copied.
v Inability to create a directory to hold a target file.

Messages
Possible error messages include:

ln

320 z/OS V1R4.0 UNIX System Services Command Reference

link to target name failed
ln could not establish the link to the given file or directory. This may be
because you do not have appropriate permissions, or because the target
did not exist.

source name and target name are identical
The source and the target are actually the same file (for example, because
of links, on UNIX systems). In this case, ln does nothing.

target directory name on different file system than source name
You cannot establish a normal link between files that are two different file
systems.

target name must be a directory
The target name must be a directory

cannot find file name
The filename could not be found.

target file name already exists
The target filename already exists.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Only the –f option is part of the POSIX standard.

Related Information
cp, locale, mv, rm

locale — Get locale-specific information

Format
locale [–a|–m]
locale [–ck] name ...

Description
locale displays information about the current locale and all locales accessible to the
current application. locale searches directory /usr/lib/nls/locale for all the compiled
locales.

Invoking locale with no options or operands displays the values of the LANG and
LC_* environment variables. If a LC_* variable is not set or is overridden by
LC_ALL, locale displays its implied value in double quotes.

The operand name can be a category name, keyword name, or the reserved name
charmap. If it is a category name, locale selects the given category and all
keywords within it for output. If name is a keyword name, locale selects the given
keyword and its category for output. If name is charmap, locale displays the name
of the charmap used with the localedef –f option when the locale was created.

Options
–a Displays information about all accessible locales including POSIX, the

POSIX locale.

–c Displays the names of selected categories.

ln

Chapter 2. Shell Command Descriptions 321

–k Displays the names of selected keywords. If you do not specify the –k
option, locale displays the values of selected keywords but not their names.
With –k, strings are written in an unambiguous form using the escape
character from the current locale.

–m Displays a list of all available character maps.

The following list contains valid locale keywords:

lower Lower-case alphabet

upper Upper-case alphabet

alpha All alphabetic characters (upper and lower case)

digit All numeric characters

space How white space is represented

cntrl Control characters

punct Punctuation characters

graph Graphic characters

print Printable characters

xdigit Hex digits

blank How a blank is represented

tolower
Upper to lower case conversion

toupper
Lower to upper case conversion

character-collation
The collating sequence

d_t_fmt
Date and time format

d_fmt Date format

t_fmt Time format

t_fmt_ampm
Long date format

am_pm
AM and PM string

day Full day names

abday Abbreviated day names

mon Full month names

abmon
Abbreviated month names

decimal_point
Decimal-point characters

thousands_sep
Character used to separate groups of digits to the left of the decimal-point
character in formatted nonmonetary quantities

locale

322 z/OS V1R4.0 UNIX System Services Command Reference

grouping
String indicating the size of each group of digits in formatted nonmonetary
quantities

int_curr_symbol
International currency symbol for the current locale

currency_symbol
Local currency symbol of the current locale

mon_decimal_point
Decimal-point character used to format monetary quantities

mon_thousands_sep
Separator for digits in formatted monetary quantities

mon_grouping
String indicating the size of each group of digits in formatted monetary
quantities

positive_sign
String indicating the positive sign used in monetary quantities

negative_sign
String indicating the negative sign used in monetary quantities

int_frac_digits
The number of displayed digits to the right of the decimal place for
internationally formatted monetary quantities

frac_digits
Number of digits to the right of the decimal place in monetary quantities

p_cs_precedes
1 if the currency_symbol precedes the value for a nonnegative formatted
monetary quantity; 0 if it does not

p_sep_by_space
1 if the currency_symbol is separated by a space from the value of a
nonnegative formatted monetary quantity; 0 if it does not; 2 if a space
separates the symbol and the string–if adjacent

n_cs_precedes
1 if the currency_symbol precedes the value for a negative formatted
monetary quantity; 0 if it does not

n_sep_by_space
1 if the currency_symbol is separated by a space from the value of a
negative formatted monetary quantity; 0 if it does not; 2 if a space
separates the symbol and the sign string–if adjacent

p_sign_posn
Value indicating the position of the positive_sign for a nonnegative
formatted monetary quantity

n_sign_posn
Value indicating the position of the negative_sign for a negative formatted
monetary quantity

yesexpr
Expression for affirmative

noexpr
Expression for negative

locale

Chapter 2. Shell Command Descriptions 323

charmap
Mapping of character symbols to actual character encodings

code_set_name
Name of the coded character set used

mb_cur_max
Maximum number of bytes used to represent a character

codeset
Same as code_set_name

backslash
Encoding of \

right_bracket
Encoding of]

left_bracket
Encoding of [

right_brace
Encoding of }

left_brace
Encoding of {

circumflex
Encoding of ^

tilde Encoding of ~

exclamation_mark
Encoding of !

number_sign
Encoding of #

vertical_line
Encoding of |

dollar_sign
Encoding of $

commercial_at
Encoding of @

grave_accent
Encoding of `

Examples
In the following examples, let’s assume that locale environment variables are set as
follows:
LANG=locale_x
LC_COLLATE=locale_y

1. The command:
locale

produces the following output:
LANG=locale_x
LC_CTYPE="locale_x"
LC_COLLATE=locale_y
LC_TIME="locale_x"

locale

324 z/OS V1R4.0 UNIX System Services Command Reference

LC_NUMERIC="locale_x"
LC_MONETARY="locale_x"
LC_MESSAGES="locale_x"
LC_ALL=

2. The command:
LC_ALL=POSIX locale -ck decimal_point

produces:
LC_NUMERIC
decimal_point="."

3. The following command shows an application of locale to determine whether a
user supplied response is affirmative:
if printf "s%\n" "$response" | grep -Eq "$(locale yesexpr)"
then

affirmative processing goes here
else

nonaffirmative processing goes here
fi

Localization
locale uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 An error occurred
2 A usage message was printed

Portability
POSIX.2, UNIX System V.

Related Information
localedef

localedef — Define the locale environment

Format
localedef [–c] [–f charmap] [–i sourcefile] [–m methodfile] [–w] [–A] [–L
binderoptions] [–X] name

Description
localedef converts source definitions for locale categories into a format usable by
functions and utilities.

localedef is provided by IBM C/C++ for MVS and is shipped with the compiler. This
command requires the installation of Language Environment for MVS and VM. It

locale

Chapter 2. Shell Command Descriptions 325

also requires the installation of the Shell and Utilities and the C compiler so the c89
command can be used. For more information, refer to z/OS UNIX System Services
Planning.

A TSO/E command called LOCALDEF is also provided with C/C++. It is not
supported by the z/OS shell. See z/OS C/C++ User’s Guide as well as information
about the charmap file and locale definition source file formats.

Options
–c Creates permanent output even if there were warning messages. Normally,

localedef does not create permanent output when it has issued warning
messages.

–f charmap
Specifies a charmap file that contains a mapping of character symbols and
collating element symbols to actual character encodings.

–i sourcefile
Specifies the file that contains the source definitions. If there is no –i,
localedef reads the source definitions from the standard input.

–m methodfile
Specifies the name of a method file that describes the methods to be
overridden when constructing a locale. localedef reads the method file and
uses entry points when constructing the locale objects. The code set
methods specified are also used in parsing the file pointed to by the
CharMap variable. This requires that you provide the overriding methods in
a DLL which is explicitly loaded by localedef before processing the
charmap file.

–w Produces warning messages for duplicate definitions.

–A Instructs localedef to generate an ASCII locale object (–X is implied when
this option is specified).

–L binderoptions
Instructs localedef to pass additional binder options (mostly for diagnostic
purposes).

–X Instructs localedef to generate an XPLink locale object (DLL).

name Is the target locale. If it contains no slashes, the locale is public and
localedef converts name to a full pathname using the NLSPATH
environment variable. If name contains one or more slashes, localedef
interprets it as a full pathname of where to store the created definition.

See locale — Get locale-specific information for related information.

Localization
localedef uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

The LC_COLLATE and LC_CTYPE environment variables have no effect on
localedef. localedef always behaves as though these variables were set to the
POSIX locale.

localedef

326 z/OS V1R4.0 UNIX System Services Command Reference

See Appendix F for more information.

Exit Values
0 No errors occurred; the locale was successfully created.

1 Warnings occurred; the locale was successfully created.

2 The locale specification exceeded implementation limits, or the coded
character set used was not supported by implementation. No locale was
created.

3 The capability to create new locales is not supported by the implementation.
(POSIX2_LOCALEDEF is not defined.)

>3 Warnings or errors occurred; no output was created.

localedef issues warnings when:

v The LC_CTYPE or LC_COLLATE category description uses a symbolic name
not found in the charmap file.

v The number of operands to the order keyword exceeds the COLL_WEIGHTS_MAX
limit.

Portability
POSIX.2; UNIX System V.

Related Information
locale

logger — Log messages

Format
logger [–IisTu] [–d dest] [–f filename] [–p priority] [–t tag] [–a tag2] string ...

Description
logger saves a message in the console log; the message consists of the string
operand on the command line. Some options of logger may be in effect by default;
if they are on by default, they cannot be disabled.

The –u and –i options are in effect by default, so all messages from logger are
prefixed by process ID and user login user name.

If there is no message specified on the command line, the standard input is read;
each line of standard input is treated as a log message, and, thus, all terminal input
will be logged as a message. To stop all subsequent input from being processed by
logger, enter the designated escape character, such as ¢, followed by a captial C,
for example: ¢C.

If –f filename is specified, the file is read instead of the standard input.

Options
–f filename

Reads log messages from the file filename rather than from the standard
input.

localedef

Chapter 2. Shell Command Descriptions 327

–I Adds the parent process ID (PPID) of logger to the message.

–i Adds the process ID (PID) of logger to the message. This option is in effect
by default, so all messages from logger are prefixed by the PID.

–s Overrides any destination options and causes logging to the standard error
output.

–T Adds a time stamp (%x %X format, per date) to the message. This time
stamp is always in the POSIX locale, no matter the locale of the message.

–u Adds the login name of the controlling terminal to the message. This option
is in effect by default, so all messages from logger are prefixed by the login
name.

Note: The following options work on z/OS. However, because they are
system-specific, they may or may not actually work on another system.

–d destination
Must be a list of numbers, separated by spaces, tabs, or commas, in the
range of 1 to 128, and represents a bit in the routing code number (that is,
ROUTCDE=) in the WTO macro. The default destination value is 0 (no bits
set in the routing code number).

If you use d1, the message goes to the system console.

–p priority
Must be a list of numbers, separated by spaces, tabs, or commas, in the
range of 1 to 16 and represents a bit in the message descriptor code (that
is, DESC=) in the WTO macro (WTO == write to operator). The default
priority value is 0 (that is, no bits set).

–t tag Adds tag to the start of the message.

–a tag2
Adds tag2 in front of all the options and the message.

For more information on the destination and priority options, refer to z/OS MVS JCL
Reference.

Examples
1. If you issue:

logger -d1 This is a message.

You will see:
+WELLIE4: 2097152017: This is a message.

2. If you issue:
logger -dl -a TheTag A message.

You will see:
+TheTag: WELLIE4: 213076449: A message.

Localization
logger uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

logger

328 z/OS V1R4.0 UNIX System Services Command Reference

v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 An error occurred

Messages
Possible error messages include:

-f filename invalid if message given
Both a filename and message was specified; only one is allowed.

file filename: system error
The file specified by –f filename could not be opened.

Formatted log message too long -- limit LINE_MAX (number)
The log message specified was longer than the limit specified by
LINE_MAX.

Unknown option option
You specified an incorrect option to logger.

Portability
POSIX.2, X/Open Portability Guide.

All the options are extensions of the POSIX standard.

logname — Return a user’s login name

Format
logname

Description
logname displays the login name of the person who issued the command. It
obtains this through the getlogin() function defined in the POSIX.1. standard. The
login name is displayed as all uppercase letters, regardless of how it was entered.

Environment Variables
logname uses the following environment variable:

LOGNAME
Contains your user name.

Localization
logname uses the following localization environment variables:
v LANG
v LC_ALL
v LC_TYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

logger

Chapter 2. Shell Command Descriptions 329

Exit Values
0 Successful completion
1 logname could not determine the login name

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
env, id

lp — Send a file to a printer

Format
lp [–cmsw] [–d dest] [–n number] [–o printer-option] [–t title] [file ...]

Description
lp prints one or more input files on a printer. If you do not specify any files on the
command line, or if you specify a filename of –lp reads and prints the standard
input. The files are printed in the same order that they are specified on the
command line.

Note: If you are using the z/OS Print Server Feature, your system automatically
uses that version of the lp command. For more information about the z/OS
Print Server commands, see z/OS Infoprint Server User’s Guide.

Options
–c Immediately copies the files to be printed. This ensures that the version of

the file that exists when the print request is made is the version printed.

–d dest
Specifies dest as the output device. –d takes precedence over the LPDEST
environment variable, which in turn takes precedence over the PRINTER
environment variable.

dest is a comma-separated list of arguments that is passed to JES. The first
item must be the “destination_name”. The destination name can take the
form NODE.USER. The second item must be the “class”. The third item
must be the “forms”. Not all items must be specified, but the items must be
specified in the proper order. The definition of “destination_name”, “class”,
and “forms” is defined by JES.

For more information on the dest option, see z/OS MVS JCL Reference.

–m This option is not implemented.

–n number
Prints number copies of each input file (the default is 1 copy).

–o printer-option
This option is not implemented.

–s This option is not implemented.

–t This option is not implemented.

–w This option is not implemented.

logname

330 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To send a previously formatted file to a JES printer:

lp filename

You can specify more than one filename with the command.

2. The following prints the file temp.prt using the default printer destination and
specifying class c (where c is the locally designated class for confidential
information):
lp –d ,c temp.prt

lp –d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you
must still include the comma.

Environment Variables
lp uses the following environment variables:

LPDEST
Names the output device. This variable takes precedence over PRINTER.

PRINTER
Names the output device if LPDEST is not defined.

Localization
lp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 An error occurred

Portability
POSIX.2, X/Open Portability Guide.

The –m, –o, –s, –t, and –w options are extensions to the POSIX standard.

lpstat — Show status of print queues (stub command)

Format
lpstat [–drst] [–a [list]] [–c [list]] [–o [list]] [–p [list]] [–u [list]] [–v] [list] [queue_id ...]

Description
lpstat shows the status of print queue or queues, specified by queue_id. If no
queue_id is given, lpstat lists information for all of the printers on the system.

lpstat is recognized, but its functions are not supported.

lp

Chapter 2. Shell Command Descriptions 331

If you are using the z/OS Print Server Feature, your system automatically uses that
version of the lpstat command. For more information about the z/OS Print Server
commands, see z/OS Infoprint Server User’s Guide.

ls — List file and directory names and attributes

Format
ls [–AabCcdEFfgHikLlmnopqRrstuWx1] [pathname ...]

File Tag Specific Option:

ls [–T]

Description
ls lists files and directories. If the pathname is a file, ls displays information on the
file according to the requested options. If it is a directory, ls displays information on
the files and subdirectories therein. You can get information on a directory itself
using the –d option.

If you do not specify any options, ls displays only the filenames. When ls sends
output to a pipe or a file, it writes one name per line; when it sends output to the
terminal, it uses the –C (multicolumn) format.

Note: Codesets which are aliases of each other exist which may cause the test to
fail, since the file inquiry operator may return an alias of the codeset you are
testing.

Options
ls displays at least the filename; you can request more information with the
following options:

–A Lists all entries including those starting with periods (.); but excluding any .
or .. entries.

–a Lists all entries including those starting with a period (.).

–b Displays nonprintable characters as octal bytes with the form \ooo.

–C Puts output into columns, sorted vertically; this is the default output format
to the terminal.

–c Uses the time of the last change of the file’s attributes for sorting (–t) or
displaying (–l) .

–d Does not display the contents of named directories, but information on the
directories themselves.

–D Displays from directories.

–E Displays extended attributes for regular files:

a Program runs APF-authorized if linked AC=1

p Program is considered program-controlled

s Program is enabled to run in a shared address space

l Program is loaded from the shared library region

— Attribute not set

lpstat

332 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

See Long Output Format.

–F Puts a / after each directory name, a * after every executable file, a | after
every FIFO file, a @ after every symbolic link, and a = after every socket. It
also puts an & character after an external link name.

–f Forces the pathname argument to be a directory; turns off sorting. ls gives
the ordered list of filenames in a directory file. The directory file is read and
the filenames are listed in the same order as they are returned. The
contents of a directory file are shown.

–g Same as –l except that it does not display owner.

–g turns on the Long Output Format. See “Long Output Format” on
page 334 for details.

–H Displays file formats for regular files:
–––– not specified
bin binary data
nl new line
cr carriage return
lf line feed
crlf carriage return followed by line feed
lfcr line feed followed by carriage return
crnl carriage return followed by new line

–H turns on the Long Output Format. See “Long Output Format” on
page 334 for details.

–i Displays file serial (inode) numbers along with filenames.

–k Uses 1024 bytes for block size.

–L Follows symbolic links.

–l Displays permissions, links, owner, group, size, time, name.

–m Displays names in a single line, with commas separating names.

–n Displays UID number and GID number.

–o Same as –l except that it does not display group.

–o turns on the Long Output Format. See “Long Output Format” on
page 334 for details.

–p Puts / after directory names.

–q Displays nonprintable characters as ?.

–R Lists subdirectories recursively.

–r Sorts in reverse of usual order; you can combine this with other options that
sort the list.

–s Displays size in blocks, after the file serial (inode) number, but before other
information. The block size is 512 bytes unless the –k option is used.

–t Sorts by time. By default, this option sorts the output by the modification
times of files. You can change this with the –c and –u options.

–u Uses the last access time for sorting (–t) or displaying (–l) .

–W Enables the audit bits to be displayed (see “chaudit” for information on audit
bits). This option turns on the –l option.

ls

Chapter 2. Shell Command Descriptions 333

These bits are printed in a 6-character field directly after the field displaying
the file permission bits. These 6 characters are really two groups of 3 bits
each. The first group of 3 describes the user-requested audit information.
The second group of 3 describes the auditor-requested audit information.
Each 3 characters displayed are the read, write, and execute (or search)
audit options. Each character indicates the audit option as:

s (Audit successful audit attempts)
f (Audit failed access attempts)
a (Audit all accesses)
– (No audit)

–W turns on the Long Output Format. See “Long Output Format” for details.

–x Puts output into sorted columns, with output going across the rows.

–1 Forces output to be one entry per line.

Note: When you specify options that are mutually exclusive (for example, –c and
–u), the option that appears last on the command line is used.

File Tag Specific Option
–T Display file tag information associated with the file. The format of this output

will be similar to the output from chtag –p. See “Options” on page 123 for
an explanation of the –p option on chtag.

An example output:
> ls -T file
t IBM-1047 T=on file1

ls –T does not turn on the –l option. ls –T can be used with other options
(see “Long Output Format”).

Long Output Format
The output from ls –l summarizes all the most important information about the file
on a single line. If the specified pathname is a directory, ls displays information on
every file in that directory (one file per line). It precedes this list with a status line
that indicates the total number of file system blocks occupied by files in the
directory (in 512-byte chunks or 1024-bytes if –k option is used). Here is a sample
of the output along with an explanation:
total 11
drwxr-xr-x 3 ROOT SYS1 0 Mar 12 19:32 tmp
drwxrwxrwx 4 ROOT SYS1 0 Mar 12 19:32 usr
drwxr-xr-x 2 ROOT SYS1 0 Mar 12 19:32 bin
-rwxr--r-- 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- 1 ROOT SYS1 640 Mar 12 19:33 abc

If –T is specified, file tag information is displayed first on the line.

The first character identifies the file type:
– Regular file
b Block special file (not supported for z/OS UNIX System Services)
c Character special file
d Directory
e External link
l Symbolic link
p FIFO

ls

334 z/OS V1R4.0 UNIX System Services Command Reference

s Socket file type

The next 9 characters are in three groups of 3; they describe the permissions on
the file. The first group of 3 describes owner permissions; the second describes
group permissions; the third describes other (or “world”) permissions. Characters
that may appear are:
r Permission to read the file
w Permission to write on the file
x Permission to execute the file

The following characters appear only in the execute permission (x) position of the
output.

S Same as s, except that the execute bit is turned off.

s If in owner permissions section, the set-user-ID bit is on; if in group
permissions section, the set-group-ID bit is on.

T Same as t, except that the execute bit is turned off.

t The sticky bit is on.

The following character appears after the permissions if the file contains extended
ACL entries:

+

Example:
ls -l file
-rwxrwxrw-+ WELLIE SYS 167 Jan 11 09:54 file

Use getfacl to display the extended ACL entries. You can set permissions with
either chmod or setfacl.

After the permissions are set, ls displays the following (using the preceding
example), in order:

v The number of links to the file.

v The name of the owner of the file or directory.

v The name of the group that owns the file or directory.

v The size of the file, expressed in bytes. For character special files, it displays the
major and minor device types.

v For a file, the date and time the file was last changed; for a directory, when it
was created. The –c and –u options can change which time value is used. If the
date is more than 6 months old or if the date is in the future, the year is shown
instead of the time.

v The name of the file or directory.

Note: When files owned by user ID 0 (UID=0) are transferred from any UNIX-type
system across an NFS connection to another UNIX-type system, the UID
changes to –2 (UID = –2). Because –2 is not a valid UID on a z/OS System,
ls displays a –2 in place of the user name.

If ls –E is issued, an additional four characters follow the original 10 characters:
total 11
-rwxr-xr-x -ps- 1 ROOT SYS1 101 Mar 12 19:32 her
-rwxrwxrwx a-s- 1 ROOT SYS1 654 Mar 12 19:32 test

ls

Chapter 2. Shell Command Descriptions 335

-rwxr-xr-x a-- 1 ROOT SYS1 40 Mar 12 19:32 temp
-rwxr--r-- ap-l 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- --sl 1 ROOT SYS1 640 Mar 12 19:33 abc

If ls –H is issued, an additional four characters follow the original 10 characters:
total 32
-rwxr-xr-x ---- 1 ROOT SYS1 0 Mar 26 08:47 tmp
-drwxr-xr-x 2 ROOT SYS1 8192 Mar 26 08:50 usr
-rwxr--r-- cr 1 ROOT SYS1 40 Mar 26 08:55 abc

If ls –E is used in conjunction with –H, then the four characters will follow the four
characters normally associated with ls –E:
ls -EH
-rwxr-xr-x ap-l bin 1 ROOT SYS1 101 Mar 12 19:21 foo

If ls –W is issued, an additional 6 characters, in two groups of 3, follow the original
10 characters. The first group of 3 describes the user-requested audit information;
the second group describes auditor-requested audit information.
total 11
drwxr-xr-x fff--- 3 ROOT SYS1 0 Mar 12 19:32 tmp
drwxrwxrwx fff--- 4 ROOT SYS1 0 Mar 12 19:32 usr
drwxr-xr-x fff--- 2 ROOT SYS1 0 Mar 12 19:32 bin
-rwxr--r-- fff--- 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- fff--- 1 ROOT SYS1 640 Mar 12 19:33 abc

Usage Note
To display information about a directory from a symbolic link to the directory, either
add a trailing slash to the symbolic link name, or use the -L option. For example, if
the /etc directory has been converted into a symbolic link, issuing an ls on /etc
without a trailing slash will give you the following information:
> ls -l /etc
lrwxrwxrwx 1 BPXROOT BIN 12 Oct 18 19:46 /etc -> $SYSNAME/etc

However, if you add the trailing slash, the following information about /etc will be
displayed:
> ls /etc/

IBM cmx init.options profile utmpx
NetQ csh.cshrc ioepdcf rc yylex.c
Printsrv csh.login ldap recover yyparse.c
TextTools dce log security zoneinfo
booksrv dfs magic socks.conf
bpe imoisinf mailx.rc startup.mk

The same information is displayed when the -L option is used:
ls -L /etc

IBM cmx init.options profile utmpx
NetQ csh.cshrc ioepdcf rc yylex.c
Printsrv csh.login ldap recover yyparse.c
TextTools dce log security zoneinfo
booksrv dfs magic socks.conf
bpe imoisinf mailx.rc startup.mk

Environment Variables
ls uses the following environment variables:

ls

336 z/OS V1R4.0 UNIX System Services Command Reference

COLUMNS
Contains the terminal width in columns. ls uses this value to determine the
number of output columns to write using the –C option.

TZ Contains the time zone to be used when displaying date and time strings.

Localization
ls uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Out of memory
v Inability to find a file’s information
v Too many directories
v File or directory not found
v Specified on the command line

2 Incorrect command-line option

Messages
Possible error messages include:

File or directory name is not found
The requested file or directory does not exist.

Cannot allocate memory for sorting
To sort its output, ls needs to allocate memory; this message says that
there was not enough memory for the sorting operation.

Too many directory entries in dir
This message appears only when ls runs out of dynamically allocated
memory.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –A, –b, –E, –f, –g, –L, –m, –n, –o, –p, –s, –W, and –x options are extensions
of the POSIX standard.

Related Information
Appendix I explains how to set the local time zone with the TZ environment
variable.

ls-f, sh, tcsh

ls

Chapter 2. Shell Command Descriptions 337

mail — Read and send mail messages

Format
mail [–e | –p] [–qr] [–f file...]
mail [–t] name...

Note: The mail utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the mailx utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
mail lets you read mail sent to you and sends mail to other users. It has two modes
of operation, one for reading mail and one for sending mail. If you start mail without
any arguments, it checks for mail to be read and then presents the messages in
read mode. If you start it with an argument or arguments, it assumes you are
sending a message to the address named as the argument and enters send mode.
The text of the message is taken from standard input until mail encounters either
EOF or a line consisting of only a single dot (·).

For example, to read mail, enter:
mail

To send a mail message to the users Chris and Lee, enter:
mail chris lee

Options
The –t option is used only when sending mail; the others only when reading mail.

–e Tests for the existence of mail and exits. If there is mail in the system
mailbox, the return status is successful.

–f Reads mail from file instead of the system mailbox. This option is often
used to read mail saved in other files.

–p Prints all mail to standard output without querying.

–q Quits the mail session after an interrupt signal; normally, an interrupt ends
only the message being written.

–r Saves messages in first-in, first-out order, the reverse of the default.
Normally, the most recently received message is written first.

–t Lists the recipients at the beginning of the message (default).

Reading Mail
When you start mail without arguments, mail checks your system mailbox for mail.
If there is no mail, mail exits with a return code of 1; if there is waiting mail, mail
displays the first message. (If you specify –p on the command line, it displays all
messages.)

Commands within mail control how messages are handled. The following
commands are available:

d Deletes the current message.

mail

338 z/OS V1R4.0 UNIX System Services Command Reference

m[name...]
Sends the current message to the specified user. If a user is not specified,
the mail is sent to you.

p Prints the message on the screen again.

q Quits mail, storing any undeleted messages in the file $HOME/mbox.

s[file] Saves the message in the specified file. If a file is not specified, mail saves
the message in mbox in your home directory.

w[file] Saves the message (same as s), but without header lines.

x Exits mail without changing the mailbox file.

ENTER (or newline)
Displays the next message.

!command
Runs command using the shell.

+ Displays the next message (same as ENTER or newline).

— Displays the previous message.

* Displays a summary of internal commands.

Because the commands are read from standard input, you can create mail
command files and use input redirection to have mail execute them.

Sending Mail
To send mail, start mail with a list of addresses as arguments. Enter the text of the
message, and end the message with either EOF or with a single dot (·) on a line
followed by a <newline>.

The –t option inserts at the beginning of the message a list of the addresses; a
pathname beginning with a slash (/) is recognized as a valid address (assuming you
have the correct permissions).

If the address is not valid or recognized, or if the message is interrupted (see the
–q option), mail stores the message in the file dead.letter in the current directory. If
it can’t create dead.letter in the current directory, it creates the file in your home
directory. If dead.letter already exists, the new contents overwrite the old.

The mail program modifies the message text slightly; because lines beginning with
From (including the trailing space) are used to separate files in the mailbox, mail
changes any lines in the message that begin with From to read >From.

Example
To send the file how2mail to user Chris, enter:
mail chris < how2mail

Usage Notes
1. Wherever the POSIX standard doesn’t define the behavior of mail, this

implementation resembles mailx.

2. mail doesn’t require a delivery path or mechanism to the destination, though for
most uses, this is preferable.

mail

Chapter 2. Shell Command Descriptions 339

Environment Variables
mail uses the following environment variables:

HOME Specifies your home directory; used to locate the mbox and dead.letter
files.

TZ Specifies the time zone to be used in date and time strings.

Localization
mail uses the following localization environment variables:
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F for more information.

The ability of mail to handle doublebyte characters (or even 8-bit ASCII depends on
the underlying mail transport mechanism. You should restrict all messages to the
POSIX portable character set. To send messages containing doublebyte characters
or even binary files, encode them first with uuencode.

Files
mail uses the following files:

dead.letter
The most recently canceled message.

mbox The default file for saving read mail, stored in the directory specified by
HOME.

Exit Values
0 The session was successfully completed; if reading, there was mail.

1 There was no mail, or the session could not be started.

2 An error occurred after starting the session, or you supplied an invalid
option, resulting in a usage message.

Portability
POSIX.2

Because this utility is due to be withdrawn from POSIX, you may want to use mailx
for portable applications. The ability to write directly to a file is an extension to
POSIX.

Limits
Any individual line is limited to LINE_MAX bytes; of course, transport mechanisms
between systems may impose shorter limits.

Related Information
mailx, uudecode, uuencode

Appendix I also explains how to set the local time zone with the TZ environment
variable.

mail

340 z/OS V1R4.0 UNIX System Services Command Reference

mailx — Send or receive electronic mail

Format
mailx [–efHiNn] [–u user] [filename]
mailx [–FinU] [–h number] [–r address] [–s subject] user ...

Description
mailx helps you read electronic mail messages. It can also send messages to
users on your system, but it has no built-in facilities for sending messages to other
systems.

The command line:
mailx [options] user user user ...

sends a mail message to the given users. If you do not specify any users on the
command line, mailx lets you read incoming mail interactively. However, see the
environment variable sendmail. It is described on page 358.

In a doublebyte locale, aliases, variables, and addresses can contain doublebyte
characters.

This description of mailx is divided into several sections:
v Options
v General overview
v Command-mode subcommands
v Input-mode subcommands
v Startup files
v Example
v Environment variables
v Files
v Exit values
v Portability
v Related Information

Options
You can use the following options when reading messages:

–e Checks to see if you have any messages waiting to be read. With this
option, nothing is displayed. If you have waiting messages, mailx exits with
a successful status return; otherwise, mailx exits with a failure return.

–f filename
Looks for messages in the specified file instead of in your current mailbox.
If you do not specify filename, mailx reads messages from $HOME/mbox.

–H Displays only the header summary of a message.

–N Does not display the header summary of messages.

–u user
Looks for messages in the system mailbox of the specified user. This works
only if you have read permission on the user’s system mailbox.

You can use the following options only when sending messages:

mailx

Chapter 2. Shell Command Descriptions 341

–F Records your message in a file with the same name as the first user
specified on the command line. This option overrides the record variable, if
it has been set.

–h number
Indicates how many “hops” a message has already made from one
machine to another (in a network of machines). This option is not intended
for most users; network mail software uses the option to prevent infinite
loops (the same message cycling through a sequence of machines without
ever getting to its intended destination).

–r address
Passes the given address to network mail software. If this option is present,
it disables all input mode commands. Again, this option is not intended for
most users.

–s subject
Uses the given subject string in the Subject heading line of the message. If
the subject contains spaces or tab characters, the string should be
enclosed in double quotes or single quotes. If you specify this option on the
command line, mailx does not prompt you to enter a subject line when you
type in the text of the message.

–U Converts the address from UNIX-to-UNIX Copy Program (UUCP) style to
Internet Protocol standards. This option overrides the effect of the conv
variable.

This option is not supported.

You can use these options for both sending and reading messages:

–i Ignores interrupts (for example, from pressing <Break> or <Ctrl-c>).

–n Does not initialize your mailx session from the system’s /etc/mailx.rc file.

General Overview
This section describes the default behavior of mailx.

The simplest command to send a message is:
mailx address address address ...

where each address names someone who is to receive the message. The simplest
kind of address is the login name of someone else who uses your shell.

You can also send messages as input to commands. To do this, use an address
that consists of a pipe symbol (|) followed by a command line that invokes the
appropriate command; enclose this whole address in single quotes. For example:
mailx ROBIN ’|cat >save’

mails a message to ROBIN and also copies the message into a file called save.

After you type in the command to send a message, mailx asks you to enter the
subject of the message (a brief description of what the message is about), and then
lets you type in the text of the message. This brief description can be up to 256
characters long. Your message can consist of any number of lines, and may include
blank lines. When you finish entering the message, type a line consisting only>of a
tilde (~), followed by a period (.); then press <Enter>. This tells mailx that the
message is ready to be sent.

mailx

342 z/OS V1R4.0 UNIX System Services Command Reference

mailx puts the completed message into a file called the recipient’s system mailbox.
The message stays in the system mailbox until the recipient asks to read the
message. At that point, the message is obtained from the system mailbox and
displayed on the recipient’s workstation. The message is then saved in the
recipient’s personal mailbox. Since this is usually a file named mbox in the
recipient’s home directory, we use the name mbox to represent the personal
mailbox and mailbox for a system mailbox.

The simplest way to read incoming messages is to type the command mailx (with
no addresses on the command line). This starts an interactive session in which
mailx lets you read your mail and perform other operations. For example, you can
display new messages, delete old ones, reply to messages, or forward them to
someone else, and so on. When you are performing operations in this way, you are
in command mode. When you are typing in the text of a message, you are in input
mode.

A message consists of a sequence of header lines, followed by the body of the
message. The header lines tell who sent the message, the time and date that the
message was sent, the subject of the message, and so on. mailx automatically
creates header lines. Some of the common header lines are:

Cc: name name ...
Stands for “carbon copies”. This indicates that copies of this message are
to be sent to the specified recipients. The names of these recipients appear
in the header lines of everyone receiving the message.

Bcc: name name ...
Stands for “blind carbon copies.” This is similar to Cc:, but the names of
people receiving carbon copies do not appear in the header lines of the
message. Recipients do not know that these people received a copy of the
message.

Subject: text
Gives the subject of the message.

To: name name ...
Gives the names of people who were sent the message directly.

All messages are in one of the following states:

deleted
You used a delete, dp, or dt command to delete the message, or you
saved it using a Save or save command and the variable keepsave was
not set. When mailx quits, messages in this state are deleted.

new The message is in the system mailbox and you have not yet read it or
otherwise changed its state. When mailx quits, messages in this state are
kept in your system mailbox.

preserved
You used a preserve command on the message. When mailx quits,
messages in this state are kept in their current locations.

read You used one of the following commands on the message:
~F copy Print type
~f mbox print undelete
~M next top
~m pipe Type

mailx

Chapter 2. Shell Command Descriptions 343

or you used delete , dp, or dt on the preceding message and the autoprint
variable was set. When mailx quits and you are in your system mailbox,
read messages are kept in your personal mailbox—unless the hold
variable is set, in which case, read messages are kept in your system
mailbox. If you are in your personal or a secondary mailbox when mailx
quits, read messages are kept in their current location.

unread
You have run more than one mailx session with the message in the system
mailbox and you have not read it or otherwise changed its state. When
mailx quits, messages in this state are kept in your system mailbox.

Command-Mode Subcommands
The standard format of a command-mode subcommand is:
[subcommand][refs][arguments]

If no subcommand is specified, p[rint] is assumed.

The refs argument indicates the messages to which you want to apply the
subcommand. mailx numbers incoming messages sequentially as they are
received. The easiest way to refer to a message is to give its number. For example,
the subcommand:
p 3

displays message number 3. At any point in a mailx session, there is one message
that is considered the current message. This is the message you most recently did
something with (for example, the one you most recently read). If you omit the refs
argument in a subcommand that uses refs, the subcommand works with the current
message.

You can also use special notations as the refs value:

refs Meaning
n Message number n
n-m Messages n through m
. The current message
^ The first undeleted message (or first deleted message for undelete)
$ The last message
+ Next message
− Previous message
user All messages from the given user
/string

All messages with string in the subject line (the case of characters in
string is ignored)

:d All deleted messages
:n All new messages
:o All old messages
:r All messages that have already been read
:u All unread messages

Several refs arguments may be specified for the same subcommand, separated by
spaces. For example:
p alice lewis

displays all messages from alice plus all messages from lewis.

mailx

344 z/OS V1R4.0 UNIX System Services Command Reference

The arguments allowed at the end of a command-mode subcommand depend on
the subcommand itself. If a subcommand allows a filename as an argument, you
can use the usual filename generation characters in the filename (see sh).

The following list shows the subcommands recognized in command mode. In every
subcommand name, some characters are enclosed in square brackets. These
characters are optional. For example, the p[rint] command may be given as print
or p.

? Displays a summary of command-mode subcommands

= Displays the current message number

a[lias] [alias [name ...]]
Sets up an address alias. If you enter a subcommand to send mail to the
given alias, the messages are actually sent to the given list of names. For
example, you might enter the subcommand:
alias joe JSMITH

From this point onward, you can address messages to joe and they are
sent to jsmith. You may also set up an alias for several people, as in:
alias choir SOPRANO ALTO TENOR BASS

After you have done this, you can send messages to choir and they are
sent to the names that follow choir in the command.

If you use only one argument, alias lists the value of that alias. For
example, alias joe would display jsmith. Entering the alias subcommand
without any arguments displays a list of the currently defined aliases.

Note: Aliases entered interactively remain in effect only until the end of the
current interactive session. To make an alias permanent, include the
alias subcommand in your startup file (see “Startup Files” on page
353). See also group.

alt[ernates] name
Lists a set of alternate names for your own login name. This is useful for
people who login under several different names. When you reply to a
message, mailx usually sends your reply to the author of the message and
all the recipients as well; however, it does not send the message to any of
your alternate login names. You don’t have to worry about sending mail to
yourself.

Specifying alternates without names displays your list of currently defined
alternate names.

cd directory
Makes directory your new working directory. If no directory is specified, cd
goes to your HOME directory.

ch[dir] directory
Is the same as cd.

c[opy] [refs] [filename]
Copies the messages referred to by refs into the given file. The filename
must be specified. If the file does not already exist, it is created.

If no refs are specified, the current message is saved. If no filename is
specified, your mbox is saved.

mailx

Chapter 2. Shell Command Descriptions 345

This operation does not mark the message as saved; if it was previously
unread, it is still regarded as an unread message. Thus, the original
message remains in your system mailbox. See also save.

C[opy] [refs]
Is similar to the copy command, except that the messages referred to are
saved in a file the name of which is derived from the author of the first
message referred to. The name of the file is the author’s name, stripped of
any network addressing. If the folder variable is set, the file is saved to the
specified directory. The copied messages are not marked as “saved”. If refs
is not specified, the current message is copied.

d[elete] [refs]
Deletes the specified messages from your system mailbox. If refs is not
specified, the current message is deleted. After a delete operation, the
current message is set to the message after the last message deleted.
Deleted messages are not thrown away until you end your session with the
current mailbox (see quit and file). Until then, they can be undeleted (see
undelete).

di[scard] [header...]
Does not display the given header fields when displaying a message. For
example:
discard References

tells mailx not to display the References line at the beginning of any mail
message. These header lines are retained when the message is saved;
they are just not shown when the message is displayed. See also ignore
and retain.

dp [refs]
Deletes the specified messages and then displays the message after the
last message deleted. If there is no subsequent message, mailx displays its
command prompt.

dt [refs]
Is the same as the dp subcommand.

ec[ho] string ...
Echoes the given strings (like the echo subcommand).

e[dit] [refs]
Lets you edit the messages specified by refs. The messages are stored in a
temporary file and an editor is invoked to let you edit the file. The default
editor is ed, but you can change this using the editor environment variable.

ex[it] Quits mailx without changing the system mailbox. Contrast this with quit,
which ordinarily removes from the system mailbox those messages you’ve
read, saved, or deleted.

fi[le] [filename]
Quits the system mailbox (as if a q[uit] subcommand were run) and then
reads in the specified file as the new mailbox to examine. If no filename is
specified, the default is your current mailbox.

Several special strings can be used in place of filename:
% Your system mailbox.
%user The system mailbox for user
The previous file
& Your mbox (personal mailbox)
+file The named file in the folder directory

mailx

346 z/OS V1R4.0 UNIX System Services Command Reference

fold[er] [filename]
Is the same as the file subcommand.

folders
Displays the names of the files in the directory given by the folder variable.
See “Environment Variables” on page 354.

F[ollowup] [refs]
Replies to the first message given in refs; mailx sends this reply to the
authors of every message given in refs. The Subject line is taken from the
first message in refs. Your reply is automatically saved in a file which
derives its name from the author of the message to which you are replying.

To create your reply, mailx puts you into input mode, where you can use all
of the input mode commands.

fo[llowup] [ref]
Replies to the specified message; if no message ref is given, you reply to
the current message. Your reply is automatically saved in a file which
derives its name from the author of the message to which you are replying.
This overrides the record environment variable if record is set.

To create your reply, mailx puts you into input mode, where you can use all
of the input mode commands.

f[rom] [refs]
Displays the header summary for the specified messages. If refs is not
given, the current message is used.

g[roup] [alias [name ...]]
Is the same as the alias command.

h[eaders] [ref]
Displays the headers of a screenful of messages surrounding the message
given by ref. The number of lines in a screen is given by the screen
variable.

hel[p] Displays a summary of the command-mode subcommands.

ho[ld] [refs]
Retains the specified messages in your system mailbox. For example, you
might decide to hold a message if you read it, but decide not to act upon it
immediately. If refs is not specified, the current message is held. If any of
the specified messages have been marked as deleted, the hold
subcommand overrides that and still retains the messages. Subsequent
delete, dp, and dt commands during the same mailx session can delete
files marked for retention. See also preserve and the variables hold and
keepsave.

i[f] code mailx subcommands | [el[se] mailx subcommands] | [en[dif]]
Is primarily intended for use in startup files. The code must be the character
r or s. If it is r, the first set of mailx subcommands are executed if mailx is
in receive mode, and the second set if mailx is in send mode. If code is s,
the opposite is true. The else part is optional. See “Startup Files” on
page 353.

ig[nore] [header ...]
Is the same as the discard subcommand.

l[ist] Displays the names of all command-mode subcommands.

mailx

Chapter 2. Shell Command Descriptions 347

m[ail] address ...
Sends a message to the specified recipients. mailx goes into input mode to
let you enter the text of the message.

mb[ox] [refs]
Indicates that the given messages are to be saved in your mbox (personal
mailbox) when mailx quits normally (that is, through the quit command as
opposed to exit).

n[ext] [refs]
Goes to the next message in the mailbox that appears in the list of refs. For
example:
n user

goes to the next message from the specified user.

pi[pe] [[refs] command]
Pipes the messages given by refs through the specified shell command.
These messages are considered read. If refs is not specified, the current
message is used. If no command is specified, mailx uses the command
specified by the cmd variable. See “Environment Variables” on page 354. If
the page variable has a value, a form feed character is sent into the pipe
after every message.

The subcommand | [refs] [command] is equivalent to pipe.

pre[serve] [refs]
Is the same as the hold subcommand.

P[rint] [refs]
Displays the specified messages on the screen. If refs is not specified, the
current message is displayed. All header fields are displayed; the discard
and ignore subcommands do not affect Print.

p[rint] [refs]
Displays the specified messages on the screen. If refs is not specified, the
current message is displayed. Header fields specified by discard and
ignore subcommands are not displayed. If the crt variable is set to an
integer, messages with more lines than that integer are “paginated” using
the command specified by the pager variable. For more information, see
“Environment Variables” on page 354.

q[uit] Ends a mailx session. This is the usual method to leave mailx. Messages
that have been read but not saved or deleted are stored in your mbox
(personal mailbox). Messages that are still unread are retained in your
system mailbox. Messages that have been deleted or explicitly saved in
other files are discarded. Typing the end-of-file character has the same
effect.

R[eply] [refs]
Sends a reply to the authors of each of the messages specified by refs. If
refs is not specified, the current message is used. The Subject line of the
reply message is taken from the first message in refs. If the record
environment variable is set to a filename, your reply message is appended
to the end of that file.

Normally, you use Reply if you just want to send your reply to the author of
a message, and reply if you want to send your reply to the author and all
recipients. If set, the flipr environment variable reverses the meanings of
the R and r commands. See “Environment Variables” on page 354.

mailx

348 z/OS V1R4.0 UNIX System Services Command Reference

r[eply] [ref]
Sends a reply to the author of a specific message, and all other recipients
of the message. If ref is not specified, mailx replies to the current message.
If the record environment variable is set to a filename, your reply message
is appended to the end of that file.

R[espond] [refs]
Is the same as the Reply subcommand.

r[espond] [ref]
Is the same as the reply subcommand.

ret[ain] [header ...]
Is the opposite of the discard subcommand. It tells mailx to display the
given header fields when displaying a message. The comparison of header
fields is not case sensitive. You can use retain to override existing discard
and ignore commands. If you do not specify any header fields, retain
displays a list of currently retained header fields.

S[ave] [refs]
Saves the specified messages in a file the name of which is taken from the
author of the first message (the filename is the author’s name, without any
attached network addressing). If the folder variable is set, the file is saved
to the specified directory.

s[ave] [refs][filename]
Saves the specified messages in the given file. If refs is not given, the
current message is added to the mbox. (The value of the append variable
determines whether the message is added to the beginning or the end of
the mbox). The file is created if it does not already exist. If you do not
specify filename, mailx saves the messages in mbox (your personal
mailbox). A message that has been saved with save is normally deleted
from mailbox when mailx ends (see quit); but see the variables hold and
keepsave.

se[t] name
Defines a variable with the given name and assigns it a null value. If you
omit name, set displays a list of all defined variables and their values.

se[t] name=value
Defines a variable with the given name and assigns it the given value,
which may be a string or a number.

se[t] noname
Is the same as the unset name subcommand.

sh[ell] Invokes the shell given by the SHELL environment variable.

si[ze] [refs]
Displays the size in bytes of each of the specified messages. If no refs are
specified, the current message is used.

so[urce] file
Reads the specified text file, executes its contents as command-mode
subcommands, and then returns to read more commands from the original
source.

to[p] [refs]
Displays the first few lines of each of the specified messages. If refs is not
specified, the current message is used. If the toplines variable has a
numeric value, that many lines are displayed from each message;
otherwise, five lines are displayed from each message.

mailx

Chapter 2. Shell Command Descriptions 349

tou[ch] [refs]
“Touches” the specified messages, making them appear to have been read.
This means that when you quit mailx, the messages are saved in your
mbox (personal mailbox) if they are not deleted or explicitly saved in
another file. If refs is not specified, the current message is touched.

T[ype] [refs]
Is the same as the Print subcommand.

t[ype] [refs]
Is the same as the print command.

una[lias] [alias[name ...]]
Deletes specified alias names.

u[ndelete] [refs]
Restores previously deleted messages. When messages are deleted, they
are not discarded immediately; they are just marked for deletion and are
actually deleted when mailx ends. Until mailx ends, you can use undelete
to restore the specified messages. You cannot undelete messages deleted
in previous sessions. If you do not specify refs, this command restores the
first deleted (but not yet undeleted) message following the current message;
if no such message exists, it restores the last deleted (but not yet
undeleted) message preceding the current message. If the autoprint
variable is set, the last restored message is displayed. This is the only
subcommand that lets you give a ref to a message that has been deleted.

U[nread] [refs]
Marks the specified messages as unread.

uns[et] name ...
Discards the specified variables.

ve[rsion]
Displays version information about mailx.

v[isual] [refs]
Edits the specified messages with a screen editor. If refs is not specified,
the current message is edited. The messages are saved in a temporary file
and the screen editor is invoked to edit that file. The editor used is given by
the VISUAL variable. See “Environment Variables” on page 354.

w[rite] [refs] filename
Writes the specified messages into the given file. If refs is not specified, the
current message is written. write is the same as save, except that it does
not write out the header lines and the blank line at the end of the message.

x[it] Is the same as the exit command.

z+ Scrolls the header display forward one screenful.

z– Scrolls the header display backward one screenful.

! command
Executes the given shell command. For example:
!lc

lists all files in the current directory. The shell that will be used to run the
command is given by the SHELL environment variable. See “Environment
Variables” on page 354.

mailx

350 z/OS V1R4.0 UNIX System Services Command Reference

#comment
Specifies that mailx should ignore everything from the # to the end of the
line. This is useful for putting comments into startup files.

? Is the same as the help command (it displays a summary of the
command-mode subcommands).

= Displays the current message number.

Input-Mode Subcommands
You can use input-mode subcommands when entering the text of a message. You
must type mode subcommands at the beginning of an input line; you cannot type
them in the middle of a line. By default, each input-mode subcommand begins with
the tilde (~) character, called the escape character. You can use the escape
variable to change the escape character, but in the documentation that follows, we
always use tilde.

~. Marks the end of input in a mail message.

~? Displays a summary of the input-mode subcommands.

~A Inserts the autograph string at this point in the message. This autograph
string is given by the Sign variable.

~a Is similar to ~A, except that it uses the variable sign.

~b name ...
Adds the specified names to the blind carbon copy list.

~c name ...
Adds the specified names to the carbon copy list.

~d Reads in the dead.letter file.

~e Invokes an editor on the message that you have composed. The editor
variable determines the editor that is invoked.

~F [refs</ pv>]
“Forwards” the given messages. The text of the messages is inserted at this
point in the message you are composing. The message headers are also
inserted with all header fields regardless of the discard, ignore, and retain
subcommands. This is valid only when you entered mailx in command
mode and then went into input mode to compose a message.

~f[refs]
Is similar to ~F except that the header fields included are determined by the
discard, ignore, and retain subcommands.

~h Prompts you to enter the following header lines:
Subject Cc Bcc To

For some of these, mailx displays an initial value for the header. You can
edit this initial value as if you had just typed it in yourself, using backspaces
and line deletes.

~i name
Inserts the value of the named variable followed by a newline at this point
in the message.

~M[refs]
Inserts the text of the specified messages at this point in the message. If
refs is not specified, the current message is used. Messages inserted in this
way have each line prefixed with the value of the indentprefix variable. The

mailx

Chapter 2. Shell Command Descriptions 351

message headers are also inserted with all header fields included
regardless of the discard, ignore, and retain subcommands. This is valid
only when you entered mailx in command mode and then went into input
mode to reply to a message.

~m< Is similar to ~M, except that the header fields are determi ned by the
discard, ignore, and retain subcommands.

~p Displays the message being composed.

~q Quits input mode as if you had interrupted the message. If you have
already composed part of a message, the partial message is saved in the
dead.letter file; the description of the dead environment variable has more
information..

~r filename
Reads in the contents of the specified file and adds that text at this point in
the message.

~s text
Sets the Subject line to the given text.

~t address address ...
Adds the given addresses to the To: list (people who will receive the
message).

~v Invokes a screen (visual) editor on the message that you have composed.
The VISUAL variable determines the editor that is invoked.

~w file Writes the current text of your message to the specified file. The header
lines for the message are not written.

~x Quits in the same way as ~q, except that the message is not saved in the
dead.letter file.

~< filename
Is the same as the ~r command.

~< !command
Runs the given shell command and adds the standard output of that
command at this point in the message. For example, your message might
contain:
My program is giving me this odd output:
~< !prog
What do you think is causing it?

~: mail_command
Runs the given command-mode mail_command. This is valid only when you
entered mailx in command mode and then went into input mode to
compose a message.

~_ mail_command</ pv>
Is the same as the ~: command.

~! command
Runs the given shell command. For example, you can use:
>~! ls

to get a list of files in the working directory. The shell that is invoked to run
the command is given by the SHELL environment variable. If the bang
variable is set, mailx replaces each unescaped exclamation mark (!) in
command with the command run by the previous command or ~! command
escape.

mailx

352 z/OS V1R4.0 UNIX System Services Command Reference

~ Marks the end of input in a mail message.

~| command
Pipes the current message through the specified shell command. If the
command ends with a successful exit status, the output of the command
replaces the text of the current message. For example:
~|fmt

fills and justifies the lines of your message and replaces the message with
the formatted message. ~| uses the shell given by the SHELL environment
variable to run command.

Startup Files
When you run mailx in command mode, mailx does the following:

v Sets all variables to their default values. mailx processes command-line options,
using them to override any corresponding default values.

v Imports appropriate external environment variables, using them to override any
corresponding default values.

v Reads commands from the system startup file, /etc/mailx.rc. This sets up
variable values and definitions that should be common to all users. If you do not
want mailx to read the system startup file, use the –n option on the mailx
command line.

v After reading and processing the system startup file, mailx does the same with a
personal startup file, which is MAILRC by default. This is a file in your HOME
directory. The name of the file is .mailrc.

Startup files typically set up display options and define aliases. However, any
command is valid in a startup file except for the following:

Copy
edit
followup
Followup
hold
mail
preserve
reply
Reply
respond
Respond
shell
visual
!

If a line in a startup file contains an error or an incorrect command, the rest of the
startup file is ignored. mailx ignores blank lines in a startup file.

Example
The following example composes and sends a message to several users. Items
shown in italics are output by mailx itself.
mailx JEAN
Subject: Greetings
This is just a short note to say hello.
~c JUAN JOHN JOHANN
~.

mailx

Chapter 2. Shell Command Descriptions 353

On the first line, the message is just addressed to jean. The ~c line adds more
people who will receive copies of the message.

Environment Variables
A large number of variables are used to control the behavior of mailx. These
environment variables are divided into two classes: those that always come from
the external environment, and those that may be set up in either the external
environment or within a mailx session.

The following variables always come from the external environment; they can be
changed inside a mailx session, except where marked.

HOME Gives the name of your home directory. This cannot be changed inside
mailx .

LOGNAME
Gives your login name.

MAIL Gives the pathname of the user’s mailbox file for purposes of incoming mail
notification.

MAILDIR
Gives the name of the directory where system mailboxes are stored. If this
is not set, the default is /usr/mail. The actual name of a user’s system
mailbox is derived in a system-dependent way by combining MAILDIR and
the user’s login name. For mailx to work properly, the MAILDIR directory
must exist.

MAILRC
Gives the name of your startup file. This cannot be changed inside mailx.
By default, MAILRC has the value $HOME/.mailrc. For more information
about startup files, see “Startup Files” on page 353.

The HOME and LOGNAME variables must be set before you enter mailx.
Otherwise, mailx will not work properly. These variables are set automatically for
you if you enter the shell using the TSO/E OMVS command. If you do not log in,
you must set the variables in some other way, using the commands:
export LOGNAME=name
export HOME=directory

The remaining variables can be set in the external environment or in the course of
a mailx session. You can set or change the value of a variable with the set
subcommand; you can discard a variable with the unset subcommand. You may
find it convenient to create a startup file that sets these variables according to your
preferences; this eliminates the need to set variables each time you enter mailx.

Many of the following variables represent on-off options. If you set the variable itself
(to any value), the option is turned on. To turn the option off, you can unset the
variable, or set a variable consisting of no followed by the name of the original
variable. For example, setting autoprint turns the autoprint option on, and setting
noautoprint turns it off.

allnet Assumes that network addresses with the same login component refer to
the same person. Network addresses typically consist of several
components, giving information that lets a mail server identify a machine on
the network, a route to that machine, and the login name of a user on that
machine. mailx assumes that the login name is the last component. For
example:

mailx

354 z/OS V1R4.0 UNIX System Services Command Reference

print name

displays all messages that originated from the same login name, regardless
of the rest of the network address. The default is noallnet, where different
addresses are assumed to be different users, even if the login name
components are the same.

append
Appends messages to the end of the mbox file (your personal mailbox)
after termination. The default is noappend; messages are placed at the
beginning of the mbox file instead of the end.

ask Prompts you for a Subject: line when composing a message (if you have
not already specified one with the –s option). This option is on by default; to
turn it off, set noask. ask is the same as asksub. noask is the same as
noasksub.

askbcc
Prompts you for a Bcc: list when composing a message. The default is
noaskbcc; you are not prompted.

askcc Prompts you for a Cc: list when composing a message. The default is
noaskcc; you are not prompted.

asksub
Prompts you for a Subject: line when composing a message (if you have
not already specified one with the –s option). This option is turned on by
default; to turn it off, set noasksub. asksub is the same as ask. noasksub
is the same as noask.

autoprint
Automatically displays the last message deleted with the delete
subcommand or the last message undeleted with undelete. The default is
noautoprint; you are not shown messages that you delete or undelete.

bang Records shell commands run inside the mailx session (for example,
through the ~! input-mode command). Then, if you issue a shell command
and the shell command contains a ! character, mailx replaces that
character with the command line for the previous shell command. The
default is nobang, in which case a ! in a shell command line is not treated
specially.

cmd Contains a command, possibly with options. This specifies a default
command line to be used for the command-mode pipe subcommand. For
example:
set cmd="cat"

pipes messages through cat when the pipe subcommand is invoked.

crt Contains an integer number. If a message has more than this number of
lines, the message is piped through the command given by the PAGER
variable, whenever the message is displayed. crt is not set; the default is
nocrt.

dead Contains the name of a file that can be used as the dead.letter file. Partial
messages are saved in this file if an interrupt or error occurs during creation
of the message or delivery. By default, the name of this file is
$HOME/dead.letter.

dot Accepts a line consisting only of a dot (.) to indicate the end of a message

mailx

Chapter 2. Shell Command Descriptions 355

in input mode. Thus . is equivalent to ~.. The default is nodot. If ignoreeof
is set, mailx ignores a setting of nodot; the period is the only way to end
input mode.

editor Gives a command, possibly with options, that is run when using the
command mode edit or the input mode ~e. The default is ed (see ed).

escape
Gives the character used to begin input-mode subcommands. The default is
the tilde (~). If this variable is set to null, mailx disables command
escaping.

flipr Reverses the meanings of the R and r subcommands. The default is
noflipr. See also Replyall.

folder Contains the name of a directory in which mailx saves mail files. This lets
you specify a standard directory for saving mail files. Whenever you specify
a filename for a mailx command, putting a plus sign (+) in front of the name
specifies that the file is to be accessed in the folder directory.

If the value of folder begins with a slash, it is taken as an absolute
pathname; otherwise, mailx assumes that the directory is directly under
your HOME directory. folder has no default value. If you want to use + in
filenames that appear on the mailx command line itself (as opposed to
commands in a mailx session), you must make folder an exported shell
environment variable.

header
Displays a summary of message headers at the beginning of a mailx
command-mode session. This is the default.

hold Keeps all messages in your system mailbox instead of saving them in your
personal mbox. The default is nohold.

ignore
Ignores interrupts received while composing a message. The default is
noignore.

ignoreeof
Ignores end-of-file markers found while entering a message. The message
can be ended by “.” or ~. on a line by itself. The default is noignoreeof.

indent Contains a string that mailx uses as a prefix to each line in messages that
~m and ~M insert. The default is one tab character.

indentprefix
As with indent, contains a string that mailx uses as a prefix to each line in
messages that ~m and ~M insert. The default is one tab character. If both
indent and indentprefix are set, indentprefix takes precedence.

keep Does not remove your system mailbox if the mailbox contains no
messages. The mailbox is truncated to zero length—that is, it is merely
emptied, although it still exists. If the default nokeep is in effect, empty
mailboxes are removed.

keepsave
Keeps messages in your system mailbox even if they have been saved in
other files. The default, nokeepsave, deletes messages from the system
mailbox if they have been saved elsewhere.

lister Contains a command, possibly with options. mailx invokes this command

mailx

356 z/OS V1R4.0 UNIX System Services Command Reference

when displaying the contents of the folder directory for the folders
subcommand. If this variable is null or unset, mailx uses ls. By default, this
variable is unset.

mailrc Is the location of personal startup file. See “Startup Files” on page 353.

mailserv
Identifies the mail server being used for remote mail.

mbox Gives the name of your mbox (personal mailbox) file. Messages that have
been read but not saved elsewhere are saved here when you run quit (but
not when you run exit). The default is $HOME/mbox.

metoo When replying to a message with your login name in the recipient list,
sends a reply to all other recipients, the author, and you. If nometoo is set,
you are not to be sent the reply. The default is nometoo.

onehop
Attempts to send replies directly to the recipients instead of going through
the original author’s machine. When you reply to a message, your reply is
sent to the author and to all recipients of the message. On a network, mailx
normally specifies the recipient addresses so that all the replies go to the
original author’s machine first, and then on to the other recipients.

outfolder
Causes files used to record outgoing messages (see the description of
record) to be located in the directory given by folder unless folder contains
an absolute pathname.

The default is nooutfolder.

page Tells the pipe subcommand to insert a form-feed character after each
message that it sends through the pipe. The default is nopage.

pager Contains a command, possibly including options. mailx sends display
output through this command if the output is longer than the screen length
given by crt. The default value is more (see more).

prompt
Contains a string that mailx displays to prompt for output in command
mode. The default is a question mark followed by a space (?).

quiet Does not display the opening message and version number when mailx
begins a session. The default is noquiet.

record
Contains a filename where every message you send is to be recorded. If
record is not an absolute pathname and the outfolder variable has not
been set, the file is located in the current directory. If the outfolder variable
is set, the file is located in your folder directory. The default is norecord.

replyall
Reverses the senses of the reply and Reply subcommands (so that reply
replies only to the author of a message, and Reply replies to the author
and all other recipients). See also flipr.

save Saves messages in your dead.letter file if they are interrupted while being
composed. The name of your dead.letter file is given by the dead variable.
Setting nosave disables this automatic save feature. The default is save.

screen
Gives the number of headers that are to be displayed by the headers and z
subcommands.

mailx

Chapter 2. Shell Command Descriptions 357

sendmail
Contains a command, possibly with options, that mailx invokes to send
mail. The default is /usr/lib/tsmail. It can be any command that takes
addresses on the command line and message contents on standard input.

sendwait
When sending a message through a network, mailx waits for the mail
server to finish before returning to your session. Normally, it just submits the
message to the server and then returns immediately. The default is
nosendwait.

shell Contains a command, possibly with options. mailx assumes that this
command is a command interpreter. mailx invokes this command
interpreter whenever it is asked to run a system command (for example,
through the ! command-mode command). The default is sh (see sh).

showto
When displaying a header summary, displays the recipient’s name instead
of the author’s for messages where you are the author. The default is
noshowto.

sign Contains a string that is inserted into a message when you use the input
mode ~a subcommand. mailx interprets \n and \t in this string as the
newline and tab characters, respectively. The default is nosign.

Ssign Contains a string that is inserted into a message when you use the input
mode ~A subcommand. The default is noSign.

term Contains the name of the terminal type. If screen is not set, term
individually determines the number of lines in a screenful of headers.

toplines
Gives the number of header lines that the top subcommand is to display.
The default is 5.

VISUAL
Contains a command, possibly with options, that mailx invokes when using
the command-mode visual subcommand or the input mode ~v
subcommand. The default is vi (see vi).

Files
mailx uses the following files:

/etc/mailx.rc
Systemwide startup file.

$MAILRC
Personal startup file. By default, MAILRC has the value $HOME/.mailrc.

$HOME/mbox
Default location to save read messages. You can choose a different file by
assigning the filename to the environment variable MBOX.

$MAILDIR
Directory containing system mailboxes. By default, this is /usr/mail. The
system programmer must create the MAILDIR directory if it does not
already exist. See z/OS UNIX System Services Planning for information on
creating the MAILDIR directory.

$HOME/dead.letter
Default location to save partial letters.

mailx

358 z/OS V1R4.0 UNIX System Services Command Reference

Localization
mailx uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successfully sent. (However, this does not guarantee that the mail was

successfully received). 0 is also returned if –e is specified and there is no
new mail. 0 is returned if there is new or unread mail. 1 means that there is
no new or unread mail.

1 Returned if –e is specified and there is new mail. Also returned to indicate
failure due to any of the following:
v There is no mail to read.
v Inability to create temporary file name or temporary file.
v Receipt of user interrupt while message was being composed.
v Inability to determine the user’s identity.

2 Failure due to any of the following:
v Missing number after –h
v Missing address after –r
v Missing subject after –s
v Missing user after –u
v Incorrect command-line option
v Use of interactive options when not using command interactively

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

UNIX System V has a compatible mailx utility, whereas Berkeley Software
Distribution (BSD) has a similar utility, known as Mail.

The –F, –r, and –U options; the Copy, echo, followup, Followup, Save, Unread,
and version subcommands; and the allnet, conv, mailserv, onehop, replyall,
sendmail, and sendwait variables are extensions of the POSIX standard.

Related Information
echo, ed, sh, vi

make — Maintain program-generated and interdependent files

Format
make [–EeinpqrstuVvx] [–k|–S] [–c dir] [–f file] ...
[macro definition ...] [–D macro definition ...] [target ...]

mailx

Chapter 2. Shell Command Descriptions 359

Description
make helps you manage projects containing a set of interdependent files, such as a
program with many source and object files, or a document built from source files,
macro files, and so on. make keeps all such files up to date with one another. If
one file changes, make updates all the other files that depend on the changed file.

Note: This implementation of make features the .POSIX special target to provide
maximum portability. When you specify this target, make processes the
makefile as specified in the POSIX standard. For details, see the description
of .POSIX in “Special Target Directives” on page 372.

In a doublebyte locale, environment variable values, here documents, and the
command line may all contain environment values.

Options
–c dir Attempts to change into the specified directory when make starts up. If

make cannot change to the directory, an error message is printed. This is
useful for recursive makefiles when building in a different directory.

–D macro definition
Define macro on the command line before reading any makefile. Use the
same form as a normal macro definition (macro=string). If you use this
option, make assigns the value to the macro before reading the makefile;
any definition of the same macro contained in the makefile supersedes this
definition.

Note: make uses any macros defined in this way before reading any
makefile, including the startup file. This allows you to define a startup
file by providing a value for MAKESTARTUP on the command line:
make –D MAKESTARTUP=$HOME/project/startup.mk

–E Suppresses reading of the environment. If you do not specify either –E or
–e, make reads the environment before reading the makefile.

–e Reads the environment after reading the makefile. If neither –E nor –e are
specified, make reads the environment before reading the makefile, except
for the SHELL environment variable, which you must explicitly export. This
option does not affect the value of MAKEFLAGS.

–f file Uses file as the source for the makefile description. make ignores the
makefiles specified as prerequisites to the .MAKEFILES target. If you specify
a minus sign (−) in place of file, make reads the standard input. (In other
words, make expects you to enter the makefile from the terminal or to
redirect it from a file.) You can use more than one –f option.

–i Tells make to ignore all errors and continue making other targets. This is
equivalent to the .IGNORE attribute or macro.

–k Makes all independent targets, even if an error occurs. Ordinarily, make
stops after a command returns a nonzero status. Specifying –k tells make
to ignore the error and continue to make other targets, as long as they are
not related to the target that received the error. make does not attempt to
update anything that depends on the target that was being made when the
error occurred.

–n Displays the commands that make would execute to update the chosen
targets, but does not actually execute any recipe lines unless they have a
plus sign (+) command prefix. make displays recipe lines with an at sign

make

360 z/OS V1R4.0 UNIX System Services Command Reference

(@) command prefix on standard output (stdout). For more information
about recipe lines, see z/OS UNIX System Services Programming Tools.

With group recipes, make displays the commands it uses to update a given
target, but it also executes the commands.

Note: z/OS make supports group recipes, but traditional implementations
of make do not. A group recipe signifies a collection of command
lines fed as a unit to the command interpreter. By contrast, make
executes commands in a normal recipe one by one. For more
information about group recipes, see z/OS UNIX System Services
Programming Tools.

If make finds the string $ (MAKE) in a recipe line, it expands it, adds –n to
the MAKEFLAGS, and then executes the recipe line. This enables you to see
what happens when recursive calls are made to make. The output correctly
shows line breaks in recipes that are divided into several lines of text using
the \<newline> sequence.

–p Prints the makefile after it has been processed to include macro and target
definitions. This display is in human-readable form useful for debugging, but
you cannot use it as input to make.

–q Checks whether the target is up to date. If it is up to date, make exits with
a status of 0; otherwise, it exits with a status of 1 (typically interpreted as an
error by other software). No commands are run when –q is specified.

–r Does not read the startup file. Various control macros and default rules will
not be defined.

–S Ends make if an error occurs during operations to bring a target up to date
(opposite of –k). This is the default.

–s Specifies that recipe commands, warning messages, or touch messages
(see the –t option) not be displayed. This is equivalent to the .SILENT
attribute or macro.

–t Touches the target to mark them as up-to-date, but only executes
commands to change a target if the target has a plus sign (+) command
prefix. make does not touch up-to-date targets or targets that have
prerequisites but not recipes. make displays a message for each touched
target file indicating the filename.

–u Forces an unconditional update: make behaves as if all the prerequisites of
the given target are out of date.

–V Prints the version number of make and a list of built-in rules.

–v Causes make to display a detailed account of its progress. This includes
what files it reads, the definition and redefinition of each macro, metarule
and suffix rule searches, and other information.

–x Exports all macro definitions to the environment. This happens just before
make begins making targets (but after it has read the entire makefile).

Targets
A target is normally a file that you want to ensure is up to date with the files on
which it is dependent (the prerequisites). For example, you may want to check to
see if a is based on the most recent version of the corresponding source code. If it
is not, then have the source code recompiled to get an up-to-date version. In this

make

Chapter 2. Shell Command Descriptions 361

case, the compiled program file is the target and the corresponding source files are
prerequisites (that is, the files on which a target is dependent).

make updates all targets that are specified on the command line. If you do not
specify any target, make updates the targets in the first rule of the makefile. A
target is out of date if it is older than any of its prerequisites (based on modification
times) or if it does not exist. To update a target, make first recursively ensures that
all the target’s prerequisites are up to date, processing them in the order in which
they appear in the rule. If the target itself is out of date, make then runs the recipe
associated with the target. If the target has no associated recipe, make considers it
up to date.

make also supports another form of targets, known as special targets, described in
“Special Target Directives” on page 372.

Makefiles
A makefile is a text file that describes the dependencies between various files. It
normally contains a list of targets and identifies the prerequisites on which each
depends. It also contains a series of instructions, called recipes, which describe the
actions to be taken if a given target is out of date with its prerequisites.

By default, if you do not specify the –f option, make looks for a file in your current
directory named makefile. If it does not find this file, it searches your current
directory for a file named Makefile. If make finds either file, it uses this file as your
makefile.

You can change the default makefiles with the .MAKEFILES special target. This target
is already specified in the startup.mk file. See “Special Target Directives” on
page 372 for more information.

Macro Definitions
Macro definitions can appear on the command line or in makefiles. Macro
definitions on the command line overrule definitions in makefiles; makefile
definitions never overrule command-line definitions. Macro definitions on the
command line may not have any white space between the macro name and the =
character.

Macro definitions may take several forms.
macro = string

is the usual form. If string contains macro references, make does not expand them
when the macro is defined, but when the macro itself is expanded.
macro := string

expands macros inside string before assigning a value to macro.
macro += string

adds string to the previous value of macro.

You can use any amount of white space on both sides of macro operators. make
defines the name macro to have the value string and replaces it with that value
whenever it is used as $(macro) or ${macro} within the makefile. It is possible to
specify a $(macro_name) or ${macro_name} macro expansion, where
macro_name contains more $(....) or ${...} macro expansions itself.

make

362 z/OS V1R4.0 UNIX System Services Command Reference

Normally, make does not include white space at the beginning and end of string in
the definition of macro; however, it never strips white space from macros imported
from the environment.

If you want to include white space in a macro definition specified on the make
command line, you must enclose the definition in quotes.

make resolves macro definitions in the following order:
1. Macro definitions in the built-in rules
2. Macro definitions on the command line associated with the –D option
3. Macro definitions in the startup file
4. Contents of the environment
5. Macro definitions in the makefiles (in the order they appear)
6. Macro definitions on the command line without the –D option

Note: If you specify the –e options, make reads the makefiles before reading the
contents of the environment. If you specify the –E option, make does not
read the contents of the environment.

If a macro is already defined when make encounters a new definition for it, the new
definition replaces the old one. For example, a macro definition for name on the
command line overrides a definition for name in the makefile. You can use the –v
option to display macro assignments, as make performs them.

Macro Modifiers
make supports macro expansions of the form:
$(macro_name:modifier_list:modifier_list:...)

Possible modifiers are:

^"string″
Prefix tokens

+"string″
Suffix tokens

b File portion of all pathnames, without suffix

d Directory portion of all pathnames

f File portion of all pathnames, including suffix

l All characters mapped to lowercase

s/pat/string/
Simple pattern substitution (you can use any character to separate the
pattern from the substitution text)

suffix=string
Suffix replacement

t"separator″
Tokenization with given separator

u All characters mapped to uppercase

You can specify macro modifiers in either uppercase or lowercase. For example, the
macro assignment:
test = D1/D2/d3/a.out f.out d1/k.out

make

Chapter 2. Shell Command Descriptions 363

produces the following expansion:
$(test:d) → D1/D2/d3 . d1
$(test:b) → a f k
$(test:f) → a.out f.out k.out
${test:db} → D1/D2/d3/a f d1/k
${test:s/out/in} → D1/D2/d3/a.in f.in d1/k.in
$(test:f:t"+") → a.out+f.out+k.out
$(test:t"+") → D1/D2/d3/a.out+f.out+d1/k.out
$(test:u) → D1/D2/D3/A.OUT F.OUT D1/K.OUT
$(test:l) → d1/d2/d3/a.out f.out d1/k.out
$(test:^"/rd/") → /rd/D1/D2/d3/a.out /rd/f.out /rd/d1/k.out
$(test:+".Z") → D1/D2/d3/a.out.Z f.out.Z d1/k.out.Z

Runtime Macros
Runtime macros can take on different values for each target.

$@ The full target name. When building a normal target, this macro evaluates
to the full name of the target. When building a library, it expands to the
name of the archive library. For example, if the target is:
mylib(member)

$@ expands to:
mylib

$% The full target name. When building a normal target, this macro evaluates
to the full name of the target. When building a library, it expands to the
name of the archive member. For example, if the target is:
mylib(member)

$% expands to:
member

$& The list of all prerequisites.

$? The list of all prerequisites that are newer than the target.

$^ The list of all prerequisites taken from the list specified on the rule line of
the recipe where the $^ appears.

$< In inference rules, it evaluates to the single prerequisite that caused the
execution of the rule. In normal rules it evaluates the same as $?.

$> The name of the library if the current target is a library member.

$* The target name with no suffix ($(%:db)) or the value of the stem in a
metarule.

The constructs $$@, $$%, $$>, and $$* can appear in a prerequisite list as dynamic
prerequisites. $$@ stands for the target currently being made. For example:
fred : $$@.c
fred : fred.c

are equivalent. The construct can be modified, as in:
fred.o : $$(@:b).c

The runtime macros can be modified by the letters D and F to indicate only the
directory portion of the target name or only the file portion of the target name. (The
working directory is represented by a dot.) If define.h is the only prerequisite that is
newer than the target, the macros $?D and $?F expand to dot (·) and to define.h.

make

364 z/OS V1R4.0 UNIX System Services Command Reference

If you are building a library, $$% stands for the name of the archive member being
made. If you are building a normal target, $$% stands for the name of the target
currently being made.

$$* stands for the name of the current target being made, but with no suffix.

If you are building a library, $$> stands for the name of the archive library being
made. If you are not building a library, $$> is not valid.

Usage Note
Comments begin with the pound (#) character and extend to the end of the line.
make discards all comment text.

Makefile Contents
Inside makefiles, you can split long lines over several lines of text. To do this, put a
backslash (\) at the very end of the line. You can use this technique to extend
comments as well as recipe lines and macro definitions, for example.

If a rule or macro definition must contain a # character, use \#; otherwise, make
mistakes the # for the beginning of a comment. Also, if a macro definition must
contain a single $ character, use $$.

Filenames that contain a colon must always be enclosed in quotes, as in:
"a:target" : "a:prereq"

Rules
The general format of a rule is:
targets [attributes] ruleop [prerequisites]
[;recipe]
{<tab> recipe}

where the items enclosed in square brackets are optional. (This is just a
documentation convention; you do not actually enter the square brackets.) The
parts of the rule are described as follows:

targets
One or more target names.

attributes
A list, possibly empty, of attributes to apply to the list of targets.

ruleop An operator token, usually a colon (:), that separates the target names from
the prerequisite names and may also affect the processing of the specified
targets.

prerequisites
A list of zero or more names on which the specified targets depend.

recipe A command to execute to update targets. May follow on the same line as
the prerequisites, separated from them by a semicolon. If such a recipe is
present, make takes it as the first in the list of recipe lines defining how to
make the named targets. Additional recipe lines may follow the first line of
the rule. Each subsequent recipe line must begin with a tab character.

The possible rule operators are listed as follows:

make

Chapter 2. Shell Command Descriptions 365

targets : prereqs
Is a simple rule definition. For explicit targets, at most one simple rule may
have a recipe, in contrast with the :: rule operator, whose description
follows.

targets :! prereqs
Executes the recipe for the associated targets once for each recently
changed prerequisite. In simple rules, the recipe is executed only once, for
all recently changed prerequisites at the same time. The $< macro expands
to the current recently changed prerequisites if it appears in rules with this
rule operator.

targets :^ prereqs
Inserts the specified prerequisites before any other prerequisites already
associated with the specified targets.

targets :– prereqs
Clears the previous list of prerequisites before adding the new
prerequisites.

targets :: prereqs
If no prerequisites are specified, the targets are always remade. Otherwise
it is used for multiple rules applying to the same targets. Each rule can
specify a different set of prerequisites with a different recipe for updating the
target. Each rule is treated independently; the target is remade for each rule
with recently changed prerequisites, using the corresponding recipe.

targets :| prereqs
Can only be used in metarules. It tells make to treat each metadependency
as an independent rule. For example:
%$0 :| archive/%.c rcs/%.c /srcarc/RCS/%period.c
recipe...

is equivalent to
%$0 : archive/$.c

recipe:
%$0 : rcs/%.c

recipe:
%$0 : /srcarc/rcs/%.c

recipe:

Circular Dependencies
There are two types of circular dependencies: within-rule and between-rule.

A within-rule circular dependency occurs when the target’s name is included in the
list of prerequisites for that target. For example,
c.o : a.o b.o c.o

is a within-rule circular dependency. make detects a within-rule circular dependency
when it is parsing the makefile to build the dependency tree.

A between-rule circular dependency occurs when you have two targets, each of
which includes the other’s name in its prerequisite list. For example,
a.o : b:o
b:o : a.o

make

366 z/OS V1R4.0 UNIX System Services Command Reference

is a between-rules circular dependency. make detects a between-rule circular
dependency when it is processing the dependency tree built during the parse
phase.

Normally make only detects circular dependencies for those targets actually being
built. When a circular dependency is encountered, make issues a warning
message, removes the offending prerequisite from the list, and continues parsing
the makefile. You can use the .CYCLECHECK special target to alter. make’s treatment
of circular dependencies. See also “Special Target Directives” on page 372, which
describes special targets.)

Recipes
You can use a target that has prerequisites but no recipes to add the given
prerequisites to that target’s list of prerequisites.

You can preface any recipe line with a command prefix immediately after the tab
character –, @, + or all three). The method of entering tab characters using an ISPF
editor is discussed in z/OS UNIX System Services User’s Guide.

– indicates that make is to ignore nonzero exit values when it runs this recipe
line.
@ indicates that make is not to display the recipe line before running it.
+ tells make to always run this line, even when –n, –p, or –t is specified.

Group recipes begin with [in the first non-white-space position of a line, and end
with] in the first non-white-space position of a line. Recipe lines in a group recipe
need not have a leading tab. make executes a group recipe by feeding it as a
single unit to a shell. If you immediately follow the [at the beginning of a group
recipe with one of –, @ or +, they apply to the entire group in the same way that they
apply to single recipe lines.

Inference Rules
With inference rules you can specify general rules for building files rather than
creating a specific rule for each target.

make provides two forms of inference rules: suffix rules and metarules. It includes
suffix rules to ensure compatibility with older makefiles. Metarules, however, provide
a more general mechanism for specifying make’s default behavior. They provide a
superset of the functionality of suffix rules.

make searches all metarules before using suffix rules.

make uses the inference rules to infer how it can bring a target up to date. A list of
inference rules defines the commands to be run. The default startup.mk file
contains a set of inference rules for the most common targets. You can specify
additional rules in the makefile.

When make finds no explicit target rule to update a target, it checks the inference
rules. If make finds an applicable inference rule with an out-of-date prerequisite, it
runs on that rule’s recipe. See “Special Target Directives” on page 372, which
describes the .DEFAULT special target).

Metarules
Metarules have one target with a single percent symbol that matches an arbitrary
string called the stem; The % in a dependency stands for the stem.

make

Chapter 2. Shell Command Descriptions 367

The inference rule to update a target matching pattern p1%s1, where p1 and s1 are
prefix and suffix strings of the target, having a prerequisite p2%s2, where % is the
stem from the target, is specified as a rule:
p1%s1 : p2%s2 ; recipe....

Either the prefix or suffix string may be empty.

Transitive Closure
Metarules provide a mechanism that allows several metarules to chain together to
eventually create the target.

This is called transitive closure. For example, if you have metarules:
%.o : %.c

... rule body....

and:
%.c : %.y

... rule body ...

c When you specify:
make file.o

make uses the first metarule to look for file.c. If it can’t find an explicit rule to build
file.c, it again looks through the metarules and finds the rule that tells it to look for
file.y.

make allows each metarule to be applied only once when performing transitive
closure to avoid a situation where it loops forever. (For example, if you have the
rule:
% : %.c

... rule body ...

the command:
make file

causes make to look for file.c. If the metarules were not restricted and file.c did not
exist, then make would look for file.c.c, and then file.c.c.c, and so on. Because
each metarule is applied only once, this can’t happen.)

Transitive closure is computed once for each metarule head the first time the
pattern matches a target. When transitive closure is computed, all the computed
rules are added to the rule set for that metarule head. For example, if you have the
rules:
% : %.o

recipe 1...
%.o : %c

recipe 2...

and you are making file, this target matches successfully against % causing
transitive closure to be computed for %. As a result of this computation, a new rule
is created:
% : %.c

recipe 2...
recipe from .REMOVE target for %.o, if not .PRECIOUS
recipe 1...

make

368 z/OS V1R4.0 UNIX System Services Command Reference

which is executed if file.o doesn’t exist. When the computation for the rule head
has been done, it is marked as transitive closure computed. Since all possible new
rules have been added to the rule set the first time the computation is done, it is not
necessary to do it again: Nothing new is added. The term transitive closure is
adapted from the mathematical set theory.

Note: In set theory, if you have a set composed of pairs (a,b) and (b,c), then the
set would be transitively closed if (a,c) is also in the set.

The best way to understand how this works is to experiment with little make files
with the –v flag specified. This shows you in detail what rules are being searched,
when transitive closure is calculated, and what rules are added.

Order of Rule Generation
Since transitive closure allows make to generate new rules, it is important to
understand the order in which this is done:

1. make searches for explicit rules in the order in which they appear, so explicit
rules always take precedence.

2. make reads metarules in the order in which they appear in the makefile. The
first rule that appears in the makefile is the first one checked.

3. New explicit metarules (as distinct from metarules generated by transitive
closure) replace old ones. In other words, if your makefile contains an explicit
rule like this one, it replaces the default rule in startup.mk:
%$O : %.c

rule1

If you use the –v option, make prints a warning when it replaces a metarule.

4. When transitive closure is calculated, the new metarules generated are added
to the end of the list of possible metarules. Thus, make always finds the explicit
rules first, so they take precedence over generated rules. You can use the –v
option to see what rules make generates and the order in which they appear.

5. make performs two passes through the rules. On the first pass it tries to find a
match with an explicit rule in the makefile; if this does not succeed, make
performs a second pass to find a match with an existing file.

Suffix Rules
make treats targets that begin with a period and contain no slashes or percent
signs as suffix rules. If there is only one period in the target, it is a single suffix
inference rule. Targets with two periods are double-suffix inference rules. Suffix
rules do not have prerequisites but do have commands associated with them.

When make finds no explicit rule to update a target, it checks the suffix of the
target (.s1) to be built against the suffix rules. make examines a prerequisite based
on the basename of the target with the second suffix (.s2) appended, and if the
target is out of date with respect to this prerequisite, make runs the recipe for that
inference rule.

Metarules take precedence over suffix rules.

If the target to be built does not contain a suffix and there is no rule for the target,
make checks the single suffix inference rules. The single suffix inference rules
define how to build a target if make finds a rule with one of the single suffixes
appended. A rule with one suffix .s2 defines how to build target from target.s2.
make treats the other suffix (.s1) as null.

make

Chapter 2. Shell Command Descriptions 369

For a suffix rule to work, the component suffixes must appear in the prerequisite list
of the .SUFFIXES special target. You can turn off suffix rules by placing the following
in your makefile:
.SUFFIXES:

This clears the prerequisites of the .SUFFIXES target, which prevents suffix rules
from being enacted. The order that the suffixes appear in the .SUFFIXES rule
determines the order in which make checks the suffix rules.

The search algorithm used for suffix rules depends on whether the .POSIX special
target is specified. When .POSIX is specified, the following steps describe the
search algorithm for suffix rules:

1. Extract the suffix from the target. If that target does not have a suffix, go to step
6.

2. Is it in the .SUFFIXES list? If not, quit the search.

3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target
suffix.

4. If there is a match, extract the base name of the file, add on the second suffix,
and determine if the resulting file exists. If the resulting file does not exist, keep
searching the double suffix rules.

If the resulting file does exist, use the recipe for this rule.

5. If a successful match is not made, the inference has failed.

6. If the target did not have a suffix, check the single suffix rules in the order that
the suffixes are specified in the .SUFFIXES target.

7. For each single suffix rule, add the suffix to the target name and determine if
the resulting filename exists.

8. If the filename exists, execute the recipe associated with that suffix rule. If the
filename doesn’t exist, continue trying the rest of the single suffix rules. If a
successful match is not made, the inference has failed.

When the .POSIX special target is not specified, make handles suffix rules in the
same manner as traditional implementations of make. The following steps describe
the search algorithm for suffix rules in this situation.

1. Extract the suffix from the target. If that target does not have a suffix, go to
step 8.

2. Is it in the .SUFFIXES list? If not, then quit the search.

3. If it is in the .SUFFIXES list, look for a double suffix rule that matches the target
suffix.

4. If you find one, then extract the base name of the file, add on the second suffix
and see if the resulting file exists. If it does, go to step 7. If not, continue with
step 5.

5. Is there an inference rule for the resulting file? If yes, run the recipe associated
with that rule (which should describe how to make the file exist) and go to step
7.

6. Search for the next double-suffix rule that matches the target suffix and return
to step 4. If the double-suffix rules are exhausted, then the inference has
failed.

7. Use the recipe for the target rule.

8. If the target did not have a suffix, then check the single-suffix rules in the order
that the suffixes are specified in the .SUFFIXES target.

9. For each single-suffix rule, add the suffix to the target name and see if the
resulting filename exists.

make

370 z/OS V1R4.0 UNIX System Services Command Reference

10. If the file exists, then run the recipe associated with that suffix rule. If it doesn’t
exist, continue trying the rest of the single-suffix rules.

11. If a successful match is not made, then the inference has failed.

make also provides a special feature in the suffix rule mechanism for archive library
handling. If you specify a suffix rule of the form:
.suf.a:

recipe

the rule matches any target having the LIBRARY attribute set, regardless of what the
actual suffix was. For example, if your makefile contains the rules:
.SUFFIXES: .a .c

echo adding $< to library $@

then if mem$0 exists, then the following command:
make "mylib(mem.o)"

causes:
adding mem.o to library mylib

to be printed.

Attributes
make defines several target attributes. Attributes can be assigned to a single target,
a group of targets, or to all targets in the makefile. Attributes affect what make does
when it needs to update a target. You can associate attributes with targets by
specifying a rule of the form:
attribute_list : targets

This assigns the attributes in attribute_list to the given targets. If you do not specify
any targets, the attributes apply to every target in the makefile. You can also put
attributes inside a normal rule, as in:
targets attribute_list : prerequisites

The recognized attributes are:

.EPILOG
Insert shell epilog code when running a group recipe associated with any
target having this attribute set.

.IGNORE
Ignore an error when trying to make any target with this attribute set.

.LIBRARY
Target is a library.

.PRECIOUS
Do not remove this target under any circumstances. Any automatically
inferred prerequisite inherits this attribute.

.PROLOG
Insert shell prolog code when running a group recipe associated with any
target having this attribute set.

.SETDIR
Change the working directory to a specified directory when making
associated targets. The syntax of this attribute is .SETDIR=path, where path

make

Chapter 2. Shell Command Descriptions 371

is the pathname of desired working directory. If path contains any :
characters, the entire attribute string must be quoted, not just the
pathname.

.SILENT
Do not echo the recipe lines when making any target with this attribute set,
and do not issue any warnings. You can use any attribute with any target,
including special targets.

Special Target Directives
Special target directives are called targets because they appear in the target
position of rules; however, they are really keywords, not targets. The rules they
appear in are really directives that control the behavior of make.

The special target must be the only target in a special rule; you cannot list other
normal or special targets.

Some special targets are affected by some attributes. Any special target can be
given any attribute, but often the combination is meaningless and the attribute has
no effect.

.BRACEEXPAND
This target may have no prerequisites and no recipes associated with it. If
set, the target enables the outdated brace expansion feature used in older
versions of make. Older makes would expand a construct of the following
form, beginning with each token in the token list:
string1{token_list}string2

Older makes would append string1 to the front of each token in the list, and
string2 to the end of each token in the list. A more productive means for
achieving the same result with modern versions of make relies on macro
expansion with prefix and suffix modifiers:
$ (TOKEN_BASE:^"prefix:+"suffix")

The double quotes are required. Brace expansion is an outdated feature
available in past versions of make.

.CYCLECHECK
This special target cannot have any prerequisites or recipes associated with
it. If set, it determines how make treaters circular dependencies (see
“Circular Dependencies” on page 366).

You can specify one of five attributes with this target. If you specify more
than one attribute, an error message results. The five attributes are:

.SILENT
make remains silent about any within-rule and between-rule circular
dependencies, removes the offending dependency from the list of
prerequisites, and continues.

.WARNTARG
make issues warnings for named targets with circular
dependencies. If the name of the dependency is the same as the
named target, it is removed from the list of prerequisites and make
continues. This is the default behavior if .CYCLECHECK is not
specified or is specified with no attributes.

.WARNALL
make issues warnings for all within-rule circular dependencies

make

372 z/OS V1R4.0 UNIX System Services Command Reference

regardless of whether the target is being built or not and for all
between-rule circular dependencies for the named targets. The
offending dependency is removed from the list of prerequisites and
make continues.

.FATALTARG
make treats all circular dependencies for named targets as fatal
errors. It issues an error message and exits.

.FATALALL
make treats all within-rule circular dependencies as fatal errors
regardless of whether the target is being built or not. It also treats
all between-rule circular dependencies for named targets as fatal
errors. make issues an error message and exits.

For example, to set the circular dependency check to make’s default, use
the rule:
.CYCLECHECK .WARNTARG:

.DEFAULT
This target has no prerequisites, but it does have a recipe. If make can
apply no other rule to produce a target, it uses this rule if it has been
defined.

.ERROR make runs the recipe associated with this target whenever it detects an
error condition.

.EXPORT
All prerequisites associated with this target that correspond to macro names
are exported to the environment at the point in the makefile at which this
target appears.

.GROUPEPILOG
make adds the recipe associated with this target after any group recipe for
a target that has the .EPILOG attribute.

.GROUPPROLOG
make adds the recipe associated with this target after any group recipe for
a target that has the .PROLOG attribute.

.IMPORT
make searches in the environment for prerequisite names specified for this
target and defines them as macros with their value taken from the
environment. If the prerequisite .EVERYTHING is given, make reads in the
entire environment (see –e and –E options).

.INCLUDE
make reads one or more additional makefiles (specified in the prerequisite
list), as if their contents had been inserted at this point. If the prerequisite
list contains more than one file, make reads them in order from left to right.

make uses the following rules to search for extra makefiles:

v If a relative filename is enclosed in quotes, or is not enclosed with angle
brackets (< and >), make looks in the current directory. If the file isn’t
present, make then looks for it in each directory specified by the
.INCLUDEDIRS special target.

v If a relative name is enclosed with angle brackets (< and >), make make
only searches in directories specified by the .INCLUDEDIRS special

v If an absolute pathname is given, make looks for that file and ignores the
list associated with the .INCLUDEDIRS special target.

make

Chapter 2. Shell Command Descriptions 373

.INCLUDEDIRS
The list of prerequisites specified for this target defines the set of directories
to search when including a makefile.

.MAKEFILES
The list of prerequisites is the set of files to try to read as the user makefile.
These files are made in the order they are specified (from left to right) until
one is found to be up to date. This is the file that is used.

.NOAUTODEPEND
Disables the autodependency feature when building libraries. When this
special target is used, only library members that have been explicitly given
as dependents are considered prerequisites.

.POSIX make processes the makefile as specified in the POSIX.2 draft standard.
This target may have no prerequisite and no recipes associated with it. This
special target must appear before the first non-comment line in the
makefile. If this special target is present, the following facilities are disabled:

v All recipe lines are run by the shell, one shell per line, regardless of the
setting of SHELLMETAS.

v Metarule inferencing is disabled.

v Conditionals are disabled.

v Dynamic prerequisites are disabled.

v Group recipes are disabled.

v Disables brace expansion (set with the .BRACEEXPAND special target).

v make does not check for the string $ (MAKE) when run with the –n
options specified.

.REMOVE
make uses the recipe of this target to remove any intermediate files that it
creates if an error is encountered before the final target is created. This
.REMOVE target only deletes files that satisfy all of the following criteria:

v The file didn’t exist when make began running.

v The file is named as an intermediate target, produced by invoking a
metarule that was produced by transitive closure.

v The file is not explicitly named in the makefile.

v The generated target doesn’t have the .PRECIOUS attribute.

v The file is a prerequisite of a rule that is actually used.

.SOURCE
The prerequisite list of this target defines a set of directories to check when
trying to locate a target filename. make defaults to creating target files in
the same directory that it finds the source file.

.SOURCE.x
Same as .SOURCE, except that make searches the .SOURCE.x list first when
trying to locate a file matching a target with a name that ends in the suffix
.x.

.SUFFIXES
mk appends the prerequisite list of this target to the set of suffixes used
when trying to infer a prerequisite for making a target using suffix rules. If
you specify no prerequisites, make clears the list of suffixes, effectively
disabling suffix rules from that point on.

make

374 z/OS V1R4.0 UNIX System Services Command Reference

A name of the form library(member) indicates a member of a library. The library
portion is a target with the .LIBRARY attribute, and the member portion is a
prerequisite of the library target.

A name of the form library((entry)) indicates the library module that contains the
given entry point. Once again, the library portion is a target with the .LIBRARY
attribute. make regards the library member that contains the entry point entry as a
prerequisite of the library target.

Control Macros
make defines a number of control macros that control make’s behavior. When there
are several ways of doing the same thing, control macros are usually the best. A
control macro that has the same function as a special target or attribute also has
the same name.

Macros that are said to be defined internally are automatically created by make and
can be used with the usual $(name) construct. For example, $(PWD) can be used to
obtain the current directory name.

Recognized control macros are:

DIRSEPSTR
Contains the characters used to separate parts in a pathname and can be
set by the user. make uses the first character in this string to build
pathnames when necessary.

.EPILOG
If assigned a nonnull value, the .EPILOG attribute is given to every target.

GROUPFLAGS
Specifies option flags to pass to GROUPSHELL when make invokes it to run a
group recipe.

GROUPSHELL
Gives the pathname of the command interpreter (shell) that make calls to
process group recipes.

GROUPSUFFIX
Specifies a string for make to use as a suffix when creating group recipe
files to be run by the command interpreter.

.IGNORE
If this is assigned a nonnull value, make assigns the .IGNORE attribute to
every target.

INCDEPTH
This is the current depth of makefile inclusion. It is set internally.

MAKE This is set by the startup file and can be changed by the user. The standard
startup file defines it as:
$(MAKECMD) $(MFLAGS)

The MAKE macro is not used by make itself, but the string $(MAKE) is
recognized when using the –n option for single-line recipes.

MAKECMD
This is the name with which make was invoked.

make

Chapter 2. Shell Command Descriptions 375

MAKEDIR
This is the full pathname of the initial directory in which make began
execution.

MAKEFLAGS
The MAKEFLAGS macro contains all the options (flags) and macros specified
in the MAKEFLAGS environment variable plus all of the options and
macros specified on the command line, with the following exceptions.

v Specifying –c, –f, or –p in the environment variable results in an error

v These same options specified on the command line do not appear in the
MAKEFLAGS macro.

Options in the MAKEFLAGS environment variable may have optional
leading dashes and spaces separating the options. These are stripped out
when the MAKEFLAGS macro is constructed.

Note: make always reads the MAKEFLAGS environment variable before
reading the makefile. The –E and –e options do not affect this.

MAKESTARTUP
This has the default value:
/etc/startup.mk

To change this value, you can set the MAKESTARTUP environment
variable before running make. You can also specify a value for this control
macro on the command line if you use the –D option:
make –DMAKESTARTUP=$HOME/project/startup.mk

Since make processes command-line macros after reading the startup file,
setting this macro on the command line does not have the desired effect.

MFLAGS This is the same as MAKEFLAGS, except that it includes the leading switch
character.

NULL This is permanently defined to be the null string.

.PRECIOUS
If this is assigned a nonnull value, make assigns the .PRECIOUS attribute to
every target.

.PROLOG
If this is assigned a nonnull value, make assigns the .PROLOG attribute to
every target.

PWD This is the full pathname of the working directory in which make is
executing.

SHELL Specifies the full pathname of the command interpreter that make calls to
process single-line recipes, when necessary. make passes recipe lines to
this shell only if they contain one or more of the characters given in
SHELLMETAS; otherwise, it runs them directly. By default, the value of the
SHELL environment variable does not affect the value of this macro;
however, you can use the .IMPORT special target to assign the environment
variable’s value to this macro. You can also use the .EXPORT special target
to assign this macro’s value to the SHELL environment variable.

SHELLFLAGS
Specifies option flags to pass to the shell when invoking it to runs a
single-line recipe.

make

376 z/OS V1R4.0 UNIX System Services Command Reference

SHELLMETAS
Specifies a list of metacharacters that can appear in single recipe lines. If
make finds any metacharacter, it invokes the recipe using the shell
specified by SHELL; otherwise, it runs the recipe without the shell.

.SILENT
If this is assigned a nonnull value, make assigns the .SILENT attribute to
every target.

Making Libraries
A library is a file containing a collection of object files. To make a library, you specify
it as a target with the .LIBRARY attribute and list its prerequisites. The prerequisites
should be the object members that are to go into the library.

make tries to handle the old library construct format in a sensible way. When it
finds lib(member), it declares the lib portion as a target with the .LIBRARY attribute
and the member portion as a prerequisite of the lib target. To make the library
properly, old makefile scripts using this format must name the lib as a target and
must try to bring it up to date. The same thing happens for any target of the form
lib((entry)). These targets have an additional feature in that the entry target has the
.SYMBOL attribute set automatically.

Conditionals
You specify the conditional expression as follows:
.IF expression
... if text ...
.ELSE
... else text ...
.END

or:
.IF expression
... if text ...
.ELSIF expression2
... elsif text ...
.ELSE
... else text ...
.END

The .ELSE or .ELSIF portion is optional, and you can nest the conditionals (that is,
the text may contain another conditional). The .IF, .ELSE, .ELSIF, and .END
conditionals must start in the first column of the line. expression or expression2 can
have one of three forms:
string

is true if the given string is nonnull,
string == string

is true if the two strings are equal, and:
string != string

is true if the two strings are not equal. Typically, one or both strings contain macros,
which make expands before making comparisons. make also discards white space
at the start and end of the text portion before the comparison. This means that a
macro that expands to nothing but white space is considered a null value for the

make

Chapter 2. Shell Command Descriptions 377

purpose of the comparison. If a macro expression needs to be compared with a null
string, compare it to the value of the macro $(NULL).

The text enclosed in the conditional construct must have the same format that it
would have outside the conditional. In particular, make assumes that anything that
starts with a tab inside the conditional is a recipe line. This means that you cannot
use tabs to indent text inside the conditional (except, of course, for recipe lines,
which always begin with tabs).

Files
make uses the following file:
/etc/startup.mk

The default startup file containing default rules.

Environment Variables
make uses the following environment variables:

_MAKE_BI
When this shell variable is set to YES, sh will use the built-in make and
built-in c89 instead of the /bin/make and /bin/c89. To make sure that the
make child process inherits this shell variable, you should have it exported.
See z/OS UNIX System Services Planning for more information. “Built-in
Commands” on page 515 describes z/OS UNIX built-in commands.

MAKEFLAGS
Contains a series of make options that are used as the default options for
any make command. You can specify the options with or without leading
minus signs (−) and blanks between them. It can also include macro
definitions of the form usually found on the command line.

MAKESTARTUP
Contains the pathname of the make stamp file. By default, make uses the
file /etc/startup.mk as its startup file. To use a different file, set this
environment variable before running make.

SHELL
Contains a name of a command interpreter. To assign this value to the
SHELL control macro, use the .IMPORT special target. You can also use the
.EXPORT special target to assign the value of the SHELL macro to the
environment variable.

Localization
make uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

make

378 z/OS V1R4.0 UNIX System Services Command Reference

Exit Values
If a command in a recipe line fails (exits with a nonzero status), make returns the
exit status of that command. Because most commands use exit status values
between 0 and 10, make uses exit status values below 10 only for failures that do
not run recipe lines.

0 Successful completion

1 Returned if you specified –q and file is not up to date

2 Failure due to any of the following:
v Unknown command-line option
v Missing argument to option, such as no file name for –f.

126 Recipe command was not executable.

127 Recipe command was not found.

129–254
make was interrupted by a signal; the error code is the signal number
ORed with 128. For example, SIGINT is frequently signal 1; the return code
from make is 128|1, or 129.

255 Failure due to any of the following:
v Macro cannot be redefined
v Macro variables not assigned with :=
v Special target cannot be a prerequisite
v Too many makefiles specified
v Configuration file not found
v No makefile present
v Missing .END for .IF
v No target
v Inability to return to directory
v Too many open files
v Open failed
v File not found
v Inability to change directory
v No more memory
v Line too long
v Circular macro detected
v Unterminated pattern string
v Unterminated replacement string
v Token separator string not quoted
v Unterminated separator string
v Expansion too long
v Suffix too long
v Unmatched quote
v .IF .ELSE ... END nesting too deep
v .ELSE without .IF
v Unmatched .END
v Inference rules resulting in circular dependency
v No macro name
v Write error on temp file
v Target not found, and cannot be made
v Inability to make NAME
v <+ diversion unterminated
v <+ diversion cannot be nested
v <+ missing before +>
v Incomplete rule recipe group detected

make

Chapter 2. Shell Command Descriptions 379

v Inability to mix single and group recipe lines
v Unmatched] found
v Macro or rule definition expected but not found
v Name too long
v Inability to determine working directory
v Only one NAME attribute allowed in rule line
v Multiple targets not allowed in % rules
v Special target must appear alone
v Duplicate entry in target list
v Syntax error in % rule, missing % target
v Duplicate entry in prerequisite list
v Missing targets or attributes in rule
v Multiply defined recipe for target
v Empty recipe for special target
v Imported macro NAME not found in environment
v No .INCLUDE file(s) specified
v Include file NAME, not found
v NAME ignored on special target
v Attributes possibly ignored
v Inability to find member defining SYMBOL((NAME))
v Incorrect library format
v Inability to touch library member
v SHELL macro not defined
v Too many arguments
v Inability to export NAME
v Inability to open file
v Circular dependency detected
v Inability to stat /
v Inability to stat .
v Inability to open ..
v Read error in ..
v Metarule too long: "rule"

Limits
1. The length of a single makefile script line cannot exceed 32768 characters.

2. The length of an argument string cannot exceed 32768 characters.

3. The length of a macro name gets truncated after 256 characters.

Usage Notes
1. When the .SETDIR special target is used, make checks the file attributes of

targets and prerequisites on every pass through a rule. This can significantly
increase the number of system accesses.

2. In a doublebyte environment, any character interpreted by make can be a
doublebyte character, including those in macro definitions and targets.

3. In a doublebyte locale, if make encounters an incorrect doublebyte sequence, it
ends with an error message.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The following features of make are enhancements to POSIX.2:

v The options: –cdir, –D macro definition, –E, –u, –V, –v, and –x.

make

380 z/OS V1R4.0 UNIX System Services Command Reference

v The –n option has enhanced functionality not covered by the standard; for more
information, see the –n option and the POSIX special target for make.

v The runtime macros: $&, $^ , $>.

v The dynamic prerequisites: $$%, $$>, $$*, $$@.

v All macro expansions.

v Macro assignments of the following form:
macroname := stringassigned
macroname += stringassigned

v Brace expansion.

v Backslash continuation.

v The quoting mechanism, as in the following example:
"a:target" : "a:prerequisite"

v All rule operators except the colon (:).

v Conditionals.

v Metarules.

v All make attributes except .IGNORE, .PRECIOUS, .SILENT (referred to in POSIX.2
as special targets).

v All make special targets except .DEFAULT, .POSIX, .SUFFIXES (referred to in
POSIX.2 as special targets).

v All make macros except SHELL (referred to in POSIX.2 as control macros).

Related Information
c89, cc, c++, makedepend

S. I. Feldman, “Make—Program for Maintaining Computer Programs,”
Software—Practice and Experience 9 (no. 4, April 1979):225–65 [Bell Labs, Murray
Hill, NJ]

makedepend — Generate source dependency information

Format
makedepend [–S directory [–W m,option[,option]...]... sourcefile
[(sourcefile(s))]...
makedepend [–Sdirectory]
makedepend [–W m,a]
makedepend [–W m,c89 | –W m,cc]
makedepend [–W m,file(MakeFile) | –W m,f(MakeFile)]
makedepend [–W m,list(FileName) | –W m,lis (FileName)]
makedepend [–W m,o(ObjSuffix)]
makedepend [–W m,p(ObjPrefix)]
makedepend [–W m,s(String)]
makedepend [–W m,showinc | –W m,show]
makedepend [–W m,type(c|C(t1,t2,...)) | –W m,t(c|C(t1,t2,...))]
makedepend [–W m,V(OSVvRr) | –W m,V(zOSVvRr)]
makedepend [–W m,w(Width)]

For z/OS UNIX makedepend [c89|cc|c++options]:
makedepend [+−]
makedepend [–D name[=value]]
makedepend [–Idir1[,dir2]...]
makedepend [–0, –O (–1), –2]

make

Chapter 2. Shell Command Descriptions 381

makedepend [–Uname]
makedepend [–Wphase,option[,option]...]

Description
The makedepend tool is used to analyze source files and determine source
dependencies. makedepend calls files, which are directly or indirectly included by a
source file, ″dependencies.″ If the makedepend W m,-list option is specified, this
tool produces a listing file with the following sections:

v The list of compiler options and variables applied to all C source

v The list of compiler options and variables applied to all C++ source

v The list of makedepend options applied

v The list of include and source search paths

v Messages

v Message summary, and

v Statistics (in other words, total number of source files processed, number of
ignored sources files, and so forth).

Options
–S directory

Specifies the directory or directories where you can locate the source files.
The default location for source files is the current directory, ″./″.

–W m,a
Instructs makedepend to append the source dependencies to the end of
the makefile rather than replacing any existing ones. If –W m,a is not
specified, then makedepend will erase any source dependencies after the
marker line and write the new determined source dependencies instead. If
there are no existing makefiles, then this option is ignored.

–W m,c89 | –W m,cc
Instructs makedepend to use either the c89 or the cc compiler mode for
the c source files. The c89 mode is the default. The c89/cc mode is
overridden if the c++ [+−] option, described below, is specified.

–W m,file(MakeFile) | –W m,f(MakeFile)
Specifies the name of the makefile to which makedepend writes the
determined source dependencies. If this option is specified on the
makedepend command line, then the string value of the MakeFile is used
as the name for the makefile. Otherwise, makedepend will search in the
current directory for a file named ″makefile″. If no ″makefile″ exists, then
makedepend searches for a file named ″Makefile″. If no ″Makefile″ exists,
then makedepend creates a new file with the name ″makefile″ in the
current directory and writes the default marker string (see –W m, s(String)
below) at the beginning of the new file. If file (./) is specified, the option is
ignored silently.

–W m,list(FileName) | –W m,lis (FileName)
Instructs makedepend to generate a listing file with the specified FileName
name. The name depend.1st is the default file name if FileName is not
specified with the –W m,list option. If –W m,list(./) is specified, the default
listing filename (depend.lst) is used. If the –W m,list option is not specified,
listings are not generated.

–W m,o(ObjSuffix)
Specifies a suffix (file name extension) for the object file names in the

makedepend

382 z/OS V1R4.0 UNIX System Services Command Reference

source file dependencies. If the environment variable {_OSUFFIX} is
defined, then its value will be the default. If it is not defined, the default
suffix is o.

–W m,p(ObjPrefix)
Prefixes object file names in the source dependencies with a path name.
The default object file name prefix is an empty string.

–W m,s(String)
Specifies a new string literal to be used as a marker in the output makefile.
All source dependencies are placed after that marker. The default marker
string value is ″# DO NOT DELETE THIS LINE, makedepend depends on
it.″ If the –W m,s(String) is specified on the makedepend command line,
then the marker line and anything after it will be erased from the output
makefile, the new marker string literal will be written instead, and the newly
determined source dependencies will be written after the new marker line. If
both –W m,a and –W m,s(String) are specified on the makedepend
command line, then –W m,s(String) will be ignored if a makefile already
exists.

–W m,showinc | –W m,show
Instructs makedepend to report on the include files for each source file. The
include files are reported in the includes section of the listing file. If the –W
m,showinc option is specified, the list option is automatically turned on. If
the –W m,showinc option is not specified, the include file list will not be
reported.

–W m,type(c|C(t1,t2,...)) | –W m,t(c|C(t1,t2,...))
Instructs makedepend to treat source files with any filename type that
belong to the set {t1,t2,...} as either c source files if the c is used with the
type, or as C++ source files if the C is used. Default types are as follows:

v Any source file with a filename extension of c will be treated as a c
source file. If the –W m,type(c(t1,t2,...)) option is specified on the
makedepend command line, then any source file with a filename
extension that belongs to the set {c, t1, t2,...} will be treated as a c file.
Notice that the types {t1,t2,...} that are specified with the –W m,type
option are added to the default c filename extension type.

v Any source file with a filename extension of C, cpp, or cxx will be treated
as a C++ source file. If the –W m,type(C(t1,t2,...)) option is specified on
the makedepend command line, then any source file with a filename
extension that belongs to the set {C, CPP, cpp, CXX, cxx, t1, t2,...} is
treated as a C++ file. Notice that the types {t1,t2,...} that are specified
with the –W m,type option are added to the default {C,CPP,cpp,CXX,cxx}
filename extension types.

v If both –W m,type(c(...)) and –W m,type(C(...)) options are specified on
the makedepend command line with conflicting filename types, then
whichever option is specified last becomes the overriding value, including
the default file types. For example, when both –W m,type(c(t1,t2)) and
–W m,type(C(c,t1,t3) are specified, only files with extension t2 will be
treated as c files and files with extensions {c, C, cpp, Cpp, cxx, CXX, t1,
t3} will be treated as C++ files. When –W m,type(c(cpp,t1,t2)) and –W
m,type(C(t1,t2)) options are specified, files with extensions {c, cpp} will
be treated as c source files and files with extensions {C, CPP, cxx, CXX,
t1, t2} will be treated as C++ source files.

For C source files, if the environment variables {_CSUFFIX} and/or
{_CSUFFIX_HOST} are defined, the variable value updates the default
value. The default C source file extension is c.

makedepend

Chapter 2. Shell Command Descriptions 383

For C++ source file, if the environment variables {_CXXSUFFIX} and/or
{_CXXSUFFIX_HOST} are defined, its value updates the default value. The
default C++ source file extensions are {C, CPP, cpp, CXX, cxx}. For
example, if {_CXXSUFFIX} is defined as {cdd} and the default C++ source
file extensions are {C, CPP, cpp, CXX, cxx}, then the resulting set would be
{C, CPP, cpp, CXX, cxx, cdd}.

–W m,V(OSVvRr) | –W m,V(zOSVvRr)
Specifies the compiler version that will be used, where v and r represent
the compiler’s version and release respectively. The default version is the
current version (this is true starting with z/OS V1R2). This option is used to
set the _COMPILER_VER_ macro.

–W m,w(Width)
Sets the maximum line width of the output source dependencies lines. The
default value is 78.

The following options correspond to the z/OS UNIX c89,cc,c++ compiler options.
For more information about these options and their corresponding usage notes, see
“c89 — Compile, link-edit and assemble a z/OS C program and create an
executable file” on page 62.

+− Specifies that all source files are to be recognized as C++ source files. All
file.s, file.o, and file.a files will continue to be recognized as assembler
source, object, and archive files respectively. However, any C file.c or file.i
files will be processed as corresponding C++ file.C or file.i files, and any
other file suffix which would otherwise be unrecognized will be processed
as a file.C file.

–D name[=value]
Defines a C or C++ macro for use in compilation. If only name is provided,
a value of 1 is used for the macro it specifies. For information about macros
that c89/cc/c++ automatically define, see Usage Note 2 on page 387. Also
see Usage Note 3 on page 387.

–Idir1[,dir2]...

Note: The –I option is an uppercase i, not a lowercase L.
–I specifies the directories to be used during compilation in searching for
include files (also called header files).

Absolute pathnames specified on #include directives are searched exactly
as specified. The directories specified using the –I option or from the usual
places are not searched.

If absolute pathnames are not specified on #include directives, then the
search order is as follows:

1. Include files enclosed in double quotes (") are first searched for in the
directory of the file containing the #include directive. Include files
enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the
–I option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See
Usage Note 1 on page 387 for a description of the usual places.)

You can specify an MVS data set name as an include file search directory.
Also, MVS data set names can explicitly be specified on #include
directives. You can indicate both by specifying a leading double slash (//).

makedepend

384 z/OS V1R4.0 UNIX System Services Command Reference

For example, to include the include file DEF that is a member of the MVS
PDS ABC.HDRS, code your C or C++ source as follows:
#include <//’abc.hdrs(def)’>

MVS data set include files are handled according to z/OS C/C++ compiler
conversion rules (see Usage Note 1 on page 387).. When specifying an
#include directive with a leading double slash (in a format other than
#include<//’dsname’> and #include<//dd:ddname>), the specified name is
paired only with MVS data set names specified on the –I option. That is,
when you explicitly specify an MVS data set name, any hierarchical file
system (HFS) directory names specified on the –I option are ignored.

–0, –O (–1), –2]
Specifies the level of compiler optimization (including inlining) to be used.
The level –1 (number one) is equivalent to –O (letter capital O). The level
–2 gives the highest level of optimization. The default is –0 (level zero), no
optimization and no inlining, when not using IPA (Interprocedural Analysis).

–Uname
Undefines a C or C++ macro specified with name. This option affects only
macros defined by the –D option, including those automatically specified by
c89/cc/c++. For information about macros that c89/cc/c++ automatically
define, see Usage Note 2 on page 387. Also see Usage Note 3 on page
387.

–Wphase,option[,option]...
Specifies options to be passed to the steps associated with the compile,
assemble, or link-editing phases of c89/cc/c++. The valid phase codes are:
0 Specifies the compile phase (used for both non-IPA and IPA

compilation).
c Same as phase code 0.
I Enables IPA (Interprocedural Analysis) optimization.

Note: I is an uppercase i, not a lowercase L.

Unlike other phase codes, the IPA phase code I does not require
that any additional options be specified, but it does allow them. In
order to pass IPA suboptions, specify those suboptions using the
IPA phase code. For example, to specify that an IPA compile should
save source line number information, without writing a listing file,
specify:
c89 -W I,list file.c

To specify that an IPA link-edit should write the map file to stdout,
specify:
c89 -W I,map file.o

Note: c89/cc/c++ options other than the ones listed above will be ignored by
makedepend.

Any compiler option can be passed to makedepend through the –W option. For
further information on the compiler options, refer to the z/OS C/C++ User’s Guide.

Examples
1. makedepend file1.c file2.c

makedepend

Chapter 2. Shell Command Descriptions 385

Imagine you are compiling two files, file1.c and file2.c, and each includes the
header file header.h. The header.h file includes the files def1.h and def2.h.
When you run the command makedepend file1.c file2.c, makedepend parses
file1.c and consequently, header.h, and then def1.h and def2.h. It then decides
that the dependencies for this file are:

v file1.o: header.h def1.h def2.h

v file2.o: header.h def1.h def2.h

2. Imagine you are compiling a file, file1.c, and it includes the header file header.h.
The header.h file includes the files def1.h and def2.h. When you run the
command makedepend file1.c, makedepend parses file1.c and consequently,
header.h, and then def1.h and def2.h. It then decides that the dependencies for
this file are:
file1.o: header.h def1.h def2.h

Environment Variables
makedepend uses the following environment variables. For a full description of
these variables, see the Environment Variables section of “c89 — Compile, link-edit
and assemble a z/OS C program and create an executable file” on page 62.

{_CLASSLIB_PREFIX}
Provides a prefix for the data sets used during the compilation and
execution phases. For makedepend, the focus is the
{_CLASSLIB_PREFIX}.SCLBH.+ dataset that contains the z/OS
C/C++ Class Library include files.

{_CSUFFIX} Used by c89/cc/c++ to recognize a C source file. The default value
is c.

{_CSUFFIX_HOST}
Used by c89/cc/c++ to recognize a C source file. The default value
is C.

{_CXXSUFFIX}
Used by c++ to recognize a C++ source file. The default is C. This
variable is only supported by the c++ command.

{_CXXSUFFIX_HOST}
Used by c++ to recognize a C++ source data set. The default is
CXX. This variable is only supported by the c++ command.

{_CSYSLIB} Used for system library data set concatenation, which resolves
#include directives during compilation.

{_INCDIRS} Provides directories used by c89/cc/c++ as a default place to
search for include files during compilation (after searching
{_INCDIRS} and before searching {_CSYSLIB}).

{_INCLIBS} The directories used by c89/cc/c++ as a default place to search for
include files during compilation (after searching {_INCDIRS} and
before searching {_INCLIBS} and {_CSYSLIB}).

{_OSUFFIX} Provides a suffix by which c89/cc/c++ recognizes an object file.

Localization
makedepend uses the LC_ALL localization environment variable, which specifies
the locale to be used to override any values for locale categories specified by
LANG or certain LC_ variables.

See Appendix F for more information.

makedepend

386 z/OS V1R4.0 UNIX System Services Command Reference

Usage Notes
1. MVS data sets may be used as the usual place to resolve C and C++ #include

directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,
searching for these include files can be specified on the –I option as
//DD:SYSLIB. (See the description of environment variable {_CSYSLIB} for
information.

When include files are MVS PDS members, z/OS C/C++ uses conversion rules
to transform the include (header) file name on a #include preprocessor directive
into a member name. If the "//'dataset_prefix.+'" syntax is not used for the MVS
data set which is being searched for the include file, then this transformation
strips any directory name on the #include directive, and then takes the first 8 or
fewer characters up to the first dot (·).

If the "//'dataset_prefix.+'" syntax is used for the MVS data set which is being
searched for the include file, then this transformation uses any directory name
on the #include directive, and the characters following the first dot (·), and
substitutes the "+" of the dataset being searched with these qualifiers.

In both cases the data set name and member name are converted to uppercase
and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed into
the hierarchical file system in the default location (in accordance with the
{_INCDIRS} environment variable), then the compiler will use those files to
resolve #include directives during compilation. c89/cc/c++ by default searches
the directory /usr/include as the usual place, just before searching the data
sets just described. See the description of environment variables {_CSYSLIB},
{_INCDIRS}, and {_INCLIBS} for information on customizing the default
directories to search.

2. Feature test macros control which symbols are made visible in a source file
(typically a header file). c89/cc/c++ automatically defines the following feature
test macros along with the errno macro, according to whether or not cc was
invoked.

v Other than cc
–D "errno=(*__errno())"
–D _OPEN_DEFAULT=1

v cc
–D "errno=(*__errno())"
–D _OPEN_DEFAULT=0
–D _NO_PROTO=1

c89/cc/c++add these macro definitions only after processing the command
string. Therefore, you can override these macros by specifying –D or –U options
for them on the command string.

3. For options that have option-arguments, the meaning of multiple specifications
of the options is as follows:

–D All specifications are used. If the same name is specified on more than
one –D option, only the first definition is used.

–I All specifications are used. If the same directory is specified on more
than one –I option, the directory is searched only the first time.

–U All specifications are used. The name is not defined, regardless of the
position of this option relative to any –D option specifying the same
name.

makedepend

Chapter 2. Shell Command Descriptions 387

–W All specifications are used. All options specified for a phase are passed
to it, as if they were concatenated together in the order specified.

Exit Values
0 Successful completion

4 Warning error detected

Related Information
c89, cc, c++, make

man — Display sections of the online reference manual

Format
man [–wx] [–M path] [section] entry ...
man –k [–M path] keyword ...

Description
man displays help information about a shell command or searches for help files
having the specified keywords associated with them.

Options
–k Searches a precomputed database of syntax lines for information on

keywords.

–M path
Searches the directories indicated by path for help files. If –M is not
specified, man uses the path specified in the MANPATH environment
variable if set; otherwise man searches /usr/man/%L. The value of the
LANG environment variable is substituted for %L in this directory and in the
directories specified by MANPATH. All help files are found by searching
similarly structured file trees rooted at one or more places. See “Files” on
page 390 for a description of what files and directories man should find in
each directory that it searches.

–w Displays only the filename of the file containing the help file.

–x Displays what files man is searching to find the help file. –x also displays
any errors man encounters in extracting man pages from online book files.

section
Is a number (0–9) representing a section of the online help. When you
specify a section number, man searches only that section for entry, instead
of searching all sections. The online help available for z/OS UNIX contains
one section:

1 Commands

To find a given entry, man checks each directory in MANPATH for a file with a
specific name. For each section number requested, man searches MANPATH for
the following files in this order:

1. catn/entry.n in each directory in MANPATH

2. entry.n in /var/man/LANG (the man ″cache″)

3. mann/*.book in each directory in MANPATH

makedepend

388 z/OS V1R4.0 UNIX System Services Command Reference

4. mann/entry.n in each directory in MANPATH

If no section number is specified then man searches all sections in order from 1 to
9, then 0. The first entry found by man is the one displayed.

If output is to the terminal, then man invokes a pager command to filter and display
the manual pages. If MANPAGER is defined, it is used. If not, then if PAGER is
defined, it is used; otherwise, man defaults to using the command:
pg –e –p '(Page %d)'

Examples
To find out which utilities do comparisons, issue:
man –k compare

You can use the man command to view manual descriptions of TSO/E commands.
To do this, you must prefix all commands with tso. For example, to view a
description of the MOUNT command, you would enter:
man tsomount

You can also use the man command to view manual descriptions of commands that
support subcommands. To do this, you must prefix all subcommands with the name
of the command. For example, to view a description of the dbx alias subcommand,
you would enter:
man dbxalias

The same applies for the pdbx subcommands. For example, enter:
man pdbxcont

to display information on the cont subcommand.

To view an online manual description for the tcsh ls-F built-in command, you must
type ls-F without the dash. So, to see the man page you would issue:
man lsF

To view an online manual description for the tcsh @ (at) built-in command, you
must type at with tcsh in front of it. So, to see the man page you would issue:
man tcshat

Environment Variables
man uses the following environment variables:

MANPATH
Contains a list of paths to search for man pages.

MANPAGER, PAGER
Contains an output filtering command for use when displaying man pages
on a terminal.

TMPDIR
Identifies the directory where temporary files reside.

Localization
man uses the following localization environment variables:
v LANG
v LC_ALL

man

Chapter 2. Shell Command Descriptions 389

v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Files
man uses the following files:

/usr/man/%L/man¬0–9|/*.book
BookManager® book files containing man pages.

/var/man/%L/entry.¬0–9|/*.bookname
Cached man pages extracted from book files.

/usr/man/%L/cat¬0–9|/ * .¬0–9|
Subdirectories containing formatted help files.

/usr/man/%L/whatis
Database used by –k option.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Unknown command-line option
v Missing path after an –M option
v No information available on the desired subject
v Unable to create a child process to format man page
v Child process returned with nonzero exit status

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The elements of the environment variable MANPATH are separated by colons.

The –M option, the –x option, the –w option, the MANPAGER environment variable,
the default pager, and the ability to specify section on the command line are all
extensions to the POSIX standard.

Related Information
help, more

mesg — Allow or refuse messages

Format
mesg [y] [n]

Description
mesg determines whether other users can send messages to your terminal with
talk, write, or similar utilities.

Options
y Specifies that other people can send you messages.
n Specifies that other people cannot send you messages.

man

390 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To let other people send you messages, issue:

mesg y

2. To tell the system not to let other people send you messages, issue:
mesg n

3. To display the current setting without changing it, issue:
mesg

The terminal is determined by the first of standard input, output, or error which is
directed to a terminal.

Localization
mesg uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Receiving messages is currently allowed
1 Receiving messages is not currently allowed
2 Failure due to any of the following:

v Unknown command-line option
v Unknown argument
v An error accessing the terminal

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
talk, write

mkcatdefs — Preprocess a message source file

Format
mkcatdefs [–h] MsgFile [SourceFile ...]

Description
mkcatdefs preprocesses a message source file for input to the gencat utility.

SourceFile is a message file (usually with a .msf extension) containing symbolic
identifiers. mkcatdefs produces two outputs:

v MsgFile.h, which contains statements that equate your symbolic identifiers with
set numbers and message numbers that mkcatdefs assigns. You must include
this header file in your application in order to refer to the messages.

mesg

Chapter 2. Shell Command Descriptions 391

v Message source data, with numbers instead of symbolic identifiers, is sent to
standard output. This output is suitable as input to the gencat utility. You should
either save standard output to a file using redirection, or pipe the output of
mkcatdefs to the gencat utility.

Options
–h Suppresses the generation of a MsgFile.h file. This flag must be the first

argument to mkcatdefs

Extended Description
The format of SourceFile is defined as follows: The fields of a message source line
must begin in column 1 and are separated by a single blank character. Any other
blank characters are considered as part of the subsequent field.

$quote
See gencat.

$set symbolic_name
The symbolic_name denotes the set identifier that will be used in an
application program to reference this set of messages. This name can be
up to 255 characters long and can contain any alphanumeric character and
the underscore character, but must begin with a non-numeric character. Any
string following the set identifier is treated as a comment.

$ comment
See gencat.

Symbolic_Name message_text
The Symbolic_Name denotes a message identifier that will be used in an
application program to reference this message. This name can be up to 255
characters long and can contain any alphanumeric character and the
underscore character, but must begin with a non-numeric character. There
must be a single blank character separating the symbolic_name from the
message_text. If no quote character is defined, then any blank characters
after the separating blank character are considered part of the message
text. See gencat for more information on how to specify message_text.

Examples
To process the comp1.msf and comp2.msf message source files and put the
output into the comp.msg file, enter:
mkcatdefs comp comp1.msf comp2.msf >comp.msg

The source message file looks similar to the following:
$ This is the message source file for COMP1
$
$quote " Use double quotation marks to delimit message text
$set MSFAC1 Message set for component comp1
$
SYM_FORM "Symbolic identifiers can only contain alphanumeric \
characters or the _ (underscore character)\n"
SYM_LEN "Symbolic identifiers cannot be more than 65 characters long\n"
5 "You can mix symbolic identifiers and numbers\n"

The generated comp.h file looks similar to the following:
#ifdef _H_COMP_MSG
#include <limits.h>
#include <nl_types.h>

mkcatdefs

392 z/OS V1R4.0 UNIX System Services Command Reference

/*
Time stamp: 1994 137 19:09 UTC
*/
/* The following was generated from comp1.msf. */
/* definitions for set MSFAC1 */
/* The following was generated from comp2.msf. */
/* definitions for set MSFAC2 */
#endif

mkcatdef creates the comp.msg message catalog source file for gencat with
numbers assigned to the symbolic identifiers:
$timestamp 1994 137 19:09 UTC
$quote " Use double quotation marks to delimit message text
$delset 1
$set 1
1 "Symbolic identifiers can only contain alphanumeric \
characters or the _ (underscore character)\n"
2 "Symbolic identifiers cannot be more than 65 characters long\n"
5 "You can mix symbolic identifiers and numbers\n"

The assigned message numbers are noncontiguous because the source file
contained a specific number. mkcatdefs always assigns the previous number plus
1 to a symbolic identifier.

Note: mkcatdefs inserts a $delset command before a $set command in the output
message source file. This means you cannot add, delete, or replace single
messages in an existing catalog when piping to the gencat utility. You must
enter all messages in the set.

mkdir — Make a directory

Format
mkdir [–p] [–m mode] directory ...

Description
The mkdir command creates a new directory for each named directory argument.
The mode for a directory created by mkdir is determined by taking the initial mode
setting of 777 (a=rwx) or the value of –m if specified and applying the umask to it.

Options
–m mode

Lets you specify permissions for the directories. The mode argument can
have the same value as the mode for chmod; see chmod for more details.

You can also set the sticky bit on for directories. For more information, see
chmod. The umask value is applied to the mode value to determine the
new directory’s actual mode setting.

Note: A superuser or the file owner can use a chmod command or chmod()
function to change two options for an executable file. The options
are set in two file mode bits:

v Set-user-ID (S_ISUID) with the setuid option

v Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID,
or both, plus the saved UID, saved GID, or both, for the process

mkcatdefs

Chapter 2. Shell Command Descriptions 393

|
|
|

|

|

|
|

running the program are changed to the owning UID, GID, or both,
for the file. This change temporarily gives the process running the
program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a
file is changed or if the file is written in, the bits are turned off. In
shell scripts, these bits are ignored.

If the RACF profile named FILE.GROUPOWNER.SETGID exists in
the UNIXPRIV class, then the set-group-ID bit for a directory
determines how the group owner is initialized for new objects
created within the directory:

v If the set-gid bit is on, then the owning GID is set to that of the
directory.

v If the set-gid bit is off, then the owning GID is set to the effective
GID of the process.

–p Creates intermediate directory components that don’t already exist. For
example, if one of the directory arguments is dir/subdir/subsub and
subdir doesn’t already exist, mkdir creates it. Such intermediate directories
are created with mode bits determined in the following way: Take a default
mode setting of 777 (a=rwx), apply the process’s umask setting to it, and
then turn on the user write and user execute permissions (u+wx). The –m
mode specification on the command line is not used for computing the
mode of intermediate directories.

Localization
mkdir uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Missing mode after –m
v Incorrect mode
v Incorrect command-line option
v Missing directory name
v Inability to create the directory

Messages
Possible error messages include:

Path not found
The preceding structure (parent directory) of the named directory does not
exist.

Access denied
The requested directory already exists or is otherwise inaccessible.

mkdir

394 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

|
|
|

|
|
|
|

|
|

|
|

Cannot create directory
Some other error occurred during creation of the directory.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
rm, rmdir, umask

mkfifo — Make a FIFO special file

Format
mkfifo [–m mode] file [–p]

Description
mkfifo creates one or more FIFO special files with the given names.

Options
–m mode

Lets you specify file permissions for the files. The mode argument can have
the same value as the mode argument for chmod; see chmod for more
details.

–p Creates intermediate directory components that do not already exist. For
example, if one of the file arguments is dir/subdir/file and if subdir does
not exist already, this option creates it. Such intermediate directories are
created with mode bits determined in the following way: Take a default
mode setting 777 (a=rwx), apply the umask setting of the process to it, and
then turn on user read, write, and user execute permissions (u+rwx).

The –m mode specification on the command line is not used for computing
the mode of intermediate directories. The resulting mode settings permit the
file owner to access the new files without concern for any umask setting
that may be in place.

Localization
mkfifo uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v A missing mode after –m
v An incorrect mode:
v An incorrect command-line option
v A missing filename
v Inability to create the desired file

mkdir

Chapter 2. Shell Command Descriptions 395

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –p option is an extension of the POSIX standard.

Related Information
chmod, create, mkdir

mknod — Make a FIFO or character special file

Format
mknod pathname c major minor
mknod pathname p

Description
mknod creates a FIFO special file or a character special file with the given
pathname. It is located in the directory /usr/sbin.

Options
c Indicates character special files (for example, terminals and other devices).

Option –c can only be used by a superuser.

major minor
major gives the major device type; minor, the minor device type. You can
specify device types in decimal, hexadecimal, or octal.

mknod differentiates between octal and decimal as follows:
v Any number that starts with 0 but not 0x is octal.
v Any number that starts with 0x is hexadecimal.
v Any number that does not start with 0x or 0 is decimal.

For additional information on assigning major and minor numbers, see z/OS
UNIX System Services Planning.

p Creates a FIFO special file (that is, a named pipe).

Localization
mknod uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to create the desired file
v Incorrect major or minor number

2 Failure due to any of the following:
v Too few command-line arguments
v A missing major or minor device number

mkfifo

396 z/OS V1R4.0 UNIX System Services Command Reference

Portability
UNIX systems. Within POSIX, mknod has been superseded by mkfifo for pipes.
The POSIX family of standards has not yet designed an alternative to mknod for
special files.

Related Information
mkfifo

more — Display files on a page-by-page basis

Format
more [–ceiSsU] [–A|–u] [–n number] [–P prompt] [–p command] [–t tag] [file ...]
more [–ceiSsU] [–A|–u] [–n number] [–P prompt] [–t tag] [+command] [file ...]

Description
more displays files one page at a time. It obtains the number of lines per page from
the environment or from the –n option. If standard output (stdout) is not a terminal
device, the number of lines per page is infinite.

more displays the files specified by file ... (that is, a list of filenames) one at a time.
When more finishes displaying one file, it begins displaying the next one in the list.
If you give – as one of the filenames, more reads the standard input at that point in
the sequence.

more allows paging forwards and backwards (if possible) and searching for strings.

Options
–A Displays all characters, including unprintable ones. Usually, unprintable

characters are displayed in a format which is printable, such as octal.
However, with –A, the actual glyph (graphical character) is displayed. Also,
by using this option, ANSI escape sequences for display modes are
processed. This option cannot be used with –u.

Note: The character in the top left corner of the screen is always displayed
in normal mode.

–c Displays one page at a time starting at the top of the screen, and clears the
screen before displaying a new file. more may ignore this option if the
terminal doesn’t support such operations.

–e Exits immediately after displaying the last line of the last file. Usually, if
stdout is a terminal device, more stops after displaying the last line of the
last file and prompts for a new command. If the command that displays text
causes more to reach the end of the file again, more exits.

