
z/OS

Using REXX and z/OS UNIX System
Services

SA22-7806-03

IBM

z/OS

Using REXX and z/OS UNIX System
Services

SA22-7806-03

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 297.

Fourth Edition, September 2002

This edition applies to Version 1 Release 4 of z/OS™ (5694-A01), to Version 1 Release 4 of z/OS.e™ (5655-G52),
and to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22-7806-02.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Tables . ix

About this document . xi
Who should read Using REXX and z/OS UNIX System Services xi
Where to find more information xi

Softcopy publications . xi
Accessing z/OS licensed documents on the Internet xi
Using LookAt to look up message explanations xii
IBM Systems Center publications xii
z/OS UNIX porting information xiii
z/OS UNIX courses . xiii
z/OS UNIX home page . xiii
z/OS UNIX customization wizard xiii
Discussion list . xiv

Finding more information about REXX xiv
How to read syntax diagrams xiv

Symbols . xiv
Syntax items . xv
Syntax examples . xv

Summary of changes . xix

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 1
Host command environments for z/OS UNIX processing 1
The SYSCALL environment. 2

Running a REXX program from TSO/E or MVS batch 2
Establishing the SYSCALL environment 2
Ending the SYSCALL environment 3
Establishing and deleting the signal interface routine 3

The SH environment . 3
Running a REXX program from the z/OS shells or from a program 4
Using external functions and subroutines 4

The TSO command environment 5
Command input . 5
Command output . 5
Return codes . 6
Examples . 6

Variable scope . 6
Writing setuid and setgid REXX programs 7
Input and output for z/OS UNIX processing 7

Using standard input, output, and error (file descriptors 0, 1, and 2) 7
Using SYSCALL commands 7
Using EXECIO . 8
Exit status from a REXX program 8

Tokens returned from the PARSE SOURCE instruction 8
Running from a z/OS shell or from a program 9
Running from TSO/E or batch 9

Using the REXX signal services 9
Using immediate commands . 10
Moving a REXX program from TSO/E to a z/OS shell. 11

Using argv and environment variables 11
Customizing the z/OS UNIX REXX environment. 12

Performance in the SYSCALL environment 12

© Copyright IBM Corp. 1996, 2002 iii

||
||
||
||
||

||

Authorization. 13

Chapter 2. z/OS UNIX REXX programming services 15
Creating a z/OS UNIX REXX environment from an application 15
Running the REXX program . 16
Example: C/370™ program . 17

Chapter 3. The syscall commands 19
Specifying a syscall command 19

Specifying numerics . 20
Specifying strings . 20

Using predefined variables . 21
Return values . 21

Returned from the SYSCALL environment 21
Returned from the SH environment 22

Syscall command descriptions 22
access . 23
acldelete . 24
acldeleteentry . 25
aclfree . 26
aclget . 27
aclgetentry . 28
aclinit . 29
aclset . 30
aclupdateentry . 31
alarm . 33
catclose . 34
catgets . 35
catopen . 36
cert . 37
chattr . 38
chaudit . 41
chdir. 42
chmod . 43
chown . 45
close . 46
closedir. 47
creat. 48
dup . 49
dup2. 50
exec . 51
extlink . 52
fchattr . 53
fchaudit . 56
fchmod . 57
fchown . 59
f_closfd. 60
f_control_cvt . 61
fcntl . 63
f_dupfd . 64
f_dupfd2 . 65
f_getfd . 66
f_getfl . 67
f_getlk . 68
fork . 70
forkexecm. 71

iv z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fpathconf . 73
f_setfd . 75
f_setfl . 76
f_setlk . 77
f_setlkw . 79
f_settag . 81
fstat . 82
fstatvfs . 84
fsync . 85
ftrunc . 86
getcwd . 87
getegid . 88
geteuid . 89
getgid . 90
getgrent . 91
getgrid . 92
getgrnam . 93
getgroups . 94
getgroupsbyname . 95
getlogin . 96
getment . 97
getmntent . 98
getpgrp . 100
getpid . 101
getppid . 102
getpsent . 103
getpwent. 106
getpwnam . 107
getpwuid. 108
getrlimit . 109
getuid . 110
gmtime . 111
ioctl . 112
isatty . 113
kill . 114
lchown . 116
link . 117
lseek . 118
lstat . 119
mkdir . 120
mkfifo . 121
mknod . 122
mount . 123
open . 126
opendir . 128
pathconf . 129
pause . 131
pfsctl . 132
pipe . 133
pt3270 . 134
quiesce . 136
rddir . 137
read . 139
readdir . 141
readfile . 142
readlink . 143

Contents v

realpath . 144
rename . 145
rewinddir. 146
rmdir . 147
setegid . 148
seteuid . 149
setgid . 150
setgrent . 151
setgroups . 152
setpgid . 153
setpwent. 154
setrlimit . 155
setsid . 157
setuid . 158
sigaction . 159
sigpending . 162
sigprocmask . 163
sigsuspend . 164
sleep . 165
spawn. 166
spawnp . 169
stat. 170
statfs . 172
statvfs. 173
strerror . 174
symlink . 175
sysconf . 176
time . 177
times . 178
trunc . 179
ttyname . 180
umask . 181
uname . 182
unlink . 183
unmount . 184
unquiesce . 186
utime . 187
wait . 188
waitpid . 190
write . 192
writefile . 194

