7/08S

UNIX System Services

Command Reference

SA22-7802-04

7/08S

UNIX System Services

Command Reference

SA22-7802-04

Note
Before using this information and the product it supports, be sure to read the general information under ['Notices” on]
-page 85

Fourth Edition, September, 2002
This is a major revision of SA22-7802-02.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY 12601-5400

United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):
Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs @us.ibm.com
World Wide Web: |http://www.ibm.com/servers/eserver/zseries/zos/webgs.html|

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures Lo X
Tables L L L XY
Permuted Index. L L o o L L Xl
About This Document. . . D ¢ ¢4,
Who Should Use This Document Co e e e e XXXV
Finding More Information about Other Products C e e XXXV
Summaryofchanges. XXxx
Chapter 1. Introduction to Shell Commandsand DBCS1
Reading the Command Descriptions e 1
Using the Doublebyte Character Set (DBCS) 7
Chapter 2. Shell Command Descriptions11
alias — Display or create a command alias11
ar — Create or maintain library archives14
asa — Interpret ASA/FORTRAN carriage control17
at — Run a command at a specified time18
autoload — Indicate function name not defined21
automount — Configure the automount facility21
awk — Process programs written in the awk language26
basename — Return the nondirectory components of a pathname ... 42
batch — Run commands when the system is not busy43
bc — Use the arbitrary-precision arithmetic calculation Ianguage A ¥
bg — Move a job to the background59
bpxmtext — Display reasoncodetext60
break — Exit from a loop in a shell script 61
c++ — Compile, link-edit and assemble z/OS C and z/OS C++ source code and
create an executable file62
c89 — Compile, link-edit and assemble a z/OS C program and create an
executable file ¢ 72
cal — Display a calendar for a month or year T [0)
calendar — Display all current appointments . . . e (02
cancel — Cancel print queue requests (stub command)103
captoinfo — Print the terminal entries in the terminfo database. 104
cat — Concatenate or display text files 105
cc — Compile, link-edit and assemble z/OS C source code and create an
executable file. . . . e e 106
cd — Change the working d|rectory e [0 14
chaudit — Change audit flags for a file109
chcp — Set or query ASCII/EBCDIC code pages for the termlnal B B
chgrp — Change the group owner of a file or directory. 114
chmod — Change the mode of a file or directory15
chmount — Change the mount attributes of a file system18
chown — Change the owner or group of a file or directory19
chroot — Change the root directory for the execution of a command oL 121
chtag — Change file tag information . . . e 2K
cksum — Calculate and write checksums and byte counts 126
cmp — Compare two files .127
col — Remove reverse linefeeds 128

© Copyright IBM Corp. 1996, 2002 iii

iv

: (colon) — Do nothing, successfully .

comm — Show and select or reject lines common to two flles .

command — Run a simple command .

compress — Lempel-Ziv file compression

confighfs — Invoke vfs_pfsctl HFS functions

configstk — Configure the AF_UEINT stack .

configstrm — Set and query the STREAMS physlcal f|Ie system conflguratlon

continue — Skip to the next iteration of a loop in a shell script . .

cp — Copy a file. .

cpio — Copy in/out file archlves . .

cron daemon — Run commands at speC|f|ed dates and t|mes .

crontab — Schedule regular background jObS .

csplit — Split text files.

ctags — Create tag files for ex, more, and Vi

cu — Call up another system (stub only) .

cut — Cut out selected fields from each line of a f|Ie

cxx — Compile, link-edit and assemble z/OS C and z/OS C++ source code
and create an executable file

date — Display the date and time

dbx — Use the debugger

? subcommand for dbx: Search backward for a pattern

/ subcommand for dbx: Search forward for a pattern

alias subcommand for dbx: Display and assign subcommand allases

args subcommand for dbx: Display program arguments

assign subcommand for dbx: Assign a value to a variable

case subcommand for dbx: Change how dbx interprets symbols .

catch subcommand for dbx: Start trapping a signal . .

clear subcommand for dbx: Remove all stops at a given source I|ne

cleari subcommand for dbx: Remove all breakpoints at an address .

condition subcommand for dbx: Display a list of active condition variables

cont subcommand for dbx: Continue program execution

delete subcommand for dbx: Remove traces and stops

detach subcommand for dbx: Continue program execution W|thout dbx control

display memory subcommand for dbx: Display the contents of memory.

down subcommand for dbx: Move the current function down the stack .

dump subcommand for dbx: Display the names and values of variables in a
procedure

edit subcommand for dbx Invoke an edltor

file subcommand for dbx: Change the current source f|Ie

func subcommand for dbx: Change the current function

goto subcommand for dbx: Run a specified source line

gotoi subcommand for dbx: Change the program counter address

help subcommand for dbx: Display a subcommand synopsis

history subcommand for dbx: Display commands in a history list .

ignore subcommand for dbx: Stop trapping a signal . .

list subcommand for dbx: Display lines of the current source f|Ie .

listfiles subcommand for dbx: Display the list of source files .

listtuncs subcommand for dbx: Display the list of functions

listi subcommand for dbx: List instructions from the program.

map subcommand for dbx: Display load characteristics

move subcommand for dbx: Change the next line to be d|splayed

multproc subcommand for dbx: Enable or disable multiprocess debugging

mutex subcommand for dbx: Display a list of active mutex objects

next subcommand for dbx: Run the program up to the next source line.

nexti subcommand for dbx: Run the program up to the next machine
instruction e e e

z/OS V1R4.0 UNIX System Services Command Reference

. 130
. 130
. 131
. 133
. 135
. 136

138

. 140
. 140
. 152
. 155
. 158
. 160
. 162
. 164
. 165

. 166
. 166
. 170
. 172
. 1783
. 173
. 173
. 174
. 174
. 175
. 176
. 176

177

177
. 178

179

. 179
. 181

. 181
. 182
. 183
. 183
. 183
. 184
. 184
. 185
. 185
. 186
. 187
. 187
. 188
. 188
. 189

189

. 190
. 191

. 192

object subcommand for dbx: Load an object file .

onload subcommand for dbx: Evaluate stop/trace after dll Ioad

print subcommand for dbx: Print the value of an expression .

prompt subcommand for dbx: Change the dbx command prompt .

quit subcommand for dbx: End the dbx debugging session .

readwritelock subcommand for dbx: Dlsplay a list of active read/wrlte Iock
objects

record subcommand for dbx Append user’s commands to a f|Ie

registers subcommand for dbx: Display the value of registers

rerun subcommand for dbx: Begin running a program with the prewous
arguments .

return subcommand for dbx Contlnue runnlng a program unt|I a return is
reached .

run subcommand for dbx Run a program .

set subcommand for dbx: Define a value for a dbx vanable .

sh subcommand for dbx: Pass a command to the shell for execution

skip subcommand for dbx: Continue from the current stopping point .

source subcommand for dbx: Read subcommands from a file .

status subcommand for dbx: Display the active trace and stop subcommands

step subcommand for dbx: Run one or more source lines.

stepi subcommand for dbx: Run one or more machine instructions

stop subcommand for dbx: Stop execution of a program .

stopi subcommand for dbx: Stop at a specified location

thread subcommand for dbx: Display a list of active threads.

trace subcommand for dbx: Print tracing information.

tracei subcommand for dbx: Turn on tracing.

unalias subcommand for dbx: Remove an alias

unset subcommand for dbx: Delete a variable .

up subcommand for dbx: Move the current function up the stack

use subcommand for dbx: Set the list of directories to be searched .

whatis subcommand for dbx: Display the type of program components .

where subcommand for dbx: List active procedures and functions.

whereis subcommand for dbx: Display the full qualifications of symbols

which subcommand for dbx: Display the full qualification of an identifier

dd — Convert and copy a file .

df — Display the amount of free space in the f|Ie system

diff — Compare two text files and show the differences

dircmp — Compare directories

dirname — Return the directory components of a pathname
- (dot) — Run a shell file in the current environment.

dspcat — Display all or part of a message catalog .

dspmsg — Display selected messages from message catalogs

du — Summarize usage of file space . .

echo — Write arguments to standard output

ed — Use the ed line-oriented text editor.

egrep — Search a file for a specified pattern

env — Display or set environment variables for a process

eval — Construct a command by concatenatlng arguments .

ex — Use the ex text editor. .

exec — Run a command and open, cIose or copy the f|Ie descrlptors .

exit — Return to the shell's parent process or to TSO/E

expand — Expand tabs to spaces

export — Set a variable for export .

expr — Evaluate arguments as an expression .

exrecover daemon — Retrieve vi and ex files .

extattr — Set, reset, and display extended attributes for flles

Contents

. 192
. 193
. 193
. 194
. 194

. 194
. 195
. 196

. 197

. 197
. 198
. 198
. 202
. 203
. 203

204

. 204
. 205
. 205
. 206
. 207
. 208
. 209
. 210
.21
.21
.21
. 212
. 213
. 213
. 214
. 214
. 218
. 220
. 225
. 225
. 226
. 227
. 228
. 229
. 230
. 232
. 239
. 240
. 241
. 242
. 243
. 244
. 245
. 246
. 247
. 250
. 253

\'

false — Return a nonzero exitcode.254

fc — Process a command history list255
fg — Bring a job into the foreground 257
fgrep — Search a file for a specified pattern 258
file — Determine filetype .258
filecache — Manage file caches e e e e 260
find — Find a file meeting specified crlterla e e e e L 261
fold — Break lines into shorter lines.268
functions — Display or assign attributes to funct|ons C e e 269
fuser — List process IDs of processes with openfiles 269
gencat — Create or modify message catalogs. 271
getconf — Get configuration values 274
getfacl — Display owner, group, and access control I|st (ACL) entnes278
getopts — Parse utility options . . . e e280
grep — Search a file for a specified pattern 2t 724
hash — Create a tracked alias285
head — Display the first part of afile286
history — Display a command history list. . . . 22 74
iconv — Convert characters from one codeset to anotherZ288
id — Return the user identity . . . e 2ie 0]
inetd daemon — Provide Internet Serwce Management e 2ie B
infocmp — Compare or print the terminal description 295
integer — Mark each variable with an integer value 298
ipcrm — Remove message queues, semaphore sets, or shared memory IDs 299
ipcs — Report status of the interprocess communication facility 300
jobs — Return the status of jobs in the current session 305
join — Join two sorted textual relational databases 306
kill — End a process or job, orsenditasignal. 308
[(left bracket) — Test for a conditon31
let — Evaluate an arithmetic expression312
lex — Generate a program for lexicaltasks 313
line — Copy one line of standard input316
link — Create a hard linktoa file.316
In — Create a link to a file < 1 4
locale — Get locale-specific |nformat|on e 2
localedef — Define the locale environment 325
logger — Log messages N 2V 4
Iogname — Return a user’s loginname329
Ip — Send a file to a printer.33
Ipstat — Show status of print queues (stub command) e 1
Is — List file and directory names and attributes 332
mail — Read and send mail messages 338
mailx — Send or receive electronic mail . . . 7 Y |
make — Maintain program-generated and mterdependent flles.359
makedepend — Generate source dependency information 381
man — Display sections of the online reference manual 388
mesg — Allow or refuse messages T ie 0]
mkcatdefs — Preprocess a message source f|Ie N I B
mkdir — Make a directory .39
mkfifo — Make a FIFO special file G 115
mknod — Make a FIFO or character special f|Ie e e e39
more — Display files on a page-by-page basis. 397
mount — Logically mount a file system401
mv — Rename or move a file or directory404
newgrp — Change to a new group . . . T & K
nice — Run a command at a different prlorlty A 1)

Vi z/0S V1R4.0 UNIX System Services Command Reference

nl — Number lines in a file . .
nm — Display symbol table of object, I|brary, or executable flles .
nohup — Start a process that is immune to hangups
obrowse — Browse an HFS file .
od — Dump a file in a specified format
oedit — Edit an HFS file .
pack — Compress files by Huffman codmg
passwd — Change user passwords. .
paste — Merge corresponding or subsequent Irnes of a frle .
patch — Change a file using diff output
pathchk — Check a pathname.
pax — Interchange portable archives .
pcat — Unpack and display Huffman packed frles
pg — Display files interactively .
pr — Format a file in paginated form and send it to standard output
print — Return arguments from the shell .
printenv — Display the values of environment varrables
printf — Write formatted output
ps — Return the status of a process
pwd — Return the working directory name .

r — Process a command history list.

read — Read a line from standard input .

readonly — Mark a variable as read-only.

renice — Change priorities of a running process .
return — Return from a shell function or . (dot) script
rlogind — Validate rlogin requests A

rm — Remove a directory entry .
rmdir — Remove a directory
runcat — Pipe output from mkcatdefs to gencat
sed — Start the sed noninteractive stream editor . .
set — Set or unset command options and positional parameters .
setfacl — Set, remove, and change access control lists (ACLs)

sh — Invoke a shell .
shedit — Interactive command and hrstory edrtrng in the sheII .
shift — Shift positional parameters .
sleep — Suspend execution of a process for an |nterval of trme
skulker — Remove old files from a directory
sort — Start the sort-merge utility
spell — Detect spelling errors in files
split — Split a file into manageable pieces
stop — Suspend a process or job .
strings — Display printable strings in binary f|Ies .
strip — Remove unnecessary information from an executable f|Ie
stty — Set or display terminal options .
su — Change the user ID associated with a session
sum — Compute checksum and block count for file .
suspend — Send a SIGSTOP to the current shell
sysvar — Display static system symbols .
tabs — Set tab stops . .
tail — Display the last part of a f|Ie .
talk — Talk to another user .
tar — Manipulate the tar archive frles to copy or back up a frle
tcsh — Invoke a C shell .

@ (at) built-in command for tcsh: Print the value of tcsh sheII varrables.

% (percent) built-in command for tcsh: Move jobs to the foreground or
background .

. 417
. 419
. 422
. 423
. 423
. 427
. 428
. 430
. 431
. 433
. 436
. 437
. 453
. 453
. 457
. 460
. 461
. 462
. 464
. 471
. 472
. 472
. 474
. 475
. 476
. 477
. 479
. 480
. 481
. 482
. 487
. 491
. 496
. 523
. 529
. 531
. 531
. 534
. 540

Contents

. 542
. 543
. 544
. 545
. 546
. 553
. 556
. 557
. 558
. 558
. 560
. 561
. 563
. 570
. 616

. 616

Vii

alloc built-in command for tcsh: Show the amount of dynamic memory acquired 617

bindkey built-in command for tcsh: List all bound keys .

builtins built-in command for tcsh: Prints the names of all built-in commands

bye built-in command for tcsh: Terminate the login shell

chdir built-in shell command for tcsh: Change the working dlrectory

complete built-in command for tcsh: List completions

dirs built-in command for tcsh: Print the directory stack. .

echotc built-in command for tcsh: Exercise the terminal capablhtles in args

filetest built-in command for tcsh: Apply the op file inquiry operator to a file

glob built-in command for tcsh: Write each word to standard output .

hashstat built-in command for tcsh: Print a statistic line on hash table
effectiveness

hup built-in command for tcsh Run command SO |t eX|ts on a hang up S|gnal

limit built-in command for tcsh: Limit consumption of processes

log built-in command for tcsh: Print the watch tcsh shell variable .

login built-in command for tcsh: Terminate a login shell.

logout built-in command for tcsh: Terminate a login shell .

Is-F built-in command for tcsh: List files

notify built-in command for tcsh: Notify user of jOb status changes

onintr built-in command for tcsh: Control the action of the tcsh shell on
interrupts.

popd built-in command for tcsh Pop the dlrectory stack

pushd built-in command for tcsh: Make exchanges within dlrectory stack

rehash built-in command for tcsh: Recompute internal hash table .

repeat built-in command for tcsh: Execute command count times .

sched built-in command for tcsh: Print scheduled event list .

setenv built-in command for tcsh: Set environment variable name to value

settc built-in command for tcsh: Tell tcsh shell the terminal capability cap value

setty built-in command for tcsh: Control tty mode changes

source built-in command for tcsh: Read and execute commands from name

telltc built-in command for tcsh: List terminal capability values . .

uncomplete built-in command for tcsh: Remove completions whose names
match pattern .

unhash built-in command for tcsh Dlsable use of mternal hash table

unlimit built-in command for tcsh: Remove resource limitations .

unsetenv built-in command for tcsh: Remove environmental variables that
match pattern .

watchlog built-in command for tcsh Pnnt the watch sheII vanable

where built-in command for tcsh: Report all instances of command .

which built-in command for tcsh: Display next executed command

tee — Duplicate the output stream .

test — Test for a condition . .

tic — Put terminal entries in the termlnfo database .

time — Display processor and elapsed times for a command

times — Get process and child process times .

touch — Change the file access and modification t|mes

tput — Change characteristics of terminals .

tr — Translate characters .

trap — Intercept abnormal condltlons and mterrupts.

true — Return a value of O . .

tso — Run a TSO/E command from the sheII .

tsort — Sort files topologically .

tty — Return the user’s terminal name.

type — Tell how the shell interprets a name. .

typeset — Assign attributes and values to variables .

uconvdef — Create binary conversion tables

viii 2/0S V1R4.0 UNIX System Services Command Reference

. 617

619

. 619
. 619
. 619
. 623

624
625

. 625

. 625

626

. 626
. 627
. 627
. 627
. 628
. 629

. 629
. 630
. 630
. 631
. 631
. 632

632
633

. 633

634

. 634

. 634
. 635
. 635

. 635
. 636
. 636
. 636
. 636
. 637
. 641
. 642
. 643
. 644
. 646
. 648
. 650
. 651
. 652
. 656
. 657
. 658
. 658
. 660

ulimit — Set process limits .

umask — Set or return the file mode creatlon mask

unalias — Remove alias definitions .

uname — Display the name of the current operatlng system
uncompress — Undo Lempel-Ziv compression of a file.
unexpand — Compress spaces into tabs . .

uniqg — Report or filter out repeated lines in a file.

unlink — Removes a directory entry

unmount — Remove a file system from the f|Ie hlerarchy
unpack — Decode Huffman packed files .

unset — Unset values and attributes of variables and functrons
uucc — Compile UUCP configuration files

uucico daemon — Process UUCP file transfer requests
uucp — Copy files between remote UUCP systems .

uucpd daemon — Invoke uucico for TCP/IP connections from remote UUCP

systems . .
uudecode — Decode a transmrtted brnary frle .
uuencode — Encode a file for safe transmission .
uulog — Display log information about UUCP events
uuname — Display list of remote UUCP systems .
uupick — Manage files sent by uuto and uucp .
uustat — Display status of pending UUCP transfers .
uuto — Copy files to users on remote UUCP systems .
uux — Request command execution on remote UUCP systems

uuxqt daemon — Carry out command requests from remote UUCP systems

vi — Use the display-oriented interactive text editor .

wait — Wait for a child process to end. .

wall — Broadcast a message to logged-in users .

wc — Count newlines, words, and bytes .

whence — Tell how the shell interprets a command name
who — Display information about current users

whoami — Display your effective user name

write — Write to another user .

xargs — Construct an argument list and run a command
yacc — Use the yacc compiler

zcat — Uncompress and display data .

Chapter 3. TSO/E Commands .
BPXBATCH — Run shell commands, sheII scrlpts or executable frles .
ISHELL — Invoke the ISPF shell .

MKDIR — Make a directory. .

MKNOD — Create a character special f|Ie

MOUNT — Logically mount a file system.

OBROWSE — Browse an HFS file .

OCOPY — Copy an MVS data set member or HFS f|Ie to another member or

file
OEDIT — Edit an HFS flle Coe
OGET — Copy an HFS file into an MVS data set .
OGETX — Copy HFS files from a directory to an MVS PDS or PDSE
OHELP — Display online z/OS UNIX System Services publications .
OMVS — Invoke the z/OS shell . Coe
OPUT — Copy an MVS data set member |nto an HFS frle

OPUTX — Copy members from an MVS PDS or PDSE to an HFS d|rectory

OSHELL — Invokes BPXBATCH from TSO/E .
OSTEPLIB — Build a list of files .
UNMOUNT — Remove a file system from the f|Ie hlerarchy

Contents

. 661
. 663
. 664
. 665
. 666
. 667
. 668
. 670
. 671
. 672
. 674
. 675
. 676
. 678

. 681
. 682
. 683
. 684
. 686
. 687
. 688
. 692
. 693

696

. 698
. 728
. 729
. 730
. 731
. 731
. 733
. 734
. 735
. 739
. 742

. 745
. 746
. 748
. 748
. 750
. 751
. 757

. 758
. 763
. 764
. 767
. 771
. 772
. 785

787

. 790
. 791
. 792

ix

X

Appendix A. 0S/390 Shell Command Summary
General Use G e e
Controlling Your Enwronment .

Daemons .

Managing D|rector|es .

Managing Files

Printing Files . . .

Computing and Managmg Loglc .

Controlling Processes .

Writing Shell Scripts

Developing or Porting Applrcatlon Programs .
Communicating with the System or Other Users .
Working with Archives .

Working with UUCP

Appendix B. tcsh Shell Command Summary
General Use G
Controlling Your Enwronment .

Managing Directories . .

Computing and Managmg Loglc .

Managing Files .

Controlling Processes .

Appendix C. Regular Expressions (regexp) .
Summary Ce e e
Examples

Appendix D. Running Shell Scrlpts or Executable Files under MVS
Environments.

BPXBATCH.

Using OSHELL to Run SheII Commands and Scnpts from MVS

Appendix E. BPXCOPY: Copying a Sequential or Partitioned Data Set or
PDSE Member into an HFS File. e e e e e
BPXCOPY .

Appendix F. Localization
Appendix G. Stub Commands .

Appendix H. File Formats .

cpio — Format of cpio archives

magic — Format of the /etc/magic file .

pax — Format of pax archives and special header summary flles
queuedefs — Queue description for at, batch, and cron

tags — Format of the tags file .

tar — Format of tar archives

utmpx — Format of login accounting flles

uucp — Format of UUCP working files.

Appendix I. Setting the Local Time Zone with the TZ Environment
Variable . .
TZ Environment Vanable

Appendix J. Environment Variables .

z/OS V1R4.0 UNIX System Services Command Reference

. 797
. 797
. 797
. 798
. 798
. 799
. 800
. 800
. 800
. 801
. 801
. 801
. 802
. 802

. 803
. 803
. 803
. 804
. 804
. 804
. 804

. 805
. 808
. 808

. 811
. 811
. 817

. 819
. 819

. 825

. 827

. 829
. 829
. 830
. 832
. 834
. 835
. 836
. 838
. 839

. 843
. 843

. 845

Appendix K. Specifying MVS Dataset Names in the Shell Environment

Utilities Supporting MVS Dataset Names .

Appendix L. Automatic Codeset Conversion: Default Status for Specific

Commands.

Appendix M. Accessibility .

Using assistive technologies

Keyboard navigation of the user interfa
Notices .

Trademarks.

Acknowledgments .

Index .

ce.

849

. 849

. 851

. 853
. 853
. 853

. 855
. 856
. 857

. 859

Contents

Xi

Xii z/0S V1R4.0 UNIX System Services Command Reference

Figures

1. Example of a Special Header Summary File .833

© Copyright IBM Corp. 1996, 2002 xiii

XiV z/0S V1R4.0 UNIX System Services Command Reference

Tables

©CONOO AWM~

WWWWWMNMNDMNDMNMDMNMNDMNODNODNDMNDN 2 2 A g
AONASOINOINRON2COONPNRAON2O

Locales Supplied by z/OS UNIX System Services .

The Order of Operations for awk .

c89, cc, and c++ Programs and Reference Documenta‘uon

Possible txtflag / CCSID Combinations

Automatic Conversion and File Tag Behavior: UNIX to UNIX Copylng
Automatic Conversion and File Tag Behavior: MVS to UNIX Copying .
Autoconversion and File Tag Behavior: UNIX to MVS Copying .

cp Format: File to File and File ... (multiple files) to Directory .

cp Format: File to File S

cp Format: File... (multiple files) to D|rectory .

Fields in the Configuration File (inetd daemon)

Explanation of the ipcs Command Listing

Internal Table Sizes (lex command)

. =0 c=codeset Option and mv.

mv Format: File to File and File ... (multiple files) to Directory .
mv Format: File to File .

mv Format: File... (multiple files) to Dlrectory

Max UID/GID Values . .

Shell Operators (sh command) .

Built-in Shell Variables (sh command).

Shell Variables for Automatic Conversion (sh command)
Standard Input/Output Syntax for tcsh Shell

. tcsh Built-in Shell Variables

. tcsh Environment Variables

. tcsh Shell Variables for Automatic Conver3|on

. Various Formats of the OMVS CONVERT Command (OMVS command) .
Locales, Their Conversion Tables, and Default Escape Characters (OMVS command) .

Regular Expression Features (regexp)

. Archive File: ASCII Header.
. Archive File: UNIX-Compatible Format
. Archive File: USTAR Format .

Miscellaneous Environment Variables .
Commands that Allow Automatic Conversion by Default
Commands that Disallow Automatic Conversion by Default .

© Copyright IBM Corp. 1996, 2002

. 30

. 63
. 125
. 144
. 144
. 145
. 148
. 148
. 149
. 293
. 300
. 314
. 407
. 410
. 411
. 411
. 447
. 509
. 517
. 520
. 590
. 600
. 612
. 613
. 773
. 774
. 808
. 829
. 836
. 836
. 845
. 851
. 851

XV

XVi z/0S V1R4.0 UNIX System Services Command Reference

Permuted Index

The permuted index is a guide to the command descriptions. It helps you explore
the shell and TSO/E commands and what they can do for you.

Each line in the permuted index is taken from the title of a command—its “purpose
line.” The words of the purpose are shifted to get entries for the index. For example,
the purpose of the comm shell command is:

comm — Show and select or reject lines common to two files

This produces the following permuted index entries:

and select or reject lines common to two files. Show comm
reject lines common to two files. Show and select or comm
Show and select or reject lines common to two files. comm
files. Show and select or reject lines common to two comm
to two files. Show and select or reject lines common comm
lines common to two files. Show and select or reject comm

The permuted index is sorted alphabetically in the middle column by each
significant word in the title line. The first column contains whatever is left of the title
line—either before or after the word or words in the middle column. The last column
contains the place where you would go to find the information you are seeking. The
purpose line of the title always begins after the command name. The purpose line
always ends with a period.

The permuted index lets you look up commands according to significant words in
their purpose lines. For example, suppose you want to show lines common to two
files, and you don’t know which command does this. Looking up the word show in
the middle column of the permuted index, you find three entries:

lines common to two files. Show and select or reject comm
export attributes for variables, or show currently exported variables. Set the export
two text files and show the differences. Compare diff

Each index entry is associated with a command description (given in the third
column). By looking at the purpose lines, you should be able to determine which
command does what you want and go directly to the appropriate description—in this
case, the comm command.

If you had looked in the permuted index under the word file or files, you would have
found 47 entries. Again, by looking at the purpose lines, you should be able to
determine which command does what you want. You could also have looked under
lines, reject, or select. With any of these words, you would have found the
appropriate command: comm.

a shell function or . (dot) script. Return from return
interrupts. Intercept abnormal conditions and trap
group and ACL entries. Display owner, getfacl
change ACLs. Set, remove, and setfacl
sent by uuto and uucp. Manage files uupick
Change the file access and modification times. touch
Configure the AF_UEINT stack. configstk
Create a tracked alias. hash
Remove alias definitions. unalias

© Copyright IBM Corp. 1996, 2002 XVii

create a command

Display

Display

messages.

Display owner, group

Set, remove and

Call up

Talk to

Write to

current

language. Use the

up a file. Manipulate the tar
in/out file

maintain library

portable

a command. Construct an
expression. Evaluate

shell. Return

output. Write

command by concatenating
Use the arbitrary-precision
Evaluate an

Interpret

Set or query

values to functions.

values to variables.

to functions. Assign

to variables. Assign
Change the mount
functions. Unset values and
directory names and

a file. Change

Configure the

written in the

tar archive files to copy or
Schedule regular

job to the

page-by-page

Copy files

Create

a transmitted

printable strings in
Compute checksum and
into the foreground.

to logged-in users.

HFS file.

of files.

when system is not

write checksums and
words, and

an executable file. Compile
and byte counts.

the arbitrary-precision arithmetic
Display

another system.

from remote UUCP systems.
Interpret ASA/FORTRAN
from other sites.

modify message

alias. Display or

all current appointments.

all or part of a message catalog.
Allow or refuse

and ACL entries.

and change ACLs.

another system.

another user.

another user.

appointments. Display all
arbitrary-precision arithmetic calculation
archive files to copy or back
archives. Copy

archives. Create or

archives. Interchange

argument list and run
arguments as an

arguments from the

arguments to standard
arguments. Construct a
arithmetic calculation language.
arithmetic expression.
ASA/FORTRAN carriage control.
ASCII/EBCDIC code pages for the terminal.
Assign attributes and

Assign attributes and

attributes and values

attributes and values

attributes of a file system.
attributes of variables and
attributes. List file and

audit flags for

automount facility.

awk language. Process programs
back up a file. Manipulate the
background jobs.

background. Move a

basis. Display files on a
between remote UUCP systems.
binary conversion tables.

binary file. Decode

binary files. Display

block count for file.

Bring a job

Broadcast a message

Browse an

Build a list

busy. Run commands

byte counts. Calculate and
bytes. Count newlines,

C/MVS™ source code and create
Calculate and write checksums
calculation language. Use
calendar for a month or year.
Call up

Carry out command requests
carriage control.

Carry out command requests
catalogs. Create or

XViil z/0S V1R4.0 UNIX System Services Command Reference

alias
calendar
dspcat
mesg
getfacl
setfacl
cu

talk

write
calendar
bc

tar

cpio

ar

pax
xargs
expr
print
echo
eval

bec

let

asa

chep
functions
typeset
functions
typeset
chmount
unset

Is
chaudit
automount
awk

tar
crontab
bg

more
uucp
uconvdef
uudecode
strings
sum

fg

wall
OBROWSE
OSTEPLIB
batch
cksum
wc
c89/cc/c++
cksum

bc

cal

cu

uuxqt
asa
uuxqt
gencat

part of the message

diff output.

for a file.

terminals.

tag information.

of a running process.
working directory.

and modification times.

a file or directory.

a file or directory.

of a file system.

of a file or directory.

for the execution of a command.
new group.

passwords.

Create a

a FIFO or

Translate

to another. Convert
pathname.

Compute

Calculate and write

Get process and

Wait for a

Run a command and open,
Compile C/MVS source
Set or query

Convert characters from one
Display reason

nonzero exit

files by Huffman

or create a

in the shell. Interactive
the file descriptors. Run a
Run a

Run a

arguments. Construct a
Request

Run a TSO/E

Process a

Process a

Process a

the shell interprets a
parameters. Set or unset
Carry out

for the execution of a

list and run a

elapsed times for a

a simple

Run shell

is not busy. Run

and select or reject lines
Report status of the interprocess
directories.

the terminal description.
files.

and show the differences.
terminfo database entries.
configuration files.

catalog. Display all or

Change a file using

Change audit flags

Change characteristics of
Change file

Change priorities

Change the

Change the file access

Change the group owner of
Change the mode of

Change the mount attributes
Change the owner or group
Change the root directory
Change to a

Change user

character special file.

character special file. Make
characters.

characters from one code set
Check a

checksum and block count for file.
checksums and byte counts.
child process times.

child process to end.

close, or copy the file descriptors.
code and create an executable file.
code pages for the terminal.
code set to another.

code text.

code. Return a

coding. Compress

command alias. Display
command and history editing
command and open, close, or copy
command at a different priority.
command at a specified time.
command by concatenating
command execution on remote UUCP systems.
command from the shell.
command history list.

command history list.

command history list.

command name. Tell how
command options and positional

command requests from remote UUCP systems.

command. Change the root directory
command. Construct an argument
command. Display processor and
command. Run

commands, shell scripts, or executable files.
commands when system

common to two files. Show
communication facility.

Compare

Compare and print

Compare two

Compare two text files

Compile term descriptions into
Compile UUCP

dspcat
patch
chaudit
tput
chtag
renice
cd

touch
chgrp
chmod
chmount
chown
chroot
newgrp
password
MKNOD
mknod

tr

iconv
pathchk
sum
cksum
times
wait
exec
c89/ccl/c++
chcp
iconv
bpxmtext
false
pack
alias
shedit
exec
nice

at

eval

uux

TSO

fc
history

r
whence
set
uuxqt
chroot
xargs
time
command
BPXBATCH
batch
comm
ipcs
dircmp
infocmp
cmp

diff

tic

uucc

Permuted Index

Xix

and create an executable file.
the yacc

Return the nondirectory

Return the directory

spaces into tabs

by Hoffman coding

Lempel-Ziv file

Undo Lempel-Ziv

block count for file.

a text file.

a command by

for a

Intercept abnormal

STREAMS physical file system
Get

Compile UUCP

AF_EINT stack.

automount facility.

Invoke uucico for TCP/IP

by concatenating arguments.
and run a command.
ASA/FORTRAN carriage

a file.

Create binary

on remote UUCP systems.
from one code set to another.
file.

Convert and

an MVS™ data set.

member into an HFS file.
member or HFS file to another member or file.
between remote UUCP systems.
to users on remote UUCP systems.
partitioned data set (PDS) or PDSE.
PDSE to an HFS directory.

file archives.

standard input.

Manipulate the tar archive files to
command and open, close, or
of a file. Merge

checksum and block

and bytes.

checksums and byte

special file.

alias. Display or

to a file.

C/MVS source code and

alias.

tables.

to a file.

library archives.

message catalogs.

ex, more, and vi.

return the file mode

file meeting specified

Display all

shell file in the

shell file in the

the name of the

Compile C/MVS source code
compiler. Use

components of a pathname.
components of a pathname.
Compress

Compress files

compression.

compression of a file.

Compute checksum and
Concatenate or display
concatenating arguments. Construct
condition. Test

conditions and interrupts.
configuration. Set and query the
configuration values.

configuration files.

Configure the

Configure the

connections from remote UUCP systems.
Construct a command

Construct an argument list
control. Interpret

Convert and copy

conversion tables

Copy files to users

Convert characters

Copy a

copy a file.

Copy an HFS file into

Copy an MVS data set

Copy an MVS data set

Copy files

Copy files

Copy HFS file from a directory to an MVS
Copy members from an MVS PDS or
Copy in/out

Copy one line of

copy or back up a file.

copy the file descriptors. Run a
corresponding or subsequent lines
count for file. Compute

Count newlines, words,

counts. Calculate and write
Create a character

create a command

Create a link

create an executable file. Compile
Create a tracked

Create binary conversion

Create a hard link

Create or maintain

Create or modify

Create tag files for

creation mask. Set or

criteria. Find a

current appointments.

current environment. Run a
current environment. Run a
current operating system. Display

XX z/OS V1R4.0 UNIX System Services Command Reference

c89/cc/c++
yacc
basename
dirname
unexpand
pack
compress
uncompress
sum

cat

eval

test

trap
configstrm
getconf
uucc
configstk
automount
uucpd
eval

xargs

asa

dd
uconvdef
uuto
iconv

cp

dd

OGET
OPUT
OCOPY
uucp
uuto
OGETX
OPUTX
cpio

line

tar

exec
paste

sum

wc

cksum
MKNOD
alias

In
c89/cc/c++
hash
uconvdef
link

ar

gencat
ctags
umask
find
calendar
(dot)

uname

to the

of jobs in the

information about

each line of a file.

file recovery.

display

term descriptions into
from a directory to an MVS partitioned
HFS file. Copy an MVS
member or file. Copy an MVS
file into an MVS

sorted, textual relational
Display the

the

binary file.

packed files

locale environment.
name not

alias

Generate source

print the terminal
Compile term

close, or copy the file

in files.

type.

Change a file using

files and show the

Run commands at a
Compare

Remove old files from a
pathname. Return the
command. Change the root
Remove a

Removes a

the working

List file and

(PDS) or PDSE. Copy HFS files from a
the working

of a file or

of a file or

group of a file or

PDS or PDSE to an HFS
a

a

a

a file or

for a month or year
appointments.

message catalog.

from message catalogs.
environment for a process.
interactively.
page-by-page basis.
about current users.
UUCP systems.

about UUCP events.
publications.

a command alias.

in binary files.

current process. Send a SIGSTOP
current session. Return the status
current users. Display

Cut out selected fields from
daemon. vi

data. Uncompress and

database entries. Compile

data set (PDS) or PDSE. Copy HFS files
data set member into an

data set member or HFS file to another
data set. Copy an HFS
databases. Join two

date and time.

debugger. Use

Decode a transmitted

Decode Huffman

Define the

defined. Indicate function
definitions. Remove

dependency information.
description. Compare and

descriptions into terminfo database entries.

descriptors. Run a command and open,
Detect spelling errors

Determine file

diff output.

differences. Compare two text
different priority.

directories.

directory.

directory components of a
directory for the execution of a
directory entry.

directory entry.

directory name. Return

directory names and attributes.
directory to an MVS partitioned data set
directory. Change

directory. Change the group owner
directory. Change the mode
directory. Change the owner or
directory. Copy members from an MVS
directory. Make

directory. Make

directory. Remove

directory. Rename or move
Display a calendar

Display all current

Display all or part of a

Display selected messages
Display environments, or set an
Display files

Display files on a

Display information

Display list of

Display log information

Display online

Display or create

Display printable strings

suspend
jobs
who

cut
exrecover
zcat

tic
OGETX
OPUT
OCOPY
OGET
join

date

dbx
uudecode
unpack
localedef
autoload
unalias
makedepend
infocmp
tic

exec
spell

file
patch
diff

nice
dircmp
skulker
dirname
chroot
rm
unlink
pwd

Is
OGETX
cd
chgrp
chmod
chown
OPUTX
mkdir
MKDIR
rmdir
mv

cal
calendar
dspcat
dspmsg
env

P9

zcat
who
uuname
uulog
OHELP
alias
strings

Permuted Index

XXi

times for a command.
text.

online reference manual.
symbols.

UUCP transfers.
executable files.

space in the file system.
and time.

of a file.

of a file.

the current operating system.
pending UUCP transfers.
user name.

environment variables.
Uncompress and

Unpack and

Set or

Concatenate or

Use the

a specified format.

output stream.

Cut out selected fields from
Integer value. Mark

Set or query ASCII/
editor. Use the

HFS file.

command and history
sed noninteractive stream
interactive text
line-oriented text

Display your

text

command. Display processor and
or receive

for safe transmission.

or send it a signal.

child process to

into terminfo database
and ACL

Print the terminal

a directory

a directory

environments, or set an
the locale

file in the current

file in the current

for a process. Display
Display the values of
Detect spelling

arithmetic expression.

an expression.

about UUCP

Create tag files for

Use the

C/MVS source code and create an
information from an
object, library, or

Run shell commands, shell scripts, or
the root directory for the

Display processor and elapsed
Display reason code

Display sections of the

Display static system

Display status of pending

Display symbol table of object, library, or
Display the amount of free

Display the date

Display the first part

Display the last part

Display the name of

Display the status of

Display your effective

Display the values of

display data.

display Huffman packed files.
display terminal options.

display text files.

display-oriented text editor.

Dump a file in

Duplicate the

each line of a file.

each variable with an

EBCDIC code pages for the terminal.
ed line-oriented text

Edit an

editing in the shell. Interactive
editor. Start the

editor. Use the display-oriented
editor. Use the ed

effective user name.

editor. Use the ex

elapsed times for a

electronic mail. Send

Encode a file

End a process or job,

end. Wait for a

entries. Compile term descriptions
entries. Display owner, group
entries in the termcap file.

entry. Remove

entry. Removes

environment for a process. Display
environment. Define

environment. Run a shell
environment. Run a shell
environments, or set an environment
environment variables.

errors in files.

Evaluate an

Evaluate arguments as

events. Display log information

ex, more, and vi.

ex text editor.

executable file. Compile
executable file. Remove unnecessary
executable files. Display symbol table of
executable files.

execution of a command. Change

XXii z/0S V1R4.0 UNIX System Services Command Reference

time
bpxmtext
man
sysvar
uustat
nm

df

date
head
tail
uname
uustat
whoami
printenv
zcat
pcat
stty

cat

Vi

od

tee

cut
integer
chep
ed
OEDIT
shedit
sed

vi

ed
whoami
ex

time
mailx
uuencode
kill

wait

tic
getfacl
captoinfo
rm
unlink
env
localedef
(dot)

env
printenv
spell

let

expr
uulog
ctags

ex
c89/ccl/c++
strip

nm
BPXBATCH
chroot

an interval of time. Suspend
Request command

a nonzero

in the shell script.

to spaces.

variable for

an arithmetic

as an

Set, reset, and display
Configure the automount
interprocess communication
regular file

a file. Cut out selected
file. Make a

Make a

times. Change the

and attributes. List

Copy in/out

Manage

Lempel-Ziv

open, close, or copy the
pattern. Search a
pattern. Search a
pattern. Search a
transmission. Encode a
file system from the

file system from the
format. Dump a

it to standard output. Format a
environment. Run a shell
environment. Run a shell
set. Copy an HFS

Split a

criteria. Find a

Set or return the

the mode of a

group owner of a

owner or group of a

or move a

Vi

Summarize usage of
attributes of a

of free space in the
mount a

mount a

query the STREAMS physical
Remove a

Remove a

information. Change
printer. Send a

an MVS data set member or HFS
Process UUCP
Determine

Change a

an HFS

flags for a

and create an executable
block count for

display a text

execution of a process for

execution on remote UUCP systems.

exit code. Return

Exit from a loop

Expand tabs

export. Set a

expression. Evaluate
expression. Evaluate arguments
extended attributes for files.
facility.

facility. Report status of the
feeds. Remove

fields from each line of
FIFO or character special
FIFO special file.

file access and modification
file and directory names
file archives.

file caches.

file compression.

file descriptors. Run a command and

file for a specified

file for a specified

file for a specified

file for ssafe

file hierarchy. Remove a

file hierarchy. Remove a

file in a specified

file in paginated form and send
file in the current

file in the current

file into an MVS data

file into manageable pieces.

file meeting specified

file mode creation mask.

file or directory. Change

file or directory. Change the

file or directory. Change the

file or directory. Rename

file recovery daemon.

file space.

file system. Change the mount
file system. Display the amount
file system. Logically

file system. Logically

file system configuration. Set and
file system from the file hierarchy.
file system from the file hierarchy.
file tag

fileto a

file to another member or file. Copy
file transfer requests.

file type.

file using diff output.

file. Browse

file. Change audit

file. Compile C/MVS source code
file. Compute checksum and

file. Concatenate or

sleep

uux

false
break
expand
export

let

expr
extattr
automount
ipcrm

col

cut
mknod
mkfifo
touch

Is

cpio
filecache
compress
exec
egrep
fgrep
grep
uuencode
unmount
UNMOUNT
od

pr

(dot)

OGET
split

find
umask
chmod
chgrp
chown

mv
exrecover
du
chmount
df

mount
MOUNT
configstrm
unmount
UNMOUNT
chtag

Ip

OCOPY
uucico

file

patch
OBROWSE
chaudit
c89/cc/c++
sum

cat

Permuted Index XXili

copy a
a

set member into an HFS

HFS file to another member or
link to a

character special

hard link to a

from each line of a
transmitted binary

part of a

part of a

an HFS

FIFO special

or character special

to copy or back up a
subsequent lines of a

ina

in the termcap

message source

from an executable

repeated lines in a

of a

differences. Compare two text
UUCP systems. Copy
Compress

Remove old

partitioned data set (PDS) or PDSE. Copy HFS
Display

Create tag

basis. Display

Manage

a file. Manipulate the tar archive
Sort

on remote UUCP systems. Copy
Split

list of

two

configuration

Huffman packed

spelling errors in

in binary

library, or executable
processes with open files.

and interdependent

shell scripts, or executable
reject lines common to two
Huffman packed files.

a file. Report or

meeting specified criteria.

file. Display the

file. Change audit

job into the

Format a file in paginated

and send it to standard output.
in a specified

Write

Interpret ASA/

system. Display the amount of
Indicate

file. Convert and

file. Copy

file. Copy an MVS data

file. Copy an MVS data set member or
file. Create a

file. Create a

file. Create a

file. Cut out selected fields

file. Decode a

file. Display the first

file. Display the last

file. Edit

file. Make a

file. Make a FIFO

file. Manipulate the tar archive files
file. Merge corresponding or

file. Number lines

file. Print the terminal entries

file. Preprocess a

file. Remove unnecessary information
file. Report or filter out

file. Undo Lempel-Ziv compression
files and show the

files between remote

files by Huffman coding.

files from a directory.

files from a directory to an MVS
files interactively.

files for ex, more and vi.

files on a page-by-page

files sent by uuto and uucp.

files to copy or back up

files topologically.

files to users

files.

files. Build a

files. Compare

files. Compile UUCP

files. Decode

files. Detect

files. Display printable strings in
Files. Display symbol table of object,
files. List process IDs of

files. Maintain program-generated
files. Run shell commands,

files. Show and select or

files. Unpack and display

filter out repeated lines in

Find a file

first part of a

flags for a

foreground. Bring a

form and send it to standard output.
Format a file in paginated form
format. Dump a file

formatted output.

FORTRAN carriage control.

free space in the file

function name not defined.

XXiV z/0S V1R4.0 UNIX System Services Command Reference

dd

cp

OPUT
OCOPY
In
MKNOD
link

cut
uudecode
head

tail
OEDIT
mkfifo
mknod
tar

paste

nl
captoinfo
mkcatdefs
strip

uniq
uncompress
diff

uucp
pack
skulker
OGETX
P9

ctags
more
uupick
tar

tsort
uuto
csplit
OSTEPLIB
cmp
uucc
unpack
spell
strings
nm

fuser
make
BPXBATCH
comm
pcat

uniq

find

head
chaudit
fg

pr

pr

od

printf

asa

df
autoload

Return from a shell
Assign attributes and values to
vis_pfsctl HFS

attributes of variables and
mkcatdefs to

for lexical tasks.
dependency information.
Display owner,

directory. Change the owner or
or directory. Change the
a new

that is immune to

Create a

PDS or PDSE to an

data set. Copy an

Copy an MVS data set member or
Browse an

Edit an

data set member into an
partitioned data set (PDS) or PDSE. Copy
Invoke vfs_pfsctl

from the file

from the file

Interactive command and
a command

a command

a command

a name. Tell

a command name. Tell
Compress files by
Decode

Unpack and display

the user

not defined.

files. List process

or shared memory

a utility that is

Display

file tag

file. Remove unnecessary
locale-specific

Display log

of standard

source dependency
locale-specific

archives. Copy

line of standard

line from standard
variable with an

in the shell.

files

Use the display-oriented
and interrupts.

archives.
program-generated and
carriage control.

Tell how the shell

Report status of the

how the shell

function or . (dot) script.
functions.

functions. Invoke

functions. Unset values and
gencat. Pipe output from
Generate a program

Generate source

group and ACL entries.

group of a file or

group owner of a file

group. Change to

hangups. Start a utility

hard link to a file.

HFS directory. Copy members from an MVS
HFS file into an MVS

HFS file to another member or file.
HFS file.

HFS file.

HFS file. Copy an MVS

HFS files from a directory to an MVS
HFS functions.

hierarchy. Remove a file system
hierarchy. Remove a file system
history editing in the shell.

history list. Process

history list. Process

history list. Process

how the shell interprets

how the shell interprets

Huffman coding.

Huffman packed files.

Huffman packed files.

identity. Return

Indicate function name

IDs of processes with open

IDs. Remove message queues, semaphore sets,
immune to hangups. Start
information about current users.
information. Change

information from an executable
information. Get

information on UUCP events.
input. Copy one line

information. Generate

information. Get

in/out file

input. Copy one

input. Read a

integer value. Mark each
Interactive command and history editing
interactively. Display

interactive text editor.

Intercept abnormal conditions
Interchange portable
interdependent files. Maintain
Interpret ASA/FORTRAN

interprets a command name.
interprocess communication facility.
interprets a name. Tell

return
functions
confighfs
unset
runcat
lex

makedepend

getfacl
chown
chgrp
newgrp
nohup
link
OPUTX
OGET
OCOPY

OBROWSE

OEDIT
OPUT
OGETX
confighfs
unmount

UNMOUNT

shedit
fc
history
r

type
whence
pack
unpack
pcat

id
autoload
fuser
ipcrm
nohup
who
chtag
strip
locale
uucp
line

makedepend

locale
cpio
line
read
integer
shedit
P9

vi

trap
pax
make
asa
whence
ipcrs
type

Permuted Index

XXV

conditions and

of a process for an

shell.

tcsh shell.

from remote UUCP systems.
HFS functions.

ISPF shell.

shell.

Invoke the

shell script. Skip to the next
foreground. Bring a
background. Move a

signal. End a process or
Schedule regular background
Return the status of

textual relational databases.
in the awk

arbitrary-precision arithmetic calculation
file. Display the

of a file. Undo

compression.

a program for

or maintain

Display symbol table of object,
process

Remove reverse

input. Read a

out selected fields from each
standard input. Copy one
Use the ed

Show and select or reject
Number

or filter out repeated

lines. Break

Merge corresponding or subsequent
into shorter

Create a hard

file. Create a

command. Construct an argument
names and attributes.

Build a

Display

processes with open files.
command history

command history

command history

Define the

Get

messages.

Broadcast a message to
UUCP events. Display

file system.

file system.

a user's

Exit from a

to the next iteration of a
Read and send

receive electronic

Create or

interrupts. Intercept abnormal
interval of time. Suspend execution
Invoke a

Invoke a

Invoke uucico for TCP/IP connections
Invoke vfs_pfsctl

Invoke the

Invoke the

ISPF shell.

iteration of a loop in a

job into the

job to the

job, or send it a

jobs.

jobs in the current session.
Join two sorted,

language. Process programs written
language. Use the

last part of a

Lempel-Ziv compression
Lempel-Ziv file

lexical tasks. Generate
library archives. Create
library, or executable files.
limits. Set

line feeds.

line from standard

line of a file. Cut

line of

line-oriented text editor.
lines common to two files.
lines in a file.

lines in a file. Report

lines into shorter

lines of a file.

lines. Break lines

link to a file.

link to a

list and run a

List file and directory

list of files.

list of UUCP systems.

list process IDs of

list. Process a

list. Process a

list. Process a

locale environment.
locale-specific information.
Log

logged-in users.

log information about
Logically mount a
Logically mount a

login name. Return

loop in a shell script.

loop in a shell script. Skip
mail messages.

mail. Send or

maintain library archives.

XXVI z/0S V1R4.0 UNIX System Services Command Reference

trap
sleep

sh

tcsh
uucpd
confighfs
ISHELL
OMVS
ISHELL
continue
fg

bg

kill
crontab
jobs

join

awk

bc

tail
uncompress
compress
lex

ar

nm
ulimit
col

read

cut

line

ed
comm

nl

uniq

fold
paste
fold

link

In

xargs

Is
OSTEPLIB
uuname
fuser

fc
history

r
localedef
locale
logger
wall
uulog
mount
MOUNT
logname
break
continue
mail
mailx

ar

interdependent files.

directory.

directory.

special file.

character special file.

file caches.

sent by uuto and uucp.

Split a file into

copy or back up a file.

online reference

as read-only.

with an integer value.

the file mode creation

Find a file

Copy an MVS data set

set member or HFS file to another
to another member or file. Copy an MVS data set
to an HFS directory. Copy
semaphore sets, or

lines of a file.

Display selected messages from
Display all or part of a

Create or modify

Display selected

shared message IDs. Remove
Preprocess a

Broadcast a

Log

refuse

send mail

Pipe output from

or directory. Change the

Create or

file access and

Display a calendar for a

Create tag files for ex,

system. Logically

system. Logically

file system. Change the
directory. Rename or

to the background.

an HFS file. Copy an

another member or file. Copy an
HFS file into an

Copy HFS files from a directory to an
directory. Copy members from an
online

effective user

Indicate function

operating system. Display the
file and directory

toa

bytes. Count

pathname. Return the

Start the sed

Return a

function name

Do

Do

Maintain program-generated and
Make a

Make a

Make a FIFO

Make a FIFO or

Manage

Manage files

manageable pieces.

Manipulate the tar archive files to
manual. Display sections of the
Mark a variable

Mark each variable

mask. Set or return

meeting specified criteria.

member into an HFS file.

member or file. Copy an MVS data
member or HFS file

members from an MVS PDS or PDSE
memory IDs. Remove message queues,
Merge corresponding or subsequent
message catalogs.

message catalog.

message catalogs.

messages from message catalogs.
message queues, semaphore sets, or
message source file.

message to logged-in users.
messages.

messages. Allow or

messages. Read and

mkcatdefs to gencat.

mode of a file

modify message catalogs.
modification times. Change the
month or year.

more, and Vvi.

mount a file

mount a file

mount attributes of a

move a file or

Move a job

MVS data set member into

MVS data set member or HFS file to
MVS data set. Copy an

MVS partitioned data set (PDS) or PDSE.
MVS PDS or PDSE to an HFS
publications. Display

name. Display your

name not defined.

name of the current

names and attributes. List

new group. Change

newlines, words, and

nondirectory components of a
noninteractive stream editor.
nonzero exit code.

not defined. Indicate

nothing, successfully.

nothing, successfully.

make
mkdir
MKDIR
mkfifo
mknod
filecache
uucpd
split

tar

man
readonly
integer
umask
find
OPUT
OCOPY
OCOPY
OPUTX
ipcrm
paste
dspmsg
dspcat
gencat
dspmsg
ipcrm
mkcatdefs
wall
logger
mesg
mail
runcat
chmod
gencat
touch
cal
ctags
mount
MOUNT
chmount
mv

bg
OPUT
OCOPY
OGET
OGETX
OPUTX
OHELP
whoami
autoload
uname
Is
newgrp
wc
basename
sed
false
autoload
(colon)

Permuted Index ~ XXVii

in a file.

Display symbol table of

Remove

Copy

publications. Display

Display sections of the
descriptors. Run a command and
of processes with

Display online

Invoke the

name of the current

Set or unset command

utility

display terminal

mkdefs to gencat. Pipe

Duplicate the

using diff

in paginated form and send it to standard
formatted

to standard

ACL entries. Display

directory. Change the group

file or directory. Change the
Decode Huffman

Unpack and display Huffman
Display files on a

Set or query ASCII/EBCDIC code
standard output. Format a file in
command options and positional
positional

Return to the shell’'s

options.

Display all or

HFS files from a directory to an MVS
Change user

a

components of a

for a specified

for a specified

for a specified

directory. Copy members from an MVS
from a directory to an MVS
Display status of

Copy members from an MVS PDS or
to an MVS partitioned data set (PDS) or
into manageable

Configure the AF_UEINT

Set and query the STREAMS
from mkcatdefs to gencat.
Display the status of

Interchange

Shift

unset command options and
message source file.

Compare and

in the termcap file.

Display

file to a

Change

Number lines

object, library, or executable files.
old files from a directory.

one line of standard input.
online

online reference manual.

open, close, or copy the file
open files. List process IDs
publications.

&oshell;.

operating system. Display the
options and positional parameters.
options. Parse

options. Set or

output from

output stream.

output. Change a file

output. Format a file

output. Write

output. Write arguments
owner, group and

owner of a file or

owner or group of a

packed files.

packed files.

page-by-page basis.

pages for the terminal.
paginated form and send it to
parameters. Set or unset
parameters. Shift

parent process or to TSO/E.
Parse utility

part of a message catalog.
partitioned data set (PDS) or PDSE. Copy
passwords.

pathname. Check

pathname. Return the directory
pattern. Search a file

pattern. Search a file

pattern. Search a file

PDS or PDSE to an HFS

PDS or PDSE. Copy HFS files
pending UUCP requests.
PDSE to an HFS directory.
PDSE. Copy HFS files from a directory
pieces. Split a file

stack.

physical file system configuration.
Pipe output

pending UUCP transfers.
portable archives.

positional parameters.
positional parameters. Set or
Preprocess a

print the terminal description.
Print the terminal entries
printable strings in binary files.
printer. Send a

priorities of a running process.

xxviil z/0S V1R4.0 UNIX System Services Command Reference

nl

nm
skulker
line
OHELP
man
exec
fuser
OHELP
OMVS
uname
set
getopts
stty
runcat
tee
patch

pr

printf
echo
getfacl
chgrp
chown
unpack
pcat
more
chep
pr

set

shift
exit
getopts
dspcat
OGETX
password
pathchk
dirname
egrep
fgrep
grep
OPUTX
OGETX
uustat
OPUTX
OGETX
split
configstk
configstrm
runcat
uustat
pax
shift

set
mkcatdefs
infocmp
captoinfo
strings
Ip
renice

at a different

history list.

history list.

history list.

the awk language.

file transfer requests.
process times. Get

time. Suspend execution of a
open files. List

to the shell’s parent

Set

it a signal. End a

process and child

for a child

priorities of a running

an environment for a
status of a

toa

to the current

List process IDs of

for a command. Display
tasks. Generate a

files. Maintain

awk language. Process
z/0S

for the terminal. Set or
query the STREAMS physical file
Remove message

from standard input.

mail messages.

variable as

Display

Send or

vi file

of the online

Allow or

Schedule

files. Show and select or
two sorted, textual
command requests from
files between

files to users on

for TCP/IP connections from
command execution on
directory.

directory entry.

file system from the file hierarchy.
file system from the file hierarchy.
definitions.

ACLs. Set

shared memory IDs.

from a directory.

line feeds.

an executable file.
directory entry.

file or directory.

Report or filter out

lines in a file.

on remote UUCP systems.

priority. Run a command

Process a command

Process a command

Process a command

Process programs written in
Process UUCP

process and child

process for an interval of
process IDs of processes with
process or to TSO/E. Return
process limits.

process or job, or send

process times. Get

process to end. Wait

process. Change

process. Display environments, or set
process. Return the

process. Send a SIGSTOP
process. Send a SIGSTOP
processes with open files.
processor and elapsed times
program for lexical
program-generated and interdependent
programs written in the
publications. Display online
query ASCII/EBCDIC code pages
system configuration. Set and

queues, semaphore sets, or shared memory IDs.

Read a line

Read and send

read-only. Mark a

reason code text.

receive electronic mail.

recovery daemon.

reference manual. Display sections
refuse messages.

regular background jobs.

reject lines common to two
relational databases. Join

remote UUCP systems. Carry out
remote UUCP systems. Copy
remote UUCP systems. Copy
remote UUCP systems. Invoke uucico
Remote UUCP systems. Request
Remove a

Remove a

Remove a

Remove a

Remove alias

remove and change

Remove message queues, semaphore sets, or
Remove old files

Remove reverse

Remove unnecessary information from
Removes a

Rename or move a

repeated lines in a file.

Report or filter out repeated
Request command execution

nice

fc
history

r

awk
uucico
times
sleep
fuser
exit
ulimit
kill
times
wait
renice
env

ps

stop
suspend
fuser
time

lex

make
awk
OHELP
chep
configstrm
ipcrm
read
mail
readonly
bpxmtext
mailx
exrecover
man
mesg
crontab
comm
join
uuxqt
uucp
uuto
uucico
uux
rmdir

rm
unmount
UNMOUNT
unalias
setfacl
ipcrm
skulker
col

strip
unlink
mv

uniq
uniq

uux

Permuted Index

XXix

file transfer

Carry out command

Initiate UUCP

interprocess communication facility.
exit code.

login name.

of 0.

the shell.

or . (dot) script.

user identity.

of a pathname.

creation mask. Set or

of a pathname.

of a process.

in the current session.
terminal name.

directory name.

parent process or to TSO/E.
Remove

of a command. Change the
simple command.

or copy the file descriptors.
a different priority.

in the current environment.
in the current environment.
from the shell.

system is not busy.

shell scripts, or executable files.
an argument list and
Change priorities of a
Encode a file for
background jobs.

in a shell

function or . (dot)

of a loop in a shell

Run shell commands, shell
a specified pattern.

a specified pattern.

a specified pattern.

manual. Display

editor. Start the

to two files. Show and

of a file. Cut out

Display

Remove message queues
to a printer.

to a process.

to the current process.

a process or job, or

file in paginated form and
Read and

electronic mail.

Manage files

jobs in the current

process. Display environments, or
physical file system configuration.
file. Copy an MVS data
terminal options.

code pages for the terminal.

requests. Process UUCP
requests from other sites.

requests from TCP/IP from remote systems.

Report status of the

Return a nonzero

Return a user’s

Return a value

Return arguments from

Return from a shell function
Return the

Return the directory components
return the file mode

Return the nondirectory components
Return the status

Return the status of jobs
Return the user’s

Return the working

Return to the shell’s

reverse line feeds.

root directory for the execution
Run a

Run a command and open, close,
Run a command at

Run a shell file

Run a shell file

Run a TSO/E command

Run commands when

Run shell commands,

run a command. Construct
running process.

safe transmission.

Schedule regular

script. Exit from a loop

script. Return from a shell
script. Skip to the next iteration
scripts, or executable files.
Search a file for

Search a file for

Search a file for

sections of the online reference
sed noninteractive stream
select or reject lines common
selected fields from each line

selected messages from message catalogs.

semaphore sets, or shared memory IDs.
Send a file

Send a SIGSTOP

Send a SIGSTOP

send it a signal. End

send it to standard output. Format a
send mail messages.

Send or receive

sent by uuto and uucp.

session. Return the status of

set an environment for a

Set and query the STREAMS

set member into an HFS

Set or display

Set or query ASCII/EBCDIC

XXX z/OS V1R4.0 UNIX System Services Command Reference

uucico
uuxqt
uucpd
ipcrs
false
logname
true
print
return

id
dirname
umask
basename
ps

jobs

tty

pwd

exit

col
chroot
command
exec
nice
(dot)

tso
batch
BPXBATCH
xargs
renice
eencode
crontab
break
return
continue
BPXBATCH
egrep
fgrep
grep
man

sed
comm
cut
dspmsg
ipcrm

Ip

stop
suspend
kill

pr

mail
mailx
uupick
jobs

env
configstrm
OPUT
stty
chep

ACLs.

extended attributes for files.
file mode creation mask.
options and positional parameters.
limits.

stops.

into an MVS data

Remove message queues, semaphore
semaphore sets, or

or executable files. Run
current environment. Run a
current environment. Run a
script. Return from a

Tell how the

from a loop in a

iteration of a loop in a

Run shell commands,
TSO/E. Return to the
history editing in the

the ISPF

the z/OS

a

tcsh

from the

from the

parameters.

lines into

lines common to two files.
two text files and

job, or send it a

Send a

process. Send a

Run a

from other

a loop in a shell script.
Start the

databases. Join two
topologically.

executable file. Compile C/MVS
information. Generate
Preprocess a message
usage of file

Display the amount of free
Expand tabs to

Compress

a character

a FIFO

FIFO or character

a file meeting

file in a

file for a

file for a

file for a

command at a

Detect

into manageable pieces.
files.

Configure the AF_UEINT
one line of

Set, remove and change

Set, reset, and display

Set or return the

Set or unset command

Set process

Set tab

set. Copy an HFS file

sets or shared memory IDs.
shared memory IDs. Remove message queues,
shell commands, shell scripts,
shell file in the

shell file in the

shell function or . (dot)

shell interprets a name.

shell script. Exit

shell script. Skip to the next
shell scripts, or executable files.
shell’s parent process or to

shell. Interactive command and
shell. Invoke

shell. Invoke

shell. Invoke

shell. Invoke a

shell. Return arguments

shell. Run a TSO/E command

Shift positional

shorter lines. Break

Show and select or reject
show the differences. Compare
signal. End a process or
SIGSTOP to a process.
SIGSTOP to the current
simple command.

sites. Carry out command requests
Skip to the next iteration of
sort-merge utility.

sorted, textual relational
Sort files

source code and create an
source dependency
source file.

space. Summarize

space in the file system.
spaces.

spaces into tabs.

special file. Create

special file. Make

special file. Make a
specified criteria. Find
specified format. Dump a
specified pattern. Search a
specified pattern. Search a
specified pattern. Search a
specified time. Run a
spelling errors in files.

Split a file

Split text

stack

standard input. Copy

setfacl
extattr
umask
set
ulimit
tabs
OGET
ipcrs
ipcrs
BPXBATCH
(dot)

return
type
break
continue
BPXBATCH
exit
shedit
ISHELL
OMVS

sh

tcsh

print

tso

shift

fold
comm
diff

kill

stop
suspend
command
uuxqt
continue
sort

join

tsort
c89/ccl/c++
chtag
mkcatdefs
du

df

expand
unexpand
MKNOD
mkfifo
mknod
find

od

egrep
fgrep
grep

at

spell

split
csplit
configstk
line

Permuted Index

XXXi

a line from

arguments to

form and send it to

is immune to hangups.
sort-merge utility.

Display

process. Return the

current session. Return the
Display

facility. Report

Set tab

the sed noninteractive

the output

configuration. Set and query the
Display printable

file. Merge corresponding or
nothing,

nothing,

file space.

for an interval of time.

or executable files. Display
Display static system

the STREAMS physical file
a file

a file

Run commands when
Display static

another

of a file

free space in the file

of the current operating

a file.

a file

remote UUCP

remote UUCP

remote UUCP

from remote UUCP

list of UUCP

remote UUCP systems.

or executable files. Display symbol
Create binary conversion
Set

Compress spaces into

Set

Expand

Create

Change file

another user.

back up a file. Manipulate the
Invoke a

terminal entries in the
terminfo database entries. Compile
print the

Print the

the user’s

or display

code pages for the
characteristics of

Compile term descriptions into

XXXii

standard input. Read

standard output. Write

standard output. Format a file in paginated
Start a utility that

Start the

static system symbols.

status of a

status of jobs in the

status of pending UUCP transfers.
status of the interprocess communication
stops.

stream editor. Start

stream. Duplicate

STREAMS physical file system

strings in binary files.

subsequent lines of

successfully. Do

successfully. Do

Summarize usage of

Suspend execution of a process
symbol table of object, library,
symbols.

system configuration. Set and query
system from the file hierarchy. Remove
system from the file hierarchy. Remove
system is not busy.

system symbols.

system. Call up

system. Change the mount attributes
system. Display the amount of

system. Display the name

system. Logically mount

system. Logically mount

systems. Carry out command requests from
systems. Copy files between

systems. Copy files to users on
systems. Invoke uucico for TCP/IP connections
systems. Display

systems. Request command execution on
table of object, library,

tables.

tab stops.

tabs.

tab stops.

tabs to spaces.

tag files for ex, more, and vi

tag information.

Talk to

tar archive files to copy or

tesh shell.

termcap file. Print the

term descriptions into

terminal description. Compare and
terminal entries in the termcap file.
terminal name. Return

terminal options. Set

terminal. Set or query ASCII/EBCDIC
terminals. Change

terminfo database entries.

z/OS V1R4.0 UNIX System Services Command Reference

read
echo

pr

nohup
sort
sysvar
ps

jobs
uustat
ipcrm
tabs

sed

tee
configstrm
strings
paste
(colon)
(colon)

du

sleep

nm
sysvar
configstrm
unmount
UNMOUNT
batch
sysvar
cu
chmount
df

uname
mount
MOUNT
uucp
uucp
uucp
uucpd
uuname
uux

nm
uconvdef
tabs
unexpand
tabs
expand
ctags
chtag
talk

tar

tcsh
captoinfo
tic
infocmp
captoinfo
tty

stty

chep
tput

tic

a condition.

reason code

display-oriented interactive
ed line-oriented

ex

or display a

Split

the differences. Compare two
Join two sorted,

date and

at a specified

process for an interval of
Display processor and elapsed
access and modification

and child process

files

Create a

Process UUCP file

pending UUCP

characters.

for safe

Decode a

Run a

parent process or to
Determine file

display data.

OCS object. Configure,

of a file.

executable file. Remove
Huffman packed files.
positional parameters. Set or
of variables and functions.
Call

Summarize

arithmetic calculation language.
debugger.

text editor.

line-oriented text editor.

text editor.

compiler.

effective user name.
operating system. Display the
Change

to another

to another

message to logged-in

Copy files to

Return a

Return the

Parse

to hangups. Start a

the sort-merge

remote UUCP systems. Invoke
by uuto and

Compile

log information about
Process

from remote

remote

Test for

text. Display

text editor. Use the

text editor. Use the

text editor. Use the

text file. Concatenate

text files.

text files and show

textual relational databases.
time. Display the

time. Run a command

time. Suspend execution of a
times for a command.

times. Change the file

times. Get process

topologically. Sort

tracked alias.

transfer requests.

transfers. Display the status of
Translate

transmission. Encode a file
transmitted binary file.

TSO/E command from the shell.
TSO/E. Return to the shell’s
type.

Uncompress and

unconfigure, or query an

Undo Lempel-Ziv compression
unnecessary information from an
Unpack and display

unset command options and
Unset values and attributes

up another system.

usage of file space

Use the arbitrary-precision

Use the

Use the display-oriented interactive
Use the ed

Use the ex

Use the yacc

name. Display your

name of the current

user passwords.

user. Talk to

user. Write to

users. Broadcast a

users on remote UUCP systems.
user’s login name.

user’s terminal name.

utility options.

utility that is immune

utility. Start

uucico for TCP/IP connections from
uucp. Manage files sent

UUCP configuraton files.

UUCP events. Display

UUCP file transfer requests.
UUCP systems. Carry out command requests
UUCP systems. Copy files between

Permuted Index

test
bpxmtext
Vi

ed

ex

cat
csplit
diff

join

date

at

sleep
time
touch
times
tsort
hash
uucico
uustat

tr
uuencode
uudecode
tso

exit

file

zcat
ocsconfig
uncompress
strip
pcat

set
unset

cu

du

bc

dbx

v

ed

ex

yacc
whoami
uname
password
talk
write
wall
uuto
logname
tty
getopts
nohup
sort
uucpd
uuto
uucc
uulog
uucico
uuxqt
uucp

XXXiii

XXXiV

remote

of

TCP/IP connections from remote
on remote

of pending

Manage files sent by

Return a

variables and functions. Unset
Display the

Assign attributes and

Assign attributes and
configuration

Mark a

Set a

value. Mark each

values and attributes of

and values to

values of environment

ex, more, and

daemon.

Invoke

process to end.

process from which the shell
to the parent process from
Count newlines,

Return the

Change the

standard output.

counts. Calculate and
output.

another user.

language. Process programs
Use the

for a month or

Display

UUCP systems. Copy files to users
UUCP systems. Display list
UUCP systems. Invoke uucico for
UUCP systems. Request command execution
UUCP transfers. Display status
uuto and uucp.

value of 0.

values and attributes of

values of environment variables.
values to functions.

values to variables.

values. Get

variable as read-only.

variable for export.

variable with an integer
variables and functions. Unset
variables. Assign attributes
variables. Display the

vi. Create tag files for

vi file recovery

vfs_pfsctl HFS functions.

Wait for a child

was. Return to the parent

which the shell was. Return
words, and bytes.

working directory name.
working directory.

Write arguments to

write checksums and byte

Write formatted

Write to

written in the awk

yacc compiler.

year. Display a calendar

your effective user name.

z/OS V1R4.0 UNIX System Services Command Reference

uuto
uuname
uucpd
uux
uustat
uuto
true
unset
printenv
functions
typeset
getconf
readonly
export
integer
unset
typeset
printenv
ctags
exrecover
confighfs
wait

exit

exit

wc

pwd

cd

echo
cksum
printf
write
awk
yacc

cal
whoami

About This Document

This document presents the information you need to use a z/OS system with the
shell and utilities feature as well as TSO/E (Time Sharing Option Extensions)
commands for using z/OS UNIX System Services (z/OS UNIX). These features
provide an application program interface (API) and a shell interface based on open
systems standards.

z/OS UNIX System Services (z/OS UNIX) gives the z/OS operating system an open
standards interface. It consists of two features:

» Shell and Utilities, which you can use to enter shell commands, write shell
scripts, and work with the file system.

* Debugger, which an application programmer can use to debug a z/OS UNIX
System Services application program written in C language.

This document describes how to use the shell commands, utilities, and TSO/E
commands.

Who Should Use This Document

This document is for application programmers, system programmers, and end users
working on a z/OS system and using the shell.

Finding More Information about Other Products

Where to find more information

Where necessary, this document references information in other documents about
the elements and features of zZOS™. For complete titles and order numbers for all
z/0OS documents, see|z/0OS Information Roadmag.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

» Order or inquire about IBM publications

* Resolve any software manufacturing or delivery concerns

» Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications

The UNIX library is available on the z/OS Collection Kit, SK2T-6700. This softcopy
collection contains a set of z/OS and related unlicensed product documents. The
CD-ROM collection includes the IBM Library Reader™, a program that enables
customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:

http://www.ibm.com/servers/eserver/zseries/zos/

© Copyright IBM Corp. 1996, 2002 XXXV

Select “Library”.

Accessing z/0OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:

[http://www.ibm.com/servers/resourcelink|

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. '

To obtain your IBM Resource Link user ID and password, log on to:
[http://www.ibm.com/servers/resourcelink|

To register for access to the z/OS licensed documents:
1. Sign in to Resource Link using your Resource Link user ID and password.
2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either 2/0OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations

LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:

[http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/|

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/0S
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

1. z/OS.e customers received a Memo to Licensees, (Gl10-0684) that includes this key code.

XXXVI z/0S V1R4.0 UNIX System Services Command Reference

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

IBM Systems Center publications

IBM systems centers produce redbooks that can be helpful in setting up and using
UNIX System Services. You can order these publications through normal channels,
or you can view them with a web browser from this URL:

http://www.redbooks.ibm.com/

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of UNIX topics. You must order them separately. A selected list of
these documents is on the UNIX web site at:

http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxalpub.html/

z/0OS UNIX porting information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,

at this URL:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxalpor.html/

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

UNIX courses
For a current list of courses that you can take, go to:

http://www.ibm.com/services/Tearning/

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

UNIX home page
The UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at

http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for UNIX. All this code works in our environment at the
time we make it available, but is not officially supported. Each tool has a README
file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the UNIX home page. From the
home page, click on Tools and Toys.

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp.

Restrictions
Because the tools are not officially supported, there are no known
enhancements and no APARs can be accepted.

About This Document XXXVii

XXXViii

UNIX customization wizard
If you'd like help with customizing UNIX, then check out our Web-based wizard. You

can access it at:
http://www.ibm.com/servers/eserver/zseries/zos/wizards/

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF® security setup for UNIX. Whether you are installing UNIX for the
first time or are a current user who wishes to verify settings, you can use this
wizard.

Beginning with 0S/390® R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2RS8, as well.

Discussion list
Customers and IBM participants also discuss UNIX on the mvs-oe discussion list.

This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:

subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

z/OS V1R4.0 UNIX System Services Command Reference

Summary of changes

Summary of changes
for SA22-7802-04
z/0OS Version 1 Release 4

This document contains information previously presented in zZ0S UNIX® System
Services Command Reference, SA22-7802-02, which supports z/OS Version 1
Release 3.

The following summarizes the changes to that information.

Changed information
» The following shell commands have been updated:
— automount
- ¢89
— chmod
- df
— find
— getfacl
— inetd
— mkdir
— mount
— rlogind
- ps
— tcsh
* The following TSO commands have been updated:
— MOUNT
* BPXBATCH has been updated.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

© Copyright IBM Corp. 1996, 2002 XXXiX

Xl z/0S V1R4.0 UNIX System Services Command Reference

Chapter 1. Introduction to Shell Commands and DBCS

This part is an introduction to the shell commands and the doublebyte character set
(DBCS).

Reading the Command Descriptions

Each shell command appears in alphabetic order. The description for each
command is divided into several sections, which are explained in the following
paragraphs. Some of these sections apply only to a few command descriptions.
Also, some command descriptions include special sections that are not explained
here.

Format Section

The Format section provides a quick summary of the command’s format, or syntax.
The syntax was chosen to conform to general UNIX usage. For example, here is
the format of the Is command:

1s [-AabCcdFfgiLlmnopqRrstuWxl] [pathname ...]

The format takes the form of a command line as you might type it into the system; it
shows what you can type in and the order in which you should do it. The parts
enclosed in square brackets are optional, you can omit them if you choose. Parts
outside the square brackets must be present for the command to be correct.

The format begins with the name of the command itself. Command names always
appear in bold Courier (typewriter) font.

After the command name comes a list of options, if there are any. A typical z/OS
shell command option consists of a dash (=) followed by a single character, usually
an uppercase or lowercase letter. For example, you might have —A or —a.

Note: The case of letters is important; for example, in the format of Is, —a and —A
are different options, with different effects.

If you are going to specify several options for the same command, you can put all

the option characters after the same dash. Or you can put each option after its own

dash. Or you can rearrange the order of options. For example,

1s -A -a 1s -Aa 1s -a -A 1s -aA
are all equivalent.

The format line shows options like in bold Courier (typewriter) font. In the
description of Is, all options are shown in one long string after the single dash. But
another common option form is:

-x value

where —x is a dash followed by a character, and value provides extra information for
using that option. For example, here is the format for the sort command, which
takes unsorted input and sorts it:

sort [—cmu]

[0 outfile]

[-t char]

[~yn]

[~zn]

[~bdfiMnr]

© Copyright IBM Corp. 1996, 2002 1

2

[-k startpos[,endpos]] ...
[file ...]

sort [—-cmu]
[0 outfile]
[tchar]
[-yn]

[-zn]
[-bdfiMnr]

[+startposition[-endposition]] ...

[file ...]

You can see that there are two possibilities here; you would need to choose which
of the two versions of sort met your requirements. In either possibility, however, we
have the option:

-0 outfile

This option tells the sort command where to save its sorted output. The form of the
option is —o, followed by a space, followed by outfile. In a command format,
anything appearing in italic serif font is a placeholder for information that you are
expected to supply. Sometimes after the format, the kind of information expected in
place of the placeholder is explained. In our sort example, outfile stands for the
name of a file where you want sort to store its output. For example, if you wanted
to store the output in the file sorted.dat, you would specify:

sort -o sorted.dat
(followed by the rest of the command).

The format for sort also contains an option of the form:
—tchar

This is similar to the option form we were just discussing, except that there is no
space between the —t and char. As before, char in italics is a placeholder; in this
case, it stands for any single character. If you want to use the -t option for sort,
you just type -t followed immediately by another character, as in:

sort -t:
In this case, we use a colon (:) in the position of the placeholder char.

The end of the sort format is:
[file ...]

This means a list of one or more filenames; the ellipsis (....) stands for repetitions of
whatever immediately precedes it. Since there are square brackets around the
previous list, you can omit the list if you like.

The format of Is ended in:
[pathname ...]

As you might guess, this means that an Is command can end with an optional list of
one or more pathnames. What's the difference between this and our sort example?
A pathname (specified with pathname) can be the name of either a file or a
directory; a filename (specified with file) is always the name of a file.

z/OS V1R4.0 UNIX System Services Command Reference

The order of items on the command line is important. When you type a command
line, you should specify its parts in the order they appear in the command format.
The exceptions to this are options marked with a dash (-); they do not have to be
given in the exact order shown in the format. However, all the — options must
appear in the correct area of the command line. For example, you can specify:

1s -1 -t myfiles

1s -t -1 myfiles

but you won’t get correct results if you specify:

1s myfiles -1 -t *xxincorrectx**
or.
1s -1 myfiles -t *xxincorrectxx*

and so on. If you enter the last example, for instance, Is interprets —t as the
pathname of a file or directory, and the command will try to list the characteristics of
that item.

As a special notation, most z/OS shell commands let you specify two dashes (—)
to separate the options from the nonoption arguments; — means: “There are no
more options.” Thus, if you really have a directory named —t, you could specify:
s — -t

to list the contents of that directory.

Description Section

The Description section describes what the command does. For a particularly
complex command, this section may be divided into a large number of subsections,
each dealing with a particular aspect of the command.

The Description section often mentions the standard input (stdin) and the standard
output (stdout). The standard input is usually the workstation keyboard; the
standard output is usually the display screen. The process of redirection can
change this. Redirection is explained in [zZ0S UNIX System Services User’s Guidel

The shell differentiates between hex, octal, and decimal as follows:
* Any number that starts with Ox is hex.

* Any number that starts with 0 is octal.

* Any number that does not start with Ox or 0 is decimal.

Inside the Description section, the names of files and directories are presented in
normal bold font. The names of environment variables are also presented in
NORMAL BOLD font, capitalized.

Options Section
The Options section describes each of the options used by the command.

Examples Section

The Examples section is present in many command descriptions, giving examples
of how the z/OS shell can be used. This book tries to give a mix of simple
examples that show how the commands work on an elementary level, and more
complex examples that show how the commands can perform complicated tasks.

Chapter 1. Introduction to Shell Commands and DBCS 3

Trying the Examples in This Book

Before you try to run any of the examples in this book, you need to know that the
z/OS shell uses the EBCDIC Latin1/Open System Interconnection Code Page
01047. Characters entered on a workstation keyboard and passed to the shell by
z/OS do not have the same hexadecimal encoding as the code page the shell uses.
You may need to customize your keyboard so that those characters have the
encoding the shell uses. See [z70S UNIX System Services User’s Guidefor more
information about code page conversion, about using a keyboard with customized
characters, and for a copy of code page 01047.

Environment Variables Section

The Environment Variables section lists the environment variables that affect the
command, if any, and describes the purposes that those variables serve. For
example, the Is command description lists two environment variables— COLUMNS
and TZ—and informs you that COLUMNS is the terminal width and that TZ contains
information about the local time zone.

Localization Section

4

All shell commands are affected by the following special localization variables:
* LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

The Localization section describes how the locale-related environment variables
affect the behavior of the command. These environment variables allow you to
access locale information, including alternate character sets; alternate numeric,
monetary, and date and time formats; and foreign language translations of common
messages. Locales make it easier for users around the world to use the shell and
utilities.

z/0S UNIX System Services supports the IBM-supplied locales listed in
User-generated locales using code page 1047 are also supported.