–i Ignores case during searches.

–n number
Specifies the number of lines per page. This overrides any values obtained
from the environment. Use this option when you need to override the
curses screen length or LINES setting to work with your terminal. This
option will give incorrect results if used while in the OMVS shell (or another
dumb terminal) and specifying number to be something other than the
current number of screen lines.

mknod

Chapter 2. Shell Command Descriptions 397

–P string
Sets the prompt that appears at end of each page of text to string. The
default prompt is [filename]. more usually displays the prompt in standout
mode.

–p command
Initially executes the more command on each file. If it executes
successfully and command is a positioning command such as a line
number or a regular expression search, more displays the resulting page;
otherwise more displays the first page of the file. If both the –t and –p
options are specified, the –t option is processed first.

+command
Initially executes the more command on each file. If it executes
successfully and command is a positioning command such as a line
number or a regular expression search, more displays the resulting page;
otherwise more displays the first page of the file. If both the –t and –p
options are specified, the –t option is processed first.

–S Displays the prompt in normal mode rather than standout (reverse video)
mode.

–s Replaces consecutive empty lines with a single empty line.

–t tag Searches for the named tag and displays the page of text containing it. See
ctags for more information.

–U Allows more to refresh the display screen for each new line.

–u Displays all backspaces as ^H.

Usually characterbackspace_(underscore) displays character as underlined
and characterbackspacecharacter

Interactive Commands
more also supports the following interactive commands.

[n]b
[n]Ctrl-B
[n]PgUp

Moves backward n lines, with a default of one page. If n is more than the
page size, more displays only the final page.

[n]d
[n]Ctrl-D

Scrolls forward n lines, with a default of one half of the page size. If you
specify n, it becomes the new default for subsequent d and u commands.

[n]f
[n]Ctrl-F
[n]PgDn

Moves forward n lines, with a default of one page. At end-of-file, more
continues with the next file in the list, or exits if the current file is the last
one in the list.

[n]G Goes to the nth line in the file. If you do not specify n, more advances to
the end of the file.

[n]g Goes to the nth line in the file, with the default being the first line of the
file.

h Displays a summary of interactive commands.

[n]j
[n]SPACE
[n]ENTER
[n]↓

Scrolls forward n lines, with a default of one line for j, ENTER and ↓, and a
default of one page for SPACE. This command displays the entire n lines
even if n is more than the page size. At end-of-file, these commands cause
more to begin displaying the next file in the list, or to exit if the current file
is the last one in the list.

[n]k
[n]↑

Scrolls backward n lines, with a default of one line. This command displays
the entire n lines even if n is more than the page size.

mletter Marks the current position with the lowercase letter. When you view a new
file, all previous marks are lost.

more

398 z/OS V1R4.0 UNIX System Services Command Reference

[n]N Repeats the previous search, but in the opposite direction. If you specify n,
more repeats the search n times.

[n]n Repeats the previous search. If you specify n, more repeats the search n
times. For example if there are eight occurrences of pattern in the file and
/pattern found the second occurrence then a follow-up command of 5n
finds and sets the current position to the 7th occurrence of pattern.

q
:q
ZZ

Exits more.

R Refreshes the screen and discards any buffered input.

r
Ctrl-L

Refreshes the screen.

[n]s Skips forward n lines (with a default of one line) and displays one page
beginning at that point. If n would cause less than one page to be
displayed, more displays the last page in the file.

[n]u
[n]Ctrl-U

Scrolls backward n lines, with a default of one half of the page size. If you
specify n, it becomes the new default for subsequent d and u commands.

v Invokes an editor to edit the current file. more uses the editor named by
the environment variable EDITOR. The default editor is vi.

'letter Returns to the position marked with letter.

'' Returns to the position from which you last issued a movement command
of greater than one page or the beginning of the file if you have issued no
such commands.
Note: '' indicates two single quotes, not one double quote.

[n]/[!]pattern Searches forward in the file for the nth line containing pattern. n defaults to
one if not specified. If pattern is the null regular expression (/) more uses
the previous pattern. If the character ! precedes pattern, more searches
for lines that do not contain pattern.

[n]?[!]pattern Searches backward in the file for the nth line containing pattern. The
search begins at the line immediately before the top line displayed. n
defaults to one if not specified. If pattern is the null regular expression (?),
more uses the previous pattern. If the character ! precedes pattern, more
searches for lines that do not contain pattern.

:e [filename]newline Stops viewing the current file and views filename instead. If you do not
specify filename, more returns to the beginning of the current file. If
filename is #, more returns to the last file viewed before the current one.

[n]:n Views the next file from the list given on the command line. If you specify
n, more views the nth next file from the list.

[n]:p Views the previous file from the list given in the command line. If you
specify n, more views the nth previous file from the list.

:t tagname Goes to tagname.

:w filename Writes the contents of the current file to the file filename.

!<shell command> Escape to shell and execute shell command.

= Displays, where possible, the name of the file currently being viewed, its
number (relative to the total number of files specified in the command line),
the current line number, the current byte number, the total bytes to display
and what percentage of the file has been displayed.

Ctrl-G Displays, where possible, the name of the file currently being viewed, its
number (relative to the total number of files specified in the command line),
the current line number, the current byte number, the total bytes to display
and what percentage of the file has been displayed.

Home Goes to the first line in the file.

End Goes to the last line in the file.

Environment Variables
more uses the following environment variables:

more

Chapter 2. Shell Command Descriptions 399

COLUMNS
Contains the maximum number of columns to display on one line.

EDITOR
Contains the name of the editor that the v command invokes.

LINES Contains the number of lines in a page. This value takes precedence over
value from TERM. However, the –n value takes precedence over the LINES
value.

MORE Contains a list of options as they would appear on the command line. This
variable takes preference over the TERM and LINES variables.

TERM Contains the name of the terminal type.

Usage Note
more is designed for raw-mode terminals. It can be used with 3270 (dumb)
terminals with certain restrictions. Line-mode terminals require a user to press Enter
to allow the keys typed to be processed. However, the Enter key has a special
meaning to more. Specifically, it causes more to scroll down a single line.
Therefore, when attempting to use more while in line-mode, each time a user
presses ″Enter″ to process any command, this causes the screen to scroll down a
single line at a time.

Localization
more uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 Failure due to any of the following:

v filename not a text file
v –n option too large
v Syntax error in regular expression
v Inability to create a file
v Inability to open input file
v Insufficient memory
v Incorrect command
v Inability to access the terminal
v Missing string after -p option

Portability
POSIX.2 User Portability Extension, UNIX systems.

The –A, –P, and –S options and the :w and ! commands are extensions of the
POSIX standard. The Home, End, PgDn, PgUp, ↓, and ↑ commands are
extensions to traditional implementations of more, available only on terminal types
which support these keys.

more

400 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
cat, vi

mount — Logically mount a file system

Format
mount [–t fstype] [–rv] [–a yes|include,sysname1,... sysnameN
|exclude,sysname1,... sysnameN |no|unmount] [–o fsoptions] [–d destsys] [–s
nosecurity|nosetuid] –f fsname pathname

mount –q [–d destsys][v] pathname

File Tag Specific Option:

mount [–c ccsid,text|notext

Description
The mount shell command, located in /usr/sbin, is used to mount a file system or
list all mounts over a file system.

Note: A mount user must have UID(0) or at least have READ access to the
SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options
–a yes|include,sysname1,...
sysnameN|exclude,sysname1,....sysnameN|no|unmount

Allows the system to automatically move logical ownership for a specified
file system as needed. -a include, sysname1,...sysnameN specifies a list
of systems in priority order where the file system can be moved to when the
owning system leaves the sysplex. -a exclude,sysname1, ... sysnameN
specifies a list of systems where the file system cannot be moved to when
the owning system leaves the sysplex. -a no disables this move function. -a
unmount specifies that this file system (and any file systems that may be
mounted on this file system) is to be unmounted when the system leaves
the sysplex. include can be abbreviated with i and exclude can be
abbreviated with e.

–d destsys
Specifies the name of the system in a shared HFS environment that will be
the logical owner of the mount. Note, if –q is specified, the mount –q
output will only list mounts that are owned by destsys.

–f fsname
Names the file system to be mounted. All file system names must be
unique. File system names are case sensitive, however,if the file system
type is HFS, fsname will be translated to upper case. Options –q and –f are
mutually exclusive, but one must be specified.

–o fsoptions
Specifies an option string to be passed to the file system type. NFS, for
example, uses this to identify the remote server and the object on that
server. The format and content are specified by the physical file system that
is to perform the logical mount. You can specify lowercase or uppercase
characters. Enclose the string in single quotes.

more

Chapter 2. Shell Command Descriptions 401

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

–q Prints a list of pathnames for the mountpoints of file systems mounted over
a another file system, including that system. Options –q and –f are mutually
exclusive, but one must be specified. If –v is not specified, only pathnames
for mountpoints are printed. Note that the output of mount –q can be used
by the unmount utility as input. See “Examples”.

–r Specifies mounting a file system read-only.

–s nosecurity|nosetuid
Specifies that a file system is unsecured. Setuid, setgid, APF and program
controlled attributes are ignored when you use nosetuid. To additionally
disable authorization checking, use nosecurity. Minimum unique
abbreviations can be used for the option arguments.

Note: When an HFS is mounted with the NOSECURITY option enabled,
any new files or directories that are created will be assigned an
owner of UID 0, no matter what UID issued the request.

–t fstype
Identifies the file system type. fstype may be entered in mixed case but will
be treated as upper case. If this option is not specified, the default is –t
HFS.

–v Verbose output. Includes additional information, if available, on output.

pathname specifies the pathname for the mountpoint.

File Tag Specific Option
–c ccsid,text|notext

Specifies the file tag that will be implicitely set for untagged files in
the mounted file system.

ccsid Identifies the coded character set identifier to be
implicitly set for the untagged file. ccsid is specified
as a decimal value from 0 to 65535. However,
when text is specified, the value must be between 0
and 65535. Other than this, the value is not
checked as being valid and the corresponding code
page is not checked as being installed.

For more information on file tagging, see z/OS
UNIX System Services Planning.

text Specifies that each untagged file is implicitly
marked as containing pure text data that can be
converted.

notext Specifies that none of the untagged files in the file
system are automatically converted during file
reading and writing.

Examples
1. The output of mount –q can be used for the input of unmount. For example:

mount -q /ict/hfsfir

can be used as input:
unmount $(mount -q /ict/hfsdir)

2. To mount an HFS file system over /u/wjs with a sync interval of 120 seconds:

mount

402 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

mount -f omvs.hfs.user.wjs -o ’SYNC(120)’ /u/wjs

3. To display a list of pathnames for all mountpoints under /u:
mount -q /u

Usage Notes
1. Systems exploiting shared HFS will have I/O to an OMVS couple data set.

Because of these I/O operations to the CDS, each mount request requires
additional system overhead. You will need to consider the affect that this will
have on your recovery time if a large number of mounts are required on any
system participating in shared HFS.

2. The –a unmount is not available to automounted file systems.

3. The –a no specification will only be accepted on z/OS V1R3 systems and later.

File System Recovery and mount
File system recovery in a shared HFS environment takes into consideration file
system specifications such as –a yes|no|unmount and whether or not the file
system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its –a yes mounted file
system is moved to another system and the file is usable. However, if a file system
is mounted read/write and the owning system fails, then all file system operations
for files in that file system will fail. This is because data integrity is lost when the file
system owner fails. All files should be closed (BPX1CLO) and reopened
(BPX1OPN) when the file system is recovered. (The BPX1CLO and BPX1OPN
callable services are discussed in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in
progress at the time the file system owner failed may need to be submitted again.
Otherwise, the file system is usable.

In some situations, even though a file system is mounted with the –a yes option,
ownership of the file system may not be immediately moved to another system.
This may occur, for example, when a physical I/O path from another system to the
volume where the file system resides is not available. As a result, the file system
becomes ″unowned″ (the system will issue message BPXF213E when this occurs).
This is true if the file system is mounted either read/write or read-only. The file
system still exists in the file system hierarchy so that any dependent file systems
that are owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is
established. The shared HFS support will continue to attempt recovery of –a yes
mounted file systems on all systems in the sysplex that are enabled for shared
HFS. Should a subsequent recovery attempt succeed, the file system transitions
from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)
those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted with the –a no option will become unowned when
the file system owner exits the sysplex. The file system will remain unowned until
the original owning system restarts or until the unowned file system is unmounted.
Note that since the file system still exists in the file system hierarchy, the file system
mount point is still in use.

mount

Chapter 2. Shell Command Descriptions 403

An unowned file system is a mounted file system that does not have an owner. The
file system still exists in the file system hierarchy. As such, you can recover or
unmount an unowned file system.

File systems associated with a ’never move’ PFS will be unmounted during dead
system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,
as well as any file systems mounted on it, when the owning system leaves the
sysplex.

As stated in “Usage Notes” on page 403, –a unmount is not available to
automounted file systems. However, during dead system recovery processing for an
automounted file system (whose owner is the dead system), the file system will be
unmounted if it is not being referenced by any other system in the sysplex.

For more information on mounts and the AUTOMOVE and NOAUTOMOVE
parameters, see “MOUNT — Logically mount a file system” on page 751.

Exit Values
0 Successful completion

Related Information
chmount, unmount

mv — Rename or move a file or directory

Format
mv [–fiMPUv] [–F format|B|T|X] [–P params]file1 file2
mv [–ACfiMUv] [–F format|B|T|X] [–S suffix] file ... directory
mv –Rr [–fi] directory1 directory2

Automatic Conversion and File Tag Specific Options:

mv [–Z] [–O u | c=codeset]

Description
mv renames files or moves them to a different directory. If you specify multiple files,
the target (that is, the last pathname on the command line) must be a directory. mv
moves the files into that directory and gives them names that match the final
components of the source pathnames. When you specify a single source file and
the target is not a directory, mv moves the source to the new name, by a simple
rename if possible.

You can also use mv to move files to and from MVS data sets. If you specify more
than one file to be moved, the target (last pathname on command line) must be
either a directory or a partitioned data set. If the target is an MVS partitioned data
set, the source cannot be a UNIX directory.

mv does not support the moving to or from GDGs. To use those MVS data sets,
user must specify the real data set name.

When moving records, the string ″ \n″ is moved the same way as the string ″\n″:
both are read back as ″\n″, where ″\n″ indicates that z/OS C++ will write a record
containing a single blank to the file (the default behavior of z/OS C/C++). All other

mount

404 z/OS V1R4.0 UNIX System Services Command Reference

|
|

blanks in your output are read back as blanks, and any empty (zero-length) records
are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN
is set to Y before calling cp, an empty record is treated as a single newline and is
not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to
the file as an empty record, and a single blank will be represented by ″ \n″.

A file can be moved by any user who has write permission to the directory
containing the file, unless that directory has its sticky bit turned on. If the file is in a
directory whose sticky bit is turned on, only the file owner or a superuser can move
the file.

You can move:
v One file to another file in the working directory
v One file to a new file on another directory
v A set of directories and files to another place in your file system
v A UNIX file to an MVS data set
v An MVS data set to a file system
v An MVS data set to an MVS data set

Options
–A Specifies that all suffixes (from the first period till the end of the target) be

truncated. –A has precedence over –M and –C options. –S will be turned
off if –A is the last option specified.

–B Specifies that the data to be moved contains binary data. When you specify
–B, mv operates without any consideration for <newline> characters or
special characteristics of DBCS data (this type of behavior is typical when
moving across a UNIX system). –B is mutually exclusive with –F, –X, and
–T, i.e., you will get an error if you specify more than one of these options.

–C Specifies truncating the filename(s) to 8 characters to meet the restriction in
the MVS data set member.

–F format
Specifies if a file is binary or text and for text files, specifies the end-of-line
delimeter. Also sets the file format to format only if the source is an MVS
data set and the target is a UNIX file. Only cp sets the file format for UNIX
to UNIX operations. For text files, when moving from UNIX to MVS, the
end-of-line delimeter will be stripped. When moving from MVS to UNIX, the
end-of-line delimeter will be added (Code page IBM-1047 will be used to
check for end-of-line delimeters).

–F is mutually exclusive with –B, –X, –p, and –T. If you specify one of
these options with –F, you will get an error. If –F is specified more than
once, the last –F specified will be used.

For format you can specify:
not not specified
bin binary data

Or the following text data delimeters:
nl newline
cr carriage return
lf line feed
crlf carriage return followed by line feed
lfcr line feed followed by carriage return
crnl carriage return followed by new line

mv

Chapter 2. Shell Command Descriptions 405

–f (UNIX to UNIX only)
Does not ask if you want to overwrite an existing destination without write
permission; it automatically behaves as if you answered yes. If you specify
both –f and –i, mv uses the option that appears last on the command line.

–i When moving to a UNIX target, always prompts before overwriting an
existing file, but does not overwrite the file if you do not have permission. If
you specify both –f and –i, mv uses the option that appears last on the
command line.

–M Specifies that some characters of the filename are translated when moving
between a UNIX file and a data set member. Characters are translated as
follows:

v _ (underscore) in UNIX is translated to @ in MVS DS members and vice
versa.

v . (period) in UNIX is translated to # in MVS DS members and vice versa.

v – (dash) in UNIX is translated to $ in MVS DS members and vice versa.

–P params
Specifies the parameters needed to create a sequential data set if one does
not already exist. You can specify the RECFM, LRECL, BLKSIZE, and
SPACE in the format CRTL fopen() function uses. However, LRECL and
BLKSIZE can be used for variable record format only.

SPACE=(units,(primary,secondary) where the following values are
supported for units:
v any positive integer indicating BLKSIZE
v CYL (mixed case)
v TRK (mixed case)

For example:
SPACE=(500,(100,500)) units, primary, secondary
SPACE=(500,100) units and primary only

Note: The CRTLfopen() arguments: LRECL specifies the length, in bytes,
for fixed-length records and the maximum length for variable-length
records. BLKSIZE specifies the maximum length, in bytes, of a
physical block of records. RECFM refers to the record format of a
data set and SPACE indicates the space attributes for MVS data
sets.

–R (UNIX to UNIX only)
Moves a directory and all its contents (files, subdirectories, files in
subdirectories, and so on). For example:
mv –R dir1 dir2

moves the entire contents of dir1 to dir2/dir1. mv creates any directories
that it needs.

–r (UNIX to UNIX only)
Is identical to –R.

–S d=suffix|a=suffix

v d=suffix

Removes the specifed suffix from a file.

v a=suffix

Appends the specified suffix to a file.

mv

406 z/OS V1R4.0 UNIX System Services Command Reference

–S has precedence over –M and –C. It also turns off the –A option (if –S is
the last specified option).

–T Specifies that the data to be moved contains text data. See “Usage Notes”
on page 411 for details on how to treat text data. This option looks for
IBM-1047 end-of-line delimeters, and is mutually exclusive with –F, –X, and
–B, i.e., you will get an error if you specify more than one of these options.

Note: –T is ignored when moving across UNIX file systems.

–U Keeps filenames in uppercase when moving from MVS data set members
to UNIX files. The default is to make filenames lowercase.

–v Verbose

–X Specifies that the data to be moved is an executable. Cannot be used in
conjunction with –F, –X, or –B.

-Z Specifies that error messages are not to be displayed when setting ACLs
on the target. The return code will be zero. mv will try to preserve the
ACLs, if possible. The ACLs are not preserved if a file system does not
support ACLs, or if you are moving files to MVS

Note: If you do not specify –F|B|T or X, mv will first check the format of the MVS
data set indicated and then try to determine the type of file.

Automatic Conversion and File Tag Specific Options
–Z Supresses failure when setting file tag on default or empty

untagged files.

–O u | c=codeset
Allow automatic conversion on source and target files.

–O u If the target exists and is not empty or already
tagged, mv will not change the target’s tag in order
for the target to be a candidate for automatic
conversion.

For new targets and existing untagged empty files
this option does not take effect and mv will behave
the same as the default. For a description of the
default behavior, see “File Tag Information for mv”
on page 408.

When using mv to move from a UNIX file to a MVS
dataset, if the source is a tagged text file, then it
may be a candidate for automatic conversion.

When using mv to move executables from or to
MVS, automatic conversion is disabled for both
source and target.

–O c=codeset This option on mv acts as follows:

Table 14. –O c=codeset Option and mv

UNIX to UNIX MVS to UNIX UNIX to MVS

mv

Chapter 2. Shell Command Descriptions 407

Table 14. –O c=codeset Option and mv (continued)

Tags the target file as text
and tags it with the specified
codeset so that the codeset
can be used for automatic
conversion.

Tags files with the specified
codeset; tags text files as
text; tags binary and
executable files as binary;
only tagged text files are
candidates for automatic
conversion.

This option does not apply
and will not take effect.

mv will fail if it cannot set the tag to text or codeset.
This prevents data corruption of text files.

Attention: If automatic conversion is not set
properly or the source is not tagged properly, the
target may end up with a tag codeset which does
not match the file content.

File Tag Information for mv
The default behavior is as follows:

UNIX to UNIX Automatic conversion is disabled and the target is tagged the same
as the source.

MVS to UNIX Automatic conversion is disabled for the target and the target is
untagged.

UNIX to MVS Automatic conversion is disabled for the source.

Limits & Requirements
General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).
For example, to specify the fully qualified data set names ’turbo.gammalib’ and
’turbo.gammalib(pgm1)’, you write:
"//’turbo.gammalib’"
"//’turbo.gammalib(pgm1)’"

The same goes for data set names that are not fully qualified:
//turbo

2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid
parsing by the shell, the name should be quoted or minimally, the parenthesis
should be escaped. For example, to specify ’turbo(pgm1)’, you can use quotes:
"//turbo(pgm1)"

or escape the parenthesis:
//turbo\(pgm1\)

As indicated above, a fully qualified name must be single-quoted (as is done
within TSO). To prevent the single quotes from being interpreted by the shell,
they must be escaped or the name must be placed within regular quotation
marks. See the ’turbo.gammalib’ examples above.

3. If you specify a UNIX file as source and the MVS data set (target) does not
exist, a sequential data set will be created. If the partitioned data set exists, the
UNIX file will be moved to the partitioned data set member.

4. If source is an MVS data set and target is a UNIX directory, the UNIX directory
must exist.

mv

408 z/OS V1R4.0 UNIX System Services Command Reference

5. You cannot have a UNIX directory, partitioned data set, or sequential data set
as source if the target is a partitioned data set.

6. To move all members from a partitioned data set, you may specify the
partitioned data set as source and a UNIX directory as target.

MVS data set naming limitations

v Data set names may only contain uppercase alphabetic characters (A-Z).
Lowercase characters will be converted to uppercase during any moves to MVS
data sets.

v Data set names can contain numeric characters 0–9 and special characters @,
#, and $.

v Data set names cannot begin with a numeric character.

v A data set member name cannot be more than 8 characters. If a filename is
longer than 8 characters or uses characters that are not allowed in an MVS data
set name, the file is not moved. You may use the –C option to truncate names to
8 characters.

Limitations: UNIX to MVS data set

1. If you specify a sequential MVS data set that is in undefined record format, the
file is moved as binary.

2. If you specify a PDSE that is in undefined record format, the first file
successfully moved determines in what format files will be moved. Note that
PDSE does not allow mixture. So if the first successfully moved file is an
executable, the PDSE will have program objects only and all other files will fail.
On the other hand, if the first file is data, then all files are moved as binary.

3. If you specify a PDS that is in undefined record format, UNIX executables are
saved as PDS load modules. All other files are moved as binary.

4. If you specify an MVS data set that is either in variable length or fixed record
length and you have not set the file format, text files are moved as text, binaries
as binary, and executables as binary. (IBM-1047 end-of-line delimeters are
detected in the data)

5. If you set the file format, the set value is used to determine if data is binary or
text.

Limitations: MVS data set to UNIX

1. If an HFS file does not exist, one is created using 666 mode value:
666 mode value: owner(rw-) group(rw-) other(rw-)

whether data is binary or text. If the data to be moved is a shell script or
executable, an HFS file is created using 777 mode value:
777 mode value: owner(rwx) group(rwx) other(rwx)

2. If an HFS exists and the file format is set, mv moves the file as that format.
Otherwise,

v load modules (PDS) are stored as UNIX executables and program objects
(PDSE) are moved since they are the same as executables;

v data within data sets of undefined record format are moved as binary if the
data is not a program object or load module;

v and data found within data sets of fixed length or variable record length are
moved as text. (IBM-1047 end-of-line delimeters are detected in the data)

Limitations: MVS to MVS

1. Options –A, –C, –f, and –S are ignored.

mv

Chapter 2. Shell Command Descriptions 409

2. If target and source are in undefined record format (and neither is a sequential
data set), mv will attempt to move the data as a load module. If that fails, then
mv will move the data as binary.

3. If target and source are in undefined record format and either is a sequential
data set, mv moves the data as binary.

4. If the source has a fixed or variable record length and the target is in undefined
record format, mv moves the data as binary.

5. If the source is in undefined record format and the target has a fixed or variable
record length, mv moves the data as binary.

6. If both source and target are in fixed or variable record length, mv moves the
data as text.

Limitations: Moving executables into a PDS

1. A PDS may not store load modules that incorporate program management
features.

2. c89, by default, produces objects using the highest level of program
management.

3. If you plan on moving a load module to a PDS, you may use a pre-linker which
produces output compatible with linkage editor. Linkage editor generated output
can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options
with mv.

Table 15. mv Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed

UNIX File/UNIX File Ffi ABCMPSTUX

UNIX File/Sequential Data
Set

BFiPT ACfMSU X

UNIX File/PDS or PDSE
Member

BFiTX ACfMPSU

Sequential Data Set/UNIX
File

BFfiTU ACMPS X

Sequential Data
Set/Sequential Data Set

BFiPT ACfMSU X

Sequential Data Set/PDS
or PDSE Member

BFiT ACfMPSU X

PDS or PDSE
Member/UNIX File

BFfiTUX ACMPS

PDS or PDSE
Member/Sequential Data
Set

BFiPT ACfMSU X

PDS or PDSE
Member/PDS or PDSE
Member

BFiTX ACfMPSU

UNIX File/UNIX Directory Fi ABCFMPSTUX

PDSE or PDSE
Member/UNIX Directory

BFfiMSTUX ACP

UNIX File/Partitioned Data
Set

ABCFiMSTX fPU

mv

410 z/OS V1R4.0 UNIX System Services Command Reference

Table 15. mv Format: File to File and File ... (multiple files) to Directory (continued)

Source/Target Options Allowed Options Ignored Options Failed

PDS or PDSE
Member/PartitionedData
Set

BFiTX ACfMPSU

UNIX Directory/UNIX
Directory

fi ABCFMPSTUX

Partitioned Data Set/UNIX
Directory

ABCFfiMSTUX P

The tables that follow indicate the kind of moves allowed using mv.

Table 16. mv Format: File to File

Source Target Allowed

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

Yes

UNIX Directory (dir) UNIX Directory (dir2 exists) YES (NOTE: Results will be
found in dir2/dir1/ ..).

UNIX Directory (dir) UNIX Directory (dir2 does not
exist)

YES (NOTE: Results will be
found in dir2/...).

Partitioned Data Set UNIX Directory (dir) NOTE:
results in each member of
data set are moved to dir.

Yes

UNIX Directory Partitioned Data Set No

Partitioned Data Set Partitioned Data Set No

UNIX File, UNIX Directory, or
Partitioned Data Set Member

UNIX Directory Yes

Partitioned Data Set Member Partitioned Data Set (must
exist)

Yes

Table 17. mv Format: File... (multiple files) to Directory

Source Target Allowed

Any combination of UNIX File
and/or Partitioned Data Set
Member

UNIX Directory or Partitioned
Data Set

Yes

Any combination of UNIX
Directory, Partitioned Data
Set, Sequential Data Set

Partitioned Data Set No

Sequential Data Set UNIX Directory No

Any combination of UNIX
Directory, UNIX File,
Partitioned Data Set,
Partitioned Data Set Member

UNIX Directory Yes

Usage Notes
UNIX to MVS

1. To move from UNIX to a partitioned data set, you must allocate the data set
before doing the mv.

mv

Chapter 2. Shell Command Descriptions 411

2. If an MVS data set does not exist, mv will allocate a new sequential data set
of variable record format.

3. For text files, all <newline> characters are stripped during the move. Each line
in the file ending with a <newline> character is moved into a record of the
MVS data set. If text file format is specified or already exists for the source file,
that file format will be used for end-of-line delimeter instead of <newline>. Note
that mv looks for IBM-1047 end-of-line delimeters in data.

You cannot move a text file to an MVS data set that has an undefined record
format:

v For an MVS data set in fixed record format, any line moved longer than the
record size will cause mv to fail with a displayed error message and error
code. If the line is shorter than the record size, the record is padded with
blanks.

v For an MVS data set in variable record format: Any line moved longer than
the largest record size will cause mv to fail with a displayed error message
and error code. Record length is set to the length of the line.

4. For binary files, all moved data is preserved:

v For an MVS data set in fixed record format, data is cut into chunks of size
equal to the record length. Each chunk is put into one record. The last
record is padded with blanks.

v For an MVS data set in variable record format, data is cut into chunks of
size equal to the largest record length. Each chunk is put into one record.
The length of the last record is equal to length of the data left.

v For an MVS data set in undefined record format, data is cut into chunks of
size equal to the block size. Each chunk is put into one record. The length
of the last record is equal to the length of the data left.

5. For load modules, the partitioned data set specified must be in undefined
record format otherwise the executable will not be moved.

6. If more than one filename is the same, the file is overwritten on each
subsequent move.

7. If a UNIX filename contains characters that are not allowed in an MVS data
set, it will not be moved. If the UNIX filename has more than 8 characters, it
can not be moved to an MVS data set member. (See the –ACMS options for
converting filenames)

8. You are not allowed to move files into data sets with spanned records.

9. PDSE cannot have a mixture of program objects and data members. PDS
allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be
moved to an MVS data set.

11. If a file is a symbolic link, mv will move the resolved file, not the link itself.

12. UNIX file attributes are lost when moving to MVS. If you wish to preserve file
attributes, you should use the pax utility.

MVS to UNIX

1. If the specified target HFS file exists, the new data overwrites the existing data.

2. If the specified HFS file does not exist, it will be created using a 666 mode
value whether the data is binary or text (this is subject to umask). If the data to
be moved is a shell script or executable, the HFS file will be created with a 777
mode value (also subject to umask).

3. When you move MVS data sets to UNIX text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the

mv

412 z/OS V1R4.0 UNIX System Services Command Reference

<newline> character is appended after the trailing blanks. If the file format
option is specified or the target file has the file format set, that file format is
used as the end-of-line delimeter instead of <newline>.

4. When you move MVS data sets to UNIX binary files, the <newline> character is
not appended to the record.

5. You cannot use mv to move data sets with spanned record lengths.

Examples
1. To specify –P params for a non-existing sequential target:

mv -P "RECFM=U,space=(500,100)"file "//’turbo.gammalib’"

2. To move file f1 to a fully qualified sequential data set ’turbo.gammalib’ and
treat it as a binary:
mv -F bin f1 "//’turbo.gammalib’"

3. To move all members from a fully qualified PDS ’turbo.gammalib’ to an existing
UNIX directory dir:
mv "//turbo.gammalib’" dir

4. To drop .c suffixes before moving all files in UNIX directory dir to an existing
PDS ’turbo.gammalib’:
mv -S d=.c dir/* "//’turbo.gammalib’"

Environment Variable
mv uses the following environment variable when moving records to or from MVS
data sets:

_EDC_ZERO_RECLEN
If set to Y before calling mv, an empty record is treated as a single newline
and is not ignored. Also, a single newline is written to the file as an empty
record, and a single blank will be represented by ” \n”. If you do not set this
environment variable when moving records, then the string ” \n” is moved
the same way as the string ”\n”: both are read and written as ”\n”, where
”\n” indicates that z/OS C/C++ will write a record containing a single blank
to the file (the default behavior of z/OS C/C++). All other blanks in the
output are read back as blanks, and any empty (zero-length) records are
ignored on input.

Localization
mv uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v The argument had a trailing / but was not a directory
v Inability to find file

mv

Chapter 2. Shell Command Descriptions 413

v Inability to open input file for reading
v Inability to create or open output file for output
v Read error on an input file
v Write error on an output file
v Input and output files identical
v Inability to unlink input file
v Inability to rename input file
v Irrecoverable error when using the –r option, such as:

– Inability to access a file
– Inability to read a directory
– Inability to remove a directory
– Inability to create a directory
– A target that is not a directory
– Source and destination directories identical

2 Failure due to any of the following:
v Incorrect command-line option
v Too few arguments on the command line
v A target that should be a directory but isn’t
v No space left on target device
v Out of memory to hold the data to be moved
v Inability to create a directory to hold a target file

Messages
Possible error messages include:

cannot allocate target string
mv has no space to hold the name of the target file. Try to free some
memory to give mv more space.

filename?
You are attempting to move a file, but there is already a file with the target
name and the file is read-only. If you really want to write over the existing
file, type y and press <Enter>. If you do not want to write over the existing
file, type n and press <Enter>.

source name and target name are identical
The source and the target are actually the same file (for example, because
of links). In this case, mv does nothing.

unreadable directory name
mv cannot read the specified directory—for example, because you do not
have appropriate permissions.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –R and –r options are extensions of the POSIX standard.

Related Information
cp, cpio, rm

mv

414 z/OS V1R4.0 UNIX System Services Command Reference

newgrp — Change to a new group

Format
newgrp [–l] [group]
newgrp [–] [group]

tcsh shell: newgrp [-] group

Description
newgrp lets you change to a new group. You stay logged in and your working
directory does not change, but access permissions are calculated according to your
new real and effective group IDs. If an error occurs, your session may be ended,
and you must log in again.

After the group IDs are changed, a new shell is initialized within the existing
process, effectively overlaying the current shell from which newgrp was invoked.
The new shell is determined from the initial program value of the OMVS segment of
your user profile.

newgrp does not change the value of exported shell variables, and all others are
either set to their default or are unset.

If you did not specify any arguments on the command line, newgrp changes to the
default group specified for your user ID in the system user database. It also sets
the list of supplementary groups to that set in the systems group database.

If you specify a group, newgrp changes your real and effective group ID to that
group. You are permitted to change to that group only if you are a member of that
group, as specified in the system group database.

group can be a group name from the security facility group database, or it can be a
numeric group ID. If a numeric group exists as a group name in the group data
base, the group ID number associated with that group is used.

On systems where the supplementary group list also contains the new effective
group ID or where the previous effective group ID was actually in the
supplementary group list:

v If the supplementary group list also contains the new effective group ID, newgrp
changes the effective group ID.

v If the supplementary group list does not contain the new effective group ID,
newgrp adds it to the list (if there is room).

On systems where the supplementary group list does not normally contain the
effective group ID or where the old effective group ID was not in the supplementary
group list:

v If the supplementary group list contains the new effective group ID, newgrp
removes it from the list.

v If the supplementary group list does not contain the old effective group ID,
newgrp adds it to the list (if there is room).

newgrp in the tcsh shell
newgrp in the tcsh shell, as in the z/OS shell, allows you to change to a new
group.

newgrp

Chapter 2. Shell Command Descriptions 415

Options
–l Starts the new shell session as a login session. This implies that it can run

any shell profile code.

– Is the obsolescent version of –l.

Localization
newgrp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
newgrp is not supported from an address space running multiple processes
because it would cause all processes in the address space to have their security
environment changed unexpectedly. If you are using the OMVS interface, you must
be using the NOSHAREAS parameter before you issue the newgrp command.
Also, if you are running in an environment with the _BPX_SHAREAS environment
variable set to YES, you must unset it and start a new shell before issuing newgrp.
For example:
unset _BPX_SHAREAS; sh

Exit Values
If newgrp succeeds, its exit status is that of the shell. Otherwise, the exit status is:

>0 Failure because newgrp could not obtain the proper user or group
information or because it could not run the shell, and it ends the current
shell.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
export, fc, sh, tcsh

nice — Run a command at a different priority

Format
nice [–n number] command-line nice [–number] command-line

tcsh shell: nice [+number] [command]

Description
nice runs a command at a different priority than usual. Normally, nice lowers the
current priority by 10.

The command-line must invoke a single utility command, without using compound
commands, pipelines, command substitution, and other special structures.

newgrp

416 z/OS V1R4.0 UNIX System Services Command Reference

nice in the tcsh shell
In the tcsh shell, nice sets the scheduling priority for the tcsh shell to number, or,
without number, to 4. With command, nice runs command at the appropriate
priority. The greater the number, the less cpu the process gets. The super-user may
specify negative priority by using:
nice -number ...

command is always executed in a sub-shell, and the restrictions placed on
commands in simple if statements apply. See “tcsh — Invoke a C shell” on
page 570.

Options
–n number

Lowers the current priority by number. On systems supporting higher
priorities, a user with appropriate privileges can use nice to increase priority
by specifying a negative value for number. For example,
nice –n –3 command

runs the command with an increased priority of 3.

–number
Is an obsolescent version of –n number.

Localization
nice uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
If nice invokes the command-line, it exits with the exit status returned by
command-line; otherwise its exit status is one of the following:
1-125 An error occurred in the nice utility.
126 nice could not invoke command-line.
127 nice could not find the utility specified in command-line.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
nohup, renice, tcsh

nl — Number lines in a file

Format
nl [–btype] [–dxy] [–ftype] [–htype] [–in] [–ln] [–nfmt] [–p] [–ssep] [–v[n]] [–w[n]] [file]

nice

Chapter 2. Shell Command Descriptions 417

Description
nl is a filter that numbers lines in a single file. If you do not specify file on the
command line, the standard input is used.

The input is displayed as a stream of text lines, possibly divided into logical pages
by separators. In turn, each page consists of a header, body, or footer, in that
order. Any missing part is assumed to be empty. Using the default page delimiter
character of \ and :, lines consisting entirely of the following combinations are
logical page part delimiters and are not numbered.

Input Line
Starts

\:\:\: Page header
\:\: Page body
\: Page footer

Options
–btype

Specifies the numbering type for each page body. The numbering type is
one of the following:

a Numbers all lines

n Does not number any lines

pregexp
Numbers only those lines that contain the basic regular expression
regexp. For more information about regexp, see Appendix C.

t Numbers only those lines that are not empty. An empty line consists
of only a newline character.

The default body numbering type is t.

–dxy Changes the default delimiter characters (\ and :) to characters x and y. If
only x is specified, only the first delimiter character is changed.

–ftype Specifies the page footer numbering type (see the –b option). The default
type is n.

–htype
Specifies the page header numbering type (see the –b option). The default
type is n. (The lines are not numbered.)

–in Sets the line increment to n rather than the default value of l.

–ln When the page numbering type is (all), blank lines are treated specially.
Every nth consecutive blank line is numbered. If you do not specify this
option, n defaults to 1 and every blank line is numbered.

–nfmt Specifies the line numbering format, which must be one of the following:

n Right-justified line number, padded to width (see –w) on the left
with spaces (the default format).

rz Right-justified line number, padded on left with zeroes.

ln Left-justified line number, padded on right with spaces.

–p Specifies continuous page numbering across page boundaries. By default,
nl restarts numbering (as in the next option) at each new page.

nl

418 z/OS V1R4.0 UNIX System Services Command Reference

–ssep The string sep is printed to separate the line number from the text of the
line being numbered. When this option is not specified, this separator is a
single tab character.

–vn Starts numbering for each new page at n. If you do not specify this option,
page numbering starts at 1.

–wn Sets the width of the line number in the output to n. If you do not specify n,
the default is 6.

Example
The following command numbers every second consecutive blank line, using page
delimiters of ~!:
nl –l2 –ha –ba –fa –n rz –v10 –i10 –d~! file

Localization
nl uses the following localization environment variable:
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Messages
0 Successful completion

1 Failure due to any of the following:
v Incorrect command-line argument
v More than one file name was specified
v Unable to open the file
v Incorrect regular expression in –b, –f, –h
v Incorrect numbering type
v Badly formed number in a command-line option

Portability
POSIX.2, X/Open Portability Guide.

Related Information
awk, pr

For more information about regexp, see Appendix C.

nm — Display symbol table of object, library, or executable files

Format
nm [–AaefgnoPprsuv] [–t format] file ...

Description
nm displays the symbol table associated with an object, archive library of objects,
or executable files.

By default, nm lists the symbols in file in alphabetical order by name and provides
the following information on each:

v File or object name (if you specified –A)

nl

Chapter 2. Shell Command Descriptions 419

v Symbol name

v Symbol type. Not all of these symbol types are available on all systems. For
instance, not all systems support the ability to determine different segment
information.
A Absolute symbol, global
a Absolute symbol, local
B Uninitialized data (bss), global
b Uninitialized data (bss), local
D Initialized data (bbs), global
d Initialized data (bbs), local
F Filename
l Line number entry (see the –a option)
N No defined type, global. This is an unspecified type, compared to the

undefined type U.
n No defined type, local. This is an unspecified type, compared to the

undefined type U.
S Section symbol, global
s Section symbol, local
T Text symbol, global
t Text symbol, local (static)
U Undefined symbol

v Symbol value

v Symbol size, if applicable

Options
–A Prefixes each line with the filename or archive member.

–a Displays all symbols, including line number entries on systems that support
them.

–e Displays only global (external) and static symbols.

–f Displays full output. This is the default because output is not suppressed.

–g Displays only global symbols.

–n Is equivalent to –v.

–o Displays output in octal (same as –t o).

–p Displays output in a portable POSIX-compliant format, with blanks
separating the output fields.

v If you specified –A and file is not a library, the format is:
file: name type value size.

v If you specified –A and file is a library, the format is:
file [object_file] : name type value size

where object_file is the object file in the library that contains the symbol
being described.

v If you did not specify –A, the format is:
name type value size

v If you did not specify the –t option, nm displays value and size in
hexadecimal.

v If you did not specify –A and the command line contains more than one
file, or file is a library, nm displays a line preceding the list of symbols for

nm

420 z/OS V1R4.0 UNIX System Services Command Reference

each specified file or each object file in a specified library. If file is a
library, this line has the following format:
file[object_file]:

If file is not a library, the format is:
file:

–p Does not sort output.

–r Reverses sort order.

–s Includes symbol size for each symbol.

–t format
Defines the numeric value formatting base. The format is one of d, o, or x,
for decimal, octal, or hexadecimal, respectively. If this option is not used,
numbers are displayed in decimal.

–u Displays only undefined symbols.

–v Sorts output by value.

–x Displays information in hexadecimal (same as –t x).

Localization
nm uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLECT
v LC_CTYPE
v LC_MESSAGES
v LC_TIME

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Invalid command-line option
v Missing filename
v Unknown symbol table type
v Invalid library file
v End-of-file found in library
v Bad record in the library
v Out of memory

If a file does not contain a symbol table, nm displays a warning and goes to
the next file, but this is not considered an error.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –a, –e, –f, –n, –o, –p, –r, –s, and –x options are not part of the POSIX
standard.

The –a, –n, –p, –r, –s, and –t d, options are not part of the X/Open standard.

nm

Chapter 2. Shell Command Descriptions 421

Related Information
ar, size, strip

nohup — Start a process that is immune to hangups

Format
nohup command-line

tcsh shell: nohup command

Description
nohup invokes a utility program using the given command-line. The utility runs
normally; however, it ignores the SIGHUP signal.

If the standard output is a terminal, nohup appends the utility’s output to a file
named nohup.out in the working directory. This file is created if it doesn’t already
exist; if it can’t be created in the working directory, it is created in your home
directory.

If the standard error stream is a terminal, nohup redirects the utility’s error output to
the same file as the standard output.

nohup simply runs a program from an executable file. command-line cannot contain
such special shell constructs as compound commands or pipelines; however, you
can use nohup to invoke a version of the shell to run such a command line, as in:
nohup sh –c 'command*'

where command can contain such constructs.

nohup in the tcsh shell
With command, nohup runs command such that it will ignore hangup signals.
Commands may set their own response to hangups, overriding nohup. Without an
argument (allowed only in a shell script), nohup causes the tcsh shell to ignore
hangups for the remainder of the script. See “tcsh — Invoke a C shell” on
page 570.

Localization
nohup uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
126 nohup found the utility program but could not invoke it.
127 An error occurred before nohup invoked the utility, or nohup could not find

the utility program.

Otherwise, the exit status is the exit status of the utility program that is invoked.

nm

422 z/OS V1R4.0 UNIX System Services Command Reference

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
exec, hup, nice, sh, tcsh

obrowse — Browse an HFS file

Format
obrowse [file...]

Description
obrowse enables you to browse a file in the hierarchical file system (HFS). This
command uses the TSO/E OBROWSE command and must be run in the
foreground. The 3270 passthrough mode is used to invoke the TSO/E OBROWSE
command under OMVS.

You can specify any number of files; the TSO/E OBROWSE command is invoked
once for each file. If you do not specify a filename, the main entry panel is
displayed. From that panel, you can enter the directory name and filename of an
existing file you want to browse. If you are browsing fixed-length records, you must
also indicate the record length.

The filename can be absolute or relative. Avoid using single quotes or parentheses
within the filename.

Usage Notes
1. You cannot use obrowse if you used rlogin or telnet to access the shell.

2. obrowse passes the effective UID of its process to the TSO session. If the
EUID does not match the EUID of the TSO process, the OBROWSE TSO
command will attempt to set the effective UID of the TSO process to that of the
shell command prior to loading the file.

Exit Values
0 The TSO/E OBROWSE command was invoked once for each file specified.

1 Failure because obrowse could not access at least one file because single
quotes or parentheses were used in the filename.

2 Failure because obrowse was not able to set 3270 passthrough mode.

od — Dump a file in a specified format

Format
od [–v] [–A addr_fmt] [–j num [bkm]] [–N num] [–t type_string] [file ...]

od [–bcDdhOoSsXx] [file] [[+]offset[.][b]]

Automatic Conversion and File Tag Specific Option:

od [–T]

nohup

Chapter 2. Shell Command Descriptions 423

Description
od (octal dump) dumps a file to the standard output in a format specified by
command-line options. The default format is octal words. You can use combinations
of options to generate multiple formats with the requested representation of each
byte vertically aligned. The file seek address (in octal) precedes each line of new
data.

od recognizes two syntaxes. The first one conforms to POSIX. If you choose the
first form, od displays files from the list file one at a time. If no file appears on the
command line, od reads the standard input.

Options
The first form of od accepts the following options:

–v Displays all lines. Normally, od does not display multiple lines that differ
only in the address. It displays the first line with a single * under it. to show
that any subsequent lines are the same.

–A addr_fmt
Specifies the format that od uses to display the address field. addr_fmt can
be d (decimal), o (octal), x (hexadecimal), or n (do not display address).
The default is –A o.

–j num
Skips num bytes from the beginning of the file. If you precede num with 0X
or 0x, od interprets it as hexadecimal. If you precede it with 0, od interprets
it as octal; otherwise, od assumes it is decimal. You can also append b, k,
or m to num to indicate 512-byte blocks, kilobytes, or megabytes instead of
bytes.

Be careful with this option when working with doublebyte characters. If byte
num+1 (the starting byte, after skipping num bytes) is not the first byte of a
character, od proceeds as though it is, resulting in a misinterpretation of
that and subsequent characters. This misinterpretation continues until od
encounters a <newline>. Then it is once again synchronized with the first
byte of a doublebyte character.

–N num
Processes a maximum of num bytes. Be careful with this option when
working with doublebyte characters. If od is processing a doublebyte
character when it encounters the numth byte and this byte is not the last
byte of the character, od displays ??? instead of the character.

–t type_string
Specifies the output format. type_string can contain the following format
characters:

a Named characters from the ISO 646 character set. Data is
interpreted as if it was coded in the ISO 646 character set.

Note: –t a is mutually exclusive with the file tag specific option, –T.

c Characters. od displays nonprintable characters as backslash
sequences and displays printable doublebyte characters properly.

A printable doublebyte character is displayed in the first byte
position, and the remaining positions to the end of the character

od

424 z/OS V1R4.0 UNIX System Services Command Reference

display ** to indicate the doublebyte character. Nonprintable
doublebyte characters are displayed using a 3-digit octal number to
represent each byte.

Also, incorrect doublebyte sequences are displayed with ??? for
each incorrect byte.

d Signed decimal. A one-digit number may follow d telling od how
many bytes to use. This must correspond to the size of a char (1
byte character), a short (2 byte short), an int (4 byte integer), a long
(4 byte long, which is currently the same as integer on z/OS), or a
long long (8 byte integer). The default size is the size of an int. A
symbolic size character can follow d, rather than the number of
bytes. These have the following meaning:
C Corresponds to number of bytes in a char
S Corresponds to number of bytes in a short int
I Corresponds to the number of bytes in an int
L Corresponds to the number of bytes in a long int
LL Corresponds to the number of bytes in a long long int

f IBM zSeries Hexadecimal Floating-point. A one-digit number can
follow f, telling od how many bytes to use. This must correspond to
the size of a float, double, or long double. The default size is the
size of a double. A symbolic size character can follow f, rather than
the number of bytes. These have the following meaning:
F Corresponds to size of float
D Corresponds to size of double
L Corresponds to size of long double

F IEEE Binary Floating-point. A one-digit number can follow F, telling
od how many bytes to use. This must correspond to the size of a
float, double, or long double. The default size is the size of a
double. A symbolic size character can follow F, rather than the
number of bytes. These have the following meaning:
F Corresponds to size of float
D Corresponds to size of double
L Corresponds to size of long double

o Octal. A one-digit number can follow o, telling od how many bytes
to use. This must correspond to the size of a char (1 byte
character), a short (2 byte short), an int (4 byte integer), a long (4
byte long, which is currently the same as integer on z/OS), or a
long long (8 byte integer). The default size is the size of an int. A
symbolic size character can follow o, rather than the number of
bytes. These have the following meaning:
C Corresponds to number of bytes in a char
S Corresponds to number of bytes in a short int
I Corresponds to the number of bytes in an int
L Corresponds to the number of bytes in a long int
LL Corresponds to the number of bytes in a long long int

u Unsigned decimal. A one-digit number can follow u, telling od how
many bytes to use. This must correspond to the size of a char (1
byte character), a short (2 byte short), an int (4 byte integer), a long
(4 byte long, which is currently the same as integer on z/OS), or a
long long (8 byte integer). The default size is the size of an int. A
symbolic size character can follow u, rather than the number of
bytes. These have the following meaning:
C Corresponds to number of bytes in a char

od

Chapter 2. Shell Command Descriptions 425

S Corresponds to number of bytes in a short int
I Corresponds to the number of bytes in an int
L Corresponds to the number of bytes in a long int
LL Corresponds to the number of bytes in a long long int

x Hexadecimal. A one-digit number can follow x, telling od how many
bytes to use. This must correspond to the size of a char (1 byte
character), a short (2 byte short), an int (4 byte integer), a long (4
byte long, which is currently the same as integer on z/OS), or a
long long (8 byte integer). The default size is the size of an int. A
symbolic size character can follow x, rather than the number of
bytes. These have the following meaning:
C Corresponds to number of bytes in a char
S Corresponds to number of bytes in a short int
I Corresponds to the number of bytes in an int
L Corresponds to the number of bytes in a long int
LL Corresponds to the number of bytes in a long long int

Multiple format characters can appear in one type_string and multiple –t
options can appear on the command line. If there is no –t option, the
default is –t o2.

The second form of od is the historical (Berkeley Software Distribution)
implementation of the command. If you use this form, you can specify only a single
input file. If you do not give a file argument, od reads the standard input. You can
supply an offset, but you must precede it with a plus sign (+) to distinguish it from a
filename if no file is given. Giving an offset causes a seek to a position in the file
where output begins. If the offset ends in a period (.), od considers it to be
decimal; otherwise, od considers it octal. If you follow the offset with a b, od
multiplies it by the block size of 512 bytes. The format of the offset determines the
format of the address; that is, if it is interpreted as decimal, the addresses are
displayed in decimal.

Note: The od command does not work on a file whose filename starts with either a
digit or a plus (+) sign, unless the –A, –N, –j, or –t options are used.

The second form of od accepts the following options:
–b Bytes in octal
–c Bytes as characters
–D Unsigned decimal longs (4 bytes)
–d Unsigned decimal words (2 bytes)
–h Bytes in hexadecimal
–O Unsigned octal longs
–o Unsigned octal words
–S Signed decimal longs
–s Signed decimal words
–X Unsigned hexadecimal longs
–x Unsigned hexadecimal words

File Tag Specific Option
–T Enables automatic conversion (autoconversion) for tagged files. This option

is mutually exclusive with –t a.

For more information about autoconversion and file tagging, see z/OS UNIX System
Services Planning.

od

426 z/OS V1R4.0 UNIX System Services Command Reference

Localization
od uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_NUMERIC
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to open the input file
v Badly formed offset
v Seek or read error on the input file

2 Failure due to any of the following:
v Incorrect command-line argument
v The wrong number of command-line arguments
v Incorrect format character
v Incorrect size modifier for format character

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The options to operate on longs (–OSXD) and the hex byte (–h) are extensions to
the POSIX standard.

Related Information
dd

oedit — Edit an HFS file

Format
oedit [–r xx] [file...]

Description
oedit enables you to edit a file in the hierarchical file system (HFS). This command
uses the TSO/E OEDIT command and must be run in the foreground. The 3270
passthrough mode is used to invoke the TSO/E OEDIT command under OMVS.

You can specify any number of files; the TSO/E OEDIT command is invoked once
for each file. If you do not specify a filename, the Edit Entry panel is displayed.
From that panel, you can enter the directory name and filename of an existing file,
or you can specify a directory name and filename for a new file. The Edit Entry
panel also lets you specify an edit profile and an initial edit macro.

The filename can be absolute or relative. Avoid using single quotes or parentheses
within the filename.

od

Chapter 2. Shell Command Descriptions 427

Option
–r xx Set the record length to be edited for fixed length text files. xx is the record

length.

If –r xx is specified, the file will be processed as variable length but loaded
into the editor as fixed length records and saved as fixed length records.
This lets you convert a variable length file to fixed length. If any lines are
longer than the specified record length, the edit session will not load the file
and will issue the customary message that a line is too long.

Usage Notes
1. oedit attempts to load the file into a VB255 session. If this is an ISPF that

supports wide edit (such as ISPF 4.1) and any line exceeds 235 characters, the
width for the new session is the length of the longest line plus 25% to allow for
some expansion.

2. The COPY command cannot copy in files that have records wider than the edit
session.

3. oedit attempts to open an existing file as read/write. If this fails, it will attempt
opening the file read-only to allow the user to view the file. Changes made in
this mode cannot be saved to the file. If changes are made, the edit session
must be ended using the ISPF CANCEL primary command. However, you can
use the ISPF CREATE and REPLACE primary commands to save all or part of
the changed file to another file before you CANCEL the edit session.

4. oedit passes the effective UID of its process to the TSO session. If the EUID
does not match the EUID of the TSO process, the OEDIT TSO command will
attempt to set the effective UID of the TSO process to that of the shell
command prior to loading the file.

5. You cannot use oedit if you used rlogin or telnet to access the z/OS shell.

6. The TSO region size must be large enough to hold the size of the file to be
edited.

Exit Values
0 The TSO/E OEDIT command was invoked for each file specified.

1 Failure because oedit could not access at lease one file because single
quotes or parentheses were used in the filename.

2 Failure because oedit could not set 3270 passthrough mode.

pack — Compress files by Huffman coding

Format
pack [[–] [–f] [–o file] file] ...

Note: The pack utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the compress utility be used instead
because it may provide greater functionality and is considered the standard
for portable UNIX applications as defined by POSIX.2 IEEE standard
1003.2-1992.

oedit

428 z/OS V1R4.0 UNIX System Services Command Reference

|
|

Description
pack compresses files using a Huffman minimal redundancy code on a byte basis.
Each file is compressed in place; the resulting file has a .z extension appended to
the file name, but keeps the same owner and permissions. For example, abc is
compressed into abc.z. The times of last access and last modification are also
preserved.

Packed files can be identified by file and uncompressed by unpack (which unpacks
the file in place) or pcat (which unpacks to the standard output).

Normally pack reports the degree of compression achieved in each file (the report
is printed on stdout). This number can be negative for small files with little
redundancy if the –f option is used.

pack does not pack files if:

v The file appears to have already been packed.

v The filename is too long (an error will occur if .z is appended).

v The file has links or is a directory

v The packed file would be larger than the existing file (this includes empty files).

v The destination file already exists, or there is an error in processing.

Options
– Displays more detail on size, overhead and entropy (information rate). If this

option is used several times on the command line it acts as a toggle,
inverting the detailed-report flag at each mention.

–f Forces compression when it normally would not occur. Without this option,
pack does not compress a file if its size is not reduced by compression, the
file is already compressed, or the file has more than one link.

–o file Specifies a different output file so that compressed output is written to file
rather than overwriting the original input file. Several input and output files
may be specified. For example,
pack –o out1 in1 –o out2 in2

packs file in1 into out1 and file in2 into out2. The input files are not
changed.

Localization
pack uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 An error occurred related to manipulating (opening, closing, renaming) the
file, or a single file could not be packed properly.

pack

Chapter 2. Shell Command Descriptions 429

n Indicates that n files could not be packed properly. For example, if three out
of six files could not be packed properly, the exit status is 3.

file: no saving
The file is too small or uniform to benefit from packing. The file can still be
packed using the –f option.

file: already packed
The file appears to be a packed file. It can still be packed by specifying the
–f option.

file: has links
The file has more than one link. You can override it with the –f option.

file: directory
pack cannot modify directories.

file: empty
The file is empty.

file: can’t pack in place
The file is too large to pack in place. You must specify an output file using
the –o option.

Interrupt
If you press BREAK while pack is running, it does not stop immediately; if it
did, it would leave you with a corrupted file. Thus pack just displays this
message to show that the BREAK has been received and it will stop as soon
as it is safe to do so.

Other messages, such as those about inaccessibility of files, are self-explanatory.
The exit status is the number of file arguments that could not be processed.

Portability
X/Open Portability Guide, UNIX System V.

The –o option is an extension of the POSIX standard.

Related Information
file, pcat, unpack

passwd — Change user passwords

Format
passwd [–u userid]

Description
passwd changes the login password for the user ID specified. If userid is omitted,
the login name associated with the current terminal is used. You are prompted for
the new password, which may be truncated to the length defined as the maximum
length for the passwords.

Users can change the password for another user if they know the user ID and
current password.

pack

430 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To change your password, issue:

passwd

You will be prompted for the old password and the new password.

2. To change the password for user ID Steve, issue:
passwd -u steve

You will be prompted for the old password and the new password.

Exit Values
0 The password was changed.

1 Failure due to any of the following:

v The user specified does not exist.

v The current password is incorrect.

v The new password does not meet the installation-exit requirements.

2 The new password was not entered the same way twice.

3 The password is too long.

4 Error obtaining user login name.

paste — Merge corresponding or subsequent lines of a file

Format
paste [–s] [–d list] file ...

Description
paste concatenates lines of all the specified input files onto the standard output. If
you specify – (dash) instead of a file, paste uses the standard input. Normally, an
output line consists of the corresponding lines from all the input files. paste
replaces the newline character at the end of each input line (except the one from
the last file on the command line) with a tab character, or characters specified by
the –d option.

Options
–d list Specifies a list of characters to be used one at a time instead of the tab

character to replace the newline at the end of input lines. In a doublebyte
locale, list can contain doublebyte characters. paste uses list circularly;
when it exhausts the characters in list, it returns to the first character in the
list. If you also specify the –s option, paste returns to the first character of
list after processing each file. Otherwise, it returns to the first character after
each line of output.

list can contain any of the following standard C escapes such as \n, \t, \r,
\b, \\, and \0, where \0 indicates that no separator is to be used.

–s Concatenates all lines from each input file together on the single output
line. If the –s option is not specified and the end of the file is detected on
any (but not all) of the input files, paste behaves as though empty lines
have been read from those files.

passwd

Chapter 2. Shell Command Descriptions 431

Examples
The command:
ls | paste –s –d’\t\t\n’

displays the output of ls in three tab separated columns.

If file A contains:
a
b
c

and file X contains:
x
y
z

then the command:
paste A X

produces:
a x
b y
c z

and the command:
paste –s A X

produces:
a b c
x y z

Localization
paste uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Missing input files
v Too many files specified
v Inability to open a file

2 Unknown command-line option

Messages
Possible error messages include:

Too many files at name
You specified more files than paste can handle. The name given in the

paste

432 z/OS V1R4.0 UNIX System Services Command Reference

error message is the name of the first file that paste could not open. The
number of files that paste can open depends on the number of files that
other processes have open.

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
cut

patch — Change a file using diff output

Format
patch [–bceflNnRsv] [–B prefix] [–D symbol] [–d dir] [–F n]
[–i patchfile] [–o outfile] [–p n] [–r rejectfile] [file]

Description
patch reads a patchfile that contains output from diff describing changes from an
old text file to a new text file. patch then applies those changes to another text file.
Typically, you use patch if you are keeping parallel versions of a file. When you
make a set of changes to one file, you can use patch to incorporate those same
changes in other versions of the file.

Options
–B prefix

Saves a copy of the original file in a backup file. The backup filename is the
name of the original file preceded by the string prefix. If there is already a
file with this name, patch overwrites it. When applying more than one patch
to the same file, patch copies only the original for the first patch. When you
also specify –o outfile, patch does not create prefixfile, but if outfile already
exists, it creates prefixoutfile.

–b Saves a copy of the original file in a backup file. The backup filename is the
name of the original file plus the suffix orig. If there is already a file with
that name, patch overwrites it. When applying more than one patch to the
same file, patch only creates file orig. When you also specify –o outfile,
patch does not create file-.orig, but if outfile already exists, it creates
outfile.orig.

–c Interprets the patchfile as a context diff file (the output of diff when –c or
–C is specified). You cannot use this option with –e or –n.

–D symbol
Marks changes with the C preprocessor construct:
#ifdef symbol

...
#endif

When you compile the resulting (patched) file, you get the original file if
symbol is not defined, and the changed file if symbol is defined.

–d dir Changes the current directory to dir before processing the patch.

–e Interprets the patchfile as an ed script (the output of diff when –e is
specified). You cannot use this option with –c or –n.

paste

Chapter 2. Shell Command Descriptions 433

–F n Specifies the number of lines of a context diff to ignore when searching for
a place to install a patch.

–f Forces processing without requesting additional information from the user.

–i patchfile
Reads the patchfile information from the file patchfile . If you do not specify
patchfile, patch reads the information from the standard input.

–l Matches any sequences of blanks in the patchfile to any sequence of
blanks in the input file. In other words, patch considers two lines equivalent
if the only difference between the two is their spacing.

–N Ignores any patches that have already been applied. By default, patch
rejects already-applied patches.

–n Interprets the patchfile as normal diff output. You cannot use this option
with –c or –e.

–o outfile
Writes patched output to outfile instead of to the original file. When you
specify more than one patch to a single file, patch applies the patches to
intermediate versions of the file created by previous patches, resulting in
multiple, concatenated versions of the file being written to outfile.

–p n Deletes n components from the beginning of all pathnames found in the
patch file. If a pathname is an absolute pathname (that is, starts with a
slash), patch treats the leading slash as the first component of the path,
and patch –p 1 deletes the leading slash. Specifying –p 0 tells patch to
use the full pathnames given in the patchfile. If you do not specify this
option, patch only uses the basename (the final path component).

–R Reverses the sense of the patch script. In other words, patch behaves as if
the patch script shows the changes that make the new version into the old
version. You cannot use –R if the patchfile is in ed script format.

With –R, patch attempts to reverse each change recorded in the script
before applying the change. patch saves rejected differences in reversed
format (which means that you can check the rejections to see if patch
made the reversals correctly).

–r rejectfile
Records rejects in the file rejectfile, instead of the default reject file name.
Reject files are discussed later in this section.

–s Tells patch to remain silent until an error occurs. Normally, patch writes
information on the results of the patching process to standard error (stderr).

–v Displays the version number of patch and then exits.

If you do not specify either the –b or –B option, patch attempts to change the
original file directly. If you do not specify –c, –e, or –n, patch looks at the format of
the diff output and tries to determine which type of output the patch file contains.

If you do not specify a file to be patched and the patchfile is not in context format,
patch prompts you for the name of the file you want to patch.

If the patchfile is in context format, patch tries to determine the filename on its own.
The first two lines of a context patch file give the names of the old and new files
that diff compared. If only one of the files exists, patch patches that file; if neither

patch

434 z/OS V1R4.0 UNIX System Services Command Reference

exists or both do, patch checks for a line starting with a string Index: before asking
you for the name of the file to patch. If both files exist but one of them is empty, the
empty file will automatically be patched.

After patch has determined the file to patch, it checks for a source control system
(SCCS) subdirectory in the current directory; if one exists, it tries to obtain an
editable version of that file by performing the source code control system (SCCS)
command get –e. If patch cannot determine the file to patch, it prompts you for the
name of the file to use.

With a context format patchfile, patch can recognize when line numbers given in
the patchfile do not match line numbers in the file being patched. Thus, it can patch
a file with line counts that do not match the old file that was used by diff. To do
this, it takes these steps:

1. For each section to be changed, patch starts with the line number found in the
patch file, plus or minus any adjustment that must be made for the previous
section.

2. If the line at this location does not match the line in the patch file, patch scans
forward and backward for a line that does match. If it finds a matching line,
patch proceeds to make the required changes. patch also remembers the
adjustment it had to make to find the matching line, and uses this adjustment in
the next section to be changed.

3. If patch cannot find a line matching the one in the patch file, it tries to find the
line using the lines given as context. It ignores the first and last two lines of the
context and goes searching again. If it finds a match this time, it makes the
change and remembers the adjustment.

4. If a search ignoring the first and last lines of the context fails, patch searches
one more time, ignoring the first two and last two lines of the context. If it finds
a match, it makes the changes and remembers the adjustment.

5. If patch still cannot find a match, it writes the unmatching portion to the reject
file. It then tries to process the next section of changes. Thus, the reject file
contains the sections that patch is not able to change. Line numbers on
sections in the reject file may be different than those in the patchfile, because
patch adjusts them using the adjustment that patch calculated for preceding
sections.

To some extent, patch tries the same process if the patch file is in normal format
rather than context format. Because the patch file does not contain the context
information, patch has less to work with and probably creates more rejects. patch
always writes the rejectfile in context format, regardless of the format of the
patchfile.

By default, the reject file has the same name as the original file, plus the suffix
.rej. You can use –r to specify a different reject file on the command line. If the
reject file already exists, patch overwrites it.

If you do not specify –R, patch starts out with the assumption that the patch file
could be normal or reversed. Therefore if the first change is rejected, patch tries
the reverse change to see if that one works. If the reverse change is also rejected,
patch continues with other changes in the file, trying both forward changes and
reverses until one of them works. If the one that works is a forward change, patch
attempts only forward changes for the rest of the file. If the one that works is a
reverse change, patch issues a message to this effect and ask if it should treat all
the changes as reverse ones. However, if the –R option is specified on the
command line, it is assumed to hold for all changes in the patch file.

patch

Chapter 2. Shell Command Descriptions 435

The patch file can contain output from several diff comparisons. patch treats each
collection of changes as a separate patch file, and with each, patch may prompt
you for the name of the file you want to patch.

Localization
patch uses the following localization variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 There were one or more rejects
>1 An error occurred

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The –B, –F, –f, –s, and –v options are not extensions to the POSIX standard.

Related Information
diff, ed

pathchk — Check a pathname

Format
pathchk [–p] pathname ...

Description
pathchk checks one or more pathnames (specified by pathname) for validity and
portability (based on the underlying file system). A pathname is valid if you can use
it to create or access a file without causing a syntax error. A pathname is portable if
the file system does not truncate the name when it tries to use it. pathchk writes an
error message indicating the error detected and the erroneous pathname if any
pathname:
v Is longer than PATH_MAX bytes
v Contains a component longer than NAME_MAX bytes
v Contains any component in a directory that is not searchable
v Contains any character in any component that is not valid

Options
–p Instead of using the previous criteria, writes an error message if pathname:

v Is longer than _POSIX_PATH_MAX bytes

v Contains any component longer than _POSIX_NAME_MAX bytes

patch

436 z/OS V1R4.0 UNIX System Services Command Reference

v Contains any character in any component that is not in the portable
filename character set

Localization
pathchk uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 All pathnames passed the check
1 An error occurred
2 Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide.

pax — Interchange portable archives

Format
v pax [–cdnqvzE][–f archive] [–o type] [–s substitute] ... [pattern ...]

v pax –r [–cdiknuvzE] [–f archive] [–o options ...] [–p string ...] [–s substitute ...]
[–V volpat] [pattern ...]

v pax –w [–diLqtuvXzE] [–b blocksize] [[–a] [–f archive]] [–o options ...]
[–ssubstitute ...] [–V volpat] [–x format] [pathname ...]

v pax –r –w [–diklLnquvXE] [–p string ...] [–s substitute ...] [pathname ...] directory

File Tag Specific Options:

v pax –o fromfiletag

v pax –o setfiletag

Description
pax reads, writes and lists archive files. An archive file is a single file containing
one or more files and/or directories. Archive files can be HFS files or MVS datasets.
A file stored inside an archive is called a component file; similarly, a directory stored
inside an archive is called a component directory.

Note: MVS datasets cannot be specified for component files.
Included with each component file and directory is recorded information such as
owner and group name, permission bits, file attributes, and modification time.

You can therefore use a single archive file to transfer a directory structure from one
machine to another, or to back up or restore groups of files and directories.

Archives created by pax are interchangeable with those created with the tar utility.
Both utilities can read and create archives in the default format of the other (USTAR
for pax and TAR for tar). Archives are generally named with suffixes such as .pax
or .tar (or pax.Z and tar.Z for compressed files), but this is not required.

pathchk

Chapter 2. Shell Command Descriptions 437

As shown in Format, pax performs one of the four archive functions based on the
usage of the –r and –w options: list, read, write, or copy:

list If you do not specify –r or –w, you are in list mode. In this mode, pax uses
the standard output to display the table of contents of an existing archive
file. The –v (verbose) and –E options can be used to show the attributes
and extended attributes of each component. By default, pax displays all
component files and directories contained in the archive. One or more
patterns may be used to display information on specific components.

read If you specify –r but not –w, you are in read mode. In this mode, pax reads
an archive file as input and extracts components from the archive. By
default, pax selects all components. Patterns may also be used to identify
specific components to extract. If the archive contains several components
with the same name, pax extracts each of them with later components
overwriting files created by earlier components with the same name. The
–k, –n, or –u options can be used to control the extraction of files when
multiple files with the same name exist in the archive or on the file system.

When extracted, if a component does not have a fully qualified pathname
beginning with the root (/) directory, its path is assumed to be relative to the
current working directory. The –s or –i options can be used to dynamically
change the pathnames of extracted components. Ownership, permissions,
and extended attributes of the extracted files are discussed under the –p
option.

write If you specify –w but not –r, you are in write mode. In this mode, pax
creates an archive file that contains the specified pathnames as
components. If a pathname is a directory, pax writes to the archive file all
the files and subdirectories in that directory. If you do not specify any
pathname, pax reads the standard input to get a list of pathnames to
select; the input should give one pathname per line.

The –d, –X, and –L options can be used to restrict pathnames to the
current directory or device, or to follow symbolic links.

The –a option can be used to append to an existing archive.

copy If you specify both –r and –w, you are in copy mode. In this mode, pax
reads the specified pathnames and copies them to the target directory. In
this case, the given directory must already exist and you must be able to
write to that directory. If a pathname is a directory, pax copies all the files
and subdirectories in that directory as well as the directory itself. If you do
not specify any pathname, pax reads the standard input to get a list of
pathnames to copy; the input should give one pathname per line.

The name of the archive file can be specified with the –f archive option. If –f is not
used, pax will read from standard input for the list and read (–r) functions and will
write to standard output for the write (–w) function.

pax can read input archives in cpio and tar format. It can also write these formats;
see the –x option.

Patterns
Command-line patterns are similar to the wildcard constructs described in the sh
command. You can use them to select specific components when reading or listing
an archive.

pax

438 z/OS V1R4.0 UNIX System Services Command Reference

Slash character(s) in a pathname must be explicitly matched by using one or more
slashes in the pattern; it cannot be matched by the asterisk (*) or question mark (?)
special characters or by a bracket expression. For example, the pattern "*.c" will
only match files in the archive with name that are not preceded by a slash. The
pattern "*/*.c" will match files in the archive preceded by a single slash.

Note: Patterns should be quoted to prevent the shell from first expanding them. For
example, if the pattern *.h is not quoted, the shell will first resolve it into the
list of files in the current directory ending with .h. If there are none, the shell
will replace *.h with an empty list and pax will then list every component in
the archive because no pattern is specified. If one or more .h files are
returned by the shell, pax will list only those components in the archive
matching the .h files found in the current directory.

pax does not support patterns when writing or copying — however, wildcards can
be used in specifying the pathname with the write or copy function because the
shell will first expand them before passing the results to pax.

The –c option can be used to select files that do not match the pattern.

Options
The following options can appear on pax command lines. Some of them are
appropriate to only some forms of the command, as shown in “Format” on
page 437.

–a Appends specified files or directories to the end of the contents of an
existing archive. If the archive does not already exist, pax creates it.

Note: The following types of archives cannot be appended to:

v Compressed archives

v Archives residing in MVS partitioned datasets

–b blocksize
Specifies the block size in an output operation. Each output operation writes
blocksize bytes, where blocksize is an integer appropriate to the output
device. If b follows the blocksize number, the block size is the given number
of 512-byte blocks. If k follows the blocksize number, the block size is the
given number of 1024-byte blocks. The default blocksize is 10k for tar
archives, 5k for cpio archives. The block size must be at least 512 bytes for
reading.

–c Selects all those files that do not match any of the patterns given on the
command line; this is the opposite of the usual behavior. If a pattern is not
given, then no files will match.

–d Does not traverse directories. A pattern matching a directory extracts only
the directory itself. When creating an archive, a directory name stores only
the directory itself.

–E Same as verbose (–v) output, but additionally displays extended attributes.
See “Output” on page 446 for more information. –o E is equivalent to pax
–E.

–f archive
Lets you specify the name of the archive file instead of using the standard
input for list mode, read mode (–r operations), and the standard output for

pax

Chapter 2. Shell Command Descriptions 439

write mode (–w). The archive file you specify may be an MVS dataset. For
more information, see Appendix K, “Specifying MVS Dataset Names in the
Shell Environment” on page 849.

Note: Avoid writing to an archive which is in the directory tree or the set of
files being archived. Doing so causes pax to write the archive to
itself and results in unpredictable results during the write or later
during a read.

–i Lets you rename files as pax works. With extractions, pax displays the
name of the component it is about to extract and gives you the chance to
specify a name for the extracted file. With write operations, pax displays the
name of the file or directory it is about to record in the archive, and lets you
specify a different name to be assigned to the component. If you enter . as
the name, pax processes the file or directory with no change to the name.
If you just press <Enter>, pax skips the file (doesn’t extract or archive it).
pax ends if you enter end–of-file.

If you also specify –s, pax makes the given substitution before displaying
the name of the component.

–k Prevents the overwriting of existing files.

–L Follows symbolic links. When you specify this option, pax copies the file to
which a symbolic link points to the archive. Normally, only the symbolic link
is copied.

–l Is applicable only when you are in copy mode—that is, when you are using
the –rw format to copy files to another directory. If you specify –l, pax
creates links to the original files whenever possible, rather than copying
them.

–n Treats the pattern arguments as ordinary pathnames. You can use this
option only when you specify –r but not –w. pax extracts only the first
component with a given pathname, even if the archive contains several
components with the same name. pax checks the given pathnames against
the archive before applying any renaming from the –i, or –s options. pax
writes an error message for each specified file that cannot be found in the
archive.

–o options
Provides information for modifying the algorithm for writing and extracting
files.

The following set of options controls the use of z/OS extended support for
the USTAR format to preserve and restore z/OS specific information such
as external links and extended attributes and other information (long link
names, for example) not otherwise supported by the USTAR format:

–o A Displays extended ACL (access control list) data.

In the following examples, archive acldata.pax contains file1, file2,
and dir1. file1 has no ACL data, file2 has an access ACL, and dir1
has a file default ACL, a directory default ACL and an access ACL.
If you only specify option –f, your output will be:
> pax -f acldata.pax
file1
file2
dir1

If you also specify –o A, ACL information will be displayed:

pax

440 z/OS V1R4.0 UNIX System Services Command Reference

> pax -o A -f acldata.pax
file1
file2
user:WELLIE2:rw-
group:SYS1:rwx
dir1

Finally, if you add the verbose option, –v, you will see the file
permission bit settings that are associated with the file:
> pax -o A -vf acldata.pax
-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1
-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2
user:WELLIE2:rw-
group:SYS1:rwx
drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/
user:RRAND:rwx
user:WELLIE2:rw-
group:SHUT:rwx
fdefault:user:RRAND:rwx
fdefault:group:SHUT:r-x
default:user:ANGIEH:rwx
default:group:SYS1:r--

Tip: Specifying pax –o A does not automatically turn on the
verbose table of contents format. You must also specify –v to
display the file permission bit settings associated with the file.

For more information on ACLs, see z/OS UNIX System Services
Planning and “ACL (Access Control List) pax Support” on page 450.

–o keyword=value[,keyword=value]...

These options are used to convert data from one code set to
another while reading or writing an archive. This is functionally
equivalent to using the iconv utility to convert each file before or
after archiving. This option has the format: where keyword is either
to or from and value is the name of a code set. Two common code
set names and their values are:
ISO8859-1

ASCII
IBM-1047

EBCDIC

For example, to convert from ASCII to EBCDIC, use:
-ofrom=ISO8859-1,to=IBM -1047

From EBCDIC to ASCII, use:
-ofrom=IBM-1047,to=ISO8859-1

For a more complete list of code sets, refer to z/OS C/C++
Programming Guide.

Specifying an unknown keyword results in a warning message from
pax.

You can omit either the to or from keyword. If you omit to, pax
assumes that you want to write (or read) a portable archive tape

pax

Chapter 2. Shell Command Descriptions 441

and will convert the data to ISO/IEC 8859-1. If you omit from, pax
assumes that you are converting from the system–specific local
code set.

If your input contains a character that is not valid in the source
code set, pax displays a warning and continues, leaving the
character untranslated. If the source code set contains a character
that is not in the destination code set, pax converts the character to
an underscore (_).

Note: If you do not specify –o, no code set conversion is done.
When making code set conversions, pax assumes that all
files are text files, since only text files are portable.

–o saveext | noext
For USTAR formatted archives, this option controls whether
extended USTAR support is enabled (saveext) or disabled (noext).
saveext is the default behavior. This option has no effect for
non-USTAR formatted archives. For more information on extended
USTAR support, see “z/OS Extended USTAR Support” on
page 448.

This support is implemented with the USTAR format in such a
manner that it should be tolerated by POSIX compliant pax or tar
utilities on non-z/OS UNIX systems. Those versions will not be able
to restore the extended USTAR information, however, they should
be able to process the archive as a normal USTAR formatted
archive. To ensure an archive is portable to non-z/OS UNIX
systems, noext can be used.

saveext
During archive writing, saveext causes pax to preserve
extended USTAR information. During archive listing,
saveext causes pax to display extended USTAR
information. During archive reading, saveext enables pax to
restore extended USTAR information. To restore certain
information, the user must also have the appropriate
privileges and have specified the corresponding options.
For example, in order to restore extended attributes, -px
must be specified.

noext When creating archives, do not preserve extended USTAR
information. When reading or listing an archive, ignore any
extended support encoded within the archive. Should an
archive contain z/OS special header files, these will be
displayed or restored (special header files are described in
“z/OS Extended USTAR Support” on page 448).

–o fromfiletag
See “File Tag Specific Options” on page 445.

–o setfiletag
See “File Tag Specific Options” on page 445.

–o type
–o type displays additional information when listing the contents of
an archive. Only one type may be specified per –o type option.
However, –L type may be specified mulitple times. The types that
can be displayed are:

pax

442 z/OS V1R4.0 UNIX System Services Command Reference

o E Show extended attributes when displaying the archive table
of contents. Automatically turns on –v. This is synonymous
with the existing pax –E option.

–o T Displays file tag information. Similar to ls –T and chtag
output. Does not automatically turn on verbose (–v) in the
same way that ls –T does not automatically turn on its –l
(long listing) option. When used without –v, only the file tag
information and filenames are displayed. For example:

/tmp> pax -o T -f asciitagged.pax
m ISO8859-1 T=off text_am
t ISO8859-1 T=on text_at
- untagged T=off text_au

This option can be used with –v and/or –o E to display additional verbose
output. For example:
/tmp> pax - T -vf asciitagged.pax
m ISO8859-1 T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_am
t ISO8859-1 T=on -rw r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_at
- untagged T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:06 text_au

–p string
Specifies which file characteristics to restore. By default, pax will only
restore the access and modification times of each component file, and the
access permissions (mode) as modified by the current umask, that is, they
will only be restored entirely when the umask is 000. string can consist of
any combination of the following characters:

A Restores ACL data.

a Does not preserve file access times.

e Preserves the user ID, group ID, file mode, access time, and
modification time, and all extended attributes and ACL entries.

m Does not preserve file modification times.

o Preserves the user ID and group ID.

p Preserves the file mode: access permissions (without modification
by umask), set-user-ID bit, set-group-ID bit, and sticky bit.

x Preserves extended attributes.

–q For read mode only, pax assumes that all created files are text files and
extracts them to the local text file format. On systems with fixed length
records, this might mean appending blanks as padding.

On UNIX and POSIX-compliant systems, pax removes all carriage return
characters (\r) and retains only the newline (\n) characters.

–r Reads an archive file from standard input.

–ssubstitute
Modifies pathnames using a substitution command substitute. This is similar
to the substitution command of the ed text editor. The full option has the
form:
–s#bregexp/string/[gp]

where bregexp is a basic regular expression and string is a string that pax
is to insert in place of matches for the regular expression. string can contain
an ampersand & (standing for the string matching bregexp), or \1, \2, and
so on (with the meanings defined in regexp), for subexpression matching.

pax

Chapter 2. Shell Command Descriptions 443

The # is used as the delimeter character separating bregexp and string. You
can use any non-null character instead. There cannot be any space
between -s and the delimeter character.

Normally, –s replaces only the first match for bregexp. A g following the
string replaces all matches in the line.

A p following the string prints all successful substitutions on the standard
error stream. pax displays a substitution in the format:
oldname >> newname

There may be more than one –s option on the command line. In this case,
pax tries the substitutions in the order given. pax stops trying to make
these substitutions as soon as it makes its first successful substitution. If
the null string replaces a filename, pax ignores that filename on both input
and output.

–t After reading files being archived, pax resets the access time to that prior
to pax’s access.

–u Compares component dates to dates of existing files with the same name.
When extracting components with –r (read mode), pax extracts a file only if
its modification date is more recent than the modification date on an
existing file of the same name. In other words, it doesn’t overwrite an
existing file if the existing file is newer than the one in the archive.

Similarly, when copying files with –rw (copy mode), pax does not overwrite
an existing file if the existing file is newer than the one being copied.

In a command that uses –w but not –r (write mode), –u checks to see if the
file being added has the same name as a file already in the archive. If so,
and if the file being added is newer than the one in the archive, pax leaves
the old file in the archive and appends the new one at the end. In this case,
–u automatically implies –a, which means that pax adds new files to the
end of the archive.

–V volpat
Provides automatic multivolume support. pax writes output to files the
names of which are formatted with volpat. It replaces any occurrence of # in
volpat with the current volume number. When you invoke pax with this
option, it asks for the first number in the archive set, and waits for you to
type the number and a carriage return before proceeding with the operation.
pax issues the same sort of message when a write error or read error
occurs on the archive; the reasoning is that this kind of error means that
pax has reached the end of the volume and is to go on to a new one. An
interrupt at this point ends pax.

–v Lists pathnames on the standard error stream just before beginning to
process the files or directories, but after any –i, or –s options have had
their effect. In list mode (neither –r nor –w is specified), pax displays a
“verbose” table of contents; this verbose format shows information about
the components in the same format used by the ls command. See “Output”
on page 446 for more information.

–w Writes files to the standard output in the specified archive format.

–X Writes out only those files that are on the same device as their parent
directory.

pax

444 z/OS V1R4.0 UNIX System Services Command Reference

–x format
Specifies a file format for an output archive. The format argument can be:
cpio Standing for the ASCII format used by the cpio command.
cpiob Standing for the binary format used by cpio.
tar Standing for the old format of tar files.
ustar Standing for the (new) USTAR format used by the tar command.

The default format is ustar. For more information about file formats, see
Appendix H.

Note: In order to preserve information about extended attributes, external
links, and link names greater than 100 characters, the USTAR format
must be used. See the -o saveext option for more information about
preserving extended attributes.

–z For write or read mode, performs Lempel-Ziv compression. –z cannot be
used when appending (–a) to an existing archive.

For writes, –z is functionally equivalent to creating a normal archive and
then compressing it using the compress utility.

It is recommended that, when creating archive files using the –f option, the
archive name be suffixed with a .Z to identify it as a compressed file and to
facilitate it being processed by uncompress (if needed).

For reads, –z is functionally equivalent to first uncompressing the archive
using the uncompress utility and then reading it. This option is not required
when reading a compressed archive. pax will automatically detect that the
archive is compressed. It may be useful, however, to use –z to confirm that
the archive is compressed (you will receive an error message if you specify
–z on an archive that is not compressed).

File Tag Specific Options
–o fromfiletag

For use with –o from=,to=. Use of –o fromfiletag indicates that if a
component file has a CCSID assigned to it, use that CCSID as the
from= codeset, thereby, overriding the value specified on –o
from=,to=.

–o setfiletag For use with –o from=,to=. Using –o fromfiletag tags component
files that are not already tagged. If a file is untagged (TXTFLAG =
OFF, CCSID = 0), then it will be automatically stored with TXTFLAG
= ON and with CCSID = to the target codeset. For files which are
already not untagged, –o setfiletag will not change the default
behavior. The target codeset and TXTFLAG values will be left as-is.
For example, a file tagged as mixed will have TXTFLAG = OFF and
CCSID ≠ 0. UNIX will not automatically force TXTFLAG = ON
because it does not want to override the user’s reason for making
the file mixed.

When the currently supported –o from=,to= option is used to perform translation,
the default behavior for storing the file tag information on writes, reads and copies
will be as follows:

–w (write)

v For files that are not untagged (TXTFLAG = OFF and CCSID ≠
0), the CCSID preserved in the archive will be set to the CCSID
of the to=codeset argument. Files that are untagged (TXTFLAG

pax

Chapter 2. Shell Command Descriptions 445

= OFF and CCSID = 0) will not have file tag information stored.
The –o setfiletag option can be used to force the tagging of files
which are not already tagged.

v When a file in the archive is tagged with a different CCSID than
the from=codeset, an error message will be generated. However,
pax will continue processing. Because this situation indicates a
probable corruption of data, upon completion, pax will issue a
nonzero return code. The –o fromfiletag option can be used to
avoid this situation. It causes pax to use the CCSID of the file
rather than the one specified on the –o from=,to= option.

–r (read)

v For files that are not untagged, the TXTFLAG value will be
restored to the value preserved in the archive (ON or OFF), but
the CCSID of the target file will be altered to the to=codeset
CCSID. For example, a file tagged as mixed will have TXTFLAG
= OFF and CCSID ≠ 0. UNIX will not automatically force
TXTFLAG = ON because it does not want to override the user’s
reason for making the file mixed.

The default behavior for files in the archive that are untagged will
not change, and the target file will also be set to untagged. The
–o setfiletag option can be used to force the tagging of files
which do not have filetag information associated with them in the
archive.

v If the target file already exists, its filetag information will be
ignored.

v When a file in the archive is tagged with a different CCSID than
the from=codeset, an error message will be generated. However,
pax will continue processing. Because this situation indicates a
probable corruption of data, upon completion, pax will issue a
non-zero return code. The –o fromfiletag option can be used to
avoid this situation. It causes pax to use the CCSID of the file
rather than the one specified on the –o from=,to= option.

–wr (copy)

v If the source files is not untagged, then the target file will have its
CCSID set to the CCSID of the to=codeset CCSID. In the event
the target already exists, then its TXTFLAG values are ignored;
the source file is used to determine the TXTFLAG setting of the
target and will override whatever the TXTFLAG settings are of
the target.

v Like –r and –w, when the CCSID of the source file is different
from the from=codeset CCSID, a warning message will be
generated and upon completion, pax will issue a nonzero return
code. The –o fromfiletag option can be used to avoid this
situation. It causes pax to use the CCSID of the file rather than
the one specified on the –o from=,to= option.

Output
When the –v or –E option is used in list mode, pax produces a verbose table of
contents for the archive. The output for –v is equivalent to the output from the ls–l
command with the following exceptions:

v The notation:
pathname == linkname

pax

446 z/OS V1R4.0 UNIX System Services Command Reference

indicates that linkname is a hard link of pathname.

v For symbolic and external links, pax output always shows a filesize of 0.

Refer to the description of ls for an explanation of ls –v.

The output from the –E option has the same format as –v and additionally displays
a column showing the extended attributes:
a Program runs APF-authorized if linked AC=1
p Program is considered program-controlled
s Program runs in a shared address space
l Program is loaded from the shared library region.

Note: l is a lower-case L, not an upper-case i.
– attribute not set

The format of the pax –E output is variable in length and will be extended as
necessary to display additional file characteristics that are not supported by pax –v
(ls –l).

Usage Notes
1. On the z/OS system, superuser privileges or read access to the appropriate

FACILITY classes are required to create character special files, restore user and
group names, and to set certain extended attributes (read access to the
corresponding FACILITY classes).

2. The POSIX 1003.1 standard defines formats for pax, tar, and cpio archives that
limit the UIDs and GIDs that can be stored to the following maximum values:

Table 18. Max UID/GID Values

Format Max UID/GID Values

tar, USTAR 16777216

cpio 262143

Values larger than these will not be properly restored for tar and cpio formatted
archives. For USTAR formatted archives, because the user and group names
are also stored in the archive, the correct UID and GID will be restored only if
the name is defined on the target system.

3. The POSIX 1003.1 standard defines formats for pax and tar archives that limit
the length of the target of a link file to 100 characters or less.

Note: In the case of a hard link, the target is the first occurrence of the hard
link which is archived. Subsequent hard links refer to the first instance.

Beginning with OS/390 Release 9, pax and tar provide extended USTAR
support that allows these links to be preserved when creating an archive and
restored when reading an archive. See “z/OS Extended USTAR Support” on
page 448 for more information.

4. When transferring archives between z/OS and other UNIX systems, note the
following:

a. File transfers (for example, using OPUT/OGET or ftp put/get) must be done
using binary or image format. This is true, even for archives consisting only
of text files.

b. You may need to convert text files from EBCDIC to ASCII (or some other
character set). The pax -o option can be used to convert text files while an

pax

Chapter 2. Shell Command Descriptions 447

archive is being created or being restored. You can use the iconv utility to
convert files before they are stored in the archive or after restoring them
from an archive.

5. Automatic conversion (performed by the HFS) on files with file tag information is
disabled when:

v reading files during creation of an archive

v during writes while extracting files from an archive

That is, the settings of system and environment variables that turn automatic
conversion on and off will have no affect on pax’s reading and writing of files.

z/OS Extended USTAR Support
By default, the IBM z/OS implementation of pax and tar provide extended support
with the USTAR format to preserve and restore z/OS specific file attributes and
other information not otherwise supported due to limitations with the USTAR format.
Examples of these include:

v External links

v Extended file attributes (such as program-controlled, APF-authorized, etc.)

v Links whose targets exceed 100 characters

This support is only provided for archives using the USTAR format. USTAR is the
default format for pax when creating an archive. For tar, the default format is the
original tar format. The -U option, however, can be used to cause tar to use
USTAR. When reading an archive, tar will automatically recognize the USTAR
format– no special option is required. (For more information about the USTAR
format, see ″tar -- Format of tar archives″ in Appendix H, “File Formats” on
page 829.)

The extended USTAR support is provided by using two mechanisms: encoding the
information within the USTAR header record and through the creation of special
header files.

Encoding Information within the USTAR Header Record
External link and extended attribute information is encoded within the standard
USTAR header in a manner which is compliant with POSIX standards and should
be tolerated by other non-z/OS versions of pax and tar. Because external links and
extended attributes are specific to z/OS, however, they cannot be restored on other
platforms.

Special Header Files
Hard links and symbolic links with targets greater than 100 characters cannot be
preserved within the standard USTAR format (for a hard link, the target is the first
occurrence of the hard link which is archived; subsequent hard links refer to the first
instance). In order to preserve links with targets greater than 100 characters,
special header files are created for each link and stored in the archive.

Each special header file contains information used by z/OS pax and tar to restore
the link to it’s original state. Special header files are identified in the archive with
type ″S″ (see ″tar -- Format of tar archives″ in Appendix H, “File Formats” on
page 829 for more information about file types).

Each special header file in the archive will have the same name:
/tmp/OS390_USTAR_SUMMARY_timestamp where timestamp is the creation time
(represented in seconds since the epoch) of the first special header file. For
example:

pax

448 z/OS V1R4.0 UNIX System Services Command Reference

/tmp/OS390_USTAR_SUMMARY_919026474

When a special header file is required to preserve a file, an informative message
along with a reason is displayed indicating that a special header file was created.

When reading or listing an archive containing special header files and when using
the default extended USTAR support, pax and tar recognize type ″S″ files as
special header files and display or restore the file described by the special header
rather than the actual special header file. So, typically, the presence of special
header files is not known to the user.

When the archive is complete, if one or more special header files have been
created, then a final special header summary file is created and added to the
archive. This file is identified in the archive with type ″T″ and has the same name
as the special header files. This file summarizes, via script commands and
comments, the contents of all previously archived special header files. It’s primary
purpose is to provide help restoring files included via special header files to those
with versions of pax or tar that do not implement extended USTAR support.

So, to allow users of non-z/OS systems to read the special header summary file, it
is encoded in the ASCII ISO8859-1 codeset. To view the special header file in
EBCDIC code page IBM-1047, first convert the file using the iconv command. For
example:
iconv -f ISO8859-1 -t IBM-1047 /tmp/OS390_USTAR_SUMMARY_919026474 >
summary_in _ebcdic

If extended USTAR support is disabled during reading or listing an archive by using
the pax -o noext or the tar -O option, or if the archive is processed by either an
earlier version of z/OS pax or tar that does not implement extended USTAR
support or a non-OS390 version of pax or tar, then the special header files will not
be recognized and will be processed as unknown type regular files. During
extraction, because all files have the same name, each extracted special header file
will overlay the previous one with the special header summary file being the final
one restored.

For an example of the special header summary file, see “pax — Format of pax
archives and special header summary files” on page 832.

File Tags and the Use of –o noext
Because extended headers are required to store file tag information, the storing and
restoring of file tag information is disabled if the user specifies the –o noext option.
This option is not the default and is not expected to be used under normal
circumstances. When –o noext is used, each file is treated as if it were untagged.
This is only significant in cases when the files already exist on the file system. That
is, if –o noext is specified, the stored or extracted file will be set to untagged
regardless of its previous file tag setting.

–o noext disables all attributes stored with extended headers, so this option cannot
be used to selectively disable the storing or restoring of text flag information. You
will have to use chtag to do that.

–o noext will have no affect on automatic conversion of files. If you use pax to
read, write or copy files, automatic conversion will be disabled whether –o noext is
specified or not.

pax

Chapter 2. Shell Command Descriptions 449

For more information on automatic conversion and file tagging, see z/OS UNIX
System Services Planning.

ACL (Access Control List) pax Support
Archive Writing or Creating

ACL data is automatically stored in USTAR formatted archives using special
headers. Options are not required.

You can use pax –o noext to disable the creation of special headers. This prevents
pax from storing ACL data and other non-standard information such as file tag data
and long link names. However, there is no option to disable storing of ACL data
only.

Archive Reading or Restoring

By default, ACL data will not be restored when reading or restoring files from an
archive. However, you can use pax –p A to restore ACL data. You can also use
pax –p e (which restores all file attributes) to restore ACL data.

Archive Copying

If you need to preserve ACLs when copying files to an archive, you must use pax
–p A or pax –p e.

Archive Listing (Table of Contents)

For verbose output (pax –v), a + is added to the end of the file permission bits for
all files with extended ACL entries. For example, file2 and dir1 have extended ACL
entries:
> pax -vf acldata.pax
-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1
-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2
drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

For more information about access control lists, see “getfacl — Display owner,
group, and access control list (ACL) entries” on page 278, “setfacl — Set, remove,
and change access control lists (ACLs)” on page 491, and z/OS UNIX System
Services Planning.

Examples
Writing (creating) an archive:

1. The following creates an archive file named /tmp/files.pax from all the files in
the current working directory. The -v option is used to display each file as it is
being added:
pax -wvf /tmp/files.pax *

or
pax -wvf /tmp/files.pax .

The only difference between these two forms is that in the latter example (using
.), names recorded in the archive will be preceded by a ″./″.

2. Either of these commands creates a compressed version of the archive created
in Example 1:

pax

450 z/OS V1R4.0 UNIX System Services Command Reference

pax -wzvf /tmp/files.pax.Z *

or
pax -wzvf /tmp/files.pax.Z .

The above is equivalent to the following two commands:
pax -wvf /tmp/files.pax *
compress /tmp/files.pax

3. The following creates an archive /tmp/dironly.pax containing only the files and
directory names in the current directories (it does not include the contents of
subdirectories):
pax -wdvf /tmp/dironly.pax. *

4. This example creates the archive /tmp/cfiles.pax containing all c files in the
current directory:
pax -wvf /tmp/cfiles.pax *.c

5. This example creates the archive /tmp/allcfiles.pax containing all c files in the
current directory and all sub-directories:
pax -wvf /tmp/allcfiles.pax $(find . -name "*.c")

6. This example creates the archive /tmp/ascii_src.pax using all .c and .h files in
the current directory converted into ASCII:
pax -wv -o to=ISO8859-1 -f /tmp/ascii_src.pax *.[ch]

7. The following creates the compressed archive /u/smith/oldfiles.pax.Z
containing all files on the system that have not been accessed within the last 10
days:
pax -wvzf /u/smith/oldfiles.pax.Z $(find / -type f -atime +10)

8. The following creates the archive /tmp/basename.pax containing all files in the
directory sub1 stored in the archive with ″sub1/″ removed from each component
name. Note that the pound character # is being used as the delimiter for the –s
option:
pax -wv -s#sub1/## -f /tmp/basename.pax sub1/*

Reading an archive:

1. This example extracts all the components of the archive source.pax. The –v
option is used to display each file or directory as it is extracted.
pax -rvf source.pax

2. To extract all files in source.pax and translate them from ASCII to EBCDIC:
pax -ofrom=ISO8859-1,to=IBM-1047 -rf source.pax

3. To extract all files in the archive source.pax ending with .h:
pax -rf source.pax `pax -f source.pax | grep h$`

This example uses command substitution to first read the archive and generate
a list of all files in the archive that end with /.

4. This example extracts files into a directory that is different from the directory
they are stored in within the archive. Assume the names of all files stored in the
archive source.pax begin with the root directory (/). To extract them into
/newroot/, use the following command:
pax -rvf source.pax -s#/#/newroot/#

The –v option is used to show the names of the files as they are extracted and
is not required.

pax

Chapter 2. Shell Command Descriptions 451

Files
/tmp/OS390_USTAR_SUMMARY_

timestamp is an z/OS extended USTAR special header file. See “z/OS
Extended USTAR Support” on page 448 for more information.

Localization
pax uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Incorrect option
v Incorrect command-line arguments
v Out of memory
v Compression error
v Failure on extraction
v Failure on creation

If pax cannot extract a particular file when reading, or find a particular file when
writing, it generates an error message and continues to process other files but
returns a status of 1. If any other sort of error occurs, pax ends immediately without
attempting further processing.

If you see the following message after a write operation:
If you want to go on, type device/filename when ready

it indicates that your directory or device containing the archive file is full. To
continue, enter the name of a new directory; to end pax, type <Ctrl-C>.

If you see that message after a read operation, it means that pax could not find the
archive file you specified, or that it was damaged. In this case, type <Ctrl-C> to end
the operation and then restart pax with the correct archive name.

Portability
POSIX.2, X/Open Portability Guide.

The –L, –q, –V, –E, –p x and –z options are extensions of the POSIX standard.

Related Information
compress, cpio, ls, tar, uncompress

See Appendix C for more information about regexp.

pax

452 z/OS V1R4.0 UNIX System Services Command Reference

See the cpio and pax file format descriptions in Appendix H, “File Formats” on
page 829.

pcat — Unpack and display Huffman packed files

Format
pcat file ...

Note: The pcat utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the zcat utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
pcat uncompresses files that were compressed by pack using a Huffman minimal
redundancy code. The uncompressed data is sent to the standard output. This is
handy for packed text files, but inappropriate for binary files, because the standard
output is treated as a text stream. Binary files can be decoded in place by unpack.

The names of compressed input files are expected to end in .z. If a specified input
file name does not end in this suffix, pcat automatically adds the .z. For example, if
the command line specifies file abc, pcat looks for abc.z.

Localization
pcat uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

n Indicates that n files could not be unpacked properly. For example, if three
out of six files could not be unpacked properly, the exit status is 3.

Related Information
cat, file, pack, unpack

pg — Display files interactively

Format
pg [–cefnst] [–p prompt] [– screen] [+line] [+/pattern/] [file ...]

Note: The pg utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the more utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

pax

Chapter 2. Shell Command Descriptions 453

Description
pg displays input files or piped output from another command, a screenful at a time.
If you do not specify any files, the standard input (stdin) is read. Any file named –
specifies the stdin.

“Commands” lists commands that can be entered at page and file breaks.

Options
–c Clears the screen before displaying each new window.

–e Eliminates the (EOF): prompt at the end of each file.

–f Does not fold lines. Usually, lines longer than the screen width, as given by
the environment variable COLUMNS are folded into multiple lines. This
option may be useful for files containing device-specific escape sequences.

–n Executes interactive commands immediately after receiving the command
character. This works for most commands. Usually, you must press <Enter>
for interactive commands.

–p string
Sets the prompt string that appears at the end of each screen of text to
string. The default prompt is a colon (:). If string contains the characters %d,
pg replaces those characters with the current page number as in [Page
%d].

–s Displays all interactive command prompts in standout mode (most often
reverse video) on the screen.

–t Does not save input in a temporary file. Usually, if any of the inputs is not
directly seekable (as is the case for a serial device or pipe), pg reads input
and saves it in a temporary file so that it can be reviewed. Because of this,
you cannot scan backwards when viewing such input. This option is also
recommended when reading a larger amount of data from a stream that
cannot be accommodated on disk.

–screen
Sets the number of lines displayed in each screen to n lines. If you do not
select this option, the number of lines displayed is one less than the
number of lines on the screen as given by the environment variable LINES.
“Commands” discusses the w command.

+line Starts printing at line n of the first file. The default is to start printing at line
1.

+/pattern/
Starts printing at the line containing the first occurrence of the extended
regular expression pattern.

This is described in Appendix C.

Commands
Depending on the options you specify, pg pauses between windows (screenfuls) of
text, at the end of each file and before starting any file after the first. At these
pauses, pg prompts you to enter a command. To read the file, type the command
ENTER (newline or Return) at each prompt.

An optional sign (+ or –) followed by an optional numeric address can precede the
following commands. Addresses work in multiples of screen displays: for example,

pg

454 z/OS V1R4.0 UNIX System Services Command Reference

an address of +2 displays the second next screenful. Usually, an unsigned address
implies direct addressing (measured from the beginning of the file). A signed
address implies relative addressing in the file; a command beginning with a + scans
forward and one beginning with a – scans backward from the current position.

You can edit commands interactively with the standard erase and kill characters.

These are the interactive commands:

h Prints a summary of the interactive commands.

q, Q Exits immediately from pg.

!command
Executes the string command as if it were typed to the default command
interpreter (as in ed). Whether or not you specified the –n option, you must
end this command with a newline.

[[±]n] ENTER, [[±]n] SPACEBAR
Without a specified address, displays the next window of text. With an
address, displays the nth next window of text.

[[±]n]d, [[±]n]CRTL–D
Scrolls a half screen of text. The address is measured in half screenfuls
and defaults to the next half screen.

[[±]n]l With no address, displays the next line of the file. With an address, it
displays a screenful starting at the addressed line.

$ Displays the last screenful of text in the file.

<Ctrl-L>, .
Redisplays the current displayed window of text.

s file Saves the entire contents of the current file in file. Whether or not you
specified the –n option, you must end this command with a newline.

[n] n Displays the first screenful of the next file. The address (n) is actually the
nth next file, counting from the current file. If present, n must be unsigned.

[n] p Displays the first screenful of the previous file. The address (n) is actually
the nth previous file, counting from the current file. If present, n must be
unsigned.

[n] w Scrolls another window of text. The argument, n (which must be unsigned),
sets the window size to n and displays the next window of text.

[i]/pattern/[tmb]
Searches forward within the current file for the ith next occurrence of a line
matching the regular expression pattern (default i is 1, the next matching
pattern). The search starts right after the current window and continues to
the end of the file. Usually, the matching line is displayed at the top of the
window, but this can be changed by an optional character at the end of the
search command. The letter t is the default and displays the line at the top
of the window, m displays it in the middle of the window, and b displays it in
the bottom of the window. When no letter is present, pg uses the last letter
entered (or .t if no letter has been entered). Whether or not you specified
the –n option, you must end this command with a newline.

[i]?pattern?[tmb], [i]^pattern^[tmb]
Is similar to the previous command, but searches backward instead of
forward. The search starts just before the current window.

pg

Chapter 2. Shell Command Descriptions 455

Examples
The following interactive commands illustrate the flexibility of pg. Suppose you enter
the command:
pg –n *.c

and that there are a large number of source files in the current directory:

1 Redisplays the first screenful of the current file.

–4 Goes back 4 windows in the current file and displays a screenful of text.

p Displays the first screenful of the previous file.

10w Sets the screen size to 10 lines.

/Fred/m
Finds the first line containing
Fred

searching forward from the current position in the file, and displays a screen
with that line in the middle of the screen.

Localization
pg uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Unknown command-line option
v Insufficient memory
v Inability to create a temporary file
v Inability to access the terminal
v Missing string after a –p option

Files
pg uses the following file:

$TMPDIR/pg*
Temporary files to allow backward reading. You can specify a different
temporary directory using the TMPDIR environment variable.

Environment Variables
pg uses the following environment variables:
COLUMNS

Contains the width of the screen in columns.
LINES Contains the number of lines on the screen.
TMPDIR

Contains the pathname of the directory where temporary files reside.

pg

456 z/OS V1R4.0 UNIX System Services Command Reference

Portability
X/Open Portability Guide, UNIX System V.

This implementation does not handle doublebyte characters.

The –screen and –+line options are extensions to the XPG standard.

Related Information
alias, ed, head, more, sh, tail, vi

See Appendix C for more information about regexp.

pr — Format a file in paginated form and send it to standard output

Format
pr [–adFfprtW] [–n | –c n | –m] [–e [char][gap]] [–H header-fmt] [–h header]
[–i[char] . [gap]] [–l n] [–n[char] [n]] [–o n] [–s[char]] [–w n] [+n] [file ...]

Description
pr prints the specified files on standard output (stdout) in a paginated form. If you
do not specify any files or if you specify a filename of –, pr reads the standard
input. By default, pr formats the given files into single-column 66-line pages. Each
page has a five-line header. By default, the third line contains the file’s pathname,
the date it was last modified, and the current page number; the other lines are
blank. A five-line trailer consists of blank lines.

If you specify multiple columns, pr places its output in columns of equal width
separated by at least one space, truncating each line to fit in its column. Input lines
can be ordered down the columns or across the page on output; or different
columns can each represent different files.

Options
+n Starts printing with the nth page of each file; that is, skips the first n–1

pages. The default for n is 1.

–n Prints n columns of output. When you specify this option, pr behaves as
though you had also specified the –e and –i options. When you specify
both this option and –t, pr uses the minimum number of lines possible to
display the output. Do not specify this option with the –m option.

–a Orders input lines across the page on output, instead of down. You should
use this option only with –n.

–c n Displays n columns of output. When you specify this option, pr behaves as
though you had also specified the –e and –i options. When you specify
both this option and –t, pr uses the minimum number of lines possible to
display the output. Do not specify this option with –m.

–d Produces double-spaced output.

–e[char][gap]
Expands each occurrence of the input tab character to a string of spaces so
that the following character has the next column position which is a positive
multiple of gap, plus 1. If you do not specify gap, or if it is zero, pr assumes

pg

Chapter 2. Shell Command Descriptions 457

that gap has the value of 8. If you specify the nondigit character char, pr
treats it as the input tab character. Otherwise, pr uses the standard tab
character.

–F Uses form feeds to separate pages. pr normally separates pages by
sending a series of <newline> characters to fill the length of a page.

–f Uses form feeds to separate pages. When output is to a terminal, pr
sounds the bell and waits for you to type a carriage return before displaying
the text. pr normally separates pages by sending a series of <newline>
characters to fill the length of a page.

–H header_fmt
Lets you customize your header line by specifying a format with the string
header_fmt. pr recognizes the following special formatting commands:
%c Date and time
%F Current filename, or header string given by –h
%P Page number
%L Line number
%D Date
%T Time
%u Current user name

The default header format is equivalent to the option:
-H "%c %F Page %P"

–h header
Uses the header string instead of the filename on each succeeding page
header.

–i[char][gap]
Replaces white space with tabs on output. char, if given, is the output tab
character. The default is the tab character. pr sets tabs every gap positions;
the default for gap is 8. If this tab character differs from the input tab
character and the actual data contains this tab character, the result is liable
to be quite a mess.

–l n Sets the number of lines per page of output. The default is 66. The actual
number of lines printed per page is this number less 5 for the header and 5
for the trailer. If n is less than 10 (the number of lines needed for the
header and the trailer), pr displays neither the header nor the trailer.

–m Prints each file in its own column down the page. This overrides the –a
option, forcing the –n option to be the number of files given. When you also
specify the –n option, it gives line numbers for the first column only.

–n[char][n]
Numbers the lines of each file. Each number takes up n positions; the
default for n is 5. The character char separates the number from the line;
this defaults to the tab character. If char is the same as the input tab
character, pr follows the number with the spaces needed to get to the next
tab stop. pr may in turn replace these spaces with the output tab character
if you specified the –i option. For multicolumn output, pr adds line numbers
to each column. The –m option gives the line number for the first column
only.

–o n Offsets each line of output by n character positions.

–p Pauses before the beginning of each page if output is to a terminal device.
pr sounds the bell and waits for a carriage return from the controlling
workstation (not the input files).

pr

458 z/OS V1R4.0 UNIX System Services Command Reference

–r Suppresses error messages due to failures when opening files.

–s[char]
Prints each column at its correct length. The character char separates
columns. The default value for char is the tab character. This character is
never replaced by the output tab character. Normally pr pads each column
with spaces or truncates it to the exact column width. Unless the –w option
is also used, –s resets the page width to 512 column positions.

–t Does not print the headers and trailers, and quits after the last line of the
file—it does not display any extra lines.

–W Folds lines at the column width when you do not specify the –s option; pr
treats each separate part of the line as a separate line.

–w n Sets the width of the page to n column positions. If you do not specify this
option, the default page width is 72 (if you did not specify –s option) or 512
(if you did specify –s). This page width does not normally apply to
single-column output; however, single-column output with the –W option
does use this width.

Files
pr uses the following file:

/dev/tty
For prompting.

Environment Variables
pr uses the following environment variable:

TZ Contains the local time zone. pr uses this value when displaying times in
header lines.

Localization
pr uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Insufficient memory
v Insufficient line width
v Write error on stdout

2 Syntax error or unknown command-line option

Messages
Possible error messages include:

pr

Chapter 2. Shell Command Descriptions 459

Missing header
You specified –h or –H but did not supply a header or header_fmt string.

Width is insufficient
The line is not wide enough to hold the given number of columns with the
given column width; or a column is not wide enough to hold the minimum
amount of data.

Portability
POSIX.2, X/Open Portability Guide.

The –c, –H, –p, and –W options are extensions of the POSIX standard.

In a doublebyte environment, remember that column positions are always based on
the width of characters. A doublebyte character may take up two columns of output
(called a thick character), but a singlebyte character will only take up one column of
output (called a thin character). Specify column widths according to the expected
thickness of characters.

For example, with a column width of 10, then ten thin characters or five thick
characters are displayed.

Related Information
cat, expand, fold, unexpand

Appendix I also explains how to set the local time zone with the TZ environment
variable.

print — Return arguments from the shell

Format
print [–npRrs] [–u[descriptor]] [argument ...]

Description
Calling print without options or with only the – option displays each argument to the
standard output using the same escape conventions as echo. In this case, print
and echo work the same way; see echo.

Options
The options accepted by print increase its utility beyond that of echo.

–n Does not automatically add a new line to the end of the output.

–p Sends output to a coprocess.

–R Is similar to –r, except that print treats all subsequent options (except –n)
as arguments rather than as options.

–r Ignores escape conventions.

–s Appends the output to the command history file rather than sending it to
standard output.

–u[descriptor]
Redirects the output to the file corresponding to the single digit file
descriptor. The default file descriptor is 1.

pr

460 z/OS V1R4.0 UNIX System Services Command Reference

Usage Note
print is a built-in shell command.

Localization
print uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Incorrect descriptor specified with –u
v Nonexistent coprocess

2 Failure due to an incorrect command-line option

Messages
Possible error messages include:

Cannot print on file descriptor ...
You tried to print on a file descriptor that was not opened for writing.

History not available
You specified the –s option to write into a history file, but you are not now
using a history file.

Portability
print is an extension to POSIX.2 and XPG.

Related Information
echo, fc, read, sh

printenv — Display the values of environment variables

Format
printenv [name]

tcsh shell: printenv [name]

Description
The printenv command displays the values of environment variables. If the name
argument is specified, only the value associated with name is printed. If it is not
specified, printenv displays the current environment variables, one name=value pair
per line.

If a name argument is specified but is not defined in the environment variable,
printenv returns exit status 1; otherwise it returns status 0.

print

Chapter 2. Shell Command Descriptions 461

printenv in the tcsh shell
In the tcsh shell, printenv prints the names and values of all environment variables
or, with name, the value of the environment variable named. See “tcsh — Invoke a
C shell” on page 570.

Options
There are no options.

Example
To find the current setting of the HOME environment variable, enter:
printenv HOME

Usage Notes
1. Only one name argument can be specified.

2. printenv SOMENAME is equivalent to echo $SOMENAME for exported
variables.

3. printenv without any arguments is functionally equivalent to env without any
arguments.

Exit Values
0 Successful completion
1 Failure due to one of the following:

v More than one environment variable was specified
v An option was specified (printenv has no options)

Portability
printenv is compatible with the AIX® printenv utility.

Related Information
env, tcsh

printf — Write formatted output

Format
printf format [argument ...]

Description
printf writes the argument operands to standard output, formatted according to the
format operand.

format is a format string composed of conversion specifications that convert and
add the next argument to the output. format can contain backslash-escape
sequences. These conversions are similar to those used by the ANSI C standard.
Conversion specifications have the form:
%[flag][width]
[precision][char]

where flag is one of the following:

− Left-justifies the field; default is right justification.

+ Always prefixes a signed value with a sign (+ or −).

printenv

462 z/OS V1R4.0 UNIX System Services Command Reference

space Reserves a character position at the start of the string for the minus sign
(for negative numbers) or a space (for positive numbers). If both space and
− appear as flags, the space flag is ignored.

Prefixes octal values with 0 and hexadecimal values with 0x or 0X. For
floating-point values, this causes the decimal point always to be displayed
even if no characters follow it.

0 Pads numeric values with leading zeros. If both 0 and − appear as flags,
the 0 flag is ignored.

width is the minimum field width of the output field. If the converted value is shorter
than the minimum width, printf pads it with spaces or zeros.

In a string, precision is the maximum number of bytes to be printed from the string;
in a number, the precision is the number of digits to be printed to right of the
decimal point in a floating-point value. width or precision can be specified as *, in
which case the value is read from the next argument, which must be an integer. For
example:
printf "%*.*d\n" 20 10 200

is equivalent to:
printf "%20.10d\n" 200

The conversion character char is one of the following:
b A string that may contain a backslash-escape sequence. Valid escape

sequences are described in
c Single character of an integer value; the first character of a string.
d Decimal integer.
e,E Floating point (scientific notation).
f,F Floating point.
g,G The shorter of e and f (suppresses nonsignificant zeros).
i Decimal integer.
o Unsigned octal integer.
s String.
u Unsigned decimal integer.
x,X Unsigned hexadecimal integer.

When there are more arguments than positions in format, the format string is
applied again to the remaining arguments. When there are fewer arguments than
there are positions in the format string, printf fills the remaining positions with null
strings (character fields) or zeros (numeric fields).

Caution
The POSIX.2 printf facility (like the C language printf() on which it is based), does
not accommodate doublebyte characters gracefully when using %c conversion, or
either of %b or %s conversions with a specified precision. Use these features
cautiously when you have doublebyte characters in the character set.

In a doublebyte environment, normal backslash-escape characters are handled
correctly—printf shifts state as required—but octal and hexadecimal escape
characters do not change state. This is significant in a shift-lock environment. For
example, if an octal escape character contains the shift-in character, it is the user’s
responsibility to ensure that there is also a shift-out character. Further, an octal or
hexadecimal backslash escape character that comes immediately after a
doublebyte character may or may not be processed in the shifted state.

printf

Chapter 2. Shell Command Descriptions 463

For more information on doublebyte character environments, see “Using the
Doublebyte Character Set (DBCS)” on page 7.

Localization
printf uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_NUMERIC
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

>0 The number of failures due to any of the following:

v Missing format specifications

v Arguments supplied for a format string that does not accept them (that is,
that has no %s)

v Incorrect integer argument

v Incorrect floating-point argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

The %F format and the handling of * as a width or precision argument are
extensions of the POSIX standard.

Related Information
echo, print

ps — Return the status of a process

Format
ps [–Aacdefjlm] [–G idlist] [–g grouplist] [–n name] [–o format] ... [–p proclist] [–s
idlist] [–t termlist] [–U|u uidlist]

Description
ps displays status information about processes, and optionally, the threads running
under each process.

By default, for each process associated with the user’s terminal, ps will display the
process id (PID), TTY, processor time used (TIME), and name of the command
(COMM).

The –a, –A, and –e options can be used to show information associated with all
available or accessible processes on the system. However, these options can only
show information for those processes the user has appropriate privileges to access.

printf

464 z/OS V1R4.0 UNIX System Services Command Reference

The –g, –G, –p, –s, –t, –u, and –U options can be used to select specific
processes by process id, terminal id, and user name.

The –f, –j, and –l options can be used to display additional status fields using
predefined formats. The –o format option allows the user to select specific status
fields and to define the format in which these fields are displayed.

ps will display information for each thread associated with a process when the –m
and/or –o THREAD options are used. Output lines for thread information
immediately follow the output line for the parent process. Since the default behavior
of ps displays process status fields only, to provide meaningful thread output, the
–o option is used to specify thread specific status fields. There are some conditions,
such as when the process is in a terminating or zombie state, where thread data
cannot be captured. In these cases, a single thread output line will be displayed
showing a ? in the thread output fields.

Options
ps accepts several options. When a description says that ps lists “all processes”, it
means all the processes on the system, provided that you have appropriate
privileges.

The fields pcpu, nice, pri, addr, and wchan are unsupported and will always display
a dash.

–A Displays information on all available processes. You can specify –A, –a,
and –e in any combination; however, –a overrides both –A and –e.

–a Displays information on all processes associated with terminals. You can
specify –A, –a, and –e in any combination; however, –a overrides both –A
and –e.

–c Displays more detailed information about processes for the –f and –l
options. –c is accepted but not currently implemented.

–d Displays information for all processes except group leaders.

–e Displays information on all accessible processes. You can specify –A, –a,
and –e in any combination; however, –a overrides both –A and –e.

–f Displays information as if the user specified:
–oruser=UID –opid,ppid,pcpu=C –ostime,tty=TTY –oatime,args=CMD

–G grouplist
Displays information on processes with real group ID numbers in grouplist.
Separate numbers in grouplist with either blanks or commas.

–g idlist
Displays information on processes with process ID numbers in idlist.
Separate the numbers in idlist with either blanks or commas.

–j Displays information as if the user specified:
-o pid,sid,pgid=PGRP -o tty=TTY -o atime,args

–l Displays information as if the user had specified:
–oflags,state,ruid=UID –opid,ppid,pcpu=C –opri,nice,addr,vsz=SZ
–owchan,tty=TTY –oatime,comm=CMD

–m Displays thread status information. Output lines for thread status
immediately follow the output line for the parent process. Process-only
status fields will contain dashes for thread output lines. Since the default
behavior of ps is to display process-only status fields, to provide meaningful

ps

Chapter 2. Shell Command Descriptions 465

thread output, the –o option should be used to specify thread supported
status fields. If –o THREAD is used, –m is assumed.

–n name
Specifies the name of the executable file containing the kernel symbol
table.

–o format
Displays information according to the given format specifications. If –o is
not used, the default format is the same as specifying:
–o pid,tty=TTY –o atime,comm

See “Format Specifications”.

–p proclist
Displays information for processes with process ID numbers in proclist.
Separate numbers in proclist with either blanks or commas.

–s idlist
Displays information for processes with session ID numbers in idlist.
Separate the numbers in idlist with commas.

–t termlist
Displays information for processes with terminals in termlist. You denote
terminals in termlist with either the filename of the device (for example,
tty04). Or, if the filename begins with tty, you can simply specify the
characters following tty. For example, tty04 and 04 both denote the same
terminal. Terminals in termlist are separated by either blanks or commas.

–U userlist
Displays information for processes with user IDs in userlist. Items in userlist
can be user ID numbers or login names, and are separated by commas.

–u userlist
Displays information for processes with user IDs in userlist. Items in userlist
can be user ID numbers or login names, and are separated by commas.

Format Specifications
Using the –o option, the user can define the status fields that will be displayed and
their column headings. If you do not specify the –o option, ps displays the
information as though you specified:
-o pid,tty=TTY -o atime,comm

The format specification is a list of status field names separated with blanks or
commas. However, if the list of names is separated by blanks, the list must be
contained in single quotes. Below you’ll find a list of status field names recognized
by ps.

Multiple –o format specifications can be provided and, in the case where
user-specified column headings are defined, these specifications may be necessary.

The first line of ps output contains column headings for each status field. Each
status field has a default heading which can be overridden by the user by specifying
=newheading after the status field. When a new heading is specified, it must be the
last field given on the –o option. To specify additional fields, it is necessary to use
additional –o statements.

ps

466 z/OS V1R4.0 UNIX System Services Command Reference

For example, if you wish to display the process id (pid), real user name (ruser), and
command name (comm), but change the heading for the real user name from the
default of (RUSER) to WHO, use:
-o pid,ruser=WHO -o comm

An additional –o is required when comm is specified because the last argument must
be user-specified headings (in this case ruser=WHO).

If you specify = with no heading, ps displays that column without a heading. If none
of the columns have a heading, ps displays no heading line.

In a doublebyte locale, user-defined headings may contain multibyte (doublebyte)
characters.

The following list shows the names that ps recognizes. The list is separated into
three groups:

process only
These are fields which only display meaningful data for process output
lines. For thread output lines, a dash is shown in these fields.

thread only
These are fields which only display meaningful data for thread output lines.
For process output lines, a dash is shown in these fields.

processes and threads
These are fields that apply to both processes and threads. For example,
state is meaningful because both processes and threads have a state that
can be determined for them.

At the end of each description, we put the default column heading inside square
brackets.

Process Only

addr Displays the address of the process. This field is currently not supported
and will display a dash. [ADDR]

args Displays the command that is running, with all its arguments. [COMMAND]

atime Displays the amount of processor time that the process has used since it
began running. Time is displayed in the format xx:yy where xx:yy can be
days:hours, hours:minutes, or minutes:seconds depending on the amount of
processor time used. For days:hours there is ″d″ displayed after the xx and
for hours:minutes, there is an ″h″ displayed. [TIME]

comm Displays the name of the command that is running without its arguments.
This string is padded on the right if necessary. [COMMAND]

etime Displays the amount of real time that has elapsed since the process began
running. ps shows the time in the form:
[[dd]hh]mmss

where dd is the number of days, hh is the number of hours, mm is the
number of minutes, and ss is the number of seconds. [ELAPSED]

gid Displays the effective group ID of the process. [EGID]

group Displays the effective group ID of the process, as a group name if possible
and as a decimal group ID if not. [GROUP]

ps

Chapter 2. Shell Command Descriptions 467

jobname
Displays the z/OS jobname. [JOBNAME]

nice Displays the nice value (urgency) of the process as a decimal value. This
field is currently not supported and will display a dash. [NI]

pcpu Displays a percentage value giving the ratio of processor time used to
processor time available. This field is currently not supported and will
display a dash. [%CPU]

pgid Displays the process group ID as a decimal value. [PGID]

pid Displays the process ID as a decimal value. Decimal pids are reported with
default actions. [XPID]

ppid Displays the parent process ID as a decimal value. [PPID]

pri Displays the process priority. This field is currently not supported and will
display a dash. [PRI]

rgid Displays the real group ID of the process. [GID]

rgroup Displays the real group ID of the process, as a group name if possible and
as a decimal group ID if not. [RGROUP]

ruid Displays the real user ID of the process. [UID]

ruser Displays the real user ID of the process, as a user name if possible and as
a decimal user ID otherwise. [RUSER]

sid Displays the session ID of the process. [SID]

stime Displays the start time of the process. [STIME]

thdcnt Displays the total number of threads. [THCNT]

time Displays the amount of processor time that the process has used since it
began running. ps displays this time in form similar to that used by etime.
[TIME]

tty Displays the name of the controlling terminal (if any). [TT]

uid Displays the effective user ID of the process. [EUID]

user Displays the effective user ID of the process, as a user name if possible
and as a decimal user ID otherwise. [USER]

vsz Displays the amount of (virtual) memory that the process is using, as a
decimal number of kilobytes. [VSZ]

wchan Displays the channel upon which the process is waiting. This field is
currently not supported and will display a dash. [WCHAN]

xasid Displays the address space id as a hexadecimal value (Note: a non-hex
asid is not supported). [ASID]

xpgid Displays the process group ID as a hexadecimal value. [XPGID]

xpid Displays the process ID as a hexadecimal value. [XPID]

xppid Displays the parent process ID as a hexadecimal value. [XPPID]

Thread Only:

lpid Displays the latch pad waited for. [lpid]

lsyscall
Displays the last five syscalls. This is a 20 character string consisting of five

ps

468 z/OS V1R4.0 UNIX System Services Command Reference

four character syscalls with no delimiting characters between them. From
left-to-right the syscalls are ordered from most recent to oldest. In the
following example of lsyscall output, 1WAT is the most recent syscall:
1WAT1SPM1SPM1SPM1TSP. [LASTSYSC]

semnum Displays the semaphore number of the semaphore the thread is in a wait
state for. (Note: a semaphore number is only available when the thread is in
a semaphore wait state (state field value equals d), otherwise, a dash will
be displayed). [SNUM]

semval Displays the semaphore value of the semaphore the thread is in a wait
state for. (Note: a semaphore value is only available when the thread is in a
semaphore wait state (state field value equals D), otherwise, a dash will be
displayed). [SVAL]

sigmask
Displays the signal pending mask as a hexidecimal value. [SIGMASK]

syscall
Displays the current syscall (for example, 1frk for fork). [SYSC]

tagdata
Displays the tag assigned to the thread using pthread_tag_np(). If a tag
was not assigned, a dash will be displayed. [TAGDATA]

wtime Displays waiting time in the form fflffldd″hh″mm:ssffl.xx″ where dd is the
number of days, hh is the number of hours, mm is the number of minutes,
and ss is the number of seconds. [WTIME]

xtcbaddr
Displays the tcb address as a hexidecimal value. A non-hex tcb address is
not supported. [TCBADDR]

xstid Displays the short thread id as a hexidecimal value. This is the low order
word (the sequential value) of the thread id. A non-hex short thread ID is
not supported. [STID]

xtid Displays thread id as a hexidecimal value. A non-hex thread ID is not
supported. [TID]

Processes and Threads:

flags Displays the state field values using a hexadecimal representation. flags is
the four byte value determined when a bit is set to one for each
corresponding state that is active. Below is the state-to-state bit mapping for
the currently defined state values:
Byte 0 1 2 3
Bits 11111111 11111111 11111111 11010000

-------- -------- -------- --------
state ABCDEFG JK NO RS UVWX YZ 1

For example, if a thread or process had a state field value of 1W, then the
following bits would be set:
Byte 0 1 2 3
Bits 00000000 00000000 00000010 00010000

-------- -------- -------- --------
state

Which when represented as a hexadecimal value would be 210.[F]

state Displays the process state. [STATE] Various values can be printed in this
field:

ps

Chapter 2. Shell Command Descriptions 469

1 A single task using assembler callable services.
A Message queue receive wait.
B Message queue send wait.
C Communication system kernel wait.
D Semaphore operation wait.
E Quiesce frozen.
F File system kernel wait.
G MVS Pause wait.
H One or more pthread created tasks (implies M as well).
I Swapped out.
J Pthread created.
K Other kernel wait (for example, pause or sigsuspend).
L Canceled, parent has performed wait, and still session or process

group leader.
M Multi-thread.
N Medium weight thread.
O Asynchronous thread.
P Ptrace kernel wait.
R Running (not kernel wait).
S Sleeping.
T Stopped.
U Initial process thread.
V Thread is detached.
W Waiting for a child (wait or waitpid function is running).
X Creating a new process (fork function is running).
Y MVS wait.
Z Canceled and parent has not performed wait (Z for zombie).

THREAD THREAD [THREAD] is a synonym for specifying the following fields:
-m -o ruser=UID -o pid,ppid,xstid,state=STATE -o atime,syscall,args=CMD

The following is an example of how this output will appear:
UID PID PPID STID STATE TIME SYSC CMD

WELLIE8 67108867 15099496 - 1W 0:25 - sh -L
- - - 00000002 W 0:17 1WAT -

WELLIE8 1073741830 67108867 - 1Y 0:00 - ./ps -o THREAD
- - - 00000000 Y 0:00 1GTH -

Environment Variables
ps uses the following environment variable:

COLUMNS
Contains the maximum number of columns to display on one line.

Localization
ps uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F for more information.

ps

470 z/OS V1R4.0 UNIX System Services Command Reference

||

||
|

||

||

Exit Values
0 Successful completion
1 Failure due to the inability to open the process table
2 Failure due to any of the following:

v Unknown command-line option
v Missing format string after –o
v Missing lists after other options
v Too many arguments on the command line

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide.

The –c, –d, –e, –f, –g, –j, –l, –m, –n, –s, and –u options are extensions of the
POSIX standard.

Related Information
jobs, kill

pwd — Return the working directory name

Format
pwd

Description
pwd displays the absolute pathname of the working directory to standard output.

If the current working directory is a symbolic link to another directory, the pathname
displayed depends on the setting of the shell’s logical flag. See set for more
information.

Usage Note
pwd is a built-in shell command and is also a separate utility.

Localization
pwd uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Inability to determine the working directory

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
set, sh

ps

Chapter 2. Shell Command Descriptions 471

r — Process a command history list

Format
r [old=new] [specifier]

Description
r is an alias for fc –s. Like fc –s, r reenters exactly one command without going
through an editor. If a command specifier is given, r selects the command to
reenter; otherwise, r uses the last command entered. To perform a simple
substitution on the command before reentry, use a parameter of the form old=new.
The string new replaces the first occurence of string old. r displays the (possibly
modified) command before reentering it.

See “fc — Process a command history list” on page 255 for more information.

Related Information
fc, history, sh

read — Read a line from standard input

Format
read [–prs] [–u[d]] [variable?prompt] [variable ...]

Description
When you call read without options, it reads one line from the standard input,
breaks the line into fields, and assigns the fields to each variable in order.

To determine where to break the line into fields, read uses the built-in variable IFS
(which stands for internal field separator). Encountering any of the characters in IFS
means the end of one field and the beginning of the next. The default value of IFS
is blank, tab, and newline.

In general, a single IFS character marks the end of one field and the beginning of
the next. For example, if IFS is colon (:), read considers the input a::b to have
three fields: a, an empty field, and b. However, if IFS contains blanks, tabs or
escaped newlines, read considers a sequence of multiple blanks, tabs, or escaped
newlines to be a single field separator. For example, "a b" has two fields, even
though there are several blanks between the a and b.

The nth variable in the command line is assigned the nth field. If there are more
input fields than there are variables, the last variable is assigned all the unassigned
fields. If there are more variables than fields, the extra variables are assigned the
null string ("").

The environment variable REPLY is assigned the input when no variables are
given. The exit status of read is 0, unless it encounters the end of the file.

Options
–p Receives input from a coprocess.

r

472 z/OS V1R4.0 UNIX System Services Command Reference

–r Treats input as raw data, ignoring escape conventions. For example, read
–r does not interpret a final backslash (\) as a line continuation character,
but as part of the input.

–s Adds input to the command history file as well as to the variables specified
with variable.

–u[d] Reads input from the single-digit file descriptor d, rather than from the
standard input. The default file descriptor is 0.

When the first variable parameter has the form:
variable?prompt

it defines a prompt for input. If the shell is interactive, read sends the prompt to the
file descriptor d if it is open for write and is a terminal device. The default file
descriptor for the prompt is 2.

Examples
IFS=’:’
while read name junk junk1 junk2 junk3
do

echo $name
done </samples/comics.lst

provides a list of comic names from the sample comics.lst file.

Environment Variables
read uses the following environment variables:

IFS Contains a string of characters to be used as internal field separators.

PS2 Contains the prompt string that an interactive shell uses when it reads a
line ending with a backslash and you did not specify the –r option, or if a
here-document is not terminated after you enter a newline.

REPLY
Contains the input (including separators) if you did not specify any
variables. The ability of omitting the variable from the command and using
the environment variable REPLY is an extension.

Localization
read uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
read is a built-in shell command.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v End-of-file on input
v Incorrect variable

read

Chapter 2. Shell Command Descriptions 473

v Incorrect descriptor specified after –u
v Missing coprocess

2 Incorrect command-line argument

Messages
Possible error messages include:

Cannot read on file descriptor ...
You tried to read a file descriptor that was not opened for reading.

Portability
POSIX.2, X/Open Portability Guide.

The –p, –s, and –u options are extensions of the POSIX :epsc. standard.