Chapter 4. Examples: using syscall commands 195
Read the root directory into a stem and print it 195
Open, write, and close a file 195
Open a file, read, and close it 195
Display the working directory and list a specified directory 196
Parse arguments passed to a REXX program: the getopts function 196
Count newlines, words, and bytes 198
Obtain information about the mounted file system 199
Mount a file system. 199
Unmount a file system. 201
Run a shell command and read its output into a stem 203
Print the group member names 203
Obtain information about a user 204
Set up a signal to enforce a time limit for a program. 204

vi z/OS V1R4.0 Using REXX and z/OS UNIX System Services

List the ACL entries for a file 206

Chapter 5. z/OS UNIX REXX functions 207
REXX I/O functions . 207

Opening a stream implicitly 207
Opening a stream explicitly 207

bpxwunix() . 209
charin() . 211
charout() . 212
chars() . 213
chmod() . 214
convd2e() . 215
directory() . 216
environment() . 217
exists() . 218
getpass() . 219
linein() . 220
lineout() . 221
lines() . 222
outtrap() . 223
procinfo() . 224
rexxopt() . 228
sleep() . 229
stream . 230
submit() . 234
syscalls() . 235

Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic
output . 237

Calling conventions . 237
REXX external function parameter list 237
Conventional MVS variable-length parameter string 237
Null-terminated parameter string 238

Request types. 238
Keywords . 238
Return codes . 239

Key errors . 239
Dynamic allocation error codes 239
Dynamic output error codes. 240

Message processing . 240
Requesting dynamic allocation. 240
Requesting dynamic unallocation 243
Requesting dynamic concatenation 244
Requesting dynamic output . 244
Freeing an output descriptor 246
Examples: calling BPXWDYN from REXX 246

Allocate . 246
Free . 246
Concatenate . 246
Create dynamic output descriptor. 246
Free descriptor . 246

Example: calling BPXWDYN from C 246

Chapter 7. Virtual file system (VFS) server syscall commands 247
Security . 247
Tokens . 247

Contents vii

||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

|
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||
||

v_create . 248
v_fstatfs . 250
v_get . 251
v_getattr . 252
v_link . 253
v_lockctl . 254
v_lookup. 259
v_mkdir . 260
v_read . 261
v_readdir . 262
v_readlink . 263
v_reg . 264
v_rel . 265
v_remove . 266
v_rename . 267
v_rmdir . 268
v_rpn . 269
v_setattr . 270
v_symlink . 271
v_write . 273

Chapter 8. Examples: using virtual file system syscall commands 275
List the files in a directory . 275
Remove a file or empty directory 275

Appendix A. REXX predefined variables 277

Appendix B. Setting permissions for files and directories 287
Position 1 . 287
Positions 2, 3, and 4 . 287
Example: using BITOR and BITAND to set mode bits 288

Appendix C. Error messages from the REXX processor 289

Appendix D. Accessibility . 295
Using assistive technologies 295
Keyboard navigation of the user interface. 295

Notices . 297
Programming Interface Information 298
Trademarks. 298

Index . 299

viii z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Tables

1. Syntax examples . xv
2. REXX statements for defining signal sets . 10
3. Common keys used for dynamic allocation . 241
4. Additional keys used for dynamic allocation . 243
5. Common keys used for dynamic unallocation . 243
6. Additional keys used for dynamic unallocation. 244
7. Keys used for dynamic concatenation. 244
8. Keys used for dynamic output . 244
9. Key used to free an output descriptor . 246

10. List of predefined variables . 277

© Copyright IBM Corp. 1996, 2002 ix

||
||
||
||
||
||
||

x z/OS V1R4.0 Using REXX and z/OS UNIX System Services

About this document

This document presents the information you need to write REXX programs that
access z/OS UNIX System Services (z/OS UNIX). It describes the features and
usage requirements for the z/OS UNIX REXX extensions, or syscall commands,
which are interfaces between the z/OS operating system and the functions specified
in the POSIX.1 standard (ISO/IEC 9945-1:1990[E] IEEE Std 1003.1-1990: First
edition 1990-12-07; Information technology—Portable Operating System Interface
[POSIX] Part 1; System Application Program Interface [API] [C Language]). These
functions are used by z/OS UNIX. This document also describes syscall commands
that are not related to the standards.

Who should read Using REXX and z/OS UNIX System Services
This document is for programmers who are already familiar with the REXX
language and experienced with the workings of TSO/E and z/OS UNIX. It describes
how to include in a REXX program syscall commands that access z/OS UNIX
services.

Where to find more information
Where necessary, this document references information in other documents about
the elements and features of z/OS. For complete titles and order numbers for all
z/OS documents, see z/OS Information Roadmap.

Direct your request for copies of any IBM publication to your IBM representative or
to the IBM branch office serving your locality.

There is also a toll-free customer support number (1-800-879-2755) available
Monday through Friday from 6:30 a.m. through 5:00 p.m. Mountain Time. You can
use this number to:

v Order or inquire about IBM publications

v Resolve any software manufacturing or delivery concerns

v Activate the program reorder form to provide faster and more convenient ordering
of software updates

Softcopy publications
The z/OS UNIX library is available on the z/OS Collection Kit, SK2T-6700. This
softcopy collection contains a set of z/OS and related unlicensed product
documents. The CD-ROM collection includes the IBM Library Reader™, a program
that enables customers to read the softcopy documents.