Table 1. Locales Supplied by z/OS UNIX System Services

Country or Region Language Locale Name
Bulgaria Bulgarian Bg_BG.IBM-1025
Czech Republic Czech Cs_CZ.IBM-870
Denmark Danish Da_DK.IBM-277
Denmark Danish Da_DK.IBM-1047
Switzerland German De_CH.IBM-500
Switzerland German De_CH.IBM-1047
Germany German De_DE.IBM-273
Germany German De_DE.IBM-1047
Greece Ellinika El_GR.IBM-875
United Kingdom English En_GB.IBM-285
United Kingdom English En_GB.IBM-1047
Japan English En_JP.IBM-1027
United States English En_US.IBM-037
United States English En_US.IBM-1047
Spain Spanish Es_ES.IBM-284
Spain Spanish Es_ES.IBM-1047
Finland Finnish Fi_Fl.IBM-278
Finland Finnish Fi_F1.IBM-1047
Belgium French Fr_BE.IBM-500
Belgium French Fr_BE.IBM-1047

z/OS V1R4.0 UNIX System Services Command Reference

Files Section

Table 1. Locales Supplied by z/OS UNIX System Services (continued)

Country or Region
Canada
Canada
Switzerland
Switzerland
France
France
Croatia
Hungary
Iceland
Iceland

Italy

Italy

Israel
Japan
Japan
Korea
Belgium
Belgium
Netherlands
Netherlands
Norway
Norway
Poland
Brazil

Brazil
Portugal
Portugal
Romania
Russia
Serbia
Slovakia
Slovenia
Serbia
Sweden
Sweden
Turkey
People’s Republic of China
Taiwan

For more information on locales, see|Appendix

Language
French
French
French
French
French
French
Croatian
Hungarian
Icelandic
Icelandic
Italian

Italian
Hebrew
Japanese
Japanese
Korean

Dutch

Dutch

Dutch

Dutch
Norwegian
Norwegian
Polish
Brazilian
Brazilian
Portugese
Portugese
Romanian
Russian
Serbian(Latin)
Slovak
Slovenian
Serbian(Cyrillic)
Swedish
Swedish
Turkish
Simplified Chinese
Traditional Chinese

Locale Name
Fr_CA.IBM-037
Fr_CA.IBM-1047
Fr_CH.IBM-500
Fr_CH.IBM-1047
Fr_FR.IBM-297
Fr_FR.IBM-1047
Hr_HR.IBM-870
Hu_HU.IBM-870
Is_IS.IBM-871
Is_IS.IBM-1047
It_IT.IBM-280
It_IT.IBM-1047
Iw_IL.IBM-424
Ja_JP.IBM-939
Ja_JP.IBM-1027
Ko_KR.IBM-933
NI_BE.IBM-500
NI_BE.IBM-1047
NI_NL.IBM-037
NI_NL.IBM-1047
No_NO.IBM-277
No_NO.IBM-1047
PI_PL.IBM-870
Pt_BR.IBM-037
Pt_BR.IBM-1047
Pt_PT.IBM-037
Pt_PT.IBM-1047
Ro_RO.IBM-870
Ru_RU.IBM-1025
Sh_SP.IBM-870
Sk_SK.IBM-870
SI_SL.IBM-870
Sr_SP.IBM-1025
Sv_SE.IBM-278
Sv_SE.IBM-1047
Tr_TR.IBM-1026
Zh_CN.IBM-935
Zh_TW.IBM-937

The Files section lists any supplementary files (files not specified on the command
line) that the command refers to. Such files usually provide information the
command needs; the command accesses these files during its operation. If the files
cannot be found, the command issues a message to this effect.

Files documented in this section may be temporary files, output files, databases,
configuration files, and so on.

The z/OS C runtime library supports a file naming convention of // (the filename can
begin with exactly two slashes). However, z/OS UNIX System Services does not
support this convention. Do not use this convention (/) unless it is specifically

Chapter 1. Introduction to Shell Commands and DBCS 5

indicated (as in the description for the ¢89 command). z/OS UNIX System Services
does support the POSIX file naming convention, where the filename can be
selected from the set of character values excluding the slash and the null character.

Usage Notes Section

The Usage Notes section gives additional notes for those using the shell. The
purpose of the Usage Notes section is similar to that of the Caution section (see
[Caution Section”)—to provide important information that the reader should not
overlook. However, the Usage Notes section usually deals with issues that are more
benign than what the Caution section deals with.

Exit Values Section

The Exit Values section presents the error messages that the shell may display,
along with a description of what caused the message and a possible action you can
take to avoid getting that message. Occasionally, this section refers you to another
command description for more information on an error message.

This section also contains information about the exit status returned by the
command. You can test this status to determine the result of the operation that the
command was asked to perform.

Limits Section

The Limits section lists any limits on the operation of the shell. Some limits are
implicit rather than explicit and may be lower than the explicitly stated limit.

Portability Section
The Portability section includes two types of information:

* Availability of a version of the command on existing UNIX systems (System V,
BSD)

» Compatibility with industry standards—for example, the POSIX.2 Draft Standard
or the X/Open Portability Guide, Issue 4 (XPG4**).

Caution Section

The Caution section contains important advice for users. In z/OS shell
documentation, the Caution section is often aimed at those who are familiar with
UNIX systems. Since the z/OS shell primarily conforms to the emerging POSIX
standards, its behavior may not precisely match the corresponding UNIX
commands. The Caution section may point out discrepancies in behavior that may
catch experienced POSIX or UNIX users by surprise.

Related Information

The Related Information section refers to other command descriptions that may
contain information relevant to the command description you have just read. For
example, consider the head command; by default, head displays the first 10 lines
of each file given on the command line. Its Related Information section refers you to
tail, the command that displays the last 10 lines of a file.

6 2/0S V1R4.0 UNIX System Services Command Reference

Using the Doublebyte Character Set (DBCS)

z/OS UNIX supports the doublebyte character set (DBCS). It also supports a DBCS
locale. The name of the IBM-supplied DBCS locale is Ja_JP. This locale uses the
IBM-939 coded-character set, which is a doublebyte character set.

This section discusses the following:

Requirements for using DBCS

When you must use SBCS characters and not DBCS characters
When you can use DBCS characters

Byte sequences that are not permitted in DBCS strings
Displaying DBCS characters

Switching locales

Problems with DBCS filenames containing DBCS characters

Requirements for Using DBCS

If you plan to use DBCS interactively, you must work at a terminal that supports
DBCS, such as a PS/55, and follow the procedures for the terminal emulator being
used. It is not necessary, however, to be at a terminal that supports DBCS if you
just want to use files that contain DBCS data.

To use DBCS, you need to do the following:

1.

Specify special logmodes to access TSO/E and VTAM support for DBCS.
Typically, the system programmer has already set these up and provided you
with instructions.

Issue the TSO/E PROFILE PLANGUAGE(JPN) command, if required, to receive
TSO/E messages in the Japanese language.

On the OMVS command, use the null character conversion table (the default)
for character conversion. You do not need to specify the CONVERT operand on
the OCOPY, OGETX, OPUT, and OPUTX commands.

Access the shell using the OMVS command with the DBCS operand (which is
the default setting).

You can also access the shell by using the rlogin program. The default
conversion is from 1SO8859-1 to IBM-1047; users can change their conversion
to use different code pages by using the checp command.

Define singlebyte escape characters for typing escape sequences.

Enable the shell and utilities for the DBCS locale, including having all shell and
utility messages in Japanese, by entering the following commands:

export LC_ALL=Ja_JP
exec sh

To receive shell and utility messages in Japanese, but not put your terminal in
DBCS mode, enter the following command:

export LC_MESSAGES=Ja_JP

When You Must Use SBCS and Not DBCS Characters

You must use the singlebyte character set (SBCS) when specifying the following:

User names.
System, device, group, and terminal names.
User names and passwords.

* Shell command-line options.

Chapter 1. Introduction to Shell Commands and DBCS 7

Shell commands and their operands.
Environment variables (DBCS characters are not exportable).

Delimiters such as space, slash (/), curly brackets { }, tab, parentheses, dot (.),
and any other shell special characters.

Encoding for <newline> or null cannot be embedded in a DBCS character’s code.
There are other rules that define valid DBCS data:

— The DBCS blank is 0x4040.

— The first byte of the code defining the DBCS character must be in the range
0x41 to OxFE.

— The second byte must be in the range 0x41 to OxFE.

All others are invalid. This effectively covers the <newline> and null escape
sequences, since they cannot be part of a valid DBCS character.

For more information on invalid DBCS characters, see[‘Byte Sequences That Arel
[Not Permitted in DBCS Strings”}

Although filenames with DBCS characters are tolerated, you should not create
filenames with DBCS characters. Doing so makes the file nonportable across
locales, and problems may occur if flenames are subsequently used in a
singlebyte locale. Instead, use the POSIX portable filename character set and
singlebyte filenames.

IBM will not support any customer problems with DBCS filenames.

For more information on DBCS filenames, see [‘Problems with Filenames|
[Containing DBCS Characters” on page 9

When You Can Use DBCS Characters
When in the DBCS locale, you can use DBCS to specify the following:

sh command-line arguments, although arguments expressed as numeric values
must use SBCS characters.

Text in data files. Files containing DBCS text are processed correctly by the shell
and the utilities (such as ed and grep) if the DBCS locale is active. These files
can be either DBCS text or mixed text (combinations of SBCS and DBCS). Both
types of file can exist in the file system along with files that contain only
singlebyte text.

Byte Sequences That Are Not Permitted in DBCS Strings

If you create invalid DBCS text, you may see an ‘“illegal byte sequence” message
when processing that text. The shell or command issues this error message, and
the command stops processing in most cases.

8

Valid DBCS strings must start with “shift out” (SO [0x0E]) and end with “shift in” (SI
[OxOF]). The first byte of the code defining the DBCS character must be in the
range 0x41 to OxFE. The second byte must be in the range 0x41 to OxFE. The
exception is that DBCS blank is 0x4040. All others codes are invalid.

Normal terminal operations do not produce invalid DBCS strings. To prevent invalid
DBCS characters and strings:

* Do not use commands that operate on the data as byte strings instead of

character strings. For example, head is a utility that could truncate a DBCS string
or character in an inappropriate place, thus creating an invalid DBCS string.
Using pipes between utilities can also result in invalid DBCS strings unless you
pay attention to how each command handles the data.

z/OS V1R4.0 UNIX System Services Command Reference

» Do not edit text in nontext mode such as having the TSO/E editor with in HEX
ON mode.

If the shell command is operating on a character string and not on a byte string,
and the shell is in a locale that supports DBCS, and if the utility encounters an
invalid DBCS string, such as the ones described in this section—you get an “illegal
byte sequence” message and the utility may fail.

Note: <newline> (\n [0x15]) causes the shift state of any subsequent character
sequence to start in the initial state (shifted into the SBCS mode). This may
apply when a command is processing a DBCS string and encounters
<newline> before a “shift in.”

For information on rules for creating DBCS data, refer to DBCS Design

Guide—System/370 Software , GG18-9095.

Displaying DBCS Characters

In a doublebyte environment, column positions are always based on the width of
narrow characters. Normally, characters are “thin”; they take up only one column
position when displayed. In contrast, some DBCS characters are “thick”; they take
up two column positions when displayed.

The number of actual characters that are displayed by the command in the column
area depends on the thickness of the characters. This applies to such commands
as Is, fold, and pr, which display DBCS characters in column positions.

Switching Locales

Problems with

By default, the shell starts in the POSIX locale and cannot handle DBCS text until
the locale is changed, typically with the shell command export LC_ALL=Ja_JP. This
export command affects the current shell environment with the following exception:
if you change the locale to DBCS, the shell’'s LC_CTYPE locale category remains in
the locale until is replaced via the exec command (exec /bin/sh).

Even if you change the locale to DBCS by using export LC_ALL=Ja_JP, the shell's
LC_CTYPE variable remains in the previous locale (initially POSIX) until the shell is
exec’d again with exec sh.

Always follow the export LC_ALL=your locale with exec sh to be sure the shell and
utilities are running in the desired locale. This is true even if you place the export
LC_ALL=your locale in your login profile.

Filenames Containing DBCS Characters

The file system treats all filenames as if they contained SBCS characters. However,
when you use the shell in the DBCS locale, flename and pathname comparison is
performed in wide mode. That is, all the characters in the name are converted to
wide characters before comparison. By doing this, the shift codes are removed from
the comparison and, therefore, a match can be found with the filenames.

For example, if you have such DBCS filenames as:

db/so dbfilel si
db/so dbfile2 si

where so and si are the shift codes that shift out to DBCS and back to SBCS, then
when in the DBCS locale (Ja_JP),

1s db/so file si *

Chapter 1. Introduction to Shell Commands and DBCS 9

lists both files.

When in the POSIX locale, DBCS strings are treated as byte strings. Comparison is
performed byte by byte. For example:

1s db/so file si *
shows the comparison string ending with an “e si”. The files in the directory would

have to end with an “e si” in order to find a match. Neither of the filenames in the
example would be found.

10 z/0S V1R4.0 UNIX System Services Command Reference

Chapter 2. Shell Command Descriptions

This part describes all the commands for the z/OS shell. The descriptions are listed
in alphabetic order. For instructions on how to read the command descriptions, see
[Reading the Command Descriptions.

The z/OS shell is based on the KornShell that originated on a UNIX system. As
implemented for z/OS UNIX System Services, this shell conforms to POSIX
standard 1003.2-1992.

Note: This book assumes that your z/OS system includes the Resource Access
Control Facility (RACF). Instead of RACF, your system could have an
equivalent security product.

alias — Display or create a command alias

Format
alias [-tx] [name[=value] ...]
alias —r
tcsh shell: alias [name [wordlist]]
Description

When the first word of a shell command line is not a shell keyword, alias causes
the shell to check for the word in the list of currently defined aliases. If it finds a
match, the shell replaces the alias with its associated string value. The result is a
new command line that might begin with a shell function name, a built-in command,
an external command, or another alias.

When the shell performs alias substitution, it checks to see if value ends with a
blank. If so, the shell also checks the next word of the command line for aliases.
The shell then checks the new command line for aliases and expands them,
following these same rules. This process continues until there are no aliases left on
the command line, or recursion occurs in the expansion of aliases.

Calling alias without parameters displays all the currently defined aliases and their
associated values. Values appear with appropriate quoting so that they are suitable
for reinput to the shell.

Calling alias with parameters of the form name=value creates an alias for each
name with the given string value.

If you are defining an alias where value contains a backslash character, you must
precede it with another backslash. The shell interprets the backslash as the escape
character when it performs the expansion. If you use double quotes to enclose
value, you must precede each of the two backslashes with an additional backslash,
because the shell escapes characters—that is, the shell does not interpret the
character as it normally does—both when assigning the alias and again when
expanding it.

To avoid using four backslashes to represent a single backslash, use single quotes
rather than double quotes to enclose value, because the shell does not escape

© Copyright IBM Corp. 1996, 2002 11

alias

Options

characters enclosed in single quotes during assignment. As a result, the shell
escapes characters in single quotes only when expanding the alias.

Calling alias with name without any value assignment displays the function name
(name) and its associated string value (value) with appropriate quoting.

DBCS Recommendation: We recommend that you use singlebyte characters when
specifying an alias name, because the POSIX standard states that alias names
must contain only characters in the POSIX portable character set.

alias in the tcsh shell
Without arguments, alias in the tcsh shell prints all aliases. With name, alias prints

the alias for name. With name and wordiist, alias assigns wordlist as the alias of
name. wordlist is command and filename substituted. name may not be alias or
unalias.

See also[‘unalias in the tcsh shell” on page 664}

—r Removes all tracked aliases.

-t Makes each name on the command line a tracked alias. Each tracked alias
resolves to its full pathname; the shell thus avoids searching the PATH
directories whenever you run the command. The shell assigns the full
pathname of a tracked alias to the alias the first time you invoke it; the shell
reassigns a pathname the first time you use the alias after changing the
PATH variable.

When you enter the command:
set —-h

each subsequent command you use in the shell automatically becomes a
tracked alias. Running alias with the —t option, but without any specified
names, displays all currently defined tracked aliases with appropriate
quoting.

-X Marks each alias name on the command line for export. If you specify —x
without any names on the command line, alias displays all exported
aliases. Only exported aliases are passed to a shell that runs a shell script.

Several aliases are built into the shell. Some of them are:

alias autoload="typeset —fu"
alias functions="typeset —f"
alias hash="alias -t"

alias history="fc -1"

alias integer="typeset —i"
alias nohup="nohup "

alias r="fc —s"

alias stop="kill -STOP"
alias suspend="stop \$\$"

You can change or remove any of these aliases, and the changes will remain in
effect for the current shell and any shell scripts or child shells invoked implicitly from
the command. These aliases are reset to their default built-in values each time a
new shell is invoked from the command line.

12 z/0S V1R4.0 UNIX System Services Command Reference

Example

Localization

Usage Notes

Exit Values

alias

The command:
alias 1s="1s -C"

defines Is as an alias. From this point onward, when you issue an Is command, it
produces multicolumn output by default.

alias in the tcsh shell examples
To alias the !! history command, use \!-1 instead of \\l. For example:

alias mf 'more \!-1§'

creates an alias for looking at the file named by the final argument of the previously
entered command. Example output would be the following:
alias mf 'more \!-1%'

echo "We love tcsh." > filel
mf

We love tcsh.
"filel" (EOF)

where mf pulls the last argument of the previous command (file1), and then
displays that file using the more command.

alias uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F, “Localization” on page 825|for more information.

1. alias is a built-in shell command.

2. Because exported aliases are only available in the current shell environment
and to the child processes of this environment, they are not available to any
new shell environments that are started (via the exec sh command, for
example). To make an alias available to all shell environments, define it as a
nonexported alias in the ENV file, which is executed whenever a new shell is

run.
0 Successful completion

1 Failure because an alias could not be set

2 Failure because of an incorrect command-line option

If you define alias to determine the values of a set of names, the exit value is the
number of those names that are not currently defined as aliases.

Chapter 2. Shell Command Descriptions 13

alias

Portability

POSIX.2 User Portability Extension, UNIX KornShell.

The -t and —x options are extensions to the POSIX standard.

Related Information

fc, hash, nohup, set, sh,typeset, unalias, tcsh

ar — Create or maintain library archives

Format

Description

Options

ar —d[-llv] archive member...

ar —m[-ablilsv] [posname] archive member ...

ar —p[-llsv] archive member...

ar —q[—clsv] [-F format] archive member ...

ar —r[abclilsuv] [-F format] [posname] archive member ...
ar —t[lisv] archive[member...]

ar —u[-abcliklsv] [-F formaf] [posname] archive member ...
ar —x[-ClIsTv] archive [member...] ...

ar maintains archive libraries. The archive library is a collection of files, usually
object files. Using ar, you can create a new library, add members to an existing
library, delete members from a library, extract members from a library, and print a
table of contents for a library.

A library member is an arbitrary file. Normally, these files are object files, suitable
for use by a linkage editor.

If any members of a library are object files, ar creates and maintains an external
symbol index for link-editing.

Member names in an archive are only the final component of any pathname. When
creating a new library member (member) as given on the command line, ar uses
the full pathname given. When storing the member name in the library, or
comparing a member name, ar uses only the final component.

The format shows the main functions of ar, which are defined as follows:

-d Deletes each named member from the archive and regenerates the symbol
table.

-m Moves the named archive member in the archive. The new position is
specified by —a, b, i, or posname. If a location is not specified, the
member is moved to the end of the archive.

-p Displays each member specified to the standard output (stdout). If you did
not specify any members, ar displays all members.

-q Quickly appends the specified file to the archive. With this option, ar does
not check to see if file is already a member of the archive.

—-r Replaces or adds file to archive. If archive does not exist, ar creates it and
prints a message. When ar replaces an existing member, the archive order

14 z/0S V1R4.0 UNIX System Services Command Reference

ar

is not changed. If file is not replacing a member, it is added to the end of
the archive unless —a, —b, or —i is used. This option regenerates the symbol
table.

Displays a table of contents that lists members, or every member if member
is not specified. ar prints a message for each member it doesn’t find. By
default, ar prints the member name for all selected members. With the
verbose (—v) option, ar prints more information for all selected members.

Extracts each specified member from the archive and copies it to a file. If
member is specified as a full pathname, it is copied to that pathname. If no
member is specified, all members are extracted. The archive remains
unchanged.

The following options change the behavior of the main functions:

-a Places file in the archive after the member specified by posname. If no
member is named, file is added to the end of the archive.

-b Places file in the archive before the member specified by posname. If no
member is named, file is placed at the beginning of the archive.

-C Prevents ar from overwriting existing files with extracted files. This option is
used only with extraction (—x).

-C Suppresses the message normally printed when ar creates a new archive
file. You can use this only in conjunction with the —r and —q options.

—F format
Specifies the archive format to be used by a new archive. You can use this
option only when creating a new archive with the —r and —q options.

-1 Ignores the case of letters when searching the archive for specified member
names. Normally, the case is significant.

=i Inserts file into the archive before the member specified by posname. If
posname isn’t specified, ar inserts file at the beginning of the archive. This
option is the same as —b.

-1 This option is ignored. It requests that temporary files generated by ar be
put in the directory rather than in the default temporary file directory. It is
provided for backward compatibility with other versions of ar

-s Regenerates the external symbol table regardless of whether the command
modifies the archive.

=T When used with —x, allows extraction of members with names longer than
the file system supports. Normally this is an error, and ar does not extract
the file. Most file systems truncate the filename to the appropriate length.

-u Replaces the archive member only if the member file’s modification time is
more recent than the archive member time. —u implies —r, so it isn’t
necessary to specify —r also.

-V Gives verbose output. With —d, —q, —r, and —x, this option prints the

command letter and the member name affected before performing each
operation. With —t, ar prints more information about archive members using
a format similar to Is —I. With —p, ar writes the name of the member to
stdout, before displaying the contents of the file.

Chapter 2. Shell Command Descriptions 15

ar

Operands
archive
Specifies the pathname of the archive file.
member
Specifies the pathname of the file that is to be acted upon (placed, deleted,
searched for, and so on) in the archive library.
Examples

1. To add a member fioacc.o to the archive file /u/turner/bin/cliserpgm.a, specify:
ar -rc /u/turner/bin/cliserpgm.a fioacc.o

2. To display the members of the archive file /u/turner/bin/cliserpgm.a, specify:
ar —tv /u/turner/bin/cliserpgm.a

3. To delete the member repgen.o from the archive file /u/turner/bin/cliserpgm.a
and regenerate the external symbol table for the archive, specify:

ar —ds /u/turner/bin/cliserpgm.a repgen.o

Environment Variables
ar uses the following environment variable:
TMPDIR

The pathname of the directory being used for temporary files. If it is not set,
z/OS UNIX uses /tmp.

Localization
ar uses the following localization environment variables:
* LANG
« LC_ALL
« LC_CTYPE
« LC_MESSAGES
« LC_TIME
* NLSPATH
See|Appendix F, “Localization” on page 825|for more information.
Files
ar creates temporary files in the working directory and in the directory named by the
TEMPDIR environment variable. These files are intermediate versions of the archive
file being created or updated. Consequently, they normally are the same size as the
archive file being manipulated.
Usage Note

Within the external symbol table, all symbols for a given member are kept together.
Symbols of more recently added or modified members are located before symbols
of older (not as recently modified) members in the archive. The modification time of
an archive member determines its relative age.

Exit Values
0 Successful completion

1 Failure due to any of the following:
 Inability to create the extracted file
» An error writing to the extracted file

16 z/0S V1R4.0 UNIX System Services Command Reference

Portability

ar

* The requested module not found on appending
* An error opening the module on appending

* An incorrect module on appending

* Inability to access the module on appending

* A module not found on table or extraction

2 Incorrect command-line arguments or options

POSIX.2, X/Open Portability Guide, UNIX systems.

For backward compatibility, you can omit the dash (=) preceding the options if the
options appear only as the first argument after the command name.

The following options are XPG extensions to the POSIX standard: —a, —-b, —C, —i,
-1, -m, —q, —s, and -T.

The —F and the -l options are extensions to the POSIX and XPG standards.

Related Information

c89, make, nm

asa — Interpret ASA/FORTRAN carriage control

Format

Description

asa [file ...]

Historically, printouts created by programs use the first character of each line to
control the spacing between that line and the previous one. For example, if the first
character is a space, the rest of that line immediately follows the previous line; if it
is a 1, that line should begin on a new page, and so on.

asa reads input in this format and writes it out in a normal text format, using
newlines, formfeeds, and carriage returns to achieve the same effects as the
carriage control characters.

If you specify files on the command line, asa reads input from these files;
otherwise, it reads the standard input (stdin). asa writes output to the standard
output (stdout).

It does not copy newline characters in the input to the output. Instead, it uses the
first character of each line to determine how to print the rest of the line. asa
interprets the first character as follows:

Space Outputs the rest of the line without change.

0 Outputs a newline character before printing line.
1 Outputs a formfeed (start a new page) sequence before printing line.
+ Outputs a carriage return sequence so that line is output over the previous

line. If + starts the first line, it's treated as a space.

Chapter 2. Shell Command Descriptions 17

asa

Localization

Exit Values

Portability

asa uses the following localization environment variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F, “Localization” on page 825| for more information.

0 Successful completion

1 Failure due to any of the following:
* Write error on stdout
* Inability to open the input file

2 Unknown command-line option

POSIX.2, X/Open Portability Guide, UNIX System V.

at — Run a command at a specified time

Format

Description

at [-m] [file] [-q queue] -t time
at [-m] [f file] [-q queue] timespec
at —r [-q queue€] at_job ...

at -l [-q queue] [at_job ...]

at lets you set up a series of commands to be run later. It reads the commands
from the standard input (stdin) or from a file specified with the —f option. When the
commands run, they have the same environment variables, working directory, file
creation mask, and so on that are set up when you run the at command; however,
at does not usually preserve open file descriptors, traps, or priority inherited from
the working environment.

Usually, you redirect the standard output (stdout) from these commands to files so
you can read the files after the system runs the commands. at mails the standard
output (stdout) and standard error output (stderr) to you if you do not redirect
them.

The at command displays an at-job identifier when you submit commands, along
with the time that the system is to run the commands.

at, batch, and crontab submit jobs to cron; the data in these jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Since it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the job may not be interpreted
correctly. You can get around this by calling setlocale() in the job itself.

18 2z/0S V1R4.0 UNIX System Services Command Reference

Options

at

—f file Reads commands from file rather than from standard input (stdin).

-1 Reports on standard output (stdout) all jobs you have scheduled and when
the system is to run them if you do not specify at_job. If you specify
at_jobs, this option reports information on only those jobs.

-m Sends you mail after your job has finished running. If you did not redirect
the stdout and stderr, at also mails these to you. If stdout or stderr is
non-null, at mails this output to you even if you do not specify —m.

—q queue
Specifies the queue your at job is to be recorded in or removed from.
queue can be any singlebyte character except a space, a tab, a null
character, or a number sign (#). By default, at stores all its jobs in a queue
called a, and batch stores all its jobs in a queue called b. If used with this
option, -l reports information only on at jobs in queue.

-r at_job
Removes previously scheduled at jobs. The at_job arguments must be the
identifiers assigned to the jobs when you set them up with at.

-t fime
Specifies the time for the system to run the job. You specify time in the
same format as the time argument for touch.

When you do not use the —t option, you can use a timespec argument to specify
the time. A timespec argument consists of three parts: a time, a date, and an
increment (in that order). You must always specify the time, but you can omit the
date, the increment, or both. Following are possible time formats:

Format Meaning

hhmm hh hours, mm minutes, 24-hour clock
hh:mm hh hours, mm minutes, 24-hour clock
h:mm h hours, mm minutes, 24-hour clock
h:m h hours, m minutes, 24-hour clock

hh:mm zone zone is time zone

hh:mmam Morning, 12-hour clock

hh:mmam zone Morning, 12-hour clock in given time zone
hh:mmpm Afternoon, 12-hour clock

hh:mmpm zone Afternoon, 12-hour clock in given time zone

noon Noon

midnight Midnight

next Current time, next day that meets date and increment
now Current time today

All minute specifications are optional. For example, to specify an at job to run at
1:00 p.m., you can enter

at 1lpm

Chapter 2. Shell Command Descriptions 19

at

Currently, the z/OS shell only supports the time zones GMT, CUT, UTC, and ZULU,
all of which stand for Coordinated Universal Time (often called Greenwich Mean
Time). If you do not specify a zone, at interprets times with respect to the TZ
variable.

Appendix |, “Setting the Local Time Zone with the TZ Environment Variable” on|
page 84§| explains how to set the local time zone with the TZ environment variable.

Possible date formats are shown in the following list:
Format Meaning

month day month is the full name, or the three-letter abbreviation (as in
January or Jan)

month day, year
day and year given as appropriate numbers

weekday weekday is the full name or the three-letter abbreviation (as in
Monday or Mon)

today Current day

tomorrow Next day

The increment is added to the time and date you specify with the preceding parts of
timespec. It has the format + n units where nis a number and units is one of the

following:

minute minutes hour hours
day days week weeks
month months year years

Here are some sample time specifications:

0655

1855

18:55

6:55pm

6:55 pm Jan 10
now + 3 hours
noon tomorrow
midnight Friday

Environment Variables
at uses the following environment variables:

SHELL
Contains the name of the shell used to invoke the at job.

TZ Specifies the default time zone for all times given on the command line. If
you include a time zone as part of time or timespec, it overrides the value
of TZ.

|Appendix |, “Setting the Local Time Zone with the TZ Environment Variable"|
|on page 84§| explains how to set the local time zone with the TZ
environment variable.

Usage Note

at jobs that contain a line consisting of just the string "! ! TATEOF!!I'!" fail with
unexpected results.

20 z/0S V1R4.0 UNIX System Services Command Reference

at

Localization

at uses the following localization variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

+ LC_TIME

+ NLSPATH

The keywords midnight, noon, today, and tomorrow are valid only in the POSIX
locale. See|Appendix F, “Localization” on page 825|for more information.

Exit Values

0 Successful completion
>0 Returned if the command fails for any reason

If an error occurs, at does not schedule, remove, or list the job.

Portability
POSIX.2 User Portability Extension, UNIX systems.

Related Information
batch, bg, cron, crontab, touch, tcsh

Appendix |, “Setting the Local Time Zone with the TZ Environment Variable” on|
page 845_3] also explains how to set the local time zone with the TZ environment
variable.

autoload — Indicate function name not defined

Format
autoload name ...

Description

autoload is an alias for typeset —fu. Like typeset —fu, autoload indicates that the
functions named in the command line are not yet defined.

See [‘typeset — Assign attributes and values to variables” on page 658|and
[‘Command Execution” on page 503 for more information.

Related Information
typeset, functions, sh

automount — Configure the automount facility

Format
automount [-q] [-s] [Master filename]

Chapter 2. Shell Command Descriptions 21

automount

Description

Options

Examples

Files

automount is used to configure the automount facility. This facility can
automatically mount file systems at the time they are accessed, and also unmount
them later. (For information on setting up the automount facility, refer to
[System Services Planning})

When run with no arguments, automount reads the /etc/auto.master file to
determine all directories that are to be configured for automounting and the
filenames that contain their configuration specifications.

If you run automount with the [master filename] argument, that filename is used
instead of /etc/auto.master.

automount should be run from the /etc/rc script with no arguments. This processes
the installation’s default automount configuration file.

automount requires superuser authority.

-q Displays the current automount policy.

-s Checks the syntax of the configuration file. No automount is performed.

1. The following example shows how automatic unmount can be avoided for a
directory:

name wjs
duration nolimit

Keywords that are not specified on a specific entry are inherited from the
generic entry, if present. If the generic entry is not present, or if keys are not
specified, the defaults are used. If the filesystem key cannot be resolved, the
entry is considered invalid.

2. The following is an example of a /etc/auto.master file that is used to specify /u
as automount-managed and the specifications for that directory in /etc/u.map:

/u /etc/u.map

automount uses these files:

letc/auto.master
Specifies a list of directories to be configured, along with their MapName
files.

Each line in this file contains two pathnames separated by at least one
space: the directory name to be managed and the pathname of the
MapName file. Both of these pathnames should be absolute.

The pathname of the managed directory is used as a filesystem name
prefixed with *AMD. This restricts the length of the pathname of a managed
directory to 40 characters. If pathnames need to be longer, you can use
symbolic links to resolve all or part of the pathname.

22 2/0S V1R4.0 UNIX System Services Command Reference

automount

MapName
The MapName file contains the mapping between a subdirectory of a
directory managed by automount and the mount parameters.

The file is organized as a set of specifications. Each specification contains
one or more lines. Each line is of the form keyword argument. Each
specification must begin with the keyword name.

Blank lines and lines beginning with the characters /* are considered
comments and are ignored.

A generic entry can be specified as the first specification by using the name
of *. The generic specification provides defaults for subsequent specific
specifications. When the automounter tries to resolve a lookup request, it
attempts to find a specific entry. If a specific entry does not exist for the
name being looked up, it attempts to use the generic entry.

The following is an example of a generic entry:

name *

type HFS

filesystem OMVS.HFS.USER.<uc_name>
mode rdwr

duration 30

delay 10

parm SYNC(60)

tag text,819

Four special symbols are supported to provide name substitution:
<asis_name> used to represent the name exactly, as is.
<uc_name> used to represent the name in uppercase characters.
<sysname> or &SYSNAME. used to substitute the system name.

Recommendation: IBM recommends that you use &SYSNAME..
<sysname> is only temporarily supported for compatibility.

You can use these when specifying a file system name or file system
parameter that has a specific form with the name inserted as a qualifier.

Following is a list of supported keywords. You can enter keywords using
mixed case letters. Some arguments require mixed case.

Rule: allocany, allocuser, and lowercase are valid on any specification,
but are meaningful only on the generic entry.

allocany allocation-spec
Specifies the allocation parameters when using automount to
allocate an HFS data set. allocany will cause an allocation if the
HFS data set does not exist for any name looked up in the
automount managed directory.

allocation—spec
A string that specifies allocation keywords. The following
keywords can be specified in the string:

space(primary-alloc[,secondary alloc])
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num-volumes)
unit(unit-name)

Chapter 2. Shell Command Descriptions 23

automount

storclas(storage—class)
mgmtclas(management—class)
dataclas(data—class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)

new

allocuser allocation—spec
Specifies the allocation parameters when using automount to
allocate an HFS data set. allocuser will cause an allocation to
occur only if the name looked up matches the userid of the current
user.

allocation—spec
A string that specifies allocation keywords. The following
keywords can be specified in the string:

space(primary—alloc[,secondary alloc))
cyl | tracks | block(block size)
vol(volser[,volser]...)
maxvol(num-volumes)
unit(unit-name)
storclas(storage—class)
mgmtclas(management—class)
dataclas(data—class)

The next four keywords are automatically added:

dsn(filesystem)
dsntype(hfs)
dir(1)

new

delay The minimum amount of time in minutes to leave the file system
mounted after the duration has expired and the file system is no
longer in use. The default is 0.

Rule: In a shared HFS environment, do not use the default
automount delay time of 0. In this environment, specify a delay
time of at least 10.

duration
The minimum amount of time in minutes to leave the file system
mounted. The default is nolimit.

filesystem
The name of the file system to mount. This argument is
case-sensitive. For the HFS file system, this argument must be
specified in uppercase.

lowercase [YesINo]
Indicates the case for names that can match the * specification.
This keyword is valid on any specification, but is only meaningful on
the generic entry.

Yes Only names composed of lowercase characters can match

24 2/0S V1R4.0 UNIX System Services Command Reference

mode

name

parm

automount

the * specification (numbers and special characters may
also be used). When this is specified, uppercase characters
are not allowed.

No Any names can match the * specification. This is the
default.

The mount mode for the file system (rdwr or read). The default is
rdwr.

The name of the directory to be mounted. This key is required and
must be the first key specified for the entry. If the first entry
specifies name 7 it is treated as the generic entry for the
automount-managed directory.

The file system-specific parameter. This argument is case-sensitive.
For example, the following parameters can be specified for an HFS
file system:

parm SYNC(t),NOWRITEPROTECT

security [YesINo]

Specifies security checking which should be done for files in the
filesystem. You can specify these values:

Yes Normal security checking will be done. This is the default.

No Specifies that security checks will not be enforced for files
in this filesystem. Any user may access or change any file
or directory in any way.

Security auditing will still be performed if the installation is
auditing successes.

The SETUID, SETGID, APF, and Program Control mode
bits may be turned on in files from this filesystem, but will
not be honored while it is mounted with NOSECURITY.
When an HFS is mounted with the NOSECURITY option
enabled, any new files or directories that are created will be
assigned an owner of UID 0, no matter what UID issued the
request.

Rule: The installation should normally take the default
(Yes).

For more information on mounting with no security and on
the MOUNT statement in BPXPRMxx, see
[System Services Planning. Security keywords on the TSO
MOUNT command are also discussed in[fMOUNT —]
[Logically mount a file system” on page 751

setuid [YesINo]

Specifies whether the setuid/setgid mode bits are to be respected
for executables run from this file system. You can specify these
values:

Yes The setuid/setgid modes or respected. This is the default.

No The setuid/setgid modes are ignored.

tag (textinotext,ccsid)

Specifies whether file tags for untagged files in the mounted file
system are implicitly set. Either text or notext, and CCSID (coded
character set identifier) must be specified when tag is specified:

Chapter 2. Shell Command Descriptions 25

automount

text Specifies that each untagged file is implicitly marked as
containing pure text data that can be converted.

notext Specifies that none of the untagged files in the file system
are automatically converted during file reading and writing.

ccsid ldentifies the coded character set identifier to be implicitly
set for the untagged file. ccsid is specified as a decimal
value from 0 to 65535. However, when text is specified, the
value must be between 0 and 65535. Other than this, the
value is not checked as being valid and the corresponding
code page is not checked as being installed.

For more information on file tagging, see
[System Services Planning. Additional information about the
TAG parameter can be found in[“MOUNT — Logically|
[mount a file system” on page 751|

type The file system type name. The default is HFS.

Usage Note

When a new HFS data set is created, the permissions for its root directory will be
set to the default for new HFS data sets (700), and the owner will be set to the
effective UID and GID of the user that causes the allocation to occur.

Related Information
chmount, mount, unmount

awk — Process programs written in the awk language

Format
awk [-F ere] [-f prog] [-v var=value ...] [program] [var=value ...] [file ...]
Description

awk is a file-processing language that is well suited to data manipulation and

retrieval of information from text files. If you are unfamiliar with the language, you

may find it helpful to read the awk information in|z/OS UNIX System Services|
before reading the following material.

An awk program consists of any number of user-defined functions and rules of the

form:

pattern {action}

There are two ways to specify the awk program:

» Directly on the command line. In this case, program is a single command-line
argument, usually enclosed in single quotes (') to prevent the shell from
attempting to expand it.

* By using the —f prog option.

You can specify program directly on the command line only if you do not use any —f

prog arguments.

Options

awk recognizes the following options:

26 2/0S V1R4.0 UNIX System Services Command Reference

awk
—F ere Is an extended regular expression to use as the field separator.

—f prog
Runs the awk program contained in the file prog. When more than one —f
option appears on the command line, the resulting program is a
concatenation of all programs you specify.

-V var=value
Assigns value to var before running the program.

Files that you specify on the command line with the file argument provide the input
data for awk to manipulate. If you specify no files or you specify a dash (=) as a
file, awk reads data from standard input (stdin).

You can initialize variables on the command line using:

var=value

You can intersperse such initializations with the names of input files on the
command line. awk processes initializations and input files in the order they appear
on the command line. For example, the command:

awk -f progfile a=1 fl f2 a=2 f3
sets a to 1 before reading input from f1 and sets a to 2 before reading input from £3.

Variable initializations that appear before the first file on the command line are
performed immediately after the BEGIN action. Initializations appearing after the
last file are performed immediately before the END action. For more information on
BEGIN and END, see [‘Patterns” on page 35|

The —v option lets you assign a value to a variable before the awk program begins
execution (that is, before the BEGIN action). For example, in:

awk -v v1=10 -f prog datafile

awk assigns the variable v1 its value before the BEGIN action of the program (but
after default assignments made to such built-in variables as FS and OFMT; these
built-in variables have special meaning to awk, as described later).

awk divides input into records. By default, newline characters separate records;
however, you can specify a different record separator if you want.

One at a time, and in order, awk compares each input record with the pattern of
every rule in the program. When a pattern matches, awk performs the action part of
the rule on that input record. Patterns and actions often refer to separate fields
within a record. By default, white space (usually blanks, newlines, or horizontal tab
characters) separates fields; however, you can specify a different field separator
string using the —F ere option).

You can omit the pattern or action part of an awk rule (but not both). If you omit
pattern, awk performs the action on every input record (that is, every record
matches). If you omit action, awk writes every record matching the pattern to the
standard output (stdout).

awk considers everything after a # in a program line to be a comment. For
example:

This is a comment

Chapter 2. Shell Command Descriptions 27

awk

To continue program lines on the next line, add a backslash (\) to the end of the
line. Statement lines ending with a comma (,), double or-bars (| |), or double
ampersands (&&) continue automatically on the next line.

Variables and Expressions
There are three types of variables in awk: identifiers, fields, and array elements.

An identifier is a sequence of letters, digits, and underscores beginning with a letter
or an underscore. These characters must be from the POSIX portable character
set. (Data can come from other character sets.)

For a description of fields, see [Input” on page 31}

Arrays are associative collections of values called the elements of the array.
Constructs of the form:

identifier[subscript]

where subscript has the form expr or expr,expr,..., refer to array elements. Each
such expr can have any string value. For multiple expr subscripts, awk
concatenates the string values of all expr arguments with a separate character
SUBSEP between each. The initial value of SUBSEP is set to \042 (code page
01047 field separator).

We sometimes refer to fields and identifiers as scalar variables to distinguish them
from arrays.

You do not declare awk variables, and you do not need to initialize them. The value
of an uninitialized variable is the empty string in a string context and the number 0
in a numeric context.

Expressions consist of constants, variables, functions, regular expressions, and
subscript-in-array conditions combined with operators. (Subscript-in-array conditions
are described in [Subscript in Array) Each variable and expression has a string value
and a corresponding numeric value; awk uses the value appropriate to the context.

When converting a numeric value to its corresponding string value, awk performs
the equivalent of a call to the sprintf() function where the one and only expr
argument is the numeric value and the fmt argument is either %d (if the numeric
value is an integer) or the value of the variable CONVFMT (if the numeric value is
not an integer). The default value of CONVFMT is %.6g. If you use a string in a
numeric context, and awk cannot interpret the contents of the string as a number, it
treats the value of the string as zero.

Numeric constants are sequences of decimal digits.

String constants are quoted, as in "a Titeral string". Literal strings can contain
the following escape sequences:

Escape Character Sequence

\a Audible bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

28 2/0S V1R4.0 UNIX System Services Command Reference

awk

\t Horizontal tab

\v Vertical tab

\ooo Octal value ooo

\xdd Hexadecimal value dd
\/ Slash

\" Quote

\c Any other character ¢

awk supports full regular expressions. (See|Appendix C, “Regular Expressiong
|(regexp)” on page 805| for more information.) When awk reads a program, it
compiles characters enclosed in slash characters (/) as regular expressions. In
addition, when literal strings and variables appear on the right side of a ~ or ~
operator, or as certain arguments to built-in matching and substitution functions,
awk interprets them as dynamic regular expressions.

Note: When you use literal strings as regular expressions, you need extra
backslashes to escape regular expression metacharacters, because the
backslash is also the literal string escape character. For example the regular
expression:

/e .g\7./

when written as a string is:

||e .g

Subscript in Array
awk defines the subscript-in-array condition as:

index in array

where index looks like expr or (expr,...,expr). This condition evaluates to 1 if the
string value of index is a subscript of array, and to 0 otherwise. This is a way to
determine if an array element exists. When the element does not exist, the
subscript-in-array condition does not create it.

Symbol Table
You can access the symbol table through the built-in array SYMTAB.

SYMTABIexpr] is equivalent to the variable named by the evaluation of expr.

For example, SYMTABI "var'] is a synonym for the variable var.

Environment
An awk program can determine its initial environment by examining the ENVIRON
array. If the environment consists of entries of the form name=value, then
ENVIRON[name] has string value "value". For example, the following program is
equivalent to the default output of env:
BEGIN {

for (i in ENVIRON)

printf("%s=%s\n", i, ENVIRON[i])
exit

}
Operators

awk follows the usual precedence order of arithmetic operations, unless overridden
with parentheses; a table giving the order of operations appears later in this section.

Chapter 2. Shell Command Descriptions 29

awk

The unary operators are +, -, ++, and — —, where you can use the ++ and - —
operators as either postfix or prefix operators, as in C. The binary arithmetic
operators are +, -, *, /, %, and .

The conditional operator
expr 7 exprl : expr2

evaluates to expr1 if the value of expris nonzero, and to expr2 otherwise.

If two expressions are not separated by an operator, awk concatenates their string
values.

The tilde operator ~ yields 1 (true) if the regular expression on the right side
matches the string on the left side. The operator !~ yields 1 when the right side has
no match on the left. To illustrate:

$2 ~ /[0-9]/

selects any line where the second field contains at least one digit. awk interprets
any string or variable on the right side of ~ or |~ as a dynamic regular expression.

The relational operators are <, <=, >, >=, == and !=. When both operands in a
comparison are numeric, awk compares their values numerically; otherwise, it
compares them as strings. An operand is numeric if it is an integer or floating-point
number, if it is a field or ARGV element that looks like a number, or if it is a variable
created by a command-line assignment that looks like a number.

The Boolean operators are || (or), && (and), and ! (not). awk uses short-circuit
evaluation when evaluating expressions. With an && expression, if the first operator
is false, the entire expression is false and it is not necessary to evaluate the second
operator. With an | | expression, a similar situation exists if the first operator is true.

You can assign values to a variable with:
var = expr

If op is a binary arithmetic operator, var op= expr is equivalent to var = var op expr,
except that var is evaluated only once.

See for the precedence rules of the operators.
Table 2. The Order of Operations for awk

Operators Order of Operations

(A) Grouping

$i V[a] Field, array element

Vit V== ++V ==V Increment, decrement

A~B Exponentiation

+A -A A Unary plus, unary minus, logical
NOT

AxB A/B A%B Multiplication, division, remainder

A+B A-B Addition, subtraction

AB String concatenation

A<B A>B A<=B A>=B Comparisons

Al=B A= =

A~BA!-B Regular expression matching

AinV Array membership

A && B Logical AND

AllB Logical OR

30 z/0S V1R4.0 UNIX System Services Command Reference

awk

Table 2. The Order of Operations for awk (continued)
Operators Order of Operations
A?B:C Conditional expression

V=B V+=B V-=B Vx=B Assignment

V/=B V%=B V"=B

Notes:

1. A, B, C are any expression.

2. iis any expression yielding an integer.
3. Vs any variable.

Command-Line Arguments

awk sets the built-in variable ARGC to the number of command-line arguments.
The built-in array ARGV has elements subscripted with digits from zero to ARGC-1,
giving command-line arguments in the order they appeared on the command line.

The ARGC count and the ARGV vector do not include command-line options
(beginning with -) or the program file (following —f). They do include the name of
the command itself, initialization statements of the form var=value, and the names
of input data files.

awk actually creates ARGC and ARGV before doing anything else. It then “walks
through” ARGV, processing the arguments. If an element of ARGV is an empty
string, awk skips it. If it contains an equals sign (=), awk interprets it as a variable
assignment. If it is a minus sign (-), awk immediately reads input from stdin until it
encounters the end of the file. Otherwise, awk treats the argument as a filename
and reads input from that file until it reaches the end of the file.

Note: awk runs the program by “walking through” ARGV in this way; thus, if the
program changes ARGV, awk can read different files and make different
assignments.

Input

awFI)(divides input into records. A record separator character separates each record
from the next. The value of the built-in variable RS gives the current record
separator character; by default, it begins as the newline (\n). If you assign a
different character to RS, awk uses that as the record separator character from that
point on.

awk divides records into fields. A field separator string, given by the value of the
built-in variable FS, separates each field from the next. You can set a specific
separator string by assigning a value to FS, or by specifying the —F ere option on
the command line. You can assign a regular expression to FS. For example:

FS = ||[,:$]||

says that commas, colons, or dollar signs can separate fields. As a special case,
assigning FS a string containing only a blank character sets the field separator to
white space. In this case, awk considers any sequence of contiguous space or tab
characters a single field separator. This is the default for FS. However, if you assign
FS a string containing any other character, that character designates the start of a
new field. For example, if we set FS=\t (the tab character),

texta \t textb \t \t \t textc

Chapter 2. Shell Command Descriptions 31

awk

contains five fields, two of which contain only blanks. With the default setting, this
record only contains three fields, since awk considers the sequence of multiple
blanks and tabs a single separator.

The following list of built-in variables provides various pieces of information about

input:
NF Number of fields in the current record
NR Number of records read so far

FILENAME Name of file containing current record

FNR Number of records read from current file

Field specifiers have the form $n, where n runs from 1 through NF. Such a field
specifier refers to the nth field of the current input record. $0 (zero) refers to the
entire current input record.

The getline function can read a value for a variable or $0 from the current input,
from a file, or from a pipe. The result of getline is an integer indicating whether the
read operation was successful. A value of 1 indicates success; 0 indicates that the
end of the file was encountered; and -1 indicates that an error occurred. Possible
forms for getline are:

getline
Reads next input record into $0 and splits the record into fields. NF, NR,
and FNR are set appropriately.

getline var
Reads the next input record into the variable var. awk does not split the
record into fields (which means that the current $n values do not change),
but sets NR and FNR appropriately.

getline <expr
Interprets the string value of expr to be a filename. awk reads the next
record from that file into $0, splits it into fields, and sets NF appropriately. If
the file is not open, awk opens it. The file remains open until you close it
with a close function.

getline var <expr
Interprets the string value of expr to be a filename, and reads the next
record from that file into the variable var, but does not split it into fields.

expr | getline
Interprets the string value of expr as a command line to be run. awk pipes
output from this command into getline, and reads it into $0, splits it into
fields, and sets NF appropriately. See |System Function| for additional
details.

expr | getline var
Runs the string value of expr as a command and pipes the output of the
command into getline. The result is similar to getline var <expr.

You can have only a limited number of files and pipes open at one time. You can
close files and pipes during execution using the close(expr) function. The expr
argument must be one that came before | or after < in getline, or after > or >> in
print or printf.

32 2/0S V1R4.0 UNIX System Services Command Reference

awk

If the function successfully closes the pipe, it returns zero. By closing files and
pipes that you no longer need, you can use any number of files and pipes in the
course of running an awk program.

Built-in Arithmetic Functions

atan2(expri, expr2)
Returns the arctangent of expr1/expr2 in the range of —II through II.

exp(expr), log(expn), sqrt(expr)
Returns the exponential, natural logarithm, and square root of the numeric
value of expr. If you omit (expr), these functions use $0 instead.

int(expn
Returns the integer part of the numeric value of expr. If you omit (expr), the
function returns the integer part of $0.

rand() Returns a random floating-point number in the range 0 through 1.

sin(expr), cos(expn)
Returns the sine and cosine of the numeric value of expr (interpreted as an
angle in radians).

srand(expr)
Sets the seed of the rand function to the integer value of expr. If you omit
(expr), awk uses the time of day as a default seed.

Built-in String Functions

len = length (expn)
Returns the number of characters in the string value of expr. If you omit
(expn), the function uses $0 instead. The parentheses around expr are
optional.

n = split(string, array, regexp)
Splits the string into fields. regexp is a regular expression giving the field
separator string for the purposes of this operation. This function assigns the
separate fields, in order, to the elements of array; subscripts for array begin
at 1. awk discards all other elements of array. split returns the number of
fields into which it divided string (which is also the maximum subscript for
array).

regexp divides the record in the same way that the FS field separator string
does. If you omit regexp in the call to split, it uses the current value of FS.

str = substr(string, offset, len)
Returns the substring of string that begins in position offset and is at most
len characters long. The first character of the string has an offset of 1. If
you omit /en, substr returns the rest of string.

pos = index(string, str)
Returns the position of the first occurrence of strin string. The count is in
characters. If index does not find strin string, it returns 0.

pos = match(string, regexp)

Searches string for the first substring matching the regular expression
regexp, and returns an integer giving the position of this substring counting
from 1. If it finds no such substring, match returns zero. This function also
sets the built-in variable RSTART to pos and the built-in variable RLENGTH
to the length of the matched string. If it does not find a match, match sets
RESTART to 0, and RLENGTH to —-1. You can enclose regexp in slashes or
specify it as a string.

Chapter 2. Shell Command Descriptions 33

awk

n = sub(regexp, repl, string)
Searches string for the first substring matching the regular expression
regexp, and replaces the substring with the string repl. awk replaces any
ampersand (&) in repl with the substring of string which matches regexp.
You can suppress this special behavior by preceding the ampersand with a
backslash. If you omit string, sub uses the current record instead. sub
returns the number of substrings replaced (which is 1 if it found a match,
and 0 otherwise).

n = gsub(regexp, repl, string)
Works the same way as sub, except that gsub replaces all matching
substrings (global substitution). The return value is the number of
substitutions performed.

str = sprintf(fmt, expr, expr...)
Formats the expression list expr, expr, ... using specifications from the string
fmt, and then returns the formatted string. The fmt string consists of
conversion specifications that convert and add the next expr to the string,
and ordinary characters that sprintf simply adds to the string. These
conversion specifications are similar to those used by the ANSI (see
SC09-4812 IBM Open Class Library Reference, Vol.1).

Conversion specifications have the form
S-1001[xI[.¥1c

where

- Left-justifies the field; default is right justification.
0 (Leading zero) prints numbers with leading zero.
X Is the minimum field width.

y Is the precision.

c Is the conversion character.

In a string, the precision is the maximum number of characters to be printed from
the string; in a number, the precision is the number of digits to be printed to the
right of the decimal point in a floating-point value. If x or y is * (asterisk), the
minimum field width or precision is the value of the next expr in the call to sprintf.

The conversion character ¢ is one of following:

d Decimal integer

i Decimal integer

o Unsigned octal integer

x,X Unsigned hexadecimal integer
u Unsigned decimal integer

f,F Floating point

e,E Floating point (scientific notation)

9,G The shorter of e and f (suppresses nonsignificant zeros)

c Single character of an integer value; first character of string
s String

The lowercase x specifies alphabetic hex digits in lowercase, whereas the
uppercase X specifies alphabetic hex digits in uppercase. The other
uppercase-lowercase pairs work similarly.

n = ord(expr)
Returns the integer value of first character in the string value of expr. This
is useful in conjunction with %c in sprintf.

34 z/0S V1R4.0 UNIX System Services Command Reference

awk

str = tolower(expn)
Converts all letters in the string value of expr into lowercase, and returns
the result. If you omit expr, tolower uses $0 instead. This function uses the
value of the locale or the LC_CTYPE environment variable.

str = toupper(expn)
Converts all letters in the string value of expr into uppercase, and returns
the result. If you omit expr, toupper uses $0 instead. This function uses the
value of the locale or the LC_CTYPE environment variable.

System Function

status = system(expr)
Runs the string value of expr as a command. For example, system("tail "
$1) calls the tail command, using the string value of $7 as the file that tail
examines. The standard command interpreter runs the command, as
discussed in the [Portability Section} and the exit status returned depends
on that command interpreter.

User-Defined Functions
You can define your own functions using the form:

function name(parameter-list) {
Statements
1

A function definition can appear in the place of a pattern {action} rule. The
parameter-list argument contains any number of normal (scalar) and array variables
separated by commas. When you call a function, awk passes scalar arguments by
value, and array arguments by reference. The names specified in parameter-list are
local to the function; all other names used in the function are global. You can define
local variables by adding them to the end of the parameter list as long as no call to
the function uses these extra parameters.

A function returns to its caller either when it runs the final statement in the function,
or when it reaches an explicit return statement. The return value, if any, is specified
in the return statement (see [‘Actions” on page 36)).

Patterns
A pattern is a regular expression, a special pattern, a pattern range, or any
arithmetic expression.

BEGIN is a special pattern used to label actions that awk performs before reading
any input records. END is a special pattern used to label actions that awk performs
after reading all input records.

You can give a pattern range as:
patternl ,pattern2

This matches all lines from one that matches patterni to one that matches pattern2,
inclusive.

If you omit a pattern, or if the numeric value of the pattern is nonzero (true), awk
runs the resulting action for the line.

Chapter 2. Shell Command Descriptions 35

awk

Actions

An action is a series of statements ended by semicolons, newlines, or closing
braces. A condition is any expression; awk considers a nonzero value true, and a
zero value false. A statement is one of the following or any series of statements
enclosed in braces:

expression statement, e.g. assignment
expression

if statement
if (condition)
statement
[else
statement]

while loop
while (condition)

statement

do-while Tloop

do
statement

while (condition)

for loop

for (expressionl; condition; expression2)
Statement

The for statement is equivalent to:

expressionl

while (condition) {
Statement
expression2

}

The for statement can also have the form:

for (i in array)
statement

awk runs the statement (specified with the statement argument) once for each
element in array; on each repetition, the variable i contains the name of a subscript
of array, running through all the subscripts in an arbitrary order. If array is
multidimensional (has multiple subscripts), i is expressed as a single string with the
SUBSEP character separating the subscripts.

The statement break exits a for or a while loop immediately. continue stops the
current iteration of a for or while loop and begins the next iteration (if there is one).
next ends any processing for the current input record and immediately starts
processing the next input record. Processing for the next record begins with the first
appropriate rule. exit[(expr)] immediately goes to the END action if it exists; if
there is no END action, or if awk is already running the END action, the awk
program ends. awk sets the exit status of the program to the numeric value of expr.
If you omit (expr), the exit status is 0. return [expr] returns from the execution of a
function.

If you specify an expr, the function returns the value of the expression as its result;
otherwise, the function result is undefined. delete array{i] deletes element i from the
given array. print_expr, expr, ... is described in printf fmt, expr, expr, ... is
also described in

Output
The print statement prints its arguments with only simple formatting. If it has no
arguments, it prints the entire current input record. awk adds the output record

36 z/0S V1R4.0 UNIX System Services Command Reference

Examples

awk

separator ORS to the end of the output that each print statement produces; when
commas separate arguments in the print statement, the output field separator OFS
separates the corresponding output values. ORS and OFS are built-in variables,
whose values you can change by assigning them strings. The default output record
separator is a newline, and the default output field separator is a space.

The variable OFMT gives the format of floating-point numbers output by print. By
default, the value is %.6g; you can change this by assigning OFMT a different string
value. OFMT applies only to floating-point numbers (ones with fractional parts).

The printf statement formats its arguments using the fmt argument. Formatting is
the same as for the built-in function sprintf. Unlike print, printf does not add output
separators automatically. This gives the program more precise control of the output.

The print and printf statements write to stdout. You can redirect output to a file or
pipe.

If you add >expr to a print or printf statement, awk treats the string value of expr
as a filename, and writes output to that file. Similarly, if you add >>expr, awk sends
output to the current contents of the file. The distinction between > and >> is
important only for the first print to the file expr. Subsequent outputs to an already
open file append to what is there already.

You cannot use such ambiguous statements as:
print a >b ¢

Use parentheses to resolve the ambiguity.

If you add /expr to a print or printf statement, awk treats the string value of expr
as an executable command and runs it with the output from the statement piped as
input into the command.

As mentioned earlier, you can have only a limited number of files and pipes open at
any time. To avoid going over the limit, use the close function to close files and
pipes when you no longer need them.

print and printf are also available as functions with the same calling sequence, but
no redirection.

1. The following example:
awk '{print NR ":" $0}' inputl

outputs the contents of the file input1 with line numbers prepended to each
line.

2. The following is an example using var=value on the command line:
awk '{print NR SEP $0}' SEP=":" inputl

awk can also read the program script from a file as in the command line:
awk —f addline.awk inputl

which produces the same output when the file addline.awk contains:
{print NR ":" $0}

Chapter 2. Shell Command Descriptions 37

awk

3. The following program appends all input lines starting with January to the file
jan (which may or may not exist already), and all lines starting with February
or March to the file febmar:

/~January/ {print >> "jan"}
/~February|~March/ {print >> "febmar"}
4. This program prints the total and average for the last column of each input
line:
{s += $NF}
END {print "sum is", s, "average is", s/NR}
5. The next program interchanges the first and second fields of input lines:

{

tmp = §$1
$1 = §2
$2 = tmp
print

}

6. The following inserts line numbers so that output lines are left-aligned:
{printf "%—6d: %s\n", NR, $0}

7. The following prints input records in reverse order (assuming sufficient
memory):
{

}
END {

a[NR] = $0 # index using record number

for (i = NR; i>0; --1i)
print a[i]
}
8. The following program determines the number of lines starting with the same
first field:

{
}

END { # note output will be in undefined order
for (i in a)
print a[i], "Tines start with", i

++a[$1] # array indexed using the first field

}

You can use the following program to determine the number of lines in each
input file:

{

}
END {

++a[FILENAME]

for (file in a)
if (a[file] == 1)
print file, "has 1 Tine"
else
print file, "has", a[file], "lines"
}

9. The following program illustrates how you can use a two-dimensional array in
awk. Assume the first field of each input record contains a product number, the
second field contains a month number, and the third field contains a quantity
(bought, sold, or whatever). The program generates a table of products versus
month.

?EGIN {NUMPROD = 5}

}

array[$1,$2] += $3

38 z/0S V1R4.0 UNIX System Services Command Reference

10.

11.

12.

13.

14.

awk

END {
print "\t Jan\t Feb\tMarch\tApril\t May\t" \
"June\tJuly\t Aug\tSept\t Oct\t Nov\t Dec"

for (prod = 1; prod <= NUMPROD; prod++) {
printf "%-7s", "prod#" prod
for (month = 1; month <= 12; month++) {

printf "\t%5d", array[prod,month]

}

printf "\n"
}
}
As the following program reads in each line of input, it reports whether the line
matches a predetermined value:

function randint() {
return (int((rand()+1)*10))
}

BEGIN {
prize[randint(),randint()] = "$100";
prize[randint(),randint()] = "$10";
prize[1,1] = "the booby prize"

if (($1,%$2) in prize)
printf "You have won %s!\n", prize[$1,$2]
}
The following example prints lines, the first and last fields of which are the
same, reversing the order of the fields:
$1==$NF {
for (i = NF; i > 0; --1)
printf "%s", $i (i>1 ? OFS : ORS)
}
The following program prints the input files from the command line. The infiles
function first empties the passed array, and then fills the array. The extra
parameter i of infiles is a local variable.

function infiles(f,i) {
for (i in f)
delete f[i]
for (i = 1; i < ARGC; i++)
if (index(ARGV[i],"=") == 0)
f[i] = ARGV[i]
}
BEGIN {
infiles(a)
for (i in a)
print a[i]
exit
1
Here is the standard recursive factorial function:

function fact(num) {
if (num <= 1)
return 1
else
return num * fact(num - 1)

}
{ print $0 " factorial is " fact($0) }

The following program illustrates the use of getline with a pipe. Here, getline
sets the current record from the output of the we command. The program
prints the number of words in each input file.
function words(file, string) {

string = "wc " fn

string | getline

Chapter 2. Shell Command Descriptions 39

awk

close(string)
return ($2)

BEGIN {
for (i=1; i<ARGC; i++) {
fn = ARGV[1]
printf "There are %d words in %s.",
words(fn), fn

}

Environment Variables
awk uses the following environment variable:

PATH Contains a list of directories that awk searches when looking for commands
run by system(expr), or input and output pipes.

Any other environment variable can be accessed by the awk program itself.

Localization

awk uses the following localization environment variables:
* LANG

« LC_ALL

« LC_COLLATE

« LC_CTYPE

« LC_MESSAGES

+ LC_NUMERIC

* LC_SYNTAX

* NLSPATH

See|Appendix F, “Localization” on page 825|for more information.

Exit Values

0 Successful completion

1 Any of the following errors:
» Parser internal stack overflow
» Syntax error
* Function redefined
* Internal execution tree error
* Insufficient memory for string storage
* Unbalanced parenthesis or brace
* Missing script file
» Missing field separator
* Missing variable assignment
* Unknown option
* Incorrect character in input
* Newline in regular expression
* Newline in string
* EOF in regular expression
* EOF in string
« Cannot open script file
* Inadmissible use of reserved keyword
» Attempt to redefine built-in function
» Cannot open input file
* Error on print
* Error on printf

40 z/OS V1R4.0 UNIX System Services Command Reference

Limits

When an

awk

Getline in END action was not redirected
Too many open /O streams

Error on I/O stream

Insufficient arguments to printf or sprintf()
Array cannot be used as a scalar
Variable cannot be used as a function
Too many fields

Record too long

Division (/ or %) by zero

Syntax error

Cannot assign to a function

Value required in assignment

Return outside of a function

Can delete only array element or array
Scalar cannot be used as array
SYMTAB must have exactly one index
Impossible function call

Function call nesting level exceeded
Wrong number of arguments to function
Regular expression error

Second parameter to “split” must be an array
sprintf string longer than allowed number of characters
No open filename

Function requires an array

Is not a function

Failed to match

Incorrect collation element

Trailing \ in pattern

Newline found before end of pattern
More than 9 \(\) pairs

Number in [0-9] incorrect

[] imbalance or syntax error

() or \(\) imbalance

{ } or\{ \} imbalance

Incorrect endpoint in range

Out of memory

Incorrect repetition

Incorrect character class type

Internal error

Unknown regex error

awk program ends because of a call to exit(), the exit status is the value

passed to exit().

Most constructions in this implementation of awk are dynamic, limited only by
memory restrictions of the system.

The maximum record size is guaranteed to be at least LINE_MAX as returned by
getconf. The maximum field size is guaranteed to be LINE_MAX, also.

The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated programs may result in an overflow of this stack, causing an error.

Input must be text files.

Chapter 2. Shell Command Descriptions 41

awk

Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The ord function is an extension to traditional implementations of awk. The
toupper and tolower functions and the ENVIRON array are in POSIX and the
UNIX System V Release 4 version of awk. This version is a superset of New awk,
as described in The AWK Programming Language by Aho, Weinberger, and
Kernighan.

The standard command interpreter that the system function uses and that awk uses
to run pipelines for getline, print, and printf is system-dependent. On z/OS UNIX,
this interpreter is always /bin/sh.

Related Information

ed, egrep, sed, vi

For more information about regexp, see |Appendix C

basename — Return the nondirectory components of a pathname

Format

Description

Examples

Localization

Exit Values

basename name [suffix]

basename strips off the leading part of a pathname, leaving only the final
component of the name, which is assumed to be the filename. To accomplish this,
basename first checks to see if name consists of nothing but slash (/) characters.

If so, basename replaces name with a single slash and the process is complete. If
not, basename removes trailing slashes. If slashes still remain, basename strips off
all leading characters up to and including the final slash. Finally, if you specify suffix
and the remaining portion of name contains a suffix that matches suffix, basename
removes that suffix.

The command:
basename src/dos/printf.c

produces:
printf.c

basename uses the following localization environment variables:
« LANG

- LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 Successful completion

42 2/0S V1R4.0 UNIX System Services Command Reference

Portability

basename

1 Failure due to any of the following:
* Unknown command-line option
* Incorrect number of arguments

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

dirname

batch — Run commands when the system is not busy

Format

Description

batch

batch lets you run commands in batch mode. It reads the commands from the
standard input (stdin). The system records the commands and runs them at a time
when the system load is relatively low (that is, when the system is not busy).

The batch command is equivalent to

at —q b —m now
For more details, see at.

at, batch, and crontab submit jobs to cron; the data in those jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Since it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the job may not be interpreted
correctly. You may be able to get around this by calling setlocale() in the job itself.

Environment Variables

Localization

Exit Values

batch uses the following environment variable:

SHELL
Contains the name of the shell command interpreter used to invoke the
batch job.

batch uses the following localization environment variables:
« LANG

- LC_ALL

« LC_CTYPE

+ LC_MESSAGES

* NLSPATH

See[Appendix F|for more information.

0 Successful completion
>0 Returned if the command fails for any reason

Chapter 2. Shell Command Descriptions 43

batch

Portability

If an error occurs, batch does not schedule the job.

POSIX.2 User Portability Extension.

Related Information

at, bg, crontab

bc — Use the arbitrary-precision arithmetic calculation language

Format

Description

Options

be [-i] [-1] [file]

bc is a programming language that can perform arithmetic calculations to arbitrary
precision. You can use it interactively, by entering instructions from the terminal. It
can also run programs taken from files.

The file arguments you specify on the command line should be text files containing
bc instructions. be runs the instructions from those files, in the order that they
appear on the command line, and then runs instructions from the standard input
(stdin). bc ends when it runs a quit instruction or reaches the end of the file on
stdin.

bc is a simple but complete programming language with a syntax reminiscent of the
C programming language. This version of bc is a superset of the standard language
available on most systems. It has a number of additional features intended to make
the language more flexible and useful. Features unique to this implementation are
noted.

Input consists of a series of instructions that assign values to variables or make
calculations. It is also possible to define subprograms called functions, which
perform a sequence of instructions to calculate a single value.

bc displays the result of any line that calculates a value, but does not assign it to a
variable. For example, the instruction:

242

displays:
4

By default, be displays the result of any evaluated instruction followed by a newline.
bc also saves the last value displayed in a special variable . (dot), so that you can
use it in subsequent calculations.

bc supports the following options.

=i Puts bec into interactive mode with a displayed prompt. In this mode, bc
displays a prompt, which is “:>—waiting for input. In addition, it handles
errors somewhat differently. Normally, when be encounters an error while

44 7/0S V1R4.0 UNIX System Services Command Reference

Numbers

Identifiers

bec

processing a file, the interpreter displays the error message and exits. In
interactive mode, the interpreter displays the message and returns to the
prompt mode to allow debugging.

-1 Loads a library of standard mathematical functions before processing any
other input. This library also sets the scale to 20. For a description of the
functions in the -l library, see [‘Built-in Functions” on page 55|

Numbers consist of an optional minus (=) sign or an optional plus (+) sign followed
by a sequence of zero or more digits, followed by an optional decimal point (.),
followed by a sequence of zero or more digits. Valid digits are 0 through 9, and the
hexadecimal digits A through F. The uppercase letters represent the values from 10
through 15. There must be at least one digit, either before or after the decimal point.
If not, be interprets the decimal point as the special variable ..

A number can be arbitrarily long and can contain spaces. Here are some valid
numbers with an input base of 10:

0 0. .0 -3.14159 +09. -12 1 000 000

Here are some valid numbers with an input base of 16 (ibase=16):
0 FF FF.3 -10.444 Al

See [‘Bases” on page 46| for more information.

A final point is that you cannot break up numbers with commas; you can write
1000000 or 1 000 000, but 1,000,000 results in an error message.

Identifiers can include sequences containing any number of letters, digits, or the
underscore (_) character but must start with a lowercase letter. Spaces are not
allowed in identifiers.

In the POSIX locale, valid identifiers can include sequences containing any number
of letters, digits, or the underscore (_) character but must start with a lowercase
letter, as defined by the current locale.

For other locales, the character map for that locale determines which characters are
valid in an identifier. If you want identifiers to be portable between locales, use
characters from the POSIX character set. The use of identifiers longer than one
character is an extension of this implementation. Identifiers are used as names for
variables, functions, or arrays:

* A variable holds a single numeric value. You can declare variables that are local
to a function using the auto statement. (See [‘Functions” on page 53). All other
variables are global and you can use them inside any function or outside all
functions. You do not need to declare global variables. be creates variables as it
requires them, with an initial value of zero. (Remember that there is also the
special variable . [dot], which contains the result of the last calculation.)

» A function is a sequence of instructions that calculates a single value. A list of
zero or more values enclosed in parentheses always follow a function name, as
in my_func(3.14159). See [‘Functions” on page 53,

* An array is a list of values. Values in the list are called elements of the array.
These elements are numbered, beginning at zero. We call such a number a
subscript, or index, of the array. Subscripts always appear in square brackets

Chapter 2. Shell Command Descriptions 45

bec

after the array. For example, a[0] refers to element zero in the array a. The first
element of the array always has the subscript 0. If a subscript value is a
floating-point number, the fractional part is discarded to make the subscript into
an integer. For example, the following expressions all refer to the same element:

a[3] a[3.2] a[3.999]

The maximum number of elements in a be array is in the range from 0 to
{BC_DIM_MAX}-1 inclusive. Unlike with many languages, you don’t need to
declare the size of an array. Elements are created dynamically as required, with
an initial value of zero.

Since parentheses always follow function names and square brackets always follow
array names, bc can distinguish between all three types of names—variable names,
function names, and array names. Therefore, you can have variables, functions,
and arrays with the same name. For example, foo may be a variable whereas foo()
is a function and foo[] is an array.

Built-in Variables

Scale

Bases

bc has a number of built-in variables that are used to control various aspects of the
interpreter. These are described in the following sections.

The scale value is the number of digits to be retained after the decimal point in
arithmetic operations. For example, if the scale is 3, each calculation retains at least
three digits after the decimal point. This means that:

5/3

has the value:
1.666

If =1 is specified, the scale is set to 20; otherwise, the default scale is zero.

The variable scale holds the current scale value. To change scales, assign a new
value to scale, as in:

scale = 5

Since scale is just a regular be variable, it can be used in the full range of be
expressions.

The number of decimal places in the result of a calculation is affected not only by
the scale, but also by the number of decimal places in the operands of the
calculation. discusses this. ['Arithmetic Operations” on page 47| discusses this.

There is also a function scale, which can determine the scale of any expression.
For example, scale(1.1234) returns the result 4, which is the scale of the number
1.1234. The result of the scale function is always an integer (that is, it has the
scale of 0).

The maximum value for scale is given by the configuration variable
{BC_SCALE_MAX} and the minimum value is 0.

bc lets you specify numbers in different bases—for example, octal (base 8) or
hexadecimal (base 16). You can input numbers in one base and output them in a

46 z/OS V1R4.0 UNIX System Services Command Reference

bec

different base, simplifying the job of converting from one base to another. be does
this using the built-in variables ibase and obase.

ibase is the base for input numbers. It has an initial value of 10 (normal decimal
numbers). To use a different base for inputting numbers, assign an integer to ibase,
as in:

ibase = 8

This means that all future input numbers are to be in base 8 (octal). The largest
valid input base is 16, and the smallest valid input base is 2. There is no
mechanism provided to represent digits larger than 15, so bases larger than 16 are
essentially useless. When the base is greater than 10, use the uppercase letters as
digits. For example, base 16 uses the digits 0 through 9, and A through F. The digits
are allowed in any number, regardless of the setting of ibase but are largely
meaningless if the base is smaller than the digit. The one case where this is useful
is in resetting the input base to 10. The constant A always has the value 10 no
matter what ibase is set to, so to reset the input base to 10, type:

ibase = A

obase is the base in which numbers are output. It has an initial value of 10 (normal
decimal numbers). To change output bases, assign an appropriate integer to obase.

If the output base is 16 or less, be displays numbers with normal digits and
hexadecimal digits (if needed). The output base can also be greater than 16, in
which case each digit is printed as a decimal value and digits are separated by a
single space. For example, if obase is 1000, the decimal number 123 456 789 is
printed as:

123 456 789

Here, the digits are decimal values from 0 through 999. As a result, all output values
are broken up into one or more chunks with three digits per chunk. Using output
bases that are large powers of 10, you can arrange your output in columns; for
example, many users find that 100 000 makes a good output base, because
numbers are grouped into chunks of five digits each.

Long numbers are output with a maximum of 70 characters per line. If a number is
longer than this, be puts a backslash (\) at the end of the line, indicating that the
number is continued on the next line.

Internal calculations are performed in decimal, regardless of the input and output
bases. Therefore the number of places after the decimal point are dictated by the
scale when numbers are expressed in decimal form.

The maximum value for obase is given by the configuration variable
{BC_BASE_MAX;}.

Arithmetic Operations

bc provides a large number of arithmetic operations. Following standard arithmetic
conventions, some operations are calculated before others. For example,
multiplications take place before additions unless you use parentheses to group
operations. Operations that take place first are said to have a higher precedence
than operations that take place later.

Operations also have an associativity. The associativity dictates the order of
evaluation when you have a sequence of operations with equal precedence. Some

Chapter 2. Shell Command Descriptions 47

bec

operations are evaluated left to right, whereas others are evaluated right to left. The
following list shows the operators of be from highest precedence to lowest.

bc Operator Associativity

() Left to right
Unary ++ —— Not applicable
Unary — ! Not applicable
A Right to left, or Left to right
+ - Left to right
=M=z [= %= +=
Right to left
==<=>=l=<>
None
&& Left to right

Il Left to right

bc’s order of precedence is not the same as C’s. In C, the assignment operators
have the lowest precedence.

The following list describes what each operation does. In the descriptions, A and B
can be numbers, variables, array elements, or other expressions. V must be either a
variable or an array element.

(A) Indicates that this expression—A—should be evaluated before any other
operations are performed on it.

-A Is the negation of the expression.

1A Is the logical complement of the expression. If A evaluates to zero, !A

evaluates to 1. If A is not zero, !A evaluates to zero. This operator is unique
to this version of bc.

++V Adds 1 to the value of V. The result of the expression is the new value of V.

- -V Subtracts 1 from the value of V. The result of the expression is the new
value of V.

V++ Adds 1 to the value of V, but the result of the expression is the old value of
V.

V- - Subtracts 1 from the value of V, but the result of the expression is the old
value of V.

A~ B Calculates A to the power B. B must be an integer. The scale of the result of
A™B is:
min(scale(A) * abs(B), max(scale, scale(A)))
where min calculates the minimum of a set of numbers and max calculates
the maximum.

A * B Calculates A multiplied by B. The scale of the result is:

min(scale(A) + scale(B), max(scale, scale(A), scale(B)))

A/ B Calculates A divided by B. The scale of the result is the value of scale.

48 2z/OS V1R4.0 UNIX System Services Command Reference

bec

A % B Calculates the remainder from the division of A by B. This is calculated in
two steps. First, bc calculates A/B to the current scale. It then obtains the
remainder through the formula:

A-(A/B) =B

calculated to the scale:

max(scale + scale(B), scale(A))

A + B Adds A plus B. The scale of the result is the maximum of the two scales of
the operands.

A-B Calculates A minus B. The scale of the result is the maximum of the two
scales of the operands.

The next group of operators are all assignment operators. They assign values to
objects. An assignment operation has a value: the value that is being assigned.
Therefore, you can write such operations as a=1+(b=2). In this operation, the value
of the assignment in parentheses is 2 because that is the value assigned to b.
Therefore, the value 3 is assigned to a. The possible assignment operators are:

V=B Assigns the value of B to V.
V=B Is equivalent to V=V"B.
V*=B Is equivalent to V=V*B.
V/=B Is equivalent to V=V/B.
V %= B Is equivalent to V=V%B.
V+=B Is equivalent to V=V+B.
V-=B Is equivalent to V=V-B.

The following expressions are called relations, and their values can be either true
(1) or false (0). This version of be lets you use the relational operators in any
expression, not just in the conditional parts of if, while, or for statements. These
operators work exactly like their equivalents in the C language. The result of a
relation is 0 if the relation is false and 1 if the relation is true.

A== Is true if and only if A equals B.

A<=B Is true if and only if A is less than or equal to B.

A>=B Is true if and only if A is greater than or equal to B.

A'!'=B Is true if and only if A is not equal to B.

A<B Is true if and only if A is less than B.

A>B Is true if and only if A is greater than B.

A && B Is true if and only if A is true (nonzero) and B is true. If A is not true,
the expression B is never evaluated.

AllB Is true if A is true or B is true. If A is true, the expression B is never
evaluated.

Comments and White Space
A comment has the form:
/* Any string */

Chapter 2. Shell Command Descriptions 49

bec

Instructions

Comments can extend over more than one line of text. When bc sees /* at the
start of a The only effect a comment has is to indicate the end of a token. As an
extension, this version of be also provides an additional comment convention using
the # character. All text from the # to the end of the line is treated as a single blank,
as in:

2+2 # this is a comment

bc is free format. You can freely insert blanks or horizontal tab characters to
improve the readability of the code. Instructions are assumed to end at the end of
the line. If you have an instruction that is so long you need to continue it on a new
line, put a backslash (\) as the very last character of the first line and continue on
the second, as in:

a =2\

+3

The \ indicates that the instruction continues on the next line, so this is equivalent
to:

a=2+3

A bc instruction can be an expression that performs a calculation, an assignment, a
function definition, or a statement. If an instruction is not an assignment, bc
displays the result of the instruction when it has completed the calculation. For
example, if you enter:

3.14 = 23

be displays the result of the calculation. However, with:
a =3.14 = 23

bc does not display anything, because the expression is an assignment. If you do
want to display the value of an assignment expression, simply place the expression
in parentheses.

The following list shows the instruction forms recognized by bec:

expression
Calculates the value of the expression.

“string”
Is a string constant. When be sees a statement of this form, it displays the
contents of the string. For example:

"Hello world!"

tells be to display Hello world! A newline character is not output after the
string. This makes it possible to do things like:

foo = 15
"The value of foo is "; foo

With these instructions, be displays
The value of foo is 15

statement ; statement ...
Is a sequence of statements on the same line. In be, a semicolon (;) and a
newline are equivalent. They both indicate the end of a statement. be runs
these statements in order from left to right.

50 z/0S V1R4.0 UNIX System Services Command Reference

bec

{statement}
Is a brace-bracketed statement. Brace brackets are used to group
sequences of statements together, as in:
{

statement
statement

}

Brace brackets can group a series of statements that are split over several
lines. Braces are usually used with control statements like if and while.

break Can be used only inside a while or for loop. break ends the loop.

for (initexp ; relation ; endexp) statement
Is equivalent to:
initexp
while (relation) {
statement
endexp

}

where initexp and endexp are expressions and relation is a relation. For
example:

a=20

for (i = 1; i <= 10; ++i) a += i

is equivalent to the while example given earlier.

Note: All three items inside the parentheses must be specified. Unlike C,
bc does not let you omit any of these expressions.

if (relation) statement
Tests whether the given relation is true. If so, be runs the statement,
otherwise, bc skips over the statement and goes to the next instruction. For
example:

if ((a%2) == 0) "a is even"

displays a is even if a has an even value.

if (relation) statementi elsestatement2
Is similar to the simple if statement. It runs statement1 if relation is true and
otherwise runs statement2. It may be used as follows:

if ((a%2) == 0) "a is even" else "a is odd"

Note: There is no statement separator between “a is even” and the else
keyword. This differs from the C language.

Here is another example:

if (a<10) {
Ila n
"is "; "less than 10 "
a
} else {
Ila 1'sll
" greater than 10 "
a

Chapter 2. Shell Command Descriptions 51

bec

Note: The braces must be on the same line as the if and the else keywords. This
is because a new line or a semicolon right after (relation) indicates that the
body of the statement is null. One common source of errors in bc programs
is typing the statement body portion of an if statement on a separate line. If
—i is used, the interpreter displays a warning when if statements with null
bodies are encountered.

while (relation) statement
Repeatedly runs the given statement while relation is true. For example:
i=1
a=20
while (i <= 10) {
a += i
++i

}
adds the integers from 1 through 10 and stores the result in a.

If relation is not true when be encounters the while loop, be does not run
statement at all.

print expression , expression ...
Displays the results of the argument expressions. Normally, bc displays the
value of each expression or string it encounters. This makes it difficult to
format your output in programs. For this reason, the z/OS shell version of
bc has a print statement to give you more control over how things are
displayed. print lets you display several numbers on the same line with
strings. This statement displays all its arguments on a single line. A single
space is displayed between adjacent numbers (but not between numbers
and strings). A print statement with no arguments displays a newline. If the
last argument is null, subsequent output continues on the same line. Here
are some examples of how to use print:
/* basic print statement */
print "The square of ", 2, "is ", 2*2
The square of 2 is 4
/* inserts a space between adjacent numbers =/
print 1,2,3
123

/* note - no spaces */
pr.int 1’IIII’2,IIII,3
123

/* just print a blank line */
print

/* two statements with output on same line */
print 1,2,3, ; print 4, 5, 6
123456

quit Ends bc. In other implementations of be, the interpreter exits as soon as it
reads this token. This version of bc treats quit as a real statement, so you
can use it in loops, functions, and so on.

sh ... Lets you send a line to the system command interpreter for execution, as
in:

sh more <foo

This command passes everything from the first nonblank character until the
end of the line to the command interpreter for execution.

void expression
Throws away, or “voids,” the result of the evaluation of expression instead

52 2/0S V1R4.0 UNIX System Services Command Reference

Functions

bec

of displaying it. This instruction is useful when using ++ and -- operators, or
when you want to use a function but don’t want to use the return value for
anything. For example:

void foo++

increments foo but does not display the result. The void statement is
unique to this version of bc.