Related Information
continue, fc, print, sh

readonly — Mark a variable as read-only

Format
readonly [–p] [name[=value] ...]

Description
readonly prevents subsequent changes in the value of any of the name arguments.
Parameters of the form:
name=value

assign value to name as well as marking name read-only. If readonly is called
without arguments, it lists, with appropriate quoting, the names you have set as
read-only in the following format:
Variable="value"

Options
–p Displays export name=value pairs that, when read by a shell, ensures the

read-only status and values of variables. The shell formats the output so it
is suitable for reentry to the shell as commands that achieve the same
attribute-setting results.

Because it is not possible to change a read-only variable, you cannot
source the output unless you go to a new shell.

Usage Note
readonly is a special built-in shell command.

Localization
readonly uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

read

474 z/OS V1R4.0 UNIX System Services Command Reference

See Appendix F for more information.

Exit Values
0 Successful completion
1 An attempt to give read-only status to a variable that is already read-only
2 Failure due to incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide.

The behavior given for calling readonly with no arguments is an extension of the
POSIX standard.

Related Information
alias, sh, typeset

renice — Change priorities of a running process

Format
renice [–n increment] [–g|–p –u] ID ...
renice priority [–p] pid ... [–g pgrp ...] [–p pid ...] [–u user ...]
renice priority –g pgrp ... [–g pgrp ...] [–p pid ...] [–u user ...]
renice priority –u user ... [–g pgrp ...] [–p pid ...] [–u user ...]

Description
renice changes the priority of one or more running processes. Normal users can
change only the priority of processes that have the same real or effective user ID
as the real or effective user ID of the process that calls renice. Privileged users can
set the priority of any process.

You can specify the new priority as a decimal integer, with higher values indicating
more urgent priority. The range of priorities is site-specific, and you may require
appropriate privileges for some priority values.

When you change the priority of a process group, the priority of all processes in
that group are changed.

If the string -- appears in the arguments, renice does not interpret it as the end of
command-line arguments. This is an exception to the usual POSIX syntax rules.

Options
–g Treats all following IDs (or just pgrps in the obsolescent versions) as

process group IDs.

–n increment
Adjusts the system scheduling priority of the specified processes by
increment. Positive increments lower the priority while negative increments
result in a higher priority.

Note: Negative increments may require appropriate privileges.

–p Treats all following IDs (or just pids in the obsolescent versions) as process
IDs.

readonly

Chapter 2. Shell Command Descriptions 475

–u Treats all following IDs (or just users in the obsolescent versions) as either
user names or numeric user IDs.

priority A number that indicates an absolute priority value (higher numbers reflect
higher priorities).

If no –p, –g, or –u option appears on the command line, renice assumes –p.

Localization
renice uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to one of the following:
v Incorrect command-line argument
v The wrong number of command-line arguments
v A priority that is outside the range
v An incorrect priority argument
v An incorrect ID argument
v Missing arguments following one of the options

2 Failure because the system does not recognize the ID in a –u option

Portability
POSIX.2 User Portability Extension, UNIX systems.

POSIX considers all but the first form of the renice command to be obsolescent.

Related Information
nice

return — Return from a shell function or . (dot) script

Format
return [expression]

Description
return returns from a shell function or . (dot) script. The exit status is the value of
expression. The default value of expression is the exit status of the last command
run.

Usage Note
return is a special built-in shell command.

renice

476 z/OS V1R4.0 UNIX System Services Command Reference

Localization
renice uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
The current function or script returns the value of expression. If no expression is
given, the exit status is the exit status of the last command run.

Portability
POSIX.2, X/Open Portability Guide.

Related Information
exit, sh

rlogind — Validate rlogin requests

Format
rlogind [–a] [–d] [–l] [–L] [–m] [–n]

Description
The rlogind program is the server for the remote login command rlogin commonly
found on UNIX systems. It validates the remote login request and verifies the
password of the target user. It starts an z/OS shell for the user and handles
translation between ASCII and EBCDIC code pages as data flows between the
workstation and the shell.

The rlogind program is given control via an execl() issued by the inetd daemon.

Note
rlogind should always be invoked from inetd through the /etc/inetd.conf file.
It should not be invoked from the shell. inetd sets up certain files and sockets
needed by rlogind. Invoking rlogind directly gives unpredictable results.

Options
–a Specifies that the requester’s Internet address be checked against the local

gethostbyname() file. This option has no effect because the rlogin program
never uses the .rhosts file for authentication.

–d Specifies that the debugging option be enabled. Informational messages on
the rlogin process is written to the system log.

–l Specifies that the .rhosts file for authentication not be used. This option
has no effect because the rlogin program never uses the .rhosts file for
authentication.

–L Allows the calling of an ruserok exit that lives in /usr/sbin. A return code

return

Chapter 2. Shell Command Descriptions 477

|

||

zero will allow bypassing of password checking. The installation is
responsible for providing the ruserok exit.

Note: IBM does not recommend using this capability. Using this capability
may open security holes, allowing unauthorized users to access and
modify files and MVS data sets. Even with the most rigorous
checking in the ruserok exit, it is important to keep in mind the
well-known IP spoofing attacks that make it impossible to accurately
idenfity the remote user’s identity.

IBM recommends that the -L flag not be specified. IBM will not
accept APARS for security problems resulting from the use of this
facility.

When the -L flag is specified, /usr/sbin/ruserok is called, passing:

v the name of the progrem, /usr/sbin/ruserok

v ″hostname″ or ″hostname.domainname″ of the client

v a superuser flag, an integer set to 1 if the user wants to be superuser

v client user name, the username on the client system

v server user name, the username on this (server’s) system

If the ruserok program exits with a zero return value, the user is allowed to
login. Otherwise, normal password checking will be done.

Note: If the facility class is active, and the bpx.daemon is defined, then
both inetd’s and rlogind’s usernames must be permitted to
bpx.daemon and the ruserok program (as well as inetd and rlogind)
must be marked program controlled.

–m Specifies that multiprocessing support in the user’s address space be
enabled. Using the –m option uses fewer system resources and provides
faster performance for the end user.

If you do not specify –m, each rlogin request causes two MVS address
spaces to be consumed. The first address space is the rlogind code, which
provides the user connection to the socket, and the second is the user’s
shell. In this mode, all shell functions behave in a manner conformant to the
standards.

If you specify –m, the rlogin process and the shell process share the same
address space using z/OS UNIX System Services support for multiple
processes in an address space. Using –m has the potential of doubling the
number of users supported via rlogin.

Note: If you issued rlogind with the –m option, the shell process cannot
execute a setuid program that replaces the shell. This causes
functions like newgrp to fail. In this situation, you may want to create
a secondary shell that runs in its own address space.

–n Specifies that the transport-level keep-alive messages be disabled. The
messages are enabled by default.

Usage Notes
1. The rlogind program normally translates all error and warning messages to

ASCII and then sends them to the originating terminal.

rlogind

478 z/OS V1R4.0 UNIX System Services Command Reference

|
|

|
|
|
|
|
|

|
|
|
|

|

|

|

|

|

|
|

|
|
|
|

However, when the C runtime library writes error messages, the rlogind
program cannot intercept them to translate the messages to ASCII. Therefore,
these messages are written to the file /tmp/rlogind.stderr or
/tmp/rlogind2.stderr.

These two files must be predefined in /tmp, and owned by the superuser (UID
0). The files should have permissions of rw–rw–rw or rw––w––w–. In addition,
the sticky bit must be set for the /tmp directory so that these files (and other
files in /tmp) cannot be removed except by the files’ owners or the superuser.

2. rlogind is not affected by the locale information specified in locale-related
environment variables.

Related Information
inetd

rm — Remove a directory entry

Format
rm [–fiRrv] file ...

Description
rm removes files (provided that it is a valid pathname). If you specify either . or ..
as the final component of the pathname for a file, rm displays an error message
and goes to the next file. If a file does not have write permission set, rm asks you if
you are sure you want to delete the file; type the yes expression defined in
LC_MESSAGES (the English expression is typically y or yes) if you really want it
deleted.

Note: A file can be removed by any user who has write permission to the directory
containing the file, unless that directory has its sticky bit turned on. If the file
is in a directory whose sticky bit is turned on, only the file owner, the owner
of the directory, or a superuser can remove the file.

Options
–f Deletes read-only files immediately without asking for confirmation. When

you specify this option and a file does not exist, rm does not display an
error message and does not modify the exit status. If you specify both –f
and –i, rm uses the option that appears last on the command line. If no
files are specified, rm –f will not issue an error.

–i Prompts you for confirmation before deleting each file. If you specify both –f
and –i, rm uses the option that appears last on the command line.

–R Recursively removes the entire directory structure if file is a directory.

–r Is equivalent to –R.

–v Displays a list of files that were removed.

Localization
rm uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE

rlogind

Chapter 2. Shell Command Descriptions 479

v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to remove a file
v Attempt to remove directory without specifying –r or –R
v Inability to find file information when using –r or –R
v Inability to read directory when using –r or –R

2 Failure due to any of the following:
v Incorrect command-line option
v No file was specified

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
cp, mv, rmdir

rmdir — Remove a directory

Format
rmdir [–p] directory ...

Description
rmdir removes each requested directory. Each directory must be empty for rmdir to
be successful.

Options
–p Removes all intermediate components. For example:

rmdir -p abc/def/ghi

is equivalent to:
rmdir abc/def/ghi
rmdir abc/def
rmdir abc

Localization
rmdir uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

rm

480 z/OS V1R4.0 UNIX System Services Command Reference

Exit Values
0 Successful completion
1 Failure because directory is not a directory, or because it still contains files

or subdirectories
2 Failure because of an incorrect command-line option, or no directory names

specified

Messages
Possible error messages include:

Nonempty directory
Files or other directories are found under the directory to be removed. Use
rm –r to remove the directory.

No such directory
The requested directory does not exist or is otherwise inaccessible.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
mkdir, rm

runcat — Pipe output from mkcatdefs to gencat

Format
runcat CatalogName SourceFile [CatalogFile]

Description
runcat invokes the mkcatdefs command and pipes the message catalog source
data (the output from mkcatdefs) to the gencat utility.

The file specified by the SourceFile parameter contains the message text with your
symbolic identifiers. The Created by ActiveSystems 10/25/96 Entity not defined.
program uses the CatalogName parameter to generate the name of the symbolic
definition file by adding .h to the end of the CatalogName value, and to generate
the symbolic name for the catalog file by adding MF_ to the beginning of the
CatalogName value. The definition file must be included in your application
program. The symbolic name for the catalog file can be used in the library functions
(such as the catopen subroutine). SourceFile cannot be stdin.

The CatalogFile parameter is the name of the catalog file created by the gencat
command. If you do not specify this parameter, the gencat command names the
catalog file by adding .cat to the end of the CatalogName value. This filename can
also be used in the catopen subroutine.

Examples
To generate a catalog named test.cat from the message source file test.msg,
enter:
runcat test test.msg

rmdir

Chapter 2. Shell Command Descriptions 481

Related Information
dspcat, dspmsg, gencat, mkcatdefs

sed — Start the sed noninteractive stream editor

Format
sed [–En] [script] [file ...]
sed [–En] [–e script] [–f scriptfile] [file ...]

Description
The sed command applies a set of editing subcommands contained in script to
each argument input file.

If more than one file is specified, they are concatenated and treated as a single
large file. script is the arguments of all –e and –f options and the contents of all
scriptfiles. You can specify multiple –e and –f options; commands are added to
script in the order specified.

If you did not specify file, sed reads the standard input.

sed reads each input line into a special area known as the pattern buffer. Certain
subcommands [gGhHx] use a second area called the hold buffer. By default, after
each pass through the script, sed writes the final contents of the pattern buffer to
the standard output.

Options
–E Uses extended regular expressions. Normally, sed uses basic regular

expressions. For more information, see Appendix C.

–e script
Adds the editing subcommands script to the end of the script.

–f scriptfile
Adds the subcommands in the file scriptfile (one command per line) to the
end of the script.

–n Suppresses all output except that generated by explicit subcommands in
the sed script [acilnpPr]

If you need only one script argument, you can omit the –e and use the first form of
the command.

sed subcommands are similar to those of the interactive text editor ed, except that
sed subcommands necessarily view the input text as a stream rather than as a
directly addressable file.

Each line of a sed script contains up to two addresses, a single letter command,
possible command modifiers, and a terminating newline. The newline is optional in
script strings typed on the command line.
[addr[,addr]]. command [modifiers]

runcat

482 z/OS V1R4.0 UNIX System Services Command Reference

Subcommands
sed subcommands necessarily view the input text as a stream rather than as a
directly addressable file. Script subcommands can begin with zero, one, or two
addresses, as in ed.

v Zero-address subcommands refer to every input line.

v One-address subcommands select only those lines matching that address.

v Two-address subcommands select those input line ranges starting with a match
on the first address up to an input line matching the second address, inclusive.

Permissible addressing constructions are:

n The number n matches only the nth input line.

$ This address matches the last input line.

/regexp/
This address selects an input line matching the specified regular expression
regexp. If you do not want to use slash (/) characters around the regular
expression, use a different character but put a backslash (\) before the first
one. For example, if you want to use % to enclose the regular expression,
write \%regexp%.

Each line of a script contains up to two addresses, a single-letter subcommand,
possible subcommand modifiers, and an ending newline. The newline is optional in
script strings entered on the command line.

The following sed subcommand summary shows the subcommands with the
maximum number of legitimate addresses. A subcommand can be given fewer than
the number of addresses specified, but not more.

aa\ Appends subsequent text lines from the script to the standard output. sed
writes the text after completing all other script operations for that line and
before reading the next record. Text lines are ended by the first line that
does not end with a backslash (\). sed does not treat the \ characters on
the end of lines as part of the text.

a,bb [label]
Branches to :label. If you omit label, sed branches to the end of the script.

a,bc\ Changes the addressed lines by deleting the contents of the pattern buffer
(input line) and sending subsequent text (similar to the a command) to the
standard output. When you specify two addresses, sed delays text output
until the final line in the range of addresses; otherwise, the behavior would
surprise many users. The rest of the script is skipped for each addressed
line except the last.

a,bd Deletes the contents of the pattern buffer (input line) and restarts the script
with the next input line.

a,bD Deletes the pattern buffer only up to and including the first newline. Then it
restarts the script from the beginning and applies it to the text left in the
pattern buffer.

a,bg Grabs a copy of the text in the hold buffer and places it in the pattern
buffer, overwriting the original contents.

a,bG Grabs a copy of the text in the hold buffer and appends it to the end of the
pattern buffer after appending a newline.

sed

Chapter 2. Shell Command Descriptions 483

a,bh Holds a copy of the text in the pattern buffer by placing it in the hold buffer,
overwriting its original contents.

a,bH Holds a copy of the text in the pattern buffer by appending it to the end of
the hold buffer after appending a newline.

ai\ Inserts text. This subcommand is similar to the a subcommand, except that
its text is output immediately.

a,bl Lists the pattern buffer (input line) to the standard output so that
nonprintable characters are visible. The end-of-line is represented by $, and
the characters \\, \a, \b, \f, \r, \t, and \v are printed as escape sequences.
Each byte of a nonprintable doublebyte character appears as an escape
sequence or as a 3-digit octal number. This subcommand is analogous to
the l subcommand in ed.

sed folds long lines to suit the output device, indicating the point of folding
with a backslash (\).

a,bn Prints the pattern space on standard output if the default printing of the
pattern space is not suppressed (because of the -n option). The next line of
input is then read, and the processing of the line continues from the
location of the n command in the script.

a,bN Appends the next line of input to the end of the pattern buffer, using a new
line to separate the appended material from the original. The current line
number changes.

a,bp Prints the text in the pattern buffer to the standard output. The –n option
does not disable this form of output. If you do not use –n, the pattern buffer
is printed twice.

a,bP Operates like the p subcommand, except that it prints the text in the pattern
buffer only up to and including the first newline character.

aq Quits sed, skipping the rest of the script and reading no more input lines.

ar file Reads text from file and writes it to the standard output before reading the
next input line. The timing of this operation is the same as for the a
subcommand. If file does not exist or cannot be read, sed treats it as an
empty file.

a,bs/reg/ sub/[gpn] [wfile]
Substitutes the new text string sub for text matching the regular expression,
reg. Normally, the s subcommand replaces only the first such matching
string in each input line. You can use any single printable character other
than space or newline instead of the slash (/) to delimit reg and sub. The
delimiter itself may appear as a literal character in reg or sub if you precede
it with a backslash (\). You can omit the trailing delimiter.

If an ampersand (&) appears in sub, sed replaces it with the string
matching reg. For more information, see Appendix C. A \n in reg matches
an embedded newline in the pattern buffer (resulting,for example, from an N
subcommand). The subcommand can be followed by a combination of the
following:

n Substitutes only the nth occurrence of regexp.

g Replaces all nonoverlapping occurrences of regexp rather than the
default first occurrence.

p Executes the print (p) subcommand only if a successful substitution
occurs.

sed

484 z/OS V1R4.0 UNIX System Services Command Reference

w file Writes the contents of the pattern buffer to the end of file, if a
substitution occurs.

a,bt [label]
Branches to the indicated label if a successful substitution has occurred
since either reading the last input line or running the last t subcommand. If
you do not specify label, sed branches to the end of the script.

a,bw file
Writes the text in the pattern buffer to the end of file.

a,bx Exchanges the text in the hold buffer with that in the pattern buffer.

a,by/set1/set2/
Transliterates any input character occurring in set1 to the corresponding
element of set2. The sets must be the same length. You can use any
character other than backslash or newline instead of the slash to delimit the
strings.

a,b{ Groups all commands until the next matching } subcommand, so that sed
runs the entire group only if the { subcommand is selected by its
address(es).

:label Designates a label, which can be the destination of a bor t subcommand.

a,b!cmd
Runs the specified cmd only if the addresses do not select the !
subcommand.

Treats the script line as a comment unless it is the first line in the script.
Including the first line in a script as #n is equivalent to specifying –n on the
command line. An empty script line is also treated as a comment.

a= Writes the decimal value of the current line number to the standard output.

Example
This filter switches desserts in a menu:
sed ’s/cake\(ic\)*/cookies/g’

Environment Variable
sed uses the following environment variable:

COLUMNS
Contains the width of the screen in columns. If set, sed uses this value to
fold long lines on output. Otherwise, sed uses a default screen width of 80.

Localization
sed uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

sed

Chapter 2. Shell Command Descriptions 485

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Missing script
v Too many script arguments
v Too few arguments
v Unknown option
v Inability to open script file
v No noncomment subcommand
v Label not found in script
v Unknown subcommand
v Nesting ! subcommand not permitted
v No \ at end of subcommand
v End-of-file in subcommand
v No label in subcommand
v Badly formed filename
v Inability to open file
v Insufficient memory to compile subcommand
v Bad regular expression delimiter
v No remembered regular expression
v Regular expression error
v Insufficient memory for buffers
v y subcommand not followed by a printable character as separator
v The strings are not the same length
v Nonmatching { and } subcommands
v Garbage after command
v Too many addresses for command
v Newline or end-of-file found in pattern
v Input line too long
v Pattern space overflow during G subcommand
v Hold space overflow during H subcommand
v Inability to chain subcommand

Messages
The error messages are output only if h or H subcommands are used after sed
outputs ?. Possible error messages include:

badly formed filename for command command
The given subcommand required a filename, but its operand did not have
the syntax of a filename.

Cannot nest ! command
A ! subcommand cannot contain a ! subcommand of its own.

subcommand command needs a label
The specified subcommand required a label, but you did not supply one.

must have at least one (noncomment) command
The input to sed must contain at least one active subcommand (that is, a
subcommand that is not a comment).

No remembered regular expression
You issued a subcommand that tried to use a remembered regular
expression—for example, s//abc. However, there is no remembered regular
expression yet. To correct this, change the subcommand to use an explicit
regular expression.

sed

486 z/OS V1R4.0 UNIX System Services Command Reference

Limits
sed allows a limit of 1024 bytes per line and 28 000 lines per file. It does not allow
the NUL character. The maximum length of a global command is 256 characters,
including newlines.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –E option is an extension of the POSIX standard and is unique to this version
of sed.

Related Information
awk, diff, ed, grep, vi

See Appendix C for more information about regexp.

set — Set or unset command options and positional parameters

Format
set [±abCefhiKkLmnPpstuvx–] [±o[flag]] [±Aname][parameter ...]

tcsh shell:

1. set [-r]
2. set [-r] name ...
3. set [-r] name=word ...
4. set [-r] [-f|-l] name=(wordlist) ...
5. set name[index]=word ...

Description
Calling set without arguments displays the names and values of all shell variables,
sorted by name, in the following format:
Variable="value"

The quoting allows the output to be reinput to the shell using the built-in command
eval. Arguments of the form –option set each shell flag specified as an option.
Similarly, arguments of the form +option turn off each of the shell flags specified as
an option. (Contrary to what you might expect, – means on, and + means off.)

Note: All of the set options except ±A, –s, –, and –– are shell flags. Shell flags can
also be set on the sh command line at invocation.

set in the tcsh shell
tcsh shell: See format section above to view the forms described below.

1. The first form of the command prints the value of all shell variables. Variables
which contain more than a single word print as a parenthesized word list.

Variables which are read-only will only be displayed by using the -r option. For
forms 2, 3 and 4, if -r is specified, the value is set to read-only.

2. The second form sets name to the null string.

3. The third form sets name to the single word.

sed

Chapter 2. Shell Command Descriptions 487

4. The fourth form sets name to the list of words in wordlist. In all cases the value
is command and filename expanded. If -f or -l is specified, set only unique
words keeping their order. -f prefers the first occurrence of a word, and -l the
last.

5. The fifth form sets the index’th component of name to word; this component
must already exist.

These arguments can be repeated to set and/or make read-only multiple variables
in a single set command. However, variable expansion happens for all arguments
before any setting occurs. Also, ’=’ can be adjacent to both name and word or
separated from both by whitespace, but cannot be adjacent to only one or the other.
For example:
set -r name=word and set -r name = word

are allowed, but
set -r name= word and set -r name =word

are not allowed.

See “tcsh — Invoke a C shell” on page 570.

Options
–a Sets all subsequently defined variables for export.

–b Notifies you when background jobs finish running.

–C Prevents the output redirection operator > from overwriting an existing file.
Use the alternate operator >| to force an overwrite.

–e Tells a noninteractive shell to execute the ERR trap and then exit. This flag
is disabled when reading profiles.

–f Disables pathname generation.

–h Makes all commands use tracked aliases.

See page 505 for an explanation of tracked aliases.)

–i Makes the shell interactive.

–K Tells the shell to use KornShell-compatible behavior in any case where the
POSIX.2 behavior is different from the behavior specified by the KornShell.
For more details, see the let and trap command descriptions.

–k Allows assignment parameters anywhere on the command line and still
includes them in the environment of the command.

–L Makes the shell a login shell. Setting this flag is effective only at shell
invocation.

–m Runs each background job in a separate process group and reports on
each as they complete.

–n Tells a noninteractive shell to read commands but not run them.

–o flag
Sets a shell flag. If you do not specify flag, this option lists all shell flags
that are currently set. flag can be one of the following:

allexport
Is the same as the –a option.

set

488 z/OS V1R4.0 UNIX System Services Command Reference

errexit
Is the same as the –e option.

bgnice
Runs background jobs at a lower priority.

emacs
Specifies emacs- style inline editor for command entry. See shedit
for information about the emacsediting mode.

gmacs
Specifies gmacs- style inline editor for command entry. See shedit
for information about the gmacs editing mode.

ignoreeof
Tells the shell not to exit when an end-of-file character is entered.

interactive
Is the same as the –i option.

keyword
Is the same as the –k option.

korn Is the same as the –K option.

logical
Specifies that cd, pwd and the PWD variable use logical
pathnames in directories with symbolic links. If this flag is not set,
these built-ins and PWD use physical directory pathnames. For
example, assume /usr/spool is a symbolic link to /var/spool, and
that it is your current directory. If logical is not set, PWD has the
value /var/spool, and cd changes the current directory to /var. If
logical is set, PWD has the value /usr/spool and cd changes the
current directory to /usr.

login Is the same as the –L option of sh.

markdirs
Adds a trailing slash (/) to filename-generated directories.

monitor
Is the same as the –m option.

noclobber
Is the same as the –C option.

noexec
Is the same as the –n option.

noglob
Is the same as the –f option.

nolog Does not record function definitions in the history file.

notify Is the same as the –b option.

nounset
Is the same as the –u option.

pipecurrent
Is the same as the –P option.

privileged
Is the same as the –p option.

set

Chapter 2. Shell Command Descriptions 489

trackall
Is the same as the –h option.

verbose
Is the same as the –v option.

xtrace Is the same as the –x option.

vi Specifies vi- style inline editor. See shedit for information about the
viediting mode.

warnstopped
Tells the shell to issue a warning, but not to exit, when there are
stopped jobs.

–p Resets the PATH variable to the default value, disables processing of
$HOME/.profile, and ignores the value of the ENV variable.

–s Sorts the positional parameters.

–t Exits after reading and running one command.

–u Tells the shell to issue an error message if an unset parameter is used in a
substitution.

–v Prints shell input lines as they are read.

–x Prints commands and their arguments as they run.

Other options:

– Turns off the –v and –x options. Also, parameters that follow this option do
not set shell flags, but are assigned to positional parameters (see sh).

–– Specifies that parameters following this option do not set shell flags, but are
assigned to positional parameters.

+A name
Assigns the parameter list to the elements of name, starting at name[0].

–A name
Unsets name and then assigns the parameter list to the elements of name
starting at name[0].

Usage Notes
set is a special built-in shell command.

Localization
set uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to an incorrect command-line argument
2 Failure resulting in a usage message, usually due to a missing argument

set

490 z/OS V1R4.0 UNIX System Services Command Reference

Portability
POSIX.2, X/Open Portability Guide.

Several shell flags are extensions of the POSIX standard: bgnice, ignoreeof,
keyword, markdirs, monitor, noglob, nolog, privileged, and trackall are
extensions of the POSIX standard, along with the shell flags ±A, ±h, ±k, ±p, ±s,
and ±t.

Related Information
alias, eval, export, sh, shedit, tcsh, trap, typeset

setfacl — Set, remove, and change access control lists (ACLs)

Format
setfacl [–ahqv] -s entries [path ...]
setfacl [–ahqv] -S file [path ...
setfacl [–ahqv] -D type [...] [path ...]
setfacl [–ahqv] -m|M|x|X EntryOrFile [...] [path ...]

Description

setfacl sets (replaces), modifies, or removes the access control list (ACL). It also
updates and deletes ACL entries for each file and directory that was specified by
path. If path was not specified, then file and directory names are read from
standard input (stdin). In this case, the input should give one pathname per line.

If you specify stdin ("-") in place of a filename, you may not specify it for any of the
other options, nor may you read the target pathnames from stdin.

The maximum number of ACL entries for a file or directory is regulated by the
security product and the physical file system.

The first two forms (see ″Format″) allow you to set (replace) the entire ACL. The
third form allows you to delete an entire extended ACL. The fourth form of setfacl
allows you to delete, add or modify ACL entries. You can specify the m, M, x, and X
options on a single command line, but you can only specify each option once.

Rules:

1. To issue setfacl, you must either be the file owner or have superuser authority
(UID 0 or READ access to SUPERUSER.FILESYS.CHANGEPERMS in the
UNIXPRIV class).

2. When you are setting the access ACL, the ACL entries must consist of three
required base ACL entries that correspond to the file permission bits. The ACL
entries must also consist of zero or more extended ACL entries, which will allow
a greater level of granularity when controlling access. The permissions for base
entries must be in absolute form.

3. When you are updating ACL entries, you can specify zero or more base entries.

4. The three required base ACL entry types have the following format:
u[ser]::perm
g[roup]::perm
o[ther]::perm

They correspond to the owner, group and other fields of the file permission bits.

set

Chapter 2. Shell Command Descriptions 491

Extended ACL entries have the following format:
[d[efault]: | f[default]:]u[ser]:uid:[+|^]perm
[d[efault]: | f[default]:]g[roup]:gid:[+|^]perm

where:

d[efault] If specified, extended ACL refers to directory default ACL

f[default] If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user id (UID) or user
name

g[roup] Extended ACL refers to a particular numeric group id (GID) or group
name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

perm Permissions specified either in absolute form (string rwx with - as a
placeholder or octal form), or in relative format (using the + or^
modifiers).

Rule: For relative permission settings, only one of + or ^ is allowed
per ACL entry. When using relative permissions, you must have at
least one of r, w, or x. For example, +rw or ^rwx.

The first field of an ACL entry may specify the type of ACL (access, directory
default, or file default) that will be processed. If the type is not specified, the
operation applies only to the access ACL. If you are updating the ACL entries, you
can specify the base ACL entries; however, specifying the base ACL entries may
cause the file or directory’s permission bits to change if what is specified is different
than the current settings.

If the permissions are specified in relative format for an ACL entry that does not
currently exist, then the permissions will be assigned as though they were given in
absolute form. Any permissions that were not specified will default to no permission.
For instance, if an extended ACL entry is given as follows to be updated:
user:BILLYJC:+rw

and user entry BILLYJC does not currently exist, then the resulting entry will be:
user:BILLYJC:rw-

Similiarly, if you try to remove the permissions from an extended ACL entry that
does not exist, the resulting permissions will be:

That is, no permission.

For additional information about ACLs and ACL entries, see z/OS UNIX System
Services Planning.

Options
–a Abort setfacl processing if one of the following errors or warnings occurs:

1. During the attempt to change an ACL for a file or directory, setfacl
performs a stat(), and the stat() fails with a unique reason code.

setfacl

492 z/OS V1R4.0 UNIX System Services Command Reference

2. The user tried to change the file default ACL or directory default ACL for
a pathname that is not a directory.

3. An attempt to delete all extended ACL entries failed for the current
pathname.

4. An attempt to set or modify extended ACL entries failed for the current
pathname.

When you do not specify –a, the setfacl processing continues.

–D type
Deletes all extended ACL entries for the ACL of type. For an access ACL,
this leaves only the three required base entries intact. For a file default or
directory default ACL, the entire ACL for the specified type is deleted. You
can specify type as one of the following:
a Access ACL
d Directory default ACL
f File default ACL
e Every extended ACL for all ACL types that are applicable for the

current pathname

–h Do not follow symbolic links. Because ACLs are not associated with
symbolic links, nothing will happen if a symbolic link is encountered.

–m EntryOrFile
Modifies the ACL entries specified by EntryOrFile. EntryOrFile represents a
string of ACL entries typed directly on the command line. If an ACL entry
does not exist for a user or group specified in EntryOrFile, then it is
created. If an ACL entry already exists for a user or group that was
specified in EntryOrFile, then it is replaced.

The specified entries must be unique for each ACL type and its associated
user or group combinations.

–M EntryOrFile
Modifies the ACL entries specified in EntryOrFile. EntryOrFile represents a
file containing ACL entries. If an ACL entry does not exist for a user or
group specified in EntryOrFile, then it is created. If an ACL entry already
exists for a user or group that was specified in EntryOrFile, then it is
replaced. If EntryOrFile is –, then entries are read from stdin.

The specified entries must be unique for each ACL type and its associated
user or group combinations.

–q Quiet mode. setfacl will suppress all warning and error messages for the
following conditions:

1. During the attempt to change an ACL for a file or directory, setfacl
performs a stat(), and the stat() fails with a unique reason code.

2. The user tried to change the file default ACL or directory default ACL for
a pathname that is not a directory.

The condition that caused the warning or error will not affect the return
code.

–s entries
Sets (replaces) all ACLs with entries.

–S file Sets (replaces) all ACLs with the entries specified in file. If file is –, then
entries are read from stdin.

–v Verbose

setfacl

Chapter 2. Shell Command Descriptions 493

–x EntryOrFile
Deletes the extended ACL entries specified by EntryOrFile. EntryOrFile is a
string of ACL entries typed directly on the command line. If an ACL entry
does not exist for the user or group specified, then you will not get an error.
If the permissions field is provided in EntryOrFile, then it is ignored when
this option is processed. Users cannot delete the base ACL entries (file
owner, owning group, and others). If base ACL entries are specified with
this option, they are ignored. Deleting an extended ACL entry does not
necessarily have the same effect as removing all the permissions from an
entry.

–X EntryOrFile
Deletes the extended ACL entries specified by EntryOrFile. EntryOrFile is a
file containing ACL entries. If an ACL entry does not exist for the user or
group specified, then you will not get an error. If EntryOrFile is –, then
entries are read from stdin. If the permissions field is provided in
EntryOrFile, then it is ignored when this option is processed. Users cannot
delete the base ACL entries (file owner, owning group, and others). If base
ACL entries are specified with this option, they are ignored. Deleting an
extended ACL entry does not necessarily have the same effect as removing
all the permissions from an entry.

When you use setfacl to add, change and delete ACL entries, all deletion
operations are performed first. In other words, deletion operations are processed
before any change or add operations.

Examples
1. To set (replace) the current access ACL for file foo, giving only user Billy read

and execute access:
setfacl -s user::rwx,group::---,other::---,user:billy:r-x foo

This may change the permission bits of the file.

2. To modify the current access ACL for file foo to contain an extended ACL entry
for group cartoons, giving that group read access:
setfacl -m group:cartoons:+r foo

3. To set (replace) the current access and directory default ACLs for directory
Haunted so that users user1 and user2 have read and search permissions,
while the group thegang has read permissions:
setfacl -s "u::rwx,g::---,o::---, \

user:user1:r-x,group:thegang:r--,user:user2:r-x, \
d:user:user1:r-x,d:group:thegang:r--,d:user:user2:r-x" Haunted

4. To copy the ACL from file foo such that the file bar will have the same ACL:
getfacl foo | setfacl -S - bar

5. To delete all of the extended ACL entries for user user3 for all files and
directories in the current directory:
setfacl -x user:user3,d:user:user3,f:user:user3 *

6. To delete all of the extended ACL entries for all files and directories in the
current working directory:
setfacl -D e *

7. To change a directory’s access ACL so that that user1 has read, write, and
execute access for all files in the Haunted directory:
setfacl -m user:user1:rwx Haunted

setfacl

494 z/OS V1R4.0 UNIX System Services Command Reference

8. RACF recommends placing ACLs on directories, rather than on each file in a
directory. To find and remove all of the extended ACL entries for user1 that are
associated with only the files in directory Haunted:
setfacl -x user:user1 $(find Haunted -type f -acl_user user1)

Even if the setfacl command is successful in removing access from user1,
user1 might still be able to obtain access to the files in directory Haunted based
on the file permission bits, assuming the user has search permission for
Haunted.

Localization
setfacl uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Success.
1 Failure due to any of the following:

v Incorrect command-line option.

v Too few arguments on the command line.

v An attempt was made to read from stdin in more than one place.

v An attempt was made to combine setfacl operations that are mutually
exclusive.

2 Failure due to any of the following:
v A specified pathname does not exist.
v An error occurred while attempting to read the entries file.
v An attempt was made to alter the file default ACL or directory default

ACL for a pathname that is not a directory.
3 Failure due to any of the following:

v Unable to delete all extended ACL entries from a pathname.

v Unable to set or modify ACL entries for a pathname.

v Improper syntax of ACL entries.

v An invalid ACL was specified.

v Unable to allocate enough memory.

v Unable to determine the PATH_MAX.

v Unable to open the entries file for reading.

v The entries file is empty.

Portability
An approved POSIX standard does not exist for setfacl.

Related Information
chmod, find, getfacl, ls, filetest, pax, test

setfacl

Chapter 2. Shell Command Descriptions 495

sh — Invoke a shell

Format
[r]sh [±abCefhiKkLmnPprtuvx] [±o option] [cmd_file [argument ...]]
[r]sh –S [±abCefhiKkLmnPprtuvx] [±o option] [cmd_file [argument ...]]
[r]sh –c cmdstring [±abCefhiKkLmnPprtuvx] [±o option] [cmd_name [argument
...]]
[r]sh –s [±abCefhikLmnPprtuvx] [±o option] [argument ...]

Description
sh contains the following sections and subsections:
v Options and invocation
v Options
v Command syntax
v Reserved-Word Commands
v Command execution
v Quoting
v Directory substitution
v Parameter substitution
v Arithmetic substitution
v Command substitution
v File descriptors and redirection
v Filename generation
v Variables
v Shell execution environments
v Built-in commands
v Examples
v Shell Variables
v Files
v Localization
v Exit Values
v Messages

Subsections dealing with substitution and interpretation of input appear in the order
in which the shell performs those substitutions and interpretations.

Much of what the shell can do is provided through such built-in commands as cd
and alias.

Options and Invocation
The z/OS shell, based on the KornShell, is upward-compatible with the Bourne
shell.

Normally you invoke the shell by logging in. You can also invoke the shell by typing
an explicit sh command. Some people find it useful to copy the sh file into a file
named rsh. If you invoke the shell under the name rsh, the shell operates in
restricted mode. This mode is described in connection with –r.

If you invoke the shell with a name that begins with the – character, it is a login
shell. (You can also get a login shell if you invoke the shell with the –L option.) A
login shell begins by running the file /etc/profile.It then runs $HOME/.profile using
the . command (see dot). If HOME is not set, the shell searches the working
directory for:
.profile

sh

496 z/OS V1R4.0 UNIX System Services Command Reference

and runs this file with the . command if it exists. You do not get an error message if
any of these files cannot be found.

You can use these profile files to customize your session with sh. For example,
your profile files can set options, create aliases, or define functions and variables.

If there is at least one argument on the sh command line, sh takes the first
argument as the name of a shell script to run. (The exception to this is when –s is
used.) Any additional arguments are assigned to the positional parameters; usually,
these serve as arguments to the shell script. See “Parameter Substitution” on
page 506 for information about positional parameters. Also see set for information
about changing these parameters.

If sh finds the ENV environment variable set when it begins running (after profile
processing), sh runs the file named by the expansion of the value of this variable.

Options
The shell accepts the following options on the command line:

–c cmdstring
Runs cmdstring as if it were an input line to the shell and then exits. This is
used by programs (for example, editors) that call the shell for a single
command. sh assigns arguments after cmdstring to the positional
parameters. If you specify cmd_name, special parameter 0 is set to this
string for use when running the commands in cmdstring.

–i Invokes an interactive shell, as opposed to running a script.With –i, the
shell catches and ignores keyboard interrupts. Without –i, an interrupt ends
the shell. For shells that read from the terminal, –i is the default.

–K Specifies KornShell-compatible behavior where the POSIX.2 behavior is
different from the behavior specified by the KornShell. Without -K, the shell
defaults to POSIX.2 behavior.

–L Makes the shell a login shell, as described earlier. (A login shell is an
interactive shell.)

–r Invokes a restricted shell. (As noted earlier, you can also invoke a restricted
shell by usingthe name rsh). In a restricted shell, you cannot do the
following:

v Use the cd command

v Change the values of the variables ENV, PATH, or SHELL

v Use > or >> to redirect output; or specify command names containing /

These restrictions do not apply during execution of your profile files.

–s Reads commands from standard input (stdin) and assigns all arguments to
the positional parameters. Normally, if there is at least one argument to the
shell, the first such argument is the name of a file to be run.

–S Searches the directories in the environment variable PATH for a file
cmd_file that contains shell commands. The current working directory is not
searched before PATH.

If you do not give either the –c or –s option, but you do specify cmd_file, the shell
takes it as the name of a file that contains commands to be run. Special parameter
0 is set to this name.

sh

Chapter 2. Shell Command Descriptions 497

If cmd_file contains a slash, the shell attempts to read that filename. If cmd_file
does not contain a slash, the following can occur:

v If –S is specified, the shell searches for the file in PATH. Only a file with
executable access permissions for the user will be found in the PATH search.

v If –S is not specified, the shell searches for the file in the current working
directory, then in PATH. The file must have read access permitted for the user.
Executable access permission is not necessary.

In addition to these options, you can use any valid option to the set command
(including –o option) as a command-line option to sh. See set for details.

Command Syntax
The shell implements a sophisticated programming language that gives you
complete control over the execution and combination of individual commands.
When the shell scans its input, it always treats the following characters specially:
; & () < > | ’ \ "
space tab newline

If you want to use any of these characters inside an actual argument, you must
quote the argument (so that the shell does not use the special meanings of the
characters). See “Quoting” on page 505 for more information.

A simple command is a list of arguments separated by characters in the IFS
environment variable (the default value of IFS has blank, tabs, and newlines).

When a word is preceded by an unescaped pound sign (#), the remainder of the
line is treated as a comment, and the shell discards input up to but not including the
next newline. When a command starts with a defined alias, sh replaces the alias
with its definition (see alias).

A reserved-word command starts with a reserved word (for example, if, while, or
for). Reserved-word commands provide flow of control operations for the shell.
These are described in “Reserved-Word Commands” on page 499.

A command can be any of the following:

command:
simple command
reserved-word command
(command)
command |command
command &&command
command ||command
command &command
command &
command |&
command ;command
command ;
command<newline>

The following is the order of precedence of the preceding operators. The highest
priority operators are listed first, and operators on the same line have equal priority.
()
|
&& ||
& |& ; <newline>

sh

498 z/OS V1R4.0 UNIX System Services Command Reference

The meaning of these operations is as follows:

(command)
Runs command in a child shell. The current shell invokes a second shell,
and this second shell actually runs command. In this way, command runs in
a completely separate execution environment; it can change working
directories, change variables, open files, and so on without affecting the first
shell. The child shell’s environment begins as a copy of the current
environment, so the value of the ENV environment variable is not run when
achild shell starts.

| Creates a pipe between the two commands that the | operator
connects.The standard output is the first command becomes the standard
input of the second command. A series of commands connected by pipes is
called a pipeline.The exit status is that of the last command in the pipeline.

&& Is the logical AND operator. The shell runs the second command if and only
if the first command returns a true (zero) exit status.

|| This is the logical OR operator. The shell runs the second command if and
only if the first command returns a false (nonzero) exit status.

& Runs the command that precedes it asynchronously. The shell just starts
the command running and then immediately goes on take new input, before
the command finishes execution. On systems where asynchronous
execution is not possible, this operation is effectively equivalent to ;.

|& Runs the command that precedes it as a co-process.The command runs
asynchronously, as with the & operator, but the command’s standard input
and standard output are connected to the shell by pipes. The shell sends
input to command’s standard input with the print –p command, and reads
from command’s standard output with the read –p command. The
command should not buffer its output. Because of this and other limitations,
co-processes should be designed to be used as co-processes. On systems
where asynchronous execution is not possible, co-processes are not
supported.

; Is the sequential execution operator. The second command is run only after
the first command has completed.

newline
The unescaped newline is equivalent to the ; operator.

Reserved-Word Commands
The shell contains a rich set of reserved-word commands, which provide flow of
control and let you create compound commands. In the following list, a command
can also be a sequence of commands separated by newlines. Square brackets ([])
indicate optional portions of commands, and are included as part of the command
syntax except in the case of [[test_expr]], where square brackets are part of the
command.

! The exclamation point is the logical NOT command. When its operand is
false (nonzero), this command returns true (zero). When its operand is true
(zero), this command returns false (nonzero).

{command;}
Enclosing a command in braces is similar to the (command) construct,
except that the shell runs the command in the same environment rather
than under a child shell. { and } are reserved words to the shell. To make it
possible for the shell to recognize these symbols, you must put a blank or
newline after the {, and a semicolon or newline before the }.

sh

Chapter 2. Shell Command Descriptions 499

[[test_expr]]
The double-square-bracket command ([[test_expr]]) is a command that
returns an exit status indicating whether the test_expr (test expression) is
true or false.

Word-splitting and wildcard expansion (filename expansion or globbing) are
not done within [[]]. This makes quoting less necessary than when you use
the test (or []) command. Alias expansion is also not done within [[]].

The following primitives are used in ([[test_expr]]). Spaces or tabs are
required to separate operators from operands.

–a file True if file exists (–e is recommended to avoid confusion with the
test command syntax)

–Aa file
True if file has an extended access ACL entry.

–Ad file
True if file has a directory default ACL.

–Af file
True if file has a file default ACL.

–b file True if file is a block special file (block special files are not
supported in z/OS)

–B file
True if the file is tagged as binary (not text)

–c file True if file is a character special file

–d file True if file is a directory

–e file True if file exists

–Ea file
True if the file has the APF extended attribute

–El file
True if the file has the shared library extended attribute

–Ep file
True if the file has the program control extended attribute

–Es file
True if the file has the shared address space extended attribute

–f file True if file is an ordinary file

–g file True if the set-group-ID attribute of file is on

–G file
True if file group owner is the effective group id

–h file True if file is a symbolic link

–k file True if file has the ″sticky″ bit on

–L file True if file is a symbolic link

–n string
True if the length of the string is greater than zero

–o option
True if shell option is on

sh

500 z/OS V1R4.0 UNIX System Services Command Reference

–O file
True if file owner is the effective user id

–p file True if file is a FIFO (named pipe)

–r file True if file is readable (checks permission bits and access control)

–s file True if size of the file is nonzero

–S file True if file is a socket

–t fd True if the numeric file descriptor fd is open and associated with a
terminal

–T file True if the file is tagged as text

–u file True if the set-user-ID attribute of file is on

–w file
True if file is writable (checks permission bits and access control)

–x file True if file is executable (checks permission bits and access
control)

–z string
True if length of the string is zero

string True if string is not a null string

string = pattern
True if string matches pattern (== is recommended to avoid
confusion with the test command syntax)

string == pattern
True if string matches pattern. Quote pattern to treat it as a string.
See Patterns below.

string1 != pattern
True if string does not match patterns. See Patterns below.

string1 < string2
True if string1 comes before string2 in the collation order defined in
the current locale

string1 > string2
True if string1 comes after string2 in the collation order defined in
the current locale

exp1 –eq exp2
True if arithmetic expression exp1 and exp2 are equal

exp1 –ge exp2
True if arithmetic expression exp1 is greater than or equal to exp2

exp1 –gt exp2
True if arithmetic expression exp1 is greater than exp2

exp1 –le exp2
True if arithmetic expression exp1 is less than or equal to exp2

exp1 –lt exp2
True if arithmetic expression exp1 is less than exp2

exp1 –ne exp2
True if arithmetic expression exp1 is not equal to exp2

sh

Chapter 2. Shell Command Descriptions 501

file1 –nt file2
True if file1 is newer than file2

file1 –ot file2
True if file1 is older than file2

file1 –ef file2
True if file1 is a hard link or symbolic link to file2 (this is different
than the test command which only tests for hard links on z/OS)

file–CS codeset
True if the file is tagged with the codeset

(test_expr)
Grouping to override normal precedence; true if test_expr is true

! test_expr
Logical negation; true if test_expr is false

test_expr1 && test_expr2
Logical AND; true if both test_expr1 and test_expr2 are true

test_expr || test_expr2
Logical OR; true if either test_expr1 or test_expr2 is true

Patterns: Patterns tested in double-square-bracket conditions are
composed of special characters and regular characters. Patterns follow the
rules given in “Filename Generation” on page 513, except that the period (.)
and the slash (/) are not treated specially. Note that pattern matching is
similar to regular expression processing, but different in syntax.

case word in [(][pattern[|pattern] &...)command ;;] ... [(][pattern[| pattern] ...
)command ;;] ... esac

The case statement is similar to the switch statement of the C
programming language or the case statement of Pascal. If the given word
matches any one of the patterns separated by “or” bar (|) characters, sh
runs the corresponding command. The .patterns should follow the rules
given in “Filename Generation” on page 513, except that the period (.) and
slash (/) are not treated specially. Patterns are matched in the order they
are given, so more inclusive patterns should be mentioned later. You must
use the double semicolon (;;) to delimit command and introduce the next
pattern.

for variable [in word ...] do command done
The for statement sets variable to each word argument in turn, and runs
the set of commands once for each setting of variable. If you omit the in
word part, sh sets variable to each positional parameter. You can divert the
flow of control within the loop with the break or continue statements.

function variable { command ... } ... variable() { command ... }
Either one of these forms defines a function named variable, the body of
which consists of the sequence of commands. You invoke a function just
like any other command; when you actually call the function, sh saves the
current positional parameters. The function’s command-line arguments then
replaces these parameters until the function finishes. sh also saves the
current ERR and EXIT traps, as well as any flags manipulated by EXIT with
the set command; these are restored when the function finishes. The
function ends either by falling off the end of the code of the function body,
or by reaching a return statement. If the function uses typeset to declare
any variables in the function body, the variables are local to the function.

sh

502 z/OS V1R4.0 UNIX System Services Command Reference

if command then command [elif command then command] ... [else command] fi
In the if statement, if the first (leftmost) command succeeds (returns a zero
exit status), sh runs the command following then. Otherwise, sh runs the
command (if any) following the elif (which is short for “else if”); if that
succeeds, sh runs the command following the next then. If neither case
succeeds, sh runs the command following the else (if any).

select variable [in word ...] do commands done
The select statement can handle menulike interactions with the user. Its
syntax is like the for statement. Each word is printed on the standard error
file, one per line, with an accompanying number. If you omit the “in word ...”
part, sh uses the positional parameters. sh then displays the value of the
variable PS3 to prompt the user to enter a numerical reply. If the reply is an
empty line, sh displays the menu again; otherwise, sh assigns the input line
to the variable REPLY, sets variable to the word selected, and then runs
the commands. sh does this over and over until the loop is ended by an
interrupt, an end-of-file, or an explicit break statement in the commands.

until command1 do command2 done
The until statement runs command1 and tests its exit status for success
(zero) or failure (nonzero). If command1 succeeds, the loop ends;
otherwise, sh runs command2 and then goes back to run and test
command1 again. break and continue commands in the commands can
affect the operation of the loop.

while command1 do command2 done
The while statement works similarly to the until statement. However, the
loop ends whenever command1 is unsuccessful (nonzero exit status).

Shell reserved words are recognized only when they are the unquoted first token of
a command. This lets you pass these reserved words as arguments to commands
run from the shell. The full list of reserved words is:
! done function while
[[elif if
{ else select
} esac then
case fi time
do for until

Command Execution
Before running a simple command,the shell processes the command line,
performing expansion, assignments, and redirection.

First, sh examines the command line and divides it into a series of tokens, which
are either operators or words. An operator is either a control operator, which is
described in “Command Syntax” on page 498. Or it can be a redirection operator,
described in “File Descriptors and Redirection” on page 511. A word is any token
that is not an operator.

Next, the shell expands words in the following order:

1. sh performs directory substitution.

2. sh performs parameter substitution, command substitution, or arithmetic
substitution, as appropriate, in the order that the words appear on the command
line, expanding each word to a field (see the appropriate sections).

3. sh scans each field produced in step 2 for unquoted characters from the IFS
environment variable and further subdivides this field into one or more new
fields.

sh

Chapter 2. Shell Command Descriptions 503

4. sh expands any aliases to their definitions.

5. sh performs pathname expansion on each unquoted field from step 3 on
page 503.

6. sh removes all quote mechanisms (\, ’, and ") that were present in the original
word unless they have themselves been quoted.

The shell considers the first field of the expanded result to be a command.

The expanded simple command can contain variable assignments and redirections.
Variable assignments affect the current execution environment. After expansion, the
shell handles all redirection constructs, and the command, if one was found, it
performs the redirection in a child shell environment (see “Shell Execution
Environments” on page 514).

When a simple command contains a command name, variable assignments in the
command affect only the execution of that command.

After the shell has expanded all appropriate arguments in a simple command, but
before it performs filename generation, it examines the command name (if the
command has one). sh first checks the names against currently defined aliases
(see the alias command) and functions (see function under “Reserved-Word
Commands” on page 499), and finally against the set of built-in commands:
commands that the shell can run directly without searching for program files. Built-in
commands are described in “Built-in Commands” on page 515.

The autoload command, an alias of typeset –fu, identifies functions which are not
yet defined. The first time an autoload function is called within the shell, the shell
will search directories in the FPATH shell variable for a file with the same name as
the function. If a matching file is found, it is assumed to contain the function
definition of the same name. The file is read and executed in the current shell
environment, storing the function in the shell’s memory for subsequent execution.
(Multiple function definitions may be contained in the same file. When the file is
processed by the shell, all the functions will be defined. Every function definition in
the file should be a link name to the file.)

If the command is a built-in or function, the shell executes it.

If the command name is not a function or a built-in command, the z/OS shell looks
for a program file or script file that contains an executable version of that command.
The shell uses the following procedure to locate the program file:

v If the command name typed to the shell has slash (/) characters in its name, the
command is taken to be a full pathname (absolute or relative). The shell tries to
execute the contents of that file.

v Otherwise, the shell performs a path search. To do this, the shell obtains the
value of the PATH environment variable. The value should be a list of directory
names. sh searches under each directory for a file, the name of which matches
the command name. If the FPATH shell variable is set, the shell will search the
PATH and FPATH directories. If a file with a name matching the command name
is found in the same directory in both PATH and FPATH, or if a matching file is
found only in FPATH, this file will be read and executed in the current shell
environment (defining the functions contained in the file). The shell will then
execute the function matching the command name. This allows users to use
FPATH for locating functions without the need to identify every function with the
autoload command.

sh

504 z/OS V1R4.0 UNIX System Services Command Reference

If FPATH is not set, or the command is not found in FPATH, the shell executes
the first matching file found in the PATH directories.

Command names can be marked as tracked aliases.The first time you run a
command with a tracked alias, the shell does a normal PATH search. If the search
is successful, the shell remembers the file that it finds. The next time you run a
command with the same name, sh immediately runs the file found on the last PATH
search; there is no new search. This speeds up the time that it takes the shell to
find the appropriate file.

The set –h command tells the shell that all commands should be treated as tracked
aliases. See alias and set for more information.

Quoting
To let you override the special meaning of certain words or special characters, the
shell provides several quoting mechanisms. In general, you can turn off the special
meaning of any character by putting a backslash (\) in front of the character. This is
called escaping the character.

For example, you can tell the shell to disregard the special meaning of the newline
character by putting a backslash at the very end of a line. The shell ignores the
escaped newline, and joins the next line of input to the end of the current line. In
this way, you can enter long lines in a convenient and readable fashion.

Escaping characters by putting a backslash in front of them is the most direct way
of telling the shell to disregard special meanings. However, it can be awkward and
confusing if you have several characters to escape.

As an alternative, you can put arguments in various types of quotes. Different quote
characters have different “strengths.” The single-quote characters are the strongest.
When you enclose a command-line argument in single-quote characters, the shell
disregards the special meanings of everything inside the single quotes. For
example:
echo
’*’

Double-quote characters are weaker. Inside double quotes, the shell performs
command substitutions (see “Command Substitution” on page 510), parameter
substitutions (see “Parameter Substitution” on page 506) and arithmetic
substitutions (see “Arithmetic Substitution” on page 509). The shell does not perform
such substitutions when they appear inside single quotes. You can use the
backslash to escape another character when they appear inside double quotes, but
inside single quotes the shell ignores this special meaning.

The shell treats internal field separator characters (that is, characters in the value of
the IFS variable) literally inside quoted arguments, whether they’re quoted with
double quotes or single quotes. This means that a quoted argument is considered a
single entity, even if it contains IFS characters.

Quoting can override the special meanings of reserved words and aliases. For
example, in:
"time" program

the quotes around time tell the shell not to interpret time as a shell reserved word.
Instead, sh does a normal command search for a command named time.

sh

Chapter 2. Shell Command Descriptions 505

You must always quote the following characters if you want sh to interpret them
literally:
| & ; < > () $ ' " ` \
<space> <tab> <newline>

The following characters need to be quoted in certain contexts if they are to be
interpreted literally:
* ? [# % =
~

Directory Substitution
When a word begins with an unquoted tilde (~), sh tries to perform directory
substitution on the word.sh obtains all characters from the tilde (~) to the first slash
(/) and uses this as a user name. sh looks for this name in the user profile, the file
that contains information on all the system’s users. If sh finds a matching name, it
replaces ~name with the name of the user’s home directory, as given in the
matching RACF user profile entry.

For example, if you specify a filename as:
~jsmith/file

sh would look up jsmith’s home directory and put that directory name in place of
the ~jsmith construct.

If you specify a ~without an accompanying name, sh replaces the ~with the current
value of your HOME variable. For example:
echo ~

displays the name of your home directory. Similarly, sh replaces the construct ~+
with the value of the PWD variable (the name of the your working directory), and
replaces the tilde hyphen (~–) with the value of OLDPWD (the name of your
previous working directory). In variable assignments, tilde expansion is also
performed after colons (:).

Parameter Substitution
The shell uses three types of parameters: positional parameters, special
parameters, and variables. A positional parameter is represented with either a single
digit (except 0) or one or more digits in curly braces. For example, 7 and {15} are
both valid representations of positional parameters. Positional parameters are
assigned values from the command line when you invoke sh.

A special parameter is represented with one of the following characters:
* @ # ? ! - $ 0

The values to which special parameters expand are listed in the following
paragraphs.

Variables are named parameters.For details on naming and declaring variables, see
“Variables” on page 514.

The simplest way to use a parameter in a command line is to enter a dollar sign ($)
followed by the name of the parameter. For example, if you enter the command:
echo $x

sh

506 z/OS V1R4.0 UNIX System Services Command Reference

sh replaces $x with the value of the parameter x and then displays the results
(because echo displays its arguments). Other ways to expand parameters are
shown in the following paragraphs.

The following parameters are built in to the shell:

$1, $2, ... $9
Expands to the d positional parameter (where d is the single digit following
the $). If there is no such parameter, $d expands to a null string.

$0 Expands to the name of the shell, the shell script, or a value assigned when
you invoked the shell.

$# Expands to the number of positional parameters.

$@ Expands to the complete list of positional parameters. If $@ is quoted, the
result is separate arguments, each quoted. This means that:
"$@"

is equivalent to:
"$1" "$2" ...

$* Expands to the complete list of positional parameters. If $* is quoted, the
result is concatenated into a single argument, with parameters separated by
the first character of the value of IFS (see “Variables” on page 514). For
example, if the first character of IFS is a blank, then:
"$*"

is equivalent to:
"$1 $2 ..."

$– Expands to all options that are in effect from previous calls to the set
command and from options on the sh command line.

$? Expands to the exit status of the last command run.

$$ Expands to the current process number of the original parent shell.

$! Expands to the process number of the last asynchronous command.

These constructs are called parameters of the shell. They include the positional
parameters, but are not restricted to the positional parameters.

We have already mentioned that you can expand a parameter by putting a $ in front
of the parameter name. More sophisticated ways to expand parameters are:

${parameter}
Expands any parameter.

${number}
Expands to the positional parameter with the given number. (Remember
that if you just enter $d to refer to the dth positional parameter, d can only
be a single digit; with brace brackets, number can be greater than 9.) Since
braces mark the beginning and end of the name, you can have a letter or
digit immediately following the expression.

${variable[arithmetic expression]}
Expands to the value of an element in an array named variable. The
arithmetic expression gives the subscript of the array. (See “Arithmetic
Substitution” on page 509.)

sh

Chapter 2. Shell Command Descriptions 507

${variable [*]}
Expands to all the elements in the array variable, separated by the first
character of the value of $IFS.

${variable [@]$}
When unquoted, is the same as ${ variable[*]} When quoted as “${variable
[@]$} ,” it expands to all the elements in the array variable, with each
element quoted individually.

${#parameter}
Expands to the number of characters in the value of the given parameter.

${#} Expands to the number of positional parameters.

${# *} Expands to the number of positional parameters.

${#@} Expands to the number of positional parameters.

${#variable [*]}
Expands to the number of elements in the array named variable. Elements
that do not have assigned values do not count. For example, if you only
assign values to elements 0 and 4, the number of elements is 2. Elements 1
through 3 do not count.

${parameter:–word}
Expands to the value of parameter if it is defined and has a nonempty
value; otherwise, it expands word. This means that you can use word as a
default value if the parameter isn’t defined.

${parameter–word}
Is similar to the preceding construct, except that the parameter is expanded
if defined, even if the value is empty.

${variable:=word}
Expands word with parameter expansion and assigns the result to variable,
provided that variable is not defined or has an empty value. The result is
the expansion of variable, whether or not word was expanded.

${variable=word}
Is similar to the preceding construct, except that the variable must be
undefined (it cannot just be null) for word to be expanded.

${parameter:?word}
Expands to the value of parameter provided that it is defined and
non-empty. If parameter isn’t defined or is null, sh expands and displays
word as a message. If word is empty, sh displays a default message. After
a noninteractive shell has displayed a message, it ends.

${parameter?word}
Is similar to the preceding construct, except that sh displays word only if
parameter is undefined.

${parameter:+word}
Expands to word, provided that parameter is defined and nonempty.

${parameter+word}
Expands to word, provided that parameter is defined.

${parameter#pattern}
Attempts to match pattern against the value of the specified parameter. The
pattern is the same as a case pattern. sh searches for the shortest prefix of
the value of parameter that matches pattern. If sh finds no match, the

sh

508 z/OS V1R4.0 UNIX System Services Command Reference

previous construct expands to the value of parameter; otherwise, the
portion of the value that matched pattern is deleted from the expansion.

${parameter##pattern}
Is similar to the preceding construct, except that sh deletes the longest part
that matches pattern if it finds such a match.

${parameter%pattern}
Searches for the shortest suffix of the value of parameter matching pattern
and deletes the matching string from the expansion.

${parameter%%pattern}
Is similar to the preceding construct, except that sh deletes the longest part
that matches pattern if it finds such a match.

Arithmetic Substitution
Arithmetic substitution is available with the syntax:
$((arithmetic expression))

or:
$[arithmetic expression]

This sequence is replaced with the value of arithmetic expression. Arithmetic
expressions consist of expanded variables, numeric constants, and operators.
Numeric constants have the form:
[base#]number

where the optional base is a decimal integer between 2 and 36 inclusive, and
number is any nonnegative number in the given base. The default base is 10.
Undefined variables evaluate to zero.

The operators are listed in decreasing order of precedence in Table 19. Operators
sharing a heading have the same precedence. Evaluation within a precedence
group is from left to right, except for the assignment operator, which evaluates from
right to left.

Table 19. Shell Operators (sh command)

Unary Operators

− Unary minus

! Logical negation

+ ~ Identity, bitwise negation

Multiplicative Operators

* / % Multiplication, division, remainder

Additive Operators

+ − Addition, subtraction

Bitwise Shift Operators

<< >> Bitwise shift right, bitwise shift left

Relational Operators

< > Less than, greater than

<= >= Less than or equal, greater than or equal

= = != Equal to, not equal to

sh

Chapter 2. Shell Command Descriptions 509

Table 19. Shell Operators (sh command) (continued)

Unary Operators

Bitwise AND Operator

& AND

Bitwise Exclusive OR
Operator

^ Exclusive OR

Bitwise Inclusive OR
Operator

| Inclusive OR

Logical AND Operator

&& Logical AND

Logical OR Operator

|| Logical OR

Conditional Operator

? : If-else

Assignment Operator

= *= /= %=
+= −= <<=
>>= &= ^= |=

Assignment

You do not need the $(()) syntax to enclose an arithmetic expression in these
situations:

v In assignment to an integer variable. (See typeset.)

v As an argument to the following built-in shell commands:
break exit return continue let shift

v When used as arguments in the test built-in shell command numeric
comparisons (–eq, –ge, –gt, –le, –lt, and –ne). See test.

Command Substitution
In command substitution, sh uses the expansion of the standard output of one
command in the command line for a second command. There are two syntaxes.

The first syntax (called backquoting)surrounds a command with grave accents `, as
in:
ls `cat list`

To process this command line, sh first runs the cat command and collects its
standard output. The shell then breaks this output into arguments and puts the
result into the command line of the ls command. The previous command therefore
lists the attributes of all files, the names of which are contained in the file list.

This syntax is easy to type, but is not useful if you want to put one command
substitution inside another (nesting command substitutions). A more useful syntax
is:
$(command)

as in:

sh

510 z/OS V1R4.0 UNIX System Services Command Reference

ed $(grep –f –l function $(find . –name ’*.c’))

This command uses find to search the current directory and its subdirectories to
find all files, the names of which end in .c. It then uses grep –f to search each such
file for those that contain the string function. Finally, it calls ed to edit each such
file.

There is a historical inconsistency in the backquoting syntax. A backslash (\) within
a backquoted command is interpreted differently depending on its context.
Backslashes are interpreted literally unless they precede a dollar sign ($), grave
accent (`), or another backslash (\). In these cases, the leading backslash
becomes an escape character to force the literal interpretation of the $, `, or \.
Consequently, the command:
echo ’\$x’

issued at system level produces the output:
\$x

whereas the same command nested in a backquoted syntax:
echo `echo u\$x’`

produces the output:
$x

We recommend the $(command) syntax for command substitutions.

sh performs command substitutions as if a new copy of the shell is invoked to run
the command. This affects the behavior of $− (standing for the list of options passed
to the shell). If a command substitution contains $−, the expansion of $− does not
include the –i option, since the command is being run by a noninteractive shell.

File Descriptors and Redirection
The shell sometimes refers to files using file descriptors. A file descriptor is a
number in the range 0 to 9. It may have any number of digits. For example, the file
descriptors 001 and 01 are identical to file descriptor 1. Various operations (for
example, exec) can associate a file descriptor with a particular file.

Some file descriptors are set up at the time the shell starts up. These are the
standard input/output streams:
v Standard input (file descriptor 0)
v Standard output (file descriptor 1)
v Standard error (file descriptor 2)

Commands running under the shell can use these descriptors and streams too.
When a command runs under the shell, the streams are normally associated with
your terminal. However, you can redirect these file descriptors to associate them
with other files (so that I/O on the stream takes place on the associated file instead
of your terminal). In fact, the shell lets you redirect the I/O streams associated with
file descriptors 0 through 9, using the following command-line constructs.

number<file
Uses file for input on the file descriptor, the number of which is number. If
you omit number, as in <file, the default is 0; this redirects the standard
input.

sh

Chapter 2. Shell Command Descriptions 511

number>file
Uses file for output on the file descriptor, the number of which is number. If
you omit number, as in >file, the default is 1; this redirects the standard
output. The shell creates the file if it does not already exist. The redirection
fails if the file already exists and noclobber is set (see set).

number>|file
Is similar to number>file but if file already exists, the output written to the
file overwrites its current contents.

number< >file
Uses file for input and output with the file descriptor, the number of which is
number. This is most useful when the file is another terminal or modem line.
If you omit number, as in < >file, the default number is zero; this redirects
the standard input. Output written to the file overwrites the current contents
of the file (if any). The shell creates the file if it does not already exist.

number>>name
Is similar to number > file, except that output is appended to the current
contents of the file (if any).

number<<[−]name
Lets you specify input to a command from your terminal (or from the body
of a shell script). This notation is known as a here-document.The shell
reads from the standard input and feeds that as input to file descriptor
number until it finds a line that exactly matches the given name. If you omit
number, the default is the standard input. For example, to process the
command:
cat <<abc >out

the shell reads input from the terminal until you enter a line that consists of
the word abc. This input is passed as the standard input to the cat
command, which then copies the text to the file out.

If any character of name is quoted or escaped, sh does not perform
substitutions on the input; instead, it performs variable and command
substitutions, respecting the usual quoting and escape conventions. If you
put − before name, sh deletes all leading tabs in the here-document.

number1<&number2
Makes the input file descriptor number1 a duplicate of file descriptor
number2. If you omit number1, the default is the standard input (file
descriptor 0). For example, <&4 makes the standard input a duplicate of file
descriptor 4. In this case, entering input on 4 has the same effect as
entering input on standard input (stdin).

number1>&number2
Makes the output file descriptor number2 a duplicate of file descriptor
number2. If you omit number2, the default is the standard output (file
descriptor 1). For example, >&2 makes the standard output a duplicate of
file descriptor 2 (the standard error). In this case, writing output on stdout
has the same effect as writing output on stderr.

number<&−
Closes input descriptor number.If you omit number, it closes the standard
input.

number>&−
Closes output descriptor number. If you omit number, it closes the standard
output.

sh

512 z/OS V1R4.0 UNIX System Services Command Reference

Normally, redirection applies only to the command where the redirection construct
appears; however, see exec.

The order of redirection specifications is significant, since an earlier redirection can
affect a later one. However, these specifications can be freely intermixed with other
command arguments. Since the shell takes care of the redirection, the redirection
constructs are not passed to the command itself.

Note: The shell performs the implicit redirections needed for pipelines before
performing any explicit redirections.

Filename Generation
The characters * ? [are called glob characters, or wildcardcharacters. If an
unquoted argument contains one or more glob characters, the shell processes the
argument for filename generation. The glob characters are part of glob patterns,
whichrepresent file and directory names. These patterns are similar to regular
expressions, but differ in syntax, since they are intended to match filenames and
words (not arbitrary strings). The special constructions that may appear in glob
patterns are:

? Matches exactly one character of a filename, except for the separator
character / and a . at the beginning of a filename. ? only matches an
actual filename character and does not match nonexistent characters at the
end of the filename. ? is analogous to the metacharacter . in regular
expressions.

* Matches zero or more characters in a filename, subject to the same
restrictions as ?. * is analogous to the regular expression .*.

[chars]
Defines a class of characters; the glob pattern matches any single
character in the class. A class can contain a range of characters by writing
the first character in the range, a dash −, and the last character. For
example, [A−Za−z], in the POSIX locale, stands for all the uppercase and
lowercase letters. If you want a literal − character (or other glob character)
in the class, use the backslash to escape the character, causing it to lose
it’s special meaning within the pattern expression. If the first character
inside the brackets is an exclamation mark (!), the pattern matches any
single character that is not in the class.

Some sample patterns are:

[!a-f]*.c
Matches all .c files beginning with something other than the letters from a
through f.

/???/?.?
Matches all files that are under the root directory in a directory with a
three-letter name, and that have a basename containing one character
followed by a . followed by another single character.

/.[chyl]
Matches all .c, .h, .y, and .l files in a subdirectory of the working directory.

~mks/*.ksh
Matches all shell scripts in the home directory of user mks

(see “Directory Substitution” on page 506 for the use of ~).

sh

Chapter 2. Shell Command Descriptions 513

If no files match the pattern, sh leaves the argument untouched. If the set option –f
or “–o noglob” is in effect, the shell does not perform filename generation.

Attention: Doublebyte characters in a filename may cause problems. For
instance, if you use a doublebyte character in which one of the bytes is a . (dot) or
/ (slash), the file system treats this as part of the pathname.

Variables
The shell maintains variables and can expand them where they are used in
command lines; see “Parameter Substitution” on page 506 or details.

A variable name must begin with an uppercase or lowercase letter or an underscore
(_). Subsequent characters in the name, if any, can be uppercase or lowercase
letters, underscores, or digits 0 through 9. You can assign a value to a variable with:
variable=value

You can implicitly declare a variable as an array by using a subscript expression
when assigning a value, as in:
variable[arithmetic expression]=value

You can use a subscripted array variable anywhere that the shell allows an ordinary
variable. For the syntax of an arithmetic expression, see “Arithmetic Substitution” on
page 509. Also see typeset, export, and readonly for details about the attributes of
shell variables, and how shell variables can be exported to child processes.

For a list of variables that the shell either sets or understands, see “Shell Variables”
on page 516.

Shell Execution Environments
A shell execution environment is the set of conditions affecting most commands run
within the shell. It consists of:
v Open files
v The working directory (see cd)
v The file creation mask (see umask)
v The traps currently set (see trap)
v The shell parameters (see set and export)
v The shell functions currently defined (see “Command Execution” on page 503)
v Options (see set)

A child shell environmentstarts as a duplicate of the shell environment, except that
traps caught by the shell are set to default values in the child shell. Since the child
shell environment starts as a duplicate, the value of the ENV environment variable
is not run. Changes made to a child shell environment do not affect the shell
environment.

Command substitutions, commands within parentheses “(command),” and
commands to be run asynchronously (“command&”)—all run in child shell
environments. Each command in a pipeline “command|command” runs in a child
shell environment.

Shell commands also run in a separate environment that does not affect the shell
environment, except for certain built-in commands (for example, cd and umask)
that explicitly alter the shell environment. The environment of a shell command is
set up by the shell to include the following:

sh

514 z/OS V1R4.0 UNIX System Services Command Reference

v Open files, subject to redirection.

v Working directory (see cd).

v File creation mask (see umask).

v Traps; traps caught by the shell are set to default values and traps ignored by
the shell are ignored by the command.

v Variables defined inside the shell and having the export attribute.

Built-in Commands
This section lists the commands that are built into the shell. Such commands are
built into the shell to increase performance of shell scripts or to access the shell’s
internal data structures and variables. These internal commands are designed to
have semantics indistinguishable from external commands.

: chmod false ln read trap whence

· chown fc login readonly true

[comm functions ls return type

alias command getopts mkdir rm typeset

autoload continue history mv set ulimit

basename echo integer newgrp shift umask

bg eval jobs print stop unalias

break exec kill printf suspend unlink

cat exit let pwd test unset

cd export link r times wait

POSIX.2 recognizes a subset of these commands as special built-ins.Syntax errors
in special built-in commands may cause a shell executing that command to
terminate, while syntax errors in regular built-in commands will not cause the shell
executing that command to terminate. If a special built-in command encountering a
syntax error does not terminate the shell, its exit value is nonzero.

Also, shell variable assignments included on shell command lines that invoke
special built-in commands remain in effect after the built-in command completes;
this is not the case with regular built-in commands or other utilities.

When the shell variable _MAKE_BI is set to YES, sh will use the built-in c89, cc,
c++, and make commands. For more information, see z/OS UNIX System Services
Planning.

Note: c89, cc, c++, and make are only considered shell built-ins when _MAKE_BI
is set to YES.

The special built-in commands are:

: continue exit readonly shift unset

· eval export return trap

break exec expr set typeset

As well as built-in commands, the shell has a set of predefined aliases:

autoload functions history nohup stop

hash integer r suspend

See alias for details.

sh

Chapter 2. Shell Command Descriptions 515

Examples
Software distributed over computer networks such as Usenet is often distributed in
a form known as a shell archive.In essence, a shell archive is a shell script
containing the data of one or more files, plus commands to reconstruct the data
files and check that the data was sent correctly. The following shows a sample shell
archive:
This is a shell archive.
It contains the one file "frag.ksh"
To extract contents, type
sh file
#
if [–f frag.ksh]
then echo frag.ksh exists: will not overwrite
else

echo extracting frag.ksh
sed ’s/^X//’ >frag.ksh <<_EOF_

X# This is frag.ksh
X# Not very interesting, really.
Xecho frag.ksh here!
EOF

if ["`sum frag.ksh|awk ’{print $1}’`" != 52575]
then echo frag.ksh damaged in transit
fi

fi

The following is a simple script to produce as much of the Fibonacci sequence as
can be calculated in integers:
Print out Fibonacci sequence; start sequence
with first two positional parameters:
default 1 1
typeset –i x=${1:–1} y=${2:–1} z
while [x –gt 0] # until overflow
do

echo $x
let z=y+x x=y y=z

done

The following implements the basename command as a shell function:
basename command as shell function
function basename {

case $# in
1) ;;
2) eval set \${1%$2} ;;
*) echo Usage: $0 pathname ’[suffix] ’

return 1 ;;
esac
echo ${1##*/}
return 0

}

Shell Variables
You cannot use doublebyte characters for a shell variable name, but you can use
them for shell variable values. Doublebyte characters in filenames and pathnames
are treated as singlebyte characters.

Note: Shell variables that are exported are called ″Environment Variables″, and are
made available in the environment of all commands run from the shell.
Table 20 on page 517 contains a list of built-in shell variables and also
includes frequently-used environment variables. For more information on
environment variables used by the C-RTL, see the z/OS C/C++

sh

516 z/OS V1R4.0 UNIX System Services Command Reference

Programming Guide. A list of other environment variables can be found in
Appendix J, “Environment Variables” on page 845.

Table 20 lists frequently-used shell variables and their purposes.

Table 20. Built-in Shell Variables (sh command)

Variable Purpose

_ (Underscore) For every command that is run as a child of the shell, sh sets
this variable to the full pathname of the executable file and passes this value
through the environment to that child process. When processing the
MAILPATH variable, this variable holds the value of the corresponding mail
file.

~ (Tilde) expands to value of the HOME directory.

CDPATH Contains a list of directories for the cd command to search. Directory names
are separated with colons. CDPATH works like the PATH variable.

COLUMNS Used by several commands to define the width of the terminal output device.

EDITOR Enables the corresponding editing mode (see set and shedit) when using vi,
emacs, or gmacs.

ERRNO Contains the system error number of the most recently failed system call.
The shell sets this variable only for errors that occur in the current
environment. Assigning a value of 0 to this variable clears it.

FCEDIT Contains the name of the default editor for the fc command. If this variable is
not set, the default is the ed command.

FPATH Contains a list of directories that the system searches to find executable
functions. Directories in this list are separated with colons. sh searches each
directory in the order specified in the list until it finds a matching function. If
you want the shell to search the working directory, put a dot (.) or a null
string in the list of directories (for example, to tell the shell to search the
working directory first, start the list with a colon or semicolon).

HISTFILE Contains the pathname of a file to be used as the history file. When the shell
starts, the value of this variable overrides the default history file.

HISTSIZE Contains the maximum number of commands that the shell keeps in the
history file. If this variable contains a valid number when the shell starts, it
overrides the default of 127.

HOME Contains your home directory.This is also the default directory for the cd
command. The HOME variable is set automatically from the RACF user
profile when the user logs in.

IFS Contains a series of characters to be used as internal field
separatorcharacters. Any of these characters can separate arguments in
unquoted command substitutions such as `command` or $(command), or in
parameter substitutions. In addition, the shell uses these characters to
separate values put into variables with the read command. Finally, the first
character in the value of IFS separates the positional parameters in $*
expansion. By default, IFS contains space, tab, and newline.

LANG Contains the default locale value.

LINENO Contains the number of the line currently being run by a shell script.

LINES Used by several commands to define the number of lines on the terminal
output device.

sh

Chapter 2. Shell Command Descriptions 517

Table 20. Built-in Shell Variables (sh command) (continued)

Variable Purpose

LIBPATH Used to specify the directory to search for a DLL (Dynamic Link Library)
filename. If it is not set, the working directory is searched. For more
information, see dlload in z/OS C/C++ Run-Time Library Reference.

Attention: LIBPATH can be updated by the _CEE_ENVFILE environment
variable. For more information on _CEE_ENVFILE, see the z/OS C/C++
Programming Guide.

LOCPATH Tells the setlocale() function the name of the directory in the HFS from
which to load locale object files. (localedef produces locale object files by
processing locale source files.)

LOGNAME Contains the user login name. This is set automatically from the RACF user
profile when the user logs in.

_MAKE_BI When this variable is set to YES, sh will use the built-in c89, cc, c++, and
make commands. For more information, see z/OS UNIX System Services
Planning.

MAILCHECK Contains the number of seconds of elapsed time that must pass before the
system checks for mail; the default value is 600 seconds. When using the
MAIL or MAILPATH variables, the shell checks for mail before issuing a
prompt.

MAILPATH Contains a list of mailbox files. This overrides the MAIL variable. The
mailbox list is separated by colons. If any name is followed by ?message or
%message, sh displays the message if the corresponding file has changed.
sh performs parameter and command substitution on message, and the
variable _. (temporarily) expands to the name of the mailbox file. If no
?message or % message is present, the default message is you have mail
in $_.

MANPATH Contains a list of paths to search for man pages.

MBOX Contains the pathname of your personal mailbox, usually $HOME/mbox,
used to store messages that have been read from your system mailbox. This
variable is usually set in your .profile.

NLSPATH Specifies where the message catalogs are to be found.

OLDPWD Contains the name of the directory you were previously working in. The cd
command sets this variable.

PATH Contains a list of directories that the system searches to find executable
commands. Directories in this list are separated with colons. sh searches
each directory in the order specified in the list until it finds a matching
executable. If you want the shell to search the working directory, put a dot (.)
or a null string in the list of directories (for example, to tell the shell to search
the working directory first, start the list with a colon or semicolon).

PID Contains the decimal value of the process ID of the parent of the shell. See
ps.

PS1 Contains the primary prompt string used when the shell is interactive.The
default value is a dollar sign followed by a space ($). The shell expands
parameters before the prompt is printed. A single exclamation mark (!) in the
prompt string is replaced by the command number from the history list; see
the fc command. For a real exclamation mark in the prompt, use !!. This
variable is usually set in your .profile.

PS2 Contains the secondary prompt, or continuation prompt, used when
completing the input of such things as reserved-word commands, quoted
strings, and here documents. The default value of this variable is a greater
than sign followed by a space (>).

sh

518 z/OS V1R4.0 UNIX System Services Command Reference

Table 20. Built-in Shell Variables (sh command) (continued)

Variable Purpose

PS3 Contains the prompt string used in connection with the select reserved word.
The default value is a number sign followed by a question mark and a space
(#?).

PS4 Contains the prefix for traced commands with set -x. The default value is a
plus sign followed by a space (+).

PWD Contains the name of the working directory. When the shell starts, the
working directory name is assigned to PWD unless the variable already has
a value.

RANDOM Returns a random integer. Setting this variable sets a new seed for the
random number generator.

SECONDS Contains elapsed time. The value of this variable grows by 1 for each
elapsed second of real time. Any value assigned to this variable sets the
SECONDS counter to that value; initially the shell sets the value to 0.

SHELL Contains the full pathname of the current shell. It is not set by the shell, but
is used by various other commands to invoke the shell. This is set
automatically from the RACF user profile when the user logs in.

STEPLIB Identifies a STEPLIB variable to be used in building a process image for
running an executable file. A STEPLIB is a set of private libraries used to
store a new or test version of an application program, such as a new version
of a runtime library. STEPLIB can be set to the values CURRENT or NONE
or to a list of MVS data set names.

If STEPLIB is not set, it defaults to CURRENT, which passes on the
TASKLIB, STEPLIB, or JOBLIB allocations that are part of the invoker’s MVS
program search order environment to the process image created for an
executable file.

IBM recommends that STEPLIB be set to NONE, which indicates you do not
want a STEPLIB environment for executable files. You can specify up to 255
MVS data set names, separated by colons, as a list of data sets used to
build a STEPLIB variable. Refer to z/OS UNIX System Services Planning for
more information about building a STEPLIB environment.

TMOUT Contains the number of seconds before user input times out. If user input
has not been received within this length of time, the shell ends.

TMPDIR Is the pathname of the directory being used for temporary files. If it is not set,
the z/OS shell uses /tmp.

TZ Contains the system time zone value used for displaying date and time. You
can set the TZ variable in your $HOME/.profile file used during shell startup.

The system administrator can also define a TZ default for all shell users in
the /etc/profile file. If you are not in the same time zone, you can set TZ
yourself.

The system administrator can also define TZ for the /etc/init process in the
/etc/init.options file.

VISUAL Overrides the EDITOR environment variable in setting vi, emacs, or gmacs
editing modes (see shedit).

Automatic Conversion Shell Variables
When the shell is redirecting stdin, stout, or stderr, it will default to no automatic
conversion of tagged files, and no tagging of files created by the redirection. The
following shell variables will override this behavior:

sh

Chapter 2. Shell Command Descriptions 519

Table 21. Shell Variables for Automatic Conversion (sh command)

Variable Purpose

_TAG_REDIR_IN=TXT Redirected stdin will override the file’s text flag (TXTFLAG),
treating it as if it were tagged as:

TXTFLAG = ON, CCSID = existing file tag CCSID

This has no effect if CCSID = 0.

_TAG_REDIR_IN=BIN Redirected stdin will override the file’s TXTFLAG, treating it
as if it were tagged as:

TXTFLAG = OFF, CCSID = existing file tag CCSID

This effectively disables automatic conversion.

_TAG_REDIR_OUT=TXT Redirected stdout will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_OUT=BIN Redirected stdout will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_ERR=TXT Redirected stderr will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_ERR=BIN Redirected stderr will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of
the first write (if not already tagged)

The automatic conversion shell variable can be specified for one command, or for
multiple commands within a shell session or shell script. If the variable is exported,
it will affect child shells, that is, nested shell scripts.

Note: Because the standard shell execution performs redirection before variable
assignment, the syntax for specifying the shell variable for one command is:
(_TAG_REDIR_OUT=TXT; command >file)

These variables can also be used in pipelined commands, to tag the stdout of each
command that is writing to a pipeline, and/or the stdin of each command reading
from a pipeline.

Files
sh_history

The default history storage file.

.profile
The user profile for login shell.

/etc/profile
The systemwide profile for login shells.

/tmp/sh*
Temporary files for here-documents, command substitution, history

sh

520 z/OS V1R4.0 UNIX System Services Command Reference

reexecution, and so on. The default directory /tmp can be overridden by
setting the shell variable TMPDIR to the name of some other directory.

/etc/suid_profile
Used instead of $HOME/.profile or .profile under the privileged option or
when the real and effective UIDs are different.

Localization
sh uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX

See Appendix F, “Localization” on page 825 for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v The shell was invoked with an incorrect option.
v The shell was invoked to run a shell script and the command.
v A command syntax error.
v A redirection error.
v A variable expansion error.

Otherwise, the exit status of the shell defaults to the exit status of the last command
run by the shell. This default can be overridden by explicit use of the exit or return
commands.The exit status of a pipeline is the exit status of the last command in the
pipeline.

Messages
Ambiguous redirection

A redirection construct expanded to more than one pathname.

Argument too long
Any single argument to a command is limited in length (see “Limits” on
page 523). Command and parameter substitution may exceed this limit.

Cannot restore privileged state
This message occurs only when the implementation of POSIX does not
support the saved IDs option (_POSIX_SAVED_IDS). The message is
generated if you tried to use a saved ID feature to return to a privileged
state.

File file already exists
You are attempting to redirect output into an existing file, but you have
turned on the noclobber option (see the set command). If you really want
to redirect output into an existing file, use the construct >|filename, or turn
off the option with:
set +o noclobber

File descriptor number already redirected
You attempted to redirect a file descriptor that was already being redirected
in the same command. You can redirect a file descriptor only once.

sh

Chapter 2. Shell Command Descriptions 521

Hangup
The shell received a hangupsignal. This signal typically arises when a
communication line is disconnected—for example, when a phone
connection is cut off.

In base#number: base must be in [2,36]
In a number of the form base#number, the value of the base was larger than
36 or less than 2. The only valid range for bases is from 2 through 36.

Invalid subscript
A shell array was indexed with a subscript that was outside the defined
bounds.

Illegal instruction
The shell received an illegal instruction signal. This signal typically occurs
when a process tries to execute something that is not a valid machine
instruction recognized by the hardware.

Misplaced subscript array name
The subscript for an array was missing or incorrect.

name is not an identifier
You attempted to use a nonalphanumeric name.

name: readonly variable
The given name is a read-only variable, and cannot be removed or
changed (see readonly).

name: no expansion of unset variable
The shell is operating with set –u, and you used an unset variable in a
substitution. For more information, see the set command.

No file descriptor available for redirection
When a file descriptor is redirected, the old value is remembered by the
shell by a duplication to yet another file descriptor. The total number of file
descriptors is limited by the system; hence, the shell may run out, even
though your command appears to be using far fewer than the maximum
number of descriptors.

Nested aliases
You have more than nine levels of aliases. For example:
alias a1=a2 a2=a3 a3=a4 ... a10=command

causes this error.

Pipe for coprocess
The shell cannot create a pipe for a coprocess. This may mean that your
session or the system as a whole has already set up its maximum number
of pipes.

...: restricted
If the shell has been invoked as a restricted shell, certain things are
disallowed—for example, the cd command, setting PATH, and output
redirection.

Temporary file error using here document
sh tried to create a temporary file holding the contents of a <<word
here-document. However, the temporary file could not be created. This may
indicate a lack of space on the disk where temporary files are created.

sh

522 z/OS V1R4.0 UNIX System Services Command Reference

Word after ... expanded to more than one argument
In a context where only one argument was expected, a construct expanded
to more than one argument.

Limits
The maximum length of an executable filename, including subdirectories and
extensions, is 1023 bytes.

Portability
POSIX.2, X/Open Portability Guide.

The construct $[arithmetic expression] is an extension of the POSIX standard.

Related Information
alias, break, cd, continue, dot, echo, eval, exec, exit, export, fc, getopts, let,
print, ps, pwd, read, readonly, return, set, shift, test, time, trap, true, typeset,
ulimit, unalias, unset, whence. shedit

Appendix I also explains how to set the local time zone with the TZ environment
variable.

shedit — Interactive command and history editing in the shell

Format
set –o editmode
EDITOR=editprog
VISUAL= editprog

Usage Notes
POSIX uses a number of keys for such things as erase and kill processing. By
default, the shell leaves command-line editing to POSIX, using these familiar editing
keys. However, these functions are not particularly powerful or friendly. As an
alternative, the shell has built-in facilities for interactive command editing and file
name generation that not only aid in composing new commands but also make it
easy for you to modify and reexecute previous commands. This capability is distinct
from that provided by the fc command, which passes previous command lines to a
separate program for editing. The built-in facilities mimic the emacs, gmacs, or vi
screen editors, and enable the following commands (see set and vi for details).
set –o emacs
set –o gmacs
set –o vi

These facilities are also enabled (with the corresponding option set) by assigning a
value ending in vi to the environment variables EDITOR or VISUAL. (See sh.)

Unlike full-screen editors, shell editing uses a one-line window, extending from the
end of the prompt to the next-to-last column. Multiline history entries are displayed
with newlines represented as ^J.

The number of columns on the output device is obtained from the COLUMNS
environment variable if defined; otherwise, it is assumed to be 80.

sh

Chapter 2. Shell Command Descriptions 523

A command line that extends into the rightmost column can be scrolled horizontally.
If you try to move the cursor beyond the edge of the window, the line is scrolled to
approximately center the cursor in the window. The second last column displays a
character marking a scrollable line: < indicates extra data off the left, > indicates
extra data off the right, and * indicates extra data off both sides.

emacs/gmacs Editing Mode
When the emacs/gmacs editing mode has been enabled, ordinary printable
characters from the keyboard are entered in the command line and echoed. Various
control characters introduce command sequences for such things as moving the
cursor, scrolling through the command history, and modifying the current command.
The only difference between emacs and gmacs is in the handling of Ctrl-T. (See
the description of Ctrl-T in 525.)

The command sequences recognized are listed in functional groups. The notation
Meta– represents EscK, followed by the letter. The terminology is historical. Many
commands accept an optional preceding count which is entered in decimal as
Meta-digits, or as Ctrl-, which multiplies the current count (initially 1) by 4.

Cursor Movement
nCtrl-B

Moves the cursor back n characters.

nCtrl-F
Moves the cursor forward n characters.

Ctrl-A Moves the cursor to beginning of line.

Ctrl-E Moves the cursor to end of line.

nMeta–b
Moves the cursor back to the nth previous beginning of word (string of
alphanumerics).

nMeta–f
Moves the cursor forward to nth beginning of word.

Ctrl–]c
Moves the cursor forward to next character c on current line.

Meta–space
Sets mark at cursor position.

Ctrl-@
Sets mark at cursor position.

Ctrl-x Ctrl-X
Exchanges cursor position and mark.

Line Search
These commands display a different history line.

nCtrl-P
Selects the nth previous command line from history.

nCtrl-N
Selects the nth next command line from history.

Meta–<
Selects the earliest command line from history.

shedit

524 z/OS V1R4.0 UNIX System Services Command Reference

Meta–>
Selects the latest command line from history.

nCtrl-RstringEnter
Selects the nth previous command line matching string. If n is zero, then
select the next matching command after the current line.

Text Change
n erase

Deletes n characters to the left of the cursor. This is the erase character.

nBackspace
Deletes n characters to the left of the cursor.

nCtrl-H
Deletes n characters to the left of the cursor.

nCtrl-D
Deletes n characters to the right of the cursor. If the current line is empty,
the shell is ended.

nMeta–Ctrl-H
Deletes to the nth beginning of word before the cursor.

nMeta–h
Deletes to the nth beginning of word before the cursor.

nMeta-d
Deletes to the nth beginning of word after the cursor.

nCtrl-K
Deletes from the cursor to the end of line. If n is zero, then deletes from the
beginning of line to the cursor.

kill Deletes the entire current line. This is the line kill character.

Ctrl-G Deletes the entire current line.

Ctrl-W Deletes from cursor position to the mark (set with Meta-space or Ctrl-@.

Ctrl-T In emacs mode, transposes the current character with the previous
character and moves the cursor forward. If the cursor is at the end of the
line, or in gmacs mode, transposes the previous two characters.

Ctrl-Y Restores the last text deleted in emacs mode.

Ctrl-C Capitalizes character under cursor.

Ctrl-^ Capitalizes character under cursor.

Meta-c
Capitalizes word to right of cursor.

Meta-l Lowercases word to right of cursor.

Meta-u
Uppercases word to right of cursor.

nMeta-.
Inserts the nth word of the previous command. If n is not given or it is zero,
inserts the last word of the previous command.

nMeta-_
Inserts the nth word of the previous command. If n is not given or it is zero,
inserts the last word of the previous command.

shedit

Chapter 2. Shell Command Descriptions 525

Meta-* Replaces the current word with the list of files which would match that word
with an * appended.

Meta-Esc
Used to complete a pathname. If there is only one existing pathname that
matches as much as you’ve typed, the pathname is completed and a space
is added after the complete pathname. If there are several matching
pathnames, the shell expands what you’ve typed by adding all the
characters that are common to all matching pathnames.

Meta-=
Lists all pathnames matching the current word.

Miscellaneous
Ctrl-J Executes the current command line.

Ctrl-M Executes the current command line.

Ctrl-L Redisplays the current command line.

Ctrl-O Remembers the next command line, executes the current command line,
then selects the remembered line.

Ctrl-U Multiplies the count on the following command by 4 (for each Ctrl-U.

Ctrl-V Displays the version of the shell.

– Takes the next character literally. Thus, you can enter command and control
characters in a command line or search string.

eof Terminates the shell. This is the end-of-file character.

Ctrl-D Terminates the shell.

Meta–n
Enters a count for the following command.

vi Editing Mode
When the vi editing facilities have been enabled, the shell is initially in input mode
after each new prompt. Keyboard input is normally inserted at the current position in
the current command line; the exceptions are the following action keys.

erase Deletes the character to the left of the cursor. This is the erase character.

Backspace
Deletes the character to the left of the cursor.

eof Terminates the shell. This is the end-of-file character.

Ctrl-D Terminates the shell.

Ctrl-W Deletes the word (white-space delimited string) to the left of the cursor.

kill Deletes the current line. This is the line kill character.

Ctrl-X Deletes the current line.

Ctrl-J Deletes the current line.

Ctrl-M Deletes the current line.

Enter Executes the current line.

Esc Switches from input mode to command mode.

If you press the Esc key, the shell enters command mode and keyboard
input is interpreted as commands to reposition the cursor, scroll through the

shedit

526 z/OS V1R4.0 UNIX System Services Command Reference

command history, delete or change text, or reenter input mode. In command
mode, input is not echoed; it is acted upon. Many commands take an
optional count, n, which is entered as a preceding decimal number (not
echoed); the command is executed that number of times. Except where
otherwise noted, n defaults to 1.

Ctrl-V Takes the next character literally; useful for entering any of these action
keys as text.

\ Escapes the following action key. If the next character is any action key
except Ctrl-J, Ctrl-M, or Enter, the – is erased and the escaped character
is entered literally. Otherwise, the – is entered and the next character is
treated normally.

Cursor Movement
These commands reposition the cursor in the command line.

nh Moves back n characters.

n1 Moves forward n characters.

0 Moves to the first character on the line.

^ Moves to the first nonblank character on the line.

$ Moves to the last character on the line.

nw Moves to the beginning of the nthe next word (string of alphanumerics, or of
nonblank nonalphanumerics).

nW Moves to the beginning of the nthe next fullword (string of nonblanks).

nb Moves to the nthe previous beginning of word.

nB Moves to the nthe previous beginning of fullword.

ne Moves to the nthe next end of word.

nE Moves to the nthe next end of fullword.

nfc Moves to the nthe next character c.

nFc Moves to the nthe previous character c.

ntc Moves to the character before the nthe next character c.

nTc Moves to the character after the nthe previous character c.

n; Repeats the previous f, F, t, or T command.

n, Repeats the previous f, F, t, or T command, but in the opposite direction.

Line Search
These commands change the current displayed command line.

nj Selects the nthe next command line from history.

n+ Selects the nthe next command line from history.

nk Selects the nthe previous command line from history.

n– Selects the nthe previous command line from history.

nG Selects the command with history number n, or the latest command if n is
omitted.

/stringEnter
Selects the first command line, searching backwards, that matches string. If
string is omitted, the previous search string is used.

shedit

Chapter 2. Shell Command Descriptions 527

?stringEnter
Selects the first command line, searching forwards, that matches string. If
string is omitted, the previous search string is used.

n Repeats the last string search (‘/’ or ‘?’) command.

N Repeats the last string search, but in the opposite direction.

Text Change
The following commands alter the text in the current command line. Some of these
commands operate on a text block, defined by an immediately following cursor
movement command. This is designated by m (for movement) in the text change
command. The text block extends from the current cursor position to the new
position determined by the movement command.

i Enters input mode, inserting text before the character under the cursor.

I Inserts before the first nonblank on line (^i).

a Moves the cursor forward one character and enter input mode, appending
text after the character originally under the cursor.

A Appends to end of line ($a).

ndm Deletes text block. If n is given, it is applied to the movement.

dd Deletes entire command line.

D Deletes from cursor to end of line (d$).

nx Deletes n characters to right of cursor (ndl).

nX Deletes n characters to left of cursor (ndh).

ncm Change text block; deletes block of text and enters input mode. If n is
given, it is applied to the movement.

cc Change entire command line.

s Change entire command line.

ns Change next n characters from cursor.

np Puts back, after the character under the cursor, n copies of the last block
deleted by a text change command.

nP Puts back, before the character under the cursor, n copies of the last block
deleted by a text change command.

rc Replaces the single character under the cursor with the character c, and
advances the cursor one position.

R Enters replace mode: a special case of input mode in which each character
entered overwrites that under the cursor, and advances the cursor one
position.

u Undoes the last text change to the current line. This is itself a text change
command, and so acts as a toggle for the last change.

U Undoes all changes to the current line.

n ~ Inverts the case of the next n characters, advancing the cursor over them.

n. Repeats the last text change command. If n is given, it overrides the count
originally given with the repeated command.

n_ Appends after the character under the cursor, the nthe argument from the
previous command line (default last), and enter input mode.

shedit

528 z/OS V1R4.0 UNIX System Services Command Reference

* Replaces the current word with the list of file names that matches the word
with an * appended. If there is no match, an audible alarm sounds and the
word is not changed. Otherwise, the cursor is positioned at the end of the
list and input mode is entered.

\ Used to complete a pathname. If there is only one existing pathname that
matches as much as you’ve typed, the pathname is completed and a space
is added after the complete pathname. If there are several matching
pathnames, the shell expands what you’ve typed by adding all the
characters that are common to all matching pathnames.

= Lists all pathnames matching the current word.

Miscellaneous
nym Yanks text block into the delete buffer. Does not alter the command line or

cursor position, but makes the text block available to subsequent put or p
commands. If n is given, it is applied to the movement.

yy Yanks the entire command line.

Y Equivalent to y$. Yanks the rest of the line.

Equivalent to I#Enter.

nv Executes fc –e ${VISUAL:–${EDITOR:–vi}} n. If n is omitted, the history
number of the current line is used.

Ctrl-L Redisplays the current line.

Ctrl-J Executes the current line.

cm Executes the current line.

Enter Executes the current line.

@letter
Inserts the value of the alias named _letter. The symbol letter represents a
single alphabetic character from the portable character set; implementations
may support additional characters as an extension. If the alias _letter
contains other editing commands, these commands are performed as part
of the insertion. If the _letter alias is not enabled, this command has no
effect.

Limits
Selecting a previous history line for editing while at a secondary prompt (that is,
while entering a subsequent line of a new multiline command) yields unexpected
results.

Related Information
fc, set, sh, vi

shift — Shift positional parameters

Format
shift [expression]

tcsh shell: shift [variable]

shedit

Chapter 2. Shell Command Descriptions 529

Description
shift renames the positional parameters so that i+nth positional parameter becomes
the ith positional parameter, where n is the value of the given arithmetic expression.
If you omit expression, the default value is 1. The value of expression must be
between zero and the number of positional parameters ($#), inclusive. The value of
$# is updated.

shift in the tcsh shell
Without arguments, shift discards argv[1] and shifts the members of argv to the
left. It is an error for argv not to be set or to have less than one word as value.
With variable, shift performs the same function on variable. See “tcsh — Invoke a
C shell” on page 570.

Examples
The commands:
set a b c d
shift 2
echo $*

produce:
c d

Usage Note
shift is a special built-in shell command.

Localization
shift uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure because the expression had a negative value or was greater than
the number of positional parameters.

Messages
Possible error messages include:

bad shift count expr
You specified an expression that did not evaluate to a number in the range
from 0 to the number of remaining positional parameters.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Allowing an expression, rather than just a number, is an extension found in the
z/OS UNIX System Services shell (a KornShell).

shift

530 z/OS V1R4.0 UNIX System Services Command Reference

Related Information
set, sh, tcsh

sleep — Suspend execution of a process for an interval of time

Format
sleep seconds

Description
sleep continues running until the specified number of seconds has elapsed. sleep
can delay execution of a program or produce periodic execution in conjunction with
shell commands.

The seconds argument can be either a number of seconds, or a more general time
description of the form nhnmns, with the nh, nm, and the s being optional.

Example
sleep 20h10m

sleeps for 20 hours and 10 minutes (or 72600 seconds).

Localization
sleep uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

2 Failure because you specified no seconds value or because seconds is an
incorrect argument (for example, incorrect format).

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
date

skulker — Remove old files from a directory

Format
skulker [–irw] [–l logfile] directory days_old

shift

Chapter 2. Shell Command Descriptions 531

Description
skulker finds files that are candidates for deletion in directory, based on the age
specified by days_old.

When you call skulker without any options, the files that are candidates for deletion
are found using the primaries as in the following find command line:
find directory -type f -atime +days_old -level 0 -print

For example, specifying 5 for days_old causes the find command to find files equal
to or older than 5 24-hour intervals earlier than now.

The skulker script (which is a z/OS shell script, and can be found in /samples)
should be copied and can be modified to suit your particular needs. Possible
locations for placing the script include /bin or /usr/sbin, especially if skulker is to
be run from a UID(0) program. If skulker is to be run by users, /usr/bin is another
possibility, but check that the sticky bit is on in the directory. If the script is called
from a privileged user (a superuser, a user with a UID of 0, or a user running with
the RACF trusted or privileged attribute), it is important to protect the script from
any modifications by a non-privileged user.

Options
–i Displays the files that are candidates for deletion, and prompts the user to

stop or continue with file removal. Do not use this option if you are invoking
skulker from a cron job. If skulker is invoked with –i from a cron job, no
files will be deleted. A message will be mailed to the caller, showing the
skulker output that includes the message “Request canceled.”

–l Specifies a logfile to store a list of files that have been deleted, are
candidates for deletion, or for which warnings have been mailed; and any
errors that may have occurred.

–r Moves recursively through subdirectories, finding both files and
subdirectories that are equal to or older than the specified number of days.
The files that are candidates for deletion are found using the primaries as in
the following find command line:
find directory -atime +days_old ! -name directory -print

The –name primary prevents skulker from deleting the actual directory that
was entered as a start point (for example, /tmp).

–w Does not remove files, but sends a warning to the owner of each old file
(using mailx) that the file is a candidate for deletion.

days_old
Specifies the age of the files you want to remove. For example, if you
specify 100 for days_old, all files that were last accessed 100 or more days
ago are marked as candidates for deletion.

directory
Specifies the directory in which to look for files.

By default, files are removed from the specified directory based on access time and
their status as regular files, and are removed only from the directory specified (not
from any subdirectories).

skulker

532 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. To remove all files from /tmp that were last accessed 100 or more days ago:

skulker /tmp/ 100

The trailing slash in /tmp/ is necessary if /tmp is a symbolic link (as it is in
OS/390 Release 9 and higher), and you want to list or remove files from the
directory the link points to, rather than the symbolic link itself. If /tmp (or the
directory specified) is not a symbolic link, the trailing slash has no effect.

2. To remove all regular files from /tmp that were last accessed 11 or more days
ago:
> ls -lL /tmp
total 48
-rw------- 1 BILLYJC SHUT 0 Nov 10 06:00 10.txt
-rw------- 1 BILLYJC SHUT 0 Nov 11 06:00 11.txt
-rw------- 1 BILLYJC SHUT 0 Nov 12 06:00 12.txt
-rw------- 1 BILLYJC SHUT 0 Nov 13 06:00 13.txt
-rw------- 1 BILLYJC SHUT 0 Nov 14 06:00 14.txt
-rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt
-rw------- 1 BILLYJC SHUT 0 Nov 16 06:00 16.txt
-rw------- 1 BILLYJC SHUT 0 Nov 17 06:00 17.txt
-rw------- 1 BILLYJC SHUT 0 Nov 18 06:00 18.txt
-rw------- 1 BILLYJC SHUT 0 Nov 19 06:00 19.txt
> date
Mon Nov 29 11:17:20 EST 1999
> skulker -i /tmp/ 11
-rw------- 1 BILLYJC SHUT 0 Nov 10 06:00 10.txt
-rw------- 1 BILLYJC SHUT 0 Nov 11 06:00 11.txt
-rw------- 1 BILLYJC SHUT 0 Nov 12 06:00 12.txt
-rw------- 1 BILLYJC SHUT 0 Nov 13 06:00 13.txt
-rw------- 1 BILLYJC SHUT 0 Nov 14 06:00 14.txt
-rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt
-rw------- 1 BILLYJC SHUT 0 Nov 16 06:00 16.txt
-rw------- 1 BILLYJC SHUT 0 Nov 17 06:00 17.txt
-rw------- 1 BILLYJC SHUT 0 Nov 18 06:00 18.txt
Do you really want to delete these files? If yes, answer [y|Y].
Any other response cancels your request.
y
Deleting files...
> ls -lL /tmp
total 48
-rw------- 1 SUPERID SHUT 0 Nov 15 06:00 15.txt
-rw------- 1 BILLYJC SHUT 0 Nov 19 06:00 19.txt
>

Note that non-superuser BILLYJC (who issued the skulker command) was not
able to delete the superuser’s (SUPERID) file (15.txt), even though the find
command issued from skulker returned 15.txt as a filename to delete.

3. The skulker script can be run from a cron job. To use the cron daemon to run
the skulker script at 3:15 a.m. every Monday through Friday:
> crontab
15 3 * * 1-5 /etc/skulker -l /usr/spool/cron/skulker.log /tmp/ 100
<control-D>
>

This example removes all files from /tmp that were last accessed 100 or more
days ago. By default, cron sends the stdout and stderr of the command in a
mail message to the user who submitted the cron job.

skulker

Chapter 2. Shell Command Descriptions 533

Exit Values
0 Successful completion

1 Either skulker did not find any files that are candidates for deletion, or an
error occurred.

2 There was a usage error.

Messages
Possible messages include:

directory is not a directory
The find command returned a non-zero exit status: return code

Error occurred during remove [of file]. Return code=return code.
The rm command failed with return code while attempting to delete file.

file is in use, not removed.
Some other process was using this file. file cannot be removed.

sort — Start the sort-merge utility

Format
sort [–cmu] [–o outfile] [–t char] [–y[n]] [–zn] [–bdfiMnr] [–k startpos[,endpos]]
... [file ...]
sort [–cmu] [–o outfile] [–tchar] [–yn] [–zn] [–bdfiMnr] [+startposition
[–endposition]] ... [file ...]

Description
sort implements a full sort-and-merge utility. By default, it sorts according to all the
information in the record, in the order given in the record.

sort operates on input files containing records that are separated by the newline
character. When you do not specify either the –c or –m option, sort sorts the
concatenation of all input files and produces the output on standard output. The
following options select particular operations:

–c Checks input files to ensure that they are correctly ordered according to the
key position and sort ordering options specified, but does not modify or
output the files. This option affects only the exit code.

–m Merges files into one sorted output stream. This option assumes that each
input file is correctly ordered according to the other options specified on the
command line; you can check this with the –c option.

–u Ensures that output records are unique. If two or more input records have
equal sort keys, sort writes only the first record to the output. When you
use –u with –c, sort prints a diagnostic message if the input records have
any duplicates.

When you do not specify either the –c or the –m option, sort sorts the
concatenation of all input files and produces the output on standard output.

Options
–o outfile

Writes output to the file outfile. By default, sort writes output to the standard

skulker

534 z/OS V1R4.0 UNIX System Services Command Reference

output. The output file can be one of the input files. In this case, sort
makes a copy of the data to allow the (potential) overwriting of the input file.

–t char
Indicates that the character char separates input fields. When you do not
specify the –t option, sort assumes that any number of white-space (blank
or tab) characters separate fields.

–y[n] Restricts the amount of memory available for sorting to n KB of memory
(where a KB of memory is 1024 bytes). If n is missing, sort chooses a
reasonable maximum amount of memory for sorting, dependent on the
system configuration. sort needs at least enough memory to hold five
records simultaneously. If you try to request less, sort automatically takes
enough. When the input files overflow the amount of memory available,
sort automatically does a polyphase merge (external sorting) algorithm,
which is, of necessity, much slower than internal sorting. n must be at least
2. n has a maximum value of 1024 and a default value of 56.

When you use –u with –c, sort prints a diagnostic message if the input
records have any duplicates. Using the –y option may therefore improve
sorting performance substantially for medium to large input files.

–zn Indicates that the longest input record (including the newline character) is n
bytes in length. By default, record length is limited to LINE_MAX.

The following options control the way in which sort does comparisons between
records in order to determine the order in which the records are placed on the
output. The ordering options apply globally to all sorting keys except those keys for
which you individually specify the ordering option. For more on sorting keys, see
“Sorting Keys” on page 536.

–b Skips, for comparison purposes, any leading white space (blank or tab) in
any field (or key specification).

–d Uses dictionary ordering. With this option, sort examines only blanks,
uppercase and lowercase letters, and numbers when making comparisons.

–f Converts lowercase letters to uppercase for comparison purposes.

–i Ignores, for comparison purposes, nonprintable characters.

–k [startpos [endpos]].
Specifies a sorting key. For more information, see “Sorting Keys” on
page 536.

–M Assumes that the field contains a month name for comparison purposes.
Any leading white space is ignored. If the field starts with the first three
letters of a month name in uppercase or lowercase, the comparisons are in
month-in-year order. Anything that is not a recognizable month name
compares less than JAN.

–n Assumes that the field contains an initial numeric value. sort sorts first by
numeric value and then by the remaining text in the field according to
options.

Numeric fields can contain leading optional blanks or optional minus (−)
signs. sort does not recognize the plus (+) sign.

This option treats a field which contains no digits as if it had a value of
zero. If more than one line contains no digits, the lines are sorted
alphanumerically.

sort

Chapter 2. Shell Command Descriptions 535

–r Reverses the order of all comparisons so that sort writes output from
largest to smallest rather than smallest to largest.

Sorting Keys
By default, sort examines entire input records to determine ordering. By specifying
sorting keys on the command line, you can tell sort to restrict its attention to one or
more parts of each record.

You can indicate the start of a sorting key with:
-k m[.n][options]

where m and the optional n are positive integers. You can choose options from the
set bdfiMnr (described previously) to specify the way in which sort does
comparisons for that sorting key. Ordering options set for a key override global
ordering options. If you do not specify any options for the key, the global ordering
options are used.

The number m specifies which field in the input record contains the start of the
sorting key. The character given with the –t option separates input fields; if this
option is not specified, spaces or tabs separate the fields. The resulting sort key is
from the mth field to the end of the record. The number n specifies which character
in the mth field marks the start of the sorting key; if you do not specify n, the sorting
key starts at the first character of the mth field.

If an ending position for a key is not specified, the sorting key extends from the
starting position to the end of the input record. You can also specify an ending
position for a key, with:
-k m[.n][options],
p[.q][options]

where p and q are positive integers, indicating that the sort key ends with the with
qth character of the pth field. If you do not specify q or if you specify a value of 0
for q, the sorting key ends at the last character of the pth field. For example:
-k 2.3,4.6

defines a sorting key that extends from the third character of the second field to the
sixth character of the fourth field. The b option applies only the key start or key end
for which it is specified;
-k 2

defines a sorting key that extends from the first character of the second field to the
end of the record;
-k2 2

defines a sorting key that extends from the first character of the second field to the
last character of the second field.

sort also supports a historical method of defining the sorting key. Using this
method, you indicate the start of the sorting key with:
+m[.n][options]

which is equivalent to:
–k m+1[.n+1][options]

sort

536 z/OS V1R4.0 UNIX System Services Command Reference

You can also indicate the end of a sorting key with:
–p[.q][options]

which when preceded with +m[.n] is equivalent to:
–k m+1[.n+1],p.0[options]

if q is specified and is zero. Otherwise,
–k m+1[.n+1],p+1[.q][options]

For example:
+1.2 -3.5

defines a sorting key with a starting position that sort finds by skipping the first two
characters of the next field and an ending position that sort finds by skipping the
first three fields and then the first five characters of the next field. In other words,
the sorting key extends from the third character of the second field to the sixth
character of the fourth field. This is the same key as defined under the –k option,
described earlier.

With either syntax, if the end of a sorting key is not a valid position after the
beginning key position, the sorting key extends to the end of the input record.

You can specify multiple sort key positions by using several –k options or several +
and – options. In this case, sort uses the second sorting key only for records where
the first sorting keys are equal, the third sorting key only when the first two are
equal, and so on. If all key positions compare equal, sort determines ordering by
using the entire record.

When you specify the –u option to determine the uniqueness of output records,
sort looks only at the sorting keys, not the whole record. (Of course, if you specify
no sorting keys, sort considers the whole record to be the sorting key.)

Examples
1. To sort an input file having lines consisting of the day of the month, white space,

and the month, as in:
30 December
23 MAY
25 June
10 June

use the command:
sort -k 2M -k 1n

2. To merge two dictionaries, with one word per line:
sort –m –dfi dict1 dict2 >newdict

Environment Variable
sort uses the following environment variable:

TMPDIR
Contains the pathname of the directory to be used for temporary files.

File
sort uses the following file:

sort

Chapter 2. Shell Command Descriptions 537

/tmp/stm*
Temporary files used for merging and –o option. You can specify a different
directory for temporary files using the TMPDIR environment variable.

Localization
sort uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_NUMERIC
v LC_TIME
v NLSPATH

The –M option works only if LC_TIME identifies a locale that contains the same
month names as the POSIX locale.

See Appendix F for more information.

Exit Values
0 Successful completion. Also returned if –c is specified and the file is in

correctly sorted order.

1 Returned if you specified –c and the file is not correctly sorted. Also
returned to indicate a nonunique record if you specified –cu.

2 Failure due to any of the following:
v Missing key description after –k
v More than one –o option
v Missing file name after –o
v Missing character after –t
v More than one character after –t
v Missing number with –y or –z
v endposition given before a startposition
v Badly formed sort key
v Incorrect command-line option
v Too many key field positions specified
v Insufficient memory
v Inability to open the output file
v Inability to open the input file
v Error in writing to the output file
v Inability to create a temporary file or temporary filename

Messages
Possible error messages include:

Badly formed sort key position x
The key position was not specified correctly. Check the format and try
again.

File filename is binary
sort has determined that filename is binary because it found a NULL (’ ’)
character in a line.

sort

538 z/OS V1R4.0 UNIX System Services Command Reference

Insufficient memory for ...
This error normally occurs when you specify very large numbers for –y or
–z and there is not enough memory available for sort to satisfy the request.

Line too long: limit nn — truncated
Any input lines that are longer than the default number of bytes
(LINE_MAX) or the number specified with the –z option are truncated.

Missing key definition after -k
You specified –k, but did not specify a key definition after the –k.

No newline at end of file
Any file not ending in a newline character has one added.

Nonunique key in record ...
With the –c and –u options, a nonunique record was found.

Not ordered properly at ...
With the –c option, an incorrect ordering was discovered.

Tempfile error on ...
The named temporary (intermediate) file could not be created. Make sure
that you have a directory named /tmp, and that this directory has space to
create files. You can change the directory for temporary files using the
TMPDIR environment variable.

Tempnam() error
sort could not generate a name for a temporary working file. This should
almost never happen.

Temporary file error (no space) for ...
Insufficient space was available for a temporary file. Make sure that you
have a directory named /tmp, and that this directory has space to create
files. You can change the directory for temporary files using the ROOTDIR
and TMPDIR environment variables.

Too many key field positions specified
This implementation of sort has a limit of 64 key field positions.

Write error (no space) on output
Some error occurred in writing the standard output. Barring write-protected
media and the like, this normally occurs when there is insufficient disk
space to hold all of the intermediate data.

Portability
POSIX.2, X/Open Portability Guide.

Available on all UNIX systems, with only UNIX System V.2 or later having the full
utility described here.

The –M, –y, and –z options are extensions of the POSIX standard.

Related Information
awk, comm, cut, join, uniq

The sortgen awk script is a useful way to handle complex sorting tasks. It originally
appeared in The AWK Programming Language, by Aho, Weinberger, and
Kernighan. The POSIX.2 standard regards the historical syntax for defining sorting
keys as obsolete. Therefore, you should use only the –k option in the future.

sort

Chapter 2. Shell Command Descriptions 539

spell — Detect spelling errors in files

Format
spell [–biluvx] [–d hashfile] [–f local] [–h history] [+local] [file ...]

Note: The spell utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX- branded systems.

Description
spell checks for misspelled words in each specified file. If you do not specify a file,
it checks the standard input (stdin). A list of potentially misspelled words is
produced on standard output (stdout).

Words are checked against a local word list and then against a hashed word list.
The hashed word list included in this distribution contains virtually no proper names
or technical terms. It is assumed that you will enter these words into your local word
list (or into your machine’s word list). Any capitalized word in the hash list must be
capitalized in the input document; all other words are matched either capitalized or
not. All word forms, including plurals, must be explicitly included in the hash list.
This approach prevents the acceptance of nonsense words that can result from the
algorithmic combination of legal roots with legal suffixes or prefixes, a phenomenon
common to many other spelling checkers.

Options
–b Uses British spelling (such as “colour” instead of “color”). The dictionary file

used is /usr/lib/hashb instead of /usr/lib/hash.

–d hashfile
Uses hashfile as the dictionary. hashfile is a hash list produced from a list of
words using the -i option of spell. To use a list other than the default
/usr/lib/hash, the –d option must be specified.

–f local
Uses the file local as a dictionary of local words, given one word per line. If
you do not specify this option, the file /usr/lib/lwords is used as the local
dictionary.

–h history
Appends a history of all misspelled words to the file history. This file can
be used by a system administrator for dictionary maintenance or generating
a local dictionary.

–i Creates a new hash list file or add words to an existing file, instead of
checking for spelling errors. Words to be entered into the dictionary should
be specified one per line with no white space on the line. Lines beginning
with the # character are ignored as comments. Be sure that the words you
are entering into the hash list are correctly spelled.

–l Produces a longer form of output. For each misspelled word, spell prints
three tab-separated columns containing the misspelled word, the line
number, and the filename.

–u Forces spell to accept any word that is in all uppercase. spell assumes
that such words are acronyms.

spell

540 z/OS V1R4.0 UNIX System Services Command Reference

–v Writes to stdout all words not literally in the dictionary. This is the default
for this implementation because it doesn’t apply suffix/prefix rules to derive
words.

–x Writes each plausible word stem to stdout. Because this implementation of
spell doesn’t derive words, all words are their own word stems.

+ local Uses the file local as a dictionary of local words, given one word per line.
This is synonymous with –f.

Examples
By default, spell does not sort the output. This maintains the order and number of
occurrences of spelling errors. The following command checks for spelling errors,
puts them in dictionary order, removes duplicates, and print them in a multicolumn
format:
spell file | sort –dfu | c

Localization
spell uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Missing hashfile name after –d
v Missing history filename after –h
v Missing local filename after –f
v Inability to open the local file
v Receipt of user interrupt
v An error reading the dictionary file

A spelling mistake is not considered an error.
2 Incorrect command-line option

Files
spell uses the following files:

/usr/lib
The default location of user hash files.

/usr/lib/hash
The default dictionary file, in hashed form.

/usr/lib/hashb
The British dictionary file, in hashed form.

/usr/lib/lwords
The default location of the local words file. This need not exist.

spell

Chapter 2. Shell Command Descriptions 541

Limits
Input lines in the text being checked are restricted to a maximum of 100 characters.

Portability
X/Open Portability Guide, UNIX systems.

The –d, –f, –h, –i, –l, and –u options are extensions of the POSIX standard.

Related Information
sort, vi

split — Split a file into manageable pieces

Format
split [–a n] [–l n] [file [prefix]]
split –b n[bkm] [–a n] [file [prefix]]
split [–n] [–a n] file [prefix]

Description
split breaks a file up into a set of files. It starts a new file every time it has copied
1000 lines.

split names the files that it creates as a prefix followed by a suffix. x is the prefix
unless you specify a different prefix on the command line. Unless altered by the
following options, the suffix begins as aa and is incremented with each new file. By
default, therefore, the first file is xaa followed by xab, and so on.

Options
–a n Uses a suffix n letters long. The default is two.

–b n[bkm]
Splits the file every n units. The default unit size is bytes. When you follow
n with b, k, or m, split uses a corresponding unit size of 512 bytes, 1K
(1024 bytes), or 1 megabyte (1 048 576 bytes).

–l n Splits the file every n lines.

–n Is an obsolescent version of the –l option.

If the file is – (dash) or if no file is specified, split reads the standard input (stdin).

Localization
split uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

spell

542 z/OS V1R4.0 UNIX System Services Command Reference

1 Failure due to any of the following:
v Error opening input or output file
v Missing number after –a
v Invalid –a option
v Missing byte count after –b
v Invalid byte count specification
v Invalid count specification
v Unknown option
v Out of memory for binary split buffer
v Read error on input file
v Write error on output file
v Too many names generated

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems,

The b suffix of the –b option is an extension to the POSIX.2 standard.

Related Information
csplit

stop — Suspend a process or job

Format
stop [pid ...] [job—identifier ...]

tcsh shell: stop %job|pid ...

Description
stop is an alias for kill –STOP. Like kill –STOP, stop sends a SIGSTOP to the
process you specify.

See “kill — End a process or job, or send it a signal” on page 308 for more
information.

stop in the tcsh shell
In the tcsh shell, stop stops the specified jobs or processes which are executing in
the background. job may be a number, a string, ’’, %, + or - . There is no default
job. Specifying stop alone does not stop the current job. See “tcsh — Invoke a C
shell” on page 570.

Options
job-identifier

Is the job identifier reported by the shell when a process is started with &. It
is one way to identify a process. It is also reported by the jobs command.
When using the job identifier with the stop command, the job identifier must
be prefaced with a percent (%) sign. For example, if the job identifier is 2,
the stop command would be entered as follows:
stop %2

pid Is the process ID that the shell reports when a process is started with &.
You can also find it using the ps command. The pid argument is a number

split

Chapter 2. Shell Command Descriptions 543

that may be specified as octal, decimal, or hex. Process IDs are reported in
decimal. stop supports negative values for pid.

If pid is negative but not −1, the signal is sent to all processes whose
process group ID is equal to the absolute value of pid. The negative pid is
specified in this way:
stop –– –nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn
to nnnnnnn).
stop –– –9812753

The format must include the –– before the –nn in order to specify the
process group ID.

If pid is 0, the signal is sent to all processes in the process group of the
invoker.

The process to be killed must belong to the current user, unless he or she is the
superuser.

Related Information
kill, jobs, sh, suspend, tcsh

strings — Display printable strings in binary files

Format
strings [–aopxz] [–n number] [–t format] [file ...]
strings [–] [–opxz] [–t format] [–number] [file ...]

Description
If the command line specifies a filename of –, strings reads the standard input.
strings finds pieces of information in binary files. It is frequently used for looking
through executable files to uncover items such as copyright notices, error
messages, and undocumented feature.

The command displays strings of printable characters that are at least four
characters in length. Strings must be terminated by a NUL character or by a
newline.

Options
–a This option has no effect in the z/OS environment. The entire file is

examined, regardless of whether or not this option is specified.

–n number
Displays strings of printable characters that are at least number characters
in length. If you do not specify the –n option, strings will act as if –n 4 had
been specified.

–o For each string, displays as an octal value its offset in bytes from the
beginning of the file. This is the same as –t o.

stop

544 z/OS V1R4.0 UNIX System Services Command Reference

–t format
For each string, displays its offset in bytes from the beginning of the file.
The base of the offset is set to decimal, octal, or hexadecimal by specifying
format as d, o, or x, respectively.

–x For each string, displays as a decimal value its offset in bytes from the
beginning of the file. This is the same as –t x.

–z Ignores the POSIX definition of a string and searches for any group of
printable characters greater than four in length.

– Is the obsolescent version of –a.

–number
Is the obsolescent version of –n number.

Localization
strings uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Incorrect command-line option
v Insufficient memory

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide.

A Berkeley addition to most UNIX systems. Most Berkeley versions do not require
the terminating NUL or newline.

The –o and –x options are extensions to the POSIX standard.

strip — Remove unnecessary information from an executable file

Format
strip file

Description
On some UNIX systems, strip removes debug information from an executable. On
z/OS, the debug information can only be removed by recompiling. strip does not
modify the contents of any executable file—it is functionally equivalent to touch file.

Localization
strip uses the following localization environment variables:
v LANG
v LC_ALL

strings

Chapter 2. Shell Command Descriptions 545

v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v file does not exist or could not be opened.
v The user does not have write permission for file
v An error occurred while reading file
v file is not an executable file
v file is executable, but appears corrupted

2 No file was specified on the command line

Messages
Possible error messages include:

executable file file: No such file or directory
The input file does not exist. Check that the filename was entered correctly
and that it exists.

file file1: Not an executable file
strip only operates on executable files.

Write permission required to strip file
The user does not have write permission on the file.

executable file file: Permission denied
The user does not have read permission on the file.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

stty — Set or display terminal options

Format
stty [–ag] [operand]

Description
stty sets or reports the terminal I/O characteristics for the standard input device.
stty, entered without options or operands, reports only the terminal I/O
characteristics that differ from the defaults. stty, entered with operands enables,
disables, or selects the full range of terminal I/O characteristics.

The stty command affects whichever line discipline is in effect for your terminal. If
you are using the z/OS Communications Server, then stty affects the line discipline
on the RISC System/6000® where the z/OS Communications Server is running. If
you are not using z/OS Communications Server, then stty affects the line discipline
for z/OS.

strip

546 z/OS V1R4.0 UNIX System Services Command Reference

Options
This command supports the following options:

–a Displays all of the terminal I/O characteristics.

–g Displays all of the terminal I/O characteristics in a format that can be used
as input to the stty command.

The –a option gives you a clear readable description, whereas the –g option
enables you to save and restore the terminal I/O characteristics.

stty entered with operands enables, disables, or selects the full range of terminal
I/O characteristics.

Control Mode Operands
The valid operands for setting control modes are:

parenb
Enable parity generation and detection. Not valid for z/OS line discipline.
–parenb is always used. See “Usage Notes” on page 552.

–parenb
Disable parity generation and detection.

parodd
Select odd parity. Not valid for z/OS line discipline. –parodd is always used.
See “Usage Notes” on page 552.

–parodd
Select even parity.

cs5 Select character size CS5. Not valid for z/OS line discipline. CS8 is always
used. See “Usage Notes” on page 552.

cs6 Select character size CS6. Not valid for z/OS line discipline. CS8 is always
used. See “Usage Notes” on page 552.

cs7 Select character size CS7. Not valid for z/OS line discipline. CS8 is always
used. See “Usage Notes” on page 552.

cs8 Select character size CS8.

number
Set the input and output baud rates to number. A number of zero hangs up
the modem line.

ispeed number
Set the input baud rate to number. Not valid for z/OS line discipline. No
special processing of zero is done. See “Usage Notes” on page 552.

ospeed number
Set the output baud rate to number. Not valid for z/OS line discipline. No
special processing of zero is done. See “Usage Notes” on page 552.

hupcl Hang up the modem line on the last close.

–hupcl
Do not hang up the modem line on the last close.

hup Hang up the modem line on the last close.

–hup Do not hang up the modem line on the last close.

stty

Chapter 2. Shell Command Descriptions 547

cstopb
Use two stop bits per character. Not valid for z/OS line discipline. –cstopb
is always used. See “Usage Notes” on page 552.

–cstopb
Use one stop bit per character.

cread Enable the receiver.

–cread
Disable the receiver. Not valid for z/OS line discipline. cread is always
used. See “Usage Notes” on page 552.

clocal Assume a line without modem control.

–clocal
Assume a line with modem control.

columns number
Set number of columns to number.

This should only be used if rlogin or telnet client does not support window
size, or you are having trouble getting the correct size.

row number
Set number of rows to number.

This should only be used if rlogin or telnet client does not support window
size, or you are having trouble getting the correct screen size.

Input Mode Operands
The valid operands for setting input modes are:

ignbrk
Ignore break on input.

–ignbrk
Do not ignore break on input.

brkint Signal INTR on break.

–brkint
Do not signal INTR on break.

ignpar
Ignore parity errors.

–ignpar
Do not ignore parity errors.

parmrk
Mark parity errors.

–parmrk
Do not mark parity errors.

inpck Enable input parity checking.

–inpck
Disable input parity checking.

istrip Strip input characters to seven bits. This feature is required by the
standards but IBM strongly recomments that you not use this setting. It will

stty

548 z/OS V1R4.0 UNIX System Services Command Reference

make it impossible to send EBCDIC alphanumeric characters to your shell
session and you will have to take extreme measures to terminate the
session.

–istrip Do not strip input characters to seven bits. This is the default and should
not be changed.

inlcr Map newline to carriage return on input.

–inlcr Do not map newline to carriage return on input.

igncr Ignore carriage return on input.

–igncr Do not ignore carriage return on input.

icrnl Map carriage return to newline on input.

–icrnl Do not map carriage return to newline on input.

iuclc Map uppercase alphabetic characters to lowercase on input.

–iuclc Do not map uppercase alphabetic characters to lowercase on input.

ixon Enable START/STOP output control.

–ixon Disable START/STOP output control.

ixany Allow any character to restart input.

–ixany
Do not allow any character to restart input.

ixoff Ask the system to send START/STOP characters to regulate the size of the
input queue.

–ixoff Ask the system not to send START/STOP characters to regulate the size of
the input queue.

Output Mode Operands
The valid operands for setting output modes are:

onlcr Converts newline characters to newline-carriage return sequences.

–onlcr Newline characters are displayed as newlines only.

opost Postprocess output.

–opost
Do not postprocess output. Ignore all other output modes.

olcuc Map lowercase alphabetic characters to uppercase on output.

–olcuc
Do not map lowercase alphabetic characters to uppercase on output.

ocrnl Map CR to NL on output.

–ocrnl Do not map CR to NL on output.

onocr Do not output CR at column 0.

–onocr
Output CR at column 0.

onlret The terminal newline key performs the CR function.

–onlret
The terminal newline key does not perform the CR function.

stty

Chapter 2. Shell Command Descriptions 549

ofill Use fill characters for delays.

–ofill Use timing for delays.

ofdel Fill characters are DELs.

–ofdel Fill characters are NULs.

cr0 Sets the style of delay for CRs (CRDLY) to CR0.

cr1 Sets the style of delay for CRs (CRDLY) to CR1.

cr2 Sets the style of delay for CRs (CRDLY) to CR2.

cr3 Sets the style of delay for CRs (CRDLY) to CR3.

nl0 Select the style of delay for NL (NDLY) to NL0.

nl1 Select the style of delay for NL (NLDLY) to NL1.

tab0 Sets the style of delay for horizontal tabs (TABDLY) to TAB0.

tab1 Sets the style of delay for horizontal tabs (TABDLY) to TAB1.

tab2 Sets the style of delay for horizontal tabs (TABDLY) to TAB2.

tab3 Sets the style of delay for horizontal tabs (TABDLY) to TAB3.

bs0 Select the style of delay for backspace (BSDLY) to BS0.

bs1 Select the style of delay for backspace (BSDLY) to BS1.

ff0 Select the style of delay for form feeds (FFDLY) to FF0.

ff1 Select the style of delay for form feeds (FFDLY) to FF1.

vt0 Select the style of delay for vertical tabs (VTDLY) to VT0.

vt1 Select the style of delay for vertical tabs (VTDLY) to VT1.

Local Mode Operands
The valid operands for setting local modes are:

isig Enable character checking against the special control characters INTR,
QUIT and SUSP.

–isig Disable character checking against the special control characters INTR,
QUIT and SUSP.

icanon
Enable canonical input mode.

–icanon
Disable canonical input mode.

xcase Set canonical uppercase or lowercase presentation.

–xcase
Do not set canonical uppercase or lowercase presentation.

iexten Enable any custom special control characters.

–iexten
Disable any custom special control characters.

echo Echo every character typed.

–echo Do not echo every character typed.

echoe Enable the ERASE character to visibly erase the latest character.

stty

550 z/OS V1R4.0 UNIX System Services Command Reference

–echoe
Do not enable the ERASE character to visibly erase the latest character.

echok Echo newline after a KILL character.

–echok
Do not echo newline after a KILL character.

echonl
Echo newline (even when echo is disabled).

–echonl
Do not echo newline when echo is disabled.

noflsh Disable flush after INTR, QUIT, and SUSP.

–noflsh
Enable flush after INTR, QUIT, and SUSP.

tostop
Send the SIGTOU signal for background output.

–tostop
Do not send the SIGTOU signal for background output.

Control Character Operands
In a doublebyte environment, the char parameter to these operands must be a
narrow (singlebyte) character.

The valid operands for assigning special control characters are:
min number

Set min to number.
time number

Set time to number.
eof char

Set end of file character to char.
eol char

Set end of line character to char.
erase char

Set ERASE character to char.
intr char

Set INTR character to char.
kill char

Set KILL character to char.
quit char

Set QUIT character to char.
susp char

Set SUSP character to char.
start char

Set START character to char.
stop char

Set STOP character to char.

Combination Mode Operands
The valid operands for setting combination modes are:

saved-settings
Set the terminal I/O characteristics to the saved settings produced by the
–g option.

stty

Chapter 2. Shell Command Descriptions 551

evenp Enable parenb and cs7; disable parodd. Not valid for z/OS line discipline.
See “Usage Notes”.

parity Enable parenb and cs7; disable parodd. Not valid for z/OS line discipline.
See “Usage Notes”.

oddp Enable parenb, cs7 and parodd. Not valid for z/OS line discipline. See
“Usage Notes”.

–parity
Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage
Notes”.

–evenp
Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage
Notes”.