Softcopy z/OS publications are also available for web-browsing and PDF versions
of the z/OS publications for viewing or printing using Adobe Acrobat Reader at this
URL:
http://www.ibm.com/servers/eserver/zseries/zos/

Select “Library”.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:

© Copyright IBM Corp. 1996, 2002 xi

http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

IBM Systems Center publications
IBM systems centers produce redbooks that can be helpful in setting up and using
z/OS UNIX System Services. You can order these publications through normal
channels, or you can view them with a web browser from this URL:
http://www.redbooks.ibm.com/

1. z/OS.e customers received a Memo to Licensees, (GI10-0684) that includes this key code.

xii z/OS V1R4.0 Using REXX and z/OS UNIX System Services

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

These documents have not been subjected to any formal review nor have they
been checked for technical accuracy, but they represent current product
understanding (at the time of their publication) and provide valuable information on
a wide range of z/OS UNIX topics. You must order them separately. A selected list
of these documents is on the z/OS UNIX web site at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1pub.html/

z/OS UNIX porting information
There is a Porting Guide on the z/OS UNIX porting page on the World Wide Web,
at this URL:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1por.html/

You can read the Porting Guide from the web or download it as a PDF file that you
can view or print using Adobe Acrobat Reader. The Porting Guide covers a range of
useful topics, including: sizing a port, setting up a porting environment,
ASCII-EBCDIC issues, performance, and much more.

The porting page also features a variety of porting tips, and lists porting resources
that will help you in your port.

z/OS UNIX courses
For a current list of courses that you can take, go to:
http://www.ibm.com/services/learning/

You can also see your IBM representative or call 1-800-IBM-TEACH
(1-800-426-8322).

z/OS UNIX home page
The z/OS UNIX home page on the World Wide Web has the latest technical news,
customer stories, tools, and FAQs (frequently asked questions). You can visit it at
http://www.ibm.com/servers/eserver/zseries/zos/unix/

Some of the tools available from the web site are ported tools, and some are
home-grown tools designed for z/OS UNIX. All this code works in our environment
at the time we make it available, but is not officially supported. Each tool has a
README file that describes the tool and any restrictions on its use.

The simplest way to reach these tools is through the z/OS UNIX home page. From
the home page, click on Tools and Toys .

The code is also available from ftp://ftp.software.ibm.com/s390/zos/unix/ through
anonymous ftp .

Restrictions
Because the tools are not officially supported, there are no known
enhancements and no APARs can be accepted.

z/OS UNIX customization wizard
If you’d like help with customizing z/OS UNIX, then check out our Web-based
wizard. You can access it at:
http://www.ibm.com/servers/eserver/zseries/zos/wizards/

About this document xiii

This wizard builds two BPXPRMxx parmlib members; one with system processing
parameters and one with file system statements. It also builds a batch job that does
the initial RACF® security setup for z/OS UNIX. Whether you are installing z/OS
UNIX for the first time or are a current user who wishes to verify settings, you can
use this wizard.

Beginning with OS/390® R9, the wizard also allows sysplex users to build a single
BPXPRMxx parmlib member to define all the file systems used by systems
participating in shared HFS.

An edition of the wizard is available for OS/390 V2R8, as well.

Discussion list
Customers and IBM participants also discuss z/OS UNIX on the mvs-oe
discussion list . This list is not operated or sponsored by IBM.

To subscribe to the mvs-oe discussion so you can receive postings, send a note to:
listserv@vm.marist.edu

Include the following line in the body of the note, substituting your first name and
last name as indicated:
subscribe mvs-oe first_name last_name

After you are subscribed, you will receive further instructions on how to use the
mailing list.

Finding more information about REXX
The following publication is useful: The REXX Language: A Practical Approach to
Programming, by Michael Cowlishaw (Englewood Cliffs, NJ: Prentice-Hall, 1990).

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments) that
comprise a command statement. They are read from left to right and from top to
bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol Definition

ÊÊ─── Indicates the beginning of the syntax diagram.

───Ê Indicates that the syntax diagram is continued to the next line.

Ê─── Indicates that the syntax is continued from the previous line.

───ÊÍ Indicates the end of the syntax diagram.

xiv z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Syntax items
Syntax diagrams contain many different items. Syntax items include:

v Keywords - a command name or any other literal information.

v Variables - variables are italicized, appear in lowercase and represent the name
of values you can supply.

v Delimiters - delimiters indicate the start or end of keywords, variables, or
operators. For example, a left parenthesis is a delimiter.

v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal
(=), and other mathematical operations that may need to be performed.

v Fragment references - a part of a syntax diagram, separated from the diagram to
show greater detail.

v Separators - a separator separates keywords, variables or operators. For
example, a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal
line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

ÊÊ KEYWORD required_item ÊÍ

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

ÊÊ KEYWORD required_choice1
required_choice2

ÊÍ

Optional item.

Optional items appear below the main path of the
horizontal line.

ÊÊ KEYWORD
optional_item

ÊÍ

About this document xv

Table 1. Syntax examples (continued)

Item Syntax example

Optional choice.

An optional choice (two or more items) appears in a
vertical stack below the main path of the horizontal line.
You may choose one of the items in the stack.

ÊÊ KEYWORD
optional_choice1
optional_choice2

ÊÍ

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or optional)
appear on (required) or below (optional) the main path of
the horizontal line. The following example displays a
default with optional items.

ÊÊ
default_choice1

KEYWORD
optional_choice2
optional_choice3

ÊÍ

Variable.

Variables appear in lowercase italics. They represent
names or values.

ÊÊ KEYWORD variable ÊÍ

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

A character within the arrow means you must separate
repeated items with that character.

An arrow returning to the left above a group of repeatable
items indicates that one of the items can be selected, or a
single item can be repeated.

ÊÊ »KEYWORD repeatable_item ÊÍ

ÊÊ »

,

KEYWORD repeatable_item ÊÍ

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled group
is described below the main syntax diagram. Syntax is
occasionally broken into fragments if the inclusion of the
fragment would overly complicate the main syntax
diagram.