Several other types of statements are relevant only in function definitions. These
are described in the next section.

A function is a subprogram to calculate a result based on argument values. For
example, the following function converts a temperature given in Fahrenheit into the
equivalent temperature in Celsius:

define f_to c(f) {
return ((f-32) =5/ 9)
}

This defines a function named f_to_c() that takes a single argument called f. The
body of the function is enclosed in brace brackets. The opening brace must be on
the same line as the define keyword. The function body consists of a sequence of
statements to calculate the result of the function. An expression of the form:

return (expression)

returns the value of expression as the result of the function. The parentheses
around the expression are optional.

To activate the subprogram you use a function call. This has the form:
name (expression,expression,...)

where name is the name of the function, and the expressions are argument values
for the function. You can use function call anywhere you might use any other
expression. The value of the function call is the value that the function returns. For
example, with the function f_to_c(), described earlier, f_to_c(41) has the value 5
(since 41 Fahrenheit is equivalent to 5 Celsius).

The general form of a function definition is:

define name(parameter,parameter,...) {
auto local, Tocal, ...
statement
statement

}

Each parameter on the first line can be a variable name or an array name. Array
names are indicated by putting square brackets after them. For example, if cmpvec
is a function that compares two vectors, the function definition might start with:

define cmpvec(a[],b[]) {

Parameters do not conflict with arrays or variables of the same name. For example,
you can have a parameter named a inside a function, and a variable named a
outside, and the two are considered entirely separate entities. Assigning a value to
the variable does not change the parameter and vice versa. All parameters are
passed by value. This means that a copy is made of the argument value and is

Chapter 2. Shell Command Descriptions 53

bec

assigned to the formal parameter. This also applies to arrays. If you pass an array
to a function, a copy is made of the whole array, so any changes made to the array
parameter do not affect the original array.

A function may not need any arguments. In this case, the define line does not have
any parameters inside the parentheses, as in:

define f() {

The auto statement declares a sequence of local variables. When a variable or
array name appears in an auto statement, the current values of those items are
saved and the items are initialized to zero. For the duration of the function, the
items have their new values. When the function ends, the old values of the items
are restored.

However, be uses dynamic scoping rules, unlike C which uses lexical scoping rules.

See [Usage Notes” on page 57|for more details.

For example:

define addarr(a[],1) {
auto i, s
for (i=0; 1 < 1; ++i) s += a[i]
return (s)

}

is a function that adds the elements in an array. The argument 1 stands for the
number of elements in the array. The function uses two local names: a variable
named j and a variable named s. These variables are “local” to the function addarr
and are unrelated to objects of the same name outside the function (or in other
functions). Objects that are named in an auto statement are called autos. Autos are
initialized to 0 each time the function is called. Thus, the sum s is set to zero each
time this function is called. You can also have local arrays, which are specified by
placing square brackets after the array name in the auto statement.
define func_with Tocal array() {

auto local_array[];

for(i=0; i<100; i++) Tocal_array[i] = i*2

}

This example defines a local array called local_array. Local arrays start out with no
elements in them.

If a function refers to an object that is not a parameter and not declared auto, the
object is assumed to be external. External objects may be referred to by other
functions or by statements that are outside of functions. For example:
define sum_c(a[J,b[1,1) {

auto i

for (i=0; i < 1; ++i) c[i] = a[i] + b[i]
}

refers to an external array named ¢, which is the element-by-element sum of two
other arrays. If ¢ did not exist prior to calling sum_c, it is created dynamically. After
the program has called sum_c, statements in the program or in functions can refer
to array c.

Functions usually require a return statement. This has the form:
return (expression)

54 z/0S V1R4.0 UNIX System Services Command Reference

bec

The argument expression is evaluated and used as the result of the function. The
expression must have a single numeric value; it cannot be an array.

A return statement ends a function, even if there are more statements left in the
function. For example:
define abs(i) {

if (i <0) return (-i)

return (i)

}

is a function that returns the absolute value of its argument. If i is less than zero,
the function takes the first return; otherwise, it takes the second.

A function can also end by running the last statement in the function. If so, the
result of the function is zero. The function sum_c is an example of a function that
does not have a return statement. The function does not need a return statement,
because its work is to calculate the external array ¢, not to calculate a single value.
Finally, if you want to return from a function, but not return a value you can use
return() or simply return. If there are no parameters to the return statement, a
default value of zero is returned.

Built-in Functions

bc has a number of built-in functions that perform various operations. These
functions are similar to user-defined functions. You do not have to define them
yourself, however; they are already set up for you. These functions are:

length(expression)
Calculates the total number of decimal digits in expression. This includes
digits both before and after the decimal point. The result of length() is an
integer. For example, length(123.456) returns 6.

scale(expression)
Returns the scale of expression. For example, scale(123.456) returns 3.
The result of scale() is always an integer. Subtracting the scale of a
number from the length of a number lets you determine the number of digits
before the decimal point.

sqrt(expression)
Calculates the square root of the value of expression. The result is
truncated in the least significant decimal place (not rounded). The scale of
the result is the scale of expression, or the value of scale(), whichever is
larger.

You can use the following functions if I is specified on the command line. If it is
not, the function names are not recognized. There are two names for each function:
a full name, and a single character name for compatibility with POSIX.2. The full
names are the same as the equivalent functions in the standard C math library.

arctan(expression) or a(expression)
Calculates the arctangent of expression, returning an angle in radians. This
function can also be called as atan(expression).

bessel(integer,expression) or j(integer,expression)
Calculates the Bessel function of expression, with order integer. This
function can also be called as jn(integer,expression).

cos(expression) or c(expression)
Calculates the cosine of expression, where expression is an angle in
radians.

Chapter 2. Shell Command Descriptions 95

bec

Examples

exp(expression) or e(expression)

Calculates the exponential of expression (that is, the value e to the power
of expression).

In(expression) or I(expression)

Calculates the natural logarithm of expression. This function can also be
called as log(expression).

sin(expression) or s(expression)

Calculates the sine of expression, where expression is an angle in radians.

Here is a simple function to calculate the sales tax on a purchase. The amount
of the purchase is given by purchase, and the amount of the sales tax (in per
cent) is given by fax.
define sales_tax(purchase,tax) {

auto old_scale

scale = 2

tax = purchase*(tax/100)

scale = old_scale

return (tax)

}

For example:
sales_tax(23.99,6)

calculates 6% tax on a purchase of $23.99. The function temporarily sets the
scale value to 2 so that the monetary figures have two figures after the decimal
point. Remember that be truncates calculations instead of rounding, so some
accuracy may be lost. It is better to use one more digit than needed and
perform the rounding at the end. The round2 function, shown later in this
section, rounds a number to two decimal places.

Division resets the scale of a number to the value of scale. You can use this to
extract the integer portion of a number, as follows:

define integer part(x) f{
a Tocal to save the value of scale
auto old_scale
save the old scale, and set scale to 0
old_scale = scale; scale=0
divide by 1 to truncate the number
x /=1
restore the old scale
scale=old_scale
return (x)

}
Here is a function you can define to return the fractional part of a number:
define fractional_part(x) {return (x - integer_part(x))}

The following function lets you set the scale of number to a given number of
decimal places:

define set_scale(x, s)
{ auto os
os = scale
scale = s
x /=1
scale = os
return (x) }

56 z/0S V1R4.0 UNIX System Services Command Reference

Usage Notes

bec

You can now use set_scale() in a function that rounds a number to two decimal

places:

define round2(num) {
auto temp;
if(scale(num) < 2) return (set_scale(num, 2))
temp = (num - set_scale(num, 2)) * 1000
if(temp > 5) num += 0.01
return (set_scale(num,2))

}

This is a very useful function if you want to work with monetary values. For
example, you can now rewrite sales_tax() to use round2():

define sales_tax(purchase,tax) {
auto old_scale
scale = 2
tax = round2(purchasex(tax/100))
scale = old_scale
return (tax)

}
Here is a function that recursively calculates the factorial of its argument:
define fact (x) {

if(x < 1) return 1

return (xxfact(x-1))

}

You can also write the factorial function iteratively:

define fact (x) {
auto result
result =1
while(x>1) result *= x--
return (result)

}

With either version, fact(6) returns 720.

Here is another recursive function, that calculates the nth element of the
Fibonacci sequence:
define fib(n) {
if(n < 3) {
return (1)

} else {
return (fib(n-1)+fib(n-2))
1

Unlike the C language, which uses lexical scoping rules, bc uses dynamic
scoping, which is most easily explained with an example:

a=10

define f1() {
auto a;
a = 13;

return (f2())
}
define f2() {

return (a)
}

f1()
13
f2()
10

Chapter 2. Shell Command Descriptions

57

bec

Files

Localization

Exit Values

If f1() is called, bc prints the number 13, instead of the number 10. This is
because f1() hides away the old (global) value of a and then sets it to 13. When
f2() refers to a, it sees the variable dynamically created by f1() and so prints 13.
When f1() returns, it restores the old value of a. When f2() is called directly,
instead of through f1(), it sees the global value for a and prints 10. The
corresponding C code prints 10 in both cases.

Numbers are stored as strings in the program and converted into numbers each
time they are used. This is important because the value of a “constant” number
may change depending on the setting of the ibase variable. For example,
suppose the following instructions are given to bc:

define ten() {
return (10)
}

ten()

10
ibase=16
ten()

16

In this example, when the base is set to 10, ten() returns the decimal value 10.
However, when the input base is changed to 16, the function returns the
decimal value 16. This can be a source of confusing errors in bec programs.

The library of functions loaded using the -l option is stored in the file

/usr/lib/lib.b under your root directory. This is a simple text file that you can
examine and change to add new functions as desired.

bc uses the following file:
lusr/lib/lib.b

File containing the library of functions loaded with —I

bc uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
LC_SYNTAX
NLSPATH

See|Appendix F|for more information.

Successful completion

Failure due to any of the following errors:
» Break statement found outside loop

» Parser stack overflow

+ Syntax error

* End of file in comment

* End of file in string

* Numerical constant is too long

« String is too long

* Empty evaluation stack

» Cannot pass scalar to array

58 2z/0S V1R4.0 UNIX System Services Command Reference

Limits

Portability

bec

» Cannot pass array to scalar

* Incorrect array index

» Built-in variable cannot be used as a parameter or auto variable
* name is not a function

* Incorrect value for built-in variable

» Shell command failed to run

 Division by 0

* Incorrect value for exponentiation operator

» Attempt to take square root of negative number

* Qut of memory

2 Unknown command-line option

The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated programs may result in an overflow of this stack, causing an error.

POSIX.2, X/Open Portability Guide, UNIX systems.

The following are extensions to the POSIX standard:
* The —i option

* The &&and |l operators

* The if ... else ... statement

« |dentifiers of more than one character or containing characters outside the
POSIX character set

* The print statement

* The sh statement

* The optional parentheses in the return statement

In a doublebyte environment, remember that only numbers and operators from the
POSIX character set can be used. Identifiers can use characters from the current

locale; if you want scripts to be portable, use only characters from the POSIX
character set.

bg — Move a job to the background

Format

Description

bg [job...]

tcsh shell: bg [%job ...]

bg runs one or more jobs in the background. The job IDs given on the command
line identify these jobs, which should all be ones that are currently stopped. If you
do not specify any job IDs, bg uses the most recently stopped job.

bg works only if job control is enabled; see the —-m option of set for more
information. Job control is enabled by default in the z/OS shell.

Chapter 2. Shell Command Descriptions 59

bg

Usage Note

Exit Values

Portability

bg in the tcsh shell

In the tcsh shell, bg puts the specified jobs (or, without arguments, the current job)
into the background, continuing each if it is stopped. job may be a number, a string,
Y%, + OF - .

In the tcsh shell, %job & is a synonym of the bg command.
Localization

bg uses the following localization environment variables:

* LANG

« LC_ALL

« LC_CTYPE

* LC_MESSAGES
* NLSPATH

See|Appendix F|for more information.

bg is a built-in shell command.

0 Successful completion
>0 Failure because a job argument is incorrect or there is no current job

If an error occurs, bg exits and does not place the job in the background.

POSIX.2 User Portability Extension, UNIX systems.

Related Information

at, batch, fg, jobs, set, tcsh

bpxmtext — Display reason code text

Format

Description

Usage Notes

bpxmtext reason_code

bpxmtext displays the description and action text for a reason code returned from
the kernel. Non-kernel reason codes such as those returned by HFS or NFS are not
supported by this command. This command is intended as an aid for problem
determination.

reason_code is specified as 8 hexadecimal characters. Leading zeros may be
omitted.

If no text is available for the reason code, a blank line is displayed.

An argument that is not 1-8 hex digits will result in a usage message. This
message will not be translated.

60 z/0S V1R4.0 UNIX System Services Command Reference

bpxmtext

Examples
The command:
bpxmtext 058800B0

produces data displayed in the following format:

BPXFSUMT 08/18/98
JRUserNotPrivileged: The requester of the service is not privileged

Action: The service requested required a privileged user. Check the
documentation for the service to understand what privilege is required.

Exit Values
0 Successful completion

2 Failure due to an argument that is not 1-8 hex digits

break — EXxit from a loop in a shell script

Format
break [number]
tcsh shell: break
Description
break exits from a for, select, while, or until loop in a shell script. If number is
given, break exits from the given number of enclosing loops. The default value of
numberis 1.
break in the tcsh shell
In the tcsh shell, break causes execution to resume after the end of the nearest
enclosing foreach or while. The remaining commands on the current line are
executed. Multi-level breaks are thus possible by writing them all on one line.
Localization
break uses the following localization environment variables:
* LANG
« LC_ALL
« LC_CTYPE
+ LC_MESSAGES
+ NLSPATH
See [Appendix F|for more information.
Usage Note
break is a special built-in shell command.
Exit Value
break always exits with an exit status of 0.
Portability

POSIX.2, X/Open Portability Guide.

Chapter 2. Shell Command Descriptions 61

break

Related Information
continue, sh, tcsh

c++ — Compile, link-edit and assemble z/OS C and z/OS C++ source
code and create an executable file

See c89/cc/c++.

Note: When working in the shell, to view man page information about c++, type:
man c89.

c89 — Compile, link-edit and assemble a z/0S C program and create
an executable file

Format

c89 | cc | c++ | exx [-+CcEFfgOpqrsVv012]
[-D name[=value]]... [-U name]...
[-e function] [-u function]...
[-W phase,option[,option]...]...
[-o ouffile]
[-1 directory]... [-L directory]...
[file.C]... [file.]]... [file.c]... [file.s]...
[file.o]... [file.X]... [file.p]... [file.]... [file.a]... [-] libname]...

Note: The I option signifies an uppercase i, not a lowercase L.

Description

¢89 and cc compile, assemble, and link-edit z/OS C programs; c++ does the same
for z/OS C++ programs.

* €89 should be used when compiling C programs that are written according to
Standard C.

» cc should be used when compiling C programs that are written according to
Common Usage C.

* c++ must be used when compiling C++ programs. Prior to z/OS V1R2, the C++
compiler supported the Draft Proposal International Standard for Information
Systems — Programming Language C++ (X3J16). As of z/OS V1R2, the C++
compiler supports the ISO 1998 standard. c++ can compile both C++ and C
programs, and can also be invoked by the name exx (all references to c++
throughout this document apply to both names).

c89, cc, and c++ call other programs for each step of the compilation, assemble
and link-editing phases. The list below contains the following: the step name, the
documention which describes the program you use for that step and the book which
describes any messages issued by that program, and prefixes to those messages:

62 2/0S V1R4.0 UNIX System Services Command Reference

Table 3. ¢89, cc, and c++ Programs and Reference Documentation

c89, cc, and c++

Step Name Book Describing | Book Containing | Prefix of
Options and Messages Issued |Messages Issued
How to Call by Program by Program
Program
ASSEMBLE HLASM HLASM ASMA
Programmer’s Programmer’s|
Guide| Guide|
COMPILE, IPACOMP, 2/0S C/C++ z/0OS C/C++ User’s| | CBC for 0S/390
TEMPINC, IPATEMP, User’s Guidg Guideg for 0S/390 V2R10 and z/OS
IPALINK V2R10 and z/OS V1R1; CCN for
V1R1;[z/0S8 C/C++ |z/0S V1R2
[Messaged for z/OS
V1R2
PRELINK z/0S Languagd |[z/OS Languagd EDC
Environment Environment
Programming Debugging Guide)
LINKEDIT (Program z/0S DFSMS 2/0S MVS System| |IEW2
Management Binder) Prograni Messages, Vol §
Management (IEF-IGD)

Execution of any Language Environment program (including ¢89 and the z/OS
C/C++ compiler) can result in run-time messages. These messages are described

in |z/08 Language Environment Run-Time Messages and have an EDC prefix. In

some cases €89 issues messages with Language Environment messages
appended to them. Messages issued by ¢89 have an FSUMS prefix.

In order for €89, cc, and c++ to perform C and C++ compiles, the z/OS C/C++
Optional Feature must be installed on the system. The z/OS C/C++ Optional
Feature provides a C compiler, a C++ compiler, C++ Class Libraries, and some

utilities. See|z/OS Introduction and Release Guide|for further details. Also see

{_CLIB_PREFIX} and {_CLIB_PREFIX} in[‘Environment Variables” on page 76| for
information about the names of the z/OS C/C++ Optional Feature data sets that
must be made available to ¢89/cc/c++.

First, ¢89, cc, and c++ perform the compilation phase (including preprocessing) by
compiling all source file operands (file.C, file.i, and file.c, as appropriate). For c++, if
automatic template generation is being used (which is the default), then z/OS C++
source files may be created or updated in the tempinc subdirectory of the working
directory during the compilation phase (the tempinc subdirectory will be created if it
does not already exist). Then, ¢89, cc, and c++ perform the assemble phase by
assembling all operands of the file.s form. The result of each compile step and each
assemble step is a file.o file. If all compilations and assemblies are successful, or if
only file.o and/or file.a files are specified, ¢89, cc, and c++ proceed to the
link-editing phase. For c++, the link-editing phase begins with an automatic
template generation step when applicable. For IPA (Interprocedural Analysis)
optimization an additional IPA link step comes next. The link-edit step is last. See
the environment variable {_ STEPS} under|“Environment Variables” on page 7§ for
more information about the link-editing phase steps.

In the link-editing phase, €89, cc, and c++ combine all file.o files from the
compilation phase along with any file.o files that were specified on the command

Chapter 2. Shell Command Descriptions 63

c89, cc, and c++

Options

line. For c++, this is preceded by compiling all zZOS C++ source files in the
tempinc subdirectory of the working directory (possibly creating and updating
additional z/OS C++ source files during the automatic template generation step).
After compiling all the z/OS C++ source files, the resulting object files are combined
along with the file.o files from the compilation phase and the command line. Any
file.a files, file.x files and =l libname operands that were specified are also used.

The usual output of the link-editing phase is an executable file. For ¢89, cc, and
c++ to produce an executable file, you must specify at least one operand which is
of other than -l libname form. If —r is used, the output file is not executable.

For more information about automatic template generation, see |z/0S C/C++ User’s|
|Guidg and [z/0S C/C++ Programming Guide Note that the c++ command only
supports using the tempinc subdirectory of the working directory for automatic
template generation.

IPA is further described under the —W option on page

—+ Specifies that all source files are to be recognized as C++ source files. All
file.s, file.o, and file.a files will continue to be recognized as assembler
source, object, and archive files respectively. However, any C file.c or file.i
files will be processed as corresponding C++ file.C or file.i files, and any
other file suffix which would otherwise be unrecognized will be processed
as a file.C file.

This option effectively overrides the environment variable
{ EXTRA_ARGS}. This option is only supported by the c++ command.

-C Specifies that C and C++ source comments should be retained by the
preprocessor. By default all comments are removed by the preprocessor.
This option is ignored except when used with the —E option.

—C Specifies that only compilations and assemblies be done. Link-edit is not
done.

—D name[=value]
Defines a C or C++ macro for use in compilation. If only name is provided,
a value of 1 is used for the macro it specifies. For information about macros
that c89/cc/c++ automatically define, see Usage Note [5 on page 95| Also
see Usage Note

-E Specifies that output of the compiler preprocessor phase be copied to
stdout. Compilation into object and link-edit are not done.

—e function
Specifies the name of the function to be used as the entry point of the
program. This can be useful when creating a fetchable program, or a non—-C
or non—C++ main, such as a COBOL program. Non—-C++ linkage symbols
of up to 1024 characters in length may be specified. You can specify an

S-name by preceding the function name with double slash (//). (For more
information about S-names, see Usage Note |23 on page 99|)

Specify a null S-name ("-e //") so that no function name is identified by
c89/cc/c++ as the entry point of the program. In that case, the Program
Management Binder (link editor) default rules will determine the entry point

of the program. For more information about the Program Management
Binder and the ENTRY control statement, see [0S DFSMS Prograni

Managemen

64 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

The function //ceestart is the default. When the default function entry point
is used, a binder ORDER control statement is generated by ¢89/cc/c++ to
cause the CEESTART code section to be ordered to the beginning of the
program. Specify the name with a trailing blank to disable this behavior, as
in "//lceestart ".

Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by ¢89 and c++.

Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by ¢89 and c++.

Historical implementations of C/C++ used this option to enable floating-point
support. Floating-point is automatically included in z/ OS C/C++. However, in
z/OS C/C++, two types of floating-point support are available:

HEXADECIMAL
Base 16 zSeries hexadecimal format. The zSeries hexadecimal
format is referred to as the hexadecimal floating-point format, and is
unique to zSeries hardware. This is the default.

IEEE754
Base 2 IEEE-754 binary format. The IEEE-754 binary format is
referred to as binary floating-point format. The IEEE-754 binary
format is the more common floating point format used on other
platforms.

If you are porting an application from another platform, transmitting
floating-point numbers between other platforms or workstations, or your
application requires the larger exponent range provided by IEEE-754 binary
format, then you should consider using IEEE floating-point. The [zZ03
|C/C++ User’s Guide| contains more information on the FLOAT compiler
option. The following is an example of compiling with [EEE-754 binary
floating point format:

c89 -0 outfile -Wc,'float(ieee)' file.c

Specifies that the output file (executable) is to contain symbolic information
and is to be loaded into read/write storage, which is required for
source-level debugging with dbx, the debugger.

When specified for the compilation phase, the object file contains symbolic
information for source-level debugging.

When specified for the link-editing phase, the executable file is marked as
being serially reusable and will always be loaded into read/write storage.

dbx requires that all the executables comprising the process be loaded into
read/write storage so that it can set break points in these executables.
When dbx is attached to a running process, this cannot be guaranteed
because the process was already running and some executables were
already loaded. There are two techniques that will guarantee that all the
executables comprising the process is loaded into read-write storage:

1. Specify the —g option for the link-editing phase of each executable. After
this is done, the executable is always loaded into read/write storage.

Because the executable is marked as being serially reusable, this
technique works except in cases where the executable must be marked
as being reentrant. For example:

» If the executable is to be used by multiple processes in the same
user space.

Chapter 2. Shell Command Descriptions 65

c89, cc, and c++

* |f the executable is a DLL that is used on more than one thread in a
multithreaded program.

In these cases, use the following technique instead:

2. Do not specify the —g option during the link-editing phase so that the
executable will be marked as being reentrant. Before invoking the
program, export the environment variable _BPX_PTRACE_ATTACH
with a value of YES. After you do this, then executables will be loaded
into read/write storage regardless of their reusability attribute.

If you compile an MVS data set source using the —g option, you can use
dbx to perform source-level debugging for the executable file. You must first
issue the dbx use subcommand to specify a path of double slash (//),
causing dbx to recognize that the symbolic name of the primary source file
is an MVS data set. For information on the dbx command and its use
subcommand, see [‘use subcommand for dobx: Set the list of directories tq
be searched” on page 211[

For more information on using dbx, see |z70S UNIX System Services
[Programming Toold,

The z/OS UNIX System Services web page also has more information
about dbx. Go to

http://www.s390.ibm.com/servers/eserver/zseries/zos/unix/

For more information on the _BPX_PTRACE_ATTACH environment
variable, see [z70S UNIX System Services Programming: Assemblef
[Callable Services Reference,

The GONUMBER option is automatically turned on by the —g option, but
can also be turned on independently. There is no execution path overhead
incurred for turning on this option, only some additional space for the saved
line number tables.

The GONUMBER option generates tables that correspond to the input
source file line numbers. These tables make it possible for Debug Tools and
for error trace back information in CEE dumps to display the source line
numbers. Having source line numbers in CEE dumps improves
serviceability costs of applications in production. The |z/0S C/C++ User’s
contains more information on the GONUMBER compiler option. The
following is an example of compiling with the GONUMBER compiler option.

c89 -0 outfile -Wc,'GONUM' file.c

-l directory

Note: The I option signifies an uppercase i, not a lowercase L.
—I specifies the directories to be used during compilation in searching for
include files (also called header files).

Absolute pathnames specified on #include directives are searched exactly
as specified. The directories specified using the —I option or from the usual
places are not searched.

If absolute pathnames are not specified on #include directives, then the
search order is as follows:

66 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

1. Include files enclosed in double quotes (") are first searched for in the
directory of the file containing the #include directive. Include files
enclosed in angle-brackets (< >) skip this initial search.

2. The include files are then searched for in all directories specified by the
-l option, in the order specified.

3. Finally, the include files are searched for in the usual places. (See
Usage Note 4 on page 94|for a description of the usual places.)

You can specify an MVS data set name as an include file search directory.
Also, MVS data set names can explicitly be specified on #include
directives. You can indicate both by specifying a leading double slash (//).
For example, to include the include file DEF that is a member of the MVS
PDS ABC.HDRS, code your C or C++ source as follows:

#include <//'abc.hdrs(def)'>

MVS data set include files are handled according to z/OS C/C++ compiler
conversion rules (see Usage Note . When specifying an
#include directive with a leading double slash (in a format other
than#include<//'dsname'> and #include<//dd:ddname>), the specified
name is paired only with MVS data set names specified on the —I option.

That is, when you explicitly specify an MVS data set name, any hierarchical
file system (HFS) directory names specified on the =l option are ignored.

-L directory
Specifies the directories to be used to search for archive libraries specified
by the —I operand. The directories are searched in the order specified,
followed by the usual places. You cannot specify an MVS data set as an
archive library directory.

For information on specifying C370LIB libraries, see the description of the

-l libname operand. Also see Usage Notefor a description of

the usual places.

-0, -0 (-1), -2
Specifies the level of compiler optimization (including inlining) to be used.
The level =1 (number one) is equivalent to —O (letter capital O). The level
—2 gives the highest level of optimization. The default is =0 (level zero), no
optimization and no inlining, when not using IPA (Interprocedural Analysis).

When optimization is specified, the default is ANSIALIAS. ANSIALIAS
default specifies whether type-based aliasing is to be used during
optimization. That is, the optimizer assumes that pointers can only be used
to access objects of the same type. Type-based aliasing improves
optimization. Applications that use pointers that point to objects of a
different type will need to specify NOANSIALIAS when the optimization
compiler option is specified. If your application works when compiled with
no optimization and fails when compiled with optimization, then try
compiling your application with both optimization and NOANSIALIAS
compiler options. The |zZOS C/C++ User’s Guidd contains more information
on ANSIALIAS. The following is an example of a compile with the highest
level of optimization and no type-based aliasing:

c89 -0 outfile -2 -Wc,NOANSIALIAS file.c

When optimization is specified, you may want to obtain a report on the
amount of inlining performed and increase or decrease the level of inlining.
More inlining will improve application performance and increase application
memory usage. The|z/OS C/C++ User’s Guidd contains more information

Chapter 2. Shell Command Descriptions 67

c89, cc, and c++

on the INLINE compiler option. The following is an example of a compile
with optimization with no report generated, a threshold of 500 abstract code
units, and a limit of 2500 abstract code units:

c89 -0 outfile -2 -Wc,'inline(auto,noreport,500,2500)"' file.c

When using IPA, the default is —O (level 1) optimization and inlining. IPA
optimization is independent from and can be specified in addition to this
optimization level. IPA is further described under the =W option on page

If you compile your program to take advantage of dbx source-level
debugging and specify —g (see the —g option on page @ you will always
get —0 (level zero) optimization regardless of which of these compiler
optimization levels you specify.

In addition to using optimization techniques, you may want to control
writable strings by using the #pragma strings(readonly) directive or the
ROSTRING compiler option. As of z/OS Version 1 Release 2, ROSTRING is the
default.

For more information on this topic, refer to the chapter on reentrancy in
z/0S C/C++ in|z/0S C/C++ Programming Guide|or the description of the
ROSTRING option in the [zZ0S C/C++ User’s Guide,

—o oultfile

Specifies the name of the ¢89/cc/c++ output file.

If the —o option is specified in addition to the —c option, and only one
source file is specified, then this option specifies the name of the output file
associated with the one source file. See file.o under[‘Operands” on page 73|
for information on the default name of the outpuit file.

Otherwise the —o option specifies the name of the executable file produced
during the link-editing phase. The default output file is a.out.

Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by ¢89 and c++.

Ignored by cc, provided for compatibility with historical implementations of
cc. Flagged as an error by ¢89 and c++.

Specifies that ¢89/cc/c++ is to save relocation information about the object
files which are processed. When the output file (as specified on —0) is
created, it is not made an executable file. Instead, this output file can later
be used as input to ¢89/cc/c++. This can be used as an alternative to an
archive library.

IPA Usage Note:

When using -r and link-editing IPA compiled object files, you must link-edit
with IPA (see the description of IPA under the -W option). However, the -r
option is typically not useful when creating an IPA optimized program. This
is because link-editing with IPA requires that all of the program information
is available to the link editor (that is, all of the object files). It is not
acceptable to have unresolved symbols, especially the program entry point
symbol (which is usually main). The -r option is normally used when you
wish to combine object files incrementally. You would specify some object
files during the initial link-edit that uses -r. Later, you would specify the
output of the initial link-edit, along with the remaining object files in a final
link-edit that is done without using -r. In such situations where you wish to
combine IPA compiled object files, there is an alternative which does not

68 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

involve the link editor. That alternative is to concatenate the object files into
one larger file. This larger file can later be used in a final link-edit, when the
remainder of the object files are also made available. (This concatenation
can easily be done using the cp or cat utilities.)

Specifies that the compilation phase is to produce a file.o file that does not
include symbolic information, and that the link-editing phase produce an
executable that is marked reentrant. This is the default behavior for
c89/cc/c++.

-U name

Undefines a C or C++ macro specified with name. This option affects only
macros defined by the =D option, including those automatically specified by

c89/cc/c++. For information about macros that ¢89/cc/c++ automaticall
define, see Usage Note [5 on page 95| Also see Usage Note |13 on page

—u function

Specifies the name of the function to be added to the list of symbols which
are not yet defined. This can be useful if the only input to ¢89/cc/c++ is
archive libraries. Non—-C++ linkage symbols of up to 255 characters in
length may be specified. You can specify an S-name by preceding the
function name with double slash (//). (For more information about
S-names, see Usage Note) The function //ceemain is the
default for non-IPA link-editing, and the function main is the default for IPA

link-editing. However if this -u option is used, or the DLL link editor option
is used, then the default function is not added to the list.

This verbose option produces and directs output to stdout as compiler,
assembler, IPA linker, prelinker, and link editor listings. If the —=O or =2
options are specified and cause ¢89/cc/c++ to use the compiler INLINE
option, then the inline report is also produced with the compiler listing. Error
output continues to be directed to stderr. Because this option causes
c89/cc/c++ to change the options passed to the steps producing these
listings so that they produce more information, it may also result in
additional messages being directed to stderr. In the case of the compile
step, it may also result in the return code of the compiler changing from 0
to 4.

This verbose option causes pseudo-JCL to be written to stdout before the
compiler, assembler, IPA linker, prelinker, and link editor programs are run.
It provides information about exactly which compiler, prelinker, and link
editor options are being passed, and also which data sets are being used. If
you want to obtain this information without actually invoking the underlying
programs, specify the —v option more than once on the c89/cc/c++
command string. For more information about the programs which are

executed, see Usage Note [14 on page 97}

-W phase, option[,option]...

Specifies options to be passed to the steps associated with the compile,
assemble, or link-editing phases of ¢89/cc/c++. The valid phase codes are:

0 Specifies the compile phase (used for both non-IPA and IPA
compilation).

a Specifies the assemble phase.

c Same as phase code 0.

I Enables IPA (Interprocedural Analysis) optimization.

Unlike other phase codes, the IPA phase code | does not require
that any additional options be specified, but it does allow them. In

Chapter 2. Shell Command Descriptions 69

c89, cc, and c++

order to pass IPA suboptions, specify those suboptions using the
IPA phase code. For example, to specify that an IPA compile should
save source line number information, without writing a listing file,
specify:

c89 -W I,Tist file.c

To specify that an IPA link-edit should write the map file to stdout,

specify:

c89 -W I,map file.o

Specifies the link-editing phase.

» To pass options to the prelinker, the first link-editing phase option
must be p or P. All the following options are then prelink options.
For example, to write the prelink map to stdout, specify:

c89 W T,p,map file.c

Note: The prelinker is no longer used in the link-editing phase in
most circumstances. If it is not used, any options passed
are accepted but ignored. See the environment variable
{_STEPS} under|[‘Environment Variables” on page 76| for
more information about the link-editing phase prelink step.

» To pass options to the IPA linker, the first link-editing phase
option must be i or I. All the following options are then IPA link
options. For example, to specify the size of the SPILL area to be
used during an IPA link-edit, you could specify:

c89 —W 1,I,"spil1(256)" file.o

* To link-edit a DLL (Dynamic Link Library) the link-editing phase
option DLL must be specified. For example:

c89 —o outdll -W 1,d11 file.o

Most z/OS C/C++ extensions can be enabled by using this option. Those
which do not directly pass options through to the underlying steps, or
involve files which are extensions to the compile and link-edit model, are
described here:

DLL (Dynamic Link Library)

A DLL is a part of a program that is not statically bound to the
program. Instead, linkage to symbols (variables and functions) is
completed dynamically at execution time. DLLs can improve
storage utilization, because the program can be broken into smaller
parts, and some parts may not always need to be loaded. DLLs can
improve maintainability, because the individual parts can be
managed and serviced separately.

In order to create a DLL, some symbols must be identified as being
exported for use by other parts of the program. This can be done
with the z/OS C/C++ #pragma export compiler directive, or by
using the z/OS C/C++ EXPORTALL compiler option. If during the
link-editing phase some of the parts have exported symbols, the
executable which is created is a DLL. In addition to the DLL, a
definition side-deck is created, containing link-editing phase
IMPORT control statements which name those symbols which were
exported by the DLL. In order for the definition side-deck to be
created, the DLL link editor option must be specified. This definition
side-deck is subsequently used during the link-editing phase of a

program which is to use the DLL. See the file.x operand under
on page for information on where the definition

70 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

side-deck is written. In order for the program to refer to symbols
exported by the DLL, it must be compiled with the DLL compiler
option. For example, to compile and link a program into a DLL, you
could specify:

c89 —o outdll -W c,d11,expo W 1,d11 file.c

To subsequently use file.x definition side-decks, specify them along
with any other file.o object files specified for ¢89/cc/c++ link-editing
phase. For example:

c89 —o myappl -W c,d11 myappl.c outdll.x

In order to run an application which is link-edited with a definition
side-deck, the DLL must be made available (the definition side-deck
created along with the DLL is not needed at execution time). When
the DLL resides in the HFS, it must be in either the working
directory or in a directory named on the LIBPATH environment
variable. Otherwise it must be a member of a data set in the search
order used for MVS programs.

IPA (interprocedural analysis)
IPA optimization is independent from and can be used in addition to
the ¢89/cc/c++ optimization level options (such as —0). IPA
optimization can also improve the execution time of your
application. IPA is a mechanism for performing optimizations across
function boundaries, even across compilation units. It also performs
optimizations not otherwise available with the C/C++ compiler.

When phase code | is specified for the compilation phase, then IPA
compilation steps are performed. When phase code | is specified
for the link-editing phase, or when the first link-editing phase (code
I) option is i or I, then an additional IPA link step is performed prior
to the prelink and link-edit steps.

With conventional compilation and link-editing, the object code
generation takes place during the compilation phase. With IPA
compilation and link-editing, the object code generation takes place
during the link-editing phase. Therefore, you might need to request
listing information about the program (such as with the =V option)
during the link-editing phase.

Unlike the other phase codes, phase code | does not require that
any additional options be specified. If they are, they should be
specified for both the compilation and link-editing phases.

No additional preparation needs to be done in order to use IPA. So
for example to create the executable mylPApgm using ¢89 with
some existing source program mypgm.c, you could specify:

c89 —W I —o myIPApgm mypgm.c

When IPA is used with c++, and automatic template generation is
being used, phase code | will control whether the automatic
template generation compiles are done using IPA. If you do not
specify phase code I, then regular compiles will be done. Specifying
i as the first option of the link-editing phase option (that is, -W i,1),
will cause the IPA linker to be used, but will not cause the IPA
compiler to be used for automatic template generation unless phase
code | (that is, -W I) is also specified.

Chapter 2. Shell Command Descriptions 71

c89, cc, and c++

XPLINK (Extra Performance Linkage)

z/OS XPLINK provides improved performance for many C/C++
programs. The C/C++ XPLINK compiler option instructs the C/C++
compiler to generate high performance linkage for subroutine calls.
It does so primarily by making subroutine calls as fast and efficient
as possible, by reducing linkage overhead, and by passing function
call parameters in registers. Furthermore, it reduces the data size
by eliminating unused information from function control blocks.

An XPLINK-compiled program is implicitly a DLL-compiled program
(the C/C++ DLL compiler option need not be specified along with
the XPLINK option). XPLINK improves performance when crossing
function boundaries, even across compilation units, since XPLINK
uses a more efficient linkage mechanism.

For more information about the z/OS C/C++ XPLINK compiler
option, refer to [z/0S C/C++ User’s Guidgl For more information
about Extra Performance Linkage, refer to[z/0S Languagd
|Environment Programming Guide)

To use XPLINK, you must both compile and link-edit the program
for XPLINK. All C and C++ source files must be compiled XPLINK,
as you cannot statically link together XPLINK and non-XPLINK C
and C++ object files (with the exception of non-XPLINK "OS”
linkage). You can however mix XPLINK and non-XPLINK
executables across DLL and fetch() boundaries.

To compile a program as XPLINK, specify the zZOS C/C++ XPLINK
compiler option. If there are any exported symbols in the executable
and you want to produce a definition side-deck, specify the DLL link
editor option. To indicate that different libraries should be
concatenated, specify the XPLINK on ¢89. Here is an example of
compiling and link-editing an XPLINK application in one command:

c89 -o outxpl -W c,XPLINK -W 1,XPLINK,d11 file.c

In order to execute an XPLINK program, the SCEERUN2 as well as
the SCEERUN data set must be in the MVS program search order
(see the {_PLIB_PREFIX} environment variable).

You cannot use —W to override the compiler options that correspond to
c89/cc/c++ options, with the following exceptions:

+ Listing options (corresponding to —V)

* Inlining options (corresponding to —O and -2)

» Symbolic options (corresponding to —s and —g); symbolic options can be
overridden only when neither —s nor —g is specified.

Notes:

1. Most compiler, prelinker, and IPA linker options have a positive and
negative form. The negative form is the positive with a prepended NO
(as in XREF and NOXREF).

2. The compiler #pragma options directives as well as any other
#pragma directives which are overridden by compiler options, will have
no effect in source code compiled by c89/cc/c++.

3. Link editor options must be specified in the name=value format. Both
the option name and value must be spelled out in full. If you do not

72 2/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

specify a value, a default value of YES is used, except for the following
options, which if specified without a value, have the default values

shown here:

ALIASES ALIASES=ALL

COMPAT COMPAT=CURRENT

Note: The Binder default is COMPAT=MIN. For

downward compatibility (when
-Wc,’target(release)’ is used), COMPAT should
also be used (for example, -Wl,compat=min, or
the specific program object format level
supported by the target deployment system, if it
is known). For more information, see the
Downward Compatability section of |z70S C/C+
User's Guide,

DYNAM DYNAM=DLL

LET LET=8

LIST LIST=NOIMPORT

Note: References throughout this document to the link editor are
generic references. ¢89/cc/c++ specifically uses the Program
Management binder for this function.

4. The z/OS C/C++ compiler is described in [z/0S C/C++ User’s Guided,
Related information about the z/OS C/C++ runtime library, including
information about DLL and IPA support, is described in
[Programming Guidg Related information about the z/0OS C and z/OS

C++ languages, including information about compiler directives, is
described in |C/C++ Language Reference]

5. Since some compiler options are z/OS C—only and some compiler
options are z/OS C++-only, you may get warning messages and a
compiler return code of 4, if you use this option and compile both C and
C++ source programs in the same c++ command invocation.

6. The prelinker is described in|z/0S C/C++ User’s Guidd

7. The [z/0S C/C++ User’s Guide|also describes C/C++ compiler options.
Any messages produced by it (CCN messages) are documented in
[z20S C/C++ Messaged

8. You may see runtime messages (CEE or EDC) in executing your
applications. These messages are described in |z/OS Language|
[Environment Debugging Guidel

9. The link editor (the Program Management binder) is described in
|DFSMS Program Managememl The Program Management binder

messages are described in|[zZOS MVS System Messages, Vol §
(IEF-IGD).

Operands

c89/cc/c++ generally recognize their file operand types by file suffixes. The suffixes
shown here represent the default values used by c¢89/cc/c++. See
|Variables” on page 76| for information on changing the suffixes to be used.

Chapter 2. Shell Command Descriptions 73

c89, cc, and c++

Unlike €89 and c++, which report an error if given an operand with an unrecognized
suffix, cc determines that it is either an object file or a library based on the file itself.
This behavior is in accordance with the environment variable { EXTRA_ARGS}.

file.a

file.C

file.c

file.l

file.i

file.o

Specifies the name of an archive file, as produced by the ar command, to
be used during the link-editing phase. You can specify an MVS data set
name, by preceding the file name with double slash (//), in which case the
last qualifier of the data set name must be LIB. The data set specified must
be a C370LIB object library or a load library. See the description of the —I
libname operand for more information about using data sets as libraries.

Specifies the name of a C++ source file to be compiled. You can specify an
MVS data set name by preceding the file name with double slash (//), in
which case the last qualifier of the data set name must be CXX. This
operand is only supported by the c++ command.

Specifies the name of a C source file to be compiled. You can specify an
MVS data set name by preceding the file name with double slash (//), in
which case the last qualifier of the data set name must be C. (The
conventions formerly used by ¢89 for specifying data set names are still
supported. See the environment variables { OSUFFIX_HOSTRULE} and
{ OSUFFIX_HOSTQUAL} for more information.)

Specifies the name of a IPA linker output file produced during the
c89/cc/c++ link-editing phase, when the —W option is specified with phase
code I. IPA is further described under the =W option on page. By default
the IPA linker output file is written to a temporary file. To have the IPA linker
output file written to a permanent file, see the environment variable

{_ TMPS} under [Environment Variables|

When an IPA linker output file is produced by ¢89/cc/c++, the default name
is based upon the output file name. See the —o option under [Optiong on
page [68] for information on the name of the output file.

If the output file is named a.out, then the IPA linker output file is named a.l,
and is always in the working directory. If the output file is named /a.load,
then the IPA linker output file is named /a.IPA. If the output file specified
already has a suffix, that suffix is replaced. Otherwise the suffix is
appended. This file may also be specified on the command line, in which
case it is used as a file to be link-edited.

Specifies the name of a preprocessed C or C++ source file to be compiled.
You can specify an MVS data set name, by preceding the file name with
double slash (//), in which case the last qualifier of the data set name must
be CEX.

When using the c++ command, this source file is recognized as a C++
source file, otherwise it is recognized as a C source file. c++ can be made
to distinguish between the two. For more information see the environment
variables {_IXXSUFFIX} and {_IXXSUFFIX_HOST}.

Specifies the name of a C, C++, or assembler object file, produced by
c89/cc/c++, to be link-edited.

When an object file is produced by ¢89/cc/c++, the default name is based
upon the source file. If the source file is named file.c, then the object file is
named file.o, and is always in the working directory. If the source file were a
data set named /ffile.C, then the object file is named //file.OBJ.

74 2/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

If the data set specified as an object file has undefined (U) record format,
then it is assumed to be a load module. Load modules are not processed
by the prelinker.

You can specify an MVS data set name to be link-edited, by preceding the
file name with double slash (//), in which case the last qualifier of the data
set name must be OBUJ. If a partitioned data set is specified, more than one
member name may be specified by separating each with a comma (,), for
example:

c89 //file.0BJ(meml,mem2,mem3)

file.p Specifies the name of a prelinker composite object file produced during the
c89/cc/c++ link-editing phase. By default the composite object file is written
to a temporary file. To have the composite object file written to a permanent
file, see the environment variable { TMPS} under [Environment Variables]

When a composite object file is produced by ¢89/cc/c++, the default name
is based upon the output file name. See the —o option under on
page for information on the name of the output file.

If the output file is named a.out, then the composite object file is named
a.p, and is always in the working directory. If the output file is named
//a.load, then the composite object file is named /a.CPOBJ. If the output file
specified already has a suffix, that suffix is replaced. Otherwise the suffix is
appended. This file may also be specified on the command line, in which
case it is used as a file to be link-edited.

file.s Specifies the name of an assembler source file to be assembled. You can
specify an MVS data set name, by preceding the file name with double
slash (//), in which case the last qualifier of the data set name must be
ASM.

file.x Specifies the name of a definition side-deck produced during the
c89/cc/c++ link-editing phase when creating a DLL (Dynamic Link Library),
and used during the link-editing phase of an application using the DLL.
DLLs are further described under the =W option.

When a definition side-deck is produced by ¢89/cc/c++, the default name is
based upon the output file name. See the —o option under|[Options|on page
for information on the name of the output file.

If the output file is named a.dll, then the definition side-deck is named a.x,
and is always in the working directory. If the output file is named /a.DLL,
then the definition side-deck is named /a.EXP. If the output file specified
already has a suffix, that suffix is replaced. Otherwise the suffix is
appended.

You can specify an MVS data set name to be link-edited, by preceding the
file name with double slash (//), in which case the last qualifier of the data
set name must be EXP. If a partitioned data set is specified, more than one
member name may be specified by separating each with a comma (,), for
example:

c89 //file.EXP(meml,mem2,mem3)

=l libname
Specifies the name of an archive library. ¢89/cc/c++ searches for the file
liblibname.a in the directories specified on the —L option and then in the

usual places. The first occurrence of the archive library is used. For a
description of the usual places, see Usage Note [7 on page 95

Chapter 2. Shell Command Descriptions 75

c89, cc, and c++

You can also specify an MVS data set; you must specify the full data set
name, because there are no rules for searching library directories.

The data set specified must be a C370LIB object library or a load library. If
a data set specified as a library has undefined (U) record format, then it is
assumed to be a load library. For more information about the z/OS C/C++
Object Library Utility, |zZO0S C/C++ Programming Guidel For more
information about how load libraries are searched, see Usage Note

Environment Variables

You can use environment variables to specify necessary system and operational
information to ¢89/cc/c++. When a particular environment variable is not set,
c89/cc/c++ uses the default shown. For information about the JCL parameters used
in these environment variables, see [z70S MVS JCL User’s Guide]

At the beginning of each environment variable description below, the name of the
variable is shown in a symbolic notation. At the end of the description, the actual
variable names used by the utilities are listed. The symbolic name is the same as
the actual variable names, but omits the prefix and is enclosed in curly braces
({_variable_name}) to indicate that it is a symbolic name. Throughout the remainder
of this command description, only the symbolic names are shown, but you must use
the actual name when setting these variables. This means to specify cc
environment variables, the name shown must be prefixed with _CC (for example,
_CC_ACCEPTABLE_RC). To specify ¢89 environment variables, the name shown
must be prefixed with _C89 (for example, _C89_ACCEPTABLE_RC). To specify
c++ environment variables, the name shown must be prefixed with _CXX (for
example, _CXX_ACCEPTABLE_RC).

Note: c89/cc/c++ can accept parameters only in the syntax indicated here. A null
values indicate that ¢89/cc/c++ is to omit the corresponding parameters
during dynamic allocation. Numbers in parentheses following the
environment variable name correspond to usage notes, which begin on Page
and indicate specific usage information for the environment variable.

{ ACCEPTABLE_RC}
The maximum allowed return code (result) of any step (compile, assemble,
IPA link, prelink, or link-edit). If the result is between zero and this value
(inclusive), then it is treated internally by ¢89/cc/c++ exactly as if it were a
zero result, except that message FSUM3065 is also issued. The default
value is:

||4||

When used under ¢89/cc/c++, the prelinker by default returns at least a 4
when there are duplicate symbols or unresolved writable static symbols (but
not for other unresolved references). The link editor returns at least a 4
when there are duplicate symbols, and at least an 8 when there are
unresolved references and automatic library call was used.

Actual Variable Names: €89 ACCEPTABLE_RC, _CC_ACCEPTABLE_RC,
_CXX_ACCEPTABLE_RC

{_ASUFFIX}

The suffix by which ¢89/cc/c++ recognizes an archive file. This environment
variable does not affect the treatment of archive libraries specified as -l
operands, which are always prefixed with /ib and suffixed with -a. The
default value is:

76 2/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

Ilall

Actual Variable Names: (89 ASUFFIX, CC_ASUFFIX, CXX_ ASUFFIX

{_ASUFFIX_HOST}
The suffix by which ¢89/cc/c++recognizes a library data set. This
environment variable does not affect the treatment of data set libraries
specified as —I operands, which are always used exactly as specified. The
default value is:

IILIBII

Actual Variable Names: (89 ASUFFIX HOST, CC ASUFFIX HOST,
_CXX_ASUFFIX_HOST

{ CCMODE}
Controls how ¢89/cc/c++ does parsing. The default behavior of c89/cc/c++
is to expect all options to precede all operands. Setting this variable allows
compatibility with historical implementations (other cc commands). When
set to 1, ¢89/cc/c++ operates as follows:
» Options and operands can be interspersed.
* The double dash (—) is ignored.

Setting this variable to 0 results in the default behavior. The default value is:
IIOII

Actual Variable Names: _C89_CCMODE, _CC_CCMODE, _CXX_CCMODE
{_CLASSLIB_PREFIX}

The prefix for the following named data sets used during the compilation
phase and execution of your C++ application.

To be used, the following data sets must be cataloged:
* The data sets {_ CLASSLIB_PREFIX}.SCLBH.+ contain the z/OS C++
Class Library include (header) files.

* The data set {_CLASSLIB_PREFIX}.SCLBSID contains the z/OS C++
Class Library definition side-decks.

The following data sets are also used:

The data sets { CLASSLIB_PREFIX}.SCLBDLL and
{_CLASSLIBIB_PREFIX}.SCLBDLL2 contain the z/OS C++ Class Library
DLLs and messages.

The preceding data sets contain MVS programs that are invoked during the
execution of a C++ application built by c++. To be executed correctly, these
data sets must be made part of the MVS search order. Regardless of the
setting of this or any other c++ environment variable, c++ does not affect
the MVS search order. These data sets are listed here for information only,
to assist in identifying the correct data sets to be added to the MVS
program search order.

The default value is the value of the environment variable:
_CXX_CLIB_PREFIX

Actual Variable Name: CXX CLASSLIB PREFIX

{ CLASSVERSION}
The version of the C++ Class Library to be invoked by c++. The setting of

Chapter 2. Shell Command Descriptions 77

c89, cc, and c++

this variable allows c++ to control which C++ Class Library named data
sets to be used during the c++ processing phases. It also sets default
values for other environment variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See
|Run-Time Library Reference{ for a description of the _librel() function. The
default value is the same as the value for the _CVERSION environment
variable. If _CVERSION is not set, then the default value will be:

The result of the C/C++ Run-Time library _librel() function.

Actual Variable Names: CXX CLASSVERSION

{_CLIB_PREFIX} (14]17)
The prefix for the following named data sets used during the compilation
phase.

The following data sets are also used:

The data sets {_CLIB_PREFIX}.SCBCCMP and
{_CLIB_PREFIX}.SCCNCMP contain the compiler programs called by
c89/ccl/c++.

The preceding data sets contain MVS programs that are invoked during the
execution of ¢89/cc/c++ and during the execution of a C/C++ application
built by ¢89/cc/c++. To be executed correctly, these data sets must be
made part of the MVS search order. Regardless of the setting of this or any
other ¢89/cc/c++ environment variable, ¢89/cc/c++ does not affect the
MVS search order. These data sets are listed here for information only, to
assist in identifying the correct data sets to be added to the MVS program
search order.

The default value is:
n CBC n

Actual Variable Names: (89 CLIB PREFIX, CC CLIB PREFIX,
_CXX_CLIB_PREFIX

{ CMEMORY}
A suggestion as to the use of compiler C/C++ Runtime Library memory
files. When set to 0, c89/cc/c++ will prefer to use the compiler
NOMEMORY option. When set to 1, ¢89/cc/c++ will prefer to use the
compiler MEMORY option. When set to 1, and if the compiler MEMORY
option can be used, ¢89/cc/c++ need not allocate data sets for the
corresponding work files. In this case it is the responsibility of the user to
not override the compiler options (using the =W option) with the
NOMEMORY option or any other compiler option which implies the
NOMEMORY option.

The default value is:
IIlII

Actual Variable Names: (89 CMEMORY, CC_CMEMORY, _CXX_ CMEMORY

{ CMSGS}
The Language Environment national language name used by the compiler
program. A null value will cause the default Language Environment
NATLANG runtime name to be used, and a non-null value must be a valid
Language Environment NATLANG runtime option name (Language

78 2/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

Environment runtime options are described in(z/OS Language Environment
|Programming Guidd . The default value is:

nn (nu]])

Actual Variable Names: (89 CMSGS, CC _CMSGS _RC, CXX_CMSGS

{_ CNAME}
The name of the compiler program called by ¢89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
default value is:

"CCNDRVR"

If c89/cc/c++ is being used with { CVERSION} set to a release prior to
z/0OS v1r2, the default value will be:

"CBCDRVR"

Actual Variable Names: (89 CNAME, _CC_CNAME, _CXX_CNAME
{_CSUFFIX}

The suffix by which ¢89/cc/c++ recognizes a C source file. The default
value is:

C

Actual Variable Names: (89 CSUFFIX, CC_CSUFFIX, _CXX CSUFFIX

{_CSUFFIX_HOST}
The suffix by which ¢89/cc/c++ recognizes a C source data set. The default
value is:

IICII

Actual Variable Names: (89 CSUFFIX HOST, CC CSUFFIX_HOST,
_CXX_CSUFFIX_HOST

{_csysLiB} {4
The system library data set concatenation to be used to resolve #include
directives during compilation.

Normally #include directives are resolved using all the information specified
including the directory name. When ¢89/cc/c++ can determine that the
directory information can be used, such as when the include (header) files
provided by Language Environment are installed in the default location (in
accordance with { INCDIRS}), then the default concatenation is:

un (nu]])

When c89/cc/c++ cannot determine that the directory information can be
used, then the default concatenation is:
"{_PLIB_PREFIX}.SCEEH.H"
PLIB_PREFIX}.SCEEH.SYS.H"
PLIB_PREFIX}.SCEEH.ARPA.H"
}
}

PLIB_PREFIX}.SCEEH.NET.H"
PLIB_PREFIX}.SCEEH.NETINET.H"

n {_
n {_
n {_
n {_
When this variable is a null value, then no allocation is done for compiler
system library data sets. In this case, the use of /DD:SYSLIB on the -l
option and the #include directive will be unsuccessful. Unless there is a
dependency on the use of /DD:SYSLIB, it is recommended that for
improved performance this variable be allowed to default to a null value.

Chapter 2. Shell Command Descriptions 79

c89, cc, and c++
Actual Variable Names: (89 CSYSLIB, CC CSYSLIB, CXX CSYSLIB

{ CVERSION}
The version of the C/C++ compiler to be invoked by ¢89/cc/c++. The
setting of this variable allows ¢89/cc/c++ to control which C/C++ compiler
program is invoked. It also sets default values for other environment
variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See [z/0S C/C+
|F|’un-Time Library Reference{ for a description of the _librel() function. The

default value is:
The result of the C/C++ Run-Time library _librel() function.

In order for ¢89/cc/c++ to use the OS/390 Version 2 Release 10 C/C++
compiler and C++ Class Library, this variable should be set to the value:

0x220A0000

Actual Variable Names: _C89 CVERSION, CC_CVERSION, _CXX_CVERSION

{_CXXSUFFIX}
The suffix by which c++ recognizes a C++ source file. The default value is:

IICII
This environment variable is only supported by the c++ command.

Actual Variable Name: _CXX_CXXSUFFIX

{_CXXSUFFIX_HOST}
The suffix by which c++ recognizes a C++ source data set. The default
value is:

IICXXII
This environment variable is only supported by the c++ command.

Actual Variable Names: CXX_CXXSUFFIX_ HOST

{ DAMPLEVEL}
The minimum severity level of dynamic allocation messages returned by
dynamic allocation message processing. Messages with severity greater
than or equal to this number are written to stderr. However, if the number is
out of the range shown here (that is, less than 0 or greater than 8), then
c89/cc/c++ dynamic allocation message processing is disabled. The default
value is:

||4||

Following are the values:
0 Informational
1-4 Warning

5-8 Severe

Actual Variable Names: (89 DAMPLEVEL, CC_DAMPLEVEL, CXX DAMPLEVEL
{_ DAMPNAME}

The name of the dynamic allocation message processing program called by
c89/cc/c++. It must be a member of a data set in the search order used for

80 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

MVS programs. The default dynamic allocation message processing

program is described in(zZOS MVS Programming: Authorized Assemblel|
The default value is:

"IEFDB476"

Actual Variable Names: _C89_DAMPNAME, _CC_DAMPNAME, _CXX_DAMPNAME
{_DCBF2008}

The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format fixed unblocked and minimum block size of 2008. The
block size must be in multiples of 8, and the maximum depends on the
phase in which it is used but can be at least 5100. The default value is:

" (RECFM=F,LRECL=4088,BLKSIZE=4088) "

Actual Variable Names: (89 DCBF2008, CC _DCBF2008, CXX DCBF2008

{ DCBU}
The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format undefined and data set organization partitioned. This DCB
is used by c89/cc/c++ for the output file when it is to be written to a data
set. The default value is:

"(RECFM=U,LRECL=0,BLKSIZE=6144,DSORG=P0)"

Actual Variable Names: (89 DCBU, CC _DCBU, CXX DCBU
{_DCB121M}

The DCB parameters used by ¢89/cc/c++for data sets with the attributes of
record format fixed blocked and logical record length 121, for data sets
whose records may contain machine control characters. The default value
is:

" (RECFM=FBM, LRECL=121,BLKSIZE=3630)"

Actual Variable Names: (89 DCB121M, CC DCB121M, CXX DCB121M
{ DCB133M}

The DCB parameters used by ¢89/cc/c++for data sets with the attributes of
record format fixed blocked and logical record length 133, for data sets
whose records may contain machine control characters. The default value
is:

"(RECFM=FBM, LRECL=133,BLKSIZE=3990)"

Actual Variable Names: _C89_DCB133M, _CC_DCB133M, _CXX_DCB133M

{ DCB137}
The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format variable blocked and logical record length 137. The default
value is:

" (RECFM=VB,LRECL=137,BLKSIZE=882)"

Actual Variable Names: (89 DCB137, CC_DCB137, CXX_DCB137
{_ DCB137A}

The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format variable blocked and logical record length 137, for data
sets whose records may contain ISO/ANSI control characters. The default
value is:

" (RECFM=VB,LRECL=137,BLKSIZE=882)"

Chapter 2. Shell Command Descriptions 81

c89, cc, and c++
Actual Variable Names: (89 DCB137A, CC DCB137A, CXX DCB137A
{_DCB3200}

The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format fixed blocked and logical record length 3200. The default
value is:

" (RECFM=FB,LRECL=3200,BLKSIZE=12800)"

Actual Variable Names: (89 DCB3200, CC_DCB3200, _CXX DCB3200

{_DCB80}
The DCB parameters used by ¢89/cc/c++ for data sets with the attributes
of record format fixed blocked and logical record length 80. This value is
also used when c89/cc/c++ allocates a new data set for an object file. The
default value is:

" (RECFM=FB,LRECL=80,BLKSIZE=3200)"

Actual Variable Names: (89 DCB80, _CC_DCB80, _CXX_DCB80

{ ELINES}
This variable controls whether the output of the -E option will include #line
directives. #line directives provide information about the source file names
and line numbers from which the preprocessed source came. The
preprocessor only inserts #line directives where it is necessary. When set
to 1, the output of the ¢89/cc/c++ -E option will include #line directives
where necessary. When set to 0, the output will not include any #line
directives. The default value is:

IIOII

Actual Variable Names: (89 ELINES, CC_ELINES, _CXX_ELINES

{ EXTRA_ARGS}
The setting of this variable controls whether ¢89/cc/c++ treats a file
operand with an unrecognized suffix as an error, or attempts to process it.
When the c++ command —+ option is specified, all suffixes which otherwise
would be unrecognized are instead recognized as C++ source, effectively
disabling this environment variable. See pagefor information about the
—+ option.

When set to 0, ¢89/cc/c++ treats such a file as an error and the command
will be unsuccessful, because the suffix will not be recognized.

When set to 1, ¢89/cc/c++ treats such a file as either an object file or a
library, depending on the file itself. If it is neither an object file nor a library
then the command will be unsuccessful, because the link-editing phase will
be unable to process it. The default value for ¢89 and c++ is:

IIOII

The default value for cc is:
IIlII

Actual Variable Names: C89 EXTRA_ARGS, _CC_EXTRA_ARGS,
_CXX_EXTRA_ARGS

{ILCTL}

The name of the control file used by the IPA linker program. By default the
control file is not used, so the =W option must be specified to enable its
use, as in:

82 2/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++
c89 -WI,control ...

The default value is:
"ipa.ctl"

Actual Variable Names: _C89_ILCTL, _CC_ILCTL, _CXX_ILCTL
{_ILMSGS}

The name of the message data set member, or the Language Environment
national language name, used by the IPA linker program. The default value
is whatever { CMSGS} is. So if { CMSGS} is set or defaults to " (null),
the default value is:

nn (nu] -I)

Actual Variable Names: (89 ILMSGS, CC ILMSGS, CXX_ILMSGS
{_ILNAME}

The name of the IPA linker program called by ¢89/cc. It must be a member
of a data set in the search order used for MVS programs. The default value
is whatever { CNAME} is. So if { CNAME} is set or defaults to
"CCNDRVR" the default value is:

"CCNDRVR"

Actual Variable Names: _C89 ILNAME, CC_ILNAME, _CXX_ILNAME
{_ILSUFFIX}

The suffix ¢89/cc uses when creating an IPA linker output file. The default
value is:

IIIII

Actual Variable Names: (89 ILSUFFIX, CC_ILSUFFIX, CXX ILSUFFIX

{_ILSUFFIX_HOST}
The suffix c89/cc uses when creating an IPA linker output data set. The
default value is:

"IPA"

Actual Variable Names: 89 ILSUFFIX_HOST, _CC_ILSUFFIX_HOST,
_CXX_ILSUFFIX_HOST

{_ILSYSLIB}
The system library data set list to be used to resolve symbols during the
IPA link step of the link-editing phase of non-XPLINK programs. The default
value is whatever {_PSYSLIB} is set or defaults to, followed by whatever
{_LSYSLIB} is set or defaults to.

Actual Variable Names: (89 ILSYSLIB, CC_ILSYSLIB, CXX ILSYSLIB

{ILsysixy @
The system definition side-deck list to be used to resolve symbols during
the IPA link step of the link-editing phase in non-XPLINK programs. The
default value is whatever {_PSYSIX} is set or defaults to.

Actual Variable Names: (89 ILSYSIX, CC_ILSYSIX, CXX ILSYSIX

{_ILXSYSLIB}

The system library data set list to be used to resolve symbols during the
IPA link step of the link-editing phase when using XPLINK (see XPLINK
(Extra Performance Linkage) in [Options” on page 64). The default value is
whatever {_LXSYSLIB} is set or defaults to.

Chapter 2. Shell Command Descriptions 83

c89, cc, and c++

Actual Variable Names: (89 ILXSYSLIB, CC _ILXSYSLIB, CXX ILXSYSLIB

{_ILXSYSIX} (7}
The system definition side-deck list to be used to resolve symbols during
the IPA link step of the link-editing phase when using XPLINK (see XPLINK
(Extra Performance Linkage) in [‘Options” on page 64). The default value is
whatever {_LXSYSIX}} is set or defaults to.

Actual Variable Names: _C89 ILXSYSIX, _CC_ILXSYSIX, _CXX_ILXSYSIX

{_INCDIRS}
The directories used by ¢89/cc/c++ as a default place to search for include
files during compilation (before searching { INCLIBS} and {_ CSYSLIB}). If
C++ is not being used the default value is:

"/usr/include"

If c++ is being used the default value is:
/usr/include /usr/1pp/ioclib/include

Actual Variable Names: (89 INCDIRS, CC_INCDIRS, _CXX_ INCDIRS
{_INCLIBS}

The directories used by ¢89/cc/c++ as a default place to search for include
files during compilation (after searching { INCDIRS} and before searching
{_CSYSLIB}). The default value depends on whether or not c++ is being
used. If c++ is not being used the default value is:

"//'{_PLIB_PREFIX}.SCEEH.+""

If c++ is being used, the default value is:
“//'{ PLIB PREFIX}.SCEEH.+"' //'{ CLIB PREFIX}.SCLBH.+'"

Actual Variable Names: (89 INCLIBS, CC_INCLIBS, _CXX INCLIBS
{_ISUFFIX}

The suffix by which ¢89/cc/c++ recognizes a preprocessed C source file.
The default value is:

1

Actual Variable Names: (89 ISUFFIX, CC_ISUFFIX, CXX_ISUFFIX

{_ISUFFIX_HOST}
The suffix by which ¢89/cc/c++ recognizes a preprocessed (expanded) C
source data set. The default value is:

"CEX"

Actual Variable Names: _C89 ISUFFIX_HOST, _CC_ISUFFIX_HOST,
_CXX_ISUFFIX_HOST

{_IXXSUFFIX}
The suffix by which c++ recognizes a preprocessed C++ source file. The
default value is:

1
This environment variable is only supported by the c++ command.

Actual Variable Names: _CXX_IXXSUFFIX

84 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

{_IXXSUFFIX_HOST}
The suffix by which c++ recognizes a preprocessed (expanded) C++ source
data set. The default value is:

IICEXII
This environment variable is only supported by the c++ command.

Actual Variable Names: CXX_ IXXSUFFIX_HOST

{ LIBDIRS}
The directories used by c89/cc/c++ as the default place to search for
archive libraries which are specified using the —I operand. The default value
is:

"/1ib /usr/1ib"

Actual Variable Names: (89 LIBDIRS, CC LIBDIRS, CXX LIBDIRS

{ LsYSLIB} (7
The system library data set concatenation to be used to resolve symbols
during the IPA link step and the link-edit step of the non-XPLINK link-editing
phase. The { PSYSLIB} libraries always precede the { LSYSLIB} libraries
when resolving symbols in the link-editing phase. The default value is the
concatenation:
"{ PLIB_PREFIX}.SCEELKEX"

"{"PLIB_PREFIX}.SCEELKED"
"{"SLIB_PREFIX}.CSSLIB"

Actual Variable Names: (89 LSYSLIB, CC_LSYSLIB, _CXX_LSYSLIB

{_LXSYSLIB}
The system library data set concatenation to be used to resolve symbols
during the IPA link step and the link-editing phase when using XPLINK (see
XPLINK (Extra Performance Linkage) in [‘Options” on page 64). The default
value is the concatenation:

"{ PLIB_PREFIX}.SCEEBIND"
"{SLIB_PREFIX}.CSSLIB"

Actual Variable Names: _C89_LXSYSLIB, CC_LXSYSLIB, _CXX_LXSYSLIB

{_LXSYSIX} (7]
The system definition side-deck list to be used to resolve symbols during
the link-editing phase when using XPLINK (see XPLINK (Extra Performance
Linkage) in [‘Options” on page 64)). A definition side-deck contains
link-editing phase IMPORT control statements naming symbols which are
exported by a DLL. The default value depends on whether or not c++ is
being used. If c++ is not being used, the default value is the list:

"{ PLIB_PREFIX}.SCEELLIB(CELHS003,CELHSO01)"

If c++ is being used with { PVERSION} and {_ CLASSVERSION]} defaulted
to the current z/OS release, the default value is the list concatenation:

"{_PLIB_PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP,(C128)"
"{ CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

If c++ is being used with { PVERSION} and {_CLASSVERSION} set to a
release prior to z/OS Version 1 Release 2, the default value is the list
concatenation:

"{ PLIB PREFIX}.SCEELIB(CELHS003,CELHS001,CELHSCPP)"
"{ CLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IQOSTREAM)"

Chapter 2. Shell Command Descriptions 85

c89, cc, and c++

Actual Variable Names: (89 LSYSLIB, CC_LSYSLIB, CXX LSYSLIB

{ MEMORY}
A suggestion as to the use of C/C++ Runtime Library memory files by
c89/cc/c++. When set to 0, ¢89/cc/c++ uses temporary data sets for all
work files. When set to 1, ¢89/cc/c++ uses memory files for all work files
that it can. The default value is:

Illll

Actual Variable Names: _C89_MEMORY, _CC_MEMORY, _CXX_MEMORY

{ NEW_DATACLAS}
The DATACLAS parameter used by ¢89/cc/c++ for any new datasets it
creates. The default value is:

nn (nu]])

Actual Variable Names: C89 NEW_DATACLAS, _CC_NEW_DATACLAS,
_CXX_NEW_DATACLAS

{_NEW_DSNTYPE} (18] o)
The DSNTYPE parameter used by ¢89/cc/c++ for any new data sets it
creates. The default value is:

un (nu]])

Actual Variable Names: 89 NEW_DSNTYPE, CC_NEW_DSNTYPE,
_CXX_NEW_DSNTYPE

{ NEW_MGMTCLAS}
The MGMTCLAS parameter used by ¢89/cc/c++ for any new datasets it
creates. The default value is:

nn (nu]])

Actual Variable Names: €89 NEW_MGMTCLAS, _CC_NEW_MGMTCLAS,
_CXX_NEW_MGMTCLAS

{_ NEW_SPACE;} (1§
The SPACE parameters used by ¢89/cc/c++for any new data sets it
creates. A value for the number of directory blocks should always be
specified. When allocating a sequential data set, ¢89/cc/c++ automatically
ignores the specification. The default value is:

"(,(10,10,10))"

Actual Variable Names: (89 NEW_SPACE, CC_NEW_SPACE, _CXX_NEW_SPACE

{_ NEW_STORCLAS}
The STORCLAS parameter used by ¢89/cc/c++for any new data sets it
creates. The default value is:

nn (nu]])
Actual Variable Names: (89 NEW_STORCLAS, CC_NEW_STORCLAS,
_CXX_NEW_STORACLAS

{_ NEW_UNIT}
The UNIT parameter used by ¢89/cc/c++ for any new data sets it creates.
The default value is:

nn (nu]])

Actual Variable Names: _C89 NEW_UNIT, CC_NEW_UNIT, _CXX_NEW_UNIT

86 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

{_OPERANDS}
These operands are parsed as if they were specified after all other
operands on the ¢89/cc/c++ command line. The default value is:

un (nu]])

Actual Variable Names: _C89_OPERANDS, _CC_OPERANDS, _CXX_OPERANDS
{_ OPTIONS}

These options are parsed as if they were specified before all other options
on the ¢89/cc/c++ command line. The default value is:

un (nu]])

Actual Variable Names: _C89_OPTIONS, _CC_OPTIONS, _CXX_OPTIONS
{_OSUFFIX}

The suffix by which ¢89/cc/c++ recognizes an object file. The default value
is:

0

Actual Variable Names: (89 OSUFFIX, CC _OSUFFIX, CXX OSUFFIX

{_OSUFFIX_HOST}
The suffix by which c¢89/cc/c++ recognizes an object data set. The default
value is:

IIOBJII

Actual Variable Names: (89 OSUFFIX HOST, CC OSUFFIX HOST,
_CXX_OSUFFIX_HOST

{ OSUFFIX_HOSTQUAL}
The data set name of an object data set is determined by the setting of this
option. If it is set to 0, then the suffix { OSUFFIX_HOST} is appended to
the source data set name to produce the object data set name. If it is set to
1, then the suffix { OSUFFIX_HOST]} replaces the last qualifier of the
source data set name to produce the object data set name (unless there is
only a single qualifier, in which case the suffix is appended). The default
value is:

Illll

Note: Earlier versions of ¢89 always appended the suffix, which was
inconsistent with the treatment of files in the hierarchical file system.
It is recommended that any existing data sets be converted to use
the new convention.

Actual Variable Names: (89 OSUFFIX HOSTQUAL, CC OSUFFIX HOSTQUAL,

_CXX_OSUFFIX_HOSTQUAL

{ OSUFFIX_HOSTRULE}
The way in which suffixes are used for host data sets is determined by the
setting of this option. If it is set to 0, then data set types are determined by
the rule described in the note which follows. If it is set to 1, then the data
set types are determined by last qualifier of the data set (just as a suffix is
used to determine the type of hierarchical file system file). Each host file
type has an environment variable by which the default suffix can be
modified. The default value is:

Illll

Chapter 2. Shell Command Descriptions 87

c89, cc, and c++

Notes:

1. Earlier versions of €89 scanned the data set name to determine if it was
an object data set. It searched for the string OBJ in the data set name,
exclusive of the first qualifier and the member name. If it was found, the
data set was determined to be an object data set, and otherwise it was
determined to be a C source data set. It is recommended that any
existing data sets be converted to use the new convention. Also,
because the earlier convention only provided for recognition of C source
files, assembler source cannot be processed if it is used.

2. The c++ command does not support this environment variable, as the
earlier convention would not provide for recognition of both C++ and C
source files. Therefore regardless of its setting, c++ always behaves as
if it is set to "1".

Actual Variable Names: (89 0SUFFIX_HOSTRULE, CC_OSUFFIX_HOSTRULE,
_CXX_OSUFFIX_HOSTRULE

{_PLIB_PREFIX} (14l17)
The prefix for the following named data sets used during the compilation,
assemble, and link-editing phases, and during the execution of your
application.

To be used, the following data sets must be cataloged:

* The data sets {_PLIB_PREFIX}.SCEEH.+ contain the include (header)
files for use with the runtime library functions (where + can be any of H,
SYS.H, ARPA.H, NET.H, and NETINET.H).

* The data set {_PLIB_PREFIX}.SCEEMAC contains COPY and MACRO
files to be used during assembly.

* The data sets {_PLIB_PREFIX}.SCEEOBJ and
{_PLIB_PREFIX}.SCEECPP contain runtime library bindings which exploit
constructed reentrancy, used during the link-editing phase of non-XPLINK
programs.

* The data set {_PLIB_PREFIX}.SCEELKEX contains C runtime library
bindings which exploit L-names used during the link-editing phase of

non-XPLINK programs. For more information about L-names, see usage
note |23 on page 99,

* The data set {_PLIB_PREFIX}.SCEELKED contains all other Language
Environment runtime library bindings, used during the link-editing phase
of non-XPLINK programs.

* The data set {_PLIB_PREFIX}.SCEEBIND contains all static Language
Environment runtime library bindings, used during the link-editing phase
of XPLINK programs.

* The data set {_PLIB_PREFIX}.SCEEBIND2 contains all static Language
Environment runtime library bindings, used during the link-editing phase
of XPLINK programs.

* The data set {_PLIB_PREFIX}.SCEELIB contains the definition
side-decks for the runtime library bindings (CELHS003 and CELHSCPP),
and the Language Environment Callable Services (member CELHS001),
used during the link-editing phase of XPLINK programs.

The following data sets are also used:

* The data sets {_PLIB_PREFIX}.SCEERUN and
{_PLIB_PREFIX}.SCEERUN2 contains the runtime library programs.

88 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

The above data sets contain MVS programs that are invoked during the
execution of ¢89/cc/c++ and during the execution of a C/C++ application
built by ¢89/cc/c++. To be executed correctly, these data sets must be
made part of the MVS search order. Regardless of the setting of this or any
other ¢89/cc/c++ environment variable, ¢89/cc/c++ does not affect the
MVS program search order. These data sets are listed here for information
only, to assist in identifying the correct data sets to be added to the MVS
program search order. The default value is:

"CEE"

Actual Variable Names: (89 PLIB PREFIX, CC PLIB_PREFIX,
_CXX_PLIB_PREFIX

{ PMEMORY}
A suggestion as to the use of prelinker C/C++ Runtime Library memory
files. When set to 0, c89/cc/c++ uses the prelinker NOMEMORY option.
When set to 1, ¢89/cc/c++ uses the prelinker MEMORY option. The default
value is:

Illll

_C89_PMEMORY, _CC_PMEMORY, _CXX_PMEMORY
{_PMSGS}

The name of the message data set used by the prelinker program. It must
be a member of the cataloged data set {_PLIB_PREFIX}.SCEEMSGP. The
default value is:

"EDCPMSGE"

Actual Variable Names: (89 PMSGS, CC PMSGS, CXX_PMSGS
{_ PNAME}

The name of the prelinker program called by ¢89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
prelinker program is shipped as a member of the
{_PLIB_PREFIX}.SCEERUN data set. The default value is:

"EDCPRLK"

Actual Variable Names: _C89_PNAME, _CC_PNAME, _CXX_PNAME
{_PSUFFIX}

The suffix ¢89/cc/c++ uses when creating a prelinker (composite object)
output file. The default value is:

p

Actual Variable Names: (89 PSUFFIX, CC _PSUFFIX, CXX PSUFFIX

{_PSUFFIX_HOST}
The suffix c89/cc/c++ uses when creating a prelinker (composite object)
output data set. The default value is:

"CpoBJ"

Actual Variable Names: (89 PSUFFIX HOST, CC PSUFFIX HOST,
_CXX_PSUFFIX_HOST

{_PSYSIX}

The system definition side-deck list to be used to resolve symbols during
the non-XPLINK link-editing phase. A definition side-deck contains
link-editing phase IMPORT control statements naming symbols which are

Chapter 2. Shell Command Descriptions 89

c89, cc, and c++

exported by a DLL. The default value when c++ is not being used is null. If
c++ is being used with { PVERSION} and {_CLASSVERSION} set or
defaulted to the current z/OS release, the default value is the list
concatenation:

"{ PLIB PREFIX}.SCEELIB(C128)"
"{ CLIB_PREFIX}.SCLBSID(IOC,IOSTREAM,COMPLEX,COLL)"

If c++ is being used with {_ PVERSION} and {_ CLASSVERSION} set to a
release prior to z/OS Version 1 Release 2, the default value is the list:

"{ CLIB_PREFIX}.SCLBSID(ASCCOLL,COMPLEX,IOSTREAM)"

Actual Variable Names: (89 PSYSIX, CC PSYSIX, CXX PSYSIX

{_PSYSLIB}
The system library data set list to be used to resolve symbols during the
non-XPLINK link-editing phase. The { PSYSLIB} libraries always precede
the {_ LSYSLIB} libraries when resolving symbols in the link-editing phase.
The default value depends on whether or not c++ is being used. If c++ is
not being used, the default value is the list containing the single entry:

"{_PLIB_PREFIX}.SCEEOBJ"

If c++ is being used, the default value is the list:

"{_PLIB_PREFIX}.SCEEOBJ"
"{_PLIB_PREFIX}.SCEECPP"

Actual Variable Names: (€89 PSYSLIB, CC_PSYSLIB, _CXX_PSYSLIB
{_PVERSION}

The version of the Language Environment to be used with ¢89/cc/c++. The
setting of this variable allows ¢89/cc/c++ to control which Language
Environment named data sets are used during the ¢89/cc/c++ processng
phases. These named data sets include those required for use of the
C/C++ Run-Time Library as well as the ISO C++ Library. It also sets default
values for other environment variables.

The format of this variable is the same as the result of the Language
Environment C/C++ Run-Time Library function _librel(). See [z/0S C/C+
[Run-Time Library Referencd for a description of the _librel() function. The

default value is:
The result of the C/C++ Run-Time library _librel() function

Actual Variable Names: (89 PVERSION, CC_PVERSION, CXX_PVERSION

{_SLIB_PREFIX}
The prefix for the named data sets used by the link editor (CSSLIB) and the
assembler system library data sets (MACLIB and MODGEN). The data set
{_SLIB_PREFIX}.CSSLIB contains the zZOS UNIX assembler callable
services bindings. The data sets {_SLIB_PREFIX}.MACLIB and
{_SLIB_PREFIX}.MODGEN contain COPY and MACRO files to be used
during assembly. These data sets must be cataloged to be used. The
default value is:

"SYS1"

Actual Variable Names: (89 SLIB_PREFIX, CC_SLIB_PREFIX,
_CXX_SLIB_PREFIX

90 z/OS V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

{_SNAME}
The name of the assembler program called by ¢89/cc/c++. It must be a
member of a data set in the search order used for MVS programs. The
default value is:

"ASMA90"

Actual Variable Names: _C89_SNAME, _CC_SNAME, _CXX_SNAME
{_SSUFFIX}

The suffix by which ¢89/cc/c++ recognizes an assembler source file. The
default value is:

IISII

Actual Variable Names: _C89_SSUFFIX, _CC_SSUFFIX, _CXX_SSUFFIX

{_SSUFFIX_HOST}
The suffix by which ¢89/cc/c++ recognizes an assembler source data set.
The default value is:

"ASM"

Actual Variable Names: (89 SSUFFIX HOST, CC SSUFFIX HOST,
_CXX_SSUFFIX_HOST

{_SSYSLIB}
The system library data set concatenation to be used to find COPY and
MACRQO files during assembly. The default concatenation is:
"{_PLIB_PREFIX}.SCEEMAC"

"{“SLIB_PREFIX}.MACLIB"
"{SLIB_PREFIX}.MODGEN"

Actual Variable Names: _C89_SSYSLIB, _CC_SSYSLIB, _CXX_SSYSLIB

{ STEPS}
The steps that are executed for the link-editing phase can be controlled with
this variable. For example, the prelinker step can be enabled, so that the
inputs normally destined for the link editor instead go into the prelinker, and
then the output of the prelinker becomes the input to the link editor.

This variable allows the prelinker to be used in order to produce output
which is compatible with previous releases of ¢89/cc/c++. The prelinker is
normally used by ¢89/cc/c++ when the output file is a data set which is not
a PDSE (partitioned data set extended).

Note: The Prelinker and XPLINK are incompatible. When using the link
editor XPLINK option, the Prelinker cannot be used. Thus, specifying
the Prelinker on this variable will have no effect.