–oddp Disable parenb and set cs8. Not valid for z/OS line discipline. See “Usage
Notes”.

raw Enable raw input and output.

–raw or cooked
Disable raw input and output.

nl Enable icrnl.

–nl Disable icrnl; unset inlcr and igncr.

lcase Set xcase, iuclc, and olcuc.

–lcase
Disable xcase, iuclc, and olcuc.

LCASE
Equivalent to lcase.

–LCASE
Equivalent to –lcase.

tabs Perserve tabs when printing.

–tabs or tab8
Expand to spaces when printing.

ek Reset ERASE and KILL characters to system defaults.

sane Reset all modes to reasonable values.

Usage Notes
1. stty will operate successfully even if it is unable to perform one or more actions

in a group of requested actions. For example, if a valid z/OS operand is
requested with an invalid one, stty will operate successfully because it can
perform the valid operand. The valid operand will then be satisfied.

2. If stty is only used with invalid z/OS operands or invalid operands in
combination with valid operands that have already been satisfied, stty will fail.

Localization
stty uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

stty

552 z/OS V1R4.0 UNIX System Services Command Reference

v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Error setting termios attributes
v Unknown mode
v Missing number after option
v Argument out of range
v Bad number after option
v Internal error
v Error reading termios attributes
v Missing character after option
v Badly formed argument option character
v Missing speed after ispeed or ospeed
v Bad speed argument

Portability
POSIX.2, UNIX System V.

su — Change the user ID associated with a session

Format
su [–s][userid]

Description
su starts a new shell and lets you operate in it with the privileges of a superuser or
another user.

If you do not specify a user ID, su changes your authorization to that of the
superuser. If you specify a user ID, su changes your authorization to that of the
specified user ID. The new environment is built and then a new session is initiated.
The new session is run as a child shell of the shell issuing the su command.

su performs these functions:

v Obtains your user profile information. After validating that you have an OMVS
segment in the user profile, the OMVS segment information is obtained.

v Verifies authorization. If a user ID is not specified, you must have the
appropriate authorization to obtain superuser authority. You must be permitted to
the BPX.SUPERUSER RACF facility class. For more information, see z/OS UNIX
System Services Planning.

If a user ID is specified, and you do not have read access to the SURROGAT
facility class profile, BPX.SRV.uuuuuuuu (where uuuuuuuu is the MVS userid
associated with the target UID), you must enter the target user’s password when
prompted. If a user ID is specified, and you have read access to the SURROGAT
facility class profile for the target user, you can use the –s option, or hit enter at
the password. For more information see z/OS UNIX System Services Planning.

If a user ID is specified, the group ID is changed to that of the specified user’s
default group GID.

stty

Chapter 2. Shell Command Descriptions 553

If a user ID is specified, the supplementary group list is changed to that of the
specified user.

v Changes the user ID. Your user ID may be changed to either the specified user
ID or the superuser’s user ID (UID 0).

– When a user ID is specified, your MVS identity changes to the specified user
ID, changing your access authority for MVS data sets in addition to changing
to the new user’s UID.

– When a user ID is not specified, your MVS identity remains the same. This
maintains your access authority to MVS data sets, while gaining superuser
authority.

– If you are already running under UID 0 and BPX.DAEMON is defined, issuing
su with no userid will result in your uid being switched to BPXROOT. If
BPX.DAEMON is not defined, and you issue su with the userid while running
under UID 0, your UID will remain set to 0. In both cases, access to the
BPX.SUPERUSER facility class will not be checked.

v Sets up the shell environment. The OMVS segment of your user profile is used
to set up the shell environment. The environment is set up to be as similar as
possible to the environment of the shell issuing the su command. Information is
obtained from the OMVS segment if available. If not, defaults are used. If the
value for the initial program (shell) is not available, a default value of /bin/sh is
used.

v Executes the new shell. The new shell is initialized to run as a child process of
the shell issuing the su command. If the su command is run from a restricted
shell (such as a shell that was started with the –r option), you will exit from the
restricted shell and leave the protection of the trusted environment.

Notes:

1. The new shell is always run in a new address space, even if you have
_BPX_SHAREAS=YES set.

2. If you use the OMVS interface when running a shell created by su, any
attempt to execute TSO commands (PF6) results in the command running
back in your TSO address space. When these TSO commands run, they run
with your TSO identity, not the identity specified by su.

However, if you are not using the OMVS interface (e.g. you rlogin or telnet
into the shell), you cannot use PF6 to execute a TSO command, and, as a
result, there will be no TSO address space or identity. The alternative solution
is to use tso –t which allows you to run a TSO/E command with the current
identity set by su.

To restore the previous session, enter exit or press <EscChar-D> (where EscChar
is normally the cent sign). If you use rlogin or telnet to enter the shell, you hold
down the Ctrl key while you press D. This action ends the child shell initiated by the
su command and returns you to the previous shell, user ID, and environment. See
z/OS UNIX System Services User’s Guide for more information about exiting the
shell environment.

Options
–s Does not prompt for password. Use this option if you have read access to

the SURROGATE facility class profile, BPX.SRV.uuuuuuuu (where
uuuuuuuu is the MVS userid associated with the target UID).

su

554 z/OS V1R4.0 UNIX System Services Command Reference

Usage Notes
1. The new shell inherits the standard file descriptors from the su command, so

commands can be piped to the stdin of the new shell and run under the new
user.

2. If the OMVS NOECHO option is in effect, your password will be displayed.

3. Because su starts a new interactive shell, it should not be used from a batch
interface such as BPXBATCH, unless you provide the commands to be
executed under superuser via stdin to the su command.

Exit Values
0 The command completed successfully
1 The user is not authorized to obtain superuser authority
2 Failure due to any of the following:

v Unable to execute the shell
v The OMVS segment of the user’s profile cannot be found
v Unable to set up the superuser environment

3 Failure due to any of the following:
v Incorrect command syntax
v Unable to open the message catalog

Messages
Possible error messages include:

User not authorized to obtain superuser authority
The user ID issuing the su command does not have the proper
authorization to switch to superuser. Verify authorization with the system
programmer.

Unable to set up the user environment. Processing terminates.
The environment variables required by the shell have not been set up.
Processing terminates. Contact the system programmer.

Unable to open the message catalog.
The message catalog cannot be opened. Processing continues with the
default messages being used. Verify that the message catalog exists in the
file system. Contact the system programmer.

Unable to execute the shell.
The initial program (shell) was not run. Verify that the initial program (shell)
exists on this system and that the user has permission to execute it.

The RACF profile for this user does not contain an OMVS segment.
During su command processing, the OMVS segment of the user’s TSO/E
profile could not be obtained. Contact the system programmer.

Command loaded from an unauthorized library. Processing terminates.
The su command must reside in an authorized library in order to check the
password of a specified user ID. Contact the system programmer.

User not authorized to switch to -"%s-".-n"
The setuid to the specified user’s UID failed because the user is not
authorized. Contact the system programmer.

Unable to switch to -"%s-", due to an error in the OMVS segment of the RACF
profile.-n"

The setuid to the specified user’s UID failed. Processing terminates.
Contact the system administrator.

su

Chapter 2. Shell Command Descriptions 555

User is not a surrogate of –″%s–″.–n″
User not defined to have appropriate permission to the SURROGAT facility
class profile for the new user. Either no password was entered or the –s
option was used. Processing terminates. Contact the system administrator.

Limits
Only users who have RACF access permission to the superuser class can use su
without specifying the user ID.

Portability
None. This command is an extension that comes with z/OS UNIX services.

Related Information
sh, ISHELL

sum — Compute checksum and block count for file

Format
sum [–ciprt] [file...]

Note: The sum utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the cksum utility be used instead because
it may provide greater functionality and is considered the standard for
portable UNIX applications as defined by POSIX.2 IEEE standard
1003.2-1992.

Description
sum calculates a checksum for each input file. It also displays the number of
512-byte blocks in each file. If you do not specify any files, or if you specify – as the
filename, sum reads standard input (stdin). The checksum is useful as a quick way
to compare a file or files that have been moved from one system to another to
ensure that data has not been lost.

sum differs from cksum only in the format of the output. The output of sum has the
form:
checksum blockcount filename

where blockcount is the number of 512-byte blocks in the file.

sum can calculate checksums in a variety of ways. The default checksum algorithm
produces a 16-bit unsigned integer resulting from the arithmetic addition of each
input byte. This checksum algorithm is not sensitive to byte order.

Options
–c Uses a standard 16-bit Cyclical Redundancy Check (CRC-16).

–i Uses the CCITT standard Cyclic Redundancy Check (CRC-CCITT). Data
communications network protocols often use a cyclic redundancy check to
ensure proper transmission. This algorithm is more likely to produce a
different sum for inputs which differ only in byte order.

–p Uses the POSIX.2 checksum algorithm.

su

556 z/OS V1R4.0 UNIX System Services Command Reference

–r Enables the use of an alternate checksum algorithm which has the
advantage of being sensitive to byte order.

–t Produces a line containing the total number of blocks of data read, as well
as the checksum of the concatenation of the input files.

Localization
sum uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to open input file
v Error reading the input file

2 Unknown command-line option

Portability
The default checksum algorithm is compatible with UNIX System V.2 and later. The
–r algorithm is also available on UNIX System V.2 and is the default algorithm for
Berkeley and Version 7. The –c, –i, and –t options are not available under UNIX.

Related Information
cmp, cksum, diff, ls, wc

suspend — Send a SIGSTOP to the current shell

Format
suspend

tcsh shell: same as above

Description
suspend is an alias for stop $$, where stop is an alias of kill –STOP and $$
expands to the current process of the shell. suspend sends a SIGSTOP to the
current shell.

See “kill — End a process or job, or send it a signal” on page 308 for more
information.

suspend in the tcsh shell
suspend causes the tcsh shell to stop in its tracks, much as if it had been sent a
stop signal with ^Z. See “tcsh — Invoke a C shell” on page 570.

Related Information
kill, sh, tcsh

sum

Chapter 2. Shell Command Descriptions 557

sysvar — Display static system symbols

Format
sysvar var

Description
The sysvar command will allow users to obtain substitution text for system
variables that may be defined in IEASYMxx or in the system IPL parameters. The
substitution text will be printed to standard out. This could be used to substitute
system variables in shell variables. For example:
system_name=$(sysvar SYSNAME)

Exit Values
o Successful completion

1 Failure because var is not a valid system variable

2 Failure because no var was specified

tabs — Set tab stops

Format
tabs [+m[margin]] [–T term] [– number]
tabs [+m[margin]] [–T term] –t tablist
tabs [+m[margin]] [–T term] num1[,num2,...]
tabs [+m[margin]] [–T term] tabspec

Description
tabs sends a series of characters to the standard output, designed to clear the
terminal hardware’s tab stops and then set new ones. The characters that are sent
depend on the type of terminal you are using.

The first column of your terminal screen is column 1. If you set a tab stop at
position N and then tab to that position, the next character displayed on the screen
appears in column N+1 of the line (that is, after the tab stop).

tabs may not be able to set the tab stops on some types of terminals. In this
situation, it issues an error message and then exits with a status greater than zero.
tabs with no arguments sets tab stops every 8 positions.

Options
+m[margin]

Sets the left margin to margin. It defaults to 10 if you do not specify a
value. All tab positions are relative to the left margin. To find the actual tab
positions, you add the value of margin to each tab position.

–T type
Indicates the type of terminal you have. The term argument is a site-specific
name for your terminal type.

If you do not specify –T, tabs looks for an environment variable named
TERM and uses its value for type. If TERM is not defined, tabs assumes a
default terminal type.

sysvar

558 z/OS V1R4.0 UNIX System Services Command Reference

–t tablist
Sets tab stops as specified by tablist. tablist consists of one or more
positive decimal integers, separated by commas; the numbers in the list
should be in strictly increasing order.

If only one number N is given, tabs are set every N columns. If more than
one number is given, tabs are set at those column numbers.

num1[,num2,...]
Sets tab stops to the given numbers. The numbers in the list should be
positive decimal integers in strictly increasing order. Except for the first
number, any number in the list may be preceded by a plus sign (+), in
which case the number is considered to be an increment on the previous
setting rather than a column position. For example,
tabs 4,8,12
tabs 4,+4,+4

are equivalent.

tabspec
Can be one of –a, –a2, –c, –c2, –c3, –f, –p, –s or –u and sets tab stops at
these positions:
–a 1,10,16,36,72
–a2 1,10,16,40,72
–c 1,8,12,16,20,55
–c2 1,6,10,14,49
–c3 1,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,67
–f 1,7,11,15,19,23
–p 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61
–s 1,10,55
–u 1,12,20,44

Each tabspec is designed for a particular programming language.
Assembler uses –a,–a2, and –u. COBOL uses –c, –c2, and –c3.
FORTRAN, PL/I, and SNOBOL use –f, –p, and –s, respectively.

–number
Sets tab stops every number positions along the line. number must be a
single-digit decimal number. If number is zero (–0), tabs clears all the tab
stops and does not set new ones.

Environment Variables
tabs uses the following environment variables:
TERM Contains the name of your terminal.
TERMINFO

Contains the pathname of the terminfo database.

Localization
tabs uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

tabs

Chapter 2. Shell Command Descriptions 559

Exit Values
0 Successful completion
1 Missing definition in the terminfo database
2 Usage error
3 Unknown terminal or cannot find the terminfo database
4 Illegal tabs
5 An error occurred

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The +m, –t, and tabspec arguments are all extensions to the POSIX standard.

The –t argument is an extension to the X/Open standard.

Related Information
stty

tail — Display the last part of a file

Format
tail [–f] [–bcklmn [±]number] [file]
tail [–f] [±number [bcklmn]] [file]

Description
tail without options displays the last ten lines of file. This is useful for seeing the
most recent entries in log files and any file where new information is added on the
end.

The tail command is used with text files. To make a binary file input to the tail
command, use the –c option. If a binary file is input without the –c option being
specified, the entire file is sent to the screen.

Options
±number

Is either of the following:

+number
Skips to line number and then displays the rest of the file. For
example, +100 prints from line 100 to the end of the file.

–number
Prints number lines from the end of the file. For example, -20 prints
the last 20 lines in the file.

You can precede or follow both +number and –number with one of the
following letters to indicate the unit to be used:
v b–blocks
v c–bytes
v k–kilobytes
v l or n–lines
v m–megabytes

tabs

560 z/OS V1R4.0 UNIX System Services Command Reference

The default unit is lines.

–f Monitors a file as it grows. Every two seconds, tail wakes up and prints any
new data at the end of the file. This option is ignored if tail read from the
standard input, and standard input is a pipe.

Localization
tail uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Insufficient memory
v Write error on the standard output (stdout)
v Badly formed line or character count
v Missing number after an option
v Error reopening a file descriptor

2 Failure due to an unknown command-line option

Messages
Possible error messages include:

Badly formed line/character count string
In an option of the form –n number or –number, the number was not a valid
number.

Reopening file descriptor number
–f was used to follow a file as it grew. tail closed the file associated with
the given file descriptor number and then tried to open it 2 seconds later. At
this point, tail found it could not reopen the file for reading, and therefore
could not follow the file any longer.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard does not include the use of b, k, or m as either options or
suffixes. –l is an extension of the traditional implementation of tail.

Related Information
cat, head, more

talk — Talk to another user

Format
talk address [terminal]

tail

Chapter 2. Shell Command Descriptions 561

Description
talk lets you begin a two-way conversation with someone else logged in to the
system.

Options
address

Indicates the user with whom you want to talk. The most common form of
address is the person’s user name (as given by the who command), but
other formats may be supported.

terminal
An optional identifier for use when the other user is logged in on more than
one terminal. The format of the terminal identifier is the same as given by
who.

Environment Variables
talk uses the following environment variables:
TERM Contains the name of your terminal.
TERMINFO

Contains the pathname of the terminfo database.

Localization
talk uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
1. When you issue a talk command to request a conversation with another user,

the other user receives a message of the form:
Message from name
talk: connection requested by your_address
talk: respond with: talk your_address

To set up the connection, your intended recipient must issue the system
command
talk your_address

which establishes the two-way connection. After this connection has been
established, both of you can type simultaneously. talk displays incoming
messages from the other person in one part of the screen and outgoing
messages in another part of the screen.

Some terminals may not be able to split the screen into parts in this way.
Depending on the terminal type, talk may try to simulate this effect. However, it
may not be possible for both users to enter messages simultaneously. talk
determines terminal type by looking for an environment variable named TERM.
If this variable exists, talk uses its value as a site-specific name giving a
terminal type. If TERM doesn’t exist, talk assumes a default type.

talk

562 z/OS V1R4.0 UNIX System Services Command Reference

2. The character-erase and line-kill characters work as usual. Typing <Ctrl-L>
refreshes both parts of the screen (for example, if some unusual character
messes up the display).

3. The interrupt character (for example, <Ctrl-C>) terminates your talk session and
breaks the connection. When one side breaks the connection, talk notifies the
other side and exits.

4. The mesg command lets you refuse talk sessions. With:
mesg n

you can tell the system that you don’t want to be interrupted by talk requests. If
people try to establish a talk session with you, they are denied immediately; you
are not informed about such requests. For more details, see mesg.

Exit Values
The following exit status values are possible:

0 Successfully established and completed a transmission

>0 An error occurred, or you are trying to use talk on a terminal that cannot
handle the way talk uses the screen

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
mail, mesg, who, write

tar — Manipulate the tar archive files to copy or back up a file

Format
tar –c[#sbvwlzOUX] –f file [–V volpat] [tarfile] [blocksize] [–C pathname]
tar –r[#sbvwlzOUX] –f file [–V volpat] [tarfile] [blocksize]
tar –t[#sbvzEOUX] –f file [–L type] [–V volpat] [tarfile] [blocksize] [–C pathname]
tar –x[#sAbvwpmozOUX] –f file [–V volpat] [tarfile] [blocksize]

Description
tar reads, writes and lists archive files. An archive file is a single file containing one
or more files and/or directories. Archive files can be HFS files or MVS datasets. A
file stored inside an archive is called a component file; similarly, a directory stored
inside an archive is called a component directory. Included with each component
file and directory is recorded information such as owner and group name,
permission bits, file attributes, and modification time.

Note: MVS datasets cannot be specified for component files.

You can therefore use a single archive file to transfer a directory structure from one
machine to another, or to back up or restore groups of files and directories.

Archives created by tar are interchangeable with those created with the pax utility.
Both utilities can read and create archives in the default format of the other (USTAR
for pax and TAR for tar). To save and restore external attributes, the USTAR format
(-U) must be used. In general, the USTAR format records the most information and

talk

Chapter 2. Shell Command Descriptions 563

is recommended. Archives are generally named with suffixes such as .pax or .tar
(or pax.Z and tar.Z for compressed files), but this is not required.

Note: In order to preserve information such as extended attributes, external links,
and links whose targets exceed 100 characters, the USTAR format must be
used. See the -U option for selecting the USTAR format. The -O and -X
options and “z/OS Extended USTAR Support” on page 448 contain
information about enabling and disabling USTAR support.

You cannot use tar unless you specify –f

Options
The four forms of the command shown in the syntax represent the main functions of
tar as follows:

–c Creates an archive. This command writes each named file into a newly
created archive. Directories recursively include all components. Under the
USTAR (–U) option, tar records directories and other special files in the
tape archive; otherwise, it ignores such files. If – appears in place of any
filename, tar reads the standard input for a list of files one per line. This
allows other commands to generate lists of files for tar to archive.

Note: In order to preserve information about extended attributes, external
links, file tag information, and link names greater than 100
characters, the USTAR format (–U) must be used.

–r Writes the named files to the end of the archive. It is possible to have more
than one copy of a file in a tape archive using this method. To use this form
of the command with a tape, it must be possible to backspace the tape.

Note: You cannot specify both the –r and the –z option at the same time.

–t Displays a table of contents. This displays the names of all the files in the
archive, one per line. If you specify one or more files on the command line,
tar prints only those filenames. The verbose (–v) and (for USTAR formatted
archives) the –E options can be used to show the attributes and extended
attributes of each component.

–x Extracts files from an archive. tar extracts each named file to a file of the
same name. If you did not specify any files on the command line, all files in
the archive are extracted. This extraction restores all file system attributes
as controlled by other options.

You must specify one of the preceding basic options as the first character of an
option string. You can add other characters to the option string. Unlike with other
commands, you must give options as a single string; for example, you might specify
–tv, but you cannot separate them, as in “–t –.” You can omit the leading dash – if
you want. Other possible options in the option string are:

A Restores ACL information when used with –x option.

b Sets the number of 512-byte blocks used for tape archive read/write
operations to blocksize. The blocksize argument must be specified, and
blocksize can be specified only when b is in the option string. When
reading from the tape archive, tar automatically determines the blocking
factor by trying to read the largest permitted blocking factor and using the
actual number read to be the blocksize. For UNIX compatibility, the largest
valid block size is 20 blocks; in USTAR mode, it is 60 blocks.

tar

564 z/OS V1R4.0 UNIX System Services Command Reference

–C pathname
Is an unusual option because it is specified in the middle of your file list.
When tar encounters a –C pathname option while archiving files, it changes
the working directory (for tar only) to pathname and treats all following
entries in your file list (including another –C) as being relative to pathname.

–E Although still supported for compatiblilty with previous versions of tar, this
option has been replaced by –L E. See 565 for a description of –L E.

f You must specify f. The f option uses the file tapefile for the tape archive
rather than using the default. The tapefile argument must be specified, and
tapefile can be specified only when f is in the option string. The tapefile
argument must precede the blocksize argument if both are present. If
tapefile is the character –, the standard input is used for reading archives,
and the standard output is used for writing archives.

#s #s is not supported by. The default archive filename used by tar is
/dev/mt/0m. This option is the least general way to override this default. For
a more general method, see the f option. The filename generated by this
option has the form /dev/mt/#s. The # can be any digit between 0 and 7,
inclusive, to select the tape unit. The density selector s can be l (low), m
(medium), or h (high).

l Complains if all links are not resolved when adding files to the tape archive.

–L type
–L displays additional information when listing the contents of an archive.
Only one type may be specified per –L option. However, –L may be
specified mulitple times. The types that can be displayed are:

A Displays extended ACL (Access Control List) data.

In the following examples, archive acidata.tar contains file1, file2,
and dir1. file1 has no ACL data, file2 has an access ACL, and dir1
contains a file default, a directory default, and an access ACL. If
you only specify option –f, your output will be:
> tar -f acldata.tar
file1
file2
dir1

If you also specify –L A, ACL information will be displayed:
> tar -L A -f acldata.tar
file1
file2
user:WELLIE2:rw-
group:SYS1:rwx

Finally, if you add the verbose option, –v, you will see the chmod
settings associated with the file:
> tar -L A -vf acldata.tar
-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1
-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2
user:WELLIE2:rw-
group:SYS1:rwx
drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/
user:RRAND:rwx
user:WELLIE2:rw-
group:SHUT:rwx

tar

Chapter 2. Shell Command Descriptions 565

fdefault:user:RRAND:rwx
fdefault:group:SHUT:r-x
default:user:ANGIEH:rwx
default:group:SYS1:r--

Note: Specifying tar –L A does not automatically turn on the
verbose table of contents format. You must also specify –v
to display the chmod settings associated with the file.

For more information on ACLs, see z/OS UNIX System Services
Planning and “ACL (Access Control List) tar Support” on page 568.

E Same as verbose (–v) output, but additionally displays extended
attributes. See “Output” on page 567 for more information. –L E is
equivalent to the tar –E

T Displays file tag information. Does not automatically turn on the
verbose –v option but can be used with –v or any other
combination of table of contents display options. See “Output” on
page 567 for more information.

m Does not restore a file’s modification time stamp when extracting it from an
archive. The default behavior is to restore the time stamp from information
contained in the archive.

o When writing files to an archive, does not record owner and modes of
directories in the archive. If this is specified when extracting from an
existing ar archive, tar does not restore any owner and group information in
the archive. The default is to record this information when creating a tar
archive, and to restore it when extracting from the archive.

–O For USTAR formatted files, tells tar to disable extended USTAR support.
When reading or listing an archive, ignore any extended support encoded
within the archive. Should an archive contain z/OS special header files,
these will be displayed or restored as regular files. This option has no affect
for non-USTAR formatted archives.

z/OS extended USTAR support is implemented in a manner which should
be tolerated by older z/OS versions of pax and tar utilities or
POSIX-compliant versions on non-z/OS UNIX platforms. So, the -O option
is not typically needed, however, it can be used to insure portability of
archives when they will be processed by these other versions. If -O is
specified, attributes recognized by the z/OS extended USTAR support such
as external links, extended attributes, and file tag information will not be
restored.

For more information, see “z/OS Extended USTAR Support” on page 448.

–X For USTAR formatted archives, –X enables extended USTAR support. –X is
the default. This option has no affect for non-USTAR formatted archives. tar
–X functions in the following manner:

v During archive writing, -X causes tar to preserve extended USTAR
information.

v During archive listing, -X causes tar to display extended USTAR
information.

v During archive reading, -X enables tar to restore extended USTAR
information

Note: To restore certain information, the user must also have the
appropriate privileges and have specified the corresponding options.
For example, you must specify –p to restore extended attributes.

tar

566 z/OS V1R4.0 UNIX System Services Command Reference

For more information on extended attributes, see “z/OS Extended USTAR
Support” on page 448.

p When extracting, restores the three high-order file permission bits, exactly
as in the archive. They indicate the set-user-ID, set-group-ID, and sticky bit.
For USTAR formatted archives, p also restores, if present, extended
attributes.

Note: If -O is specified, it overrides -p for extended attributes- they will not
be restored.

To use -p on UNIX systems, you must have appropriate privileges; tar
restores the modes restored exactly as in the archive and ignores the
UMASK.

U When creating a new tape archive with the –c option, forces tar to use the
USTAR format. The default format used when creating a new archive is the
original UNIX tar format. When you do not specify –c, tar can deduce
whether the tape archive is in USTAR format by reading it, so you can use
U to suppress a warning about USTAR format.

In order to save external links, extended attributes, and file tag information,
the USTAR format must be used.

v Displays each filename, along with the appropriate action key letter as it
processes the archive. With the –t form of the command, this option gives
more detail about each archive member being listed and shows information
about the members in the same format used by the ls –l command. You
can also use the –L type option which provides the ability to display
additional information such as extended attributes and file tag information.
See “Output” for more information.

–V volpat
Provides automatic multivolume support. tar writes output to files—the
names of which are formatted with volpat. Any occurrence of # in volpat is
replaced by the current volume number. When you invoke tar with this
option, it prompts for the first number in the archive set, and waits for you
to type the number and a carriage return before proceeding with the
operation. tar issues the same sort of message when a write error or read
error occurs on the archive; this kind of error means that tar has reached
the end of the volume and should go on to a new one.

w Is used to confirm each operation, such as replacing or extracting. tar
displays the operation and the file involved. You can then confirm whether
you want the operation to take place. Typing in an answer that begins with
“y” tells tar to do the operation; anything else tells tar to go on to the next
operation.

z Reads or writes, or both reads and writes, the tape archive by first passing
through a compression algorithm compatible with that of compress.

Note: You cannot specify both the –r option and the –z option at the same
time.

Output
When the –v or –L E (or –E) option is used with –t (table of contents), tar
produces a verbose table of contents for the archive. The –L T option can also be
used to additionally, or without the verbose output, display file tag information. The
output for –v is similar to the output from the ls –l command with following
exceptions:

tar

Chapter 2. Shell Command Descriptions 567

v The following notation is used to represent hard, symbolic, and external links:
hlink external link to origfile

indicates that hlink is a hard link of origfile.
slink symbolic link to origfile

indicates that slink is a symbolic link to origfile.
elink external link to ORIG.FILE

indicates that elink is an external link to ORIG.FILE.

v For symbolic and external links, pax output always shows a filesize of 0

Refer to the description of ls for an explanation of the ls –v.

The output from the –L E (or –E) option has the same format as –v and
additionally displays a column showing the extended attributes:
a Program runs APF-authorized if linked AC=1
p Program is considered program-controlled
s Program runs in a shared address space
l Program is loaded from the shared library region

Note: l is a lower-case L, not an upper-case i.
– attribute not set

The format of the tar –L E (or –E) output is variable in length and will be extended
as necessary to display additional file characteristics that are not supported by tar
–v (ls –l).

The format of the tar –L T output is similar to the output from chtag –p. If specified
with –v or –L E, the output will be displayed on the same line of and before the –v
output. When used without –v, only the file tag information and filenames are
displayed. For example:
/tmp> tar -L T -tf asciitagged.tar
m ISO8859-1 T=off text_am
t ISO8859-1 T=on text_at
- untagged T=off text_au

This option can be used with –v and/or –o E to display additional verbose output.
For example:
/tmp> tar -L T -tvf asciitagged.tar
m ISO8859-1 T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_am
t ISO8859-1 T=on -rw r--r-- 1 SteveS Kings 9 Apr 30 22:31 text_at
- untagged T=off -rw-r--r-- 1 SteveS Kings 9 Apr 30 22:06 text_au

ACL (Access Control List) tar Support
Archive Writing or Creating

ACL data is automatically stored in USTAR formatted archives using special
headers. No options are required for this to occur.

tar –O can be used to disable the creation of special headers. This prevents tar
from storing ACL data and other non-standard information such as file tag data and
long link names. However, there is no option to disable storing of ACL data only.

Archive Reading or Restoring

tar

568 z/OS V1R4.0 UNIX System Services Command Reference

By default, ACL data will not be restored when reading or restoring files from an
archive. However, for USTAR formatted archives, you can use tar –A to restore
ACL data.

Archive Listing (Table of Contents)

For verbose output (tar –v), + is added to the end of the file permission bits for all
files with extended ACLs. For example, file2 and dir1 have extended ACL entries:
> tar -tvf acldata.tar
-rwx------ 1 STIERT SHUT 294912 Nov 9 09:57 file1
-rwx------+ 1 STIERT SHUT 294912 Nov 9 09:57 file2
drwxr-xr-x+ 2 STIERT SHUT 8192 Mar 20 2000 dir1/

For more information about access control lists, see z/OS UNIX System Services
Planning.

Usage Notes
1. Use the pax command if you need to use multibyte patterns when searching for

filenames.

2. The POSIX 1003.1 standard defines formats for pax and tar archives that limit
the length of the target of a link file to 100 characters or less.

Note: In the case of a hard link, the target is the first occurrence of the hard
link which is archived. Subsequent hard links refer to the first instance.

Beginning with OS/390 Release 9, pax and tar provide extended USTAR
support that allows these links to be preserved when creating an archive and
restored when reading an archive. See “z/OS Extended USTAR Support” on
page 448 for more information.

3. On the z/OS system, superuser privileges or read access to the appropriate
FACILITY classes are required to create character special files, to restore user
and group names, and to set certain extended attributes.

4. Pathnames in the tape archive are normally restricted to a maximum length of
100 bytes. However, in USTAR mode, pathnames can be up to 255 bytes long.

5. When transferring archives between z/OS and other UNIX systems, note the
following:

a. File transfers (for example, using OPUT/OGET or ftp put/get) must be done
using binary or image format. This is true, even for archives consisting only
of text files.

b. You may need to convert text files from EBCDIC to ASCII (or some other
character set). You can use the iconv utility to convert files before or after
archiving. When text files are being created or extracted, you can use the
pax –o option to convert them.

6. Automatic conversion (performed by the HFS) on files with file tag information is
disabled when:

v reading files during creation of an archive

v during writes while extracting files from an archive

That is, the settings of system and environment variables that turn automatic
conversion on and off will have no affect on tar’s reading and writing of files.
pax supports file tag options which support conversion of files based on their
file tag settings.

tar

Chapter 2. Shell Command Descriptions 569

Examples
1. The following command takes a directory and places it in an archive in

compressed format:
tar –cvzf archive directory

2. To identify all files that have been changed in the last week (7 days), and to
archive them to the /tmp/posix/testpgm file, enter:
find /tmp/posix/testpgm –type f –mtime –7 | tar –cvf testpgm.tar –

–type –f tells find to select only files. This avoids duplicate input to tar.

Localization
tar uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Incorrect option
v Incorrect command-line arguments
v Out of memory
v Compression error
v Failure on extraction
v Failure on creation

Portability
4.2BSD

The –U option is an extension to provide POSIX USTAR format compatibility. The
–p option is an common extension on BSD UNIX systems that is not available on
UNIX System V systems. The –O and–X options are also extensions.

Related Information
cpio, pax

Also see the pax file format description in Appendix H for more information.

tcsh — Invoke a C shell

Format
tcsh [–bcdeFfimnqstvVxX]
tcsh –l

Note: –l is a lowercase L, not an uppercase i.

tar

570 z/OS V1R4.0 UNIX System Services Command Reference

Description
tcsh contains the following sections and subsections:
v Options and invocation
v Options
v Editing
v Command syntax
v Substitutions
v Command Execution
v Features
v Jobs
v Status Reporting
v Automatic, Periodic, and Time Events
v Native Language System Report
v Signal Handling
v Built-in Commands
v Shell and Environment Variables
v Files
v Problems and Limitations

Options and Invocation
The tcsh shell is an enhanced but completely compatible version of the Berkeley
UNIX C shell, csh. It is a command language interpreter usable both as an
interactive login shell and a shell script command processor. It includes a
command-line editor, programmable word completion, spelling correction, a history
mechanism, job control, and a C-like syntax.

You can invoke the shell by typing an explicit tcsh command. A login shell can also
be specified by invoking the shell with the –l option as the only argument.

A login shell begins by executing commands from the system files /etc/csh.cshrc
and /etc/csh.login.It then executes commands from files in the user’s home
directory: first ~/.tcshrc, then ~/.history (or the value of the histfile shell variable),
then ~/.login, and finally ~/.cshdirs (or the value of the dirsfile shell variable). The
shell reads /etc/csh.login after /etc/csh.cshrc.

Non-login shells read only /etc/csh.cshrc and ~/.tcshrc or ~/.cshrc on invocation.

Commands like stty, which need be run only once per login, usually go in the
user’s ~/.login file.

In the normal case, the shell begins reading commands from the terminal,
prompting with >. The shell repeatedly reads a line of command input, breaks it into
words, places it on the command history list, and then parses and executes each
command in the line. See “Command Execution” on page 589.

A user can log out of a tcsh shell session by typing ^D, logout, or login on an
empty line (see ignoreeof shell variable), or via the shell’s autologout mechanism.
When a login shell terminates, it sets the logout shell variable to normal or
automatic as appropriate, then executes commands from the files /etc/csh.logout
and ~/.logout.

Note: The names of the system login and logout files vary from system to system
for compatibility with different csh variants; see “tcsh Files” on page 614.

tcsh

Chapter 2. Shell Command Descriptions 571

Options
If the first argument (argument 0) to the tcsh shell is - (hyphen), then it is a login
shell. You can also specify the login shell by invoking the tcsh shell with the –l as
the only argument.

The z/OS UNIX System Services tcsh shell accepts the following options on the
command line:

–b Forces a break from option processing, causing any further shell arguments
to be treated as non-option arguments. The remaining arguments will not be
interpreted as shell options. This may be used to pass options to a shell
script without confusion or possible subterfuge.

–c Reads and executes commands stored in the command shell (this option
must be present and must be a single arugment). Any remaining arguments
are placed in the argv shell variable.

–d Loads the directory stack from ~/.cshdirs as described under “Options and
Invocation” on page 571, whether or not it is a login shell.

–e Terminates shell if any invoked command terminates abnormally or yields a
non-zero exit status.

–i Invokes an interactive shell and prompts for its top-level input, even if it
appears to not be a terminal. Shells are interactive without this option if
their inputs and outputs are terminals.

–l Invokes a login shell. Only applicable if –l is the only option specified.

Note: –l is a lower-case L not an upper-case i.

–m Loads ~/.tcshrc even if it does not belong to the effective user.

–n Parses commands but does not execute them. This aids in debugging shell
scripts.

–q Accepts SIGQUIT and behaves when it is used under a debugger. Job
control is disabled.

–s Take command input from the standard input.

–t Reads and executes a single line of input. A \ (backslash) may be used to
escape the newline at the end of this line and continue onto another line.

–v Sets the verbose shell variable so command input is echoed after history
substitution.

–x Sets the echo shell variable so commands are echoed immediately before
execution.

–V Sets the verbose shell variable even before executing ~/.tcshrc.

–X Is to –x as –V is to –v.

After processing of option arguments, if arguments remain but none of the –c, –i,
–s, or –t were given, the first argument is taken as the name of a file of commands,
or script , to be executed. The shell opens this file and saves its name for possible
resubstitution by $0. Since many systems use shells whose shell scripts are not
compatible with this shell, the tcsh shell uses such a standard shell to execute a
script whose character is not a #, that is, which does not start with a comment.

Remaining arguments are placed in the argv shell variable.

tcsh

572 z/OS V1R4.0 UNIX System Services Command Reference

tcsh shell Editing
In this section, we first describe the Command-Line Editor. We then discuss
Completion and Listing and Spelling Correction which describe two sets of
functionality that are implemented as editor commands but which deserve their own
treatment. Finally, the Editor Commands section lists and describes the editor
commands specific to the tcsh shell and their default bindings.

tcsh shell Command-Line Editor
Command-line input can be edited using key sequences much like those used in
GNU Emacs or vi. The editor is active only when the edit shell variable is set, which
it is by default in interactive shells. The bindkey built-in command can display and
change key bindings. Emacs-style key bindings are used by default, but bindkey
can change the key bindings to vi-style bindings.

The shell always binds the arrow keys to:

down down-history

up up-history

left backward-char

right forward-char

unless doing so would alter another single-character binding. One can set the arrow
key escape sequences to the empty string with settc to prevent these bindings.

Other key bindings are, for the most part, what Emacs and vi users would expect
and can easily be displayed by bindkey, so there is no need to list them here.
Likewise, bindkey can list the editor commands with a short description of each.

Note: Editor commands do not have the same notion of a word as does the tcsh
shell. The editor delimits words with any non-alphanumeric characters not in
the shell variable wordchars, while the tcsh shell recognizes only whitespace
and some of the characters with special meanings to it, listed under
“Command Syntax” on page 580.

Completion and Listing
The tcsh shell is often able to complete words when given a unique abbreviation.
Type part of a word (for example ls /usr/lost) and press the tab key to run the
complete-word editor command. The shell completes the filename /usr/lost to
/usr/lost+found/, replacing the incomplete word with the complete word in the input
buffer. (Note the terminal / (forward slash); completion adds a / to the end of
completed directories and a space to the end of other completed words, to speed
typing and provide a visual indicator of successful completion. The addsuffix shell
variable can be unset to prevent this.) If no match is found (for example,
/usr/lost+found doesn’t exist), the terminal bell rings. If the word is already
complete (for example, there is a /usr/lost on your system, or you were thinking too
far ahead and typed the whole thing), a / or space is added to the end if it isn’t
already there.

Completion works anywhere in the line, not just at the end; completed text pushes
the rest of the line to the right. Completion in the middle of a word often results in
leftover characters to the right of the cursor which need to be deleted.

Commands and variables can be completed in much the same way. For example,
typing em [tab] would complete ’em’ to ’emacs’ if emacs were the only command
on your system beginning with ’em’. Completion can find a command in any

tcsh

Chapter 2. Shell Command Descriptions 573

directory in the path or if given a full pathname. Typing echo $ar[tab] would
complete ’$ar’ to ’$argv’ if no other variable began with ’ar’.

The shell parses the input buffer to determine whether the word you want to
complete should be completed as a filename, command or variable. The first word
in the buffer and the first word following ’;’, ’|’, ’|&’, ’&&’ or ’||’ is considered to be a
command. A word beginning with ’$’ is considered to be a variable. Anything else is
a filename. An empty line is completed as a filename.

You can list the possible completions of a word at any time by typing ^D to run the
delete-char-or-list-or-eof editor command. The tcsh shell lists the possible
completions using the ls-F built-in and reprints the prompt and unfinished command
line, for example:
> ls /usr/l[’^D]
lbin/ lib/ local/ lost+found/
> ls /usr/l

If the autolist shell variable is set, the tcsh shell lists the remaining choices (if any)
whenever completion fails:
> set autolist
> nm /usr/lib/libt[tab]
libtermcap.a@ libtermlib.a@
> nm /usr/lib/libterm

If autolist is set to ambiguous, choices are listed only if multiple matches are
possible, and if the completion adds no new characters to the name to be matched.

A filename to be completed can contain variables, your own or others’ home
directories abbreviated with ~ (tilde; see “Filename Substitution” on page 587) and
directory stack entries abbreviated with = (equal; see “Directory Stack Substitution”
on page 588). For example:
> ls ~k[^D]
kahn kas kellogg
> ls ~ke[tab]
> ls ~kellogg/

or

> set local = /usr/local
> ls $lo[tab]
> ls $local/[^D]
bin/ etc/ lib/ man/ src/
> ls $local/

Variables can also be expanded explicitly with the expand-variables editor
command.

delete-char-or-list-or-eof only lists at the end of the line; in the middle of a line it
deletes the character under the cursor and on an empty line it logs one out or, if
ignoreeof is set, does nothing. M-^D, bound to the editor command list-choices,
lists completion possibilities anywhere on a line, and list-choices (or any one of the
related editor commands which do or don’t delete, list and/or log out, listed under
delete-char-or-list-or-eof) can be bound to ^D with the bindkey built-in command
if so desired.

The complete-word-fwd and complete-word-back editor commands (not bound to
any keys by default) can be used to cycle up and down through the list of possible
completions, replacing the current word with the next or previous word in the list.

tcsh

574 z/OS V1R4.0 UNIX System Services Command Reference

The tcsh shell variable fignore can be set to a list of suffixes to be ignored by
completion. Consider the following:

> ls
Makefile condiments.h~ main.o side.c
README main.c meal side.o
condiments.h main.c~
> set fignore = (.o \~)
> emacs ma[^D]
main.c main.c~ main.o
> emacs ma[tab]
> emacs main.c

’main.c~’ and ’main.o’ are ignored by completion (but not listing), because they end
in suffixes in fignore. \ is needed in front of ~ to prevent it from being expanded to
home as described under “Filename Substitution” on page 587. fignore is ignored if
only one completion is possible.

If the complete shell variable is set to enhance, completion: 1.) ignores case and
2.) considers periods, hyphens and underscores (’.’, ’-’ and ’_’) to be word
separators and hyphens and underscores to be equivalent.

If you had the following files:
comp.lang.c comp.lang.perl comp.std.c++
comp.lang.c++ comp.std.c

and typed mail -f c.l.c[tab], it would be completed to mail -f comp.lang.c, and ^D
would list comp.lang.c and comp.lang.c++. mail -f c..c++[^D] would list
comp.lang.c++ and comp.std.c++. Typing rm a--file[^D] in the following directory
A_silly_file a-hyphenated-file another_silly_file

would list all three files, because case is ignored and hyphens and underscores are
equivalent. Periods, however, are not equivalent to hyphens or underscores.

Completion and listing are affected by several other tcsh shell variables: recexact
can be set to complete on the shortest possible unique match, even if more typing
might result in a longer match. For example:
> ls
fodder foo food foonly
> set recexact
> rm fo[tab]

just beeps, because ’fo’ could expand to ’fod’ or ’foo’, but if we type another ’o’,
> rm foo[tab]
> rm foo

the completion completes on ’foo’, even though ’food’ and ’foonly’ also match.
autoexpand can be set to run the expand-history editor command before each
completion attempt, and correct can be set to complete commands automatically
after one hits ’return’. matchbeep can be set to make completion beep or not beep
in a variety of situations, and nobeep can be set to never beep at all. nostat can
be set to a list of directories and/or patterns which match directories to prevent the
completion mechanism from stat(2)ing those directories.

Note: The completion operation succeeds, but faster. The setting of nostat is
evident when using the listflags variable. For example:

tcsh

Chapter 2. Shell Command Descriptions 575

>set listflags=x
>ls-F /u/pluto
Dir1/exe1*
>set nostat=(/u/pluto/)
>ls-F /u/pluto
Dir1exe1
>

Although, you must be careful when setting nostat to keep the trailing /
(forward slash).

listmax and listmaxrows can be set to limit the number of items and rows
(respectively) that are listed without asking first. recognize_only_executables can
be set to make the shell list only executables when listing commands, but it is quite
slow.

Finally, the complete built-in command can be used to tell the shell how to
complete words other than filenames, commands and variables. Completion and
listing do not work on glob-patterns (see “Filename Substitution” on page 587), but
the list-glob and expand-glob editor commands perform equivalent functions for
glob-patterns.

Spelling Correction
The tcsh shell can sometimes correct the spelling of filenames, commands and
variable names as well as completing and listing them.

Individual words can be spelling-corrected with the spell-word editor command
(usually bound to M-s and M-S where M = Meta Key or escape (ESC) key) and the
entire input buffer with spell-line (usually bound to M-$). The correct shell variable
can be set to ’cmd’ to correct the command name or ’all’ to correct the entire line
each time return is typed.

When spelling correction is invoked in any of these ways and the shell thinks that
any part of the command line is misspelled, it prompts with the corrected line:
> set correct = cmd
> lz /usr/bin
CORRECT>ls /usr/bin (y|n|e|a)?

where one can answer ’y’ or space to execute the corrected line, ’e’ to leave the
uncorrected command in the input buffer, ’a’ to abort the command as if ^C had
been hit, and anything else to execute the original line unchanged.

Spelling correction recognizes user-defined completions (see the complete built-in
command). If an input word in a position for which a completion is defined
resembles a word in the completion list, spelling correction registers a misspelling
and suggests the latter word as a correction. However, if the input word does not
match any of the possible completions for that position, spelling correction does not
register a misspelling.

Like completion, spelling correction works anywhere in the line, pushing the rest of
the line to the right and possibly leaving extra characters to the right of the cursor.

Attention: Spelling correction is not guaranteed to work the way one intends, and
is provided mostly as an experimental feature.

Editor Commands
bindkey lists key bindings and bindkey -l lists and briefly describes editor
commands. Only new or especially interesting editor commands are described here.
See emacs and vi for descriptions of each editor’s key bindings.

tcsh

576 z/OS V1R4.0 UNIX System Services Command Reference

The character or characters to which each command is bound by default is given in
parentheses. ^character means a control character and M-character a meta
character, typed as escape-character on terminals without a meta key. Case counts,
but commands which are bound to letters by default are bound to both lower- and
uppercase letters for convenience.

complete-word
Completes a word as described under “Completion and Listing” on
page 573.

complete-word-back
Like complete-word-fwd, but steps up from the end of the list.

complete-word-fwd
Replaces the current word with the first word in the list of possible
completions. May be repeated to step down through the list. At the end of
the list, beeps and reverts to the incomplete word.

complete-word-raw
Like complete-word, but ignores user-defined completions.

copy-prev-word
Copies the previous word in the current line into the input buffer. See also
insert-last-word.

dabbrev-expand
Expands the current word to the most recent preceding one for which the
current is a leading substring, wrapping around the history list (once) if
necessary. Repeating dabbrev-expand without any intervening typing
changes to the next previous word etc., skipping identical matches much
like history-search-backward does.

delete-char (not bound)
Deletes the character under the cursor. See also delete-char-or-list-or-eof.

delete-char-or-eof (not bound)
Does delete-char if there is a character under the cursor or end-of-file on
an empty file. See also delete-char-or-list-or-eof.

delete-char-or-list (not bound)
Does delete-char if there is a character under the cursor or list-choices at
the end of the line. See also delete-char-or-list-or-eof.

delete-char-or-list-or-eof (^D)
Does delete-char if there is a character under the cursor, list-choices at
the end of the line or end-of-file on an empty line. See also
delete-char-or-eof, delete-char-or-list and list-or-eof.

down-history
Like up-history, but steps down, stopping at the original input line.

end-of-file
Signals an end of file, causing the tcsh shell to exit unless the ignoreeof
shell variable is set to prevent this. See also delete-char-or-list-or-eof.

expand-history (M-space)
Expands history substitutions in the current word. See “History Substitution”
on page 581. See also magic-space, toggle-literal-history, and the
autoexpand shell variable.

expand-glob(^X-*)
Expands the glob-pattern to the left of the cursor. For example:
>ls test*[^X-*]

tcsh

Chapter 2. Shell Command Descriptions 577

would expand to
>ls test1.c test2.c

if those were the only two files in your directory that begin with ’test’. See
“Filename Substitution” on page 587.

expand-line (not bound)
Like expand-history, but expands history substitutions in each word in the
input buffer.

expand-variables (^X-$)
Expands the variable to the left of the cursor. See “Variable Substitution” on
page 585.

history-search-backward (M-p, M-P)
Searches backwards through the history list for a command beginning with
the current contents of the input buffer up to the cursor and copies it into
the input buffer. The search string may be a glob-pattern (see “Filename
Substitution” on page 587) containing ’*’, ’?’, ’[]’ or ’{}’. up-history and
down-history will proceed from the appropriate point in the history list.
Emacs mode only. See also history-search-forward and i-search-back.

history-search-forward(M-n, M-N)
Like history-search-backward, but searches forward.

i-search-back (not bound)
Searches backward like history-search-backward, copies the first match
into the input buffer with the cursor positioned at the end of the pattern, and
prompts with ’bck: ’ and the first match. Additional characters may be typed
to extend the search. i-search-back may be typed to continue searching
with the same pattern, wrapping around the history list if necessary,
(i-search-back must be bound to a single character for this to work) or one
of the following special characters may be typed:

^W Appends the rest of the word under the cursor to the search
pattern.

delete (or any character bound to backward-delete-char)
Undoes the effect of the last character and deletes a character from
the search pattern if appropriate.

^G If the previous search was successful, aborts the entire search. If
not, goes back to the last successful search.

escape
Ends the search, leaving the current line in the input buffer.

Any other character not bound to self-insert-command terminates the
search, leaving the current line in the input buffer, and is then interpreted as
normal input. In particular, a carriage return causes the current line to be
executed. Emacs mode only. See also i-search-fwd and
history-search-backward.

i-search-fwd
Like i-search-back, but searches forward.

insert-last-word (M-_)
Inserts the last word of the previous line (!$) into the input buffer. See also
copy-prev-word.

tcsh

578 z/OS V1R4.0 UNIX System Services Command Reference

list-choices (M-D)
Lists completion possibilities as described under “Completion and Listing”
on page 573. See also delete-char-or-list-or-eof.

list-choices-raw (^X-^D)
Like list-choices, but ignores user-defined completions.

list-glob (^X-g, ^X-G)
Lists (via the ls-F) matches to the glob-pattern (see “Filename Substitution”
on page 587) to the left of the cursor.

list-or-eof (not bound)
Does list-choices or end-of-file on an empty line. See also
delete-char-or-list-or-eof.

magic-space (not bound)
Expands history substitutions in the current line, like expand-history, and
appends a space. magic-space is designed to be bound to the spacebar,
but is not bound by default.

normalize-command (^X-?)
Searches for the current word in PATH and, if it is found, replaces it with
the full path to the executable. Special characters are quoted. Aliases are
expanded and quoted but commands within aliases are not. This command
is useful with commands which take commands as arguments, for example,
dbx and sh -x.

normalize-path (^X-n, ^X-N)
Expands the current word as described under the expand setting of the
symlinks shell variable.

overwrite-mode (unbound)
Toggles between input and overwrite modes.

run-fg-editor (M-^Z)
Saves the current input line and looks for a stopped job with a name equal
to the last component of the file name part of the EDITOR or VISUAL
environment variables, or, if neither is set, ed or vi. If such a job is found, it
is restarted as if fg %job had been typed. This is used to toggle back and
forth between an editor and the shell easily. Some people bind this
command to ^Z so they can do this even more easily.

run-help (M-h, M-H)
Searches for documentation on the current command, using the same
notion of current command as the completion routines, and prints it. There
is no way to use a pager; run-help is designed for short help files.
Documentation should be in a file named command.help, command.1,
command.6, command.8 or command, which should be in one of the
directories listed in the HPATH enviroment variable. If there is more than
one help file only the first is printed.

self-insert-command (text characters)
In insert mode (the default), inserts the typed character into the input line
after the character under the cursor. In overwrite mode, replaces the
character under the cursor with the typed character. The input mode is
normally preserved between lines, but the inputmode shell variable can be
set to insert or overwrite to put the editor in that mode at the beginning of
each line. See also overwrite-mode.

sequence-lead-in (arrow prefix, meta prefix, ^X)
Indicates that the following characters are part of a multi-key sequence.

tcsh

Chapter 2. Shell Command Descriptions 579

Binding a command to a multi-key sequence really creates two bindings:
the first character to sequence-lead-in and the whole sequence to the
command. All sequences beginning with a character bound to
sequence-lead-in are effectively bound to undefined-key unless bound to
another command.

spell-line (M-$)
Attempts to correct the spelling of each word in the input buffer, like
spell-word, but ignores words whose first character is one of ’-’, ’!’, ’^’ or
’%’, or which contain ’\’, ’*’ or ’?’, to avoid problems with switches,
substitutions and the like. See “Spelling Correction” on page 576.

spell-word (M-s, M-S)
Attempts to correct the spelling of the current word as described under
“Spelling Correction” on page 576. Checks each component of a word
which appears to be a pathname.

toggle-literal-history (M-r, M-R)
Expands or unexpands history substitutions in the input buffer. See also
expand-history and the autoexpand shell variable.

undefined-key (any unbound key)
Beeps.

up-history (up-arrow, ^P)
Copies the previous entry in the history list into the input buffer. If histlit is
set, uses the literal form of the entry. May be repeated to step up through
the history list, stopping at the top.

vi-search-back (?)
Prompts with ? for a search string (which may be a glob-pattern, as with
history-search-backward), searches for it and copies it into the input
buffer. The bell rings if no match is found. Hitting return ends the search
and leaves the last match in the input buffer. Hitting escape ends the
search and executes the match. vi mode only.

vi-search-fwd (/)
Like vi-search-back, but searches forward.

which-command (M-?)
Does a which (built-in command) on the first word of the input buffer.

Command Syntax
The tcsh shell splits input lines into words at blanks and tabs. The special
characters ’&’, ’|’, ’;’, ’<’, ’>’, ’(’, and ’)’ and the doubled characters ’&&’, ’||’, ’<<’ and
’>>’ are always separate words, whether or not they are surrounded by whitespace.

When the tcsh shell’s input is not a terminal, the character ’#’ is taken to begin a
comment. Each # and the rest of the input line on which it appears is discarded
before further parsing.

A special character (including a blank or tab) may be prevented from having its
special meaning, and possibly made part of another word, by preceding it with a
backslash (\) or enclosing it in single (’), double (″) or backward (’ ` ’) quotes.
When not otherwise quoted a newline preceded by a \ is equivalent to a blank, but
inside quotes this sequence results in a newline.

Furthermore, all substitutions (see “Substitutions” on page 581) except history
substitution can be prevented by enclosing the strings (or parts of strings) in which

tcsh

580 z/OS V1R4.0 UNIX System Services Command Reference

they appear with single quotes or by quoting the crucial character(s) (e.g. ’$’ or ’`’
for variable substitution or command substitution respectively) with \. (alias
substitution is no exception: quoting in any way any character of a word for which
an alias has been defined prevents substitution of the alias. The usual way of
quoting an alias is to precede it with a backslash.) History substitution is prevented
by backslashes but not by single quotes. Strings quoted with double or backward
quotes undergo Variable substitution and Command substitution, but other
substitutions are prevented.

Text inside single or double quotes becomes a single word (or part of one).
Metacharacters in these strings, including blanks and tabs, do not form separate
words. Only in one special case (see “Command Substitution” on page 587) can a
double-quoted string yield parts of more than one word; single-quoted strings never
do. Backward quotes are special: they signal command substitution, which may
result in more than one word.

Quoting complex strings, particularly strings which themselves contain quoting
characters, can be confusing. Remember that quotes need not be used as they are
in human writing! It may be easier to quote not an entire string, but only those parts
of the string which need quoting, using different types of quoting to do so if
appropriate.

The backslash_quote shell variable can be set to make backslashes always quote
\, ’, and ″. This may make complex quoting tasks easier, but it can cause syntax
errors in csh (or tcsh) scripts.

Substitutions
This section describes the various transformations the tcsh shell performs on input
in the order in which they occur. The section will cover data structures involved and
the commands and variables which affect them. Remember that substitutions can
be prevented by quoting as described under “Command Syntax” on page 580.

History Substitution
Each command, or event, input from the terminal is saved in the history list. The
previous command is always saved, and the history shell variable can be set to a
number to save that many commands. The histdup shell variable can be set to not
save duplicate events or consecutive duplicate events.

Saved commands are numbered sequentially from 1 and stamped with the time. It
is not usually necessary to use event numbers, but the current event number can
be made part of the prompt by placing an exclamation point (!) in the prompt shell
variable.

The shell actually saves history in expanded and literal (unexpanded) forms. If the
histlit shell variable is set, commands that display and store history use the literal
form.

The history built-in command can print, store in a file, restore and clear the history
list at any time, and the savehist and histfile shell variables can be set to store the
history list automatically on logout and restore it on login.

History substitutions introduce words from the history list into the input stream,
making it easy to repeat commands, repeat arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little
typing and a high degree of confidence.

tcsh

Chapter 2. Shell Command Descriptions 581

History substitutions begin with the character !. They may begin anywhere in the
input stream, but they do not nest. The ! may be preceded by a \ to prevent its
special meaning; for convenience, a ! is passed unchanged when it is followed by a
blank, tab, newline, = or (. History substitutions also occur when an input line
begins with ^. This special abbreviation will be described later. The characters used
to signal history substitution (! and ^ (caret)) can be changed by setting the
histchars shell variable. Any input line which contains a history substitution is
printed before it is executed.

A history substitution may have an event specification, which indicates the event
from which words are to be taken, a word designator, which selects particular
words from the chosen event, and/or a modifier, which manipulates the selected
words.

An event specification can be

n A number, referring to a particular event

–n An offset, referring to the even n before the current event

The current event. This should be used carefully in csf, where there is no
check for recursion. tcsh allows 10 levels of recursion.

! The previous event (equivalent to -1)

s The most recent event whose first word begins with the string s

?s? The most recent event which contains the string s. The second ? can be
omitted if it is immediately followed by a newline.

For example, consider this bit of someone’s history list:
9 8:30 nroff -man wumpus.man
10 8:31 cp wumpus.man wumpus.man old
11 8:36 vi wumpus.man
12 8:37 diff wumpus.man.old wumpus.man

The commands are shown with their event numbers and time stamps. The current
event, which we haven’t typed in yet, is event 13. !11 and !-2 refer to event 11. !!
refers to the previous event, 12. !! can be abbreviated ! if it is followed by : (colon;
described below). !n refers to event 9, which begins with n. !?old? also refers to
event 12, which contains old. Without word designators or modifiers history
references simply expand to the entire event, so we might type !cp to redo the copy
command or !!|more if the diff output scrolled off the top of the screen.

History references may be insulated from the surrounding text with braces if
necessary. For example, !vdoc would look for a command beginning with vdoc, and,
in this example, not find one, but !{v}doc would expand unambiguously to vi
wumpus.mandoc. Even in braces, history substitutions do not nest.

While csh expands, for example, !3d to event 3 with the letter d appended to it, tcsh
expands it to the last event beginning with 3d; only completely numeric arguments
are treated as event numbers. This makes it possible to recall events beginning
with numbers. To expand !3d as in csh say !\3d.

To select words from an event we can follow the event specification by a : (colon)
and a designator for the desired words. The words of an input line are numbered
from 0, the first (usually command) word being 0, the second word (first argument)
being 1, etc. The basic word designators are:

0 The first command word

tcsh

582 z/OS V1R4.0 UNIX System Services Command Reference

n The nth argument

^ The first argument, equivalent to 1

$ The last argument

% The word matched by an ?s? search

x-y A range of words

–y Equivalent to 0–y

* Equivalent to ^–$, but returns nothing if the event contains only 1 word

x* Equivalent to x-$

x- Equivalent to x*, but omitting the last word ($)

Selected words are inserted into the command line separated by single blanks. For
example, the diff command in the previous example might have been typed as diff
!!:1.old !!:1(using :1 to select the first argument from the previous event) or diff !-2:2
!-2:1to select and swap the arguments from the cp command. If we didn’t care
about the order of the diff we might have said diff !-2:1-2or simply diff !-2:*. The cp
command might have been written cp wumpus.man !#:1.old, using # to refer to the
current event. !n:- hurkle.man would reuse the first two words from the nroff
command to say nroff -man hurkle.man.

The : separating the event specification from the word designator can be omitted if
the argument selector begins with a ’^’, ’$’, ’*’, ’%’ or ’-’. For example, our diff
command might have been diff !!^.old !!^ or, equivalently, diff !!$.old !!$. However, if
!! is abbreviated !, an argument selector beginning with - (hypen) will be interpreted
as an event specification.

A history reference may have a word designator but no event specification. It then
references the previous command. Continuing our diff example, we could have said
simply diff !^.old !^or, to get the arguments in the opposite order, just diff !*.

The word or words in a history reference can be edited, or modified, by following it
with one or more modifiers, each preceded by a : (colon):

h Remove a trailing pathname component, leaving the head.

t Remove all leading pathname components, leaving the tail.

r Remove a filename extension .xxx, leaving the root name.

e Remove all but the extenstion

u Uppercase the first lowercase letter.

l Lowercase the first uppercase letter.

s/l/r Substitute l for r. l is simply a string like r, not a regular expression as in the
eponymous ed command. Any character may be used as the delimiter in
place of /; a \ can be used to quote the delimiter inside l and r. The
character & in the r is replaced by l; \ also quotes &. If l is empty (’’’’), the l
from a previous substitution or the s from a previous ?s? event specification
is used. The trailing delimiter may be omitted if it is immediately followed by
a newline.

& Repeat the previous substitution

g Apply the following modifier once to each word.

a Apply the following modifier as many times as possible to a single word. ’a’

tcsh

Chapter 2. Shell Command Descriptions 583

and ’g’ can be used together to apply a modifier globally. In the current
implementation, using the ’a’ and ’s’ modifiers together can lead to an
infinite loop. For example, :as/f/ff/ will never terminate. This behavior might
change in the future.

p Print the new command line but do not execute it.

q Quote the substituted words, preventing further substitutions.

x Like q, but break into words at blanks, tabs and newlines.

Modifiers are applied only to the first modifiable word (unless ’g’ is used). It is an
error for no word to be modifiable.

For example, the diff command might have been written as diff wumpus.man.old
!#^:r, using :r to remove .old from the first argument on the same line (!#^). We
could say echo hello out there, then echo !*:u to capitalize ’hello’, echo !*:au to say
it out loud, or echo !*:agu to really shout. We might follow mail -s ″I forgot my
password″ rot with !:s/rot/root to correct the spelling of ’root’ (but see “Spelling
Correction” on page 576 for a different approach).

There is a special abbreviation for substitutions. ^, when it is the first character on
an input line, is equivalent to !:s^. Thus, we might have said ^rot^root to make the
spelling correction in the previous example. This is the only history substitution
which does not explicitly begin with !.

In csh as such, only one modifier may be applied to each history or variable
expansion. In tcsh, more than one may be used, for example
% mv wumpus.man /usr/man/man1/wumpus.1
% man !$:t:r
man wumpus

In csh, the result would be wumpus.1:r. A substitution followed by a colon may need
to be insulated from it with braces:
> mv a.out /usr/games/wumpus
> setenv PATH !$:h:$PATH
Bad ! modifier: $.
> setenv PATH !{-2$:h}:$PATH
setenv PATH /usr/games:/bin:/usr/bin:.

The first attempt would succeed in csh but fails in tcsh, because tcsh expects
another modifier after the second colon instead of $.

Finally, history can be accessed through the editor as well as through the
substitutions just described. The following commands search for events in the
history list and compile them into the input buffer:
v up-history
v down-history
v history-search-backward
v history-search-forward
v i-search-back
v i-search-fwd
v vi-search-back
v vi-search-fwd
v copy-prev-word
v insert-last-word

tcsh

584 z/OS V1R4.0 UNIX System Services Command Reference

The toggle-literal-history editor command switches between the expanded and
literal forms of history lines in the input buffer. expand-history and expand-line
expand history substitutions in the current word and in the entire input buffer
respectively.

Alias Substitution
The shell maintains a list of aliases which can be set, unset and printed by the
alias and unalias commands. After a command line is parsed into simple
commands (see “Command Execution” on page 589) the first word of each
command, left-to-right, is checked to see if it has an alias. If so, the first word is
replaced by the alias. If the alias contains a history reference, it undergoes history
substitution as though the original command were the previous input line. If the
alias does not contain a history reference, the argument list is left untouched.

Thus if the alias for ls were ls -l the command ls /usrwould become ls -l /usr, the
argument list here being undisturbed. If the alias for lookup were grep !^
/etc/passwd then lookup bill would become grep bill /etc/passwd. Aliases can be
used to introduce parser metasyntax. For example, alias print ’pr \!* | lpr’ defines a
command (print) which prints its arguments to the line printer.

Alias substitution is repeated until the first word of the command has no alias. If an
alias substitution does not change the first word (as in the previous example) it is
flagged to prevent a loop. Other loops are detected and cause an error.

Some aliases are referred to by the shell; see “tcsh Built-in Commands” on
page 597.

Variable Substitution
The tcsh shell maintains a list of variables, each of which has as value a list of zero
or more words. The values of tcsh shell variables can be displayed and changed
with the set and unset commands. The system maintains its own list of
″environment″ variables. These can be displayed and changed with printenv,
setenv and unsetenv.

Variables may be made read-only with set -r. Read-only variables may not be
modified or unset; attempting to do so will cause an error. Once made read-only, a
variable cannot be made writable, so set -r should be used with caution.
Environment variables cannot be made read-only.

Some variables are set by the tcsh shell or referred to by it. For instance, the argv
variable is an image of the shell’s argument list, and words of this variable’s value
are referred to in special ways. Some of the variables referred to by the tcsh shell
are toggles; the shell does not care what their value is, only whether they are set or
not. For instance, the verbose variable is a toggle which causes command input to
be echoed. The -v command line option sets this variable. Special shell variables
lists all variables which are referred to by the shell.

Other operations treat variables numerically. The @ (at) command permits numeric
calculations to be performed and the result assigned to a variable. Variable values
are, however, always represented as (zero or more) strings. For the purposes of
numeric operations, the null string is considered to be zero, and the second and
subsequent words of multiword values are ignored.

After the input line is aliased and parsed, and before each command is executed,
variable substitution is performed keyed by $ characters. This expansion can be
prevented by preceding the $ with a \ except within double quotes (″) where it

tcsh

Chapter 2. Shell Command Descriptions 585

always occurs, and within single quotes (’) where it never occurs. Strings quoted
by backward quotes or accents (`) are interpreted later (see “Command
Substitution” on page 587) so $ substitution does not occur there until later, if at all.
A $ is passed unchanged if followed by a blank, tab, or end-of-line.

Input/output redirections are recognized before variable expansion, and are variable
expanded separately. Otherwise, the command name and entire argument list are
expanded together. It is thus possible for the first (command) word (to this point) to
generate more than one word, the first of which becomes the command name, and
the rest of which become arguments.

Unless enclosed in double quotes (″) or given the :q modifier the results of variable
substitution may eventually be command and filename substituted. Within ″, a
variable whose value consists of multiple words expands to a (portion of a) single
word, with the words of the variable’s value separated by blanks. When the :q
modifier is applied to a substitution the variable will expand to multiple words with
each word separated by a blank and quoted to prevent later command or filename
substitution.

The following metasequences are provided for introducing variable values into the
shell input. Except as noted, it is an error to reference a variable which is not set.

$name[selector]

${name[selector]}
Substitutes only the selected words from the value of name. The selector is
subjected to $ substitution and may consist of a single number or two
numbers separated by a - (hyphen). The first word of a variable’s value is
numbered 1. If the first number of a range is omitted it defaults to 1. If the
last member of a range is omitted it defaults to $#name. The selector *
selects all words. It is not an error for a range to be empty if the second
argument is omitted or in range.

$0 Substitutes the name of the file from which command input is being read.
An error occurs if the name is not known.

$number

${number}
Equivalent to $argv[number].

$* Equivalent to $argv, which is equivalent to $argv[*].

The : (colon) modifiers described under “History Substitution” on page 581, except
for :p, can be applied to the substitutions above. More than one may be used.
Braces may be needed to insulate a variable substitution from a literal colon just as
with history substitution; any modifiers must appear within the braces. The following
substitutions can not be modified with : modifiers.

$?name

${?name}
Substitutes the string 1 if name is set, 0 if it is not.

$0 Substitutes the name of the file from which command input is being read.
An error occurs if the name is not known.

$?0 Substitutes 1 if the current input filename is known, 0 if it is not. Always 0 in
interactive shells.

tcsh

586 z/OS V1R4.0 UNIX System Services Command Reference

$#name or ${#name}
Substitutes the number of words in name.

$# Equivalent to ’$#argv’.

$%name

${%name}
Substitutes the number of characters in name.

$%number

${%number}
Substitutes the number of characters in $argv[number].

$? Equivalent to $status.

$$ Substitutes the (decimal) process number of the (parent) shell.

$! Substitutes the (decimal) process number of the last background process
started by this shell.

$< Substitutes a line from the standard input, with no further interpretation
thereafter. It can be used to read from the keyboard in a shell script. While
csh always quotes $<, as if it were equivalent to $<:q, tcsh does not.
Furthermore, when tcsh is waiting for a line to be typed the user may type
an interrupt to interrupt the sequence into which the line is to be
substituted, but csh does not allow this.

The editor command expand-variables, normally bound to ^X-$, can be used to
interactively expand individual variables.

Command, Filename and Directory Stack Substitiution
The remaining substitutions are applied selectively to the arguments of tcsh built-in
commands. This means that portions of expressions which are not evaluated are
not subjected to these expansions. For commands which are not internal to the tcsh
shell, the command name is substituted separately from the argument list. This
occurs very late, after input-output redirection is performed, and in a child of the
main shell.

Command Substitution: Command substitution is indicated by a command
enclosed in ’ ’ ’. The output from such a command is broken into separate words at
blanks, tabs and newlines, and null words are discarded. The output is variable and
command substituted and put in place of the original string.

Command substitutions inside double quotes (″) retain blanks and tabs; only
newlines force new words. The single final newline does not force a new word in
any case. It is thus possible for a command substitution to yield only part of a word,
even if the command outputs a complete line.

Filename Substitution: If a word contains any of the characters ’*’, ’?’, ’[’ or ’{’ or
begins with the character ’~’ it is a candidate for filename substitution, also known
as globbing. This word is then regarded as a pattern (glob-pattern), and replaced
with an alphabetically sorted list of file names which match the pattern.

In matching filenames, the character . (period) at the beginning of a filename or
immediately following a / (forward slash), as well as the character / must be
matched explicitly. The character * matches any string of characters, including the
null string. The character ? matches any single character. The sequence [...]
matches any one of the characters enclosed. Within [...], a pair of characters
separated by - matches any character lexically between the two.

tcsh

Chapter 2. Shell Command Descriptions 587

Some glob-patterns can be negated: The sequence [^...] matches any single
character not specified by the characters and/or ranges of characters in the braces.

An entire glob-pattern can also be negated with ^:
> echo *
bang crash crunch ouch
> echo ^cr*
bang ouch

Glob-patterns which do not use ’?’, ’*’, or’[]’ or which use ’{}’ or ’^’ (below) are not
negated correctly.

The metanotation a{b,c,d}e is a shorthand for abe ace ade. Left-to-right order is
preserved: /usr/source/s1/{oldls,ls}.c expands to /usr/source/s1/oldls.c
/usr/source/s1/ls.c. The results of matches are sorted separately at a low level to
preserve this order, such as, like the following example, where ../{memo,*box}
might expand to ../memo ../box ../mbox. (Note that ’memo’ was not sorted with the
results of matching ’*box’.) It is not an error when this construct expands to files
which do not exist, but it is possible to get an error from a command to which the
expanded list is passed. This construct may be nested. As a special case the words
{, } and {} are passed undisturbed. The character ~ at the beginning of a filename
refers to home directories. Standing alone, i.e. ~, it expands to the invoker’s home
directory as reflected in the value of the home shell variable. When followed by a
name consisting of letters, digits and - (hyphen) characters the shell searches for a
user with that name and substitutes their home directory; thus ~ken might expand
to /usr/ken and ~ken/chmach to /usr/ken/chmach. If the character ~ is followed
by a character other than a letter or / or appears elsewhere than at the beginning of
a word, it is left undisturbed. A command like setenv MANPATH
/usr/man:/usr/local/man:~/lib/man does not, therefore, do home directory substitution
as one might hope. It is an error for a glob-pattern containing ’*’, ’?’, ’[’ or ’~’, with or
without ’^’, not to match any files. However, only one pattern in a list of
glob-patterns must match a file (so that, for example, rm *.a *.c *.o would fail only if
there were no files in the current directory ending in ’.a’, ’.c’, or ’.o’), and if the
nonomatch shell variable is set a pattern (or list of patterns) which matches nothing
is left unchanged instead of causing an error.

The noglob shell variable can be set to prevent filename substitution, and the
expand-glob editor command, normally bound to ^X-*, can be used to interactively
expand individual filename substitutions.

Directory Stack Substitution: The directory stack is a list of directories,
numbered from zero, used by the pushd, popd and dirs built-in commands for
tcsh. dirs can print, store in a file, restore and clear the directory stack at any time,
and the savedirs and dirsfile shell variables can be set to store the directory stack
automatically on logout and restore it on login. The dirstack shell variable can be
examined to see the directory stack and set to put arbitrary directories into the
directory stack.

The character = (equal) followed by one or more digits expands to an entry in the
directory stack. The special case =- expands to the last directory in the stack. For
example,

> dirs -v
0 /usr/bin
1 /usr/spool/uucp
2 /usr/accts/sys
> echo =1
/usr/spool/uucp

tcsh

588 z/OS V1R4.0 UNIX System Services Command Reference

> echo =0/calendar
/usr/bin/calendar
> echo =-
/usr/accts/sys

The noglob and nonomatch shell variables and the expand-glob editor command
apply to directory stack as well as filename substitutions.

Other Substitutions: There are several more transformations involving filenames,
not strictly related to the above but mentioned here for completeness. Any filename
may be expanded to a full path when the symlinks variable is set to expand.
Quoting prevents this expansion, and the normalize-path editor command does it
on demand. The normalize-command editor command expands commands in
PATH into full paths on demand. Finally, cd and pushd interpret - (hyphen) as the
old working directory (equivalent to the tcsh shell variable owd). This is not a
substitution at all, but an abbreviation recognized only by those commands.
Nonetheless, it too can be prevented by quoting.

Command Execution
The next three sections describe how the shell executes commands and deals with
their input and output.

Simple Commands, Pipelines, and Sequences
A simple command is a sequence of words, the first of which specifies the
command to be executed. A series of simple commands joined by ’|’ characters
forms a pipeline. The output of each command in a pipeline is connected to the
input of the next.

Simple commands and pipelines may be joined into sequences with ’;’, and will be
executed sequentially. Commands and pipelines can also be joined into sequences
with ’||’ or ’&&’, indicating, as in the C language, that the second is to be executed
only if the first fails or succeeds respectively.

A simple command, pipeline or sequence may be placed in parentheses, ’()’, to
form a simple command, which may in turn be a component of a pipeline or
sequence. A command, pipeline or sequence can be executed without waiting for it
to terminate by following it with an ’&’.

Built-in and Non-Built-in Command Execution
tcsh Built-in commands are executed within the shell. If any component of a
pipeline except the last is a built-in command, the pipeline is executed in a subshell.

Parenthesized commands are always executed in a subshell:
(cd; pwd); pwd

which prints the home directory, leaving you where you were (printing this after the
home directory), while
cd; pwd

leaves you in the home directory. Parenthesized commands are most often used to
prevent cd from affecting the current shell.

When a command to be executed is found not to be a built-in command the tcsh
shell attempts to execute the command via execve. Each word in the variable path
names a directory in which the tcsh shell will look for the command. If it is given
neither a -c nor a -t option, the shell hashes the names in these directories into an

tcsh

Chapter 2. Shell Command Descriptions 589

internal table so that it will only try an execve in a directory if there is a possibility
that the command resides there. This greatly speeds command location when a
large number of directories are present in the search path. If this mechanism has
been turned off (via unhash), if the shell was given a -c or -t argument or in any
case for each directory component of path which does not begin with a /, the shell
concatenates the current working directory with the given command name to form a
pathname of a file which it then attempts to execute.

If the file has execute permissions but is not an executable to the system (that is, it
is neither an executable binary nor a script which specifies its interpreter), then it is
assumed to be a file containing shell commands and a new shell is spawned to
read it. The shell special alias may be set to specify an interpreter other than the
shell itself.

Input or Output
The standard input and standard output of a command may be redirected with the
following syntax:

Table 22. Standard Input/Output Syntax for tcsh Shell

Syntax Description

< name Open file name (which is first variable, command and filename
expanded) as the standard input.

<< word Read the shell input up to a line which is identical to word.
word is not subjected to variable, filename or command
substitution, and each input line is compared to word before
any substitutions are done on this input line. Unless a quoting
\, ″ , ’ ’ or ’ ’ ’ appears in word variable and command
substitution is performed on the intervening lines, allowing \ to
quote $, \ and ’ (single quote). Commands which are
substituted have all blanks, tabs, and newlines preserved,
except for the final newline which is dropped. The resultant
text is placed in an anonymous temporary file which is given
to the command as standard input.

> name
>! name
>& name
>&! name

The file name is used as standard output. If the file does not
exist then it is created; if the file exists, its is overwritten and,
therefore, the previous contents are lost.

If the shell variable noclobber is set, then the file must not
exist or be a character special file (for example, a terminal or
/dev/null) or an error results. This helps prevent accidental
destruction of files. In this case the ! forms can be used to
suppress this check.

The forms involving & (ampersand) route the diagnostic output
into the specified file as well as the standard output. name is
expanded in the same way as < input filenames are.

>> name
>>& name
>>! name
>>&! name

Like >, but appends output to the end of name. If the shell
variable noclobber is set, then it is an error for the file not to
exist, unless one of the ! forms is given.

A command receives the environment in which the shell was invoked as modified
by the input-output parameters and the presence of the command in a pipeline.
Thus, unlike some previous shells, commands run from a file of shell commands
have no access to the text of the commands by default; instead they receive the
original standard input of the shell. The << mechanism should be used to present
inline data. This permits shell command scripts to function as components of

tcsh

590 z/OS V1R4.0 UNIX System Services Command Reference

pipelines and allows the shell to block read its input. The default standard input for
a command run detached is not the empty file /dev/null, but the original standard
input of the shell. If this is a terminal and if the process attempts to read from the
terminal, then the process will block and the user will be notified (see “Jobs” on
page 594).

Diagnostic output may be directed through a pipe with the standard output. Simply
use the form |& instead of just |.

The shell cannot presently redirect diagnostic output without also redirecting
standard output, but (command > output-file) >& error-file is often an acceptable
workaround. Either output-file or error-file may be /dev/tty to send output to the
terminal.

Features
Having described how the tcsh shell accepts, parses and executes command lines,
we now turn to a variety of its useful features.

Control Flow
The tcsh shell contains a number of commands which can be used to regulate the
flow of control in command files (shell scripts) and (in limited by useful ways) from
terminal output. These commands all operate by forcing the shell to reread or skip
in its input and, due to the implementation, restrict the placement of some of the
commands.

The foreach, switch, and while statements, as well as the if-then-else form of the if
statement, require that the major keywords appear in a single simple command on
an input line.

If the shell’s input is not seekable, the shell buffers up input whenever a loop is
being read and performs seeks in this internal buffer to accomplish the rereading
implied by the loop . (To the extent that this allows, backward gotos will succeed on
non-seekable inputs.)

Expressions
The if, while, and exit built-in commands use expressions with a common syntax.
The expressions can include any of the operators described in the next three
sections. Note that the @ built-in command has its own separate syntax.

Logical, Arithmetical and Comparison Operators: These operators are similar
to those of C and have the same precedence. They include:
|| && | ^ & == != =~ !~ <= >=
< > << >> + - * / % ! ~ ()

Here the precedence increases to the right, ’==’ ’!=’ ’=~’ and ’!~’, ’<=’ ’>=’ ’<’ and
’>’, ’<<’ and ’>>’, ’+’ and ’-’, ’*’ / and ’%’ being in groups, at the same level. The ’==’
’!=’ ’=~’ and ’!~’ operators compare their arguments as strings; all others operate on
numbers. The operators ’=~’ and ’!~’ are like ’!=’ and ’==’ except that the right hand
side is a glob-pattern (see “Filename Substitution” on page 587) against which the
left hand operand is matched. This reduces the need for use of the switch built-in
command in shell scripts when all that is really needed is pattern matching.

Strings which begins with 0 are considered octal numbers. Null or missing
arguments are considered 0. The results of all expressions are strings, which
represent decimal numbers. It is important to note that no two components of an

tcsh

Chapter 2. Shell Command Descriptions 591

expression can appear in the same word; except when adjacent to components of
expressions which are syntactically significant to the parser (’$’ ’|’ ’<’ ’>’ ’(’ ’)’) they
should be surrounded by spaces.

Command Exit Status: Commands can be executed in expressions and their exit
status returned by enclosing them in braces ({}). Remember that the braces should
be separated from the words of the command by spaces. Command executions
succeed, returning true, that is, 1, if the command exits with status 0, otherwise they
fail, returning false (0). If more detailed status information is required then the
command should be executed outside of an expression and the status shell variable
examined.

File Inquiry Operators: Some of these operators perform true/false tests on files
and related objects. They are of the form -op file, where op is one of:

ac An extended ACL of type c exists. Character c represents the type of ACL:

a Access ACL

d Directory default ACL

f File default ACL

Note: Testing with suboptions d and f will always return false for files (files
do not have default ACLs).

r Read access

w Write access

x Execute access

X Executable in the path or shell built-in. For example, –X ls and –X ls-F are
generally true, but –X /bin/ls is not.

e Existence

Ea File has the APF extended attribute

Ep File has the program

Es File has the shared address space extended attribute

El File has the shared library extended attribute

o Ownership

x Zero size

s Non-zero size

f Plain file

d Directory

l Symbolic link

b Block special file

c Character special file

p Named pipe (fifo)

S Socket special file

u Set-user ID bit is set

g Set-group-ID bit is set

tcsh

592 z/OS V1R4.0 UNIX System Services Command Reference

k Sticky bit is set

t t file_descriptor (which must be a digit) is an open file descriptor for a
terminal device

L Applies subsequent operators in a multiple-operator test to a symbolic link
instead of to the file to which the link points

file is command and filename expanded and then tested to see if it has the
specified relationship to the real user. If file does not exist or is inaccessible or, for
the operators indicated by *, if the specified file type does not exist on the current
system, then all inquiries return false (0).

These operators may be combined for conciseness: -xy file is equivalent to -x file
&& -y file. For example, -fx is true (returns 1) for plain executable files, but not for
directories.

L may be used in a multiple-operator test to apply subsequent operators to a
symbolic link instead of to the file to which the link points. For example, -lLo is true
for links owned by the invoking user. Lr, Lw, and Lx are always ture for links and
false for non-links. L has a different meaning when it is the last operator in a
multiple-operator test.

It is possible but not useful, and sometimes misleading, to combine operators which
expect file to be a file with operators which do not (for example, X and t). Following
L witha non-file operator can lead to particularly strange results.

Other operators return other information, i.e. not just 0 or 1. They have the same
format as before where op may be one of:

A Last file access time, as the number of seconds since epoch

A: Like A, but in timestamp format, that is, ’Fri May 14 16:36:10 1993’

M Last file modification time

M: Like M, but in timestamp format

C Last inode modification time

C: Like C, but in timestamp format

D Device number

I Inode number

F Composite file identifier, in the form device : inode

L The name of the file pointed to by a symbolic link

N Number of (hard) links

P Permissions, in octal, without leading zero

P: Like P, with leading zero

P mode
Equivalent to -P mode & file, that is, -P22 file returns 22 if file is writable by
group and other, 20 if by group only, and 0 if by neither.

P mode:
Like P mode, with leading zero

U Numeric userid

tcsh

Chapter 2. Shell Command Descriptions 593

U: Username, or the numeric userid if the username is unknown

G Numeric groupid

G: Groupname, or the numeric groupid if the groupname is unknown

Z Size in bytes

Only one of these operators may appear in a multiple-operator test, and it must be
the last. L has a different meaning at the end of and elsewhere in a
multiple-operator test. Because 0 is a valid return value for many of these
operators, they do not return 0 when they fail: most return -1, and F returns :
(colon).

File inquiry operators can also be evaluated with the filetest built-in command.

File Inquiry Operators for Use with File Tagging and the Filetest Built-in
Command:

–B file

v True if the file is tagged as binary

v False if the file is not tagged or tagged as text

v Returns codeset if the file is tagged as mixed text and binary, that is,
txtflag = OFF and codeset stored in file tag

–T file

v False if the file is not tagged or if it is tagged as txtflag = OFF

v Returns codeset if the file is tagged as text

Either –B file or –T file will allow a tcsh ″if test″ to evaluate to true when the file is
tagged as indicated. These two operators will also allow tcsh to test for a specific
codeset. For example,
if (-T file == IBM-1047) #True if tagged as IBM-1047 text
if (-B file) #True if tagged as binary

Note: Codesets which are aliases of each other exist which may cause the test to
fail, since the file inquiry operator may return an alias of the codeset you are
testing.

Jobs
The shell associates a job with each pipeline. It keeps a table of current jobs,
printed by the jobs command, and assigns them small integer numbers. When a job
is started asynchronously with & (ampersand), the shell prints a line which looks
like
[1] 1234

indicating that the job which was started asynchronously was job number 1 and had
one (top-level) process, whose process id was 1234.

If you are running a job and wish to do something else you may hit the suspend
key (usually ^Z), which sends a STOP signal to the current job. The shell will then
normally indicate that the job has been ’Suspended’ and print another prompt. If the
listjobs shell variable is set, all jobs will be listed like the jobs built-in command; if
it is set to ’long’ the listing will be in long format, like jobs -l. You can then
manipulate the state of the suspended job. You can put it in the background with
the bg command or run some other commands and eventually bring the job back
into the foreground with fg. (See also the run-fg-editor editor command.) A ^Z

tcsh

594 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

takes effect immediately and is like an interrupt in that pending output and unread
input are discarded when it is typed. The wait built-in command causes the shell to
wait for all background jobs to complete.

The ^] key sends a delayed suspend signal, which does not generate a STOP
signal until a program attempts to read it, to the current job. This can usefully be
typed ahead when you have prepared some commands for a job which you wish to
stop after it has read them. The ^Y key performs this function in csh; in tcsh , ^Y is
an editing command.

A job being run in the background stops if it tries to read from the terminal.
Background jobs are normally allowed to produce output, but this can be disabled
by giving the command stty tostop. If you set the stty option, then background jobs
will stop when they try to produce output like they do when they try to read input.

There are several ways to refer to jobs in the shell. The character % introduces a
job name. If you wish to refer to job number 1, you can name it as %1. Just naming
a job brings it to the foreground; thus %’ is a synonym for fg %1, bringing job 1
back into the foreground. Similarly, saying %1 & resumes job 1 in the background,
just like bg %1. A job can also be named by an unambigous prefix of the string
typed in to start it: %ex would normally restart a suspended ’ex’ job, if there were
only one suspended job whose name began with the string ’ex’. It is also possible
to say %? string to specify a job whose text contains string , if there is only one
such job.

The shell maintains a notion of the current and previous jobs. In output pertaining to
jobs, the current job is marked with a + (plus) and the previous job with a -
(hyphen). The abbreviations %+, %, and (by analogy with the syntax of the history
mechanism) %% all refer to the current job, and %- refers to the previous job.

The job control mechanism requires that the stty option new be set on some
systems. It is an artifact from a new implementation of the tty driver which allows
generation of interrupt characters from the keyboard to tell jobs to stop. See stty
and the setty tcsh built-in command for details on setting options in the new tty
driver.

Status Reporting
The tcsh shell learns immediately whenever a process changes state. It normally
informs you whenever a job becomes blocked so that no further progress is
possible, but only just before it prints a prompt. This is done so that it does not
otherwise disturb your work. If, however, you set the shell variable notify, the shell
will notify you immediately of changes of status in background jobs. There is also a
shell command notify which marks a single process so that its status changes will
be immediately reported. By default notify marks the current process; simply say
’notify’ after starting a background job to mark it.

When you try to leave the shell while jobs are stopped, you will be warned that ’You
have stopped jobs.’ You may use the jobs command to see what they are. If you
do this or immediately try to exit again, the shell will not warn you a second time,
and the suspended jobs will be terminated.

Automatic, Periodic and Timed Events
There are various ways to run commands and take other actions automatically at
various times in the life cycle of the shell.

tcsh

Chapter 2. Shell Command Descriptions 595

v The sched built-in command puts commands in a scheduled-event list, to be
executed by the shell at a given time.

v The beepcmd, cwdcmd, periodic and precmd special aliases can be set,
respectively, to execute commands when the shell wants to ring the bell, when
the working directory changes, every t-period minutes and before each prompt.

v The autologout shell variable can be set to log out of the shell after a given
number of minutes of inactivity.

v The mail shell variable can be set to check for new mail periodically.

v The printexitvalue shell variable can be set to print the exit status of commands
which exit with a status other than zero.

v The rmstar shell variable can be set to ask the user, when rm * is typed, if that
is really what was meant.

v The time shell variable can be set to execute the time built-in command after the
completion of any process that takes more than a given number of CPU
seconds.

v The watch and who shell variables can be set to report when selected users log
in or out, and the log built-in command reports on those users at any time.

National Language System Report
When using the system’s NLS, the setlocale function is called to determine
appropriate character classification and sorting. This function typically examines the
LANG and LC_CTYPE environment variables; refer to the system documentation
for further details.

Unknown characters (those that are neither printable nor control characters) are
printed in the format \nnn.

The version shell variable indicates what options were chosen when the shell was
compiled. Note also the newgrp built-in and echo_style shell variable and the
locations of the shell’s input files (see “tcsh Files” on page 614).

The tcsh shell currently does not support 3 locales. They are IBM-1388 (Chinese),
IBM-933 (Korean) and IBM-937 (Traditional Chinese).

Signal Handling
Login shells ignore interrupts when reading the file ~/.logout.The shell ignores quit
signals unless started with -q. Login shells catch the terminate signal, but non-login
shells inherit the terminate behavior from their parents. Other signals have the
values which the shell inherited from its parent.

In shell scripts, the shell’s handling of interrupt and terminate signals can be
controlled with onintr, and its handling of hangups can be controlled with hup and
nohup.

The shell exits on a hangup (see also the logout shell variable). By default, the
shell’s children do too, but the shell does not send them a hangup when it exits.
hup arranges for the shell to send a hangup to a child when it exits, and nohup
sets a child to ignore hangups.

Terminal Management
The shell uses three different sets of terminal (tty) modes: edit, used when editing,
quote, used when quoting literal characters, and execute, used when executing
commands. The shell holds some settings in each mode constant, so commands

tcsh

596 z/OS V1R4.0 UNIX System Services Command Reference

which leave the tty in a confused state do not interfere with the shell. The shell also
matches changes in the speed and padding of the tty. The list of tty modes that are
kept constant can be examined and modified with the setty built-in. Although the
editor uses CBREAK mode (or its equivalent), it takes typed-ahead characters
anyway.

The echotc, settc and telltc commands can be used to manipulate and debug
terminal capabilities from the command line.

The tcsh shell adapts to window resizing automatically and adjusts the environment
variables LINES and COLUMNS if set.

tcsh Built-in Commands
The list below contains tcsh built-in commands which are not /bin/sh built-ins.
Descriptions for these commands are found at the end of this chapter.

% filetest popd uncomplete
alloc glob pushd unhash
bindkey hashstat rehash unlimit
breaksw hup repeat unsetenv
builtins limit sched watchlog
bye login setenv where
chdir logout settc which
complete ls-F setty
dirs notify source
echotc onintr telltc

Other tcsh built-in commands are also found in the z/OS shell. In some cases, they
may differ in function; see the specific command description for a discussion of the
tcsh version of the command.

: (colon) cd fg nice stop unset
@ (at) echo history nohup suspend wait
alias eval jobs printenv time
bg exec kill set umask
break exit newgrp shift unalias

As well as built-in commands, the tcsh shell has a set of special aliases:

beepcmd periodic shell
cwdcmd precmd

If set, each of these aliases executes automatically at the indicated time. They are
initially undefined. For more information about aliases, see “Alias Substitution” on
page 585.

Descriptions of these aliases are as follows:

beepcmd
Runs when the shell wants to ring the terminal bell.

cwdcmd
Runs after every change of working directory. For example, if the user is
working on an X window system using xterm and a re-parenting window
manager that supports title bars such as twm and does
> alias cwdcmd ’echo -n "^[]2;${HOST}:$cwd ^G"’

tcsh

Chapter 2. Shell Command Descriptions 597

then the shell will change the title of the running xterm to be the name of
the host, a colon, and the full current working directory. A fancier way to do
that is
> alias cwdcmd ’echo -n "^[]2;${HOST}:$cwd^G^[]1;${HOST}^G"’

This will put the hostname and working directory on the title bar but only the
hostname in the icon manager menu. Putting a cd, pushd or popd in
cwdcmd may cause an infinite loop.

periodic
Runs every tperiod minutes. This provides a convenient means for
checking on common but infrequent changes such as new mail. For
example, if one does

> set tperiod = 30
> alias periodic checknews

then the checknews program runs every 30 minutes. If periodic is set but
tperiod is unset or set to 0, periodic behaves like precmd.

precmd
Runs just before each prompt is printed. For example, if one does
> alias precmd date

then date runs just before the shell prompts for each command. There are
no limits on what precmd can be set to do, but discretion should be used.

shell Specifies the interpreter for executable scripts which do not themselves
specify an interpreter. The first word should be a full pathname to the
desired interpreter. For example: /bin/tcsh or /usr/local/bin/tcsh (by
default, this is set to /bin/tcsh).

tcsh Programming Constructs
1. breaksw

Causes a break from a switch, resuming after the endsw.

2. case label

A label in a switch. See the switch built-in description.

3. continue

Continues execution of the nearest enclosing while or foreach. The rest of the
commands on the current line are executed.

4. default

Labels the default case in a switch statement. It should come after all case
labels.

5. else
end
endif
endsw

See the description of the foreach, if, switch, and while statements that
follow.

6. goto word

With goto, word is filename and command substituted to yield a string of the
form label. The tcsh shell rewinds its input as much as possible, searches for a
line of the form label, possible preceded by blanks or tabs, and continues
exectution after that line.

tcsh

598 z/OS V1R4.0 UNIX System Services Command Reference

7. foreach
...
end

Successively sets the variable name to each member of wordlist and executes
the sequence of commands between this command and the matching end.
(Both foreach and end must appear alone on separate lines.) The built-in
command continue may be used to continue the loop prematurely and the
built-in command break to terminate it prematurely. When this command is
read from the terminal, the loop is read once prompting with foreach? (or
prompt2) before any statements in the loop are executed. If you make a
mistake typing in a loop at the terminal you can rub it out.

8. if (expr) then
...
else if (expr2) then
...
else
...
endif

If the specified expr is true then the commands to the first else are executed;
otherwise if expr2 is true then the commands to the second else are executed.
Any number of else-if pairs are possible; only one endif is needed. The else
part is optional. (The words else and endif must appear at the beginning of
input lines; the if must appear alone on its input line or after an else.)

9. switch (string)
case str1:
...
breaksw
...
default
...
breaksw
endsw

Each case label is successively matched, against the specified string which is
first command and filename expanded. The file metacharacters *, ? and [...]
may be used in the case labels, which are variable expanded. If none of the
labels match before a default label is found, then the execution begins after
the default label. Each case label and the default label must appear at the
beginning of a line. The command breaksw causes execution to continue after
the endsw. Otherwise control may fall through case labels and default labels
as in C. If no label matches and there is no default, execution continues after
the endsw.

10. while (expr)
...
end

Executes the commands between the while and the matching end while expr
(expression) evaluates non-zero. while and end must appear alone on their
input lines. break and continue may be used to terminate or continue the loop
prematurely. If the input is a terminal, the user is prompted the first time
through the loop as with foreach.

tcsh

Chapter 2. Shell Command Descriptions 599

tcsh Shell and Environment Variables
The variables described in this section have special meaning to the tcsh shell. The
tcsh shell sets addsuffix, argv, autologout, command, echo_style, edit, gid,
group, home, loginsh, path, prompt, prompt2, prompt3, shell, shlvl, tcsh, term,
tty, uid, user, and version at startup. They do not change thereafter, unless
changed by the user. The tcsh shell updates cwd, dirstack, owd, and status when
necessary, and sets logout on logout.

The shell synchronizes group, home, path, shlvl, term, and user with the
environment variables of the same names: whenever the environment variable
changes the shell changes the correpsonding shell variable to match (unless the
shell variable is read-only) and vice versa. Although cwd and PWD have identical
meanings, they are not synchronized in this manner.

The shell automatically interconverts the different formats of path and PATH.

Table 23. tcsh Built-in Shell Variables

Variable Purpose

addsuffix If set, filename completion adds / to the end of directories and
a space to the end of normal files.

ampm This variable gives a user the ability to alter the time format in
their tcsh prompt. Specifically, ampm will override the %T and
%P formatting sequences in a user’s prompt. If set, all times
are shown in 12hour AM/PM format.

argv The arguments to the shell. Positional parameters are taken
from argv. For example, $1 is replaced by $argv. Set by
default, but usually empty in interactive shells.

autocorrect If set, the spell-word editor command is invoked automatically
before each completion. (This variable is not implemented.)

autoexpand If set, the expand-history editor command is invoked
automatically before each completion attempt.

autolist If set, possibilities are listed after an ambiguous completion. If
set to ambiguous, possibilites are listed only when no new
characters are added by completion.

autologout Set to the number of minutes of inactivity before automatic
logout. Automatic locking is an unsupported feature on the
z/OS platform. If you specify a second parameter on the
autologout statement (intending it to be for autolock), this
parameter will be assigned to autologout. When the shell
automatically logs out, it prints ’autologout’, sets the variable
logout to automatic and exits. Set to 60 (automatic logout after
60 minutes) by default in login and superuser shells, but not if
the shell thinks it is running under a window system (the
DISPLAY environment variable is set), or the tty is a pseudo-tty
(pty). See also the logout shell variable.

backslash_ quote If set, backslashes (\) always quote \, ’ (single quote) and ″
(double quote). This may make complex quoting tasks easier,
but it can cause syntax errors in csh scripts.

cdpath A list of directories in which cd should search for subdirectories
if they aren’t found in the current directory.

command If set, the command which was passed to the shell with the -c
flag.

tcsh

600 z/OS V1R4.0 UNIX System Services Command Reference

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

complete If set to enhance, completion first ignores case and then
considers periods, hyphens and underscores (’.’, ’-’ and ’_’) to
be word separators and hyphens and underscores to be
equivalent.

correct If set to cmd, commands are automatically spelling-corrected. If
set to complete, commands are automatically completed. If set
to all, the entire command line is corrected.

cwd The full pathname of the current directory. See also the
dirstack and owd shell variables.

dextract If set, pushd +n extracts the nth directory from the directory
stack instead of rotating it to the top.

dirsfile The default location in which dirs -S and dirs -L look for a
history file. If unset, ~/.cshdirs is used. Because only ~/.tcshrc
is normally sourced before ~/.cshdirs, dirsfile should be set in
~/.tcshrc instead of ~/.login.

For example:

set dirsfile = ~/.cshdirs

dirstack An array of all the directories on the directory stack.
$dirstack[1] is the current working directory, $dirstack[2] the
first directory on the stack, etc. Note that the current working
directory is $dirstack[1] but =0 in directory stack substitutions,
etc. One can change the stack arbitrarily by setting dirstack,
but the first element (the current working directory) is always
correct. See also the cwd and owd shell variables.

dunique If set, pushd removes any instances of name from the stack
before pushing it onto the stack.

echo If set, each command with its arguments is echoed just before
it is executed. For non-built-in commands all expansions occur
before echoing. Built-in commands are echoed before
command and filename substitution, since these substitutions
are then done selectively. Set by the -x command line option.

tcsh

Chapter 2. Shell Command Descriptions 601

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

echo_style The style of the echo built-in. May be set to:

bsd Don’t echo a newline if the first argument is -n.

sysv Recognize backslashed escape sequences in echo
strings.

both Recognizes both the -n flag and backslashed escape
sequences; the default.

none Recognize neither.
Set to both by default to the local system default.

The following is an example of this variable’s use:

> echo $echo_style
bsd
> echo "\n"
\n
> echo -n "test"
test>
> set echo_style=sysv
> echo $echo_style
sysv
> echo "\n"

> echo -n "test"
-n test
> set echo_style=both
> echo $echo_style
both
> echo -n "test"
test> echo "\n"

>set echo_style=none
> echo $echo_style
none
> echo -n "test"
-n test
> echo "\n"
\n
>

edit If set, the command-line editor is used. Set by default in
interactive shells.

ellipsis If set, the %c’/’%. and %C prompt sequences (see the prompt
shell variable) indicate skipped directories with an ellipsis (...)
instead of /.

fignore Lists file name suffixes to be ignored by completion.

filec In the tcsh shell, completion is always used and this variable is
ignored.

gid The user’s real group ID.

group The user’s group name.

histchars A string value determining the characters used in history
substitution. The first character of its value is used as the
history substitution character, replacing the default character !
(exclamation point). The second character of its value replaces
the character ^ (caret) in quick substitutions.

tcsh

602 z/OS V1R4.0 UNIX System Services Command Reference

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

histdup Controls handling of duplicate entries in the history list. If set to
all only unique history events are entered in the history list. If
set to prev and the last history event is the same as the
current command, then the current command is not entered in
the history. If set to erase and the same event is found in the
history list, that old event gets erased and the current one gets
inserted. The prev and all options renumber history events so
there are no gaps.

histfile The default location in which history -S and history -L look for
a history file. If unset, ~/.history is used. histfile is useful when
sharing the same home directory between different machines,
or when saving separate histories on different terminals.
Because only ~/.tcshrc is normally sourced before ~/.history,
histfile should be set in ~/.tcshrc instead of ~/.login.

An example:

set histfile = ~/.history

histlit If set, built-in and editor commands and the savehist
mechanism use the literal (unexpanded) form of lines in the
history list. See also the toggle-literal-history editor
command.

history The first word indicates the number of history events to save.
The optional second word indicates the format in which history
is printed; if not given, %h\t%T\t%R\n is used. The format
sequences are described below under prompt. (Note that %R
has a variable meaning). Set to 100 by default.

home Initialized to the home directory of the invoker. The filename
expansion of ~ refers to this variable.

ignoreeof If set to the empty string or 0 and the input device is a
terminal, the end-of-file command (usually generated by the
user by typing ^D on an empty line) causes the shell to print
’Use ″logout″ to leave tcsh.’ instead of exiting. This prevents
the shell from accidentally being killed. If set to a number n,
the shell ignores n - 1 consecutive end-of-files and exits on the
nth. If unset, 1 is used. That is, the shell exits on a single ^D.

implicitcd If set, the shell treats a directory name typed as a command as
though it were a request to change to that directory. If set to
verbose, the change of directory is echoed to the standard
output. This behavior is inhibited in non-interactive shell scripts,
or for command strings with more than one word. Changing
directory takes precedence over executing a like-named
command, but it is done after alias substitutions. Tilde and
variable expansions work as expected.

inputmode If set to insert or overwrite, puts the editor into that input mode
at the beginning of each line.

listflags If set to x, a or A, or any combination thereof (for example,
xA), they are used as flags to ls-F, making it act like ls -xF, ls
-Fa, ls -FA or a combination (for example, ls -FxA): a shows
all files (even if they start with a ’.’), A shows all files but ’.’ and
’..’, and x sorts across instead of down. If the second word of
listflags is set, it is used as the path to ls(1).

listjobs If set, all jobs are listed when a job is suspended. If set to long,
the listing is in long format.

tcsh

Chapter 2. Shell Command Descriptions 603

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

listlinks If set, the ls-F built-in command shows the type of file to which
each symbolic link points. For an example of its use, see “ls-F
built-in command for tcsh: List files” on page 628.

listmax The maximum number of items which the list-choices editor
ocmmand will list without asking first.

listmaxrows The maximum number of rows of items which the list-choices
editor command will list without asking first.

loginsh Set by the shell if is a login shell. Setting or unsetting it within
a shell has no effect. See also shlvl.

logout Set by the shell to normal before a normal logout, automatic
before an automatic logout, and hangup if the shell was killed
by a hangup signal (see “Signal Handling” on page 596). See
also the autologout shell variable.

mail The names of the files or directories to check for incoming
mail, separated by whitespace, and optionally preceeded by a
numeric word. Before each prompt, if 10 minutes have passed
since the last check, the shell checks each file and says ’You
have new mail.’ (or, if mail contains multiple files, ’You have
new mail in name.’) if the filesize is greater than zero in size
and has a modification time greater than its access time.

If you are in a login shell, then no mail file is reported unless it
has been modified after the time the shell has started up, in
order to prevent redundant notifications. Most login programs
will tell you whether or not you have mail when you log in.

If a file specified in mail is a directory, the shell will count each
file within that directory as a separate message, and will report
’You have n mails.’ or ’You have n mails in name.’ as
appropriate. This functionality is provided primarily for those
systems which store mail in this manner, such as the Andrew
Mail System.

If the first word of mail is numeric it is taken as a different mail
checking interval, in seconds. Under very rare circumstances,
the shell may report ’You have mail.’ instead of ’You have new
mail.’

matchbeep If set to never, completion never beeps. If set to nomatch, it
beeps only when there is no match. If set to ambiguous, it
beeps when there are multiple matches. If set to notunique, it
beeps when there is one exact and other longer matches. If
unset, ambiguous is used.

nobeep If set, beeping is completely disabled.

noclobber If set, restrictions are placed on output redirection to insure that
files are not accidentally destroyed and that >> redirections
refer to existing files, as described in “Input or Output” on
page 590.

noglob If set, filename substitution and directory stack substitution are
inhibited. This is most useful in shell scripts which do not deal
with filenames, or after a list of filenames has been obtained
and further expansions are not desirable.

nokanji If set and the shell supports Kanji (see the version shell
variable), it is disabled so that the meta key can be used.

tcsh

604 z/OS V1R4.0 UNIX System Services Command Reference

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

nonomatch If set, a filename substitution or directory stack substitution
which does not match any existing files is left untouched
instead of causing an error. It is still an error for the substitution
to be malformed, that is, echo [still gives an error.

nostat A list of directories (or glob-patterns which match directories;
see “Filename Substitution” on page 587) that should not be
stat(2)ed during a completion operation. This is usually used to
exclude directories which take too much time to stat(2), for
example /afs.

notify If set, the shell announces job completions asynchronously.
The default is to present job completions just before printing a
prompt.

owd The old working directory, equivalent to the - (hyphen) used by
cd and pushd. See also the cwd and dirstack shell variables.

path A list of directories in which to look for executable commands.
A null word specifies the current directory. If there is no path
variable then only full pathnames will execute. path is set by
the shell at startup from the PATH environment variable or, if
PATH does not exist, to a system-dependent default something
like (/usr/local/bin /usr/bsd /bin /usr/bin .). The shell may put ’.’
first or last in path or omit it entirely depending on how it was
compiled; see the version shell variable. A shell which is given
neither the -c nor the -t option hashes the contents of the
directories in path after reading ~/.tcshrc and each time path is
reset. If one adds a new command to a directory in path while
the shell is active, one may need to do a rehash for the shell to
find it.

printexit- value If set and an interactive program exits with a non-zero status,
the shell prints ’Exit status’.

prompt2 The string with which to prompt in while and foreach loops and
after lines ending in \ (backslash). The same format sequences
may be used as in prompt (note the variable meaning of %R).
Set by default to %R? in interactive shells.

prompt3 The string with which to prompt when confirming automatic
spelling correction. The same format sequences may be used
as in prompt (note the variable meaning of %R). Set by
default to CORRECT>%R (y|n|e|a)? in interactive shells.

promptchars If set (to a two-character string), the %# formatting sequence in
the prompt shell variable is replaced with the first character for
normal users and the second character for the superuser.

pushdtohome If set, pushd without arguments does pushd ^, like cd.

pushdsilent If set, pushd and popd do not print the directory stack.

recexact If set, completion completes on an exact match even if a
longer match is possible.

recognize_ only_
executables

If set, command listing displays only files in the path that are
executable.

rmstar If set, the user is prompted before rm * is executed.

tcsh

Chapter 2. Shell Command Descriptions 605

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

rprompt The string to print on the right-hand side of the screen (after
the command input) when the prompt is being displayed on the
left. It recognises the same formatting characters as prompt. It
will automatically disappear and reappear as necessary, to
ensure that command input isn’t obscured, and will only appear
if the prompt, command input, and itself will fit together on the
first line. If edit isn’t set, then rprompt will be printed after the
prompt and before the command input.

savedirs If set, the shell does dirs -S before exiting.

savehist If set, the shell does history -S before exiting. If the first word
is set to a number, at most that many lines are saved. (The
number must be less than or equal to history.) If the second
word is set to merge, the history list is merged with the
existing history file instead of replacing it (if there is one) and
sorted by time stamp and the most recent events are retained.

An example:

set savehist = (15 merge)

sched The format in which the sched built-in command prints
scheduled events. If not given, %h\t%T\t%R\n is used. The
format sequences are described above under prompt; note the
variable meaning of %R.

shell The file in which the shell resides. This is used in forking shells
to interpret files which have execute bits set, but which are not
executable by the system (see “Built-in and Non-Built-in
Command Execution” on page 589. Initialized to the
(system-dependent) home of the shell.

shlvl The number of nested shells. Reset to 1 in login shells. See
also loginsh.

status The status returned by the last command. If it terminated
abnormally, then 0200 is added to the status. tcsh built-in
commands which fail return exit status 1, all other built-in
commands return status 0.

tcsh The version number of the shell in the format R.VV.PP, where
R is the major release number, VV the current version and PP
the patchlevel.

term The terminal type. Usually set in ~/.login as described under
“Options and Invocation” on page 571.

tperiod The period, in minutes, between executions of the periodic
special alias.

tty The name of the tty, or empty if not attached to one.

uid The user’s login name.

user The user’s login name.

verbose If set, causes the words of each command to be printed, after
history substitution (if any). Set by the –v command line option.

tcsh

606 z/OS V1R4.0 UNIX System Services Command Reference

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

version The version ID stamp. It contains the shell’s version number
(see tcsh), origin, release date, vendor, operating system and
machine (see VENDOR, OSTYPE, and MACHTYPE
environment variables) and a comma-separated list of options
which were set at compile time. Options which are set by
default in the distribution are noted.

8b The shell is eight bit clean; default.

7b The shell is not eight bit clean.

nls The system’s NLS is used; default for systems with
NLS.

If Login shells execute /etc/csh.login before instead of
after /etc/csh.cshrc and ~/.login before instead of
after ~/.tcshrc and ~/.history.

dl ’.’ is put last in path for security; default.

nd ’.’ is omitted from path for security.

vi vi-style editing is the default instead of emacs.

dtr Login shells drop DTR when exiting.

bye bye is a synomym for logout and log is an alternate
name for watchlog.

al autologout is enabled; default.

kan Kanji is used and the ISO character set is ignored,
unless the nokanji shell variable is set.

sm The system’s malloc is used.

hb The #!<program> <args> convention is emulated
when executing shell scripts.

ng The newgrp built-in is available.

rh The shell attempts to set the REMOTEHOST
environment variable.

afs The shell verifies your password with kerberos server
if local authentication fails. The afsuser shell variable
or the AFSUSER environment variable override your
local username if set.

An administrator may enter additional strings to indicate
differences in the local version.

visiblebell If set, a screen flash is used instead of the audible bell. See
nobeep. (Currently not implemented.)

tcsh

Chapter 2. Shell Command Descriptions 607

Table 23. tcsh Built-in Shell Variables (continued)

Variable Purpose

watch A list of user/terminal pairs to watch for logins and logouts. If
either the user is any all terminals are watched for the given
user and vice versa. Setting watch to (any any) watches all
users and terminals. For example,

set watch = (george ttyd 1 any console $user any)

reports activity of the user george on ttyd1, any user on the
console, and oneself (or a trespasser) on any terminal.

Logins and logouts are checked every 10 minutes by default,
but the first word of watch can be set to a number to check
every so many minutes. For example,

set watch = (1 any any)

reports any login/logout once every minute. For the impatient,
the log built-in command triggers a watch report at any time.
All current logins are reported (as with the log built-in) when
watch is first set.

The who shell variable controls the format of watch reports.

who The format string for watch messages. The following
sequences are replaced by the given information:

%n The name of the user who logged in/out.

%a The observed action, i.e., ’logged on’. ’logged off’, or
’replaced olduser on’.

%l The terminal (tty) on which the user logged in/out.

%M The full hostname of the remote host, or ’local’ if the
login/logout was from the local host.

%m The hostname of the remote host up to the first ’.’
(period). The full name is printed if it is an IP address
or an X Window System display.

%M and %m are available only on systems which store the
remote hostname in /etc/utmp. If unset, %n has %a %l from
%m. is used, or %n has %a %l. on systems which don’t store
the remote hostname.

wordchars A list of non-alphanumeric characters to be considered part of
a word by the forward-word, back-ward word, etc. editor
commands. If unset, *?_-.[]~= is used.

tcsh shell variables not described in the above table are described below:

prompt
The string which is printed before reading each command from the terminal.
prompt may include any of the following formatting sequences, which are
replaced by the given information:

%/ The current working directory.

%~ The current working directory, but with one’s home directory
represented by ~ and other users’ home directories represented by
~user as per filename substitution. ~user substitution happens only
if the shell has already used ~user in a pathname in the current
session.

tcsh

608 z/OS V1R4.0 UNIX System Services Command Reference

%c[[0]n], %.[[0]n]
The trailing component of the current working directory, or n trailing
components if a digit n is given. If n begins with 0, the number of
skipped components precede the trailing component(s) in the
format /trailing. If the ellipsis shell variable is set, skipped
components are represented by an ellipsis so the whole becomes
...trailing. ~ substitution is done as in %~~ above, but the ~
component is ignored when counting trailing components.

%C Like %c, but without ^ substitution.

%h, %!, !
The current history event number.

%M The full hostname.

%m The hostname up to the first ’.’ (period).

%S (%s)
Start (stop) standout mode.

%B (%b)
Start (stop) boldfacing mode.

%U (%u)
Start (stop) underline mode.

%t, %@
The time of day in 12–hour AM/PM format.

%T Like %t, but in 24–hour format (but see the ampm shell variable).

%p The precise time of day in 12–hour AM/PM format, with seconds.

%P Like %p, but in 24–hour format (but see the ampm shell variable).

\c c is parsed as in bindkey.

^c c is parsed as in bindkey.

%% A single %.

%n The user name.

%d The weekday in ’Day’ format.

%D The day in ’dd’ format.

%w The month in ’Mon’ format.

%W The month in ’mm’ format.

%y The year in ’yy’ format.

%Y The year in ’yyyy’ format.

%l The tcsh shell’s tty.

%L Clears from the end of the prompt to end of the display or the end
of the line.

%$ Expands the shell or environment variable name immediately after
the $.

%# > (or the first character of the promptchars shell variable) for
normal users, # (or the second character of promptchars) for the
superuser.

tcsh

Chapter 2. Shell Command Descriptions 609

%{string%}
Includes string as a literal escape sequence. It should be used only
to change terminal attributes and should not move the cursor
location. This cannot be the last sequence in prompt.

%? The return code of the command executed just before the prompt.

%R In prompt2, the status of the parser. In prompt3, the corrected
string. In history, the history string.

The bold, standout and underline sequences are often used to distinguish a
superuser shell. For example,
>set prompt = "%m [%h] %B[%@%b [%/] you rang?"
tut [37] [2:54] [/usr/accts/sys] you rang? _

Set by default to %# in interactive shells.

symlinks
Can be set to several different values to control symbolic link (’symlink’)
resolution:

v If set to chase, whenever the current directory changes to a directory
containing a symbolic link, it is expanded to the real name of the
directory to which the link points. This does not work for the user’s home
directory.

v If set to ignore, the shell tries to construct a current directory relative to
the current directory before the link was crossed. This means that cding
through a symbolic link and then cd..’ing returns one to the original
directory. This only affects built-in commands and filename completion.

v If set to expand, the shell tries to fix symbolic links by actually expanding
arguments which look like pathnames. This affects any command, not
just built-ins. Unfortunately, this does not work for hard-to-recognize
filenames, such as those embedded in command options. Expansion
may be prevented by quoting. While this setting is usually the most
convenient, it is sometimes misleading and sometimes confusing when it
fails to recognize an argument which should be expanded. A compromise
is to use ignore and use the editor command normalize-path (bound by
default to ^X-n) when necessary.

Some examples are in order. First, let’s set up some play directories:
> cd /tmp
> mkdir from from/src to
> ln -s from/src to/dist

Here’s the behavior with symlinks unset,
> cd /tmp/to/dist; echo $cwd
/tmp/to/dist
> cd ..; echo $cwd
/tmp/from

here’s the behavior with symlinks set to chase,
> cd /tmp/to/dst; echo $cwd
/tmp/from/src
> cd ..; echo $cwd
/tmp/from

here’s the behavior with symlinks set to ignore,

tcsh

610 z/OS V1R4.0 UNIX System Services Command Reference

> cd /tmp/to/dist; echo $cwd
/tmp/to/dst
> cd ..; echo $cwd
/tmp/to

and here’s the behavior with symlinks set to expand.
> cd /tmp/to/dist; echo $cwd
/tmp/to/dst
> cd ..; echo $cwd
/tmp/to
> cd /tmp/to/dist; echo $cwd
/tmp/to/dst
> cd ".."; echo $cwd
/tmp/from
> /bin/echo ..
/tmp/to
> /bin/echo ".."
..

expand expansion:

1. works just like ignore for built-ins like cd,

2. is prevented by quoting, and

3. happens before filenames are passed to non-built-in commands.

time If set to a number, then the time built-in command executes automatically
after each command which takes more than that many CPU seconds. If
there is a second word, it is used as a format string for the output of the
time built-in. The following sequences may be used in the format string:

%U The time the process spent in user mode in cpu seconds.

%S The time the process spent in kernel mode in cpu seconds.

%E The elapsed (wall clock) time in seconds.

%P The CPU percentage computed as (%U + %S) / %E.

%W The number of times the process was swapped.

%X The average amount in (shared) text space used in Kbytes.

%D The average amount in (unshared) data/stack space used in
Kbytes.

%K The total space used (%X + %D) in Kbytes.

%M The maximum memory the process had in use at any time in
Kbytes.

%F The number of major page faults (page needed to be brought from
disk).

%R The number of minor page faults.

%I The number of input operations.

%O The number of output operations.

%r The number of socket messages received.

%s The number of socket messages sent.

%k The number of signals received.

%w The number of voluntary context switches (waits).

%c The number of involuntary context switches.

tcsh

Chapter 2. Shell Command Descriptions 611

Only the first four sequences are supported on systems without BSD
resource limit functions. The default time format is
Uu %Ss %E %P %X+%Dk %I+%Oio %Fpf+%Ww

for systems that support resource usage reporting.

The following table contains a list of tcsh environment variables.

Table 24. tcsh Environment Variables

ENVIRONMENT VARIABLE PURPOSE

COLUMNS A list of directories in which cd should search for
subdirectories if they aren’t found in the current
directory.

DISPLAY Used by X Window System. If set, the shell does
not set AUTOLOGOUT.

EDITOR The pathname to a default editor. See also the
VISUAL environment variable and the
run-fg-editor editor command.

GROUP Equivalent to the group shell variable.

HOME Equivalent to the HOME shell variable.

HOST Initialized to the name of the machine of the
machine on which the shell is running, as
determined by the gethostname system call.

HOSTTYPE Initialized to the type of the machine on which the
shell is running, as determined at compile time.
This variable is obsolete and will be removed in a
future version.

HPATH A colon-separated list of directories in which the
run-help editor command looks for a command
documentation.

LANG Gives the preferred character environment. See
“National Language System Report” on page 596.

LC_CTYPE If set, only CTYPE character handling is
changed. See “National Language System
Report” on page 596.

LINES The number of lines in the terminal. See
“Terminal Management” on page 596.

MACHTYPE The machine type (microprocessor class or
machine model), as determined at compile time.

NOREBIND If set, printable characters are not rebound to
SELF-INSERT-COMMAND. After a user sets
NOREBIND, a new shell must be started. See
“National Language System Report” on page 596.

OSTYPE The operating system, as determined at compile
time.

PATH A colon-separated list of directories in which to
look for executables. Equivalent to the path shell
variable, but in a different format.

PWD Equivalent to the cwd shell variable, but not
synchronized to it; updated only after an actual
directory change.

tcsh

612 z/OS V1R4.0 UNIX System Services Command Reference

Table 24. tcsh Environment Variables (continued)

ENVIRONMENT VARIABLE PURPOSE

REMOTE- HOST The host from which the user has logged in
remotely, if this is the case and the shell is able
to determine it. (The z/OS tcsh shell is not
currently compiled with REMOTEHOST defined;
seethe version shell variable.)

SHLVL Equivalent to the shlvl shell variable.

TERM Equivalent to the term shell varialbe.

USER Equivalent to the user shell variable.

VENDOR The vendor, as determined at compile time.

VISUAL The pathname to a default full-screen editor. See
the editor environment variable and the
run-fg-editor editor command.

Automatic Conversion tcsh Shell Variables
When the tcsh shell is redirecting stdin, stout, or stderr, it will default to no
automatic conversion of tagged files, and no tagging of files created by the
redirection. The following tcsh shell variables will override this behavior:

Table 25. tcsh Shell Variables for Automatic Conversion

Variable Purpose

_TAG_REDIR_IN=TXT Redirected stdin will override the file’s TXTFLAG, treating it
as if it were tagged as:

TXTFLAG = ON, CCSID = existing file tag CCSID

This has no effect if CCSID = 0.

_TAG_REDIR_IN=BIN Redirected stdin will override the file’s TXTFLAG, treating it
as if it were tagged as:

TXTFLAG = OFF, CCSID = existing file tag CCSID

This effectively disables automatic conversion.

_TAG_REDIR_OUT=TXT Redirected stdout will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_OUT=BIN Redirected stdout will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_ERR=TXT Redirected stderr will be tagged as:

TXTFLAG = ON, CCSID = program CCSID at the time of
the first write (if not already tagged)

_TAG_REDIR_ERR=BIN Redirected stderr will be tagged as:

TXTFLAG = OFF, CCSID = program CCSID at the time of
the first write (if not already tagged)

The automatic conversion shell variable can be specified for one command, or for
multiple commands within a tcsh shell session or shell script. If the variable is set in
a user’s .tcshrc file, then it will affect child shells, that is, nested shell scripts.

tcsh

Chapter 2. Shell Command Descriptions 613

Note: Because the standard tcsh shell execution performs redirection before
variable assignment, the syntax for specifying the shell variable for one
command is set var=value. For example:
(set _TAG_REDIR_OUT=TXT; command >file)

These variables can also be used in pipelined commands, to tag the stdout of each
command that is writing to a pipeline, and/or the stdin of each command reading
from a pipeline.

tcsh Files
/etc/csh.cshrc

Read first by every shell.

/etc/csh.login
Read by login shells after /etc/csh.cshrc..

~/.tcshrc
Read by every shell after /etc/csh.cshrc or its equivalent.

~/.history
Read by login shells after ~/.tcshrc if savehist is set. See also histfile.

~/.login
The shell reads ~/.login after ~/.tcshrc and ~/.history. See the version
shell variable.

~/.cshdirs
Read by login shells after ~/.login if savedirs is set. See also dirsfile.

~/.logout
Read by login shells at logout.

/bin/sh
Used to interpret shell scripts not starting with a #.

/tmp/sh*
Temporary file for < <.

tcsh shell: Problems and Limitations
When a suspended command is restarted, the tcsh shell prints the directory it
started in if this is different from the current directory. This can be misleading (that
is, wrong) as the job may have changed directories internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the
form ’a ; b ; c’ are also not handled gracefully when stopping is attempted. If you
suspend ’b’, the tcsh shell will then immediately execute ’c’. This is especially
noticeable if this expansion results from an alias. It suffices to place the sequence
of commands in ()’s to force it to a subshell, for example, (a ; b ; c).

Control over tty output after processes are started is primitive. In a virtual terminal
interface much more interesting things could be done with output control.

Alias substitution is most often used to clumsily simulate shell procedures; shell
procedures should be provided instead of aliases.

tcsh

614 z/OS V1R4.0 UNIX System Services Command Reference

Commands within loops are not placed in the history list. Control structures should
be parsed instead of being recognized as built-in commands. This would allow
control commands to be placed anywhere, to be combined with |, and to be used
with & and ; (semi-colon) metasyntax.

foreach does not ignore here documents when looking for its end.

It should be possible to use the : (colon) modifiers on the output of command
substitutions.

The screen update for lines longer than the screen width is very poor if the terminal
cannot move the cursor up (terminal type ’dumb’).

It is not necessary for HPATH and NOREBIND to be environment variables.

Glob-patterns which do not use ’?’, ’*’ or ’[]’ or which use ’{}’ or ’~’ are not negated
correctly.

The single-command form of if does output redirection even if the expression is
false and the command is not executed.

ls-F includes file identification characters when sorting filenames and does not
handle control characters in filenames well. It cannot be interrupted.

visiblebell shell variable is currently not implemented.

In filename and programmed completion, the ’C’ completion ru le word list type
does not correctly select completion from the given directory.

There are three locales (code pages) which the tcsh shell will not correctly support:
IBM-1388 (Chinese), IBM-933 (Korean) and IBM-937 (Traditional Chinese).

If you want to help maintain and test tcsh, send mail to listserv@mx.gw.com with
the text 'subscribe tcsh '.

Limitations
Some limitations of the tcsh shell are:

v Words can be no longer than 1024 characters.

v The system limits argument lists to 10240 characters.

v The number of arguments to a command which involves filename expansion is
limited to 1/6th the number of characters allowed in an argument list.

v Command substitutions may substitute no more characters than are allowed in
an argument list.

v To detect looping, the shell restricts the number of alias substitutions on a single
line to 20.

Related Information
: (colon), @ (at), alias, bg, break, cd, continue, echo, eval, exec, exit, fg,
history, jobs, kill, newgrp, nice, nohup, printenv, set, shift, stop, suspend,
time, umask, unalias, unset, wait

tcsh

Chapter 2. Shell Command Descriptions 615

@ (at) built-in command for tcsh: Print the value of tcsh shell variables

Format
@
@ name = expr
@ name[index] = expr
@ name+ + |– –
@ name[index+ + |– –

Description
@ (at) in the tcsh shell prints the value of tcsh shell variables.

Options
@ in the tcsh shell supports the following options:

name = expr
Assigns the value of expr to name.

name[index] = expr
Assigns the value of expr to the index’th component of name. Both name
and its index’th component must already exist.

For both name = expr and name[index] = expr , expr may contain the
operators *, +, etc. as in C. If expr contains <, >, &, or ″ then at least part
of expr must be placed within (). The syntax of expr has nothing to do with
that described under “Expressions” on page 591.

expr must evaluate to a numeric expression. Therefore, use set instead of
@ to assign array variables.

name+ + |– –
Increments (++) or decrements (– –) name.

name[index]+ + |– –
Increments (++) or decrements (– –) name’s index’th component.

Usage Notes
1. The space between @ and name is required.

2. The spaces between name and = and between = and expr are optional.

3. Components of expr must be separated by spaces.

Related Information
tcsh

% (percent) built-in command for tcsh: Move jobs to the foreground or
background

Format
% [job] [&]

Description
%, is a synonym for the fg built-in command.

v % (percent) without arguments will bring the current job to the foreground.

tcsh: @ (at)

616 z/OS V1R4.0 UNIX System Services Command Reference

v % specified with a job number attempts to bring that particular job to the
foreground.

v % job & will move the specified job to the background. This syntax works the
same as the bg built-in command. If no job is specified, the current job is moved
to the background.

Note: Current jobs will have a + next to the status column in jobs command
output. See “Jobs” on page 594.

Related Information
jobs, tcsh

alloc built-in command for tcsh: Show the amount of dynamic memory
acquired

Format
alloc argument

Description
Shows the amount of dynamic memory acquired, broken down into used and free
memory. allocused with an argument, shows the number of free and used blocks in
each size category. The categories start at size 8 and double at each step.

Note: alloc is supported, but the output is not meaningful on z/OS.

Related Information
tcsh

bindkey built-in command for tcsh: List all bound keys

Format
bindkey [-l|-d|-e|-v|-u]
bindkey [-a] [-b] [-k] [-r] [– –] key
bindkey [-a] [-b] [-k] [-c|-s] [– –] key command

Description
bindkey specified alone (without options, key, or key command) lists all bound keys
and the editor command to which each is bound.

bindkey specified with key (with or without options) lists the editor command to
which key is bound.

bindkey specified with key command (with or without options) binds the editor
command to key.

Options
–l Lists all commands and a short description of each.

–d Binds all keys to the standard bindings for the default editor.

–e Binds all keys to the standard GNU Emacs-like bindings.

tcsh: % (percent)

Chapter 2. Shell Command Descriptions 617

–v Binds all keys to the standard vi-like bindings.

–a Lists or changes key-bindings in the alternative key map. This is the key
map used in vi command mode.

–b key is interpreted as a control character written ^character (’^A’) or
C-character (’C-A’), a meta character written M-character (’M-A’), or an
extended prefix key written X-character (’X-A’).

–k key is interpreted as a symbolic arrow key name, which may be one of
’down’, ’up’, ’left’ or ’right’.

–r Removes key’s binding. Be careful: bindkey -r does not bind key to
self-insert-command, it unbinds key completely.

–c command is interpreted as a built-in or external command instead of an
editor command.

–s command is taken as a literal string and treated as terminal input when key
is typed. Bound keys in command are themselves reinterpreted, and this
continues for ten levels of interpretation.

– – Forces a break from option processing, so the next word is taken as key
even if it begins with ’-’.

Usage Notes
1. key may be a single character or a string. If a command is bound to a string,

the first character of the string is bound to sequence-lead-in and the entire
string is bound to the command.

2. Control characters in key can be literal (they can be typed by preceding them
with the editor command quoted-insert, normally bound to ’^V’) or written
caret-character style, for example, ’^A’. Delete is written ’^?’ (caret-question
mark). key and command can contain backslashed escape sequences (in the
style of System V echo) as follows:

\a Bell

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

’\’ nullifies the special meaning of the following characters, notably ’\/’ and ’^’.

Related Information
tcsh

tcsh: bindkey

618 z/OS V1R4.0 UNIX System Services Command Reference

builtins built-in command for tcsh: Prints the names of all built-in
commands

Format
builtins

Description
Prints the names of all built-in commands.

Related Information
tcsh

bye built-in command for tcsh: Terminate the login shell

Format
bye

Description
A synonym for the logout built-in command. (See the version shell variable.)

Related Information
logout

chdir built-in shell command for tcsh: Change the working directory

Format
chdir

Description
A synonym for the cd built-in command.

Related Information
cd, tcsh

complete built-in command for tcsh: List completions

Format
complete [command [word/pattern/list[:select]/[[suffix]/] ...]]

Description
complete, without arguments, lists all completions. With command, complete lists
completions for command. With command and word etc., complete defines
completions.

Arguments
command

command may be a full command name or a glob-pattern. See “Filename

tcsh: builtins

Chapter 2. Shell Command Descriptions 619

Substitution” on page 587. It can begin with – to indicate that completion
should be used only when command is ambiguous.

word word specifies which word relative to the current word is to be completed,
and may be one of the following:

c Current-word completion. pattern is a glob-pattern which must
match the beginning of the current word on the command line.
pattern is ignored when completing the current word.

C Like c, but includes pattern when completing the current word.

n Next-word completion. pattern is a glob-pattern which must match
the beginning of the previous word on the command line.

N Like n, but must match the beginning of the word two before the
current word.

p Position-dependent completion. pattern is a numeric range, with the
same syntax used to index shell variables, which must include the
current word.

list The list of possible completions, which may be one of the following:

a Aliases

b Bindings (editor commands)

d Directories

D Directories which begin with the supplied path prefix

e Environment variables

f Filenames

F Filenames which begin with the supplied path prefix

g Groupnames

j Jobs

l Limits

n Nothing

s Shell variables

S Signals

t Plain (text) files

T Plain (text) files which begin with the supplied path prefix

v Any variables

u Usernames

x Like n, but prints select when list-choices is used

X Completions

$var Words from the variable var

(...) Words from the given list

... Words from the output of command

select select is an optional glob-pattern. If given, only words from list which match
select are considered and the fignore shell variable is ignored. The last

tcsh: complete

620 z/OS V1R4.0 UNIX System Services Command Reference

three types of completion may not have a select pattern, and x uses select
as an explanatory message when the list-choices editor command is used.

suffix suffix is a single character to be appended to a successful completion. If
null, no character is appended. If omitted (in which case the fourth delimiter
can also be omitted), a slash is appended to directories and a space to
other words.

Examples
1. Some commands take only directories as arguments, so there is no point in

completing plain files. For example:
> complete cd ’p/1/d/’

completes only the first word following cd (p/1) with a directory.

2. p-type completion can be used to narrow down command completion. For
example:

> co[^D]
complete compress
> complete -co* ’p/0/(compress)/’
> co[^D]
> compress

This completion completes commands (words in position 0, p/0) which begin
with co (thus matching co*) to compress (the only word in the list). The leading
- indicates that this completion is to be used only with ambiguous commands.

3. This is an example of n-type completion. Any word following find and
immediately following -user is completed from the list of users.
> complete find ’n/-user/u/’

4. This demonstrates c-type completion. Any word following cc and beginning
with -I is completed as a directory. -I is not taken as part of the directory
because we used lowercase c.
> complete cc ’c/-I/d/’

5. Different lists are useful with different commands:
> complete alias ’p/1/a/’
> complete man ’p/*/c/’
> complete set ’p/1/s/’
> complete true ’p/1/x:Truth has no options./’

These complete words following alias with aliases, man with commands, and
set with shell variables. true doesn’t have any options, so x does nothing
when completion is attempted and prints ’Truth has no options.’ when
completion choices are listed.

The man example, and several other examples below, could just as well have
used c/* or n/* as p/*.