ÊÊ KEYWORD fragment ÊÍ

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

xvi z/OS V1R4.0 Using REXX and z/OS UNIX System Services

About this document xvii

xviii z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Summary of changes

Summary of changes
for SA22-7806-03
z/OS Version 1 Release 4

This document contains information previously presented in z/OS Using REXX and
z/OS UNIX System Services, SA22-7806-02, which supports z/OS Version 1
Release 3.

New information

v BPXWDYN, a text interface to a subset of the SVC 99 (dynamic allocation) and
SVC 109 (dynamic output) services. BPXWDYN supports data set allocation,
unallocation, concatenation, and adding and deleting output descriptors.

v 19 REXX functions that extend the REXX language in the z/OS UNIX
environment. These functions can be used for standard REXX I/O, or to access
some common file services and environment variables.

v Support for a TSO host command environment that permits a REXX program to
run TSO/E commands.

v Support for “immediate commands,” TSO/E REXX commands that change
characteristics that control the execution of an exec or program.

Changed information
v New variable for mount requests added to getmntent and mount syscall

commands: MNTE_SYSLIST.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for SA22-7806-02
z/OS Version 1 Release 3

This document contains information previously presented in z/OS Using REXX and
z/OS UNIX System Services, SA22-7806-01, which supports z/OS Version 1
Release 2.

New information

v Eight new syscall commands to support access control lists (ACLs):
aclupdateentry , acldelete , acldeleteentry , aclfree , aclget , aclgetentry , aclinit ,
and aclset

v New variables for ACL support added to stat , fstat , lstat syscall commands:
ST_ACCESSACL, ST_DMODELACL, and ST_FMODELACL

v New variables for ACL support added to the pathconf syscall command:
PC_ACL and PC_ACL_MAX

© Copyright IBM Corp. 1996, 2002 xix

v New variable for unmount requests added to getmntent :
MNT_MODE_AUNMOUNT

v An appendix with z/OS product accessibility information has been added.

Summary of changes
for SA22-7806-01
z/OS Version 1 Release 2

This document contains information previously presented in z/OS Using REXX and
z/OS UNIX System Services, SA22-7806-00, which supports z/OS Version 1
Release 1.

New information

v Two new commands to support automatic file conversion: f_settag and
f_control_cvt

v New variable for mount requests added to mount : MNTE_FILETAG

v Added new ST_CCSID description to chattr and fchattr

Changed information

v Updated ST_CCSID variable description under stat and fstat

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xx z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 1. Using TSO/E REXX for z/OS UNIX processing

A REXX program is recognized by the word REXX (not case-sensitive) as the first
word on the first line and within a REXX comment. For example, the following is a
simple REXX program:

/* rexx */
say ’hello world’

The set of z/OS UNIX extensions to the TSO/E Restructured Extended Executor
(REXX) language enable REXX programs to access z/OS UNIX callable services.
The z/OS UNIX extensions, called syscall commands, have names that correspond
to the names of the callable services they invoke—for example, access , chmod ,
and chown .

You can run an interpreted or compiled REXX program with syscall commands from
TSO/E, from MVS™ batch, from the z/OS shells, or from a program. You can run a
REXX program with syscall commands only on a system with z/OS UNIX System
Services installed. For a complete description of each of the syscall commands, see
Chapter 3, “The syscall commands” on page 19.

The set of z/OS UNIX REXX functions also extend the REXX language on z/OS in
the z/OS UNIX environment. There are functions that provide:

v Standard REXX I/O

v Access to some common file services and environment variables

All of the z/OS UNIX functions, except bpxwunix() and syscalls() , must be run in a
z/OS UNIX environment. For a complete description of each of the functions, see
Chapter 5, “z/OS UNIX REXX functions” on page 207.

For dynamic allocation and dynamic output, BPXWDYN is a text interface to a
subset of the SVC 99 and SVC 109 services that is designed to be called from
REXX. For a complete description of BPXWDYN, see Chapter 6, “BPXWDYN: a
text interface to dynamic allocation and dynamic output” on page 237.

Host command environments for z/OS UNIX processing
Host command environments and external function packages that are available in
the MVS REXX environment can be used by a REXX program that has z/OS UNIX
extensions. These additional host command environments are also available:

SYSCALL For a REXX program with syscall commands that will be run from
TSO/E or MVS batch, you need to initialize the environment by
beginning a REXX program with a syscalls('ON') call.

SH For a REXX program with syscall commands that will be run from a
z/OS shell or from a program, SH is the initial host environment.
The SYSCALL environment is automatically initialized as well, so
you do not need to begin the REXX program with a syscalls('ON')
call. Syscall commands within the REXX program (for example,
chmod) are interpreted as z/OS shell commands, not as syscall
commands.

TSO A REXX program can run TSO/E commands, but you cannot use
TSO commands to affect your REXX environment, or have REXX
statements or other host command environments affect your TSO
process. Commands that are addressed to TSO will be run in a

© Copyright IBM Corp. 1996, 2002 1

|
|

|

|

|
|
|

|
|
|
|

TMP running in a separate address space and process from your
REXX program. The TSO process is started when the first TSO
command is run, and persists until your REXX program terminates
or you run the TSO LOGOFF command.

When a REXX program is run from a z/OS shell or from a program, both the SH
and SYSCALL host command environments are available to it. When a REXX
program is run from TSO/E or MVS batch, only the SYSCALL environment is
available.

For background information on the concept of a host command environment, see
z/OS TSO/E User’s Guide.

The SYSCALL environment
The SYSCALL environment can be used by any REXX program with syscall
commands, whether it runs from TSO/E or the z/OS shells (where the environment
is automatically initialized).