The format of this variable is a set of binary switches which either enable
(when turned on) or disable (when turned off) the corresponding step.
Turning a switch on will not cause a step to be enabled if it was not already
determined by ¢89/cc/c++ that any other conditions necessary for its use
are satisfied. For example, the IPA link step will not be executed unless the
—W option is specified to enable the IPA linker. Enabling the IPA linker is
described under the =W option on page

Considering this variable to be a set of 32 switches, numbered left-to-right

from 0 to 31, the steps corresponding to each of the switches are as
follows:

Chapter 2. Shell Command Descriptions 91

c89, cc, and c++

0-27 Reserved

28 TEMPINC/IPATEMP
29 IPALINK

30 PRELINK

31 LINKEDIT

For example, to override the default behavior of ¢89/cc/c++ and cause the
prelinker step to be run (this is also the default when the output file is a
data set which is not a PDSE), set this variable to:

"Oxffffffff" or the equivalent, -1

The default value when the output file is an HFS file or a PDSE data set is:
"OxfffffffD" or the equivalent, -3

Note: The IPATEMP step is the IPA equivalent of the TEMPINC (automatic
template generation) step, just as the IPACOMP step is the IPA
equivalent of the COMPILE step. See the description of IPA under
the -W option for more information.

Actual Variable Names: (89 STEPS, CC STEPS, CXX STEPS

{_SUSRLIB}
The user library data set concatenation to be used to find COPY and
MACRQO files during assembly (before searching { SSYSLIB}). The default
value is:

" (null)

Actual Variable Names: (89 SUSRLIB, CC_SUSRLIB, CXX SUSRLIB

{ TMPS}
The use of temporary files by ¢89/cc/c++ can be controlled with this
variable.

The format of this variable is a set of binary switches which either cause a
temporary file to be used (when turned on) or a permanent file to be used
(when turned off) in the corresponding step.

The correspondence of these switches to steps is the same as for the
variable {_ STEPS}. Only the prelinker and IPA linker output can be
captured using this variable.

For example, to capture the prelinker output, set this variable to:
"OxfffffffD" or the equivalent, -3

The default value is:
"Oxffffffff" or the equivalent, -1

Actual Variable Names: (89 TMPS, CC_TMPS, CXX_TMPS

{ WORK_DATACLAS}
The DATACLAS parameter used by ¢89/cc/c++ for unnamed temporary
(work) data sets. The default value is:

un (nuH)

Actual Variable Names: €89 WORK_DATACLAS, _CC_WORK_DATACLAS,
_CXX_WORK_DATACLAS

92 2/0S V1R4.0 UNIX System Services Command Reference

Files

c89, cc, and c++
{ WORK_DSNTYPE} (18] [20)

The DSNTYPE parameter used by ¢89/cc/c++ for unnamed temporary
(work) data sets. The default value is:

un (nu]])

Actual Variable Names: C89 WORK_DSNTYPE, _CC_WORK_DSNTYPE,
_CXX_WORK_DSNTYPE

{ WORK_MGMTCLAS}

The MGMTCLAS parameter used by ¢89/cc/c++ for unnamed temporary
(work) data sets. The default value is:

un (nu]])

Actual Variable Names: C89 WORK_MGMTCLAS, _CC_WORK_MGMTCLAS,
_CXX_WORK_MGMTCLAS
{ WORK_SPACE} (1§

The SPACE parameters used by ¢89/cc/c++ for unnamed temporary (work)
data sets. The default value is:

" (32000, (30,30))"

Actual Variable Names: €89 WORK_SPACE, CC_WORK_SPACE,
_CXX_WORK_SPACE
{ WORK_STORCLAS}

The STORCLAS parameter used by ¢89/cc/c++ for unnamed temporary
(work) data sets. The default value is:

" (null)

Actual Variable Names: (89 WORK_STORCLAS, _CC_WORK_STORCLAS,
_CXX_WORK_STORCLAS

{ WORK_UNIT}
The UNIT parameter used by ¢89/cc/c++ for unnamed temporary (work)
data sets. The default value is:

"SYSDA"

Actual Variable Names: _C89_WORK_UNIT, _CC_WORK_UNIT, _CXX_WORK_UNIT
{_XSUFFIX}

The suffix by which ¢89/cc/c++ recognizes a definition side-deck file of
exported symbols. The default value is:

IIXII

Actual Variable Names: _C89_XSUFFIX, _CC_XSUFFIX, _CXX_XSUFFIX

{_XSUFFIX_HOST}
The suffix by which ¢89/cc/c++ recognizes a definition side-deck data set of
exported symbols. The default value is:

||EXP||

Actual Variable Names: (89 XSUFFIX HOST, CC XSUFFIX HOST,
_CXX_XSUFFIX_HOST

libc.a C/C++ Runtime Library function library (see Usage Note [7 on page 95).

Chapter 2. Shell Command Descriptions 93

c89, cc, and c++

Usage Notes

libm.a C/C++ Runtime Library math function library (see Usage Note[7 on page]

Bs).

libl.a lex function library.
liby.a yacc function library.
/dev/fd0, /dev/fd1, ...

Character special files required by ¢89/cc/c++. For installation information,
see [z/0S UNIX System Services Planning|

/usr/include

The usual place to search for include files (see Usage Note|4 on page 94)).
The usual place to search for runtime library bindings (see Usage Note
on page 95).

The usual place to search for runtime library bindings (see Usage Note
b page 95}

/usr/lib

To be able to specify an operand that begins with a dash (=), before specifying
any other operands that do not, you must use the double dash (—)
end-of-options delimiter. This also applies to the specification of the —I
operand. (See the description of environment variable {_ CCMODE} for an
alternate style of argument parsing.)

When invoking ¢89/cc/c++ from the shell, any option-arguments or operands
specified that contain characters with special meaning to the shell must be
escaped. For example, some —W option-arguments contain parentheses.
Source files specified as PDS member names contain parentheses; if they are
specified as fully qualified names, they contain single quotes.

To escape these special characters, either enclose the option-argument or
operand in double quotes, or precede each character with a backslash.

Some ¢89/cc/c++ behavior applies only to hierarchical files (and not to data
sets).

 If the compile or assemble is not successful, the corresponding object file
(file.o) is always removed.

 If the DLL option is passed to the link-editing phase, and afterwards the
file.x file exists but has a size of zero, then that file is removed.

MVS data sets may be used as the usual place to resolve C and C++
#include directives during compilation.

Such data sets are installed with Language Environment. When it is allocated,
searching for these include files can be specified on the —I option as
//DD:SYSLIB. (See the description of environment variable { CSYSLIB} for
information.

When include files are MVS PDS members, z/OS C/C++ uses conversion rules
to transform the include (header) file name on a #include preprocessor
directive into a member name. If the "//'dataset_prefix.+" syntax is not used for
the MVS data set which is being searched for the include file, then this
transformation strips any directory name on the #include directive, and then
takes the first 8 or fewer characters up to the first dot (-).

If the "//'dataset_prefix.+" syntax is used for the MVS data set which is being
searched for the include file, then this transformation uses any directory name
on the #include directive, and the characters following the first dot (-), and
substitutes the "+" of the dataset being searched with these qualifiers.

94 z/0S V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

In both cases the data set name and member name are converted to
uppercase and underscores (_) are changed to at signs (@).

If the include (header) files provided by Language Environment are installed
into the hierarchical file system in the default location (in accordance with the
{_INCDIRS} environment variable), then the compiler will use those files to
resolve #include directives during compilation. ¢89/cc/c++ by default searches
the directory /usr/include as the usual place, just before searching the data
sets just described. See the description of environment variables {_ CSYSLIB},
{_INCDIRS}, and {_INCLIBS} for information on customizing the default
directories to search.

Feature test macros control which symbols are made visible in a source file
(typically a header file). c89/cc/c++ automatically defines the following feature
test macros along with the errno macro, according to whether or not cc was
invoked.

* Other than cc
—D "errno=(*__errno())"
—-D _OPEN_DEFAULT=1

—D "errno=(*__errno())"
—D _OPEN_DEFAULT=0
-D _NO_PROTO=1

c89/cc/c++add these macro definitions only after processing the command
string. Therefore, you can override these macros by specifying —D or —U
options for them on the command string.

The default LANGLVL and related compiler options are set according to
whether cc, €89, or c++ (cxx) was invoked. These options affect various
aspects of the compilation, such as z/OS C/C++ predefined macros, which are
used like feature test macros to control which symbols are made visible in a
source file (typically a header file), but are normally not defined or undefined
except by this compiler option. They can also affect the language rules used
by the compiler. For more information about the compiler options listed here,
seez/0S C/C++ User’s Guidg . For more information about z/OS C/C++
predefined macros, see|C/C++ Language Reference. The options are shown
here in a syntax that the user can specify on the ¢89/cc/c++ command line to
override them:
* ¢89 (also c++ (cxx) when using a C++ compiler older than z/OS v1r2)

-W "c,langlvl(ansi),noupconv"
* C++ (CXX)

-W "c,langlvl(extended,nolibext,nolonglong)
e cC

-W “c,langlvl(commonc),upconv"

By default the usual place for the —L option search is the /lib directory followed
by the /usr/lib directory. See the description of environment variable
{_LIBDIRS} for information on customizing the default directories to search.

The archive libraries libc.a and libm.a exist as files in the usual place for
consistency with other implementations. However, the runtime library bindings
are not contained in them.

Instead, MVS data sets installed with the Language Environment runtime
library are used as the usual place to resolve runtime library bindings. In the
final step of the link-editing phase, any MVS load libraries specified on the —I
operand are searched in the order specified, followed by searching these data
sets. See the { PLIB_PREFIX} description, as well as descriptions of the
environment variables featured in the following list.

Chapter 2. Shell Command Descriptions 95

c89, cc, and c++

10.

11.

12.

13.

Note: This list of environment variables affects the link-editing phase of €89,
but only for non-XPLINK link-editing. See XPLINK (Extra Performance
Linkage) in [‘Options” on page 64}

{ ILSYSLIB}
{_ILSYSIX}
{ LSYSLIB}
{_PSYSIX}
{ PSYSLIB}

This list of environment variables affects the link-editing phase of ¢89, but onl
for XPLINK link-editing. See XPLINK (Extra Performance Linkage) in
{_ILXSYSLIB}
{_ILXSYSIX}
{ LXSYSLIB}
{ LXSYSIX}

Because archive library files are searched when their names are encountered,
the placement of -l operands and file.a operands is significant. You may have
to specify a library multiple times on the command string, if subsequent
specification of file.o files requires that additional symbols be resolved from
that library.

When the prelinker is used during the link-editing phase, you cannot use as
input to ¢89/cc/c++ an executable file produced as output from a previous use
of ¢89/cc/c++. The output of c¢89/cc/c++ when the —r option is specified (which
is not an executable file) may be used as input.

All MVS data sets used by ¢89/cc/c++ must be cataloged (including the
system data sets installed with the z/OS C/C++ compiler and the Language
Environment runtime library).

c89/cc/c++ operation depends on the correct setting of their installation and
configuration environment variables (see [‘Environment Variables” on page 76).
Also, they require that certain character special files are in the /dev directory.
For additional installation and configuration information, see
[System Services Planning,

Normally, options and operands are processed in the order read (from left to
right). Where there are conflicts, the last specification is used (such as with —g
and —s). However, some ¢89/cc/c++ options will override others, regardless of
the order in which they are specified. The option priorities, in order of highest
to lowest, are as follows:

—v specified twice
The pseudo-JCL is printed only, but the effect of all the other options
and operands as specified is reflected in the pseudo-JCL.

-E Overrides -0, -0, -1, -2, -V, —¢, —g and —s (also ignores any file.s
files).

-g Overrides -0, -0, -1, -2, and -s.

-s Overrides —g (the last one specified is honored).

-0,-0,-1,-2,-V, -
All are honored if not overridden. -0, =0, -1, and =2, override each
other (the last one specified is honored).
For options that have option-arguments, the meaning of multiple specifications
of the options is as follows:

96 z/OS V1R4.0 UNIX System Services Command Reference

14.

15.

c89, cc, and c++

-D All specifications are used. If the same name is specified on more than
one —D option, only the first definition is used.

-e The entry function used will be the one specified on the last —e option.

-1 All specifications are used. If the same directory is specified on more
than one -l option, the directory is searched only the first time.

-L All specifications are used. If the same directory is specified on more
than one —L option, the directory is searched only the first time.

-0 The output file used will be the one specified on the last —o option.

-U All specifications are used. The name is not defined, regardless of the
position of this option relative to any =D option specifying the same
name.

-u All specifications are used. If a definition cannot be found for any of

the functions specified, the link-editing phase will be unsuccessful.

-w All specifications are used. All options specified for a phase are
passed to it, as if they were concatenated together in the order
specified.

The following environment variables can be at most eight characters in length.

For those whose values specify the names of MVS programs to be executed,

you can dynamically alter the search order used to find those programs by

using the STEPLIB environment variable.

c89/cc/c++ environment variables do not affect the MVS program search
order. Also, for ¢89/cc/c++ to work correctly, the setting of the STEPLIB
environment variable should reflect the Language Environment library in use at
the time that ¢89/cc/c++ is invoked.

For more information on the STEPLIB environment variable, see[z/0S UNIX
[System Services Planning, It is also described under the sh command. Note
that the STEPLIB allocation in the pseudo-JCL produced by the —v verbose
option is shown as a comment, and has no effect on the MVS program search
order. Its appearance in the pseudo-JCL is strictly informational.

{ CMSGS}

{_CNAME}

{ DAMPNAME}

{_ ILNAME}

{ ILMSGS}

{ PMSGS}

{ PNAME}

{_ SNAME}

The following environment variables can be at most 15 characters in length.
You should not specify any dots (-) when setting these environment variables
since they would then never match their corresponding operands:

{_ASUFFIX}

{ ASUFFIX_HOST}

{_CSUFFIX}

{ CSUFFIX_HOST}

{_CXXSUFFIX}

{_CXXSUFFIX_HOST}

{_ISUFFIX}

{_ISUFFIX_HOST}

{_ILSUFFIX}

{_ILSUFFIX_HOST}

{_IXXSUFFIX}

Chapter 2. Shell Command Descriptions 97

c89, cc, and c++

{_IXXSUFFIX_HOST}
{_OSUFFIX}

{ OSUFFIX_HOST}
{_PSUFFIX}

{ PSUFFIX_HOST}
{_SSUFFIX}
{_SSUFFIX_HOST}
{_XSUFFIX}
{_XSUFFIX_HOST}

16. The following environment variables are parsed as colon-delimited data set
names, and represent a data set concatenation or a data set list. The
maximum length of each specification is 1024 characters:

{ CSYSLIB}
{_ILSYSLIB}
{_ILSYSIX}
{_ILXSYSLIB}
{_ILXSYSIX}
{ LSYSLIB}
{ LXSYSLIB}
{ LXSYSIX}
{ PSYSIX}

{ PSYSLIB}
{ SSYSLIB}
{ SUSRLIB}

17. The following environment variables can be at most 44 characters in length:
{ CLASSLIB_PREFIX}
{ CLIB_PREFIX}
{_PLIB_PREFIX}
{ SLIB_PREFIX}

18. The following environment variables can be at most 63 characters in length:
{ NEW_DATACLAS}
{ NEW_DSNTYPE}
{ NEW_MGMTCLAS}
{ NEW_SPACE}
{ NEW_STORCLAS}
{ NEW_UNIT}
{ WORK_DATACLAS}
{ WORK_DSNTYPE}
{ WORK_MGMTCLAS}
{ WORK_SPACE}
{ WORK_STORCLAS}
{ WORK_UNIT}

19. The following environment variables are for specification of the SPACE
parameter, and support only the syntax as shown with their default values
(including all commas and parentheses). Also as shown with their default
values, individual subparameters can be omitted, in which case the system
defaults are used.

{ NEW_SPACE}
{ WORK_SPACE}

20. The following environment variables are for specification of the DSNTYPE
parameter, and support only the subparameters LIBRARY or PDS (or null for
no DSNTYPE):

{ NEW_DSNTYPE}
{ WORK_DSNTYPE}

98 2z/0S V1R4.0 UNIX System Services Command Reference

21.

22.

23.

24.

25.

26.

27.

c89, cc, and c++

The following environment variables can be at most 127 characters in length:
{ DCBF2008}
{ DCBU}
{ DCB121M}
{ DCB133M}
{ DCB137}
{ DCB137A}
{ DCB3200}
{ DCB80}

These environment variables are for specification of DCB information, and
support only the following DCB subparameters, with the noted restrictions:
RECFM

Incorrect values are ignored.
LRECL

None
BLKSIZE

None
DSORG

Incorrect values are treated as if no value had been specified.

The following environment variables are parsed as blank-delimited words, and
therefore no embedded blanks or other white-space is allowed in the value
specified. The maximum length of each word is 1024 characters:

{_INCDIRS}

{_INCLIBS}

{_LIBDIRS}

{ OPTIONS}

{ OPERANDS}

An S-name is a short external symbol name, such as produced by the z/OS
C/C++ compiler when compiling z/OS C programs with the NOLONGNAME option.
An L-name is a long external symbol name, such as produced by the z/OS
C/C++ compiler when compiling z/OS C programs with the LONGNAME option.

The C/C++ Runtime Library supports a file naming convention of // (the
filename can begin with exactly two slashes). ¢89/cc/c++ indicate that the file
naming convention of // can be used.

However, the Shell and Utilities feature does not support this convention. Do
not use this convention (//) unless it is specifically indicated (as here in
c89/cc/c++). The z/OS Shell and Utilities feature does support the POSIX file
naming convention where the filename can be selected from the set of
character values excluding the slash and the null character.

When coding in C and C++, ¢89, cc, and c++, by default, produce reentrant
executables. For more information, see [zZ0S C/C++ Programming Guide]
When coding in assembler language, the code must not violate reentrancy. If it
does, the resulting executable may not be reentrant.

When shell variable _MAKE_BI is set to YES, sh will use the built-in ¢89, cc,
c++, and make commands instead of /bin/make, /bin/c89, /bin/cc, and
/bin/c++. make will also call the built-in ¢89, cc, and c++ commands, instead
of /bin/c89, /bin/cc, and /bin/c++. For more information, see|z/OS UN/)_<|
[System Services Planning] [‘Built-in Commands” on page 515| describes UNIX
built-in commands.

The {_CVERSION}, {_PVERSION} and {_CLASSVERSION} environment
variables are set to a hex string in the format OXPVVRRMMMM where P is
product, VV is version, RR is release and MMMM is modification level.

Chapter 2. Shell Command Descriptions 99

c89, cc, and c++

Localization

Exit Values

Portability

To use the z/OS V1R2 compiler, specify CVERSION=0x44020000. To use the
0S/390 V2R10 compiler, specify CVERSION=0x220A0000. To use the z/OS
V1R2 class library, specify CLASSVRESION=0x44020000. And to use the
0S/390 V2R10 class library, specify CVERSION=0x220A0000.

Note: You can use the OS/390 V2R10 class library with either the z/OS V1R2
compiler or the OS/390 V2R10 compiler, but to do so, you must target
back to OS/390 V2R10. Otherwise, you won’t be able to get to the V3
headers.

c89/cc/c++ use the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

+ LC_MESSAGES

0 Successful completion.
1 Failure due to incorrect specification of the arguments.
2 Failure processing archive libraries:

» Archive library was not in any of the library directories specified.
» Archive library was incorrectly specified, or was not specified, following
the =l operand.
3 Step of compilation, assemble, or link-editing phase was unsuccessful.

4 Dynamic allocation error, when preparing to call the compiler, assembler,
IPA linker, prelinker, or link editor, for one of the following reasons:
* The file or data set name specified is incorrect.
* The file or data set name cannot be opened.

5 Dynamic allocation error, when preparing to call the compiler, assembler,
prelinker, IPA linker, or link editor, due to an error being detected in the
allocation information.

6 Error copying the file between a temporary data set and a hierarchical file
system file (applies to the —2 option, when processing assembler source
files, and —r option processing).

7 Error creating a temporary control input data set for the link-editing phase.

8 Error creating a temporary system input data set for the compile or
link-editing phase.

For ¢89, X/Open Portability Guide, POSIX.2 C-Language Development Utilities
Option.

For cc, POSIX.2 C-Language Development Utilities Option, UNIX systems.

The following are extensions to the POSIX standard:
e The —v, —V, —0, —1, and —2 options

* DLL support

* |PA optimization support

100 2/0OS V1R4.0 UNIX System Services Command Reference

c89, cc, and c++

* The behavior of the —o option in combination with the —c¢ option and a single
source file.

Features have been added to z/OS releases, which have made it easier to port
applications from other platforms to z/OS and improve performance. For
compatibility reasons, these portability and performance enhancements could not be
made the default. If you are porting an application from another platform to z/OS,
you may want to start by specifying the following options:

c89 -0 HelloWorld -2 -Wc,NOANSIALIAS -Wc,XPLINK
-W1,XPLINK -Wc,'FLOAT(IEEE)' -Wc,'GONUM' HelloWorld.c

Note: The above string is one line (had to be split to fit page). A space exists
between -Wc,XPLINK and -WI,XPLINK (where | in Wl is a lowercase L, not
an uppercase i).

Related Information

ar, dbx, file, lex, make, makedepend, nm, strings, strip, yacc

cal — Display a calendar for a month or year

Format

Description

Localization

Usage Note

Exit Values

cal [month] [year]

cal displays a calendar on standard output (stdout).

» With no arguments, cal displays a calendar for the current month of the current
year.

» If one argument is given and it is numeric, cal interprets it as a year (for
example, 1991); if a single argument is not numeric, cal interprets it as the name
of a month, possibly abbreviated (for example, apr).

» If two arguments are given, cal assumes that the first argument is the month
(either a number from 1 to 12 or a month name) and the second is the year.

cal uses the following localization environment variables:
« LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Year numbers less than 100 refer to the early Christian era, not the current century.
This command prints the Gregorian calendar, handling September 1752 correctly.
Many cultures observe other calendars.

0 Successful completion.

1 Failure due to any of the following:
* An incorrect command-line argument

Chapter 2. Shell Command Descriptions 101

cal

Portability

* An incorrect date
» Avyear outside the range 1 to 9999 A.D.

X/Open Portability Guide, UNIX systems.

calendar — Display all current appointments

Format

Description

Options

Examples

calendar [-]

Note: The calendar utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX-branded systems.

If you do not specify any options, calendar displays all current appointments on
standard output (stdout). It searches the file calendar in the current directory,
looking for lines that match either today’s date or tomorrow’s date. On Friday,
Saturday, or Sunday, tomorrow extends through to Monday. Each appointment must
fit on a single line, with the date formatted as one of:

January 27

1/27
jan 27

Note: The name of the month can be abbreviated to three letters. Also, the case is
not significant and the month can be given numerically.

- Searches the RACF data base to find user IDs. calendar uses the mailx
command (or, alternatively, the command named in the MAILER
environment variable) to send mail to the corresponding user for any
appointments that are found to be current. Because calendar cannot
determine each user’s locale, it runs in the POSIX locale when this option is
used; otherwise it runs in the user’s locale, processing data in single-byte
mode.

If today is Friday April 7th and the following calendar file is found in the current
directory:

tue mar 7 1:00 pm dentist

Sat April 8 Trip to the zoo

mon april 10 3:30 pm job interview
4/11 vacation starts

calendar prints the following:

Sat April 8 Trip to the zoo
mon april 10 3:30 pm job interview

Environment Variable

calendar uses the following environment variable:

102 2z/0S V1R4.0 UNIX System Services Command Reference

Files

Localization

Exit Values

Portability

calendar

MAILER
Contains the name of the command that calendar uses to send mail. If this
variable is not set, calendar uses /bin/mail as the default mail command.

calendar uses the following file:
calendar
File used in the current directory, or user’s home directory.

calendar uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
* An incorrect command-line argument
* An inability to open the calendar file

X/Open Portability Guide, UNIX systems

The MAILER environment variable is an extension to traditional implementations of
calendar.

Related Information

mailx

cancel — Cancel print queue requests (stub command)

Format

Description

cancel [print_ID ...] printer ...
cancel print_ID ... [printer ...]

Note: The cancel utility is fully supported for compatibility with older UNIX
systems. However, because it is no longer supported by POSIX.2 IEEE
standard 1003.2-1992, this utility should be avoided for applications intended
to be portable to other UNIX-branded systems.

cancel cancels print queue requests. print_ID specifies the particular job (or jobs) to
be canceled; the print_ID number is reported by Ip when the job is submitted, or by
Ipstat.

cancel is recognized, but its functions are not supported.

Chapter 2. Shell Command Descriptions 103

cancel

If you are using the z/OS Print Server feature, your system automatically uses that
version of the cancel command. For more information about the OS/390 Print
Server commands, see |z/0S Infoprint Server User’s Guidd,.

captoinfo — Print the terminal entries in the terminfo database

Format

Description

Options

Examples

captoinfo [-1vV] [-w width] [file ...]

captoinfo prints all of the terminal entries in the terminfo database to standard
output (stdout) in terminfo format. You can either look at the output or send it to a
file that can be processed by tic.

The Curses application uses the terminfo database, which contains a list of terminal
descriptions. This enables you to manipulate a terminal’s display regardless of the
terminal type. To create the terminfo database, use tic. For information on defining
the terminfo database, see [zZ0S UNIX System Services Planning.

For more information about curses, see |z/OS C Cursed.

1 Single-column output

\' Print the program version

\' Print debugging information (verbose) to standard error (stderr)
w Specifies the width of the output

filename

Specifies the termcap entries to be processed

1. This example shows how to print all the terminal entries in the file
letc/termcap.src in terminfo format. The entry for a vt52 is shown. Issue:

captoinfo /etc/termcap.src

You get the following display:

captoinfo: obsolete 2 character name 'dv' removed.
synonyms are: 'vt52|dec vt52'

#

vt52|dec vt52,
xon,
cols#80, Tines#24,
bel="-, clear=-E-310-E-321, cubl="%, cudl="-,
cufl=-E-303,
cup=-E-350%-227-361%"-5s"'%+%-203%-227-362%"'-s '%+%-203,
cuul=-E-301, ed=-E-321, el=-E-322, ind="-,
kbs="%, kcubl=-E-304, kcudl=-E-302, kcufl=-E-303,
kcuul=-E-301, ri=-E-311,

END OF TERMCAP

2. To print all the terminal entries in the file /etc/termcap.src in terminfo format
with each entry on a separate line, issue:

captoinfo -1 /etc/termcap.src

You get the following display:

104 2/0S V1R4.0 UNIX System Services Command Reference

captoinfo

captoinfo: obsolete 2 character name 'dv' removed.
synonyms are: 'vt52|dec vt52'

#

vt52|dec vt52,
xon,
cols#80,
lines#24,
clear=-E-310-E-321,
cubl="%,
cudl="-,
cufl=-E-303,
cup=-E-350%-227-361%"-s"'%+%-203%-227-362%"'-s ' %+%-203,
cuul=-E-301,
ed=-E-321,
el=-E-322,
ind="-,
kbs="%,
kcubl=-E-304,
kcudl=-E-302,
kcufl=-E-303,
kcuul=-E-301,
ri=-E-311,

END OF TERMCAP

3. This example shows how to write all the terminal entries in the file
letc/termcap.src to the file /test/terminfo.ti. The resulting file can be processed
by tic. Notice that the error messages are written to stderr.

captoinfo /etc/termcap.src 1> /test/terminfo.ti

You get the following:

captoinfo: obsolete 2 character name 'dv' removed.
synonyms are: 'vt52|dec vt52'
#

Related Information
infocmp, tic

cat — Concatenate or display text files

Format
cat [-su] [-v [et]] [file ...]
Description
cat displays and concatenates files. It copies each file argument to the standard
output (stdout). If you specify no files or specify a dash (=) as a filename, cat
reads the standard input (stdin).
Note: You can use cat in conjunction with the scrolling facility of the OMVS TSO/E
command to browse data files.
Options
—-e Displays a $ character at the end of each line. This option works only if you
also specify —v.
-s Does not produce an error message if cat cannot find or read a specified
file.

Chapter 2. Shell Command Descriptions 105

cat

-t Displays tabs as ~I. This option works only if you also specify —v.
-u Does not buffer output.
-V Displays all characters including those that are unprintable characters. With

a doublebyte character set, an unprintable wide character is converted back
to its doublebyte representation. Each byte is then checked as if it were a
singlebyte character. If the character is unprintable, one of the following
three representations is used:

* M-X is used for character X if the significant bit is set.

» X is used for the control character X (for example, ~A for CTRL-A).

* \xxx represents a character with the octal value xxx.

The \xxx form is used if neither of the other representations can be used.

Localization

cat uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

« LC_SYNTAX

* NLSPATH

See for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
* An incorrect command-line argument
* Inability to open the input file
* End of the file detected on stdout
* The input file is the same as the output file

2 An incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

The —e, —s, —t, and —v options are extensions of the POSIX standard.

Related Information
cp, more, mv

cc — Compile, link-edit and assemble z/OS C source code and create
an executable file

See c89/cc/c++.

Notes:

1. The cc utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the ¢89 utility be used instead because it may
provide greater functionality and is considered the standard for portable UNIX
applications as defined by POSIX.2 IEEE standard 1003.2-1992.

106 2z/0OS V1R4.0 UNIX System Services Command Reference

cc

2. When working in the shell, to view man page information about cc, type: man
c89.

cd — Change the working directory

Format

Description

cd [directory]
cd old new
cd -

tcsh shell: ed [-p] [-1] [-nl-v] [name]

The command cd directory changes the working directory of the current shell
execution environment (see sh) to directory. If you specify directory as an absolute
pathname, beginning with /, this is the target directory. cd assumes the target
directory to be the name just as you specified it. If you specify directory as a
relative pathname, cd assumes it to be relative to the current working directory.

If the variable CDPATH is defined in the shell, the built-in ecd command searches for
a relative pathname in each of the directories defined in CDPATH. If ¢d finds the
directory outside the working directory, it displays the new working directory.

Use colons to separate directories in CDPATH. In CDPATH, a null string represents
the working directory. For example, if the value of CDPATH begins with a separator
character, cd searches the working directory first; if it ends with a separator
character, cd searches the working directory last.

In the shell, the command cd - is a special case that changes the current working
directory to the previous working directory by exchanging the values of the variables
PWD and OLDPWD.

Note: Repeating this command toggles the current working directory between the
current and the previous working directory.

Calling ed without arguments sets the working directory to the value of the HOME
environment variable, if the variable exists. If there is no HOME variable, cd does
not change the working directory.

The form cd old new is an extension to the POSIX standard and optionally to the
Korn shell. The shell keeps the name of the working directory in the variable PWD.
The e¢d command scans the current value of PWD and replaces the first occurrence
of the string old with the string new. The shell displays the resulting value of PWD,
and it becomes the new working directory.

If either directory is a symbolic link to another directory, the behavior depends on
the setting of the shell’s —o logical option. See the set command for more
information.

cd in the tcsh shell

If a directory name is given, cd changes the tcsh shell’s working directory to name.
If not, it changes the directory to home. If name is - it is interpreted as the previous
working directory. If name is not a subdirectory of the current directory (and does
not begin with /, ./ or ../), each component of the tcsh variable ecdpath is checked to

Chapter 2. Shell Command Descriptions 107

cd

see if it has a subdirectory name. Finally, if all else fails but name is a tcsh shell
variable whose value begins with /, then this is tried to see if it is a directory (see
also the implicited tcsh shell variable).

Options for the ed tcsh built-in command are:

-l Output is expanded explicitly to home or the pathname of the home
directory for the user.

-n Entries are wrapped before they reach the edge of the screen.
-p Prints the final directory stack.
-V Entries are printed one per line, preceded by their stack postions.

If more than one of -n or -v is given, -v takes precedence. -p is accepted
but does nothing.

Environment Variables

Localization

Usage Note

Exit Values

cd uses the following environment variables:

CDPATH
Contains a list of directories for ed to search in when directory is a relative
pathname.

HOME Contains the name of your home directory. This is used when you do not
specify directory on the command line.

OLDPWD
Contains the pathname of the previous working directory. This is used by
cd —-.

PWD Contains the pathname of the current working directory. This is set by cd
after changing to that directory.

cd uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

cd is a built-in shell command.

0 Successful completion

1 Failure due to any of the following:
* No HOME directory
* No previous directory
» A search for directory failed
* An old-to-new substitution failed

2 An incorrect command-line option

108 2z/0S V1R4.0 UNIX System Services Command Reference

Messages

Portability

cd

Possible error messages include:

dir bad directory
cd could not locate the target directory. This does not change the working
directory.

Restricted
You are using the restricted version of the shell (for example, by specifying
the —r option for sh). The restricted shell does not allow the ed command.

No HOME directory
You have not assigned a value to the HOME environment variable. Thus,
when you run cd in order to return to your home directory, cd cannot
determine what your home directory is.

No previous directory
You tried the command cd — to return to your previous directory; but there
is no record of your previous directory.

Pattern o/d not found in dir
You tried a command of the form e¢d old new. However, the name of the
working directory dir does not contain any string matching the regular
expression old.

POSIX.2, X/Open Portability Guide.
All UNIX systems feature the first form of the command.

The cd old new form of the command is an extension of the POSIX standard.

Related Information

dirs, popd, pushd, set, sh, tcsh

chaudit — Change audit flags for a file

Format

Description

Options

chaudit [-Fdai] attr pathname ...

chaudit changes the audit attributes of the specified files or directories. Audit
attributes determine whether or not accesses to a file are audited by the system
authorization facility (SAF) interface.

Note: chaudit can be used only by the file owner or a superuser for
non-auditor-requested audit attributes. It takes a user with auditor authority to
change the auditor-requested audit attributes.

-F If you specify a directory as a pathname on the command, chaudit
changes the audit characteristics of all files in that directory. Subdirectory
audit characteristics are not changed.

Chapter 2. Shell Command Descriptions 109

chaudit

Examples

-d If you specify a directory as a pathname on the command, chaudit
changes the audit characteristics of all the subdirectories in that directory.
File audit characteristics are not changed.

-a Auditor-requested audit attributes are to be changed for the files or
directories specified. If —a is not specified, user-requested audit attributes
are changed.

—i Does not issue error messages concerning file access authority, even if
chaudit encounters such errors.

The symbolic form of the atftr argument has the form:

[operation]
op auditcondition[op auditcondition ...]

The operation value is any combination of the following:

r Sets the file to audit read attempts.
w Sets the file to audit write attempts.
X Sets the file to audit execute attempts.

The default is all of the above (rwx).

The op part of a symbolic mode is an operator telling whether chaudit should turn
file auditing on or off. The possible values are:

+ Turns on specified audit conditions.

- Turns off specified audit conditions.

= Turns on the specified audit conditions and turns off all others.

The auditcondition part of a symbolic mode is any combination of the following:
s Audit on successful access if the audit attribute is on.
f Audit on failed access if the audit attribute is on.

You can specify multiple symbolic attr values if you separate them with commas.

1. The command:
chaudit —s file

changes the file file so that successful file accesses are not audited.
2. The command:
chaudit rwx=sf filel

changes the file file1 so that all successful and unsuccessful file accesses are
audited.

3. The command:
chaudit r=f file2

changes the file file2 so that unsuccessful file read accesses are audited.
4. The command:

chaudit r-f,w+s file3

changes the file file3 to not audit unsuccessful file read accesses and to audit
successful write accesses.

110 z/0S V1R4.0 UNIX System Services Command Reference

chaudit

Localization

chaudit uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:
* Inability to access a specified file
* Inability to change the audit attributes for a specified file
* Inability to not read the directory containing item to change
 lIrrecoverable error when using the —=F or —d option

2 Failure due to any of the following:
« Missing or incorrect attr argument
* Too few arguments

Messages
Possible error messages include:

fatal error during -F or -d option
You specified the —F or —d option, but some file or directory in the directory
structure was inaccessible. This may happen because of permissions or
because you have removed a removable unit.

read directory name
You do not have read permissions on the specified directory.

Portability

None. This is a security extension that comes with OpenMVS services.

Related Information
chmod, chown, Is

chcp — Set or query ASCII/EBCDIC code pages for the terminal

Format
chep [-r | —q]
chep [-s] [-a ASCII_cp] [-e EBCDIC_cp]

Description

chcep sets, resets, or queries the current ASCII/EBCDIC code conversion in effect
for the controlling terminal. Use it when the terminal requires ASCII data and the
shell application uses EBCDIC. Do not use chep if you are logged on through the
TSO/E OMVS command. The _BPX_TERMPATH environment variable enables
shell scripts to tell if the user logged on from TSO, rather from rlogin or telnet.

Chapter 2. Shell Command Descriptions 111

chcp
Options

Examples

—a ASCIl_cp

The name of the ASCII code page used by the terminal. EBCDIC data from
the shell application is converted to this ASCII code page before it is sent
out to the terminal. Data from the terminal is converted from this ASCII
code page to EBCDIC before the application receives it.

The name of the ASCII code page is case-sensitive.

For a list of code pages supported by the shell, see |zZ0S C/C+

|Programming Guide,

—e EBCDIC_cp

The name of the EBCDIC code page used for this session. EBCDIC data
from the shell application is converted from this EBCDIC code page to
ASCII before it is sent out to the terminal. ASCII data from the terminal is
converted to this EBCDIC code page before the application receives it.

The name of the EBCDIC code page is case-sensitive.

For a list of code pages supported by the z/OS shell, see |z70S C/C+
|Programming Guidd,

Queries the current ASCIl and EBCDIC code pages for this terminal. The
results are written to stdout. You cannot use any other options if you use
the —q option.

Resets the ASCII/EBCDIC conversion for the terminal to the default code
pages. The default ASCII code page is 1ISO8859-1, and the default EBCDIC
code page is IBM-1047.

You cannot use —r with any other options.

Specifies that the ASCII/EBCDIC conversion for the terminal is to use the
code pages specified by the —a and —e options. You cannot use —s with any
other options other than —a or —e. Either —a or e (or both) must also be
specified if —s is used.

The chep query output is written to stdout. For example, if you enter

checp —q

You get the following output:
Current ASCII code page = I1S08859-1

Current EBCDIC code page

IBM-1047

To set the ASCII and EBCDIC code pages to IBM-eucdP and IBM-939, enter:
chcp —a IBM-eucJP —e IBM-939

To change just the EBCDIC code page to IBM-277, enter:

chcp —seIBM-277

To change just the ASCII code page to IBM-850, enter:

chcp —a IBM-850

To reset ASCII/EBCDIC code page conversion to the default code pages for this
terminal, enter:

chcp -r
To query the current ASCIl and EBCDIC code pages for this terminal, enter:
chep —q

112 2/0S V1R4.0 UNIX System Services Command Reference

Usage Notes

chcp

Do not use chep when you are logged on from the TSO/E OMVS command
because the OMVS command does not do any ASCII/EBCDIC code page
conversion.

Shell scripts can test _BPX_TERMPATH environment variable and bypass chcp
when the user is logged on through OMVS. (The _BPX_TERMPATH
environment variable enables shell scripts to tell if the user logged on from
TSO/E rather than from rlogin or telnet.)

Before starting the session, the TSO/E OMVS command sets
_BPX_TERMPATH to “OMVS”.

Sample shell script code:

Issue chcp only if not using TSO/E OMVS command

if
test "$ BPX_TERMPATH" != "QOMVS"

then

chcp —a IBM-850 —e IBM-1047

fi

After running chep —s to change the EBCDIC code page for the session, you
may also need to alter or set the following environment variables to match the
new code page:

* LANG

e LC_ALL

« LC_COLLATE

- LC_CTYPE

« LC_MESSAGES

« LC_SYNTAX

* NLSPATH

The code page names supplied with the —a and —e options are passed to
iconv_open() without any uppercase or lowercase conversion. Code page
converters that convert between the specified ASCIlI and EBCDIC code pages
must be available for iconv().

If ASCII/EBCDIC conversion is not active for this terminal, both the ASCII and
EBCDIC code pages must be specified on the chep —s command. At other
times, omit —a when just the EBCDIC code page needs to be changed. Omit —e
when just the ASCII code page needs to be changed.

All code pages with names not known to chcp are considered to be singlebyte
(SBCS) user-defined code pages. User-defined multibyte code pages are not
supported.

chep cannot check user-defined code page names to make sure that —a really
specifies an ASCII code page and —e specifies an EBCDIC code page. In this
case, specifying the wrong code pages may cause terminal input and output to
be completely unreadable. It may also be impossible to enter any more shell
commands.

chcp operates on the controlling terminal.

chep should not be run as a background job.

The —d option specifies that special debugging information be printed. Specify
this option only when requested by IBM.

Chapter 2. Shell Command Descriptions 113

chcp

Localization

chep uses the following localization environment variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 Successful completion
1 Incorrect command-line arguments or options
2 Any of the following errors:

* There is no controlling terminal.

» The controlling terminal does not support ASCII/EBCDIC code page
conversion (the TSO/E OMVS command, for example).

» iconv_() fails when passed the code page names specified on the
command line.

» chcep cannot build SBCS conversion tables using iconv() when required.
* An I/O error occurred on the controlling terminal.

» Either the —a or —e was omitted and the chcp —s command was run
while the terminal code page conversion is in binary mode.

Portability

None. chep is not described in any standard.

Related Information
Im, rlogin

chgrp — Change the group owner of a file or directory

Format
chgrp [-thR] group pathname ...

Description

chgrp sets the group ID to group for the files and directories named by the
pathname arguments. group can be a group name from a group database, or it can
be a numeric group ID (GID).

Note: chgrp can be used only by the file owner or a superuser. The file owner
must have the new group as his or her group or one of the supplementary
groups.

chgrp also turns off the set-user-ID bit and set-group -ID bit of the named files and
directories.

114 z/0S V1R4.0 UNIX System Services Command Reference

Options
—f
-h
-R
Localization

chgrp

Does not issue an error message if chgrp cannot change the group ID. In
this case, chgrp always returns a status of 0.

Does not attempt to follow the symbolic link (or external link), but instead
makes changes to the symbolic link (or external link) itself.

If a pathname on the command line is the name of a directory, chgrp
changes the group ID of all files and subdirectories in that directory. If
chgrp cannot change some file or subdirectory in the directory, it continues
to try to change the other files and subdirectories in the directory, but exits
with a nonzero status.

chgrp uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

See for more information.

Exit Values

Portability

You specified —f, or chgrp successfully changed the group ownership of all
the specified files and directories.

Failure due to any of the following:

 Inability to access a specified file

 Inability to change the group of a specified file

* An irrecoverable error was encountered when you specified the —R
option

Failure due to any of the following:
* The command line contained an unknown option or too few arguments
» chgrp did not recognize the specified group

POSIX.2, X/Open Portability Guide, UNIX systems.

The —f and —h options are an extension of the POSIX standard.

Related Information

chmod, chown

chmod — Change the mode of a file or directory

Format

chmod [-fhR] mode pathname

Description

chmod changes the access permissions, or modes, of the specified file or directory.
(Modes determine who can read, write, or search a directory or file.)

Chapter 2. Shell Command Descriptions 115

chmod

Options

Notes:
1. chmod can be used only by the file owner or a superuser.

2. Users with read access to SUPERUSER.FILESYS.CHANGEPERMS (a
UNIXPRIV class profile), can use the chmod command to change the
permission bits of any file.

—f Does not issue error messages concerning file access permissions, even if
chmod encounters such errors.

-h Suppresses a mode change for the file or directory pointed to by the
encountered symbolic link (or external link). Symbolic link (or external link)
permissions cannot be changed on a z/OS system.

-R Recursively change file mode bits. For each file operand that names a
directory, chmod will change the file mode bits of the directory and all files
in the file hierarchy below it. (-R does not resolve symbolic or external
links).

chmod never changes the permissions of symbolic links (or external links),
because, on a z/OS system, the permissions on symbolic links (and external links)
are never used. However, for each symbolic link listed on the command line,
chmod changes the permissions of the pointed-to file. In contrast, chmod ignores
symbolic links encountered during recursive directory traversals.

You can specify the mode value on the command line in either symbolic form or as
an octal value.

The symbolic form of the mode argument has the form:
[who] op permission[op permission ...]

The who value is any combination of the following:

u Sets owner (user or individual) permissions.

Sets group permissions.

Sets other permissions.

Sets all permissions; this is the default. If a who value is not specified, the
default is a, modified by umask.

[~ I N(e]

The op part of a symbolic mode is an operator that tells chmod to turn the
permissions on or off. The possible values are:

+ Turns on a permission.

- Turns off a permission.

= Turns on the specified permissions and turns off all others.

The permission part of a symbolic mode is any combination of the following:
r Read permission. If this is off, you cannot read the file.

X Execute permission. If this is off, you cannot run the file.

Execute or search permission for a directory; or execute permission for a
file only when the current mode has at least one of the execute bits set.

w Write permission. If this is off, you cannot write to the file.

s If in owner permissions section, the set-user-ID bit is on; if in group
permissions section, the set-group-ID bit is on.

116 z/0S V1R4.0 UNIX System Services Command Reference

Examples

Note:

t This re

chmod

A superuser or the file owner can use a chmod command or chmod()
function to change two options for an executable file. The options
are set in two file mode bits:

o Set-user-ID (S_ISUID) with the setuid option
» Set-group-ID (S_ISGID) with the setgid option

If one or both of these bits are on, the effective UID, effective GID,
or both, plus the saved UID, saved GID, or both, for the process
running the program are changed to the owning UID, GID, or both,
for the file. This change temporarily gives the process running the
program access to data the file owner or group can access.

In a new file, both bits are set off. Also, if the owning UID or GID of a
file is changed or if the file is written in, the bits are turned off. In
shell scripts, these bits are ignored.

If the RACF profile named FILE.GROUPOWNER.SETGID exists in

the UNIXPRIV class, then the set-group-ID bit for a directory

determines how the group owner is initialized for new objects

created within the directory:

* If the set-gid bit is on, then the owning GID is set to that of the
directory.

 If the set-gid bit is off, then the owning GID is set to the effective
GID of the process.

presents the sticky bit. For a file, the sticky bit causes a search for

the program in the user's STEPLIB, the link pack area, or link list
concatenation. For a directory, the sticky bit allows files in a directory or
subdirectories to be deleted or renamed only by the owner of the file, by the

owner

of the directory, or by a superuser.

You can specify multiple symbolic names if you separate them with commas.

Absolute mode

s are octal numbers specifying the complete list of attributes for the

files; you specify attributes by ORing together these bits.

4000 Set-user-ID bit
2000 Set-group-ID bit
1000 Sticky bit
0400 User read

0200 User wri
0100 User exe
0040 Group re

te
cute (or list directory)
ad

0020 Group write

0010 Group ex
0004 Other re

ecute
ad

0002 Other write

0001 Other ex

chmod —-w orgcht

ecute

removes write permission from orgcht.
chmod a=rwx aprsal

turns on read, write, and execute permissions, and turns off the set-user-ID bit,
set-group-ID bit, and sticky-bit attributes. This is equivalent to chmod 0777 aprsal.

Chapter 2. Shell Command Descriptions 117

chmod

Localization

chmod uses the following localization environment variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:
* Inability to access a specified file
* Inability to change the modes on a specified file
* Inability to read the directory containing the item to change
* An irrecoverable error was encountered when using the —R option

2 Failure due to any of the following:
* Missing or incorrect mode argument
» Too few arguments

Messages
Possible error messages include:

function not implemented
This error may occur if the directory is under automount control.

irrecoverable error during —R option
The —R option was specified, but some file or directory in the directory
structure was inaccessible. This may happen because of permissions.

read directory name
Read permissions are not on the specified directory.

Portability
POSIX.2, X/Open Portability Guide.

The —f and —h options and the t permission are extensions of the POSIX standard.

Related Information
Is, setfacl, umask

chmount — Change the mount attributes of a file system

Format
chmount [-R [-D | —d destsys] [-a yesInolunmount]pathname...

Description

The chmount shell command, located in /usr/sbin, changes the mount attributes of
a specified file system.

118 2/0S V1R4.0 UNIX System Services Command Reference

Options

Example

Exit Values

chmount

Note: A chmount user must have UID(0) or at least have READ access to the
SUPERUSER.FILESYS.MOUNT resource found in the UNIXPRIV class.

—a yeslnolunmount
In a shared HFS environment, —a yes allows the system to automatically
move logical ownership for a specified file system due to a system outage.
—a no disables this move function. —a umount specifies that this file system
is to be unmounted when the file system’s owner leaves the sysplex.

-D Reassigns logical ownership of a file system to any available file system
participating in shared HFS.

—d destsys
To designate a specific reassignment, use —d destsys, where destsys
becomes the logical owner of a file system in a shared HFS environment.

-R Changes the attributes of a specified file system and all file systems
mounted below it in the file system hierarchy.

pathname... specifies the pathnames to use for locating the file systems that need
attributes changed.

To move ownership of the file system that contains /u/wjs to SY1:
chmount -d SY1 /u/wjs

0 Successful completion

Related Information

mount, unmount

chown — Change the owner or group of a file or directory

Format

Description

chown [-fhR] owner{: group] pathname ...

chown sets the user ID (UID) to owner for the files and directories named by
pathname arguments. owner can be a user name from the user data base, or it can
be a numeric user ID. (If a numeric owner exists as a user name in the user data
base, the user ID number associated with that user name is used.) If there is no
change to the UID, then specify — — —1.

If you include a group name (that is, if you specify owner followed immediately by a
colon (:) and then group with no intervening spaces, such as owner.group) chown
also sets the group ID (GID) to group for the files and directories named. group can
be a group name from the security facility group data base, or it can be a numeric
group ID. If a numeric group exists as a group name in the group data base, the
group ID number associated with that group is used. If there is no change to the
GID, then specify =1 (or do not specify the :group).

Chapter 2. Shell Command Descriptions 119

chown

Options

Localization

Exit Values

Note: Only a superuser can change the UID. To change the GID, you must either

be a superuser, or the effective user ID of the process must be equal to the
user ID of the file owner, and the owner argument is also equal to the user
ID of the file owner or =1, and the group argument is the calling process’s
effective group ID or one of its supplementary group IDs.

chown also turns off the set-user-ID bit and set-group -ID bit of the named files and
directories.

Does not issue an error message if chown cannot change the owner. In
this case, chown always returns a status of zero. Other errors may cause a
nonzero return status.

Does not attempt to follow the symbolic link (or external link), but instead
makes the changes on the symbolic link (or external link) itself.

If pathname on the command line is the name of a directory, chown
changes all the files and subdirectories in that directory to belong to the
specified owner (and group, if :group is specified).

If a symbolic link is specified or encountered during the traversal of a file
hierarchy, chown changes the directory referenced by the symbolic link and
all files in the file hierarchy below it.

If chown cannot change some file or subdirectory in the directory, it
continues to try to change the other files and subdirectories in the directory,
but exits with a nonzero status.

chown uses the following localization environment variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

You specified —f, or chown successfully changed the ownership of all the
specified files and directories.

Failure due to any of the following:

 Inability to access a specified file.

 Inability to change the owner of a specified file.

* Inability to read the directory containing the directory entry of the file.
* An irrecoverable error was encountered when using the —R option.

Failure due to any of the following:

* The command line contained an incorrect option.

* The command line had too few arguments.

* An owner was specified with a user ID that the system did not recognize.

120 2z/0S V1R4.0 UNIX System Services Command Reference

Message

Portability

chown

function not implemented

This error may occur if the directory is under automount control.

POSIX.2, UNIX systems.

The —f and —h optio ns are an extension of the POSIX standard.

Related Information

chgrp, chmod

chroot — Change the root directory for the execution of a command

Format

Description

Examples

chroot directory command

If you have appropriate privileges, the chroot command changes the root directory
to the directory specified by the directory parameter of a specific command. The
new root directory will also contain its children.

In order to use chroot, you must either be a superuser (UID=0), or be a member of
the BPX.SUPERUSER facility class.

The directory path name is always relative to the current root. If a nested chroot
command is in effect, the directory path name is still relative to the current (new)
root of the running process.

In order for your process to operate properly after the chroot is issued, you need to
have in your new root all the files that your program depends on. For example, if
your new root is /tmp and you issue an Is, you will get a not found error. To use Is
with /tmp as your new root, you will need a /tmp/bin with Is in it before you issue
the chroot command.

In addition, utilities that depend on locale-sensitive files (/usr/lib/nis/*) may be
unsuccessful if these files are not in the new root file system.

After chroot is issued, your current working directory is the new root (directory),
chroot does not change environment variables.

directory
Specifies the new root directory

command
Specifies a command to run with the chroot command

1. To run the Is command with the /tmp directory as the root file system, enter:

mkdir /tmp/bin
cp /bin/1s /tmp/bin
chroot /tmp 1s

Chapter 2. Shell Command Descriptions 121

chroot

Exit Values

To run a child shell with another file system as the root file system (assuming
that /tmp is the mount point of a file system), enter:

mkdir /tmp/bin

cp /bin/sh /tmp/bin

chroot /tmp sh or chroot /tmp /bin/sh

This makes the directory name / (slash) refer to the /tmp for the duration of the
/bin/sh command. It also makes the original root file system inaccessible. The
file system on the /tmp file must contain the standard directories of a root file
system.

Running the /bin/sh command creates a child shell that runs as a separate
process from your original shell. Press the END OF FILE (Crtl-D) key sequence
or type exit to end the child shell and go back to where you were in the original
shell. This restores the environment of the original shell, including the meanings
of the . (current directory) and the / (root directory).

To create a file relative to the original root, not the new one, enter:
chroot Directory Command > file

For example, chroot /tmp 1s > /bin/file will create the file in /bin/file.

Note: Redirection is handled by the current shell before chroot is executed.
To create a file relative to the new root, enter:
chroot Directory 'Command > file'

For example, chroot /tmp '1s > /bin/file' will create the file in /timp/bin/file.
Examples of how the current root changes:

Given the standard directories of the file system plus:

echo $PATH

/bin

1s /tmp/bin

bin file2 sh

1s /tmp/bin/bin
filel sh

whence file2
#
whence filel
#

chroot /tmp 'whence filel'
#

chroot /tmp 'type file2'
/bin/file2

chroot /tmp/bin 'type filel'
/bin/filel

The command completed successfully

Failure due to any of the following:
* chroot seteuid failed
* User not authorized to issue chroot

Failure due to any of the following:
» Cannot chdir to directory specified

122 2/0S V1R4.0 UNIX System Services Command Reference

Limits

chroot

» chroot cannot change root
* Unable to execute the shell
* Incorrect command syntax

Note: If the SHELL environment variable is set, chroot uses its value to invoke the
shell.

chroot may only be used by a superuser (UID=0) or a member of the
BPX.SUPERUSER facility class.

chtag — Change file tag information

Format

Description

Options

chtag —b | —-r [-hqRvV] pathname...

chtag —c codeset [-hqRv] pathname...

chtag —-m | -t [-c codesef] [-hqRv]pathname...
chtag —p [-hqRv]pathname...

Note: To use chtag, you must have write permission to the file or be a superuser.

chtag allows you to set, modify, remove, or display information in a file tag. A file
tag is composed of a text flag (txtflag) and a codeset:

codeset
The codeset represents the coded character set in which text data is
encoded. The codeset can be used for uniformly encoded text files or files
that contain mixed text/binary data.

txtflag The txtflag indicates whether or not a file contains uniformly encoded or
non-uniformly encoded text data.

ON indicates the file has uniformly encoded text data
OFF indicates the file has non-uniformly encoded text data

txtflag
txtflag

Only files with txtflag = ON and a valid codeset are candidates for automatic
conversion. If txtflag = OFF and a codeset is associated with it, automatic
conversion will not take effect. However, user applications can take advantage of
the associated codeset information and perform code set conversion by themselves.

For information about enabling automatic conversion, see the "Using Enhanced
ASCII Functionality” chapter of [z/70S UNIX System Services Planning

-b Indicates that the file contains only binary (non-uniformly encoded) data.
Automatic conversion is disabled with this option.

—b is mutually exclusive with the —¢, —m, —t, or —r options.

—c codeset
Allows the user to modify the codeset associated with the file. codeset can
be a character code set name known to the system, or the numeric coded
character set identifier (CCSID) (if a numeric codeset name exists, the
CCSID associated with that name will be used). —c is mutually exclusive
with the —r and —b options.

Chapter 2. Shell Command Descriptions 123

chtag

124

Does not change file tag information if the file is a symbolic link (or an
external link).

Indicates that the file contains mixed text and binary data. The data is not
uniformly encoded, but to identify the encoding of portions of the file that
are text, this option allows the specifications of a codeset with the —¢
option. This option sets txtflag = OFF. When used without —c, the existing
character codeset associated with the file is retained.

Automatic conversion is disabled with this option. However, user
applications can independently convert any text data residing in the file by
knowing the codeset associated with it. =m is mutually exclusive with the
-b, -t and -r options.

Prints file tag information associated with a file. If no codeset name is
associated with the CCSID in the file tag, the numeric CCSID will be
presented instead.

Sample output looks like:

t IBM-1047 T=on filel
- untagged T=on file2
b binary T=off file3
m 1S0-8859-1 T=off filed
- untagged T=off fileb
b binary T=on fileb
Where:

t = text

b = binary

m = mixed

— = untagged

Note: Codesets which are aliases of each other exist which may cause the
test to fail, since the file inquiry operator may return an alias of the
codeset you are testing.

Suppresses warning messages.

Removes any tagging information associated with the file and sets the
status of the file to "untagged”. This option disables automatic conversion
for the files. —r is mutually exclusive with the —b, —¢, —m, and -t options.

If you specify a directory as a pathname, chtag changes the file tag
information on all of the files and subdirectories under that directory. chtag
will not follow symlinks to directories (or external links), but will follow
symlinks to files as long as the —h option is not used.

Indicates that the specified file contains pure (uniformly encoded) text data.
Used alone, this option sets txtflag = ON and retains the existing character
codeset associated with the file. To set or change the codeset, use the —¢
option. Files that are tagged with this option and contain a valid codeset are
candidates for automatic conversion. -t is mutually exclusive with the -b,
—m, and -r options.

Gives verbose output. Displays what state the file tag is currently in, and
what state the user is trying to change it to. This option is only useful for the
—t, —=b, -m, —r and —c options. Output will be displayed in the following
format:

z/OS V1R4.0 UNIX System Services Command Reference

Examples

Usage Notes

Exit Values

chtag

txtflag Char Set Char Set ---> txtflag Char Set Char Set Filename
Name Type Name Type

If the character set name is unknown, the CCSID will be used. Sample output will
look like the following:

chtag -mvc IBM-1047 file3.c
t 1S0-8859 A ---> m [IBM-1047 E file3.c

Where:
A = ASCII
E = EBCDIC

? = unknown

1. To specify a text file with IBM-1047 codeset, issue:
chtag -tc IBM-1047 filename

2. To specify a binary file, issue:
chtag -b filename

3. To specify a file of mixed binary and text data, with a new codeset of
1ISO8859-1, issue:

chtag -mc 1S08859-1 filename
4. To remove the tag from a file issue:

chtag -r filename

illustrates how the different combinations of txtflag and Character Code Set
/ CCSID affect a file’s candidacy for automatic conversion. txtflag indicates whether
this field is turned ON, OFF, binary or untagged. Character Code Set / CCSID
indicates whether the stored codeset is valid, invalid, or does not exist. Candidate
for Automatic Conversion indicates whether this file is a candidate for automatic
conversion.

Table 4. Possible txtflag / CCSID Combinations

txtflag Character Code Set / CCSID | Candidate for Automatic
Conversion
t (on) Defined Yes (text file)
t (on) Defined No
b (off) — No
m (off) Defined No (mixed data)
— (off) — No
0 Successful completion
1 chtag failed to change the tag of a specified file for the following reasons:
« Calling process does not have appropriate privileges to change file
attributes

 Invalid txtflag / Character Code Set combination was issued

2 Incorrect command line syntax

Chapter 2. Shell Command Descriptions 125

chtag

Related Information

iconv, Is

cksum — Calculate and write checksums and byte counts

Format

Description

Options

Localization

Exit Values

cksum [—ciprt] [file ...]

cksum calculates and displays a checksum for each input file. (A checksum is an
error-checking technique used by many programs as a quick way to compare files
that have been moved from one location to another to ensure that no data has
been lost.) It also displays the number of 8-bit bytes in each file.

If you do not specify any files on the command line, or if you specify — as the
filename, cksum reads the standard input (stdin).

The output has the form:
checksum bytecount filename

cksum can calculate checksums in a variety of ways. The default is compatible with
the POSIX.2 standard. You can specify other algorithms with the following options.
The POSIX standard does not recognize these algorithms; they are provided for
compatibility with the UNIX sum command.

-c Uses a standard 16-bit cyclic redundancy check (CRC-16).

=i Uses the CCITT standard cyclic redundancy check (CRC-CCITT). Data
communication network protocols often use a cyclic redundancy check to
ensure proper transmission. This algorithm is more likely to produce a
different sum for inputs—the only difference is byte order.

-p Uses the POSIX.2 checksum algorithm. This is the default.

-r Enables the use of an alternate checksum algorithm that has the advantage
of being sensitive to byte order.

-t Produces a line containing the total number of bytes of data read as well as
the checksum of the concatenation of the input files.

cksum uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 Successful completion

1 Failure due to any of the following:

126 2z/0S V1R4.0 UNIX System Services Command Reference

Portability

cksum

* Inability to open input file
» An error reading the input file

Unknown command-line option

POSIX.2, X/Open Portability Guide.

All

the listed options are extensions of the POSIX standard.

Related Information
cmp, diff, Is, sum, wc

cmp — Compare

Format

two files

cmp [-blsx] file1 file2 [seek1[seek2]]

Description

cmp compares two files. If either filename is —, cmp reads the standard input
(stdin) for that file. By default, cmp begins the comparison with the first byte of
each file. If you specify seek1 and/or seek2, cmp uses it as a byte offset into file1

or

file2 (respectively), and comparison begins at that offset instead of at the

beginning of the files. The comparison continues (1 byte at a time) until a difference
is found, at which point the comparison ends and ecmp displays the byte and line
number where the difference occurred. emp numbers bytes and lines beginning
with 1.

Options

Localization

Compares single blocks at a time. Normally, cmp reads large buffers of
data into memory for comparison.

Causes the comparison and display to continue to the end; however, cmp
attempts no resynchronization. cmp displays the byte number (in decimal)
and the differing bytes (in octal) for each difference found.

Suppresses output and returns a nonzero status if the files are not identical.

Displays the differing bytes shown by the =l option in hex; normally cmp
displays them in octal.

cmp uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

See|Appendix F|for more information.

Exit Values

1

The files were identical
The files were not identical

Chapter 2. Shell Command Descriptions 127

cmp

Messages

Portability

2 Failure because of an error opening or reading an input file

Possible error messages include:

EOF on filename
cmp reached the end of the file on the specified file before reaching the
end of the file on the other file.

POSIX.2, X/Open Portability Guide, UNIX systems.

The —b and —x options and the seek pointers are extensions of the POSIX
standard.

Related Information

comm, diff, uniq

col — Remove reverse line feeds

Format

Description

col [-bfpx] [file ...]

Note: The col utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX-branded systems.

col processes control characters for vertical line feeds and writes the processed
text to the standard output. It is intended to be used as a filter between a program
such as nroff and an output device that cannot handle reverse line feeds.

Where possible, blank characters (spaces) are converted to tabs; tab stops are
assumed to be every eight characters.

col also removes all escape sequences except for those shown in the following list.
ESC is the ASCII escape character, octal code 033.

Character ASCII Control Character

Backspace 010

Carriage-return

015
Newline 012
Vertical Tab 013
SO 016
Si 017
Space 040
Tab 011

128 2/0S V1R4.0 UNIX System Services Command Reference

Options

Localization

Usage Notes

Exit Values

Portability

col

Reverse line feed
ESC-7

Reverse half-line feed
ESC-8

Forward half-line feed
ESC-9

The ASCII control characters SO and Sl denote the beginning and end of text in an
alternative character set. The set of each input character is remembered. col
generates SO and Sl characters as needed to output each character in the correct
character set.

-b Ignores backspace (CRTL-H) characters. If two characters are supposed to
appear in the same space, the first character is ignored and the second is
output.

—f Allows forward half-line motions. Normally these are changed to forward

full-line motions.

—-X Prevents conversion of spaces to tab characters.

col uses the following localization environment variables:
* LANG

- LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See[Appendix F|for more information.

1. col ignores vertical motions that back up over the first line, so you may get
unexpected results if the first line contains superscripts.

2. Because —f allows escape sequences, it may cause unexpected results on
terminals.

o

Successful completion

Failure due to any of the following:
* Incorrect command-line option

* Insufficient memory

[

UNIX systems.

This implementation does not handle doublebyte characters.

Chapter 2. Shell Command Descriptions 129

: (colon)

: (colon) — Do nothing, successfully

Format

Description

Example

Usage Notes

Localization

Exit Values

Portability

: [argument ...]

tcsh shell: :

The : (colon) command is used when a command is needed, as in the then
condition of an if command, but nothing is to be done by the command. This
command simply yields an exit status of zero (success). This can be useful, for
example, when you are evaluating shell expressions for their side effects.

: (colon) in the tcsh shell
Performs as indicated above for the z/OS version of : (colon).

: ${VAR:="default value"}

sets VAR to a default value if and only if it is not already set.

colon is a special built-in shell command.

colon uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Because this command always succeeds, the only possible exit status is:

0 Successful completion

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

sh, tcsh, true

comm — Show and select or reject lines common to two files

Format

comm [-123] file1 file2

130 2z/0S V1R4.0 UNIX System Services Command Reference

Description

Options

Localization

Exit Values

Portability

comm

comm locates identical lines within files sorted in the same collating sequence, and
produces three columns; the first contains lines found only in the first file, the
second lines only in the second file, and the third lines that are in both files.

-1 Suppresses lines that appear only in file1
-2 Suppresses lines that appear only in file2
-3 Suppresses lines that appear both in file1 and file2

The options suppress individual columns. Thus, to list only the lines common to
both files, use:

comm -12

To find lines unique to one file or the other, use:
comm -3

Observe that comm -123 displays nothing.

comm uses the following localization environment variables:
*+ LANG

« LC_ALL

+ LC_COLLATE

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See for more information.

0 Successful completion

1 Failure because of an error opening or reading an input file

2 Failure that generated a usage message, such as naming only one input
file

Incorrect command-line options are reported but do not affect the exit status value.

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cmp, diff, sort, uniq

command — Run a simple command

Format

command [-p] command-name [argument...]
command [-VI-v] command-name

Chapter 2. Shell Command Descriptions 131

command

Description

Options

Example

Localization

Usage Note

Exit Values

command causes the shell to suppress its function lookup and execute the given
command-name and arguments as though they made up a standard command line.
In most cases, if command-name is not the name of a function, the results are the
same as omitting command. If, however, command-name is a special built-in
command, (see sh), some unique properties of special built-in commands do not
apply:
» A syntax error in the command does not cause the shell running the command to
stop.

» Variable assignments specified with the special built-in command do not remain
in effect after the shell has run the command.

-p Searches for command-name using the system default PATH variable.

-v Writes a string indicating the pathname or command that the shell uses to
invoke command-name.

-V Writes a string indicating how the shell interprets command-name. If
command-name is a command, a regular built-in command, or an
implementation-provided function found using the PATH variable, the string
identifies it as such and includes the absolute pathname. If command-name
is an alias, function, special built-in command, or reserved word, the string
identifies it as such and includes its definition if it is an alias. If the
command is a tracked alias, the string identifies it as cached.

Typically, you use command when you have a command that may have the same
name as a function. For example, here’s a definition of a e¢d function that not only
switches to a new directory but also uses lc to list the contents of that directory:
function cd {

command cd $1

lc

}

Inside the function, we use command to get at the real ed. If we didn’t do this, the
cd function would call itself in an infinite recursion.

command uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

command is a built-in shell command.

If you specified —v, possible exit status values are:
0 Successful completion

132 2/0S V1R4.0 UNIX System Services Command Reference

Portability

command

1 command could not find command-name, or an error occurred
2 Failure due to incorrect command-line argument

If you did not specify —v, possible exit status values are:
126 command found command-name, but failed to invoke it.
127 An error occurred in the command or it could not find command-name.

Otherwise, the exit status of command is the exit status of command-name.

POSIX.2.

Related Information

sh

compress — Lempel-Ziv file compression

Format

Description

Options

compress [-cDdfVv] [-b bits] [file ...]

compress compresses each input file using Lempel-Ziv compression techniques. If
you do not specify any input files, compress reads data from standard input (stdin)
and writes the compressed result to standard output (stdout).

The output files have the same names as the input files but with a .Z suffix. For
example, abc is compressed into abe.Z. If the .Z file already exists and you did not
specify the —f option, compress gives an error and asks whether it should overwrite
the existing file.

compress uses the modified Lempel-Ziv algorithm described in A Technique for
High Performance Data Compression, Terry A. Welch, IEEE Computer, vol. 17, no.
6 (June 1984), pp.8-19. compress first replaces common substrings in the file by
9-bit codes starting at 257. After it reaches code 512, compress begins with 10-bit
codes and continues to use more bits until it reaches the limit set by the —b option.

After attaining the bits limit, compress periodically checks the compression ratio. If
it is increasing, compress continues to use the existing code dictionary. However, if
the compression ratio decreases, compress discards the table of substrings and
rebuilds it from scratch. This allows the algorithm to compensate for files, such as
archives, where individual components have different information content profiles.

-b bits
Limits the maximum number of bits of compression to bits. The value bits
can be an integer from 9 to 16. The default is 16.

-C Writes the output to stdout. When you use this option, you can only specify
one file on the command line.

-D Allows an extra degree of compression to be done for files such as sorted
dictionaries where subsequent lines normally have many characters in
common with the preceding line.

Chapter 2. Shell Command Descriptions 133

compress

Localization

Exit Values

Limits

Portability

Decompresses argument files instead of compressing them. This works by
overlaying the compress program with the uncompress program. For this
to work, uncompress must be available somewhere in your search path
(given by the PATH environment variable). Decompressing files this way is
slower than calling uncompress directly.

Forces compression even if the resulting file is larger or the output file
already exists. When you do not specify this option, files which are larger
after compression are not compressed. compress does not print an error
message if this happens.

Prints the version number of compress.

Prints statistics giving the amount of compression achieved. Statistics give
the name of each file compressed and the compression ratio, expressed as
a percentage. If the file resulting from compression is larger than the
original, the compression ratio is negative.

compress uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

See for more information.

Successful completion

Failure due to one of the following:

* Missing number of bits after the —b option
* Incorrect number of bits specified

* Failed to execute uncompress

* Unknown option

 Dictionary option—same count of string exceeded
» OQutput path or file name too long

» Cannot stat file

* Argument file not a regular file: unchanged
» Argument file has other links: unchanged

* No space for compression tables

One or more files were not compressed because the compressed version
was larger than the original

This implementation of compress is limited to a maximum of 16-bit compression.

A binary-compatible version of compress with more options is often found on UNIX
systems.

The —D option is an extension to traditional implementations of compress. The -D,
—d and -V options are extensions of the POSIX standard.

134 2/0S V1R4.0 UNIX System Services Command Reference

compress

For portability, you should restrict the number of bits in the code (b option) to a
value between 9 and 14.

Related Information

cpio, pack, pax, tar, uncompress, unpack, zcat

confighfs — Invoke vfs_pfsctl HFS functions

Format

Description

Options

confighfs [-I] [-v n] [-f n] [-q] [pathname] [-x[n] size pathname]

Note: The | option signifies a lowercase L, not an uppercase i.

confighfs gives interactive shell users the ability to invoke vfs_pfsctl HFS functions.
The vfs_pfsctl function is used to pass control information to the PFS (physical file
system). For more information on vis_pfsctl, see the|zZOS UNIX System Services|

File System Interface Referencel Detailed information on its use can be found in

2/0S DFSMS: Using Data Sets,

confighfs resides in the following directory: /usr/lpp/dfsms/bin/. This directory is
not part of the default search path definition. Therefore, the directory must be
included in the command specification when invoking the command.

- Query HFS limits.

Note: | signifies a lowercase L, not an uppercase i.

—-v n Set virtual storage max to n (where n is in MB). Requires superuser

authority.
—fn Set fixed storage min to n (where n is in MB). Requires superuser authority.
-q Query your global statistics.
pathname

Query file system statistics for the file system containing each of the path
names specified.

—X size pathname
Extend the specified file system, where size is the amount to be extended
suffixed by the extend unit of M, T, or C (for megabytes, tracks, or
cylinders), and the pathname is a full or simple pathname to a file or
directory in the file system to extend. Requires superuser authority.

—Xn size pathname
Extend the specified file system to a new volume with the same rules as
above. Requires superuser authority.

The following are internal debug options:

—-dn Prints incoming and outgoing pfsctl buffers (where nis 0, 1, or 2).

-t Skips issuing the pfsctl.

Chapter 2. Shell Command Descriptions 135

confighfs

Examples

Usage Notes

Note: On systems running shared HFS, this command should only be issued on

pathname. Issuing it on client systems results in fields of zeros. See
|UN/X System Services Planning{ for more information on UNIX in a Sysplex.

To set virtual and fixed HFS buffer limits:

> confighfs —v 128 —f 32

To extend the file system for your current directory 100 cylinders:
> confighfs —x 100c .

If you need to get stats for the root file system and the file system mounted over
/tmp, you would do the following:

> confighfs / /tmp .

the server system (file system owner) for the file system pointed to by the

Note: The . (period) in examples two and three above indicates the current
directory.

If an HFS encounters an Out of Space condition during SYNC processing
producing message IGW022S, then the following can result:

a. If confighfs is used to successfully extend the file system (by specifying
confighfs -x size pathname, for example) and the extent was large enough
to accomodate the pages required to complete the SYNC processing,
confighfs reinvokes the SYNC function to complete its update and then
resets the HFS Out of Space error flag. It will no longer be necessary to
unmount and remount the file system to use it further. Once the error flag is
reset, all file system functions will work properly again.

b. If the extend size is not large enough to provide the amount of space
required to complete the SYNC process, confighfs will issue the following
response:

Inadequate space added to HFS. At Teast another nn tracks required.

Note: The above results only apply when the IGW022S message indicates
an Error Loc: EXTEND value. If it indicates an Error Loc: ARPN
value, it will go into the Out of Space error state and require an
unmount followed by a mount to reset the error condition and make
the HFS reusable. The updates applied to the HFS since the last
successful SYNC will also be lost.

2. Unlike most z/OS UNIX commands, which reside in /bin, confighfs is found in

the /usr/lpp/dfsms/bin directory.

Note: Starting with z/OS V1R3, you can symbolically link to the actual location
of confighfs. The symbolic link is found in /usr/sbin:

/usr/sbin/confighfs -> /usr/1pp/dfsms/bin/confighfs

configstk — Configure the AF_UEINT stack

Format

configstk {—s} Configuration_file_name

136 2z/0S V1R4.0 UNIX System Services Command Reference

Description

Option

Files

configstk

configstk is used to configure the AF_UEINT stack. This command should initially
be run from the /etc/rc script, which is executed as part of zZOS UNIX System
Services initialization. It should also be run each time the AF_UEINT network
topology changes after zZOS UNIX services have been initialized.

This command requires superuser authority.

-s Does syntax checking only.

configstk uses the following file:

Configuration_file_name
Specifies the configuration for the AF_UEINT stack. As with any
system-wide configuration file, it should have the appropriate permissions
set.

Syntax for Configuration Files

This file has two types of specifications, HOME and GATEWAY. Be careful when
modifying the configuration file to insure that the F_UEINT environment is not
corrupted due to user error.

HOME ip_address BUFFERS(number) blocking
This statement is required but you can only specify it once. The entire
statement must be on a single line.

ip_address
Defines the single virtual IP address to be used by all RS/6K clients
when accessing the z/OS host, independent of how many RS/6K
gateways are connected to a given z/OS image. This
implementation differs from the standard IP model which defines an
IP address per physical adapter.

number

Defines the maximum number of 32K page-fixed buffers (in OMVS
private memory) that are to be used by the protocol stack. The
number specified is be distributed equally among the read and write
flows. As new ESCON® fibers are added to the configuration,
additional 10 buffers are required. Thruput decreases and overhead
increases if the number specified is too restrictive. You should
initially specify a value of 10 times the number of defined gateways
for low-to-average use and increase it proportionally as the number
of users increase). The maximum number of buffers allocated is the
larger of six times the number of active gateways, or the number
specified. A decrease in the number is not honored until the next
IPL.

blocking

Indicates whether the internal blocking algorithm should be
activated for outgoing packets. The default is BLOCKING.
Specifying NOBLOCKING causes the internal optimization routines,
which attempt to group multiple packets into a single blocked I/O, to
be bypassed (such as single packet per block written on demand).

Chapter 2. Shell Command Descriptions 137

configstk

Examples

Specifying BLOCKING minimizes the z/OS overhead and
maximizes the ESCON channel bandwidth, but can delay the
packet delivery slightly.

GATEWAY device_number checksum

At least one of these statements is required and up to 32 can be specified.
The entire statement must be on a single line. This statement maps the
target RS/6K IP addresses to the gateway that will process the request. The
device number to define the gateway must be the first of an even-odd pair
of subchannels (both configured thru a single ESCON fiber) between the
z/OS image and the RS/6K gateway. Multiple target IP addresses can be
mapped to a given gateway. A given target IP address can be mapped to at
most one gateway.

device_number
Specifies the hex address of device to be configured. This number
must be four hex digits and must be an even number.

checksum
Indicates whether a reliable communications path exists between
the communicating applications. Specify CHECKSUM if any portion
of the path between the communicating applications is unreliable
(such as a LAN). Specify NOCHECKSUM if the entire path is
reliable (such as a SP2® fast switch or ESCON).

A list of IP addresses immediately follows this statement, one IP address
per line. At least one IP address must be specified for each gateway
device. Up to 256 IP addresses can be specified in the configuration file.

Blank lines are permitted and lines beginning with /* are treated as
comments.

/* configure AF_UEINT sockets

/* name the ip address for this node, default to blocking enabled
home 10.32.166.20 buffers(20)

/* configure device 324
gateway 0324 nochecksum
10.34.166.20
10.34.166.24
10.34.166.26

/* configure device b28
gateway 0b28 checksum
10.36.166.20
10.36.166.22
10.36.166.24
10.36.166.26

configstrm — Set and query the STREAMS physical file system

configuration

Format

138

configstrm [-bimv] [-h high_mem | ?] [-| loadmod]... [-t trace_opt | ?]... [-u
loadmod]|

z/OS V1R4.0 UNIX System Services Command Reference

Description

Options

Usage Notes

Example

configstrm

Note: The | option signifies a lowercase L, not an uppercase i.

configstrm sets and queries the STREAMS physical file system configuration. It
can be used to view statistics and change configuration options for the STREAMS
physical file system without changing your BPXPRMxx member and re-IPLing.

-b Print current buffer pool utilization.

—h high_mem
Set and query the maximum allowed storage utilization and query the
current utilization. high_mem is specified in kilobytes.

—i Print internal diagnostic information.
=l loadmod

Load a new device driver set.

Note: | signifies a lowercase L, not an uppercase i.
-m Print device major information.

—t trace_opt
Set and query trace options. The valid trace options are:

all | none
Enables or disables all trace points.

proc | noproc
Enables or disables procedure entry and exit trace points.

data | nodata
Enables or disables data trace points.

nw | nonw
Enables or disables Netware trace points.

code | nocode
Enables or disables code trace points.

diag | nodiag
Enables or disables diagnostic trace points.

—u loadmod
Unload a device driver.

-V Avoid output truncation when information is excessive.

1. Must be a superuser to use the configstrm command.

2. configstrm can be used to dynamically configure the physical file system for
Netware.

To display device information for the configured STREAMS device drivers, issue:
configstrm -m

Chapter 2. Shell Command Descriptions 139

continue

continue — Skip to the next iteration of a loop in a shell script

Format
continue [n]
Description
continue skips to the next iteration of an enclosing for, select, until, or while loop
in a shell script. If a number nis given, execution continues at the loop control of
the nth enclosing loop. The default value of nis 1.
Usage Note
continue is a special built-in shell command.
Localization
continue uses the following localization environment variables:
* LANG
« LC_ALL
« LC_MESSAGES
* NLSPATH

See for more information.

Exit Values

0 Successful completion
1 The value of n given was not an unsigned decimal greater than 0.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
break, sh, tcsh

cp — Copy a file

Format
cp [-cfimMUv] [-plIF formatIBITIX] [-P paramsifile1 file2
cp [-ACcfimMUv] [-pIF formatIBITIX] [-S suffix] file ... directory
cp —R [—cfimp] source... directory
cp —r [-cfimp] source... directory
Automatic Conversion and File Tag Specific Options:
cp [-Z] [-O u | c=codesetl]
Description

cp copies files to a target named by the last argument on its command line. If the
target is an existing file, cp overwrites it; if it does not exist, cp creates it. If the
target file already exists and does not have write permission, cp denies access and

continues with the next copy.

140 2/0S V1R4.0 UNIX System Services Command Reference

Options

cp

If you specify more than two pathnames, the last pathname (that is, the target) must
be a directory. If the target is a directory, cp copies the sources into that directory
with names given by the final component of the source pathname.

You can also use cp to copy files to and from MVS data sets. If you specify more
than one file to be copied, the target (last pathname on command line) must be
either a directory or a partitioned data set. If the target is an MVS partitioned data
set, the source cannot be a UNIX directory.

cp does not support the copying to or from GDGs. To use those MVS data sets,
user must specify the real data set name.

When copying records, the string " \n” is copied the same way as the string "\n":
both are read back as "\n", where "\n" indicates that z/OS C++ will write a record
containing a single blank to the file (the default behavior of z/OS C/C++). All other
blanks in your output are read back as blanks, and any empty (zero-length) records
are ignored on input. However, if the environment variable _EDC_ZERO_RECLEN
is set to Y before calling cp, an empty record is treated as a single newline and is
not ignored. Also, if _EDC_ZERO_RECLEN is set to Y, a single newline is written to
the file as an empty record, and a single blank will be represented by " \n".

You can copy:

* One file to another file in the working directory

* One file to a new file on another directory

* A set of directories and files to another place in your file system
* A UNIX file to an MVS data set

* An MVS data set to a filesystem

* An MVS data set to an MVS data set

-A Specifies that all suffixes (from the first period till the end of the target) be
truncated. —A has precedence over —M and —C options. —S will be turned
off if —A is the last option specified.

-B Specifies that the data to be copied contains binary data. When you specify
—-B, cp operates without any consideration for <newline> characters or
special characteristics of DBCS data (this type of behavior is typical when
copying across a UNIX system). —B is mutually exclusive with —F, =X, and
-T, i.e., you will get an error if you specify more than one of these options.

-C Specifies truncating the filename(s) to 8 characters to meet the restriction in
the MVS data set member.

—c (UNIX to UNIX only)
Prompts you to change the diskette if there is not enough room to complete
a copy operation. This option has no effect on systems without floppy
drives.

Note: The parent directories must already exist on the new target diskette.

—F format
Specifies if a file is binary or text and for text files, specifies the end-of-line
delimeter. Also sets the file format to format if the target is a UNIX file. For
text files, when copying from UNIX to MVS, the end-of-line delimeter will be
stripped. When copying from MVS to UNIX, the end-of-line delimeter will be
added (Code page IBM-1047 will be used to check for end-of-line
delimeters).