6. Words can be completed from a variable evaluated at completion time,
> complete ftp ’p/1/$hostnames/’
> set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu)
> ftp [^D]
rtfm.mit.edu tesla.ee.cornell.edu
> ftp [^C]
> set hostnames = (rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net)
> ftp [^D]
rtfm.mit.edu tesla.ee.cornell.edu uunet.uu.net

or from a command run at completion time:

tcsh: complete

Chapter 2. Shell Command Descriptions 621

> complete kill ’p/*/’ps | awk \{print\ \$1\}’/’
> kill -9 [^D]
23113 23377 23380 23406 23429 23529 23530 PID

The complete command does not itself quote its arguments, so the braces,
space and $ in {print $1} must be quoted explicitly.

7. One command can have multiple completions:
> complete dbx ’p/2/(core)/’ ’p/*/c/’

This example completes the second argument to dbx with the word core and
all other arguments with commands. The positional completion is specified
before the next-word completion. Since completions are evaluated from left to
right, if the next-word completion were specified first it would always match
and the positional completion would never be executed. This is a common
mistake when defining a completion.

8. The select pattern is useful when a command takes only files with particular
forms as arguments. For example,

> complete cc ’p/*/f:*.[cao]/’

completes cc arguments only to files ending in .c, .a, or .o. select can also
exclude files, using negation of a glob-pattern as described under “Filename
Substitution” on page 587.

9. One might use
> complete rm ’p/*/f:^*.{c,h,cc,C,tex,1,man,l,y}/’

to exclude precious source code from rm completion. Of course, one could still
type excluded names manually or override the completion mechanism using
the complete-word-raw or list-choices-raw editor command.

10. The D, F and Tlists are like d, f and t respectively, but they use the select
argument in a different way: to restrict completion to files beginning with a
particular path prefix. For example, the Elm mail program uses = as an
abbreviation for one’s mail directory. One might use

> complete elm c@=@F:$HOME/Mail/@

to complete elm -f = as if it were elm -f ~/Mail/. We used @ instead of / to
avoid confusion with the select argument, and we used $HOME instead of ~
because home directory substitution only works at the beginning of a word.

11. suffix is used to add a nonstandard suffix (not space or ’/’ for directories) to
completed words. For example,

> complete finger ’c/*@/$hostnames/’ ’p/1/u/@’

completes arguments to finger from the list of users, appends an @, and then
completes after the @ from the hostnames variable. Note the order in which
the completions are specified.

12. A more complex example:
complete find \
’n/-name/f/’ ’n/-newer/f/’ ’n/-{,n}cpio/f/’ \
’n/-exec/c/’ ’n/-ok/c/’ ’n/-user/u/’ \
’n/-group/g/’ ’n/-fstype/(nfs 4.2)/’ \
’n/-type/(b c d f l p s)/’ \
’c/-/(name newer cpio ncpio exec ok user \
group fstype type atime ctime depth inum \
ls mtime nogroup nouser perm print prune \
size xdev)/’ \
’p/*/d/’

tcsh: complete

622 z/OS V1R4.0 UNIX System Services Command Reference

This completes words following -name, -newer, -cpio or ncpio (note the pattern
which matches both) to files, words following -exec or -ok to commands, words
following user and group to users and groups respectively and words following
-fstype or -type to members of the given lists. It also completes the switches
themselves from the given list (note the use of c-type completion) and
completes anything not otherwise completed to a directory.

Programmed completions are ignored if the word being completed is a tilde
substitution (beginning with ~) or a variable (beginning with $). complete is an
experimental feature, and the syntax may change in future versions of the
shell. See also the uncomplete built-in command.

Related Information
tcsh, uncomplete

dirs built-in command for tcsh: Print the directory stack

Format
dirs [-l] [-n|-v]
dirs -S|-L [filename]
dirs -c

Description
dirs used alone prints the directory stack in the following format: The top of the
stack is at the left and the first directory in the stack is the current directory. For
example:
> cd <========== # Change to home dir
> pushd /bin <== # Change dir to /bin and add /bin to dir stack
/bin ~
> pushd /tmp <== # Change dir to /tmp and add /tmp to dir stack
/tmp /bin ~
> dirs <======== # Display current dir stack
/tmp /bin ~
> dirs -l <===== # Display in expanded (long) format
/tmp /bin /u/erinf
> dirs -v <===== # Display in verbose format
0 /tmp
1 /bin
2 ~
> popd <======== # Change dir back to /bin and remove /tmp from dir stack
/bin ~
>pwd
/bin
Note: dir=directory

Options
–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence.

-S Saves the directory stack to filename as a series of cd and pushd
commands.

tcsh: complete

Chapter 2. Shell Command Descriptions 623

-L The tcsh shell sources filename, which is presumably a directory stack file
saved by the -S option or the savedirs mechanism. In either case, dirsfile
is used if filename is not given and ~/.cshdirs is used if dirsfile is unset.

Login shells do the equivalent of dirs -L on startup and, if savedirs is set,
you should issue dirs -S before exiting. Because only ~/.tcshrc is normally
sourced before ~/.cshdirs, dirsfile should be set in ~/.tcshrc instead of
~/.login.

–c Clear the directory stack.

Related Information
tcsh

echotc built-in command for tcsh: Exercise the terminal capabilities in
args

Format
echotc [-sv] arg ...

Description
echotc takes advanatage of the terminal capabilities in args. For example, echotc
cm 3 10 sends it to column 3 and row 10.

If arg is baud, cols, lines, meta or tabs, echotc prints the value of that capability
(either yes or no, which indicates that the terminal does or does not have that
capability). You might use this to make the output from a shell script less verbose
on slow terminals, or limit command output to the number of lines on the screen:

> set history=`echotc lines`
> @ history--

Termcap strings may contain wildcards which will not echo correctly. One should
use double quotes when setting a shell variable to a terminal capability string, as in
the following example that places the date in the status line:
> set standout=`echotc sò
> set end_standout=`echotc se`
> echo -n "$standout"; date; echo -n "$end_standout"
Mon Oct 25 10:06:48 EDT 1999
>

Note: The date, as indicated above, is printed out in standard output.

The infocmp command can be used to print the current terminal description in
termcap format (instead of terminfo format).

Options
-s Nonexistent capabilities return the empty string instead of causing an error.

-v Messages are verbose.

Related Information
tcsh

tcsh: dirs

624 z/OS V1R4.0 UNIX System Services Command Reference

filetest built-in command for tcsh: Apply the op file inquiry operator to
a file

Format
filetest -op file –

Description
filetest applies op (which is a file inquiry operator) to each file and returns the
results as a space-separated list. For more information on file inquiry operators, see
“File Inquiry Operators” on page 592.

Related Information
tcsh

glob built-in command for tcsh: Write each word to standard output

Format
glob wordlist

Description
glob is like echo, but no \ (backslash) escapes are recognized and words are
delimited by null characters in the output. glob is useful for programs which wish to
use the shell to filename expand a list of words.

Related Information
echo, tcsh

hashstat built-in command for tcsh: Print a statistic line on hash table
effectiveness

Format
hashstat

Description
hashstat prints a statistics line indicating how effective the internal hash table has
been at locating commands (and avoiding exec’s). An exec is attempted for each
component of the path where the hash function indicates a possible hit, and in each
component which does not begin with a / (forward slash).

z/OS systems have a vfork() command, however, tcsh is not compiled to use it.
Typically on machines without vfork, hashstat prints only the number and size of
hash buckets, but on z/OS systems, a hashstat print out would contain this:
> hashstat
> hashstat 512 hash buckets of 8 bits each
>

Related Information
tcsh

tcsh: filetest

Chapter 2. Shell Command Descriptions 625

hup built-in command for tcsh: Run command so it exits on a hang-up
signal

Format
hup [command]

Description
With command, hup runs the command such that it will exit on a hangup signal and
arranges for the shell to send it a hangup signal when the shell exits. Commands
may set their own response to hangups, overriding hup. Without an argument
(allowed only in a shell script), hup causes the shell to exit on a hangup for the
remainder of the script. See “Signal Handling” on page 596.

Related Information
nohup, tcsh

limit built-in command for tcsh: Limit consumption of processes

Format
limit [–h] [resource [maximum-use]]

Description
limit limits the consumption by the current process and each process it creates to
not individually exceed maximum-use on the specified resource. If no maximum-use
is given, then the current limit is printed; if no resource is given, then all limitations
are given. If the -h flag is given, the hard limits are used instead of the current
limits. The hard limits impose a ceiling on the values of the current limits. All hard
limits can be raised only by a process which has superuser authority (except for
coredumpsize, vmemoryuse, and descriptors), but a user may lower or raise the
current limits within the legal range.

Controllable resources currently include:

cputime
The maximum number of cpu-seconds to be used by each process.

filesize
The largest single file which can be created.

datasize
The maximum growth of the data+stack region via sbrk beyond the end of
the program text.

stacksize
The maximum size of the automatically-extended stack region.

coredumpsize
The size of the largest core dump that will be created.

memoryuse
The maximum amount of physical memory a process may have allocated to
it at a given time.

maximum-use may be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is k or kilobytes

tcsh: hup

626 z/OS V1R4.0 UNIX System Services Command Reference

(1024 bytes); a scale factor of m or megabytes may also be used. For cputime the
default scaling is seconds, while m for minutes or h for hours, or a time of the form
mm:ss giving minutes and seconds may be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

Related Information
tcsh, ulimit, unlimit

Also see setrlimit() in z/OS C/C++ Run-Time Library Reference.

log built-in command for tcsh: Print the watch tcsh shell variable

Format
log

Description
Prints the watch shell variable and reports on each user indicated in watch who is
logged in, regardless of when a user last logged in.

Note: The z/OS tcsh shell is compiled to use watchlog. If you attempt to use log
on a z/OS system, you will get an error that says ″Command not found″.

Related Information
tcsh, watchlog

login built-in command for tcsh: Terminate a login shell

Format
login

Description
login terminates a login shell, replacing it with an instance of /bin/login. This is one
way to log off (included for compatibility with sh).

Related Information
logout, tcsh

logout built-in command for tcsh: Terminate a login shell

Format
logout

Description
logout terminates a login shell. Especially useful if ignoreeof is set.

Related Information
login, tcsh

tcsh: limit

Chapter 2. Shell Command Descriptions 627

ls-F built-in command for tcsh: List files

Format
ls-F [-switch ...] [file ...]

Description
In the tcsh shell, ls-F lists files like ls -F, but works much faster. It identifies each
type of special file in the listing with a special character:

/ Directory

* Executable

Block device

% Character device

| Named pipe

= Socket

@ Symbolic link

If the listlinks shell variable is set, symbolic links are identified in more detail (only,
of course, on systems which have them):

@ Symbolic link to a non-directory

> Symbolic link to a directory

& Symbolic link to nowhere

listlinks also slows down ls-F.

If you use files which are set-up as follows:
#creating a file

touch file1
#creating a symbolic link to the file

ln -s file1 link1
#creating a directory

mkdir dir1
#creating a symbolic link to the directory

ln -s dir1 linkdir1
#creating a symbolic link to a file that doesn’t exist

ln -s noexist linktonowhere

when you issue an ls-F with listlinks unset, you will get the following output:
> ls-F
dir1/ file1 link1@ linkdir1@ linktonowhere@
>

with listlinks set:
> set listlinks
> ls-F
dir1/ file1 link1@ linkdir1> linktonowhere&
>

If the listflags shell variable is set to x, a or A, or any combination thereof (for
example, xA), they are used as flags to ls-F, making it act like ls -xF, ls -Fa, ls -FA

tcsh: lsF

628 z/OS V1R4.0 UNIX System Services Command Reference

or a combination ls -FxA. On z/OS, ls -C is the default. However, on machines
where ls -C is not the default, ls-F acts like ls -CF, unless listflags contains an x,
in which case it acts like ls -xF.

See “tcsh — Invoke a C shell” on page 570.

Usage Note
To view an online manual description for the ls-F command, you must type ls-F
without the dash. So, to see the man page you would issue:
man lsF

Related Information
ls, tcsh

notify built-in command for tcsh: Notify user of job status changes

Format
notify [%job ...]

Description
notify causes the shell to notify the user asynchronously when the status of any of
the specified jobs (or, without %job, the current job) changes, instead of waiting
until the next prompt. job may be a number, a string, ″, %, + or ’-’ as described
under “Jobs” on page 594. See also the notify shell variable.

Related Information
tcsh

onintr built-in command for tcsh: Control the action of the tcsh shell
on interrupts

Format
onintr [-|label]

Description
onintr controls the action of the shell on interrupts. Without arguments, onintr
restores the default action of the shell on interrupts, which is to terminate shell
scripts or to return to the terminal command input level. With ’-’, causes all
interrupts to be ignored. With label, causes the shell to execute a goto label when
an interrupt is received or a child process terminates because it was interrupted.

onintr is ignored if the shell is running detached and in system startup files, where
interrupts are disabled anyway.

Related Information
goto, tcsh

tcsh: lsF

Chapter 2. Shell Command Descriptions 629

popd built-in command for tcsh: Pop the directory stack

Format
popd [-p] [-l] [-n|-v] [+n]

Description
popd without options, pops the directory stack and returns to the new top directory.
With a number +n, discards the n’th entry in the stack. All forms of popd print the
final directory stack, just like dirs. The pushdsilent shell variable can be set to
prevent this.

Options
–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Overrides pushdsilent.

-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence.

Related Information
tcsh

pushd built-in command for tcsh: Make exchanges within directory
stack

Format
pushd [-p] [-l] [-n|-v] [name| +n]

Description
pushd with options, exchanges the top two elements of the directory stack. If
pushdtohome is set, pushd without arguments does pushd ~, like cd. With name,
pushd pushes the current working directory onto the directory stack and changes to
name. If name is ’-’, it is interpreted as the previous working directory (see
“Filename Substitution” on page 587). If dunique is set, pushd removes any
instances of name from the stack before pushing it onto the stack. With a number
+n, pushd rotates the n’th element of the directory stack around to be the top
element and changes to it. If dextract is set, however, pushd +n extracts the n’th
directory, pushes it onto the top of the stack and changes to it. So, instead of just
rotating the entire stack around, dextract lets the user have the n’th directory
extracted from its current position, and pushes it onto the top. For example:
> pushd /tmp
/tmp ~
> pushd /bin
/bin /tmp ~
> pushd /u
/u /bin /tmp ~
> pushd /usr
/usr /u /bin /tmp ~
> pushd +2
/bin /tmp ~ /usr /u

tcsh: popd

630 z/OS V1R4.0 UNIX System Services Command Reference

> set dextract
> dirs
/bin /tmp ~ /usr /u
> pushd +2
~ /bin /tmp /usr /u
>

Finally, all forms of pushd print the final directory stack, just like dirs. The
pushdsilent tcsh shell variable can be set to prevent this.

Options
–l Output is expanded explicitly to home or the pathname of the home

directory for the user.

-n Entries are wrapped before they reach the edge of the screen.

-p Overrides pushdsilent.

-v Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence.

Related Information
cd, tcsh

rehash built-in command for tcsh: Recompute internal hash table

Format
rehash

Description
rehash causes the internal hash table of the contents of the directories in the path
variable to be recomputed. This is needed if new commands are added to
directories in path while you are logged in. This should only be necessary if you
add commands to one of your own directories, or if a systems programmer changes
the contents of one of the system directories. Also flushes the cache of home
directories built by tilde (~) expansion.

Related Information
hashstat, tcsh

repeat built-in command for tcsh: Execute command count times

Format
repeat count command

Description
The specified command is executed count times. repeat is subject to the same
restrictions as the command in the one line if statement. I/O redirections occur
exactly once, even if count is 0.

Related Information
tcsh

tcsh: pushd

Chapter 2. Shell Command Descriptions 631

sched built-in command for tcsh: Print scheduled event list

Format
sched
sched hh:mm command
sched n

Description
sched used alone prints the scheduled-event list. The sched shell variable may be
set to define the format in which the scheduled-event list is printed. sched hh:mm
command adds command to the scheduled-event list. For example:
>sched 11:00 echo It\’s eleven o\’clock.

causes the shell to echo ’It’s eleven o’clock.’ at 11 AM. The time may be in 12-hour
AM/PM format
>sched 5pm set prompt=’[%h] It\’s after 5; go home: >’

or may be relative to the current time:
>sched +2:15 /usr/lib/uucp/uucico -r1 -sother

A relative time specification may not use AM/PM format. The third form removes
item n from the event list:

> sched
1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother
2 Wed Apr 4 17:00 set prompt=[%h] It’s after 5; go home: >
> sched -2
> sched
1 Wed Apr 4 15:42 /usr/lib/uucp/uucico -r1 -sother

A command in the scheduled-event list is executed just before the first prompt is
printed after the time when the command is scheduled. It is possible to miss the
exact time when the command is to be run, but an overdue command will execute
at the next prompt. A command which comes due while the shell is waiting for user
input is executed immediately. However, normal operation of an already-running
command will not be interrupted so that a scheduled-event list element may be run.

This mechanism is similar to, but not the same as, the at command on some UNIX
systems. Its major disadvantage is that it may not run a command at exactly the
specified time. Its major advantage is that because sched runs directly from the
shell, it has access to shell variables and other structures. This provides a
mechanism for changing one’s working environment based on the time of day.

Related Information
tcsh

setenv built-in command for tcsh: Set environment variable name to
value

Format
setenv [name [value]]

tcsh: sched

632 z/OS V1R4.0 UNIX System Services Command Reference

Description
setenv without arguments, prints the names and values of all environment
variables. Given name, sets the environment variable name to value or, without
value, to the null string.

Related Information
tcsh

settc built-in command for tcsh: Tell tcsh shell the terminal capability
cap value

Format
settc cap value

Description
settc tells the tcsh shell to believe that the terminal capability cap (as defined in
termcap) has the value value. No sanity checking is done. Concept terminal users
may have to settc xn no to get proper wrapping at the rightmost column.

Related Information
tcsh

setty built-in command for tcsh: Control tty mode changes

Format
setty [-d|-q|-x] [-a] [+|-]mode]

Description
setty controls which tty modes (see the stty command description which contains
lists of mode operands, such as echoe and echok) the shell does not allow to
change. Without arguments, setty lists the modes in the chosen set which are fixed
on (+mode) or off (-mode). The available modes, and thus the display, vary from
system to system. With +mode, -mode or mode, fixes mode on or off or removes
control from mode in the chosen set. For example, setty +echok echoe fixes echok
mode on and allows commands to turn echoe mode on or off, both when the shell
is executing commands.

Options
–a List all tty modes in the chosen set whether or not they are fixed.

[-d|-q|-x]
Tells setty to act on the edit, quote or execute set of tty modes
respectively; without -d, -q or -x, execute is used.

Related Information
tcsh

tcsh: setenv

Chapter 2. Shell Command Descriptions 633

source built-in command for tcsh: Read and execute commands from
name

Format
source [-h] name [args ...]

Description
Using source, the shell reads and executes commands from name. The commands
are not placed on the history list. If any arguments are given, they are placed in
argv. source commands may be nested; if they are nested too deeply the shell
may run out of file descriptors. An error in a source at any level terminates all
nested source commands.

Options
–h Commands are placed on the history list instead of being executed, much

like history -L.

Related Information
history, tcsh

telltc built-in command for tcsh: List terminal capability values

Format
telltc

Description
telltc lists the values of all terminal capabilities.

Related Information
tcsh

uncomplete built-in command for tcsh: Remove completions whose
names match pattern

Format
uncomplete pattern

Description
uncomplete removes all completions whose names match pattern. For example,
uncomplete * removes all completions. It is not an error for nothing to be
uncompleted.

Related Information
complete, tcsh

tcsh: source

634 z/OS V1R4.0 UNIX System Services Command Reference

unhash built-in command for tcsh: Disable use of internal hash table

Format
unhash

Description
unhash disables use of the internal hash table to speed location of executed
programs.

Related Information
tcsh

unlimit built-in command for tcsh: Remove resource limitations

Format
unlimit [-h] [resource]

Description
unlimit removes the limitation on resource or, if no resource is specified, all
resource limitations.

The hard limit may be lowered to any value that is greater than or equal to the soft
limit. All hard limits can be raised only by a process which has superuser authority
except for coredumpsize, vmemoryuse, and descriptors. This behavior is
identical to ulimit in the z/OS shell. Both the soft limit and hard limit can be
changed by a single call to setrlimit().

Options
–h Corresponding hard limits are removed. Only the superuser may do this.

Related Information
limit, tcsh, ulimit

Also see setrlimit() in z/OS C/C++ Run-Time Library Reference.

unsetenv built-in command for tcsh: Remove environmental variables
that match pattern

Format
unsetenv pattern

Description
unsetenv removes all environment variables whose names match pattern. For
example, unsetenv * removes all environment variables; we strongly recommend
against this. It is not an error for nothing to be unsetenved.

Related Information
setenv, tcsh

tcsh: unhash

Chapter 2. Shell Command Descriptions 635

watchlog built-in command for tcsh: Print the watch shell variable

Format
watchlog

Description
watch is an alternate name for the log built-in command. It prints the watch shell
variable and reports on each user indicated in watch who is logged in, regardless
of when a user last logged in.

See the version shell variable.

Related Information
log, tcsh

where built-in command for tcsh: Report all instances of command

Format
where command

Description
where reports all known instances of command, including aliases, built-ins and
executables in path.

Related Information
tcsh, which

which built-in command for tcsh: Display next executed command

Format
which command

Description
which displays the command that will be executed by the shell after substitutions
and path searching. This command correctly reports tcsh aliases and built-ins. See
also the which-command editor command.

Related Information
tcsh, where

tee — Duplicate the output stream

Format
tee [–ai] [file ...]

Description
tee clones an output stream. It copies the standard input to each output file as well
as to the standard output.

tcsh: watchlog

636 z/OS V1R4.0 UNIX System Services Command Reference

Options
–a Appends to (rather than overwrites) each output file.

–i Ignores interrupt signals, making it suitable for use as a background
process.

Examples
The following command runs the program prog and pipes the program’s standard
output into tee:
prog | tee file

As a result, tee writes the output to both the standard output and the specified file.

Localization
tee uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Out of memory when allocating I/O buffers
v I/O error reading or writing to a file
v Error creating an output file
v Error opening an output file for appending

2 Failure due to incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
cat

test — Test for a condition

Format
test expression
[expression]

Description
test checks for various properties of files, strings, and integers. It does not produce
any output other than error messages, but returns the result of the test as the exit
status.

tee

Chapter 2. Shell Command Descriptions 637

The command line is a Boolean expression. The simplest expression is a string that
is true if the string is nonempty (that is, has nonzero length). More complex
expressions are composed of operators and operands, each of which is a separate
argument (that is, surrounded by white space). The operators imply the number and
type of their operands. The operators taking a file operand evaluate as false
(without error) if the file does not exist.

The following is a list of recognized operands:

–Aa file
True if file has an extended access ACL entry.

–Ad file
True if file is a directory with a directory default ACL.

–Af file
True if file is a directory with a file default ACL.

–b file True if file is a block special file (block special files are not supported)

–B file True if the file is tagged as binary (not text)

–c file True if file is a character special file

–d file True if file is a directory

–e file True if file exists

–Ea file
True if the file has the APF extended attribute

–Ep file
True if the file has the program control extended attribute

–Es file
True if the file has the shared address space extended attribute

–El file
True if the file has the shared library extended attribute

–f file True if file is an ordinary file

–g file True if the set-group-ID attribute of file is on

–h file True if file is a symbolic link

–k file True if the “sticky” bit is on file is on

–L file True if file is a symbolic link

–n string
True if the length of string is greater than zero

–p file True if file is a FIFO (named pipe)

–r file True if file is readable (checks permission bits and access control)

–s file True if size of the file is nonzero

–t fd True if the numeric file descriptor fd is open and associated with a terminal

–T file True if the file is tagged as text

–u file True if the set-user-ID attribute of file is on

–w file True if file is writable (checks permission bits and access control)

–x file True if file is executable (checks permission bits and access control)

test

638 z/OS V1R4.0 UNIX System Services Command Reference

–z string
True if the length of the string is zero

string True if string is not a null string

string1 = string2
True if string1 and string2 are identical

string != string
True if string1 and string2 are not identical

number1 –eq number2
True if number1 and number2 are equal

Within the shell, either number can be an arbitrary shell arithmetic expression; the
same applies for the other five numerical comparisons that follow. Both number1
and number2 must be integers.

number1 –ge number2
True if number1 is greater than or equal to number2

number1 –gt number2
True if number1 is greater than number2

number1 –le number2
True if number1 is less than or equal to number2

number1 –lt number2
True if number1 is less than number2

number1 –ne number2
True if number1 is not equal to number2

file1 –nt file2
True if file1 is newer than file2

file1 –ot file2
True if file1 is older than file2

file1 –ef file2
True if file1 has the same device and inode number as file2

file–CS codeset
True if the file is tagged with the codeset

expr1 –a expr2
Logical AND; true if both expr1 and expr2 are true

expr1 –o expr2
Logical OR; true if either expr1 and expr2 is true

! expr Logical negation; true if expr is false

(expr)
Binding; true if expr is true

The precedence of the operators in descending order is: unary operators,
comparison operators, logical AND, logical OR.

The second form of the test command:
[expression]

is synonymous with the first.

test

Chapter 2. Shell Command Descriptions 639

Usage Notes
1. test is a built-in shell command.

2. test can compare variables; however, if the variable is null, the expression may
be incorrect for test. For example:
NULL=
test $NULL = "so"

does not work, because the z/OS shell expands this to:
test = "so"

which is not a valid expression for test. A way to get around this is to prepend
some value to both strings, as in:
test x$NULL = x"so"

Failure to quote variable expansions is a common mistake. For example:
test $NULL != string

If NULL is undefined or empty, this results in:
test != string

which is not a valid test expression. This problem can be fixed by enclosing
$NULL in quotes.

Note: These two examples perform basically the same function; that is, they
protect the command against a variable having a possible null value.

Examples
The following command reports on whether the first positional parameter contains a
directory or a file:
if [-f $1]
then

echo $1 is a file
elif [-d $1]
then

echo $1 is a directory
else

echo $1 neither file nor directory
fi

This example illustrates the use of test, and is not intended to be an efficient
method.

Localization
test uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

test

640 z/OS V1R4.0 UNIX System Services Command Reference

Exit Values
0 The expression was true
1 The expression was false
2 The expression was badly formed

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –k, –L, –nt, –ot, –ef, –a, and –o operators plus the use of parentheses to
group operators together are all extensions of the POSIX standard.

Related Information
expr, find, let, ls, sh

tic — Put terminal entries in the terminfo database

Format
tic [–v]number [–c] file

Description
tic creates the terminfo database. It puts the compiled terminal entries in the
directory /usr/share/lib/terminfo. If the TERMINFO environment variable is set, the
results are placed in the directory specified by the TERMINFO environment variable
rather than in the directory /usr/share/lib/terminfo.

The Curses application uses the terminfo database, which contains a list of terminal
descriptions. This enables you to manipulate a terminal’s display regardless of the
terminal type. For information on defining the terminfo database, see z/OS UNIX
System Services Planning.

For more information about curses, see z/OS C Curses.

Options
–vNumber

Writes trace entries on the progress of tic. Number is an integer that
indicates the level of verbosity. Levels 1, 2, 5, 7, 8, and 9 or greater are
supported.

–c Specifies that the input terminal specifications are to be checked for
correctness, but the terminfo database is not to be updated. If an incorrect
terminal specification is encountered, a message identifying the error is
written to stdout. The checking continues until all of the input terminal
specifications have been processed.

file_name
Specifies the name of a file containing the terminal specifications. Only a
single filename can be specified. The files supported by z/OS curses are
identical to the specifications with the exception that the source code must
be EBCDIC rather than ASCII.

If the files are copied from an MVS data set into the HFS, the MVS data set
must be in record format VB. If a filename is not specified, terminal
specifications are read from the terminfo.src file. (The terminfo.src file is
in the directory /samples.)

test

Chapter 2. Shell Command Descriptions 641

Note: All of the .ti files have been moved to the /samples directory.

Example
A sample command is:
tic /samples/ibm.ti

There is no output to the shell.

Environment Variables
tic uses the following environment variable:

TERMINFO
Contains the pathname of the terminfo database.

Related Information
infocmp

time — Display processor and elapsed times for a command

Format
time [–p] command-line

tcsh shell: time [command]

Description
time runs the command given as its argument and produces a breakdown of total
time to run (real), total time spent in the user program (user), and total time spent
in system processor overhead (sys).

Times given are statistical, based on where execution is at a clock tick. Output is
written to standard error (stderr).

time in the tcsh shell
time executes command (which must be a simple command, not an alias, a
pipeline, a command list, or a parenthesized command list) and prints a time
summary as described under the tcsh time variable (see “tcsh — Invoke a C shell”
on page 570). If necessary, an extra shell is created to print the time statistic when
the command completes. Without command, time prints a time summary for the
current shell and its children.

Option
–p Guarantees that the historical format of the time command is output.

Usage Note
time is a built-in shell command.

Localization
time uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

tic

642 z/OS V1R4.0 UNIX System Services Command Reference

v LC_NUMERIC
v NLSPATH

See Appendix F for more information.

Exit Values
If time successfully invokes command-line, it returns the exit status of
command-line. Otherwise, possible exit status values are:
0 Successful completion
1 An error occurred in the time utility
2 Failure due to an invalid command-line option
2 Invalid command-line argument
126 time found command but could not invoke it
127 time could not find command

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
sh, tcsh

times — Get process and child process times

Format
times [–p]

Description
times displays user and system times accumulated by the shell and commands run
as children of the shell. Times are displayed in minutes and seconds. User time is
CPU time spent in user programs. System time is CPU time spent in the operating
system on behalf of the user process.

Option
–p Formats the output in seconds without units. For example, 1 minute and 3.7

seconds is displayed as:
63.47

Times are displayed in minutes and seconds. User time is processor time
spent in user programs. System time is processor time spent in the
operating system on behalf of the user process. The output layout is:
shell user time shell system time
child user time child system time

Usage Note
times is a built-in shell command.

Localization
times uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES

time

Chapter 2. Shell Command Descriptions 643

v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

2 Failure that resulted in a usage message, usually due to an incorrect
command-line option

Portability
X/Open Portability Guide.

The –p option is an extension to the XPG standard.

Related Information
sh, time

touch — Change the file access and modification times

Format
touch [–acm] [–f agefile] [–r agefile] [–t time] file ...
touch [–acm] time file ...

Description
The touch command changes certain dates for each file argument. By default,
touch sets both the date of last file modification and the date of last file access to
the current time. This is useful for maintaining correct release times for software
and is particularly useful in conjunction with the make command.

Options
–a Sets only the access time.

–c Does not create any file that does not already exist. Normally, touch
creates such files.

–m Sets only the modification time.

If you do not specify –a or –m, touch behaves as though you specified both.

To tell touch to use a time other than the current, use one of the following options:

–f agefile
Is an obsolete version of the –r option.

–r agefile
Sets the access and modification times (as indicated by the other options)
to those kept for agefile.

–t time
Specifies a particular time using this format:

[[[[cc]yy]mm]dd]hhmm [.ss]

where:
v cc is the first two digits of the year (optional)

times

644 z/OS V1R4.0 UNIX System Services Command Reference

v yy is the last two digits of the year (optional)
v mm is the number of the month (01—12) (optional)
v dd is the day of the month (optional)
v hh is the hour in 24-hour format (required)
v mm is the minutes (required)
v ss is the seconds (optional)

An obsolete (but still supported) version of this command lets you omit the
–t, but the format is:
[[mm]dd]hhmm[.ss]

or:
mmddhhmmyy[.ss]

Examples
1. To set the modification time of newfile to the present, enter:

touch newfile

2. To set the modification time of oldfile to 13:05 on July 3, 1994, enter:
touch –t 9407031305 oldfile

3. To set the modification time of newfile to that of oldfile, enter:
touch –r oldfile newfile

Environment Variable
touch uses the following environment variable:

TZ Contains the time zone that touch is to use when interpreting times.

See Appendix I for more information.

Localization
touch uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to access the desired file
v Too early a date was specified
v Inability to create a file
v Inability to change a file’s times

2 Failure that resulted in a usage message, including:
v Unknown command-line option
v Only one of –t, –f, or –r is allowed
v –r was missing the agefile
v –t was missing its argument
v Incorrect date string

Messages
Possible error messages include:

touch

Chapter 2. Shell Command Descriptions 645

Age file inaccessible
Indicates that time could not be found for the file given with the –f or –r
option either because that file does not exist or because the requesting
user is not granted the appropriate permission for the file.

Missing age file argument
You specified –f or –r, but did not give a filename after it.

Years earlier than year incorrect
Your system recognizes dates only back to the given year. touch does not
accept dates before that time.

Bad date conversion

Only one –r, –f, or –t flag allowed

Missing the date or time argument

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
cp, date

Appendix I also explains how to set the local time zone with the TZ environment
variable.

tput — Change characteristics of terminals

Format
tput [–T type] action ...
tput [–T type] –S action ...

Description

tput lets you change your terminal’s characteristics. The action arguments indicate
how you want to change the characteristics. Possible actions are:
clear Clears the screen
init Initializes your terminal
reset Resets your terminal

tput does its work by outputting appropriate character sequences to the standard
output. These character sequences are terminal-specific.

Usually, tput looks for an environment variable named TERM. If TERM exists, tput
uses its value as the terminal type. If it doesn’t exist, tput assumes a default
terminal type.

Options
–T type

Identifies the type of your terminal. This overrides the TERM environment
variable.

touch

646 z/OS V1R4.0 UNIX System Services Command Reference

The second format of this command provides extensions for XPG/System V. This
format of tput accepts an additional option, –S.

–S Takes input from standard input, one capability/action per line. A blank line
terminates input.

An additional action is supported for System V:

longname
Returns the long descriptive name of the terminal.

An extension to provide System V capabilities allows action to be a capability from
the terminfo database. If the capability requires arguments, they appear after the
action option.

Localization
tput uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Environment Variables
tput uses the following environment variables:

TERM Contains the current terminal type.

TERMINFO
Can be used to override the default database.

Exit Values
0 tput successfully wrote an appropriate character sequence to change the

terminal’s characteristics, or a Boolean terminfo variable is true.

1 A Boolean terminfo variable is false.

2 Failure that generated a usage message such as:
v action was not a recognized keyword
v You specified an incorrect command-line option

3 tput has no information about the terminal type given by –T or TERM.

4 The requested action cannot be performed on your type of terminal.

>4 An error occurred.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
stty, tabs

tput

Chapter 2. Shell Command Descriptions 647

tr — Translate characters

Format
tr [–cs] string1 [string2]
tr –s [–c] string1 [string2]
tr –d [–c] string1
tr –ds [–c] string1 string2

Description
tr copies data read from the standard input to stdout, substituting or deleting
characters as specified by the options and string1 and string2. string1 and string2
are considered to be sets of characters. In its simplest form, tr translates each
character in string1 into the character at the corresponding position in string2.

Note: tr works on a character basis, not on a collation element basis. Thus, for
example, a range that includes the multicharacter collation element ch in
regular expressions, does not include it here.

Options
–c Complements the set of characters specified by string1. This means that tr

constructs a new set of characters, consisting of all the characters not
found in string1 and uses this new set in place of string1.

–d Deletes input characters found in string1 from the output. This string is in
ascending order.

–s tr checks for sequences of a string1 character repeated several consecutive
times. When this happens, tr replaces the sequence of repeated characters
with one occurrence of the corresponding character from string2; if string2
is not specified, the sequence is replaced with one occurrence of the
repeated character itself. For example:,
tr –s abc xyz

translates the input string aaaabccccb into the output string of xyzy.

If you specify both the –d and –s options, you must specify both string1
and string2. In this case, string1 contains the characters to be deleted,
whereas string2 contains characters that are to have multiple consecutive
appearances replaced with one appearance of the character itself. For
example:
tr –ds a b

translates the input string abbbaaacbb into the output string bcb.

The actions of the –s option take place after all other deletions and
translations.

String Options
You can use the following conventions to represent elements of string1 and string2:

character
Any character not described by the conventions that follow represents itself.

\ooo An octal representation of a character with a specific coded value. It can

tr

648 z/OS V1R4.0 UNIX System Services Command Reference

consist of one, two, or three octal digits. Doublebyte characters require
multiple, concatenated escape sequences of this type, including the leading
\ for each byte.

\character
The \ (backslash) character is used as an escape to remove the special
meaning of characters. It also introduces escape sequences for nonprinting
characters, in the manner of C character constants: \b, \f, \n, \r, \t, and
\v.

c1–c2 This represents all characters between characters c1 and c2 (in the current
locale’s collating sequence) including the end values. For example, ’a–z’
represents all the lowercase letters in the POSIX locale, whereas ’A–Z’
represents all that locale’s uppercase letters. One way to convert lowercase
and uppercase is with the following filter:
tr ’a-z’ ’A-Z’

This is not, however, the recommended method; use the [:class:]
construct instead.

c*n This represents n repeated occurrences of character c. (If n has a leading
zero, tr assumes it is octal; otherwise, it is assumed to be decimal.) You
can omit the number for the last character in a subset. This representation
is valid only in string2.

[:class:]
This represents all characters that belong to the character class class in the
locale indicated by LC_CTYPE. When the class [:upper] or [:lower:]
appears in string1 and the opposite class, [:lower:] or [:upper:] appears
in string2, tr uses the LC_CTYPE tolower or toupper mappings in the
same relative positions.

[=c=] This represents all characters that belong to the same equivalence class as
the character c in the locale indicated by LC_COLLATE. Only international
versions of the code support this format.

Examples
This example creates a list of all words (strings of letters) found in file1 and puts it
in file2:
tr –cs "[:alpha:]" "\n*" <file1 >file2

Localization
tr uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure because of unknown command line option, or too few arguments

tr

Chapter 2. Shell Command Descriptions 649

Portability
POSIX.2, X/Open Portability Guide.

tr is downward–compatible with both the UNIX Version 7 and System V variants of
this command, but with extensions (C escapes, handles ASCII NUL,
internationalization).

trap — Intercept abnormal conditions and interrupts

Format
trap [’handler’] [event ...]

Description
trap intercepts certain kinds of exception conditions. Any signal may be intercepted
by specifying an event corresponding to the signal number.

With an event of ERR, trap invokes the handler after receiving any having a nonzero
exit status. The exception to this is conditions in if, while, and until statements.
This trap is not inherited within a function.

With a trap number of 0 or EXIT, trap invokes the handler during exit from the shell.
Within a function, it is invoked during exit from the function.

Any other event corresponds to a signal number or signal name. (See kill for a
table of valid signal numbers and their names.) If a signal is being ignored when
you enter the shell, the shell continues to ignore it without regard to any traps.

Because system initialization sets the value of the SIGIOERR signal to ignore, this
signal cannot be set by trap.

The handler argument is a command list. It is usually more than one word, and so
you must quote it to appear as a single argument. It is scanned when the trap
function is initially invoked. When the trap condition is raised, the shell scans the
command list again and runs the commands. A missing argument or an argument of
− (dash) resets the default trap condition. A null argument ('') causes the trap
condition to be ignored.

If there are no arguments at all, trap prints a list of all the traps and their
commands.

Usage Note
trap is a special built-in shell command.

Examples
1. On error or exit, this example deletes a temporary file created during command

execution.
trap ’rm –f /tmp/xyz$$; exit’ ERR EXIT

When an interrupt signal is received, the example prompts whether to abort,
and exits if the answer is y.

tr

650 z/OS V1R4.0 UNIX System Services Command Reference

trap ’read REPLY?"ABORT??"
case $REPLY in
y) exit 1;;
esac’ 2

2. This example saves your shell history file (specified by the value you give the
HISTFILE environment variable) before timing you out, so you can restore it
when you log on again.
trap ’cp $HISTFILE $HOME/old_hist.bak; exit’ ALRM

Localization
trap uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Incorrect signal name
v Incorrect signal number

2 Incorrect command-line argument

Messages
Possible error messages include:

name not a valid trap name
You specified an unrecognized trap name. The usual cause of this error is a
typing mistake on the command line.

Portability
POSIX.2, X/Open Portability Guide.

Related Information
sh

true — Return a value of 0

Format
true [argument ...]

Description
true simply yields an exit status of zero (success). It ignores any arguments given
on the command line. This can be surprisingly useful—for example, when you are
evaluating shell expressions for their side effects.

Usage Note
true is a built-in shell command.

trap

Chapter 2. Shell Command Descriptions 651

Localization
true uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Value
Since true always succeeds, the only possible exit status is:

0 Successful completion

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sh

tso — Run a TSO/E command from the shell

Format
tso [–o] [–t] TSO_command

Description
tso runs a TSO/E command from the shell using the TSO/E service routine or the
OMVS interface.

Options
–o Specifies that the command be issued through the OMVS interface.

–t Specifies that the command be issued through the TSO/E service routine. If
a mini-TSO/E environment is to be established, use environment variables
to specify the allocations that you need.

If you do not specify an option, the following rules determine how to run the TSO/E
command:

v If stdout is not a tty, the TSO/E service routine is used because it is possible
that the command output will be redirected to a file or piped to another
command.

v If the controlling tty supports 3270 passthrough mode, the OMVS interface is
used.

v If neither of the above is applicable, then the TSO/E service routine is used.

Examples
1. To use OPUT to copy a file to a file in your current directory, issue:

tso –t "oput source.c(hello) 'hello.c' "

true

652 z/OS V1R4.0 UNIX System Services Command Reference

If you do not specify –t, the command is run in your TSO/E session through
OMVS, if possible. This copies the file to a file relative to the working directory
of your TSO/E session, which is usually your home directory.

Quotes are used around the command to avoid shell parsing.

2. To use OPUTX to copy all members of a PDS to your current directory, issue:
tso –t "oputx source.c . lc suffix(c)"

If you do not specify the –t option, the command is run in your TSO/E session
through OMVS, if possible. This copies the file to a file relative to the working
directory of your TSO/E session which is usually your home directory.

Quotes are used around the command to avoid shell parsing.

Since OPUTX uses ISPF, allocations for the ISPF DD names must be
performed to run this command. The following is an example of the environment
variables that are set to perform these allocations. This can be included in your
.profile for convenience. Make sure the export statements start in column one.
The data set names may differ on your system.
Assign the DD names to allocate
#
export TSOALLOC=ispprof:ispplib:ispmlib:isptlib:ispllib:ispslib:\
isptabl:isplog:sysexec
#
Allocate an empty, temporary ISPF profile data set
#
export ispprof="alloc new unit(sysvio) space(1,1) cyl dir(5) \
recfm(f,b) lrecl(80) blksize(3120)"
#
Allocate an empty, temporary ISPF table data set
#
export isptabl="alloc new unit(sysvio) space(1,1) cyl dir(5) \
recfm(f,b) lrecl(80) blksize(3120)"
#
Allocate the ISPF log to SYSOUT
#
export isplog="alloc sysout(a) recfm(v,a) lrecl(125) blksize(129)"
#
Allocate the OpenMVS and ISPF panel data sets to ISPPLIB
#
export ispplib=SYS1.SBPXPENU:SYS1.ISP.SISPPENU
#
Allocate the OpenMVS and ISPF message data sets to ISPMLIB
#
export ispmlib=SYS1.SBPXMENU:SYS1.ISP.SISPMENU
#
Allocate the ISPF table data set to ISPTLIB
#
export isptlib=SYS1.ISP.SISPTENU
#
Allocate the ISPF skeleton data set to ISPSLIB
#
export ispslib=SYS1.ISP.SISPSENU
#
Allocate any load library to ISPLLIB if ISPF is in LINKLIST/LPA
#
export ispllib=SYS1.LINKLIB
#
Allocate the OpenMVS EXEC data set to SYSEXEC
#
export sysexec=SYS1.SBPXEXEC

tso

Chapter 2. Shell Command Descriptions 653

Environment Variables
If the tso command is to be run through the TSO/E service routine, you may need
to perform allocations or other customization for the TSO/E environment. These can
be specified using environment variables. You can use the following environment
variables:

SYSEXEC
Specifies the allocation specification for the SYSEXEC DD name. If the
TSOALLOC variable is set, this variable is not automatically used.

SYSPROC
Specifies the allocation specification for the SYSPROC DD name. If the
TSOALLOC variable is set, this variable is not automatically used.

TSOALLOC
Specifies the names of the environment variables that contain allocation
specifications. The names are separated by colons. Case is respected;
lowercase letters are treated as lowercase. The names of the environment
variables also correspond to the name of the DD name to be allocated. The
DD name is always treated as uppercase but the variable name can be
specified in mixed case to avoid possible conflict with similar environment
variable names.

TSOPREFIX
Specifies a prefix for temporary data sets that need to be cataloged.
Lowercase letters are treated as uppercase letters. If you do not specify this
variable, the user’s login name (user ID) is used.

TSOPROFILE
Specifies that the profile be reset with the arguments you specify when
running the TSO/E command. (The specified arguments replace the default
values.) For example, to set the TSO prefix and to turn off message IDs,
issue:
export TSOPROFILE="prefix(wjs) nomsgid"

The value of this variable is passed to the TSO/E PROFILE command as is.
If the PROFILE command fails, the requested command is not run. The
output from the PROFILE command is sent to stdout along with the
PROFILE command that was issued.

An allocation specification can be either a list of cataloged data set names
separated by colons or a data set allocation request. If a list of data set names is
used, lowercase letters are treated as uppercase and the data set names must be
fully qualified.

You can specify a data set allocation request by beginning the specification with the
keyword alloc followed by keywords or keyword-value pairs in a format similar to
the TSO/E ALLOCATE command. Keys are supported by blanks.

DA (data set name [(member name)]) | DSN (data set name [(member name)])
Data set name to allocate. The name must be fully qualified and can
include a member name. Quotes can be used but are ignored.

MOD | NEW | OLD | SHR
Specifies the status of the data set.

CATALOG | DELETE | KEEP | UNCATALOG
Specifies the data set disposition.

tso

654 z/OS V1R4.0 UNIX System Services Command Reference

TRACKS
Specifies that space be allocated in units of tracks.

CYL Specifies that space be allocated in units of cylinders

DIR(directory blocks)
Specifies the number of directory blocks.

SPACE(primary[,secondary])
Specifies that primary and (optionally) secondary space be allocated.

VOL(volume serial)
Specifies the VOLSER.

UNIT(unit name)
Specifies the unit name, device type, or unit address.

SYSOUT[(class)]
Specifies that a sysout data set is to be allocated and optionally defines the
output class.

WRITER(external writer name)
Specifies the external writer.

FORMS(forms name name)
Specifies the print form.

DEST(destination)
Specifies the output destination.

COPIES(number of copies)
Specifies the number of copies to be printed.

DUMMY
Specifies that a dummy data set be allocated.

BLKSIZE(block size)
Specifies the block size.

LRECL(record length)
Specifies the logical record length.

DSORG(PS|PO|DA)
Specifies the data set organization.

RECFM(format[,format...])
Specifies the record format. The values are A, B, D, F, M, S, T, U, and V.
You can combine several of these values.

STORCLAS(storage class)
Specifies the storage class.

MGMTCLAS(management class)
Specifies the management class

DATACLAS(data class)
Specifies the data class.

RECORG(LS)
Specifies that a VSAM linear data set be created.

DSNTYPE(LIBRARY|PDS|HFS)
Specifies the data set type.

SPIN(UNALLOC)
Specifies that a sysout data set be spun off at allocation.

tso

Chapter 2. Shell Command Descriptions 655

NORECALL
Specifies that the allocation request be failed if the data set is migrated.

PATH(’pathname’)
Specifies that the allocation is for a file in the HFS.

PATHOPTS(pathopt[,pathopt]...)
Specifies a list of path options: ORDWR OEXCL OSYNC OTRUNC
OCREAT OWRONLY ORDONLY OAPPEND ONOCTTY ONONBLOCK.

PATHMODE(pathmode[,pathmode]...)
Specifies a list of pathmodes: SIRUSR SIWUSR SIXUSR SIRWXU SIRGRP
SIWGRP SIXGRP SIRWXG SIROTH SIWOTH SIXOTH SIRWXO SISUID
SISGID SISVTX

PATHDISP(KEEP|DELETE[,KEEP|DELETE])
Specifies the normal and abnormal file disposition.

FILEDATA(TEXT|BINARY)
Specifies whether the data is to be treated as text or binary.

Messages
0–254 Successful completion
255 The return code is outside the range 0–254 or the tso command ended in

error

tsort — Sort files topologically

Format
tsort [file]

Description
tsort reads input from files (or from the standard input if you do not specify a file)
and produces an ordered list of items consistent with a partial ordering of items
provided by the input.

Input to tsort takes the form of pairs of items (nonempty strings) separated by
blanks. A pair of two different items indicates ordering. A pair of identical items
indicates presence, but not ordering.

Example
The command:
tsort <<EOF
a b c c d e
g g
f g e f
h h
EOF

produces the output:
a
b
c
d
e
f
g
h

tso

656 z/OS V1R4.0 UNIX System Services Command Reference

Localization
tsort uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
>0 An error occurred

Portability
POSIX.2, X/Open Portability Guide.

tty — Return the user’s terminal name

Format
tty [–s]

Description
tty displays the filename of the terminal device associated with the standard input.

Options
–s Does not display the name; the exit status of tty indicates whether the

standard input is a terminal.

Localization
tty uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Standard input is a terminal
1 Standard input is not a terminal
2 Failure because of an unknown command-line option, or too many

arguments

Messages
Possible error messages include:
Not a tty

The standard input is not associated with a terminal.

tsort

Chapter 2. Shell Command Descriptions 657

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The POSIX standard considers the –s option to be obsolete.

type — Tell how the shell interprets a name

Format
type name ...

Description
type identifies the nature of one or more names. Names can be shell reserved
words, aliases, shell functions, built-in commands, or executable files. For
executable files, the full pathname is given.

Usage Note
type is a built-in shell command.

Localization
type uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
2 Failure because of an incorrect command-line argument

Messages
Possible error messages include:

name is not found
type could not locate the specified name. Check that the name was
specified properly and that you have the appropriate permissions.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
alias, command, sh, whence

typeset — Assign attributes and values to variables

Format
typeset ±f [tux] name ...
typeset [±lprtuxH] [±iLRZ[number]] [variable[=value]]

tty

658 z/OS V1R4.0 UNIX System Services Command Reference

Description
Invoking typeset with no options displays a list of all variables and their attributes.
This list is sorted by variable name and includes quoting so that it can be reinput to
the shell with the built-in command eval. When only arguments of the form +option
are specified, typeset displays a list of the variables that have all specified
attributes set. When only arguments of the form –option are present, typeset
displays a list of all the variables having all the specified attributes set, and also
displays their values.

When the f option is used, typeset applies to functions; otherwise, it applies to
variables. For functions, the only other applicable options are –t, –u and –x.

If the command line contains at least one variable, the attributes of each variable
are changed. In this case, parameters of the form –option turn on the associated
attributes. Parameters of the form +option turn off the associated attributes. (Notice
that, contrary to what you might expect, − means on, and + means off.) Parameters
of the form variable=value turn on the associated attributes and also assign value to
variable.

When typeset is invoked inside a function, a new instance of each variable is
created. After the function ends, each variable is restored to the value and attributes
it had before the function was called.

Options
–H Performs file mapping from POSIX to the host name.

–i[number]
Marks each variable as having an integer value, thus making arithmetic
faster. If number is given and is nonzero, the output base of each variable
is number. The default is decimal.

–l Converts uppercase characters to lowercase in any value assigned to a
variable. If the –u option is currently turned on, this option turns it off.

–p Writes output to the coprocess. This option is not currently implemented.

–r Makes each variable read-only. See readonly.

–t Tags each variable. Tags are user-defined, and have no meaning to the
shell. For functions with the –f option, this turns on the xtrace option. See
set for a discussion of the xtrace option.

–u Converts lowercase characters to uppercase in any value assigned to a
variable. If the –l option is currently turned on, this option turns it off.

When used with –f, the –u option indicates that the functions named in the
command line are not yet defined. The attributes specified by the typeset
command are applied to the functions once they are defined.

–x Sets each variable for automatic export. See export.

The last three options that follow justify, within a field, the values assigned to each
variable. The width of the field is number if it is defined and is nonzero; otherwise,
the width is that of the first assignment made to variable.

–L[number]
Left-justifies the values assigned to each variable by first removing any
leading blanks. Leading zeros are also removed if the –Z option has been

typeset

Chapter 2. Shell Command Descriptions 659

turned on. Then blanks are added on the end or the end of the value is
truncated as necessary. If the –R flag is currently turned on, this option
turns it off.

–R[number]
Right-justifies the values assigned to each variable by adding leading
blanks or by truncating the start of the value as necessary. If the –L flag is
currently turned on, this option turns it off.

–Z[number]
Right-justifies values assigned to each variable. If the first nonblank
character of value is a digit, leading zeros are used. See also the –L option.

Usage Note
typeset is a built-in shell command as well as a separate utility.

Localization
typeset uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
2 Failure due to an incorrect command-line argument

If the command is used to display the values of variables, the exit status value is
the number of names that are incorrect.

Messages
Possible error messages include:

Base number not in [2,36]
You used the –i option to specify a base for an integer, but the base was
not in the range 2 through 36. All bases must be in this range.

name not a function
You tried to declare the given name as a function, but the name already
referred to something that was not a function (for example, a variable).

Portability
POSIX.2. It is an extension to the POSIX.2 and XPG standards.

Related Information
export, readonly, sh

uconvdef — Create binary conversion tables

Format
uconvdef [–f SrcFile] [–v] uconvTable

typeset

660 z/OS V1R4.0 UNIX System Services Command Reference

Description
uconvdef reads SrcFile and creates uconvTable, a binary conversion table.
SrcFile is the input source file that defines a mapping between UCS-2 and
multibyte code sets.

Note: UCS-2 is the Universal Multiple-Octat Coded Character Set defined by
ISO/IEC 10646-1:1993(EE), while multibyte code sets consists of one or
more bytes per character.

uconvTable is in a format that can be opened and read by iconv conversion
functions.

Options
–f SrcFile

SrcFile is the input source file that defines a mapping between UCS-2 and
another single or multibyte code set. If this option is not used, standard
input is read. For information on the format of the input source table, refer
to the ucmap description in z/OS C/C++ Programming Guide.

–v Specifies that the SrcFile file statements be displayed.

uconvTable
Specifies the pathname of the compiled table created by the uconvdef
command. This file defines conversions into and out of UCS-2.

Example
To create the compiled uconvTable that defines the conversion table between
IBM-1047 and UCS-2, issue:
uconvdef –f IBM-1047.ucmap /usr/lib/nls/locale/uconvTable/IBM-1047

The \ (backslash) is a line continuation character that is needed if the command is
broken into multiple lines.

Exit Values
0 Successful completion.
>0 An error occurred.

Related Information
iconv

The iconv subroutine, iconv_close subroutine, iconv_open subroutine (refer to
z/OS C/C++ Programming Guide).

ulimit — Set process limits

Format
ulimit [–aSHctdfsn] [num]

Description
ulimit sets or displays the resource limits on processes created by the user.

Options
–a Displays all resource limits that are available.

uconvdef

Chapter 2. Shell Command Descriptions 661

–S Set or display the soft limit(s). The soft limit may be modified to any value
that is less than or equal to the hard limit. For certain resource values, the
soft limit cannot be set lower than the existing usage.

–H Set or display the hard limit(s). The hard limit may be lowered to any value
that is greater than or equal to the soft limit. The hard limit can be raised
only by a process which has superuser authority.

–c Set or display the core file limit. The core file limit is the maximum size of a
dump of memory (in 512–byte blocks) allowed for the process. A value of 0
(zero) prevents file creation. Dump file creation will stop at this limit.

–t Set or display the cpu time limit. The cpu time limit is the maximum amount
of CPU time (in seconds) allowed for the process. If the limit is exceeded, a
SIGXCPU signal is sent to the process and the process is granted a small
CPU time extension to allow for signal generation and delivery. If the
extension is used up, the process is terminated with a SIGKILL signal. An
attempt to set the CPU limit lower than that already used will fail.

–d Set or display the data size limit. The data size limit is the maximum size of
the break value for the process, in units of 1024 bytes. This resource
always has unlimited hard and soft limits.

–f Set or display the file size limit. The file size limit is the maximum file size
(in 512–byte blocks) allowed for the process. A value of 0 (zero) prevents
file creation. If the size is exceeded, a SIGXFSZ signal is sent to the
process. If the process is blocking, catching, or ignoring SIGXFSZ,
continued attempts to increase the size of a file beyond the limit will fail.

–s Set or display the stack size limit. The stack size limit is the maximum size
of the stack for a process, in units of 1024 bytes. The stack is a per-thread
resource that has unlimited hard and soft limits.

–n Set or display the file descriptors limit. The file descriptors limit is the
maximum number of open file descriptors allowed for the process. This
number is one greater than the maximum value that may be assigned to a
newly created descriptor. Any function that attempts to create a new file
descriptor beyond the limit will fail. An attempt to set the open file
descriptors limit lower than that already used will fail.

num The new limit. num can be specified as “unlimited”.

Usage Notes
ulimit is a built-in shell command.

Localization
ulimit uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Related Information
setrlimit in z/OS C/C++ Run-Time Library Reference.

ulimit

662 z/OS V1R4.0 UNIX System Services Command Reference

umask — Set or return the file mode creation mask

Format
umask [–S] [mode]

tcsh shell: umask [value]

Description
umask sets the file-creation permission-code mask of the invoking process to the
given mode. You can specify the mode in any of the formats recognized by chmod;
see chmod for more information.

The mode may be specified in symbolic (rwx) or octal format. The symbolic form
specifies what permissions are allowed. The octal form specifies what permissions
are disallowed.

The file-creation permission-code mask (often called the umask) modifies the
default (initial) permissions for any file created by the process. The umask specifies
the permissions which are not to be allowed.

If the bit is turned off in the umask, a process can set it on when it creates a file. If
you specify:
umask a=rx

you have allowed files to be created with read and execute access for all users. If
you were to look at the mask, it would be 0222. The write bit is set, because write
is not allowed. If you want to permit created files to have read, write, and execute
access, then set umask to 0000. If you call umask without a mode argument,
umask displays the current umask.

umask in the tcsh shell
In the tcsh shell, umask sets the file creation mask to value, which is given in octal.
Common values for the mask are 002, giving all access to the group and read and
execute access to others, and 022, giving read and execute access to the group
and others. Without value, umask prints the current file creation mask. See “tcsh —
Invoke a C shell” on page 570.

Options
–S Displays the umask in a symbolic form:

u=perms,g=perms,o=perms

giving owner, group and other permissions. Permissions are specified as
combinations of the letters r (read), w (write), and x (execute).

Localization
umask uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

umask

Chapter 2. Shell Command Descriptions 663

Exit Values
0 Successful completion
1 Failure due to an incorrect command-line argument, or incorrect mode

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
chmod, tcsh

unalias — Remove alias definitions

Format
unalias name ...
unalias –a

tcsh shell: unalias pattern

Description
unalias removes each alias name from the current shell execution environment.

unalias in the tcsh shell
In the tcsh shell, unalias removes all aliases whose names match pattern. For
example,
unalias *

removes all aliases. It is not an error for nothing to be unaliased. See “tcsh —
Invoke a C shell” on page 570.

Options
–a Removes all aliases in the current shell execution environment.

Localization
unalias uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
unalias is a built-in shell command.

Exit Values
0 Successful completion

1 There was an alias that could not be removed

2 Failure due to an incorrect command-line option or there were two aliases
that could not be removed

umask

664 z/OS V1R4.0 UNIX System Services Command Reference

>2 Tells the number of aliases that could not be removed

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide.

Related Information
alias, sh, tcsh

uname — Display the name of the current operating system

Format
uname [–aImnrsv]

Note: Option –I is an uppercase i, not a lowercase L.

Description
The uname command lets shell scripts and other programs determine configuration
information about the machine upon which the shell is running.

Options
The following options select the information to be displayed:

–a All fields (equivalent to –mnrsv).

–I The IBM current product name information. This option affects the value of
the system name, release and version fields. This option may affect the
output of the –a, –r, –s and –v options. When –I is not specified (the
default), the OS/390 product name information is returned.

–m The processor or machine type.

–n The node name of this particular machine. The node name is set by the
SYSNAME sysparm (specified at IPL), and it usually differentiates machines
running at a single location.

–r The release (minor version) number of the operating system.

–s The name of the operating system. This is the default output, when no
options are given.

–v The version (major version) number of the operating system.

uname displays the selected information in the following order:
<system name> <nodename> <release> <version> <machine>

Examples
1. The following shell command changes the prompt to identify the node name of

the system:
export PS1="`uname –n ` $ "

2. The following indicates what is returned when you specify the –I option and
when you do not (not specifying –I is the default):

unalias

Chapter 2. Shell Command Descriptions 665

If running on z/OS 1.2:
issuing >uname -rsv gives you
OS/390 12.00 03

issuing >uname -rsvI gives you
z/OS 02.00 01

Localization
uname uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Note
uname is a built-in shell command.

Exit Values
0 Successful completion
1 Failure due to inability to find the desired information
2 Failure due to a incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
sh

uncompress — Undo Lempel-Ziv compression of a file

Format
uncompress [cDfVv [file]]

Description
uncompress expands compressed data written by the Lempel-Ziv compression
program compress. Data is read from file or the standard input. On UNIX systems,
the name of the file to be uncompressed must end with .Z. If it doesn’t,
uncompress adds one before looking for the file. It places the uncompressed
output in a file with the same name but without the .Z extension. If this file already
exists, uncompress asks if you want to overwrite it, unless you specify the –f
option.

Since the number of bits of compression is encoded in the compressed data,
uncompress automatically uses the correct number of bits. This includes the 9–14
bit compression range specified by POSIX.

Options
–c Writes uncompressed output to the standard output (like zcat).

uname

666 z/OS V1R4.0 UNIX System Services Command Reference

–D Must be used to uncompress a sorted dictionary file compressed using the
–D option of compress.

–f Forces file to be uncompressed, regardless of whether a file with the same
base name already exists.

–V Prints version number information for uncompress.

–v Displays name of each file when it is uncompressed.

Localization
uncompress uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Unknown command-line option
v Inability to obtain information about an argument file
v File has more than one link
v File is not a regular file
v File is not in compressed format
v File was compressed using more than 16 bits
v There is no space for decompress tables
v A compressed file is corrupt

Portability
uncompress is found on many Unix systems.

The –D option is an extension to traditional implementations of uncompress; the
–D and –V options are extensions to the POSIX standard.

Related Information
compress, cpio, pack, unpack, zcat

unexpand — Compress spaces into tabs

Format
unexpand [–a] [–t tablist] [file ...]

Description
unexpand replaces blank characters in the data from each file argument with the
most efficient use of tabs and spaces. If you do not specify any files, unexpand
reads the standard input. The result is sent to standard output.

Backspace characters are preserved. By default, unexpand compresses only
leading spaces into tabs; tab stops are set every eight spaces.

uncompress

Chapter 2. Shell Command Descriptions 667

Options
unexpand supports the following options:

–a Compresses spaces into tabs wherever the resulting output is shorter,
regardless of where the spaces occur in the line.

–t tablist
Specifies tab stops. The numbers in tablist are delimited by blanks or
commas. If tablist is a single number, then unexpand places tab stops
every tablist positions. If tablist contains multiple numbers, unexpand
places tab stops at those specific positions. Multiple numbers in tablist must
be in ascending order. This option, like the –a option, compresses spaces
to tabs at any appropriate point in the line. If you specify –t, unexpand
ignores the presence or absence of –a.

Localization
unexpand uses the following localization variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to an incorrect command-line argument, or an inability to open
the input files

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, 4.2BSD.

Related Information
expand, pr

uniq — Report or filter out repeated lines in a file

Format
uniq [–c|–d|–u] [–f number1] [–s number2] [input_file [output_file]]
uniq [–cdu] [–number] [+number] [input_file [output_file]]

Description
uniq manipulates lines that occur more than once in a file. The file must be sorted,
since uniq only compares adjacent lines. When you invoke this command with no
options, it writes only one copy of each line in input_file to output_file. If you do not
specify input_file or you specify –, uniq reads the standard input.

If you do not specify output_file, uniq uses the standard output. The specified
output_file cannot be a FIFO.

unexpand

668 z/OS V1R4.0 UNIX System Services Command Reference

Options
–c Precedes each output line with the number of times that line occurred in the

input.

–d Displays only lines that are repeated (one copy of each line).

–f number1
Ignores the first number1 fields when comparing lines. Blanks separate
fields in the input.

–s number2
Ignores the first number2 characters when comparing lines. If you specify
both –s and –f, uniq ignores the first number2 characters after the first
number1 fields.

–u Displays only those lines that are not repeated.

You can choose only one of the –c, –d, or –u options.
–number

Equivalent to –f number (obsolescent).
+number

Equivalent to –s number (obsolescent).

Examples
1. The command:

uniq

is a filter which prints one copy of each different line in its sorted input.

2. The command:
uniq -f 2 -s 1

compares lines starting with the second character of the third field.

3. The command:
uniq -d

prints one instance of each repeated line in the input (and omits all unique
lines).

Localization
uniq uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Incorrect command-line option
v Missing number after –f
v Missing or incorrect number after –s

uniq

Chapter 2. Shell Command Descriptions 669

v Inability to open the input or output file

Messages
Possible error messages include:

Missing character skip count
You specified –s but did not supply a number after the –s.

Missing number of fields to skip
You specified –f but did not supply a number after the –f.

Field skip not a number in string
In a -number or +number construct, number was not a valid number. This
could arise because of a typographical error in entering a – option.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
comm, sort

unlink — Removes a directory entry

Format
unlink file

Description
unlink removes a directory entry.

Following the format, file specifies the entry to be removed, which can refer to a
pathname, a hard link, or a symbolic link. If file refers to a symbolic link, unlink
removes the symbolic link but not any file or directory named by the contents of the
symbolic link. If the entry that is unlinked is the last one associated with a file, then
the file itself will be deleted.

unlink is implemented as a shell built-in.

Localization
unlink uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:

uniq

670 z/OS V1R4.0 UNIX System Services Command Reference

v No write permission for directory containing link to be removed
v Attempting to unlink a file that does not exist
v Pathname specified is a directory

2 Failure due to incorrect number of arguments specified

Related Information
mv, rm, rmdir

unmount — Remove a file system from the file hierarchy

Format
unmount [–R] [–v] [–o normal|drain|immediate|force|reset] pathname...

Description
The unmount shell command, located in /usr/sbin, unmounts file systems.

Note: An unmount user must have UID(0) or at least have READ access to the
SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

Options
–R Unmounts the specified file system and all the file systems below it in the

file system hierarchy.

–o normal|drain|immediate|force|reset

normal
Specifies that if no user is accessing any of the files in the specified
file system, the system processes the unmount request. Otherwise,
the system rejects the unmount request. This is the default

drain Specifies that an unmount drain request is to be made. The system
will wait for all use of the file system to be ended normally before
the unmount request is processed or until another UNMOUNT
command is issued.

Note: Currently unmount –o drain is not supported in a sysplex. If
an unmount –o drain is issued in a sysplex, the following
behavior is exhibited:

v If there is no activity in the file system, unmount -o drain
will perform the unmount, but it will behave like an
unmount normal.

v If there is activity in the file system, unmount -o drain will
return a Return_value of -1 with Return_code EINVAL and
Reason_code JrNotSupInSysplex.

immediate
The system will unmount the file system immediately. Any users
accessing files in the specified file system will receive failing return
codes. All data changes to files in the specified file system are
saved. If the data changes cannot be saved, the unmount request
fails.

force Also specifies that the system will unmount the file system
immediately. Any users accessing files in the specified file system

unlink

Chapter 2. Shell Command Descriptions 671

will receive failing return codes. If possible, all data changes to files
in the specified file system are saved. If the data changes to the
files cannot be saved, the unmount request continues and data is
lost.

Note: An unmount –o immediate request must be issued before
you can request an unmount –o force of a file system.
Otherwise, unmount –o force fails.

reset A reset request stops a previous unmount –o drain request.

Note: unmount –o reset is not supported in a sysplex.

–v Lists all file systems that are unmounted.

pathname... specifies the pathnames to use for locating the file system you want
unmounted. This may be the pathname for any file or directory within that file
system. For example, if the file system you want unmounted contains the file or
directory /u/wjs, you can issue:
unmount /u/wjs

and that will effectively unmount the file system.

Examples
1. The output of mount –q can be used for the input of unmount. For example:

mount -q /ict/hfsfir

can be used as input:
unmount $(mount -q /ict/hfsdir)

2. To unmount a file system that contains the file or directory /u/wjs:
unmount /u/wjs

3. To unmount a file system that contains the file or directory /u along with all other
file systems mounted over or below that file system:
unmount -R /u

Exit Values
0 Successful completion

Related Information
chmount, mount

unpack — Decode Huffman packed files

Format
unpack file...

Note: The unpack utility is fully supported for compatibility with older UNIX
systems. However, it is recommended that the uncompress utility be used
instead because it may provide greater functionality and is considered the
standard for portable UNIX applications as defined by POSIX.2 IEEE
standard 1003.2-1992.

unmount

672 z/OS V1R4.0 UNIX System Services Command Reference

Description
unpack uncompresses files compressed by pack, using a Huffman minimal
redundancy code. By default, unpack looks for file with a .z extension. It places the
decompressed output in a file with the same name, but without the extension. The
owner, permissions, and times of last access and last modification are also
preserved. Packed files can be identified by file. You can use pcat to view packed
text files without unpacking them in place.

unpack doesn’t unpack a file if:
v The file name is too long after the .z is removed
v The input file cannot be opened
v An existing file has the same name as the output file
v The output file can’t be created
v The input file doesn’t appear to have been created by pack

Localization
unpack uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLATE
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

File
unpack uses the following file:

pk$* Temporary copy of input file. (You may see this in the current directory if
unpack is interrupted.) The file is located in the same directory as the file
being unpacked.

Exit Values
0 Successful completion

n Indicates that files could not be unpacked properly. For example, if three out
of six files could not be unpacked properly, the exit status is 3.

Possible reasons for failure include:
v Unknown command-line option
v Error creating a name for a temporary file
v Error opening an input file or a temporary file
v Error writing to a temporary file
v Inability to rename a temporary file
v Inability to restore the modification time on a packed file
v Input file was not packed
v A packed file is corrupt

Messages
Possible error messages include:

file: Not a packed file
pack did not process the file. In this case, the file is not changed.

unpack

Chapter 2. Shell Command Descriptions 673

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
file, pack, pcat

unset — Unset values and attributes of variables and functions

Format
unset name ...
unset –fv name ...

tcsh shell: unset pattern

Description
Calling unset with no options removes the value and attributes of each variable or
function name.

unset in the tcsh shell
unset removes all variables whose names match pattern, unless they are read-only.
For example:
unset *

which we strongly recommend you do not do, will remove all variables unless they
are read-only. It is not an error for nothing to be unset.

See “tcsh — Invoke a C shell” on page 570.

Options
–f Removes the value and attributes of each function name.
–v Removes the attribute and value of the variable name. This is the default if

no options are specified.

unset cannot remove names that have been set read-only.

Usage Notes
unset is a special built-in shell command.

Localization
unset uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to an incorrect command-line option
2 Failure due to an incorrect command-line argument

unpack

674 z/OS V1R4.0 UNIX System Services Command Reference

Otherwise, unset returns the number of specified names that are incorrect, not
currently set, or read-only.

Messages
Possible error messages include:

name readonly variable
The given name cannot be deleted because it has been marked read-only.

Portability
POSIX.2, X/Open Portability Guide.

Related Information
readonly, sh, tcsh

uucc — Compile UUCP configuration files

Format
uucc

Description
uucc reads the contents of the uucp configuration files and compiles them into a
single configuration file called /usr/lib/uucp/config. The configuration files are:
v Systems
v Devices
v Dialers
v Dialcodes
v Permissions

Because uucc expects these text files to be in the current working directory, you
need to change the directory (with the cd command) to /usr/lib/uucp before issuing
uucc. For more information on creating and maintaining UUCP configuration files,
refer to z/OS UNIX System Services Planning.

Files
uucc uses the following files:
/usr/lib/uucp/Systems

Contains a list of remote systems and the methods for connecting with
them.

/usr/lib/uucp/Devices
Describes the physical and logical connections listed in the Systems file.

/usr/lib/uucp/Dialers
Contains dialing information for the modems and dialers listed in the
Devices file.

/usr/lib/uucp/Dialcodes
Contains abbreviations that can be used in the phone numbers specified in
Systems.

/usr/lib/uucp/Permissions
Defines the commands and areas of the file system that remote sites can
access on your system.

/usr/lib/uucp/config
Contains the above information compiled into one file for use by the uucp
utilities.

unset

Chapter 2. Shell Command Descriptions 675

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Inability to open file
v Insufficient memory
v Ctrl-C interrupt

Related Information
uucp

uucico daemon — Process UUCP file transfer requests

Format
uucico [–f] [–g grade] [–r0|–r1] [–s system] [–x type]

Description
The uucico daemon processes file transfer requests that were queued by uucp
and uux. It establishes the connection with remote sites and manages the transfer
of data between the local and remote sites as specified by the queued uucp or uux
job.

uucico is automatically invoked after the uucp or uux command completes (unless
the –r option was specified on the uucp or uux command). To process requests
that cannot be successfully completed at the time the uucp or uux command was
executed and to initiate transfers from remote sites, the traditional approach is to
use cron to start uucico at regular intervals. (See z/OS UNIX System Services
Planning for more information about using cron to start uucico. It contains
information on creating crontabs.)

uucico has two modes: slave mode and master mode.

v In slave mode, uucico receives requests from the remote site. The –r0 option
(the default option) starts uucico in slave mode. uucico is typically started in
slave mode by either the uucpd daemon (for remote connections via TCP/IP) or
as the login shell for special UUCP user IDs that can be logged onto via serial
connections. See uucpd and uucp for more information.

v In master mode, uucico processes requests from the local site; the –r1 and –s
options start uucico in master mode. uucico is typically started in master mode
via cron. uucp and uux also invoke uucico in master mode by default.

If uucico cannot contact a remote system, it does not allow itself to run again until
a specified amount of time has passed. You can specify how long the daemon
should wait before trying to call each system again by setting a parameter in the
Permissions file. For information on how to do this, refer to z/OS UNIX System
Services Planning.

If uucico receives a SIGQUIT, SIGTERM or SIGPIPE signal, it ends any current
conversation with a remote site and exits.

Options
–f Ignores the required wait period for all remote systems and makes calls as

requested.

uucc

676 z/OS V1R4.0 UNIX System Services Command Reference

–g grade
Processes outgoing work only if it is designated priority grade or better.
grade is a number (0–9) or letter (A–Z, a–z), where 0 is the highest priority
and z is the lowest.

r0 | –r1
Specifies the mode for uucico to use. r0 (the default) specifies slave mode;
r1 specifies master mode. If you want uucico to call a remote system
(master mode), specify –r1.

–s system
Calls the remote system. By default, uucico calls all defined systems.

–x type
Turns on debugging. type is a number indicating the level of detail. 0 is the
least detail and 9 is the most detail. The debugging output is written to
stderr if uucico is run in the foreground, or to /usr/spool/uucp/LOGFILE if
uucico is run in the background by uucpd or by a remote uucico logging
into a UUCP user ID.

The LOGFILE must be monitored so that it does not fill up your file system.

Examples
To call the remote site west, with debugging output sent to stdout:
uucico –r1 –x 9 –s west

Files
uucico uses the following files:

/usr/lib/uucp/config
UUCP configuration file. See uucc.

/usr/spool/uucp/LOGFILE
UUCP debug file

/usr/spool/locks
The directory containing the lock files created by uucico.

/usr/spool/uucp/.Status
UUCP status file

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Unknown command-line option
v Not running setuid uucp
v Argument list too long
v Unable to open log file
v CTRL-C interrupt

Portability
X/Open Portability Guide.

Related Information
uucc, uucp, uulog, uux, uuxqt

uucico daemon

Chapter 2. Shell Command Descriptions 677

uucp — Copy files between remote UUCP systems

Format
uucp [–Ccdfjmr] [–g grade] [–n user] [–x debug_level] [site1!] file1 [site2!] file2
uucp [–Ccdfjmr] [–g grade] [–n user] [–x debug_level] file... [site2!] directory

Description
uucp copies a source file or files from one site to a target on another site. The
source can be a file or group of files specified by metacharacters. The source
cannot be a directory. The target can be a corresponding filename or directory.

Filenames given to uucp have the form:
[site!] pathname

or
[site1![site2!]... pathname

where site names the remote site. If a site is not specified, pathname is a pathname
on your machine. site must be on the list of site names that uucp knows about.
Use uuname to list sites that are known to uucp.

You can also specify multiple site names as a way of sending files to a site that
your system does not have a direct connection to. Filenames that contain multiple
site names are called multinode or multihop names. When processing a uucp
request involving multihop names, only the destination name can be a multihop
name. The source filename cannot be a multihop name.

Pathnames can have one of these forms:

v A full pathname.

v A pathname preceded by ~name/, where ~name is replaced on the specified site
by the login directory of user name.

v A pathname preceded by ~/, where ~/is replaced on the specified site with the
name of the public UUCP directory.

v A filename or prefix name containing the current directory on your machine as a
prefix.

Destination pathnames cannot begin with exactly two slashes, which indicate an
MVS filename.

If the target is a directory, you must append / to the end of the pathname to ensure
that it is not treated as a file. If the / is not appended to a directory name, then the
name is treated as a filename and multiple copies to that command will behave like
the cp command. That is, each subsequent copy will overlay the previous one.

Pathnames can contain the shell metacharacters ?, *, and []. The character ~ also
has a special meaning, as previously described. The appropriate site expands these
characters after encountering them.If the destination file is a multihop name, then
the source file cannot contain shell metacharacters because uucp uses uux to
handle multihop requests, and uux does not allow shell metacharacters in names.
Be careful when using metacharacters, because expansions on other sites may
occur in unforeseen ways. For more information on metacharacters and their
expansion by the shell, see sh.

uucp

678 z/OS V1R4.0 UNIX System Services Command Reference

Options
–C Copies named files to the spool directory for transfer. If both this option and

the –c option are given, this option takes precedence. This option is useful
if you will be making changes to the file after running the uucp command
and want to send the version of the file before you changed it.

–c Does not copy files to the spool directory for transfer. This is the default.

–d Makes all necessary intermediate directories to complete file transfer. This
is the default.

–f Does not make intermediate directories. If –f is specified with the –d option,
–f takes precedence.

–g grade
Sets the priority of this job to grade. It is a number (0–9) or letter (A–Z, a–z),
where 0 is the highest priority and z is the lowest.

–j Passes the UUCP job ID number to standard output; this job ID can be
used with uustat to determine the job’s status or to terminate it. If uucp
generates several job requests and several job IDs, only the last one
appears.

–m Sends mail notifying you when the copy has completed. The default is to
send mail only if an error occurs that prevents the copy from being made.

–n user
Notifies the user at the destination site when a file you have sent to the
destination site has arrived. This option has no effect when you use uucp
to get files from the remote system.

–r Queues the job to be processed later. Do not start uucico to begin
transferring the file.

–x debug_level
Sets the verbosity of the debugging information to the specified debug level,
which is a number, 0 or greater. Level 0 provides tersed messages while
level 9 provides verbose messages. Values greater than 9 give no
additional information. The default level is 0.

Options are not passed on to remote sites when the destination of your uucp
command is a multihop name. For this uucp command:
uucp –mf file1 site1!site2!/file1

the –m and –f options are ignored. For multihop, uucp creates a uux request to
run a uucp command at the next site (site1 in our example). But because site1 can
be any system that supports uucp, it is possible that this particular system may not
support the same options that are supported by uucp. For that reason, options are
not passed to the uucp command to be run at site1.

To summarize the restrictions when using multihop destination names:

v Options are not passed.

v Shell metacharacters cannot be used in source file names.

Examples
1. To copy the file /notes/memo from your site to a file named minutes in the

public UUCP directory on a site named south:
uucp /notes/memo south!~/minutes

uucp

Chapter 2. Shell Command Descriptions 679

2. You can also copy files locally. To copy the file resume.txt on your site to the
file /business/resumes/november on your site:
uucp resume.txt /business/resumes/november

You must have read permission on the current directory. If the directories
business/resumes don’t already exist, they are created, if you have write
permission in /.

3. To copy the file index from the public UUCP directory on north to the current
directory on the local site:
uucp north!~/index

You must have write permission on the current directory.

4. To copy the file index from the public UUCP directory on south to the
subdirectory south/records in the public UUCP directory on the current site:
uucp -f -m south!~/index '~/south/records/'

You need to protect the tilde so the shell does not expand them to the user’s
home directory. If the subdirectory south/records does not already exist, the file
copy fails. Mail is sent to you when the transfer is completed successfully.

5. You want to copy a file from your system to the site named east. Your system
does not have a connection to east, but you do have a connection to north,
and north has a connection to east:
uucp memo north!east!~/memo

6. You want to use shell metacharacters to specify the files to be transferred to a
remote site.

In this command, the source pathname is expanded by the shell. The uucp
command succeeds as long as there is at least one file that matches the name
specification:
uucp /mystuff/file?.[ab&]* remote!/tmp/

In this command, the source pathname is not expanded by the shell, because it
cannot find any matching file. The '!' is not allowed, because uucp interpretes
all '!' characters as delimiting system names.
uucp remote!/tmp/file?.[!b]* /mystuff/

Environment Variable
uucp uses the following environment variable:

TZ Sets the time zone used with date and time messages

Localization
uucp uses the following localization environment variables:
v LANG
v LC_ALL
v LC_COLLECT
v LC_CTYPE
v LC_MESSAGES
v LC_TIME

See Appendix F for more information.

Files
uucp uses the following files:

uucp

680 z/OS V1R4.0 UNIX System Services Command Reference

/usr/lib/uucp/config
UUCP configuration file generated by uucc.

/usr/spool/uucp/LOGFILE
Log file for uucp and other UUCP utilities.

/usr/spool/uucppublic
Public UUCP directory.

/usr/spool/uucp/.Sequence/sitename
Sequence files, one for each remote site.

Usage Note
uucp does not convert files to or from EBCDIC. If a text file is sent from an ASCII
system to an MVS system, it must be converted to EBCDIC after its arrival.
Similarly, if an EBCDIC text file is sent to an ASCII system, the file is not
automatically converted to ASCII. The receiving user must convert the file to ASCII.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to open log file
v Insufficient memory
v Ctrl-C interrupt

2 Unknown command-line option

uucp can also have partial failures, where a file is inaccessible or a host could not
be determined. uucp returns the 1 exit value and logs the partial failure in the log
file /usr/spool/uucp/LOGFILE. Files that were accessible or had a known host are
still queued for transfer.

Portability
X/Open Portability Guide, UNIX systems.

The –g option is an extension to the POSIX standard.

Related Information
uucc, uucico, uulog, uux

uucpd daemon — Invoke uucico for TCP/IP connections from remote
UUCP systems

Format
uucpd [–l seconds] [–x debug_level]

Description
The uucpd program allows remote uucico programs to communicate with local
uucico in order to perform file transfers via TCP/IP connections. inetd starts uucpd
when the remote uucico connects to the UUCP port. uucpd manages the login
sequence with the remote uucico. After successful login, it then starts uucico to
complete the transfer.

In order for inetd to start uucpd, the inetd configuration file (for example,
inetd.conf) must contain a uucp entry such as the following:

uucp

Chapter 2. Shell Command Descriptions 681

uucp stream tcp nowait OMVSKERN /usr/sbin/uucpd uucpd -l0

Options
–l seconds

Sets the login timeout value in seconds.

–x debug_level
Invoke uucpd and uucico with the –x option. debug_level indicates the
level of detail (0 is least detail and 9 is most detail). The uucpd login
sequence debug output is written to a file in TMPDIR with a filename
beginning with uucpd and followed by randomly generated characters. The
uucico debug output is written to the uucp logfile.

Note: When using the –x option, the UUCP logfile should be monitored so
that it does not become too large and fill up the file system.

The Permissions file provides an alternative method for setting debug for
connections on a system by system basis. See the section on Permissions
files in z/OS UNIX System Services Planning for more information.

Usage Note
uucpd is not affected by the locale information specified in locale-related
environment variables.

Exit Values
0 Successful completion
1 Failure to establish a connection with the remote system
>1 uucico failure

Portability
X/Open Portability Guide.

Related Information
inetd, uucico, uucp, uux

uudecode — Decode a transmitted binary file

Format
uudecode [file]

Description
uudecode decodes data that was encoded by uuencode. If a file is specified on
the command line, uudecode decodes that file; if no file is specified on the
command line, input is read from the standard input. Output is written to the
filename that was specified when the file was encoded. See uuencode for more
information.

uudecode automatically strips off any leading and trailing lines added by mailers.

Localization
uudecode uses the following localization environment variables:
v LANG

uucpd daemon

682 z/OS V1R4.0 UNIX System Services Command Reference

v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Inability to open the input file
v Missing begin line in the input file
v Inability to create the output file
v Missing end line in the input file
v A file that is too short

2 Failure because of an incorrect command-line option

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide. Generally found on
most UNIX systems.

Related Information
uuencode

uuencode — Encode a file for safe transmission

Format
uuencode [file] remote

Description
When files are transmitted over a network or over phone lines, nonprintable
characters (for example, control characters) may be interpreted as commands,
telling the network to do something. In general, therefore, it is not safe to transmit a
file if it contains nonprintable characters.

uuencode translates a binary file into a special code that consists entirely of
printable characters from the POSIX portable character set. A file encoded in this
way is generally safe for transmission over networks and phone lines. uuencode is
often used to send binary files through electronic mail.

If a file is specified on the uuencode command line, uuencode reads that file as
input. Otherwise, it reads the standard input. uuencode always writes the encoded
result to the standard output. The encoded version of the data is about 35% larger
than the original. If the size is a problem, you can shrink the file with compress
before encoding it. The recipient must decode it and then uncompress it.

The remote command-line argument is the name that the file should be given after
it has been transmitted to its destination. When the file reaches its destination,
uudecode can be used to translate the encoded data into its original form. The first
line of the encoded file records the file’s permissions and the remote argument.

uudecode

Chapter 2. Shell Command Descriptions 683

Because the encoded file consists entirely of printable characters, you may use a
text editor to edit the file. Of course, the only things you are likely to edit are the
name of the original file or the name of the remote file.

Examples
This command encodes the file long_name.tar.Z so it decodes with the name
arc.trz and redirects the output to arc.uue:
uuencode long_name.tar.Z arc.trz > arc.uue

Localization
uuencode uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure because of an incorrect command-line option, or a missing
command-line argument

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide. Generally found on
most UNIX systems.

Related Information
uudecode

uulog — Display log information about UUCP events

Format
uulog [–s site]

Note: The uulog utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX-branded systems.

Description
uulog displays information about UUCP events, such as file transfers and remote
command execution. It also displays the most recent debug output to the log. In
order to use uulog, you must have permission to read the file
/usr/spool/uucp/LOGFILE.

The format of the display is:
user ID local_site date/time messagetext

where:

uuencode

684 z/OS V1R4.0 UNIX System Services Command Reference

user ID
Login ID of the user who requested the file transfer or requested the
command be run. Entries created by uuxqt or by programs spawned by
uuxqt have the ID uucp.

local_site
Name of the local site.

date/time
Date and time of the event in the form (mm/dd-hh:mm).

messagetext
Text of the log entry. The message text depends on the event being
recorded; most entries are self-explanatory.

Options
If you do not specify an option, uulog displays the debug information for the last
conversation that failed.

–s site Displays information about UUCP events for this site.

Environment Variables
uulog uses the following environment variable:

TZ Sets the time zone used with date and time messages.

Localization
uulog uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_LCTIME
v NLSPATH

See Appendix F, “Localization” on page 825 for more information.

Files
uulog uses the following files:

/usr/lib/uucp/config
UUCP configuration file. (See uucc.)

/usr/spool/uucp
UUCP spool directory.

/usr/spool/uucp/LOGFILE
Log file for uulog and other UUCP utilities.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v LOGFILE could not be opened
v Could not lock LOGFILE

2 Unknown command-line option

uulog

Chapter 2. Shell Command Descriptions 685

Portability
X/Open Portability Guide, UNIX systems.

Related Information
uucc, uucp, uux

uuname — Display list of remote UUCP systems

Format
uuname [–l]

Note: The uuname utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX- branded systems.

Description
uuname displays a list of all remote systems known to UUCP. Systems are listed in
the order they are entered in /usr/lib/uucp/Systems. To display only the local
system name, use the –l option.

Options
–l Displays the local system name.

Localization
uuname uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_LCTIME
v NLSPATH

See Appendix F for more information.

File
uuname uses the following file:

/usr/lib/uucp/config
UUCP configuration file. See uucc.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Argument list too long
v Inability to open log file
v Insufficient memory
v Ctrl-C interrupt

2 Unknown command-line option

uulog

686 z/OS V1R4.0 UNIX System Services Command Reference

Portability
X/Open Portability Guide, UNIX systems.

Related Information
uucc, uucp, uux

uupick — Manage files sent by uuto and uucp

Format
uupick [–s system]

Note: The uupick utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX- branded systems.

Description
uupick is an interactive shell script used to manage files in the UUCP public
receive directory that were sent to you using the uuto command. Only those files in
the receive directory are managed. (See “Files” on page 688 for a description of this
directory.)

For each file or directory entry found, uupick prompts you with one of the following
messages, depending on the type of the entry:
from system: file name ?
from system: dir name ?

where system is the name of the system that sent the file or directory, and name is
the name of the file or directory.

To tell uupick how to handle an entry, issue one of the following commands:

ENTER
Skips this entry and go to the next one.

* Display the uupick command summary.

d Deletes the specified entry.

m [target]
Moves the entry to the named target directory or file. If the target does not
specify an absolute pathname or no directory, the pathname is assumed to
be relative to the current directory. If no directory is given, uupick assumes
the current directory.

a [dir] Moves all files from system to the target directory dir.

p Prints the contents of the entry to standard output. If the entry is a directory,
p lists the files in the directory.

q Quits uupick.

CTRL-D
Quits uupick.

!command
Escapes to the shell in order to perform command.

uuname

Chapter 2. Shell Command Descriptions 687

The tilde (~) does not stand for the public UUCP directory in pathnames specified
inside uupick. It is interpreted by the command shell being used.

Options
–s system

Displays only files from the system system.

Localization
uupick uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_LCTIME
v NLSPATH

See Appendix F for more information.

Files
uupick uses the following files:

/usr/lib/uucp/config
The UUCP configuration file, which contains the list of known systems as
well as the location of the public UUCP library. See uucc.

/usr/spool/uucppublic
The default value for the public UUCP directory. The public UUCP directory
is always the home directory of the user uucp as defined in the user
database.

/usr/spool/uucppublic/receive/user/system
When files are sent to your system using uuto, they are placed into
/usr/spool/uucppublic/receive/user/system, where user is your login
name and system is the name of the system that sent the files.

Usage Notes
1. uupick does not convert files from EBCDIC. If you receive a file from an ASCII

system, you will need to convert it to EBCDIC.

2. When moving files, uupick does not check for files of the same name in the
destination directory. These files are overwritten.

3. uupick is a shell script.

Portability
X/Open Portability Guide.

Related Information
uuto

uustat — Display status of pending UUCP transfers

Format
uustat [–j jobid | –k jobid | –r jobid]
uustat [–m]

uupick

688 z/OS V1R4.0 UNIX System Services Command Reference

uustat [–q]
uustat [–s site] [–u user]
uustat [–a [–o number] [–y number]]

Description
uustat displays reports on the progress of pending UUCP transfers. You can
display the status of transfers for a particular job ID or user ID. uustat can also
stop or restart jobs in the queue.

If you do not specify any options, it displays the status of all UUCP requests for all
sites made by the current user.

Options
–a Displays the jobs queued for all users instead of only the jobs for the user

issuing the command.

–j jobid
Displays the status of the specified job.

–k jobid
Stops the UUCP job identified by jobid. uustat can display the job ID of a
job in the queue, when used with one of the other options. You cannot use
this option with the –q or –r options.

–o number
Displays the jobs that are older than number hours.

–q Displays the latest conversation status and retry times for all sites that
recently had errors, as well as a count of the jobs queued. You cannot use
this option with the –k or –r options.

–m Displays the latest conversation status and retry times for all sites, as well
as a count of the jobs queued. You cannot use this option with the –k or –r
options.

–r jobid
Restarts the UUCP request specified by jobid. This option updates the
timestamp on the file, making the request appear recent. It cannot restart
jobs that have been stopped with the –k option. You cannot use this option
with the –k or –q options.

–s site Displays the status of all UUCP transfers requested for site.

–u user
Displays the status of all UUCP transfers requested by user.

–y number
Displays the jobs that are younger than number hours.

Output
uustat uses a variety of output formats, depending on the options specified.

If you do not specify an option, or if you specify the –s and –u options, the output is
in this format, one line to every request within a work file:
job ID mo/dy—hh:mm rtype site user information

The following list explains the fields:

uustat

Chapter 2. Shell Command Descriptions 689

job ID Identifies the job. If a job contains more than one request, subsequent
requests are displayed below the first, without a job ID.

mo/dy—hh:mm
Time of the request.

rtype The request type, either S (for send) or R (for receive).

site The name of the remote site.

user The name of the user who requested the job.

information
Describes the request. The format depends on the type of request.

For a send request, information has the format:
size filename

where size is the size in bytes of the file to be sent and filename is either
the absolute pathname on your site, or the UNIX-style filename relative to
your spool directory for the remote site.

For a receive request, information has the format:
filename

For a remote execution request (such as a request produced by mailx, the
command to be run is displayed after any data files associated with it.

For the –q and –m options, the output is in this format:
site transfersC (age) commandsX(age) status retry

where:

site Remote site name.

transfersC(age)
Number of file transfer jobs pending; if any are over one day old, the age in
days of the oldest job is given in parentheses.

commandsX(age)
Number of pending command requests that have been received; if any are
over one day old, the age in days of the oldest job is given in parentheses.

status Time and result of the last attempt to call this site. The status field shows
the status of attempts made by this system to connect to other systems.
When other systems call this system, this field is not updated.

retry Time to the next connection attempt in hours:minutes and the current retry
count. The retry field is displayed only between retry attempts.

For the –k and –r options, uustat displays a message telling you if the attempt to
stop or restart a job was successful.

Examples
1. To display all waiting UUCP requests:

uustat

2. To display all jobs waiting for remote site east:
uustat –s east

3. To stop the UUCP job associated with job ID westn0003:

uustat

690 z/OS V1R4.0 UNIX System Services Command Reference

uustat –k westn0003

Environment Variables
uustat uses the following environment variable:

TZ Sets the time zone used with date and time information.

See Appendix I for more information.

Localization
uustat uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Files
uustat uses the following files:

/usr/lib/uucp/config
UUCP configuration file.

/usr/spool/uucp
UUCP spool directory, containing site-specific subdirectories and information
files.

/usr/spool/uucp/site
Subdirectory containing queued job requests, work files, data files, and
execution files for the UUCP host site.

/usr/spool/uucp/.Status/site
Status file for the remote UUCP host site. uustat queries the status file with
the –q option.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Argument list too long
v Unable to open log file
v Log files
v Insufficient memory
v CTRL-C interrupt

2 Unknown command-line option.

Portability
X/Open Portability Guide, UNIX systems.

Related Information
uucp, uulog, uuxqt

uustat

Chapter 2. Shell Command Descriptions 691

uuto — Copy files to users on remote UUCP systems

Format
uuto [–mp] file ... destination

Note: The uuto utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX- branded systems.

Description

uuto is a simplified method of using uucp to copy a file, or files, to a user on
another system. file is a file, or files, on your system. The destination has the
following form:
system!user

where system is a system known to uucp and user is the login name of a user on
the remote system. You can use uuname to list the names of the remote system
known to uucp. Make sure to enter the user name in the proper case. Otherwise,
the recipient will not be able to use uuto to receive the files you have sent.

uuto sends files to the UUCP public directory on the remote system. In particular,
the files are sent to the directory:
pubdir/receive/user/sendsystem

where pubdir is the UUCP public directory, user is the user’s name specified in the
destination, and sendsystem is the name of the sending system.

The recipient is notified by mail when the files arrive. If several files are sent, the
recipient is notified when the last file arrives. Depending on the nature of the remote
system, the recipient may move files from this directory using the uupick utility or
by using the usual system copy commands.

Options
–m Sends the user a note when the copy is completed.

–p Places files in spool directory before transfer to remote system.

Localization
uuto uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_LCTIME
v NLSPATH

See Appendix F for more information.

Files
uuto uses the following files:

uuto

692 z/OS V1R4.0 UNIX System Services Command Reference

/usr/lib/uucp/config
The configuration file for UUCP contains the list of systems that uucp
knows about. This configuration file is compiled from a number of text
configurations using the uucc utility. (See uucc for more information.)

/usr/spool/uucppublic
The public UUCP directory.

Usage Notes
1. uuto is a shell script.

2. uuto does not convert files to ASCII. If you use uuto to send a file to an ASCII
system, it will have to be converted to ASCII after it has been sent.

Portability
X/Open Portability Guide, UNIX systems.

Related Information
uucc, uulog, uupick, uustat, uux

uux — Request command execution on remote UUCP systems

Format
uux [–bCcjnprz] [–g grade] [–x debug_level] [site!] commandstring

Description
uux specifies that commandstring be run on another site. If files required to run the
command are on different sites, uux generates the UUCP requests to gather the
files together on one site, runs the command, and sends the standard output of the
command to a file on a specified site.

commandstring is any valid command for the remote site, with arguments, except
that the command and any filenames can specify a site in the UUCP manner:
site1!command site2!file1

where site1 is the name of the site where the command is to be run, and site2 is
the name of the site where file1 is.

v If you do not specify any site names, then the command and any files are
assumed to reside at your site.

v If you specify a site for the command, but not for the files, then the files are
assumed to reside on the same site named for the command.

v If you specify a site for some of the files, then those files without a site name are
assumed to reside on the site named.

site must be a valid site name, as listed by the uuname command. Specifying
multiple site names, such as site1!site2!command or site1!site2!file is not allowed
for uux

Pipes of commands are valid, but only the first command in a pipeline can have a
site name. All other commands in the pipeline take place on the site specified for
the first command.

Filenames can have one of these forms:

uuto

Chapter 2. Shell Command Descriptions 693

v A full pathname.

v A pathname preceded by ~name/, where ~name is replaced on the specified site
by the login directory of user name.

v A pathname preceded by ~/, where ~/ is replaced on the specified site with the
name of the public UUCP directory.

v A filename or prefix name containing the current directory on your machine as a
prefix.

Unlike arguments to uucp, pathnames cannot contain the shell metacharacters ?, *,
and [].

Nonlocal filenames must be unique within the command, or the command fails. This
is because nonlocal files are copied to a working directory on the remote site; if the
filenames are not unique, one overwrites another.

If the command fails, you are notified by electronic mail.

Options
–b Mails input back to the user. The contents of stdin are sent back to the

user if the command fails.

–C Copies named files to the spool directory for transfer. If both this option and
the –c option are given, this option takes precedence. This option is useful
if you will be making changes to the file after running the uux command
and want to send the version of the file before you changed it.

–c Does not copy files to the spool directory for transfer. This is the default.

–g grade
Sets the priority of the job to grade. It is a number (0–9) or a letter (A–Z,
a–z), where 0 is the highest priority and z is the lowest.

–j Passes the UUCP job ID number to standard output. This job ID can be
used with uustat to determine the job’s status or to terminate it. If the uux
request generates several job IDs, only the last is shown.

–n Does not send mail if the command fails.

–p Uses standard input of uux as the standard input for the specified
command. The input is stored in a temporary file that is passed to the
command when it runs.

–r Queues the job to be processed later. Do not start uucico to begin
transferring the file.

–x debug_level
Sets the verbosity of the debugging information to debug_level, which is a
number that is 0 or greater. Level 0 provides terse messages while level 9
provides verbose messages. Values greater than 9 give no additional
information. The default level is 0.

–z Returns notification of success to the user who issued the uux command.

Commands on remote sites are actually run by uuxqt in its own directory,
/usr/spool/uucp/.Xqtdir.

uux

694 z/OS V1R4.0 UNIX System Services Command Reference

Special Characters
The command string passed to uux can use the shell metacharacters <, >, ;, and │.
If any of these characters are not valid for the command interpreter on the
destination system, the command fails.

More complex redirection, such as 2>, is not handled by uux because the 2 is
interpreted as a parameter to the preceeding command). Only the simple
metacharacters listed above are allowed.

To escape a filename or quoted string, use parentheses. Parentheses pass the
filename to the command on the remote site without special interpretation by uux.
For example, the following command will not do what you expect because “hello”
will be treated as a file unless enclosed in parentheses.
uux "Remote!echo hello >test.out"

The correct way to enter that command is:
uux "Remote!echo (hello) >test.out"

Examples
1. Suppose that a neighboring site, south, has a program called laser for printing

and formatting documents. You have execute permission for laser. To print the
file inventor.y in south’s public UUCP directory using south’s laser program:
uux south!laser '~/inventor.y'

The tilde needs protection from shell expansion.

To print the file report.001 in your public UUCP directory:
uux south!laser !~/report.001

2. Suppose you have execute permission for uucp on south. To request that south
use uucp to copy the file index from its public UUCP directory to west, a
neighbor of south:
uux south!uucp \(~/index\) \(west!~/\)

The arguments ~/index and west!~/ are not interpreted by uux because of the
parentheses. The backslashes are necessary to escape the parentheses on the
z/OS shell.

Security
uux is potentially a security risk to your system. UUCP minimizes the risk by
allowing you to specify the commands that can be run by each remote site. (See
the section on Permissions files in z/OS UNIX System Services Planning for more
information.)

For electronic mail, each remote site must be able to execute a mail routing agent
on your site. Further permissions can be granted at your discretion.

Localization
uux uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES

uux

Chapter 2. Shell Command Descriptions 695

See Appendix F for more information.

Files
uux uses the following files:

/usr/lib/uucp/config
UUCP configuration file

/usr/spool/uucp/site
Subdirectory containing queued job requests, work files, data files, and
execution files for the UUCP host site.

/usr/spool/uucp/LOGFILE
Log file for uux and other UUCP utilities.

/usr/spool/uucp/.Sequence/sitename
Sequence file containing the 4-digit sequence number of the last job
queued. If uux requires a sequence number, it is based on the value in this
file. If this file does not exist, uux creates it with the sequence number
0000. sitename is the name of a remote site; each remote site has its own
sequence number.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Argument list too long
v Inability to open log file
v Insufficient memory

2 Unknown command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –g, –p, –r, and –x options are extensions to the POSIX standard. They are
retained for compatibility with other UNIX UUCP implementations.

Related Information
uucc, uucico

uuxqt daemon — Carry out command requests from remote UUCP
systems

Format
uuxqt [–c command_name] [–s site] [–x debug_level]

Description
The uuxqt daemon carries out the command requests made on other sites by mail
programs, news programs, or by the uux command.

uuxqt is automatically started after uucico completes. Additionally, cron can be
used to start uuxqt at predetermined times.

uux

696 z/OS V1R4.0 UNIX System Services Command Reference

Options
–c command_name

Processes only requests to run command_name.

–s site Runs only commands requested by site.

–x debug_level
Sets the verbosity of the debugging information to debug_level, which is a
number, 0 or greater. Level 0 provides terse messages while level 9
provides verbose messages. Values greater than 9 give no additional
information. The default level is 0.

Examples
To run all of the commands requested by the remote site north:
uuxqt –s north

Usage Notes
1. The uuxqt command is a security risk on all sites, because it allows outside

access to your computer. UUCP limits the danger by setting execute
permissions for every site in the configuration file. See the section on
Permissions files in z/OS UNIX System Services Planning for more information.

2. uuxqt checks the command requests from each site against the list of allowed
commands and either runs them or sends a mail message that says:
Permission denied

Localization
uuxqt does not use localization environment variables.

Files
uuxqt uses the following files:

/usr/lib/uucp/config
UUCP configuration file

/usr/spool/uucp/.Xqtdir
This file contains permissions for UUCP sites.

/usr/spool/uucp/.Sequence/sitename
Sequence file containing the four-digit sequence number of the last job
queued. If uuxqt requires a sequence number (for example, to mail a
message), it is based on the value in this file. If this file does not exist,
uuxqt creates it with the sequence number 0000. sitename is the name of a
remote site; each remote site has its own sequence file.

/usr/spool/uucp/site
Subdirectory containing commands from the UUCP host site (as well as all
work files and data files associated with site). The format of the execute
files is described in uucp.

/usr/spool/uucp/.Xqtdir
Working directory for uuxqt. All required files are copied here before uuxqt
runs a command.

Exit Values
0 Successful completion
1 Failure because of any of the following:

uuxqt daemon

Chapter 2. Shell Command Descriptions 697

v Argument list too long
v Unable to open log file
v Insufficient memory
v Ctrl-C interrupt

2 Unknown command-line option

Portability
X/Open Portability Guide

Some UUCP systems produce execute files with command lines that are not
supported by uuxqt.

Related Information
uucc, uucp, uux

vi — Use the display-oriented interactive text editor

Format
vi [–elRrsv] [–c command] [–t tag] [–w size] [file ...]
vi [–elRrsv] [+command] [–t tag] [–w size] [file ...]

These symbols are used throughout this command description:

Ctrl-L followed by a single letter indicates the control character transmitted by
holding down the Ctrl key and the letter key at the same time.

BACKSPACE indicates the real backspace key. This may differ from the Ctrl-H key.

ENTER indicates the ENTER key, which is labeled RETURN on some keyboards.

ESCAPE indicates the Escape key.

INTERRUPT indicates the break key; often Ctrl-C.

→ indicates the right arrow key.

← indicates the left arrow key.

↓ indicates the down arrow key.

↑ indicates the up arrow key.

Description
vi has two components: a screen editor (vi), and a line editor (ex). Each has a
different set of commands. You can invoke the line editor from within the screen
editor. Conversely, you can invoke the screen editor from within the line editor.

In the screen editor, you are in either command mode or insert mode. In command
mode, every character you type is immediately interpreted as a command. In insert
mode, every character you type is added to the text that you are editing.

There are two ways to start your session in ex mode:
v Invoke the command under the name ex.

uuxqt daemon

698 z/OS V1R4.0 UNIX System Services Command Reference

v Invoke it under the name vi but specify the –e option.

Similarly, there are two ways to start your session in vi mode:
v Invoke it under the name ex but specify the –v option.
v Invoke the command under the name vi (without specifying –e).

vi and ex work on text files. If a file contains the NUL character (value .0 or \0), it
is turned into the value 0x7F. The newline character is interpreted as a line
delimiter. Each line is limited to a maximum length of {LINE MAX}–1 bytes,
including the newline. Any lines exceeding that length are truncated at that length. If
the last line in the file does not end in a newline, a newline is added. In all those
cases, vi marks the file as modified and displays a message.

Note: vi is available if you login to the shell with the rlogin command or via telnet.
It is not available if you login with the OMVS command.

Options
–c command

Runs command before displaying any text on the screen. command is any
ex command. You can specify multiple ex commands by separating them
with an or-bar (|) and enclosing them in quotes. The quotes ensure that the
shell does not interpret the | as a pipe character. For example:
–c 'set all | ver'

–e Invokes ex.

–l Sets lisp mode. The (and) commands use blocks of lisp code as their
context rather than sentences.

–R Sets the READONLY variable, preventing the accidental overwriting of files.
Any command that writes to a file requires the ! suffix.

–r Tries to recover all files specified on the command line after a system or
editor crash. If you do not specify any files, vi displays a list of all
recoverable files.

–s Turns on quiet mode. This tells the editor not to print file information
messages, thus allowing ex to be used as a filter. Because the file isn’t
displayed, the editor doesn’t read the value of the TERM environment
variable. This option also keeps ex from reading any startup files (.exrc or
the file specified by EXINIT).

–t tag Searches for a tag in the same way that you use with the ex tag command
(described later).

–v Puts the editor into vi mode.

–w size
Sets the option variable window to size. See “Set Option Variables” on
page 719 for more information.

+command
Is an obsolete version of the –c option.

Current Position Pointer
The current position marker indicates a position in the text that is currently being
edited (or has just been edited). In ex mode, the current position pointer is just the
line number of the line being edited. In vi mode, the pointer gives this line number
plus the position of the cursor within the line. The line indicated by the current
position pointer is always on the screen.

vi

Chapter 2. Shell Command Descriptions 699

Display Conventions
vi uses three display conventions:

v vi displays the input for search commands (/ and ?), ex commands (:), and
system commands (!) on the bottom line of the screen. Error and informational
messages also appear on this line.

v If the last line in the file is above the bottom of the screen, screen lines beyond
the end of the file are displayed with a single ~character in column one.

v In certain infrequent circumstances (usually involving lines longer than the width
of the screen), vi is unable to fill the display with complete lines. In this case, one
or more screen lines are shown with a single @ character in column one.

These lines are not part of the file content and should be ignored.

vi Command Summary
vi commands can be divided into several categories:

v Scrolling commands adjust the position of text on the screen. The current
position pointer only changes if the current line is scrolled off the screen. For
example, Ctrl-E scrolls the text on the screen up one line. The cursor remains
pointing to the same text that it was pointing to, unless that text is moved off the
screen.

v Movement commands move the cursor in the file. For example, the character j
moves the cursor down one line and the screen is scrolled only if necessary.
There are two types of movement commands:

– Absolute movement commands move the cursor, regardless of the nature of
the surrounding text. For example, j always moves the cursor down one line.

Absolute movement commands are listed in “Absolute Movement Commands”
on page 701.

– Context-dependent movement commands move move the cursor based on
the nature of the text; for example, w moves the cursor to the beginning of the
next word, so it must look at the text to determine where the next word
begins.

Context-dependent movement commands are listed in “Context-Dependent
Movement Commands” on page 702.

v Text insertion commands let you add new text to the existing text. They are listed
in “Text Insertion Commands” on page 706.

v Manipulation commands let you change the text that is already in the file. They
are listed in “Object Manipulator Commands” on page 704.

Scrolling Commands
vi scrolling and movement commands can be preceded by a decimal integer that
serves as a count, as in:
[count] command

count means different things with different commands. If you type count, it is not
displayed anywhere on the screen.

Ctrl-B Scrolls text back by a page, (that is, a screen), less two lines. The cursor is
placed on the bottom line of the screen. count specifies a number of pages
to scroll. The default value for count is 1.

Ctrl-D Scrolls text onto the bottom of the screen. The current position pointer
moves forward the same amount in the text, which means that the cursor
stays in the same relative position on the screen. If count is given, the

vi

700 z/OS V1R4.0 UNIX System Services Command Reference

screen scrolls forward by the given number of lines; this number is used for
all future Ctrl-D and Ctrl-U commands (until a new count is given). The
default scrolling amount is half the screen.

Ctrl-E Scrolls a new line onto the bottom of the screen. The current position
pointer is not changed unless the current line scrolls off the top of the
screen; then the pointer is set to the top line. If count is given, the screen
scrolls forward the given number of lines. The default value for count is 1.

Ctrl-F Scrolls text forward a page (that is, a screen), less two lines. The cursor is
placed on the top line of the screen. count specifies the number of pages to
scroll. The default value for count is 1.

Ctrl-U Scrolls text onto the top of the screen. The current position pointer moves
backward the same amount in the text, which means that the cursor stays
in the same relative position on the screen. count operates as for Ctrl-D.
The default scrolling amount is half the screen.

Ctrl-Y Scrolls a new line onto the top of the screen. The current position pointer is
not changed unless the current line scrolls off the bottom of the screen;
then the pointer is set to the bottom line. If count is given, the screen scrolls
backward the given number of lines. The default value for count is 1.

[n] z [m] type
Redraws the screen in a window of m lines. type determines the position of
the current line. If type is the newline character, the current line is placed at
the top of the window. If type is a period (.), the current line is placed in the
middle of the window. If type is a minus sign (–), the current line is placed
at the bottom of the window. If n is given, the current position pointer is first
set to that absolute line number; then the screen is positioned according to
type. If you omit n, it defaults to the current line. If you omit m, it defaults to
window. (See “Set Option Variables” on page 719.)

Absolute Movement Commands
All the following movement commands except m, 0, ^, `, and u can be preceded by
count to repeat the movement that many times.

G Moves to the absolute line number specified as count. As a special case, if
count is zero or is not specified, the cursor is moved to the last line of the
file.

h Moves the cursor one position to the left.

BACKSPACE
Moves the cursor one position to the left.

← Moves the cursor one position to the left.

Ctrl-H Moves the cursor one position to the left.

↓ Moves the cursor to the next line at the same column on the screen. Scroll
the screen one line if needed.

j Moves the cursor to the next line at the same column on the screen. Scroll
the screen one line if needed.

Ctrl-J Moves the cursor to the next line at the same column on the screen. Scroll
the screen one line if needed.

Ctrl-N Moves the cursor to the next line at the same column on the screen. Scroll
the screen one line if needed.

vi

Chapter 2. Shell Command Descriptions 701

k Moves the cursor to the previous line at the same column on the screen.
Scrolls the screen up one line if needed.

↑ Moves the cursor to the previous line at the same column on the screen.
Scrolls the screen up one line if needed.

Ctrl-P Moves the cursor to the previous line at the same column on the screen.
Scrolls the screen up one line if needed.

l Moves the cursor one position to the right.

→ Moves the cursor one position to the right.

SPACE
Moves the cursor one position to the right.

m Records the current position pointer under a mark name. A mark name is a
single lowercase letter, given immediately after the m. For example, the
command ma records the current location of the current position pointer
under the name a.

0 (Zero) Moves the cursor to the first character of the current line.

+ Moves the cursor to the first nonblank character on the next line. Scroll the
screen one line if needed.

Ctrl-M Moves the cursor to the first nonblank character on the next line. Scroll the
screen one line if needed.

– Moves the cursor to the first nonblank character on the previous line.
Scrolls the screen up one line if needed.

| Moves the cursor to the column number specified as count. This is a screen
column number, not a character offset. If a doublebyte character occupies
column positions 5 and 6, the command 6| moves the cursor to the
character that includes column 6.

If count is greater than the length of the current line, vi moves the cursor to
the last character on the line. If the column indicated is spanned by a tab,
vi moves the cursor to the first character after the tab.

^ Moves the cursor to the first nonblank character of the current line.

$ Moves cursor forward to the end of a line. count specifies the number of
lines, including the current line, to move forward.

` When followed by a mark name, moves the cursor to the position that has
been associated with that name. The position is set by the m command. A
grave character followed by another grave character moves the cursor to
the previous context. The previous context is typically the last place where
you made a change. More precisely, the previous context is set whenever
you move the cursor in a nonrelative manner.

u Similar to the grave (`) character, except that the cursor is set to the first
nonblank character on the marked line.

Context-Dependent Movement Commands
vi defines a word as:

v A sequence of letters, digits, and underscores delimited at both ends by
characters that are not letters, digits, or underscores; the beginning or end of a
line; or the end of the editing buffer.

vi

702 z/OS V1R4.0 UNIX System Services Command Reference

v A sequence of characters other than letters, digits, underscores, or white space
delimited at both ends by a letter, digit, underscore, white space, the beginning or
end of a line, or the end of the editing buffer.

vi defines a fullword as a a sequence of nonblank characters delimited at both ends
by blank characters (space, tab, newline) or by the beginning or end of a line or file.

B Moves the cursor back to the first character of the current fullword. If the
cursor is already at the beginning of a fullword, vi moves it to the first
character of the preceding fullword.

b Moves the cursor back to the first character of the current word. If the
cursor is already at the beginning of a word, vi moves it to the first
character of the preceding word.

E Moves the cursor forward to the end of a fullword. If the cursor is already at
the end of a word, vi moves it to the last character of the next fullword.

e Moves the cursor forward to the end of a word. If the cursor is already at
the end of a word, vi moves it to the last character of the next word.

Fc Searches backward in the line for the single character c and positions the
cursor on top of it. When count is given, the editor searches back for the
count the such character.

fc Searches forward in the line for the single character c and positions the
cursor on top of it. When count is given, the editor searches for the count
the such character.

H Places the cursor on the first nonblank character of the top line of the
screen. count specifies the number of lines from the top of the screen.

L Places the cursor on the first nonblank character of the bottom line of the
screen. count specifies the number of lines from the bottom of the screen.

M Places the cursor on the first nonblank character of the middle line of the
screen.

N Repeats previous / or ?, but in the opposite direction.

n Repeats previous / or ?.

Tc Searches backward in the line for the character c and position the cursor
after the character being sought. count searches backward for the count the
matching character and then positions the cursor after the character being
sought.

tc Searches forward in the line for the character c and position the cursor on
the preceding character. count searches forward for the count the matching
character and then positions the cursor on the preceding character.

W Moves forward to the start of the next fullword.

w Moves forward to the start of the next word.

(Moves back to the beginning of the previous sentence. A sentence is
bounded by a period (.), exclamation mark (!), or question mark (?);
followed by any number of closing double quotes, ("), closing single quotes
(’), closing parentheses ()), or closing square brackets (]); followed by two
spaces or the end of the line. Paragraph and section boundaries are also
sentence boundaries; see [[and {.

If you specified the lisp option, a lisp s-expression is considered a sentence
for this command.

vi

Chapter 2. Shell Command Descriptions 703

) Moves forward to the beginning of the next sentence. See (for the
definition of a sentence.

If you specified the lisp option, a lisp s-expression is considered a sentence
for this command.

{ Moves back to the beginning of a paragraph. A paragraph begins on a
blank line, a section boundary, or a text formatter macro in the paragraphs
variable.

} Moves forward to the beginning of the next paragraph. See { for the
definition of a paragraph.

[[Moves back to the beginning of a section. A section begins on lines starting
with a form feed (Ctrl-L), starting with an open brace {, a text formatter
macro in the sections variable, or begin or end of file.

If you specified the lisp option, a section boundary is also identified by a
line with a leading (.

]] Moves forward to the beginning of the next section. See [[for the definition
of a section.

If you specified the lisp option, a section boundary is also identified by a
line with a leading (.

% Finds the balancing character to that under the cursor. The character
should be one of the following characters:

[{(< >)}].

; Repeats the previous F, f, T, or t command.

, Repeats the previous F, f, T, or t command in the opposite direction.

/regexp ,
Search forward in the file for a line matching the regular expression regexp
and position the cursor at the first character of the matching string. When
used with an operator to define a text range, the range begins with the
character at the current cursor position and ends with the first character of
the matching string. You can specify whole lines by following regexp with
/+n or /–n, where n is the offset from the matched line.

?regexp
Is similar to /, but searches backwards in the file.

Ctrl-] Uses the word after the cursor as a tag. (For information about tag, see
ex.)

Object Manipulator Commands
An object manipulator command works on a block of text. The command character
is followed immediately by any kind of movement command. The object that is
manipulated by the object manipulator command is the text from the current
position pointer to wherever the movement command would leave the cursor.

For example, in dL, d is the object manipulator command to delete an object. It is
followed by the movement command L which means move to the bottom line of the
screen. The object manipulated by the command thus extends from the current line
to the bottom line on the screen; these lines are deleted.

Normally an object extends up to, but not including, the position of the cursor after
the move command. However, some movements work in a line mode. For example,

vi

704 z/OS V1R4.0 UNIX System Services Command Reference

L puts the cursor on the first nonblank character of the last line on the screen. If it
is used in an object manipulation command, it includes the entire starting line and
the entire ending line. Some other objects include the cursor position. For example,
d$ deletes up to and including the last character on a line; by itself the $ would
have placed the cursor on the final character. Repeating the command letter implies
working on a line basis; thus 5dd deletes five lines.

Objects that are deleted or otherwise manipulated have their original values placed
in a buffer, an area of computer memory that can hold text. There are several ways
this can be done:

1. You can use a named buffer. Buffers are named with single lowercase letters.
To place an object in a buffer, type a double quote " followed by the buffer
name, followed by the object manipulator command, as in:
"adL

This deletes text from the current line to the bottom line on the screen and puts
the deleted text in buffer a. Usually, this sort of operation overwrites the current
contents of the buffer. However, if you use the same form but specify the buffer
name in uppercase, the object is appended to the current contents of the buffer.
For example:
"AdL

deletes from the current line to the bottom line on the screen, and adds the
deleted text to buffer a.

2. If you are deleting material and delete at least one full line, vi uses buffers
numbered 1 through 9. The first time a full line or more is deleted, the text is
placed in buffer 1. The next time, the old contents of 1 are copied to 2, and the
newly deleted text is put into 1. In the same way, deleted text continues to be
rippled through the nine numbered buffers. When text is rippled out of buffer 9,
it is gone for good.

3. In all other cases, the object manipulated goes to the unnamed buffer. For
example, the unnamed buffer is used if you delete less than a line of text. The
unnamed buffer is like the other buffers, but doesn’t have a name.

Following are some examples of the use of buffers:

1. To delete text from the current cursor position through to the bottom of the
screen and place it into buffer 1 (this will also ripple numbered buffers), enter:
dL

2. To delete from the current cursor position through to the next position containing
(but not including) the string fred, and place the deleted text into buffer a, enter:
"ad/fred/+0

3. To delete the current word and place it into an unnamed buffer, enter:
dw

The following section lists the object manipulator commands.

c Deletes the object and enters insert mode for text insertion after the current
cursor position. If less than one line is changed, a dollar sign ($) is placed
on the final character of the object and typing goes directly over top of the
current object until the dollar sign ($) is reached. Additional text is inserted,
with the existing text shifting to make room for the new text.

d Deletes the object.

y Moves the object to the appropriate buffer; the source is not changed. This
can be used to duplicate or copy objects.

vi

Chapter 2. Shell Command Descriptions 705

< Shifts the object left by the value of the variable shiftwidth. This operator
always works on a line basis. This command replaces all leading blanks
and tabs required for the new indent amount. count shifts count lines.

> Shifts the object right by the value of the variable shiftwidth. This operator
always works on a line basis. This command replaces all leading blanks
and tabs required for the new indent amount. count shifts count lines.

! Filters the object through an external command. After typing the object, the
command line opens up for a system command which is parsed in the
same manner as the ex system command (:!). This operator then invokes
the given command and sends the entire object on a line basis to that
command. The object is then deleted and the output from the command
replaces it. For example, 1G!Gsort moves to the first line of the file; then
takes all the text from the first line to the last line and runs it through the
sort command. The output of sort then replaces the original text.

Object Manipulator Abbreviations
To make things easier, the following shorthand commands are equivalent to the
shown object manipulations. Each can be preceded by count or by a buffer name to
save the manipulated text.

C Changes to the end of the current line. This is equivalent to the c$
command.

D Deletes to the end of the current line. This is equivalent to the d$
command.

s Substitute the character. This is equivalent to the cl command.

S Substitute the line. This is equivalent to the cc command.

x Deletes the current character. This is equivalent to the dl command.

X Deletes the previous character. This is equivalent to the dh command.

Y Yanks the current line. This is equivalent to the yy command.

Text Insertion Commands
Text insertion commands let you add new text to existing text.

A Enters insert mode at end of line. This is equivalent to the $a command.

a Enters insert mode after the current cursor position.

I Enters insert mode before first nonblank character on line. This is
equivalent to the ^i command.

i Enters insert mode before the current cursor position.

O Opens up a new line before the current line and enters insert mode on it.

o Opens up a new line after the current line and enters insert mode on it.

R Replaces characters on the screen with characters typed up to the next
ESC. Each character typed overlays a character on the screen. The
newline character is an exception; it is simply inserted and no other
character is replaced. While you are doing this, the screen may not
correspond exactly to the contents of the file, because of such things as
tabs. The screen is updated when you leave insert mode.

r Replaces the character under the cursor with the next character typed.
When count is given, count characters following the cursor to the new

vi

706 z/OS V1R4.0 UNIX System Services Command Reference

character are changed. If count is given and the newline character is the
replacement character, count characters are deleted (as usual) and
replaced with a single newline character, not count newlines.

Miscellaneous Commands
J Joins count lines together. If you do not specify count, or count is less than

2, vi uses a count of 2, joining the current line and the next line. This
command supplies appropriate spacing: one space between words, two
spaces after a period, and no spaces at all when the first character of the
line is a). When a line ends with white space, vi retains the white space,
does not add any further spaces, and then appends the next line.

p Same as p except that text is pasted before the cursor instead of after it.

P Put buffer contents before the cursor. Also called a paste operation. If
preceded by quote buffername (for example, “b), the contents of that buffer
are used; otherwise the contents of the unnamed buffer are used. If the
buffer was created in ex mode, the contents of the buffer are inserted
before the current line. If the buffer was created in vi mode, the contents
are inserted before the cursor. As a special case, if a paste operation is
repeated with the period (.) command and it used a numbered buffer, the
number of the buffer is incremented. Thus, “1p ..., pastes in the contents of
buffer 1 through buffer 6; in other words the last six things that were deleted
are put back.

Q Switches to ex mode. You leave vi mode and the ex prompt is shown on
the bottom line of the screen.

U Undoes all changes to current line. As soon as you move off a line or
invoke an ex command on the line, the original contents of the line are
forgotten and U is not successful.

u Undoes last change. If repeated, you undo the undo (that is, go back to
what the text was before the undo). Some operations are treated as single
changes; for example, everything done by a global G is undone with undo.

ZZ Writes the file out, if changed, and then exits.

. Repeats the last command. Any command that changes the contents of the
file can be repeated by this command. If you do not specify count with the .
command, vi uses the count that was specified for the command being
repeated.

~ Toggles the case of the character under the cursor and moves the cursor
right by one. This command can be preceded by count to change the case
of count characters.

& Repeats the previous ex substitute command, using the current line as the
target. Flags set by the previous command are ignored. Equivalent to the
ex command &.

: Invokes a single ex command. The editor places the cursor on the bottom
line of the screen and displays a colon (:) to prompt for input. You can then
type one or more ex commands; when you press ESC or a RETURN, the
line you have entered is passed to ex and executed there.

@ Invokes a macro. When the next character is a letter from a through z, vi
treats it as the name of a buffer. The contents of that buffer are treated as
input typed to vi. The text of a macro may contain an @ calling another
macro. A macro may call itself, provided it is invoked at the end of the
macro (tail recursion). Such a macro executes forever or until an error

vi

Chapter 2. Shell Command Descriptions 707

occurs or the INTERRUPT key is pressed. A macro that invokes itself at the
beginning (head recursion) loops until it runs out of memory. A vi error
terminates all currently executing macros. All changes made during a macro
call are treated as a unit and may be undone with a single u command.

= Reindents the specified line as though they were set via lisp and
autoindent-set, if the lisp option was specified.

Ctrl-G Displays the current pathname, current line number, total number of lines in
the file, and the percentage of the way through the file. This is equivalent to
the ex command file.

Ctrl-L Redraws the screen assuming another process has written on it. This
should never happen unless a filter ! command writes to the screen rather
than the standard output.

Ctrl-R Redraws the screen, removing any deleted lines flagged with the @
convention.

Ctrl-Z Stops the editor and returns you to system level. You can return to the
editor with the fg command; however, when you resume a vi session in this
way, all of the session’s buffers are empty. The jobs command lists all the
stopped vi jobs. The amount of available memory limits the number of vi
sessions that may be stopped at one time (see fg and jobs).

Ctrl-^ Switches to editing the alternate file (see ex for an explanation of write). If
you attempt this and you have not written out the file since you made the
most recent change, vi does not switch to the alternate file.

Insert Mode Commands
The object manipulation command c, and the text insertion commands [AaIiOoRr]
put vi into INSERT mode. In this mode, most characters typed are inserted in the
file. The following characters have special meaning.

Ctrl-D Decrements the autoindent for the current line by one level. This is only
relevant if the variable autoindent is on.

Ctrl-H Deletes the last typed character. The character is not removed from the
screen; however it is no longer in your file. When you backspace over
characters, new text overwrites the old ones. You are permitted to
backspace to the start of the current line regardless of where you started to
insert text. (This is not true of some other versions of vi.)

BACKSPACE
Deletes the last typed character. The character is not removed from the
screen; however it is no longer in your file. When you backspace over
characters, new text overwrites the old ones. You are permitted to
backspace to the start of the current line regardless of where you started to
insert text. (This is not true of some other versions of vi.)

Ctrl-J Ends the current line and starts a new one.

Ctrl-M Ends the current line and starts a new one.

RETURN
Ends the current line and starts a new one.

Ctrl-Q Inserts the following character literally, instead of using its special meaning.
You could use this to escape, say, the ESC character itself. It is impossible
to insert a Ctrl-J or the null character in your line.

Ctrl-V Inserts the following character literally, instead of using its special meaning.

vi

708 z/OS V1R4.0 UNIX System Services Command Reference

You could use this to escape, say, the ESC character itself. It is impossible
to insert a Ctrl-J or the null character in your line.

Ctrl-T Increments the autoindent for the current line by one level. This is only
relevant if the variable autoindent is on.

Ctrl-W Deletes the word preceding the cursor and blanks. Although the characters
are not removed from the screen, they are no longer in your file.

Ctrl-@
If this is the first character typed after entering insert mode, the previously
typed insert mode contents are repeated. After this, you exit insert mode.
Only up to 256 characters from the previous insertion are inserted.

ESC Leaves insert mode.

INTERRUPT
Leaves insert mode.

ex Command Mode
vi enters ex command mode if the program is invoked with the –e option or if the Q
command is issued from vi. You can issue a single ex command from vi using the :
command.

An ex command takes the general form:
[address-list] [[command] [!] [parameters]]

Each part is optional and may be invalid for some commands. You can specify
multiple commands on a line by separating them with an or-bar |.

address-list
Commands can take zero, one, or two addresses. The address % is a short
form to indicate the entire file. You can omit any or all of the addresses. In
the command descriptions to follow, the addresses shown are the
addresses that the commands use by default. Possible default addresses
are:

[.,.] Indicates a two-address line range defaulting to the current line.

[1,$] Indicates a two-address line range defaulting to the entire file.

[.+1] Indicates a single address defaulting to the next line.

address
An address refers to a line in the text being edited. An address can be an
expression involving the following forms:

. The value of dot; that is, the current line.

n A line number indicating an absolute line in the file; the first line has
absolute line number 1.

$ The last line in the file.

+[n] n lines forward in the file. If you omit n, it defaults to 1.

–[n] n lines backward in the file. If you omit n, it defaults to 1.

’x The value of the mark x.

/pat/ Search for regular expression pat forward from the current line.

?pat? Search for regular expression pat backwards from the current line.

vi

Chapter 2. Shell Command Descriptions 709

Thus:
/pattern/+3
++
100

are three addresses: the first searches for a pattern and then goes three
lines further; the second indicates two lines after dot; and the third indicates
the 100th line in the file.

command
The command is a word, which can be abbreviated. Characters shown in
square brackets are optional. For example:
a[ppend]

indicates that the append command can be abbreviated to simply a.

! Some commands have a variant; this is usually toggled with an exclamation
mark (!) immediately after the command.

parameters
Many ex commands use parameters to allow you to specify more
information about commands. Common parameters include:

buffer Specifies one of the named areas for saving text. For more
information, see the description of buffers on page 705.

count Is a positive integer, specifying the number of lines to be affected
by the command. If you do not specify count, it defaults to 1.

file Is the pathname for a file. If file includes the % character, vi
replaces that character with the pathname of the current file. If file
includes the # character, vi replaces that character with the
pathname of the alternate file. If you do not specify a file, the
default is the current file.

flags Indicate actions to be taken after the command is run. It can consist
of leading plus (+) and minus (–) signs to adjust the value of the
current line indicator, followed by p, l, or # to print, list, or number a
line. Thus:
.+5 delete 6 ++#

deletes starting five lines down from dot; six lines are deleted; the
current line indicator is set to the following line, then incremented
by two; and that line is printed with its line number.

Regular Expressions and Replacements
Many ex commands use regular expressions when searching and replacing text. A
regular expression (indicated by pat in the command descriptions) is used to match
a set of characters.

A regular expression consists of a string of normal characters that exactly match
characters in a line. These can be intermixed with special characters (known as
metacharacters), which allow matching in some special manner. Metacharacters
can themselves be matched directly by preceding them with the backslash (\)
character. If the variable magic is turned off, all but two of the metacharacters are
disabled; in this case, the backslash character must precede them to allow their use
as metacharacters. See Appendix C, “Regular Expressions (regexp)” on page 805
for examples.

vi

710 z/OS V1R4.0 UNIX System Services Command Reference

Summary of Regular Expressions
^ Matches the start of a line. This is only a metacharacter if it is the first

character in the expression.

$ Matches the end of a line. This is only a metacharacter if it is the last
character in the expression.

. Matches any single character.

* Matches zero or more occurrences of the previous expression.

\< Matches the empty string preceding the start of a word. A word is a series
of alphanumeric or underscore characters preceded by and followed by
characters that are not alphanumeric or underscore.

\> Matches the empty string following the end of a word. A word is a series of
alphanumeric or underscore characters preceded by and followed by
characters that are not alphanumeric or underscore.

[string]
Matches any of the characters in the class defined by string. For example,
[aeiouy] matches any of the vowels. You can put a range of characters in a
class by specifying the first and last characters of the range, with a hyphen
(-) between them. For example, in ASCII [A–Za–z] matches any upper or
lowercase letter. If the first character of a class is the caret (^), the class
matches any character not specified inside the square brackets. Thus, in
ASCII [a–z_][^0–9] matches a single alphabetic character or the
underscore, followed by any nonnumeric character.

\(...\) A set of characters in the pattern can be surrounded by escaped
parentheses. See “Summary of Replacement Patterns” for a discussion of
the \n replacement pattern. This is not affected by the setting of magic.

~ Matches the replacement part of the last substitute command.

A replacement (indicated by repl in the command descriptions) describes what to
put back in a line for the set of characters matched by the regular expression.

Summary of Replacement Patterns
& Is replaced by the entire string of matched characters.

~ Is replaced by the entire replacement pattern from the last substitute.

\n Is replaced by the string that matched the nth occurrence of a \(...\) in the
regular expression. For example, consider:
s/\([a-zA-Z]*\)our/\1or/

The \1 represents the string that matched the regular expression
\([a-zA-Z]*\). Thus the previous command might change the word colour to
color.

\u Turns the next character in the replacement to uppercase.

\l Turns the next character in the replacement to lowercase.

\U Turns the following characters in the replacement to uppercase.

\L Turns the following characters in the replacement to lowercase.

\E, \e Turns off the effects of \U or \L.

vi

Chapter 2. Shell Command Descriptions 711

ex Commands
You can enter these commands as shown in ex mode. In vi mode, they must be
preceded by the colon (:) character.

ab[breviate] lhs rhs
Indicates that the word lhs should be interpreted as abbreviation for rhs.
(See “Context-Dependent Movement Commands” on page 702 for the
definition of word.) If you enter lhs surrounded by white space in vi INSERT
mode, it is automatically changed into rhs. If you do not specify any
arguments for the ab command, it displays the abbreviations that are
already defined. Abbreviated names cannot contain # or any other form of
punctuation.