Running a REXX program from TSO/E or MVS batch
To run a REXX program with syscall commands from TSO/E or MVS batch, use the
syscalls('ON') function at the beginning of the REXX program. This function:

v Ensures that the SYSCALL command environment (ADDRESS syscall) is
established.

v Ensures that the address space is a process; this is known as dubbing.

v Initializes the predefined variables in the current REXX variable pool.

v Sets the signal process mask to block all signals that can be blocked. See Using
the REXX signal services for more information on signals.

v Clears the _ _argv. and _ _environment. stems. For this reason, it is not
recommended that you use syscalls('ON') in a z/OS shell environment.

For REXX programs run from TSO/E or MVS batch, you use the syscalls() function
to control the SYSCALL host command environment. You control the SYSCALL
environment by using:

v syscalls('ON') to establish the SYSCALL environment

v syscalls('OFF') to end the SYSCALL environment

v syscalls('SIGON') to establish the signal interface routine

v syscalls('SIGOFF') to delete the signal interface routine

Note: The words ON, OFF, SIGON, and SIGOFF must be in uppercase letters.

Establishing the SYSCALL environment
The syscalls('ON') function establishes the SYSCALL environment. It sets up the
REXX predefined variables and blocks all signals. The function sets this return
value:

0 Successful completion.

4 The signal process mask was not set.

7 The process was dubbed, but the SYSCALL environment was not
established.

8 The process could not be dubbed.

2 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

The following example shows how you can use the syscalls('ON') function at the
beginning of a REXX program:
if syscalls('ON')>3 then

do
say 'Unable to establish the SYSCALL environment'
return
end

Ending the SYSCALL environment
The syscalls('OFF') function ends the connection between the current task and
z/OS UNIX.

v If the REXX program was run from TSO/E or MVS batch, the task is undubbed,
but the REXX program continues running.

v If the REXX program was run from a z/OS shell or a program, the REXX
program is ended.

In general, it is not necessary to make a syscalls('OFF') call.

The syscalls('OFF') function has one return value:

0 Successful completion.

Establishing and deleting the signal interface routine
The syscalls('SIGON') function establishes the signal interface routine (SIR). After
you establish the SIR, use the sigaction syscall command to catch the signals you
want to process and the sigprocmask syscall command to unblock those signals.

Note: For a REXX program run from a z/OS shell or from a program, the SIR is
established by default.

The syscalls('SIGON') function has these return values:

0 Successful completion.

4 The SIR could not be established. The usual cause for this is that another
SIR has already been established for the process.

If you are writing a REXX program that runs a program that requires a signal
interface routine (for example, a program that uses the C runtime library), you must
delete the SIR. The syscalls('SIGOFF') function deletes the SIR and uses
sigprocmask() to reset the signal process mask so that it blocks all signals that
can be blocked.

The syscalls('SIGOFF') function has two return values:

0 Successful completion.

4 The SIR could not be deleted. The usual cause for this is that a SIR did not
exist for the process.

The SH environment
The SH environment is the default host command environment when a REXX
program is run from a z/OS shell or from a program using exec() ; it is available to a
REXX program only in those two situations. In the SH environment, a syscall
command runs as a z/OS shell command that has been issued this way:
/bin/sh -c shell_command

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 3

|
|
|
|

|

If you are running the REXX program from a z/OS shell or from a program, the
SYSCALL environment is automatically initialized.

See Chapter 4 for some sample REXX programs that show how REXX and z/OS
shell commands can work together—for example, a REXX program that can read
output from a z/OS shell command. The mount and unmount sample programs in
that chapter are shipped in the /samples directory as files mountx and unmountx .

Running a REXX program from the z/OS shells or from a program
You can run a REXX program from the z/OS shells, or you can call it from any
program just as you would call an executable program. The REXX program runs as
a separate process; it does not run in a TSO/E address space. You cannot use
TSO/E commands in the REXX program.

A REXX program that is invoked from a z/OS shell or from a program must be a
text file or a compiled REXX program that resides in the hierarchical file system
(HFS); it must have read and execute access permissions. Each line in the text file
must be terminated by a newline character and must not exceed 2048 characters.
Lines are passed to the REXX interpreter as they are. Sequence numbers are not
supported; if you are using the ISPF editor to create the REXX program, be sure to
set NUMBER OFF.

If you are working in a z/OS shell environment and use only a filename to invoke
the REXX program, the PATH environment variable is used to locate it. For
example, myrexx uses PATH to locate the program, but ./myrexx searches only the
working directory.

For a REXX program that is run from a z/OS shell or from a program, the SIR is
established by default. If the REXX program calls a C program that is running
POSIX(ON) or a program that requires an SIR, use the syscalls('SIGOFF') function
to delete the SIR before calling that program.

CEXEC output from the REXX compiler is supported in the z/OS shell
environments. To compile and put CEXEC output into the HFS, you can use the
REXXOEC cataloged procedure; it compiles under TSO/E and then uses the TSO/E
OCOPY command to copy the compiled program from a data set to a file in the file
hierarchy.

Using external functions and subroutines
You can call external functions and subroutines from a REXX program that resides
in the HFS. The search path for an external routine is similar to that used for a
REXX program that is invoked from a z/OS shell or from a program. If only the
filename is used on the call to the function or subroutine, the PATH environment
variable is used to locate it; otherwise, the function name determines the search.
For an executable module, the link pack area (LPA), link list, and STEPLIB may
also be searched. The default z/OS environment searches for executable modules
first. See “Customizing the z/OS UNIX REXX environment” on page 12.

The search order for modules and execs that are invoked as functions or
subroutines is controlled by the FUNCSOFL flag in the REXX parameter module.
For a description of that flag, see z/OS TSO/E REXX Reference.