Chapter 2. Shell Command Descriptions 141

cp

142

If setting format fails, a warning will be displayed. However, cp will continue
to copy any remaining files specified to be copied.

—F is mutually exclusive with -B, =X, —p, and —T. If you specify one of
these options with —F, you will get an error. If =F is specified more than
once, the last —F specified will be used.

For format you can specify:
not not specified
bin binary data

Or the following text data delimeters:

nl newline

cr carriage return

If line feed

crif carriage return followed by line feed
Ifcr line feed followed by carriage return

crnl carriage return followed by new line

—f (UNIX to UNIX only)

Attempts to replace files that do not have write permission.

When copying to a UNIX target, —i asks you if you want to overwrite an
existing file, whether or not the file is read-only.

Specifies that some characters of the filename are translated when copying
between a UNIX file and an MVS data set member. Characters are
translated as follows:

* _ (underscore) in UNIX is translated to @ in MVS DS members and vice
versa.

* . (period) in UNIX is translated to # in MVS DS members and vice versa.
e — (dash) in UNIX is translated to $ in MVS DS members and vice versa.

—m (UNIX to UNIX only)

Sets the modification and access time of each destination file to that of the
corresponding source file. Normally, cp sets the modification time of the
destination file to the present.

—P params

Specifies the parameters needed to create a sequential data set if one does
not already exist. You can specify the RECFM, LRECL, BLKSIZE, and
SPACE in the format the CRTL fopen() function uses. However, LRECL
and BLKSIZE can be used for variable record format only.

SPACE=(units, (primary,secondary) where the following values are
supported for units:

* any positive integer indicating BLKSIZE

* CYL (mixed case)

* TRK (mixed case)

For example:

SPACE=(500, (100,500)) units, primary, secondary
SPACE=(500,100) units and primary only

Note: CRTL fopen() arguments: LRECL specifies the length, in bytes, for
fixed-length records and the maximum length for variable-length
records. BLKSIZE specifies the maximum length, in bytes, of a
physical block of records. RECFM refers to the record format of a
data set and SPACE indicates the space attributes for MVS data
sets.

z/OS V1R4.0 UNIX System Services Command Reference

cp

-p Preserves the modification and access times (as the —m option does); in
addition, it preserves file mode, owner, and group owner, if authorized. It
also preserves extended attributes. It preserves the ACLs of files and
directories, if possible. The ACLs are not preserved if a file system does not
support ACLs, or if you are copying files to MVS

—p is mutually exclusive with —F. If you specify both, you will get an error
message.

—R (UNIX to UNIX only)
“Clones” the source trees. cp copies all the files and subdirectories
specified by source... into directory, making careful arrangements to
duplicate special files (FIFO, character special). cp will traverse directories
by following symbolic links through the file hierarchy.

—r (UNIX to UNIX only)
“Clones” the source trees, but makes no allowances for special files (FIFO,
character special). Consequently, cp attempts to read from a device rather
than duplicate the special file. This is similar to, but less useful than, the
preferred —R.

—-S d=suffixla=suffix
» d=suffix
Removes the specifed suffix from a file.
» a=suffix
Appends the specified suffix to a file.

—-S has precedence over —M and —C. It also turns off the —A option (if =S is
the last specified option).

-T Specifies that the data to be copied contains text data. See

page 149 for details on how to treat text data. This option looks for
IBM-1047 end-of-line delimeters, and is mutually exclusive with =F, =X, and
—-B. That is, you will get an error if you specify more than one of these
options.

Note: -T is ignored when copying across UNIX file systems.

-U Keeps filenames in uppercase when copying from MVS data set members
to UNIX files. The default is to make filenames lowercase.

-v Verbose

=X Specifies that the data to be copied is an executable. Cannot be used in

conjunction with —=F, =X, or —B.

-Z Specifies that error messages are not to be displayed when setting ACLs
on the target. The return code will be zero.

Note: If you do not specify either —FIBIT or X, cp will first check the format of the
MVS data set indicated and then try to determine the type of file.

Automatic Conversion and File Tag Specific Options

-Z Suppresses failure when default behavior is used to set file tag. For
a description of the default behavior, see [“Automatic Conversion|
[and File Tag Behavior for cp” on page 144]

-0 u | c=codeset
Allow automatic conversion on source and target files.

—-Ou If the target exists and is not empty nor already

Chapter 2. Shell Command Descriptions 143

cp

144

—0 c=codeset

tagged, cp will not change the target’s tag in order
for the target to be a candidate for automatic
conversion.

For new targets and existing untagged empty files
this option does not take effect and cp will behave
the same as the default. For a description of the
default behavior, see [‘Automatic Conversion and|
[File Tag Behavior for cp’]

When using cp to copy from a UNIX file to a MVS
dataset, if the source is a tagged text file, then it
may be a candidate for automatic conversion.

For cp executables from or to MVS, the automatic
conversion is disabled for both source and target.

For a detailed description of the behavior of this
option on cp, see [‘Automatic Conversion and File|
[Tag Behavior for cp’}

cp will fail if it cannot set the tag to text or codeset.
This prevents text files from becoming corrupted.

Attention: If automatic conversion is not set
properly or if the source is not tagged properly, the
target may end up with a tag codeset that does not
match the file content.

Automatic Conversion and File Tag Behavior for cp

The behavior is

as follows:

Table 5. Automatic Conversion and File Tag Behavior: UNIX to UNIX Copying

Default w/Option -O u w/Option -O cc
Automatic Turned off Allowed for source & | Allowed for source & target
Conversion target
File Tagging Target is tagged | Target’s tag is Set target’s txtflag to TEXT
same as the unchanged and its codeset to what is
source specified by -O cc

Note: The source or
target is a candidate
for automatic
conversion when its
txtflag is tagged
TEXT

Table 6. Automatic Conversion and File Tag Behavior: MVS to UNIX Copying

Option If the source is: Automatic File Tagging
Conversion

w/out -O option Text Turned off Target is set to

(default) UNTAG

z/OS V1R4.0 UNIX System Services Command Reference

cp
Table 6. Automatic Conversion and File Tag Behavior: MVS to UNIX Copying (continued)

-Ou Text Allowed for target Target’s tag is

unchanged
Note: The source

and/or target are
candidates for
automatic conversion
when their txtflags are
tagged TEXT

-0 cc Text Allowed for target Set target’s txtflag
to TEXT and its

codeset to what is
specified by -O cc

w/out -O option Binary Turned off Target is set to

(default) UNTAG

-Ou Binary Turned off Target's tag is
unchanged

-0 cc Binary Turned off Set target’s txtflag

to BINARY and its
codeset to what is
specified by -O cc

w/out -O option Executable Turned off Target is set to

(default) UNTAG

-Ou Executable Turned off Target’s tag is
unchanged

-0 cc Executable Turned off Target’s txtflag is

set to BINARY and
its codeset to what
is specified by -O

cc
Table 7. Autoconversion and File Tag Behavior: UNIX to MVS Copying
Option If the source is: Automatic File Tagging
Conversion
w/out -O option Text Turned off Does not apply
(default)
-Ou Text Allowed for source | Does not apply
Note: The source is
a candidate for
automatic
conversion when its
txtflag is tagged
TEXT
-0 cc Text Turned off Does not apply
w/out -O option Binary Turned off Does not apply
(default)
Ou Binary Allowed for source | Does not apply
Note: Only files
tagged as text are
candidates for
autoconversion
-0 cc Binary Turned off Does not apply

Chapter 2. Shell Command Descriptions 145

cp

Table 7. Autoconversion and File Tag Behavior: UNIX to MVS Copying (continued)

w/out -O option Executable Turned off Does not apply
(default)

Ou Executable Turned off Does not apply
-O cc Executable Turned off Does not apply

The —p option on cp does not affect file tagging.

Limits and Requirements

146

General Requirements

1. To specify an MVS data set name, precede the name with double slashes (//).
For example, to specify the fully qualified data set names ’turbo.gammalib’ and
‘turbo.gammalib(pgm1)’, you write:

"//'turbo.gammalib"'"
"//'turbo.gammalib(pgml)'"

The same goes for data set names that are not fully qualified:
//turbo
2. For PDS (partitioned data set) or PDSE (partitioned data set extended), to avoid

parsing by the shell, the name should be quoted or minimally, the parenthesis
should be escaped. For example, to specify turbo(pgm1)’, you can use quotes:

"//turbo(pgml)"

or escape the parenthesis:
//turbo\ (pgm1\)

As indicated above, a fully qualified name must be single-quoted (as is done
within TSO). To prevent the single quotes from being interpreted by the shell,
they must be escaped or the name must be placed within regular quotation
marks. See the 'turbo.gammalib’ examples above.

3. If you specify a UNIX file as source and the MVS data set (target) does not
exist, a sequential data set will be created. If the partitioned data set exists, the
UNIX file will be copied to the partitioned data set member.

4. |If source is an MVS data set and target is a UNIX directory, the UNIX directory
must exist.

5. You cannot have a UNIX directory, partitioned data set, or sequential data set
as source if the target is a partitioned data set.

6. To copy all members from a partitioned data set, you may specify the partitioned
data set as source and a UNIX directory as target.

MVS data set naming limitations

» Data set names may only contain uppercase alphabetic characters (A-Z).
Lowercase characters will be converted to uppercase during any copies to MVS
data sets.

» Data set names can contain numeric characters 0—-9 and special characters @,
#, and $.

» Data set names cannot begin with a numeric character.

* A data set member name cannot be more than 8 characters. If a filename is
longer than 8 characters or uses characters that are not allowed in an MVS data
set name, the file is not copied. You may use the —C option to truncate names to
8 characters.

z/OS V1R4.0 UNIX System Services Command Reference

cp

Limitations: UNIX to MVS data set

1.

2.

If you specify a sequential MVS data set that is in undefined record format, the
file is copied as binary.

If you specify a PDSE that is in undefined record format, the first file
successfully copied determines in what format files will be copied. Note that
PDSE does not allow mixture. So if the first successfully copied file is an
executable, the PDSE will have program objects only and all other files will fail.
On the other hand, if the first file is data, then all files are copied as binary.

If you specify a PDS that is in undefined record format, UNIX executables are
saved as PDS load modules. All other files are copied as binary.

If you specify an MVS data set that is either in variable length or fixed record
length and you have not set the file format, text files are copied as text, binaries
as binary, and executables as binary. (IBM-1047 end-of-line delimeters are
detected in the data)

If you set the file format, the set value is used to determine if data is binary or
text.

Limitations: MVS data set to UNIX

1.

If an HFS file does not exist, one is created using 666 mode value:

666 mode value: owner(rw-) group(rw-) other(rw-)

whether data is binary or text. If the data to be copied is a shell script or
executable, an HFS file is created using 777 mode value:

777 mode value: owner(rwx) group(rwx) other(rwx)

If an HFS exists and the file format is set, cp copies the file as that format.

Otherwise,

* load modules (PDS) are stored as UNIX executables and program objects
(PDSE) are copied since they are the same as executables;

» data within data sets of undefined record format are copied as binary if the
data is not a program object or load module;

» and data found within data sets of fixed length or variable record length are
copied as text. (IBM-1047 end-of-line delimeters are detected in the data)

Limitations: MVS to MVS

1.
2.

Options —-A, —C, —f, and —S are ignored.

If target and source are in undefined record format (and neither is a sequential
data set), cp will attempt to copy the data as a load module. If that fails, then
cp will copy the data as binary.

If target and source are in undefined record format and either is a sequential
data set, cp copies the data as binary.

If the source has a fixed or variable record length and the target is in undefined
record format, cp copies the data as binary.

If the source is in undefined record format and the target has a fixed or variable
record length, cp copies the data as binary.

If both source and target are in fixed or variable record length, cp copies the
data as text.

Limitations: Copying executables into a PDS

1.

A PDS may not store load modules that incorporate program management
features.

Chapter 2. Shell Command Descriptions 147

cp

148

2. ¢89, by default, produces objects using the highest level of program

management.

3. If you plan on copying a load module to a PDS, you may use a pre-linker which
produces output compatible with linkage editor. Linkage editor generated output
can always be stored in a PDS.

The following table is a quick reference for determining the correct use of options

with cp.

Table 8. cp Format: File to File and File ... (multiple files) to Directory

Source/Target Options Allowed Options Ignored Options Failed
UNIX File/UNIX File Ffip ABCMPSTUX

UNIX File/Sequential Data |BFiPT ACiMpSU X
Set

UNIX File/PDS or PDSE BFiTX ACfMPpSU

Member

Sequential Data Set/UNIX |BFfiTU ACMPpS X
File

Sequential Data BFiPT ACfMpSU X
Set/Sequential Data Set

Sequential Data Set/PDS | BFiT ACfMPpSU X
or PDSE Member

PDS or PDSE BFfiTUX ACMPpS
Member/UNIX File

PDS or PDSE BFiPT ACfMpSU X
Member/Sequential Data

Set

PDS or PDSE BFiTX ACfMPpSU
Member/PDS or PDSE

Member

UNIX File/UNIX Directory | ACFipS BMPTUX

PDSE or PDSE BFfiMSTUX ACMPp

Member/UNIX Directory

UNIX File/Partitioned Data | ABCFIMSTX fPpU

Set

PDS or PDSE BFiTX ACfMPpSU
Member/PartitionedData

Set

Partitioned Data Set/UNIX | ABCFfiMSTUX Pp

Directory

The tables that follow indicate the kind of copies allowed using cp.

Table 9. cp Format: File to File

Source

Target

Allowed

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

UNIX File, Sequential Data
Set, or Partitioned Data Set
Member

Yes

UNIX Directory

UNIX Directory

No (unless cp is used with
-R or -r)

z/OS V1R4.0 UNIX System Services Command Reference

Table 9. cp Format: File to File (continued)

cp

Source Target Allowed
Partitioned Data Set UNIX Directory (dir) NOTE: Yes
results in each member of
data set are moved to dir.
UNIX Directory Partitioned Data Set No
Partitioned Data Set Partitioned Data Set No
UNIX File or Partitioned Data | UNIX Directory (must exist) |Yes
Set Member or Partitioned Data Set
Partitioned Data Set Member | Partitioned Data Set Yes
Table 10. cp Format: File... (multiple files) to Directory
Source Target Allowed
Any combination of UNIX File | UNIX Directory or Partitioned | Yes
or Partitioned Data Set Data Set
Member
Any combination of UNIX Partitioned Data Set or UNIX | No
Directory or Sequential Data | Directory
Set
Partitioned Data Set UNIX Directory Yes
Partitioned Data Set Partitioned Data Set No

Usage Notes

UNIX to MVS

1. To copy from UNIX to a partitioned data set, you must allocate the data set
before doing the cp.

2. If an MVS data set does not exist, cp will allocate a new sequential data set of
variable record format.

3. For text files, all <newline> characters are stripped during the copy. Each line
in the file ending with a <newline> character is copied into a record of the MVS
data set. If text file format is specified or already exists for the source file, that
file format will be used for end-of-line delimeter instead of <newline>. Note that
cp looks for IBM-1047 end-of-line delimeters in data.

You cannot copy a text file to an MVS data set that has an undefined record
format:

For an MVS data set in fixed record format, any line copied longer than the
record size will cause cp to fail with a displayed error message and error
code. If the line is shorter than the record size, the record is padded with
blanks.

For an MVS data set in variable record format: Any line copied longer than
the largest record size will cause cp to fail with a displayed error message
and error code. Record length is set to the length of the line.

4. For binary files, all copied data is preserved:

For an MVS data set in fixed record format, data is cut into chunks of size
equal to the record length. Each chunk is put into one record. The last
record is padded with blanks.

For an MVS data set in variable record format, data is cut into chunks of
size equal to the largest record length. Each chunk is put into one record.
The length of the last record is equal to length of the data left.

Chapter 2. Shell Command Descriptions 149

cp

* For an MVS data set in undefined record format, data is cut into chunks of
size equal to the block size. Each chunk is put into one record. The length
of the last record is equal to the length of the data left.

5. For load modules, the partitioned data set specified must be in undefined
record format otherwise the executable will not be copied.

6. If more than one filename is the same, the file is overwritten on each
subsequent copy.

7. If a UNIX filename contains characters that are not allowed in an MVS data
set, it will not be copied. If the UNIX filename has more than 8 characters, it
can not be copied to an MVS data set member. (See the —~ACMS options for
converting filenames)

8. You are not allowed to copy files into data sets with spanned records.

9. PDSE cannot have a mixture of program objects and data members. PDS
allows mixing, but it is not recommended.

10. Special files such as character special, external links, and fifo will not be

copied to an MVS data set.

11. If a file is a symbolic link, cp will copy the resolved file, not the link itself.

12. UNIX file attributes are lost when copying to MVS. If you wish to preserve file

attributes, you should use the pax utility.

MVS to UNIX

1. If the specified target HFS file exists, the new data overwrites the existing data.
The mode of the file is unchanged.

2. If the specified HFS file does not exist, it will be created using 666 mode value
if binary or text (this is subject to umask). If the data to be copied is a shell
script or executable, the HFS file will be created with 777 mode value (also
subject to umask).

3. When you copy MVS data sets to UNIX text files, a <newline> character is
appended to the end of each record. If trailing blanks exist in the record, the
<newline> character is appended after the trailing blanks. If the file format
option is specified or the target file has the file format set, that file format is
used as the end-of-line delimeter instead of <newline>.

4. When you copy MVS data sets to UNIX binary files, the <newline> character is
not appended to the record.

5. You cannot use cp to copy data sets with spanned record lengths.

Examples

1. To specify —P params for a non-existing sequential target:
cp -P "RECFM=U,space=(500,100)"file "//'turbo.gammalib'"

2. To copy file f1 to a fully qualified sequential data set 'turbo.gammalib' and treat
it as a binary:
cp -F bin f1 "//'turbo.gammalib"'"

3. To copy all members from a fully qualified PDS 'turbo.gammalib' to an existing
UNIX directory dir:
cp "//turbo.gammalib'" dir

4. To drop .c suffixes before copying all files in UNIX directory dir to an existing
PDS 'turbo.gammalib':
cp -S d=.c dir/* "//'turbo.gammalib'"

150 2/0S V1R4.0 UNIX System Services Command Reference

cp

Environment Variable

cp uses the following envrionment variable when copying records to or from MVS
data sets:

_EDC_ZERO_RECLEN

If set to Y before calling cp, an empty record (zero-length) is treated as a
single newline and is not ignored. Also, a single newline is written to the file
as an empty record, and a single blank will be represented by ” \n”. If you
do not set this environment variable when copying records, then the string

” \n” is copied the same way as the string "\n”: both are read and written as
"\n”, where "\n” indicates that z/OS C/C++ will write a record containing a
single blank to the file (the default behavior of zZOS C/C++). All other blanks
in the output are read back as blanks, and any empty records are ignored.

Localization

cp uses the following localization environment variables:
* LANG

« LC_ALL

« LC_COLLATE

- LC_CTYPE

« LC_MESSAGES

* LC_SYNTAX

* NLSPATH

See for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:
* An argument had a trailing slash (/) but was not a directory
* Inability to find a file
* Inability to open an input file for reading
* Inability to create or open an output file
* Aread error occurred on an input file
» A write error occurred on an output file
» The input and output files were the same file
* An irrecoverable error when using —r or —R. Possible irrecoverable —r or
—R errors include:
— Inability to access a file
Inability to change permissions on a target file
Inability to read a directory
Inability to create a directory
A target that is not a directory
Source and destination directories are the same

2 Failure due to any of the following:
* An incorrect command-line option
» Too few arguments on the command line
* A target that should be a directory but isn’t
* No space left on target device
 Insufficient memory to hold the data to be copied
 Inability to create a directory to hold a target file

Chapter 2. Shell Command Descriptions 151

cp
Messages

Portability

Possible error messages include:

cannot allocate target string
cp has no space to hold the name of the target file. Try to release some
memory to give cp more space.

name is a directory (not copied)
You did not specify —r or =R, but one of the names you asked to copy was
the name of a directory.

target name?
You are attempting to copy a file with the —i option, but there is already a
file with the target name. If you have specified —f, you can write over the
existing file by typing y and pressing <Enter>. If you do not want to write
over the existing file, type n and press <Enter>. If you did not specify —f and
the file is read-only, you are not given the opportunity to overwrite it.

source name and target name are identical
The source and the target are actually the same file (for example, because
of links). In this case, cp does nothing.

unreadable directory name
cp cannot read the specified directory—for example, because you do not
have appropriate permission.

POSIX.2, X/Open Portability Guide, UNIX systems.

The —f and —m options are extensions of the POSIX standard.

Related Information

cat, cpio, In, mv, rm

cpio — Copy in/out file archives

Format

Description

Options

cpio —o [—aBcvyz] [-C blocksize] [-O file] [-V volpaf]
cpio —i [-BbcdfmrsStuvqyz] [-C blocksize] [l file] [-V volpaf] [pattern ...]
cpio —p [-aBdlmruv] directory

Note: The cpio utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the pax utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

cpio reads and writes files called cpio archives. A cpio archive is a concatenation
of files and directories preceded by a header giving the filename and other file
system information. With cpio, you can create a new archive, extract contents of an
existing archive, list archive contents, and copy files from one directory to another.

Every call to cpio must specify one and only one of the following selector options:

152 2/0S V1R4.0 UNIX System Services Command Reference

cpio

Reads an existing archive (created with the —o option) from the standard
input (stdin). Unless you specify the —t option, cpio extracts all files
matching one or more of the given pattern arguments from the archive.
Patterns are the same as those used by filename generation (see sh).
When you do not specify a pattern argument, the default pattern * is used;
as a result, cpio extracts all files.

Writes a new archive to the standard output (stdout), using the list of files
read from stdin. Such a list might be produced by the Is or find
commands. For example:

1s . | cpio —o >arch

uses Is to list the files of the working directory and then pipes this list as
input to ecpio. The resulting archive contains the contents of all the files,
and is written to arch.

Is shorthand for:

cpio —o | (cd directory; cpio —i)

where cpio —i is performed in the given directory. You can use this option to
copy entire file trees.

Consult the syntax lines to determine which of the following additional options can
be applied with a particular selector option:

-b

Resets the access time (of each file accessed for copying to the archive) to
what it was before the copy took place.

Uses buffers of 5120 bytes for input and output rather than the default
512-byte buffers.

Causes 16-bit words to be swapped within each longword and bytes to be
swapped within each 16-bit word of each extracted file. This facilitates the
transfer of information between different processor architectures. This is
equivalent to specifying both the —s and —S options.

—C blocksize

Sets the buffer size to a specified blocksize, rather than the default
512-byte buffers.

Reads and writes header information in ASCII form. Normally, cpio writes
the header information in a compact binary format. This option produces an
archive more amenable to transfer through nonbinary streams (such as
some data communication links) and is highly recommended for those
moving data between different processors.

Forces the creation of necessary intermediate directories when they do not
already exist.

Inverts the sense of pattern matching. More precisely, cpio extracts a file
from the archive if and only if it does not match any of the pattern
arguments.

Causes input to be read from the specified file, rather than from stdin.

Gives permission to create a link to a file rather than making a separate
copy.

Resets the modification time of an output file to the modification time of the
source file. Normally, when cpio copies data into a file, it sets the

modification time of the file to the time at which the file is written. This
option has no effect on directories.

Chapter 2. Shell Command Descriptions 153

cpio

Usage Notes

-0 file Causes output to be written to the specified file, rather than to stdout.

-q

Assumes all created files are text. This means that any \r (carriage return)
characters are stripped, and only the \n (newlines) are retained.

Do not use the —q option for converting text to a system-independent
format, because that would require all files to be read twice.

Lets you rename files as cpio works. When extracting, cpio displays the
name of the component it is about to extract and gives you the chance to
specify a name for the extracted file. If you enter . as the name, cpio
processes the file or directory with no modification to the name. If you just
press Enter, cpio skips the file.

For portability reasons, swaps pairs of 16-bit words within longwords (a
32-bit or 64-bit word) only when extracting files. This option does not affect
the headers.

For portability reasons, swaps pairs of bytes within each 16-bit word only
when extracting files. —s does not affect the headers.

Prevents files extraction, producing instead a table of filenames contained
in the archive. See the description of the —v option.

Copies an archive file to a target file even if the target is newer than the
archive. Normally, cpio does not copy the file.

-V volpat

-Z

1.

Provides automatic multivolume support. cpio writes output to files, the
names of which are formatted using volpat. The current volume number
replaces any occurrence of # in volpat. When you invoke cpio with this
option, it asks for the first number in the archive set, and waits for you to
type the number and a carriage return before its precedes with the
operation. cpio issues the same sort of message when a write error or read
error occurs on the archive; the reasoning is that this kind of error means
that cpio has reached the end of the volume and should go on to a new
one.

Provides more verbose information than usual. cpio prints the names of
files as it extracts them from or adds them to archives. When you specify
both —v and —t, cpio prints a table of files in a format similar to that
produced by the Is —I command.

When used with =V, does not ask for a volume number to begin with, but
does ask if it gets a read or write error.

Performs Lempel-Ziv compression. Output is always a 16-bit compression.
On input, any compression up to 16-bit is acceptable.

Use the pax command if you need to use multibyte patterns when searching for
filenames.

The POSIX 10083.1 standard defines formats for cpio archives that limit the
UIDs and GIDs that can be stored to the maximum value of 262143. Values
larger than this will not be properly restored.

The byte and word swapping done by the —b, =S, and —s options is effective
only for the file data written. With or without the —c option, header information is
always written in a machine-invariant format.

154 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

Portability

cpio

cpio uses the following localization environment variable:
 LANG

« LC_ALL

« LC_MESSAGES

« LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

0 Successful completion
1 Failure due to any of the following:
* An incorrect option
* Incorrect command-line arguments
* QOut of memory
» Compression error
» Failure on extraction
* Failure on creation

X/Open Portability Guide, non-Berkeley UNIX systems after Version 7.

The —q, -V, -y, and —z options are specific to the z/OS shell.

Related Information

compress, cp, dd, find, Is, mv, pax, tar, cpio, uncompress

Also see the pax file format description in|Appendix H

cron daemon — Run commands at specified dates and times

Format

Description

cron

cron is a clock daemon that runs commands at specified dates and times. You can
specify regularly scheduled commands as described in crontab. You can also
submit jobs that are to be run only once using the at command. cron runs
commands with priorities and limits set by the queuedefs file. cron uses the value
from queuedefs to lower the priority for non-UID=0 users only. The priority is
unchanged for UID=0 users.

cron only examines crontab files and at command files when initializing or when a
file changes using crontab or at. This reduces the overhead of checking for new or
changed files at regularly scheduled intervals.

The setuid bit for cron should never be set; however, it must be started by a user
with appropriate privileges to issue the setuid call for any UID. Because cron never
exits, it should only be run once, normally during the system initialization process.
cron automatically forks and runs itself in the background, in a new shell session.
cron uses the pid file to prevent more than one cron running at the same time.

Chapter 2. Shell Command Descriptions 155

cron daemon

When matching the date and time expressions given in crontab entries, cron uses
the time zone in effect when the system started the daemon. As a result, you
should ensure that the TZ environment variable is set at this time. For information
on setting the TZ environment variable, see [Appendix I} For at jobs, cron uses the
value of TZ in effect when you submitted the job.

at, batch, and crontab submit jobs to cron; the data for those jobs can contain
doublebyte characters. When the jobs are executed, the data in the jobs are
interpreted in the locale that cron is using. Because it is strongly recommended that
cron be started in the POSIX locale, doublebyte characters in the jobs may not be
interpreted correctly. You can get around this by calling the setlocale() system call
in the job itself.

cron handles the following externally generated signals in a special way:

SIGTERM
Causes cron to exit. You can cause cron to exit with the following
command:

kill —TERM pid

where pid is the cron’s PID number. To find the cron’s PID number, you can
use:

ps -e | grep cron

SIGUSR1
Is sent by either at or crontab to indicate a new at job or an updated
crontab entry. cron does not delete at jobs until they finish running. If the
cron daemon is terminated while at jobs are running, cron runs them again
when the daemon is restarted.

SIGUSR2
Writes internal cron queue information to the log file.

The following is an example of output to a cron log from 'kill -USR2 5'. The
output was written to the log on a test system when the queuedefs job limit of 5
was exceeded. The number of jobs that are running is 5 (the limit is 500):

Queue “c' 5j2nlbw:

queued 4, running 5, jobs 5

Next try for queued jobs 13 seconds

RUNNING: uid/gid: 0/512: pid 33554441: sleep 10000 RUNNING: uid/gid: 0/512:

pid 385875972: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
67108876: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
33554445: echo start; sleep 10000; echo end RUNNING: uid/gid: 0/512: pid
67108879: echo start; sleep 10000; echo end QUEUED: uid/gid: 0/512: echo Hello!
QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end

QUEUED: uid/gid: 0/512: echo Hello!

QUEUED: uid/gid: 0/512: echo start; sleep 10000; echo end

cron uses a number of files in the /usr/lib/cron directory to determine which users
may and may not use the at and crontab commands.

* The file at.allow contains the list of users who have permission to use at.
» The file at.deny contains the list of users who do not have permission to use at.

If these files do not exist, only the superuser can use the at command. To allow all
users access to at, there must be a null at.deny file and no at.allow file.

cron uses the files cron.allow and cron.deny in a similar manner.
» cron.allow contains the list of users who have permission to use crontab.

156 2z/0S V1R4.0 UNIX System Services Command Reference

Files

cron daemon
» cron.deny contains the list of users who do not have permission to use crontab.

If these files do not exist, only the superuser can use crontab. To allow all users
access to crontab, there must be a null cron.deny file and no cron.allow file.

cron uses the following files which reside in a system-defined directory:

lusr/spool/cron
The main cron directory.

lusr/spool/cron/atjobs
A directory containing at files.

lusr/spool/cron/crontabs
A directory containing crontab files.

lusr/spool/cron/log
A file that maintains a history of the commands being run. The systems
administrator should truncate this file periodically.

lusr/spool/cron/pid
A file that cron uses to ensure that only one version of cron is currently
running on the system. This file must be unique per system which is
particularly important when you are setting up a sysplex. For more
information about customizing cron when setting up a sysplex see
"Customizing cron, uucp, and mail Utilities for a Read-Only Root HFS" and
"Customizing the cron and uucp Utilities” in{zZ0S UNIX System Services|

[Pianning

lustr/lib/cron/at.allow
Contains a list of the users who can use the at command (one per line).

lusr/lib/cron/at.deny
Contains a list of the users who cannot use the at command (one per line).

lusr/lib/cron/cron.allow
Contains a list of the users who can use the crontab command (one per
line).

lustr/lib/cron/cron.deny
Contains a list of the users who cannot use the crontab command (one per
line).

lusr/lib/cron/queuedefs
The queue description file (see the description of queuedefs in (834).

Related Information

at, crontab

Appendix lfalso explains how to set the local time zone with the TZ environment
variable.

For more information about customizing cron see "Customizing cron, uucp, and
mail Utilities for a Read-Only Root HFS” and "Customizing the cron and uucp
Utilities” in|z/0S UNIX System Services Planning

Chapter 2. Shell Command Descriptions 157

crontab

crontab — Schedule regular background jobs

Format

Description

crontab [—el-lI-r] [-u user] [file]

crontab creates or changes your crontab entry. The crontab is a system facility that
automatically runs a set of commands for you on a regular schedule. For example,
you might set up your crontab entry so it runs a job every night at midnight, or once
a week during low-use hours. This job could perform regular maintenance chores,
for example, backing up files or getting rid of unnecessary work files.

To set up a crontab entry, use:

crontab file
If you omit the file argument, crontab takes input from standard input (stdin).

Note: In this mode, you must provide your entire crontab file. This replaces any
other existing crontab entries. If you issue crontab with no options, do not
enter the end-of-file character or you will end up with an empty crontab file.
Press INTERRUPT instead.

Input consists of six fields, separated by blanks. All blank lines and any input that
contains a # as the first non-blank character are ignored. The first five give a date
and time in the following form:

* A minute, expressed as a number from 0 through 59

* An hour, expressed as a number from 0 through 23

* A day of the month, expressed as a number from 1 through 31
* A month of the year, expressed as a number from 1 through 12

* A day of the week, expressed as a number from 0 through 6 (with O standing for
Sunday)

Important Note: All times use a system default time zone. Your system
administrator can tell you what it is. The cron daemon does not
use the value of the environment variable TZ when crontab is
invoked.

Any of these fields may contain an asterisk (*) standing for all possible values. For
example, if you have an * as the day of the month, the job runs every day of the
month. A field can also contain a set of numbers separated by commas, or a range
of numbers, with the first number followed by a minus sign - followed by the second
number. If you give specific days for both day of the month and day of the week,
the two are ORed together. Here are some examples:

00 * % * -- Midnight every day

00 **1-5 -- Midnight every weekday

001,15 % * -- Midnight on 1st and 15th of month
001=5 -- Midnight on 1st of month and every Friday

The sixth field of a crontab entry is a string that your shell executes at the specified
time. When the shell executes this string, it sets the HOME, LOGNAME, PATH, and
SHELL environment variables to default values for you.

158 2z/0S V1R4.0 UNIX System Services Command Reference

Options

crontab

If the string in your crontab entry contains percent characters %, the shell interprets
them as newline characters, splitting your string in several logical lines. The first
logical line (up to the first %) is interpreted as the command you want to execute;
subsequent logical lines are used as standard input to the command. If any real
(not logical) line in the file is blank or begins with #, the shell ignores the line (treats
it as a comment).

To obtain the output of the command in your crontab entry, redirect the standard
output (stdout) and the standard error (stderr) into a file. If you do not do this, the
system mails you the output from the command.

at, batch, and crontab submit jobs to cron; the data for those jobs may contain
doublebyte characters. When the jobs are run, the data in the jobs are interpreted
in the locale that cron is using. Because it is strongly recommended that cron be
started in the POSIX locale, doublebyte characters in the jobs may not be
interpreted correctly. You can get around this by calling setlocale() in the job itself.

—-e Lets you edit your crontab entry. crontab invokes an editor to edit the entry.
If you have an EDITOR environment variable defined, crontab assumes
that the variable’s value is the name of the editor you want to use. If you do
not have EDITOR defined, crontab uses vi.

If you do not have a crontab entry, crontab sets up a blank entry for you.
When you exit from the editor, crontab uses the edited entry as your new

entry.
=l Displays your current crontab entry on stdout.
-r Removes (deletes) your current crontab entry.
—-u user

Uses the crontab entry of user. This requires the appropriate privileges.

You can specify only one of the —e, —I, or —r options.

Environment Variables

Localization

cron uses the following environment variables:

EDITOR
Specifies the editor that the —e option invokes. The default editor is vi.

HOME s set to your user ID’s home directory (not necessarily the current value of
HOME) when the commands in your crontab entry are run.

LOGNAME
Is set to your user ID when the commands in your crontab entry are run.

PATH Is set to a system-wide default value when the commands in your crontab
entry are run.

TZ Is not used in time calculations. The cron daemon does, however, use this
variable when cron is first started, usually when the system is started.

crontab uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

Chapter 2. Shell Command Descriptions 159

crontab

* LC_MESSAGES
* NLSPATH

See|Appendix F|for more information.

Exit Values
0 Successful completion

1 Returned if the command fails for any reason. In this case, crontab does
not change your crontab entry.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The —u option is an extension to the POSIX standard.

Related Information
at, batch, bg, cron

Also see the queuedef file format description in

csplit — Split text files

Format
csplit [-Aaks] [—f prefix] [-n number] file arg arg ...

Description

csplit takes a text file as input and breaks up its contents into pieces, based on
criteria given by the arg value on the command line. For example, you can use
csplit to break up a text file into chunks of ten lines each, then save each of those
chunks in a separate file. See [‘Splitting Criteria” on page 161 for more information.
If you specify — as the file argument, esplit uses the standard input (stdin).

The files created by csplit normally have names of the form
xxnumber

where number is a 2-digit decimal number that begins at zero and increments by
one for each new file that csplit creates.

csplit also displays the size, in bytes, of each file that it creates.

Options

-A Uses uppercase letters in place of numbers in the number portion of
created filenames. This generates names of the form xxAA, xxAB, and so on.

-a Uses lowercase letters in place of numbers in the number portion of created
filenames. This generates names of the form xxaa, xxab, and so on.

—f prefix
Specifies a prefix to use in place of the default xx when naming files. If it

causes a filename longer than NAME_MAX bytes, an error occurs and csplit
exits without creating any files.

160 2z/0OS V1R4.0 UNIX System Services Command Reference

csplit

-k Leaves all created files intact. Normally, when an error occurs, csplit
removes files that it has created.

—n number
Specifies the number of digits in the number portion of created filenames.

-s Suppresses the display of file sizes.

Splitting Criteria
csplit processes the args on the command line sequentially. The first argument
breaks off the first chunk of the file, the second argument breaks off the next chunk
(beginning at the first line remaining in the file), and so on. Thus each chunk of the
file begins with the first line remaining in the file and goes to the line given by the
next arg.

arg values can take any of the following forms:

Iregexpl
Takes the chunk as all the lines from the current line up to but not including
the next line that contains a string matching the regular expression regexp.
After esplit obtains the chunk and writes it to an output file, it sets the
current line to the line that matched regexp.

Iregexploffset
Is the same as the previous criterion, except that the chunk goes up to but
not including the line that is a given offset from the first line containing a
string that matches regexp. The offset can be a positive or negative integer.
After csplit has obtained the chunk and written it to an output file, it sets
the current line to the line that matched regexp.

Note: This current line is the first one that was not part of the chunk just
written out.

Yeregexp%
Is the same as /regexp/, except that csplit does not write the chunk to an
output file. It simply skips over the chunk.

% regexp%offset
Is the same as /regexp/offset, except esplit does not write the chunk to an

output file.

linenumber
Obtains a chunk beginning at the current line and going up to but not
including the linenumbenrh line. After split writes the chunk to an output file,
it sets the current line to linenumber.

{number}
Repeats the previous criterion number times. If it follows a regular
expression criterion, it repeats the regular expression process number more
times. If it follows a linenumber criterion, csplit splits the file every
linenumber lines, number times, beginning at the current line. For example,

csplit file 10 {10}

obtains a chunk from line 1 to line 9, then every 10 lines after that, up to
line 109.

Chapter 2. Shell Command Descriptions 161

csplit

Errors occur if any criterion tries to "grab" lines beyond the end of the file, if a
regular expression does not match any line between the current line and the end of
the file, or if an offset refers to a position before the current line or past the end of
the file.

Localization

csplit uses the following localization variables:
 LANG

« LC_ALL

« LC_COLLATE

- LC_CTYPE

« LC_MESSAGES

*« LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
» csplit could not open the input or output files
* A write error on the output file

2 Failure due to any of the following:
* Unknown command-line option
* The prefix name was missing after —f
* The number of digits was missing after —n
* The input file was not specified
* No arg values were specified
* The command ran out of memory
* An arg was incorrect
* The command found end-of-file before it was expected
* A regular expression in an arg was badly formed
* Aline offset/number in an arg was badly formed
* A {number} repetition count was misplaced or badly formed
« Too many filenames were generated when using —n
» Generated file names would be too long

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The —A and —a options are extensions to the POSIX standard.

Related Information
awk, sed

For more information about regexp, see |Appendix C

ctags — Create tag files for ex, more, and vi

Format
ctags [-aBFwx] [-f tagfile] sourcefile ...

162 2z/0S V1R4.0 UNIX System Services Command Reference

Description

Options

Localization

Files

ctags

ctags creates a file named tags in the current directory. It summarizes the locations
of various objects in the C source files named on the command line. All files with a
.c or .h suffix are treated as C source files.

For C source code, ctags summarizes function, macro and typedef definitions. See

Appendix H| for a description of the format of the tags file.

The tags file is used by ex, more, and vi to support the tag command. The tag
command can be used to edit the file containing a name in the tags file.

For ex and vi, the command is:
: tag name

For more, the command is:

:thame

After these commands are run, the tags file is searched for name. If it is found, the
file associated in the tags file with that name is loaded and the line containing the
name is made the current line.

-a Appends output to the existing tags file rather than overwriting the file.

-B Produces a tags file that searches backward from the current position to
find the pattern matching the tag.

-F Searches for tag patterns in the forward direction. This is the default.

—f Generates a file named tagdfile rather than the default tags file.

-w Suppresses warning messages.

-X Produces a report on the standard output. The report gives the definition

name, the line number of where it appears in the file, the name of the file in
which it appears, and the text of that line. ctags arranges this output in
columns and sorts it in order by tag name according to the current locale’s
collation sequence. This option does not produce a tags file.

ctags uses the following localization environment variables:
* LANG

- LC_ALL

* LC_COLLECT

« LC_CTYPE

« LC_MESSAGES

« LC_TIME

See|Appendix F|for more information.

ctags uses the following file:

tags Output tags file

Chapter 2. Shell Command Descriptions 163

ctags

Usage Notes

Exit Values

Portability

1. It can be difficult to recognize a function definition in C source code. Because
ctags does not know which C preprocessor symbols are defined, there may be
some misplaced function definition information if sections of code within
#if...#endif are not complete blocks.

2. ctags invokes the sort internally.

3. ctags makes special provision for the main() function, which may occur in
several C source files. The tags file contains an entry for the first main() routine
found. For all occurrences of main(), including the first, the tags file contains an
entry for Mname, where name is the name of the input source file, with the .c
suffix and any leading pathname components removed. For example, a tags file
created for a C source code file named foo.c would contain an entry for Mfoo,
which represents the main() routine in foo.c).

4. ctags uses sort to sort the file by tag name, according to the POSIX locale’s
collation sequence.

(]

Successful completion

Failure due to any of the following:

* Unknown command-line option

» Cannot create the output file

» Cannot open the output file

» One of the input files was unrecognized

[y

POSIX.2, X/Open Portability Guide, 4.2BSD and higher.
This utility only understands characters from the POSIX locale.

The -B, —F, and —w options are extensions to the POSIX and XPG standards.

Related Information

more, sort, vi

See the tags file format description in[Appendix H

cu — Call up another system (stub only)

Format

Description

cu [-dehot] [-] device_name] [-s speed] [system_name | phone_num)]
cu —n [-dehot] [l device_name] [-s speed)]

Note: The cu utility is fully supported for compatibility with older UNIX systems.
However, because it is no longer supported by POSIX.2 |IEEE standard
1003.2-1992, this utility should be avoided for applications intended to be
portable to other UNIX- branded systems.

cu connects to remote systems specified in the UUCP configuration file. You can
use it for simple terminal connections, or to do simple file transfer with no error
checking.

164 2/0S V1R4.0 UNIX System Services Command Reference

Ccu

cu is recognized, but its functions are disabled. Traditionally, it is used for simple
terminal connections to remote systems specified in the UUCP configuration file. cu
requires a direct connection (such as with a modem) to the remote system, but this
is not supported by z/OS.

cut — Cut out selected fields from each line of a file

Format

Description

Options

cut -b Jist [-n] [file...]
cut —c list [file...]
cut —f /ist [-d char] [-s] [file...]

cut reads input from files, each specified with the file argument, and selectively
copies sections of the input lines to the standard output (stdout). If you do not
specify any file, or if you specify a file named -, cut reads from standard input

(stdin).

-b list Invokes byte position mode. After this comes a list of the byte positions you

—c list

—d char

—f list

want to display. This list may contain multiple byte positions, separated by
commas (,) or blanks or ranges of positions separated by dashes (-). Since
the list must be a single argument, shell quoting is necessary if you use
blanks. You can combine these to allow selection of any byte positions of
the input.

Attention: When using the —b option with doublebyte characters, you
should also specify the —n option to ensure that entire characters are
displayed. If you do not specify the —n option, cut simply assumes that the
low byte of a range is the first byte of a character and that the high byte of
a range is the last byte of a doublebyte character, possibility resulting in the
misinterpretation of the characters represented by those byte positions.

Invokes character-position mode. After this comes a list of character
positions to retain in the output. This list can contain many character
positions, separated by commas (,) or blanks or ranges of positions
separated by a dash (-). Since the list must be a single argument, shell
quoting is necessary if you use blanks. You can combine these to allow
selection of any character positions of the input.

Specifies char as the character that separates fields in the input data; by
default, this is the horizontal tab.

Invokes field delimiter mode. After this comes a list of the fields you want to
display. You specify ranges of fields and multiple field numbers in the same
way you specify ranges of character positions and multiple character
positions in —¢ mode.

Does not split characters. If the low byte in a selected range is not the first
byte of a character, cut extends the range downward to include the entire
character; if the high byte in a selected range is not the last byte of a
character, cut limits the range to include only the last entire character
before the high byte selected. If —n is selected, cut does not list ranges that
do not encompass an entire character, and these ranges do not cause an
error.

Chapter 2. Shell Command Descriptions 165

cut

-s Does not display lines that do not contain a field separator character.
Normally, cut displays lines that do not contain a field separator character
in their entirety.

Example

cd /bin
1s —al | cut —c 42-48,54-66

prints a directory listing containing file creation dates and filenames of files in the
working directory.

Localization

cut uses the following localization environment variables:
* LANG

LC_ALL

LC_CTYPE

LC_MESSAGES

NLSPATH

See for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:
» Cannot open the input file
* Out of memory

2 Failure due to any of the following:
* An incorrect command-line argument
* You did not specify any of -b, —¢, or —f
* You omitted the list argument
» Badly formed list argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
paste, uname

cxx — Compile, link-edit and assemble z/OS C and z/0OS C++ source
code and create an executable file

See c89/cc/c++.

Note: When working in the shell, to view man page information about cxx, type:
man c89.

date — Display the date and time

Format
date [-cu] [+formaf]

166 2z/0S V1R4.0 UNIX System Services Command Reference

Description

Options

date

date displays the operating system’s idea of the current date and time. The
following example shows the default format of the date:

Wed Feb 26 14:01:43 EST 1986

date accepts the following options:

-C Displays the date and displays the time according to Greenwich Mean Time
(Coordinated Universal Time) using CUT as the time zone name.

-u Displays the date and displays the time according to Greenwich Mean Time
(Coordinated Universal Time) using GMT as the time zone name.

If the argument to date begins with a + character, date uses format to display the
date. date writes all characters in format, with the exception of the % and the
character that immediately follows it, directly to the standard output. After date
exhausts the format string, it outputs a newline character. The % character
introduces a special format field similar to the printf() function in the C library. date
supports the following field descriptors:

%A The full weekday name (for example, Sunday).

%a The three-letter abbreviation for the weekday (for example, Sun).
%B The full month name (for example, February).

%b The three-letter abbreviation for the month name (for example, Feb).
%C The first two digits of the year (00 to 99).

%c The local representation of the date and time (see %D and %T).

%D The date in the form mm/dd/yy.

%d The two-digit day of the month as a number (01 to 31).

%e The day of the month in a two-character, right-justified, blank-filled field.
%H The two-digit hour (00 to 23).

%h The three-letter abbreviation for the month (for example, June).

%l The hour in the 12-hour clock representation (01 to 12).

%j The numeric day of the year (001 to 366).

%M The minute (00 to 59).

%m The month number (01 to 12).

%n The newline character.

%op The local equivalent of a.m. or p.m.

%ot The time in a.m.—p.m. notation (11:53:29 a.m.).

%S The seconds (00 to 61). There is an allowance for two leap seconds.
%T The time (14:53:29).

Yot A tab character.

%U The week number in the year, with Sunday being the first day of the week
(00 to 53).

Chapter 2. Shell Command Descriptions 167

date

%W

YW
%X
%X
%Y
%oy
%Z
%%

The week number in the year, with Monday being the first day of the week
(00 to 53).

The weekday number, with Sunday being 0.
The local time representation (see %T).

The local date representation (see %D).

The year.

The two-digit year.

The time zone name (for example, EDT).

A percent-sign character.

The date command also supports the following modified field descriptors to indicate
a different format as specified by the locale indicated by LC_TIME. If the current
locale does not support a modified descriptor, date uses the unmodified field
descriptor value.

%EC

%Ec
%EXx
%EY
%Ey

%0d
%0e
%O0OH

%0l

%O0M
%0m
%0S
%0U

%O0W

%0w

%0y

Example

168

The name of the base year (period) in the current locale’s alternate
representation.

The current locale’s alternate date and time representation.
The current locale’s alternate date representation.
The full alternate year representation.

The offset from %EC (year only) in the current locale’s alternate
representation.

The day of the month using the current locale’s alternate numeric symbols.
The day of the month using the current locale’s alternate numeric symbols.

The hour (24-hour clock) using the current locale’s alternate numeric
symbols.

The hour (12-hour clock) using the current locale’s alternate numeric
symbols.

The minutes using the current locale’s alternate numeric symbols.
The month using the current locale’s alternate numeric symbols.
The seconds using the current locale’s alternate numeric symbols.

The week number of the year (0-53) (with Sunday as the first day of the
week) using the current locale’s alternate numeric symbols.

The week number of the year (0-53) (with Monday as the first day of the
week) using the current locale’s alternate numeric symbols.

The weekday as a number using the current locale’s alternate numeric
symbols (Sunday=0).

The year (offset from %C) using the current locale’s alternate numeric
symbols.

The command:
date '+%a %b %e %T %Z %Y'

z/OS V1R4.0 UNIX System Services Command Reference

date

produces the date in the default format—as shown at the start of this command

description.

Environment Variable

Localization

Exit Values

Messages

Portability

date uses the following environment variables:

TZ Gives the time zone for date to use when displaying the times. This is
ignored if you specify either the —¢ or the —u option.

For information on setting the local time zone with the TZ environment

variable, see|Appendix |

date uses the following localization environment variables:

* LANG

* LC_ALL

« LC_CTYPE

* LC_MESSAGES
* LC_TIME

* NLSPATH

See for more information.

0 Successful completion

>0 Failure due to any of the following:
* An incorrect command-line option
* Too many arguments on the command line
* A bad date conversion
» A formatted date that was too long
* You do not have permission to set the date

Possible error messages include:

Bad format character x

A character following “%” in the format string was not in the list of field

descriptors.

No permission to set date

The system has denied you the right to set the date.

POSIX.2, X/Open Portability Guide, UNIX systems.

The —c option is an extension of the POSIX standard.

Related Information

touch

Appendix Ifalso explains how to set the local time zone with the TZ environment

variable.

Chapter 2. Shell Command Descriptions

169

dbx

dbx — Use the debugger

Format

Description

Options

dbx [—a ProcessID][-A ProcessID] [-c file] [-C dump—filename] [-d NestingDepth]
[—f] [~ directory] [-r] [-u] [ObjectFile[ProgramArguments]]

dbx provides an environment to debug and run programs. dbx provides a symbolic
debug program for C programs, allowing you to carry out operations such as the
following:

* Examine object files

* Provide a controlled environment for running a program

» Set breakpoints at selected statements or run the program one line at a time

» Debug using symbolic variables and display them in their correct format

* View an MVS dump

The ObjectFile argument is an object (executable) file produced by a compiler.
When compiling your program to produce the information the dbx command needs,
use the —g (generate symbol table) option on the ¢89/cc/c++ command.

Note: If the object file is not compiled with the —g option on the ¢89/cc/c++
command, or if the user compiles with optimization, the capabilities of the
dbx command are limited.

The dump—filename argument is an MVS dump that exists in an HFS or an MVS
data set.

When the dbx command is started, it checks for a .dbxsetup file in the user’s
working directory. If the file is not found, dbx checks the user's SHOME directory. If
a .dbxsetup file exists, its subcommands run before most of dbx’s initialization is
complete. This allows tailoring of dbx’s operational behavior before the debug
program is loaded via set subcommands. Use an editor to create a .dbxsetup file.

Also on start-up, dbx checks for a .dbxinit file in the user’'s working directory. If the
file is not found, dbx checks the $SHOME directory. If a .dbxinit file exists, its
subcommands run at the beginning of the debug sesssion. To create a .dbxinit file,
use an editor.

You can use the man command to view manual descriptions of dbx subcommands.
To do this, you must prefix all subcommands with dbx. For example, to view a
description of the dbx alias subcommand, you would enter the following:

man dbxalias

—a ProcessID
Attaches the debug program to a running process. The debug program
becomes active as soon as the process wakes up. To attach the debug
program, you need authority to use the kill command on this process.

—A ProcessID
Reattaches the debug program to a running process that is already being
debugged by dbx. Use this option to reattach a child process that was
created when a debugged parent process did a fork while multiprocess

170 2z/0S V1R4.0 UNIX System Services Command Reference

dbx

debugging mode was active. To reattach to the debug program, you need
authority to use the kill command on this process.

—c file Runs the dbx subcommands in the file before reading from standard input.

—C dump—filename
Puts dbx in dump reading (core file) processing mode.

—d NestingDepth
Sets the limit for the nesting of program blocks. The default nesting depth
limit is 25.

—f Starts dbx in lazy reading mode. After the dbx session is started, only the
required symbol table information is read. No session has been started.
Using this flag speeds up dbx startup (especially for debugging large
executables) and reduces memory usage by dbx.

-l directory
Includes directory in the list of directories searched for source files. The
default is to look for source files in the working directory and in the directory
where the object file is located. The search path is also set with the use
subcommand.

-r Runs the object file immediately. If it ends successfully, the dbx debug
program is exited. Otherwise, the debug program is entered and the reason
for termination is reported.

-u Causes the dbx command to prepend filename symbols with an @. This
flag reduces the possibility of ambiguous symbol names.

Note: Unless —r is specified, the dbx command prompts the user and waits for a
command. However, you can specify program arguments on dbx even when
—r is not used. For example:

dbx myprog pl p2 p3

Expression Handling

Specify expressions in dbx with a subset of C syntax. A prefix * or a postfix A
denotes indirection. Specify portions of an array by separating the lower and upper
bounds with .. (two periods).

Use [] (square brackets) or () (parentheses) to enclose array subscripts. Use the
field reference operator . (period) with pointers and records.

Note: The field reference operator . (period) makes the C operator » unnecessary
(although it is supported).

When displaying variables and expressions, the dbx command resolves names first
using the static scope of the current function. The dynamic scope is used if the
name is not defined in the first scope. If static and dynamic searches do not yield a
result, an arbitrary symbol is chosen and the system prints the message (using
Module. Variable). The Module.Variable construction is the name of an identifier
qualified with a block name. Override the name resolution procedure by qualifying
an identifier with a block name. Source files are treated as modules named by the
filename without the language suffix (such as the .c suffix on a C language
program).

The dbx command debug program checks types of expressions. Override types of
expressions by using TypeName (Expression). When there is no corresponding

Chapter 2. Shell Command Descriptions 171

dbx

named type, use the & TypeName special construct to represent a pointer to the
named type. Represent a pointer to enum, struct, or union tag with the
$$ TagName construct.

A condition can be any dbx expression that evaluates to a true or false value. This
pertains to four dbx subcommands: stop, stopi, trace, and tracei.

The following operators are valid in expressions:

Expression Operators

exp (exponentiation) Algebraic +, -, *, / (floating), div (integral), mod
Bitwise -, |, bitand, xor, A, <<, >>

Logical or, and, not, Il, &&;

Comparison <, >, <=, >=, <>o0r =, =or==

Other sizeof

Files

a.out The object file; a.out contains object code. This is the default program
object if nothing is specified for the dbx command.

.dbxinit
Contains initial commands.

Related Information
c89/cc/c++

? subcommand for dbx: Search backward for a pattern

Format
? [RegularExpression]
Description
The ? subcommand searches backward in the current source file for the pattern
specified by the RegularExpression argument. Entering the ? subcommand with no
arguments causes dbx to search backward for the previous regular expression.
Usage Note
The ? subcommand can be run only while the dbx debug program is running.
Examples

1. To search backward in the current source file for the letter z, enter:
7z

2. To repeat the previous search, enter:
?

Related Information
The / (search) subcommand.

172 2/0S V1R4.0 UNIX System Services Command Reference

dbx: /

/ subcommand for dbx: Search forward for a pattern

Format
| [RegularExpression)
Description
The / subcommand searches forward in the current source file for the pattern
specified by the RegularExpression argument. Entering the / subcommand with no
arguments causes dbx to search forward for the previous regular expression.
Usage Note
The / subcommand can be run only while the dbx debug program is running.
Examples
1. To search forward in the current source file for the number 12, enter:
/ 12
2. To repeat the previous search, enter:
/

Related Information
The ? (search) subcommand.

alias subcommand for dbx: Display and assigh subcommand aliases

Format
alias [name] [string]

Description
The alias subcommand creates aliases for dbx subcommands. The name
argument is the alias being created. The string argument is a series of dbx
subcommands that, after the execution of this subcommand, can be referred to by
name. If the alias subcommand is used without aliases, it displays all current
aliases.

Usage Note
The alias subcommand can be run only while the dbx debug program is running.

Examples

1. To set tracef1 to be an alias for trace in f1, enter:
alias tracefl "trace in f1"

2. To define a stopf alias with file and line arguments to allow shorthand for
setting a breakpoint within a file, enter:

alias stopf(file, line) "stop at \"file\":Tine"

args subcommand for dbx: Display program arguments

Format
args

Chapter 2. Shell Command Descriptions 173

dbx: args

Description

The args subcommand displays the argument count and a list of arguments that

are passed to the user’s program when dbx starts debugging the program.
Usage Note

The args subcommand can be run only while the dbx debug program is running.
Examples

To display the current arguments, enter:
args

Related Information
The rerun and run subcommands.

assign subcommand for dbx: Assign a value to a variable

Format
assign [variable=expression]

Description

The assign subcommand assigns the value specified by the expression argument
to the variable specified by the variable argument.

Usage Notes

1. The assign subcommand can be run only while the dbx debug program is
running.

2. Functions cannot be specified with the expression argument.

Examples
1. To assign the value 5 to a variable x, enter:

assign x = 5

2. To assign the value of a variable y to a variable x, enter:
assign x =y

3. To assign a value to a storage location, enter:
assign 0x02e0f7f0 = Oxff

4. To assign a value to a register, enter:
assign $r7 = 123

5. To change the exit_status of a specific thread, enter:
assign $tl.exit_status=&$void(0x2d95840);

case subcommand for dbx: Change how dbx interprets symbols

Format
case [default | mixed | lower | upper]

174 2/0S V1R4.0 UNIX System Services Command Reference

Description

Options

Usage Note

Examples

dbx: case

The case subcommand changes how the dbx debug program interprets symbols.
Use case if a symbol needs to be interpreted in a way not consistent with the
default behavior.

Entering case with no parameters displays the current case mode.

default
Varies with the current language.
mixed Causes symbols to be interpreted as they actually appear.
lower Causes symbols to be interpreted as lowercase.
upper Causes symbols to be interpreted as uppercase.

The case subcommand can be run only while the dbx debug program is running.

1. To instruct dbx to interpret symbols as they actually appear, enter:
case mixed

2. To instruct dbx to interpret symbols as uppercase, enter:
case upper

catch subcommand for dbx: Start trapping a signal

Format

Description

Usage Note

Examples

catch [signalnumber | signalname]

The catch subcommand starts the trapping of a specified signal before that signal
is sent to the application program. This subcommand is useful when the application
program being debugged handles such signals as interrupts. The signal to be
trapped can be specified by number or by name using either the signalnumber or
the signalname argument, respectively. Signal names are case-insensitive, and the
SIG prefix is optional. All signals are caught by default except the SIGDUMP,
SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals. If no arguments are
specified, the current list of signals to be caught is displayed.

The catch subcommand can be run only while the dbx debug program is running.

1. To display a current list of signals to be caught by dbx, enter:
catch

2. To trap signal SIGALRM, enter:
catch SIGALRM

or:
catch ALRM

Chapter 2. Shell Command Descriptions 175

dbx: catch

or:
catch 14

Related Information
The ighore subcommand.

clear subcommand for dbx: Remove all stops at a given source line

Format
clear [sourceline]
Description
The clear subcommand removes all stops at a given source line. The sourceline
argument can be specified in two formats:
* As an integer
* As a filename string followed by a : (colon) and an integer
Usage Note
The clear subcommand can be run only while the dbx debug program is running.
Example

To remove breakpoints set at line 19, enter:
clear 19

Related Information
The cleari and delete subcommands.

cleari subcommand for dbx: Remove all breakpoints at an address

Format
cleari address
Description
The cleari subcommand clears all the breakpoints at the address specified by the
address argument.
Usage Note
The cleari subcommand can be run only while the dbx debug program is running.
Examples

1. To remove a breakpoint set at address 0X100001B4, enter:
cleari 0x100001b4

2. To remove a breakpoint set at the address of the main() procedure, enter:
cleari Created by ActiveSystems 10/25/96 Entity not defined.

Related Information
The clear and delete subcommands.

176 2z/0S V1R4.0 UNIX System Services Command Reference

dbx: condition

condition subcommand for dbx: Display a list of active condition

variables

Format

Description

Usage Note

Examples

condition [number ...]
condition wait
condition nowait

The condition subcommand displays a list of active condition variables for the
application program. All active condition variables are listed unless you use the
number parameter to specify the condition variables you want listed. You can also
select condition variables with or without waiters by using the wait or nowait
options.

In order to capture the condition variables, dbx must be debugging your program
before the condition variable is created. You must have coded your application in
one of the following ways:
» Add the following line at the top of the C program:

#pragma runopts(TEST(ALL))

Or:

* Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see
[C/C++ Programming Guidd .

The condition subcommand can be run only while the dbx debug program is
running.

1. To display all condition variables, enter:
condition

2. To display condition variables number 1 and number 4, enter:
condition 1 4

3. To display all condition variables with waiters, enter:
condition wait

4. To display all condition variables without waiters, enter:
condition nowait

cont subcommand for dbx: Continue program execution

Format

cont [signalnumber | signalname]

Chapter 2. Shell Command Descriptions 177

dbx: cont

Description

Usage Note

Examples

The cont subcommand continues the execution of the program from the current
stopping point until either the program finishes, another breakpoint is reached, a
signal is received that is trapped by the dbx command, or an event occurs (such as
a fork, an exec, or a program abend).

If a signal is specified, either by the number specified in the signalnumber argument
or by the name specified in the signalname argument, the program continues as if
that signal had been received by the focus thread.

If a signal is not specified, the dbx debug program variable $sigblock is set, and a
signal caused the debugged program to stop, then the program resumes execution.
If a signal is not specified, the dbx debug program variable $sigblock is not set,
and a signal caused the debugged program to stop, then typing in the cont
command with no signal causes the program to continue as if it had received the
original signal.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is
specified, the program continues as if it had not been stopped.

The cont subcommand can be run only while the dbx debug program is running.

1. To continue program execution from the current stopping point, enter:
cont

2. To continue program execution as though it had received the signal SIGQUIT,
enter:

cont SIGQUIT

Related Information

The step, next, goto, and skip subcommands.

delete subcommand for dbx: Remove traces and stops

Format

Description

Option

Usage Note

delete [all | number...]

The delete subcommand removes traces and stops from the program. You can
specify the traces and stops to be removed through the number arguments, or you
can remove all traces and stops by using the all option. To display the humbers
associated by the dbx debug program with a trace or stop, use the status
subcommand.

all Removes all traces and stops.

The delete subcommand can be run only while the dbx debug program is running.

178 2z/0S V1R4.0 UNIX System Services Command Reference

dbx: delete

Examples
1. To remove all traces and stops from the program, enter:
delete all
2. To remove traces and stops for event number 4, enter:
delete 4

Related Information
The status, clear, and cleari subcommands.

detach subcommand for dbx: Continue program execution without dbx
control

Format
detach [signalnumber | signalname]

Description

The detach subcommand continues the execution of a program from the current
stopping point without control of dbx.

If a signal is specified, either by the number specified in the signalnumber argument
or by the name specified in the signalname argument, the program continues
without dbx control as if that signal had been received by the focus thread. If the
signal is not specified, the program continues with no signal and without dbx
control.

Signal names are not case-sensitive, and the SIG prefix is optional. If no signal is
specified, the program continues without dbx control as if it had not been stopped.

Usage
The detach subcommand can be run only while the dbx debug program is running.

Examples

1. To continue program execution from the current stopping point without dbx in
control, enter:

detach

2. To continue program execution without dbx control as though it had received
the signal SIGQUIT, enter:

detach SIGQUIT

Related Information
The cont subcommand.

display memory subcommand for dbx: Display the contents of
memory

Format

address, address/ [b IBd IBf IBgqlcldIDIflglhlilllldlilolixlolOIlql
s|SITWI x| X][>file]

Chapter 2. Shell Command Descriptions 179

dbx: display memory

address/ [count] [bIBd IBf IBglcldIDIflglhlilllldlilolIxlolOlql
s|SlolWIX][>file]

Description

The display memory subcommand, which does not have a keyword to start the

command, displays a portion of memory controlled by the following factors:

. The range of memory displayed is controlled by specifying:

- Two address arguments, in which case all lines between those two
addresses are displayed (address/address), or

— One address argument, where the display starts, and count, which
determines the number of lines displayed from address
(address/count).
Used in place of the first address argument, this displays from the
point where you left off (see example .

Specify symbolic addresses by preceding the name with an & (ampersand).

Addresses can be expressions made up of other addresses and the operators +, —,

and * (indirection). Any expression enclosed in parentheses is interpreted as an

address.

. The format in which the memory is displayed is controlled by the mode
argument. The default for the mode argument is the current mode. The
initial value of mode is X. The possible modes include:
b Prints a byte in octal
Bd Prints a double-precision binary real number
Bf Prints a single-precision binary real number
Bq Prints a long double-precision binary real number
c Prints a byte as a character
d Prints a short word in decimal
D Prints a long word in decimal
f Prints a single-precision real number
g Prints a double-precision real number
h Prints a byte in hexadecimal
i Prints the machine instruction
| Prints a wint_t character
id Prints a long long in decimal
lo Prints a long long in octal
Ix Prints prints a long long in hexidecimal
o Prints a short word in octal
o Prints a long word in octal
q Prints a long double precision floating-point number
s Prints a string of characters terminated by a null byte
S Prints a wchar_t string
w Prints a wint_t string
X Prints a short word in hexadecimal
X Prints a long word in hexadecimal

Option
>file Redirects output to the specified file.
Usage Note

The display memory subcommand can be run only while the dbx debug program
is running.

180 2z/0OS V1R4.0 UNIX System Services Command Reference

Examples

dbx: display memory

. To display one long word of memory content in hexadecimal starting at the

address 0X3FFFE460, enter:
0x3fffed460 / x

. To display 2 bytes of memory content as characters starting at the address of

variable y, enter:
&y/2c

. To display from the point where you left off, when using . (period) in place of

one of the addresses, enter:

0x100 / 2 which displays 2 words starting at x'100'
followed by:
. /3 which displays 3 words starting at x'108'

down subcommand for dbx: Move the current function down the stack

Format

Description

Usage Note

Examples

down [count]

The down subcommand moves the current function down the stack count number
of levels. The current function is used for resolving names. The default for the count
argument is 1.

The down subcommand can be run only while the dbx debug program is running.

. To move one level down the stack, enter:

down

. To move three levels down the stack, enter:

down 3

Related Information

The up and where subcommands.

dump subcommand for dbx: Display the names and values of
variables in a procedure

Format

Description

dump [procedure] [>file]

The dump subcommand displays the names and values of all variables in the
specified procedure. If the procedure argument is . (dot), all active variables are
displayed. If the procedure argument is not specified, the current procedure is used.
If the >file option is used, the output is redirected to the specified file.

Chapter 2. Shell Command Descriptions 181

dbx: dump
Option

>file dump output to the specified file.

Usage Note

The dump subcommand can be run only while the dbx debug program is running.
dump redirects output to the specified file.

Examples

3.

. To display names and values of variables in the current procedure, enter:

dump
To display names and values of variables in the add_count procedure, enter:
dump add_count

To redirect names and values of variables in the current procedure to the
var.list file, enter:

dump > var.list

edit subcommand for dbx: Invoke an editor

Format

edit [procedure | file]

Description

The edit subcommand invokes an editor on the specified file. The file can be
specified through the file argument or through the procedure argument (in which
case the editor is invoked on the file containing that procedure). If no file is
specified, the editor is invoked on the current source file. The default editor is the
ed editor. Override the default by resetting the EDITOR environment variable to the
name of the desired editor.

Usage Note

The edit subcommand can be run only while the dbx debug program is running.

Examples

. To invoke an editor on the current source file, enter:

edit

To invoke an editor on the main.c file, enter:

edit main.c

To invoke an editor on the file containing the do_count procedure, enter:
edit do_count

Related Information
The ed editor.

The list subcommand for the dbx command.

182 2/0S V1R4.0 UNIX System Services Command Reference

dbx: file

file subcommand for dbx: Change the current source file

Format

Description

Usage Note

Examples

file [file]

The file subcommand changes the current source file to the file specified by the file
argument; it does not write to that file. If the file argument is not specified, the file
subcommand displays the name of the current source file.

The file subcommand can be run only while the dbx debug program is running.

1. To change the current source file to the main.c file, enter:
file main.c

2. To display the name of the current source file, enter:
file

func subcommand for dbx: Change the current function

Format

Description

Usage Notes

Examples

func [procedure]

The func subcommand changes the current function to the procedure or function
specified by the procedure argument. If the procedure argument is not specified, the
default current function is displayed. Changing the current function implicitly
changes the current source file to the file containing the new function; the current
scope used for name resolution is also changed.

The func subcommand can be run only while the dbx debug program is running.

1. To change the current function to the do_count procedure, enter:
func do_count

2. To display the name of the current function, enter:
func

goto subcommand for dbx: Run a specified source line

Format

goto sourceline

Chapter 2. Shell Command Descriptions 183

dbx: goto

Description
The goto subcommand causes the specified source line to be run next. Normally,
the source line must be in the same function as the current source line. To override
this restriction, use the set subcommand with the $unsafegoto variable.
Usage Note
The goto subcommand can be run only while the dbx debug program is running.
Example

To change the next line to be executed to line 6, enter:
goto 6

Related Information
The cont, gotoi, and set subcommands.

gotoi subcommand for dbx: Change the program counter address

Format
gotoi address
Description
The gotoi subcommand changes the program counter address to the address
specified by the address argument.
Usage Note
The gotoi subcommand can be run only while the dbx debug program is running.
Example

To change the program counter address to address 0X100002B4, enter:
gotoi 0x100002b4

Related Information
The goto subcommand.

help subcommand for dbx: Display a subcommand synopsis

Format

help [subcommand] [topic]
Description

The help subcommand displays a synopsis of common dbx subcommands.
Usage Note

The help subcommand can be run only while the dbx debug program is running.
Examples

To obtain a synopsis of common dbx subcommands, enter one of the following:

184 2/0S V1R4.0 UNIX System Services Command Reference

dbx: help

help
help subcommand
help topic

The help subcommand with no arguments lists available dbx subcommands and
topics.

help subcommand, where subcommand is one of the dbx subcommands, displays
a synopsis and brief description of the subcommand. help topic—where topic is
execution, expression, files, machine, scope, usage, or variables—displays a
synopsis and brief description of the topic.

history subcommand for dbx: Display commands in a history list

Format

Usage Note

history

The history subcommand displays the commands in the history list. As each
command is entered, it is appended to the history list. A mechanism for history
substitution is provided through the exclamation (!) operator. The allowable forms
are ! for a previous command, /n for the nth command, and !string for the previous
command that starts with string. The number of commands retained and displayed
is controlled by the dbx internal variable $historywindow.

ignore subcommand for dbx: Stop trapping a signal

Format

Description

Usage Note

Examples

ignore [signalnumber | signalname]

The ignore subcommand stops the trapping of a specified signal before that signal
is sent to the program. This subcommand is useful when the program being
debugged handles such signals as interrupts.

The signal to be trapped can be specified by:

* Number, with the signalnumber argument

* Name, with the signalname argument

Signal names are not case-sensitive. The SIG prefix is optional.

If neither the signalnumber nor the signalname argument is specified, all signals
except the SIGDUMP, SIGHUP, SIGCHLD, SIGALRM, and SIGKILL signals are

ignored by default. The dbx debug program cannot catch SIGKILL or SIGDUMP. If
no arguments are specified, the list of currently ignored signals is displayed.

The ignore subcommand can be run only while the dbx debug program is running.

To cause dbx to ignore alarm clock timeout signals sent to the program, enter:

ignore sigalrm

Chapter 2. Shell Command Descriptions 185

dbx: ignore

or:

ignore alrm

or:

ignore 14

Related Information
The catch subcommand.

list subcommand for dbx: Display lines of the current source file

Format

Description

Usage Note

Examples

list [procedure | SourcelineExpression] [,SourcelineExpression]

The list subcommand displays a specified number of lines in the source file. The
number of lines displayed are specified in one of two ways:

By specifying a procedure using the procedure argument. In this case, the list
subcommand displays lines before the first executable line of source in the
specified procedure and until the list window is filled.

By specifying a starting and ending source line number using the
SourcelineExpression argument. Use the current filename or source filename if
specified.

The SourcelineExpression argument should consist of a valid line number
followed by an optional + or — and an integer. In addition, a SourcelineExpression
of $ can be used to denote the current line number, and a SourcelineExpression
of @ can be used to denote the next line number to be listed.

All lines from the first line number specified to the second line number specified,
inclusive, are then displayed, provided these lines fit in the list window.

If the second source line is omitted, ten lines are printed, beginning with the line
number specified in the SourcelineExpression argument.

If the list subcommand is used without arguments, the default number of lines are
printed, beginning with the current source line. The default is 10.

To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

The list subcommand can be run only while the dbx debug program is running.

1.

2.

3.

To list the lines 1 through 10 in the current file, enter:

Tist 1,10

To list 10, or $listwindow, lines around the first executable line in the main
procedure, enter:

list main

To list 11 lines around the current line, enter:

list $-5,$+5

186 2z/0S V1R4.0 UNIX System Services Command Reference

dbx: list

Related Information
The edit, listi, move, and set subcommands.

listfiles subcommand for dbx: Display the list of source files

Format
listfiles [loadmap-index]

Description

The listfiles subcommand displays the list of files associated with each module in
the load map.

If the listfiles subcommand is used without arguments, the files for every module in
the load map will be listed.

Usage Notes
The listfiles subcommand can be run only while the dbx debug program is running.

Examples
1. To list all files in all modules, enter:
listfiles
2. To list the files only for module with index O in the loadmap, enter:
listfiles 0

Related Information
The listfuncs and map subcommands.

listfuncs subcommand for dbx: Display the list of functions

Format
listfuncs [filename]

Description

The listfuncs subcommand displays a list of functions associated with each file in
the program.

If the listfuncs subcommand is used without arguments, the function for every file in
the program will be listed.

Usage Notes

The listfuncs subcommand can be run only while the dbx debug program is
running.

Examples
1. To list all functions in all files, enter:
listfuncs
2. To list the function only for file mypgm.c, enter:
Tistfuncs mypgm.c

Chapter 2. Shell Command Descriptions 187

dbx: listfuncs

Related Information

The func subcommand.

listi subcommand for dbx: List instructions from the program

Format

Description

Option

Usage Note

Examples

listi [procedure | at | sourceline | address] [,address]

The listi subcommand displays a specified set of instructions from the source file.
The instructions displayed are specified by:

* Providing the procedure argument, in which case the listi subcommand lists
instructions from the beginning of procedure until the list window is filled.

» Using the atsourceline option, in which case the listi subcommand displays
instructions beginning at the specified source line and continuing until the list
window is filled.

» Specifying a beginning and ending address using the address arguments, in
which case all instructions between the two addresses, inclusive, are displayed.

If the listi subcommand is used without options or arguments, the next $listwindow
instructions are displayed. To change the current size of the list window, use the set
$listwindow=value subcommand.

at sourceline
Specifies a starting source line for the listing.

The listi subcommand can be run only while the dbx debug program is running.

1. To list the next 10, or $listwindow, instructions, enter:
1isti

2. To list the machine instructions beginning at source line 10, enter:
listi at 10

3. To list the instructions between addresses 0X10000400 and 0X10000420, enter:
listi 0x10000400, 0x10000420

Related Information

The list and set subcommands.

map subcommand for dbx: Display load characteristics

Format

map [>file]

188 2z/0S V1R4.0 UNIX System Services Command Reference

Description

Option

Usage Note

Example

dbx: map

The map subcommand displays characteristics for each loaded portion of the
program. This information includes the name, text origin, text length, text end, text
subpool, data origin, data length, data subpool, and file descriptor for each loaded
module. The data origin, data length, data subpool, and file descriptor do not
contain meaningful information.

>file Redirects output to the specified file.

The map subcommand can be run only while the dbx debug program is running.

To examine the characteristics of the loaded portions of the application, enter:

map

move subcommand for dbx: Change the next line to be displayed

Format

Description

Usage Note

Example

move sourceline

The move subcommand changes the next line to be displayed to the line specified
by the sourceline argument. This subcommand changes the value of the @
variable.

The move subcommand can be run only while the dbx debug program is running.

To change the next line to be listed to line 12, enter:
move 12

Related Information

The list subcommand.

multproc subcommand for dbx: Enable or disable multiprocess

debugging

Format

multproc
multproc [on]
multproc [off]

Chapter 2. Shell Command Descriptions 189

dbx: multproc

Description

Options

Usage Note

Examples

The multproc subcommand enables or disables multiprocess debugging.
Multiprocess debugging is disabled when the dbx debug program is started. If no
options are specified, the multproc subcommand returns the current status of
multiprocess debugging.

on Enables multiprocess debugging.
off Disables multiprocess debugging.

The multproc subcommand can be run only while the dbx debug program is
running.

1. To check the current status of multiprocess debugging, enter:
multproc

2. To enable multiprocess debugging, enter:
multproc on

3. To disable multiprocess debugging, enter:
multproc off

Related Information

The fork() function.

mutex subcommand for dbx: Display a list of active mutex objects

Format

Description

mutex [number ...]
mutex lock
mutex unlock
mutex wait
mutex nowait

The mutex subcommand displays a list of active mutex objects for the application
program. All active mutex objects are listed unless you use the number parameter
to specify the mutex objects you want listed. You can also select only locked or
unlocked mutexes, or mutexes with or without waiters, by using the lock, unlock,
wait, or nowait options.

In order to capture the mutex variables, dbx must be debugging your program
before the mutex variable is created. You must have coded your application in one
of the following ways:

» Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

190 2z/0OS V1R4.0 UNIX System Services Command Reference

dbx: mutex

* Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see
[C/C++ Programming Guide .

Usage Note
The mutex subcommand can be run only while the dbx debug program is running.
Examples
1. To display all mutex objects, enter:
mutex
2. To display mutex objects number 1 and number 4, enter:
mutex 1 4
3. To display all locked mutex objects, enter:
mutex lock

4. To display all unlocked mutex objects, enter:
mutex unlock

5. To display all mutex objects with waiters, enter:
mutex wait

6. To display all mutex objects without waiters, enter:
mutex nowait

next subcommand for dbx: Run the program up to the next source line

Format
next [number]

Description

The next subcommand runs the application program up to the next source line. The
number argument specifies the number of times the next subcommand runs. If the
number argument is not specified, next runs once only.

Usage Notes

1. The next subcommand can be run only while the dbx debug program is
running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a next subcommand. Then dbx unholds the threads after the
next subcommand finishes.

Examples
1. To continue execution up to the next source line, enter:
next
2. To continue execution up to the third source line following the current source
line, enter:
next 3

Related Information
The cont, goto, nexti, and step subcommands.

Chapter 2. Shell Command Descriptions 191

dbx: nexti

nexti subcommand for dbx: Run the program up to the next machine
instruction

Format
nexti [number]

Description

The nexti subcommand runs the application program up to the next instruction. The
number argument specifies the number of times the nexti subcommand is to be
run. If the number argument is not specified, nexti runs only once.

Usage Notes

1. The nexti subcommand can be run only while the dbx debug program is
running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a nexti subcommand. Then dbx unholds the threads after the
nexti subcommand finishes.

Examples
1. To continue execution up to the next machine instruction, enter:
nexti

2. To continue execution up to the third machine instruction following the current
machine instruction, enter:

nexti 3

Related Information
The gotoi, next, and stepi subcommands.

object subcommand for dbx: Load an object file

Format
object filename
Description
The object subcommand loads the specified object file for execution, without the
overhead of reloading dbx.
Usage Note
The object subcommand can be run only while the dbx debug program is running.
Example

To complete debugging of the current program, and to start debugging a new
program without reloading dbx, enter:

object myprog

192 2/0S V1R4.0 UNIX System Services Command Reference

dbx: onload

onload subcommand for dbx: Evaluate stop/trace after dil load

Format

Description

Usage Note

Examples

* onload delete [all | number ...]
* onload list

» onload stop at sourceline

» onload stop in procedure

* onload trace at sourceline

» onload trace in procedure

The onload subcommand defers building of stop or trace events until the procedure
or sourceline is defined in the program dbx is debugging. dbx will evaluate the
onload list after a DLL is loaded and generate stop/trace events if the procedure or
sourcefile is now known to dbx after symbolics for the DLL are processed. If the
procedure or sourceline is already known to dbx, then a normal stop or trace event
will be generated and no event will be added to the onload list.

The onload subcommand can be run only while the dbx debug program is running.

To defer the building of a stop or trace event, enter:

onload stop in myfunc

onload stop in myclass::memfunc
onload stop in myclassvar.memfunc
onload stop in "mypgm.c":52

onload trace in myfunc

onload trace in myclass::memfunc
onload trace in myclassvar.memfunc
onload trace in "mypgm.c":52

Related Information

The stop and trace subcommands.

print subcommand for dbx: Print the value of an expression

Format

Description

Usage Note

Examples

print [expression,...] [(parameters)]

The print subcommand prints the value of a list of expressions, specified by the
expression arguments.

The print subcommand can be run only while the dbx debug program is running.

1. To display the value of x and the value of y shifted left 2 bits, enter:

print x, y << 2

Chapter 2. Shell Command Descriptions 193

dbx: print
2. To display a specific condition variable, enter:
print $cl
3. To display the number of waiters for a specific mutex object, enter:
print $ml.num wait
4. To display the exit value of a specific thread, enter:
print $tl.exit_status

Related Information
The assign and set subcommands.

prompt subcommand for dbx: Change the dbx command prompt

Format
prompt [“string’]
Description
The prompt subcommand changes the dbx command prompt to the string
specified by the string argument.
Usage Note
The prompt subcommand can be run only while the dbx debug program is running.
Example

To change the prompt to dbx>, enter:
prompt "dbx>"

quit subcommand for dbx: End the dbx debugging session

Format
quit
Description
The quit subcommand ends the dbx debugging session.
Usage Note
The quit subcommand can be run only while the dbx debug program is running.
Example

To exit the dbx debug program, enter:
quit

readwritelock subcommand for dbx: Display a list of active read/write
lock objects

Format

readwritelock [number ...]
readwritelock lock

194 2/0S V1R4.0 UNIX System Services Command Reference

Description

Usage Note

Examples

dbx: readwritelock

readwritelock unlock
readwritelock holder
readwrite noholder

The readwritelock subcommand displays a list of active read/write lock objects for
the application program. All active read/write lock objects are listed unless you use
the number parameter to specify the read/write lock objects you want listed. You
can also select only locked or unlocked read/write locks, or read/write locks with or
without holders, by using the lock, unlock, holder, or noholder options.