[.] a[ppend][!]
Enters ex INSERT mode. Text is read and placed after the specified line.
An input line consisting of one period (.) leaves INSERT mode. If you
specify an address of zero, text is inserted before the first line of the file.
The current line indicator points to the last line typed.

If an exclamation mark (!) is specified, the autoindent option is toggled
during input. This command cannot be invoked from vi mode.

ar[gs] Displays the current list of files being edited. The current file is shown
enclosed by square brackets.

cd[!] path
Changes the current directory to path. If you omit path, cd sets the current
working directory to the directory identified by the HOME variable. If path is
a relative pathname, cd searches for it using the directories specified in the
CDPATH variable. If path is –, then cd changes to the previous working
directory. If you modified the buffer since the last write, vi displays a
warning message. You can override this behavior by including the
exclamation mark (!).

[.,.] c[hange][!] [count]
Deletes the line range given and then enters INSERT mode. If an
exclamation mark (!) is specified, autoindent is toggled during input. You
cannot invoke this command from vi mode.

chd[ir][!] [path]
Same as cd.

[.,.] co[py] addr [flags]
Copies the line range given after addr. If addr is zero, the lines are inserted
before the first line of the file. The current line indicator points to the last
line of the inserted copied text.

[.,.] d[elete] [buffer] [count] [flags]
Deletes the specified line range. After the line range is deleted, the current
line indicator points to the line after the deleted range. A buffer can be
specified as a letter a–z. If so, deleted lines are saved in the buffer with that
name. If an uppercase letter is specified for buffer, the lines are appended
to the buffer of the corresponding lowercase name. If no buffer name is
given, deleted lines go to the unnamed buffer.

e[dit] [!] [+line] [file]
Begins a new editing session on a new file; the new file replaces the old file
on the screen. This command is usually invalid if you have modified the
contents of the current file without writing it back to the file. Specifying an

vi

712 z/OS V1R4.0 UNIX System Services Command Reference

exclamation mark (!) goes on to start a new session even you have not
saved the changes of the current session.

You can specify line as either a line number or as a string of the form
/regexp or ?regexp where regexp is a regular expression. When line is a
line number, the current line indicator is set to the specified position. When
it has the form /regexp, vi searches forward through the file for the first
occurrence of regexp and sets the current line indicator to that line. ?regexp
is similar to /regexp except that vi searches through the file backwards. If
you omit line and do not specify a file, the value of the current line indicator
does not change. Otherwise, if a file is specified, the current line indicator is
set to either the first or last line of the buffer, depending on whether the
command was issued in vi or ex mode.

ex[!] [+line] [file].
Begins a new editing session on a new file; the new file replaces the old file
on the screen. This command is usually invalid if you have modified the
contents of the current file without writing it back to the file. Specifying an
exclamation mark (!) goes on to start a new session even you have not
saved the changes of the current session.

You can specify line as either a line number or as a string of the form
/regexp or ?regexp where regexp is a regular expression. When line is a
line number, the current line indicator is set to the specified position. When
it has the form /regexp, vi searches forward through the file for the first
occurrence of regexp and sets the current line indicator to that line. ?regexp
is similar to /regexp except that vi searches through the file backwards. If
you omit line and do not specify a file, the value of the current line indicator
does not change. Otherwise, if a file is specified, the current line indicator is
set to either the first or last line of the buffer, depending on whether the
command was issued in vi or ex mode.

f[ile] [file]
Changes the current file name to file and marks it [Not edited]. If this file
exists, it cannot be overwritten without using the exclamation mark (!)
variant of the write command.

[1,$] g[lobal] [!] /pat/ [commands]
Matches pat against every line in the given range. On lines that match, the
commands are run. If the exclamation mark (!) variant is set, the
commands are run on lines that do not match. This is the same as using
the vi command.

The global command and the undo command cannot occur in the list of
commands. A subsequent undo command undoes the effect of the entire
global command. In ex mode, multiple command lines can be entered by
ending all but the last with a backslash (\). Commands that will take input
are permitted; the input is included in the command list, and the trailing
period (.) can be omitted at the end of the list. For example:
g/rhino/a\
hippo

appends the single line hippo to each line containing rhino. delim is an
arbitrary, nonalphabetic character. The total length of a global command list
is limited (see “Limits” on page 727).

vi

Chapter 2. Shell Command Descriptions 713

[.] i[nsert][!]
Enter ex INSERT mode, reads text and places it before the specified line.
Otherwise, this is identical to the append command. This command cannot
be entered from vi mode.

[.,.+1] j[oin][!] [count] [flags]
Joins together the lines of text within the range. Unless an exclamation
mark (!) is specified, all white space between adjacent joined lines is
deleted. Two spaces are provided if the previous line ended in a period, no
spaces if the joined line begins with a opening parenthesis, and one space
otherwise.

[.] k x Synonymous with the mark command.

[.,.] l[ist] [count] [flags]
Displays the line range in a visually unambiguous manner. This command
displays tabs as ^I, and the end of lines as $. The only useful flag is #, for
line numbering. The current line indicator points to the last line displayed.

map[!] lhs rhs
This defines macros for use in vi. The lhs is a string of characters;
whenever that string is typed exactly, vi behaves as if the string rhs had
been typed. If lhs is more than one character long, none of the characters
are echoed or acted on until either a character is typed that isn’t in the lhs
(in which case all the characters up to that point in the lhs are run) or the
last character of lhs is typed. If the variable remap is set, rhs itself can
contain macros. If the flag ! is specified, the map applies within vi INSERT
mode; otherwise it applies to command mode. A map command with no
arguments lists all macros currently defined.

[.] ma[rk] x
Records the specified line as being marked with the single lowercase letter
x. The line can then be addressed at any point as ’x.

[.,.] m[ove] [addr] [flags]
Moves the specified line range after the addr given. If addr is zero, the text
is moved to the start of the file. The current line indicator is set to the last
line moved.

n[ext][!] [+command] [file ...] [ext][!] [+command] [file ...]
Begins editing the next file in the file list (where the file list was either
specified on the command line or in a previous next command). If the
current file has been modified since the last write, ex usually prevents you
from leaving the current file. You can get around this by specifying an
exclamation mark (!). If the autowrite is set, the current file is written
automatically and you go to the next file. If a list of files is specified, they
become the new file list. If necessary, expressions in this list are expanded.
Thus:
next *.c

sets the file list to all the files in the current directory with names ending in
.c (typically C source files).

[.,.] nu[mber] [count] [flags] [.,.] # [count] [flags]
Displays the specified line range with leading line numbers. The current line
indicator points to the last line displayed.

[.] o[pen] [pat] [flags]
Enters open mode, which is simply vi mode with a oneline window. If a

vi

714 z/OS V1R4.0 UNIX System Services Command Reference

match is found for the regular expression pat in the specified line, then the
cursor is placed at the start of the matching pattern.

pre[serve]
Saves the current buffer in a form that can later be recovered using the –r
option on the recover command. vi sends you mail telling you that you can
recover this file and explains how to do so.

[.,.] p[rint] [count] [flags]
Displays the specified line range. The current line indicator points to the last
line displayed.

[.] pu[t] [buffer]
Pastes deleted or yanked lines back into the file after the given line. If no
buffer name is given, the most recently changed buffer is used.

Because the edit command does not destroy buffers, you can send that
command in conjunction with put and yank to move text between files.

q[uit][!]
Exit from vi or ex. If the current file has been modified, an exclamation
mark (!) must be used or you cannot exit until you write the file.

[.] r[ead] [!][file]
Reads the contents of file and inserts them into the current file after the
given line number. If the line number is 0, the contents of the given file are
inserted at the beginning of the file being edited. If the current filename is
not set, a file must be given, and it becomes the current file name;
otherwise, if a file is given, it becomes the alternate file name. If the file
begins with an exclamation mark (!), then it is taken as a system
command. Pipes are used to read in the output from the command after the
given line number.

rec[over] file
Attempts to recover file if it was saved as the result of a preserve
command or a system or editor crash. If you do not specify file, this
command displays a list of all recoverable files.

rew[ind][!]
Rewinds the file argument list back to the beginning and starts editing the
first file in the list. If the current file has been modified, an exclamation mark
(!) must be specified; otherwise, you cannot leave the current file until you
have written it out. If autowrite is set, the current file is written out
automatically if it needs to be.

se[t] [parameter-list] [t] [parameter-list]
Assigns or displays the values of option variables, If you do not specify a
parameter list, set displays all the variables with values that have changed
since the editing session started. If the parameter all is specified, ex
displays all variables and their values. You can use the parameter list to set
or display each of many variable values. Each argument in the list is a
variable name; if it is a Boolean variable, the value is set on or off
depending on whether the name is prefixed by no. Non-Boolean variables
alone in an argument are a request to display their values. A Boolean
variable’s value can be displayed by following the name by a question mark
(?). You can set numeric or string variables with:
name=value

In a string variable, spaces must be preceded by a backslash. For example:
set readonly? noautowrite shell=/bin/sh

vi

Chapter 2. Shell Command Descriptions 715

shows the value of the readonly flag, sets noautowrite, and sets the shell
to /bin/sh.
set report report=5

shows the value of the report variable, and then set the value to 5. See
“Set Option Variables” on page 719 for more details.

sh[ell] Invokes a child shell. The environment variable SHELL is used to find the
name of the shell to run.

so[urce] file
Runs editor commands from file. A file being executed with source can
contain source commands of its own.

st[op] Suspends the editor session and returns to system level. For more
information, see the description of the vi command Ctrl-Z on page 708.

[.,.] s[ubstitute] [/pat/repl/] [options] [count] [flags]
Searches each line in the line range for the regular expression pat and
replaces matching strings with repl.

Normally, ex only replaces the first matching string in each line. If options
contains g [global], all matching strings are changed.

If options contains c [confirm], ex first prints the line with caret (^)
characters marking the pat matching location; you can then type y if you
want ex to go ahead with the substitution. pat cannot match over a line
boundary; however in ex mode, repl can contain a newline, escaped by a
preceding backslash (\). See Appendix C, “Regular Expressions (regexp)”
on page 805 for full information on both pat and repl. If there is no pat or
repl, ex uses the most recently specified regular expression or replacement
string. You can use any nonalphabetic character in place of the slash (/) to
delimit pat and repl.

su[spend]
This is synonymous with the stop command.

[.,.] t addr [flags]
This is synonymous with the copy command.

ta[g][!] tagname
Looks up tagname in the files listed in the variable tags. If the tag name is
found in a tags file, that file also contains the name of the file that contains
the tag and a regular expression required within that file to locate that tag. If
the given file is different from the one you are currently editing, ex normally
begins editing the new file. However, if you have modified the current file
since the last time it was written out, ex does not start editing a new file
unless the tag command contains an exclamation mark (!). If autowrite is
on, the current file is automatically written out and the new file read in.
When the new file is read in, the regular expression from the tags file is
invoked with the magic variable off.

Tag names are typically used to locate C function definitions in C source
files. The first step is to create a tags file using the ctags command. After
you do this, you can use the ex tag command to look up a particular
function definition and go directly to that definition in the file that contains it.

All characters in tag names are significant unless the variable taglength is
nonzero; in this case, only the given number of characters are used in the
comparison.

vi

716 z/OS V1R4.0 UNIX System Services Command Reference

una[bbreviate] lhs
The abbreviation lhs previously created by abbreviate is deleted.

u[ndo]
Undoes the last change or set of changes that modified the buffer. Globals
and vi macros are both considered as single changes that can be undone.
A second undo undoes the undo restoring the previous state. The edit
command cannot be undone, because it cleans up the temporary file which
is used to maintain undo information. You cannot undo operating system
commands and commands that write output to the file system.

unm[ap][!] lhs
Deletes the lhs map. If the flag ! is used, this applies to the insert mode
maps; otherwise it applies to the command mode maps.

[1,$] v /pat/ commands
This is a synonym for the global command with the ! flag; that is, a global
for all nonmatching lines. You can use any nonalphabetic character to
delimit pat instead of the slash (/).

ve[rsion]
Displays the current version information for vi or ex.

[.] vi[sual] [type] [count] [flags]
Enters vi mode. If no type is specified, the current line is at the top of the
screen. If type is caret (^), the bottom line of the screen is one window
before the current line. If type is a minus sign, (–), the current line is at the
bottom of the screen. If type is a period (.), the current line is in the middle
of the screen.

You can use the undo command to undo all the changes that occurred
during the vi command.

[1,$] w[rite][!] [>>] [file]
Writes the given range of lines to file. If two right angle brackets (>>) are
included, the lines are appended to the current contents of the file. If the
current file name is not set, a file must be given. This becomes the current
file name. Otherwise, file becomes the alternate filename if it is specified. If
the file begins with an exclamation mark (!), then it is taken as a system
command. vi writes the given range to the command through a pipe.

If a file is given, it must not already exist. The variable READONLY must
not be set. If a file is not given, the file must be edited; that is, it must be
the same file as that read in. All these conditions can be overridden by
using the flag !.

[1,$] wn[!] [>>] [file]
Similar to write, except that it begins editing the next file in the file list
immediately afterwards (if the write is successful).

[1,$] wq[!] [>>] [file]
Similar to write, except that it exits the editor immediately afterwards (if the
write is successful).

x[it] If you have modified the current file since the last write, performs a write
command using the specified range and file name and then terminates.

[.,.] y[ank] [buffer] [count]
Copies the given line range to the specified buffer (a letter from a through
z). If a buffer is not specified, the unnamed buffer is used. Buffers are not
destroyed by an edit command, so yank and put can be used to move text
between files.

vi

Chapter 2. Shell Command Descriptions 717

Because the edit command does not destroy buffers, you can use that
command in conjunction with put and yank to move text between files.

[.+1]z [type] [count] [flags]
Displays count lines. If no count is specified, ex uses the current value of
the scroll variable. The lines are displayed with the given line located
according to the type. If type is a plus sign (+), the editor displays the given
line and a screenful after that. If type is a period (.), the editor displays
screenful with the given line in the middle. If type is a minus sign (-), the
editor displays a screenful with the given line at the end. If type is a caret
(^), the editor displays the screenful before that. If type is an equal sign (=),
the current line is centered on the screen with a line of hyphens printed
immediately before and after it. The current line indicator points to the last
line displayed.

[.,.] <[<...] [count] [flags]
Shifts the line range by the value of the shiftwidth variable. If there are
multiple left angle brackets (<), each one causes another shift. The current
line indicator points to the last line displayed. If a count is specified, that
many lines are shifted.

[.,.] >[>...] [count] [flags]
Shifts the line range right by the value of the shiftwidth variable. If there
are multiple right angle brackets (>), each one causes another shift. The
current line indicator points to the last line displayed. If a count is specified,
that many lines are shifted.

[range] ! command
Submits command to be run by the command interpreter named by the
SHELL variable. If range is given, the command is invoked with the
contents of that line range as input. The output from the command then
replaces that line range. Thus:
1,$!sort

sorts the entire contents of the file.

Substitutions are made in command before it is run. Any occurrences of an
exclamation mark (!) are replaced by the previous command line, while
occurrences of percentage (%) and hash mark (#) characters are replaced
with the pathnames of the current and alternate files, respectively. If any
such substitutions actually take place, the new command line is displayed
before it is executed. (See the read and write sections in “ex Command
Mode” on page 709 for more information about the current and alternative
files.)

If the file has been modified and the variable autowrite is on, the file is
written before calling the command. If autowrite is off, a warning message
is given.

[$] = Displays the given line number. The default line number is the last line of
the file. The current line indicator is not changed.

“ a line of text
This is a comment.

[.,.] & [options] [count] [flags]
Repeats the last substitute command. If any options, count, or flags are
specified, they replace the corresponding items in the previous substitute
command.

vi

718 z/OS V1R4.0 UNIX System Services Command Reference

[.,.] ~ [options] [count] [flags]
Repeats the last substitute command. However, the regular expression
that is used is the last regular expression; that is, if there has been a
search, the search’s regular expression is used. The simple substitute with
no arguments, or the & command, uses the regular expression from the
previous substitute. substitute with an empty regular expression uses the
last regular expression, like ~. If any options, count, or flags are specified,
they replace the corresponding items in the previous substitute command.

@ buffer
Executes each line in buffer as an ex command. If you do not specify buffer
or if you specify a buffer named @, the last buffer executed is used.

Ctrl-D Displays the number of lines of text given by the scroll variable. The
current line indicator points to the last line displayed.

Special Characters in ex Commands
When an ex command contains the percentage character (%), the character is
replaced by the name of the current file. For example, if you are about to try out a
macro and you are worried that the macro may damage the file, you could issue:
!cp % /tmp

to copy the current file to a safe holding place. As another example, a macro could
use the percentage character (%) to refer to the current file.

When an ex command contains the hash mark (#), the character is replaced by the
name of the alternate file. The name of the alternate file can be set with the read
command as described previously. Thus a command like:
e #

tells ex to edit the alternate file. Using an alternate file can be particularly
convenient when you have two files that you want to edit simultaneously. The
command just given lets you flip back and forth between the two files.

Set Option Variables
Options are set with the set command. For example:
set autowrite

sets the autowrite option. For options which are flags, i.e., are not numeric, the
variables can be turned off by putting no in front of the name in the set command,
as in:
set noautowrite

In the following list, variables that are off by default are preceded by no. The
minimal abbreviation of each option is shown after the comma. Default values are
shown after the equal sign (=).

autoflush, af
When this option is set, it holds the maximum number of seconds of data a
user would lose if a system crash occurs. vi will flush memory out to its
temporary files approximately this many seconds, unless no changes have
been made to the current edit buffer, or the user is sitting idle. It allows you
to eventually recover a more current representation of your edit buffer (after
the exrecover daemon and vi —r is run) because it intermittently updates
vi’s temporary files which are used by the exrecover daemon.

vi

Chapter 2. Shell Command Descriptions 719

Note the following:

v The default is set to 120 seconds (2 minutes).

v To turn off this option, set autoflush to 0.

v This option has no effect on read-only files.

v This option is different than the previous preserve option because it
works with vi’s temporary files (whose location is specified by the
environment variables: TMP_VI, TMPDIR or TMP) as opposed to
recovered files found in /etc/recover/$LOGNAME.

autoindent, ai
When autoindent is on and you are entering text, the indentation of the
current line is used for the new line. In vi mode, you can change this
default indentation by using the control keys Ctrl-D (to shift left) or Ctrl-T to
shift right. In ex mode, a tab or spaces can be typed at the start of a line to
increase the indent, or a Ctrl-D can be typed at the start of the line to
remove a level. ^Ctrl-D temporarily removes the ident for the current line.
0Ctrl-D places the current line at a zero indent level, and the next line has
this indent level as well.

The size of indent levels is defined by the variable shiftwidth.. Based on
this value and the value of tabstop, the editor generates the number of tabs
and spaces needed to produce the required indent level.

The default is noautoident.

autoprint, ap
When this option is set in ex mode, the current line is printed after the
following commands: copy, delete, join, move, substitute, undo, &, ~, <,
and >. Automatic displaying of lines does not take place inside global
commands.

The default is autoprint.

autowrite, aw
When this option is on, the current file is automatically written out if it has
been changed since it was last written and you have run any of the
following commands: next, rewind, tag, Ctrl-^ (vi), and Ctrl-] (vi). Using
an exclamation mark (!) with any of these commands stops the automatic
write.

The default is noautowrite.

beautify, bf
When this option is on, the editor discards all nonprinting characters from
text read in from files.

The default is nobeautify.

cdpath Used by cd to find relative pathnames when changing the directory. You
must delimit entries with a colon (:). If the current directory is to be included
in the search, it must be indicated by a dot (·). cdpath defaults to the
contents of the CDPATH environment variable if it exists, or to dot (·) if it
doesn’t.

directory, dir
The editor uses temporary files with unique names under the given
directory. Any error on the temporary files is fatal.

The default is directory=tmp.

vi

720 z/OS V1R4.0 UNIX System Services Command Reference

edcompatible
When this option is on, the editor attempts to make substitution commands
behave in a way that is compatible with the ed editor. The g and c options
on the substitute commands are remembered and toggled by their
occurrence. The r option uses the last regular expression rather than the
last substitute regular expression. Percentage mark (%) as the entire pattern
is equivalent to the previous pattern.

The default is nocompatible.

errorbells, eb
When this option is on, vi precedes error messages with the alert character.
When it is off, the editor warns you of an error by displaying a message
using a standout mode of your terminal (such as reverse video).

The default is noerrorbells.

exrc When this option is on, ex and vi access any .exrc files in the current
directory during initialization. If it is off, ex and vi ignore such files unless
the current directory is the HOME directory.

home Used as the destination directory by cd. If no path is specified, home
defaults to the contents of the HOME environment variable if it exists, or to
the vi startup directory if it does not.

ignorecase, ic
When this option is on, the case of letters is ignored when matching strings
and regular expressions.

The default is noignorecase.

linedelete
vi sets the line delete character automatically to the current terminal line
delete character, as specified by the user. Within vi, you can set the line
delete character with the linedelete variable. The value you specify is the
numeric value of the line delete character. The default is 0x15, the ASCII
value for Ctrl-U. Another popular value is 0x18 for Ctrl-X.

list When this option is on, tabs are displayed as a caret mark (^) rather than
expanded with blanks, and the ends of lines are indicated with a dollar sign
($).

The default is nolist.

magic When this option is off (nomagic), regular expression characters ^ \ and $
become the only ones with special meanings. All other regular expression
metacharacters must be preceded by a backslash (\) to have their special
meaning.

The default is magic.

maxbuffers
The number of K units (1024 bytes) of memory to be used for the editor
buffers. These are allocated in units of 16K.

The default is maxbuffers=512, but if that is not available upon entry, this is
set to the number actually obtained. At least 32K is needed. This is in
addition to the code and data space required by vi; this may be as much as
128K. Changing maxbuffers has no effect.

mesg When this option is on, ex allows others to use the write or talk commands
to write to your terminal while you are in visual mode. The command
mesg n

vi

Chapter 2. Shell Command Descriptions 721

overrides this variable (see mesg). This option has no effect on systems
not supporting mesg.

number, nu
When this option is on, line numbers are displayed to the left of the text
being edited.

The default is nonumber.

paragraphs
This list of character pairs controls the movement between paragraphs in vi
mode. Lines beginning with a period (.) followed by any pair of characters
in the list are paragraph boundaries (for example, .IP). Such lines are
typically commands to text formatters like nroff or troff.

The default is paragraphs="IPLPPPQPP LIpplpipbp""

prompt When this option is on, ex command mode prompts with a colon (:). No
prompts are given if input is not being read from a terminal.

The default is prompt.

pwd This is a read-only variable. The value always refers to the current working
directory, and can only be changed by the cd command.

quiet When this option is on, vi does not display file information messages.

The default is set by the –s option.

READONLY
When this option is on, vi does not let you write to the current file.

The default is based on the permissions of the current file. If you do not
have write permission on this file, the default is READONLY. Otherwise, the
default is set by the –R option.

remap If this option is on and a map macro is expanded, the expansion is
reexamined to see if it also contains map macros.

The default is remap.

report The editor displays a message whenever you issue a command that affects
more than this number of lines.

The default is report=5.

restrict
All filenames are restricted to the current directory. Subcommands cannot
be called. This variable is automatically set if you invoke the editor with a
command that starts with the letter r, as in rvi. When the option is turned
on, it cannot be turned off.

The default is norestrict.

scroll This sets the number of lines to scroll for the z ex and Ctrl-D (ex)
commands.

The default is the value of the variable window, divided by two.

sections
This list of character pairs controls the movement between sections in vi
mode. Lines beginning with a period (.) followed by any pair of characters
in the list are section boundaries (for example, .SH). Such lines are typically
commands to text formatters like nroff or troff.

The default is sections="SHNHH HU"

vi

722 z/OS V1R4.0 UNIX System Services Command Reference

shell=,sh
This is the name of the command interpreter to be used for ! commands
and the shell command. The default value is taken from the SHELL
environment variable.

shiftwidth=, sw
This sets the width of indent used by shift commands and autoindent.

The default is shiftwidth=8.

showmatch, sm
If this option is on and you type a closing parenthesis or closing brace in
input mode, the cursor moves to the matching open parenthesis or brace. It
stays there for about one second and then moves back to where you were.
This lets you note the relationship between opening and closing
parentheses/braces.

The default is noshowmatch.

showmode
When this option is on, vi displays an indicator in the bottom right-hand
corner of the screen if you are in Insert/Open/Change/Replace mode. If no
indicator is displayed, you are in Command mode.

The default is noshowmode.

tabstop
Tab stops for screen display in vi mode are set to multiples of this number.

The default is tabstop=8.

taglength, tl
If this variable is nonzero, tags are only compared for this number of
characters.

The default is taglength=0.

tags The value of this variable should be a list of file names separated by a
backslash (\) followed by a space. If there is no backslash before the
space, vi treats the second and subsequent tags as part of an
option=value combination. For example:
set tags=file1\ file2\ file3\

These are used by the tag ex command and the Ctrl-] vi command. The
files are typically created with the ctags program.

The default is tags=tags.

term The value of this variable is the terminal type. The TERM environment
variable specifies this variable’s default value.

terse If this option is on, messages are displayed in a very abbreviated form. The
default is noterse.

warn When this option is on, commands with an exclamation mark (!) print a
warning message if the current file has been modified. No message is
printed if this option is off.

The default is warn.

window This variable gives the number of text lines available in vi mode or the
default number of lines to display for the command.

vi

Chapter 2. Shell Command Descriptions 723

The default is given by the –w option. If it is not specified with the –w
option, its value defaults to the environment variable LINES or the value
found in the terminfo database for TERM.

wrapmargin wm
If this variable is nonzero in vi insert mode, when a line reaches this
number of characters from the right of the screen, the current word moves
down to the next line automatically; you don’t have to press ENTER.

The default is wramargin=0.

wrapscan, ws
If this option is off, forward searches stop at the end of the file and
backward searches stop at the beginning.

The default is wrapscan

writeany, wa
If this option is off, the editor does not let a file marked [Not edited]
overwrite an existing file.

The default is nowriteany.

Editor Initialization
Initialization code consists of one or more ex commands that run when the editor
starts up. Initialization code can be obtained in several ways:

1. If there is an environment variable named EXINIT with a nonnull value, it is
assumed to hold initialization code. vi executes this code using an ex source
command.

2. If EXINIT does not exist or has a null value, the editor tries to find a file named
.exrc. If you have an environment variable named HOME, the value of this
variable is assumed to be the name of your home directory. vi runs the .exrc
file using an ex source command.

3. If EXINIT variable or the $HOME/.exrc file sets the option variable exrc and if
there is a file named .exrc under the current directory, it is assumed to hold
initialization code. vi runs this code using an ex source command.

All .exrc files must be owned by the same user ID that invoked the vi command,
and must only be writable by that user ID. Typical permissions for a .exrc file would
be 744.

The .exrc file is read as if it were a sequence of keystrokes typed at the beginning
of an ex session. As a result, the contents of .exrc must be the same as the
characters you would type if you were in vi or ex. In particular, if the input contains
an unusual character (for example, a carriage return) that you would usually
precede with Ctrl-V, there must be a Ctrl-V in the .exrc file. If you are creating an
.exrc file with vi, you must type Ctrl-V Ctrl-V to put a Ctrl-V character into your
initialization file, then Ctrl-V followed by the special character to put the special
character into your initialization file. The .exrc file must show both Ctrl-V and the
special character. A command specified in the .exrc file may be ignored (treated as
a comment) by beginning that line with a double quote (″) character.

Files
vi uses the following files:

/tmp Directory used for temporary files if TMP_VI, TMPDIR and TMP are not
defined.

vi

724 z/OS V1R4.0 UNIX System Services Command Reference

/tmp/VInnnnn.mmm
Temporary files.

.exrc Startup file.

Environment Variables
vi uses the following environment variables:

CDPATH
Contains a list of directories to be searched.

COLUMNS
Contains the number of columns between the left and right margins (see
option variable wrapmargin). This is also used as the horizontal screen
size.

ENV Contains the pathname of a file containing KornShell commands. When you
invoke sh, it executes this file before doing anything else.

EXINIT
Contains a list of vi commands to be run when the editor is started up.

HOME Contains the directory to be searched for the editor startup file.

LINES Contains the number of lines in a screenful (see option variable windows).
This is also used as the vertical screen size.

PATH Contains a list of directories to be searched for the shell command specified
in the ex commands read, write, and shell.

READONLY
Specifies that files cannot be written to.

SHELL
Contains the name of the command interpreter for use in !, shell, read,
write, and other ex commands with an operand of the form !string. The
default is the sh utility.

TERM Contains the name of the terminal type.

TERMINFO
Contains the pathname of the terminfo database.

TMPDIR
Contains the pathname that the shell uses as the directory for temporary
files.

TMP_VI
Contains a directory pathname that can be specified by an administrator as
a location for vi’s temporary files. This is useful if the current default
directory for these files (usually /tmp) is implemented as a TFS. In this
case, all vi’s temporary files that the exrecover daemon uses for recovery
would be gone after a system crash.

We recommend that this environment variable be set by a system
administrator as opposed to a user setting it for their environment. If the
latter occurs, and the user sets the TMP_VI directory to something different
than what exrecover recognizes as TMP_VI, the user will need to run the
exrecover daemon manually to allow the temporary files to be converted to
the recoverable files used by vi (located in /etc/recover/$LOGNAME).

Note: A system administrator should NOT set TMP_VI to
/etc/recover/$LOGNAME. Also, the administrator should not set

vi

Chapter 2. Shell Command Descriptions 725

TMP_VI to any directory where a pathname component is an
environment variable with a user’s value different than the init
process’s value (eg. $HOME). vi’s temporary files are converted into
a form recoverable by vi when exrecover is run during IPL. Since
exrecover is issued during IPL, it is owned by the init process and
will therefore contain different values for certain environment
variables, if those environment variables are set. Throughout the file
system, there may exist some temporary files that can only be
converted by exrecover. This conversion can be done manually by a
system administrator (to recover files owned by all users) or by a
single user (to recover only their own files).

Localization
vi uses the following localization environment variables:
v LANG
v LC_COLLATE
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure due to any of the following:

v Unknown option
v No such command from open/visual
v Missing lhs
v Missing filename
v System does not support job control
v Write forms are w and w>>
v Internal error: bad seek pointer
v Internal error: Line out of range
v Internal error: line too long
v Nonzero address required on this command
v No lines in the buffer
v Nothing to undo
v Cannot escape a newline in global from visual
v Global command too long
v Argument list too long
v File is read only
v No previous command to substitute for !
v Command too long
v No previous regular expression
v Buffers are 1–9, a–z
v Line too long
v System does not support job control
v Digits required after =
v Nothing in buffer
v Missing rhs
v Too many macros
v Recursive map expansion
v Nothing to repeat
v Last repeatable command overflowed the repeat buffer

vi

726 z/OS V1R4.0 UNIX System Services Command Reference

v Bad tag
v No tags file
v No such tag in tags file
v Negative address—first buffer line is 1
v Not an editor command
v Unimplemented ex command
v Wrong number of addresses for command
v Mark requires following letter
v Undefined mark referenced
v Global within global not allowed
v First address exceeds second
v Cannot use open/visual unless open option is set
v Regular expression \ must be followed by / or ?
v No address allowed on this command
v No more files to edit
v No current filename
v Extra characters at end of command
v Not that many lines in buffer
v Insufficient memory
v Restricted environment
v Command too long
v Trailing address required
v Destination cannot straddle source in m and t
v No filename to substitute for %
v No alternate filename to substitute for #
v Filename too long
v Too many filenames
v Argument buffer overflow
v Incomplete shell escape command
v Regular expressions cannot be delimited by letters or digits
v No previous scanning regular expression
v No previous substitute to repeat
v Cannot escape newlines into regular expressions
v Missing [
v Badly constructed regular expression
v No remembered regular expression
v Line overflow in substitute
v Replacement pattern contains \d—cannot use in regular expression
v Replacement pattern too long
v Regular expression too complicated
v Cannot escape newline in visual
v No such set option
v String too long in option assignment

Limits
v Maximum number of lines: 65 279 (64K - 256 - 1).

v Length of longest line: 1K (1024) bytes including \r\n.

v Longest command line: 256 bytes.

v Length of filenames: 128 bytes.

v Length of string options: 64 bytes.

v Length of remembered regular expressions: 256 bytes.

v Number of map, map!, and abbreviate entries: 64 each.

v Number of saved keystrokes for . in vi: 128.

vi

Chapter 2. Shell Command Descriptions 727

v Length of the lhs of map, map!, or abbreviate: 10 bytes.

v Max number of characters in a tag name: 30.

v Number of characters in a : escape from vi: 128.

v Requires 128K of memory plus the set option maxbuffers K of auxiliary memory.
During startup, maxbuffers is changed to reflect available memory; at least 32K
is required.

v Number of nested source files is 3.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
ed, ex, fg, jobs, mesg, sed, talk, write

For more information about regexp, see Appendix C.

wait — Wait for a child process to end

Format
wait [pid|job-id ...]

tcsh shell: wait

Description
wait waits for one or more jobs or child processes to complete in the background. If
you specify one or more job-id arguments, wait waits for all processes in each job
to end. If you specify pid, wait waits for the child process with that process ID (PID)
to end. If no child process has that process ID, wait returns immediately.

If you specify neither a pid nor a job-id, wait waits for the process IDs known to the
invoking shell to complete.

wait in the tcsh shell
The tcsh shell waits for all background jobs. If the shell is interactive, an interrupt
will disrupt the wait and cause the shell to print the names and job numbers of all
outstanding jobs. See “tcsh — Invoke a C shell” on page 570.

Localization
wait uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Usage Notes
wait is a built-in shell command.

vi

728 z/OS V1R4.0 UNIX System Services Command Reference

Exit Values
If one or more arguments (pid or job-id) are specified, the exit status of wait is the
exit status of the last argument.

If you specified a job-id that has terminated or is unknown by the invoking shell, an
error message and a return code of 127 is returned. If you specified a pid that has
terminated or is unknown to the shell, a return code of 127 is returned. If a signal
ended the process abnormally, the exit status is a value greater than 128 unique to
that signal. Otherwise, possible exit status values are:
0 Successful completion or wait was invoked with no arguments, and all child

processes known to the invoking shell have completed.
1–126 An error occurred
127 A specified pid or job-id has terminated or is unknown by the invoking shell

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sleep, tcsh

wall — Broadcast a message to logged-in users

Format
wall [message]

Description
wall sends a message to all logged-in users. Type each line, pressing Enter after
each. After you finish typing the message, enter End-of-File or an interrupt (typically,
<EscChar-D> for End-of-File or <EscChar-C> for an interrupt, where EscChar is
normally the cent sign; if you use rlogin or telnet to enter the shell, you hold down
the Ctrl key while you press either D or C).

You must be a superuser to ensure permission to write to all the ttys that are
logged in. If you are not a superuser, then writes to all ttys will fail (except your
own) and those users will not receive the message. Superusers can also get
failures if the /etc/utmpx file does not correctly represent the users currently logged
in.

Recipients of the message receive a beep announcing the message. The message
is displayed in this form:
Broadcast Message from SWEHR@AQFT (ttyp0006) at 10:43:54 (EDT5EST)...

This is the text of the message line1.
This is line2.

Exit Values
0 wall successfully sent the message to all users.

1 Failure due to any of the following:
v No message was entered in response to the prompt.
v You do not have permission to write to a user’s terminal.

wait

Chapter 2. Shell Command Descriptions 729

wc — Count newlines, words, and bytes

Format
wc [–c|–m] [–lw] [file ...]

Description
wc tells you how big a text document is. It counts the number of <newline>s,
words, characters, and bytes in text files. If you specify multiple files, wc produces
counts for each file, plus totals for all files.

Options
–c Prints a byte count. You cannot specify this option with –m.
–l Prints a <newline> count
–m Prints a character count. You cannot specify this option with –c.
–w Prints a word count

The order of options can dictate the order in which wc displays counts. For
example, wc –cwl displays the number of bytes, then the number of words, then
the number of <newline>s. If you do not specify any options, the default is wc –lwc
(<newline> count, then words, then bytes).

A word is considered to be a character or characters delimited by white space.

Note: If you have a file containing doublebyte characters, the byte count is higher
than the character count.

Localization
wc uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Failure because of an inability to open the input file
2 Failure because of an incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The way the order of options –c, –l and –w affects the order of display is an
extension to traditional implementations of wc.

Related Information
awk, ed, vi

wc

730 z/OS V1R4.0 UNIX System Services Command Reference

whence — Tell how the shell interprets a command name

Format
whence [–v] name ...

Description
whence tells how the shell would interpret each name if used as a command name.
Shell keywords, aliases, functions, built-in commands, and executable files are
distinguished. For executable files, the full pathname is given. If the executable file
is a tracked alias, the string identifies it as cached.

Options
–v Gives a more verbose report.

Usage Notes
whence is a built-in shell command.

Localization
whence uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion
1 Command name could not be found
2 Failure due to an incorrect command-line argument

Portability
POSIX.2.

Related Information
command, sh

who — Display information about current users

Format
who[–AabdHilmprsTtuw] [file]
who –q[file]
who am I|i

Description
who displays information about users who are logged into the system. By default,
the output contains the user’s login name, terminal name, and the time that the user
logged in. Normally, who consults the file /etc/utmpx for information, but you can
use the file argument to specify another accounting file.

whence

Chapter 2. Shell Command Descriptions 731

When called as:
who am i

or
who am I

who displays your login name, terminal, and login time. This command works only
in the POSIX locale.

Options
–A Displays all accounting entries.

–a Displays all types of entries. This is equivalent to specifying
–AbdHilprTtuw.

–b Displays all entries written at system boot time.

–d Displays entries produced after the death of a process spawned from
/usr/sbin/init.

–H Displays column headings above the output.

–i Displays idle time for users. The idle time is the hours:minutes since the
last activity; a dot (.) means that the terminal has been used in the last
minute, and the string old means that the terminal has not been used in
more than 24 hours, or hasn’t been used since boot time.

–l Displays logged-out user entries.

–m Displays information about current terminal only.

–p Displays entries for processes spawned from /usr/sbin/init.

–q Displays a quick list with the number of users and their names; other
options are ignored.

–r Displays all run-level change entries.

–s Displays only the three fields user name, terminal, and time of entry.

–T Displays the state of each terminal as a plus sign (+) if the terminal allows
write access to other users, and a minus sign (–) if write access is denied.
who displays a question mark (?) if the write access cannot be determined.

–t Displays all time change entries (both old and new time).

–u Displays only entries associated with logged-in users. who enables this
option when you do not provide any options on the command line.

–w Displays the terminal state; this indicates whether the terminal can be
written to.

Files
who uses the following files:
/etc/utmpx

Current status file.

Localization
who uses the following localization environment variables:
v LANG
v LC_ALL

who

732 z/OS V1R4.0 UNIX System Services Command Reference

v LC_CTYPE
v LC_MESSAGES
v LC_TIME
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

2 Failure because of an incorrect command-line option, or because of too
many command-line arguments.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide.

The utmpx file format, the options, and the output of who are totally compatible
with UNIX System V.

The –A, –a, –b, –d –i, –l, –p, –r, –s, –t, –w, and am I options are extensions to the
POSIX standard.

Related Information
See the utmpx file format description in Appendix H for more information.

whoami — Display your effective user name

Format
whoami

Description
whoami displays a user name associated with the effective user ID. To display your
login name, use who am i.

For example, if you login as user1, then use the su command to change to user2:

command returned

who am I user1

whoami user2

Exit Values
0 Successful completion

1 Incorrect command line argument

2 Error getting effective username; Displays effective UID

Related Information
who, id

who

Chapter 2. Shell Command Descriptions 733

write — Write to another user

Format
write user_name [terminal]

Description
write lets you send a message directly to the terminal of someone else logged in to
the system.

Options
user_name

Specifies the user to whom you want to send your message.

terminal
Is an optional identifier for use when the other user is logged in on more
than one terminal. The format of the terminal name is the same as returned
by who.

Usage Notes
1. When you issue a write command to send a message to another user, the

other user receives a message of the form:
Message from your_name (terminal) [date] ...

After the system establishes the connection to the other user, it sends two alert
characters (usually beeps) to your terminal to tell you that it is ready to send
your message. You can then type your message, which will appear on the other
user’s terminal. To end your message, enter end-of-file or an interrupt (typically,
<EscChar-D> for end-of-file or <EscChar-C> for an interrupt, where EscChar is
normally the cent sign; if you use rlogin or telnet to enter the shell, you hold
down the Ctrl key while you press either D or C). When write receives an
indication for end-of-message, it tells the other user that the message is over
and breaks the connection.

The other user can reply to your message with:
write your_user_name

However, if both of you are trying to write on each other’s terminal at the same
time, the messages may get interleaved on your screens, making them difficult
to read. For two-way conversations, use talk instead of write.

2. You can add the output of a command to the material that you write. To do this,
start a line with an exclamation mark (!) and put a standard system command
on the rest of that line. write calls your shell to execute the command, and
sends the standard output (stdout) from the command to the other user. The
other user does not see the command itself or any input to the command. For
example, you might write:
Here is what my file contains:
!cat file

3. The mesg command lets you refuse write messages. With:
mesg n

write

734 z/OS V1R4.0 UNIX System Services Command Reference

you can tell the system that you don’t want to be interrupted by write
messages. If people try to write to you, they are denied immediately; the
system does not inform you about such attempts. For further details, see mesg.

Localization
write uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 write successfully wrote a message, or the intended recipient used mesg

to refuse messages (either before you start sending a message or as you
are sending the message).

1 Failure due to any of the following:
v user_name is not signed on
v You do not have permission to write on that user’s terminal
v write cannot open the target terminal for writing
v The command line had an incorrect number of options

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information
mailx, mesg, talk, who

xargs — Construct an argument list and run a command

Format
xargs [–I placeholder] [–i [placeholder]] [–L number] [–l [number]] [–n number]
[–ptx] [–E [eofstr]] [–e [eofstr]] [–s size] [command [argument ...]]

Description
The xargs command line typically contains the skeleton, or template, of another
command. This template looks like a normal command, except that it lacks some
arguments. xargs adds arguments from standard input (stdin) to complete the
command, then runs the resulting command. If more input remains, it repeats this
process.

In a doublebyte locale, some options may accept a doublebyte string as an
argument. In these cases, an incorrect doublebyte string would be detected during
command-line parsing.

Options
xargs gets the needed arguments from stdin. Different options tell how stdin is to
be interpreted to obtain these arguments.

write

Chapter 2. Shell Command Descriptions 735

–I placeholder
Specifies that each line in stdin be considered as a single argument. The
placeholder following the –I is a string that can appear multiple times in the
command template. xargs strips the input line of any leading white-space
characters and inserts it in place of the placeholder string. For example,
with:
xargs –I ’{}’ mv dir1/’{}’ dir2/ ’{}’

stdin should consist of lines giving names of files that you want moved
from dir1 to dir2. xargs substitutes these names for the {} placeholder in
each place that it appears in the command template.

When xargs creates arguments for the template command, no single
argument can be longer than 255 characters after the input has replaced
the placeholders. The –x option is automatically in effect if –I or –i is used.
If you omit the placeholder string, it defaults to the string { }. Thus we
could write our preceding example as:
xargs –i mv dir1/ ’{}’ dir2/ ’{}’

In a doublebyte locale, placeholder may contain doublebyte characters.

–i placeholder
Behaves like –I, except that the placeholder is optional. If you omit the
placeholder string, it defaults to the string { }. Thus, the previous example
could be written as:
xargs –i mv dir1/ ’{} ’ dir2/’{ } ’
xargs –i /{}/ mv dir1/ ’{}’ dir2/ ’{}

–L number
Specifies that xargs read number lines from stdin and concatenate them
into one long string (with a blank separating each of the original lines).
xargs then appends this string to the command template and runs the
resulting command. This process is repeated until xargs reaches the end of
stdin if there are fewer than number lines left in the file the last time the
command is run, xargs just uses what is there.

With this option, a line must contain at least one nonblank character; blank
lines are skipped and do not count toward the number of lines being added
to the template. xargs considers a line to end at the first newline character,
unless the last character of the line is a blank or a tab; in this case, the
current line is considered to extend to the end of the next non-empty line.

If you omit the –L or –l option, the default number of lines read from stdin
is 1. The –x option is automatically in effect if –l is used.

–l number
Acts like the –L option, but the number argument is optional. number
defaults to 1.

–n number
Specifies xargs is to read the given number of arguments from stdin and
put them on the end of the command template. For example:
xargs –n 2 diff

obtains two arguments from stdin, appends them to the diff command, and
then runs the command. It repeats this process until stdin runs out of
arguments. When you use this option, xargs considers arguments to be
strings of characters separated from each other by white-space characters

xargs

736 z/OS V1R4.0 UNIX System Services Command Reference

(blanks, horizontal tabs, or newlines). Empty lines are always skipped (that
is, they don’t count as arguments). If you want an input argument to contain
blanks or horizontal tabs, enclose it in double quotes or single quotes. If the
argument contains a double-quote character ("), you must enclose the
argument in single quotes. Conversely, if the argument contains a single
quote (’) (or an apostrophe), you must enclose the argument in double
quotes. You can also put a backslash (\) in front of a character to tell xargs
to ignore any special meaning the character may have (for example,
white-space characters, or quotes).

xargs reads fewer than number arguments if:

v The accumulated command line length exceeds the size specified by the
–s option (or {LINE_MAX} if you did not specify –s)

v The last iteration has more than zero, but less than number arguments
remaining

If you do not specify the –n option, the default number of arguments read
from stdin is 1.

Typically, an xargs command uses exactly one of the options just described. If you
specify more than one, xargs uses the one that appears last on the command line.
If the command has none of these options, xargs keeps reading input until it fills up
its internal buffer, concatenating arguments to the end of the command template.
When the buffer is full, xargs runs the resulting command, and then starts
constructing a new command. For example:
ls | xargs echo

prints the names of files in the working directory as one long line. When you invoke
xargs this way, the total length of all arguments must be less than the size
specified by the –s option.

If no command template appears on the command line, xargs uses echo by
default. When xargs runs a command, it uses your search rules to find the
command; this means that you can run shell scripts as well as normal programs.

The command you want to execute should be in your search $PATH.

xargs ends prematurely if it cannot run a constructed command or if an executed
command returns a nonzero status.

If an executed command is a shell program, it should explicitly contain an exit
command to avoid returning a nonzero by accident; see sh for details.

Other Options
You can use the following options with any of the three main options.

–E [eofstr]
Defines eofstr to represent end-of-file on stdin. For example:
–E :::

tells xargs that ::: represents the end of stdin, even if an input file
continues afterward. If there is no –E or –e option, a single underscore (_)
marks the end of the input.

In a doublebyte locale, eofstr may contain doublebyte characters.

xargs

Chapter 2. Shell Command Descriptions 737

–e [eofstr]
Acts like –E but the eofstr argument is optional. If you specify –e without
eofstr, there is no end-of-file marker string, and _ is taken literally instead of
as an end-of-file marker. xargs stops reading input when it reaches the
specified end-of-file marker or the true end of the file.

–p Prompts you before each command. This turns on the –t option so that you
see each constructed command before it is run. Then xargs displays ?...,
asking if you really want to run this command. If you type a string beginning
with y, xargs runs the command as displayed; otherwise, the command is
not run, and xargs constructs a new command.

–s size
Sets the maximum allowable size of an argument list to size characters
(where size is an integer). The value of size must be less than or equal to
the system variable LINE_MAX; if you omit the –s option, the default
allowable size of an argument list is LINE_MAX. The length of the argument
list is the length of the entire constructed command; this includes the length
of the command name, the length of each argument, plus one blank for
separating each item on the line.

–t Writes each constructed command to stderr just before running the
command.

–x Kills xargs if it creates a command that is longer than the size given by the
–s option (or {LINE_MAX} is –s was not specified). This option comes into
effect automatically if you specify –i or –l.

Example
The following displays filenames in three columns:
ls | xargs –n 3 echo

Localization
xargs uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion of all commands
1–125 Failure due to any of the following:

v xargs could not assemble a command line
v One or more invocations of command returned a nonzero exit status.
v Some other error occurred

126 xargs found command but could not invoke it
127 xargs could not find command

Restriction
The maximum length of a constructed command is LINE_MAX bytes.

xargs

738 z/OS V1R4.0 UNIX System Services Command Reference

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The –e, –E, –i, –I, –l, –L, and –p options are extensions of the POSIX standard.

Related Information
echo, find, sh

yacc — Use the yacc compiler

Format
yacc [–dhlmqtv] [–b file.prefix] [–D file.h] [–o file.c] [–p prefix] [–P yyparse.c]
[–V stats] gram.y

Description
yacc converts a context-free LALR(1) grammar found in the input file gram.y into a
set of tables that together with additional C code constitute a parser to recognize
that grammar. If you specify an input file named -, yacc reads the grammar from
the standard input. By default, yacc places the parsing tables and associated C
code into the file y.tab.c.

You can find detailed information on writing parsers using yacc in z/OS UNIX
System Services Programming Tools.

Options
–b file_prefix

Uses file_prefix instead of y as the prefix for all output filenames. For
example, yacc would name the parsing table file_prefix.tab.c rather than
y.tab.c.

–D file.h
Generates the file file.h, which contains the constant definition statements
for token names. This lets other modules of a multimodule program access
these symbolic names. This is the same as –d, except that the user
specifies the include filename.

–d Generates the file y.tab.h, which contains the constant definition statements
for token names. This lets other modules of a multimodule program access
these symbolic names. This is the same as –D, except that the user does
not specify the header filename.

–h Displays a brief list of the options and quits.

–l Disables the generation of #line statements in the parser output file, which
are used to produce correct line numbers in compiler error messages from
gram.y.

–m Displays memory usage, timing, and table size statistics on the standard
output.

–o file.c
Places the generated parser tables into file.c instead of the default y.tab.c.

–P yyparse.c
Indicates that the C parser template is found in the file yyparse.c. If you do
not specify this option, this parser template is located in /etc/yyparse.c.

xargs

Chapter 2. Shell Command Descriptions 739

–p prefix
By default, yacc prefixes all variables and defined parameters in the
generated parser code with the two letters yy (or YY). In order to have more
than one yacc-generated parser in a single program, each parser must
have unique variable names. –p uses the string prefix to replace the yy
prefix in variable names. prefix should be entirely in lowercase because
yacc uses an uppercase version of the string to replace all YY variables. We
recommend a short prefix (such as zz) because some C compilers have
name length restrictions for identifiers. You can also set this identifier with a
%prefix directive in the grammar file.

–q Disables the printing of warning messages.

–t Enables debugging code in the generated parser. yacc does not normally
compile this code because it is under the control of the preprocessor
symbol YYDEBUG.

This option is therefore equivalent to either setting YYDEBUG on the C
compiler command line or specifying #define YYDEBUG statement in the
first section of the grammar.

–V stats
Writes a verbose description of the parsing tables and any possible conflicts
to the file stats.

This is the same as -v except that the user specifies the filename.

–v writes a verbose description of the parsing tables and any possible conflicts
to the file y.output.

Files
yacc uses the following files:
liby.a yacc function library.
y.output

Default statistics file when you specify -v.
y.tab.c

Default file for the generated parser.
y.tab.h

Default header file when you specify –d.
/etc/yyparse.c

Default parser template.

Localization
yacc uses the following localization environment variables:
v LANG
v LC_ALL
v LC_CTYPE
v LC_MESSAGES
v LC_SYNTAX
v NLSPATH

See Appendix F for more information.

Usage Notes
In a doublebyte environment, yacc can use doublebyte characters, although this
practice is possibly nonportable.

1. Comments and rule names can contain doublebyte characters.

yacc

740 z/OS V1R4.0 UNIX System Services Command Reference

2. Doublebyte characters can be used in symbolic token names (generated by
%token statements only if the C preprocessor and compiler will interpret them
correctly. Symbolic token names are converted directly into #define statements
and are then interpreted by the preprocessor and the compiler.

3. You can use doublebyte characters as literal token definitions (a doublebyte
character surrounded by apostrophes), although this will generate a warning
and may create a conflict with an assigned token name.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v number rules never reduced
v Reduce-reduce conflict
v Shift-reduce conflict
v NAME should have been defined earlier
v \000 not permitted
v EOF encountered while processing %union
v EOF in string or character constant
v EOF inside comment
v Use of $number not permitted
v Nonterminal number, entry at number
v Action does not terminate
v Bad %start construction
v Bad syntax in %type
v Bad syntax on $<ident> clause
v Bad syntax on first rule
v Inability to find parser
v Inability to open input file
v Inability to open table file
v Inability to open temporary file
v Inability to open y.output
v Inability to place goto
v Inability to reopen action temporary file
v Default action causes potential type clash
v EOF before %}
v %prec syntax not permitted
v \nnn construction not permitted
v Comment not permitted
v Option not permitted
v Incorrect or missing ’ or "
v Incorrect rule: missing semicolon, or |?
v Internal yacc error
v Incorrect escape, or incorrect reserved word
v Item too big
v More than number rules
v Must return a value, since LHS has a type
v Must specify type for name
v Must specify type of $number
v Newline in string.
v No space in action table
v Nonterminal symbol not permitted after %prec
v Nonterminal symbol never derives any token string
v Nonterminal symbol not defined
v Optimizer cannot open temporary file

yacc

Chapter 2. Shell Command Descriptions 741

v Out of space in optimizer
v Out of state space
v Redeclaration of precedence of symbol
v Redeclaration of type of symbol
v Syntax error
v Token incorrect on LHS of grammar rule
v Too many characters in ID’s and literals
v Too many look-ahead sets
v Too many nonterminals
v Too many states
v Too many terminals
v Type redeclaration of nonterminal symbol
v Type redeclaration of token symbol
v Unexpected EOF before %
v Unterminated < ...> clause
v Working set overflow
v yacc state or nolook error

Messages
Possible error messages include:

No input file
You did not specify a grammar file gram.y on the command line.

No parser produced
Analysis of the input grammar shows that it contains inaccessible or
ungrounded nonterminal symbols. Check the preceding report and revise
the grammar.

Out of memory at size bytes
The specified grammar is too complex to process within the memory
resources of the current configuration.

Limits
yacc dynamically allocates all internal tables so that grammar size and complexity
are limited only by available memory.

Portability
POSIX.2, POSIX.2 C-Language Development Utilities Option, X/Open Portability
Guide, UNIX systems.

The –D, –h, –m, –p, –q, –S, –s, and –V options are extensions of the POSIX
standard.

Related Information
lex

z/OS UNIX System Services Programming Tools

zcat — Uncompress and display data

Format
zcat –DVv [file ...]

yacc

742 z/OS V1R4.0 UNIX System Services Command Reference

Description
zcat takes one or more compressed data files as input. The data files should be
compressed with the compress command. If no data files are specified on the
command line, zcat reads standard input (stdin). You can also pass stdin to zcat
by specifying – as one of the files on the command line.

zcat uncompresses the data of all the input files, and writes the result on standard
output (stdout). zcat concatenates the data in the same way cat does.

The names of compressed input files are expected to end in .Z. If a specified input
file name does not end in this suffix, zcat automatically adds the .Z. For example, if
the command line specifies file abc, zcat looks for abc.Z.

zcat is equivalent to:
uncompress -c

Options
–D Uncompresses files that were compressed using the dictionary option of

compress.

–V Prints the version number of uncompress that zcat calls.

–v Prints the name of each file as it is uncompressed.

Localization
zcat uses the following localization environment variables:
v LANG
v LC_ALL
v LC_MESSAGES
v NLSPATH

See Appendix F for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
v Unknown command line option
v File is not in compressed format
v File was compressed with a number of bits zcat cannot handle
v There is no space for decompress tables
v The compressed file is corrupt

Portability
UNIX systems.

Related Information
cat, compress, uncompress

zcat

Chapter 2. Shell Command Descriptions 743

zcat

744 z/OS V1R4.0 UNIX System Services Command Reference

Chapter 3. TSO/E Commands

This part describes the Time Sharing Option Extensions (TSO/E) OMVS command
that you use to invoke the shell and the TSO/E commands that you can use to work
with the OpenMVS file system.

The OMVS command invokes the z/OS shell. You can enter the OMVS command
from TSO/E or from the ISPF command processor panel.

You can use the man command to view manual descriptions of TSO/E commands.
To do this, you must prefix all commands with tso. For example, to view a
description of the MOUNT command, you would enter:
man tsomount

The commands for working with the file system are:
v BPXBATCH
v ISHELL
v MKDIR
v MKNOD
v MOUNT
v OBROWSE
v OCOPY
v OEDIT
v OGET
v OGETX
v OHELP
v OPUT
v OPUTX
v OSHELL
v OSTEPLIB
v UNMOUNT

You can enter these TSO/E commands from:

v TSO/E

v The Interactive System Productivity Facility (ISPF) command processor panel
(typically, option 6 on the ISPF menu).

Option 6 is usually preferable, because it does not convert into uppercase the
commands that you enter. You should enter a TSO/E command from an ISPF
panel that does not convert all the parameters into uppercase; some panels,
such as the main ISPF panel, convert what you enter into uppercase. z/OS UNIX
System Services is case-sensitive.

v The shell

Notes:

1. The relative pathname is relative to the working directory (usually the HOME
directory) of the TSO/E session, not the shell session.

2. You should use absolute pathnames when entering any TSO/E commands.

3. Avoid using spaces or single quotes within pathnames.

© Copyright IBM Corp. 1996, 2002 745

BPXBATCH — Run shell commands, shell scripts, or executable files

Format
BPXBATCH SH|PGM shell_command|program_name

Description
BPXBATCH makes it easy for you to run, from your TSO/E session, shell scripts or
z/OS C executable files that reside in hierarchical file system (HFS) files.

Note: For additional information on using BPXBATCH in order to run shell scripts
and executable files that reside in hierarchical file system (HFS) files through
the MVS job control language (JCL), see Appendix D, “Running Shell Scripts
or Executable Files under MVS Environments” on page 811.

With BPXBATCH, you can allocate the MVS standard files stdin, stdout, and
stderr as HFS files for passing input or saving output. If you do allocate these files,
they must be HFS files. You can also allocate MVS data sets or HFS text files
containing environment variables (stdenv). If you do not allocate them, stdin,
stdout, stderr, and stdenv default to /dev/null. Allocate the standard files using
the data definition PATH keyword options, or standard data definition options for
MVS data sets, forstdenv. For more information about BPXBATCH, see
Appendix D, “Running Shell Scripts or Executable Files under MVS Environments”
on page 811.

In addition to using BPXBATCH, a user who wants to perform a local spawn without
being concerned about environment set-up (that is, without having to set specific
environment variables which could be overwritten if they are also set in the user’s
profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point
into BPXBATCH, and forces a program to run using a local spawn instead of
fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

The following example contains DD statments that are accessible to a program that
was given control from BPXBATSL:
//jobname JOB ...

//stepname EXEC PGM=BPXBATSL,PARM=’PGM program_name’
/* The following 2 DDs are still available in the program which gets
/* control from BPXBATSL.
//DD1 DD DSN=MVSDSN.FOR.APPL1,DISP=SHR
//DD2 DD DSN=MVSDSN.FOR.APPL2,DISP=SHR
/* The following DDs are processed by BPXBATSL to create file descriptors
/* for stdin, stdout, stderr
//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC
// PATHMODE=SIRWXU
//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC
// PATHMODE=SIRWXU

BPXBATSL is also useful when the user wants to perform a local spawn of their
program, but also needs subsequent child processes to be fork/exec’ed. Formerly,
with BPXBATCH, this could not be done since BPXBATCH and the requested
program shared the same environment variables.

BPXBATSL is an alias of BPXBATCH.

BPXBATCH

746 z/OS V1R4.0 UNIX System Services Command Reference

Parameters
SH|PGM

Specifies whether BPXBATCH is to run a shell script or command, or a z/OS C
executable file located in an HFS file.

If neither SH nor PGM is specified, BPXBATCH assumes that the shell is to be
started in order to run the shell script allocated by stdin.

SH
Specifies that the shell designated in your TSO/E user ID’s security product
profile is to be started and is to run shell commands or scripts provided
from stdin or the specified program_name.

If SH is specified with no program_name information, BPXBATCH attempts
to run anything read in from stdin.

SH is the default.

PGM
Specifies that the program identified by the program_name parameter is
invoked directly from BPXBATCH. This is done either via a spawn or a fork
and exec. BPXBATCH creates a process for the program to run in and then
calls the program. If you specify PGM, you must also specify
program_name.

All environment variables read from the stdenv file are set when the
program is run, if stdenv was allocated. If the HOME and LOGNAME
environment variables are not specified in the stdenv file, or stdenv was not
allocated, then HOME and LOGNAME, if possible, are set when the
program is run.

Note: When using PGM, the program_name cannot contain any shell
specific functions because they will not be resolved. If shell specific
functions must be specified, then SH should be used to avoid
possible errors or unpredictable results.

program_name
Specifies the shell command name or the HFS pathname for the shell script or
z/OS C executable file that you want to run. program_name can also contain
option information. program_name is in uppercase and lowercase letters.

When PGM and program_name are specified and the specified program name
does not begin with a slash character (/), BPXBATCH prefixes the user’s initial
working directory information to the program pathname.

Examples
1. You want to run the shell script you specify with stdin.

ALLOCATE FILE(STDIN) PATH(’/stdin_file_pathname’)
PATHOPTS(ORDONLY)
BPXBATCH SH

2. You want to run the program /usr/bin/payroll.
BPXBATCH PGM /usr/bin/payroll

3. You want to run the script shellscriptA and put its output into the file a.out in a
temporary directory.
BPXBATCH SH /u/usr/joe/shellscriptA > /tmp/a.out

BPXBATCH

Chapter 3. TSO/E Commands 747

ISHELL — Invoke the ISPF shell

Format
ISHELL

Note: An alias of ISHELL is:
ISH

Description
ISHELL invokes the z/OS ISPF shell, a panel interface that helps you to set up and
manage z/OS UNIX System Services functions.

You can use the ISHELL command to:
v List files in a directory
v Create, delete, or rename directories, files, and special files
v Browse files
v Edit files
v Copy files
v Display file attributes
v Search files for text strings
v Compare files or directories
v Run executable files
v Display the attributes and contents of a symbolic link (symlink)
v Mount and unmount a hierarchical file system (HFS)
v Create a hierarchical file system (HFS)
v Set up character special files
v Set up standard directories for a root file system
v Set up existing users and groups for z/OS UNIX System Services access

For more information on setting up TSO/E users, see z/OS UNIX System
Services Planning.

Some of these tasks require either superuser authority (such as mounting,
unmounting, setting up character special files, setting up existing users and groups
for z/OS UNIX System Services access) or the RACF SPECIAL attribute (such as
setting up existing users and groups for z/OS UNIX access).

Field level and panel help are available throughout the dialog. For additional
information on ISHELL, see z/OS UNIX System Services User’s Guide and the
online help panels.

MKDIR — Make a directory

Format
MKDIR ’directory_name’ MODE(directory_permission_bits) STICKY|NOSTICKY

Description
You can use the MKDIR command to create a directory in the file system.

Parameters
directory_name

Specifies the name of the directory to be created. The name can be a relative

ISHELL

748 z/OS V1R4.0 UNIX System Services Command Reference

pathname or an absolute pathname. You must enclose it in single quotes. A
relative pathname is relative to the working directory of the TSO/E session
(usually the HOME directory). Therefore, you should usually specify an absolute
pathname. The name can be up to 1023 characters long. The name is
case-sensitive; the system stores each character in the case entered.

All directories in the pathname prior to the specified directory must already
exist. If the specified directory already exists, no new directory is created.

MODE(directory_permission_bits)
Specifies the directory permission bits as three octal numbers, from 0 to 7,
separated by commas or blanks. The octal values represent read (r), write (w),
and search (x) access for: user, group, and other.

User permission is the permission given to the directory owner. Group
permission is the permission given to the group the owner is a member of.
Other permission is the permission given to any other user.

The access indicated by each of the numbers 0–7 is:
0 No access
1 Search (x) access
2 Write-only (w) access
3 Write and search (wx) access
4 Read-only (r) access
5 Read and search (rx) access
6 Read and write (rw) access
7 Read, write, and search (rwx) access

The default permissions set when a directory is created are 755, representing:
7 User: read, write, and search permission.
5 Group: read and search permission.
5 Other: read and search permission.

STICKY
Specifies that the sticky bit is to be set on for a directory so a user cannot
remove or rename a file in the directory unless one or more of these conditions
are true:
v The user owns the file
v The user owns the directory
v The user has superuser authority

NOSTICKY
Specifies that the sticky bit is to be set off in the directory. NOSTICKY is the
default.

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
1. You want to create a directory using an absolute pathname giving read, write,

and search access to the directory owner and no access to the group and other
classes. The new directory name is to be /tmp/bin. The directory /tmp already
exists. You enter:
MKDIR ’/tmp/bin’ MODE(7,0,0)

2. You want to create a new directory under the working directory of your TSO/E
session; therefore you can specify a relative pathname. You want to name the
new directory u2, and to set it up with the default permissions (755). You enter:

MKDIR

Chapter 3. TSO/E Commands 749

MKDIR ’u2’

MKNOD — Create a character special file

Format
MKNOD ’pathname’

MAJOR(device_major_number)
MINOR(device_minor_number)
MODE(file_permission_bits)

Description
MKNOD creates a character special file in a file system.

Note: MKNOD can be used only by a superuser.

Parameters
pathname

Specifies the name of the character special file to be created. The name can be
a relative pathname or an absolute pathname. It must be enclosed in single
quotes. A relative pathname is relative to the working directory of the TSO/E
session (usually the HOME directory). Therefore, you should usually specify an
absolute pathname. The name can be up to 1023 characters long. The name is
case-sensitive; the system stores each character in the case entered. This
operand is required.

All directories in the pathname must exist. If the specified file already exists, no
new file is created.

MAJOR(device_major_number)
Specifies the device major number, which can be a decimal number between 0
and 65 535 (64K minus 1). See z/OS UNIX System Services Planning for
information on specifying the device major number. This operand is required.

MINOR(device_minor_number)
Specifies the device minor number, which can be a decimal number between 0
and 65 535 (64K minus 1). See z/OS UNIX System Services Planning for
information on specifying the device minor number. This operand is required.

MODE(file_permission_bits)
Specifies the file permission bits as three octal numbers, from 0 to 7, separated
by commas or blanks. The octal values represent read (r), write (w), and
execute (x) access for: user, group, and other.

User permission is the permission given to the file owner. Group permission is
the permission given to the group the owner is a member of. Other permission
is the permission given to any other user.

The access indicated by each of the numbers 0–7 is:
0 No access
1 Search (x) access
2 Write-only (w) access
3 Write and execute (wx) access
4 Read-only (r) access
5 Read and execute (rx) access
6 Read and write (rw) access
7 Read, write, and execute (rwx) access

MKDIR

750 z/OS V1R4.0 UNIX System Services Command Reference

The default permissions set when a character special file is created are 666,
representing:
6 User: read and write access
6 Group: read and write access
6 Other: read and write access

Examples
1. You want to create a character special file using an absolute pathname, giving

read, write, and execute access to the file owner and no access to others. The
filename is tty1 in the existing directory /dev. The device major number is 2; the
minor number is 1. You enter:
MKNOD ’/dev/tty1’ MAJOR(2) MINOR(1) MODE(7,0,0)

2. You want to create a character special file named ptty2 in the existing directory
/dev. The device major number is 1; the device minor number is 457. You want
the default permissions. You enter:
MKNOD ’/dev/ptty2’ MAJOR(1) MINOR(457)

3. You want to create a new tty pair using an absolute pathname. The filename is
ttyp0042 in the existing directory /dev. The device minor number is 42. You
want the default permissions. You enter:
MKNOD ’/dev/ptyp0042’ MAJOR(1) MINOR(42)
MKNOD ’/dev/ttyp0042’ MAJOR(2) MINOR(42)

MOUNT — Logically mount a file system

Format
MOUNT file system(file_system_name)

MOUNTPOINT(pathname)
TYPE(file_system_type)
MODE(RDWR|READ)
PARM(parameter_string)
TAG(NOTEXT|TEXT,ccsid)
SETUID|NOSETUID
WAIT|NOWAIT
SECURITY|NOSECURITY
SYSNAME (sysname)
AUTOMOVE|AUTOMOVE(indicator,sysname1,sysname2,...,sysnameN)|
NOAUTOMOVE|UNMOUNT

Indicator is either INCLUDE or EXCLUDE (can also be abbreviated as I or E)

Description
For hierarchical file systems, you can use the MOUNT command to logically mount,
or add, a mountable file system to the file system hierarchy. You can unmount any
mounted file system using the UNMOUNT command.

Note: A mount user must have UID (0) or at least have READ access to the
BPX.SUPERUSER FACILITY class.

file system(file_system_name)
Specifies the name of the file system to be added to the file system hierarchy.

file_system_name
For the hierarchical file system (HFS), this is the fully qualified name of the
MVS HFS data set that contains the file system. It cannot be a partitioned
data set member.

MKNOD

Chapter 3. TSO/E Commands 751

|
|
|
|
|
|
|
|
|
|
|
|

The file system name specified must be unique among previously mounted
file systems. The file system name supplied is changed to all uppercase
characters. You can enclose it in single quotes, but they are not required.

If file system('''file_system_name''') is specified, the file system name will
not be translated to uppercase.

MOUNTPOINT(pathname)
Specifies the pathname of the mount point directory, the place within the file
hierarchy where the file system is to be mounted. This operand is required.

pathname
Specifies the mount point pathname. The pathname must be enclosed in
single quotes. The name can be a relative pathname or an absolute
pathname. A relative pathname is relative to the working directory of the
TSO/E session (usually the HOME directory). Therefore, you should usually
specify an absolute pathname. It can be up to 1023 characters long.
Pathnames are case-sensitive, so enter the pathname exactly as it is to
appear.

Notes:

1. The mount point must be a directory. Any files in that directory are
inaccessible while the file system is mounted.

2. Only one file system can be mounted to a mount point at any time.

TYPE(file_system_type)
Specifies the type of file system that will perform the logical mount request. The
system converts the TYPE operand value to uppercase letters. This operand is
required.

file_system_type
This name must match the TYPE operand of the FILESYSTYPE statement
that activates this physical file system in the BPXPRMxx parmlib member.
The file_system_type value can be up to 8 characters long.

MODE(RDWR|READ)
Specifies the type of access the file system is to be opened for.

RDWR
Specifies that the file system is to be mounted for read and write access.
RDWR is the default if MODE is omitted.

READ
Specifies that the file system is to be mounted for read-only access.

The HFS allows a file system that is mounted using the MODE(READ)
option to be shared as read-only with other systems that share the same
DASD.

PARM(parameter_string)
Specifies a parameter string to be passed to the file system type. The format
and content are specified by the physical file system that is to perform the
logical mount. You can specify lowercase or uppercase characters. Enclose the
string in single quotes.

parameter_string
Specifies a parameter string value that can be up to 1024 characters long.
The parameter string must be enclosed in single quotes; it is case-sensitive.

For an HFS file system, the following can be specified:
PARM(’SYNC(t),NOWRITEPROTECT’)

MOUNT

752 z/OS V1R4.0 UNIX System Services Command Reference

SYNC(t)
t is a numeric value that specifies the number of seconds that should
be used to override the sync interval default for this file system during a
specific mount. If SYNC is not specified at mount time, then the sync
interval default value will be used (a value of 60 seconds). The same
rules apply to the argument to the SYNC keyword at mount time as
apply to the argument of the SYNCDEFAULT keyword at HFS
initialization time. For more information on the SYNCDEFAULT
keyword, see z/OS UNIX System Services Planning.

NOWRITEPROTECT
The HFS has a Write Protection mechanism that adds some overhead
to HFS processing. This overhead can be avoided by turning off the
write protection by specifying NOWRITEPROTECT in the PARM field of
the MOUNT command.

TAG(NOTEXT|TEXT,ccsid)
Specifies whether the file tags for untagged files in the mounted file system are
implicitly set. File tagging controls the ability to convert a file’s data during file
reading and writing. Implicit, in this case, means that the tag is not permanently
stored with the file. Rather, the tag is associated with the file during reading or
writing, or when stat() type functions are issued. Either TEXT or NOTEXT, and
ccsid must be specified when TAG is specified.

Note: When the file system is unmounted, the tags are lost.

NOTEXT
Specifies that none of the untagged files in the file system are automatically
converted during file reading and writing.

TEXT
Specifies that each untagged file is implicitly marked as containing pure text
data that can be converted.

ccsid
Indentifies the coded character set identifier to be implicitly set for the
untagged file. ccsid is specified as a decimal value from 0 to 65535.
However, when TEXT is specified, the value must be between 0 and 65535.
Other than this, the value is not checked as being valid and the
corresponding code page is not checked as being installed.

SETUID|NOSETUID
Specifies whether the SETUID and SETGID mode bits on executables in this
file system are respected. Also determines whether the APF extended attribute
or the Program Control extended attribute is honored.

SETUID
Specifies that the SETUID and SETGID mode bits be respected when a
program in this file system is run. SETUID is the default.

NOSETUID
Specifies that the SETUID and SETGID mode bits not be respected when a
program in this file system is run. The program runs as though the SETUID
and SETGID mode bits were not set. Also, if you specify the NOSETUID
option on MOUNT, the APF extended attribute and the Program Control
extended attribute are not honored.

WAIT|NOWAIT
Specifies whether to wait for an asynchronous mount to complete before
returning.

MOUNT

Chapter 3. TSO/E Commands 753

WAIT
Specifies that MOUNT is to wait for the mount to complete before returning.
WAIT is the default.

NOWAIT
Specifies that if the file system cannot be mounted immediately (for
example, a network mount must be done), then the command will return
with a return code indicating that an asynchronous mount is in progress.

SECURITY|NOSECURITY
Specifies whether security checks are to be enforced for files in this file system.

Note: When an HFS is mounted with the NOSECURITY option enabled, any
new files or directories that are created will be assigned an owner of UID
0, no matter what UID issued the request.

SECURITY
Specifies that normal security checking will be done. SECURITY is the
default.

NOSECURITY
Specifies that security checking will not be enforced for files in this file
system. A user may access or change any file or directory in any way.

Security auditing will still be performed if the installation is auditing
successes.

The SETUID, SETGID, APF, and Program Control attributes may be turned
on in files in this file system, but they will not be honored while it is
mounted with NOSECURITY.

SYSNAME (sysname)
For systems participating in shared HFS, SYSNAME specifies the particular
system on which a mount should be performed. This system will then become
the owner of the file system mounted. This system must be IPLed with
SYSPLEX(YES). IBM recommends that you specify SYSNAME(&SYSNAME.)
or omit the SYSNAME parameter. In this case, the system that processes the
mount request mounts the file system and becomes its owner.

sysname
sysname is a 1–8 alphanumeric name of a system participating in shared
HFS.

AUTOMOVE(indicator,sysname1,...,sysnameN)|NOAUTOMOVE|UNMOUNT
These parameters apply only in a sysplex where systems are participating in
shared HFS. They indicate what happens if the system that owns a file system
goes down. The default setting is AUTOMOVE where the file system will be
randomly moved to another system (no system list used).

AUTOMOVE
When AUTOMOVE is specified for a file system and the file system″s
owner goes down, AUTOMOVE indicates that ownership of the file system
can be automatically moved to another system participating in shared HFS.
AUTOMOVE is the default.

AUTOMOVE(INCLUDE,sysname1,sysname2,...,sysnameN) or
AUTOMOVE(I,sysname1,sysname2,...,sysnameN)

The include indicator and system list provides an ordered list of systems
that the file system should be moved to if the file system’s owning system
should leave the sysplex.

MOUNT

754 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|

|

|
|
|
|
|

AUTOMOVE(EXCLUDE,sysname1,sysname2,...,sysnameN) or
AUTOMOVE(E,sysname1,sysname2,...,sysnameN)

The exclude indicator and system list provides a list of systems that the file
system should be not moved to if the file system’s owning system should
leave the sysplex.

NOAUTOMOVE
When NOAUTOMOVE is specified for a file system, this indicates that
ownership should not be moved to another system participating in shared
HFS if the file system’s owner should crash.

You should define your version and sysplex root HFS data sets as
AUTOMOVE, and define your system-specific HFS data sets as
NOAUTOMOVE. Do not define a file system as NOAUTOMOVE and a file
system underneath it as AUTOMOVE; in this case, the file system defined
as AUTOMOVE will not be recovered after a system failure until that failing
system is restarted.

For more information on shared HFS and its associated version and
sysplex root HFS data sets, see z/OS UNIX System Services Planning.

Note: To ensure that the root is always available, use the default:
AUTOMOVE.

UNMOUNT
When UNMOUNT is specified for a file system, this indicates that the file
system will not be moved and will be unmounted if the file system’s owner
should crash. This file system and any file systems mounted within its
subtree will be unmounted.

Usage Notes
1. The directory /samples contain sample MOUNT commands (called mountx).

2. When the mount is done asynchronously (NOWAIT was specified and return
code 4 was returned), you can determine if the mount has completed with one
of the following:

v The df shell command

v The DISPLAY OMVS,F operator command (see z/OS MVS System
Commands)

v The MOUNT table option on the File Systems pulldown in the ISPF Shell
(accessed by the ISHELL command)

3. In order to mount a file system as the system root file system, the caller must
be a superuser. Also, a file system can only be mounted as the system root file
system if the root file system was previously unmounted.

4. If you have previously unmounted the root file system, a ’dummy file system’ or
SYSROOT will be displayed as the current root file system. During the time
when SYSROOT is displayed as the root, any operation that requires a valid file
system will fail. When you subsequently mount a new root file system on
mountpoint /, that new file system will replace SYSROOT. When a new root file
system has been mounted, you should terminate any current dubbed users or
issue a chdir using a full pathname to the appropriate directory. This way, the
users can access the new root file system. Otherwise, an error will occur when
a request is made requiring a valid file system.

5. Systems exploiting shared HFS will have I/O to an OMVS couple data set.
Because of these I/O operations to the CDS, each mount request requires

MOUNT

Chapter 3. TSO/E Commands 755

|
|
|
|
|

additional system overhead. You will need to consider the affect that this will
have on your recovery time if a large number of mounts are required on any
system participating in shared HFS.

6. The TAG parameter is intended for file systems that don’t support storing the file
tag, such as NFS remote file systems.

7. Do not use the TAG parameter simultaneously with the NFS Client Xlate option.
If you do, the mount will fail.

8. The UNMOUNT keyword is not available to automounted file systems.

9. The UNMOUNT specification will only be accepted on z/OS V1R3 systems and
later.

File System Recovery and TSO MOUNT
File system recovery in a shared HFS environment takes into consideration file
system specifications such as AUTOMOVE | NOAUTOMOVE | UNMOUNT, and
whether or not the file system is mounted read-only or read/write.

Generally, when an owning system fails, ownership over its AUTOMOVE mounted
file system(s) is moved to another system and the file is usable. However, if a file
system is mounted read/write and the owning system fails, then all file system
operations for files in that file system will fail. This is because data integrity is lost
when the file system owner fails. All files should be closed (BPX1CLO) and
re-opened (BPX1OPN) when the file system is recovered. (The BPX1CLO and
BPX1OPN callable services are discussed in z/OS UNIX System Services
Programming: Assembler Callable Services Reference.)

For file systems that are mounted read-only, specific I/O operations that were in
progress at the time the file system owner failed may need to be re-attempted.
Otherwise, the file system is usable.

In some situations, even though a file system is mounted AUTOMOVE, ownership
of the file system may not be immediately moved to another system. This may
occur, for example, when a physical I/O path from another system to the volume
where the file system resides is not available. As a result, the file system becomes
unowned (the system will issue message BPXF213E when this occurs). This is true
if the file system is mounted either read/write or read-only. The file system still
exists in the file system hierarchy so that any dependent file systems that are
owned by another system are still usable.

However, all file operations for the unowned file system will fail until a new owner is
established. The shared HFS support will continue to attempt recovery of
AUTOMOVE file systems on all systems in the sysplex that are enabled for shared
HFS. Should a subsequent recovery attempt succeed, the file system transitions
from the unowned to the active state.

Applications using files in unowned file systems will need to close (BPX1CLO)
those files and re-open (BPX1OPN) them after the file system is recovered.

File systems that are mounted NOAUTOMOVE will become unowned when the file
system owner exits the sysplex. The file system will remain unowned until the
original owning system restarts or until the unowned file system is unmounted. Note
that since the file system still exists in the file system hierarchy, the file system
mount point is still in use.

MOUNT

756 z/OS V1R4.0 UNIX System Services Command Reference

An unowned file system is a mounted file system that does not have an owner. The
file system still exists in the file system hierarchy. As such, you can recover or
unmount an unowned file system.

File systems associated with a ’never move’ PFS will be unmounted during dead
system recovery. For example, TFS is a ’never move’ PFS and will be unmounted,
as well as any file systems mounted on it, when the owning system leaves the
sysplex.

As stated in “Usage Notes” on page 755, the UNMOUNT keyword is not available to
automounted file systems. However, during dead system recovery processing for an
automounted file system (whose owner is the dead system), the file system will be
unmounted if it is not being referenced by any other system in the sysplex.

Return Codes
0 Processing successful.
4 Processing incomplete. An asynchronous mount is in progress.
12 Processing unsuccessful. An error message has been issued.

Examples
1. To mount the HFS data set HFS.WORKDS on the directory /u/openuser, enter:

MOUNT file system(’HFS.WORKDS’) MOUNTPOINT(’/u/openuser’) TYPE(HFS)

2. The following example mounts the HFS directory /u/shared_data, which resides
on the remote host named mvshost1, onto the local directory /u/jones/mnt.
The command may return before the mount is complete, allowing the mount to
be processed in parallel with other work. The SETUID and SETGID bits are
honored on any executable programs:
MOUNT file system(’MVSHOST1.SHARE.DATA’) MOUNTPOINT(’/u/jones/mnt’)

TYPE(NFSC) PARM(’mvshost1:/hfs/u/shared_data’) NOWAIT SETUID

3. Examples for using the TAG parameter are:
TAG(TEXT,819) identifies text files containing ASCII
(ISO-8859-1) data.

TAG(TEXT,1047) identifies text files containing EBCDIC
(ISO-1047) data.

TAG(NOTEXT,65535) tags files as containing binary or unknown
data.

TAG(NOTEXT,0) is the equivalent of not specifying the TAG
parameter at all.

TAG(NOTEXT,273) tags files with the German code set (ISO-273),
but is ineligible for automatic conversion.

OBROWSE — Browse an HFS file

Format
OBROWSE pathname

or
OBROWSE ’pathname’

or
OBROWSE

MOUNT

Chapter 3. TSO/E Commands 757

(The pathname is optional in the last example.)

Description
The OBROWSE command enables you to browse a file in the hierarchical file
system (HFS). This command uses the ISPF/PDF Browse facility.

If you enter the OBROWSE command without specifying a pathname, the Browse
Entry panel is displayed. From that panel, you can enter the directory name and
filename of an existing file you want to browse. If you are browsing fixed-length
records, you must also indicate the record length.

Parameters
pathname

Specifies the pathname of the file to be browsed. The pathname can be
absolute or relative. It can be enclosed in single quotes. A relative pathname is
relative to the working directory of the TSO/E session (usually the HOME
directory). Therefore, you should usually specify an absolute pathname. If you
enter the OBROWSE command from the shell, use the absolute pathname.
Avoid using spaces or single quotes within the pathname.

OCOPY — Copy an MVS data set member or HFS file to another
member or file

Format
OCOPY INDD(ddname1) OUTDD(ddname2)
BINARY | TEXT
CONVERT(character_conversion_table | YES | NO)
PATHOPTS (USE|OVERRIDE)
TO1047 | FROM1047

Description
You can use the OCOPY command to copy data between an MVS data set and the
hierarchical file system (HFS), between two data sets, or between two files. For
OCOPY, you would want to use CONVERT for these two situations:
v Conversion between code pages IBM-037 and IBM-1047
v Conversion between ASCII and code page IBM-1047

The z/OS shell uses code page 1047, and MVS uses a Country Extended Code
Page. You can convert data to or from code page 1047 while it is being copied.

If you are copying a file with doublebyte data, do not use the CONVERT option.

Before using the OCOPY command, you must allocate the data set or file you are
working with. When using the TSO/E ALLOCATE command or a JCL DD statement
to allocate a file or data set, you can specify PATHMODE and PATHOPTS
parameters along with the PATH parameter. For information on the use of these
parameters with the JCL statement, see z/OS MVS JCL Reference. For information
on the TSO/E ALLOCATE command, see z/OS TSO/E Command Reference.

You can use OCOPY to copy:
v A member of an MVS partitioned data set (PDS or PDSE) to a file
v An MVS sequential data set to a file
v A file to a member of an MVS PDS or PDSE
v A file to an MVS sequential data set

OBROWSE

758 z/OS V1R4.0 UNIX System Services Command Reference

v A file to a file
v A member of an MVS PDS or PDSE to another member of an MVS PDS or

PDSE
v A member of an MVS PDS or PDSE to an MVS sequential data set
v An MVS sequential data set to another MVS sequential data set
v An MVS sequential data set to a member of an MVS PDS or PDSE

Both INDD and OUTDD can represent an MVS data set or a file. If the source
(INDD) is an MVS data set and the target (OUTDD) is an HFS file, then OCOPY
copies an MVS data set to a file; the operation is the same as the OPUT command.
If the source (INDD) is an HFS file and the target (OUTDD) is an MVS data set,
then OCOPY copies a file to an MVS data set; the operation is the same as the
OGET command.

Both the target and source can be an MVS data set or member of a partitioned
data set, or both can be a file. This function is typically used for code page
conversion.

If PATHMODE, which sets the permission bits for a new file, is specified during
allocation, it is used when creating a new file. If PATHMODE is not specified during
the allocation of a new file, the allocation creates a file with the default permission
of 000, which means the user has no access to it.

Parameters
INDD(ddname1)

Specifies the ddname of the source. The ddname is up to 8 characters long.

OUTDD(ddname2)
Specifies the ddname of the target. The ddname is up to 8 characters long.

BINARY | TEXT
Specifies that the data to be copied is a binary file or text file.

BINARY
Specifies that the data to be copied is a binary file. The default is binary
when copying a data set of undefined record format to a file.

When you specify BINARY, OCOPY operates without any consideration for
<newline> characters or the special characteristics of DBCS data. For
example, doublebyte characters might be split between MVS data set
records, or a “shift-out” state might span records.

TEXT
Specifies that the data to be copied is a text file. The default is text except
when copying a data set of undefined record format to a file.

If you are using a DBCS-supported terminal, you should use TEXT. It is
assumed that doublebyte data in the file system includes the <newline>
character in order to delineate line boundaries. Data within these lines that
are delineated by <newline> characters must begin and end in the “shift-in”
state.

CONVERT(character_conversion_table | YES | NO)
Specifies the character conversion table used to convert between the following:
v Code pages IBM-037 and IBM-1047
v The ASCII code page and IBM-1047

If this optional operand is omitted, the system copies the data without
conversion.

OCOPY

Chapter 3. TSO/E Commands 759

Use this option for singlebyte data only.

Specify the CONVERT value as one of the following:

character_conversion_table
Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned
data set (library) and the name of the member that contains the
character conversion table.

v data_set_name. Specifies the name of the partitioned data set (library)
that contains the character conversion table as the default member. The
default member name is BPXFX000. (BPXFX000 is an alias; when
shipped by IBM, it points to BPXFX111.) A fully qualified data set name
must be enclosed in single quotes.

v (member_name). Specifies the name of the conversion table to be used.
It is a member of a PDS. Since the data_set_name is omitted, the
standard library concatenation is searched for the table. (The default
library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to
convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the
square brackets at your workstation are at the same code points as
the square brackets on code page 1047 (it is the default). Also use
this table if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert
between code pages ISO8859-1 and IBM-1047.

YES
Specifies that the system is to perform conversion and use the default
conversion table (BPXFX000) in the system library concatenation.
(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO
Specifies that conversion not be done. NO is the same as omitting the
CONVERT operand.

PATHOPTS(USE | OVERRIDE)
Specifies whether the OCOPY should use or override the PATHOPTS value
specified during allocation. If the PATHOPTS is not specified in the allocation,
OCOPY will open the file with the appropriate PATHOPTS.

USE
Specifies that the PATHOPTS value is to be enforced. If a file that was
identified as read-only when it was allocated is identified as the output file
for OCOPY, OCOPY fails. Similarly, if a write-only file is specified as the
input file, OCOPY fails. USE is the default.

OVERRIDE
Specifies that the PATHOPTS value specified during allocation is to be
ignored.

TO1047 | FROM1047

OCOPY

760 z/OS V1R4.0 UNIX System Services Command Reference

TO1047
Specifies that the TO section of the character conversion table is to be
used. This is usually used to convert from code page IBM-037 or ASCII to
code page IBM-1047.

FROM1047
Specifies that the FROM section of the conversion table is to be used. This
is usually used to convert from code page IBM-1047 to code page IBM-037
or ASCII.

If the CONVERT operand is specified and this operand is omitted,

v Data copied from an MVS data set to a file uses the TO1047 section of
the table.

v Data copied from a file to an MVS data set uses the FROM1047 section
of the table.

If the CONVERT operand is specified for a copy from a file to a file or an
MVS data set to an MVS data set, you must specify either TO1047 or
FROM1047.

Usage Notes
1. You can use OCOPY to copy a program object from a PDSE to the file system,

and it will be executable there. If you have a load module in a partitioned data
set, however, you must first use the IEBCOPY program to copy the load module
from a partitioned data set to a PDSE and then subsequently use OCOPY to
copy the module into the file system. The IEBCOPY converts the load module to
a program object.

Note: You can use the linkage editor to put the load module directly into the file
system.

2. An executable file copied from the file system into an MVS data set is not
executable under MVS. Some required directory information is lost during the
copy. See z/OS UNIX System Services User’s Guide for a discussion of copying
executable files.

3. Data sets with spanned records are not allowed.

4. When you are copying into an existing file, data is appended to the end of the
file if OAPPEND is specified in PATHOPTS. Otherwise, the existing file is
overwritten.

5. Copying from HFS text files to MVS data sets:
For text files, all <newline> characters are stripped during the copy. Each
line in the file ending with a <newline> character is copied into a record of
the MVS data set. You cannot copy a text file to an MVS data set in an
undefined record format.

– For an MVS data set in fixed record format: Any line longer than the
record size is truncated. If the line is shorter than the record size, the
record is padded with blanks.

– For an MVS data set in variable record format: Any line longer than
the largest record size is truncated and the record length is set
accordingly. A change in the record length also occurs if the line is short.

6. Copying from HFS binary files to MVS data sets:
For binary files, all data is preserved.

– For an MVS data set in fixed record format: Data is cut into chunks of
size equal to the record length. Each chunk is put into one record. The
last record is padded with spaces or blanks.

OCOPY

Chapter 3. TSO/E Commands 761

– For an MVS data set in variable record format: Data is cut into chunks
of size equal to the largest record length. Each chunk is put into one
record. The length of the last record is equal to the length of the data left.

– For an MVS data set in undefined record format: Data is cut into
chunks of size equal to the block size. Each chunk is put into one record.
The length of the last record is equal to the length of the data left.

7. When you copy MVS data sets to HFS text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the
<newline> character is appended after the trailing blanks.

8. When you copy MVS data sets to HFS binary files, the <newline> character is
not appended to the record.

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
1. The following commands copy an MVS sequential data set to an HFS file. This

is text data, and there is no code page conversion.

v SYSUT1 is the ddname of the source data set, EMPLOYEE.DATA.

v PATHNAME is the ddname of the target, which is the existing file
/u/admin/employee/data.
ALLOCATE FILE(sysut1) DATASET(’employee.data’)
ALLOCATE FILE(pathname) PATH(’/u/admin/employee/data’)
OCOPY INDD(sysut1) OUTDD(pathname) TEXT

2. The following commands copy a binary file into a member of a partitioned data
set:

v BINARY is the ddname of the source file, bin/payroll. This file is in the
working directory.

v MVSPDS is the ddname of the target data set member,
APPL.CODES(PAYROLL)
ALLOCATE FILE(binary) PATH(’/bin/payroll’)
ALLOCATE FILE(mvspds) DATASET(’appl.codes(payroll)’)
OCOPY INDD(binary) OUTDD(mvspds) BINARY

3. The following commands copy system input from the MVS SYSIN data set to
the file system and perform code page conversion:

v SYSIN is the ddname of the source, IBMUSR.EMPLOYEE.DATA.

v PATHNAME is the ddname of the target, /u/admin/employee/data. This file
does not currently exist and is created by ALLOCATE.

v This is text data.

v The character conversion table is the default table, member BPXFX000 of the
SYS1.BPXLATE data set. (BPXFX000 is an alias; when shipped by IBM, it
points to BPXFX111.)

v Because this is a copy from an MVS data set to a file, the section TO1047 of
the conversion table is used by default.
ALLOCATE FILE(sysin) DATASET(’IBMUSR.EMPLOYEE.DATA’)

ALLOCATE FILE(pathname) PATH(’/u/admin/employee/data’)
PATHMODE (sirwxu) PATHOPTS (ocreat, owronly)

OCOPY INDD(sysin) OUTDD(pathname) TEXT CONVERT((BPXFX000))

(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

OCOPY

762 z/OS V1R4.0 UNIX System Services Command Reference

4. The following OCOPY command copies data from one MVS sequential data set
to another MVS sequential data set and performs code page conversion. This
example shows just the OCOPY command; the necessary ALLOCATE
commands are not included.

v SYSUT1 is the ddname of the source data set.

v TRANSDD is the ddname of the target data set.

v This is text data.

v The data is converted using the user-specified character conversion table and
the TO1047 section of the table.
OCOPY INDD(sysut1) OUTDD(transdd) TEXT CONVERT(’sys1.mylib(mytab)’) TO1047

OEDIT — Edit an HFS file

Format
OEDIT [–r xx] pathname

or
OEDIT [–r xx] ’pathname’

Description
OEDIT enables you to edit a file in the hierarchical file system (HFS). This
command uses the ISPF/PDF Edit facility.

If you enter OEDIT without specifying a pathname, the Edit Entry panel is
displayed. From that panel, you can enter the directory name and filename of an
existing file, or you can specify a directory name and filename for a new file. The
Edit Entry panel also lets you specify an edit profile and an initial edit macro.

For an introduction to using ISPF File Edit, see z/OS UNIX System Services User’s
Guide.

Parameters
pathname

Specifies the pathname of the file to be edited. The pathname can be absolute
or relative. It can be enclosed in single quotes. A relative pathname is relative to
the working directory of the TSO/E session (usually the HOME directory).
Therefore, you should usually specify an absolute pathname. If you enter
OEDIT from the shell, use the absolute pathname. Avoid using spaces or single
quotes within pathnames.

Option
–r xx Set the record length to be edited for fixed length text files. xx is the record

length.

If –r xx is specified, the file will be processed as variable length but loaded
into the editor as fixed length records and saved as fixed length records.
This lets you convert a variable length file to fixed length. If any lines are
longer than the specified record length, the edit session will not load the file
and will issue the customary message that a line is too long.

OCOPY

Chapter 3. TSO/E Commands 763

Usage Notes
1. OEDIT attempts to load the file into a VB255 session. If this is an ISPF that

supports wide edit (such as ISPF 4.1) and any line exceeds 235 characters, the
width for the new session is the length of the longest line plus 25% to allow for
some expansion.

2. The COPY command cannot copy in files that have records wider than the edit
session.

3. The TSO region size must be large enough to hold the size of the file to be
edited.

OGET — Copy an HFS file into an MVS data set

Format
OGET ’pathname’

mvs_data_set_name | mvs_data_set_name(member_name)
BINARY | TEXT
CONVERT(character_conversion_table | YES | NO)

Description
You can use the OGET command to copy an HFS file:
v To a member of an MVS partitioned data set (PDS or PDSE)
v To an MVS sequential data set

and convert the data from code page 1047 to code page IBM-037 or ASCII while it
is being copied. Do not use the CONVERT option when copying files that contain
doublebyte data. This option is used for singlebyte data only, not for doublebyte
data.

Parameters
pathname

Specifies the pathname of the file that is being copied to a data set. This
operand is required. The pathname is:

v A relative or absolute pathname. A relative pathname is relative to the
working directory of the TSO/E session (usually the HOME directory).
Therefore, you should usually specify an absolute pathname.

v Up to 1023 characters long.

v Enclosed in single quotes.

v In uppercase or lowercase characters, which are not changed by the system.

mvs_data_set_name | mvs_data_set_name(member_name)
Specifies the name of an MVS sequential data set or an MVS partitioned data
set member to receive the file that is being copied. One of these two operands
is required. The data set name is:

v A fully qualified name that is enclosed in single quotes, or an unqualified
name

v Up to 44 characters long

v Converted to uppercase letters by the system

BINARY | TEXT
Specifies whether the file being copied contains binary data or text.

BINARY
Specifies that the file being copied contains binary data.

OEDIT

764 z/OS V1R4.0 UNIX System Services Command Reference

|
|

When you specify BINARY, OGET operates without any consideration for
<newline> characters or the special characteristics of DBCS data. For
example, doublebyte characters might be split between MVS data set
records, or a “shift-out” state might span records.

TEXT
Specifies that the file being copied contains text. This is the default.

If you are using a DBCS-supported terminal, you should use TEXT. It is
assumed that doublebyte data in the file system includes the <newline>
character in order to delineate line boundaries. Data within these lines that
are delineated by <newline> characters must begin and end in the “shift-in”
state.

CONVERT(character_conversion_table | YES | NO)
Specifies that the data being copied is to be converted from IBM-1047 to
IBM-037 or ASCII. This operand is optional. If is omitted, the system copies the
data without conversion.

Use this option for singlebyte data only.

Specify the CONVERT value as one of the following:

character_conversion_table
Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned
data set (PDS) and the name of the member that contains the character
conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)
that contains the character conversion table. The table is the FROM1047
part in member BPXFX000. (This is an alias; when shipped by IBM, it
points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.
It is a member of a PDS. Since the data_set_name is omitted, the
standard library concatenation is searched for the table. (The default
library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to
convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the
square brackets at your workstation are at the same code points as
the square brackets on code page 1047 (it is the default). Also use
this table if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert
between code pages ISO8859-1 and IBM-1047.

YES
Specifies that the system is to perform conversion and use the default
conversion table (BPXFX000) in the standard library concatenation.
(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO
Specifies that conversion not be done. NO is the same as omitting the
CONVERT operand.

OGET

Chapter 3. TSO/E Commands 765

Do not use the CONVERT parameter on files containing doublebyte data.
Doublebyte data in the file system is in code page 939. If you need to convert
to a code page other than 939, you use the iconv command.

Usage Notes
1. For text files, all <newline> characters are stripped during the copy. Each line in

the file ending with a <newline> character is copied into a record of the MVS
data set. You cannot copy a text file to an MVS data set in an undefined record
format.

v For an MVS data set in fixed record format: Any line longer than the
record size is truncated. If the line is shorter than the record size, the record
is padded with blanks.

v For an MVS data set in variable record format: Any line longer than the
largest record size is truncated; the record length is set to the length of the
line. A change in the record length also occurs if the line is short.

For text mode transfer, if the line is longer than the record size, the line is
truncated (for DBCS, perhaps in the middle of a doublebyte character or in
“shift-in” state). If the line is shorter than the record size, the record is padded
with blanks.

2. For binary files, all data is preserved.

v For an MVS data set in fixed record format: Data is cut into chunks of size
equal to the record length. Each chunk is put into one record. The last record
is padded with spaces or blanks.

v For an MVS data set in variable record format: Data is cut into chunks of
size equal to the largest record length. Each chunk is put into one record.
The length of the last record is equal to the length of the data left.

v For an MVS data set in undefined record format: Data is cut into chunks
of size equal to the block size. Each chunk is put into one record. The length
of the last record is equal to the length of the data left.

For binary mode transfers, doublebyte characters might be split between MVS
data set records, or a “shift-out” state might span records.

3. If the MVS data set does not exist, OGET allocates a new data set, a sequential
data set of variable record format. However, OGET does not allocate a new
partitioned data set. The record length of the new data set is either 255 or the
size of the longest line in the HFS file, whichever is larger. Dynamic allocation
services determine the block size and space, based on installation-defined
defaults. If the defaults are not sufficient, you should allocate a new MVS data
set and then specify it on OGET.

A simple method of allocating a sufficient size is to specify a primary extent size
and a secondary extent size equal to the number of bytes in the file being
copied.

4. An executable file copied into an MVS data set is not executable under MVS,
because some required directory information is lost during the copy to the
partitioned data set.

5. Data sets with spanned records are not allowed.

6. If you are using a DBCS-supported terminal, the target MVS data set should be
defined or defaulted to variable record format. The record length of the data set
must be greater than or equal to the longest line in the HFS file. (OGET can
determine how long the longest line is if you ask it to allocate the target data
set.)

OGET

766 z/OS V1R4.0 UNIX System Services Command Reference

7. OGET cannot be used to copy a load module out of a partitioned data set and
into a file system. You have to use a binder to ″flatten″ the load module. For
more information, see ″Copying an Executable Module from a PDS″ in z/OS
UNIX System Services User’s Guide

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
1. The following command copies a text file to an MVS sequential data set,

converting from code page 1047 to code page IBM-037 using the default table
BPXFX000. (BPXFX000 is an alias; when shipped by IBM, it points to
BPXFX111.)

v The pathname of the file is /u/admin/employee/data.

v The unqualified name of the sequential data set is EMPLOYEE.DATA.
OGET ’/u/admin/employee/data’ EMPLOYEE.DATA TEXT CONVERT(YES)

2. The following command copies a text file to an MVS sequential data set,
converting from code page 1047 to code page IBM-037 using conversion table
BPXFX111 in the user’s library data set.

v The pathname of the file is /u/admin/employee/data.

v The fully qualified name of the sequential data set is
IBMUSR.EMPLOYEE.DATA.

OGET ’/u/admin/employee/data’ ’IBMUSR.EMPLOYEE.DATA’
CONVERT(’MY.LOADLIB(BPXFX111)’)

OGETX — Copy HFS files from a directory to an MVS PDS or PDSE

Format
OGETX hfs_directory | hfs_file_name

mvs_PDS_name | mvs_data_set_name(member_name)
ASIS
BINARY | TEXT
CONVERT(character_conversion_table | YES | NO)
LC
QUIET
SUFFIX(suffix)

Description
You can use the OGETX command to:

v Copy files from an HFS (hierarchical file system) directory to a member of an
partitioned data set (PDS) or PDSE

v Copy an individual file to a sequential data set or member of a partitioned data
set

and convert the data from code page 1047 to code page IBM-037 or ASCII while it
is being copied.

Do not use the CONVERT option when copying files that contain doublebyte data.
This option is used for singlebyte data only, not for doublebyte data.

OGET

Chapter 3. TSO/E Commands 767

Parameters
hfs_directory | hfs_file_name

Specifies the pathname of the HFS directory or HFS filename that is being
copied to an MVS PDS or PDSE. The HFS files are copied into members of the
PDS or PDSE.

Use hfs_directory when a PDS is specified. When a sequential data set or
PDS member is specified, then the filename must be used.

These limitations apply to an MVS data set name:

v It can use uppercase alphabetic characters A through Z, but not lowercase
letters.

v It can use numeric characters 0 through 9, and the special characters @, #,
and $.

v It cannot begin with a numeric character.

v The member name cannot be more than 8 characters. If a filename is longer
than 8 characters or uses characters that are not allowed in an MVS data set
name, the file is not copied.

The LC operand lets you copy HFS filenames that are lowercase, mixed case,
or uppercase.

Single quotes around the directory name or filename are optional.

mvs_PDS_name | mvs_data_set_name(member_name)
mvs_PDS_name specifies the name of an MVS PDS or PDSE to receive the
HFS files that are being copied. mvs_data_set_name(member_name) specifies
the name of an MVS partitioned data set member to receive the file that is
being copied. The name is:
v A fully qualified name that is enclosed in single quotes, or an unqualified

name
v Up to 44 characters long, with an additional 8 characters for the member

name
v Converted to uppercase letters

ASIS
Specifies that the _ character in pathnames not be translated to the @
character in member names. (It is a common convention to use @ symbols in
PDS member names to correspond with the _ symbol in pathnames.)

BINARY | TEXT
Specifies whether the files in the directory being copied contains binary data or
text. For more information, see Note 7 on page 770.

BINARY
Specifies that the files in the directory being copied contains binary data.

When you specify BINARY, OGET operates without any consideration for
<newline> characters or the special characteristics of DBCS data. For
example, doublebyte characters might be split between MVS data set
records, or a “shift-out” state might span records.

TEXT
Specifies that the files in the directory being copied contains text. This is the
default.

If you are using a DBCS-supported terminal, you should use TEXT. It is
assumed that doublebyte data in the file system includes the <newline>

OGETX

768 z/OS V1R4.0 UNIX System Services Command Reference

character in order to delineate line boundaries. Data within these lines that
are delineated by <newline> characters must begin and end in the “shift-in”
state.

CONVERT(character_conversion_table | YES | NO)
Specifies that the data being copied is to be converted from code page 1047 to
code page IBM-237 or ASCII; that is,the FROM1047 part of the specified
character conversion table is used. This operand is optional. If it is omitted, the
system copies the data without conversion.

Use this option for singlebyte data only.

Specify the CONVERT value as one of the following:

character_conversion_table
Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned
data set (PDS) and the name of the member that contains the character
conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)
that contains the character conversion table. The table is the FROM1047
part in member BPXFX000. (This is an alias; when shipped by IBM, it
points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.
It is a member of a PDS. Since the data_set_name is omitted, the
standard library concatenation is searched for the table. (The default
library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to
convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the
square brackets at your workstation are at the same code points as
the square brackets on code page 1047 (it is the default). Also use it
if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert
between code pages ISO8859-1 and IBM-1047.

YES
Specifies that the system is to perform conversion and use the default
conversion table (BPXFX000) in the standard library concatenation.
(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO
Specifies that conversion not be done. NO is the same as omitting the
CONVERT operand.

Do not use the CONVERT parameter on files containing doublebyte data.
Doublebyte data in the file system is in code page 939. If conversion to a
code page other than 939 is required, you should use the iconv command.

LC
Specifies that the HFS filenames can be lowercase, uppercase, or mixed. If LC
is not specified, the HFS filenames must be uppercase. Filenames are
converted to uppercase member names.

OGETX

Chapter 3. TSO/E Commands 769

QUIET
Turns off the echoing of the OGET command before a file is copied.

SUFFIX(suffix)
Specifies that files with the files created by (suffix) be copied and the suffix be
dropped from the HFS filename when the PDS members are created.

A suffix is an optional additional file identifier that is appended to the filename
following the first period (.). It is usually used to identify the type of file.

Usage Notes
1. Avoid using OGETX with pathnames containing single quotes or spaces.

2. For text files, all <newline> characters are stripped during the copy. Each line in
the file ending with a <newline> character is copied into a record of the MVS
data set. You cannot copy a text file to an MVS data set in an undefined record
format.

v For an MVS data set in fixed record format: Any line longer than the
record size is truncated. If the line is shorter than the record size, the record
is padded with blanks.

v For an MVS data set in variable record format: Any line is longer than the
largest record size is truncated; the record length is set accordingly. A change
in the record length also occurs if the line is short.

3. For binary files, all data is preserved.

v For an MVS data set in fixed record format: Data is cut into chunks of size
equal to the record length. Each chunk is put into one record. The last record
is padded with spaces or blanks.

v For an MVS data set in variable record format: Data is cut into chunks of
size equal to the largest record length. Each chunk is put into one record.
The length of the last record is equal to the length of the data left.

v For an MVS data set in undefined record format: Data is cut into chunks
of size equal to the block size. Each chunk is put into one record. The length
of the last record is equal to the length of the data left.

4. Data sets with spanned records are not allowed.

5. Before the copy, the OGET command for a file is echoed, unless you specify
the QUIET option. If you did not specify QUIET and if the command is not
echoed for a file, it has not met the copy criteria and is not copied.

6. If more than one filename is the same, the file is overwritten on each
subsequent copy. For example, if you specify a copy of Pgma and pgma and
use LC, the first file copied is overwritten. Or if you copy pgma.h and pgma.c
and specify SUFFIX, the first file copied is overwritten.

7. If the target data set is a PDS with an undefined record format, the files may be
treated as load modules. A load module is copied by link-editing it into the target
library. For the program to be able to execute, the entry point must be at the
beginning of the load module.

For OGETX to treat the file as a load module, do not specify either TEXT nor
BINARY.

8. If the source for the copy is a file, the target can be specified as a PDS. The
member name used is the filename, which is in uppercase and has had any
suffixes removed. Any remaining characters in the member name that are not
valid in member names cause the copy to fail. You do not have to specify a file
as a target with a sequential data set, or a directory as a target with a PDS. The
ASIS option is not affected.

OGETX

770 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. The following command copies the files in the HFS directory /usr/sbllib to the

MVS PDS named DATAFILE, removing any suffixes appended to the HFS files
and accepting lowercase filenames.
OGETX /usr/sbllib/ DATAFILE LC SUFFIX

The members /usr/sbllib/program1.c, /usr/sbllib/list.prg, and
usr/sbllib/program2.c become DATAFILE(PROGRAM1), DATAFILE(LIST), and
DATAFILE(PROGRAM2).

2. The following command copies the files with the suffix of c in the HFS directory
/usr/sbllib to the MVS PDS named DATAFILE, removing the .c suffix appended
to the HFS files and accepting lowercase filenames.
OGETX /usr/sbllib/ DATAFILE LC SUFFIX(c)

The members /usr/sbllib/program1.c, /usr/sbllib/list.prg, and
usr/sbllib/program2.c become DATAFILE(PROGRAM1) and
DATAFILE(PROGRAM2).

OHELP — Display online z/OS UNIX System Services publications

Format
OHELP ref_id name

Description
You can use the OHELP command to display online publications to show
information on commands, C functions, callable services, and messages issued by
the shell and dbx.

To use OHELP, the z/OS UNIX System Services must be installed and you must be
defined as a z/OS UNIX System Services user. The list of books that OHELP
searches is defined by the installation. To obtain a complete list of books and their
numbers, type OHELP without any operands. Your installation may have added
more ref_ids and books to the list. z/OS UNIX System Services Planning contains
information on installing books for the OHELP command.

Parameters
ref_id

Specifies the number that identifies the book you want to search. The possible
values are:
1 ’IBMBOOKS.EZ239118.BPXZA511.BOOK’ z/OS UNIX Command Reference
2 ’IBMBOOKS.EZ239118.BPXZB111.BOOK’ z/OS UNIX Callable Services
3 ’IBMBOOKS.EZ239118.EDCLB120.BOOK’ z/OS C/C++ Library Reference
4 ’IBMBOOKS.EZ239118.BPXZA811.BOOK’ z/OS UNIX Messages and Codes
5 ’IBMBOOKS.EZ239118.AOPM0311.BOOK’ z/OS Infoprint Server Messages
6 ’IBMBOOKS.EZ239118.AOPV0311.BOOK’ z/OS Infoprint Server User’s Guide
* ’IBMBOOKS.EZ239118.BPXZSH02.BKSHELF’ z/OS UNIX OHELP Bookshelf

Note: The default is ref_id=1.

name
Specifies the name of the function you want information about. If you omit this
operand, OHELP displays the table of contents of the book that contains the
type of function specified by ref_id.

OGETX

Chapter 3. TSO/E Commands 771

You can also specify a text string enclosed in double quotes. See Example 2.

Examples
1. To look at the description of the kill shell command, enter:

OHELP 1 kill

2. To search for all occurrences of the phrase environment variable in the OHELP
bookshelf, enter:
OHELP * "environment variable"

Usage Notes
Before you can use OHELP, your system must have the BookManager READ
product installed. The help information is displayed in a BookManager session, and
you cannot work in the shell while viewing the information.

OMVS — Invoke the z/OS shell

Format
OMVS ALARM | NOALARM

AUTOSCROLL | NOAUTOSCROLL
CONVERT(character_conversion_table)
DBCS | NODBCS
DEBUG(NO | YES | EVENT | DATA)
ECHO | NOECHO
ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION |

ENTER | NO | PA1 | PA3 | PF1 | PF2 | PF3 ... PF24 | SEL)
ESCAPE(’escape-characters’)
LINES(n)
PFn

(ALARM | NOALARM |
AUTOSCROLL | NOAUTOSCROLL |
BACKSCR |
BOTTOM |
CLOSE |
CONTROL |
ECHO | NOECHO |
FWDRETR |
HALFSCR
HELP |
HIDE | NOHIDE |
NEXTSESS |
NO |
OPEN |
PFSHOW | NOPFSHOW |
PREVSESS |
QUIT |
QUITALL |
REFRESH |
RETRIEVE
RETURN |
SCROLL |
SUBCOMMAND |
TOP |
TSO)

PFSHOW | NOPFSHOW
RUNOPTS(’LE/370-runtime-options’)
SESSIONS(n)
SHAREAS | NOSHAREAS
WRAPDEBUG(n)

OHELP

772 z/OS V1R4.0 UNIX System Services Command Reference

Description

Use the OMVS command to invoke the z/OS shell. You can select options on the
OMVS command to customize aspects of the shell interface, such as the function
keys.

After you are working in a shell session, you can switch to subcommand mode,
return temporarily to TSO/E command mode, or end the session by exiting the
shell.

Parameters
ALARM | NOALARM

Controls the sounding of the 3270 alarm to alert you to particular events. The
default is ALARM.

ALARM
Causes the 3270 alarm to sound when the <alert> character is encountered
in data being sent to the workstation.

NOALARM
Prevents the 3270 alarm from sounding when the <alert> character is
encountered in data being sent to the workstation.

AUTOSCROLL | NOAUTOSCROLL
Controls the setting of the autoscroll function. The default is AUTOSCROLL.

AUTOSCROLL
Specifies automatic scrolling of input and output written to the screen.

NOAUTOSCROLL
Specifies that there not be automatic scrolling.

CONVERT(character_conversion_table)
Specifies the z/OS UNIX System Services character conversion table used to
convert between the z/OS code page and the code page used in the shell.

data_set_name(member_name)
Specifies the name of the partitioned data set (PDS) and the name of the
member that contains the character conversion table.

data_set_name
Specifies the name of the partitioned data set containing the character
conversion table to be used.

(member_name)
Specifies the name of the character conversion table to be used. It is the
name of a member in a partitioned data set.

If both the member_name and data_set_name are omitted, member
FSUMQ000 in the default module search order is used as the character
conversion table. Table 26 lists the various formats of the OMVS CONVERT
command:

Table 26. Various Formats of the OMVS CONVERT Command (OMVS command)

Command Format What It Does

OMVS CONV((BPXFX111)) See Note 1.

OMVS CONV('SYS1.XXXX') Looks for SYS1.XXXX(FSUMQ000).

See Note 2.

OMVS

Chapter 3. TSO/E Commands 773

Table 26. Various Formats of the OMVS CONVERT Command (OMVS
command) (continued)

Command Format What It Does

OMVS CONV('SYS1.XXXX(BPXFX111)') Looks for SYS1.XXXX(BPXFX111)

OMVS CONV(XXXX) Looks for prefix.XXXX(FSUMQ000)

OMVS CONV(XXXX(BPXFX111)) Looks for prefix.XXXX(BPXFX111)

Notes:

1. If the data_set_name is omitted, z/OS locates member_name using the default search
order for modules in the system library concatenation. The located member_name is
used as the character conversion table. For example, if you specify:

OMVS CONVERT((BPXFX111))

the character conversion table is BPXFX111 in the default module search order in the
system library concatenation.

If the member name is omitted, the OMVS command looks in the specified
data_set_name for member FSUMQ000, to use it as the character conversion table. For
example, if you specify:

OMVS CONVERT('SYS1.XLATE') ...

OMVS uses SYS1.XLATE(FSUMQ000) as the character conversion table.

2. FSUMQ000 is an alias; when shipped by IBM, it points to BPXFX100, the default null
character conversion table.

Table 27 lists the character conversion tables supplied with the OMVS
command. It shows the locale name, the conversion table to specify, and the
default escape character for that table. If you are using the De_CH.IBM-500
locale, you must specify BPXFX450 as the conversion table, and the default
escape character for that particular table is the section sign, §. To specify
BPXFX450 as the conversion table, issue:
CONVERT((BPXFX450))

Table 27. Locales, Their Conversion Tables, and Default Escape Characters (OMVS
command)

Shell and Utilities
Locale

3270 Code
Page

Shell Code
Page Conversion Table

Default Escape
Character

De_CH.IBM-500 IBM-500 IBM-500 BPXFX450 §

De_DE.IBM-273 IBM-273 IBM-273 BPXFX473 §

De_DK.IBM-277 IBM-277 IBM-277 BPXFX477 ¤

En_GB.IBM.285 IBM-285 IBM-285 BPXFX485 ‾

En_JP.IBM-1027 IBM-1047 IBM-1047 BPXFX100 ¢

En_US.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

En_US.IBM-1047(For
APL terminals) IBM-037 IBM-1047 BPXFX211 ¢

En_US.IBM-1047 IBM-037 IBM-047 BPXFX111 ¢

Es_ES.IBM-284 IBM-284 IBM-284 BPXFX484 }

Fi_FI.IBM-278 IBM-278 IBM-278 BPXFX478 §

Fr_BE.IBM-500 IBM-500 IBM-500 BPXFX450 §

Fr_CA.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

OMVS

774 z/OS V1R4.0 UNIX System Services Command Reference

Table 27. Locales, Their Conversion Tables, and Default Escape Characters (OMVS
command) (continued)

Shell and Utilities
Locale

3270 Code
Page

Shell Code
Page Conversion Table

Default Escape
Character

Fr_CA.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

Fr_CH.IBM-500 IBM-500 IBM-500 BPXFX450 §

Fr_FR.IBM-297 IBM-297 IBM-297 BPXFX497 §

Is_IS.IBM-871 IBM-871 IBM-871 BPXFX471 }

It_IT.IBM-280 IBM-280 IBM-280 BPXFX480 §

Ja_JP.IBM-939 IBM-939 IBM-939 BPXFX100 ¢

Ja_JP.IBM-1027 IBM-1027 IBM-1027 BPXFX100 ¢

Nl_BE.IBM-500 IBM-500 IBM-500 BPXFX450 §

Nl_NL.IBM-037 IBM-037 IBM-037 IBM-037 ¢

Nl_NL.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

No_NO.IBM-277 IBM-277 IBM-277 BPXFX477 ¤

Pt_PT.IBM-037 IBM-037 IBM-037 BPXFX437 ¢

Pt_PT.IBM-1047 IBM-037 IBM-1047 BPXFX111 ¢

Sv_SE.IBM-278 IBM-278 IBM-278 BPXFX478 §

Xx_XX.IBM-1047 IBM-1047 IBM-1047 BPXFX100 ¢

DBCS | NODBCS
Specifies whether to use DBCS on 3270-type terminals. The default is DBCS
processing.

DBCS
Causes OMVS to automatically determine whether the terminal supports
DBCS. If so, DBCS processing takes place. It also enables the OMVS
command to handle doublebyte data in translated messages. This operand
is ignored if you’re not using a DBCS terminal.

Doublebyte data, including escape character strings, cannot be supplied for
any of the OMVS command operands. The following data strings used by
OMVS must contain singlebyte characters only:
v Escape characters
v Conversion table data set name
v Conversion table member name
v Password used to access the conversion table, if one is required

Also, the ddname for the OMVS debug data set is always SYSFSUMO.

Note: OMVS supports only code pages 939, 1027, and 1047 on DBCS.
The null character conversion table (BPXFX100) should be used with
DBCS terminals. (It is the default.)

NODBCS
Specifies that OMVS operate in SBCS mode only. If you are logged on to a
terminal that supports DBCS, this operand allows you to bypass DBCS
processing.

DEBUG(NO | YES | EVENT | DATA)
Controls the collection and output of debugging information. The default is NO;
change the default setting only if IBM requests it.

OMVS

Chapter 3. TSO/E Commands 775

NO
Indicates that no debugging information is to be written.

YES
Indicates that debugging information is collected while the OMVS command
runs.

EVENT
Causes additional debugging information to be written whenever certain
internal events occur in the OMVS command.

DATA
Causes any data received from or sent to the workstation to be written.
Also, debug information for internal events is recorded.

ECHO | NOECHO
Enables OMVS to control the visibility of the input area. The default is
NOECHO.

ECHO
Allows OMVS to hide or unhide the input area.

NOECHO
Prevents OMVS from hiding and unhiding the input area.

ENDPASSTHROUGH(ATTN | CLEAR | CLEARPARTITION | ENTER | NO | PA1 |
PA3 | PF1 | PF2 | PF3 ... PF24 | SEL)

Specifies a 3270 key that ends TSO/3270 passthrough mode and forces OMVS
to return to the shell session. Because this key would be used only during
application development, the default is ENDPASSTHROUGH(NO); all 3270
keys can be used by the 3270 application.

ATTN
Specifies the 3270 <Attention> key. In some 3270 applications, this key may be
changed to <PA1> before it is seen by the TSO/E OMVS command. If so,
OMVS will never see the <Attention> key; specify <PA1>instead of <ATTN>.

With some terminal connections, the <ATTN> key may not be available.

CLEAR
Specifies the 3270 CLEAR key. In some TS0/3270 applications, the TSO/E
OMVS command will not see <CLEAR> when the CLEAR key is pressed. In
these cases, specifying ENDPASSTHROUGH(CLEAR) will have no effect.

CLEARPARTITION
Specifies the 3270 <Clear Partition> key. This key is effective only if the
application is using explicit 3270 partitions.

ENTER
Specifies the 3270 ENTER key. This key is useful only if the 3270 application is
completely driven by PF or PA keys.

NO
No breakout key; this is the default.

PA1
Specifies the 3270 <PA1>key. For some TSO/3270 applications, <PA1> is
changed to <ATTN> before OMVS sees it. In these cases, you should specify
ENDPASSTHROUGH(ATTN).

In general, the provider of the TSO/3270 application needs to tell the user
whether <PA1>, <ATTN>, or <CLEAR> can be used for ENDPASSTHROUGH.

OMVS

776 z/OS V1R4.0 UNIX System Services Command Reference

PA3
Specifies the 3270 <PA3> key. The <PA3> key may not be available on some
keyboards.

PFn
Specifies the 3270 function keys 1–9.

PFnn
Specifies the 3270 function keys 10–24.

SEL
Specifies the 3270 Cursor Select key. This key is useful only when the 3270
application creates fields on the 3270 screen that can be selected by a light
pen.

ESCAPE('escape-characters')
Specifies an escape character as the first character in a two-character
sequence that is the EBCDIC equivalent of an ASCII control character (for
example, the EBCDIC “ød” is the equivalent of the ASCII “Ctrl-D”). When an
escape character is typed in the input area, the next character typed is
converted into a special character before it is passed to the shell.

You can enter a string up to eight escape characters, enclosed in single quotes
with no space between them. (Do not use nonprintable EBCDIC characters.)

The default escape character depends on the character conversion table being
used. (See Table 27 on page 774 for a list of default characters and the
conversion tables they are used with.) To enter <Ctrl-D>, for example, type in ød
or øD in the input area.

If the last character in the input area is one of the escape characters, the
<newline> character normally appended to the input data is suppressed. For
example, to enter only a <Ctrl-Q> with no final <newline>, type the string øQø in
the input area, and press <Enter>.

LINES(n)
Controls the amount of output data the OMVS command keeps for scrolling.
The default is roughly four screenfuls. You can specify that between 25 and
3000 lines should be kept in the output buffer.

PFn(ALARM | NOALARM | AUTOSCROLL | NOAUTOSCROLL | BACKSCR |
BOTTOM | CLOSE | CONTROL | ECHO | NOECHO FWDRETR | HALFSCR |
HELP | HIDE | NOHIDE NEXTSESS | NO | OPEN | PFSHOW | NOPFSHOW |
PREVSESS | QUIT | QUITALL | REFRESH | RETRIEVE | RETURN | SCROLL |
SUBCOMMAND | TOP | TSO)

Customizes the settings for the function keys that you use while working in the
z/OS shell or in subcommand mode. in <PFn> The n is a one- or two-digit
function key number from 1 to 24. Do not use a leading zero for a one-digit
number. More than one function key can be assigned the same function. For
example, both <PF1> and <PF13> are assigned the Help function by default.

All PF keys can be abbreviated using the usual TSO/E rules. For example,

v OPEN can be abbreviated as O, OP, or OPE.

v NEXTSESS can be abbreviated as NE, NEX, NEXT, NEXTS, NEXTSE, or
NEXTSES.

v PFSHOW can be abbreviated as PF, and NOPFSHOW can be abbreviated
as NOPF.

OMVS

Chapter 3. TSO/E Commands 777

ALARM | NOALARM
A toggle key used to turn on and off the 3270 alarm that sounds when an
<alert> character is written to the output area (also available in
subcommand mode).

The label for this PF key (in the PF key lines at the bottom of the screen)
shows up as either ALARM or NOALARM, depending on the current toggle
setting. If it is ALARM, pressing this PF key turns the alarm on. If it is
NOALARM, pressing this PF key turns the alarm off.

AUTOSCROLL | NOAUTOSCROLL
A toggle key used to turn the autoscroll function on and off (also available
in subcommand mode). The screen automatically scrolls forward when new
input is written to the screen.

The label for this PF key (in the PF key lines at the bottom of the screen)
shows up as either AUTOSCROLL or NOAUTOSCROLL, depending on the
current toggle setting. If it is AUTOSCROLL, pressing this PF key turns the
autoscroll function on. If it is NOAUTOSCROLL, pressing this PF key turns
the autoscroll function off.

BACKSCR
Scrolls the screen backward one full screen, redisplaying previously
displayed output lines. The scrolling ends when the oldest available saved
line is reached. (This option is also available in subcommand mode.)

If you first move the cursor into the output area, the line with the cursor
becomes the top line.

BOTTOM
Scrolls help information forward to the last panel of information, and scrolls
output forward the last full screen (also available in subcommand mode).

CLOSE
Ends the displayed session and switches to another one, or returns to
TSO/E if the only session was closed (also available in subcommand
mode).

CONTROL
Treats all characters in the input area as if they were preceded by an
escape character. Also, no trailing <newline> is appended to the data.

ECHO | NOECHO
A toggle key used to control whether the shell command can hide or unhide
the OMVS command input area.

The label for this PF key (in the PF key lines at the bottom of the screen)
shows up as either ECHO or NOECHO, depending on the current toggle
setting. If it is ECHO, pressing this PF key allows the current shell
command to hide or unhide the OMVS command input area. If it is
NOECHO, pressing this PF key prevents the current shell command from
hiding or unhiding the OMVS input area.

FWDRETR
Retrieves the oldest available input line from a stack of saved input lines,
starting with the oldest and moving up to the most recent line (also
available in subcommand mode).

HALFSCR
Scrolls half the displayed screen forward, allowing room for more output
data. If the output area on the screen is not full, half the displayed lines are

OMVS

778 z/OS V1R4.0 UNIX System Services Command Reference

scrolled off the screen. If you first move the cursor into the output area, the
line with the cursor becomes the middle line. (This option is also available
in subcommand mode.)

HELP
Temporarily suspends the session and displays the help information for the
OMVS command. The scrolling function keys can be used to look at the
help information. To exit the help information, press the Return function key.
(This option is also available in subcommand mode.)

HIDE | NOHIDE
Temporarily hides or unhides the input data you type on the shell command
line. If you press this PF key while the input area is hidden, the input area
is made visible. If it is not hidden, the input area is hidden.

The input area stays hidden or unhidden until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO/E and return, or enter
subcommand mode and return.

If OMVS is running in NOECHO mode, the input area will be visible after
you take one of these actions. If OMVS is running in ECHO mode, the
visibility of the input area depends on the shell command you are running.

NEXTSESS
Switches to the next (higher-numbered) session (also available in
subcommand mode).

NO
Deactivates a function key so that it doesn’t do anything (also available in
subcommand mode).

OPEN
Starts a new shell session and switches to it (also available in subcommand
mode).

PFSHOW | NOPFSHOW
Toggles on and off the display of the active function key settings at the
bottom of the screen (also available in subcommand mode, and can be
used as PF and NOPF).

PREVSESS
Switches to the previous (lower-numbered) session (also available in
subcommand mode).

QUIT
Ends the displayed session and switches to another one, or returns to
TSO/E if the only session was closed (also available in subcommand
mode).

QUITALL
Ends all shell sessions and causes OMVS to end and to return to TSO/E
(also available in subcommand mode).

REFRESH
Updates the screen with the latest output data. Use this function key if the
display of output is incomplete, but the session is now displaying INPUT
status. For more information on the status field, see z/OS UNIX System
Services User’s Guide. (This option is also available in subcommand
mode.)

OMVS

Chapter 3. TSO/E Commands 779

RETRIEVE
Retrieves the most recently entered input line from a stack of saved input
lines, starting with the most recent and moving down to the oldest available
line (also available in subcommand mode).

RETURN
If help information is displayed, returns you to the session you were in. If
you are in subcommand mode, returns you to the shell. (This option is also
available in subcommand mode.)

SCROLL
Scrolls the last line of output data to the top of the screen, making room for
more output data. If Help information is displayed, its data is scrolled. If you
first move the cursor into the output area, the line with the cursor becomes
the top line. (This option is also available in subcommand mode.)

SUBCOMMAND
If you press this key when the command line is blank, it leaves the shell
session and enters subcommand mode.

To run a subcommand without switching to subcommand mode, type the
subcommand at the command line and then press the function key. You can
enter the OMVS subcommands at the command line when you are in
subcommand mode.

TOP
Scrolls help information backward to the first panel, and scrolls output
backward to a screenful of the oldest available output (also available in
subcommand mode).

TSO
If you press this key when the command line is blank, it temporarily
suspends a shell session or subcommand mode, and you are in a TSO/E
session. You can enter TSO/E commands. Press <PA1> or the <Attention>
key to exit TSO/E command mode and return to the session you were in.
(This option is also available in subcommand mode.)

To run a TSO/E command without suspending the shell session or
subcommand mode, type the command at the command line and then
press the function key. When the command completes, you can continue
working in the shell session or subcommand mode.

Function Key Defaults:

PF1(HELP)
PF2(SUBCOMMAND)
PF3(RETURN)
PF4(TOP)
PF5(BOTTOM)
PF6(TSO)
PF7(BACKSCR)
PF8(SCROLL)
PF9(NEXTSESS)
PF10(REFRESH)
PF11(FWDRETR)
PF12(RETRIEVE)
PF13(HELP)
PF14(SUBCOMMAND)
PF15(RETURN)

OMVS

780 z/OS V1R4.0 UNIX System Services Command Reference

PF16(TOP)
PF17(BOTTOM)
PF18(TSO)
PF19(BACKSCR)
PF20(SCROLL)
PF21(NEXTSESS)
PF22(REFRESH)
PF23(FWDRETR)
PF24(RETRIEVE)

PFSHOW | NOPFSHOW
Specifies that the PF keys be shown at the bottom of the screen. The default is
PFSHOW.

PFSHOW
Specifies that PF keys be shown at the bottom of the screen.

NOPFSHOW
Specifies that PF keys not be shown at the bottom of the screen.

RUNOPTS(’LE/370–runtime-options’)
Specifies a string containing LE/370 runtime options, which are passed to
LE/370 when the TSO/E OMVS command starts up, and to the initial login shell
program in the _CEE_RUNOPTS environment variable. These options are the
same as those passed to other LE/370 programs run from the TSO READY
prompt.

The options string can be from 1 to 1000 characters in length, and should
contain valid LE/370 runtime options. It should not contain options such as
POSIX(OFF), TRAP(OFF), TRAP(ON,NOSPIE), or MSGFILE(), or characters
such as slashes, unbalanced parentheses or quotes, or imbedded NULL
characters. Specifying such options or using these characters will cause
unpredictable problems when the TSO/E OMVS command runs.

If the RUNOPTS operand is omitted, OMVS uses the RUNOPTS string defined
in the BPXPRMxx SYS1.PARMLIB member that is active for the OMVS kernel.
If no RUNOPTS string was defined in BPXPRMxx, no LE/370 runtime options
are used when the TSO/E OMVS command starts up.

For more information, refer to z/OS Language Environment Programming Guide
which contains a discussion about restrictions on _CEE_RUNOPTS
environment variable setttings.

SESSIONS(n)
Specifies the initial number of sessions to be started. The default is 1, and the
allowed range is 1 to 100; most users will use two or three sessions.

Note: You can specify a number from 1 to 100 without getting a syntax error
on the command. Normally, you cannot start more than several sessions
before getting an error message. If you try to start too many sessions
(the limit depends on the size of your TSO/E address space), your
TSO/E user ID runs out of storage and various unpredictable errors may
occur. You may have to log off your TSO/E user ID before you can
continue.

SHAREAS | NOSHAREAS
Specifies whether to run the shell program in a separate address space. Both
OMVS and the shell will run in the TSO/E address space when OMVS is
invoked with the SHAREAS parameter.

OMVS

Chapter 3. TSO/E Commands 781

OMVS will use SHAREAS as the default if the shell program is not a SETUID
or SETGID program and the owning UID or GID is not the same as the current
user.

SHAREAS
Runs the shell program in the same TSO/E address space as OMVS.
SETUID and SETGID shell programs cannot be run with the SHAREAS
option unless your UID or GID owns the shell program.

Note: If you end OMVS while in SHAREAS mode, the shell process ends
immediately. (It may get killed, but it will usually end by itself when
the TTY is closed.)

NOSHAREAS
Runs the shell program in a separate address space. SETUID and SETGID
shell programs usually require this option.

WRAPDEBUG(n)
Controls how many lines of debug data OMVS writes out before wrapping
around to the top of the debug data set. This option is effective only if the
DEBUG(YES) DEBUG(EVENT), or DEBUG(DATA) options are used.

The WRAPDEBUG(n) value specifies how many lines of debug data OMVS
writes out before wrapping around to the top of the debug data set. The default
number of lines is 10 000. The value of n must be between 100 and
1 000 000 000. The debug data set must be large enough to hold n 80-byte
lines of debug data. If the debug data set is too small, debug recording stops
when the data set fills up.

Subcommands

When the shell is active, you can enter subcommand mode by pressing the
Subcommand function key. While in subcommand mode, you can enter
subcommands on the command line or use function keys.

ALARM
Turns on the 3270 alarm which sounds when an <alert> character is written to
the output area.

AUTOSCROLL
Activates automatic forward scrolling of output as new input is written to the
screen.