The following rule must be observed in naming and calling an external function or
subroutine:

4 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v If the name contains special characters or lowercase characters, you must
enclose it in quotes— for example:
ans=’myfunc’(p1,p2)

If the name is not quoted, REXX folds the name to uppercase. The function call
then fails, because the file is not found.

Executable external functions or subroutines that are written in a language other
than interpreted REXX and located in the HFS are not supported.

The TSO command environment
The TSO command environment (ADDRESS TSO) can be used from a z/OS UNIX
REXX environment, and is initialized with:
address tso [command]

where command may be any TSO/E command, CLIST, or REXX exec that can run
in a batch TSO TMP.

Commands addressed to TSO are run in a TSO TMP that is running in a separate
address space and process from your REXX program. This provides you with the
capability to run TSO commands. It does not provide you with the capability to use
TSO commands to affect your REXX environment, or to have REXX statements or
other host command environments affect your TSO process.

The TSO process is started when the first TSO/E command is run, and persists
until your REXX program terminates or you run the TSO LOGOFF command. You
can use the ps shell command to observe this process as the program bpxwrtso .
Unexpected termination of the TSO process causes the next TSO command to fail
with return code 16. A subsequent command starts a new TSO process.

Command input
Most native TSO commands, including commands that prompt for missing
arguments, use TGET for input. This results in a command error, and the command
usually terminates.

For commands that are able to read input, the source of the input is first any data
that is currently on your stack, and then any data in your REXX program’s standard
input stream. Regardless of whether the command processes input, all data on the
stack is queued to the TSO command. The stack is empty after any TSO command
has been run.

The standard input stream may also be queued as input to the TSO command. For
example, if you have a file redirected as input and you run a TSO command before
processing that file, some or all of the file may be queued to the TSO command. If
input is the terminal, queued input may be queued to the TSO command. This
characteristic can be used to interact with some TSO commands.

You can disable command input by using the rexxopt() function with NOTSOIN
specified.

Command output
By default, all command output is directed to your REXX process’s standard output
stream. You can use the outtrap() function to trap command output in variables.

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 5

|

|
|

|

|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|
|

Return codes
The special REXX variable RC usually contains the return code from the TSO
command. If the command abends or is not found, or if another error is detected,
special return codes are set, and a descriptive message may be written to the
standard error stream:

v −3 usually means that the TSO command was not found.

v Other negative numbers are usually abend codes. These should be accompanied
by a message containing an abend reason code.

v 16 usually means that a processing error was encountered.

Examples
To run the TSO/E TIME command:
address tso ’time’

To trap command output and print it:
call outtrap out.

address tso ’listc’
do i=1 to out.0

say out.i
end

To run a REXX exec in TSO/E:
address tso

"alloc fi(sysexec) da(’schoen.rexx’) shr"
"myexec"

This is a functional replacement for the tsocmd utility:
/* rexx */

address tso arg(1)
return rc

The tsocmd utility is available for download from the Tools and Toys z/OS UNIX
Web page at:
http://www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1toy.html

Variable scope
When the REXX program is initialized and the SYSCALL environment is
established, the predefined variables are set up. If you call an internal subroutine
that uses the PROCEDURE instruction to protect existing variables by making them
unknown to that subroutine (or function), the predefined variables also become
unknown. If some of the predefined variables are needed, you can either list them
on the PROCEDURE EXPOSE instruction or issue another syscalls('ON') to
reestablish the predefined variables. The predefined variables are automatically set
up for external functions and subroutines. For example:
subroutine: procedure
junk = syscalls('ON')
parse arg dir
’readdir (dir) dir. stem.’

6 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

|
|
|
|

|

|
|

|

|

|

|

|

|
|
|
|
|

|

|
|
|

|

|
|
|

|
|

|

|

Writing setuid and setgid REXX programs
Setting the set-group-ID-on-execution (setgid) permission means that when a file is
run, the calling process’s effective GID is set to the file’s owner GID; the process
seems to be running under the GID of the file’s owner, rather than that of the actual
invoker.

Setting the set-user-ID-on-execution (setuid) permission means that when a file is
run, the calling process’s effective UID is set to the file’s owner UID; the process
seems to be running under the UID of the file’s owner, rather than that of the actual
invoker.

Like any other setuid or setgid program, a REXX program should not allow the user
of the program to get control in your environment. Some examples of instructions
that can let a user obtain control are:

v Interactive trace.

v Calling external functions or subroutines: Using a relative pathname can let the
user get control if the user sets the PATH variable. External functions and
subroutines run under the UID and GID of the main program, regardless of their
setuid and setgid mode bits.

Input and output for z/OS UNIX processing
When a REXX program runs, open file descriptors are inherited from the process
that issued the exec() .

Using standard input, output, and error (file descriptors 0, 1, and 2)
For a REXX program that is run from a z/OS shell or from a program, file
descriptors 0, 1, and 2 (conventionally, standard input, standard output, and
standard error files) are typically inherited.

Attention: A read or write error on file descriptors 0, 1, or 2 results in a halt
interruption if the read or write was from a PARSE EXTERNAL instruction, SAY
instruction, or EXECIO.

If the REXX program issues a PARSE EXTERNAL instruction, either explicitly or
implicitly (such as from a PARSE PULL instruction with an empty stack), it reads
standard input for a single text record. The newline character is stripped from the
record before it is returned to the REXX program. Standard input is assumed to be
a text file, such as your terminal input.

If the REXX program issues a SAY instruction, the text is directed to standard
output, and a newline character is appended to the end of the text. Messages
issued by REXX, including error and trace messages, are similarly directed to
standard output.