In order to capture the read/write lock variables, dbx must be debugging your
program before the read/write lock variable is created. You must have coded your
application in one of the following ways:

» Add the following line at the top of the C program:
#pragma runopts(TEST(ALL))

Or:

* Code an assembler program, CEEUOPT, to invoke the CEEXOPT macro, which
specifies TEST(ALL). For examples of how to code this program, see
[C/C++ Programming Guidsg .

Or:
» Specify test(all) in the _CEE_RUNOPTS environment variable:
export CEE_RUNOPTS="test(all)"

The readwritelock subcommand can be run only while the dbx debug program is
running.

1. To display all read/write lock objects, enter:
readwritelock

2. To display read/write lock objects number 1 and number 4, enter:
readwritelock 1 4

3. To display all locked read/write lock objects, enter:
readwritelock Tock

4. To display all unlocked read/write lock objects, enter:
readwritelock unlock

5. To display all read/write lock objects with holders, enter:
readwritelock holder

6. To display all read/write lock objects without holders, enter:
mutex noholders

record subcommand for dbx: Append user’s commands to a file

Format

record filename

Chapter 2. Shell Command Descriptions 195

dbx: record

Description

Usage Notes

Examples

The record subcommand appends the user's command lines to the specified file
until a record command is entered with no parameters.

The record subcommand is started by specifying a file name on the record
command. A second record command with no parameters will stop the current
record process and close the file.

The record subcommand can be run only while the dbx debug program is running.

1. To start recording the dbx commands to file imp/mycmds, enter:
record /tmp/mycmds

2. To stop the previous recording to file imp/mycmds, enter:
record

Related Information

The source subcommand.

registers subcommand for dbx: Display the value of registers

Format

Description

Option

Usage Note

Example

registers [>file]

The registers subcommand displays the values of general-purpose registers,
system control registers, floating-point registers, and the current instruction register,
such as the program status word (PSW) for z/OS.

» General-purpose registers are denoted by the $rnumber variable, where the
number argument indicates the number of the register.

» Floating-point registers are denoted by the $frnumber variable. By default, the
floating-point registers are not displayed. To display the floating-point registers,
use the unset $noflregs dbx subcommand.

>file Redirects output to the specified file.

The registers subcommand can be run only while the dbx debug program is
running.

To display the registers, enter:
registers

Related Information

The set and unset subcommands.

196 2z/0S V1R4.0 UNIX System Services Command Reference

dbx: rerun

rerun subcommand for dbx: Begin running a program with the
previous arguments

Format

Description

Options

Usage Note

Example

rerun [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

The rerun subcommand begins execution of the object file. The values specified
with the arguments argument are passed as command-line arguments. If the
arguments argument is not specified, the arguments from the last run or rerun
subcommand are reused.

<file Redirects input so that input is received from file.
>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file
Appends output and standard error to file.

The rerun subcommand can be run only while the dbx debug program is running.

To rerun the program with the previously entered arguments, enter:
rerun

Related Information

The run subcommand.

return subcommand for dbx: Continue running a program until a
return is reached

Format

Description

Usage Note

return [procedure]

The return subcommand causes the program to run until a return to the procedure
specified by the procedure argument is reached. If the procedure argument is not
specified, execution ceases when the current procedure returns.

The return subcommand can be run only while the dbx debug program is running.

Chapter 2. Shell Command Descriptions 197

dbx: return

Examples

1. To continue execution to the calling routine, enter:
return
2. To continue execution to the main routine, enter.

return main

run subcommand for dbx: Run a program

Format

Description

Options

Usage Note

Example

run [arguments] [<file | >file | 2>file | >>file | 2>file | >&file | >>&file]

The run subcommand begins execution of the object file. The values specified with
the arguments argument are passed as command-line arguments.

<file Redirects input so that input is received from file.
>file Redirects output to file.

2>file Redirects standard error to file.

>>file Appends redirected output to file.

2>>file Appends redirected standard error to file.

>&file Redirects output and standard error to file.

>>&file
Appends output and standard error to file.

The run subcommand can be run only while the dbx debug program is running.

To run the application with the arguments blue and 12, enter:
run blue 12

Related Information

The rerun subcommand.

set subcommand for dbx: Define a value for a dbx variable

Format

Description

set [variable=expression]

The set subcommand defines a value, which is specified by the expression
argument, for the dbx debug program variable, which is specified by the variable
argument. The name of the variable should not conflict with names in the program

198 2/0S V1R4.0 UNIX System Services Command Reference

Variables

dbx: set

being debugged. A variable is expanded to the corresponding expression within
other commands. If the set subcommand is used without arguments, the variables
currently set are displayed.

The following variables are set with the set subcommand:

$asciichars
When set, any dbx operation that displays the value of a character will
interpret the binary representation of the character as ascii.

$asciistrings
When set, any dbx operation that displays the value of a string will interpret
the binary representation of the string as ascii.

$c<n> Condition variables

$catchbp
Catches breakpoints during the execution of the next command.

$columns
Specifies the number of columns used to display arrays. Currently this is
only defined for FORTRAN.

$current
Defined as a constant with the value of the focus thread.

$cv_events
When set, dbx notifies the user but does not stop when a condition variable
event is processed. The following trace information is sent to the user for
the different events:

~ N
(dbx) cont
cv initialize, object=0x2e04567
cv wait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708
cv unwait, object=0x2e04567, mutex=0x2d04567, thid=0x0102030405060708
cv destroy, object=0x2e04567
N J
$dll_loads
Set by default. When set, dbx processes symbolics for dlls as they are
loaded.
$dll_loadstop

Set by default. When set, dbx will attempt to stop the function call that
caused the dll to be loaded. If the dIl was loaded due to a variable
reference or an explicit load, dbx will stop at the source line that caused
the dll to be loaded.

$expandunions
Displays values of each part of variant records or unions.

$flprecision
Determines the precision in bytes of floating-point registers when used in
expressions.

$fr<n>
Hexidecimal floating-point register.

Chapter 2. Shell Command Descriptions 199

dbx: set

$frb<n>
Binary floating-point register

$frame
Uses the stack frame pointed to by the address designated by the value of
$frame for doing stack tracebacks and accessing local variables.

$hexchars
Prints characters as hexadecimal values.

$hexin
Interprets addresses in hexadecimal.

$hexints
Prints integers as hexadecimal values.

$hexstrings
Prints character pointers in hexadecimal.

$historywindow
Specifies the number of subcommands to display and retain in the history
list.

$hold_next
When set, dbx automatically holds all threads except the focus thread
during the next, nexti, step, or stepi command execution. If not set, all
threads resume execution and may reach the breakpoint set by the next,
nexti, step, or stepi command execution.

SKERNEL_dlIs
When set, dbx will use kernel interfaces to process and recognize DLLS.
This flag is mutually exclusive with $LE_dlls.

$l<n> Read/write locks variables.

$SLE_dlIs
When set, dbx will use LE interfaces to process and recognize DLLs. This
flag is mutually exclusive with $SKERNEL_dlls.

SLE-hookstep
When set, dbx will process source level stepping using an LE interface
instead of machine instruction trace.

$Slistwindow
Specifies the number of lines to list around a function and to list when the
list subcommand is used without parameters.

$lv_events
When set, dbx notifies the user but does not stop when a read/write lock
object event is processed. The following trace information is sent to the
user for the different events:

-
(dbx) cont

lv initialize, object=0x2d04567

Tv wait, object=0x2d04567, thid=0x0102030405060708

Tv unwait, object=0x2d04567, thid=0x0102030405060708
1v lock, object=0x2d04567, thid=0x0102030405060708

Tv unlock, object=0x2d04567, thid=0x0102030405060708
1v relock, object=0x2d04567, thid=0x0102030405060708
Tv unrelock, object=0x2d04567, thid=0x0102030405060708
Tv destroy, object=0x2d04567

U /

200 2/0S V1R4.0 UNIX System Services Command Reference

dbx: set

$m<n>
Specifies mutex variables.

$mv_events
When set, dbx notifies the user but does not stop when a mutex object
event is processed. The following trace information is sent to the user for
the different events:

4 N\
(dbx) cont
mv initialize, object=0x2d04567
mv wait, object=0x2d04567, thid=0x0102030405060708
mv unwait, object=0x2d04567, thid=0x0102030405060708
mv Tock, object=0x2d04567, thid=0x0102030405060708
mv unlock, object=0x2d04567, thid=0x0102030405060708
mv relock, object=0x2d04567, thid=0x0102030405060708
mv unrelock, object=0x2d04567, thid=0x0102030405060708
mv destroy, object=0x2d04567
U /
$noargs
Omits arguments from subcommands, such as where, up, down, and
dump.
$noflregs
Omits the display of floating-point registers from the registers
subcommand.
$noflbregs
Omits the display of binary floating-point registers from the registers
subcommand.

$octin Interprets addresses in octal.

$octints
Prints integers in octal.

$pc Program counter register.
$psw First word of the Program Status Word register.

Spsw0
First word of the Program Status Word register.

Spswi
Second word of the Program Status Word register.

$r<n> General register.

$repeat
Repeats the previous command if no command was entered.

$showbases
When set, dbx will show base class data when a derived class is printed.

$sigblock
Blocks all signals from reaching the program being debugged.

$sticky_debug
When set, dbx will recognize sticky bit programs and DLLs in the loadmap.

$t<n> Thread variables

Chapter 2. Shell Command Descriptions 201

dbx: set

Usage Notes

Examples

$tv_events
When set, dbx notifies the user but does not stop when a thread object
event is processed. The following trace information is sent to the user for
the different events:

4 N
(dbx) cont
IPT create, thid=0x1234567890123456, stack=5200
IPT exit, thid=0x1234567890123456
tv create, thid=0x1234567890123456, created thid=0x1234567890123422,
stack=5200
tv created, thid=0x1234567890123456, stack=5200
tv exit, thid=0x1234567890123456
tv wait, thid=0x1234567890123456, joining thid=0x1234567890123422
\fv unwait, thid=0x1234567890123456, joined thid=0x1234567890123422)

$unsafeassign
Turns off strict type checking between the two sides of an assign
subcommand.

$unsafebounds
Turns off subscript checking on arrays.

Sunsafecall
Turns off strict type checking for arguments to subroutines or function calls.

$unsafegoto
Turns off the goto subcommand destination checking.

$vardim
Specifies the dimension length to use when printing arrays with unknown
bounds. The default value is 10. This variable is not supported.

$vectint
Displays the vector register contents as integer values. (This is the default).
This variable is not supported.

1. The $unsafe variables limit the usefulness of the dbx debug program in
detecting errors.

2. The set subcommand can be run only while the dbx debug program is running.

1. To change the default number of lines to be listed to 20, enter:
set $1istwindow=20
2. To disable type checking on the assign subcommand, enter:

set $unsafeassign

Related Information

The unset subcommand.

sh subcommand for dbx: Pass a command to the shell for execution

Format

sh [command)]

202 2/0S V1R4.0 UNIX System Services Command Reference

Description

Usage Note

Examples

dbx: sh

The sh subcommand passes the command specified by the command parameter to
the shell for execution. The SHELL environment variable determines which shell is
used. The default is the sh shell. If no argument is specified, control is transferred
to the shell.

The sh subcommand can be run only while the dbx debug program is running.

1. To run the Is command, enter:
sh 1s

2. To escape to a shell, enter:
sh

skip subcommand for dbx: Continue from the current stopping point

Format

Description

Usage Note

Example

skip [number]

The skip subcommand continues execution of the application program from the
current stopping point. A number of breakpoints equal to the value of the number
argument are skipped, and execution then ceases when the next breakpoint is
reached or when the program finishes. If the number argument is not specified, it
defaults to a value of 1.

The skip subcommand can be run only while the dbx debug program is running.

To continue execution until the second breakpoint is encountered, enter:
skip 1

Related Information

The cont subcommand.

source subcommand for dbx: Read subcommands from a file

Format

Description

Usage Note

source file

The source subcommand reads dbx subcommands from the file specified by the
file argument.

The source subcommand can be run only while the dbx debug program is running.

Chapter 2. Shell Command Descriptions 203

dbx: source

Example

To read the dbx subcommands in the cmdfile file, enter:
source cmdfile

status subcommand for dbx: Display the active trace and stop

subcommands

Format

Description

Option

Usage Note

Examples

status [>file]

The status subcommand displays the trace and stop subcommands currently
active. The > option sends the output of the status subcommand to a file specified
in the file argument.

>file Redirects output to file.

The status subcommand can be run only while the dbx debug program is running.

1. To display the currently active trace and stop subcommands, enter:
status

2. To stop at line 52 only when thread $t2 reaches that line, enter:
stop at 52 if $t2==$current

Related Information

The clear, delete, stop, and trace subcommands.

step subcommand for dbx: Run one or more source lines

Format

Description

Usage Notes

step [numben

The step subcommand runs source lines of the program. Specify the number of
lines to be run with the number argument. If the number argument is omitted, it
defaults to a value of 1.

1. The step subcommand can be run only while the dbx debug program is
running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a step subcommand. Then dbx unholds the threads after the
step subcommand finishes.

204 2/0S V1R4.0 UNIX System Services Command Reference

Examples

dbx: step

1. To continue execution for one source line, enter:
step

2. To continue execution for five source lines, enter:
step 5

Related Information

The cont, goto, next, and stepi subcommands.

stepi subcommand for dbx: Run one or more machine instructions

Format

Description

Usage Notes

Examples

stepi [number]

The stepi subcommand runs instructions of the program. Specify the number of

instructions to be run in the number argument. If the number argument is omitted, it

defaults to 1.

1. The stepi subcommand can be run only while the dbx debug program is
running.

2. If the $hold_next variable is defined, dbx holds all threads except the focus
thread during a stepi subcommand. Then dbx unholds the threads after the
stepi subcommand finishes.

1. To continue execution for one machine instruction, enter:
stepi

2. To continue execution for five machine instructions, enter:
stepi 5

Related Information

The gotoi, nexti, and step subcommands.

stop subcommand for dbx: Stop execution of a program

Format

Description

stop if condition

stop [variable] at sourceline [if condition]
stop [variable] in procedure [if condition]
stop variable [if condition]

The stop subcommand stops execution of the program when certain conditions are

fulfilled. The program is stopped when:

» The condition is true, if the ifcondition option is used.

» The sourceline line number is reached, if the atsourceline option is used.
» The procedure is called, if the inprocedure option is used.

Chapter 2. Shell Command Descriptions

dbx: stop

* The variable is changed, if the variable argument is specified.

The dbx debug program associates event numbers with each stop subcommand.
To view these numbers, use the status subcommand. To turn stop off, use the
delete or clear subcommand.

Options

atsourceline
Specifies the line number.

ifcondition
Specifies the condition, such as true.

inprocedure
Specifies the procedure to be called.

Usage Note
The stop subcommand can be run only while the dbx debug program is running.

Examples

1. To stop execution at the first executable statement in the main procedure, enter:
stop in main

2. To stop execution when the value of the x variable is changed on line 12 of the
execution, enter:
stop x at 12

3. To stop execution at a specified line (line 23), when the value of the variable
(myvar) is greater than 2, enter:

stop at 23 if myvar > 2
4. To stop at line 52 only when thread $t2 reaches that line, enter:
stop at 42 if $t2==$current

Related Information
The stopi, delete, clear, and trace subcommands.

stopi subcommand for dbx: Stop at a specified location

Format
stopi address [if condition]
stopi [address] at address [if condition]
stopi [address] in procedure [if condition]
Description

The stopi subcommand sets a stop at the specified location.
» With the ifcondition option, the program stops when the condition is true.

» With the address argument, the program stops when the contents of address
change.

» With the ataddress option, a stop is set at the specified address.

« With the inprocedure option, the program stops when the procedure specified
with the procedure argument is called.

206 2/0S V1R4.0 UNIX System Services Command Reference

Options

Usage Note

Examples

dbx: stopi

ifcondition
Specifies the condition, such as true.

inprocedure
Specifies the procedure to be called.

ataddress
Specifies the machine instruction address.

The stopi subcommand can be run only while the dbx debug program is running.

1. To stop execution at address 0X100020F0, enter:
stopi at 0x100020f0

2. To stop execution when the contents of address 0X100020F0 change, enter:
stopi 0x100020f0

3. To stop at address 0x2d04567 only when thread $t2 reaches that address,
enter:

stopi at 0x2d04567 if $t2=$current

Related Information

The stop subcommand.

thread subcommand for dbx: Display a list of active threads

Format

Description

thread [number ...]

thread hold [number ...]
thread unhold [number ...]
thread info [number ...]
thread current [number ...]
thread activ

thread async

thread dead

thread pcanc

The thread subcommand displays a list of active threads for the application
program. All active threads are listed unless you use the number parameter to
specify the threads you want listed. You can also select threads by their states
using the activ, async, dead, or pcanc options.

You can use the info option to display full information about a thread, and threads
can be held or unheld with the hold or unhold options. The focus thread is
defaulted to the running thread; dbx uses it as the context for normal dbx
subcommands such as register. You can use the current option to switch the dbx
focus thread.

Chapter 2. Shell Command Descriptions 207

dbx: thread
Examples

10.

11.

12.

To display all thread objects, enter:

thread

To display thread objects humber 1 and 2, enter:
thread 1 2

To display all active threads, enter:

thread activ

To display all threads in dead state, enter:
thread dead

To display all threads in async state (that is, threads with a cancelability type of
PTHREAD_INTR_ASYNCHRONOUS) that are waiting to be scheduled), enter:

thread async

Because this thread was created with the PTATASYNCHRONOUS attribute
and the limit was reached, this thread was queued for execution. For example,
if the thread limit is set to ten and there are 12 threads, two of them will be
shown as async for the dbx thread command.

To display all threads in pcanc state (that is, threads that have been requested
to be canceled by pthread_cancel(), enter:

thread pcanc

To hold all threads, enter:

thread hold

To hold thread number 1 and 4, enter:

thread hold 1 4

To unhold thread number 1 and 4, enter:

thread unhold 1 4

To display the focus thread, enter:

thread current

To set the focus thread to thread number 1, enter:
thread current 1

To get information about thread number 3, enter:
thread info 3

trace subcommand for dbx: Print tracing information

Format

Description

trace [if condition]

trace procedure [if condition]

trace [variable] at sourceline [if condition]
trace [variable] in procedure [if condition]
trace sourceline [if condition]

trace expression at sourceline [if condition]

The trace subcommand prints tracing information for the specified procedure,
function, source line, expression, or variable when the program runs. A condition
can be specified. The dbx debug program associates a number with each trace
subcommand. To view these numbers, use the status subcommand. To turn tracing

off,

use the delete subcommand.

208 2/0S V1R4.0 UNIX System Services Command Reference

Options

dbx: trace

atsourceline

Specifies the source line at which to find the expression being traced.

ifcondition

Specifies a condition for the beginning of the trace. The trace begins only
ifcondition is true.

inprocedure

Usage Note

Specifies the procedure in which to find the procedure or variable being
traced.

The trace subcommand can be run only while the dbx debug program is running.

Examples

To trace each call to the printf() procedure, enter:

trace printf

To trace each execution of line 22 in the hello.c file, enter:

trace "hello.c":22

To trace changes to the x variable within the main procedure, enter:
trace x in main

To trace at line 52 only when mutex $m1 is not held, enter:

trace at 52 if $m2.lock ==

Related Information
The tracei subcommand.

tracei subcommand for dbx: Turn on tracing

Format

Description

tracei [if condition]

tracei address [at address] [if condition]
tracei address [in procedure] [if condition]
tracei expression at address [if condition]

The tracei subcommand turns on tracing when:

The contents of the storage at the address change, if the address argument is
specified.

The instruction at the specified address is executed, if the ataddress option is
specified.

The procedure specified by procedure is active, if the inprocedure option is
included.

The condition specified by the condition argument is true, if the ifcondition option
is included.

Chapter 2. Shell Command Descriptions 209

dbx: tracei

Options
ataddress
Specifies an address. Tracing is enabled when the contents of this address
change.
ifcondition
Specifies a condition, the meeting of which causes tracing to be enabled.
inprocedure
Specifies a procedure. Tracing is enabled when this procedure is active.
Usage Note
The tracei subcommand can be run only while the dbx debug program is running.
Examples

1. To trace each instruction run, enter:
tracei

2. To trace each time the instruction at address 0X100020FO is run, enter:
tracei at 0x100020f0

3. To trace each time the contents of memory location 0X20004020 change while
the main procedure is active, enter:

tracei 0x20004020 in main

4. To trace at address 0x2d04567 only when thread $t2 reaches that address,
enter:

tracei at 0x2d04567 if $t2=§current

Related Information
The trace subcommand.

unalias subcommand for dbx: Remove an alias

Format

unalias name
Description

The unalias subcommand removes the alias specified by the name argument.
Usage Note

The unalias subcommand can be run only while the dbx debug program is running.
Example

To remove an alias named printx, enter:

unalias printx

Related Information
The alias subcommand.

210 2/0S V1R4.0 UNIX System Services Command Reference

dbx: unset

unset subcommand for dbx: Delete a variable

Format
unset name
Description
The unset subcommand deletes the dbx debug program variable associated with
the name specified by the name argument.
Usage Note
The unset subcommand can be run only while the dbx debug program is running.
Example

To delete the variable inhibiting the display of floating-point registers, enter:
unset $noflregs

Related Information
The set subcommand.

up subcommand for dbx: Move the current function up the stack

Format
up [count]
Description
The up subcommand moves the current function up the stack count number of
levels. The current function is used for resolving names. The default for the count
argument is 1.
Usage Note
The up subcommand can be run only while the dbx debug program is running.
Examples
1. To move the current function up the stack two levels, enter:
up 2
2. To display the current function on the stack, enter:
up 0

Related Information
The down subcommand.

use subcommand for dbx: Set the list of directories to be searched

Format
use [directory...]

Chapter 2. Shell Command Descriptions 211

dbx: use

Description

Usage Note

Examples

The use subcommand sets the list of directories to be searched when the dbx
debug program looks for source files. If the use subcommand is specified without
arguments, the current list of directories to be searched is displayed.

If the C primary source is in an MVS data set, the use subcommand can be
specified with a double-slash (//) argument to indicate that the source file be sought
outside the hierarchical file system.

The use subcommand can be run only while the dbx debug program is running.

1. To change the list of directories to be searched to the working directory, the
parent directory, and /tmp, enter:

use . .. /tmp

2. To change the list of directories to be searched to look for the C source as an
MVS data set, enter:

use //

Related Information

The edit and list subcommands.

whatis subcommand for dbx: Display the type of program components

Format

Description

Usage Notes

Examples

whatis name

The whatis subcommand displays the declaration of name, where the name
argument designates a variable, procedure, or function name, optionally qualified
with a block name.

1. Variables declared with the const attribute (in your C program) are displayed
without the const attribute.

2. The whatis subcommand can be run only while the dbx debug program is
running.

1. To display the declaration of the x variable, enter:
whatis x

2. To display the declaration of the main function, enter:
whatis main

3. To display the declaration of the x variable within the main function, enter:
whatis main.x

4. To display the declaration of a specific condition variable, $c1, enter:
whatis $cl

5. To display the declaration of a specific mutex object, $m1, enter:

212 2/0S V1R4.0 UNIX System Services Command Reference

dbx: whatis

whatis $ml
6. To display the declaration of a specific thread, $t1, enter:
whatis $t1

where subcommand for dbx: List active procedures and functions

Format

Description

Options

Usage Note

Example

where [>file]

The where subcommand displays a list of active procedures and functions. By
using the >file option, you can redirect the output of this subcommand to the
specified file.

>flag Redirects output to the specified file.

The where subcommand can be run only while the dbx debug program is running.

To display the list of active routines, enter:
where

Related Information

The up and down subcommands.

whereis subcommand for dbx: Display the full qualifications of

symbols

Format

Description

Usage Note

Example

whereis identifier

The whereis subcommand displays the full qualifications of all the symbols whose
names match the specified identifier. The order in which the symbols print is not
significant.

The whereis subcommand can be run only while the dbx debug program is
running.

To display the qualified names of all symbols named x, enter:
whereis x

Related Information

The which subcommand.

Chapter 2. Shell Command Descriptions 213

dbx: which

which subcommand for dbx: Display the full qualification of an

identifier

Format

Description

Usage Note

Example

which identifier

The which subcommand displays the full qualification of the given identifier. The full
qualification consists of a list of the outer blocks with which the identifier is
associated.

The which subcommand can be run only while the dbx debug program is running.

To display the full qualification of the x symbol, enter:
which x

Related Information

The whereis subcommand.

dd — Convert and copy a file

Format

Description

dd [bs=size] [cbs=size] [conv=conversion] [count=n] [ibs=size] [if=file]
[imsg=string] [iseek=n] [obs=s] [of=file] [omsg=string] [seek=n] [skip=n]>

dd reads and writes data by blocks. It can convert data between formats. It is
frequently used for such devices as tapes that have discrete block sizes, or for fast
multisector reads from disks. dd performs conversions to accommodate
nonprogrammable terminals, which require deblocking, conversion to and from
EBCDIC, and fixed-length records.

dd processes the input data as follows:
1. dd reads an input block.

2. If this input block is smaller than the specified input block size, dd pads it to the
specified size with null bytes. When you also specify a block or unblock
conversion, dd uses spaces instead of null bytes.

3. If you specified bs=s and requested no conversion other than sync or noerror,
dd writes the padded (if necessary) input block to the output as a single block
and omits the remaining steps.

4. If you specified the swab conversion, dd swaps each pair of input bytes. If there
is an odd number of input bytes, dd does not attempt to swap the last byte.
5. dd performs all remaining conversions on the input data independently of the

input block boundaries. A fixed-length input or output record may span these
boundaries.

214 2z/0S V1R4.0 UNIX System Services Command Reference

Options

dd

6. dd gathers the converted data into output blocks of the specified size. When dd
reaches the end of the input, it writes the remaining output as a block (without
padding if conv=sync is not specified). As a result, the final output block may be
shorter than the output block size.

bs=size
Sets both input and output block sizes to size bytes. You can suffix this
decimal number with w, b, k, or x number, to multiply it by 2, 512, 1024, or
number, respectively. You can also specify size as two decimal numbers
(with or without suffixes) separated by x to indicate the product of the two
values. Processing is faster when ibs and obs are equal, since this avoids
buffer copying. The default block size is 1B. bs=size supersedes any
settings of ibs=size or obs=size.

If you specify bs=size and you request no other conversions than noerror,
notrunc, or sync, dd writes the data from each input block as a separate
output block; if the input data is less than a full block and you did not
request sync conversion, the output block is the same size as the input
block.

cbs=size
Sets the size of the conversion buffer used by various conv options.

conv=conversion[, conversion, ...]
conversion can be any one of the following:

ascii Converts EBCDIC input to ASCII for output; it is provided for
compatibility purposes only.

To copy a file and convert between a shell code page and ASCII,
use iconv, not dd.

block Converts variable-length records to fixed-length records. dd treats
the input data as a sequence of variable-length records (each
terminated by a newline or an EOF character) independent of the
block boundaries. dd converts each input record by first removing
any newline characters and then padding (with spaces) or
truncating the record to the size of the conversion buffer. dd reports
the number of truncated records on standard error (stderr). You
must specify cbs=size with this conversion.

Note: When working with doublebyte characters, dd truncates the
record after the last complete doublebyte character that will
fit in the conversion buffer. dd then pads the record with
spaces if it is shorter than the conversion buffer size.

convfile
Uses convfile as a translation table if it is not one of the
conversion formats listed here and it is the name of a file of exactly
256 bytes.

You can perform multiple conversions at the same time by
separating arguments to conv with commas; however, some
conversions are mutually exclusive (for example, ucase and Icase).
Notes:

1. When you specify one or more of the character set conversions
(ascii, ebcdic, ibm, or convfile), dd assumes that all

Chapter 2. Shell Command Descriptions 215

dd

216

characters are singlebyte characters, regardless of the locale.
Do not use these conversions with doublebyte character sets.

2. When working with DBCS text, dd treats the input and output
files as character strings and handles DBCS characters
correctly (no splitting and retaining of proper shift states). This
happens only if any of the conversion options (block, unblock,
ucase, or Icase) are specified. Otherwise, DBCS strings can be
corrupted with the seek, count, or iseek processing.

ebcdic
Converts ASCII input to EBCDIC for output; it is provided for
compatibility purposes only.

To copy a file and convert between a shell code page and ASCII,
use iconv, not dd.

ibm Like ebedic, converts ASCII to EBCDIC; it is provided for
compatibility purposes only.

To copy a file and convert between code page 01047 (used in the
z/OS shell) and ASCII, use iconv, not dd.

Icase Converts uppercase input to lowercase.

noerror
Ignores errors on input.

notrunc
Does not truncate the output file. dd preserves blocks in the output
file that it does not explicitly write to.

swab Swaps the order of every pair of input bytes. If the current input
record has an odd number of bytes, this conversion does not
attempt to swap the last byte of the record.

sync Specifies that dd is to pad any input block shorter than ibs to that
size with NUL bytes before conversion and output. If you also
specified block or unblock, dd uses spaces instead of null bytes for
padding.

ucase Converts lowercase input to uppercase.

unblock
Converts fixed-length records to variable-length records by reading
a number of bytes equal to the size of the conversion buffer,
deleting all trailing spaces, and appending a newline character. You
must specify cbs=size with this conversion.

count=n
Copies only n input blocks to the output.

ibs=size
Sets the input block size in bytes. You specify it in the same way as with
the bs option.

if=file Reads input data from file. If you don’t specify this option, dd reads data
from standard input (stdin).

imsg=string
Displays string when all data has been read from the current volume,

replacing all occurrences of %d in string with the number of the next volume
to be read. dd then reads and discards a line from the controlling terminal.

z/OS V1R4.0 UNIX System Services Command Reference

Example

Localization

dd

iseek=n
seeks to the nth block of the input file. The distinction between this and the
skip option is that iseek does not read the discarded data. There are some
devices, however, such as tape drives and communication lines, on which
seeking is not possible, so only skip is appropriate.

obs=size
Sets the output block size in bytes. You specify it in the same way as the
bs value. The size of the destination should be a multiple of the value
chosen for size. For example, if you choose obs=10K, the destination’s size
should be a multiple of 10K.

of=file Writes output data to file. If you don’t specify this option, dd writes data to
standard output (stdout). dd truncates the output file before writing to it,
unless you specified the seek=n operand. If you specify seek=n, but do not
specify conv=notrunc, dd preserves only those blocks in the output file over
which it seeks. If the size of the seek plus the size of the input file is less
than the size of the output file, this can result in a shortened output file.

omsg=string
Displays string when dd runs out of room while writing to the current
volume. Any occurrences of %d in string are replaced with the number of the
next volume to be written. dd then reads and discards a line from the
controlling terminal.

seek=n
Initially seeks to the nth block of the output file.

Note: Use caution when working with DBCS characters and the seek
option. Seeking into the output file that contains DBCS characters
can cause the DBCS string in the output file to be corrupted. Be sure
that the seek count is not aligned with an existing DBCS string in the
output file. Otherwise, part of the existing DBCS string either is
written over with singlebyte data or has extra shift codes from the
input file’s DBCS data.

skip=n
Reads and discards the first n blocks of input.

Entering:
dd if=in of=out conv=ascii cbs=80 ibs=6400 obs=512

converts 80-byte fixed-length EBCDIC card images in 6400-byte input blocks to
variable-length ASCII lines, 512 bytes to the output block.

dd uses the following localization environment variables:
* LANG

« LC_ALL

- LC_CTYPE

« LC_MESSAGES

* NLSPATH

See [Appendix F|for more information.

Chapter 2. Shell Command Descriptions 217

dd
Exit Values

0 Successful completion

1 Failure due to any of the following:
* 1/O errors on read/write
* Incorrect command-line option
* Incorrect arguments to a conversion

2 Failure resulting in a usage message such as:
* An option that should contain = does not
* Unknown or incorrect command-line option

Messages
Possible error messages include:
badly formed number number
A value specified as a number (for example, a block size) does not have
the form of a number as recognized by dd. For example, you may have
followed the number with a letter that dd does not recognize as a block-size
unit (w, b, k).
Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

The conv=ascii, conv=ebcdic, conv=ibm, conv=convfile, iseek, imsg, and
omsg options plus the w suffix described in the bs= option are all extensions of the
POSIX standard.

Related Information
cp, cpio, iconv, mv, tr

df — Display the amount of free space in the file system

Format
df [-kPStv][filename] ...

Description

df shows the amount of free space left on a file system. Space can have the
following values:

Space Used
Total amount of space allocated to existing files in the file system.

Space Free
Total amount of space available in file system for the creation of new files
by unprivileged users.

Space Reserved
Space reserved by the system which is not normally available to a user.

Total Space
Includes space used, space free, and space reserved.

218 2/0S V1R4.0 UNIX System Services Command Reference

Options

df

df measures space in units of 512-byte disk sectors. You can specify a particular
file system by naming any filename on that file system. If you do not give an
argument, df reports space for all mounted file systems known to the system, in the
following format:

* File system root
* File system name
» Space available and total space

The total space reported is the space in the already allocated extents (primary
and any already allocated secondary extents) of the HFS data set that holds this
file system. Therefore, the total space may increase as new extents are
allocated.

* Number of free files (inodes).

This number is only meaningful for file systems created using DFSMS 1.3.0 and
later. For file systems created with earlier versions of DFSMS, this number will
always be 4 294 967 295.

* File system status

-k Uses 1024-byte (1KB) units instead of the default 512-byte units when
reporting space information.

-P Lists complete information on space used, in the following order:
* File system name
» Total space
» Space used
» Space free
* Percentage of space used
* File system root

-S Display SMF accounting fields.

-t Display total allocated file slots, in addition to the total number of free files
that are already displayed.

-V Lists more detailed information on the file system status.
* File system root
* File system name
» Space available and total space
* Number of free files (inodes)
» File system status
* File system type, and mode bits
* File system mount parm data
» File system mount tag value
* Whether ACLs are supported by the security product and file system.
» Aggregate Name, if one exists

For systems in a shared HFS environment, the following additional fields

are displayed:

* File system ID (owner/mounted file system server)

» File system ID issuing a quiesce request

* File system automove status (yes-Y, no-N, include-I, exclude-E or
unmount-U)

* File system client status

» System list and Include/Exclude indicator, if system list exists

Chapter 2. Shell Command Descriptions 219

df
Example

Localization

Exit Values

Portability

If you issue a df —v on a file system whose owner is participating in shared HFS,
status information such as the following will be displayed:

Mounted on Filesystem Avail/Total Files Status
/u/billyjc (OMVS.ZFS.BILLYJC) 365824/3165120 4294924769 Available
ZFS, Read/Write, Device: 17,ACLS=Y, No SUID, Exported, No Security
FSFULL(90,1)

File System owner: AQFT Automove=E Client=N

System List (Exclude): sysnamel sysname2 SysnameN

Quiesce Owner . AQTS Quiesce Jobname : MEGA Quiesce PID: 16777321
Filetag : T=on codeset=1S08859-1

Aggregate Name: POSIX.ZFS.ETC

df uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 Successful completion

1 Failure due to any of the following:
 Inability to access filename
 Inability to access device
* device is not a device

2 Incorrect command-line option

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

Related Information

du, Is

diff — Compare two text files and show the differences

Format

Description

diff [-befHhimnrsw] [-C n] [-c[n]] [-Difname] path1 path2

The diff command attempts to determine the minimal set of changes needed to
convert a file whose name is specified by the path1 argument into the file specified
by the path2 argument.

Input files must be text files. If either (but only one) filename is —, diff uses a copy
of the standard input (stdin) for that file. If exactly one of path? or path2 is a

directory, diff uses a file in that directory with the same name as the other filename.

If both are directories, diff compares files with the same filenames under the two
directories; however, it does not compare files in subdirectories unless you specify

220 2/0S V1R4.0 UNIX System Services Command Reference

Options

diff

the —r option. When comparing two directories, diff does not compare character
special files, or FIFO special files with any other files.

By default, output consists of descriptions of the changes in a style like that of the
ed text editor. A line indicating the type of change is given. The three types are a
(append), d (delete), and c (change). The output is symmetric: A delete in patht is
the counterpart of an append in path2. diff prefixes each operation with a line
number (or range) in path1 and suffixes each with a line number (or range) in
path2. After the line giving the type of change, diff displays the deleted or added
lines, prefixing lines from path1 with < and lines from path2 with >.

Options that control the output or style of file comparison are:

-b Ignores trailing blanks and tabs and considers adjacent groups of blanks
and tabs elsewhere in input lines to be equivalent.

For example, if one file contained a string of three spaces and a tab at a
given location while the other file contained a string of two spaces at the
same location, diff would not report this as a difference.

-C n Shows n lines of context before and after each change. diff marks lines
removed from path1 with —, lines added to path2 with +, and lines changed
in both files with 1.

—c[n] Is equivalent to —Cn, but n is optional. The default value for n is 3. diff
marks lines removed from path1 with —, lines added to path2 with +, and
lines changed in both files with !.

—Difname
Displays output that is the appropriate input to the C preprocessor to
generate the contents of path2 when ifname is defined, and the contents of
path1 when ifname is not defined.

- Writes out a script of commands for the ed text editor, which converts path1
to path2. diff sends the output to the standard output (stdout).

—f Writes a script to stdout (but it will be in a form not suitable for use with the
ed editor) showing the modifications necessary to convert path1 to path2 in
the reverse order of that produced by the —e option. The commands
produced will be reversed from that produced by —e, and the line number
ranges will be separated by spaces, rather than commas. This option
conflicts with the —m option.

-H Uses the half-hearted (—h) algorithm only if the normal algorithm runs out of
system resources.

-h Uses a fast, half-hearted algorithm instead of the normal diff algorithm. This
algorithm can handle arbitrarily large files; however, it is not particularly
good at finding a minimal set of differences in files with many differences.

=i Ignores the case of letters when doing the comparison.

-m Produces the contents of path2 with extra formatter request lines
interspersed to show which lines were added (those with vertical bars in the
right margin) and deleted (indicated by a * in the right margin).

-M Is an IBM internal option and is not supported.
-n Is an IBM internal option and is not supported.
-N Is an IBM internal option and is not supported.

Chapter 2. Shell Command Descriptions 221

diff

-r Compares corresponding files under the directories, and recursively
compares corresponding files under corresponding subdirectories under the
directories. You can use this option when you specify two directory names
on the command line.

-s Compares two directories, file by file, and prints messages for identical files
between the two directories.

-w Ignores white space when making the comparison.

Examples

The following example illustrates the effect of the —c option on the output of the diff
command. The following two files, price1 and price2, are compared with and
without the use of the —c option.

The contents of pricel are as follows:

Company X Price List:

$ 0.39 -- Package of Groat Clusters

$ 5.00 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)

$ 20.00 -- Asparagus Firmness Meter

$ 25.00 -- Package of Seeds for 35 Herbs

$ 30.00 -- Child's Riding Hood (Red)

$ 35.00 -- Genuine Placebos

$ 45.00 -- Case of Simulated Soy Bean 0il
$ 75.88 -- No-Name Contact Lenses

$ 99.99 -- Kiddie Destructo-Bot

$125.00 -- Emperor's New Clothes

The contents of price2 are as follows:

Company X Price List:

$ 0.39 -- Package of Groat Clusters

$ 5.49 -- Candy Apple Sampler Pack

$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)

$ 17.00 -- Simulated Naugahyde cleaner

$ 20.00 -- Asparagus Firmness Meter

$ 25.00 -- Package of Seeds for 35 Herbs

$ 30.00 -- Child's Riding Hood (Red)

$ 35.00 -- Genuine Placebos

$ 45.00 -- Case of Simulated Soy Bean 0il
$ 75.88 -- No-Name Contact Lenses

$ 99.99 -- Kiddie Destructo-Bot

The command:
diff pricel price2

results in the following output:

3c3
<$ 5.00 -- Candy Apple Sampler Pack

>§$ 5.49 -- Candy Apple Sampler Pack
5ab

> $ 17.00 -- Simulated Naugahyde cleaner
13d13

< $125.00 -- Emperor's New Clothes

The addition of the —c option, as in:
diff -c pricel price2

222 7/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

diff

results in the following output:

**% pricel Wed Oct 1 13:59:18 1997
--- price2 Wed Oct 1 14:03:36 1997

kkhkkkkkkhkhkkkhhkkhik
kkk], 8 kkkk
Company X Price List:

$ 0.39 -- Package of Groat Clusters
1'§$ 5.00 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child's Riding Hood (Red)
1,9 —---
Company X Price List:

$ 0.39 -- Package of Groat Clusters
1'$ 5.49 -- Candy Apple Sampler Pack
$ 12.00 -- Box of Crunchy Frog Chocolates
$ 15.99 -- Instant Rain (Just Add Water)
+§$ 17.00 -- Simulated Naugahyde cleaner
$ 20.00 -- Asparagus Firmness Meter
$ 25.00 -- Package of Seeds for 35 Herbs
$ 30.00 -- Child's Riding Hood (Red)

kKKK IRKRRRKRK KK
*kx 10,13 *x*xk

$ 45.00 -- Case of Simulated Soy Bean 0il
$ 75.88 -- No-Name Contact Lenses
$ 99.99 -- Kiddie Destructo-Bot

- $125.00 -- Emperor's New Clothes

--- 11,13 ----

diff —c marks lines removed from price1 with —, lines added to price1 with + and
lines changed in both files with !. In the example, diff shows the default three lines
of context around each changed line. One line was changed in both files (marked
with 1), one line was added to price1 (marked with +), and one line was removed
from pricel (marked with -).

Note: If there are no marks to be shown in the corresponding lines of the file being
compared, the lines are not displayed. Lines 11 to 13 of price2 are
suppressed for this reason.

diff uses the following localization environment variables:
* LANG

- LC_ALL

« LC_CTYPE

+ LC_MESSAGES

+ LC_TIME

« LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

0 No differences between the files compared.

1 diff compared the files and found them to be different.

Chapter 2. Shell Command Descriptions 223

diff

Messages

Limits

Portability

2 Failure due to any of the following:
* Incorrect command-line argument
 Inability to find one of the input files
* QOut of memory
* Read error on one of the input files

4 At least one of the files is a binary file containing embedded NUL (\0) bytes
or newlines that are more than LINE_MAX bytes apart.

Possible error messages include:

file filename: no such file or directory
The specified filename does not exist. filename was either typed explicitly,
or generated by diff from the directory of one file argument and the
basename of the other.

Files file1 and file2 are identical
The —s option was specified and the two named files are identical.

Common subdirectories: name and name
This message appears when diff is comparing the contents of directories,
but you have not specified —r. When diff discovers two subdirectories with
the same name, it reports that the directories exist, but it does not try to
compare the contents of the two directories.

Insufficient memory (try diff —h)
diff ran out of memory for generating the data structures used in the file
differencing algorithm. (See .) The —h option of diff can handle any
size file without running out of memory.

Internal error—cannot create temporary file
diff was unable to create a working file that it needed. Ensure that you
either have a directory /tmp or that the environment contains a variable
TMPDIR, which names a directory where diff can store temporary files.
Also, ensure that there is sufficient file space in this directory.

Missing ifdef symbol after -D
You did not specify a conditional label on the command line after the —D
option.

Only one file may be —
Of the two input files normally found on the command line of diff, only one
can be the standard input (stdin).

Too many lines in filename
A file of more than the maximum number of lines (see [‘Limits”) was given to
diff.

The longest input line is 1024 bytes. Except under —h, files are limited to INT_MAX
lines. INT_MAX is defined in limits.h.

POSIX.2, X/Open Portability Guide, UNIX systems.

The -D, —f, —H, —h, —i, —m, —s, and —w options, and the n argument to the —c
option, are extensions of the POSIX standard.

224 7/0S V1R4.0 UNIX System Services Command Reference

diff

Related Information

cmp, comm, patch

J. W. Hunt and M. D. Mcliroy, An Algorithm for Differential File Comparison, Report
41, from Computing Science, Bell Laboratories, Murray Hill, NJ 07974, (June 1976),
9 pages.

dircmp — Compare directories

Format

Description

Options

Localization

dircmp [-d] [-s] [-wn] dir1 dir2

Note: The dircmp utility is fully supported for compatibility with older UNIX
systems. However, it is recommended that diff —r be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

dircmp examines dir? and dir2 and generates listings about the contents of the
directories. Listings of files that are unique to each directory are generated for all
the options. If no option is entered, a list is output indicating whether the filenames
common to both directories have the same contents.

—d Compare the contents of files with the same name in both directories and
output a list telling what must be changed in the two files to bring them into
agreement. The list format is described in diff.

-s Suppress messages about identical files.

-wn Change the width of the output line to n characters. The default width is 72.

dircmp uses the following localization environment variables:
« LANG

- LC_ALL

« LC_MESSAGES

* NLSPATH

See [Appendix F|for more information.

Related Information

cmp, diff

dirname — Return the directory components of a pathname

Format

dirname pathname

Chapter 2. Shell Command Descriptions 225

dirname

Description

Examples

Localization

Exit Values

Portablity

dirname deletes the trailing part of a filename. The result is the pathname of the
directory that contains the file. This is useful in shell scripts. dirname does not try
to validate the pathname. For validation, use pathchk.

dirname follows these rules:

CoNoOO AWM=

If pathname is //, return it.

Otherwise, if it is all slashes, return one slash.

Otherwise, remove all trailing slashes.

If there are no slashes remaining in pathname, return period (.).
Otherwise, remove trailing nonslash characters.

If the remaining string is //, return it.

Otherwise, remove any trailing slashes.

If the resulting string is empty, return period (.).

Otherwise, return the resulting string.

The command:

dirname src/lib/printf.c

produces:
src/1ib

dirname uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

See|Appendix F|for more information.

Successful completion
Failed
Unknown command-line option

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
basename, pathchk

- (dot) — Run a shell file in the current environment

Format

. file [argument ...]

226 2/0S V1R4.0 UNIX System Services Command Reference

Description

Usage Notes

Localization

Exit Values

Portability

- (dot)

. (dot) runs a shell script in the current environment and then returns. Normally, the
shell runs a command file in a child shell so that changes to the environment by
such commands as cd, set, and trap are local to the command file. The . (dot)
command circumvents this feature.

If there are slashes in the filename, . (dot) looks for the named file. If there are no
slashes . (dot) uses the search PATH variable to find file. This may surprise some
people when they use dot to run a file in the working directory, but their search
rules are not set up to look at the working directory. As a result, the shell doesn’t
find the shell file. If you have this problem, you can use:

. J/file

This indicates that the shell file you want to run is in the working directory. Also, the
file need not be executable, even if it is looked for on the PATH. If you specify an
argument list argument ..., . (dot) sets the positional parameters to this list before
execution.

1. . (dot) is a special built-in shell command.

2. The file specified is treated as a shell script containing shell commands. Files
which are not shell scripts (e.g. REXX execs, executable programs) should not
be specified as file.

. (dot) uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See[Appendix F|for more information.

1 The path search failed
2 Failure because of an incorrect command-line option

Otherwise, the exit status is the exit status of the last command run from the script.

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

cd, set, sh, trap

dspcat — Display all or part of a message catalog

Format

dspcat [—gt] CatalogName [SetNumber [MessageNumber]]

Chapter 2. Shell Command Descriptions 227

dspcat
Description

Options

Examples

dspcat displays a particular message, all of the messages in a set, or all of the
messages in a catalog. Messages are displayed as they are specified in the
message catalog; no substitution of variables takes place.

It directs the messages to standard output (stdout).

It has the following parameters:
* The CatalogName parameter specifies a message catalog.
* The SetNumber parameter specifies a set in the catalog specified by the

CatalogName parameter. If you specify a nonexistent SetNumber value, all
messages in the catalog are displayed.

* The MessageNumber parameter specifies a particular message in the set
specified by the SetNumber parameter.

If you include all three parameters, dspcat displays a particular message. If you do
not include the MessageNumber parameter, or if the MessageNumber value is in
error, all the messages in the set are displayed. If you specify only the
CatalogName parameter, all the messages in the catalog are displayed. You must
include the SetNumber parameter if you include the MessageNumber parameter.

Use the NLSPATH environment variable to find the specified message catalog if
slash (/) characters are not used in the value of the CatalogName parameter.

-g Formats the output so it can be used as input to the gencat command. The
MessageNumber parameter is not valid when —g is specified.

-t Displays the timestamp of the message catalog.

To display message number 2 in set number 1 of test.cat, enter:
dspcat test.cat 1 2

dspmsg — Display selected messages from message catalogs

Format

Description

dspmsg [-d] [-s SetNumber] CatalogName MessageNumber
['DefaultMessage’[Arguments]]

dspmsg displays either the text of a particular message from a message catalog
generated with the gencat command or, if the message cannot be retrieved, a
default message supplied as a parameter to the command. dspmsg directs the
message to standard output. This command is intended for use in shell scripts as a
replacement for the echo command.

The NLSPATH environment variable and the LANG category are used to find the
specified message catalog if / (slash) characters are not used in the value of the
CatalogName parameter. If the catalog named by the CatalogName parameter is
not found or if the message named by the MessageNumber parameter (and

228 2/0S V1R4.0 UNIX System Services Command Reference

Options

Examples

dspmsg

optional SetNumber value) is not found, then the supplied DefaultMessage value
is displayed. If a DefaultMessage value is not specified, a system-generated error
message is displayed.

dspmsg allows up to ten string arguments to be substituted into the message if it
contains the %s or %n$s, fprintf() conversion specification. Only string variables are
allowed. If arguments are specified, then a DefaultMessage must also be specified.

Missing arguments for conversion specifications result in a dspmsg error message.
Normal fprintf() subroutine control character escape codes (for example, —n) are
recognized.

-d If you are receiving the default message, use this option to request
debugging information on why dspmsg cannot get the message from the
message catalog.

—s SetNumber
Specifies an optional set number. The default value for the SetNumber
variable is 1.

To display set number 1, message number 2 of the test.cat catalog, enter:

dspmsg —s 1 test.cat 2 'message %s not found' 2

If the message is not found, message 2 not found is displayed.

du — Summarize usage of file space

Format

Description

Options

du [—al-s[-krtx] [pathname ...]

du reports the amount of file space used by the files indicated by the given
pathname. If the pathname is a directory, du reports the total amount of file space
used by all files in that directory and in each subdirectory in its hierarchy. If you do
not specify a pathname, du assumes the current directory. Files with multiple links
are only counted once. On systems supporting symbolic links, only the disk space
used by the symbolic link is counted.

du measures file space in 512-byte units.

-a Generates a report for all files in pathname.

-k Displays file sizes in 1024-byte (1KB) units.

-r Reports files that cannot be opened and directories that cannot be read;
this is the default.

-s Does not display file size totals for subdirectories.

-t Displays the total amount of space used by all pathnames examined.

Chapter 2. Shell Command Descriptions 229

du

Usage Notes

Localization

Exit Values

Portability

-X Displays file sizes for only those files contained on the same device as
pathname.

du computes file space in units of 512 bytes. The actual disk space used by files
and directories may be more, since some systems allocate space in units of some
multiple of a sector. On UNIX System V, it is usually two sectors; on UNIX Version
7, it is one sector.

z/OS UNIX System Services allocates files in blocks of 4096 bytes.

du uses the following localization variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

+ NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
* Incorrect command-line option
» Cannot access a directory
» Cannot read a directory
» Cannot access file information

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

The -t option is an extension to the POSIX standard.

Related Information

df, find, Is

echo — Write arguments to standard output

Format

Description

echo argument ...

tcsh shell: echo [-n] word ...

echo writes its arguments, specified with the argument argument, to standard
output. echo accepts these C-style escape sequences:

\a Bell

\b Backspace

\c Removes any following characters, including \n and \r.
\f Form feed

230 2/0S V1R4.0 UNIX System Services Command Reference

Examples

Usage Note

Localization

Exit Value

echo

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\Onum The byte with the numeric value specified by the zero to three-digit octal
num.

\- Backslash

echo follows the final argument with a newline unless it finds \c in the arguments.
Arguments are subject to standard argument manipulation.

echo in the tcsh shell

In the tcsh shell, echo writes each word to the shell’s standard output, separated by
spaces and terminated with a newline.

tcsh echo accepts these C-style escape sequences:

\a Bell

\b Backspace

\e Escape

\f Form feed

\n Newline

\r Carriage return
\t Horizontal tab
\v Vertical tab

\nnn The EBCDIC character corresponding to the octal number nnn

See [‘tcsh — Invoke a C shell” on page 570}

1. One important use of echo is to expand filenames on the command line, as in:
echo *.[ch]

This displays the names of all files with names ending in .c or .h—typically C
source and include (header) files. echo displays the names on a single line. If
there are no filenames in the working directory that end in .c or .h, echo simply
displays the string *.[ch].

2. echo is also convenient for passing small amounts of input to a filter or a file:
echo 'this is\nreal handy' > testfile

echo is a built-in shell command.

echo uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

* LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

echo always returns the following exit status value:

Chapter 2. Shell Command Descriptions 231

echo

Portability

(] Successful completion

POSIX.2, X/Open Portability Guide, UNIX System V.

The POSIX.2 standard does not include escape sequences, so a strictly conforming
application cannot use them. printf is suggested as a replacement.

Related Information

sh, tcsh

ed — Use the ed line-oriented text editor

Format

Description

Options

Addresses

ed [-bs] [-p prompf] [file]

ed is a line-oriented text editor that lets you manipulate text files interactively. ed
reads the text of a file into memory and stores it in an area called a buffer. Various
subcommands let you edit the text in the buffer. You can also write the contents of
the buffer back out to the file, thereby overwriting the old contents of the file.

-b Lets you edit larger files by restricting the amount of memory dedicated to
paging. This frequently makes ed run slower.
—p prompt

Displays the given prompt string prompting you to input a subcommand. By
default, ed does not usually prompt for subcommand input. See the
description of the P subcommand for more on subcommand prompting (see
['Subcommands” on page 233).

-s Puts ed into a quiet mode, in which e, E, r, and w, subcommands do not
display file size counts; the q and e subcommands do not check buffer
modification; and ! is not displayed after calling the shell to run a
subcommand. This mode is particularly useful when you invoke ed from
within a shell script.

If the optional file argument is present on the command line, ed reads the specified
file into the editor by simulating an efile subcommand.

You can prefix subcommands in ed with zero, one, or two addresses. These
addresses let you refer to single lines or ranges of lines in the buffer. You do not
need to specify addresses for certain subcommands that use default addresses.
Consult the description for a particular subcommand. You can construct each
address out of the following components:

The single dot character represents the current line in the buffer. Many
subcommands set the current line; for example the e command sets it to
the last line of the new file being edited.

$ The dollar sign refers to the last line in the buffer.

232 2/0S V1R4.0 UNIX System Services Command Reference

Subcommands

n

ed

The number n refers to the nth line in the buffer.

/regexp/

This searches for a line containing a string that matches the regular
expression, regexp. (For information on regular expressions, see
) The search begins at the line immediately following the current
line. It proceeds forward through the buffer; if ed reaches the end of the
buffer without finding a match, it wraps around to the first line of the buffer
and continues the search. If ed does not find a match, the search ends
when it reaches the original current line. If it does find a match, the address
/regexp/ refers to the first matching line. If you omit regexp, the last used
regular expression becomes the object of the search. You can omit the
trailing /. Within regexp, \/ represents a literal slash and not the regexp
delimiter.

?regexp?

This is similar to the previous address form, except that the search goes
backward through the buffer. If the search reaches the first line in the buffer
without finding a match, ed wraps around and continues searching
backward from the last line in the buffer. If you omit regexp, the last used
regular expression becomes the object of the search. You can omit the
trailing 2. Within regexp, \? represents a literal question mark and not the
regexp delimiter.

The address is the line marked with the mark name [. The name / must be
a lowercase letter set by the k subcommand.

You can combine these basic addresses with numbers using the + and — operators,
with the usual interpretation. Missing left operands default to . (dot); missing right
operands default to 1. Missing right operands also have a cumulative effect; so an
address of — — refers to the current line number less two.

You can specify address ranges in the following ways:

al,a2

at;a2

Specifies a range of addresses from address a7 to address a2, inclusive. If
you omit a7 and a2 (that is, the comma alone is specified), this is
equivalent to the range 1,$.

Is similar to the previous form except that ed resets the current line after
calculating the first address, a1, so that the second address, a2, is relative
to at. If you omit a7 and a2 (that is, the semicolon alone is specified), this
is equivalent to .;$. If you specify only a7 and the command requires both
al and a2, the command operates as though you specified a range of:

al;. command

Is equivalent to ., .+22 (that is, page forward), except that it never attempts
to address any line beyond $.

Is equivalent to .-22,. (that is, page backward), except that it never
addresses any line before line 1.

An ed command has the form [address] command

All commands end with a newline; you must press <Enter>. Most commands allow
only one command on a line, although you can modify commands by appending the
In, n, and p commands.

Chapter 2. Shell Command Descriptions 233

ed

234

Subcommands generally take a maximum of zero, one, or two addresses,
depending upon the particular subcommand. In the following descriptions, we show
commands with their default addresses (that is the addresses used when you don’t
specify any addresses) in a form that shows the maximum number of permitted
addresses for the command. In any of the subcommands that take a file argument,
file can be a pathname or:

lcommand-1line

If you use the ! form, ed runs the given command line, reading its standard output
(stdout) or writing its standard input (stdin), depending on whether the ed
command does reading or writing.

ed accepts the following subcommands:

.a Appends text after the specified line. Valid addresses range from 0 (text is
placed at the beginning of the buffer, before the first line) to $ (text is placed
after the last line of the buffer). ed reads lines of text from the workstation
until a line consisting solely of an unescaped . (dot) is entered. ed sets the
current-line indicator to the last line appended.

.:C Changes the addressed range of lines by deleting the lines and then
reading new text in the manner of the a or i subcommands.

..d Deletes the addressed range of lines. The line after the last line deleted
becomes the new current line. If you delete the last line of the buffer, ed
sets the current line to the new last line. If no lines remain in the buffer, it
sets the current line to 0.

E[file] Is similar to the e command, but ed gives no warning if you have changed
the buffer.

e [file] Replaces the contents of the current buffer with the contents of file. If you
did not specify file, ed uses the remembered filename, if any. In all cases,
the e subcommand sets the remembered filename to the file that it has just
read into the buffer. ed displays a count of the bytes in the file unless it is in
quiet mode. If you have changed the current buffer since the last time its
contents were written, ed warns you if you try to run an e subcommand,
and does not run the subcommand. If you enter the e subcommand a
second time, ed goes ahead and runs the command.

f [file] Changes the remembered filename to file. ed displays the new
remembered filename. If you do not specify file, ed displays the current
remembered filename.

1,$G/regexp/
Is similar to the g command except that when ed finds a line that matches
regexp, it prints the line and waits for you to type in the subcommand to be
run. You cannot use the a, ¢, i, g, G, v, and V subcommands. If you enter
&, the G subcommand reruns the last subcommand you typed in. If you just
press <Enter>, G does not run any subcommand for that line.

1,89/regexp/command
Performs command on all lines that contain strings matching the regular
expression regexp. This subcommand works in two passes. In the first
pass, ed searches the given range of lines and marks all those that contain
strings matching the regular expression regexp. The second pass actually
performs command on those lines. You cannot use !, g, G, V, or v as
command. command consists of one or more ed subcommands, the first of
which must appear on the same line as the g subcommand. All lines of a
multiline command list, except the last, must end with a backslash (\). If

z/OS V1R4.0 UNIX System Services Command Reference

ot

kx

..ma

ed

command is empty, ed assumes it to be the p subcommand. If no lines
match regexp, ed does not change the current line number; otherwise, the
current line number is the one set by the last subcommand in command.
Instead of the slash (/) to delimit regexp, you can use any character other
than space or newline.

Tells ed to display more descriptive messages when errors occur. If ed is
already printing descriptive messages, H returns to terse error messages.
Normally, ed indicates error messages by displaying a ?. When you turn on
descriptive error messages with this subcommand, ed also displays the
descriptive message for the most recent ? message.

Provides a brief explanation of the last error that occurred. This does not
change the current line number.

Works similarly to the a subcommand, except that ed places the text before
the addressed line. Valid addresses range from line 1 to $ (the last line). ed
sets the current line number to the last inserted line.

Joins a range of lines into one line. To be precise, the j command removes
all newline characters from the addressed range of lines, except for the last
one. ed sets the current line number to the resulting combined line.

Marks the addressed line with the mark name x, which is any single
lowercase letter of the alphabet. This lets you refer to a marked line with
the construct 'x. This is called an absolute address, because it always
refers to the same line, regardless of changes to the buffer.

Displays the addressed range of lines, representing nonprintable (control)
characters in a visible manner. ed sets the current line to the last line so
displayed. You can append this subcommand to most other commands, to
check on the effect of those subcommands.

Moves the addressed lines to the point immediately following the line given
by the address a. The address a must not be in the range of addressed
lines. If address a is 0, ed moves the lines to the beginning of the buffer.
The last line moved becomes the new current line.

Displays the addressed lines in a way similar to the p command, but ed
puts the line number and a tab character at the beginning of each line. The
last line displayed becomes the new current line. You can append n to any
subcommand (except for E, e, f, Q, r, w, or !) so that you can check on the
effect that the subcommands had.

Turns on subcommand prompting if it is not already on. If you specified the
—p prompt option on the ed command line, ed displays the prompt string
whenever it is ready for you to type in another subcommand. If you did not
include the —p option, ed uses the * character as a prompt. If subcommand
prompting is currently turned on, issuing the P subcommand turns it off.

Displays (prints) the addressed lines. The last line displayed becomes the
new current line. You can append p to most subcommands, so that you can
check on the effect that the subcommands had.

You can append p to any subcommand (except for E, e, f, Q, r, w, or !) so
that you can check on the effect that the subcommands had.

Quits unconditionally, without checking for buffer changes.

Causes the editor to exit. If you have made changes to the buffer since the
last save and you try to quit, ed issues a warning. Entering the q
subcommand again lets you quit, regardless of unsaved changes.

Chapter 2. Shell Command Descriptions 235

ed

236

$r [file]

Reads the contents of the file into the buffer after the addressed line. If the
address is 0, ed places the text before the first line in the buffer. If you do
not specify file, ed uses the remembered filename; if no remembered
filename exists, file becomes the new remembered name. If file contains
bytes that are not valid in the current character set, they are replaced by
the rubout character.

The r subcommand displays the number of bytes read from file unless you
specified the —s option. The last line read from the file becomes the new
current line. If file is replaced by !, the rest of the line is considered a shell
command line, the output of which is to be read.

.,-Slregexp/new/[flags]

..ta

Searches the specified range of lines for strings matching the regular
expression regexp. Normally the s subcommand replaces the first such
matching string in each line with the string new. The s subcommand sets
the current line to the last line on which a substitution occurred. If ed makes
no such replacements, ed considers it an error.

flags can be one of the following:

Replaces the nth matching string in the line instead of the first one.
Replaces every matching string in each line, not just the first one.
Displays the new current line in the format of the | subcommand.
Displays the new current line in the format of the n subcommand.
Displays the new current line in the format of the p subcommand.

T S —T@Q@ >

You can use any single printable character other than space or newline
instead of / to separate parts of the subcommand provided that you use the
same character to delimit all parts of the subcommand. You can omit the
trailing delimiter.

You can include a newline in the new string by putting a \ immediately in
front of the newline. This is a good way to split a line into two lines. If new
consists only of the % character, s uses the new string from the previous s
command. If & appears anywhere in new, ed replaces it with the text
matching the regexp. If you want new to contain a literal ampersand, or
percent sign, put a backslash (\) in front of the & or % character.

Copies the addressed lines to the point after the line given by the address
a. The address a must not fall in the range of addressed lines. If address a
is 0, ed copies the lines to the beginning of the buffer. This sets the current
line to the last line copied.

Rolls back the effect of the last subcommand that changed the buffer. For
the purposes of u, subcommands that change the buffer are: a, ¢, d, g, G,
i,j, m,r, s, t v, V, and (of course) u. This means that typing u repeatedly
switches the most recent change back and forth. This subcommand sets
the current line number to the value it had immediately before the
subcommand being undone started.

1,$V/regexp/

Is similar to the G subcommand, except that this subcommand gives you
the chance to edit only those lines that do not match the given regular
expression.

1,8v/regexp/commands

Is similar to the g (global) command, except that ed applies the given
commands only to lines that do not match the given regular expression.

z/OS V1R4.0 UNIX System Services Command Reference

ed

1,8W [file]
Is similar to the w subcommand, except that this command appends data to
the given file if the file already exists.

1,8w [file]
Writes the addressed lines of the buffer to the named file. This does not
change the current line. If you do not provide file, ed uses the remembered
filename; if there is no remembered filename, file becomes the remembered
name. If the output file does not exist, ed creates it. ed displays the number
of characters written unless you had specified the —s option.

X Prompts you to enter an encryption key. All subsequent e, r, and w
subcommands use this key to decrypt or encrypt text read from or written to
files. To turn encryption off, issue an X subcommand and press <Return> in
response to the prompt for an encryption key.

lcommand
Runs command as if you typed it to your chosen command interpreter. If
command contains the % character, ed replaces it with the current
remembered filename. If you want a subcommand to contain a literal %, put
a backslash (\) in front of the character. As a special case, typing !! reruns
the previous command.

$= Displays the line number of the addressed line. This does not change the
current line.

= Displays the current line number.

A1.,.41
If you supply zero, one, or two addresses without an explicit subcommand,
ed displays the addressed lines in the mode of the last print subcommand:
p, |, or n. This sets the current line number to the last line displayed.

Environment Variables

Files

ed uses the following environment variables:

COLUMNS
Contains the terminal width in columns. ed folds lines at that point. If it is
not set, ed uses the appropriate value from the terminfo database or if that
is not available, it uses a default of 80.

HOME Contains the pathname of your home directory.

SHELL
Contains the full pathname of the current shell.

TMPDIR
The pathname of the directory being used for temporary files. If it is not set,
ed uses /tmp.

ed uses the following files:

tmp/e*
This is the paging file. It holds a copy of the file being edited. You can
change the directory for temporary files using the environment variable
TMPDIR.

ed.hup
ed writes the current buffer to this file when it receives a hangup signal.

Chapter 2. Shell Command Descriptions 237

ed

Localization

ed uses the following localization environment variables:
 LANG

« LC_ALL

+ LC_COLLATE

« LC_CTYPE

« LC_MESSAGES

+ LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 Successful completion

1 Failure due to any of the following:
» Addressed line out of range
* Only one filename is allowed
* No space for the line table
» Temporary file error
» Badly constructed regular expression
* No remembered regular expression
* File read error
* QOut of memory
* Unknown command
* Command suffix not permitted
* No match found for regular expression
* Wrong number of addresses for the subcommand
* Not enough space after the subcommand
* The name is too long
» Badly formed name
* Subcommand redirection is not permitted
* Restricted shell
* No remembered filename
* The mark name must be lowercase
* The mark name is not defined
* m and t subcommands require a destination address
» The destination cannot straddle source in m and t
* A subcommand not allowed inside g, v, G, or V
* The x subcommand has become X (uppercase)
* The global command is too long
» Write error (no disk space)

2 Usage error
Messages
The error messages are issued only if h or H subcommands are used after ed
displays ?. Possible error messages include:
Destination cannot straddle source in m and t
The range of lines being moved or copied by m or t cannot include the
destination address.
Global command too long
There is a limit on the length of a global instruction (g or v). See for
this limit.
238 2/0S V1R4.0 UNIX System Services Command Reference

Limits

Portability

ed

m and t require destination address
You must follow the m or t subcommands with an address indicating where
you want to move or copy text. You omitted this address.

No remembered filename
You tried to run a subcommand that used a remembered filename (for
example, you used w to write without specifying an output filename).
However, there is no remembered filename at present. Run the
subcommand again, but specify a filename this time.

Restricted shell
The command line invoked the restricted form of ed, but you tried an action
that was not allowed in the restricted editor (the ! subcommand).

Temporary file error
You ran out of space on disk or encountered other errors involving the page
file stored in the temporary file.

Warning: file not saved
You entered a subcommand to quit editing the current file, for example, q or
e to edit a new file; however, you have changed the file since the last time
you saved it. ed is suggesting that you save the file before you exit it;
otherwise, your recent changes will be lost. To save the file, use the w
command. If you really do not want to save the recent changes, use q to
quit or e to edit a new file.

?file An error occurred during an attempt to open or create file. This is applicable
to the e, r, and w subcommands.

? An unspecified error occurred. Use the h or H subcommand for more
information. If the input to ed comes from a script rather than from a
workstation, ed exits when any error occurs.

ed allows a limit of 1024 bytes per line and 28 000 lines per file. It does not allow
the NUL (\0') character. The maximum length of a global command is 256
characters, including newlines.

POSIX.2, X/Open Portability Guide, UNIX systems.

The addresses < and >, the —b option, and the W and X subcommands are
extensions of the POSIX standard.

Related Information

awk, diff, env, ex, grep, sed, vi

See|Appendix C|for more information about regexp.

egrep — Search a file for a specified pattern

Format

egrep [-bceilngsvx] [—e pattern] ... [-f patternfile] ... [pattern] [file ...]

Note: The egrep utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that grep —e be used instead because it may

Chapter 2. Shell Command Descriptions 239

egrep

provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description
See grep.

env — Display or set environment variables for a process

Format
env [-i] [variable=value ...] [command argument ...]
env [-] [variable=value ...] [command argument ...]
Description
If you enter env with no arguments, it displays the environment variable that it
received from its parent (presumably the shell).
Arguments of the form variable=value let you add new environment variables or
change the value of existing environment variables.
If you specify command, env calls command with the arguments specified with the
argument argument that appear on the command line, passing the accumulated
environment variable to this command. The command is run directly as a program
found in the search PATH, and is not interpreted by a shell.
In a doublebyte locale, environment variable values may contain doublebyte
characters. The equal sign (=) must be singlebyte.
Options
env supports the following two options, both of which have the same effect.
=i Specifies that the environment variable inherited by env not be used.
- Specifies that the environment variable inherited by env not be used.
Examples
Compare the output of the following two examples:
env foo=bar env
env —i foo=bar env
Localization
env uses the following localization environment variables:
* LANG
« LC_ALL
« LC_CTYPE
« LC_MESSAGES
* NLSPATH

See|Appendix F|for more information.

Exit Values
0 Successful completion

1 Failure due to any of the following:

240 2/0S V1R4.0 UNIX System Services Command Reference

env

* Not enough memory
* Name is too long

2 Incorrect command-line argument
126 env found command but could not invoke it

127 env was unable to find command

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

printenv on Berkeley UNIX systems works like env.

Related Information
env, sh

eval — Construct a command by concatenating arguments

Format
eval [argument ...]
tcsh shell: eval argument ...
Description
The shell evaluates each argument as it would for any command. eval then
concatenates the resulting strings, separated by spaces, and evaluates and
executes this string in the current shell environment.
eval in the tcsh shell
In the tcsh shell, eval treats the arguments as input to the shell and executes the
resulting command(s) in the context of the current shell. This is usually used to
execute commands generated as the result of command or variable substitution,
since parsing occurs before these substitutions. See [‘tcsh — Invoke a C shell” on|
Examples
The command:
forainl23
do
eval x$a=fred
done
sets variables x7, x2, and x3 to fred. Then:
echo $x1 $x2 $x3
produces: fred fred fred
Usage Note
eval is a special built-in shell command.
Localization

eval uses the following localization environment variables:
* LANG

Chapter 2. Shell Command Descriptions 241

eval

Exit Value

Portability

Related Information

e LC_ALL
« LC_MESSAGES
* NLSPATH

See|Appendix F|for more information.

The only possible exit status value is:

0

You specified no arguments or the specified arguments were empty strings

Otherwise, the exit status of eval is the exit status of the command that eval runs.

POSIX.2, X/Open Portability Guide, UNIX systems.

exec, sh, tcsh

ex — Use the ex text editor

Format

Description

Options

ex [-eRrsvx] [+ command] [-c command] [-t tag] [-w size] [file ...]

ex is the line-editor mode of the vi text editor.

The ex internal commands are described in vi. It supports the following options:

+command

Begins the editing session by running the specified editor command. To
specify multiple commands, separate them with an “or” bar (l).

—c command

Begins editing by executing the specified editor command. You can specify
multiple commands by separating them with an “or” bar (|). command can
be any ex command except those that enter input mode, such as insert or
append.

Invokes ex. This option is intended for use with vi.

Lets you recover named files after an editor or system fails. If you don’t
specify a file argument, ex lists all recoverable files and then exits.

Sets read-only mode.

Suppresses all interactive feedback (quiet mode). This is for batch mode
operation; ex assumes the terminal cannot display text and ignores the
value of TERM. ex also ignores all startup files and ignores the value of
EXINIT.

Edits the file containing the specified tag and sets the virtual position in the
edit buffer to point of definition for the tag.

Invokes vi.

242 7/0S V1R4.0 UNIX System Services Command Reference

Localization

Portability

ex

-W size
Sets the option variable window equal to size.

-X Uses encryption.

ex uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See [Appendix F|for more information.

POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

—Xx is an extension to the POSIX standard.

Related Information

ed, vi

exec — Run a command and open, close, or copy the file descriptors

Format

Description

Option

exec [-a name] [command_line]

tcsh shell: exeec command

The command_line argument for exec specifies a command line for another
command. exec runs this command without creating a new process. Some people
picture this action as overlaying the command on top of the currently running shell.
Thus, when the command exits, control returns to the parent of the shell.

Input and output redirections are valid in command_line. You can change the input
and output descriptors of the shell by giving only input and output redirections in the
command. For example:

exec 2>errors

redirects the standard error stream to errors in all subsequent commands ran by
the shell.

If you do not specify command._line, exec returns a successful exit status.

exec in the tcsh shell
In the tcsh shell, exec executes the specified command in place of the currrent
shell. See[‘tcsh — Invoke a C shell”’ on page 570

—a name
The shell passes name as the zero’th argument (argv[0]) to command_line.

Chapter 2. Shell Command Descriptions 243

exec

—a name can be used to replace the current shell with a new login shell, by
specifying name as a shell with a prefix of a dash (-).

Example

To replace the current shell process with a new login shell (which will run the login
profiles), specify:
exec -a -sh /bin/sh

Usage Note
exec is a special built-in shell command.

Localization

exec uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See for more information.

Exit Values

If you specify command._line, exec does not return to the shell. Instead, the shell
exits with the exit status of command_line or one of the following exit status values:

1-125 A redirection error occurred.

126 The command in command_line was found, but it was not an executable
utility.

127 The given command_line could not be run because the command could not
be found in the current PATH environment.

If you did not specify command_line, exec returns with an exit value of zero.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information
sh, tcsh

exit — Return to the shell’s parent process or to TSO/E

Format
exit [expression]

tcsh shell: exit [expr]

Description

exit ends the shell. If there is an expression, the value of the expression is the exit
status of the shell.

244 7/0S V1R4.0 UNIX System Services Command Reference

Usage Note

Localization

Exit Values

exit

The value of expression should be between 0 and 255. For values outside this
range, the exit status will be the least significant 8 bits of the value of the
expression. The EXIT trap is raised by the exit command, unless exit is being
called from inside an EXIT trap.

If you have a shell background job running, you cannot exit from the shell until it
completes. However, you can switch to subcommand mode and exit.

exit in the tcsh shell

The shell exits either with the value of the specified expression or, without
expression, with the value of the status variable. The value of expression should be
between 0 and 255. See [‘tcsh — Invoke a C shell” on page 570}

exit is a special built-in shell command.

exit uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See for more information.

exit returns the value of the arithmetic expression specified by the expression
argument to the parent process as the exit status of the shell. If you omit
expression, exit returns the exit status of the last command run.

Related Information

return, sh, tcsh

The exit() ANSI C function, the _exit callable service, and the _exit() POSIX C
function are unrelated to the exit shell command.

expand — Expand tabs to spaces

Format

Description

expand [t tablist] [file ...]
expand [-number] [-number,number ...] [file ...]

expand reads text input from the files specified on the command line, converts tabs
into spaces, and writes the result to the standard output (stdout). If you do not
specify any files on the command line, expand reads from the standard input
(stdin).

expand preserves backspace characters. By default, tab stops are set every eight
columns. A tab after the last tabstop is replaced by a space.

Chapter 2. Shell Command Descriptions 245

expand

Options

Localization

Exit Values

Portability

The first syntax of expand supports the following option:

—t tablist
Sets tab stops at positions indicated by tablist. Numbers in tablist must be
in ascending order (origin 0) and separated by commas or blanks; however,
the list must be one argument so you need shell quoting if you are using
blanks. The list can consist of a single number, in which case tabs are set
every tablist positions apart.

The second syntax of expand (which the POSIX standard considers obsolete)
supports the following options:

—number
Sets tab stops every number columns.

—number,number ...
Sets tab stops at each column number (origin 0).

expand uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
» Cannot open the input file
* Insufficient memory
* Incorrect tab stop specification

POSIX.2 User Portability Extension, X/Open Portability Guide, 4.2BSD and higher.

Related Information

pr, unexpand

export — Set a variable for export

Format

Description

export [name [=value] ...]
export —p

export marks each variable name so that the current shell makes it automatically
available to the environment of all commands run from that shell. Exported
variables are thus available in the environment to all subsequent commands.
Several commands (for example, cd, date and vi) look at environment variables for
configuration or option information.

246 2/0S V1R4.0 UNIX System Services Command Reference

Option

Usage Note

Localization

Exit Values

Portability

export

Variable assignments of the form name=value assign value to name as well as
marking name for export. The name can contain only the underscore and
alphanumeric characters from the portable character set.

Calling export without arguments lists, with appropriate quoting, the names and
values of all variables in the format Variable="value". If you reinput this format to
another shell, variables are assigned appropriately but not exported. The —p option
lists variables in a format suitable for reinput to the shell (see the description of the
—p option).

-p Lists variables in a form that is suitable for reinput to the shell:
export name="value"

export is a special built-in shell command.

export uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See for more information.

0 Successful completion
1 Failure due to incorrect command-line argument
2 Failure, usually due to incorrect an incorrect command-line argument, that

results in a usage message

POSIX.2, X/Open Portability Guide.

Assigning a value to name, and the behavior given for calling export with
arguments are extensions of the POSIX standard.

Related Information

cd, date, set, sh, typeset, vi

expr — Evaluate arguments as an expression

Format

Description

expr —W expression

The set of arguments passed to expr constitutes an expression to be evaluated.
Each command argument is a separate token of the expression. expr writes the

Chapter 2. Shell Command Descriptions 247

expr

248

result of the expression on the standard output. This command is primarily intended
for arithmetic and string manipulation on shell variables.

expr supports the following operators. Operators explained together have equal
precedence; otherwise, they are in increasing order of precedence. expr stores an
expression as a string and converts it to a number during the operation. If the
context requires a Boolean value, a numeric value of 0 (zero) or a null string ("") is
false, and any other value is true. Numbers have an optional leading sign, followed
by either a hexadecimal, an octal, or a decimal number. The shell differentiates
between hex, octal, and decimal as follows:

* Any number that starts with 0x is hex.

* Any number that starts with 0 is octal.

* Any number that does not start with Ox or 0 is decimal.

Numbers are manipulated as long integers.

expri | expr2
Results in the value expr1 if expr1 is true; otherwise, it results in the value
of expr2.

expr1 & expr2
Results in the value of expr1 if both expressions are true; otherwise, it
results in 0.

expr1 <= expr2 | expr1 < expr2 | expr1 = expr2 | expr1 1= expr2 | expr1 >= expr2 |
expr1 > expr2
If both expr1 and expr2 are numeric, expr compares them as numbers;
otherwise, it compares them as strings. If the comparison is true, the
expression results in 1; otherwise, it results in 0.

expr1 + expr2 | expr1 — expr2
Performs addition or subtraction on the two expressions. If either
expression is not a number, expr exits with an error.

expr1 * expr2 | expr1 | expr2 | expr1 % expr2
Performs multiplication, division, or modulus on the two expressions. If
either expression is not a number, expr exits with an error.

expr1 : re | match expri re
matches the regular expression re against expr1 treated as a string. The
regular expression is the same as that accepted by ed, except that the
match is always anchored—that is, there is an implied leading . Therefore,
expr does not consider * to be a metacharacter. If the regular expression
contains \(...\), \) and it matches at least part of expr1, expr results in only
that part; if there is no match, expr results in 0. If the regular expression
doesn’t contain this construct, the result is the number of characters
matched. The function match performs the same operation as the colon
operator.

substr expr1 expr2 expr3
Results in the substring of expr1 starting at position expr2 (origin 1) for the
length of expr3.

index expr1 expr2
Searches for any of the characters in expr2 in expr1 and results in the
offset of any such character (origin 1), or 0 if no such characters are found.

length expr1
Results in the length of expr1.

(expr) Groups expressions.

z/OS V1R4.0 UNIX System Services Command Reference

Option

Usage Note

Examples

Localization

Exit Values

Messages

expr

-w Allows the expression to use hex and octal numbers.

The parser stack depth is limited to 150 levels. Attempting to process extremely
complicated expressions may result in an overflow of this stack, causing an error.

The example

fname=src/fn_abs.c ;
expr $fname : * \(.*\)\.c .

returns abs.
The example
a="expr $a + 1°

adds 1 to the value of the shell variable a.

expr uses the following localization environment variables:

LANG

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_SYNTAX
NLSPATH

See[Appendix F|for more information.

[

The result of expression is true.

The result of expression is false.

Failure due to any of following:

* Not enough memory.

* Command-line syntax error.

» Too few arguments on the command line.

* Incorrect regular expression.

* Regular expression is too complicated.

* Nonnumeric value found where a number was expected.

Possible error messages include:

internal tree error

Syntax errors or unusual expression complexity make it impossible for expr
to evaluate an expression. If an expression has syntax errors, correct them;
if not, simplify the expression (perhaps by breaking it into parts).

Chapter 2. Shell Command Descriptions 249

expr

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

In the shell, let largely supersedes this command.

match, substr, length, and index are not documented on all UNIX systems,
though they do appear to exist. They are extensions of the POSIX standard.

Related Information
ed, let, sh, test

See|Appendix C|for more information about regexp.

exrecover daemon — Retrieve vi and ex files

Format

exrecover [-s] [name_file ...]
exrecover [-v]

Description

The exrecover daemon recovers text files from working files created by vi and ex.
(These working files are in one or more temporary directories.) It is normally
invoked from a system startup file before these working files are purged.

Options
-S Suppresses error messages.

-V Displays the version number of exrecover.

Environment Variables
exrecover uses the following environment variables:

TMP_VI
Contains a directory pathname that can be specified by an administrator as
a location for vi temporary files. This is useful if the current default directory
for these files (usually /tmp) is implemented as a TFS. In this case, all vi
temporary files that the exrecover daemon uses for recovery would be
gone after a system crash.

IBM recommends that this environment variable be set by a system
administrator as opposed to a user setting it for their environment. If the
latter occurs and the user sets the TMP_VI directory to something different
than what exrecover recognizes as TMP_VI, the user will need to run the
exrecover daemon manually to allow the temporary files to be converted to
the recoverable files used by vi (located in /etc/recover/SLOGNAME).