BACKSCR
Scrolls the screen backward one full screen, redisplaying previously deleted
output lines. The scrolling ends when the oldest available saved line is reached.

BOTTOM
If the help information is displayed, it is scrolled forward to the last panel of
information. If output is displayed, it is scrolled forward to the last screen of
output.

CLOSE
Ends the displayed session and switches to another one, or returns to TSO/E if
the only session was closed.

ECHO
Allows the current shell command to control whether the OMVS input area is
visible or hidden. The HIDE subcommand, NOHIDE subcommand, and HIDE |
NOHIDE PF keys can temporarily override the input area visibility set by the
current shell command.

OMVS

782 z/OS V1R4.0 UNIX System Services Command Reference

HALFSCR
Scrolls half the displayed screen forward, allowing room for more output data.

HELP
Displays help information for the OMVS command. To view the help information,
use the scrolling function keys. To return from Help to the session, press the
Return function key.

? is a short form for the Help subcommand.

HIDE
Temporarily hides the input data you type on the shell command line. The input
area stays hidden until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO and return, or enter
subcommand mode and return.

If OMVS is running in NOECHO mode, the input area will be visible after you
take one of these actions. If it is running in ECHO mode, whether you can see
the input area depends on the shell command you are running.

NEXTSESS
Switches to the next (higher-numbered) session.

NOALARM
Prevents the 3270 alarm from sounding when the <alert> character is
encountered in data being sent to the workstation.

NOAUTOSCROLL
Turns off the automatic scrolling (AUTOSCROLL) function.

NOECHO
Causes the OMVS input area to remain visible regardless of the current shell
command. You can use the HIDE subcommand and the PF key to temporarily
hide the input area.

NOHIDE
Temporarily unhides the input data you type on the shell command line. The
input area remains visible until:

v You press <Enter>.

v You press the HIDE | NOHIDE PF key.

v You switch to another session, escape to TSO and return, or enter
subcommand mode and return.

If OMVS is running in NOECHO mode, the input area remains visible after you
take one of these actions. If OMVS is running in ECHO mode, the visibility of
the input area depends on the shell command you are running.

NOPFSHOW
Turns off the display of the function key settings and escape characters at the
bottom of the screen.

OPEN
Starts a new shell session and switches to it.

PFSHOW
Displays the current function key settings and escape characters on the bottom
two lines of the display screen. A maximum of two screen lines is used. If some
function key settings do not fit on the two lines, they are not displayed.

OMVS

Chapter 3. TSO/E Commands 783

PREVSESS
Switches to the previous (lower-numbered) session.

QUIT
Ends the displayed session and switches to another one, or returns to TSO/E if
the only session was closed.

QUITALL
Ends all shell sessions and causes OMVS to end and to return to TSO/E.

RETURN
Returns from subcommand mode to the shell session. If help information is
being displayed, the session returns to subcommand mode and you must enter
the RETURN command again to return to the shell.

SCROLL
Scrolls forward the data displayed on the screen, approximately one full screen.

TOP
Scrolls help information backward to the first panel. Scrolls output backward to
a screenful of the oldest available output.

TSO
Invokes TSO/E command mode. In this mode, you can enter TSO/E
commands. Press <PA1>or the <Attention> key to return to subcommand
mode.

Usage Notes
1. The OMVS command is a Language Environment application. OMVS overrides

the default Language Environment; MSGFILE ddname (SYSOUT) and uses
ddname SYSFSUMM. (See the Language Environment; books for more
information about the MSGFILE runtime option.)

Normally, any Language Environment; error messages from the OMVS
command are displayed on the TSO/E terminal. If you want to redirect these
messages, you need to allocate the SYSFSUMM ddname instead of the
SYSOUT ddname, as is usual with Language Environment; applications.

2. The language of the OMVS command messages is determined by the PROFILE
PLANGUAGE setting when OMVS is invoked. Do not change PROFILE
PLANGUAGE while OMVS is running

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
These examples explain how to use the multisession capability of OMVS:

1. To start 2 sessions automatically when starting OMVS, enter:
OMVS SESSIONS(2)

2. To assign the NEXTSESS function to a PF key, enter:
OMVS PF1(NEXTSESS)

OMVS

784 z/OS V1R4.0 UNIX System Services Command Reference

OPUT — Copy an MVS data set member into an HFS file

Format
OPUT mvs_data_set_name | mvs_data_set_name(member_name)

’pathname’
BINARY | TEXT
CONVERT(character_conversion_table | YES | NO)

Description
You can use the OPUT command to:
v Copy a member of an MVS partitioned data set (PDS or PDSE) to a file
v Copy an MVS sequential data set to a file

and convert the data from code page IBM-037 or ASCII to code page IBM-1047.

Do not use the CONVERT option when copying files that contain doublebyte data.
This option is used for singlebyte data only, not for doublebyte data.

Parameters
mvs_data_set_name | mvs_data_set_name(member_name)

Specifies the name of an MVS sequential data set or an MVS partitioned data
set member that is being copied.

v A fully qualified name that is enclosed in single quotes, or an unqualified
name (an unqualified name is not enclosed in single quotes)

v Up to 44 characters long, with an additional 8 characters for the member
name

v Converted to uppercase characters by the system

pathname
Specifies the pathname of the file to receive the data set member that is being
copied. The target file cannot be a directory. All directories in the pathname
prior to the filename directory must already exist. The pathname is:

v A relative or absolute pathname. A relative pathname is relative to the
working directory of the TSO/E session (usually the HOME directory).
Therefore, you should usually specify an absolute pathname.

v Up to 1023 characters long.

v Enclosed in single quotes.

v In uppercase or lowercase characters, which are not changed by the system.

BINARY | TEXT
specifies that the data set being copied contains binary data or text.

BINARY
Specifies that the data set being copied contains binary data. This is the
default for a data set of undefined record format.

TEXT
Specifies that the data set being copied contains text. This is the default for
a data set of fixed record format or variable record format.

CONVERT(character_conversion_table | YES | NO)
Specifies that the data being copied is to be converted from IBM-037 or ASCII
to EBCDIC Latin 1/Open Systems Interconnection code page 01047—that is,

OPUT

Chapter 3. TSO/E Commands 785

that the TO1047 part of the specified character conversion table will be used.
This operand is optional. If this operand is omitted, the system copies the data
without conversion.

You can use this option for singlebyte data, but not for doublebyte data.

Specify the CONVERT value as one of the following:

character_conversion_table
Specify one of the following:

v data_set_name(member_name). Specifies the name of the partitioned
data set (PDS) and the name of the member that contains the character
conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)
that contains the character conversion table. The table is the FROM1047
part in member BPXFX000. (This is an alias; when shipped by IBM, it
points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.
It is a member of a PDS. Since the data_set_name is omitted, the
standard library concatenation is searched for the table. (The default
library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to
convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the
square brackets at your workstation are at the same code points as
the square brackets on code page 1047 (it is the default). Also use it
if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert
between code pages ISO8859-1 and IBM-1047.

YES
The system will perform conversion and use the default conversion table
(BPXFX000) in the system library concatenation. (BPXFX000 is an alias;
when shipped by IBM, it points to BPXFX111.)

NO
Specifies no conversion. NO is the same as omitting the CONVERT
operand.

Usage Notes
1. If the specified file does not exist, OPUT creates a new file. For a new text file,

the mode (permission bits) is 600. When the mode is 600, the user has read
and write access; others have nothing. For a new binary file, the mode
(permission bits) is 700. When the mode is 700, the user has read, write, and
search access; others have nothing.

2. If the specified file exists, the new data overwrites the existing data. The mode
of the file is unchanged.

3. You can use OPUT to copy a program object from a PDSE to the file system,
and it will be executable there. If you have a load module in a partitioned data
set, however, you must first use the IEBCOPY program to copy the load module
from a partitioned data set to a PDSE and then subsequently use OPUT to copy

OPUT

786 z/OS V1R4.0 UNIX System Services Command Reference

the module into the file system. IEBCOPY converts load modules to a program
object. See z/OS UNIX System Services User’s Guide for a discussion of
copying executable files.

4. Data sets with spanned record lengths are not allowed.

5. When you copy MVS data sets to HFS text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the
<newline> character is appended after the trailing blanks.

6. When you copy MVS data sets to HFS binary files, the <newline> character is
not appended to the record.

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
1. This command copies an MVS sequential data set to a file, converting from

code page IBM-037 to code page 1047.
v The unqualified name of the sequential data set is EMPLOYEE.DATA.
v The pathname of the file is /u/admin/employee/data.
OPUT EMPLOYEE.DATA ’/u/admin/employee/data’ TEXT CONVERT(YES)

2. This command copies an MVS sequential data set to a file converting to code
page 1047 using the conversion table BPXFX000 in the user’s library data set.

v The fully qualified name of the sequential data set is
IBMUSR.EMPLOYEE.DATA.

v The pathname of the file is /u/admin/employee/data.
OPUT ’IBMUSR.EMPLOYEE.DATA’ ’/u/admin/employee/data’

TEXT CONVERT(MY.LOADLIB(BPXFX000))

3. This command copies a binary file from a PDSE to a file in the file system.

v APPL.LOADLIB(PAYROLL) is the fully qualified name of the member of the
PDSE.

v bin/payroll is the pathname of the file; the directory bin is in the working
directory.

v There is no code page conversion.
OPUT ’APPL.LOADLIB(PAYROLL)’ ’/bin/payroll’ binary

OPUTX — Copy members from an MVS PDS or PDSE to an HFS
directory

Format
OPUTX mvs_PDS_name | mvs_data_set-name(member_name)

hfs_directory | hfs_file_name
ASIS
BINARY | TEXT
CONVERT(character_conversion_table | YES | NO)
LC
MODE
QUIET
SUFFIX(suffix)

Description
You can use the OPUTX command to:

OPUT

Chapter 3. TSO/E Commands 787

v Copy members from an MVS partitioned data set (PDS) or PDSE to an HFS
directory

v Copy a sequential data set or member of a PDS to a file

and convert the data from code page IBM-037 or ASCII to code page IBM-1047
while it is being copied.

Do not use the CONVERT option when copying files that contain doublebyte data.
This option is used for singlebyte data only, not for doublebyte data.

Parameters
hfs_directory | HFS_file_name

Specifies the directory name or filename of the HFS files to receive the PDS
members that are being copied. The name can be up to 1023 characters long.
Single quotes around the directory name or filename are optional.

Use hfs_directory when a PDS is specified. When a sequential data set or
PDS member is specified, then the filename must be used.

mvs_PDS_name | mvs_data_set_name(member_name)
Specifies the name of an MVS partitioned data set or an MVS partitioned data
set member that is being copied into an HFS. The data set name is:

v A fully qualified name that is enclosed in single quotes, or an unqualified
name (an unqualified name is not enclosed in single quotes)

v Up to 44 characters long, with an additional 8 characters for the member
name

v Converted to uppercase letters

ASIS
Specifies that the @ character in member names not be translated to the _
character in pathnames. (It is a common convention to use @ symbols in PDS
member names to correspond with the _ symbol in pathnames.)

BINARY | TEXT
Specifies whether the data set being copied contains binary data or text.

BINARY
Specifies that the data set being copied contains binary data. This is the
default for a data set of undefined record format.

TEXT
Specifies that the data set being copied contains text. This is the default for
a data set of fixed record format or variable record format.

CONVERT(character_conversion_table | YES | NO)
Specifies that the data being copied be converted from code page IBM-037 to
EBCDIC Latin 1/Open Systems Interconnection code page 01047—that is, that
the TO1047 part of the specified character conversion table is used. This
operand is optional. If this operand is omitted, the system copies the data
without conversion.

You can use this option for singlebyte data, but not for doublebyte data.

Specify the CONVERT value as one of the following:

character_conversion_table
Specify one of the following:

OPUTX

788 z/OS V1R4.0 UNIX System Services Command Reference

v data_set_name(member_name). Specifies the name of the partitioned
data set (PDS) and the name of the member that contains the character
conversion table.

v data_set_name. Specifies the name of the partitioned data set (PDS)
that contains the character conversion table. The table is the FROM1047
part in member BPXFX000. (This is an alias; when shipped by IBM, it
points to BPXFX111.)

v (member_name). Specifies the name of the conversion table to be used.
It is a member of a PDS. Since the data_set_name is omitted, the
standard library concatenation is searched for the table. (The default
library is SYS1.LINKLIB.)

The following list summarizes what you can specify when you want to
convert data to a different code page when copying singlebyte data:

– BPXFX100. Null character conversion table. Use this table if the
square brackets at your workstation are at the same code points as
the square brackets on code page 1047 (it is the default). Also use it
if you are using a DBCS terminal.

– BPXFX111. Specifies a non-APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX211. Specifies an APL conversion table to convert between
code pages IBM-037 and IBM-1047.

– BPXFX311. Specifies an ASCII-EBCDIC conversion table to convert
between code pages ISO8859-1 and IBM-1047.

YES
Specifies that the system is to perform conversation and use the default
conversion table (BPXFX000) in the standard library concatenation.
(BPXFX000 is an alias; when shipped by IBM, it points to BPXFX111.)

NO
Specifies that conversion not be done. NO is the same as omitting the
CONVERT operand.

LC
Specifies that the member name be converted to a lowercase filename.

MODE
Specifies the file mode for any members copied into the HFS. The mode can be
specified as three or four octal digits. (The digits can be separated by commas.)
Invalid mode specifications are ignored.

If the specified file does not exist, OPUTX creates a new file. For a new text
file, the mode (permission bits) is 600. When the mode is 600, the user has
read and write access; others have none. For a new binary file, the mode
(permission bits) is 700. When the mode is 700, the user has read, write, and
search access; others have none.

For more information, see z/OS UNIX System Services User’s Guide.

QUIET
Turns off the echoing of the OPUTX commands before the member or data set
is copied.

SUFFIX(suffix)
Specifies that a suffix specified by (suffix) be appended to the member names
in creating the HFS filenames.

A suffix is an optional additional file identifier that is appended to the filename
following a period (.). It is usually used to identify the type of file. For example,

OPUTX

Chapter 3. TSO/E Commands 789

.c usually indicates a C language source file and .h indicates a C language
header file. Suffixes can be any length and you can append as many as you
want, but the filename, including suffixes, cannot exceed 255 characters for
z/OS UNIX System Services.

Usage Notes
1. Avoid using OPUTX with pathnames containing quotes or spaces.

2. If the specified file does not exist, OPUTX creates a new file. For a new text file,
the mode (permission bits) is 600. When the mode is 600, the user has read
and write access; others have nothing. For a new binary file, the mode
(permission bits) is 700. When the mode is 700, the user has read, write, and
search access; others have nothing.

3. If the specified file exists, the new data overwrites the existing data. The mode
of the file is unchanged.

4. Data sets with spanned records are not allowed.

5. When you copy MVS data sets to HFS text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the
<newline> character is appended after the trailing blanks.

6. When you copy MVS data sets to HFS binary files, the <newline> character is
not appended to the record.

7. Prior to the copy, the OPUTX command for a data set or member is echoed,
unless you specify the QUIET option. If you did not specify QUIET and if the
command is not displayed, the data set or member is not copied.

8. If the source data set is a PDS with an undefined record format, the members
may be treated as load modules. A load module is copied by link-editing it into
the target file in the file hierarchy. For the program to be able to run from the file
hierarchy, the entry point must be at the beginning of the load module.

For OPUTX to treat the file as a load module, neither BINARY or TEXT can be
specified.

9. If the source for the copy is a sequential data set or a PDS member and the
target is a directory, the filename used is the last qualifier of the data set name
or the member name. You do not have to specify a file as the target with a
sequential data set, or a directory as the target with a PDS. The LC and ASIS
options are not affected.

Examples
The following command copies files in a PDS into a HFS directory and specifies
that:
v The name of the partitioned data set (PDS) is DATAFILE
v The HFS directory is /usr/sbllib
v The files are given a suffix of .c
OPUTX DATAFILE ’/usr/sbllib/’ LC SUFFIX(c)

Assuming the PDS has members PROGRAM1, PROGRAM2, and PROGRAM3,
these members are copied as /usr/sbllib/program1.c, /usr/sbllib/program2.c, and
/usr/sbllib/program3.c.

OSHELL — Invokes BPXBATCH from TSO/E

Format
OSHELL

OPUTX

790 z/OS V1R4.0 UNIX System Services Command Reference

Description
OSHELL uses BPXBATCH to run the shell command or shell script:
oshell shell_command

For example, to display process information, enter:
oshell ps –ej

When you use OSHELL, do not use an & to run a shell command in the
background. For more information about BPXBATCH, see Appendix D, “Running
Shell Scripts or Executable Files under MVS Environments” on page 811

Some examples of using the OSHELL command are:
v List files in a directory
v Create, delete, or rename directories, files, and special files
v Display contents of a file
v Copy files
v Display file attributes
v Search files for text strings
v Compare files or directories
v Run executable files
v Display the attributes and contents of a symbolic link (symlink)
v Set up character special files
v Set up standard directories for a root file system

Some of these tasks may require superuser authority.

OSTEPLIB — Build a list of files

Format
OSTEPLIB pathname

Description
Use the OSTEPLIB command to build a list of files that are sanctioned by your
installation as valid step libraries for programs that have the set-user-ID or
set-group-ID bit set. This permission setting allows a program to have temporary
access to files that are not normally accessible to other users. Step libraries have
many uses; for example, selected users can test new versions of runtime libraries
before the new versions are made generally available.

You must have superuser authority to issue OSTEPLIB.

The sanctioned list is valid if it conforms to the following rules:

v You can include comment lines in the list. Each comment line must start with /*
and end with */.

v You must follow standard MVS data set naming conventions in naming the files
in the list.

v Each data set name must be fully qualified and cannot be enclosed in quotation
marks.

v Each data set name must be on a line by itself, with no comments.

v You can put blanks before and after each data set name. Entirely blank lines in
the list are ignored.

OSHELL

Chapter 3. TSO/E Commands 791

v You can use the * character to specify multiple files that begin with the same
characters. For example, if you list SYS1.*, you are sanctioning any file that
begins with SYS1. as a step library.

Following is an example of a file that contains a correctly formatted list of
sanctioned step libraries:

/***/
/* */
/*Name: Sample Sanctioned List for set-user-ID and set-group-ID */
/* files */
/* */
/*Updated by: May only be updated by OSTEPLIB TSO/E command */
/* */
/*Description: Contains a list of data set names that may */
/* be used as STEPLIB libraries for SETUID */
/* programs */
/* */
/* Wild cards may be used to specify multiple */
/* data set names that have the same prefix */
/* characters. */
/* */
/***/

/***/
/*Sanction all data set names beginning with SYS1.CEE */
/***/
SYS1.CEE*

/***/
/*Sanction data set containing vers. 2 of the C run time library */
/***/
ADMIN.CEE.RTLV2

Parameters
pathname

Specifies the pathname of the file to contain the list of sanctioned step libraries.
The pathname can be absolute or relative to the root. Avoid using the space
character or single quotation mark (apostrophe) within the pathname. The
pathname cannot be enclosed in single quotes.

If you omit the pathname operand, the new sanctioned list file is created with
the same filename as the old one and replaces it when it has been validated.

UNMOUNT — Remove a file system from the file hierarchy

Format
UNMOUNT FILESYSTEM(file_system_name)

DRAIN | FORCE | IMMEDIATE | NORMAL | REMOUNT(RDWR | READ) | RESET

Description

The UNMOUNT command removes a file system from the file system hierarchy.
The alias for this command is UMOUNT.

Note: An UNMOUNT user must have UID (0) or at least have READ access to the
BPX.SUPERUSER FACILITY class.

OSTEPLIB

792 z/OS V1R4.0 UNIX System Services Command Reference

Parameters
FILESYSTEM(file_system_name)

Specifies the name of the file system to be removed from the file system. The
name supplied is changed to all uppercase characters. This operand is
required.

file_system_name
For the hierarchical file system (HFS), this is the fully qualified name of the
MVS HFS data set that contains the file system. The file system name
supplied is changed to all uppercase characters.

Specify the name of file system exactly as it was specified when the file
system was originally mounted. You can enclose it in single quotes, but
they are not required.

If FILESYSTEM('''file_system_name''') is specified, the file system name will
not be translated to uppercase.

DRAIN
Specifies that an unmount drain request is to be made. The system will wait for
all use of the file system to be ended normally before the unmount request is
processed or until another UNMOUNT command is issued.

Note: UNMOUNT can be specified with IMMEDIATE to override a previous
UNMOUNT DRAIN request for a file system. If this is used in the
foreground, your TSO/E session waits until the UNMOUNT request has
completed. <ATTN> (or <PA1>) does not terminate the command.

UNMOUNT DRAIN is not supported in a sysplex environment. If an UNMOUNT
DRAIN is issued in a sysplex, the following behavior is exhibited:

v If there is no activity in the file system, UNMOUNT DRAIN will perform the
unmount, but it will behave like an UNMOUNT NORMAL.

v If there is activity in the file system, UNMOUNT DRAIN will return a
Return_value of -1 with Return_code EINVAL and Reason_code
JrNotSupInSysplex.

FORCE
Specifies that the system is to unmount the file system immediately. Any users
accessing files in the specified file system receive failing return codes. All data
changes to files in the specified file system are saved, if possible. If the data
changes to the files cannot be saved, the unmount request continues and data
is lost.

Note: An UNMOUNT IMMEDIATE request must be issued before you can
request a UNMOUNT FORCE of a file system. Otherwise, UNMOUNT
FORCE fails.

IMMEDIATE
Specifies that the system is to unmount the file system immediately. Any users
accessing files in the specified file system receive failing return codes. All data
changes to files in the specified file system are saved. If the data changes to
files cannot be saved, the unmount request fails.

NORMAL
Specifies that if no user is accessing any of the files in the specified file system,
the system processes the unmount request. Otherwise, the system rejects the
unmount request. This is the default.

UNMOUNT

Chapter 3. TSO/E Commands 793

REMOUNT(RDWR|READ)
Specifies that the specified file system be remounted, changing its mount mode.
REMOUNT takes an optional argument of RDRW or READ. If you specify either
argument, the filesystem is remounted in that mode if it is not already in that
mode. If you specify REMOUNT without any arguments, the mount mode is
changed from RDWR to READ or READ to RDWR.

Note: REMOUNT is not supported in a sysplex. An alternate way to remount a
file system in a sysplex is to UNMOUNT the file system and then
MOUNT it again in the desired mode.

RESET
A reset request stops a previous UNMOUNT DRAIN request.

Note: UNMOUNT RESET is not supported in a sysplex since UNMOUNT
DRAIN is unsupported in a sysplex environment (see description above).

Usage Notes
1. The directory /samples contain sample UNMOUNT commands (called

unmountx).

2. If you unmount a TFS file system, all data stored in that file system is
discarded. For more information on TFS, see z/OS UNIX System Services
Planning.

3. If desired, the root file system can be umounted. If this is done, the IMMED
operand must be specified. Unmounting the root will force all file system activity
to be halted. Therefore, if this is done, a subsequent mount of a root file system
should be done as soon as possible.

4. While the root file system is unmounted, a ’dummy file system’ root named
SYSROOT will be displayed as the current root file system. During this time,
any operation that requires a valid file system will fail. When the new root file
system is subsequently mounted, you should terminate any currently dubbed
users or issue a chdir using a full pathname to the appropriate directory so that
the users can access the new root file system.

5. If the file system that you are unmounting is an NFS-supported file system, the
UNMOUNT command may receive an EAGAIN return code if the request was
made before an internal caching clock has expired. That is, there is a
60-second delay from last use before termination is possible. Retry the request.

6. A file system that has file systems mounted on it cannot be unmounted. Any
children file systems must be unmounted first.

Return Codes
0 Processing successful.
12 Processing unsuccessful. An error message has been issued.

Examples
1. The following command specifies a normal unmount by default:

UNMOUNT FILESYSTEM(’HFS.WORKDS’)

2. Before you request a forced unmount of a file system, you must issue an
immediate unmount request:
UNMOUNT FILESYSTEM(’HFS.WORKDS’) IMMEDIATE
UNMOUNT FILESYSTEM(’HFS.WORKDS’) FORCE

3. To unconditionally change the mount mode of a file system:
UNMOUNT FILESYSTEM(HFS.OMVS.BIN) REMOUNT

UNMOUNT

794 z/OS V1R4.0 UNIX System Services Command Reference

4. To change the mount mode of a file system to read/write, provided it is currently
read-only:
UNMOUNT FILESYSTEM(HFS.OMVS.BIN) REMOUNT(RDWR)

UNMOUNT

Chapter 3. TSO/E Commands 795

UNMOUNT

796 z/OS V1R4.0 UNIX System Services Command Reference

Appendix A. OS/390 Shell Command Summary

The following list presents z/OS shell commands and utilities grouped by the task a
user might want to perform. Similar tasks are organized together. Stub commands
(cancel, cu and lpstat) are not listed because their functions are not supported by
z/OS UNIX System Services.

The list also shows the command name, the standard or specification it satisfies,
and its function. XPG4.2 refers to “X/Open CAE Issue 4 Version 2 Specifications”.
XPG5.0 refers to “X/Open CAE Issue 5 Specifications”.

General Use

at POSIX.2 XPG4.2 Run a command at a specified time
batch POSIX.2 XPG4.2 Run commands when the system is not busy
bpxmtext — — Display reason code text
command POSIX.2 XPG4.2 Run a simple command
confighfs — — Invoke vfs_pfsctl HFS functions
date POSIX.2 XPG4.2 Display the date and time
echo POSIX.2 XPG4.2 Write arguments to standard output
exec POSIX.2 XPG4.2 Run a command and open, close, or copy the file descriptors
man POSIX.2 XPG4.2 Print sections of the online reference manual
nice POSIX.2 XPG4.2 Run a command at a different priority
passwd — — Change user passwords
print — — Return arguments from the shell
printf POSIX.2 XPG4.2 Write formatted output
sh POSIX.2 XPG4.2 Invoke a shell (command interpreter)
tcsh — — Invoke a tcsh shell
time POSIX.2 XPG4.2 Display processor and elapsed times for a command
wall — — Broadcast a message to logged-in users
whence — — Tell how the shell interprets a command name
whoami — — Display your effective username

Controlling Your Environment

alias POSIX.2 XPG4.2 Display or create a command alias
asa POSIX.2 XPG4.2 Interpret ASA/Fortran carriage control
automount — — Configure the automount facility
cal — XPG4.2 Display a calendar for a month or year
calendar — XPG4.2 Display all current appointments
captoinfo — — Prints terminal entries in the termcap file
chcp — — Set or query ASCII/EBCDIC code pages for the terminal
configstk — — Configure the AF_UENT stack
env POSIX.2 XPG4.2 Display environments, or set an environment for a process
export POSIX.2 XPG4.2 Set the export attributes for variables, or show currently exported variables
fc POSIX.2 XPG4.2 Process a command history list
hash — XPG4.2 Create a tracked alias
history — — Process a command history list
id POSIX.2 XPG4.2 Return the user identity
infocmp — — Compare and print the terminal description
ipcrm — — Remove message queue, semaphore set, or shared memory identifiers
ipcs — — Report status of the interprocess communication facility
lm — — Start the login monitor for OCS support

© Copyright IBM Corp. 1996, 2002 797

locale POSIX.2 XPG4.2 Get locale-specific information
localedef POSIX.2 XPG4.2 Define the locale environment
logger POSIX.2 XPG4.2 Log messages
logname POSIX.2 XPG4.2 Return a user’s login name
newgrp POSIX.2 XPG4.2 Change to a new group
ocsconfig — — Configure, unconfigure, or query an OCS object
printenv — — Display the value of environment variables
r — — Process a command history list
readonly POSIX.2 — Mark a variable as read-only
return POSIX.2 XPG4.2 Return from a shell function or . (dot) script
set POSIX.2 XPG4.2 Set or unset command options and positional parameters
shift POSIX.2 XPG4.2 Shift positional parameters
stty POSIX.2 XPG4.2 Set or display terminal options
su — — Change the user ID connected with a session
sysvar — — Display static system symbols
tic — — Compile term descriptions into terminfo database entries
touch POSIX.2 XPG4.2 Change the file access and modification times
tput POSIX.2 XPG4.2 Change characteristics of terminals
tso — — Run a TSO command from the shell
tty POSIX.2 — Return the user’s terminal name
uconvdef — — Create binary conversion tables
unalias POSIX.2 XPG4.2 Remove alias definitions
uname POSIX.2 XPG4.2 Display the name of the current operating system
unset POSIX.2 XPG4.2 Unset values and attributes of variables and functions
who POSIX.2 XPG4.2 Display information about current users

Daemons

cron — — Run commands at specified dates and times
inetd — — Handle login requests
rlogind — — Validate rlogin requests
uupd — — Invoke uucico for TCP/IP connections from remote UUCP systems

Managing Directories

basename POSIX.2 XPG4.2 Return the nondirectory components of a pathname
cd POSIX.2 XPG4.2 Change the working directory
chgrp POSIX.2 XPG4.2 Change the group owner of a file or directory
chmod POSIX.2 XPG4.2 Change the mode of a group or directory
chown POSIX.2 XPG4.2 Change the owner or group of a file or directory
chroot — — Change the root directory for the execution of a command
dircmp — XPG4.2 Compare directories
dirname POSIX.2 XPG4.2 Return the directory components of a pathname
ls POSIX.2 XPG4.2 List file and directory names and attributes
mkdir POSIX.2 XPG4.2 Make a directory
mount — — Logically mount a file system
mv POSIX.2 XPG4.2 Rename or move a file or directory
pathchk POSIX.2 XPG4.2 Check a pathname
pwd POSIX.2 XPG4.2 Return the working directory name
rm POSIX.2 XPG4.2 Remove a directory entry
rmdir POSIX.2 XPG4.2 Remove a directory
unlink — XPG5.0 Removes a directory entry

798 z/OS V1R4.0 UNIX System Services Command Reference

Managing Files

cat POSIX.2 XPG4.2 Concatenate or display text files
chaudit — — Change audit flags for a file
cksum POSIX.2 XPG4.2 Calculate and write checksums and byte counts
cmp POSIX.2 XPG4.2 Compare two files
col — XPG4.2 Remove reverse line feeds
comm POSIX.2 XPG4.2 Show and select or reject lines common to two files
compress — XPG4.2 Lempel-Ziv file compression
cp POSIX.2 XPG4.2 Copy a file
csplit POSIX.2 XPG4.2 Split text files
ctags POSIX.2 XPG4.2 Create tag files for ex, more, and vi
dot or . — XPG4.2 Run a shell file in the current environment
cut POSIX.2 XPG4.2 Cut out selected fields of each line of a file
dd POSIX.2 XPG4.2 Convert and copy a file
df POSIX.2 XPG4.2 Display the amount of free space in the file system
diff POSIX.2 XPG4.2 Compare two text files and show the differences
du POSIX.2 XPG4.2 Summarize usage of file space
ed POSIX.2 XPG4.2 Use the ed line-oriented text editor
egrep — XPG4.2 Search a file for a specified pattern
ex POSIX.2 XPG4.2 Use the ex text editor
exrecover — — vi file recovery daemon
extattr — — Set, reset, or display extended attributes for files
expand POSIX.2 XPG4.2 Expand tabs to spaces
fgrep — XPG4.2 Search a file for a specified pattern
file POSIX.2 XPG4.2 Determine file type
filecache — — Manage file caches
find POSIX.2 XPG4.2 Find a file meeting specified criteria
fold POSIX.2 XPG4.2 Break lines into shorter lines
head POSIX.2 XPG4.2 Display the first part of a file
iconv — XPG4.2 Convert characters from one code set to another
join POSIX.2 XPG4.2 Join two sorted, textual relational databases
line — XPG4.2 Copy one line of standard input
link — XPG5.0 Create a hard link to a file
ln POSIX.2 XPG4.2 Create a link to a file
mkfifo POSIX.2 XPG4.2 Make a FIFO special file
mknod — — Make a FIFO or character special file
mount — — Logically mount a file system
more POSIX.2 XPG4.2 Display files on a page-by-page basis
mv POSIX.2 XPG4.2 Rename or move a file or directory
nl — XPG4.2 Number lines in a file
nm POSIX.2 XPG4.2 Display symbol table of object, library, and executable files
obrowse — — Browse an HFS file
od POSIX.2 XPG4.2 Dump a file in a specified format
oedit — — Edit an HFS file
pack — XPG4.2 Compress files by Huffman coding
paste POSIX.2 XPG4.2 Merge corresponding or subsequent lines of a file
patch POSIX.2 XPG4.2 Change a file using diff output
pcat — XPG4.2 Display Huffman-packed lines on standard output
pg — XPG4.2 Display files interactively
sed POSIX.2 XPG4.2 Start the sed noninteractive stream editor
sort POSIX.2 XPG4.2 Start the sort-merge utility
spell — XPG4.2 Detect spelling errors in files
split POSIX.2 XPG4.2 Split a file into manageable pieces
strings POSIX.2 XPG4.2 Display printable strings in binary files

Appendix A. OS/390 Shell Command Summary 799

sum — XPG4.2 Compute checksum and block count for file
tabs POSIX.2 XPG4.2 Set tab stops
tail POSIX.2 XPG4.2 Display the last part of a file
tee POSIX.2 XPG4.2 Duplicate the output stream
tr POSIX.2 XPG4.2 Translate characters
tsort — XPG4.2 Sort files topologically
umask POSIX.2 XPG4.2 Set or return the file mode creation mask
uncompress— XPG4.2 Undo Lempel-Zev compression of a file
unexpand POSIX.2 XPG4.2 Compress spaces into tabs
uniq POSIX.2 XPG4.2 Report or filter out repeated lines in a file
unmount — — Remove a file system from the file hierarchy
unpack — XPG4.2 Decode Huffman packed files
uudecode POSIX.2 XPG4.2 Decode a transmitted binary file
uuencode POSIX.2 XPG4.2 Encode a file for safe transmission
vi POSIX.2 XPG4.2 Use the display-oriented interactive text editor
wc POSIX.2 XPG4.2 Count newlines, words, and bytes
zcat — XPG4.2 Uncompress and display data

Printing Files

cancel — — Cancel print queue requests (stub command)
infocmp — — Compare and print the terminal description
lp POSIX.2 XPG4.2 Send a file to a printer
lpstat — — Show status of print queues (stub command)
pr POSIX.2 XPG4.2 Format a file in paginated form and send it to standard output

Computing and Managing Logic

bc POSIX.2 XPG4.2 Use the arbitrary-precision arithmetic calculation language
break POSIX.2 XPG4.2 Exit from a for, while, or until loop in a shell script
colon or : POSIX.2 XPG4.2 Do nothing, successfully
continue POSIX.2 XPG4.2 Skip to the next iteration of a loop in a shell script
dot or . POSIX.2 XPG4.2 Run a shell file in the current environment
eval POSIX.2 XPG4.2 Construct a command by concatenating arguments
exec POSIX.2 XPG4.2 Run a command and open, close, or copy the file descriptors
exit POSIX.2 XPG4.2 Return to the parent process from which the shell was called or to TSO/E
expr POSIX.2 XPG4.2 Evaluate arguments as an expression
false POSIX.2 XPG4.2 Return a nonzero exit code
grep POSIX.2 XPG4.2 Search a file for a specified pattern
left
bracket or
[

— XPG4.2 Test for a condition

let — — Evaluate an arithmetic expression
test POSIX.2 XPG4.2 Test for a condition
trap POSIX.2 XPG4.2 Intercept abnormal conditions and interrupts
true POSIX.2 XPG4.2 Return a value of 0

Controlling Processes

bg POSIX.2 XPG4.2 Move a job to the background
crontab POSIX.2 XPG4.2 Schedule regular background jobs
fg POSIX.2 XPG4.2 Bring a job into the foreground

800 z/OS V1R4.0 UNIX System Services Command Reference

fuser — XPG5.0 List process IDs of processes with open files
jobs POSIX.2 XPG4.2 Return the status of jobs in the current session
kill POSIX.2 XPG4.2 End a process or job, or send it a signal
nohup POSIX.2 XPG4.2 Start a process that is immune to hangups
ps POSIX.2 XPG4.2 Return the status of a process
renice POSIX.2 XPG4.2 Change priorities of a running process
sleep POSIX.2 XPG4.2 Suspend execution of a process for an interval of time
stop POSIX.2 XPG4.2 Suspend a process or job
suspend POSIX.2 XPG4.2 Send a SIGSTOP to the current shell
time POSIX.2 XPG4.2 Display processor and elapsed times for a command
times — XPG4.2 Get process and child process times
wait POSIX.2 XPG4.2 Wait for a child process to end
ulimit — XPG4.2 Set process limits

Writing Shell Scripts

autoload — — Indicate function name not defined
dspmsg — — Display selected messages from message catalogs
functions — — Display or assign attributes to functions
getconf POSIX.2 XPG4.2 Get configuration values
getopts POSIX.2 XPG4.2 Parse utility options
integer — — Mark each variable with an integer value
read POSIX.2 XPG4.2 Read a line from standard input
type — XPG4.2 Tell how the shell interprets a name
typeset — — Assign attributes and values to variables
xargs POSIX.2 XPG4.2 Construct an argument list and run a command

Developing or Porting Application Programs

ar POSIX.2 XPG4.2 Create or maintain library archives
awk POSIX.2 XPG4.2 Process programs written in the awk language
c89 POSIX.2 XPG4.2 Compile z/OS C source code and create an executable file
c++ — — Compile C++/MVS™ and C/MVS and create an executable file
cc — XPG4.2 Compile common usage source code and create an executable file
dbx — — Use the debugger
dspcat — — Display all or part of a message catalog
gencat — XPG4.2 Create or edit message catalogs
lex POSIX.2 XPG4.2 Generate a program for lexical tasks
make POSIX.2 XPG4.2 Maintain program-generated and interdependent files
mkcatdefs — — Preprocess a message source file
runcat — — Pipe output from mkcatdefs to gencat
strip POSIX.2 XPG4.2 Remove unnecessary information from an executable file
yacc POSIX.2 XPG4.2 Use the yacc compiler

Communicating with the System or Other Users

mail — XPG4.2 Read and send mail messages
mailx POSIX.2 XPG4.2 Send or receive electronic mail
mesg POSIX.2 XPG4.2 Allow or refuse messages
talk POSIX.2 XPG4.2 Talk to another user
write POSIX.2 XPG4.2 Write to another user

Appendix A. OS/390 Shell Command Summary 801

Working with Archives

ar POSIX.2 XPG4.2 Create or maintain library archives
cpio — XPG4.2 Copy in/out file archives
pax POSIX.2 XPG4.2 Interchange portable archives
tar — XPG4.2 Manipulate the tar archive files to copy or back up a file

Working with UUCP

uucc — — Compile UUCP configuration files
uucico — — Process UUCP file transfer requests
uucp — XPG4.2 Copy files between remote UUCP systems
uucpd — — Invoke uucico for TCP/IP connections from remote UUCP systems
uulog — XPG4.2 Display log information about UUCP events
uuname — XPG4.2 Display list of remote UUCP systems
uupick — XPG4.2 Manage files sent by uuto and uucp
uustat — XPG42 Display status of pending UUCP transfers
uuto — XPG42 Copy files to users on remote UUCP systems
uux — XPG42 Request command execution on remote UUCP systems
uuxqt — — Carry out command requests from remote UUCP systems

802 z/OS V1R4.0 UNIX System Services Command Reference

Appendix B. tcsh Shell Command Summary

The following list presents the built-in tcsh shell commands, grouped by the task a
user might want to perform, and their functions. Similar tasks are organized
together.

General Use

alloc — — Show the amount of dynamic memory acquired
builtins — — Print the names of all built-in commands
bye — — Terminate the login shell
echo — — Write arguments to standard output
echotc — — Exercise the terminal capabilities in args
exec — — Run a command and open, close, or copy the file

descriptors
glob — — Write each word to standard output
hashstat — — Print a statistic line on hash table effectiveness
login — — Terminate a login shell
logout — — Terminate a login shell
nice — — Run a command at a different priority
notify — — Notify user of job status changes
repeat — — Execute command count times
source — — Read and execute commands from name
time — — Display processor and elapsed times for a command
where — — Report all instances of command
which — — Display next executed command

Controlling Your Environment

@ (at) — — Print the value of tcsh shell variables, or assign a value
alias — — Display or create a command alias
bindkey — — List all bound keys, or change key bindings
complete — — List completions
history — — Display a command history list
hup — — Run command so it exits on a hang-up signal
newgrp — — Change to a new group
onintr — — Control the action of the tcsh shell on interrupts
printenv — — Display the values of environment variables
rehash — — Recompute internal hash table
sched — — Print scheduled event list
set — — Set or unset command options and positional

parameters
setenv — — Set environment variable name to value
settc — — Tell tcsh shell the terminal capability cap value
setty — — Control tty mode changes
shift — — Shift positional parameters
telltc — — List terminal capability values
unalias — — Remove alias definitions
uncomplete — — Remove completions whose names match pattern
unhash — — Disable use of internal hash table
unlimit — — Remove resource limitations
unset — — Unset values and attributes of variables and functions
unsetenv — — Remove environment variables that match pattern

© Copyright IBM Corp. 1996, 2002 803

watchlog — — Report on users who are logged in.

Managing Directories

cd — — Change the working directory
chdir — — Change the working directory
dirs — — Print the directory stack
popd — — Pop the directory stack
pushd — — Make exchanges within directory stack

Computing and Managing Logic

break — — Exit from a loop in a shell script
breaksw — — Cause a break from a switch
continue — — Skip to the next iteration of a loop in a shell script
default — — Label default case in a switch statement
eval — — Construct a command by concatenating arguments
exec — — Run a command and open, close, or copy the file

descriptors
exit — — Return to the shell’s parent process or to TSO/E
filetest — — Apply a file inquiry operator to a file

Managing Files

ls-F — — List files

Controlling Processes

bg — — Move a job to the background
fg — Bring a job into the foreground
jobs — — Return the status of jobs in the current session
kill — — End a process or job, or send it a signal
limit — — Limit consumption of processes
nohup — — Start a process that is immune to hangups
stop — — Suspend a process or job
suspend — — Send a SIGSTOP to the current shell
time — — Display processor and elapsed times for a command
wait — Wait for a child process to end

804 z/OS V1R4.0 UNIX System Services Command Reference

Appendix C. Regular Expressions (regexp)

Many z/OS shell commands match strings of text in text files using a type of pattern
known as a regular expression. A regular expression lets you find strings in text files
not only by direct match, but also by extended matches, similar to, but much more
powerful than the filename patterns described in sh.

The newline character at the end of each input line is never explicitly matched by
any regular expression or part thereof.

expr and ed take basic regular expressions; all other shell commands accept
extended regular expressions. grep and sed accept basic regular expressions, but
will accept extended regular expressions if the –E option is used.

Regular expressions can be made up of normal characters or special characters,
sometimes called metacharacters. Basic and extended regular expressions differ
only in the metacharacters they can contain.

The basic regular expression metacharacters are:
¬ $. * \(\) [\{ \} \

The extended regular expression metacharacters are:
| ¬ $ · * + ? () [{ } \

These have the following meanings:

· A dot character matches any single character of the input line.

¬ The ¬ character does not match any character but represents the beginning
of the input line. For example, ¬A is a regular expression matching the letter
A at the beginning of a line. The ¬ character is only special at the beginning
of a regular expression, or after a (or |.

$ This does not match any character but represents the end of the input line.
For example, A$ is a regular expression matching the letter A at the end of
a line. The $ character is only special at the end of a a regular expression,
or before a) or |.

[bracket-expression]
A bracket expression enclosed in square brackets is a regular expression
that matches a single character, or collation element. This bracket
expression applies not only to regular expressions, but also to pattern
matching as performed by the fnmatch() function (used in filename
expansion).

v If the initial character is a circumflex (^), then this bracket expression is
complemented. It matches any character or collation-element except for
the expressions specified in the bracket expression. For pattern
matching, as performed by the fnmatch function, this initial character is
instead ! (the exclamation mark).

v If the first character after any potential circumflex is either a dash (-), or
a closing square bracket (]), then that character matches exactly that
character—that is, a literal dash or closing square bracket.

v You can specify collation sequences by enclosing their name inside
square brackets and periods. For example, [.ch.] matches the
multicharacter collation sequence ch (if the current language supports

© Copyright IBM Corp. 1996, 2002 805

that collation sequence). Any single character is itself. Do not give a
collation sequence that is not part of the current locale.

v Equivalence classes can be specified by enclosing a character or
collation sequence inside square bracket equals. For example, [=a=]
matches any character in the same equivalence class as a. This normally
expands to all the variants of a in the current locale—for example, a,
\(a:, \(a’, ... On some locales it might include both the uppercase and
lowercase of a given character. In the POSIX locale, this always expands
to only the character given.

v Within a character class expression (one made with square brackets),
the following constructs can be used to represent sets of characters.
These constructs are used for internationalization and handle the
different collation sequences as required by POSIX.

[:alpha:]
Any alphabetic character.

[:lower:]
Any lowercase alphabetic character.

[:upper:]
Any uppercase alphabetic character.

[:digit:]
Any digit character.

[:alnum:]
Any alphanumeric character (alphabetic or digit).

[:space:]
Any white-space character (blank, horizontal tab, vertical tab).

[:graph:]
Any printable character, except the blank character.

[:print:]
Any printable character, including the blank character.

[:punct:]
Any printable character that is not white space or alphanumeric.

[:cntrl:]
Any nonprintable character.

For example, given the character class expression:
[:alpha:]

you need to enclose the expression within another set of square
brackets, as in:
/[[:alpha:]]/

v Character ranges are specified by a dash (–), between two characters, or
collation sequences. These indicates all character or collation sequences
that collate between two characters or collation sequences. It does not
refer to the native character set. For example, in the POSIX locale, [a-z]
means all the lowercase alphabetics, even if they don’t agree with the
binary machine ordering. However, since many other locales do not
collate in this manner, use of ranges are not recommended, and are not
used in strictly conforming POSIX.2 applications. An endpoint of a range

regexp

806 z/OS V1R4.0 UNIX System Services Command Reference

may explicitly be a collation sequence; for example, [[.ch.]-[.ll.]] is
valid. However, equivalence classes or character classes are not:
[[=a=]-z] is not permitted.

\ This character turns off the special meaning of metacharacters. For
example, \. only matches a dot character. Note that \\ matches a literal \
character. Also note the special case of “\d” described in the following
paragraph.

\d For d representing any single decimal digit (from 1 to 9), this pattern is
equivalent to the string matching the dth expression enclosed within the ()
characters (or \(\) for some commands) found at an earlier point in the
regular expression. Parenthesized expressions are numbered by counting (
characters from the left.

Constructs of this form can be used in the replacement strings of
substitution commands (for example, the sub function of awk), to stand for
constructs matched by parts of the regular expression.

regexp*
A regular expression regexp followed by * matches a string of zero or more
strings that would match regexp. For example, A* matches A, AA, AAA and
so on. It also matches the null string (zero occurrences of A).).

regexp+
A regular expression regexp followed by + matches a string of one or more
strings that would match regexp.

regexp?
A regular expression regexp followed by ? matches a string of one or zero
occurrences of strings that would match regexp.

char{n} | char\{n\}
In this expression (and the ones to follow), char is a regular expression that
stands for a single character—for example, a literal character or a period
(.). Such a regular expression followed by a number in brace brackets
stands for that number of repetitions of a character. For example, X\{3\}
stands for XXX. In basic regular expressions, in order to reduce the number
of special characters, { and } must be escaped by the \ character to make
them special, as shown in the second form (and the ones to follow).

char{min,} | char\{min,\}
When a number, min, followed by a comma appears in braces following a
single-character regular expression, it stands for at least min repetitions of a
character. For example, X\{3,\} stands for at least three repetitions of X.

char{min,max} | char\{min,max\}
When a single-character regular expression is followed by a pair of
numbers in braces, it stands for at least min repetitions and no more than
max repetitions of a character. For example, X\{3,7\} stands for three to
seven repetitions of X.

regexp1 | regexp2
This expression matches either regular expression regexp1 or regexp2.

(regexp) | \(regexp\)
This lets you group parts of regular expressions. Except where overridden
by parentheses, concatenation has the highest precedence. In basic regular
expressions, in order to reduce the number of special characters, (and)
must be escaped by the \ character to make them special, as shown in the
second form.

regexp

Appendix C. Regular Expressions (regexp) 807

Several regular expressions can be concatenated to form a larger regular
expression.

Summary
The commands that use basic and extended regular expressions are as follows:

Basic ed, expr, grep, sed

Extended awk, grep with -E option, sed with the -E option.

Table 28 summarizes the features that apply to which shell commands:

Table 28. Regular Expression Features (regexp)

Notation awk ed grep -E expr sed

. Yes Yes Yes Yes Yes

^ Yes Yes Yes No Yes

$ Yes Yes Yes Yes Yes

[...] Yes Yes Yes Yes Yes

[::] Yes Yes Yes Yes Yes

re* Yes Yes Yes Yes Yes

re+ Yes No Yes No No

re? Yes No Yes No No

re|re Yes No Yes No No

\d Yes Yes Yes Yes Yes

(...) Yes No Yes No No

\(...\) No Yes No Yes Yes

\< No No No No No

\> No No No No No

\{ \} Yes No Yes No Yes

Examples
The following patterns are given as illustrations, along with descriptions of what they
match:

abc Matches any line of text containing the three letters abc in that order.

a.c Matches any string beginning with the letter a, followed by any character,
followed by the letter c.

^.$ Matches any line containing exactly one character (the newline is not
counted).

a(b*|c*)d
Matches any string beginning with a letter a, followed by either zero or more
of the letter b, or zero or more of the letter c, followed by the letter d.

.* [a–z]+ .*
Matches any line containing a word, consisting of lowercase alphabetic
characters, delimited by at least one space on each side.

(morty).*\1

regexp

808 z/OS V1R4.0 UNIX System Services Command Reference

morty.*morty
These expressions both match lines containing at least two occurrences of
the string morty.

[[:space:][:alnum:]]
Matches any character that is either a white-space character or
alphanumeric.

regexp

Appendix C. Regular Expressions (regexp) 809

regexp

810 z/OS V1R4.0 UNIX System Services Command Reference

Appendix D. Running Shell Scripts or Executable Files under
MVS Environments

This appendix describes the IBM-supplied BPXBATCH program.

BPXBATCH
BPXBATCH makes it easy for you to run shell scripts and executable files that
reside in hierarchical file system (HFS) files through the MVS job control language
(JCL). If you do most of your work from TSO/E, using BPXBATCH saves you the
trouble of going into the shell to run your scripts and executable files. REXX execs
can also use BPXBATCH to run shell scripts and executable files.

In addition to using BPXBATCH, a user who wants to perform a local spawn without
being concerned about environment set-up (that is, without having to set specific
environment variables which could be overwritten if they are also set in the user’s
profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point
into BPXBATCH, and forces a program to run using a local spawn instead of
fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

BPXBATSL is also useful when the user wants to perform a local spawn of of their
program but also needs subsequent child processes to be fork/exec’ed. Formerly,
this could not be done since BPXBATCH and the requested program shared the
environment variables. Failure to meet the following conditions will result in a failure
when BPXBATSL is invoked. For more details about these restrictions, see the
descriptions of the spawn() function and BPX1SPN callable service in z/OS UNIX
System Services Programming: Assembler Callable Services Reference:

v The invoker must have an UID of 0 to issue a SH request

v The child process is not setuid or setgid to a value different from the parent

v The spawned filename is not an external link or a sticky bit file

v The parent has enough resources to allow the child process to reside in the
same address space

BPXBATSL is an alias of BPXBATCH.

Format
JCL:
EXEC PGM=BPXBATCH,PARM=’SH|PGM program_name’

TSO/E:
BPXBATCH SH|PGM program_name

Description
The BPXBATCH program allows you to submit MVS batch jobs that run shell
commands or scripts, or z/OS C executable files in hierarchical file system (HFS)
files from a shell session. You can invoke BPXBATCH from a JCL job or from
TSO/E (as a command, through a CALL command, or from a CLIST or REXX
EXEC).

With BPXBATCH, you can allocate the MVS standard files stdin, stdout, and
stderr as HFS files for passing input. If you do allocate the foregoing standard files,
they must be HFS files. You can also allocate MVS data sets or HFS text files

© Copyright IBM Corp. 1996, 2002 811

|
|
|
|
|
|
|

|

|

|

|
|

containing environment variables (stdenv). If you do not allocate them, stdin,
stdout, stderr, and stdenv default to /dev/null. Allocate the standard files using
the data definition PATH keyword options, or standard data definition options for
MVS data sets, for stdenv.

For JCL jobs, you specify PATH keyword options on DD statements:
//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’SH|PGM program_name’

//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU...

Your application in the executable file can also allocate stdin, stdout, stderr, and
stdenv dynamically through the use of SVC 99.

For TSO/E, you specify PATH keyword options on the ALLOCATE command:
ALLOCATE FILE(STDIN) PATH(’/stdin-file-pathname’) PATHOPTS(ORDONLY)
ALLOCATE FILE(STDOUT) PATH(’/stdout-file-pathname’)

PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)
ALLOCATE FILE(STDERR) PATH(’/stderr-file-pathname’)

PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

BPXBATCH SH|PGM program_name

stdin and stdenv must always be allocated as read. stdout and stderr must
always be allocated as write.

As stated above, a user who wants to perform a local spawn without being
concerned about environment set-up (that is, without having to set specific
environment variables which could be overwritten if they are also set in the user’s
profile) can use BPXBATSL. BPXBATSL provides users with an alternate entry point
into BPXBATCH, and forces a program to run using a local spawn instead of
fork/exec as BPXBATCH does. This ultimately allows a program to run faster.

The following example contains DD statments that are accessible to a program that
was given control from BPXBATSL:
//jobname JOB ...

//stepname EXEC PGM=BPXBATSL,PARM=’PGM program_name’
/* The following 2 DDs are still available in the program which gets
/* control from BPXBATSL.
//DD1 DD DSN=MVSDSN.FOR.APPL1,DISP=SHR
//DD2 DD DSN=MVSDSN.FOR.APPL2,DISP=SHR
/* The following DDs are processed by BPXBATSL to create file descriptors
/* for stdin, stdout, stderr
//STDIN DD PATH=’/stdin-file-pathname’,PATHOPTS=(ORDONLY)
//STDOUT DD PATH=’/stdout-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC
// PATHMODE=SIRWXU
//STDERR DD PATH=’/stderr-file-pathname’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC
// PATHMODE=SIRWXU

BPXBATCH

812 z/OS V1R4.0 UNIX System Services Command Reference

Parameters
BPXBATCH accepts one parameter string as input, the combination of SH|PGM and
program_name. At least one blank character must separate the parts of the
parameter string. The total length of the parameter string must not exceed 500
characters.

Note: BPXBATCH was first created for use with JCL, which had a max parm length
of 100. Now, BPXBATCH can also be called form CLIST, REXX, and TSO.
These additional environments do not have the 100 character parameter
limit, hence the increase to 500.

If neither SH nor PGM is specified as part of the parameter string, BPXBATCH
assumes that the shell is to be started to run the shell script allocated by STDIN.

SH|PGM
Specifies whether BPXBATCH is to run a shell script or command or a z/OS C
executable file located in an HFS file.

SH
Specifies that the shell designated in your TSO/E user ID’s security product
profile is to be started and is to run shell commands or scripts provided
from stdin or the specified program_name.

If SH is specified with no program_name information, BPXBATCH attempts
to run anything read in from stdin.

PGM
Specifies that the program identified by the program_name parameter is
invoked directly from BPXBATCH. This is done either via a spawn or a fork
and exec. BPXBATCH creates a process for the program to run in and then
calls the program. If you specify PGM, you must also specify
program_name.

All environment variables read from the stdenv file are set when the
program is run, if stdenv was allocated. If the HOME and LOGNAME
environment variables are not specified in the stdenv file, or stdenv was not
allocated, then HOME and LOGNAME, if possible, are set when the
program is run.

Refer to “Usage Notes” on page 814 for more information on environment
variable processing.

Note: When using PGM, the program_name cannot contain any shell
specific functions because they will not be resolved. If shell specific
functions must be specified, then SH should be used to avoid
possible errors or unpredictable results.

program_name
Specifies the shell command name or the HFS pathname for the shell script or
z/OS C executable file to be run. In addition, program_name can contain option
information.

The program_name is interpreted as case-sensitive.

Note: When PGM and program_name are specified and the specified program
name does not begin with a slash character (/), BPXBATCH prefixes the
user’s initial working directory information to the program pathname.

BPXBATCH

Appendix D. Running Shell Scripts or Executable Files under MVS Environments 813

Usage Notes
1. BPXBATCH is an alias for the program BPXMBATC, which resides in the

SYS1.LINKLIB data set.

2. BPXBATCH must be invoked from a user address space running with a
program status word (PSW) key of 8.

3. BPXBATCH does not translate characters on the supplied parameter
information. You should supply parameter information, including HFS
pathnames, using only the POSIX portable character set. For information on
the POSIX portable character set, see z/OS UNIX System Services
Programming Tools.

4. If your BPXBATCH job returns ABEND 4093 reason code 0000001c, you need
to expand the region size. For example:
//SHELLCMD EXEC PGM=BPXBATCH,REGION=8M,PARM=’SH shell_cmd’

5. Allocations for any files other than stdin, stdout, stderr, or stdenv cannot be
used by a program run by BPXBATCH.

6. BPXBATCH does not close file descriptors other than 0–2. Other file
descriptors that are open and not defined as “marked to be closed” remain
open when you call BPXBATCH and BPXBATCH runs the specified script or
executable file.

7. BPXBATCH uses write-to-operator (WTO) routing code 11 to write error
messages to either the JCL job log or your TSO/E terminal. Your TSO/E user
profile must specify WTPMSG so that messages can be displayed at the
terminal.

8. BPXBATCH (with the SH parameter) must not be used to run an executable
file, shell command, or shell script in the background (by specifying the shell &
symbol) unless the shell nohup command is also used. If the shell ampersand
(&) symbol is used without nohup, the results are unpredictable.

9. BPXBATCH, when used with the PGM parameter, sets up environment
variables for the program to be run. If the stdenv file is not allocated, the
HOME and LOGNAME environment variables are set. If stdenv is allocated,
the environment variables read from the file it represents are set, with HOME
or LOGNAME or both environment variables added if they are not specified in
the stdenv file. The following types of files can be allocated to stdenv:
v HFS text file
v Sequential format MVS data set (including SYSIN data set)
v Member of a partitioned data set (PDS)

Other forms of MVS data sets, such as DUMMY, TERMINAL, SYSOUT, or
PDS/E, are not supported for stdenv.

The stdenv file consists of one or more records, where record is defined as a
string terminated with a <newline> character (X'15') in an HFS file, or a fixed
or variable (nonspanned) format record in an MVS data set. Other MVS record
formats are not supported for stdenv. The following rules apply to the
specification of environment variables in stdenv files:

v Only one environment variable can be specified per record.

v Each environment variable is specified as variable=value.

v Environment variable names must begin in column 1, unless names
beginning with blanks are used.

v Environment variable records should not be terminated with null characters
(X'00'). BPXBATCH automatically appends a null character to the end of

BPXBATCH

814 z/OS V1R4.0 UNIX System Services Command Reference

each environment variable, and the lengths of environment variables as
seen by the program include the null characters.

v Trailing blanks (X'40') are truncated for MVS SYSIN data sets, but are not
truncated for any other type of file.

v Be careful that sequence numbers are not present in MVS data sets,
because they will be treated as part of the environment variables. ISPF edit
users should always set number mode off when creating environment
variables, including JCL data sets with environment variables specified as
SYSIN.

Some environment variables are release-dependent. If BPXBATCH is executed
on a system that does not support the environment variable, you will not get
an error message and the variable will be ignored. Use the uname shell
command to determine the release number of the operating system that
BPXBATCH is running on.

Environment variables (including PATH) are established at the start of the
executable program, not for BPXBATCH itself. Thus, PATH is not searched to
locate the program, but instead is used if the program invokes other
executable programs. In the following example, someprogram may be found
only in the initial working directory defined by the user’s profile, not by the
PATH environment variable:
//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM=’PGM someprogram parm1 parm2’

//STDOUT DD PATH=’/tmp/pgmout’,PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDENV DD *
PATH=/bin:/u/usr/joeuser
STEPLIB=SYS1.JOE.STEPLIB
/*

10. BPXBATCH uses two more environment variables for execution that are
specified by STDENV:

v _BPX_BATCH_UMASK=0755

v _BPX_BATCH_SPAWN=YES|NO

_BPX_BATCH_UMASK allows the user the flexibility of modifying the
permission bits on newly created files instead of using the default mask (when
PGM is specified).

Note: This variable will be overriden by umask (usually set from within
/etc/profile) if BPXBATCH is invoked with the ’SH’ option (SH is the
default). SH causes BPXBATCH to execute a login shell which runs the
/etc/profile script (and runs the user’s .profile) and which may set the
umask before execution of the intended program.

_BPX_BATCH_SPAWN causes BPXBATCH to use SPAWN instead of
fork/exec and allows data definitions to be carried over into the spawned
process. When _BPX_BATCH_SPAWN is set to YES, spawn will be used. If it
is set to NO, which is equivalent to the default behavior, fork/exec will be used
to execute the program.

If _BPX_BATCH_SPAWN is set to YES, then you must consider two other
environment variables that affect spawn (BPX1SPN):

v _BPX_SHAREAS = YES|NO|REUSE|MUST

BPXBATCH

Appendix D. Running Shell Scripts or Executable Files under MVS Environments 815

|

When YES or REUSE, the child process created by spawn will run in the
same address space. Failure to meet these conditions will result in a spawn
failure when MUST is used. For more detail about these restrictions see the
descriptions of the spawn() function and BPX1SPN callable service in z/OS
UNIX System Services Programming: Assembler Callable Services
Reference:

– The invoker must have an UID of 0 to issue a SH request

– The child process is not setuid or setgid to a value different from the
parent

– The spawned file name is not an external link or a sticky bit file

– The parent has enough resources to allow the child process to reside in
the same address space

– The NOSHAREAS extended attribute is not set

When no, the child and parent run in separate address spaces.

v _BPX_SPAWN_SCRIPT=YES

Beginning in Release 8 of z/OS, spawn will recognize a header in the first
line of a HFS file that indicates the file to be executed and its first set of
arguments. This header will only be recognized when a HFS file is not found
in an executable format. The format of the header is as follows:
#! Path String

where #! is the file magic number. The magic number indicates that the first
line of a file is a special header that contains the name of the program to be
executed and any argument data to be supplied to it.

When _BPX_SPAWN_SCRIPT=yes, spawn will first recognize the file magic
number and will process the file accordingly. If the file magic number is not
found in the file’s first line, spawn will treat the specified file as a shell script
and will invoke the shell to run the shell script.

For more information about spawn, see BPX1SPN in z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

11. When using BPXBATCH with the SH parameter, environment variables
specified in the STDENV DD are overridden by those specified in /etc/profile
and .profile (which overrides /etc/profile). This is because SH causes
BPXBATCH to execute a login shell which runs the /etc/profile script and runs
the user’s .profile.

Files
v SYS1.LINKLIB(BPXMBATC) is the BPXBATCH program location.

v The stdin default is /dev/null.

v The stdout default is /dev/null.

v The stderr default is the value of stdout. If all defaults are accepted, stderr is
/dev/null.

v stdenv default is /dev/null.

Return Codes
0 Processing successful.

254 Processing unsuccessful. BPXBATCH requires OMVS to be started.

BPXBATCH

816 z/OS V1R4.0 UNIX System Services Command Reference

|
|
|
|
|
|

|

|
|

|

|
|

|

|

|
|
|
|
|

255 Processing unsuccessful. An error message has been issued.

32000 BPXBATCH invoked the BPX1FRK (fork) callable service. This is usually
invoked only by a TSO/E user. One of the following conditions may have
resulted:

v BPXBATCH failed to open specified files after the program fork. Files are
normally opened and closed prior to a fork. Try running BPXBATCH
again.

v The program_name or the shell exited with an exit status of 125.

32512 One of the following conditions may have resulted:

v The PGM keyword was specified for BPXBATCH and no program_name
could be found.

Message BPXM008I was written to the job log or stderr.

v The SH keyword was specified for BPXBATCH and either /bin/login or
the shell did not exist.

v The SH keyword was specified with a program_name value for
BPXBATCH and no program_name could be found. The shell exited with
an exit status of 127. stdout contains a shell message indicating the
program was not found.

v The program_name or the shell exited with an exit status of 127.

other multiples of 256
A return code greater than 255, unless explicitly documented as a return
code from BPXBATCH (32000 or 32512), is actually an exit status being
returned from the program that was invoked by BPXBATCH. The exit status
can be determined by dividing the value of BPXYWAST by 256.

BPXYWAST
BPXBATCH invoked the BPX1FRK (fork) callable service. This is usually
invoked only by a TSO/E user. Processing was successful with wait() status
containing a nonzero value. The wait status was mapped by BPXYWAST
and returned by BPX1WAT (wait).

No error messages were issued by BPXBATCH.

Using OSHELL to Run Shell Commands and Scripts from MVS
You can use the OSHELL REXX exec to run a shell command or shell script from
the TSO/E READY prompt and display the output to your terminal. This exec uses
BPXBATCH to run the shell command or shell script:
oshell shell_command

For example, to display process information, enter:
oshell ps –ej

Note: With this exec, do not use an & to run a shell command in the background.

BPXBATCH

Appendix D. Running Shell Scripts or Executable Files under MVS Environments 817

|
|
|
|
|

BPXBATCH

818 z/OS V1R4.0 UNIX System Services Command Reference

Appendix E. BPXCOPY: Copying a Sequential or Partitioned
Data Set or PDSE Member into an HFS File

This appendix describes the BPXCOPY program.

BPXCOPY
BPXCOPY allows you to copy a sequential data set or a partitioned data set or a
PDSE member into a hierarchical file system (HFS) file.

Format
JCL:
EXEC PGM=BPXCOPY,PARM='ELEMENT HEADID LINK TYPE PATHMODE SYMLINK
SYMPATH APF | NOAPF PROGCTL | NOPROGCTL SHAREAS | NOSHAREAS UID GID
SHARELIB | NOSHARELIB

Description
BPXCOPY can copy a sequential data set or partitioned data set or PDSE member
into an HFS file. You can invoke BPXCOPY in several ways:

v From JCL using EXEC PGM=BPXCOPY. BPXCOPY does not need the Terminal
Monitor Program (TMP) to be started when it is invoked from JCL.

v From LINK, XCTL, ATTACH, a TSO/E CALL command with the asis option, or by
a CALL after a LOAD.

BPXCOPY provides similar function to the OPUT command, but differs from OPUT
in these ways:
v There is no code page conversion available.
v The specified filename cannot be longer than 8 characters.
v The pathname of the directory specified cannot be longer than 255 characters.
v You can define hard links to the file.
v You can define symbolic links to the file.
v You can set the permission access bits of the file.
v You can set the extended attributes of the file.
v You can set the owning UID and GID of the file.

A DD statement allocates a data set or file and sets up a ddname. For BPXCOPY:

v The input ddname is associated with an MVS data set, either a sequential data
set or a member of a partitioned data set or PDSE. When you invoke BPXCOPY
from JCL, you must use SYSUT1 as the input ddname. If BPXCOPY is invoked
from LINK, XCTL, or ATTACH, a TSO/E CALL command with the asis option, or
by a CALL after a LOAD, you can specify an alternative ddname.

v The output ddname is associated with the pathname of the directory in which the
HFS file resides. The absolute pathname for the HFS file is this pathname
combined with the name specified with the ELEMENT parameter. When you
invoke BPXCOPY from JCL, you must use SYSUT2 as the output ddname. If
BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command
with the asis option, or by a CALL after a LOAD, you can specify an alternative
ddname.

v The message output ddname is associated with an MVS data set. The default
ddname is SYSTSPRT, which typically directs messages to SYSOUT. When you
invoke BPXCOPY from JCL, you must use SYSTSPRT as the message output
ddname. SYSTSPRT’s default LRECL is 137, with a BLKSIZE of 3155. If

© Copyright IBM Corp. 1996, 2002 819

BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command
with the asis option, or by a CALL after a LOAD, you can specify an alternative
ddname.

Parameters
You can specify the following keyword parameters with BPXCOPY. The parameters
can be separated by any delimiter (space, comma, tab, or comment (/*)).

ELEMENT(element_name)
element_name is a simple 1-to-8-character filename of the output file. The
element_name specified is converted to uppercase characters.

The directory pathname for the output file is specified with the PATH keyword
on a JCL DD statement.

The pathname of the output file consists the directory pathname appended with
the element_name.

This parameter is required.

HEADID('character_string')
An 8-byte character string, enclosed in single quotes, that will appear on the
header of each page of output created.

This optional parameter is provided for SMP/E usage, not for a typical user.

LINK('linkname','linkname',...)
The names of hard links to the file. Each linkname is concatenated with the
directory pathname. On the JCL DD statement for the directory, the maximum
length for a pathname (before concatenation) is 255 characters. Pathnames
with a length of up to 1023 characters can be specified only if BPXCOPY is
invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command, or by a CALL
after a LOAD.

If you specify this parameter, you create one or more hard links to the file when
the data is copied into a file. The linkname must be enclosed in single quotes.
You can specify up to 64 linknames, and each must be enclosed in single
quotes. Specifying LINK is optional.

SYMLINK('linkname','linkname',...)
The names of symbolic links to the file. Each linkname is concatenated with the
directory pathname. On the JCL DD statement for the directory, the maximum
length for a pathname (before concatenation) is 255 characters. Pathnames
with a length of up to 1023 characters (after concatenation) can be specified if
BPXCOPY is involved from LINK, XCTL, or ATTACH, a TSO/E CALL command,
or by a CALL after a LOAD.

If you specify this parameter, you create one or more symbolic links to the file.
The linkname must be enclosed in single quotes. You can specify up to 64
linknames, and each must be enclosed in single quotes. Specifying SYMLINK is
optional. If you specify SYMLINK, you must also specify SYMPATH.

SYMPATH('pathname','pathname',...)
The pathnames of the file for which the symbolic link is created. Each
pathname may be an absolute pathname (beginning with a slash) or a relative
pathname (not beginning with a slash). When an absolute pathname is used,
the symbolic link will be resolved starting at the root directory. When a relative
pathname is used, the symbolic link will be resolved starting at the parent
directory of the symbolic link.

BPXCOPY

820 z/OS V1R4.0 UNIX System Services Command Reference

For JCL, the maximum length for a pathname is limited by the 100 character
limit on the entire PARM string (including other parameters) on the EXEC
statement. Pathnames with a length of up to 1023 characters can be specified if
BPXCOPY is invoked from LINK, XCTL, or ATTACH, a TSO/E CALL command,
or by a CALL after a LOAD.

Specifying SYMPATH is optional, but if you specify SYMPATH, you must also
specify SYMLINK. Each SYMLINK linkname must be matched with a
corresponding SYMPATH pathname. The first linkname will define a symbolic
link to the first pathname, the second linkname will define a symbolic link to the
second pathname, etc. If there are fewer pathnames than linknames, the last
pathname will be used for the remaining linknames.

PATHMODE (mode_bits)
Changes the access permissions, or modes, of the specified file or directory.
Modes determine who can read, write, or search a directory. The bits are used
to set execution and permission access of the output file. On BPXCOPY, you
can specify PATHMODE as an absolute mode; it must consist of four octal
numbers separated by commas or blanks.

Absolute modes are four octal numbers specifying the complete list of attributes
for the files; you specify attributes by ORing together the bits for each octal
number.
4,0,0,0 Set-user-ID bit
2,0,0,0 Set-group-ID bit
1,0,0,0 Sticky bit
0,4,0,0 Individual read
0,2,0,0 Individual write
0,1,0,0 Individual execute (or list directory)
0,0,4,0 Group read
0,0,2,0 Group write
0,0,1,0 Group execute
0,0,0,4 Other read
0,0,0,2 Other write
0,0,0,1 Other execute

Specifying PATHMODE is optional.

For more information on permission bits, see the chmod command.

TYPE (TEXT|BINARY)
The format for the HFS file. The default is BINARY for U-format data sets and
TEXT for all others. (U-format means undefined-length records.) Specifying
TYPE is optional.

APF|NOAPF
Specifies whether the APF extended attribute is set or unset. When this
attribute is set (APF) on an executable program file (load module), it behaves
as if loaded from an APF-authorized library. For example, if this program is
exec()ed at the job step level and the program is linked with the AC = 1
attribute, the program will be executed as APF-authorized.

To be able to set APF, you must have at least READ access to the
BPX.FILEATTR.APF FACILITY class profile. For more information, see z/OS
UNIX System Services Planning.

Specifying APF or NOAPF is optional. If not specified, the attribute will be
defined as NOAPF.

PROGCTL|NOPROGCTL
Specifies whether the PROGCTL extended attribute is set or unset. When this
is set (PROGCTL) on an executable program file (load module), it causes the

BPXCOPY

Appendix E. BPXCOPY: Copying a Sequential or Partitioned Data Set or PDSE Member into an HFS File 821

program to behave as if an RDEFINE had been done for the load module to the
PROGRAM class. When this program is brought into storage, it does not cause
the enviroment to be marked dirty.

To be able to set PROGCTL, you must have at least READ access to the
BPX.FILEATTR.PROGCTL FACILITY class . For more information, see z/OS
UNIX System Services Planning.

Specifying PROGCTL or NOPROGCTL is optional. If not specified, the attribute
will be defined as NOPROGCTL.

SHAREAS | NOSHAREAS
Specifies whether the SHAREAS extended attribute is set or unset. When this
attribute is set (SHAREAS) on an executable program file (load module), the
_BPX_SHAREAS environment variable is honored when the file is spawn()ed.
When this attribute is not set (NOSHAREAS), the _BPX_SHAREAS
environment variable is ignored when the file is spawn()ed.

Specifying SHAREAS or NOSHAREAS is optional. If not specified, the attribute
will be defined as SHAREAS.

SHARELIB | NOSHARELIB
Specifies whether the st_ShareLib extended attribute is set or unset in the
target file.

Note: In order to use BPXCOPY with this keyword parameter, you must have
at least READ access to the BPX.FILEATTR.SHARELIB FACILITY class.

UID(owner)
Specifies the owner of the file. Owner can be a user name or a numeric user ID
(UID). However, if a numeric owner exists as a user name in the user data
base, the UID number associated with that user name is used.

If a mixed case user name is specified, it must be enclosed in single quotes.

To be able to set the UID of the file, the user must have UID 0 or have at least
READ access to the BPX.SUPERUSER FACILITY class.

Specifying UID is optional. If not specified, the UID of the user running
BPXCOPY will be used.

GID(group)
Specifies the group owner of the file. group can be a group name or a numeric
group ID (GID). However, if a numeric group exists as a group name in the
group data base, the GID number associated with that group name is used.

If a mixed case group name is specified, it must be enclosed in single quotes.

To be able to set the GID of the file, the user must have UID 0 or have at least
READ access to the BPX.SUPERUSER FACILITY class.

Specifying GID is optional. If not specified, the GID of the directory pathname
will be used.

Return Codes
0 Processing successful

12 Processing unsuccessful. An error message has been issued.

BPXCOPY

822 z/OS V1R4.0 UNIX System Services Command Reference

Examples
1. JCL and BPXCOPY are used to copy a PDSE member into a directory.

Known:
v The name of the PDSE member is REGEREX.
v The directory name is /u/turbo/llib.
v Output messages are to be directed to SYSOUT.
v Type of data: binary.
//TEST JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=BPXCOPY,
// PARM=’ELEMENT(REGEREX) LINK("../erex") TYPE(BINARY)’
//SYSUT1 DD DSN=TURBO.LOADLIB(REGEREX),DISP=SHR
//SYSUT2 DD PATH=’/u/turbo/llib’
//SYSTSPRT DD SYSOUT=*

The LINK name is concatenated with the directory name from SYSUT2, yielding
/u/turbo/llib/../erex. The file system treats this as /u/turbo/erex, making this an
alias for /u/turbo/llib/REGEREX.

2. JCL and BPXCOPY are used to copy a PDS member into a directory.

Known:
v The name of the PDS member is TABLE1.
v The directory name is /u/carbon/data.
v Output messages are to be directed to SYSOUT.
v Type of data: text.
//TEST JOB MSGLEVEL=(1,1)
//STEP EXEC PGM=BPXCOPY,
// PARM=’ELEMENT(TABLE1) TYPE(TEXT) PATHMODE(0,7,6,4)’
//SYSUT1 DD DSN=CARBON.DATA(TABLE1),DISP=SHR
//SYSUT2 DD PATH=’/u/carbon/data’
//SYSTSPRT DD SYSOUT=*

This results in a file /u/carbon/data/TABLE1 with read, write, and execute
authority for the user; read and write authority for the group; and read authority
for other users.

3. A member of an MVS partitioned data set is copied to an HFS file from a
program using the LINK macro.

Known:

v The ddname of the source: INDD. INDD can be any sequential data set and
is defined by an ALLOCATE command issued outside the program.

v The ddname of the directory to copy into: OUTDD. OUTDD can be any
directory name and is defined by an ALLOCATE command issued outside the
program.

v Three link names—DATA, link1, and link2—for the target file.

v Output messages are directed to SYSOUT.

v Type of data: text.
*
COPYEX CSECT

STM 14,12,12(13) Entry linkage
LR 12,15
USING COPYEX,12
LA 10,SAVEAREA
ST 10,8(13)
ST 13,SAVEAREA+4
LR 13,10

*
LINK EP=BPXCOPY,PARAM=(OPT_LIST,DD_LIST),VL

*

BPXCOPY

Appendix E. BPXCOPY: Copying a Sequential or Partitioned Data Set or PDSE Member into an HFS File 823

L 13,SAVEAREA+4 Exit linkage
L 14,12(13)
LM 0,12,20(13)
BR 14

*
SAVEAREA DS 18F
*
OPT_LIST DC H’80’ Length of option string

DC CL80’ELEMENT(DATA) HEAD(’0001’’) TYPE(TEXT) X
LINK(’link1’’, ’’link2’’)’

*
DD_LIST DC H’72’ Length of DDNAME list

DC CL56’ ’
DC CL8’INDD’ Logical SYSUT1 input
DC CL8’OUTDD’ Logical SYSUT2 output directory

*
END COPYEX

BPXCOPY

824 z/OS V1R4.0 UNIX System Services Command Reference

Appendix F. Localization

Internationalization enables you to work in a cultural context that is comfortable for
you through locales, character sets, and a number of special environment variables.
The process of adapting an internationalized application or program, particular to a
language or cultural milieu, is termed localization.

A locale is the subset of your environment that deals with language and cultural
conventions. It is made up of a number of categories, each of which is associated
with an environment variable and controls a specific aspect of the environment. The
following list shows the categories and their spheres of influence:

LC_COLLATE
Collating (sorting) order.

LC_CTYPE
Character classification and case conversion.

LC_MESSAGES
Formats of informative and diagnostic messages and interactive responses.

LC_MONETARY
Monetary formatting.

LC_NUMERIC
Numeric, nonmonetary formatting.

LC_TIME
Date and time formats.

LC_SYNTAX
EBCDIC-variant character encodings used by some C functions and
utilities.

To give a locale control over a category, set the corresponding variable to the name
of the locale. In addition to the environment variables associated with the
categories, there are two other variables which are used in conjunction with
localization, LANG and LC_ALL. All of these variables affect the performance of
the shell commands. The general effects apply to most commands, but certain
commands such as sort, with its dependence on LC_COLLATE, require special
attention to be paid to one or more of the variables; this manual discusses such
cases in the Localization section of the command. The effects of each environment
variable is as follows:

LANG Determines the international language value. Utilities and applications can
use the information from the given locale to provide error messages and
instructions in that locale’s language. If LC_ALL variable is not defined, any
undefined variable is treated as though it contained the value of LANG.

LC_ALL
Overrides the value of LANG and the values of any of the other variables
starting with LC_.

LC_COLLATE
Identifies the locale that controls the collating (sorting) order of characters
and determines the behavior of ranges, equivalence classes, and
multicharacter collating elements.

LC_CTYPE
Identifies the locale that defines character classes (for example, alpha, digit,

© Copyright IBM Corp. 1996, 2002 825

blank) and their behavior (for example, the mapping of lowercase letters to
uppercase letters). This locale also determines the interpretation of
sequences of bytes as characters (such as singlebyte versus doublebyte
characters).

LC_MESSAGES
Identifies the locale that controls the processing of affirmative and negative
responses. This locale also defines the language and cultural conventions
used when writing messages.

LC_MONETARY
Determines the locale that controls monetary-related numeric formatting (for
example, currency symbol, decimal point character, and thousands
separator).

LC_NUMERIC
Determines the locale that controls numeric formatting (for example,
decimal point character and thousands separator).

LC_TIME
Identifies the locale that determines the format of time and date strings.

LC_SYNTAX
Identifies the locale that defines the encodings for the variant characters in
the portable character set.

The NLSPATH localization variable specifies where the message catalogs are to be
found.

For example,
NLSPATH="/system/nlslib/%N.cat"

specifies that the z/OS shell is to look for all message catalogs in the directory
/system/nlslib, where the catalog name is to be constructed from the name
parameter passed to the z/OS shell with the suffix .cat.

Substitution fields consist of a % symbol, followed by a single-letter keyword. These
keywords are currently defined:
%N The value of the name parameter
%L The value of the LC_MESSAGES category, or LANG, depending on how

the catopen() function that opens this catalog is coded. For more
information, refer to catopen() in z/OS C/C++ Run-Time Library Reference.

%l The language element from the LC_MESSAGES category
%t The territory element from the LC_MESSAGES category
%c The codeset element from the LC_MESSAGES category

Templates defined in NLSPATH are separated by colons (:). A leading colon or two
adjacent colons (::) are equivalent to specifying %N. For example:
NLSPATH=":%N.cat:/nlslib/%L/%N.cat"

specifies that the z/OS shell should look for the requested message catalog in
name, name.cat, and /nlslib/category/name.cat, where category is the value of the
LC_MESSAGES or LANG category of the current locale.

Do not set the NLSPATH variable unless you need to override the default system
path. Otherwise the commands may behave unpredictably.

Localization

826 z/OS V1R4.0 UNIX System Services Command Reference

Appendix G. Stub Commands

z/OS UNIX has some stub commands. Stub commands are those commands that
are recognized by z/OS UNIX but whose functions are not supported.

They are:
v cancel
v cu
v lpstat

© Copyright IBM Corp. 1996, 2002 827

Stub Commands

828 z/OS V1R4.0 UNIX System Services Command Reference

Appendix H. File Formats

This appendix gives more detailed information on the formats of the files used by
the shell commands. The file formats are:
v cpio
v magic
v pax
v queudefs
v tags
v tar
v utmpx
v uucp

cpio — Format of cpio archives
You can use the cpio command to back up or restore files. The cpio command
reads and writes either a compact binary format header or an ASCII format header.
The tar command reads and writes headers in either the original TAR format from
UNIX systems or the USTAR format defined by the POSIX 1003.1 standard.

The pax command reads and writes headers in any of the cpio formats.

Description
A cpio archive consists of one or more concatenated member files. Each member
file contains a header optionally followed by file contents as indicated in the header.
The end of the archive is indicated by another header describing an (empty) file
named TRAILER!!.

There are two types of cpio archives, differing only in the style of the header:

v ASCII archives have totally printable header information; thus, if the files being
archived are also ASCII files, the whole archive is ASCII.

v By default, cpio writes archives with binary headers. However, binary archive
files cannot usually be ported to other operating systems, so you should not use
these.

The information in an ASCII archive header is stored in fixed-width, octal (base 8)
numbers padded with zeros on the left. Table 29 gives the order and field width for
the information in the ASCII header:

Table 29. Archive File: ASCII Header
Field Width Field Name Meaning

6 magic Magic number 070707
6 dev Device where file resides
6 ino I-number of file
6 mode File mode
6 uid Owner user ID
6 gid Owner group ID
6 nlink Number of links to file
6 rdev Device major/minor for special file

11 mtime Modify time of file
6 namesize Length of filename

11 filesize Length of file

© Copyright IBM Corp. 1996, 2002 829

After the header information, namesize bytes of pathname are stored. namesize
includes the null byte of the end of the pathname. After this, filesize bytes of the file
contents are recorded.

Binary headers contain the same information in 2-byte (short) and 4-byte (long)
integers as follows:

Bytes Field Names
2 magic
2 dev
2 ino
2 mode
2 uid
2 gid
2 nlink
2 rdev
2 mtime
2 namesize
2 filesize

After the header information comes the filename, with namesize rounded up to the
nearest 2-byte boundary. Then the file contents appear as in the ASCII archive. The
byte ordering of the 2- and 4-byte integers in the binary format is
machine-dependent and thus portability of this format is not easily guaranteed.

Related Information
The compress, cpio, pax, and tar commands

Also see the description of the tar file archive on page 835.

magic — Format of the /etc/magic file

Description
The file command uses the /etc/magic file in its attempt to identify the type of a
binary file. Essentially, /etc/magic contains templates showing what different types
of files look like.

The magic file contains lines describing magic numbers, which identify particular
types of files. Lines beginning with a > or & character represent continuation lines
to a preceding main entry:

> If the file command finds a match on the main entry line, these additional
patterns are checked. Any pattern that matches is used. This may generate
additional output; a single blank separates each matching line’s output if
any output exists for that line.

& If the file command finds a match on the main entry line, and a following
continuation line begins with this character, that continuation line’s pattern
must also match, or neither line is used. Output text associated with any
line beginning with the & character is ignored.

Each line consists of four fields, separated by one or more tabs:

(a) The first field is a byte offset in the file, consisting of an optional offset
operator and a value. In continuation lines, the offset immediately follows a
continuation character.

cpio

830 z/OS V1R4.0 UNIX System Services Command Reference

If no offset operator is specified, then the offset value indicates an offset
from the beginning of the file.

The * offset operator specifies that the value located at the memory location
following the operator be used as the offset. Thus, *0x3C indicates that the
value contained in 0x3C should be used as the offset.

The + offset operator specifies an incremental offset, based on the value of
the last offset. Thus, +15 indicates that the offset value is 15 bytes from the
last specified offset.

(b) The next field is a type: byte, short, or string. It can be followed by an
optional mask which is bitwise ANDed to the value prior to comparison. For
example, byte &0x80 looks at the high bit.

(c) The next field is a value, preceded by an optional operator. Operators only
apply to nonstring types: byte, short and long. The default operator is =
(exact match). The operators are:
= Equal.
! Not equal.
> Greater than.
< Less than.
& All bits in pattern must match.
^ Any bits in pattern may match.
x or ? Any value matches (must be the only character in the field). ? is an

extension to traditional implementations of magic.

The string values to be matched can contain any valid ANSI C backslash
sequence. Thus, to match a single backslash, \\ must be entered in the
magic file.

Note: Because of its format, the magic file must use –t to match a tab
character.

(d) The rest of the line is a string to be printed if the particular file matches the
template. Note that the contents of this field is ignored if the line begins with
the & continuation character. The fourth field may contain a printf ()-type
format indicator to output the magic number (see printf for more details on
format indicators).

Usage Notes
Characters from a code page other than IBM-1047 should not be added to the
/etc/magic file (the default magic file).

Characters from a code page other than IBM-1047 can be used in alternate magic
files that are specified by the –m option on the file command. These characters
should only be used in the third field of the magic file template when the field type
is string. They will only match files containing these characters when the file
command is invoked in the non-IBM-1047 locale.

Examples
Here are some sample entries:

0 short 0x5AD4 DOS executable
*0x18 Short 0x40
>*0x3c Short 0x6584C OS/2 linear

executable

magic

Appendix H. File Formats 831

>*0x3C Short 0x454e
>+54byte 1 OS/2 format
>+54byte 2 Windows format
0 short 0xFDF0 DOS library
0 string AH Halo bitmapped font file
0 short 0x601A Atara ST contiguous

executable
>14 long >0 – not stripped
0 byte 0X1F
>1 byte 0x1E Packed file
>1 byte 0x9D Compressed file

Related Information
The file command. Also, see ″Enabling the file Utility″ in z/OS UNIX System
Services Planning.

pax — Format of pax archives and special header summary files

Description
pax uses the USTAR archive format described in the tar file format description.

(For more information about the tar file format, see Appendix H.)

magic

832 z/OS V1R4.0 UNIX System Services Command Reference

Special Header Summary File: example format

#00#IBMOS390_USTAR_VERS=1
#
Archive Name: /tmp/spec.pax
#
This file was created by the IBM z/OS pax or tar utility.
During the process of creating the archive from which this
file was extracted, one or more of the source files to be
stored in the archive was determined to have names or
attributes that are not supported by the standard USTAR
format (as described by POSIX.2 IEEE std 1003.2-1992).
To preserve these files or these characteristics,
one or more special header files (having the same name as
this file) were inserted into the archive. Those files
are recognized by z/OS pax and tar utilities and are
used during extraction to restore the files to their
original state.
#
The purpose of this file is to summarize the information
described by all z/OS special header files stored in
the archive so that users with versions of pax or tar
that do not support these special header files can
manually restore some or all of the files and file
attributes described by them. Note that some file
attributes are specific to z/OS and cannot be restored
on other platforms.
#
The remainder of this file consists of a set of records
corresponding to each special header file stored in the
archive. Each set consists of a record describing the
pathname, one or more reasons explaining why the file or
attribute could not be stored, and the unix command,
or commands, that would be used to restore the file or
attribute. Note that these commands use the pathnames
of the file as they existed when archived and may not
correspond to the current pathnames on your system.
#

Figure 1. Example of a Special Header Summary File (Part 1 of 2)

pax

Appendix H. File Formats 833

Portability
POSIX.2, X/Open Portability Guide.

Related Information
The cpio, pax, and tar commands.

Also see the descriptions of the cpio and tar file formats.

queuedefs — Queue description for at, batch, and cron

Description
The queudefs file describes the characteristics of the queues managed by the
clock daemon cron. Each line in the file that is not a comment uses the following
format to describe a queue:
q . [njobj] [nicen] [nwaitw]

where the fields are:

q Specifies the name of the queue. Jobs started by at default to queue a;
jobs started by batch default to queue b, and crontab files default to queue
c. Queue names can be any singlebyte character except a space, tab,
newline, null, or number sign (#).

njob Specifies the maximum number of jobs that can be run in the queue
simultaneously. If more than njob jobs are ready to run, cron runs the first
njob jobs immediately, and runs the others as current jobs terminate. The
default value is 100.

Pathname: level0/longsymlink
Reason: 1. FSUMF076 target of symbolic link
("level1/level2/level3/level4/level5/level6/level7/level8/
level9/level10/level11/level12/level13/level14/linkbase")
exceeds 100 chars.
Unix restore command(s):
ln -s level1/level2/level3/level4/level5/level6/level7/
level8/level9/level10/level11/level12/level13/level14/
linkbase level0/longsymlink
#
Pathname: level0/level1/level2/level3/level4/level5/
level6/level7/level8/level9/level10/level11/level12/
level13/level14/longhardlink
Reason: 1. FSUMF076 target of hard link ("level0/level1/
level2/level3/level4/level5/level6/level7/level8/level9/
level10/level11/level12/level13/level14/linkbase")
exceeds 100 chars.
Unix restore command(s):
ln level0/level1/level2/level3/level4/level5/level6/level7/
level8/level9/level10/level11/level12/level13/level14/
linkbase level0/level1/level2/level3/level4/level5/level6/
level7/level8/level9/level10/level11/level12/level13/level14
/longhardlink

Figure 1. Example of a Special Header Summary File (Part 2 of 2)

pax

834 z/OS V1R4.0 UNIX System Services Command Reference

nice Specifies the nice value (see nice) that cron assigns to all jobs in the
queue that are not run by a user ID with appropriate privileges. The default
value is 2.

nwait Specifies the number of seconds that cron is to wait before it reschedules a
job that was deferred because there were more than njob jobs running in
that job’s queue, or because more than 25 jobs were running in all queues.
The default value is 60.

Lines beginning with a number sign (#) are comments, and are ignored.

Examples
Here is a sample queudefs file:.
#
Sample queuedefs file
#
a.5j3n
b.3j1n90w

This file indicates that the a queue, for at jobs, can have a maximum of five jobs
running simultaneously. crontab runs the jobs with a nice value of 3. Because
there is no nwait field for this queue, if cron cannot run a job because too many
other jobs are running, it waits 60 seconds before trying to run it again.

This file also states that the b queue, for batch jobs, can have a maximum of three
jobs running simultaneously. cron runs the jobs with a nice value of 1. If cron
cannot run a job because too many other jobs are running, it waits 90 seconds
before trying to run it again. All other queues can run up to 100 jobs simultaneously;
cron runs these jobs with a nice value of 2 and, if it cannot run a job because too
many other jobs are running, it waits 60 seconds before trying to run it again.

Related Information
The at, batch, and crontab commands.

tags — Format of the tags file

Description
When you use the vi :tag or ex :tag command, or the ex –t, more –5, vi –t, option,
that utility looks for a file called tags in the current directory. This lets you quickly
locate various points of interest in a C program which may span more than one
source file. These points of interest are tags.

The tags file contains tags for function definitions, preprocessor macro definitions,
and typedef definitions.

For each tag, the tags file contains one line in the following form:
tagname sourcefile address

The tagname field is the name of the C function, macro, or typedef. The sourcefile
field has the name of the source file containing the tag named tagname. The
address field is an editor address within sourcefile to reach the tag definition. This
is either a line number in the file or a regular expression (enclosed in ? or /
characters) that uniquely matches the line of source code where the tag appears. A
tab character separates each field.

queuedefs

Appendix H. File Formats 835

For vi or more to use the tags file correctly, it must be sorted by tagname using the
POSIX locale’s collation sequence.

Related Information
The more, sort, and vi commands.

tar — Format of tar archives

Description
tar reads and writes headers in either the original TAR format from UNIX systems
or the USTAR format defined by the POSIX 1003.1 standard.

The pax command reads and writes headers in any of the tar formats.

The tar command supports both the older UNIX-compatible tar formats and the
new USTAR format. The USTAR format allows more information to be stored and
supports longer pathnames.

A tar archive, in either format, consists of one or more blocks, which are used to
represent member files. Each block is 512 bytes long; you can use the –b option
with tar to indicate how many of these blocks are read or written (or both) at once.

Each member file consists of a header block, followed by zero or more blocks
containing the file contents. The end of the archive is indicated by two blocks filled
with binary zeros. Unused space in the header is left as binary zeros.

The header information in a block is stored in a printable ASCII form, so that tar
archives are easily ported to different environments. If the contents of the files on
the archive are all ASCII, the entire archive is ASCII.

Table 30 shows the UNIX format of the header block for a file:

Table 30. Archive File: UNIX-Compatible Format
Field Width Field Name Meaning

100 name Name of file
8 mode File mode
8 uid Owner user ID
8 gid Owner group ID

12 size Length of file in bytes
12 mtime Modify time of file
8 chksum Checksum for header
1 link Indicator for links

100 linkname Name of linked file

v A directory is indicated by a trailing /(slash) in its name.

v The link field is: 1 for a linked file, 2 for a symbolic link, 0 otherwise.

tar determines that the USTAR format is being used by the presence of the
null-terminated string USTAR in the magic field. All fields before the magic field
correspond to those of the UNIX format, except that typeflag replaces the link field.

Table 31. Archive File: USTAR Format
Field Width Field Name Meaning

100 name Name of file

tags

836 z/OS V1R4.0 UNIX System Services Command Reference

Table 31. Archive File: USTAR Format (continued)
Field Width Field Name Meaning

8 mode File mode
8 uid Owner user ID
8 gid Owner group ID

12 size Length of file in bytes
12 mtime Modify time of file
8 chksum Checksum for header
1 typeflag Type of file

100 linkname Name of linked file
6 magic USTAR indicator
2 version USTAR version

32 uname Owner user name
32 gname Owner group name
8 devmajor Device major number
8 devminor Device minor number

155 prefix Prefix for filename

Description of the Header Files
In the headers:

v The name field contains the name of the archived file. On USTAR format archives,
the value of the prefix field, if non-null, is prefixed to the name field to allow
names longer than 100 characters.

v The magic, uname, and gname fields are null-terminated character strings

v The name, linkname, and prefix fields are null-terminated unless the full field is
used to store a name (that is, the last character is not null).

v All other fields are zero-filled octal numbers, in ASCII. Trailing nulls are present
for these numbers, except for the size, mtime, and version fields.

v prefix is null unless the filename exceeds 100 characters.

v The size field is zero if the header describes a link.

v The chksum field is a checksum of all the bytes in the header, assuming that the
chksum field itself is all blanks.

v For USTAR, the typeflag field is a compatible extension of the link field of the
older tar format. The following values are recognized:

Flag File Type

0 or null Regular file

1 Link to another file already archived

2 Symbolic link

3 Character special file

4 Block special file (not supported)

5 Directory

6 FIFO special file

7 Reserved

S z/OS extended USTAR special header

T z/OS extended USTAR special header summary (S and T are
z/OS extensions. See “z/OS Extended USTAR Support” on
page 448 for more information.)

tar

Appendix H. File Formats 837

A–Z Available for custom usage

v In USTAR format, the uname and gname fields contain the name of the owner and
group of the file, respectively.

Compressed tar archives are equivalent to the corresponding archive being passed
to a 14-bit compress command.

Related Information
The cpio and tar commands

Also see the description of the cpio file archive on page 829.

utmpx — Format of login accounting files

Description
Login accounting information is stored in two files:
v /etc/utmpx holds the current state of each item being accounted
v /etc/wtmp maintains the history of changes to each accounting item

Both files are arrays of the following binary records described in the form of a C
data structure:
#include <sys/types.h>

struct utmpx {
char ut_user[8]; /* Login user name */
char ut_id[4]; /* ID from &[.ETCDIR]/inittab */
char ut_line[12]; /* Login terminal name */
short ut_pid; /* Process id */
short ut_type; /* Entry type (see below) */
struct exit_status {

/* Process termination+exit status*/
short e_termination;
short e_exit;

} ut_exit; /* Used with DEAD_PROCESS */
time_t ut_time; /* Entry created */

};

#define EMPTY 0 /* Unused */
#define RUN_LVL 1 /* Set new run level */
#define BOOT_TIME 2 /* System boot */
#define OLD_TIME 3 /* Time of date change - delta */
#define NEW_TIME 4 /* Time of date change + delta */
#define INIT_PROCESS 5 /* Process started by &[.ETCDIR]/init */
#define LOGIN_PROCESS 6 /* Login process */
#define USER_PROCESS 7 /* User process */
#define DEAD_PROCESS 8 /* Contains exit status */
#define ACCOUNTING 9 /* Other accounting */

Files
/etc/utmpx

Reflects the current state of the accounting entries; for example, who is
logged in, when the date was last set, and so on.

/etc/wtmp
Contains a history of changes to any of the accounting entries.

Related Information
The who command

tar

838 z/OS V1R4.0 UNIX System Services Command Reference

uucp — Format of UUCP working files

Description
UUCP uses three kinds of working files when handling UUCP requests, command,
data, and execute.

All three files are stored in a subdirectory for each specific site, named after the
site’s name. For example, because the UUCP spool directory is /usr/spool/uucp,
then the directory /usr/spool/uucp/south is used for all the command, data, and
execute files associated with the remote site south.

Command Files
Command files are created by the mail routing agents uucp and uux. On UUCP
sites, command files have names such as C.targetA28B9, where target is the
name of the destination site, A is the job grade (as set by the –g option to uucp,
and 28B9 is the sequence number or job identification number. (You can use the –j
option on uucp and uux, as well as uustat to find the job identification number.)

In a command file, each line records one file transfer request. The fields are defined
as follows:

type The type field can be one of the following:
R Receive a file from remote to local site.
S Send a file from local to remote site.

source The name of the source file.

destination
The name of the file after the transfer completes, whether to the remote site
(S request) or the local site (R request).

Special characters such as the tilde (~) are still present, because they are
expanded on the destination site.

sender The login name of the user who issued the command. This is normally your
login name, though some programs (such as mail programs) use a different
login name for their requests.

options
The command options, which correspond to options of the uucp and uux
commands.

C Use the data file name as the source for the copy; this can only be
used with the S request.

c Use the source file name as the source for the copy.

d Create intermediate target directories as required. This is the
default.

m Send mail to the user when the transfer is complete.

n Send mail to the user specified by the notification name when the
transfer is complete.

datafile
The temporary file to be used if the source file was copied into the spool
directory; it is only used with the S request. If C is one of the options, the
data file is the name of the copy in the destination site’s data spool
directory. Otherwise, the placeholder name D.0 is used.

uucp

Appendix H. File Formats 839

file mode
The UNIX-style permission mode of the source file. It is only used with the
S request. All files sent have mode 0666, plus whatever execute permissions
the original file had. (For an explanation of the modes, see chmod.)

notification
The login name of the person to be notified after the job request completes.
It is used only with the S request if n is one of the options.

Examples
1. The command

uucp –m /memos.001 /memos.002 south!~/

copies the files /memos.001 and /memos.002 root directory to the public UUCP
directory on south. Assuming your user name is eve, a command file containing
these lines is created in the UUCP spool directory /usr/spool/uucp/south:
S /memos.001 ~/memos.001 eve –mcd D.0 0777
S /memos.002 ~/memos.002 eve –mcd D.0 0777

2. The command
uucp south!~/index ~/

generates a command file on your site in the UUCP spool directory
/usr/spool/uucp/south containing this line:
R ~ /index ~/index eve –cd

Data Files
Data files contain data to be transferred to the remote site. They are created by
uucp if the –C option is used, and by uux and mail programs.

On UUCP sites, data files have names like D.source9B73001, where source is the
name of the site that the data file originated from (the local site for an S request, or
the remote site for an R request), 98B3 is the sequence number, and 001 is the
subsequence number, used when a request generates more than one data file.

Data files created by uucp contain files to be copied. Data files created by uux
which contain commands for the remote site become execute files at their
destination.

Mail sites typically create two data files, one containing the message and the other
containing the command to run the mail routing agent on the remote site.

Examples
UUCP data files contain data to be copied. The contents of uux data files and
commands that generate remote commands are execute files intended for other
sites. For example, a mail message to north generates two data files in the UUCP
spool directory /usr/spool/uucp/north
D.north000A001
X.northX000A002

These working files are created:

D.north000A001 Text of mail message
X.northX000A002 Execute file

uucp

840 z/OS V1R4.0 UNIX System Services Command Reference

The execute file contains the uux request for the mail routing program to be run on
north.

Execute Files
Execute files are data files containing commands that are created on other sites
and copied to your site. The files are treated as execute files when they arrive at
your site, where the commands are run by uuxqt.

On UUCP sites, execute files are named as:
X.remotX28A3003

where remot is the first five characters of the destination site’s name, X is the job
grade (execute files always have the grade X), and 28A3 is the sequence number.

Each execute file contains one command, and the necessary information to run the
command. The type of information on each line is identified by the first character in
the line. Not all lines are used in all files, and not all UUCP implementations support
all of these lines. The first line in an execute file must be a U line, and the last line
must be a C line.

Indicates a comment. Comments and unrecognized commands are ignored.

C command
Requests that command be run. command is a string that includes the
program and arguments. This line must be present and must be the last line
in the execute file.

E Processes the command with execve(). If the E line is present, uuxqt runs
a fork()/ecec() sequence, unless the command contains a shell
metacharacter. In that case, uuxqt invokes a shell to run the command.

e Processes the command by the POSIX shell. It is intended to handle
commands that require special processing. If the e line is present, uuxqt
invokes the defined shell to run the command.

F filename [xqtname]
Names filename, a file required for the command to be run. This is usually
a file that is transferred from the site that uux was executed from, but it can
also be a file from the local site or some other site. If filename is not from
the local site, then it is usually a file in the spool directory. Multiple F lines
are allowed. Any file other than the standard input file requires the xqtname
argument and is copied to the execution directory as xqtname. If the
standard input file is not from the local site, it appears in both an F
command and an I command.

I stdin Names the file that supplies standard input to the command. If the standard
input file is not from the site running the command, the file is also in an F
command. If there is no standard input file, behavior depends on the site
implementation. uuxqt rejects the command; some UNIX implementations
use /dev/null as the standard input. Only one I line can be present in an
execute file; the corresponding F line must precede the file.

N No mail message should be sent, even if the command failed.

n Requests a mail message be sent if the command succeeded. Normally a
message is sent only if the command failed.

O stdout [site]
Names the standard output file. The optional second argument names the
site to which the file should be sent. If there is no second argument, the file

uucp

Appendix H. File Formats 841

should be created on the executing site. Only one O line can be present in
an execute file; the corresponding F line must precede the O line.

U user site
Names the user who requested the command and the site that the request
came from. This line must be present and must be the first line in the
execute file.

Z Specifies that a mail message should be sent if the command failed. This is
the default for uuxqt.

Not all these commands may be implemented at your site. For a list of the
commands not supported by uuxqt, see uuxqt.

Although most execute files are generated on other sites, complex uux
commands that retrieve files from multiple sites can generate execute
commands in the local spool directory, where local is the name of your site.

Examples
The following is an example of an execute file to run rmail on the site south. The
data file containing the mail message is D.south49Z3. This is an execute file that
might be created by the mailx command:
U eve north
F D.south49Z3
I D.south49Z3
C rmail bob

This command originated with user eve on north. It requests that rmail be run with
the argument bob on the target site. The file D.south49Z3 is required to run the
command and is used as standard input for the command.

Portability
X/Open Portability Guide

Related Information
uucico, uucp, uux, uuxqt

uucp

842 z/OS V1R4.0 UNIX System Services Command Reference

Appendix I. Setting the Local Time Zone with the TZ
Environment Variable

This appendix discusses how to use the TZ environment variable when setting the
local time zone.

TZ Environment Variable

Format
TZ= standardHH[:MM[:SS]] [daylight[HH[:MM[:SS:]]]
[,startdate[/starttime],enddate[/endtime]]]

Description
All commands assume that times stored in the file system and returned by the
operating system are stored using Greenwich Mean Time (GMT) or Universal Time
Coordinated (UTC), hereafter referred to as the universal reference time. The
mapping from the universal reference time to local time is specified by the TZ (time
zone) environment variable.

The value of the TZ environment variable has the following five fields (two required
and three optional):

standard
An alphabetic abbreviation for the local standard time zone (for example,
(GMT, EST, MSEZ).

HH[:MM[:SS]]
The time offset westwards from the universal reference time. A leading
minus sign (−) means that the local time zone is east of the universal
reference time. An offset of this form must follow standard and can also
optionally follow daylight. An optional colon (:) separates hours from
optional minutes and seconds.

If daylight is specified without a daylight offset, daylight savings time is
assumed to be one hour ahead of the standard time.

[daylight]
The abbreviation for your local daylight savings time zone. If the daylight
field is missing, Daylight Saving Time conversion is disabled. The number of
hours, minutes, and seconds your local Daylight Savings Time is offset from
UTC when Daylight Savings Time is in effect. If the Daylight Savings Time
abbreviation is specified, and the offset omitted, the offset of one hour is
assumed.

[,startdate[/starttime],enddate[/endtime]]
A rule that identifies the start and end of Daylight Savings Time, specifying
when Daylight Savings Time should be in effect. Both the startdate and
enddate must be present, and must either take the form Jn, n, or Mm.n.d..

v Jn is the Julian day n (1 <= n <=365) and does not account for leap
days.

v n is the zero-based Julian day (0 <= n <= 365). Leap days are counted;
therefore, you can refer to February 29th.

v Mm.w.d defines the day (0 <= d <= 6) of week w (1 <= w <= 5) of month
m (1 <= 12) of the year. Week 5 has the last day (d) in month m, which

© Copyright IBM Corp. 1996, 2002 843

may occur in either the fourth or fifth week). Week 1 is the first week in
which the dth day occurs. Day zero is Sunday.

Neither starttime nor endtime are required. If they are omitted, their values
default to 02:00:00. If this Daylight Savings Time rule is omitted altogether,
the values in the rule default to the standard American Daylight Savings
Time rules starting at 02:00:00 the first Sunday in April and ending at
02:00:00 the last Sunday in October.

When the TZ variable is not set, time conversions behave as if TZ were set
to TZ=GMT0.

Portability
This interpretation of the TZ environment variable is a superset of that supported by
UNIX System V.

Related Information
The date and touch commands.

TZ Environment Variable

844 z/OS V1R4.0 UNIX System Services Command Reference

Appendix J. Environment Variables

This appendix contains a partial list of environment variables.

v For the c89/cc/c++ environment variables, refer to the c89/cc/c++ command for
descriptions of the environment variables used.

v For the mailx environment variables, refer to the mailx command for descriptions
of the environment variables used.

v For the tcsh environment variables, refer to the tcsh command for descriptions
of the environment variables used.

v For the tso environment variables, refer to the tso command for descriptions of
the environment variables used.

v For the vi environment variables, refer to the vi command for descriptions of the
environment variables used.

v For a list of built-in environment variables, refer to Table 20 on page 517.

Table 32 lists frequently-used environment variables and their purposes.

Table 32. Miscellaneous Environment Variables

Environment Variable Purpose

_BPX_ACCT_DATA Allows users to change the mount data when creating a new process.

_BPX_BATCH_SPAWN Causes BPXBATCH to use spawn instead of fork/exec and allows data definitions to be
carried over into the spawned process.

_BPX_BATCH_UMASK Allows the user the flexibility of modifying the permission bits on newly created files
instead of using the default mask.

_BPX_JOBNAME Specifies the job name of the process. You can use _BPX_JOBNAME to change the job
name.

_BPX_PTRACE_ATTACH If it is set to YES, programs invoked via the spawn, exec and attach_exec callable
services or via the C language spawn() and exec() family of functions are loaded into
user modifiable storage. Then these target programs can be debugged. The programs
that are loaded into storage during the execution of the target program, except for
modules loaded from LPA, are also loaded.

_BPX_SHAREAS Specifies whether the spawned child process is to be run in a separate address space
from the login shell’s space or in the same address space.
Note: If tcsh is your login shell, we recommend not using _BPX_SHAREAS.

_BPX_SPAWN_SCRIPT Specifies whether the specified file is to be treated as a shell script, if it is not in the
correct format to be a process image file or not a REXX exec.
Note: If tcsh is your login shell, we recommend not using _BPX_SPAWN_SCRIPT since
it is only used for increasing performance of /bin/sh scripts.

_BPX_TERMPATH Enables shell scripts to determine if the user logged on from TSO, rather than from rlogin
or telnet.

_BPX_USERID _BPX_USERID is used by daemons to set the userid for a child process where the child
process will either not create additional processes or will clear the environment variable
after it gets control.

_BPXK_AUTOCVT Allows users to globally activate or deactivate automatic file conversion of tagged HFS
files. It can be set to ON or OFF. _BPXK_AUTOCVT will behave much like the
AUTOCVT(ON|OFF) BPXPRMxx member. For more information on AUTOCVT(ON|OFF),
see z/OS MVS Initialization and Tuning Reference. Automatic file conversion and file
tagging are discussed in z/OS UNIX System Services Planning.

© Copyright IBM Corp. 1996, 2002 845

Table 32. Miscellaneous Environment Variables (continued)

Environment Variable Purpose

_BPXK_CCSIDS Defines an EBCDIC/ASCII pair of valid coded character set ids (CCSIDs) to be used
when automatically converting data or tagging new files. For example:

_BPXK_CCSIDS=(1234,5678)

Automatic file conversion, CCSIDs and file tagging are discussed in z/OS UNIX System
Services Planning.

_BPXK_MDUMP _BPXK_MDUMP enables a user to specify where a SYSMDUMP will be written to.
Allowable values for _BPXK_MDUMP are:

OFF Request the dump to be written to the current working directory. This is the
default.

MVS data set name
Request the dump to be written to an MVS data set. The data set name must
be a fully qualified data set name and can be up to 44 characters. The name
can be specified in upper and/or lower case and will be folded to uppercase.

HFS file name
Request the dump to be written to an HFS file. The file name can be up to 1024
characters. The HFS file name must begin with a slash. The slash refers to the
root directory, and the file will be created in that directory.

_CEE_ENVFILE Enables a list of environment variables to be set from a specified file. This environment
variable only takes effect when it is set through the runtime option ENVAR on initialization
of a parent program.

Attention: _CEE_ENVFILE is intended for use in batch programs. Since it has the
ability to supersede built-in shell environment variables such as LIBPATH, it is strongly
recommended that you do not use _CEE_ENVFILE in the shell environment. For more
information on the _CEE_ENVFILE environment variable, see z/OS C/C++ Programming
Guide.

ENV Contains the pathname of a login script containing commands and aliases. When you
invoke sh, it executes this file before doing anything else.

sh performs parameter substitution on this value and uses the result as the name of an
initialization file, or login script. This file is run with the . (dot) command; see the dot
command. This variable is usually set in your .profile.

EXINIT Contains a list of vi commands to be run when the editor is started.

LC_ALL Specifies the locale to be used to override any values for locale categories specified by
LANG or certain LC_ variables, such as LC_COLLATE, and LC_MESSAGES, which a
user can set and interrogate. However, LC_ALL does not override LC_CTYPE.

LPDEST Specifies the name of the printer that lp commands is to submit print jobs to. This
variable takes precedence over PRINTER.

LIBPATH Specifies the directory to search for a DLL (dynamic link library) filename. If it is not set,
the working directory is searched.

MAIL Specifies the pathname of your system mailbox.

MAKEFLAGS Contains a series of make options that are used as default options.

MAKESTARTUP Contains the pathname of the make stamp file.

MANPAGER Contains an output filtering command for use when displaying man pages on a terminal.

MORE Contains a list of options as they would appear on the command line. This variable takes
preference over the TERM and LINES variables.

OPTARG Contains the value of the option argument found by getopts.

OPTIND Contains the index of the next argument to be processed by getopts.

Environment Variables

846 z/OS V1R4.0 UNIX System Services Command Reference

Table 32. Miscellaneous Environment Variables (continued)

Environment Variable Purpose

PAGER Contains an output filtering command for use when displaying man pages on a terminal.

PRINTER If LPDEST is not specified, specifies the default name of the printer that lp commands is
to submit print jobs.

READONLY Specifies that files cannot be written to.

REPLY Contains the input (including separators) if you did not specify any variables. That is, you
can omit the variable from the command and use READ instead.

RESOLVER_CONFIG Used by TCP/IP to include the name of an MVS data set or HFS file in the search order
for TCPIP.DATA.

X_ADDR Used by some TCP/IP functions such as getnetbyaddr to include the name of an MVS
data set or HFS file in the search order for HOSTS.ADDRINFO.

X_SITE Used by some TCP/IP functions such as gethostbyname to include the name of an
MVS data set or HFS file in the search order for HOSTS.SITEINFO.

X_XLATE Used by TCP/IP to include the name of an MVS data set or HFS file in the search order
for STANDARD.TCPXLBIN.

Environment Variables

Appendix J. Environment Variables 847

Environment Variables

848 z/OS V1R4.0 UNIX System Services Command Reference

Appendix K. Specifying MVS Dataset Names in the Shell
Environment

Several utilities allow the user to specify an MVS dataset name in place of an HFS
filename. See “Utilities Supporting MVS Dataset Names” for the current list. This
section describes the syntax for specifying an MVS dataset name. Because MVS
dataset names generally contain single quotes and parenthesis which can be
misinterpreted by the shell, care needs to be taken to correctly escape these
characters.

What follows are general rules for specifying MVS dataset names. Consult the
description of each utility for more specific instructions or exceptions.

v MVS datasets are distinguished from HFS files by preceding them with two
slashes (//). For example, to specify the MVS dataset name
PROGRAM.OUTPUT, enter:
//PROGRAM.OUTPUT

If the double slashes were not used, the name would be interpreted as the HFS
pathname PROGRAM.OUTPUT in the current working directory.

v Unless a utility specifically provides an option to disable uppercasing, the default
approach is to uppercase all MVS dataset names before processing. For
example, the following are all equivalent methods for specifying the MVS dataset
PROGRAM.OUTPUT:
//program.output
//ProGram.OutPut
//PROGRAM.OUTPUT

v The single quote (’) and parenthesis (()) metacharacters are typically used to
specify fully-qualified MVS names and PDS/PDSEs, respectively. These
characters, however, are metacharacters that will be incorrectly interpreted by the
shell. To prevent this, they must be escaped. The simplest approach is to place
the entire name within double-quotes (″). Alternatively, these characters can be
escaped by preceding each with a backslash (\). Some examples are:

To specify the fully qualified MVS dataset ’SMITH.PROGRAM.OUTPUT’:
"//’smith.program.output’"
//\’smith.program.output\’

To specify the fully qualified partitioned dataset
’SMITH.PROGRAM.SOURCE(FILE1)’:
"//’smith.program.source(file1)’"
//\’smith.program.source\(file1\)\’

To specify the non-qualified partitioned dataset PROGRAM.SOURCE(FILE1):
"//program.source(file1)"
//smith.program.source\(file1\)

Utilities Supporting MVS Dataset Names
The following utilities currently support the use of MVS filenames. Consult the
description for each utility for limitations and exceptions:

v cp

v mv

v pax

© Copyright IBM Corp. 1996, 2002 849

v tar

v c89

MVS Datasets

850 z/OS V1R4.0 UNIX System Services Command Reference

Appendix L. Automatic Codeset Conversion: Default Status
for Specific Commands

Most commands that perform file I/O allow automatic codeset conversion of files
tagged as text with a codeset. For example, a file with ISO8859-1 (ASCII) content
that is tagged with TXT, ISO8859-1, may be converted to IBM-1047 (EBCDIC) for
processing by UNIX shells and utilities. Automatic conversion is controlled by
configuration parameters and environment variables. For more information about
automatic conversion, see z/OS UNIX System Services Planning.

Table 33 lists commands which allows automatic codeset conversion by default, but
use the –B option to disable it:

Table 33. Commands that Allow Automatic Conversion by Default

cmp

file

head

tail

strings

pack

Table 34 lists commands that expect binary data, so they prevent automatic
conversion:

Table 34. Commands that Disallow Automatic Conversion by Default

Command Special Behavior

cksum Will allow automatic conversion with –T.

compress v Allow conversion on the file being read.

v Disable conversion on the compressed
file and allow the automatic tagging of
the file as binary.

Note: Because file tag information can’t be
preserved in the compressed file, you can
lose data if translation does not occur on
input. If you really do want translation to
occur, change the file tag, or disable
automatic conversion with the
_BPXK_AUTOCVT environment variable.

dd v Prevents automatic conversion.

v If you specify conv=ascii, conv=ebcdic,
or conv=ibm, and the input is tagged as
text, dd will issue a warning message if
the file tag does not match the expected
output.

gencat Prevents automatic conversion.

mkcatdefs Prevents automatic conversion.

od Will allow automatic conversion with –T.

© Copyright IBM Corp. 1996, 2002 851

Table 34. Commands that Disallow Automatic Conversion by Default (continued)

uncompress and zcat v Disable conversion on the compressed
file being read.

v Allow conversion on the uncompressed
file being written.

Note: Because the compressed file should
always be binary, IBM recommends that
you do not provide the option to allow
translation of a compressed file on input.
However, if you need to do this, you must
perform it manually using iconv.

unpack and pcat Prevents automatic conversion

uudecode Prevents automatic conversion

uuencode Prevents automatic conversion

852 z/OS V1R4.0 UNIX System Services Command Reference

Appendix M. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1996, 2002 853

854 z/OS V1R4.0 UNIX System Services Command Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2002 855

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

ACF/VTAM OS/390 zSeries
AIX Parallel Sysplex
BookManager RACF
C/MVS Resource Link
C++/MVS RISC System/6000
C/370 SOM
DFSMS/MVS SOMobjects
ESCON SP
IBM SP2
IBMLink S/390
Infoprint Sysplex Timer
Language
Environment

System/370

Library Reader TalkLink
MVS/ESA VTAM
Open Class z/OS
OS/2 z/OS.e

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others:

ANSI American National Standards Institute

856 z/OS V1R4.0 UNIX System Services Command Reference

BSD University of California
IEEE Institute of Electrical and Electronics Engineers
Lotus Lotus Development Corporation
POSIX Institute of Electrical and Electronics Engineers

Acknowledgments
InterOpen Shell and Utilities is a source code product providing POSIX.2 (Shell and
Utilities) functions to the z/OS UNIX services offered with MVS. InterOpen/POSIX
Shell and Utilities is developed and licensed by Mortice Kern Systems (MKS) Inc. of
Waterloo, Ontario, Canada.