If PARSE EXTERNAL is used after standard input has reached the end of the file,
null lines are returned. The end-of-file condition can be detected by EXECIO. For
more information, see “Using EXECIO” on page 8.

Using SYSCALL commands
The SYSCALL host command environment gives you more direct control over input
and output. You can use:

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 7

v readfile to read an entire text file. See “readfile” on page 142 for more
information.

v writefile to write an entire text file. See “writefile” on page 194 for more
information.

v read to read bytes from any kind of file. See “read” on page 139 for more
information.

v write to write bytes to any kind of file. See “write” on page 192 for more
information.

Using EXECIO
EXECIO differs from readfile and writefile in that it operates on open files. To read
or write a file in segments (for example, a line at a time), use this TSO/E REXX
command:
address MVS "EXECIO"

The data can come from and go to the stack or a stem. You can also use it to read
or write an entire file. As shown in the following diagram, z/OS UNIX supports all
the TSO/E REXX operands except OPEN, DISKRU, and linenum.

Note: When using EXECIO to read a file, the maximum allowable length of a line
in the file is 1024 characters, including the newline character. For information
on reading blocks of data, see “read” on page 139.

For the ddname operand, you can use the following pseudo-ddnames for
processing, when the REXX program is run from a shell or from a program:

v File descriptors 0 to 7

v STDIN, STDOUT, STDERR

For information on EXECIO, see z/OS TSO/E REXX Reference.

Exit status from a REXX program
When a REXX program is run from a z/OS shell or from a program it can return a
return code. If the program returns a value in the range 0–255, that value is
returned. Otherwise, a value of 255 is returned. If a program is terminated, REXX
returns a value of 255.

Tokens returned from the PARSE SOURCE instruction
The tokens that are returned from the PARSE SOURCE instruction depend on
where the REXX program is run: from a z/OS shell, from a program, from TSO/E,
or from batch.

ÊÊ EXECIO lines
*

DISKW ddname
(

STEM var-name FINIS)
DISKR ddname

(
FINIS SKIP)

FIFO

LIFO

STEM var-name

ÊÍ

8 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Running from a z/OS shell or from a program
When a REXX program runs in a z/OS shell environment or is called from a
program, the PARSE SOURCE instruction returns nine tokens, in this order:

1. The string TSO

2. The string COMMAND, FUNCTION, or SUBROUTINE, depending on whether
the program was invoked as a host command, from a function call in an
expression, or with the CALL instruction

3. The first 8 characters of the name of the REXX program

4. The string PATH

5. The first 44 characters of the pathname of the REXX program

6. ? (question mark)

7. The name of the initial host command environment in uppercase: SH

8. The name of the address space in uppercase: OMVS

9. An 8-character user token: OpenMVS

To determine whether the REXX program was run from a z/OS shell, use token 8 or
9.

Example
If myexec is invoked from the z/OS shells and resides in the working directory, and
if PATH is set to .:/bin , a PARSE SOURCE instruction returns the following tokens:
TSO COMMAND myexec PATH ./myexec ? SH OMVS OpenMVS

Running from TSO/E or batch
If the REXX program runs from TSO/E or MVS batch, the PARSE SOURCE
instruction returns the tokens that are described in z/OS TSO/E REXX Reference.

Using the REXX signal services
The REXX signal services consist of the following syscall commands:

alarm
kill
pause
sigaction
sigpending
sigprocmask
sigsuspend
sleep

REXX does not include a service that allows you to attach your own signal catcher.
Instead, you have the following options:

v To use the REXX signal catcher as the action for a signal, you can specify the
SIG_CAT variable as the signal handler on sigaction .

SIG_CAT can terminate various wait conditions without causing the process to
end. If a signal arrives when the process is not currently waiting and the signal is
not blocked, it may be lost.

There are two primary uses for SIG_CAT: when you are using the alarm
command, and when you want to avoid unexpected process termination for other
unblocked signals.

SIG_CAT causes a signal to interrupt conditions such as waits and blocks, but
the application cannot determine which signal was delivered. It is not a traditional
signal catcher, as implemented in the C language.

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 9

v To set the action to the default action, you can specify SIG_DFL as the signal
handler on sigaction .

v To set the action to ignore the signal, you can specify SIG_IGN as the signal
handler on sigaction .

POSIX.1 defines several C functions to manipulate signal sets. REXX does not
define these functions; however, you can define each function using a single REXX
statement, as shown in Table 2.

Table 2. REXX statements for defining signal sets

C Function Equivalent REXX Statement

sigsetempty() sigsetempty: return copies(0,64)
v Parameters: none
v Returns: signal set

sigfillset() sigfillset: return copies(1,64)
v Parameters: none
v Returns: signal set

sigaddset() sigaddset: return overlay(1,arg(1),arg(2))
v Parameters: signal set, signal number
v Returns: signal set

sigdelset() sigdelset: return overlay(0,arg(1),arg(2))
Parameters: signal set, signal number
Returns: signal set

sigismember() sigismember: return substr(arg(1),arg(2),1)
v Parameters: signal set, signal number
v Returns: 0 (not member) or 1 (is member)

Using immediate commands
Immediate commands are TSO/E REXX commands, provided with the TSO/E
implementation of the language. Immediate commands change characteristics that
control the execution of an exec or program.

In response to an interrupt signal, usually <Ctrl-C>, the REXX interrupt handler
suspends execution of the REXX program and prompts for an immediate command.
The command is specified by number. In the z/OS UNIX REXX environment, the
following commands are supported:

Command Description

1 Continue execution

2 Issue a Halt Interruption

3 Start trace

4 End trace

5 Halt type

6 Resume type

You can use the rexxopt() function to disable this capability or attach this signal
handler to other signals. As with any signal handler, the kernel may defer delivery of
the signal depending on what the program is executing at the time.