Note: A system administrator should NOT set TMP_VI to
/etc/recover/$SLOGNAME. Also, the administrator should not set
TMP_VI to any directory where a pathname component is an
environment variable with a user’s value different than the
initialization process’s value (for example, $HOME). vi temporary
files are converted into a form recoverable by vi when exrecover is
run during IPL. Since exrecover is issued during IPL, it is owned by
the initialization process and will therefore contain different values for

250 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Files

exrecover daemon

certain environment variables, if those environment variables are set.
Throughout the file system, there may exist some temporary files
that can only be converted by exrecover. This conversion can be
done manually by a system administrator (to recover files owned by
all users) or by a single user (to recover only their own files).

TMPDIR
The default directory. When this environment variable is set, exrecover
looks in this directory for the ex and vi working files.

TMP If TMPDIR is not set, TMP specifies the directory to be searched when
looking for the ex and vi working files.

If both TMPDIR and TMP are not set, exrecover uses the directory that the C/C++
Run-Time Library function tempnam() would use.

exrecover uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See for more information.

exrecover uses the following files:

Itmp/VII*
Line table files.

Itmp/VIn*
Name files.

ftmp/VIt*
Paged text files.

letc/recover
The directory containing subdirectories of user names whose files have
been recovered. Only users with the appropriate privileges, such as the
system administrator, can create the /etc/recover directory.

letc/recover/SLOGNAME/VIn*
Contains the name of the file that was being edited.

letc/recover/SLOGNAME/VIt*
Contains the recovered text of the file that corresponds to the VIn* file

Note: Using a TFS for vi temporary files will make it impossible to recover vi files
after a system crash. vi writes temporary files to TMP_VI or TMPDIR (or
/tmp by default), and if the system crashes, those files can be recovered by
the exrecover command, which automatically runs from /etc/rc. If the files
are written to a TFS, then they will be wiped out when the system is IPLed.
See TMP_VI description under Environment Variables section of this
command.

Chapter 2. Shell Command Descriptions 251

exrecover daemon

Usage Notes

To recover all the files in the temporary directory, this command must be run
with appropriate permissions (for example, superuser privileges) so the
recovered files can be stored in the /etc/recover directory with the appropriate
ownerships and permissions.

For example, the following is a shell script to recover the files from TMPDIR,
where TMPDIR is the default directory:

export TMPDIR=/tmp

exrecover

If it is invoked by a nonprivileged user (for example, a user who is not a root
user), then only those files owned by that user are recovered. Because vi and
ex create their working files in directories specified by the TMPDIR or TMP
environment variables, one of these environment variables must be set before
exrecover can be issued.

For example, the following is a shell script that recovers files from $HOME/tmp:

export TMPDIR=$HOME/tmp

exrecover

exrecover is also invoked by vi or ex when you issue the ex preserve
command or when exrecover receives a SIGHUP signal. The working files
created by vi and ex are found in a default temporary directory (such as /tmp)
or in the directory specified by the TMPDIR or in the directory specified by the
TMP_VI, TMPDIR, or TMP environment variable. Three working files are
created:

name_file
Contains the actual name of the vi file. The names of all name_files
begin with Vin.

line_table_file
Contains a dummy page followed by data that gives, in line number
order, the offset for each line of text in the corresponding
paged_text_file. The page size is typically 1K, but may vary on some
systems. The names of all line table files begin with VII.

paged_text_file
Contains lines of text that are at most LINE_MAX bytes in length. Lines
shorter than LINE_MAX byte are ended by a newline. The names of all
paged text files begin with VIt.

You can also run the program by specifying name_file on the command line. For
example:

exrecover /tmp/VInaaaa.lll /tmp/VInbbbb.222 ...

exrecover searches for a name_file and tries to open the associated line table
and paged text files. If all these files are found, exrecover builds, from the line
table and paged text files, a text file and stores it in the directory
letc/recover/$LOGNAME.

It also stores a corresponding name_file to identify the file that was recovered
and sends mail, using the mailx utility, to the owner of the file indicating the
date, time, and name of the file recovered. You can retrieve recovered files in
one of the following ways:

vi —r file [issued from a shell command 1line]

ex —r file [issued from a shell command line]
:recover file [issued from within a vi session]

252 2/0S V1R4.0 UNIX System Services Command Reference

Exit Values

Related Information
ex, vi

exrecover daemon

Each command loads the most recent occurrence of the file recovered from a
system failure or the ex preserve command. If vi successfully loads the file, it
removes the preserved file.

Successful completion

Failure due to any of the following:
* Memory allocation error
* No working files were found

* No /etc/recover directory errors that affect the overall operation of the
exrecover command

» An incomplete set of working files were found
Usage error

An error occurred while recovering a specific file. Some, but not all, files
were recovered.

extattr — Set, reset, and display extended attributes for files

Format

Description

Options

extattr [+apsl] [-apsl] file ...

Note: | is a lower case L, not an upper case i.

extattr sets, resets, and displays extended attributes for files.

The following extended attributes are defined:

a

When this attribute is set (+a) on an executable program file (load module),
it behaves as if loaded from an APF-authorized library. For example, if this
program is exec()ed at the job step level and the program is linked with the
AC=1 attribute, the program will be executed as APF-authorized.

To be able to use the extattr command for the +a option, you must have at
least READ access to the BPX.FILEATTR.APF FACILITY class profile. For
more information, see|z/0S UNIX System Services Planning|

When this attribute is set (+l) on an executable program file (load module),
it will be loaded from the shared library region.

To be able to use the extattr command for the +l option, you must have at
least READ access to the BPX.FILEATTR.SHARELIB FACILITY class. For
more information, see [z/0S UNIX System Services Planning

Note: | is a lower case L, not an upper case i.

When this attribute is set (+p) on an executable program file (load module),
it causes the program to behave as if an RDEFINE had been done for the

Chapter 2. Shell Command Descriptions 253

exrecover daemon

load module to the PROGRAM class. When this program is brought into
storage, it does not cause the environment to be marked dirty.

To be able to use the extattr command for the +p option, you must have at
least READ access to the BPX.FILEATTR.PROGCTL FACILITY class. For
more information, see|z/OS UNIX System Services Planningl

s When this attribute is not set (—s), the _BPX_SHAREAS=YES and
_BPX_SHAREAS=REUSE environment variable settings are ignored when
the file is spawn()ed. Use of the _BPX_SHAREAS=MUST setting and the
—s option will result in a spawn() failure. By default, this attribute is set (+s)
for all executable files.

Note: To specify any of these attributes, the user must be the owner of the file or
have superuser authority.

Example

To have the ¢89 and tso utilities not run in an address space shared with other
processes, issue:

extattr -s /bin/c89 /bin/tso

Related Information
Is, ISHELL

false — Return a nonzero exit code

Format
false [argument ...]
Description
false returns an exit status value of 1 (failure). It ignores any arguments given on
the command line. This can be useful in shell scripts.
Usage Note
false is a built-in shell command.
Localization
false uses the following localization environment variables:
 LANG
« LC_ALL
+ LC_MESSAGES
* NLSPATH

See|Appendix F|for more information.

Exit Value
false always returns an exit status value of 1.

Portability
POSIX.2, X/Open Portability Guide, UNIX systems.

254 7/0S V1R4.0 UNIX System Services Command Reference

false

Related Information

sh

fc — Process a command history list

Format

Description

fc [-r] [—e editor] [first{lasf]]
fc =l [-nr] [first[lasf]]
fc —s [old=new] [specifier]

fc displays, edits, and reenters commands that have been input to an interactive
shell. fc stands for “fix commands.” If the variable HISTSIZE is not defined, 128
commands are accessible. The number of commands that are accessible is
determined by the HISTSIZE variable.

The shell stores these commands in a history file. When the HISTFILE environment
variable is defined as the name of a writable file, the shell uses this as the history
file. Otherwise, the history file is SHOME /.sh_history, if HOME is defined and the
file is writable. If the HOME variable is not defined, or the file is not writable, the
shell attempts to create a temporary file for the history. If a temporary file cannot be
created, the shell does not keep a history file.

Note: A shell shares history (commands) with all shells that have the same history
file. A login shell truncates the history file if it is more than HISTSIZE lines
long.

Normally, the shell does not keep a history of commands run from a profile file or
the ENV file. By default, however, it begins recording commands in the history file
when it encounters a function definition in either of these setup files. This means
that the HISTSIZE and HISTFILE variables must be set up appropriately before the
first function definition. If you do not want the history file to begin at this time, use:

set -0 nolog

For further information, see sh and set. Any variable assignment or redirection that
appears on the fc command line affects both the fe command itself and the
commands that fc produces.

The first form of fc in puts you into an editor with a range of commands to
edit. When you leave the editor, fc inputs the edited commands to the shell.

The first and last command in the range are specified with first and /ast. There are
three ways to specify a command.

» If the command specifier is an unsigned or positive number, fc edits the
command with that number.

» |If the command specifier is a negative number —n, fc edits the command that
came n commands before the current command.

» |If the command specifier is a string, fc edits the most recent command beginning
with that string.

The default value of last is first. If you specify neither first nor last, the default
command range is the previous command entered to the shell.

Chapter 2. Shell Command Descriptions 255

fc

Options

—e editor

Invokes editor to edit the commands. If you do not specify the —e option, fc
assumes that the environment variable FCEDIT, if defined, contains the
name of the editor for fc to use. If FCEDIT is not defined, fc invokes ed to
edit the commands.

Displays the command list. This option does not edit or reenter the
commands. If you omit /ast with this option, fc displays all commands from
the one indicated by first through to the previous command entered. If you
omit both first and /ast with this option, the default command range is the
16 most recently entered commands.

Suppresses command numbers when displaying commands.
Reverses the order of the commands in the command range.

Reenters exactly one command without going through an editor. If a
command specifier is given, fc selects the command to reenter as
described earlier; otherwise, fc uses the last command entered. To perform
a simple substitution on the command before reentry, use a parameter of
the form old=new. The string new replaces the first occurrence of string old.
fc displays the (possibly modified) command before reentering it.

Environment Variables
fc uses the following environment variables:

FCEDIT

Files

Localization

Contains the default editor to be used if none is specified with the —e
option.

HISTFILE

Contains the pathname of the history file.

HISTSIZE

tmp

Gives the maximum number of previous commands that are accessible.

Used to store temporary files. You can use the TMPDIR environment
variable to dictate a different directory to store temporary files.

$HOME/.sh_history

This default history file is created.

fc uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
NLSPATH

See|Appendix F|for more information.

256 2/0S V1R4.0 UNIX System Services Command Reference

Usage Notes

Exit Values

Messages

Portability

fc

—_

fc is a built-in shell command.

2. ris a built-in alias for fc —s. history is a built-in alias for fc —I.
0 If you specified —I, this indicates successful completion.
1 Failure due to any of the following:
* Missing history file
* Inability to find the desired line in the history file
* Inability to create temporary file
2 An incorrect command-line option or argument

If fc runs one or more commands, the exit status of fc is the exit status of the last
run command.

Possible error messages include:

Cannot create temporary file
fc must create a temporary file to do some operations, such as editing. It
prints this message when it cannot create its temporary file—for example,
because the disk is full.

No command matches string
You asked to edit a command beginning with a particular string, but there
was no such command in the history file.

POSIX.2.

Related Information

alias, ed, print, read, sh, vi

fg — Bring a job into the foreground

Format

Description

fg [Y%job-identifier]

tcsh shell: fg [%job ...]

fg restarts a suspended job or moves a job from the background to the foreground.
To identify the job, you give a job-identifier (preceded by %) as given by the jobs
command.

If you do not specify job-identifier, fg uses the most recent job to be suspended
(with the kill command) or placed in the background (with the bg command). fg is
available only if you have enabled job control. See the —m option of set for more
information.

Chapter 2. Shell Command Descriptions 257

fg

fg in the tcsh shell

In the tcsh shell, fg brings the specified jobs (or, without arguments, the current job)
into the foreground, continuing each if it is stopped. job may be ”, %, +, —, a
number, or a string. See also the run-fg-editor editor command described in
(— Invoke a C shell’ on page 570}

Localization

fg uses the following localization environment variables:
* LANG

- LC_ALL

- LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 Successful completion
>0 No current job
Messages
Possible error messages include:
Not a stopped job
Job was not stopped.
Portability

POSIX.2 User Portability Extension.

Related Information
bg, jobs, kill, ps, tcsh

fgrep — Search a file for a specified pattern

Format
fgrep [-bcilngsvx] [-e pattern] ... [-f patternfile] ... [pattern] [file ...]
Note: The fgrep utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that grep —f be used instead because it may
provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.
Description

See grep.

file — Determine file type

Format
file [-c] [-f filelisf] [-m magic] file ...

258 2/0S V1R4.0 UNIX System Services Command Reference

Description

Options

Localization

Files

Usage Notes

file

file determines the format of each file by inspecting the attributes and (for an
ordinary file) reading an initial part of the file. file compares each file on the
command line to templates found in a system-maintained magic file to determine
their file type.

file then divides files that do not match a template in the magic file into text files
and binary data. Then, by reading an initial segment of the text files and making an
informed guess based on the contents, file further divides text files into various
types such as C programs, assembler programs, files of commands to the shell,
and yacc or lex programs.

file displays the name of each file along with the file type that it believes the file to
be.

-C Only checks the template file of magic numbers for validity of format.

—f filelist
Examines the files listed in the file filelist.

—m magic
Uses the file magic rather than the default file of filetype templates.

file uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

*+ LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

file uses the following file:
letc/magic
Default template file of magic numbers.

For file to work, you need to copy the magic file from the /samples directory to the
letc directory.

For more information on enabling file, see “Enabling the file Utility” in[z/OS UNI
System Services P/anningi Additional information on the magic file can be found in

‘magic — Format of the /etc/magic file” on page 830}

LC_SYNTAX only affects the interpretation of the input file that did not match any
magic file template. It does not affect the interpretation of the magic file.

Because of this, an input file that contains characters from a code page other than
IBM-1047 cannot match the magic file, which contains IBM-1047 characters.

Chapter 2. Shell Command Descriptions 259

file
Exit Values

0 Successful completion

1 Failure due to any of the following:
* A missing filelist after —f
* More than one —f option on the command line
» Cannot find the magic file
* Incorrect command-line option
* Too few command-line arguments
» Cannot access a specified file
» Cannot open filelist
» Cannot open the magic file
» A format error in the magic file
» Out of memory for reading or magic entries
* A bad number in the magic file
* A misplaced > in the magic file.

Portability
POSIX.2 User Portability Extension, X/Open Portability Guide, UNIX systems.

All options are extensions to the POSIX standard.

Related Information
See for more information about the magic file format.

filecache — Manage file caches

Format
/usr/sbin/filecache -a file...

lusr/sbin/filecache —d file...
lusr/sbin/filecache [-p | —q | —r]

Description

filecache manages the kernel file cache for files that are only read. To prime the

file cache at system startup, you can run this command from the /etc/rc script to

automatically load the file cache with files known to be used for read access only.
Files can be either data or executable files residing in a local file system (such as
HFS file systems). Specify all file names as full pathnames.

This command requires superuser authority.

Options
-a Adds the specified files to the file cache.
-d Deletes the specified files from the file cache.
-p Purges all files in the file cache.
-q Lists the files in the file cache.

-r Refreshes all files in the file cache.

260 2/0S V1R4.0 UNIX System Services Command Reference

Examples

Usage Notes

file

To load the message catalogs for the shell and most utilities into the cache:
/usr/sbin/filecache -a /usr/1ib/n1s/msg/C/fom* /usr/1ib/nl1s/msg/C/fsum=*

* When specifying file on the filecache command, use the full pathname.

 Files that have been modified may no longer be eligible for caching until the file
system that the file resides in is unmounted and then re-mounted, or until the
system is IPLed.

find — Find a file meeting specified criteria

Format

Description

Operators and

Options

find path ... expression

find searches a given file hierarchy specified by path, finding files that match the
criteria given by expression. Each directory, file, and special file is “passed through”
expression. If you use the —exec, —ok, or —cpio primary, expression runs a
specified command on each file found. A nonexistent expression or an expression
with commands to run automatically uses the —print primary to display the name of
any file that matches the criteria of expression.

find builds expression from a set of primaries and operators; juxtaposition of two
primaries implies a logical AND operator.

Primaries
find supports the following operators:

-a Used between primaries for a logical AND. You can omit this operator to get
the same result, since logical AND is assumed when no operator is used
between two primaries.

-0 Used between primaries for a logical OR.

! Precedes an expression in order to negate it.

You can group primaries and operators using parentheses. You must delimit all
primaries, operators, numbers, arguments, and parentheses with white space. Each
number noted in the primary list is a decimal number, optionally preceded by a plus
or minus sign. If a number is given without a sign, find tests for equality; a plus
sign implies “greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

This section lists the primaries that find supports.
Tip: If you use the ACL primaries, with the exception of -acl, performance may be
affected.

—aaudit auditmask
The -aaudit primary is used to match the auditor audit bits. See —audit
auditmask.

Chapter 2. Shell Command Descriptions 261

find

-acl ¢ Maitches if the type of ACL is the same as the type given by the character
c¢. Possible values of the character are:

a Access ACL (matches only if there are extended ACL entries)
d Directory default ACL
f File default ACL

If acl c is not defined, then find matches any of the above type of ACLs
when other ACL primaries are used.

-acl_count number
Matches if the numbers of extended ACL entries for any of the types of
ACLs for the object is is number.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

-acl_entry acl_text
Matches if the ACL on the file contains an entry equivalent to acl_text
where acl_text is a single extended ACL entry. This primary matches using
user and group names rather than UID and GID numbers. If aliases exist
for a name, then it is possible a match may not occur. This behavior is
different than the -acl_user and -acl_group primaries which match based on
UID and GID. Extended ACL entries have the following format:
[d[efault]: | f[default]:Ju[ser]:uid:[+|~]perm
[dlefault]: | f[default]:]g[roup]:gid:[+|~]perm

where:

d[efault] If specified, extended ACL refers to directory default ACL

fl[default] If specified, extended ACL refers to file default ACL

u[ser] Extended ACL refers to a particular numeric user ID (UID)
or user name

glroup] Extended ACL refers to a particular numeric group ID (GID)
or group name

uid User name or numeric user ID (UID)

gid Group name, or numeric group ID (GID)

perm Permissions specified either in absolute form (string rwx

with - as a placeholder or octal form), or in relative format
(using the + or® modifiers).

Rule: For relative permission settings, specifying "+perm"
means that you want the ACL entry to have that permission
turned on. Specifying "Aperm" means that you want the ACL
entry to have that permission off. For example, specifying
the following will find files with an extended access ACL
entry for user Billy in which the permissions are either -w-
or rw-:

user:BiTly:+w"x

If the permission field of acl_text is omitted, then the ACL

entries are searched to match only the ACL type, and user
or group portions of the user-supplied entry.

262 2/0S V1R4.0 UNIX System Services Command Reference

find

If you want to find any of the base ACL entries (user, group,
or other), you can use the -perm primary.

The first field of an ACL entry may specify the type of ACL (access,
directory default, or file default) that will be processed. If the type is not
specified, the operation applies only to the access ACL. If you are updating
the ACL entries, you can specify the base ACL entries; however, specifying
the base ACL entries may cause the file or directory’s permission bits to
change if what is specified is different than the current settings.

-acl_group groupid
Matches if the object has an extended group ACL entry for groupid. groupid
can also be a group ID number.

If your security product supports ACLs, the group base ACL entry can be
matched using this primary. If a numeric group exists as a group name in
the group data base, the group ID number associated with that group is
used.

-acl_nogroup
Matches if a group ACL entry (for any type of ACL) exists in which a group
is not defined. The GID for at least one extended ACL entry for the file does
not have a group name associated with it.

-acl_nouser
Matches if a user ACL entry (for any type of ACL) exists in which a user is
not defined. The UID for at least one extended ACL entry for the file does
not have a user name associated with it.

-acl_user userid
Matches if the ACL of the object has an extended user ACL entry for userid.
userid can also be a user ID number.

If a numeric owner exists as a user name in the user data base, the user ID
number associated with that user name is used. If your security product
supports ACLs, the user base ACL entry can be matched, using this
primary.

—atime number
Matches if someone has accessed the file exactly number days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—audit auditmask
The -audit primary is used to match the user audit bits. auditmask can be
in octal or in symbolic form. The mask can be preceded by a - character (as
in the perm primary), but it is ignored. Symbolic mode is an
operation=condition list, separated by commas:

[rwx]=[sf]

where:
=sf Success or failure on any of rwx
r=s Success on read
r=s, x=sf
Success on read or exec, failure on exec
r, w=s Incorrect
X Incorrect

Chapter 2. Shell Command Descriptions 263

find

264

—cpio cpio-file
Writes the file found to the target file cpio-file in cpio format. This is
equivalent to:

find ... | cpio -0 >cpio-file

This primary matches if the command succeeds.

—ctime number
Matches if someone has changed the attributes of the file exactly number
days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—depth
Processes directories after their contents. If present, this primary always
matches.

—exec command ;
Takes all arguments between —exec and the semicolon as a command line,
replacing any argument that is exactly {} (that is, the two brace characters)
with the current filename. It then executes the resulting command line,
treating a return status of zero from this command as a successful match,
nonzero as failure. You must delimit the terminal semicolon with white
space.

Rule: The semicolon is a shell metacharacter. To use it in expression, you
must escape it, either by enclosing it in single quotes or by preceding it with

—ext ¢ Matches when the regular file has the extended attribute specified by
character c. See [‘extattr — Set, reset, and display extended attributes for|
files” on page 253 for details on extended attributes. Possible values of the
character are:

a Program runs APF authorized if linked AC = 1

| Program is loaded from the shared library region

p Program is considered program-controlled

s Program is allowed to run in a shared address space

—follow
Follows symbolic links. If present, this primary always matches.

—group name
Matches if the group owner is name. If name is not a valid group name, it is
treated as a group ID.

—inum number
Matches if the file has inode number number.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—level number
Does not descend below number levels.

z/OS V1R4.0 UNIX System Services Command Reference

find

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—links number
Matches if there are number links to the file.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—mtime number
Matches if someone has modified the file exactlynumber days ago.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

—name pattern
Compares the current filename with pattern. If there is no match, the
expression fails. The pattern uses the same syntax as filename generation
(see sh). It matches as many trailing pathname components as specified in
pattern.

—ncpio cpio-file
Writes the file found to the target file cpio-file in cpio —¢ format. This is
equivalent to:

find ... | cpio -oc >cpio-file

This primary matches if the command succeeds.

—newer file
Compares the modification date of the found file with that of the file given.
This matches if someone has modified the found file more recently than file.

—nogroup
Matches if no defined group owns the file.

—none Indicates that some action has been taken; thus find does not invoke the
default —print action. If present, this primary always matches.

—nouser
Matches if no defined user owns the file.

—okcommand;
Is similar to —exec, but before find executes the command, it displays the
command to confirm that you want to go ahead. find executes the
command line only if your input matches the expression for “yes” (yes and
no expressions are defined in LC_MESSAGES). If you type the expression
for “no”, the primary does not match. You must delimit the terminal
semicolon with white space.

Rule: The semicolon is a shell metacharacter. To use it in expression, you
must quote it.

—perm[-] mask
By default, matches if the permissions on file are identical to the ones given

in mask. You can specify mask in octal or in symbolic mode (see chmod).
If you use symbolic mode, find assumes that you begin with no bits set in

Chapter 2. Shell Command Descriptions 265

find

mask, and that the symbolic mode is a recipe for turning the bits you want
on and off. A leading minus sign (-) is special. It means that a file matches
if at least all the bits in mask are set. As a result, with symbolic mode, you
cannot use a mask value that begins with a minus sign (-).

If you use octal mode, find uses only the bottom 12 bits of mask. With an
initial minus sign (-), find again matches only if at least all the limits in
mask are set in the file permissions lists.

—print Displays the current filename. This primary always matches.

—prune
Stops searching deeper into the tree at this point. If present, this primary
always matches. —prune has no effect if —depth is also specified.

—size numberc]
Matches if the size of the file is number blocks long, where a block is 512
bytes. If you include the suffix ¢, the file size is number bytes.

number is a decimal number, optionally preceded by a plus or minus sign. If
a number is given without a sign, find tests for equality; a plus sign implies
“greater than” or “older than,” and a minus sign implies “less than” or
“newer than”.

File Tag Specific Options

—filetag ¢ Matches if the file tag is the same as the one given by character c.
Possible values of the character are:
b Matches if the file is tagged as binary (ixtflag = OFF and
ccsid = OxFFFF)
n Matches if the file has txtflag = OFF
t Matches if the file is tagged as text (txtflag = ON)
u Matches if the file is untagged (ccsid = 0)

—filetag_codeset codeset
Matches if the file is tagged with the given codeset

Note: Codesets which are aliases of each other exist which may
cause the test to fail, since the file inquiry operator may
return an alias of the codeset you are testing.

Examples
1. To find all files with a suffix of .c that have the audit mode set to rwx (read,
write, execute), issue:
find / —name "*.c" —audit rwx=sf

The quotes are required around the "*.c" if you do not want the shell to expand
this value to all files with a suffix of .c from within the current directory.

2. To find all files with a suffix of .c and audit mode bits set to 777 (rwx), issue:
find / —name "*.c" -audit 777

3. To find all files with the extensions .c and .h, starting at the current point in the
directory hierarchy:

find . —name "x.[ch]"

4. To find all files that have the extension .Z and that have not been accessed in
the last three days:

find . —name "*.Z" —mtime +3

266 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

directory default), issue:

find

5. To find all files and directories starting at the current directory point, with an
extended ACL user entry for user Billy for any ACL (access, file default, or

find . -acl_user Billy
or
find . -acl_entry user:Billy -o -acl_entry d:u:Billy -o -acl_entry f:u:Billy

6. To find all files and directories (starting from the current directory) that have

more than 10 extended ACL entries for any of the ACL types, issue:
find . -acl_count +10

7. To find all files and directories containing access ACLs which have an
extended ACL entry for user Averi, starting from the current user's home
directory:
find ™ -acl_entry user:Averi

8. To find all directories whose file default ACLs have a group entry for Lakers,

starting at the current point in the directory hierarchy:
find . -acl_entry fdefault:group:Lakers

9. To find all files for user Marc (in other words, all the files that Marc owns),

starting from his home directory:
find /u/marc -user marc

10. To find all directories (starting from current directory) which have file default

ACLs:
find . -acl f

11. To find all directories whose file default or directory default ACLs have a group

entry for Lakers, starting at the current point in the directory hierarchy:

find . -acl_entry fdefault:group:Lakers -o -acl_entry default:group:Lakers

find uses the following localization environment variables:
* LANG

« LC_ALL

*+ LC_COLLATE

« LC_CTYPE

+ LC_MESSAGES

« LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

0 Successful completion

1 Failure due to any of the following:
* Not enough memory
* Incorrect character specified after —type
 Inability to get information on a file for —newer
* Incorrect permissions for —perm
* Inability to open a file for the —cpio option
* Unknown user or group name
* Unable to access the PATH variable
» Cannot run a command specified for —exec or —ok
» Syntax error

Chapter 2. Shell Command Descriptions

267

find

Messages

Portability

» Stack overflow caused by an expression that is too complex

2 Failure due to one of the following:
* Incorrect command-line option
* Not enough arguments on the command line
* Missing option
» Argument list that is not properly ended

Possible error messages include:

bad number specification in string
You specified an option that takes a numeric value (for example, —atime,
—ctime) but did not specify a valid number after the option.

cannot stat file name for -newer
You used a —newer option to compare one file with another; however, find
could not obtain a modification time for the specified file. Typically, this
happens because the file does not exist or you do not have appropriate
permissions to obtain this information.

POSIX.2, X/Open Portability Guide, UNIX systems.

Most UNIX systems do not have a default action of —print. Therefore, they do not
need the —none option. The —a operator is not documented on many UNIX
systems.

The following primaries are extensions of the POSIX standard: —aaudit, —acl,
—acl_count, —acl_entry, —acl_group, —acl_nogroup-acl_nouser, —acl_user,
—audit, —audit, —cpio, —follow, —level, —ncpio, —none

The aaudit and audit options are unique to the z/OS shell.

Related Information

chaudit, chmod, cpio, sh

fold — Break lines into shorter lines

Format

Description

Options

fold [-bs] [-w width] [-width] [file...]

fold reads the standard input (stdin) or each file, if you specify any. Each input line
is broken into lines no longer than width characters. If you do not specify width on
the command line, the default line length is 80. The output is sent to the standard
output (stdout).

-b Specifies width in bytes rather than in column positions; that is, fold does
not interpret tab, backspace, and carriage return characters. If the last byte
specified by width is part of a doublebyte character, fold does not break the
character. Instead, the line is broken before the doublebyte character.

268 2/0S V1R4.0 UNIX System Services Command Reference

fold

-s Breaks each line at the last blank within width column positions. If there is
no blank that meets the requirement, fold breaks the line normally.
-w width

Specifies a maximum line length of width characters.

—width s identical in effect to —w widlth.

Localization

fold uses the following localization environment variables:
« LANG

- LC_ALL

- LC_CTYPE

« LC_MESSAGES

* NLSPATH

See[Appendix F|for more information.

Exit Values

0 Successful completion
1 Failure because the input file could not be opened
2 Invalid command-line option or a missing width argument

Portability
POSIX.2, 4.2BSD.

The —width option is an extension of the POSIX standard.

Related Information
pr

functions — Display or assign attributes to functions

Format
functions [*tux][name ...]

Note: * indicates a + or — character.

Description
functions is an alias for typeset —f.

See r‘typeset — Assign attributes and values to variables” on page 658| for more
information.

Related Information
typeset, sh

fuser — List process IDs of processes with open files

Format
fuser [—-cfku] file ...

Chapter 2. Shell Command Descriptions 269

fuser

Description

Th

e fuser command writes to standard output the process IDs of all processes

running on the local system that have one or more named files open. file is the

pa

thname of the file for which information is to be reported, or, if the —¢ options is

used, the pathname of a file on the file system for which information is to be
reported.

Th

e fuser command writes additional information to standard error, such as the

user name of the process and a character indicating how the process is using the
file. fuser only reports on local processes, not remote ones.

Option

Usage Notes

fuser reports on all open files within the file system that the specified file is
a member of

fuser reports on only the named files. This is the default.

fuser sends the SIGKILL signal to each local process (with the exception of
the fuser process and parent processes of fuser). Only a superuser can
terminate a process that belongs to another user. This option is a z/OS
extension.

fuser writes to standard error the user name associated with each process
ID written to standard output.

fuser will write the process ID for each process to standard output. fuser also
writes the following to standard error:

Examples

270

The pathname of each file specified on the command line.
An indicator of how the process is using this file (written after the process ID):

-C The process is using the file as its current directory.

-r The process is using the file as its root directory.

If no character follows the PID, this means that the process has the file open.

When the —u option is specified, fuser writes the user name corresponding to the
process’ real user ID.

To list the process numbers of local processes using the /etc/magic file, enter:
fuser /etc/magic

which will give you the following output:
/etc/magic: 67109274 144

To display the user names associated with the processes accessing the file
/etc/magic:

fuser -u /etc/magic

Your output would be:
/etc/magic: 67109274(Steve) 144(Fred)

To terminate all of the processes using a given file system, enter either the
mount point name or the name of a file in that file system:

fuser -ku /u/home

z/OS V1R4.0 UNIX System Services Command Reference

fuser

or

fuser -kuc /u/home/code

Your output would look like:

/u/home/code: 111111c(Steve) 222222r(Erin) 333333(Garth)
444444c (Steve) 555555r(Renata) 66666¢(Angie)

This command lists the process number and user name, and then sends a Kkill
signal to each process that is using the /u/home file system. Only a superuser
can terminate processes that belong to another user. You might want to use this
command if you are trying to unmount the /u/home file system and a process
that is accessing the file system prevents this.

Exit Values

0 Successful completion
1 An error

Related Information
kill, ps

gencat — Create or modify message catalogs

Format
gencat CatalogFile MessageFile ...

Description

gencat merges the message text source files MessageFile (usually *.msg) into a
formatted message catalog CatalogFile (usually *.cat). The file CatalogFile is
created if it does not already exist. If CatalogFile does exist, its messages are
modified according to the directives in the MessageFiles. If set and message
numbers are the same, the new message text defined in MessageFile replaces the
message text defined in CatalogFile.

You can specify any number of MessageFiles. gencat processes the MessageFiles
one after another, in the sequence specified. Each successive MessageFile
modifies the CatalogFile.

If — is specified for CatalogFile, standard output (stdout) is used. If — is specified for
MessagefFile, standard input (stdin) is used.

gencat does not accept symbolic message identifiers. You must use mkcatdefs if
you want to use symbolic message identifiers.

Extended Description

The format of a message text source file is defined as follows. All characters must
be encoded as singlebyte characters except where noted. The fields of a message
text source line are separated by a single blank character. Any other blank
characters are considered as being a part of the subsequent field.

$set n comment
Specifies the set identifier of the following messages until the next $set or
end of file appears. The n denotes the set identifier, which is defined as a
number in the range 1-NL_SETMAX. Set identifiers must be in ascending

Chapter 2. Shell Command Descriptions 271

gencat

order within a single source file, but need not be contiguous. Any string
following the set identifier is treated as a comment. If no $set directive is
specified in a message text source file, all messages are located in default
message set NL_SETD.

$delset n comment

Deletes message set n from an existing message catalog. The n denotes
the set number, 1-NL_SETMAX. Any string following the set number is
treated as a comment.

$ comment

A line beginning with $ followed by a blank character is treated as a
comment.

m message-text

$quote

The m denotes the message identifier, which is defined as a number in the
range 1-NL_MSGMAX. Message identifiers must be in ascending order
within a single set, but need not be contiguous. The length of message-text
must be in the range -NL_TEXTMAX. The message text is stored in the
message catalog with the set identifier specified by the last $set directive,
and with message identifier m. If the message text is empty, and a blank
character field separator is present, an empty string is stored in the
message catalog. If a message source line has a message number, but not
a field separator or message text, the existing message with that number (if
any) is deleted from the catalog. The message text can contain doublebyte
characters.

c
Specifies an optional quote character ¢, which can be used to surround
message-text so trailing spaces or null (empty) messages are visible in a
message source line. By default, or if an empty $quote directive is
supplied, no quoting of message-text is recognized. The quote character
can be a doublebyte character.

$timestamp

Specifies a time stamp that can be used to identity the subsequent .cat file
as having come from this file. The timestamp can be up to 20 characters
long and can be any format you wish. Usually it follows this format:

$timestamp 1994 137 19:09 UTC

The mkcatdefs command automatically generates a timestamp in the file it
creates for input to gencat.

Empty lines in a message text source file are ignored. Lines starting with any
character other than those defined above are considered invalid.

Text strings can contain the special characters and escape sequences defined in
the following table:

Description Sequence
Backspace \b
backslash \
Carriage-return \r

Double quote \"
Form-feed \f
Horizontal tab \t

Newline \n

Octal bit pattern \ddd

272 7/0S V1R4.0 UNIX System Services Command Reference

gencat

Description Sequence
Vertical tab \v

These sequences must be encoded as singlebyte characters.

The escape sequence \ddd consists of backslash followed by one, two, or three
octal digits, which are taken to specify the value of the desired character. If the
character following a backslash is not one of those specified, the backslash is
ignored.

A backslash (\) followed by a newline character is also used to continue a string on
the following line. Thus the following two lines describe a single message string:

1 This Tline continues \
to the next line

which is equivalent to:
1 This 1ine continues to the next Tine

Portability of Message Catalogs

Example

Localization

Exit Values

Portability

gencat works with the z/OS C runtime library function catgets() to correctly display
message text in the locale that the C program using catgets() is running in. gencat
adds information to the CatalogFile about the codeset that was in effect when
gencat processed the CatalogFile. gencat should be run with the same locale that
the recipients of the messages will be using. This should be the same locale that
was used to create the message text in MessageFile.

Message catalogs produced by gencat are binary-encoded, meaning that their
portability cannot be guaranteed between systems. Thus, just as C programs need
to be recompiled, so message catalogs must be re-created via gencat when moved
to another system.

To generate a test.cat catalog from the source file test.msg, enter:
gencat test.cat test.msg

gencat uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* LC_SYNTAX

* NLSPATH

o

Successful completion
1 An error occurred

X/Open Portability Guide.

Chapter 2. Shell Command Descriptions 273

getconf

getconf — Get configuration values

Format

Description

Options

getconf —a
getconf system_var
getconf [-a] path_var pathname

getconf writes the value of a configuration variable to the standard output (stdout).
You can specify the configuration variable using one of forms listed in the Format
section. If you use the first form, getconf writes the value of the variable
system_var. If you use the second form, getconf writes the value of the variable
path_var for the pathname given by pathname. The —a option prompts getconf to
display all current configuration variables, and their values, to stdout.

getconf writes numeric values in decimal format and nonnumeric values as simple
strings. If the value is not defined, getconf writes the string undefined to stdout.

-a Writes out all the configuration variables for the current system, and their
values, to stdout. Path variables are written based on a pathname of dot

(-)-

Configuration Variables

You can use the second form of getconf to find the value of the following
POSIX.1-1990 standard configuration variables for the specified pathname:

LINK_MAX
Specifies the maximum number of links that this file can have.

MAX_CANON
Specifies the maximum number of bytes in the workstation’s canonical input
queue (before line editing).

MAX_INPUT
Specifies the space available in the workstation’s input queue.

NAME_MAX
Specifies the largest filename size.

PATH Specifies the standard PATH setting.

_CS_PATH
Specifies the standard PATH setting.

PATH_MAX
Specifies the maximum number of bytes in a pathname.

PIPE_BUF
Specifies the largest atomic write to a pipe.

_POSIX_CHOWN_RESTRICTED
Specifies the restrictions that apply to file ownership changes.

_POSIX_NO_TRUNC
If set, it is an error for any pathname component to be longer than NAME_MAX
bytes.

274 2/0S V1R4.0 UNIX System Services Command Reference

getconf

_POSIX_VDISABLE
Specifies that processes are allowed to disable ending special characters.

You can use the first form of getconf to find the value of the following
POSIX.1-1990 standard configuration variables:

ARG_MAX
Specifies the maximum length of arguments for running a program,
including environment data.

CHILD MAX
Specifies the maximum number of simultaneous processes allowed per real
user.

CLK_TCK
Specifies the number of intervals per second in the machine clock.

NGROUPS_MAX
Specifies the number of simultaneous group IDs per process.

OPEN_MAX
Specifies the maximum number of open files at any time per process.

STREAM_MAX
Specifies the number of streams that one process can have open at one
time.

TZNAME_MAX
Specifies the maximum number of bytes supported for the name of a time
zone (not of the TZ variable).

_POSIX_ARG_MAX
Specifies the minimum conforming value for ARG_MAX.

_POSIX_CHILD_MAX
Specifies the minimum conforming value for CHILD_MAX.

_POSIX_JOB_CONTROL
Specifies the POSIX job control supported.

_POSIX_LINK_MAX
Specifies the minimum conforming value for LINK_MAX.

_POSIX_MAX_CANON
Specifies the minimum conforming value for MAX_CANON.

_POSIX_MAX_INPUT
Specifies the minimum conforming value for MAX_INPUT.

_POSIX_NAME_MAX
Specifies the minimum conforming value for NAME_MAX.

_POSIX_NGROUPS_MAX
Specifies the minimum conforming value for NGROUPS_MAX.

_POSIX_OPEN_MAX
Specifies the minimum conforming value for OPEN_MAX.

_POSIX_PATH_MAX
Specifies the minimum conforming value for PATH_MAX.

_POSIX_PIPE_BUF
Specifies the minimum conforming value for PIPE_BUF.

Chapter 2. Shell Command Descriptions 275

getconf

_POSIX_SAVED IDS
Specifies that processes have saved set-user-ID and saved set-group-I1D
bits set.

_POSIX_SSIZE_ MAX
Specifies the value that can be stored in an object of type ssize t.

_POSIX_STREAM_MAX
Specifies the minimum conforming value for STREAM_MAX.

_POSIX_TZNAME_MAX
Specifies the minimum conforming value for TZNAME_MAX.

_POSIX_VERSION
Specifies the version of POSIX adhered to in this release.

You can use the first form of getconf to find the value of the POSIX.2 standard
configuration variables:

BC_BASE_MAX
Specifies the maximum jbase and obase values for the bec command.

BC_DIM_MAX
Specifies the maximum number of elements permitted in a bc array.

BC_SCALE_MAX
Specifies the maximum scale size allowed in be.

BC_STRING_MAX
Specifies the maximum number of characters in a string in bc.

COLL_WEIGHTS_ MAX
Specifies the maximum number of weights assignable to an entry of the
LC_COLLATE order keyword.

EXPR_NEST_MAX
Specifies the maximum number of expressions that you can nest inside
parentheses in an expression evaluated by expr.

LINE_MAX
Specifies the maximum number of bytes that a utility can accept as an input
line (either from the standard input or a text file) when the utility takes text
files as input. This number includes the trailing <newline>.

RE_DUP_MAX
Specifies the maximum number of repeated occurrences of a regular
expression when using the interval notation \{m,n\}.

(See|Appendix Cf)

POSIX2_C_BIND
Indicates if the system supports the C Language Bindings Option.

POSIX2 C DEV
Indicates if the system supports the C Language Development Utilities
Option.

POSIX2_FORT_DEV

Indicates if the system supports the FORTRAN Development Utilities
Option.

POSIX2_FORT_RUN
Indicates if the system supports the FORTRAN Runtime Utilities Option.

276 2/0S V1R4.0 UNIX System Services Command Reference

getconf

POSIX2_LOCALEDEF
Indicates if the system supports the creation of locales.

POSIX2_SW_DEV
Indicates if the system supports the Software Development Utilities Option.

POSIX2_CHAR_TERM
Indicates if the system supports at least one terminal type capable of all
operations necessary for the User Portability Utilities Option. This parameter
name is correct only on if POSIX2 _UPE is on.

POSIX2_UPE
Indicates if the system supports the User Portability Utilities Option.

POSIX2_VERSION
Specifies the version of POSIX.2 adhered to in this release.

POSIX2_BC_BASE_MAX
Specifies the minimum conforming value for BC_BASE_MAX.

POSIX2 BC_DIM_MAX
Specifies the minimum conforming value for BC_DIM MAX.

POSIX2_BC_SCALE_MAX
Specifies the minimum conforming value for BC_SCALE_MAX.

POSIX2_BC_STRING_MAX
Specifies the minimum conforming value for BC_STRING_MAX.

POSIX2_COLL_WEIGHTS_MAX
Specifies the minimum conforming value for EQUIV_CLASS_MAX.

POSIX2 EXPR_NEST MAX
Specifies the minimum conforming value for EXPR_NEST_MAX.

POSIX2_LINE_MAX
Specifies the minimum conforming value for LINE_MAX.

POSIX2_RE_DUP_MAX
Specifies the minimum conforming value for RE_DUP_MAX.

You can use the third form of getconf to find the value of the POSIX.2 standard
configuration variables:

_ACL Specifies that access control lists (ACLs) are supported by the security
product and file system.

_PC_ACL_ENTRIES_MAX
Specifies the maximum number of extended ACL entries that can be placed
in an access control list for the specified file.

This implementation of getconf also supports the following non-POSIX-conforming
name:

_CS_SHELL
Specifies the default shell (command interpreter).

_PC_ACL
Security product supports access control lists (ACLSs).

_PC_ACL_ENTRIES_MAX
Maximum number of entries that can be placed in an access control list for
a specified file.

Chapter 2. Shell Command Descriptions 277

getconf

Example

This example uses getconf to find the minimum conforming value for PATH_MAX,
which is contained in the variable _POSIX_PATH_MAX. If you issue

getconf _POSIX_PATH_MAX

getconf displays
255

Localization

getconf uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

See for more information.

Exit Values

0 The specified parameter_name was valid and getconf displayed its value
successfully.

>0 An error occurred.

Portability
POSIX.2, X/Open Portability Guide.

_CS_SHELL is an extension of the POSIX standard. Some symbols are supported
only on systems that support POSIX.2.

Related Information
bc, expr, sh

See for more information about regexp.

getfacl — Display owner, group, and access control list (ACL) entries

Format
| getfacl [-acdfhmoqs] [-e user] file ...
| Description

getfacl displays the comment header, base ACL (access control list) entries, and
extended ACL entries, if there are any, for each file that is specified. It also resolves
symbolic links. You can specify whether to display access, file default, or directory
default. You can also change the default display format. The output can be used as
input to setfacl.

A comprehensive description of access control list entries can be found in I@
[UNIX System Services Planning

278 2/0S V1R4.0 UNIX System Services Command Reference

Options

Examples

getfacl

Displays the access ACL entries. This is the default if -a, -d, or -f is not
specified.

Displays each ACL entry, using commas to separate the ACL entries
instead of newlines, which is the default. Does not display the header.

Displays the directory default ACL entries. If the file is not a directory, a
warning is issued.

—e user

Displays only the ACL entries for the specified types of access control lists
(-a, -d, -f) which affects the specified user’s access. If users look at the
output, they may be able to determine why the access is granted or denied.
The user can be an UID or username. The output includes the user’s entry,
if it exists, as well as entries for any group to which the user is connected.

Displays the file default ACL entries. If the file is not a directory, a warning
is issued.

Does not resolve the symbolic link. (ACLs are not allowed on symbolic
links, so the file will not have anything displayed.)

Specifies that the comment header (the first three lines of each file’s output)
is not to be displayed.

Displays only the extended ACL entries. Does not display the base ACL
entries.

Quiet mode. Suppresses the warning messages and gives a successful
return code if there are no other errors.

Skips files that only have the base ACL entries (such as owner, group,
other). Only files that have the extended ACL entries are displayed.

To display access ACL information for file file, issue:
getfacl file

Where the following is a sample of the output:

#file: file

#owner: WELLIE

#group: SYS

user::rwx <=== The owner's permission bit setting

group::rwx <=== The group's permission bit setting

other::rw- <=== Permission bit setting if neither user nor group
user: WELLIEZ: rw-

group:SYSL:rwx

To display access, file default, and directory default ACL information for directory
directory, issue:

getfacl -a -f -d directory

Where the the following is a sample of the output:

#file: file

#owner: WELLIE
#group: SYS
user::rwx
group: : rwx
other::rw-

user: WELLIEZ: rw-

Chapter 2. Shell Command Descriptions 279

getfacl

group:SYS1:rwx
fdefault:user: WELLIE2: rw-
fdefault:group:SYS1:rwx
default:user:WELLIE4:---

3. To copy the ACL entries from file foo such that the file bar will have the same
ACL entries:

getfacl foo | setfacl -S - bar

Localization

getfacl uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_SYNTAX

* NLSPATH

See for more information.

Exit Values

0 Successful completion
>0 Failure

getfacl displays the ACL entries in the following order: access, file default, and
directory default. Errors will occur in the following situations:

» If afile is not a directory and the -d or -f option was used, you will get a warning
and getfacl will continue to the next file.

 |f the user does not have access to a file, you will get a warning and getfacl will
continue to the next file.

Portability
An approved POSIX standard does not exist for getfacl.

Related Information
find, Is, setfacl

getopts — Parse utility options

Format
getopts opstring name [arg ...]

Description

getopts obtains options and their arguments from a list of parameters that follows
the standard POSIX.2 option syntax (that is, single letters preceded by a hyphen (-)
and possibly followed by an argument value). Typically, shell scripts use getopts to
parse arguments passed to them. When you specify arguments with the arg
argument on the getopts command line, getopts parses those arguments instead
of the script command-line arguments (see set).

Options

opstring
Gives all the option letters that the script recognizes. For example, if the

280 2/0S V1R4.0 UNIX System Services Command Reference

Example

name

arg ...

getopts

script recognizes —a, —f, and —s, opstring is afs. If you want an option letter
to be followed by an argument value or group of values, put a colon after
the letter, as in a:fs. This indicates that getopts expects the —a option to
have the form —a value. Normally one or more blanks separate value from
the option letter; however, getopts also handles values that follow the letter
immediately, as in —avalue. opstring cannot contain a question mark (?)
character.

Specifies the name of a shell variable. Each time you invoke getopts, it
obtains the next option from the positional parameters and places the
option letter in the shell variable name.

getopts places a question mark (?) in name if it finds an option that does
not appear in opstring, or if an option value is missing.

Each option on the script command line has a numeric index. The first
option found has an index of 1, the second has an index of 2, and so on.
When getopts obtains an option from the script command line, it stores the
index of the script in the shell variable OPTIND.

When an option letter has a following argument (indicated with a : in
opstring), getopts stores the argument as a string in the shell variable
OPTARG. If an option doesn’t take an argument, or if getopts expects an
argument but doesn’t find one, getopts unsets OPTARG.

When getopts reaches the end of the options, it exits with a status value of
1. It also sets name to the character ? and sets OPTIND to the index of the
first argument after the options. getopts recognizes the end of the options
by any of the following:

* Finding an argument that doesn’t start with —

* Finding the special argument —, marking the end of options

« Encountering an error (for example, an unrecognized option letter)

OPTIND and OPTARG are local to the shell script. If you want to export
them, you must do so explicitly. If the script invoking getopts sets OPTIND
to 1, it can call getopts again with a new set of parameters, either the
current positional parameters or new arg values.

By default, getopts issues an error message if it finds an unrecognized
option or some other error. If you do not want such messages printed,
specify a colon as the first character in opstring.

Following is an example of using getopts in a shell script:

R e

Example illustrating use of getopts builtin. This
shell script would implement the paste command,
using getopts to process options, if the underlying
functionality was embedded in hypothetical utilities
hpaste and vpaste, which perform horizontal and
vertical pasting respectively.

paste=vpaste # default is vertical pasting
seplist="" # default separator is tab

while getopts d:s o

do

case "$0" in

d) seplist="$0PTARG";;

s) paste=hpaste;;

[?]) print >&2 "Usage: $0 [-s] [-d seplist] file ..."
exit 1;;

Chapter 2. Shell Command Descriptions 281

getopts

esac
done
shift $OPTIND-1

perform actual paste command
$paste -d "§seplist" "§6"

Environment Variables

getopts uses the following environment variables:
OPTARG

Stores the value of the option argument found by getopts.
OPTIND

Contains the index of the next argument to be processed.

Localization

getopts uses the following localization environment variables:
* LANG

« LC_ALL

- LC_CTYPE

« LC_MESSAGES

See for more information.
Usage Note

getopts is a built-in shell command.

Exit Values

0 getopts found a script command line with the form of an option. This
happens whether or not it recognizes the option.

1 getopts reached the end of the options, or an error occurred.

2 Failure because of an incorrect command-line option

Portability
POSIX.2, X/Open Portability Guide.

On UNIX systems, getopts is built in both the KornShell and Bourne shell.

Related Information
sh

grep — Search a file for a specified pattern

Format
grep [-bcEFilngsvx] [-e pattern] ... [-f patternfile] ... [pattern] [file ...]
egrep [-bceilnqsvx] [-e pattern] ... [-f patternfile] ... [pattern] [file ...]
fgrep [-bcilnqsvx] [—-e pattern] ... [-f patternfile] ... [pattern] [file ...]
Description

fgrep searches files for one or more pattern arguments. It does not use regular
expressions; instead, it directs string comparisons to find matching lines of text in
the input.

282 2/0S V1R4.0 UNIX System Services Command Reference

Options

grep

egrep works in a similar way, but uses extended regular expression matching. (For
information about regular expression matching, see.) If you include
special characters in patterns typed on the command line, escape them by
enclosing them in apostrophes to prevent inadvertent misinterpretation by the shell
or command interpreter. To match a character that is special to egrep, put a
backslash (\) in front of the character. It is usually simpler to use fgrep when you
don’t need special pattern matching.

grep is a combination of fgrep and egrep. If you do not specify either —E or —F,
grep behaves like egrep, but matches basic regular expressions instead of
extended ones. You can specify a pattern to search with either the —e or —f option.
If you do not specify either option, grep (or egrep or fgrep) takes the first
non-option argument as the pattern for which to search. If grep finds a line that
matches a pattern, it displays the entire line. If you specify multiple input files, the
name of the current file precedes each output line.

grep accepts all the following options while egrep and fgrep accept all but the —E
and —F options.

-b Precedes each matched line with its file block number.

-C Displays only a count of the number of matched lines and not the lines
themselves.

-E Matches using extended regular expressions (causes grep to behave like
egrep).

—e pattern
Specifies one or more patterns separated by newlines for which grep is to
search.

You can indicate each pattern with a separate —e option character, or with
newlines within pattern. For example, the following two commands are
equivalent:

grep —e pattern_one —epattern_two file
grep —e 'pattern_one
pattern_two' file

-F Matches using fixed strings (causes grep to behave like fgrep).

~f patternfile
Reads one or more patterns from patternfile. Patterns in patternfile are
separated by newlines.

=i Ignores the case of the strings being matched.

-1 Lists only the filenames that contain the matching lines.

-n Precedes each matched line with its fileline number.
-q Suppresses output and returns the appropriate return code.
-s Suppresses the display of any error messages for nonexistent or

unreadable files.

-V Complements the sense of the match—that is, displays all lines not
matching a pattern.

-X Requires a string to match an entire line.

Chapter 2. Shell Command Descriptions 283

grep

Example
To display every line mentioning an astrological element:

egrep "earth|air|fire|water" astro.log

Localization

grep uses the following localization environment variables:
* LANG

« LC_ALL

« LC_COLLATE

« LC_CTYPE

« LC_MESSAGES

« LC_SYNTAX

* NLSPATH

See|Appendix F|for more information.

Exit Values

0 At least one match for pattern was found.
1 No matches for pattern were found.
2 Failure due to any of the following:

* The —e option was missing pattern.

* The —f option was missing patternfile.

» QOut of memory for input or to hold a pattern.
» patternfile could not be opened.

* Incorrect regular expression.

* Incorrect command-line option.

* The command line had too few arguments.
» The input file could not be opened.

If the program fails to open one input file, it tries to go on to look at any
remaining input files, but it returns 2 even if it succeeds in finding matches
in other input files.

Messages
Possible error messages include:
input lines truncated—result questionable
One or more input lines were longer than grep could handle; the line has
been truncated or split into two lines. Shorten the line or lines, if possible.
This message does not affect the exit status.
out of space for pattern string
grep did not have enough memory available to store the code needed to
work with the given pattern (regular expression). The usual cause is that the
pattern is very complex. Make the pattern simpler, or try to release memory
so that grep has more space to work with.
Limits

The longest input record (line) is restricted by the system variable LINE_MAX. It is
always at least 2048 bytes. fgrep may be able to handle lines longer than
LINE_MAX. Longer lines are treated as two or more records.

284 2/0S V1R4.0 UNIX System Services Command Reference

Portability

grep

POSIX.2, X/Open Portability Guide, UNIX systems.

Only the grep command is part of the POSIX and X/Open standards. The egrep
and fgrep commands are extensions. The —b option is an extension of the POSIX
standard.

Related Information

ed, find

See [Appendix C|for more information about regexp.

hash — Create a tracked alias

Format

Description

Option

Usage Note

Localization

Exit Values

hash [name ...]
hash -r

hash creates one or more tracked aliases. Each name on the command line
becomes an alias that is resolved to its full pathname; thus the shell avoids
searching the PATH directories for the command whenever you issue it. A tracked
alias is assigned its full pathname the first time that the alias is used. It is
reassigned a pathname the first time that it is used after the variable PATH is
changed or the shell command cd is used.

hash is a built-in alias defined with

alias hash=’alias -t'

If you specify hash without any arguments on the command line, hash displays the
current list of tracked aliases.

-r Removes all current tracked aliases.

hash is a built-in shell command.

hash uses the following localization environment variables:
* LANG

« LC_ALL

- LC_CTYPE

« LC_MESSAGES

* NLSPATH

See [Appendix F|for more information.

0 Successful completion
1 Failure because of an incorrect command-line option

Chapter 2. Shell Command Descriptions 285

hash
Portability

POSIX.2, X/Open Portability Guide, UNIX systems.

Related Information

alias, sh

head — Display the first part of a file

Format

Description

Options

Localization

Exit Values

head [-bcklmn num] [file ...]
head [-num] [file ...]

By default, head displays the first 10 lines of each file given on the command line.
If you do not specify file, head reads standard input (stdin).

-b num
Displays the first num blocks (a block is 512 bytes) of each file.
—C num
Displays the first num bytes of each file.
-k num
Displays the first num kilobytes (1024 bytes) of each file.
=l num
Displays the first num lines of each file.
—-m num
Displays the first num megabytes of each file.
-n num
Displays the first num lines of each file.
—num Displays the first num lines of each file.

head uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 Successful completion
1 Failure due to any of the following:
* Inability to open an input file
* Read error on stdin
* Write error on stdout
2 Failure due to any of the following:
* Unknown command-line option
» Missing or incorrect num in an —n option

286 2/0S V1R4.0 UNIX System Services Command Reference

Messages

Portability

head

Possible error messages include:

Badly formed line or character count num
The value num, following a =b, —¢, =k, =1, =m, or —n option, was not a valid
number.

POSIX.2, X/Open Portability Guide.

This program originated with Berkeley Software Distribution (BSD) and is a frequent
add-on to UNIX systems.

The POSIX.2 standard included only the —n num and —num options, though it
considers the latter obsolete.

Related Information

cat, sed, tail

history — Display a command history list

Format

Description

history [first{/asf]]

tcsh shell:

history [-hTr] [n]

history -SI-LI-M [filename]

history -c

history is an alias for fc —I. Like fc —I, history displays the list of commands that
have been input to an interactive shell. This command does not edit or reenter the
commands. If you omit /ast, history displays all commands from the one indicated
by first through to the previous command entered. If you omit both first and /ast with
this command, the default command range is the 16 most recently entered
commands.

See [fc — Process a command history list” on page 255|for more information.

history in the tcsh shell
In the tcsh shell, history, used alone, prints the history event list. If nis given only

the n most recent events are printed or saved.

Note: See [tcsh — Invoke a C shell” on page 570|for descriptions of the tcsh shell
variables and commands indicated below.
The tcsh shell history built-in command uses the following options:

» With -h, the history list is printed without leading numbers.

» With -T, timestamps are printed also in comment form. (This can be used to
produce files suitable for loading with history -L or source -h.)

» With -r, the order of printing is most recent first rather than oldest first.

Chapter 2. Shell Command Descriptions 287

history

» With -S, history saves the history list to filename. If the first word of the savehist
shell variable is set to a number, at most that many lines are saved. If the
second word of savehist is set to merge, the history list is merged with the
existing history file instead of replacing it (if there is one) and sorted by time
stamp. Merging is intended for an environment like the X Window System with
several shells in simultaneous use. Currently it only succeeds when the shells
quit one after another.

» With -L, the shell appends filename, which is presumably a history list saved by
the -S option or the savehist mechanism, to the history list. -M is like -L, but the
contents of filename are merged into the history list and sorted by timestamp. In
either case, histfile is used if filename is not given and ~/.history is used if
histfile is unset. history -L is exactly like source -h except that it does not
require a filename.

* With -c, clears the history list.

tesh login shells do the equivalent of history -L on startup and, if savehist is set,
history -S before exiting. Because only ~/.teshrc is normally sourced before
~l.history, histfile should be set in ~/.tcshrc rather than ~/.login. If histlit is set,
the first form (history [-hTr] [n]) and second form (history -SI-LI-M [filename]) print
and save the literal (unexpanded) form of the history list.

Related Information

fc, sh, tcsh

iconv — Convert characters from one codeset to another

Format

Description

iconv [-sc] —f oldset -t newset [file ...]
iconv —I[-v]

File Tag Specific Options:
iconv [-F] [-M] [-T]

iconv converts characters in file (or from stdin if no file is specified) from one code
page set to another. The converted text is written to stdout. See [z/0S C/C+]
[Programming Guidd for more information about the code sets supported for this
command.

If the input contains a character that is not valid in the source code set, iconv
replaces it with the byte 0xff and continues, unless the —¢ option is specified.

If the input contains a character that is not valid in the destination code set,
behavior depends on the system’s iconv() function. See Iz/OS C/C++ Run-Time|
ILibrary Referencd for more information about the character used for converting
incorrect characters.

Also, [z/0S C/C++ Programming Guidelhas a list of code pages supported by the
z/OS shell.

You can use iconv to convert singlebyte data or doublebyte data.

288 2/0S V1R4.0 UNIX System Services Command Reference

Options

Localization

Examples

iconv

-C Characters containing conversion errors are not written to the output. By
default, characters not in the source character set are converted to the
value 0xff and written to the output.

—f oldset
oldset can be either the codeset name or a pathname to a file containing an
external codeset.

- Lists supported codesets and CCSIDs. (This option was accepted in
releases prior to V1R3, but was not supported.)

-s Suppresses all error messages about faulty encodings.

-t newset
Specifies the destination codeset for the output. newset can be either the
codeset name or a pathname to a file containing an external codeset.

-V Specifies verbose output.

File Tag Specific Options

-F Use the input file’s codeset (as defined in the file tag) as the source
codeset. If —f is also specified, and the oldset matches the file tag
or if there is no file tag codeset, then oldset is used as the source
codeset. If =F and —f are specified and oldset does not match the
file tag codeset, then iconv fails with an error.

-M Tag a new output file as mixed, that is, the text flag (txtflag) will be
off and the value for codeset will be the same as what’s specified
on the -t option.

-T Tag a new output file as text, that is, the txtflag will be on and the
value for codeset will be the same as what’s specified on the -t
option.

For more information on file tagging and codeset specifications, see |z70S UNIX
[System Services Planning

iconv uses the following localization environment variables:
* LANG

« LC_ALL

- LC_CTYPE

« LC_MESSAGES

* NLSPATH

See[Appendix F|for more information.

1. To convert the file words.txt from the IBM-1047 standard codeset to the ISO
8859-1 standard codeset and store it in converted:

iconv —f IBM-1047 -t I1S08859-1 words.txt > converted

Also, for the exact conversion table names, refer to|z/OS C/C++ Programming|
[Guide]

2. To convert the file mbesdata, which is in code page IBM-932 (doublebyte
ASCII), to code page IBM-939 and put the output in a file called dbcsdata:

Chapter 2. Shell Command Descriptions 289

iconv

Exit Values

Portability

iconv —f IBM-932 -t IBM-939 mbcsdata > dbcsdata

0 Successful completion

1 Failure due to any of the following:
* Insufficient memory
 Inability to open the input file
* Incorrect or unknown option

2 Input contained a character sequence that is not permitted in the source
codeset

X/Open Portability Guide.

-v is an extension to the POSIX.2 standard. The —¢, —I, and —s options are
extensions to the XPG standard.

id — Return the user identity

Format

Description

id [user]

id -G [-n] [user]
id —g [-nr] [user]
id —u [-nr] [usen]

id displays the user name and group affiliations of the user who issued the
command. Specifying a user argument on the command line displays the same
information for the given user instead of the person invoking id. In this case, you
require appropriate permissions.

The output has the format:
uid=runum(username) gid=rgnum(groupname)

where runum is the user’s real user ID (UID) number, username is the user’s real
user name, rgnum is the user’s real group ID (GID) number, and groupname is the
user’s real group name.

A user’s real and effective IDs may differ. In this case, there may be separate
entries for effective user ID (UID) with the format:

euid=eunum(euname)

where eunum is the effective user ID number and euname is the effective user
name. An entry for effective group ID has the format:

egid=egnum(egname)

where egnum is the effective group ID number and egname is the effective group
name.

If a user is a member of other supplemental groups, these are listed at the end of
the output, with this format:

groups=gnum(groupname)

290 2/0S V1R4.0 UNIX System Services Command Reference

where gnumis the user’s supplemental group ID number and groupname is the
user’s supplemental group name.

Options
-G Displays all different group IDs (effective, real, and supplementary) as
numbers separated by spaces.
-9 Displays only the effective group ID number.
-n With —G, —g, or —u, displays the name rather than the number.
-r With —g or —u, displays the real ID rather than the effective one.
-u Displays only the effective user ID number.
Localization
id uses the following localization environment variables:
* LANG
« LC_ALL
« LC_CTYPE

*+ LC_MESSAGES
* LC_NUMERIC
* NLSPATH

See for more information.

Exit Values

0 Successful completion
1 You specified an incorrect user with the —u option
2 Failure due to an incorrect command-line argument

Portability
POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information
logname

inetd daemon — Provide Internet Service Management

Format
inetd [—d] [configuration file]

Description
The inetd daemon provides service management for a network. For example, it
starts the rlogind program whenever there is a remote login request from a
workstation.

The rlogind program is the server for the remote login command rlogin commonly

found on UNIX systems. It validates the remote login request and verifies the
password of the target user. It starts a z/OS shell for the user and handles
translation between ASCII and EBCDIC code pages as data flows between the
workstation and the shell.

Chapter 2. Shell Command Descriptions

291

inetd daemon

When inetd is running and receives a request for a connection, it processes that
request for the program associated with that socket. For example, if a user tries to
log in from a remote system into the z/OS shell while inetd is running, inetd
processes the request for connection and then issues a fork() and execl() to the
rlogin program to process the rlogin request. It then goes back to monitoring for
further requests for those applications that can be found as defined in the
letc/inetd.conf file.

Options
-d Specifies that the inetd daemon be started in debug mode. All debug
messages are written to stderr.
configuration file
Specifies that the inetd daemon be started with a configuration file other
than the default /etc/inetd.conf file.
Signals

inetd recognizes the following signals:

SIGTERM
Terminates inetd in an ordinary fashion and deletes /etc/inetd.pid. You can
restart inetd, if you want.

SIGINT
Same as SIGTERM.

SIGHUP
Rereads the inetd configuration file. This can be used to start new services,
or to restart services with a different port.

Other signals that normally end a process (such as SIGQUIT or SIGKILL) should
not normally be sent to inetd because the program will not have a chance to
remove /etc/init.pid.

Usage Notes

1. Bulffer sizes should only be specified if the documentation for the daemon being
specified in the inetd.conf statement calls for something other than the default.

The configuration file is field-sensitive, but not column-sensitive. Fields should
be arranged in the order shown in[Table 11 on page 293| Continuation lines for
an entry must begin with a space or tab. Each entry must contain all fields. The
inetd daemon uses the configuration file entry to properly set up the
environment expected by the server. Specifying an incorrect value for one or
more of the parameters is likely to cause the server to fail.

292 2/0S V1R4.0 UNIX System Services Command Reference

inetd daemon

Table 11. Fields in the Configuration File (inetd daemon)

[ip_address:]service_name

ip_address is a local IP, followed by a
colon. If specified, the address is used
instead of INADDR_ANY or the current
default. To specifically request
INADDR_ANY, use "*:". If ip_address
(or a colon) is specified, without any
other entries on the line, it becomes the
default for subsequent lines until a new
default is specified. service_name is a
well-known service name such as login
or shell. The name and protocol
specified must match one of the server
names defined in /etc/services. For
more information on /etc/services, see
2/0S Communications Server: IA
Configuration Referencd and|z/09
Communications Server: IP Migration|

socket_type

Stream or dgram

protocol/,sndbuf=n][,rcvbuf=n]

protocol can be tcp or udp, or (for
IPv6) tcp6 or udp6. tcp4 and udp4 can
also be specified to explicitly request
IPv4. The protocol is used to further
qualify the service name. Both the
service name and the protocol should
match an entry in /etc/services, except
that, the "4” or the "6” should not be
included in the /etc/services entry. For
more information on /etc/services, see
2/0S Communications Server: IH
Configuration Reference{ and|z/08
Communications Server: IP Migratior]
Note that, if tcp6 or udp6 is specified,
the socket will support IPv6 (that is,
AF_INET®6 will be used.)

sndbuf and revbuf specify the size of
the send and receive buffers. The size
may be in bytes, or a "k” or "m” may be
added to indicate kilobytes or
megabytes respectively. sndbug and
revbuf can be used in either order.

Chapter 2. Shell Command Descriptions 293

inetd daemon

294

Table 11. Fields in the Configuration File (inetd daemon) (continued)

wait_flag [.max]

Wait or nowait. Wait indicates the
daemon is single-threaded and another
request will not be serviced until the first
one completes.

If nowait is specified, the inet daemon
issues an accept when a connect
request is received on a stream socket.
If wait is specified, the inet daemon
does not issue the accept. It is the
responsibility of the server to issue the
accept if this is a stream socket.

max is the maximum number of users
allowed to request service in a 60
second interval. Default is 40. If
exceeded, the service’s port is shut
down.

login_name

User ID and group that the forked
daemon is to execute under. inetd can
run a program with a UID that is not 0.
However, if the program that inetd runs
needs to change the identity of the
process to that of the user, then the
login_name must have been defined to
RACF via ADDUSER as a superuser
with a UID of 0 (UID 0) and the
login_name must have been defined to
RACF. This will allow inetd to use
special functions like setgid() and
setuid().

If the program that will be invoked by
inetd requires the use of special
functions like setuid() and seteuid(),
then it must be permitted to the
BPX.DAEMON class as in the following
example for login, which is a typical
ADDUSER command.

ADDUSER rlogind omvs(uid(0) home(/)

A typical permit command is:

permit bpx.daemon class(facility)
id(rlogind) access(read)

How you set up security for daemons is
the final determining factor. For more
information, see [z70S UNIX System|
[Services Planning]

server_program

Full pathname of the service. For
example:

/usr/sbhin/rlogind

is the full pathname for the rlogind
command.

server_arguments

Maximum of 20 arguments. The first
argument is the server name.

z/OS V1R4.0 UNIX System Services Command Reference

inetd daemon

Related Information

The inetd daemon creates a temporary file, /etc/inetd.pid, that contains the PID of
the currently executing inetd daemon. This PID value is used to identify syslog
records that originated from the inetd daemon process, and also to provide the PID
value for commands such as Kkill that require you to specify a PID, and to provide a
lock to prevent more than one inetd from being active at one time.

For more information on setting up the inetd configuration file and configuring
daemons in general, see [z70S UNIX System Services Planning or|[z/08
|Communications Server: IP Configuration Referencel

infocmp — Compare or print the terminal description

Format

Description

Options

infocmp [-ducn] [-ILC] [-1VV] [-s dlilllc] [-A directory] [-B directory]
[term_names...]

infocmp compares terminfo database entries, or prints a terminfo database entry.
Output is written to standard output (stdout).

The Curses application uses the terminfo database, which contains a list of terminal
descriptions. This enables you to manipulate a terminal’s display regardless of the
terminal type. To create the terminfo database, use tic. For information on defining
the terminfo database, see [z70S UNIX System Services Planning

For more information about curses, see |zZ0S C Curses,.

d Prints the two terminal definitions showing the differences between the
capabilities.

u Prints the differences between the two terminal definitions.

c Prints entries that are common to the two terminfo databases.

n Does not print entries in either terminfo database.

Prints the current terminal description using capname. (capname is the
short name for a capability specified in the terminfo source file.)

Prints the current terminal description using termcap.

L Prints the current terminal description using variables (names that the
curses functions can use when working with the terminfo database)

Single-column output.
Prints the program version.

Prints debugging information (verbose) to stderr.

w < < =

Changes sort order of the fields printed.

d Sorts by database

i Sorts by terminfo

c Sorts by termcap

| Sorts by the variables (names that the curses function can use
when working with the terminfo database)

Chapter 2. Shell Command Descriptions 295

infocmp

A First terminfo database.
B Other terminfo database.
term_names

Names of entries to be processed.

Usage Notes
When displaying terminal database information for entries that are to be processed,
infocmp operates as follows:

1. If you omit ferm_names, infocmp locates the terminal database information
specified by the TERM environment variable and displays that as the entry’s
terminal database information.

2. If you specify a single term_name, infocmp displays terminal database
information for that named entry.

3. If you specify more than one term_name, infocmp displays the results of a
terminal database comparison between all of the specified term_names.

Examples

1. To print out the current terminal description using capname, issue:
infocmp

You will see:

infocmp ibm3101
Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\

ibm3101|IBM 3101-10,
am,
cols#80, lines#24,
bel==?, clear=-.\322, cr=\r, cubl=\b, cudl=\n,
cufl=—.\303,

2. To print out the current terminal description using the curses capability names,

issue:
infocmp —L
You will get:

infocmp —L ibm3101
Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\

Terminal type ibm3101
ibm3101|IBM 3101-10

flags
auto_right_margin,

numbers
columns = 80, lines = 24,

strings
bell = '=?', carriage_return = '\r', clear_all_tabs = '-.\310',
clear_screen = '=.\322', clr_eol = '=.\311', cIr_eos = '-.\321',

3. To print out the current terminal description using capname, issue:
infocmp -1

You will get:

296 2/0S V1R4.0 UNIX System Services Command Reference

infocmp

infocmp -I ibm3101
Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\

ibm3101|1BM 3101-10,
am,
cols#80, lines#24,
bel=-?, clear=-.\322, cr=\r, cubl=\b, cudl=\n,
cufl=-.\303,

To print out the current terminal description using termcap, issue:

infocmp —C

You will get:

infocmp —C ibm3101
Reconstructed via infocmp from file:/usr/share/Tib/terminfo/i
ibm3101|IBM 3101-10:\
:am:bs:\
:.co#80:1i#24:kn#2:\
:.cd=\EJ:.ce=\EI:.c1=\EK:\
t.c:.em=\EY%p1%' '%+%c%p2%’
"%+%c:.ct=\EH:.ho=\EH:\
:.nd=\EC:.st=\EO:.up=\EA:

To print entries in single-column format, issue:

infocmp -1

You will get:

infocmp —C -1 ibm3101
Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\
zam:\
:bs:\
:co#80:\
:1i#24:\
:kn#2:\
:.cd=\EJ:\
:.ce=\EI:\
:.c1=\EK:\

To print the two terminal definitions showing the difference between the

capabilities (F indicates False, entry not present; T indicates True, entry
present):

infocmp —d ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
1bm3101|IBM 3101-10:\
comparing ibm3101 to hft-c.
comparing booleans.
bw:F:T.
msgr:F:T.
xon:F:T.
comparing numbers.
it:-1:8.
lines:24:25.
comparing strings.
battl:'NULL','\206\361".
batt2:'NULL', '\206\361\224\204".

To print the capabilities that are different between the two terminal definitions.
The values for the first terminal definitions are shown.

infocmp —u ibm3101 hft-c

Chapter 2. Shell Command Descriptions 297

infocmp

You will get:

Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\
ibm3101|1BM 3101-10,
bw@, msgr@, xon@,
it@, lines#24,
battl@, batt2@, blink@, bold@, box1@, box2@,
clear=-.\322, colb0@, colbl@, colb2@, colb3@, colb4e,
colb5@, colb6@, colb7@, colf0@, colfl@, colf2@,
colf3@, colf4@, colf5@, colf6@, colf7@, cub@, cude,
cuf@, cufl=-.\303,

7. To print the capabilities that are the same in both terminal definitions, issue:
infocmp —c ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101|IBM 3101-10:\
comparing ibm3101 to hft-c.
comparing booleans.

am= T.
comparing numbers.

cols= 80.
comparing strings.

bel= '-7'.

cr= "\r'.

cubl= "\b'.

cudl= '"\n'.

8. To print the capabilities that are not found in either terminal definition, issue:
infocmp —u ibm3101 hft-c

You will get:

Reconstructed via infocmp from file:/usr/share/1ib/terminfo/i
ibm3101| IBM 3101-10:)\
comparing ibm3101 to hft-c.
comparing booleans.

Ibce.

lcce.

Ichts.

Icpix.

Icrxm.

lda.

ldaisy.

Environment Variables
infocmp uses the following environment variable:

TERMINFO
Contains the pathname of the terminfo database.

TERM Contains the name of your terminal, that is, the current terminal definition.

Related Information
captoinfo, tic

integer — Mark each variable with an integer value

Format
integer [number]

298 2/0S V1R4.0 UNIX System Services Command Reference

Description

integer

integer is an alias for typeset —i. Like typeset —i, integer marks each variable as
having an integer value, thus making arithmetic faster. If number is given and is
nonzero, the output base of each variable is number. The default is decimal.

See r‘typeset — Assign attributes and values to variables” on page 658| for more
information.

Related Information

typeset, sh

ipcrm — Remove message queues, semaphore sets, or shared

memory IDs

Format

Description

Options

ipcrm [-m SharedMemoryID] [-M SharedMemoryKey] [-q QMessagelD] [-Q
MessageKey] [-s SemaphorelD] [-S SemaphoreKey]

ipcrm removes one or more message queues, semaphores set, or shared memory
identifiers.

—-m SharedMemoryID
Removes the shared memory identifier SharedMemorylD. The shared
memory segment and data structure associated with SharedMemoryID are
also removed after the last detach operation.

—M SharedMemoryKey
Removes the shared memory identifier, created with the key
SharedMemoryKey. The shared memory segment and data structure
associated with it are also removed after the last detach operation.

—qg MessagelD
Removes the message queue identifier MessagelD and the message
queue and data structure associated with it.

—Q MessageKey
Removes the message queue identifier, created with the key MessageKey,
and the message queue and data structure associated with it.

—s SemaphorelD
Removes the semaphore identifier SemaphorelD and the set of
semaphores and data structure associated with it.

—S SemaphoreKey
Removes the semaphore identifier, created with the key SemaphoreKey,
and the set of semaphores and data structure associated with it.

The msgctl, shmctl, and semctl subroutines provide details of the remove
operations. You can use the ipcs command to find the identifiers and keys.

Chapter 2. Shell Command Descriptions 299

ipcrm

Examples

Exit Values

1. To remove the shared memory segment associated with SharedMemoryID
18602, enter:

ipcrm —m 18602

2. To remove the message queue that was created with a key of 0xC1C2C3CS3,
enter:

ipcrm —Q 0xC1C2C3C4

0 Successful completion
1 Incorrect command-line option

Related Information

ipcs

ipcs — Report status of the interprocess communication facility

Format

Description

ipcs [-m] [-q] [-s] [-a | -b ¢ o p t] [-w] [-X] [-y]

ipcs writes to the standard output information about active interprocess
communication facilities. If you do not specify any flags, ipcs writes information in a
short form about currently active message queues, shared memory segments, and
semaphores.

The column headings and the meaning of the columns in an ipcs command listing
are listed in[Table 12| The letters in parentheses indicate the command flags that

cause the corresponding heading to appear. (all) means that the heading is always
displayed. These flags determine what information is provided for each facility. They
do not determine which facilities are listed.

Table 12. Explanation of the ipcs Command Listing

Column Heading Meaning of the Column

T The type of facility:
q Message queue

(all except y) m Shared memory segment
s Semaphore

ID The identifier for the facility entry

(all except x,w,y)

KEY The key used as a parameter to the msgget subroutine, the semget
subroutine, or the shmget subroutine to make the facility entry. (The

(all except y) key of a shared memory segment is changed to IPC_PRIVATE when
the segment is removed until all processes attached to the segment
detach it.)

300 2/0S V1R4.0 UNIX System Services Command Reference

ipcs

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading

Meaning of the Column

MODE

(all except x,w,y)

The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows:

The first two characters can be the following:

R If a process is waiting in a msgrev() system call.
S If a process is waiting in a msgsnd() system call.
D If the associated shared memory segment has been

removed. It disappears when the last process attached to

the segment detaches it.
The next nine characters are interpreted as three sets of three
characters each. The first set refers to the owner’s permissions; the
next to permissions of others in the user group of the facility entry;
and the last to all others. Within each set, the first character indicates
permission to read, the second character indicates permission to
write or alter the facility entry, and the last character is currently
unused.

The permissions are indicated as follows:

r If read permission is granted
w If write permission is granted
a If alter permission is granted

If the indicated permission is not granted

OWNER (all)

The login name or user ID of the owner of the facility entry.

GROUP (all)

The name or group ID of the group that owns the facility entry.

CREATOR (a,c)

The login name or user ID of the creator of the facility entry.

CGROUP (a,c)

The group name or group ID of the creator of the facility entry.

CBYTES (a,x,0)

The number of bytes in messages currently outstanding on the
associated message queue.

INFO (x) Provides additional extended state information. Under this field will
be returned one or more of the following codes (codes are not
mutually exclusive unless noted):

For shared memory output:

M megaroo

For semaphore output:

P PLO in use. Mutually exclusive with L.

L Latch in use. Mutually exclusive with P.

B Binary semaphore.

For message queue output:

P PLO in use. Mutually exclusive with L.

L Latch in use. Mutually exclusive with P.

R RCV type PID.

S Send type PID.

1 PLO1 flag on—IPC_PLO1 set on msgget()

2 PLO2 flag on—IPC_PLO2 set on msgget()
QNUM (a,o) The number of messages currently outstanding on the associated

message queue.

QBYTES (a,b)

The maximum number of bytes allowed in messages outstanding on
the associated message queue.

Chapter 2. Shell Command Descriptions 301

ipcs

302

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading

Meaning of the Column

LSPID (p) The ID of the last process that sent a message to the associated
queue.

LRPID (p) The ID of the last process that received a message from the
associated queue.

STIME (a,t) The time when the last message was sent to the associated queue.

RTIME (a,t) The time when the last message was received from the associated
queue.

CTIME (a,t) The time when the associated entry was created or changed.

NATTCH (a,0)

The number of processes attached to the associated shared memory
segment.

SEGSZPG (a,b)

The size in PAGES of the associated shared memory segment.

CPID (p) The process ID of the creator of the shared memory entry.

LPID (p) The process ID of the last process to attach or detach the shared
memory segment.

ATIME (a,t) The time when the last attach was completed to the associated
shared memory segment.

DTIME (a,t) The time the last detach was completed on the associated shared
memory segment.

NSEMS (a,b) The number of semaphores in the set associated with the semaphore
entry.

OTIME (a,t) The time the last semaphore operation was completed on the set
associated with the semaphore entry.

RCVWAIT (x) A count of msgrcv() waiters.

SNDWAIT (x) A count of msgsnd() waiters.

MSGQPID (w) For the message Q report, up to 10 lines of data will be shown under

this heading.

MSGQTYPE (w)

For the message Q report, up to 10 lines of data will be shown under
this heading.

RCVPID (w) The process ID of a msgrev() waiter. A maximum of 10 process IDs
can be written.

RCVTYP (w) The message type of a msgrev() waiter associated with RCVPID. A
maximum of 10 message type will be written. If the caller does not
have read access, this field is not displayed.

SNDPID (w) The process ID of a msgsnd() waiter. A maximum of 10 process IDs
can be written

SNDLEN (w) The message send length of a msgsnd() waiter associated with
SNDPID. A maximum of 10 message send lengths can be written.

TERMA (x) The number of times sem_val was changed during termination for
semaphore adjustments.

CNADJ (x) The current number of processes with semaphore adjustments.

SNCNT (x) The number of waiters waiting for a sem_val greater than zero.

SZCNT (x) The number of waiters waiting for a sem_val equal to zero.

WTRPID (w) The process IDs of a semop waiter. A maximum of 10 semop waiters
are written.

WTRNM (w) The semaphore number associated with WTRPID. A maximum of 10

semaphore numbers are written.

z/OS V1R4.0 UNIX System Services Command Reference

Options

ipcs

Table 12. Explanation of the ipcs Command Listing (continued)

Column Heading Meaning of the Column

WTROP (w) The semaphore operation value associated with WTRNM and
WTRPID. A maximum of 10 semaphore operation values are written.

AJPID (w) The process ID of a process with semaphore adjustments. A
maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustment associated
with AJPID. A maximum of 10 semaphore numbers are written.

AJPID (w) The process ID of a process with semaphore adjustments. A
maximum of 10 process IDs are written.