Notices 857

858 z/OS V1R4.0 UNIX System Services Command Reference

Index

Special characters
_ environment variable

description of 517
_BPX_ACCT_DATA environment variable

description of 845
_BPX_BATCH_SPAWN environment variable

description of 812, 845
_BPX_BATCH_UMASK environment variable

description of 812, 845
_BPX_JOBNAME environment variable

description of 845
_BPX_PTRACE_ATTACH environment variable

description of 845
_BPX_SHAREAS environment variable

description of 845
_BPX_SPAWN_SCRIPT environment variable

description of 812, 845
magic number

#! 812
_BPX_TERMPATH environment variable

description of 845
used by chcp 111, 113

_BPXK_AUTOCVT environment variable
description of 845

_BPXK_CCSIDS environment variable
description of 846

_CEE_ENVFILE environment variable
description of 846

_MAKE_BI environment variable
description of 518
used by make 378

_MAKE_BI variable
MAILCHECK

description of 518
_TAG_REDIR_ERR = BIN tcsh environment variable

description of 613
_TAG_REDIR_ERR = TXT tcsh environment variable

description of 613
_TAG_REDIR_ERR=BIN environment variable

description of 520
_TAG_REDIR_ERR=TXT environment variable

description of 520
_TAG_REDIR_IN=BIN environment variable

description of 520
_TAG_REDIR_IN=BIN tcsh environment variable

description of 613
_TAG_REDIR_IN=TXT environment variable

description of 520
_TAG_REDIR_IN=TXT tcsh environment variable

description of 613
_TAG_REDIR_OUT = TXT environment variable

description of 520
_TAG_REDIR_OUT=BIN environment variable

description of 520
_TAG_REDIR_OUT=BIN tcsh environment variable

description of 613

_TAG_REDIR_OUT=TXT tcsh environment variable
description of 613

-
explanation of 1

: (colon) shell command 130
? subcommand for dbx 172
/ subcommand for dbx 173
/bin directory

setting up special files in the 748
/bin/mail file

used by calendar 103
/dev/mt/0m file

used by tar 565
/dev/tty 459
/etc/auto.master file

used by automount 22
/etc/csh.cshrc

used by tcsh login 571
/etc/csh.login

used by tcsh login 571
/etc/inetd.conf file

used by the inetd daemon 292
/etc/inetd.pid file

used by the inetd daemon 295
/etc/magic file

explanation of 830
used by file 259

/etc/mailx.rc file
used by mailx 342, 353, 358

/etc/profile file 520
used by the login shell 496

/etc/rc file
used by automount 22

/etc/recover file
used by exrecover 251

/etc/recover/$LOGNAME/VIn* file
used by exrecover 251

/etc/recover/$LOGNAME/VIt* file
used by exrecover 251

/etc/startup.mk file
used by make 378

/etc/suid_us.profile
used by sh 521

/etc/utmpx file
used by who 732

/etc/yylex file
used by lex 315

/etc/yylex.c file
used by lex 313

/etc/yyparse.c file
used by yacc 740

/tmp file
used by ar 16
used by fc, history, r 256

/tmp/e* file
used by ed 237

/tmp/sh* file
description of 520

© Copyright IBM Corp. 1996, 2002 859

/tmp/stm* file
used by sort 538

/tmp/VIl* file
used by exrecover 251

/tmp/VIn* file
used by exrecover 251

/tmp/VIt* file
used by exrecover 251

/usr/lib file
used by spell 541

/usr/lib/config file
used by uucc 675

/usr/lib/cron/at.allow file
used by cron 157

/usr/lib/cron/at.deny file
used by cron 157

/usr/lib/cron/cron.allow
used by cron 157

/usr/lib/cron/cron.deny file
used by cron 157

/usr/lib/cron/queuedefs file
used by cron 157

/usr/lib/hash file
used by spell 540, 541

/usr/lib/hashb file
used by spell 540, 541

/usr/lib/lib.b file
used by bc 58

/usr/lib/libl.a file
used by lex 315

/usr/lib/lwords file
used by spell 540, 541

/usr/lib/uucp file
used by uucc 675

/usr/lib/uucp/config
used by uucc 675
used by uuto 693

/usr/lib/uucp/config file
used by uucico 677
used by uucp 675, 681
used by uulog 685
used by uuname 686
used by uupick 688
used by uustat 691
used by uux 696
used by uuxqt 697

/usr/lib/uucp/devices file
used by uucp 675

/usr/lib/uucp/dialcodes file
used by uucp 675

/usr/lib/uucp/dialers file
used by uucp 675

/usr/lib/uucp/permissions file
used by uucp 675

/usr/lib/uucp/systems file
used by uucp 675

/usr/man/%L/man¬0–9|/*.book file
used by man 390

/usr/man/%L/whatis file
used by man 390

/usr/spool/cron file
used by cron 157

/usr/spool/cron/atjobs file
used by cron 157

/usr/spool/cron/crontabs file
used by cron 157

/usr/spool/cron/log file
used by cron 157

/usr/spool/cron/pid
used by cron 157

/usr/spool/locks
used by uucico 677

/usr/spool/uucp
used by uustat 691

/usr/spool/uucp file
used by uulog 685

/usr/spool/uucp spool directory 839
/usr/spool/uucp/.Sequence file

used by uucp 681
used by uux 696
used by uuxqt 697

/usr/spool/uucp/.Status file
used by uustat 691

/usr/spool/uucp/.STATUS file
used by uucico 677

/usr/spool/uucp/.Xqtdir
used by uuxqt 697

/usr/spool/uucp/.Xqtdir directory 694
/usr/spool/uucp/LOGFILE

used by uulog 685
/usr/spool/uucp/LOGFILE file

used by uucico 677
used by uucp 681
used by uux 696

/usr/spool/uucp/site
used by uuxqt 697

/usr/spool/uucp/site file
used by uux 696

/usr/spool/uucp/south directory 839
/usr/spool/uucppublic file

used by uucp 681
used by uuto 693

/usr/spool/uucpublic file
used by uupick 688

/usr/spool/uucpublic/receive file
used by uupick 688

/var/man/%L/entry.¬0–9|/*.bookname file
used by man 390

... (ellipsis)
explanation of 2

.dbxinit file
used by dbx 170

.dbxsetup file
used by dbx 170

.exrc file
used by vi 724

.profile file 520
$HOME / .sh_history file

used by fc, history, r 255
$HOME/.exrc file

used by vi 724

860 z/OS V1R4.0 UNIX System Services Command Reference

$HOME/mbox file
used by mail 341
used by mailx 358

$MAILDIR file
used by mailx 358

$MAILRC file
used by mailx 358

$TMPDIR/pg* file
used by pg 456

[(left bracket) shell command 311
[]

explanation of 1
|& shell operator 499
& shell operator 499
#!

magic number 816
· (dot) script

returning from 476
· (dot) shell command 227

Numerics
3270 alarm

controlling the 773, 778, 782
3270 passthrough mode

used to invoke the TSO/E OBROWSE
command 423

3270 terminals
specifying the use of DBCS 775

A
a.out file

used by dbx 172
abnormal condition

trapping 650
abnormal interrupt

trapping 650
absolute movement command (for vi) 700
absolute movement commands

list of 701
access control list (ACL)

updating 491
access permission

changing 115
access time

resetting 153
setting, for destination files 142

accessibility 853
ACL primary operators

test shell command 638
action

explanation of 36
address

removing breakpoints from 176
AF_UENT stack

configuring the 137
ALARM function key for OMVS command 778
ALARM option of OMVS command 773
ALARM subcommand of OMVS command 782

alias
creating 11

tracked aliases 285
detecting 664
removing

definitions 664
those specified by the name argument 210

alias shell command 11, 731
alias subcommand for dbx command 173
allnet environment variable

used by mailx 354, 355, 359
alloc tcsh shell command 617
allocate

MVS standard files as HFS files
using the BPXBATCH program 811

standard files
using the BPXBATCH command 746
using the BPXBATCH program 812

stdenv as HFS files
using the BPXBATCH command 746
using the BPXBATCH program 811

stderr as HFS files
using the BPXBATCH command 746
using the BPXBATCH program 811

stdin as HFS files
using the BPXBATCH command 746
using the BPXBATCH program 811

stdout as HFS files
using the BPXBATCH command 746
using the BPXBATCH program 811

z/OS standard files as HFS files
using the BPXBATCH command 746

ALLOCATE TSO/E command 758
allocating data sets 23
allocating file systems 23
allow

messages 390
American Daylight Savings time

used in the TZ environment variable 844
ampm shell variable

description of 600
append

user’s commands to a file
of given identifiers 196

application program
displaying

list of mutex objects 207
appointment

displaying 102
ar shell command 14
arbitrary-precision arithmetic calculation language

using the 44
archive

copying files from directory 152
creating 152
extracting

components from the 438
contents 152

tapes 564
archive file

cpio format 829

Index 861

archive file (continued)
manipulating 564
reading 437, 564
tar format 836
writing 437, 564

archive library
creating 14
displaying symbol table 419
maintaining 14

ARGC (built-in variable for awk) 31
args subcommand for the dbx command 174
argument

changing dates for 644
concatenating in the current shell environment 241
evaluating

as an expression 247
in the current shell environment 241

obtaining from a list of parameters 280
printing 460
removing 479
returning from the shell 460
writing to standard output 230

argv shell variable 600
description of 600

arithmetic calculation
calculating to arbitrary precision 44

arithmetic expression
evaluating 312

arrange
items on command line 3
options 1

array element (awk variable) 28
asa shell command 17
ASA/FORTRAN carriage control

interpreting 17
ASCII code pages for the terminal

setting, resetting, or querying 111
ASCII to EBCDIC conversion 215
ask environment variable

used by mailx 355
askbcc environment variable

used by mailx 355
asksub environment variable

used by mailx 355
assemble

z/OS C and z/OS C++ source files 63
assign

aliases for dbx subcommands 173
attributes to variables 659
values to variables 174, 659

assign subcommand for dbx command 174
at shell command 18

submitting jobs to cron 159
attribute of files

listing 332
audit attribute

changing 109
audit flag

changing 109
autoconversion

ls 332

autoconversion (continued)
od 423

autocorrect shell variable
description of 600

autoexpand shell variable
description of 600

autolist shell variable
description of 600

autoloaded functions
description of 504

autologout shell variable
description of 600

automatic conversion 563, 594, 637
cp 140
ls 332
mv 404
od 423
pax 437
tcsh shell 613

automatic scrolling
controlling 778, 782, 783
turning off 783

Automatic, Periodic, and Timed Events 595
automount

allocating data sets 23
allocating file systems 23

automount facility
configuring the 22

automount shell command 22
AUTOMOVE 754
autoprint environment variable

used by mailx 344, 350, 355
AUTOSCROLL function key for OMVS command 778
AUTOSCROLL function of OMVS command

setting the 773
AUTOSCROLL option of OMVS command 773, 778
AUTOSCROLL subcommand of OMVS command 782
awk shell command 26

action 36
ARGC built-in variable 31
arrays 28
BEGIN 35
built-in arithmetic functions 33
built-in string functions 33
built-in variables

FILENAME 32
FNR 32
NF 32
NR 32

comments 27
conditions 36
END 35
ENVIRON environment 29
examples 37
FILENAME file being read 32
FNR number of records read from file 32
FS field separator string 31
functions 35
getline 32
NF field in current record 32
NR number of records read 32

862 z/OS V1R4.0 UNIX System Services Command Reference

awk shell command (continued)
OFMT output number format 37
OFS output field separator 37
operators 29
ORS output record separator 37
patterns 35
processing programs 26
RLENGTH built-in variable 33
RS record separator character 31
RSTART built-in variable 33
statements 36
SUBSEP 28
SYMTAB symbol table 29
system functions 35
variables 28

B
background job

scheduling 158
backquoting 510
BACKSCR function key for OMVS command 778
BACKSCR subcommand of OMVS command 782
backslash shell variable

description of 600
backup files 564
backward retrieve function of OMVS command 780
bang environment variable

used by mailx 352, 355
basename shell command 42
basic regular expression

explanation of 805
list of commands using 808
meaning of metacharacters used 805

batch environment
running shell commands, shell scripts, and

C/MVS 746
running shell scripts and z/OS C applications under

MVS 811
batch job

submitting
using the BPXBATCH command 746
using the BPXBATCH program 811

batch shell command 43
submitting jobs to cron 159

bc shell command 44
built-in functions 55
built-in variables 46
dynamic scoping 54
specifying numbers in different bases 46

between-rule circular dependency 366
bg shell command 59
binary file

decoding 682
encoding for transmission 683

bindkey tcsh sell command 617
blind carbon copy 343
bold typeface

explanation of 1
BOTTOM function key for OMVS command 778
BOTTOM subcommand of OMVS command 782

Bourne shell 496
BPXACOPY program

automatic setting of permission bits during
installation 821

BPXBATCH program 811, 819
invoked in the OSHELL REXX exec 817
invoking

with OSHELL 790
BPXBATCH TSO/E command 746
BPXBATSL

run program using local spawn 746, 811
BPXCOPY program 819, 825

invoking 819
BPXK_MDUMP environment variable

description of 846
bpxmtext shell command 60
bracket expression 805
brackets

explanation of 1
break

lines 268
break shell command 61
break up

files 542
text file 160

breakpoint
removing from addresses 176

broadcast message 729
browse

files, with BPXBATCH 790
files, with the ISPF shell 748
HFS files

with the obrowse shell command 423
with the OBROWSE TSO/E command 758

build
argument lists before running a command 735
list of files 791

built-in functions
for the bc shell command 55

built-in shell commands 515
: (colon) 130
[311
alias 11
bg 59
break 61
cd 107
colon (:) 130
description of 504
echo 230
exit 245
false 254
fc 255
getopts 280
hash 285
jobs 305
kill 308
let 312
print 460
pwd 471
read 472
test 637

Index 863

built-in shell commands (continued)
time 642
times 643
true 651
type 658
typeset 659
ulimit 661
umask 665
unalias 664
wait 728
whence 731

built-in variable
for the bc command 46

builtins tcsh shell command 619
byte count

calculating
with the cksum command 126
with the sum command 556

displaying
with the cksum command 126
with the sum command 556

bytes
counting 730
swapping 154

C
C escape sequences 431
C functions

displaying online 771
C/MVS executable file

running
using the BPXBATCH command 746
using the BPXBATCH program 811

c++ shell command 62
c89/cc/c++ environment variable

_ACCEPTABLE_RC 76
_ASUFFIX 76
_ASUFFIX_HOST 77
_CCMODE 77
_CLASSLIB_PREFIX 77
_CLASSVERSION 77
_CLIB_PREFIX 78
_CMEMORY 78
_CMSGS 78
_CNAME 79
_CSUFFIX 79
_CSUFFIX_HOST 79
_CSYSLIB 79
_CVERSION 80
_CXXSUFFIX 80
_CXXSUFFIX_HOST 80
_DAMPLEVEL 80
_DAMPNAME 80
_DCB121M 81
_DCB133M 81
_DCB137 81
_DCB137A 81
_DCB3200 82
_DCB80 82
_DCBF2008 81

c89/cc/c++ environment variable (continued)
_DCBU 81
_ELINES 82
_EXTRA_ARGS 82
_ILCTL 82
_ILMSGS 83
_ILNAME 83
_ILSUFFIX 83
_ILSUFFIX_HOST 83
_ILSYSIX 83
_ILSYSLIB 83
_ILXSYSIX 84
_ILXSYSLIB 83
_INCDIRS 84
_INCLIBS 84
_ISUFFIX 84
_ISUFFIX_HOST 84
_IXXSUFFIX 84
_IXXSUFFIX_HOST 85
_LIBDIRS 85
_LSYSLIB 85
_LXSYSIX 85
_LXSYSLIB 85
_MEMORY 86
_NEW_DATACLAS 86
_NEW_DSNTYPE 86
_NEW_MGMTCLAS 86
_NEW_SPACE 86
_NEW_STORCLAS 86
_NEW_UNIT 86
_OPERANDS 87
_OPTIONS 87
_OSUFFIX 87
_OSUFFIX_HOST 87
_OSUFFIX_HOSTQUAL 87
_OSUFFIX_HOSTRULE 87
_PMEMORY 89
_PMSGS 89
_PNAME 89
_PSUFFIX 89
_PSUFFIX_HOST 89
_PSYSIX 89
_PSYSLIB 90
_PVERSION 90
_SLIB_PREFIX 90
_SNAME 91
_SSUFFIX 91
_SSUFFIX_HOST 91
_SSYSLIB 91
_STEPS 91
_SUSRLIB 92
_TMPS 92
_WORK_DATACLAS 92
_WORK_DSNTYPE 93
_WORK_MGMTCLAS 93
_WORK_SPACE 93
_WORK_STORCLAS 93
_WORK_UNIT 93
_XSUFFIX 93
_XSUFFIX_HOST 93

864 z/OS V1R4.0 UNIX System Services Command Reference

c89/cc/c++ shell command
–W option

compiler, prelinker, IPA linker and link editor
options 69

DLL and IPA extensions 69
environment variables 76
options 64
specifying

system and operational information to
c89/cc/c++/cxx 76

cal shell command 101
calculate

checksum for each input file
with the cksum command 126
with the sum command 556

number of bytes in each input file
with the cksum command 126
with the sum command 556

calendar
displaying 101

calendar file 103
calendar shell command 102
call up

other systems 164
callable services

displaying online 771
cancel

print queue requests 103
cancel shell command 103
captoinfo shell command 104
carriage control

interpreting 17
case of letters 1
case shell command 502
case subcommand for dbx command 175
catch subcommand for dbx command 175
Caution section

explanation of 6
cc shell command 107, 166
cd shell command 107
CDPATH environment variable

description of 517
used by cd 108
used by vi 720, 725

cdpath shell variable
description of 600

change
audit attributes 109
audit flags 109
crontab entries 158
dates for arguments 644
dbx command prompts 194
file access times 644
file modification times 644
file tag information 123
files

using diff output 433
functions 183
group owners 114
groups 415
groups of directories 119

change (continued)
groups of files 119
mount mode 792
next line to be displayed 189
owners of directories 119
owners of files 119
priorities of running processes 475
program counter address 184
root directory 121
source files 183
terminal characteristics 646
user ID

connected with sessions 553
working directories 107

change ACLs
setfacl 491

character
counting 730
escaping 505
translating 648

character class expression 806
character conversion table

specifying the 773
character special files

creating 750
characters

converting from one codeset to another 288
chaudit shell command 109
chcp shell command 111
check

conditions 637
for spelling errors 540
pathnames 436

checksum
calculating 126, 556
displaying 126

with the sum command 556
chgrp shell command 114
child process

waiting for it to end 728
child process time

displaying time accumulated 643
child shell environment 514
chmod shell command 115
chmount

change file system mount attributes 118
chmount shell command 118
chown shell command 119
chroot shell command 121
chtag shell command 123
circular dependencies 366
cksum shell command 126
clear breakpoints at addresses 176
clear subcommand for dbx command 176
cleari subcommand for dbx command 176
clock daemon (cron) 155
clocks 642
clone output streams 636
close 512

file descriptors 243
shell sessions 778, 782

Index 865

close (continued)
standard output (stdout) 512

CLOSE function of OMVS command 778
CLOSE subcommand of OMVS command 782
cmd environment variable

used by mailx 348, 355
cmp shell command 127
codeset

converting characters to another codeset 288
col shell command 128
collation sequence 805
collect

debugging information 775
colon (:) shell command 130
COLUMNS environment variable 517

description of 517
used by ed 237
used by ls 337
used by more 400
used by pg 454, 456
used by ps 470
used by sed 485
used by shedit 523
used by vi 725

COLUMNS tcsh environment variable
description of 612

comand shell variable
description of 600

comm shell command 131
command

aliases
creating or displaying 11

built-in 515
changing prompts, for dbx 194
constructing

in the current shell environment 241
with templates 735

conventions 1
creating aliases 11
descriptions

reading 1
displaying 255

aliases 11
elapsed time 642
online 771
process IDs 270
suppressing command numbers 256

editing 255, 523
executing 121
interpreting names 731
names

interpreting 731
numbers

suppressing 256
options

setting 487
unsetting 487

passing to shell for execution 203
processing history lists 255
prompts, changing for dbx 194
reading descriptions 1

command (continued)
reentering 255
remote execution

displaying information about 684
running

after constructing an argument list 735
at a different priority 416
at a specified time 18
from the shell 652
simple 132
using the OMVS interface 652
using the TSO/E service routine 652
when system is not busy 43

setting options 487
specifying command lines for another

command 243
substituting 510
suppressing numbers 256
sysvar 558
template 735
TSO/E

ALLOCATE 758
BPXBATCH 746
ISHELL 748
MKDIR 748
MKNOD 750
MOUNT 751
OBROWSE 757
OCOPY 758
OEDIT 763
OGET 764
OGETX 767
OHELP 771
OMVS 773
OPUT 785
OPUTX 787
OSHELL 790
OSTEPLIB 791
UNMOUNT 792

unsetting options 487
command aliases

displaying 11
command interpreter 361
command line

specifying for another command 243
command mode 343, 698
command shell command 132
command substitution 510
command summary

vi mode 700
commands

nonfunctional
cancel 103
cu 164
lpstat 331

running
on remote sites 693

communicate
with other users 734

866 z/OS V1R4.0 UNIX System Services Command Reference

compare
directories

with the dircmp command 225
with the ISHELL command 748
with the OSHELL command 790

files
with the cmp command 127
with the diff command 220
with the ISHELL command 748
with the OSHELL command 790

terminfo database entries 295
compile

link-edit object file 63
terminfo database entries 641
UUCP configuration files 675
z/OS C and z/OS C++ source file 63

compiler
yacc 739

complete shell variable
description of 601

component directory 437, 563
component file 437, 563
compress

files
using Huffman coding 429
using Lempel-Ziv compression 133

spaces into tabs 667
compress shell command 133
concatenate

arguments in the current shell environment 241
corresponding or subsequent lines of files 431
files 105
lines 431
lines of input files 431
regular expressions 808

condition
explanation of 36
testing for 637
trapping abnormal 650

condition subcommand for dbx command 177
condition variable

displaying list of 177
confighfs shell command 135
configstk shell command 137
configstrm shell command 139
configuration files

/usr/lib/config
used by uucc 675

Devices 675
Dialcodes 675
Dialers 675
Permissions 675
reading and compiling contents of UUCP 675
Systems 675

configuration variable
writing values to standard output 274

configure
AF_UEINT stacks 137
automount facility, the 22

conflicting pathname 318

connect to
other systems 164

connecting to
remote systems, with the uucico daemon 676

console log
saving messages in 327

construct
argument lists before running a command 735
commands in the current shell environment 241

cont subcommand of for command 178
context diff file 433
context-dependent movement commands (for vi) 700
continuation prompt 518
continue shell command 140
control

3270 alarms 773, 778, 782
automatic scrolling 778, 782, 783
AUTOSCROLL function of OMVS command 773
display of function key settings 779

control character
processing 128

CONTROL function of OMVS command 778
control operator 503
conv environment variable

used by mailx 342, 359
conventions for command descriptions 1
conversion buffer 217
convert

characters from one codeset to another 288
files 214
from ASCII to EBCDIC 215
from EBCDIC to ASCII 215
from lowercase to uppercase 216
from uppercase to lowercase 216
from variable to fixed records 215
source definitions for locale categories 325

CONVERT option of OMVS command 773
copy

archive files, with the tar command 564
data read from standard input to standard

output 648
data sets into files, with BPXCOPY 819
data with format conversion 214
file descriptors 243
files

between UUCP systems 678
from one directory to another 152
selectively 165
to MVS partitioned data set 767
to target named by the last argument on

command line 140
to users on remote systems 692
with BPXBATCH 790
with data conversion 214
with the ISPF shell 748

HFS
directories to MVS partitioned data set 767
files into MVS data sets 764
files to another member or file 758

in/out file archive 152
lines 316

Index 867

copy (continued)
MVS data sets

members into HFS directories 787
members into HFS files 785
to another member or file 758

one line of standard input 316
standard input to each output file 636

copy mode 438
correct shell variable

description of 601
count

bytes 730
characters 730
lines 730
newlines 730
words 730

cp shell command 140
cpio archive

reading and writing 152
cpio archive format 829
cpio file format 829
cpio shell command 152
CPU time 643
create

aliases for dbx subcommands 173
archives 152
character special files 750
command aliases 11
crontab entries 158
directories

for each named directory argument 393
with the MKDIR command 748

FIFO special files 395
hard link 317
hierarchical file systems (HFS) 748
libraries 377
library archives 14
link to files 318
message catalogs 271
tag files 163
tracked aliases 285

create executable files 63
cron

submitting jobs to 159
cron daemon 158
crontab

changing entries 158
creating entries 158
editing entries 159
obtaining output of entries 159

crontab shell command 158
submitting jobs to cron 159

crt environment variable
used by mailx 348, 355

csplit shell command 160
ctags shell command 163
cu shell command 164
current appointment

displaying 102
current mail message 344

current operating system
displaying name of the 665

current position pointer 699
current users

displaying information about 731
current working directory

changing to previous working directory 107
displaying pathname of the 471
setting to value of the HOME environment

variable 107
customize

settings for function keys 777
cwd shell variable

description of 601

D
daemons

cron 155
exrecover 250
inetd 291
uucico 676
uucpd 681
uuxqt 696

dash
explanation of 1

data
displaying after uncompressing 743
manipulating 26
reading 214
refreshing 779
removing from executable files 545
transferring to remote sites 840
writing 214

data file 840
data set

copying
between two files 758
BPXCOPY program, with the 819

database
joining two 306

dataset names
specifying in the shell 849

date
displaying the 167

date shell command 167
DBCS mode

specifying 775
DBCS option of OMVS command 775
dbx debug program

defining values for variables 198
searching for source files 212

dbx shell command 170
creating aliases for subcommands 173
displaying synopsis of 184
reading subcommands from file 203
subcommands

? 172
/ 173
alias 173
args 174

868 z/OS V1R4.0 UNIX System Services Command Reference

dbx shell command (continued)
subcommands (continued)

assign 174
case 175
catch 175
clear 176
cleari 176
condition 177
cont 178
delete 178
detach 179
display memory 180
down 181
dump 181
edit 182
file 183
func 183
goto 184
gotoi 184
help 184
history 185
ignore 185
list 186
listfiles 187
listi 188
map 189
move 189
multproc 190
next 191
nexti 192
object 192
onload 193
print 193
prompt 194
quit 194
record 196
registers 196
rerun 197
return 197
run 198
set 198
sh 203
skip 203
source 203
status 204
step 204
stepi 205
stop 205
stopi 206
trace 208
tracei 209
unalias 210
unset 211
up 211
use 212
whatis 212
where 213
whereis 213
which 214

dbx shell command prompt
changing 194

dd shell command 214
deactivate

function key 779
dead environment variable

used by mailx 355
dead.letter file

used by mail 339, 340
used by mailx 351

DEBUG option of OMVS command 775
debug programs

changing interpretation of symbols 175
with the dbx command 170

debug session
enabling or disabling multiprocess 190
ending 194

debugger
using the 170

debugging information
collecting 775
writing 775

decode
files packed by using Hoffman coding 673
Huffman-packed files 453
transmitted binary files 682

default
function key 780

define
local environments 325
values for dbx variables 198

delay program execution 531
delete

alias definitions 664
aliases 210
arguments 479
attributes of variables and functions 674
breakpoints at addresses 176
directories 480
directory entries 479, 670
information from executable files 545
stops

from programs 178
from source lines 176

traces from program 178
trailing part of filenames 226
values of variables and functions 674
variables 211

delete subcommand of the for command 178
Description section

explanation of 3
destination file

setting
destination time 142
modification time 142

detach subcommand for dbx command 179
detect

aliases 664
spelling errors 540

determine
file types 259

devtty 459

Index 869

dextract shell variable
description of 601

df
in a sysplex 220

df shell command 218
diff output

used when changing files 433
diff shell command 220
dircmp shell command 225
directory

/usr/spool/uucp 839
/usr/spool/uucp/.Xqtdir 694
/usr/spool/uucp/south 839
changing

access permission of 115
audit attributes 109
audit flags 109
group owners 114
modes 115
owners and groups 119

comparing 225
with the ISHELL command 748
with the OSHELL command 790

copying files 152
creating

for each named directory argument 393
with BPXBATCH 790
with the ISPF shell 748
with the MKDIR command 748

deleting, with BPXBATCH 790
deleting, with the ISPF shell 748
listing files in a

with ISHELL 748
with OSHELL 790

moving files to a different 404
naming, with BPXBATCH 790
naming, with the ISPF shell 748
removing

entries 479, 670
with the rmdir command 480

searching 212
setting owners and groups 119
setting up special files in the /bin 748

directory (UUCP)
searching public 687

directory substitution 506
dirname shell command 226
dirsfile shell variable

description of 601
dirstack shell variable

description of 601
disability 853
disable multiprocess debugging 190
display 187

active stop subcommands 204
active trace subcommands 204
aliases for dbx subcommands 173
amount of free space on file system 218
appointments 102
arguments

of programs 174

display (continued)
attributes and contents of symlink 748, 790
C functions online 771
calendars 101
callable services online 771
changing next line to be displayed 189
checksum for each input file

with the cksum command 126
with the sum command 556

command aliases 11
commands

suppressing command numbers 256
with the fc command 255

commands in history list 185
commands online 771
compressed files 453
crontab entries 159
current appointments 102
currently exported variables 246
data after uncompressing 743
dates 167
DBCS characters 9
declaration of program components 212
differences between two files 220
elapsed time for a command 642
environment variables 240, 487
extended attributes for files 254
file attributes 748, 790
files 105

page by page 397
files interactively 454
first part of files 286
information about current users 731
information about locales 321
information about the OMVS command 783
input files 454
instructions in program 188
last part of files 560
lines common to two files 131
list of active condition variables 177
list of active mutex objects 190, 207
list of active program and functions 213
list of active read/write lock objects 195
list of files

of module 187
list of functions associated with a program file 187
list of UUCP systems 686
load characteristics of program 189
log information about UUCP events 684
login information 731
memory 180
message catalogs 228
messages from message catalogs 228
names of

current operating systems 665
shell variables 487
variables in procedures 181

number of bytes in each input file
with the cksum command 126
with the sum command 556

pathname of working directories 471

870 z/OS V1R4.0 UNIX System Services Command Reference

display (continued)
piped files 454
process status 464
processors 642
qualifications

of given identifiers 214
of symbols 213

reason_code text 60
shell messages 771
specified number of lines in source files 186
status of pending UUCP transfers 689
status of print queues 331
strings in a binary file 544
synopsis of dbx commands 184
system time accumulated by commands 643
terminal names 657
terminal options 546
times 167
unprintable characters 106
user time accumulated by the shell 643
values of

floating-point registers 196
general-purpose registers 196
instruction registers 196
program status words (PSW) 196
shell variables 487
system control registers 196
variables in procedures 181

values of environment variables 461
z/OS UNIX System Services publications

online 771
Display

static system symbols 558
display ACL entries

getfacl 278
display memory subcommand for dbx command 180
DISPLAY tcsh environment variable

description of 612
display-oriented text editor

vi 698
displaying

man pages 388
displays

reason_code text 60
DLL (dynamic link library)

description of 70
link-editing 70

documents, licensed xxxvi
dot (·) script

returning from 476
dot (·) shell command 227
dot environment variable

used by mailx 355
double-spacing 457
doublebyte character set 775

displaying characters 9
locales

switching 9
strings 8
using the 7

doublebyte characters
converting 288

down subcommand for dbx command 181
dspcat shell command 228
dspmsg shell command 228
du shell command 229
dump file to standard output 424
dump subcommand for dbx command 181
dunique shell variable

description of 601
duplicate output stream 636
dynamic link library (DLL)

description of 70
link-editing 70

dynamic scoping
used in the bc shell command 54

E
EBCDIC to ASCII. conversion 215
ECHO function key for OVMS command 778
ECHO option of OMVS command 776
echo shell command 230
echo shell variable

description of 601
ECHO subcommand of OMVS command 782
echo_style shell variable

description of 602
ed shell command 232
ed text editor

using the 232
ed.hup file

used by ed 237
edit

commands 255
crontab entries 159
files, with BPXBATCH 790
files, with the ISPF shell 748
HFS files

with the oedit shell command 427
with the OEDIT TSO/E command 763

message catalogs 271
edit shell variable

description of 602
edit subcommand for dbx command 182
editing subcommands

starting 482
editor

invoking 182
editor environment variable

used by mailx 346, 351, 356
EDITOR environment variable

description of 517
used by crontab 159
used by shedit 523

editor initialization 724
EDITOR tcsh environment variable

description of 612
egrep shell command 283
electronic mail

sending and receiving 341

Index 871

elif shell subcommand 503
ellipsis

explanation of 2
ellipsis shell variable

description of 602
else shell subcommand 503
emacs

enabling, with the EDITOR environment
variable 517

enable multiprocess debugging 190
encode

binary files for transmission 683
files

using Huffman coding 429
end

dbx debugging sessions 194
jobs 308
processes 308
shell sessions 779, 784
shells 244

end of file 560
ENDPASSTHROUGH option of OMVS command 776
ENV environment variable

description of 846
used by sh 497, 499
used by vi 725

env shell command 240
environment

defining local 325
environment variable

_ 517
_ACCEPTABLE_RC

used by c89/cc/c++ 76
_ASUFFIX

used by c89/cc/c++ 76
_ASUFFIX_HOST

used by c89/cc/c++ 77
_BPX_ACCT_DATA

description of 845
_BPX_BATCH_SPAWN

description of 812, 845
_BPX_BATCH_UMASK

description of 812, 845
_BPX_JOBNAME

description of 845
_BPX_PTRACE_ATTACH

description of 845
_BPX_SHAREAS

description of 845
_BPX_SPAWN_SCRIPT

description of 812, 845
_BPX_TERMPATH

description of 845
used by chcp 111, 113

_BPX_USERID
description of 845

_BPXK_AUTOCVT
description of 845

_BPXK_CCSIDS
description of 846

environment variable (continued)
_BPXK_MDUMP

description of 846
_CCMODE

used by c89/cc/c++ 77
_CEE_ENVFILE

description of 846
_CLASSLIB_PREFIX

used by c89/cc/c++ 77
_CLASSVERSION

used by c89/cc/c++ 77
_CLIB_PREFIX

used by c89/cc/c++ 78
_CMEMORY

used by c89/cc/c++ 78
_CMSGS

used by c89/cc/c++ 78
_CNAME

used by c89/cc/c++ 79
_CSUFFIX

used by c89/cc/c++ 79
_CSYSLIB

used by c89/cc/c++ 79
_CVERSION

used by c89/cc/c++ 80
_CXXSUFFIX

used by c89/cc/c++ 80
_CXXSUFFIX_HOST

used by c89/cc/c++ 80
_DAMPLEVEL

used by c89/cc/c++ 80
_DAMPNAME

used by c89/cc/c++ 80
_DCB121M

used by c89/cc/c++ 81
_DCB133M

used by c89/cc/c++ 81
_DCB137

used by c89/cc/c++ 81
_DCB137A

used by c89/cc/c++ 81
_DCB3200

used by c89/cc/c++ 82
_DCB80

used by c89/cc/c++ 82
_DCBF2008

used by c89/cc/c++ 81
_DCBU

used by c89/cc/c++ 81
_ELINES

used by c89/cc/c++ 82
_EXTRA_ARGS

used by c89/cc/c++ 82
_ILCTL

used by c89/cc 82
_ILMSGS

used by c89/cc 83
_ILNAME

used by c89/cc/c++ 83
_ILSUFFIX

used by c89/cc 83

872 z/OS V1R4.0 UNIX System Services Command Reference

environment variable (continued)
_ILSUFFIX_HOST

used by c89/cc 83
_ILSYSIX

used by c89/cc/c++ 83
_ILSYSLIB

used by c89/cc/c++ 83
_ILXSYSIX

used by c89/cc/c++ 84
_ILXSYSLIB

used by c89/cc/c++ 83
_INCDIRS

used by c89/cc/c++ 84
_INCLIBS

used by c89/cc/c++ 84
_ISUFFIX

used by c89/cc/c++ 84
_ISUFFIX_HOST

used by c89/cc/c++ 84
_IXXSUFFIX

used by c89/cc/c++ 84, 85
_LIBDIRS

used by c89/cc/c++ 85
_LSYSLIB

used by c89/cc/c++ 85
_LXSYSIX

used by c89/cc/c++ 85
_LXSYSLIB

used by c89/cc/c++ 85
_MAKE_BI

used by make 378
_MEMORY

used by c89/cc/c++ 86
_NEW_DATACLAS

used by c89/cc/c++ 86
_NEW_DSNTYPE

used by c89/cc/c++ 86
_NEW_MGMTCLAS

used by c89/cc/c++ 86
_NEW_SPACE

used by c89/cc/c++ 86
_NEW_STORCLAS

used by c89/cc/c++ 86
_NEW_UNIT

used by c89/cc/c++ 86
_OPERANDS

used by c89/cc/c++ 87
_OPTIONS

used by c89/cc/c++ 87
_OSUFFIX

used by c89/cc/c++ 87
_OSUFFIX_HOST

used by c89/cc/c++ 87
_OSUFFIX_HOSTQUAL

used by c89/cc/c++ 87
_OSUFFIX_HOSTRULE

used by c89/cc/c++ 87
_PLIB_PREFIX

used by c89/cc/c++ 88
_PMEMORY

used by c89/cc/c++ 89

environment variable (continued)
_PMSGS

used by c89/cc/c++ 89
_PNAME

used by c89/cc/c++ 89
_PSUFFIX

used by c89/cc/c++ 89
_PSUFFIX_HOST

used by c89/cc/c++ 89
_PSYSIX

used by c89/cc/c++ 89
_PSYSLIB

used by c89/cc/c++ 90
_PVERSION

used by c89/cc/c++ 90
_SLIB_PREFIX

used by c89/cc/c++ 90
_SNAME

used by c89/cc/c++ 91
_SSUFFIX

used by c89/cc/c++ 91
_SSUFFIX_HOST

used by c89/cc/c++ 91
_SSYSLIB

used by c89/cc/c++ 91
_STEPS

used by c89/cc/c++ 91
_SUSRLIB

used by c89/cc/c++ 92
_TAG_REDIR_ERR=BIN

description of 520
_TAG_REDIR_ERR=TXT

description of 520
_TAG_REDIR_IN=BIN

description of 520
_TAG_REDIR_IN=TXT

description of 520
_TAG_REDIR_OUT=BIN

description of 520
_TAG_REDIR_OUT=TXT

description of 520
_TMPS

used by c89/cc/c++ 92
_WORK_DATACLAS

used by c89/cc/c++ 92
_WORK_DSNTYPE

used by c89/cc/c++ 93
_WORK_MGMTCLAS

used by c89/cc/c++ 93
_WORK_SPACE

used by c89/cc/c++ 93
_WORK_STORCLAS

used by c89/cc/c++ 93
_WORK_UNIT

used by c89/cc/c++ 93
_XSUFFIX

used by c89/cc/c++ 93
_XSUFFIX_HOST

used by c89/cc/c++ 93
allnet

used by mailx 354, 355, 359

Index 873

environment variable (continued)
append

used by mailx 349
ask

used by mailx 355
askbcc

used by mailx 355
asksub

used by mailx 355
autoprint

used by mailx 344, 350, 355
bang

used by mailx 352, 355
CDPATH

description of 517
used by cd 108
used by vi 720, 725

cmd
used by mailx 348, 355

COLUMNS
description of 517
used by ed 237
used by ls 337
used by more 400
used by pg 454, 456
used by ps 470
used by sed 485
used by shedit 523
used by vi 725

conv
used by mailx 342, 359

crt
used by mailx 348, 355

dead
used by mailx 355

description of 517
displaying 240, 487
displaying the value of a 461
dot

used by mailx 355
editor

used by mailx 351, 356
EDITOR

description of 517
used by crontab 159
used by shedit 523

ENV
description of 497, 846
used by sh 499
used by vi 725

ERRNO
description of 517

escape
used by mailx 351, 356

EXINIT
description of 846
used by vi 724, 725

FCEDIT
description of 517
used by fc, history, r 256

environment variable (continued)
flipr

used by mailx 348, 356
folder

used by mailx 346, 349, 356
FPATH

description of 517
header

used by mailx 356
HISTFILE

description of 517
used by fc, history, r 255, 256

HISTSIZE
description of 517
used by fc, history, r 255, 256

hold
used by mailx 344, 356

HOME
description of 517
used by cd 108
used by crontab 158, 159
used by mail 340
used by mailx 354
used by vi 721, 724, 725

IFS
description of 517
used by read 472, 473
used by sh 498

ignore
used by mailx 342, 356

ignoreeof
used by mailx 356

indent
used by mailx 356

indentprefix
used by mailx 352, 356

keep
used by mailx 356

keepsave
used by mailx 343, 356

LANG
description of 517

LC_ALL
description of 846

LIBPATH
description of 518, 846
used by c89/cc/c++ 71

LINENO
description of 517

LINES
description of 517
used by more 400
used by pg 454, 456
used by vi 724

lister
used by mailx 356

LOCPATH
description of 518

LOGNAME
description of 518
used by crontab 158, 159

874 z/OS V1R4.0 UNIX System Services Command Reference

environment variable (continued)
LOGNAME (continued)

used by logname 329
used by mailx 354

LPDEST
description of 846
used by lp 330, 331

MAIL
description of 846
used by mailx 354

MAILCHECK
description of 518

MAILDIR
used by mailx 354

MAILER
used by calendar 103

MAILPATH
description of 518

mailrc
used by mailx 357

MAILRC
used by mailx 354

mailserv
used by mailx 357, 359

MAKEFLAGS
description of 846
used by make 376, 378

MAKESTARTUP
description of 846
used by make 360, 376, 378

MANPAGER
description of 846
used by man 389, 390

MANPATH
description of 518
used by man 389, 390

mbox
used by mailx 357

MBOX
description of 518

metoo
used by mailx 357

MORE
description of 846
used by more 400

NLSPATH
description of 518

OLDPWD
description of 518
used by cd 108

onehop
used by mailx 357, 359

OPTARG
description of 846
used by getopts 282

OPTIND
description of 846
used by getopts 282

outfolder
used by mailx 357

environment variable (continued)
page

used by mailx 348, 357
pager

used by mailx 348, 357
PAGER 847

used by man 389
PATH

description of 518
used by awk 40
used by crontab 158, 159
used by vi 725

PID
description of 518

PRINTER 847
used by lp 330, 331

prompt
used by mailx 357

PS1
description of 518

PS2
description of 518
used by read 473

PS3
description of 519

PS4
description of 519

PWD
description of 519
used by cd 108

quiet
used by mailx 357

RANDOM
description of 519

READONLY
descripion of 847
used by vi 699, 717, 725

record
used by mailx 342, 347, 348, 357

REPLY
description of 847
used by read 472, 473

replyall
used by mailx 357, 359

RESOLVER_CONFIG
description of 847

save
used by mailx 357

screen
used by mailx 347, 357

SECONDS
description of 519

sendmail
used by mailx 358, 359

sendwait
used by mailx 358, 359

setting 240
shell

used by mailx 358
SHELL

description of 519

Index 875

environment variable (continued)
SHELL (continued)

used by at 20
used by awk 43
used by crontab 158
used by ed 237
used by mailx 349
used by make 378
used by vi 718, 725

showto
used by mailx 358

sign
used by mailx 351, 358

Sign
used by mailx 358

STEPLIB
description of 519

SYSEXEC
used by tso 654

SYSPROC
used by tso 654

term
used by mailx 358

TERM
used by more 400
used by tabs 559
used by talk 562
used by touch 647
used by vi 699, 723, 725

terminfo 298, 642
TERMINFO

used by tabs 559
used by talk 562, 647
used by vi 725

TMOUT
description of 519

TMP
used by exrecover 251

TMP_VI
used by vi 725

TMPDIR
description of 519
used by ar 16
used by ed 237
used by man 389
used by pg 456
used by sort 537
used by vi 725

toplines
used by mailx 349, 358

TSOALLOC
used by tso 654

TSOPREFIX
used by tso 654

TSOPROFILE
used by tso 654

TZ 843
description of 519
used by at 20
used by cron 156
used by crontab 159

environment variable (continued)
TZ (continued)

used by date 169
used by ls 337
used by mail 340
used by pr 459
used by touch 645
used by uulog 685
used by uustat 691

used by mailx 346
used to specify system and operational information to

c89/cc/c++/cxx 76
VISUAL

description of 519
used by mailx 350, 352, 358
used by shedit 523

X_ADDR
description of 847

X_SITE
description of 847

X_SLATE
description of 847

Environment Variables section
explanation of 4

equivalence class 806
ERRNO environment variable

description of 517
escape character

displaying current settings 783
specifying the 777
turning off display for settings 783

escape environment variable
used by mailx 351, 356

ESCAPE option of OMVS command 777
escape sequences 505
escaping characters 505
eval shell command 241
evaluate

arguments as expression 247
arguments in the current shell environment 241
arithmetic expression 312
shell expressions 130

ex commands
special characters 719

ex mode
commands issued from 709
current position pointer 699
entering 709
starting session in 698

ex shell command 242
creating tag files for the 163

ex text editor
using the 242

Examples section
explanation of 3

exception condition
trapping 650

exec shell command 243
executable

reentrant 99

876 z/OS V1R4.0 UNIX System Services Command Reference

executable file
creating 63
displaying symbol table 419

execute
commands on remote sites 693

execute files 841
EXINIT environment variable

description of 846
used by vi 724, 725

exit code
returning a nonzero 254

exit shell command 244
exit shell subcommand 521
exit status

returning values of 0 651
Exit Values section

explanation of 6
expand

compressed data written by Lempel-Ziv
compression 666

tabs to spaces 245
expand shell command 245
export

aliases 12
environment variables 246

export shell command 246
expr operators 248
expr shell command 247
expression 805

bracket 805
character class 806
evaluating 247, 312
handling, for the dbx command 171
printing tracing information 208

expression values
printing 193

exrecover shell daemon 250
extattr shell command 254
extended ACL entries 335
extended attributes

APF | NOAPF 821
PROGCTL|NOPROGCTL 821
SHAREAS | NOSHAREAS 822
SHARELIB | NOSHARELIB 822

extended regular expression
explanation of 805
list of commands using 808

external link
creating 318
identifying 333, 334
ln 319

extract
components from archives 438
contents of archive files 152

F
false shell command 254
fc shell command 255
FCEDIT environment variable

description of 517

FCEDIT environment variable (continued)
used by fc, history, r 256

fg shell command 257
fgrep shell command 283
Fibonacci sequence 516
field (awk variable) 28
FIFO special files

creating 395, 396
fignore shell variable

description of 602
file

allocating
using the BPXBATCH command 746
using the BPXBATCH program 812

backing up
archive files 564

backup 564
binary

decoding transmitted 682
encoding for transmission 683

browsing, with BPXBATCH 790
browsing, with the ISPF shell 748
calculating

byte counts 126, 556
checksum 126, 556

changing
access permission of 115
access times 644
audit attributes 109
audit flags 109
group owners 114
groups 119
modes 115
modification times 644
owners 119
source 183
using diff output 433

comparing two 220
with the cmp command 127
with the diff command 220
with the ISHELL command 748
with the OSHELL command 790
with the sum command 556

compressed
displaying 453

compressing
using Lempel-Ziv compression 133

concatenating lines into standard output 431
converting 214

from ASCII to EBCDIC 215
from EBCDIC to ASCII 215

copying
archive files 564
between sites 678
between two files 758
to target named by the last argument on

command line 140
to users on remote systems 692
with BPXBATCH 790
with data conversion 214
with the ISPF shell 748

Index 877

file (continued)
creating

character special files for file systems 750
directories for 748
FIFO special 396
links to 318
with BPXBATCH 790
with the ISPF shell 748

deleting
information from 545
with BPXBATCH 790
with the ISPF shell 748

displaying 188
attributes of 748, 790
compressed 453
first part 286
interactively 454
last part of the 560
lines common to two files 131
names 657
page by page 397
specified number of lines in source 186

dumping to standard output 424
editing, with BPXBATCH 790
editing, with the ISPF shell 748
expanding compressed files 666
finding one that meets specified criteria 261
formatting in paginated form 457
instructions in a source 188
lines

numbering 418
list of

building, with the OSTEPLIB command 791
listing

attributes 332
names 332

maintaining
interdependent 360
program-generated 360

manipulating repeated lines 668
merging corresponding or subsequent lines of

files 431
misspelled words

looking for 540
mounting file systems 751
moving 404
names

displaying 657
naming, with BPXBATCH 790
naming, with the ISPF shell 748
object

displaying symbol table of an 419
output tags

used by ctags 163
passing small amounts to 231
processing 26
reading dbx subcommands from 203
removing

information from 545
renaming 404

file (continued)
running

object files, with previous arguments 197
with the ISHELL command 748
with the OSHELL command 790

searching
backward for patterns 172
for specified patterns 283
for text strings 748, 790
forward for patterns 173
given file hierarchies 261
hierarchy 261

sending
paginated files to printer 457
to other users 734

setting
destination time 142
groups 119
modification time 142
owners 119

showing differences between two 220
sorting

in topological order 656
splitting 542
summarizing use of space 229
text

comparing two 220
concatenating 105
counting items in 730
displaying 105
finding information in 26
finding strings in 805
retrieving information from 26
splitting 160

transfers
displaying information about 684

uncompressing
Huffman-coded 453

words
looking for misspelled 540

file cache
managing 260

file descriptor
closing 243
copying 243
opening 243

file formats
cpio 829
list of 829
magic 830
pax 832
queuedefs 834
tags 835
tar 836
utmpx 838

file mode creation mask
setting or returning 663

file owner
group

GID(group) 822
UID(owner) 822

878 z/OS V1R4.0 UNIX System Services Command Reference

file recovery daemon for vi (exrecover) 250
file shell command 259

using the magic file 830
file space

summarizing use of 229
file subcommand for dbx command 183
file system recovery 757
file systems

hierarchical
mounting 751
unmounting 794

TFS
mounting 755
unmounting 794

file tag 594, 637
automount 22
cp 140
df shell command 218
find 266
iconv 288
ls 332
mount shell command 401
MOUNT TSO/E command 751
mv 404
od 423
pax 437
tar 563
tcsh shell 613

file tag information
chtag 123

file tags
chtag 123

file transfer
daemon for (uucico) 676
requests

processing, with the uucico daemon 676
file type

determining the 259
file-creation permission-code mask

setting or returning 663
filec shell variable

description of 602
filename

deleting trailing parts 226
expanding on command line 231
generation 513

FILENAME built-in variable for awk 32
files 259

/bin/mail
used by calendar 103

/dev/mt/0m
used by tar 565

/dev/tty 459
/etc/auto/master

used by automount 22
/etc/csh.cshrc

used by tcsh login 571
/etc/csh.login

used by tcsh login 571
/etc/inetd.conf

used by the inetd daemon 292

files (continued)
/etc/inetd.pid

used by the inetd daemon 295
/etc/magic

used by file 259
/etc/mailx.rc

used by mailx 342, 353, 358
/etc/profile 520

used by the login shell 496
/etc/recover

used by exrecover 251
/etc/recover/$LOGNAME/VIn*

used by exrecover 251
/etc/recover/$LOGNAME/VIt*

used by exrecover 251
/etc/startup.mk

used by make 378
/etc/suid_us.profile

used by sh 521
/etc/utmpx

used by who 732
/etc/yylex

used by lex 315
/etc/yylex.c

used by lex 313
/etc/yyparse.c

used by yacc 740
/tmp

used by ar 16
used by fc, history, r 256

/tmp/e*
used by ed 237

/tmp/sh*
description of 520

/tmp/stm*
used by sort 538

/tmp/VIl*
used by exrecover 251

/tmp/VIn*
used by exrecover 251

/tmp/VIt*
used by exrecover 251

/usr/lib
used by spell 541

/usr/lib/config
used by uucc 675

/usr/lib/cron/at.allow
used by cron 157

/usr/lib/cron/at.deny file
used by cron 157

/usr/lib/cron/cron.allow
used by cron 157

/usr/lib/cron/cron.deny
used by cron 157

/usr/lib/cron/queuedefs
used by cron 157

/usr/lib/hash
used by spell 540, 541

/usr/lib/hashb
used by spell 540, 541

Index 879

files (continued)
/usr/lib/lib.b

used by bc 58
/usr/lib/libl.a

used by lex 315
/usr/lib/lwords

used by spell 540, 541
/usr/lib/uucp

used by uucc 675
/usr/lib/uucp/config

used by uucc 675
used by uucico 677
used by uucp 681
used by uulog 685
used by uuname 686
used by uupick 688
used by uustat 691
used by uuto 693
used by uux 696
used by uuxqt 697

/usr/lib/uucp/devices
used by uucc 675

/usr/lib/uucp/dialcodes
used by uucc 675

/usr/lib/uucp/dialers
used by uucc 675

/usr/lib/uucp/permissions
used by uucc 675

/usr/lib/uucp/systems
used by uucc 675

/usr/man/%L/man¬0–9|/*.book
used by man 390

/usr/man/%L/whatis
used by man 390

/usr/spool/.Sequence
used by uucp 681

/usr/spool/cron
used by cron 157

/usr/spool/cron/atjobs
used by cron 157

/usr/spool/cron/crontabs
used by cron 157

/usr/spool/cron/log
used by cron 157

/usr/spool/cron/pid
used by cron 157

/usr/spool/locks
used by uucico 677

/usr/spool/uucp
used by uulog 685
used by uustat 691

/usr/spool/uucp/.Sequence
used by uux 696
used by uuxqt 697

/usr/spool/uucp/.Status
used by uucico 677
used by uustat 691

/usr/spool/uucp/.Xqtdir
used by uuxqt 697

/usr/spool/uucp/LOGFILE 677
used by uucico 677

files (continued)
/usr/spool/uucp/LOGFILE (continued)

used by uucp 681
used by uulog 685
used by uux 696

/usr/spool/uucp/site
used by uux 696
used by uuxqt 697

/usr/spool/uucppublic
used by uucp 681
used by uuto 693

/usr/spool/uucpublic
used by uupick 688

/usr/spool/uucpublic/receive
used by uupick 688

/var/man/%L/entry.¬0–9|/*.bookname
used by man 390

.dbxinit
used by dbx 170

.dbxsetup
used by dbx 170

.exrc
used by vi 724

.profile 520
$HOME / .sh_history

used by fc, history, r 255
$HOME/.exrc

used by vi 724
$HOME/mbox

used by mailx 358
used by make 341

$MAILRC
used by mailx 358

$TMPDIR/pg*
used by pg 456

a.out
used by dbx 172

calendar 103
dead.letter

used by mail 339, 340
used by mailx 351

ed.hup
used by ed 237

extended attributes
displaying 254

HOME/.profile
used by tcsh login 571
used by the login shell 496

l.output
used by lex 314, 315

lex.yy.c
used by lex 315

liby.a
used by yacc 740

MAILDIR
used by mailx 358

mailrc
used by mailx 353

MapName
used by automount 23

880 z/OS V1R4.0 UNIX System Services Command Reference

files (continued)
mbox

used by mail 340
used by mailx 343

pk$*
used by unpack 673

queuedefs
used by cron 155

remove old 532
rsh

used by the sh command 496
sh_history 520
terminfo.src

used by tic 641
y.output

used by yacc 740
y.tab.c

used by yacc 740
y.tab.h

used by yacc 740
Files section

description of 5
filex

/etc/rs
used by automount 22

filter
numbering lines in a file 418
passing small amounts to 231

filter out
repeated lines in a file 668

find 805
files that match specified criteria 261
group affiliation of invoking processes 290
identical lines within files 131
patterns, using regular expressions 805
spelling errors 540
strings, using regular expressions 805
user identity of invoking processes 290

find shell command 261
fixed records

converting from variable records 215
fixed to variable-record conversion 216
flipr environment variable

used by mailx 348, 356
FLOAT

C/C++ programs 65
floating-point numbers 65
select format of floating-point numbers 65

floating-point registers
displaying values of 196

FNR built-in variable for awk 32
fold shell command 268
folder environment variable

used by mailx 346, 349, 356
for loop

exiting from, in a shell script 61
for shell subcommand 498
format files in paginated form 457
Format section

explanation of 1

formatted output
writing 462

forward retrieve function of OMVS command 778
FPATH environment variable

description of 517
fpath search 504
free space

displaying amount of 218
fullword

definition of, for vi 703
func subcommand for dbx command 183
function

changing 183
explanation of 53
listing 213
moving down the stack 181
moving up the stack 211
printing tracing information for 208
unsetting values and attributes of 674

function key
customizing settings for 777
deactivating 779
displaying current settings 783
list of defaults 780
setting

controlling display of 779
setting up

to control display of the function key settings 779
to enter subcommand mode 780
to enter TSO/E command mode 780
to return from subcommand mode to shell 780
to scroll data backward 780

turning off display of 783
function shell subcommand 504
fuser shell command 270
FWDRETR function key for OMVS command 778
FWDRETR option of OMVS command 778

G
gencat shell command 271

preprocessing message source files for 391
general-purpose registers

displaying values of 196
generate

filenames 513
programs for lexical tasks 313

generate source dependency information
makedepend 381

get
configuration values 274
contents of archive files 152
messages 390

getconf shell command 274
getfacl shell command 278
getopts shell command 280
gid shell variable

description of 602
glob characters 513
glob patterns 513
gmacs 489

Index 881

gmacs (continued)
enabling, with the EDITOR environment

variable 517
GMT (Greenwich Mean time)

used by the TZ environment variable 843
GONUMBER

C/C++ programs 66
debugging 66
improved performance 66

gotoi subcommand for dbx command 184
Greenwich Mean Time (GMT)

used by the TZ environment variable 843
grep shell command 283
group

changing 415
setting 748

group affiliation
finding 290
returning 290

group owner
changing 114
setting 114

group recipe
explanation of 361

group shell variable
description of 602

GROUP tcsh environment variable
description of 612

H
HALFSCR function key for OMVS command 778
HALFSCR subcommand of OMVS command 783
hangup 522
hash shell command 285
head shell command 286
header environment variable

used by mailx 356
header line 343
HELP function key for OMVS command 779
help information

refreshing 779
scrolling

backward 778, 782
forward 778, 780, 782, 784
half a screen forward 778, 783

help subcommand for dbx command 184
HELP subcommand of OMVS command 783
here document 512
HFS

invoking
vfs_pfsctl HFS functions 135

mounting
from the shell 401

unmounting
from the shell 671

HFS (hierarchical file system) 423, 758
hide

data entered on the shell command line 779, 783
OMVS command input area 778, 782

HIDE function key for OMVS command 779

HIDE subcommand of OMVS command 783
hierarchical file system (HFS)

browsing files in the 758
with the obrowse shell command 423

copying
between two files 758
data sets into MVS data sets 764
directories to PDS or PDSE 767
files to PDS or PDSE 767
MVS data set members 785, 787

creating 748
editing files

with the oedit shell command 427
with the OEDIT TSO/E command 763

mounting 748
running

C/MVS executable files from TSO/E
sessions 746

unmounting 748
hierarchical file systems

mounting 751
TFS file systems 751
unmounting 794

histchars shell variable
description of 602

histdup shell variable
description of 603

HISTFILE environment variable
description of 517
used by fc, history, r 255, 256

histfile shell variable
description of 603

histlit shell variable
description of 603

history
editing 523

history file
processing 255
truncating the 255

history list
displaying commands in a 185
processing for commands 255

history shell variable
description of 603

history storage file (sh_history) 520
history subcommand for dbx command 185
HISTSIZE environment variable

description of 517
used by fc, history, r 255, 256

hold buffer 482
hold environment variable

used by mailx 344, 356
home directory 517
HOME environment variable

description of 517
used by cd 108
used by crontab 158, 159
used by mail 340
used by mailx 354
used by vi 721, 724, 725

882 z/OS V1R4.0 UNIX System Services Command Reference

home shell variable
description of 603

HOME tcsh environment variable
description of 612

HOME/.profile file
used by tcsh login 571
used by the login shell 496

HOST tcsh environment variable
description of 612

HOSTTYPE tcsh environment variable
description of 612

HPATH tcsh environment variable
description of 612

Huffman coding
compressing files with 429, 673
uncompressing files 453

hyphen
explanation of 1

I
iconv shell command 288
id shell command 290
identifier

displaying qualifications of 214
identifier (awk variable) 28
identify shell names 658
if shell subcommand 498
IFS environment variable

description of 517
used by read 472, 473
used by sh 498

ignore environment variable
used by mailx 342, 356

ignore subcommand for dbx command 185
ignoreeof shell variable

description of 603
ignoreof environment variable

used by mailx 356
illegal byte sequence

in DBCS strings 8
implicitcd shell variable

description of 603
improved debugging

GONUMBER 66
improved performance

XPLINK 72
in shell subcommand 502, 503
in/out file archives

copying 152
indent environment variable

used by mailx 356
indentprefix environment variable

used by mailx 352, 356
inetd daemon 291

handling of requests by uucpd 681
infocmp shell command 295
input

passing small amounts to filter or file 231
input file

concatenating lines 431

input file (continued)
displaying 454
printing 330

input mode 343
inputmode shell variable

description of 603
insert mode 698
instruction

displaying 188
running 205

instruction register
displaying values of 196

interactive shell 497, 572
Interactive System Productivity Facility 423, 758
interactive text editor (vi) 698
intercept

abnormal conditions and interrupts 650
signals 650

interdependent file
maintaining 360

internal field separator 517
internationalization

explanation of 825
interpret

ASA/FORTRAN carriage control 17
interpret command names 731
Interprocedural Analysis (IPA) optimization

explanation of 71
interprocess communication facility status

reporting the 300
interrupt

trapping abnormal 650
invalid byte sequence

in DBCS strings 8
invoke

BPXBATCH
with OSHELL 790

BPXBATCH program 811
editor 182
HFS functions 135
ISPF shell

with ISHELL 748
shell 496, 571
TSO/E command mode 784
utilities, ignoring the SIGHUP signal 422
z/OS shell 773

invokes
vfs_pfsctl HFS functions 135

IPA
enabling 69, 385
explanation of 69, 385

IPA (Interprocedural Analysis) optimization
explanation of 71

ipcrm shell command 299
ipcs shell command 300
ISHELL TSO command 748
ISPF (Interactive System Productivity Facility)

browsing files
with the obrowse shell command 423
with the OBROWSE TSO/E command 758

Index 883

ISPF (Interactive System Productivity Facility)
(continued)

editing files
with the oedit shell command 427
with the OEDIT TSO/E command 763

entering TSO/E commands from 745
invoking the shell

with ISHELL 748
italic typeface

explanation of 1, 2

J
JCL (job control language)

example of, using the BPXCOPY program 823
job

ending 308
moving

from background to foreground 257
to background 59

restarting a suspended 257
returning list of, in current session 305
running in background 59
scheduling background 158
waiting for it to end 728

jobs shell command 305
join shell command 306
join two databases 306

K
keep environment variable

used by mailx 356
keepsave environment variable

used by mailx 343, 356
key

sorting 536
keyboard 853
kill shell command 308

L
l.output file

used by lex 314, 315
LALR(1) grammar

converting 739
LANG environment variable 4, 825

description of 517
LANG tcsh environment variable

description of 612
last lines of file 560
LC_ALL environment variable 4, 825

description of 846
LC_COLLATE environment variable 825
LC_CTYPE environment variable 825
LC_CTYPE tcsh environment variable

description of 612
LC_MESSAGES environment variable 4, 825
LC_MONETARY environment variable 825
LC_NUMERIC environment variable 825
LC_SYNTAX environment variable 825

LC_TIME environment variable 825
Lempel-Ziv compression 154, 445

compressing data with 133
uncompressing data 666

let shell command 312
lex shell command 313
lex.yy.c file 315
lexical analyzer 313
lexical syntax

reading description of 313
lexical tasks

generating programs for 313
LIBPATH environment variable

description of 518, 846
used by c89/cc/c++ 71

library
creating 14
maintaining 14
making 377

library of objects
displaying symbol table 419

liby.a file
used by yacc 740

licensed documents xxxvi
Limits section

explanation of 6
line

breaking into shorter lines 268
changing next line to be displayed 189
numbering, in a file 418
reading from standard input 472

line editor (ex) 698
line shell command 316
LINENO environment variable

description of 517
lines

counting 730
LINES environment variable

description of 517
used by more 400
used by pg 454, 456
used by vi 724

LINES option of OMVS command 777
LINES tcsh environment variable

description of 612
link

creating, for files 318
link shell command 317, 318
link-edit

z/OS C and z/OS C++ object files 63
links

creating 317
list

active procedures and functions 213
file attributes 332
filenames 332
files in directories

with ISHELL 748
with OSHELL 790

instructions in program 188
process IDs 270

884 z/OS V1R4.0 UNIX System Services Command Reference

list (continued)
variables and their attributes 659

list mode 438
list subcommand for dbx command 186
lister environment variable

used by mailx 356
listfiles subcommand for the dbx command 187
listflags shell variable

description of 603
listfuncs subcommand for dbx command 187
listi subcommand for dbx command 188
listjobs shell variable

description of 603
listlinks shell variable

description of 604
listmax shell variable

description of 604
listmaxrows shell variable

description of 604
load characteristics

displaying 189
local environment

defining 325
local spawn

BPXBATSL 746, 811
locale 4, 314

converting source definitions for categories 325
displaying information about 321
giving it control over a category 825
switching 9

locale shell command 321
localedef shell command 325
localization

categories of 825
explanation of 825

Localization section
explanation of 4

locate identical lines within files 131
LOCPATH environment variable

description of 518
log information

displaying about UUCP events 684
log messages 327
logger shell command 327
logging in 496, 571
login accounting information

storing 838
login information

displaying 731
login name

returning 329
login password

changing the 430
login shell

description of 496, 571
system profile for the 520
truncating history files 255
user profile for the 520

loginsh shell variable 604
LOGNAME environment variable

description of 518

LOGNAME environment variable (continued)
used by crontab 158, 159
used by logname 329
used by mailx 354

logname shell command 329
logout shell variable

description of 604
LookAt message retrieval tool xxxvi
loop

exiting from, in a shell script 61
skipping to the next iteration of a 140

lowercase
converting to uppercase 216

lowercase letters 1
lp shell command 330
LPDEST environment variable

description of 846
used by lp 330, 331

lpstat shell command 331
ls

in a sysplex 336
ls shell command 332

M
MACHTYPE tcsh environment variable

description of 612
macro definitions 362
macro modifiers 363
magic file format 830

used by the file command 259
magic number

#! 816
mail

reading 338
sending 338
sending and receiving 341

MAIL environment variable
description of 846
used by mailx 354

mail shell command 338
mail shell variable

description of 604
MAILCHECK environment variable

description of 518
MAILDIR environment variable

used by mailx 354
MAILER environment variable

used by calendar 103
MAILPATH environment variable

description of 518
mailrc environment variable

used by mailx 357
MAILRC environment variable

used by mailx 354
mailrc file

used by mailx 353
mailserv environment variable

used by mailx 357, 359
mailx environment variable

used by mailx 349

Index 885

mailx shell command 341
maintain

library archives 14
program-generated and interdependent files 360

make
directories

for each named directory argument 393
with the MKDIR command 748

FIFO special files 395
libraries 377

make shell command 360
makedepend

generate source dependency information 381
makedepend shell command 381
makefile 362

contents of 365
MAKEFLAGS environment variable

description of 846
used by make 376, 378

MAKESTARTUP environment variable
description of 846
used by make 360, 376, 378

man page
displaying 388, 846

man shell command 388
manage

file caches 260
manipulate

dates 26
repeated lines 668
tar archive files 564

manipulation command (for vi) 700
MANPAGER environment variable

description of 846
used by man 389, 390

MANPATH environment variable
description of 518
used by man 389, 390

map subcommand for dbx command 189
MapName file

used by automount 23
mark name 702
master mode 676
match

strings of text in text file 805
matchbeep shell variable

description of 604
matching strings

searching for 283
mbox environment variable

used by mailx 357
MBOX environment variable

description of 518
mbox file

used by mail 340
used by mailx 343

memory
displaying 180

merge
corresponding or subsequent lines of files 431

mesg shell command 390

message
allowing 390
broadcasting a 729
header line 343
logging 327
receiving 390
refusing 390
sending to other users 734

message catalog
creating 271
displaying 228
displaying messages from 228
editing 271
modifying 271
piping from mkcatdefs to gencat 481

message queue
removing 299

message retrieval tool, LookAt xxxvi
message source file

preprocessing 391
metacharacter

used in regular expressions 805
metarules

used by make 367
metoo environment variable

used by mailx 357
mkcatdefs shell command 391
mkdir shell command 393
MKDIR TSO/E command 748
mkfifo shell command 395
MKNOD TSO/E command 750
mode

changing 115
command 343
input 343

modification time 332
setting for destination files 142

modify
message catalogs 271

MORE environment variable
description of 846
used by more 400

more shell command 397
creating tag files for the 163

mount
a file system 401
hierachical file systems 751
hierarchical file systems (HFS) 748
TFS file systems 751

mount attributes
changing

from the shell 118
mount mode

changing the 792
mount shell command 401
MOUNT TSO/E command 751
move

current function down the stack 181
current function up the stack 211
files 404
jobs from background to foreground 257

886 z/OS V1R4.0 UNIX System Services Command Reference

move (continued)
positional parameters 530

move subcommand for dbx command 189
movement commands (for vi) 700
MsgFile.h

mkcatdef output file 391
multihop name 678
multinode name 678
multiple volume support 154, 444
multiprocess debugging

enabling or disabling 190
multproc subcommand for dbx command 190
mutex object

display list of 207
displaying list of 190

mutex subcommand for dbx command 190
mv shell command 404
MVS (Multiple Virtual Storage)

batch environment
running shell scripts and z/OS C applications

under 811
running shell scripts, shell commands and z/OS C

applications under 746
copying

data sets into HFS directories 787
data sets into HFS files 785
data sets to another member or file 758
HFS files to MVS data sets 764
sequential data sets into HFS directories 787
sequential data sets into HFS files 785

submitting batch jobs
using the BPXBATCH program 811

N
name of files

listing 332
name, user

displaying your 733
named pipe 396
Native Language System Report 596
newgrp shell command 415
newline

counting 730
next subcommand for dbx command 191
nexti subcommand for dbx command 192
NEXTSESS function key for OMVS command 779
NEXTSESS subcommand of OMVS command 783
NF built-in variable for awk 32
nice shell command 416
nickname

creating 11
nl shell command 418
NLSPATH environment variable 4

description of 518
nm shell command 419
NO function key for OMVS command 779
NOALARM function key for OMVS command 778
NOALARM option of OMVS command 773
NOALARM subcommand of OMVS command 783
NOAUTOMOVE 754

NOAUTOSCROLL function key for OMVS
command 778

NOAUTOSCROLL option of OMVS command 773
NOAUTOSCROLL subcommand of OMVS

command 783
nobeep shell variable

description of 604
noclobber shell variable

description of 604
NODBCS option of OMVS command 775
NOECHO function key for OVMS command 778
NOECHO option of OMVS command 776
NOECHO subcommand of OMVS command 783
nogob shell variable

description of 604
NOHIDE function key for OMVS command 779
NOHIDE subcommand of OMVS command 783
nohup shell command 422
nokanji shell variable

description of 604
nonfunctional commands 164

cancel 103
lpstat 331

nonomatch shell variable
description of 605

nonsupported commands
cu 164

nonzero exit code
returning 254

NOPFSHOW function key for OMVS command 779
NOPFSHOW option of OMVS command 781
NOPFSHOW subcommand of OMVS command 783
NOREBIND tcsh environment variable

description of 612
NOSHAREAS option of OMVS command 781, 782
nostat shell variable

description of 605
Notices 855
notify shell variable

description of 605
NR built-in variable for awk 32
null command 130
number

lines in a file 418

O
object file

displaying the symbol table of an 419
loading for execution 192
managing 360
running with previous arguments 197

object library
displaying symbol table 419

object manipulator commands (for vi) 704
object subcommand for dbx command 192
obrowse shell command 423
OBROWSE TSO/E command 757
obtain

crontab entries 158
obtain options and their arguments 280

Index 887

OCOPY TSO/E command 758
octal dump 424
od shell command 424
oedit shell command 427
OEDIT TSO/E command 763
OGET TSO/E command 764
OGETX TSO/E command 767
OHELP TSO/E command 771
OLDPWD environment variable

description of 518
used by cd 108

OMVS command
list of subcommands 782

OMVS command input area
hiding 782
hiding or unhiding 778
unhiding 783

OMVS interface
running commands from the shell using the 652

onehop environment variable
used by mailx 357, 359

online reference manual
printing entries 388
searching for entries 388

onload subcommand for dbx command 193
open file descriptors 243
OPEN function key for OMVS command 779
OPEN subcommand of OMVS command 783
operator

control 503
description of 503
redirection 503

OPTARG environment variable
used by getopts 282, 846

OPTIND environment variable
used by getopts 282, 846

optional features 63
options

explanation of 1
obtaining from a list of parameters 280
order of 1

Options section
explanation of 3

OPUT TSO/E command 785
OPUTX TSO/E command 787
order of items on command line 3
order of options 1
OSHELL REXX exec 817
OSHELL TSO command 790
OSTYPE tcsh environment variable

description of 612
outfolder environment variable

used by mailx 357
output file

copying standard input to each 636
output stream

cloning 636
output tags file

used by ctags 163
output, formatted

writing 462

overlay commands 243
owd shell variable

description of 605

P
pack shell command 429
page environment variable

used by mailx 348, 357
pager environment variable

used by mailx 348, 357
PAGER environment variable

description of 847
used by man 389

paginated file
formatting 457
printing 457

parameter
positional

description of 506
setting 487
shifting 530
unsetting 487

special
description of 506

parameter substitution 506, 596
parent process

returning to the 244
parse

utility options 280
partitioned data set (PDS) 767
partitioned data set extended (PDSE) 767
pass

command to shell for execution 203
small amounts of input to filter or file 231

passwd shell command 430
password

changing the 430
paste shell command 431
patch shell command 433
PATH environment variable

description of 518
used by awk 40
used by crontab 158, 159
used by vi 725

path search 504
path shell variable

description of 605
PATH tcsh environment variable

description of 612
pathchk shell command 436
pathname

checking for validity and portability 436
displaying 471
returning

directory components of 226
nondirectory components of 42

pattern
finding, using regular expressions 805
rules for 502
searching 283

888 z/OS V1R4.0 UNIX System Services Command Reference

pattern (continued)
backward for a 172
forward for a 173

pattern buffer 482
pax file format 832
pax shell command 437
pcat shell command 453
PDS (partitioned data set)

copying
HFS directories or file to a 767
members from MVS to files 787
members to files 785

PDSE (partitioned data set extended)
copying

HFS directories or files to a 767
members from MVS to files 787
members to files 785

performance
C/C++ programs

FLOAT 65
XPLINK 72

permission bits
of files, setting 821

permissions 335
permuted index xvii
PF keys

showing at the bottom of the screen 781
PFSHOW function key for OMVS command 779
PFSHOW option of OMVS command 781
PFSHOW subcommand of OMVS command 783
pg shell command 454
PID environment variable

description of 518
pipe

creating 499
output from mkcatdefs to gencat 481

piped file
displaying 454

pipeline 499
pk$* file

used by unpack 673
placeholder information in commands 2
Portability section

explanation of 6
positional parameter 530
POSIX.1 standard parameter names 274
POSIX.2 standard parameter names 276
pr shell command 457
preprocess

message source files 391
prevent changes to values of the name argument 474
PREVSESS function key for OMVS command 779
PREVSESS subcommand of OMVS command 784
print

arguments 460
expression values 193
formatted output 462
input files 330
paginated files 457
sections of online reference manuals 388
terminal entries in the terminfo database 104

print (continued)
terminfo database entries 295
tracing information 208

print queue
requests

canceling 103
displaying status of 331

print shell command 460
print subcommand of for command 193
printenv shell command 461
printer

sending files to 330
PRINTER environment variable

description of 847
used by lp 330, 331

printexitvalue shell variable
description of 605

printf shell command 462
priorities of running processes

changing 475
priority

running commands at a different 416
procedure

listing 213
printing tracing information for 208

process
changing priorities of running 475
displaying

status of 464
time accumulated 643

ending 308
returning

file-creation permission-code masks 663
status of 464

sending signals to 308
setting

file-creation permission-code masks 663
resource limits 661

process IDs
displaying 270

process list
returning 305

processes IDs 270
processing

awk programs 26
command history list 255

processor
displaying 642

processor time 643
program

continuing execution 178
from stopping point 203

continuing execution without dbx control 179
debugging 170
delaying execution of 531
deleting stops and traces from 178
displaying

declarations of components 212
instructions 188
load characteristics 189

generating, for lexical tasks 313

Index 889

program (continued)
managing 360
printing tracing information 208
running

object files 198
program instructions 205
source lines 204
to next instruction 192
to next source line 191
until return is reached 197
with previous arguments 197

stopping
at a specific location 206
when certain conditions are met 205

writing printouts created by 17
program counter address

changing 184
program file

displaying
list of functions 187

program-generated file
maintaining 360

prompt
continuation 518
string 518

prompt environment variable
used by mailx 357

prompt shell variable
description of 608

prompt subcommand of for command 194
prompt2 shell variable

description of 605
prompt3 shell variable

description of 605
promptchars shell variable

description of 605
ps shell command 464
PS1 environment variable

description of 518
PS2 environment variable

description of 518
used by read 473

PS3 environment variable
description of 519

PS4 environment variable
description of 519

public directories (UUCP)
searching 687

publications
on CD-ROM xxxv
softcopy xxxv

pushdsilent shell variable
description of 605

pushdtohome shell variable
description of 605

PWD environment variable
description of 519
used by cd 108

pwd shell command 471
PWD tcsh environment variable

description of 612

Q
query

ASCII/EBCDIC code pages for the terminal 111
STREAM physical file system 139

queuedefs file
used by cron 155

queuedefs file format 834
quiet environment variable

used by mailx 357
quiet mode

turning on 699
quit

sessions
ending 779

shell sessions 779, 784
QUIT function key for OMVS command 779
QUIT subcommand of OMVS command 784
quit subcommand of the for command 194
QUITALL function key for OMVS command 779
QUITALL option of OMVS command 784
QUITALL subcommand of OMVS command 784
quoting 505

R
RACF (Resource Access Control Facility) 11
RANDOM environment variable

description of 519
read

archive files 437, 564
contents of UUCP configuration files 675
cpio archives 152
data 214
dbx subcommands from file 203
description of lexical syntax 313
electronic mail 341
lines from standard input 472
mail 338

read mode 438
read shell command 472
read/write lock objects

displaying list of 195
READONLY environment variable

description of 847
used by vi 699, 717, 725

readonly shell command 474
readwritelock subcommand for dbx command 195
reason_code text

displaying 60
receive

electronic mail 341
messages 390

recexact shell variable
description of 605

recipe line
explanation of 361

recipes 367
explanation of 362

recognize_only_executables shell variable
description of 605

890 z/OS V1R4.0 UNIX System Services Command Reference

record environment variable
used by mailx 342, 347, 348, 357

record separator character 31
record subcommand for the dbx command 196
recovery daemon

for vi 250
redirection 3, 511
redirection operator 503
reenter commands 255
reentrancy 99
reference manual

online
printing entries 388
searching for entries 388

refresh
data 779
help information 779

REFRESH function key for OMVS command 779
refuse

messages 390
regexp 805
registers subcommand for dbx 196
regular expression 710

composition of 805
concatenating to form a larger regular

expression 808
examples 808
explanation of 805
features that apply to z/OS shell commands 808
matching 283
supported by awk 29
used in vi 710
used to find patterns in files 805
used when finding strings in files 805

regular expression summary 711
reject lines common to two files 131
Related Information section

explanation of 6
remote site

running commands on 693
transferring data to 840

remote system
copying files to users on 692

remote systems
connecting to, with the uucico daemon 676

REMOTEHOST tcsh environment variable
description of 613

remount
specified file systems 792

remove
alias definitions 664
aliases 210
arguments 479
attributes of shell variables 674
attributes of variables and functions 674
breakpoints at addresses 176
crontab entries 159
directories 480
directory entries 479
duplicate files 668
files 479, 670

remove (continued)
information from executable files 545
message queues 299
old files 532
reverse line feeds 128
semaphore sets 299
shared memory identifiers 299
stops from programs 176, 178
traces from program 178
trailing part of filenames 226
values of variables and functions 674
variables 211

remove ACLs
setfacl 491

removes
directory entries 670

rename files 404
renice shell command 475
replacement pattern summary 711
REPLY environment variable

description of 847
used by read 472, 473

replyall environment variable
used by mailx 357, 359

report
interprocess communication facility status 300
repeated lines in a file 668

request (file transfer)
processing, with the uucico daemon 676

rerun subcommand for dbx command 197
reset

ASCII/EBCDIC code pages for the terminal 111
reset access time 153
RESOLVER_CONFIG environment variable

description of 847
Resource Access Control Facility 11
restart suspended jobs 257
restricted shell 496, 497
retrieve

saved input lines by going backward 780
saved input lines by going forward 778

RETRIEVE function key for OMVS command 780
return

arguments from the shell 460
directory components of pathnames 226
file mode creation masks 663
from · (dot) scripts 476
from shell functions 476
from subcommand mode to shell session 784
group affiliation of invoking processes 290
list of jobs in current session 305
login names 329
nonzero exit codes 254
pathname of working directories 471
process status 464
to shell mode from TSO/3270 passthrough

mode 776
to the parent process 244
to TSO/E 244
user ID of person who entered commands 329
user identity of invoking processes 290

Index 891

return (continued)
user’s terminal name 657

RETURN function key for OMVS command 780
return shell command 476
return subcommand for dbx command 197
return values of 0 651
reverse line feed

removing the 128
REXX

OSHELL 817
RLENGTH (awk built-in variable) 33
rlogin requests

handling 291
rlogind program 291, 477
rm shell command 479
rmdir shell command 480
rmstar shell variable

description of 605
root directory

changing 121
root file system

setting up directories for the 748
rprompt shell variable

description of 606
rsh file

description of 496
RSTART (awk built-in variable_ 33
run

C/MVS executable files
with the BPXBATCH command 746
with the BPXBATCH program 811

commands
after building an argument list 735
at a different priority 416
at a specified time 18
at specified dates and times 155
on remote sites 693
simple 132
when system is not busy 43
with the exec command 243

debug programs 170
files, with the ISHELL command 748
files, with the OSHELL command 790
from TSO/E sessions

C/MVS executable files 746
shell commands 746
shell scripts 746

object files with previous arguments 197
program instructions 205
programs 198
shell commands

with the BPXBATCH command 746
shell scripts

with the BPXBATCH command 746
with the BPXBATCH program 811

simple commands 132
source lines 184, 204

run subcommand for dbx 198
runcat shell command 481
running processes

changing priorities of 475

runtime macros 364

S
save environment variable

used by mailx 357
save messages 327
saved input line

retrieving by going backward 780
retrieving by going forward 778

savedirs shell variable
description of 606

savehist shell variable
description of 606

SBCS mode
specifying the 775

scale value 46
sched tcsh shell variable

description of 606
schedule

background jobs 158
screen editor (vi) 698
screen environment variable

used by mailx 347, 357
scroll

automatic
controlling 778, 782, 783

data 784
data backward 778, 780, 782
data forward 778, 782
data half a screen forward 778, 783
help information backward 778, 782
help information forward 778, 780
help information half a screen forward 778

SCROLL function key for OMVS command 780
SCROLL subcommand of OMVS command 784
scrolling commands (for vi) 700
search

backward for patterns 172
directories 212
files for text strings 748, 790
for entries in online reference manuals 388
for strings 283
forward for patterns 173
given file hierarchies 261
public UUCP directories 687

search path 505, 731
search rules 505, 731
SECONDS environment variable

description of 519
sections

meaning of, in command descriptions 1
sed noninteractive stream editor

starting the 482
sed shell command 482
select format of floating-point numbers

FLOAT 65
select loop

exiting from, in a shell script 61
select shell subcommand 503

892 z/OS V1R4.0 UNIX System Services Command Reference

semaphore set
removing 299

send
electronic mail 341
files to printer 330
mail 338
messages

to other users 734
paginated files to printer 457
signals to processes 308

sendmail environment variable
used by mailx 358, 359

sendwait environment variable
used by mailx 358, 359

sequential data set
copying to files 785, 787

serviceability
C/C++ programs

GONUMBER 66
session

specifying number to be started 781
starting

in ex mode 698
in vi mode 699

switching
to the next higher-numbered one 779, 783
to the previous (lower-numbered) session 779,

784
SESSION option of OMVS command 781
session, returning list of jobs in 305
set

ASCII/EBCDIC code pages for the terminal 111
command options 487
commands to be run at a specified time 18
export attributes for variables 246
file mode creation masks 663
group owners 114
positional parameters 487
priorities of running processes 475
process limits 661
STREAM physical file system 139
terminal options 546
terminal tab stops 558
timezones with the TZ environment variable 843

set ACLs
setfacl 491

set option variables 719
set shell command 487
set subcommand for dbx command 198
set up

directories for the root file system 748
existing groups 748
existing users 748
special files in the /bin directory 748

setfacl shell command 491
sh shell command 496

rsh file 496
sh subcommand for dbx command 203
sh_history file 520
SHAREAS option of OMVS command 781, 782

shared HFS
changing file system mount attributes 118
displaying amount of free space 218
mounting a file system 401
using df 220
using ls 336

shared memory identifier
removing 299

shedit shell command 523
shell 746

access to, giving users 748, 790
alias command, and the 11
archive 516
arguments

evaluating 241
returning 460

arrays 514
command lines 11
command syntax 498
commands 498

running from TSO/E sessions 746, 817
running from TSO/E sessions, with OSHELL 817
using extended regular expressions 805
using regular expressions 805

comments 498
displaying variables 659
editing

interactive 523
ending 244
entering TSO/E commands from 745
evaluating

arguments 241
expressions 130

execution environment 514
removing aliases from 664

expressions
evaluating 130

functions
returning from 476

giving TSO/E users access to 748, 790
identifying names 658
interpreting command names 731
invoking 496, 571
keywords 11
messages

displaying online 771
program

running in a separate address space 782
running in the TSO/E address space 782

removing attributes of shell variables 674
reserved word commands 499
returning

arguments from 460
functions 476

running
programs in a separate address space 782
programs in a TSO/E address space 782
TSO/E commands from the 652

scripts
exits from loops in a 61

Index 893

shell (continued)
scripts (continued)

running from TSO/E sessions, with
BPXBATCH 746

running from TSO/E sessions, with OSHELL 817
running, with the · (dot) command 227
running, with the BPXBATCH program 811
skipping to the next iteration of a loop 140

sessions 779
closing 778, 782
ending 784
returning from subcommand mode 784
starting 779, 783

variables
displaying 659
removing attributes of 674
rules for 514

z/OS UNIX
giving TSO/E users access to 790

z/OS UNIX System Services
giving TSO/E users access to 748

shell command
chmount 118
mount 401
skulker 532
unmount 671

shell command line
hiding data so secure data can be entered 779,

783
shell environment variable

used by mailx 358
SHELL environment variable

description of 519
used by at 20
used by awk 43
used by crontab 158
used by ed 237
used by mailx 349
used by make 378
used by vi 718, 725

shell mode
returning to, from TSO/3270 passthrough mode 776

shell pre-defined aliases
autoload 21
functions 269
history 287
integer 299
stop 543
suspend 557

shell tcsh shell variable
description of 606

shell variable
displaying

names of 487
values of 487

shift out
used in DBCS strings 8

shift positional parameters 530
shift shell command 530
SHLVL tcsh environment variable

description of 613

shlvl tcsh shell variable
description of 606

short circuit evaluation 30
shortcut keys 853
show

amount of free space on file system 218
arguments

of programs 174
attributes and contents of symlink 748, 790
currently exported variables 246
declaration of program components 212
differences between two files 220
elapsed time for a command 642
environment variables 240
file attributes 748, 790
first part of files 286
information about locales 321
instructions in program 188
lines common to two files 131
list of active program and functions 213
list of files

of module 187
memory 180
names of

shell variables 487
variables in procedures 181

online z/OS UNIX System Services
publications 771

pathname of working directories 471
process IDs 270
process status 464
processors 642
qualifications

of given identifiers 214
of symbols 213

status of print queues 331
system time accumulated by commands 643
terminal names 657
user time accumulated by the shell 643
values of

shell variables 487
variables in procedures 181

showto environment variable
used by mailx 358

SIGHUP signal
ignored when utility is invoked 422

sign environment variable
used by mailx 351, 358

Sign environment variable
used by mailx 358

signal
intercepting 650
sending to processes 308
trapping

starting 175
stopping 185

signal handling 596
simple command 503
singlebyte character set (SBCS)

when you must use 7

894 z/OS V1R4.0 UNIX System Services Command Reference

singlebyte characters
converting 288

site
transferring data to remote 840

skip subcommand for dbx 203
skip to the next iteration of a loop in a shell script 140
skulker shell command 532
slave mode 676
sleep shell command 531
socket

identifying file types 335
sort

files
in topological order 656

sort shell command 534
sort-merge utility

starting the 534
sorted files

locating 131
sorting keys 536
sound

3270 alarms 773, 778, 782
source definitions

converting for locale categories 325
source dependency information

makedepend 381
source file

changing 183
displaying

instructions in a 188
specific number of lines 186

managing 360
source line

printing tracing information for 208
removing stops from 176
running 184, 204
specifying 184

source subcommand for dbx 203
SourceFile

mkcatdefs message file 391
space

compressing into tabs 667
expanding tabs to 245

special built-in commands 515
special built-in shell commands

· (dot) 227
break 61
colon. 130
continue 140
dot (·) 227
eval 241
exec 243
export 246
readonly 474
return 476
set 487
shell 244
shift 530
trap 650
unset 674

special file
creating a FIFO 396
manipulating 748, 791

special parameter
description of 506

special target directives 372
specify

character conversion tables 773
command lines for another command 243
escape characters 777
number of sessions to be started 781
source lines 184
that OMVS operate in DBCS mode 775
that OMVS operate in SBCS mode 775
that PF keys be shown at the bottom of the

screen 781
z/OS UNIX character conversion table 773

spell shell command 540
spelling errors

looking for 540
split

files 542
text file 160

split output stream 636
split shell command 542
spool directory

/usr/spool/uucp 839
standard environment variables (stdenv)

allocating as files for passing input
using the BPXBATCH command 746
using the BPXBATCH program 811

standard error (stderr)
allocating as files for passing input

using the BPXBATCH command 746
using the BPXBATCH program 811

standard input (stdin)
allocating as files for passing input 746

using the BPXBATCH command 746
using the BPXBATCH program 811

closing 512
copying

data read from 648
to each output file 636

copying one line of 316
explanation of 3
reading 105
reading lines from 472

standard output (stdout)
allocating as files for passing input

using the BPXBATCH command 746
using the BPXBATCH program 811

closing 512
copying standard output to each 636
dumping file to 424
explanation of 3
reading lines from 472
sending paginated files to 457
writing

arguments to 230, 462
configuration values to 274

Index 895

start
pending UUCP transfers 689
sessions

in ex mode 698
in vi mode 698

shell sessions 779, 783
sort-merge utility 534

statement
explanation of 36

status
displaying 464
of pending UUCP transfers 689
of print queues

displaying 331
status reporting 595
status subcommand for dbx command 204
status tcsh shell variable

description of 606
stdenv (standard environment variables)

allocating as files for passing input 746
using the BPXBATCH command 746
using the BPXBATCH program 811

stderr (standard error)
allocating as files for passing input

using the BPXBATCH command 746
using the BPXBATCH program 811

stdin (standard input)
allocating as files for passing input

using the BPXBATCH command 746
using the BPXBATCH program 811

closing 512
copying

data read from 648
standard output to each 636

copying one line of 316
explanation of 3
reading 105
reading lines from 472

stdout (standard output)
allocating as files for passing input

using the BPXBATCH command 746
using the BPXBATCH program 811

closing 512
copying standard input to each 636
dumping file to 424
explanation of 3
sending paginated files to 457
writing

arguments to 230
configuration values to 274

writing arguments to 462
step subcommand for dbx command 204
stepi subcommand for dbx command 205
STEPLIB environment variable

description of 519
sticky bit 117
stop

dbx debug session 194
pending UUCP transfers 689
program at a specific location 206
program execution 205

stop (continued)
removing from program 178
removing from source lines 176
shell 244

stop subcommand for dbx command 205
displaying 204

stopi subcommand for dbx command 206
STREAM physical file system

set and query
configstrm shell command 139

string
displaying in a binary file 544
finding, in text files 805
searching for 283

strings shell command 544
strip shell command 545
stty shell command 546
stub commands

cancel 103
cu 164
explanation of 827
lpstat 331

su shell command 553
SUBCOMMAND function key for OMVS command 780
subcommand mode

setting up
function key to enter 780

setting up function key to return from 780
submit

batch jobs
using the BPXBATCH command 746
using the BPXBATCH program 811

C/MVS executable files 811
using the BPXBATCH program 811

MVS batch jobs that run shell commands 811
using the BPXBATCH program 811

z/OS batch jobs that run shell commands
using the BPXBATCH command 746

subscript-in-array condition 29
substitute

commands 510
directories 506

suffix 770
sum shell command 556
summarize

use of file space 229
suppress command numbers 256
suspend program execution 531
swap bytes 154
switch

locales 9
to the next higher-numbered session 779, 783
to the previous (lower-numbered) session 779, 784

symbol
changing interpretation of 175
displaying qualifications of 213

symbol table
displaying the 419

symbol table used in awk 29
symbolic link

ln 319

896 z/OS V1R4.0 UNIX System Services Command Reference

symbolic link (symlink)
displaying attributes and contents of 748

symbolic links
SYMLINK

linkname 820
SYMPATH 820

symlink
displaying attributes and contents of 748, 790

symlinks tcsh shell variable
description of 610

SYMTAB symbol table 29
synopsis of dbx commands

displaying 184
syntax

explanation of 1
syntax, lexical

reading description of 313
SYSEXEC environment variable

used by tso 654
sysplex

moving file systems in a sysplex 754
unmounting a file system 671

SYSPROC environment variable
used by tso 654

SYSROOT 794
dummy file system 755

system
calling up 164
connection to 164

system control registers
displaying values of 196

system files 638
sysvar shell command 558

T
tab

compressing from spaces 667
expanding to spaces 245

tab stop
setting 558

tabs shell command 558
tag files

creating 163
tags file format 835
tail shell command 560
talk

to another user 562
talk shell command 562
tape archive 564
tar archive files

manipulating 564
tar file format 836
tar shell command 564
target 361
tcsh

command execution 589
command syntax 580
signal handling 596

tcsh environment variable
_TAG_REDIR_ERR=BIN

description of 613
_TAG_REDIR_ERR=TXT

description of 613
_TAG_REDIR_IN=BIN

description of 613
_TAG_REDIR_IN=TXT

description of 613
_TAG_REDIR_OU =TXT

description of 613
_TAG_REDIR_OUT=BIN

description of 613
COLUMNS

description of 612
DISPLAY

description of 612
EDITOR

description of 612
GROUP

description of 612
HOME

description of 612
HOST

description of 612
HOSTTYPE

description of 612
HPATH

description of 612
LANG

description of 612
LC_CTYPE

description of 612
LINES

description of 612
MACHTYPE

description of 612
NOREBIND

description of 612
OSTYPE

description of 612
PATH

description of 612
PWD

description of 612
REMOTEHOST

description of 613
SHLVL

description of 613
TERM

description of 613
USER

description of 613
VENDOR

description of 613
VISUAL

description of 613
tcsh files 614
tcsh shell

@ (at) shell command 616
alias shell command 11

Index 897

tcsh shell (continued)
automatic, periodic, and timed events 595
bg shell command 59
break shell command 61
cd shell command 107
colon (:) shell command 130
echo shell command 230
eval shell command 241
exec shell command 243
exit shell command 244
features 591
fg shell command 257
history shell command 287
jobs shell command 306
kill shell command 309
ls–F shell command 628
Native Language System Report 596
newgrp shell command 415
nice shell command 416
nohup shell command 422
printenv shell command 462
problems and limitations 614
set shell command 487
shift shell command 530
status reporting 595
stop shell command 543
substitutions 581
suspend shell command 557
time shell command 642
umask shell command 663
unalias shell command 664
unset shell command 674
wait shell command 728

tcsh shell command 571
alloc 617
bindkey 617
builtins 619

tcsh shell variable
ampm

description of 600
argv

description of 600
autocorrect

description of 600
autoexpand

description of 600
autolist

description of 600
autologout

description of 600
backslash

description of 600
cdpath

description of 600
command

description of 600
complete

description of 601
correct

description of 601

tcsh shell variable (continued)
cwd

description of 601
dextract

description of 601
dirsfile

description of 601
dirstack

description of 601
dunique

description of 601
echo

description of 601
echo_style

description of 602
edit

description of 602
fignore

description of 602
filec

description of 602
gid

description of 602
group

description of 602
histchars

description of 602
histdup

description of 603
histfile

description of 603
histlit

description of 603
history

description of 603
home

description of 603
ignoreeof

description of 603
implicitcd

description of 603
inputmode

description of 603
listflags

description of 603
listjobs

description of 603
listlinks

description of 604
listmax

description of 604
listmaxrows

description of 604
loginsh

description of 604
logout

description of 604
mail

description of 604
matchbeep

description of 604

898 z/OS V1R4.0 UNIX System Services Command Reference

tcsh shell variable (continued)
nobeep

description of 604
noclobber

description of 604
noglob

description of 604
nokanji

description of 604
nonomatch

description of 605
nostat

description of 605
notify

description of 605
owd

description of 605
path

description of 605
printexitvalue

description of 605
prompt

description of 608
prompt2

description of 605
prompt3

description of 605
promptchars

description of 605
pushdsilent

description of 605
pushdtohome

description of 605
recexact

description of 605
recognize_only_executables

description of 605
rmstar

description of 605
rprompt

description of 606
savedirs

description of 606
savehist

description of 606
sched

description of 606
shell

description of 606
shlvl

description of 606
status

description of 606
symlinks

description of 610
tcsh

description of 602, 606
term

description of 606
time

description of 611

tcsh shell variable (continued)
tperiod

description of 606
tty

description of 606
uid

description of 606
user

description of 606
verbose

description of 606
version

description of 607
visiblebell

description of 607
watch

description of 608
who

description of 608
wordchars

description of 608
tcsh tcsh shell variable

description of 606
tee shell command 636
template for commands 735
temporary files 239

/tmp/sh*
description of 520

remove 532
term environment variable

used by mailx 358
TERM environment variable

used by more 400
used by TABS 559
used by talk 562
used by touch 647
used by vi 699, 723, 725

TERM tcsh environment variable
description of 613

term tcsh shell variable
description of 606

terminal
changing characteristics of 646
sending messages to a 734
setting, resetting, or querying ASCII/EBCDIC code

pages 111
terminal entry

printing 104
terminal name

displaying 657
terminal options

displaying 546
setting 546

terminal tab stop
setting 558

terminfo database
printing terminal entries in the 104

terminfo database entries
comparing 295
compiling 641
printing 295

Index 899

terminfo environment variable 642
TERMINFO environment variable

used by tabs 559
used by talk 562, 647
used by vi 725

terminfo.src file
used by tic 641

test condition 637
test shell command 637
text editor

ex 242
using the 232
vi 698

text file
comparing two 220
concatenating 105
counting items in 730
displaying 105
finding information in 26
finding strings in 805
retrieving information from 26
showing differences between two 220
splitting 160

text insertion commands (for vi) 700
text insertion commands (vi command) 706
TFS file systems

unmounting 794
then shell subcommand 503
then statement

using null shell statement 130
thread

displaying information about 207
thread subcommand for dbx command 207
tic shell command 641
time

displaying 167
time program 642
time sharing option extensions 745
time shell command 642
time tcsh shell variable

description of 611
time zone

setting, with the TZ environment variable 843
times shell command 643
TMOUT environment variable

description of 519
TMP environment variable

used by exrecover 251
TMP_VI environment variable

used by exrecover 250
used by vi 725

TMPDIR environment variable
description of 519
used by ar 16
used by ed 237
used by exrecover 251
used by man 389
used by pg 456
used by sort 537
used by vi 725

token
description of 503

TOP function key for OMVS command 780
TOP subcommand of OMVS command 784
toplines environment variable

used by mailx 349, 358
topological sort 656
touch shell command 644
tperiod tcsh shell variable

description of 606
tput shell command 646
tr shell command 648
trace

removing from program 178
trace subcommand for dbx command 208

displaying 204
tracei subcommand for dbx command 209
tracing

turning on 209
tracing information

printing 208
tracked alias 505

creating a 285
transfers, UUCP

displaying status of pending 689
translate characters 648
trap

abnormal conditions and interrupts 650
signals

starting 175
stopping 185

trap shell command 650
true shell command 651
TSO function key for OMVS command 780
tso shell command 652
TSO subcommand of OMVS command 784
TSO/3270 passthrough mode

returning to shell mode 776
TSO/E (Time Sharing Option Extension)

environment variables
RESOLVER_CONFIG 847
X_ADDR 847
X_SITE 847
X_SLATE 847

TSO/E (Time Sharing Option Extensions)
command mode

invoking the 784
commands

ISHELL 748
MKDIR 748
MKNOD 750
MOUNT 751
OBROWSE 757
OCOPY 758
OEDIT 763
OGET 764
OGETX 767
OHELP 771
OMVS 773
OPUT 785
OPUTX 787

900 z/OS V1R4.0 UNIX System Services Command Reference

TSO/E (Time Sharing Option Extensions) (continued)
commands (continued)

OSHELL 790
OSTEPLIB 791
UNMOUNT 792

entering commands from 745
giving users access to z/OS UNIX System Services

and shell 748, 790
invoking BPXBATCH from the 790
returning to the 244
running

C/MVS executable files 746
commands from the shell using the 652
shell commands 746
shell scripts 746

setting up function key to enter mode 780
TSOALLOC environment variable

used by tso 654
TSOPREFIX environment variable

used by tso 654
TSOPROFILE environment variable

used by tso 654
tsort shell command 656
tty shell command 657
tty tcsh shell variable

description of 606
turn off

automatic scrolling 783
type shell command 658
typeset shell command 659
TZ environment variable

description of 519
setting timezones with the 843
used by at 20
used by cron 156
used by crontab 159
used by date 169
used by ls 337
used by mail 340
used by pr 459
used by touch 645
used by uulog 685
used by uustat 691

U
uid tcsh shell variable

description of 606
ulimit shell command 661
umask shell command 663
unalias shell command 664
unalias subcommand for dbx command 210
uname shell command 665
uncompress

data 743
Huffman-coded files 453

uncompress shell command 666
underscore (_) variable

description of 517
undo change 236
unexpand shell command 667

unhide
data entered on the shell command line 783
OMVS command input area 778, 783

uniq shell command 668
unique lines 668
Universal Time Coordinated (UTC)

used by the TZ environment variable 843
UNIX C shell 571
unlink shell command 670
unmount

a file system 671
hierarchical file systems 794
TFS file systems 794

UNMOUNT 754
unmount hierarchical file systems (HFS) 748
unmount shell command 671
UNMOUNT TSO/E command 792
unpack shell command 673
unprintable characters

displaying 106
unset

attributes of variables and functions 674
command options 487
positional parameters 487
values of variables and functions 674

unset shell command 674
unset subcommand for dbx command 211
until loop

exiting from, in a shell script 61
until shell subcommand 503
up subcommand for dbx command 211
update

data 779
uppercase

converting to lowercase 216
uppercase letters 1
Usage Notes section

explanation of 6
use subcommand for dbx command 212
user

sending messages to a 734
setting up 748
talking to another user 562

user ID
changing to superuser 553

user ID (UID)
returning 329
setting to owner 119

user identity
finding 290
returning 290

user name
displaying your 733

USER tcsh environment variable
description of 613

user tcsh shell variable
description of 606

USERID environment variable
description of 845

users
displaying information about current 731

Index 901

usrspooluucp spool 839
usrspooluucpsouth 839
usrspooluucpxq 694
usrspooluucpxq/usr/spool/uucp/ 694
UTC (Universal Time Coordinated)

used by the TZ environment variable 843
utility

invoking, while ignoring the SIGHUP signal 422
parsing options 280

utmpx file format 838
uucc shell command 675
uucico daemon 676
UUCP

configuration file
/usr/lib/uucp/config 677
reading contents of 675

copying files between systems 678
debug file

/usr/spool/uucp/LOGFILE 677
displaying

list of systems 686
status of transfers 689

events
displaying 684

lock file
/usr/spool/locks 677

searching public directories 687
spool directory (/usr/spool/uucp) 839
status file

/usr/spool/uucp/.Status 677
transfers

displaying status of 689
starting or stopping 689

validating requests by the uucpd program 681
working files

command 839
data 839
execute 839

UUCP file transfer daemon 676
uucp shell command 678

processing file transfer requests 676
uucpd daemon

handling of uucp requests 681
uudecode shell command 682
uuencode shell command 683
uulog shell command 684
uuname shell command 686
uupick shell command 687
uustat shell command 689
uuto shell command 692
uux shell command 693

processing file transfer requests 676
uuxqt daemon 696
uuxqt shell command

/usr/spool/uucp/.Xqtdir directory 694

V
value

defining, for dbx variables 198
displaying, for registers 196

variable
assigning

attributes and variables to 659
values to 174

attributes 659
bc command, for the 46
built-in, for the bc shell command 46
condition

displaying list of 177
deleting 211
description of 506
displaying

currently exported variables 246
list of 659
names of variables in procedures 181
values of variables in procedures 181

environment
displaying 240

listing their attributes 659
parameters used by shell 506, 596
printing tracing information 208
setting export attributes 246
unsetting values and attributes of 674
used in awk 28

variable records
converting to fixed records 215

variable to fixed-record conversion 215
VENDOR tcsh environment variable

description of 613
verbose tcsh shell variable

description of 606
version tcsh shell variable

description of 607
vi command

editor initialization 724
entering ex command mode 709
file recovery daemon for 250
fullword

definition of 703
regular expressions 710
scrolling commands 700
set option variables 719
word

definition of 702
vi file recovery daemon 250
vi mode

absolute movement commands 700
list of 701

command summary 700
context-dependent movement commands 700
current position pointer 699
display conventions 700
manipulation commands 700
object manipulator commands 704
scrolling commands 700
starting session in 699
text insertion commands 700, 706

vi shell command
command mode 698
creating tag files for the 163
insert mode 698

902 z/OS V1R4.0 UNIX System Services Command Reference

vi shell command (continued)
starting sessions in vi mode 698, 699

vi text editor
using the line-editor mode 242

visiblebell tcsh shell variable
description of 607

VISUAL environment variable
description of 519
used by mailx 350, 352, 358
used by shedit 523

VISUAL tcsh environment variable
description of 613

W
wait

for child process to end 728
for jobs to end 728

wait shell command 728
wall shell command 729
watch tcsh shell variable

description of 608
wc shell command 730
whatis subcommand for dbx command 212
whence shell command 731
where subcommand for dbx command 213
whereis subcommand for the dbx command 213
which subcommand for the dbx command 214
while loop

exiting from, in a shell script 61
while shell subcommand 498, 503
who shell command 731
who tcsh shell variable

description of 608
whoami shell command 733
wildcard characters 513
within-rule circular dependency 366
word

counting 730
definition of, for vi 702
description of 503

wordchars tcsh shell variable
description of 608

words
misspelled

looking for 540
working directory

changing
to directory 107
to previous working directory 107

displaying pathname of the 471
setting to value of the HOME environment

variable 107
working files

format of UUCP 839
WRAPDEBUG option of OMVS command 782
write

archive files 437, 564
arguments to standard output 230
checksum for each input file

with the cksum command 126

write (continued)
checksum for each input file (continued)

with the sum command 556
configuration values to standard output 274
cpio archives 152
data 214
debugging information 775
formatted output 462
number of bytes in each input file

with the cksum command 126
with the sum command 556

printouts created by programs 17
to other users 734

write mode 438
write shell command 734

X
X_ADDR environment variable

description of 847
X_SITE environment variable

description of 847
X_SLATE environment variable

description of 847
xargs shell command 735
XPLINK

C/C++ programs 72
extra performance linkages 72
improved performance 72

xtrace 659

Y
y.output file

used by yacc 740
y.tab.c file

used by yacck 740
y.tab.h file

used by yacc 740
yacc compiler

using the 739
yacc shell command 739
YYDEBUG option 740

Z
z/OS

submitting batch jobs
using the BPXBATCH command 746

z/OS C and z/OS C++ source files
using the c89 command to compile, assemble, and

link-edit 63
z/OS UNIX System Services

displaying publications online 771
giving TSO/E users access to 748, 790
invoking the shell 773
managing functions with the ISPF shell

with ISHELL 748
publications

on CD-ROM xxxv
softcopy xxxv

Index 903

z/OS UNIX System Services (continued)
setting up functions with the ISPF shell

with ISHELL 748
zcat shell command 743

904 z/OS V1R4.0 UNIX System Services Command Reference

Readers’ Comments — We’d Like to Hear from You

z/OS
UNIX System Services
Command Reference

Publication No. SA22-7802-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7802-04

SA22-7802-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7802-04

	Contents
	Figures
	Tables
	Permuted Index
	About This Document
	Who Should Use This Document
	Finding More Information about Other Products
	Where to find more information

	Summary of changes
	Chapter 1. Introduction to Shell Commands and DBCS
	Reading the Command Descriptions
	Format Section
	Description Section
	Options Section
	Examples Section
	Environment Variables Section
	Localization Section
	Files Section
	Usage Notes Section
	Exit Values Section
	Limits Section
	Portability Section
	Caution Section
	Related Information

	Using the Doublebyte Character Set (DBCS)
	Requirements for Using DBCS
	When You Must Use SBCS and Not DBCS Characters
	When You Can Use DBCS Characters
	Byte Sequences That Are Not Permitted in DBCS Strings
	Displaying DBCS Characters
	Switching Locales
	Problems with Filenames Containing DBCS Characters

	Chapter 2. Shell Command Descriptions
	alias — Display or create a command alias
	Format
	Description
	Options
	Example
	Localization
	Usage Notes
	Exit Values
	Portability
	Related Information

	ar — Create or maintain library archives
	Format
	Description
	Options
	Operands
	Examples
	Environment Variables
	Localization
	Files
	Usage Note
	Exit Values
	Portability
	Related Information

	asa — Interpret ASA/FORTRAN carriage control
	Format
	Description
	Localization
	Exit Values
	Portability

	at — Run a command at a specified time
	Format
	Description
	Options
	Environment Variables
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	autoload — Indicate function name not defined
	Format
	Description
	Related Information

	automount — Configure the automount facility
	Format
	Description
	Options
	Examples
	Files
	Usage Note
	Related Information

	awk — Process programs written in the awk language
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	basename — Return the nondirectory components of a pathname
	Format
	Description
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	batch — Run commands when the system is not busy
	Format
	Description
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	bc — Use the arbitrary-precision arithmetic calculation language
	Format
	Description
	Options
	Numbers
	Identifiers
	Built-in Variables
	Scale
	Bases
	Arithmetic Operations
	Comments and White Space
	Instructions
	Functions
	Built-in Functions
	Examples
	Usage Notes
	Files
	Localization
	Exit Values
	Limits
	Portability

	bg — Move a job to the background
	Format
	Description
	Usage Note
	Exit Values
	Portability
	Related Information

	bpxmtext — Display reason code text
	Format
	Description
	Usage Notes
	Examples
	Exit Values

	break — Exit from a loop in a shell script
	Format
	Description
	Localization
	Usage Note
	Exit Value
	Portability
	Related Information

	c++ — Compile, link-edit and assemble z/OS C and z/OS C++ source code and create an executable file
	c89 — Compile, link-edit and assemble a z/OS C program and create an executable file
	Format
	Description
	Options
	Operands
	Environment Variables
	Files
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	cal — Display a calendar for a month or year
	Format
	Description
	Localization
	Usage Note
	Exit Values
	Portability

	calendar — Display all current appointments
	Format
	Description
	Options
	Examples
	Environment Variable
	Files
	Localization
	Exit Values
	Portability
	Related Information

	cancel — Cancel print queue requests (stub command)
	Format
	Description

	captoinfo — Print the terminal entries in the terminfo database
	Format
	Description
	Options
	Examples
	Related Information

	cat — Concatenate or display text files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	cc — Compile, link-edit and assemble z/OS C source code and create an executable file
	cd — Change the working directory
	Format
	Description
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Messages
	Portability
	Related Information

	chaudit — Change audit flags for a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	chcp — Set or query ASCII/EBCDIC code pages for the terminal
	Format
	Description
	Options
	Examples
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	chgrp — Change the group owner of a file or directory
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	chmod — Change the mode of a file or directory
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	chmount — Change the mount attributes of a file system
	Format
	Description
	Options
	Example
	Exit Values
	Related Information

	chown — Change the owner or group of a file or directory
	Format
	Description
	Options
	Localization
	Exit Values
	Message
	Portability
	Related Information

	chroot — Change the root directory for the execution of a command
	Format
	Description
	Examples
	Exit Values
	Limits

	chtag — Change file tag information
	Format
	Description
	Options
	Examples
	Usage Notes
	Exit Values
	Related Information

	cksum — Calculate and write checksums and byte counts
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	cmp — Compare two files
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	col — Remove reverse line feeds
	Format
	Description
	Options
	Localization
	Usage Notes
	Exit Values
	Portability

	: (colon) — Do nothing, successfully
	Format
	Description
	Example
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	comm — Show and select or reject lines common to two files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	command — Run a simple command
	Format
	Description
	Options
	Example
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	compress — Lempel-Ziv file compression
	Format
	Description
	Options
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	confighfs — Invoke vfs_pfsctl HFS functions
	Format
	Description
	Options
	Examples
	Usage Notes

	configstk — Configure the AF_UEINT stack
	Format
	Description
	Option
	Files
	Syntax for Configuration Files
	Examples

	configstrm — Set and query the STREAMS physical file system configuration
	Format
	Description
	Options
	Usage Notes
	Example

	continue — Skip to the next iteration of a loop in a shell script
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	cp — Copy a file
	Format
	Description
	Options
	Limits and Requirements
	Usage Notes
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	cpio — Copy in/out file archives
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	cron daemon — Run commands at specified dates and times
	Format
	Description
	Files
	Related Information

	crontab — Schedule regular background jobs
	Format
	Description
	Options
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	csplit — Split text files
	Format
	Description
	Options
	Splitting Criteria
	Localization
	Exit Values
	Portability
	Related Information

	ctags — Create tag files for ex, more, and vi
	Format
	Description
	Options
	Localization
	Files
	Usage Notes
	Exit Values
	Portability
	Related Information

	cu — Call up another system (stub only)
	Format
	Description

	cut — Cut out selected fields from each line of a file
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Portability
	Related Information

	cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source code and create an executable file
	date — Display the date and time
	Format
	Description
	Options
	Example
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	dbx — Use the debugger
	Format
	Description
	Options
	Expression Handling
	Files
	Related Information

	? subcommand for dbx: Search backward for a pattern
	Format
	Description
	Usage Note
	Examples
	Related Information

	/ subcommand for dbx: Search forward for a pattern
	Format
	Description
	Usage Note
	Examples
	Related Information

	alias subcommand for dbx: Display and assign subcommand aliases
	Format
	Description
	Usage Note
	Examples

	args subcommand for dbx: Display program arguments
	Format
	Description
	Usage Note
	Examples
	Related Information

	assign subcommand for dbx: Assign a value to a variable
	Format
	Description
	Usage Notes
	Examples

	case subcommand for dbx: Change how dbx interprets symbols
	Format
	Description
	Options
	Usage Note
	Examples

	catch subcommand for dbx: Start trapping a signal
	Format
	Description
	Usage Note
	Examples
	Related Information

	clear subcommand for dbx: Remove all stops at a given source line
	Format
	Description
	Usage Note
	Example
	Related Information

	cleari subcommand for dbx: Remove all breakpoints at an address
	Format
	Description
	Usage Note
	Examples
	Related Information

	condition subcommand for dbx: Display a list of active condition variables
	Format
	Description
	Usage Note
	Examples

	cont subcommand for dbx: Continue program execution
	Format
	Description
	Usage Note
	Examples
	Related Information

	delete subcommand for dbx: Remove traces and stops
	Format
	Description
	Option
	Usage Note
	Examples
	Related Information

	detach subcommand for dbx: Continue program execution without dbx control
	Format
	Description
	Usage
	Examples
	Related Information

	display memory subcommand for dbx: Display the contents of memory
	Format
	Description
	Option
	Usage Note
	Examples

	down subcommand for dbx: Move the current function down the stack
	Format
	Description
	Usage Note
	Examples
	Related Information

	dump subcommand for dbx: Display the names and values of variables in a procedure
	Format
	Description
	Option
	Usage Note
	Examples

	edit subcommand for dbx: Invoke an editor
	Format
	Description
	Usage Note
	Examples
	Related Information

	file subcommand for dbx: Change the current source file
	Format
	Description
	Usage Note
	Examples

	func subcommand for dbx: Change the current function
	Format
	Description
	Usage Notes
	Examples

	goto subcommand for dbx: Run a specified source line
	Format
	Description
	Usage Note
	Example
	Related Information

	gotoi subcommand for dbx: Change the program counter address
	Format
	Description
	Usage Note
	Example
	Related Information

	help subcommand for dbx: Display a subcommand synopsis
	Format
	Description
	Usage Note
	Examples

	history subcommand for dbx: Display commands in a history list
	Format
	Usage Note

	ignore subcommand for dbx: Stop trapping a signal
	Format
	Description
	Usage Note
	Examples
	Related Information

	list subcommand for dbx: Display lines of the current source file
	Format
	Description
	Usage Note
	Examples
	Related Information

	listfiles subcommand for dbx: Display the list of source files
	Format
	Description
	Usage Notes
	Examples
	Related Information

	listfuncs subcommand for dbx: Display the list of functions
	Format
	Description
	Usage Notes
	Examples
	Related Information

	listi subcommand for dbx: List instructions from the program
	Format
	Description
	Option
	Usage Note
	Examples
	Related Information

	map subcommand for dbx: Display load characteristics
	Format
	Description
	Option
	Usage Note
	Example

	move subcommand for dbx: Change the next line to be displayed
	Format
	Description
	Usage Note
	Example
	Related Information

	multproc subcommand for dbx: Enable or disable multiprocess debugging
	Format
	Description
	Options
	Usage Note
	Examples
	Related Information

	mutex subcommand for dbx: Display a list of active mutex objects
	Format
	Description
	Usage Note
	Examples

	next subcommand for dbx: Run the program up to the next source line
	Format
	Description
	Usage Notes
	Examples
	Related Information

	nexti subcommand for dbx: Run the program up to the next machine instruction
	Format
	Description
	Usage Notes
	Examples
	Related Information

	object subcommand for dbx: Load an object file
	Format
	Description
	Usage Note
	Example

	onload subcommand for dbx: Evaluate stop/trace after dll load
	Format
	Description
	Usage Note
	Examples
	Related Information

	print subcommand for dbx: Print the value of an expression
	Format
	Description
	Usage Note
	Examples
	Related Information

	prompt subcommand for dbx: Change the dbx command prompt
	Format
	Description
	Usage Note
	Example

	quit subcommand for dbx: End the dbx debugging session
	Format
	Description
	Usage Note
	Example

	readwritelock subcommand for dbx: Display a list of active read/write lock objects
	Format
	Description
	Usage Note
	Examples

	record subcommand for dbx: Append user's commands to a file
	Format
	Description
	Usage Notes
	Examples
	Related Information

	registers subcommand for dbx: Display the value of registers
	Format
	Description
	Option
	Usage Note
	Example
	Related Information

	rerun subcommand for dbx: Begin running a program with the previous arguments
	Format
	Description
	Options
	Usage Note
	Example
	Related Information

	return subcommand for dbx: Continue running a program until a return is reached
	Format
	Description
	Usage Note
	Examples

	run subcommand for dbx: Run a program
	Format
	Description
	Options
	Usage Note
	Example
	Related Information

	set subcommand for dbx: Define a value for a dbx variable
	Format
	Description
	Variables
	Usage Notes
	Examples
	Related Information

	sh subcommand for dbx: Pass a command to the shell for execution
	Format
	Description
	Usage Note
	Examples

	skip subcommand for dbx: Continue from the current stopping point
	Format
	Description
	Usage Note
	Example
	Related Information

	source subcommand for dbx: Read subcommands from a file
	Format
	Description
	Usage Note
	Example

	status subcommand for dbx: Display the active trace and stop subcommands
	Format
	Description
	Option
	Usage Note
	Examples
	Related Information

	step subcommand for dbx: Run one or more source lines
	Format
	Description
	Usage Notes
	Examples
	Related Information

	stepi subcommand for dbx: Run one or more machine instructions
	Format
	Description
	Usage Notes
	Examples
	Related Information

	stop subcommand for dbx: Stop execution of a program
	Format
	Description
	Options
	Usage Note
	Examples
	Related Information

	stopi subcommand for dbx: Stop at a specified location
	Format
	Description
	Options
	Usage Note
	Examples
	Related Information

	thread subcommand for dbx: Display a list of active threads
	Format
	Description
	Examples

	trace subcommand for dbx: Print tracing information
	Format
	Description
	Options
	Usage Note
	Examples
	Related Information

	tracei subcommand for dbx: Turn on tracing
	Format
	Description
	Options
	Usage Note
	Examples
	Related Information

	unalias subcommand for dbx: Remove an alias
	Format
	Description
	Usage Note
	Example
	Related Information

	unset subcommand for dbx: Delete a variable
	Format
	Description
	Usage Note
	Example
	Related Information

	up subcommand for dbx: Move the current function up the stack
	Format
	Description
	Usage Note
	Examples
	Related Information

	use subcommand for dbx: Set the list of directories to be searched
	Format
	Description
	Usage Note
	Examples
	Related Information

	whatis subcommand for dbx: Display the type of program components
	Format
	Description
	Usage Notes
	Examples

	where subcommand for dbx: List active procedures and functions
	Format
	Description
	Options
	Usage Note
	Example
	Related Information

	whereis subcommand for dbx: Display the full qualifications of symbols
	Format
	Description
	Usage Note
	Example
	Related Information

	which subcommand for dbx: Display the full qualification of an identifier
	Format
	Description
	Usage Note
	Example
	Related Information

	dd — Convert and copy a file
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	df — Display the amount of free space in the file system
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Portability
	Related Information

	diff — Compare two text files and show the differences
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	dircmp — Compare directories
	Format
	Description
	Options
	Localization
	Related Information

	dirname — Return the directory components of a pathname
	Format
	Description
	Examples
	Localization
	Exit Values
	Portablity
	Related Information

	· (dot) — Run a shell file in the current environment
	Format
	Description
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	dspcat — Display all or part of a message catalog
	Format
	Description
	Options
	Examples

	dspmsg — Display selected messages from message catalogs
	Format
	Description
	Options
	Examples

	du — Summarize usage of file space
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	echo — Write arguments to standard output
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	ed — Use the ed line-oriented text editor
	Format
	Description
	Options
	Addresses
	Subcommands
	Environment Variables
	Files
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	egrep — Search a file for a specified pattern
	Format
	Description

	env — Display or set environment variables for a process
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	eval — Construct a command by concatenating arguments
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	ex — Use the ex text editor
	Format
	Description
	Options
	Localization
	Portability
	Related Information

	exec — Run a command and open, close, or copy the file descriptors
	Format
	Description
	Option
	Example
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	exit — Return to the shell's parent process or to TSO/E
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Related Information

	expand — Expand tabs to spaces
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	export — Set a variable for export
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	expr — Evaluate arguments as an expression
	Format
	Description
	Option
	Usage Note
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	exrecover daemon — Retrieve vi and ex files
	Format
	Description
	Options
	Environment Variables
	Localization
	Files
	Usage Notes
	Exit Values
	Related Information

	extattr — Set, reset, and display extended attributes for files
	Format
	Description
	Options
	Example
	Related Information

	false — Return a nonzero exit code
	Format
	Description
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	fc — Process a command history list
	Format
	Description
	Options
	Environment Variables
	Files
	Localization
	Usage Notes
	Exit Values
	Messages
	Portability
	Related Information

	fg — Bring a job into the foreground
	Format
	Description
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	fgrep — Search a file for a specified pattern
	Format
	Description

	file — Determine file type
	Format
	Description
	Options
	Localization
	Files
	Usage Notes
	Exit Values
	Portability
	Related Information

	filecache — Manage file caches
	Format
	Description
	Options
	Examples
	Usage Notes

	find — Find a file meeting specified criteria
	Format
	Description
	Operators and Primaries
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	fold — Break lines into shorter lines
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	functions — Display or assign attributes to functions
	Format
	Description
	Related Information

	fuser — List process IDs of processes with open files
	Format
	Description
	Option
	Usage Notes
	Examples
	Exit Values
	Related Information

	gencat — Create or modify message catalogs
	Format
	Description
	Extended Description
	Portability of Message Catalogs
	Example
	Localization
	Exit Values
	Portability

	getconf — Get configuration values
	Format
	Description
	Options
	Configuration Variables
	Example
	Localization
	Exit Values
	Portability
	Related Information

	getfacl — Display owner, group, and access control list (ACL) entries
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	getopts — Parse utility options
	Format
	Description
	Options
	Example
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	grep — Search a file for a specified pattern
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	hash — Create a tracked alias
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	head — Display the first part of a file
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	history — Display a command history list
	Format
	Description
	Related Information

	iconv — Convert characters from one codeset to another
	Format
	Description
	Options
	Localization
	Examples
	Exit Values
	Portability

	id — Return the user identity
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	inetd daemon — Provide Internet Service Management
	Format
	Description
	Options
	Signals
	Usage Notes
	Related Information

	infocmp — Compare or print the terminal description
	Format
	Description
	Options
	Usage Notes
	Examples
	Environment Variables
	Related Information

	integer — Mark each variable with an integer value
	Format
	Description
	Related Information

	ipcrm — Remove message queues, semaphore sets, or shared memory IDs
	Format
	Description
	Options
	Examples
	Exit Values
	Related Information

	ipcs — Report status of the interprocess communication facility
	Format
	Description
	Options
	Example
	Exit Values
	Related Information

	jobs — Return the status of jobs in the current session
	Format
	Description
	Options
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	join — Join two sorted textual relational databases
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	kill — End a process or job, or send it a signal
	Format
	Description
	Options
	Options
	Localization
	Usage Notes
	Exit Values
	Messages
	Portability
	Related Information

	[(left bracket) — Test for a condition
	let — Evaluate an arithmetic expression
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	lex — Generate a program for lexical tasks
	Format
	Description
	Options
	Locale
	Files
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	line — Copy one line of standard input
	Format
	Description
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	link — Create a hard link to a file
	Format
	Description
	Localization
	Exit Values
	Related Information

	ln — Create a link to a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	locale — Get locale-specific information
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	localedef — Define the locale environment
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	logger — Log messages
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability

	logname — Return a user's login name
	Format
	Description
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	lp — Send a file to a printer
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Exit Values
	Portability

	lpstat — Show status of print queues (stub command)
	Format
	Description

	ls — List file and directory names and attributes
	Format
	Description
	Options
	Long Output Format
	Usage Note
	Environment Variables
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	mail — Read and send mail messages
	Format
	Description
	Options
	Reading Mail
	Sending Mail
	Example
	Usage Notes
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Limits
	Related Information

	mailx — Send or receive electronic mail
	Format
	Description
	Options
	General Overview
	Command-Mode Subcommands
	Input-Mode Subcommands
	Startup Files
	Example
	Environment Variables
	Files
	Localization
	Exit Values
	Portability
	Related Information

	make — Maintain program-generated and interdependent files
	Format
	Description
	Options
	Targets
	Makefiles
	Macro Definitions
	Macro Modifiers
	Runtime Macros
	Usage Note
	Makefile Contents
	Rules
	Circular Dependencies
	Recipes
	Inference Rules
	Metarules
	Transitive Closure
	Order of Rule Generation
	Suffix Rules
	Attributes
	Special Target Directives
	Control Macros
	Making Libraries
	Conditionals
	Files
	Environment Variables
	Localization
	Exit Values
	Limits
	Usage Notes
	Portability
	Related Information

	makedepend — Generate source dependency information
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Usage Notes
	Exit Values
	Related Information

	man — Display sections of the online reference manual
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	mesg — Allow or refuse messages
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	mkcatdefs — Preprocess a message source file
	Format
	Description
	Options
	Extended Description
	Examples

	mkdir — Make a directory
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	mkfifo — Make a FIFO special file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	mknod — Make a FIFO or character special file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	more — Display files on a page-by-page basis
	Format
	Description
	Options
	Interactive Commands
	Environment Variables
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	mount — Logically mount a file system
	Format
	Description
	Options
	Examples
	Usage Notes
	Exit Values
	Related Information

	mv — Rename or move a file or directory
	Format
	Description
	Options
	Limits & Requirements
	Usage Notes
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	newgrp — Change to a new group
	Format
	Description
	Options
	Localization
	Usage Notes
	Exit Values
	Portability
	Related Information

	nice — Run a command at a different priority
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	nl — Number lines in a file
	Format
	Description
	Options
	Example
	Localization
	Messages
	Portability
	Related Information

	nm — Display symbol table of object, library, or executable files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	nohup — Start a process that is immune to hangups
	Format
	Description
	Localization
	Exit Values
	Portability
	Related Information

	obrowse — Browse an HFS file
	Format
	Description
	Usage Notes
	Exit Values

	od — Dump a file in a specified format
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	oedit — Edit an HFS file
	Format
	Description
	Option
	Usage Notes
	Exit Values

	pack — Compress files by Huffman coding
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	passwd — Change user passwords
	Format
	Description
	Examples
	Exit Values

	paste — Merge corresponding or subsequent lines of a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	patch — Change a file using diff output
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	pathchk — Check a pathname
	Format
	Description
	Options
	Localization
	Exit Values
	Portability

	pax — Interchange portable archives
	Format
	Description
	Patterns
	Options
	Output
	Usage Notes
	z/OS Extended USTAR Support
	ACL (Access Control List) pax Support
	Examples
	Files
	Localization
	Exit Values
	Portability
	Related Information

	pcat — Unpack and display Huffman packed files
	Format
	Description
	Localization
	Exit Values
	Related Information

	pg — Display files interactively
	Format
	Description
	Options
	Commands
	Examples
	Localization
	Exit Values
	Files
	Environment Variables
	Portability
	Related Information

	pr — Format a file in paginated form and send it to standard output
	Format
	Description
	Options
	Files
	Environment Variables
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	print — Return arguments from the shell
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	printenv — Display the values of environment variables
	Format
	Description
	Options
	Example
	Usage Notes
	Exit Values
	Portability
	Related Information

	printf — Write formatted output
	Format
	Description
	Caution
	Localization
	Exit Values
	Portability
	Related Information

	ps — Return the status of a process
	Format
	Description
	Options
	Format Specifications
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	pwd — Return the working directory name
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	r — Process a command history list
	Format
	Description
	Related Information

	read — Read a line from standard input
	Format
	Description
	Options
	Examples
	Environment Variables
	Localization
	Usage Note
	Exit Values
	Messages
	Portability
	Related Information

	readonly — Mark a variable as read-only
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	renice — Change priorities of a running process
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	return — Return from a shell function or . (dot) script
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	rlogind — Validate rlogin requests
	Format
	Description
	Options
	Usage Notes
	Related Information

	rm — Remove a directory entry
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	rmdir — Remove a directory
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	runcat — Pipe output from mkcatdefs to gencat
	Format
	Description
	Examples
	Related Information

	sed — Start the sed noninteractive stream editor
	Format
	Description
	Options
	Subcommands
	Example
	Environment Variable
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	set — Set or unset command options and positional parameters
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	setfacl — Set, remove, and change access control lists (ACLs)
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	sh — Invoke a shell
	Format
	Description
	Options
	Command Syntax
	Command Execution
	Quoting
	Directory Substitution
	Parameter Substitution
	Arithmetic Substitution
	Command Substitution
	File Descriptors and Redirection
	Filename Generation
	Variables
	Shell Execution Environments
	Built-in Commands
	Examples
	Shell Variables
	Files
	Localization
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	shedit — Interactive command and history editing in the shell
	Format
	Usage Notes
	emacs/gmacs Editing Mode
	vi Editing Mode
	Limits
	Related Information

	shift — Shift positional parameters
	Format
	Description
	Examples
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	sleep — Suspend execution of a process for an interval of time
	Format
	Description
	Example
	Localization
	Exit Values
	Portability
	Related Information

	skulker — Remove old files from a directory
	Format
	Description
	Options
	Examples
	Exit Values
	Messages

	sort — Start the sort-merge utility
	Format
	Description
	Options
	Sorting Keys
	Examples
	Environment Variable
	File
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	spell — Detect spelling errors in files
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Files
	Limits
	Portability
	Related Information

	split — Split a file into manageable pieces
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	stop — Suspend a process or job
	Format
	Description
	Options
	Related Information

	strings — Display printable strings in binary files
	Format
	Description
	Options
	Localization
	Exit Values
	Portability

	strip — Remove unnecessary information from an executable file
	Format
	Description
	Localization
	Exit Values
	Messages
	Portability

	stty — Set or display terminal options
	Format
	Description
	Options
	Control Mode Operands
	Input Mode Operands
	Output Mode Operands
	Local Mode Operands
	Control Character Operands
	Combination Mode Operands
	Usage Notes
	Localization
	Exit Values
	Portability

	su — Change the user ID associated with a session
	Format
	Description
	Options
	Usage Notes
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	sum — Compute checksum and block count for file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	suspend — Send a SIGSTOP to the current shell
	Format
	Description
	Related Information

	sysvar — Display static system symbols
	Format
	Description
	Exit Values

	tabs — Set tab stops
	Format
	Description
	Options
	Environment Variables
	Localization
	Exit Values
	Portability
	Related Information

	tail — Display the last part of a file
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	talk — Talk to another user
	Format
	Description
	Options
	Environment Variables
	Localization
	Usage Notes
	Exit Values
	Portability
	Related Information

	tar — Manipulate the tar archive files to copy or back up a file
	Format
	Description
	Options
	Output
	ACL (Access Control List) tar Support
	Usage Notes
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	tcsh — Invoke a C shell
	Format
	Description
	Options and Invocation
	Options
	tcsh shell Editing
	Command Syntax
	Substitutions
	Command Execution
	Features
	Jobs
	Status Reporting
	Automatic, Periodic and Timed Events
	National Language System Report
	Signal Handling
	Terminal Management
	tcsh Built-in Commands
	tcsh Programming Constructs
	tcsh Shell and Environment Variables
	tcsh Files
	tcsh shell: Problems and Limitations
	Related Information

	@ (at) built-in command for tcsh: Print the value of tcsh shell variables
	Format
	Description
	Options
	Usage Notes
	Related Information

	% (percent) built-in command for tcsh: Move jobs to the foreground or background
	Format
	Description
	Related Information

	alloc built-in command for tcsh: Show the amount of dynamic memory acquired
	Format
	Description
	Related Information

	bindkey built-in command for tcsh: List all bound keys
	Format
	Description
	Options
	Usage Notes
	Related Information

	builtins built-in command for tcsh: Prints the names of all built-in commands
	Format
	Description
	Related Information

	bye built-in command for tcsh: Terminate the login shell
	Format
	Description
	Related Information

	chdir built-in shell command for tcsh: Change the working directory
	Format
	Description
	Related Information

	complete built-in command for tcsh: List completions
	Format
	Description
	Arguments
	Examples
	Related Information

	dirs built-in command for tcsh: Print the directory stack
	Format
	Description
	Options
	Related Information

	echotc built-in command for tcsh: Exercise the terminal capabilities in args
	Format
	Description
	Options
	Related Information

	filetest built-in command for tcsh: Apply the op file inquiry operator to a file
	Format
	Description
	Related Information

	glob built-in command for tcsh: Write each word to standard output
	Format
	Description
	Related Information

	hashstat built-in command for tcsh: Print a statistic line on hash table effectiveness
	Format
	Description
	Related Information

	hup built-in command for tcsh: Run command so it exits on a hang-up signal
	Format
	Description
	Related Information

	limit built-in command for tcsh: Limit consumption of processes
	Format
	Description
	Related Information

	log built-in command for tcsh: Print the watch tcsh shell variable
	Format
	Description
	Related Information

	login built-in command for tcsh: Terminate a login shell
	Format
	Description
	Related Information

	logout built-in command for tcsh: Terminate a login shell
	Format
	Description
	Related Information

	ls-F built-in command for tcsh: List files
	Format
	Description
	Usage Note
	Related Information

	notify built-in command for tcsh: Notify user of job status changes
	Format
	Description
	Related Information

	onintr built-in command for tcsh: Control the action of the tcsh shell on interrupts
	Format
	Description
	Related Information

	popd built-in command for tcsh: Pop the directory stack
	Format
	Description
	Options
	Related Information

	pushd built-in command for tcsh: Make exchanges within directory stack
	Format
	Description
	Options
	Related Information

	rehash built-in command for tcsh: Recompute internal hash table
	Format
	Description
	Related Information

	repeat built-in command for tcsh: Execute command count times
	Format
	Description
	Related Information

	sched built-in command for tcsh: Print scheduled event list
	Format
	Description
	Related Information

	setenv built-in command for tcsh: Set environment variable name to value
	Format
	Description
	Related Information

	settc built-in command for tcsh: Tell tcsh shell the terminal capability cap value
	Format
	Description
	Related Information

	setty built-in command for tcsh: Control tty mode changes
	Format
	Description
	Options
	Related Information

	source built-in command for tcsh: Read and execute commands from name
	Format
	Description
	Options
	Related Information

	telltc built-in command for tcsh: List terminal capability values
	Format
	Description
	Related Information

	uncomplete built-in command for tcsh: Remove completions whose names match pattern
	Format
	Description
	Related Information

	unhash built-in command for tcsh: Disable use of internal hash table
	Format
	Description
	Related Information

	unlimit built-in command for tcsh: Remove resource limitations
	Format
	Description
	Options
	Related Information

	unsetenv built-in command for tcsh: Remove environmental variables that match pattern
	Format
	Description
	Related Information

	watchlog built-in command for tcsh: Print the watch shell variable
	Format
	Description
	Related Information

	where built-in command for tcsh: Report all instances of command
	Format
	Description
	Related Information

	which built-in command for tcsh: Display next executed command
	Format
	Description
	Related Information

	tee — Duplicate the output stream
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	test — Test for a condition
	Format
	Description
	Usage Notes
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	tic — Put terminal entries in the terminfo database
	Format
	Description
	Options
	Example
	Environment Variables
	Related Information

	time — Display processor and elapsed times for a command
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	times — Get process and child process times
	Format
	Description
	Option
	Usage Note
	Localization
	Exit Values
	Portability
	Related Information

	touch — Change the file access and modification times
	Format
	Description
	Options
	Examples
	Environment Variable
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	tput — Change characteristics of terminals
	Format
	Description
	Options
	Localization
	Environment Variables
	Exit Values
	Portability
	Related Information

	tr — Translate characters
	Format
	Description
	Options
	String Options
	Examples
	Localization
	Exit Values
	Portability

	trap — Intercept abnormal conditions and interrupts
	Format
	Description
	Usage Note
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	true — Return a value of 0
	Format
	Description
	Usage Note
	Localization
	Exit Value
	Portability
	Related Information

	tso — Run a TSO/E command from the shell
	Format
	Description
	Options
	Examples
	Environment Variables
	Messages

	tsort — Sort files topologically
	Format
	Description
	Example
	Localization
	Exit Values
	Portability

	tty — Return the user's terminal name
	Format
	Description
	Options
	Localization
	Exit Values
	Messages
	Portability

	type — Tell how the shell interprets a name
	Format
	Description
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	typeset — Assign attributes and values to variables
	Format
	Description
	Options
	Usage Note
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	uconvdef — Create binary conversion tables
	Format
	Description
	Options
	Example
	Exit Values
	Related Information

	ulimit — Set process limits
	Format
	Description
	Options
	Usage Notes
	Localization
	Related Information

	umask — Set or return the file mode creation mask
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	unalias — Remove alias definitions
	Format
	Description
	Options
	Localization
	Usage Notes
	Exit Values
	Portability
	Related Information

	uname — Display the name of the current operating system
	Format
	Description
	Options
	Examples
	Localization
	Usage Note
	Exit Values
	Portability
	Related Information

	uncompress — Undo Lempel-Ziv compression of a file
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	unexpand — Compress spaces into tabs
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	uniq — Report or filter out repeated lines in a file
	Format
	Description
	Options
	Examples
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	unlink — Removes a directory entry
	Format
	Description
	Localization
	Exit Values
	Related Information

	unmount — Remove a file system from the file hierarchy
	Format
	Description
	Options
	Examples
	Exit Values
	Related Information

	unpack — Decode Huffman packed files
	Format
	Description
	Localization
	File
	Exit Values
	Messages
	Portability
	Related Information

	unset — Unset values and attributes of variables and functions
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Messages
	Portability
	Related Information

	uucc — Compile UUCP configuration files
	Format
	Description
	Files
	Exit Values
	Related Information

	uucico daemon — Process UUCP file transfer requests
	Format
	Description
	Options
	Examples
	Files
	Exit Values
	Portability
	Related Information

	uucp — Copy files between remote UUCP systems
	Format
	Description
	Options
	Examples
	Environment Variable
	Localization
	Files
	Usage Note
	Exit Values
	Portability
	Related Information

	uucpd daemon — Invoke uucico for TCP/IP connections from remote UUCP systems
	Format
	Description
	Options
	Usage Note
	Exit Values
	Portability
	Related Information

	uudecode — Decode a transmitted binary file
	Format
	Description
	Localization
	Exit Values
	Portability
	Related Information

	uuencode — Encode a file for safe transmission
	Format
	Description
	Examples
	Localization
	Exit Values
	Portability
	Related Information

	uulog — Display log information about UUCP events
	Format
	Description
	Options
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuname — Display list of remote UUCP systems
	Format
	Description
	Options
	Localization
	File
	Exit Values
	Portability
	Related Information

	uupick — Manage files sent by uuto and uucp
	Format
	Description
	Options
	Localization
	Files
	Usage Notes
	Portability
	Related Information

	uustat — Display status of pending UUCP transfers
	Format
	Description
	Options
	Output
	Examples
	Environment Variables
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuto — Copy files to users on remote UUCP systems
	Format
	Description
	Options
	Localization
	Files
	Usage Notes
	Portability
	Related Information

	uux — Request command execution on remote UUCP systems
	Format
	Description
	Options
	Special Characters
	Examples
	Security
	Localization
	Files
	Exit Values
	Portability
	Related Information

	uuxqt daemon — Carry out command requests from remote UUCP systems
	Format
	Description
	Options
	Examples
	Usage Notes
	Localization
	Files
	Exit Values
	Portability
	Related Information

	vi — Use the display-oriented interactive text editor
	Format
	Description
	Options
	Current Position Pointer
	Display Conventions
	vi Command Summary
	Scrolling Commands
	Absolute Movement Commands
	Context-Dependent Movement Commands
	Object Manipulator Commands
	Object Manipulator Abbreviations
	Text Insertion Commands
	Miscellaneous Commands
	Insert Mode Commands
	ex Command Mode
	Regular Expressions and Replacements
	Summary of Regular Expressions
	Summary of Replacement Patterns
	ex Commands
	Special Characters in ex Commands
	Set Option Variables
	Editor Initialization
	Files
	Environment Variables
	Localization
	Exit Values
	Limits
	Portability
	Related Information

	wait — Wait for a child process to end
	Format
	Description
	Localization
	Usage Notes
	Exit Values
	Portability
	Related Information

	wall — Broadcast a message to logged-in users
	Format
	Description
	Exit Values

	wc — Count newlines, words, and bytes
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	whence — Tell how the shell interprets a command name
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	who — Display information about current users
	Format
	Description
	Options
	Files
	Localization
	Exit Values
	Portability
	Related Information

	whoami — Display your effective user name
	Format
	Description
	Exit Values
	Related Information

	write — Write to another user
	Format
	Description
	Options
	Usage Notes
	Localization
	Exit Values
	Portability
	Related Information

	xargs — Construct an argument list and run a command
	Format
	Description
	Options
	Example
	Localization
	Exit Values
	Restriction
	Portability
	Related Information

	yacc — Use the yacc compiler
	Format
	Description
	Options
	Files
	Localization
	Usage Notes
	Exit Values
	Messages
	Limits
	Portability
	Related Information

	zcat — Uncompress and display data
	Format
	Description
	Options
	Localization
	Exit Values
	Portability
	Related Information

	Chapter 3. TSO/E Commands
	BPXBATCH — Run shell commands, shell scripts, or executable files
	Format
	Description
	Parameters
	Examples

	ISHELL — Invoke the ISPF shell
	Format
	Description

	MKDIR — Make a directory
	Format
	Description
	Parameters
	Return Codes
	Examples

	MKNOD — Create a character special file
	Format
	Description
	Parameters
	Examples

	MOUNT — Logically mount a file system
	Format
	Description
	Usage Notes
	Return Codes
	Examples

	OBROWSE — Browse an HFS file
	Format
	Description
	Parameters

	OCOPY — Copy an MVS data set member or HFS file to another member or file
	Format
	Description
	Parameters
	Usage Notes
	Return Codes
	Examples

	OEDIT — Edit an HFS file
	Format
	Description
	Parameters
	Option
	Usage Notes

	OGET — Copy an HFS file into an MVS data set
	Format
	Description
	Parameters
	Usage Notes
	Return Codes
	Examples

	OGETX — Copy HFS files from a directory to an MVS PDS or PDSE
	Format
	Description
	Parameters
	Usage Notes
	Examples

	OHELP — Display online z/OS UNIX System Services publications
	Format
	Description
	Parameters
	Examples
	Usage Notes

	OMVS — Invoke the z/OS shell
	Format
	Description
	Parameters
	Subcommands
	Usage Notes
	Return Codes
	Examples

	OPUT — Copy an MVS data set member into an HFS file
	Format
	Description
	Parameters
	Usage Notes
	Return Codes
	Examples

	OPUTX — Copy members from an MVS PDS or PDSE to an HFS directory
	Format
	Description
	Parameters
	Usage Notes
	Examples

	OSHELL — Invokes BPXBATCH from TSO/E
	Format
	Description

	OSTEPLIB — Build a list of files
	Format
	Description
	Parameters

	UNMOUNT — Remove a file system from the file hierarchy
	Format
	Description
	Parameters
	Usage Notes
	Return Codes
	Examples

	Appendix A. OS/390 Shell Command Summary
	General Use
	Controlling Your Environment
	Daemons
	Managing Directories
	Managing Files
	Printing Files
	Computing and Managing Logic
	Controlling Processes
	Writing Shell Scripts
	Developing or Porting Application Programs
	Communicating with the System or Other Users
	Working with Archives
	Working with UUCP

	Appendix B. tcsh Shell Command Summary
	General Use
	Controlling Your Environment
	Managing Directories
	Computing and Managing Logic
	Managing Files
	Controlling Processes

	Appendix C. Regular Expressions (regexp)
	Summary
	Examples

	Appendix D. Running Shell Scripts or Executable Files under MVS Environments
	BPXBATCH
	Format
	Description
	Parameters
	Usage Notes
	Files
	Return Codes

	Using OSHELL to Run Shell Commands and Scripts from MVS

	Appendix E. BPXCOPY: Copying a Sequential or Partitioned Data Set or PDSE Member into an HFS File
	BPXCOPY
	Format
	Description
	Parameters
	Return Codes
	Examples

	Appendix F. Localization
	Appendix G. Stub Commands
	Appendix H. File Formats
	cpio — Format of cpio archives
	Description
	Related Information

	magic — Format of the /etc/magic file
	Description
	Usage Notes
	Examples
	Related Information

	pax — Format of pax archives and special header summary files
	Description
	Portability
	Related Information

	queuedefs — Queue description for at, batch, and cron
	Description
	Examples
	Related Information

	tags — Format of the tags file
	Description
	Related Information

	tar — Format of tar archives
	Description
	Description of the Header Files
	Related Information

	utmpx — Format of login accounting files
	Description
	Files
	Related Information

	uucp — Format of UUCP working files
	Description
	Command Files
	Examples
	Data Files
	Examples
	Execute Files
	Examples
	Portability
	Related Information

	Appendix I. Setting the Local Time Zone with the TZ Environment Variable
	TZ Environment Variable
	Format
	Description
	Portability
	Related Information

	Appendix J. Environment Variables
	Appendix K. Specifying MVS Dataset Names in the Shell Environment
	Utilities Supporting MVS Dataset Names

	Appendix L. Automatic Codeset Conversion: Default Status for Specific Commands
	Appendix M. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Trademarks
	Acknowledgments

	Index
	Readers’ Comments — We'd Like to Hear from You