AJNUM (w) The semaphore number of the semaphore adjustments associated
with AJPID. A maximum of 10 semaphore numbers are written.

AJVAL (w) The semaphore adjustment value associated with AUONUM and
AJPID. A maximum of 10 semaphore adjustment values are written.

ATPID (x) The process ID of a process that is attached to this shared memory
segment. A maximum of 10 process IDs are written.

ATADDR (x) The shared memory address where the process ATPID is attached to
this segment. A maximum of 10 addresses are written.

MNIDS (y) The system limit for maximum number of message queues,
semaphores, or shared memory IDs.

HWIDS (y) The most message queues, semaphores, or shared memory IDs
created.

CIDSA (y) The current number of message queues, semaphores, or shared
memory |IDs available.

CPRIV (y) The current number of message queues, semaphores, or shared
memory IDs created with IPC_PRIVATE

CKEY (y) The current number of message queues, semaphores, or shared
memory IDs created with IPC_PRIVATE.

GETEX (y) The number of times msgget, semget, or shmget exceeded the
maximum number of IDs MNID.

MAXQB (y) The system limit for maximum number of bytes on a message queue.

QMNUM (y) The system limit for maximum number messages on a message
queue.

ENOMEM (y) The number of times msgsnd() calls returned ENOMEM.

MNSEMS (y) The system limit for maximum number of semaphores per set.

MNOPS (y) The system limit for maximum number of operations per semop.

CSBYTES (y) The current number of bytes used by the system for semaphores.

TPAGES (y) The system limit for number of system-wide shared memory pages

SPAGES (y) The system limit for number of pages per shared memory segment.

SEGPR (y) The system limit for number of segments per process.

CPAGES (y) The current number of system-wide shared memory pages

MAXSEG (y) The largest number of shared memory pages allocated to a single
shared memory segment.

-a Uses the -b, —¢, —o0, and -t flags.

Chapter 2. Shell Command Descriptions 303

ipcs

-b Writes the maximum number of bytes in messages on queue for message
queues, the size of segments for shared memory, and the number of
semaphores in each semaphores set.

-C Writes the login name and group name of the user that made the facility.
-m Writes information about active shared memory segments.

-0 Writes the following usage information:
* Number of messages on queue
» Total number of bytes in messages in queue for message queues
* Number of processes attached to shared memory segments

-p Writes the following:

* Process number of the last process to receive a message on message
queues

* Process number of the creating process
* Process number of last process to attach or detach on shared memory

segments
-q Writes information about active message queues.
-s Writes information about active semaphore set.
-t Writes the following:

» Time of the last control operation that changed the access permissions
for all facilities

» Time of the last msgsnd() and msgrcv() on message queues
» Time of the last shmat and shmdt on shared memory
» Time of the last semop on semaphore sets

—X Writes extended status in these fields:
ATADDR INFO RCVWAIT SZCNT
ATPID KEY SEGSZPG T
CNADJ OWNER SNCNT TERMA
GROUP QCBYTES SNDWAIT

-w Writes message queue wait status and semaphore adjustment status in

these fields:
AJNUM KEY RCVPID T
AJPID MSGQPID RCVTYP WTRNM
AJVAL MSGQTYP SNDLEN WTROP
GROUP OWNER SNDPID WTRPID
-y Writes summary and system limit status in these fields:
CIDSA ENOMEM MAXSEG SPAGES
CKEY GETEX MNIDS TPAGES
CPAGES HWIDS MNOPS
CPRIV QMNUM MNSEMS
CSBYTES MAXQB SEGPR

Example
Following is a sample output from entering ipcs without flags:

304 2/0S V1R4.0 UNIX System Services Command Reference

ipcs

IPC status as of Wed Apr 6 14:56:22 EDT 1994

Message Queues:

T ID KEY MODE OWNER GROUP
q 1234567890 0x4107001c -Rrw-rw---- root printq
Shared Memory:

T 1D KEY MODE OWNER GROUP
m 0 0x0d07021e --rw------- root system
m 1 0x0d08c984 --rw-rw-rw- root system
Semaphores:

T ID KEY MODE OWNER GROUP
S 4096 0x0108c86e --ra------- root system
S 1 0x6208c8ef --ra-r--r-- root system
S 2 0x4d0b00ab --ra-ra---- root system
S 24579 0x00bc6lde --ra-ra-ra- x1in vendor
S 176132 0x00000058 --ra-ra-ra- xlin vendor

Exit Values

0
1

Related Information
ipcrm

Successful completion
Failure due to incorrect command-line option

jobs — Return the status of jobs in the current session

Format

jobs [-lI-p] [job-identifier...]

tcsh shell: jobs [-1]

Description

jobs produces a list of the processes in the current session. Each such process is
numbered for easy identification by fg or kill, and is described by a line of
information:

[job-identifier] default state shell_command

job-identifier

default

State

Is a decimal number that identifies the process for such commands as fg
and Kill (preface job-identifier with % when used with these commands).

Identifies the process that would be the default for the fg and bg
commands (that is, the most recently suspended process). If defaultis a +,
this process is the default job. If default is a —, this job becomes the default
when the current default job exits. There is at most one + job and one —
job.

Shows a job as:

Running
If it is not suspended and has not exited

Done If it exited successfully

Done(exit status)
If it exited with a nonzero exit status

Stopped (signal)
If it is suspended; signal is the signal that suspended the job

Chapter 2. Shell Command Descriptions 305

jobs

Options

Localization

Usage Note

Exit Values

Portability

shell_command
Is the associated shell command that created the process.

jobs in the tcsh shell
In the tcsh shell, jobs lists the active jobs. With-l, lists process IDs in addition to the
normal information. See [‘tcsh — Invoke a C shell” on page 570|

-1 Displays the process group ID of a job (before state).
—p Displays the process IDs of all processes.

The -l and —p options are mutually exclusive.

jobs uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

+ NLSPATH

See for more information.

jobs is a built-in shell command.

0 Successful completion
2 Failure due to an incorrect command-line argument

POSIX.2 User Portability Extension.

Related Information

bg, fg, kill, ps, wait, tcsh

join — Join two sorted textual relational databases

Format

Description

join [-a n] [-e s] [-o lisf] [-t c] [-v n] [-1 n] [-2 n] file1 file2
join [-a n] [-e s] [-j[n] m] [-o lisf] [-t c] file1 file2

join joins two databases. It assumes that both file1 and file2 contain textual
databases in which each input line is a record and that the input records are sorted
in ascending order on a particular join key field (by default the first field in each file).
If you specify — in place of file1 or file2, join uses the standard input (stdin) for that
file. If you specify — — in place of both file1 and file2, the output is undefined.

Conceptually, join computes the Cartesian product of records from both files. By
default, spaces or tabs separate input fields and join discards any leading or trailing
white space. (There can be no white-space-delimited empty input fields.) It then

306 2/0S V1R4.0 UNIX System Services Command Reference

Options

Examples

join

generates output for those combined records in which the join key field (the first

field by

default) matches in each file. The default output for join is the common join

key field, followed by all the other fields in file1, and then all the other fields in file2.
The other fields from each file appear in the same order they appeared in the

original

file. The default output field separator is a space character.

Produces an output line for lines that do not match in addition to one for a
pair of records that does match. If you specify n as one of 1 or 2, join
produces unpaired records from only that file. If you specify both —a 1 and
—a 2, it produces unpaired records from both files.

—e string

=i[n m

—o list

-1n
-2n

Replaces an empty field with string on output. In a doublebyte locale, string
can contain doublebyte characters.

Uses field number m as the join key field. By default, the join key field is
the first field in each input line. As with the —a option, if nis present, this
option specifies the key field just for that file; otherwise, it specifies it for
both files.

Specifies the fields to be output. You can specify each element in list as
either n.m, where n is a file number (1 or 2) and m is a field number, or as
0 (zero), which represents the join field. You can specify any number of
output fields by separating them with blanks or commas. The
POSIX-compatible version of this command (first form in the syntax)
requires multiple output fields to be specified as a single argument;
therefore, shell quoting may be necessary. join outputs the fields in the
order you list them.

Sets the field separator to the character c. Each instance of ¢ introduces a
new field, making empty fields possible. In a doublebyte locale, ¢ can be a
doublebyte character.

Suppresses matching lines. If you specify n as one of 1 or 2, join produces
unpaired records from only that file. If you specify both —v 1 and =v 2, it
produces unpaired records from both files. This does not suppress any lines
produced using the —a option.

Uses the nth field of file1 as the join key field.
Uses the nth field of file2 as the join key field.

1. The following script produces a report about files in the working directory
containing filename, file mode, and an estimate at what the file contains:
file » | tr —s ':' ';' >templ
Is =1 | tr=s ' ' ' ';' >temp2
join -t';' —=j2 9 —0 1.1 2.1 1.2 ---
templ temp?2
rm temp[12]

2. This example uses the historical implementation of the join command. The third

line

in the POSIX-compatible script could be:

join -t';' =2 9 -0 1.1,2.1,1.2 -- templ temp2

Chapter 2. Shell Command Descriptions 307

join

Localization

Exit Values

Messages

Portability

join uses the following localization environment variables:
 LANG

« LC_ALL

+ LC_COLLATE

« LC_CTYPE

« LC_MESSAGES

+ NLSPATH

See|Appendix F|for more information.

0 Successful completion
1 Failure due to any of the following:
* Incorrect syntax
* The wrong number of command-line arguments
 Inability to open the input file
« Badly constructed output list
* Too many —o options on the command line
2 Failure due to an incorrect command-line argument

Most diagnostics deal with argument syntax and are self-explanatory. For example:

Badly constructed output list at /ist
Indicates that the list for a —o option did not have the proper syntax.

POSIX.2, X/Open Portability Guide, UNIX systems.

POSIX considers the —j option to be obsolete.

Related Information

awk, comm, cut, paste, sort

kill — End a process or job, or send it a signal

Format

Description

kill -l [exit_status]
kill [-s signal_name] [pid ...] [job-identifier ...]
kill [-signal_name] [pid ...] [job-identifier ...]
kill [-signal_numben [pid ...] [job-identifier ...]
tcsh shell:
kill [-signal] %joblpid ...

kill -l

kill ends a process by sending it a signal. The default signal is SIGTERM.

308 2/0S V1R4.0 UNIX System Services Command Reference

Options

kill

kill in the tcsh shell

In the tcsh shell, kill [-signal] %jobipid ... sends the specified signal (or if none is
given, the TERM (terminate) signal) to the specified jobs or processes. job may be
a number, a string, ”, %, + or - . Signals are either given by number or by name.
When using the tcsh kill command, do not use the first three characters (SIG) of
the signal_name. Enter the signal_name with uppercase characters. For example, if
you want to send the SIGTERM signal, you would enter kill -TERM pid not kill
-SIGTERM pid.

There is no default job. Specifying kill alone does not send a signal to the current
job. If the signal being sent is TERM or HUP (hangup), then the job or process is
sent a CONT (continue) signal as well.

kill -1 lists the signal names. See[‘tcsh — Invoke a C shell” on page 570

The signal_numbers and signal_names described in are also used with
the tcsh kill command.

-1 Displays the names of all supported signals. If you specify exit_status, and
it is the exit code of a ended process, kill displays the ending signal of that
process.

—s signal_name
Sends the signal signal_name to the process instead of the SIGTERM
signal. When using the kill command, do not use the first three characters
(SIG) of the signal_name. Enter the signal_name with uppercase
characters. For example, if you want to send the SIGABRT signal, enter:

kill —s ABRT pid

—-signal_name
(Obsolete.) Same as —s signal_name.

—=signal_number
(Obsolete.) A non-negative integer representing the signal to be sent to the
process, instead of SIGTERM.

The signal_number represents the signal_name shown below:

signal_number
signal_name

0 SIGNULL
1 SIGHUP

2 SIGINT

3 SIGQUIT
4 SIGILL

5 SIGPOLL
6 SIGABRT
7 SIGSTOP
8 SIGFPE

9 SIGKILL
10 SIGBUS
11 SIGSEGV
12 SIGSYS
13 SIGPIPE
14 SIGALRM
15 SIGTERM

Chapter 2. Shell Command Descriptions 309

kill

Options

16 SIGUSR1
17 SIGUSR2
18 SIGABND
19 SIGCONT
20 SIGCHLD
21 SIGTTIN

22 SIGTTOU
23 SIGIO

24 SIGQUIT
25 SIGTSTP
26 SIGTRAP
27 SIGIOERR
28 SIGWINCH
29 SIGXCPU
30 SIGXFSZ
31 SIGVTALRM
32 SIGPROF
38 SIGDCE

39 SIGDUMP

Note: The signal_numbers (3 and 6) associated with SIGQUIT and SIGABRT,

respectively, differ from the values of SIGQUIT and SIGABRT used by the
z/OS kernel, but they are supported for compatibility with other UNIX
platforms. (The kill command will send the z/OS SIGQUIT or SIGABRT to
the process.) (This note is also true for Kill in the tcsh shell.)

job-identifier

pid

Is the job identifier reported by the shell when a process is started with &. It
is one way to identify a process. It is also reported by the jobs command.
When using the job identifier with the kill command, the job identifier must
be prefaced with a percent (%) sign. For example, if the job identifier is 2,
the kill command would be entered as follows:

kill —s KILL %2

Is the process ID that the shell reports when a process is started with &.
You can also find it using the ps command. The pid argument is a number
that may be specified as octal, decimal, or hex. Process IDs are reported in
decimal. kill supports negative values for pid.

If pid is negative but not —1, the signal is sent to all processes whose
process group ID is equal to the absolute value of pid. The negative pid is
specified in this way:

ki1l —KILL — —nn

where nn is the process group ID and may have a range of 2 to 7 digits (nn
to nnnnnnn).

ki1l —s KILL — -9812753

The format must include the — before the —nn in order to specify the
process group ID.

If pidis 0, the signal is sent to all processes in the process group of the
invoker.

310 2/0S V1R4.0 UNIX System Services Command Reference

kill

The process to be killed must belong to the current user, unless he or she is the
superuser.

Localization

kill uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

Usage Notes
kill is a built-in shell command.

Exit Values
0 Successful completion

1 Failure due to one of the following:
* The job or process did not exist
* There was an error in command-line syntax

2 Failure due to one of the following:
» Two jobs or processes did not exist
* Incorrect command-line argument
* Incorrect signal

>2 Tells the number of processes that could not be killed
Messages
Possible error messages include:
job-identifier is not a job
You specified an incorrect ID.
signal_name is not a valid signal
You specified a noninteger signal for Kill, or you specified a signal that is
outside the range of valid signal numbers.
Portability

POSIX.2, X/Open Portability Guide.

Related Information
jobs, ps, sh, tcsh

[(left bracket) — Test for a condition

See the test command.

Note: When working in the shell, to view man page information about [(left
bracket), type: man left.

Chapter 2. Shell Command Descriptions 311

let

let — Evaluate an arithmetic expression

Format

Description

Examples

Usage Note

let expression ...
((expression))

let evaluates each arithmetic expression from left to right, with normal algebraic
precedence (multiplication before addition, for example). let uses long integer
arithmetic with no checks for overflow. No output is generated; the exit status is 0 if
the last expression argument has a nonzero value, and 1 otherwise.

The following two lines are equivalent: the second form avoids quoting and
enhances readability. These two forms are extensions to the POSIX standard.

let "expression"
((expression))

The POSIX version of this command is as follows:

$((expression))

Expressions consist of named variables, numeric constants, and operators.
Characters in the names of named variables must come from the POSIX portable
character set.

See [‘Arithmetic Substitution” on page 509

Examples of the three forms of the let command are as follows:
1. The example

let a=7
echo $a

produces:
7

2. The example
echo $((a=7+%9))

produces:
63

3. The example
((a=3+4))

echo $a

produces:
12

let is a built-in shell command.

312 z/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

Portability

let

let uses the following localization environment variables:
 LANG

« LC_ALL

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 The last argument evaluated to a nonzero value

1 The last argument evaluated to a zero value, or the expression contained a
syntax error or tried to divide by zero

POSIX.2. let and ((expression)) are extensions to the POSIX.2 standard. The
POSIX.2 portable facility for arithmetic expression evaluation is $((expression)). See
F‘Arithmetic Substitution” on page 509| for more information.

The (()) syntax only works if the set —o korn option is in effect.

Related Information

expr, sh, test

lex — Generate a program for lexical tasks

Format

Description

Options

lex [-achIntTv] [—o file.c] [-P proto] [-p prefix] [file.] ...]

lex reads a description of a lexical syntax, in the form of regular expressions and
actions, from file.l. If you do not provide file.l, or if the file is named —, lex reads the
description from standard input (stdin). It produces a set of tables that, together
with additional prototype code from /etc/yylex.c, constitute a lexical analyzer to
scan those expressions. The resulting recognizer is suitable for use with yace. You
can find detailed information regarding the use of lex in|zZOS UNIX Systen
[Services Programming Tools

For a description of the typedefs, constants, variables, macros, and functions in the
table file, which can be used to access the lexical analyzer’'s variables or to control
its operations, see |z/0S UNIX System Services Programming Tools,

-a Generates 8-bit tables instead of 7-bit tables. On systems with 8-bit
character sets (such as this one), this option is always enabled.

-C Generates C code. Because this is the default, this option is provided only
for compatibility with other implementations.

-h Prints a brief list of the options and quits.

=l Suppresses #line directives in the generated code.

Chapter 2. Shell Command Descriptions 313

lex

-n Suppresses the display of table sizes by the —v option. If you did not
specify —v and their are no table sizes specified in file.1, lex behaves as
though you specified —n.

-o file.c
Writes the lexical analyzer (internal state tables) onto the named output file,
instead of the default file lex.yy.c.

—P proto
Uses the named code file, instead of the default prototype file /etc/yylex.c.
—p prefix
Uses the given prefix instead of the prefix yy in the generated code.
=T Writes a description of the analyzer onto the file l.output.
-t Writes the lexical analyzer onto standard output (stdout) instead of the file
lex.yy.c.
-V Displays the space used by the various internal tables. Normally lex

displays these statistics on stdout, but if you also specified the —t option, it
displays them on stderr. If you did not choose this option and file.1
specifies table sizes, lex still displays these statistics unless you specified
the —n option.

The lex library contains a number of functions essential for use with lex. These
functions are described in|z/OS UNIX System Services Programming Tools|. The
actual library to use depends on your system and compiler. For z/OS programs, you
should use —lI.

Some lex programs can cause one or more tables within lex to overflow. These
tables are the NFA, DFA, and move tables; lex displays an appropriate message if
an overflow occurs. You can change table sizes by inserting the appropriate line
into the definition section of the lex input, with the number size giving the number of
entries to use. This is shown in

Table 13. Internal Table Sizes (lex command)

Line Table Size Affected Default
%esize Number of NFA entries 1000
%nsize Number of DFA entries 500
%psize Number of move entries 2500

You can often reduce the NFA and DFA space to make room for more move entries.

Locale

A locale is the subset of a user’'s environment that depends on language and
cultural conventions. A locale defines such things as the definition of characters,
and the collation sequence of those characters. POSIX.2 defines a POSIX locale,
which is essentially USASCII.

Since lex generates code that is then compiled before being executed, it is difficult
for lex to act properly on collation information. The POSIX.2 standard therefore
does not require lex to accept any locales other than the POSIX locale. lex accepts
regular expressions in this locale only.

Files
lex uses the following files:

314 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

Limits

Portability

l.output

Scanner machine description
lex.yy.c

Tables and action routines
letclyylex.c

The prototype lex scanner
lustr/lib/libl.a

lex function library

lex uses the following localization environment variables:

* LANG

« LC_ALL

* LC_COLLATE

« LC_CTYPE

*+ LC_MESSAGES
* LC_SYNTAX

* NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
 Inability to create an output file
 Inability to open the file
* Missing output filename after —o
* Missing prefix after —p
* No lex rules
* No memory for DFA moves
» Out of NFA state space
* QOut of DFA move space
» Out of DFA state space
* Push-back buffer overflow
* Read error on file
» Table too large for machine
» Too many character classes
» Too many translations
* Unknown option
» Write error on file
* Incomplete %{ declaration
» Token buffer overflow

The parser stack depth is limited to 150 levels. Attempting to process extremely

complicated syntaxes may result in an overflow, causing an error.

POSIX.2, POSIX.2 C-Language Development Utilities Option, UNIX systems.

lex

The —a, -h, -I, -0, —p, —P, and —T options are extensions of the POSIX standard.

Chapter 2. Shell Command Descriptions

315

lex

Related Information
yacc

For more information, see [zZ0S UNIX System Services Programming Toold

line — Copy one line of standard input

Format
line

Note: The line utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the read utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

Description

line copies one input line from its standard input (stdin) to its standard output
(stdout). The end of the line is the first newline encountered. This is useful in shell
files that need small amounts of input (for example, responses to prompts).

Examples

echo "Enter name:\c"
NAME="T1ine"

Localization

line uses the following localization environment variables:
* LANG
« LC_ALL
* LC_MESSAGES
NLSPATH

See|Appendix F|for more information.

Exit Values
0 A line was read successfully
1 line reached end-of-file before finding a newline character

Portability
X/Open Portability Guide, UNIX System V.

Related Information
cat, head, read, sh, tail

link — Create a hard link to a file

Format
link oldfile newfile

316 2/0S V1R4.0 UNIX System Services Command Reference

Description

Localization

Exit Values

link

link creates a hard link to an existing file. A link is a new directory entry that refers
to the same file. This entry can be in the same directory that currently contains the
file or in a different directory. The result is that you get a new pathname that refers
to the file. You can access the file under the old or new pathname since both
pathnames are of equal importance. If you use rm to remove one pathname, the
other remains and the file contents are still available under that name. The contents
of the file do not disappear until the last remaining link associated with the file is
removed.

Following the format, new becomes a new pathname for the existing file old. If old
names a symbolic link, link creates a hard link to the file that results from resolving
the pathname contained in the symbolic link.

Links are allowed to files only, not to directories. A file can have any number of links
to it. Thus, you can establish any number of different pathnames for any file.

link is implemented as a shell built-in.

link uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

*« LC_SYNTAX

* NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
« A file specified could not be found
* No write permission on the directory intended to contain the link
* No search permission on a pathname component of old or new
* No permission to access old
» The pathname of one of the arguments is a directory
* The new link file already exists

2 Failure due to incorrect number of arguments

Related Information

link, In, rm

In — Create a link to a file

Format

In [-fiRrse] old new
In [—fiRrse] old old ... dir

Chapter 2. Shell Command Descriptions 317

In

Description

Options

In creates a link to an existing file or set of files. A link is a new directory entry that
refers to the same file. This entry can be in the same directory that currently
contains the file or in a different directory. The result is that you get a new
pathname that refers to the file. You can access the file under the old pathname or
the new one. Both pathnames are of equal importance. If you use rm to remove
either name, the other one still remains and the file contents are still available under
that name. The contents of the file do not disappear until you remove the last link.

A file can have any number of links to it. Thus you can establish any number of
different pathnames for any file.

In the first form given in the syntax, new becomes a new pathname for the existing
file old. In the second form, In creates entries for all the old files under the directory
dir. For example:

In yourdir/+ mydir

creates links under mydir to all the files under yourdir. The files have the same
names under mydir that they had under yourdir. In always assumes this directory
form when the last operand on the command line is the name of a directory. In this
case, none of the old names can be a directory, unless —r or —R is specified.

There could already be a file with the same name as the link you are trying to set
up: a conflicting pathname. To deal with a conflicting pathname, In follows these
steps.

* If you have specified —i, In writes a prompt to stderr to ask if you want to get rid
of the conflicting pathname. If you answer affirmatively, In attempts to remove it.

» Otherwise, if you have specified —f, In attempts to remove the existing file without
a warning.

» Otherwise, In prints a diagnostic message.

» In gets to this point if it is going to get rid of the conflicting pathname. It therefore
attempts to get rid of the conflicting pathname in the same way that rm does. In
deletes the file associated with the pathname if this pathname is the last link to
the file. If In can’t get rid of the conflicting pathname, it does not attempt to
establish the new link; it simply prints an error message on stderr and goes on
to process any other files.

» If In successfully gets rid of the conflicting pathname, it then establishes the link.

-e Specifies that the link created by In be an external link. One purpose for
creating an external link is to create a mount point that an NFS client can
use to access a data set through the DFSMS/MVS® Network File System
feature. The normal content of an external link is a name that refers to an
object outside the hierarchical file system, such as a data set. The data set
that the DFSMS/MVS Network File System feature uses can be any type of
MVS data set. For a partitioned data set, however, you specify a fully
qualified name in all caps. For example:

Tn -e NOLL.PLIB.PGMA /u/nol1/plib/pgma

External links can also be used to map an HFS file name to a PDS or
PDSE member name for an executable load module. An example of how
you would define the external link is:

In -e MYPGM /u/smorg/mylongpgmname

318 2/0S V1R4.0 UNIX System Services Command Reference

Examples

If an application attempts to access /u/smorg/mylongpgmname as an
executable file, the kernel will attempt to load MYPGM from the current
MVS search order (Job Pack Queue, STEPLIB/JOBLIB, LPA, LINK LIST).
The kernel services which behave this way for external links are:

» exec() (all flavors)

+ spawn() (including _spawn2, spawnp, _spawnp2)

» loadhfs which is used for all DLL processing and locales

Note: For OS/390 releases prior to Release 6, an external link name
cannot be specified as a shell command. Starting in Release 6, an
external link can be used as a shell command to invoke a program
in the current MVS search order.

—f Gets rid of any conflicting pathnames without asking you for confirmation.

=i Checks with you before getting rid of conflicting pathnames. You must not
specify both —f and —i.

-R Links files recursively. That is, you can link an entire hierarchy of
subdirectories at once.

-r Is identical to —R.

-s Creates a symbolic link.

Note, for a symbolic link,old refers to the file you want to create the link to
(this file does not have to exist). new is the name of the symlink you are
creating. For example, if you have a file called f1 and you want to create a
symlink to it called my_sym, you input the following:

In -s f1 my_sym

The locale settings for LC_COLLATE, LC_CTYPE, and LC_MESSAGES affect the
program’s interpretation of what constitutes a “yes” answer when In asks if you
want to get rid of a conflicting pathname.

If you define /u/useri/name1 as a symbolic link to /u/useri/name2, and then
invoke nameft:

1. The shell will spawn name1.
2. spawn() will access the file for name1 unaware that there is a symbolic link

already established. It will access the namez2 file by its underlying vnode, not
the nameZ2 handle.

3. If the sticky bit is on for the name2 file, spawn() will do the MVS search for
name1 (the only name it has to work with).

Symbolic and external links with a sticky bit:

Note: DLLs, and all flavors of spawn() and exec(), follow the same processing as
described below. Where it says exec(), it covers all forms of module loading.

1. External links:

exec() does a stat() on the passed filename. stat() does the search, not exec().
If the filename is an external link, then stat() fails with a unique reason code
which causes exec() to read the external link. If the external link name is a valid
PDS member name (1-8 alphanumeric/special characters), then exec() will
attempt to locate the module in the MVS search order. If it cannot be found,
exec() fails.

Chapter 2. Shell Command Descriptions 319

Localization

The external link is normally used when you want to set the sticky bit on for a
file name which is longer than 8 characters or contains characters unacceptable
for a PDS member name.

Symbolic links:

If the filename you specify is a symbolic link, and exec() sees the sticky bit on,
then it will truncate any dot qualifiers. So, as long as the base filename is an
acceptable PDS member name, the need to set up links in order to get exec()
to go to the MVS search order should not be an issue.

For example, if you have a file named java.jll, when you put the sticky bit on,
exec() will attempt to load JAVA. If exec() cannot find JAVA, it will revert to
using the java.jll file in the file system.

The important thing to understand is that exec() never sees the name that the
symbolic link resolves to even though it can see the stat() data for the final file.

In uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
LC_SYNTAX
NLSPATH

See for more information.

Exit Values

Messages

All requested links were established successfully.

Failure due to any of the following:

* An argument had a trailing / but was not the name of a directory.
* Afile could not be found.

* An input file could not be opened for reading.

* An output file could not be created or opened for output.

* The new link file already exists.

* Alink could not be established.

» A read error occurred on an input file.

» A write error occurred on an output file.

* The input and output files were the same file.

 Inability to access a file when using —r.

* Inability to read a directory when using -t.

* Inability to create a directory when using —r.

* Atarget is not a directory when using —r.

» Source and destination directory are the same when using —r.

Failure due to any of the following:

* Incorrect command-line option.

» Too few arguments on the command line.

» A target that should be a directory but isn’t.

* No space left on target device.

» Out of memory to hold the data to be copied.

* Inability to create a directory to hold a target file.

Possible error messages include:

320 2/0S V1R4.0 UNIX System Services Command Reference

Portability

link to target name failed
In could not establish the link to the given file or directory. This may be
because you do not have appropriate permissions, or because the target
did not exist.

source name and target name are identical
The source and the target are actually the same file (for example, because
of links, on UNIX systems). In this case, In does nothing.

target directory name on different file system than source name
You cannot establish a normal link between files that are two different file
systems.

target name must be a directory
The target name must be a directory

cannot find file name
The filename could not be found.

target file name already exists
The target filename already exists.

POSIX.2, X/Open Portability Guide, UNIX systems.

Only the —f option is part of the POSIX standard.

Related Information

cp, locale, mv, rm

locale — Get locale-specific information

Format

Description

Options

locale [-al-m]
locale [—ck] name ...

locale displays information about the current locale and all locales accessible to the
current application. locale searches directory /ust/lib/nls/locale for all the compiled
locales.

Invoking locale with no options or operands displays the values of the LANG and
LC_* environment variables. If a LC_* variable is not set or is overridden by
LC_ALL, locale displays its implied value in double quotes.

The operand name can be a category name, keyword name, or the reserved name
charmap. If it is a category name, locale selects the given category and all
keywords within it for output. If name is a keyword name, locale selects the given
keyword and its category for output. If name is charmap, locale displays the name
of the charmap used with the localedef —f option when the locale was created.

-a Displays information about all accessible locales including POSIX, the
POSIX locale.
-C Displays the names of selected categories.

Chapter 2. Shell Command Descriptions 321

locale

322

-m

Displays the names of selected keywords. If you do not specify the —k
option, locale displays the values of selected keywords but not their names.
With —k, strings are written in an unambiguous form using the escape
character from the current locale.

Displays a list of all available character maps.

The following list contains valid locale keywords:

lower
upper
alpha
digit

space
cntrl

punct
graph
print

xdigit
blank

tolower

Lower-case alphabet

Upper-case alphabet

All alphabetic characters (upper and lower case)
All numeric characters

How white space is represented

Control characters

Punctuation characters

Graphic characters

Printable characters

Hex digits

How a blank is represented

Upper to lower case conversion

toupper

Lower to upper case conversion

character-collation

d_t fmt

d_fmt
t fmt

The collating sequence

Date and time format
Date format

Time format

t_fmt_ampm

am_pm

day

Long date format

AM and PM string

Full day names

abday Abbreviated day names

mon

abmon

Full month names

Abbreviated month names

decimal_point

Decimal-point characters

thousands_sep

Character used to separate groups of digits to the left of the decimal-point

character in formatted nonmonetary quantities

z/OS V1R4.0 UNIX System Services Command Reference

locale

grouping
String indicating the size of each group of digits in formatted nonmonetary
quantities

int_curr_symbol
International currency symbol for the current locale

currency_symbol
Local currency symbol of the current locale

mon_decimal_point
Decimal-point character used to format monetary quantities

mon_thousands_sep
Separator for digits in formatted monetary quantities

mon_grouping
String indicating the size of each group of digits in formatted monetary
quantities

positive_sign
String indicating the positive sign used in monetary quantities

negative_sign
String indicating the negative sign used in monetary quantities

int_frac_digits
The number of displayed digits to the right of the decimal place for
internationally formatted monetary quantities

frac_digits
Number of digits to the right of the decimal place in monetary quantities

p_cs_precedes
1 if the currency symbol precedes the value for a nonnegative formatted
monetary quantity; O if it does not

p_sep_by_space
1 if the currency_symbol is separated by a space from the value of a
nonnegative formatted monetary quantity; O if it does not; 2 if a space
separates the symbol and the string—if adjacent

n_cs_precedes
1 if the currency symbol precedes the value for a negative formatted
monetary quantity; O if it does not

n_sep_by_space
1 if the currency symbol is separated by a space from the value of a
negative formatted monetary quantity; O if it does not; 2 if a space
separates the symbol and the sign string—if adjacent

p_sign_posn
Value indicating the position of the positive_sign for a nonnegative
formatted monetary quantity

n_sign_posn
Value indicating the position of the negative _sign for a negative formatted
monetary quantity

yesexpr
Expression for affirmative

noexpr
Expression for negative

Chapter 2. Shell Command Descriptions 323

locale

charmap
Mapping of character symbols to actual character encodings

code_set_name
Name of the coded character set used

mb_cur_max
Maximum number of bytes used to represent a character

codeset
Same as code_set_name

backslash
Encoding of \

right_bracket
Encoding of]

left_bracket
Encoding of |

right_brace
Encoding of }

left_brace
Encoding of {

circumflex
Encoding of A

tilde Encoding of ~

exclamation_mark
Encoding of !

number_sign
Encoding of #

vertical_line
Encoding of |

dollar_sign
Encoding of $

commercial_at
Encoding of @

grave_accent
Encoding of

Examples
In the following examples, let's assume that locale environment variables are set as
follows:

LANG=Tocale_x
LC_COLLATE=Tocale_y

1. The command:
locale

produces the following output:

LANG=Tocale_x
LC_CTYPE="1ocale x"
LC_COLLATE=Tocale_y
LC_TIME="Tocale_x"

324 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

Portability

2.

3.

locale

LC_NUMERIC="Tocale_x"
LC_MONETARY="Tocale_x"
LC_MESSAGES="Tocale_x"
LC_ALL=

The command:
LC_ALL=POSIX locale -ck decimal_point

produces:

LC_NUMERIC
decimal_point="."

The following command shows an application of locale to determine whether a
user supplied response is affirmative:

if printf "s%\n" "$response" | grep -Eq "$(locale yesexpr)"

then

affirmative processing goes here
else

nonaffirmative processing goes here
fi

locale uses the following localization environment variables:

LANG

LC_ALL
LC_CTYPE
LC_MESSAGES
LC_SYNTAX
NLSPATH

See for more information.

=

Successful completion
An error occurred
A usage message was printed

POSIX.2, UNIX System V.

Related Information
localedef

localedef — Define the locale environment

Format

Description

localedef [-c] [-f charmap] [—-i sourcefile] [-m methodfile] [-w] [-A] [-L
binderoptions] [-X] name

localedef converts source definitions for locale categories into a format usable by
functions and utilities.

localedef is provided by IBM C/C++ for MVS and is shipped with the compiler. This
command requires the installation of Language Environment for MVS and VM. It

Chapter 2. Shell Command Descriptions 325

localedef

Options

Localization

[Planning

also requires the installation of the Shell and Utilities and the C compiler so the ¢89
command can be used. For more information, refer to [zZ0S UNIX System Serviceq

A TSO/E command called LOCALDEF is also provided with C/C++. It is not
supported by the z/OS shell. See [z/0S C/C++ User's Guidd as well as information
about the charmap file and locale definition source file formats.

-C Creates permanent output even if there were warning messages. Normally,
localedef does not create permanent output when it has issued warning
messages.

—f charmap

Specifies a charmap file that contains a mapping of character symbols and
collating element symbols to actual character encodings.

—i sourcefile
Specifies the file that contains the source definitions. If there is no —i,
localedef reads the source definitions from the standard input.

—m methodfile
Specifies the name of a method file that describes the methods to be
overridden when constructing a locale. localedef reads the method file and
uses entry points when constructing the locale objects. The code set
methods specified are also used in parsing the file pointed to by the
CharMap variable. This requires that you provide the overriding methods in
a DLL which is explicitly loaded by localedef before processing the

charmap file.
-w Produces warning messages for duplicate definitions.
-A Instructs localedef to generate an ASCII locale object (=X is implied when

this option is specified).

—L binderoptions
Instructs localedef to pass additional binder options (mostly for diagnostic
purposes).

=X Instructs localedef to generate an XPLink locale object (DLL).

name |s the target locale. If it contains no slashes, the locale is public and
localedef converts name to a full pathname using the NLSPATH

environment variable. If name contains one or more slashes, localedef
interprets it as a full pathname of where to store the created definition.

See Jlocale — Get locale-specific information| for related information.

localedef uses the following localization environment variables:
* LANG

« LC_ALL

« LC_MESSAGES

+ NLSPATH

The LC_COLLATE and LC_CTYPE environment variables have no effect on
localedef. localedef always behaves as though these variables were set to the
POSIX locale.

326 2/0S V1R4.0 UNIX System Services Command Reference

Exit Values

Portability

localedef

See|Appendix F|for more information.

0 No errors occurred; the locale was successfully created.

1 Warnings occurred; the locale was successfully created.

2 The locale specification exceeded implementation limits, or the coded
character set used was not supported by implementation. No locale was
created.

3 The capability to create new locales is not supported by the implementation.
(POSIX2_LOCALEDEEF is not defined.)

>3 Warnings or errors occurred; no output was created.

localedef issues warnings when:

* The LC_CTYPE or LC_COLLATE category description uses a symbolic name
not found in the charmap file.

* The number of operands to the order keyword exceeds the COLL_WEIGHTS MAX
limit.

POSIX.2; UNIX System V.

Related Information

locale

logger — Log messages

Format

Description

Options

logger [-lisTu] [-d desf] [-f filename] [—p priority] [-t tag] [-a tag2] string ...

logger saves a message in the console log; the message consists of the string
operand on the command line. Some options of logger may be in effect by default;
if they are on by default, they cannot be disabled.

The —u and —i options are in effect by default, so all messages from logger are
prefixed by process ID and user login user name.

If there is no message specified on the command line, the standard input is read;
each line of standard input is treated as a log message, and, thus, all terminal input
will be logged as a message. To stop all subsequent input from being processed by
logger, enter the designated escape character, such as ¢, followed by a captial C,
for example: ¢C.

If —f filename is specified, the file is read instead of the standard input.

~f filename
Reads log messages from the file filename rather than from the standard
input.

Chapter 2. Shell Command Descriptions 327

logger
-l Adds the parent process ID (PPID) of logger to the message.

—i Adds the process ID (PID) of logger to the message. This option is in effect
by default, so all messages from logger are prefixed by the PID.

-s Overrides any destination options and causes logging to the standard error
output.

-T Adds a time stamp (%x %X format, per date) to the message. This time
stamp is always in the POSIX locale, no matter the locale of the message.

-u Adds the login name of the controlling terminal to the message. This option
is in effect by default, so all messages from logger are prefixed by the login
name.

Note: The following options work on z/OS. However, because they are
system-specific, they may or may not actually work on another system.

—d destination
Must be a list of numbers, separated by spaces, tabs, or commas, in the
range of 1 to 128, and represents a bit in the routing code number (that is,
ROUTCDE=) in the WTO macro. The default destination value is 0 (no bits
set in the routing code number).

If you use d1, the message goes to the system console.

—p priority
Must be a list of numbers, separated by spaces, tabs, or commas, in the
range of 1 to 16 and represents a bit in the message descriptor code (that
is, DESC=) in the WTO macro (WTO == write to operator). The default
priority value is O (that is, no bits set).

-t fag Adds tag to the start of the message.

—-a tag2
Adds fag2 in front of all the options and the message.

For more information on the destination and priority options, refer to |z70S MVS JC

Examples

1. If you issue:
logger -d1 This is a message.

You will see:

+WELLIE4: 2097152017: This is a message.
2. If you issue:

logger -d1 -a TheTag A message.

You will see:
+TheTag: WELLIE4: 213076449: A message.

Localization

logger uses the following localization environment variables:
* LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

328 2/0S V1R4.0 UNIX System Services Command Reference

Exit Values

Messages

Portability

* NLSPATH

See|Appendix F|for more information.

0 Successful completion
>0 An error occurred

Possible error messages include:

-f filename invalid if message given

Both a filename and message was specified; only one is allowed.

file filename: system error
The file specified by —f filename could not be opened.

Formatted log message too long -- limit LINE_MAX (number)
The log message specified was longer than the limit specified by
LINE_MAX.

Unknown option option
You specified an incorrect option to logger.

POSIX.2, X/Open Portability Guide.

All the options are extensions of the POSIX standard.

logger

logname — Return a user’s login name

Format

Description

logname

logname displays the login name of the person who issued the command. It

obtains this through the getlogin() function defined in the POSIX.1. standard. The
login name is displayed as all uppercase letters, regardless of how it was entered.

Environment Variables

Localization

logname uses the following environment variable:

LOGNAME
Contains your user name.

logname uses the following localization environment variables:
 LANG

« LC_ALL

« LC_TYPE

« LC_MESSAGES

* NLSPATH

See for more information.

Chapter 2. Shell Command Descriptions 329

logname

Exit Values

Portability

0 Successful completion
1 logname could not determine the login name

POSIX.2, X/Open Portability Guide, UNIX System V.

Related Information

env, id

Ip — Send a file to a printer

Format

Description

Options

Ip [-cmsw] [-d desf] [-n number] [-0 printer-option] [t title] [file ...]

Ip prints one or more input files on a printer. If you do not specify any files on the
command line, or if you specify a filename of —Ip reads and prints the standard
input. The files are printed in the same order that they are specified on the
command line.

Note: If you are using the z/OS Print Server Feature, your system automatically
uses that version of the Ip command. For more information about the z/OS
Print Server commands, see|z/OS Infoprint Server User’s Guide,

—C Immediately copies the files to be printed. This ensures that the version of
the file that exists when the print request is made is the version printed.

—d dest
Specifies dest as the output device. —d takes precedence over the LPDEST
environment variable, which in turn takes precedence over the PRINTER
environment variable.

dest is a comma-separated list of arguments that is passed to JES. The first
item must be the “destination_name”. The destination name can take the
form NODE.USER. The second item must be the “class”. The third item
must be the “forms”. Not all items must be specified, but the items must be

specified in the proper order. The definition of “destination_name”, “class”,
and “forms” is defined by JES.

For more information on the dest option, see |zZ0S MVS JCL Referencd,

-m This option is not implemented.

—n number
Prints number copies of each input file (the default is 1 copy).

—0 printer-option
This option is not implemented.

-s This option is not implemented.
-t This option is not implemented.

-w This option is not implemented.

330 2/0S V1R4.0 UNIX System Services Command Reference

Examples

1. To send a previously formatted file to a JES printer:
1p filename

You can specify more than one filename with the command.

2. The following prints the file temp.prt using the default printer destination and
specifying class ¢ (where c is the locally designated class for confidential
information):

1p —=d ,c temp.prt

1p —-d,c temp.prt

The parameters on the -d option are positional, so if you omit a destination, you
must still include the comma.

Environment Variables

Localization

Exit Values

Portability

Ip uses the following environment variables:

LPDEST
Names the output device. This variable takes precedence over PRINTER.

PRINTER
Names the output device if LPDEST is not defined.

Ip uses the following localization environment variables:
 LANG

« LC_ALL

« LC_CTYPE

« LC_MESSAGES

* NLSPATH

See|Appendix F|for more information.

0 Successful completion
>0 An error occurred

POSIX.2, X/Open Portability Guide.

The -m, —o, —s, —t, and —w options are extensions to the POSIX standard.

Ipstat — Show status of print queues (stub command)

Format

Description

Ipstat [-drst | [-a [/isf]] [—c [lisf]] [-o [lisf]] [-p [/isf]] [-u [lisf]] [-V] [/isf] [queue_id ...]

Ipstat shows the status of print queue or queues, specified by queue_id. If no
queue_id is given, Ipstat lists information for all of the printers on the system.

Ipstat is recognized, but its functions are not supported.

Chapter 2. Shell Command Descriptions 331

Ipstat

If you are using the z/OS Print Server Feature, your system automatically uses that
version of the Ipstat command. For more information about the z/OS Print Server
commands, see [z/OS Infoprint Server User’s Guidel

Is — List file and directory names and attributes

Format

Description

Options

Is [-AabCcdEFfgHikLImnopqgRrstuWx1] [pathname ...]
File Tag Specific Option:

Is [-T]

Is lists files and directories. If the pathname is a file, Is displays information on the
file according to the requested options. If it is a directory, Is displays information on
the files and subdirectories therein. You can get information on a directory itself
using the —d option.

If you do not specify any options, Is displays only the filenames. When Is sends
output to a pipe or a file, it writes one name per line; when it sends output to the
terminal, it uses the —C (multicolumn) format.

Note: Codesets which are aliases of each other exist which may cause the test to
fail, since the file inquiry operator may return an alias of the codeset you are
testing.

Is displays at least the filename; you can request more information with the
following options:

-A Lists all entries including those starting with periods (.); but excluding any .
or .. entries.

-a Lists all entries including those starting with a period (.).

-b Displays nonprintable characters as octal bytes with the form looo.

-C Puts output into columns, sorted vertically; this is the default output format
to the terminal.

-c Uses the time of the last change of the file’s attributes for sorting (-t) or
displaying (-I) .

-d Does not display the contents of named directories, but information on the
directories themselves.

-D Displays from directories.

-E Displays extended attributes for regular files:
a Program runs APF-authorized if linked AC=1
o] Program is considered program-controlled
s Program is enabled to run in a shared address space

| Program is loaded from the shared library region

— Attribute not set

332 2/0S V1R4.0 UNIX System Services Command Reference

Is

See [Long Output Format]

Puts a / after each directory name, a * after every executable file, a | after
every FIFO file, a @ after every symbolic link, and a = after every socket. It
also puts an & character after an external link name.

Forces the pathname argument to be a directory; turns off sorting. Is gives
the ordered list of filenames in a directory file. The directory file is read and
the filenames are listed in the same order as they are returned. The
contents of a directory file are shown.

Same as -l except that it does not display owner.

—g turns on the Long Output Format. See |“Long Output Format” on|
for details.

Displays file formats for regular files:
——— not specified
bin binary data

nl new line

cr carriage return

If line feed

crif carriage return followed by line feed
Ifcr line feed followed by carriage return

crnl carriage return followed by new line

—H turns on the Long Output Format. See [‘Long Output Format” on|

for details.

Displays file serial (inode) numbers along with filenames.

Uses 1024 bytes for block size.

Follows symbolic links.

Displays permissions, links, owner, group, size, time, name.
Displays names in a single line, with commas separating names.
Displays UID number and GID number.

Same as -l except that it does not display group.

—o turns on the Long Output Format. See [‘Long Output Format” on|

for details.

Puts / after directory names.

Displays nonprintable characters as ?.
Lists subdirectories recursively.

Sorts in reverse of usual order; you can combine this with other options that
sort the list.

Displays size in blocks, after the file serial (inode) number, but before other
information. The block size is 512 bytes unless the —k option is used.

Sorts by time. By default, this option sorts the output by the modification
times of files. You can change this with the —c and —u options.

Uses the last access time for sorting (=t) or displaying (-I) .

Enables the audit bits to be displayed (see “chaudit” for information on audit
bits). This option turns on the —I option.

Chapter 2. Shell Command Descriptions 333

Long Output Format

334

=X

-1

These bits are printed in a 6-character field directly after the field displaying
the file permission bits. These 6 characters are really two groups of 3 bits
each. The first group of 3 describes the user-requested audit information.
The second group of 3 describes the auditor-requested audit information.
Each 3 characters displayed are the read, write, and execute (or search)
audit options. Each character indicates the audit option as:

s (Audit successful audit attempts)
f (Audit failed access attempts)

a (Audit all accesses)

— (No audit)

-W turns on the Long Output Format. See|‘Long Output Format'] for details.

Puts output into sorted columns, with output going across the rows.

Forces output to be one entry per line.

Note: When you specify options that are mutually exclusive (for example, —¢ and

—u), the option that appears last on the command line is used.

File Tag Specific Option

-T

Display file tag information associated with the file. The format of this output
will be similar to the output from chtag —p. See[‘Options” on page 123|for
an explanation of the —p option on chtag.

An example output:

> 1s -T file
t I1BM-1047 T=on filel

Is —T does not turn on the —I option. Is —T can be used with other options
(see[‘Long Output Format?)).

The output from Is =1 summarizes all the most important information about the file
on a single line. If the specified pathname is a directory, Is displays information on
every file in that directory (one file per line). It precedes this list with a status line
that indicates the total number of file system blocks occupied by files in the
directory (in 512-byte chunks or 1024-bytes if —k option is used). Here is a sample
of the output along with an explanation:

total 11

drwxr-xr-x 3 ROOT SYS1 0 Mar 12 19:32 tmp
drwxrwxrwx 4 ROOT SYS1 0 Mar 12 19:32 usr
drwxr-xr-x 2 ROOT SYS1 0 Mar 12 19:32 bin
-rWXPr=--r-- 1 ROOT SYS1 572 Mar 12 19:32 foo
-PWXr--r-- 1 ROOT SYS1 640 Mar 12 19:33 abc

If —T is specified, file tag information is displayed first on the line.

The first character identifies the file type:

T -0 o0 T |

Regular file

Block special file (not supported for z/OS UNIX System Services)
Character special file

Directory

External link

Symbolic link

FIFO

z/OS V1R4.0 UNIX System Services Command Reference

s Socket file type

The next 9 characters are in three groups of 3; they describe the permissions on
the file. The first group of 3 describes owner permissions; the second describes
group permissions; the third describes other (or “world”) permissions. Characters
that may appear are:

r Permission to read the file
w Permission to write on the file
X Permission to execute the file

The following characters appear only in the execute permission (x) position of the
output.

S Same as s, except that the execute bit is turned off.

s If in owner permissions section, the set-user-ID bit is on; if in group
permissions section, the set-group-ID bit is on.

T Same as t, except that the execute bit is turned off.

t The sticky bit is on.

The following character appears after the permissions if the file contains extended
ACL entries:

+

Example:

1s -1 file
-PWXrwXrw-+ WELLIE SYS 167 Jan 11 09:54 file

Use getfacl to display the extended ACL entries. You can set permissions with
either chmod or setfacl.

After the permissions are set, Is displays the following (using the preceding

example), in order:

* The number of links to the file.

* The name of the owner of the file or directory.

* The name of the group that owns the file or directory.

* The size of the file, expressed in bytes. For character special files, it displays the
major and minor device types.

» For a file, the date and time the file was last changed; for a directory, when it
was created. The —¢ and —u options can change which time value is used. If the
date is more than 6 months old or if the date is in the future, the year is shown
instead of the time.

* The name of the file or directory.

Note: When files owned by user ID 0 (UID=0) are transferred from any UNIX-type
system across an NFS connection to another UNIX-type system, the UID
changes to —2 (UID = -2). Because -2 is not a valid UID on a z/OS System,
Is displays a =2 in place of the user name.

If Is —=E is issued, an additional four characters follow the original 10 characters:

total 11
-rwxr-xr-x -ps- 1 ROOT SYS1 101 Mar 12 19:32 her
-rwxrwxrwx a-s- 1 ROOT SYS1 654 Mar 12 19:32 test

Chapter 2. Shell Command Descriptions 335

Usage Note

-rWXr-xr-x a-- 1 ROOT SYS1 40 Mar 12 19:32 temp
-rwxr--r-- ap-1 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- --s1 1 ROOT SYS1 640 Mar 12 19:33 abc

If Is =H is issued, an additional four characters follow the original 10 characters:

total 32
-rwxr-xr-x ---- 1 ROOT SYSI1 0 Mar 26 08:47 tmp
-drwxr-xr-x 2 ROOT SYS1 8192 Mar 26 08:50 usr

-rWXr--r-- cr 1 ROOT SYS1 40 Mar 26 08:55 abc

If Is —E is used in conjunction with —H, then the four characters will follow the four
characters normally associated with Is —E:

1s -EH
-rwxr-xr-x ap-1 bin 1 ROOT SYS1 101 Mar 12 19:21 foo

If Is =W is issued, an additional 6 characters, in two groups of 3, follow the original
10 characters. The first group of 3 describes the user-requested audit information;
the second group describes auditor-requested audit information.

total 11

drwxr-xr-x fff--- 3 ROOT SYS1 0 Mar 12 19:32 tmp
drwxrwxrwx fff--- 4 ROOT SYS1 0 Mar 12 19:32 usr
drwxr-xr-x fff--- 2 ROOT SYS1 0 Mar 12 19:32 bin
-rwxr--r-- fff--- 1 ROOT SYS1 572 Mar 12 19:32 foo
-rwxr--r-- fff--- 1 ROOT SYS1 640 Mar 12 19:33 abc

To display information about a directory from a symbolic link to the directory, either
add a trailing slash to the symbolic link name, or use the -L option. For example, if
the /etc directory has been converted into a symbolic link, issuing an Is on /etc
without a trailing slash will give you the following information:

> 1s -1 /etc
Trwxrwxrwx 1 BPXROOT BIN 12 Oct 18 19:46 /etc -> $SYSNAME/etc

However, if you add the trailing slash, the following information about /etc will be
displayed:

> 1s /etc/

IBM cmx init.options profile utmpx
NetQ csh.cshrc ioepdcf rc yylex.c
Printsrv csh.login Idap recover yyparse.c
TextTools dce log security zoneinfo
booksrv dfs magic socks.conf

bpe imoisinf mailx.rc startup.mk

The same information is displayed when the -L option is used:

1s -L /etc

IBM cmx init.options profile utmpx
NetQ csh.cshre ioepdcf rc yylex.c
Printsrv csh.login Idap recover yyparse.c
TextTools dce log security zoneinfo
booksrv dfs magic socks.conf

bpe imoisinf mailx.rc startup.mk

Environment Variables

Is uses the following environment variables:

336 2/0S V1R4.0 UNIX System Services Command Reference

Localization

Exit Values

Messages

Portability

Is

COLUMNS
Contains the terminal width in columns. Is uses this value to determine the
number of output columns to write using the —C option.

TZ Contains the time zone to be used when displaying date and time strings.

Is uses the following localization environment variables:
* LANG

« LC_ALL

« LC_COLLATE

- LC_CTYPE

« LC_MESSAGES

« LC_TIME

*+ LC_SYNTAX

* NLSPATH

See for more information.

0 Successful completion

1 Failure due to any of the following:
* Out of memory
* Inability to find a file’s information
* Too many directories
» File or directory not found
» Specified on the command line

2 Incorrect command-line option

Possible error messages include:

File or directory name is not found
The requested file or directory does not exist.

Cannot allocate memory for sorting
To sort its output, Is needs to allocate memory; this message says that
there was not enough memory for the sorting operation.

Too many directory entries in dir
This message appears only when Is runs out of dynamically allocated
memory.

POSIX.2, X/Open Portability Guide, UNIX systems.

The -A, -b, -E, -f, -g, -L, -m, —-n, —0, —p, —s, =W, and —x options are extensions
of the POSIX standard.

Related Information

Appendix If explains how to set the local time zone with the TZ environment
variable.

Is-f, sh, tcsh

Chapter 2. Shell Command Descriptions 337

mail

mail — Read and send mail messages

Format

Description

Options

Reading Mail

mail [-e | —p] [—qr] [file...]
mail [-t] name...

Note: The mail utility is fully supported for compatibility with older UNIX systems.
However, it is recommended that the mailx utility be used instead because it
may provide greater functionality and is considered the standard for portable
UNIX applications as defined by POSIX.2 IEEE standard 1003.2-1992.

mail lets you read mail sent to you and sends mail to other users. It has two modes
of operation, one for reading mail and one for sending mail. If you start mail without
any arguments, it checks for mail to be read and then presents the messages in
read mode. If you start it with an argument or arguments, it assumes you are
sending a message to the address named as the argument and enters send mode.
The text of the message is taken from standard input until mail encounters either
EOF or a line consisting of only a single dot (-).

For example, to read mail, enter:
mail

To send a mail message to the users Chris and Lee, enter:
mail chris Tee

The -t option is used only when sending mail; the others only when reading mail.

-e Tests for the existence of mail and exits. If there is mail in the system
mailbox, the return status is successful.

—f Reads mail from file instead of the system mailbox. This option is often
used to read mail saved in other files.

-p Prints all mail to standard output without querying.

-q Quits the mail session after an interrupt signal; normally, an interrupt ends

only the message being written.

—-r Saves messages in first-in, first-out order, the reverse of the default.
Normally, the most recently received message is written first.

-t Lists the recipients at the beginning of the message (default).

When you start mail without arguments, mail checks your system mailbox for mail.
If there is no mail, mail exits with a return code of 1; if there is waiting mail, mail
displays the first message. (If you specify —p on the command line, it displays all
messages.)

Commands within mail control how messages are handled. The following
commands are available:

d Deletes the current message.

338 2/0S V1R4.0 UNIX System Services Command Reference

Sending Mail

Example

Usage Notes

mail

m[name...]
Sends the current message to the specified user. If a user is not specified,
the mail is sent to you.

p Prints the message on the screen again.
q Quits mail, storing any undeleted messages in the file $HOME/mbox.

s[file] Saves the message in the specified file. If a file is not specified, mail saves
the message in mbox in your home directory.

w[file] Saves the message (same as s), but without header lines.
X Exits mail without changing the mailbox file.

ENTER (or newline)
Displays the next message.

lcommand
Runs command using the shell.

+ Displays the next message (same as ENTER or newline).
— Displays the previous message.

* Displays a summary of internal commands.

Because the commands are read from standard input, you can create mail
command files and use input redirection to have mail execute them.

To send mail, start mail with a list of addresses as arguments. Enter the text of the
message, and end the message with either EOF or with a single dot (-) on a line
followed by a <newline>.

The -t option inserts at the beginning of the message a list of the addresses; a
pathname beginning with a slash (/) is recognized as a valid address (assuming you
have the correct permissions).

If the address is not valid or recognized, or if the message is interrupted (see the
—q option), mail stores the message in the file dead.letter in the current directory. If
it can’t create dead.letter in the current directory, it creates the file in your home
directory. If dead.letter already exists, the new contents overwrite the old.

The mail program modifies the message text slightly; because lines beginning with
From (including the trailing space) are used to separate files in the mailbox, mail
changes any lines in the message that begin with From to read >From.

To send the file how2mail to user Chris, enter:
mail chris < how2mail

1. Wherever the POSIX standard doesn’t define the behavior of mail, this
implementation resembles mailx.

2. mail doesn’t require a delivery path or mechanism to the destination, though for
most uses, this is preferable.

Chapter 2. Shell Command Descriptions 339

mail

Environment Variables

Localization

Files

Exit Values

Portability

Limits

mail uses the following environment variables:

HOME Specifies your home directory; used to locate the mbox and dead.letter
files.

TZ Specifies the time zone to be used in date and time strings.

mail uses the following localization environment variables:
- LC_CTYPE

« LC_MESSAGES

« LC_TIME

* NLSPATH

See|Appendix F|for more information.

The ability of mail to handle doublebyte characters (or even 8-bit ASCII depends on
the underlying mail transport mechanism. You should restrict all messages to the
POSIX portable character set. To send messages containing doublebyte characters
or even binary files, encode them first with uuencode.

mail uses the following files:

dead.letter
The most recently canceled message.

mbox The default file for saving read mail, stored in the directory specified by

HOME.
0 The session was successfully completed; if reading, there was mail.
1 There was no mail, or the session could not be started.
2 An error occurred after starting the session, or you supplied an invalid

option, resulting in a usage message.

POSIX.2

Because this utility is due to be withdrawn from POSIX, you may want to use mailx
for portable applications. The ability to write directly to a file is an extension to
POSIX.

Any individual line is limited to LINE_MAX bytes; of course, transport mechanisms
between systems may impose shorter limits.

Related Information

mailx, uudecode, uuencode

also explains how to set the local time zone with the TZ environment
variable.

340 2/0S V1R4.0 UNIX System Services Command Reference

mailx

mailx — Send or receive electronic mail

Format

Description

Options

mailx [-efHiNn] [-u usen [filename]
mailx [-FinU] [-h number] [-r address] [-s subject] user ...

mailx helps you read electronic mail messages. It can also send messages to
users on your system, but it has no built-in facilities for sending messages to other
systems.

The command line:
mailx [options] user user user ...

sends a mail message to the given users. If you do not specify any users on the
command line, mailx lets you read incoming mail interactively. However, see the
environment variable sendmail. It is described on page

In a doublebyte locale, aliases, variables, and addresses can contain doublebyte
characters.

This description of mailx is divided into several sections:
» Options

* General overview

* Command-mode subcommands
* Input-mode subcommands

» Startup files

* Example

e Environment variables

* Files

» Exit values

» Portability

* Related Information

You can use the following options when reading messages:

-e Checks to see if you have any messages waiting to be read. With this
option, nothing is displayed. If you have waiting messages, mailx exits with
a successful status return; otherwise, mailx exits with a failure return.

~f filename
Looks for messages in the specified file instead of in your current mailbox.
If you do not specify filename, mailx reads messages from $HOME/mbox.

-H Displays only the header summary of a message.
-N Does not display the header summary of messages.
-u user

Looks for messages in the system mailbox of the specified user. This works
only if you have read permission on the user’s system mailbox.

You can use the following options only when sending messages:

Chapter 2. Shell Command Descriptions 341

mailx

-F Records your message in a file with the same name as the first user
specified on the command line. This option overrides the record variable, if
it has been set.

—h number
Indicates how many “hops” a message has already made from one
machine to another (in a network of machines). This option is not intended
for most users; network mail software uses the option to prevent infinite
loops (the same message cycling through a sequence of machines without
ever getting to its intended destination).

-r address
Passes the given address to network mail software. If this option is present,
it disables all input mode commands. Again, this option is not intended for
most users.

—s subject
Uses the given subject string in the Subject heading line of the message. If
the subject contains spaces or tab characters, the string should be
enclosed in double quotes or single quotes. If you specify this option on the
command line, mailx does not prompt you to enter a subject line when you
type in the text of the message.

-U Converts the address from UNIX-to-UNIX Copy Program (UUCP) style to
Internet Protocol standards. This option overrides the effect of the conv
variable.

This option is not supported.

You can use these options for both sending and reading messages:
=i Ignores interrupts (for example, from pressing <Break> or <Ctrl-c>).

-n Does not initialize your mailx session from the system’s /etc/mailx.rc file.

General Overview

342

This section describes the default behavior of mailx.

The simplest command to send a message is:
mailx address address address ...

where each address names someone who is to receive the message. The simplest
kind of address is the login name of someone else who uses your shell.

You can also send messages as input to commands. To do this, use an address
that consists of a pipe symbol (|) followed by a command line that invokes the
appropriate command; enclose this whole address in single quotes. For example:

mailx ROBIN '|cat >save'
mails a message to ROBIN and also copies the message into a file called save.

After you type in the command to send a message, mailx asks you to enter the
subject of the message (a brief description of what the message is about), and then
lets you type in the text of the message. This brief description can be up to 256
characters long. Your message can consist of any number of lines, and may include
blank lines. When you finish entering the message, type a line consisting only>of a
tilde (~), followed by a period (.); then press <Enter>. This tells mailx that the
message is ready to be sent.

z/OS V1R4.0 UNIX System Services Command Reference

mailx

mailx puts the completed message into a file called the recipient’s system mailbox.
The message stays in the system mailbox until the recipient asks to read the
message. At that point, the message is obtained from the system mailbox and
displayed on the recipient’'s workstation. The message is then saved in the
recipient’s personal mailbox. Since this is usually a file named mbox in the
recipient’s home directory, we use the name mbox to represent the personal
mailbox and mailbox for a system mailbox.

The simplest way to read incoming messages is to type the command mailx (with
no addresses on the command line). This starts an interactive session in which
mailx lets you read your mail and perform other operations. For example, you can
display new messages, delete old ones, reply to messages, or forward them to
someone else, and so on. When you are performing operations in this way, you are
in command mode. When you are typing in the text of a message, you are in input
mode.

A message consists of a sequence of header lines, followed by the body of the
message. The header lines tell who sent the message, the time and date that the
message was sent, the subject of the message, and so on. mailx automatically
creates header lines. Some of the common header lines are:

Cc: name name ...
Stands for “carbon copies”. This indicates that copies of this message are
to be sent to the specified recipients. The names of these recipients appear
in the header lines of everyone receiving the message.

Bcc: name name ...
Stands for “blind carbon copies.” This is similar to Cc:, but the names of
people receiving carbon copies do not appear in the header lines of the
message. Recipients do not know that these people received a copy of the
message.

Subject: fext
Gives the subject of the message.

To: name name ...
Gives the names of people who were sent the message directly.

All messages are in one of the following states:

deleted
You used a delete, dp, or dt command to delete the message, or you
saved it using a Save or save command and the variable keepsave was
not set. When mailx quits, messages in this state are deleted.

new The message is in the system mailbox and you have not yet read it or
otherwise changed its state. When mailx quits, messages in this state are
kept in your system mailbox.

preserved
You used a preserve command on the message. When mailx quits,
messages in this state are kept in their current locations.

read You used one of the following commands on the message:

~F copy Print type

~f mbox print undelete
“M next top

“m pipe Type

Chapter 2. Shell Command Descriptions 343

mailx

or you used delete , dp, or dt on the preceding message and the autoprint
variable was set. When mailx quits and you are in your system mailbox,
read messages are kept in your personal mailbox—unless the hold
variable is set, in which case, read messages are kept in your system
mailbox. If you are in your personal or a secondary mailbox when mailx
quits, read messages are kept in their current location.

unread
You have run more than one mailx session with the message in the system
mailbox and you have not read it or otherwise changed its state. When
mailx quits, messages in this state are kept in your system mailbox.

Command-Mode Subcommands

344

The standard format of a command-mode subcommand is:
[subcommand] [refs] [arguments]

If no subcommand is specified, p[rint] is assumed.

The refs argument indicates the messages to which you want to apply the
subcommand. mailx numbers incoming messages sequentially as they are
received. The easiest way to refer to a message is to give its number. For example,
the subcommand:

p3

displays message number 3. At any point in a mailx session, there is one message
that is considered the current message. This is the message you most recently did
something with (for example, the one you most recently read). If you omit the refs
argument in a subcommand that uses refs, the subcommand works with the current
message.

You can also use special notations as the refs value:

refs Meaning

n Message number n

n-m Messages n through m

The current message

The first undeleted message (or first deleted message for undelete)
The last message

Next message

- Previous message

user All messages from the given user

/string

All messages with string in the subject line (the case of characters in
string is ignored)

All deleted messages

All new messages

All old messages

All messages that have already been read

All unread messages

+ 4 >

oo se oo oo ee
S =5 O 5 Qo

Several refs arguments may be specified for the same subcommand, separated by
spaces. For example:

p alice lewis

displays all messages from alice plus all messages from Tewis.

z/OS V1R4.0 UNIX System Services Command Reference

mailx

The arguments allowed at the end of a command-mode subcommand depend on
the subcommand itself. If a subcommand allows a filename as an argument, you
can use the usual filename generation characters in the filename (see sh).

The following list shows the subcommands recognized in command mode. In every
subcommand name, some characters are enclosed in square brackets. These
characters are optional. For example, the p[rint] command may be given as print
or p.

? Displays a summary of command-mode subcommands
= Displays the current message number

a[lias] [alias [name ...]]
Sets up an address alias. If you enter a subcommand to send mail to the
given alias, the messages are actually sent to the given list of names. For
example, you might enter the subcommand:

alias joe JSMITH

From this point onward, you can address messages to joe and they are
sent to jsmith. You may also set up an alias for several people, as in:

alias choir SOPRANO ALTO TENOR BASS

After you have done this, you can send messages to choir and they are
sent to the names that follow choir in the command.

If you use only one argument, alias lists the value of that alias. For
example, alias joe would display jsmith. Entering the alias subcommand
without any arguments displays a list of the currently defined aliases.

Note: Aliases entered interactively remain in effect only until the end of the
current interactive session. To make an alias permanent, include the
alias subcommand in your startup file (see [‘Startup Files” on page]

B53). See also group.

alt[ernates] name
Lists a set of alternate names for your own login name. This is useful for
people who login under several different names. When you reply to a
message, mailx usually sends your reply to the author of the message and
all the recipients as well; however, it does not send the message to any of
your alternate login names. You don’t have to worry about sending mail to
yourself.

Specifying alternates without names displays your list of currently defined
alternate names.

cd directory
Makes directory your new working directory. If no directory is specified, cd
goes to your HOME directory.

ch[dir] directory
Is the same as cd.

clopy] [refs] [filename]
Copies the messages referred to by refs into the given file. The filename
must be specified. If the file does not already exist, it is created.

If no refs are specified, the current message is saved. If no filename is
specified, your mbox is saved.

Chapter 2. Shell Command Descriptions 345

mailx

This operation does not mark the message as saved; if it was previously
unread, it is still regarded as an unread message. Thus, the original
message remains in your system mailbox. See also save.

Clopy] [refs]
Is similar to the copy command, except that the messages referred to are
saved in a file the name of which is derived from the author of the first
message referred to. The name of the file is the author’'s name, stripped of
any network addressing. If the folder variable is set, the file is saved to the
specified directory. The copied messages are not marked as “saved”. If refs
is not specified, the current message is copied.

d[elete] [refs]
Deletes the specified messages from your system mailbox. If refs is not
specified, the current message is deleted. After a delete operation, the
current message is set to the message after the last message deleted.
Deleted messages are not thrown away until you end your session with the
current mailbox (see quit and file). Until then, they can be undeleted (see
undelete).

di[scard] [header...]
Does not display the given header fields when displaying a message. For
example:

discard References

tells mailx not to display the References line at the beginning of any mail
message. These header lines are retained when the message is saved,;
they are just not shown when the message is displayed. See also ignore
and retain.

dp [refs]
Deletes the specified messages and then displays the message after the
last message deleted. If there is no subsequent message, mailx displays its
command prompt.

dt [refs]
Is the same as the dp subcommand.

ec[ho] string ...
Echoes the given strings (like the echo subcommand).

e[dit] [refs]
Lets you edit the messages specified by refs. The messages are stored in a
temporary file and an editor is invoked to let you edit the file. The default
editor is ed, but you can change this using the editor environment variable.

ex[it] Quits mailx without changing the system mailbox. Contrast this with quit,
which ordinarily removes from the system mailbox those messages you've
read, saved, or deleted.

fi[le] [filename]
Quits the system mailbox (as if a q[uit] subcommand were run) and then
reads in the specified file as the new mailbox to examine. If no filename is
specified, the default is your current mailbox.

Several special strings can be used in place of filename:
Your system mailbox.

%user The system mailbox for user

The previous file

Your mbox (personal mailbox)

+file The named file in the folder directory

o

@2 I

346 2/0S V1R4.0 UNIX System Services Command Reference

mailx

fold[er] [filename]
Is the same as the file subcommand.

folders
Displays the names of the files in the directory given by the folder variable.
See [‘Environment Variables” on page 354}

F[ollowup] [refs]
Replies to the first message given in refs; mailx sends this reply to the
authors of every message given in refs. The Subject line is taken from the
first message in refs. Your reply is automatically saved in a file which
derives its name from the author of the message to which you are replying.

To create your reply, mailx puts you into input mode, where you can use all
of the input mode commands.

fo[llowup] [ref]
Replies to the specified message; if no message ref is given, you reply to
the current message. Your reply is automatically saved in a file which
derives its name from the author of the message to which you are replying.
This overrides the record environment variable if record is set.

To create your reply, mailx puts you into input mode, where you can use all
of the input mode commands.

f[rom] [refs]
Displays the header summary for the specified messages. If refs is not
given, the current message is used.

glroup] [alias [name ...]]
Is the same as the alias command.

h[eaders] [ref]
Displays the headers of a screenful of messages surrounding the message
given by ref. The number of lines in a screen is given by the screen
variable.

hel[p] Displays a summary of the command-mode subcommands.

ho[ld] [refs]
Retains the specified messages in your system mailbox. For example, you
might decide to hold a message if you read it, but decide not to act upon it
immediately. If refs is not specified, the current message is held. If any of
the specified messages have been marked as deleted, the hold
subcommand overrides that and still retains the messages. Subsequent
delete, dp, and dt commands during the same mailx session can delete
files marked for retention. See also preserve and the variables hold and
keepsave.

i[f] code mailx subcommands | [el[se] mailx subcommands] | [en[dif]]
Is primarily intended for use in startup files. The code must be the character
rors. Ifitis r, the first set of mailx subcommands are executed if mailx is
in receive mode, and the second set if mailx is in send mode. If code is s,
the oiiosite is true. The else part is optional. See [‘Startup Files” on|

ig[nore] [header ...]
Is the same as the discard subcommand.

I[ist] Displays the names of all command-mode subcommands.

Chapter 2. Shell Command Descriptions 347

mailx

348

m[ail] address ...
Sends a message to the specified recipients. mailx goes into input mode to
let you enter the text of the message.

mbJox] [refs]
Indicates that the given messages are to be saved in your mbox (personal
mailbox) when mailx quits normally (that is, through the quit command as
opposed to exit).

n[ext] [refs]
Goes to the next message in the mailbox that appears in the list of refs. For
example:

n user

goes to the next message from the specified user.

pi[pe] [[refs] command]
Pipes the messages given by refs through the specified shell command.
These messages are considered read. If refs is not specified, the current
message is used. If no command is specified, mailx uses the command
specified by the emd variable. See[‘Environment Variables” on page 354} If
the page variable has a value, a form feed character is sent into the pipe
after every message.

The subcommand | [refs] [command] is equivalent to pipe.

pre[serve] [refs]
Is the same as the hold subcommand.

P[rint] [refs]
Displays the specified messages on the screen. If refs is not specified, the
current message is displayed. All header fields are displayed; the discard
and ignore subcommands do not affect Print.

plrint] [refs]
Displays the specified messages on the screen. If refs is not specified, the
current message is displayed. Header fields specified by discard and
ignore subcommands are not displayed. If the crt variable is set to an
integer, messages with more lines than that integer are “paginated” using
the command specified by the pager variable. For more information, see
[‘Environment Variables” on page 354}

qluit] Ends a mailx session. This is the usual method to leave mailx. Messages
that have been read but not saved or deleted are stored in your mbox
(personal mailbox). Messages that are still unread are retained in your
system mailbox. Messages that have been deleted or explicitly saved in
other files are discarded. Typing the end-of-file character has the same
effect.

R[eply] [refs]
Sends a reply to the authors of each of the messages specified by refs. If
refs is not specified, the current message is used. The Subject line of the
reply message is taken from the first message in refs. If the record
environment variable is set to a filename, your reply message is appended
to the end of that file.

Normally, you use Reply if you just want to send your reply to the author of
a message, and reply if you want to send your reply to the author and all
recipients. If set, the flipr environment variable reverses the meanings of
the R and r commands. See[‘Environment Variables” on page 354

z/OS V1R4.0 UNIX System Services Command Reference

mailx

rleply] [ref]
Sends a reply to the author of a specific message, and all other recipients
of the message. If ref is not specified, mailx replies to the current message.
If the record environment variable is set to a filename, your reply message
is appended to the end of that file.

R[espond] [refs]
Is the same as the Reply subcommand.

r[espond] [ref]
Is the same as the reply subcommand.

ret[ain] [header ...]
Is the opposite of the discard subcommand. It tells mailx to display the
given header fields when displaying a message. The comparison of header
fields is not case sensitive. You can use retain to override existing discard
and ignore commands. If you do not specify any header fields, retain
displays a list of currently retained header fields.

S[ave] [refs]
Saves the specified messages in a file the name of which is taken from the
author of the first message (the filename is the author’'s name, without any
attached network addressing). If the folder variable is set, the file is saved
to the specified directory.

s[ave] [refs][filename]
Saves the specified messages in the given file. If refs is not given, the
current message is added to the mbox. (The value of the append variable
determines whether the message is added to the beginning or the end of
the mbox). The file is created if it does not already exist. If you do not
specify filename, mailx saves the messages in mbox (your personal
mailbox). A message that has been saved with save is normally deleted
from mailbox when mailx ends (see quit); but see the variables hold and
keepsave.

se[t] name
Defines a variable with the given name and assigns it a null value. If you
omit name, set displays a list of all defined variables and their values.

se[t] name=value
Defines a variable with the given name and assigns it the given value,
which may be a string or a number.

se[t] noname
Is the same as the unset name subcommand.

shlell] Invokes the shell given by the SHELL environment variable.

si[ze] [refs]
Displays the size in bytes of each of the specified messages. If no refs are
specified, the current message is used.

so[urce] file
Reads the specified text file, executes its contents as command-mode
subcommands, and then returns to read more commands from the original
source.

to[p] [refs]
Displays the first few lines of each of the specified messages. If refs is not
specified, the current message is used. If the toplines variable has a
numeric value, that many lines are displayed from each message;
otherwise, five lines are displayed from each message.

Chapter 2. Shell Command Descriptions 349

mailx

350

tou[ch] [refs]
“Touches” the specified messages, making them appear to have been read.
This means that when you quit mailx, the messages are saved in your
mbox (personal mailbox) if they are not deleted or explicitly saved in
another file. If refs is not specified, the current message is touched.

Tlype] [refs]
Is the same as the Print subcommand.

tlype] [refs]
Is the same as the print command.

una[lias] [alias[name ...]]
Deletes specified alias names.

u[ndelete] [refs]
Restores previously deleted messages. When messages are deleted, they
are not discarded immediately; they are just marked for deletion and are
actually deleted when mailx ends. Until mailx ends, you can use undelete
to restore the specified messages. You cannot undelete messages deleted
in previous sessions. If you do not specify refs, this command restores the
first deleted (but not yet undeleted) message following the current message;
if no such message exists, it restores the last deleted (but not yet
undeleted) message preceding the current message. If the autoprint
variable is set, the last restored message is displayed. This is the only
subcommand that lets you give a ref to a message that has been deleted.

U[nread] [refs]
Marks the specified messages as unread.

unsfet] name ...
Discards the specified variables.

ve[rsion]
Displays version information about mailx.

v[isual] [refs]
Edits the specified messages with a screen editor. If refs is not specified,
the current message is edited. The messages are saved in a temporary file
and the screen editor is invoked to edit that file. The editor used is given by
the VISUAL variable. See [‘Environment Variables” on page 354,

w[rite] [refs] filename
Writes the specified messages into the given file. If refs is not specified, the
current message is written. write is the same as save, except that it does
not write out the header lines and the blank line at the end of the message.

x[it] Is the same as the exit command.

z+ Scrolls the header display forward one screenful.
z— Scrolls the header display backward one screenful.
! command

Executes the given shell command. For example:

c

lists all files in the current directory. The shell that will be used to run the
command is given by the SHELL environment variable. See
[Variables” on page 354,

z/OS V1R4.0 UNIX System Services Command Reference

mailx

#comment
Specifies that mailx should ignore everything from the # to the end of the
line. This is useful for putting comments into startup files.

? Is the same as the help command (it displays a summary of the
command-mode subcommands).

= Displays the current message number.

Input-Mode Subcommands

You can use input-mode subcommands when entering the text of a message. You
must type mode subcommands at the beginning of an input line; you cannot type
them in the middle of a line. By default, each input-mode subcommand begins with
the tilde (~) character, called the escape character. You can use the escape
variable to change the escape character, but in the documentation that follows, we
always use tilde.

~ Marks the end of input in a mail message.

~? Displays a summary of the input-mode subcommands.

~A Inserts the autograph string at this point in the message. This autograph
string is given by the Sign variable.

~a Is similar to ~A, except that it uses the variable sign.

~b name ...

Adds the specified names to the blind carbon copy list.

~C name ...
Adds the specified names to the carbon copy list.

~d Reads in the dead.letter file.

~e Invokes an editor on the message that you have composed. The editor
variable determines the editor that is invoked.

~F [refs</ pv>]
“Forwards” the given messages. The text of the messages is inserted at this
point in the message you are composing. The message headers are also
inserted with all header fields regardless of the discard, ignore, and retain
subcommands. This is valid only when you entered mailx in command
mode and then went into input mode to compose a message.

~f[refs]
Is similar to ~F except that the header fields included are determined by the
discard, ignore, and retain subcommands.

~h Prompts you to enter the following header lines:
Subject Cc Bcc To

For some of these, mailx displays an initial value for the header. You can
edit this initial value as if you had just typed it in yourself, using backspaces
and line deletes.

~i name
Inserts the value of the named variable followed by a newline at this point
in the message.

~M[refs]
Inserts the text of the specified messages at this point in the message. If
refs is not specified, the current message is used. Messages inserted in this
way have each line prefixed with the value of the indentprefix variable. The

Chapter 2. Shell Command Descriptions 351

mailx

message headers are also inserted with all header fields included
regardless of the discard, ignore, and retain subcommands. This is valid
only when you entered mailx in command mode and then went into input
mode to reply to a message.

~m< |s similar to ~M, except that the header fields are determi ned by the
discard, ignore, and retain subcommands.

~p Displays the message being composed.

~q Quits input mode as if you had interrupted the message. If you have
already composed part of a message, the partial message is saved in the
dead.letter file; the description of the dead environment variable has more
information..

~r filename
Reads in the contents of the specified file and adds that text at this point in
the message.

~8 text
Sets the Subject line to the given text.

~t address address ...
Adds the given addresses to the To: list (people who will receive the
message).

~V Invokes a screen (visual) editor on the message that you have composed.
The VISUAL variable determines the editor that is invoked.

~w file Writes the current text of your message to the specified file. The header
lines for the message are not written.

~X Quits in the same way as ~q, except that the message is not saved in the
dead.letter file.

~< filename
Is the same as the ~r command.

~< lcommand
Runs the given shell command and adds the standard output of that
command at this point in the message. For example, your message might
contain:
My program is giving me this odd output:
~< Iprog
What do you think is causing it?

~: mail_command
Runs the given command-mode mail_command. This is valid only when you
entered mailx in command mode and then went into input mode to
compose a message.

~_ mail_command</ pv>
Is the same as the ~: command.

~! command
Runs the given shell command. For example, you can use:

>V 1s

to get a list of files in the working directory. The shell that is invoked to run
the command is given by the SHELL environment variable. If the bang
variable is set, mailx replaces each unescaped exclamation mark (!) in
command with the command run by the previous command or ~! command
escape.

352 2/0S V1R4.0 UNIX System Services Command Reference

Startup Files

Example

~

mailx

Marks the end of input in a mail message.

~l command

Pipes the current message through the specified shell command. If the
command ends with a successful exit status, the output of the command
replaces the text of the current message. For example:

~| fmt

fills and justifies the lines of your message and replaces the message with
the formatted message. ~| uses the shell given by the SHELL environment
variable to run command.

When you run mailx in command mode, mailx does the following:

Sets all variables to their default values. mailx processes command-line options,
using them to override any corresponding default values.

Imports appropriate external environment variables, using them to override any
corresponding default values.

Reads commands from the system startup file, /etc/mailx.rc. This sets up
variable values and definitions that should be common to all users. If you do not
want mailx to read the system startup file, use the —n option on the mailx
command line.

After reading and processing the system startup file, mailx does the same with a
personal startup file, which is MAILRC by default. This is a file in your HOME
directory. The name of the file is .mailrc.

Startup files typically set up display options and define aliases. However, any
command is valid in a startup file except for the following:

Copy
edit
followup
Followup
hold

mail
preserve
reply
Reply
respond
Respond
shell

visual
1

If a line in a startup file contains an error or