Note: REXX programs that are run as setuid or setgid programs cannot be
interrupted to issue an immediate command.

10 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

|
|
|

|
|
|
|

|||

||

||

||

||

||

||
|
|
|
|

|
|

Moving a REXX program from TSO/E to a z/OS shell
If you write a REXX program to run in TSO/E, it is likely that you will have to alter
the REXX program to run it in a z/OS shell environment. Some of the differences
between the two environments that you need to consider are:

v You can use the spawn syscall command to run z/OS shell commands from the
TSO/E environment.

v Using the syscalls('ON') function at the beginning of the REXX program is
required in TSO/E, but not in a z/OS shell environment. If you use syscalls('ON')
in a z/OS shell environment, it clears the _ _argv. and _ _environment. stems.
For this reason, it is not recommended that you use syscalls('ON') in a z/OS
shell environment. Using syscalls('ON') in a z/OS shell environment also sets up
the REXX predefined variables and blocks all signals. On entry to a REXX
program in a z/OS shell environment, the REXX predefined variables are already
set.

v In TSO/E, the syscalls('OFF') function ends the process, but the REXX program
continues to run. In the z/OS shells, the syscalls('OFF') function causes the
REXX program to stop running.

v PARSE SOURCE returns different tokens in TSO/E and in a z/OS shell
environment. A REXX program uses the tokens to determine how it was run.

v In TSO/E, the variables _ _argv.0 and _ _environment.0 are set to zero (0).

Note: The space between the two underscores in _ _argv and _ _ does not
indicate a blank. The underscores are right next to each other. REXX does
not allow embedded blanks in variable names.

See “The TSO command environment” on page 5 for information about running
TSO/E commands from a REXX program.

Using argv and environment variables
Environment variables are text strings in the form VNAME=value, where VNAME is
the name of the variable and value is its value. The stem variables _ _argv and
_ _environment are always set to the original values passed to the first-level REXX
program, and they are visible to external REXX functions. You may want to use
PARSE ARG instead of the _ _argv stem in external REXX programs. As the
following two sample programs show, using the _ _argv stem from an external exec
returns the same data as it did from the initial exec. In order for an external REXX
program to get the arguments a caller is sending it, it must use arg() or PARSE
ARG:

PGM1:
/* rexx */
say ’this is the main pgm’
say ’it was passed’ _ _argv.0 ’arguments:’
do i = 1 to _ _argv.0
say ’ Argument’ i’: "’_ _argv.i’"’

end

call ’pgm2’ ’arguments’, ’to pgm2’

PGM2:
/* rexx */
say ’This is pgm2’
say ’Using _ _argv stem, there are’ _ _argv.0 ’arguments. They are:’
do i = 1 to _ _argv.0
say ’ Argument’ i’: "’_ _argv.i’"’

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 11

|
|

|
|

end

say ’Using arg(), there are’ arg() ’arguments:’
do i = 1 to arg()
say ’ Argument’ i’: "’arg(i)’"’

end

Sample execution
$ pgm1 ’arguments to’ ’pgm1’
this is the main pgm
it was passed 3 arguments:
Argument 1: "pgm1"
Argument 2: "arguments to"
Argument 3: "pgm1"

This is pgm2
Using _ _argv stem, there are 3 arguments. They are:
Argument 1: "pgm1"
Argument 2: "arguments to"
Argument 3: "pgm1"

Using arg(), there are 2 arguments:
Argument 1: "arguments"
Argument 2: "to pgm2"

Customizing the z/OS UNIX REXX environment
When a REXX program is run from the z/OS shells or called from a program using
exec() , the z/OS UNIX REXX environment that is established is created from the
module BPXWRXEV. The source for this module is member BPXWRX01 in
SYS1.SAMPLIB.

This environment is inherited from the default MVS REXX environment. However,
the default handling of error messages from the REXX processor is overridden so
that the messages are written to STDOUT. This is the same place to which output
from the SAY instruction and trace information is sent.

You can further customize the sample member to alter the REXX environment for
REXX programs running under z/OS UNIX without affecting REXX programs
running in the z/OS environment. For detailed information on how to change the
default values for initializing an environment, see z/OS TSO/E REXX Reference.

Performance in the SYSCALL environment
syscalls('ON') ensures that the SYSCALL host command environment is available
in your REXX environment. If the call detects that SYSCALL is not available in your
environment, it dynamically adds it.

Performance characteristics for dynamically added host commands are not as good
as for host commands that are included in the initial environment: Every time a
command is directed to the SYSCALL host command environment, the TSO/E
REXX support loads the module for the SYSCALL host command.

To avoid this, include the SYSCALL host command in the three default TSO/E
environments:

Module name SYS1.SAMPLIB member
name

REXX environment

IRXPARMS IRXREXX1 MVS

IRXTSPRM IRXREXX2 TSO

12 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Module name SYS1.SAMPLIB member
name

REXX environment

IRXISPRM IRXREXX3 ISPF

Customizing IRXISPRM provides dramatic performance improvement for REXX
programs that use syscall commands from TSO/E or MVS batch.

Make the following changes to the SYS1.SAMPLIB members to add the SYSCALL
host command to that default environment:

1. Find the label SUBCOMTB_TOTAL and add 1 to its value. For example:

Change SUBCOMTB_TOTAL DC F’14’ to SUBCOMTB_TOTAL DC F’15’.

2. Find the label SUBCOMTB_USED and add 1 to its value. For example:

Change SUBCOMTB_USED DC F’14’ to SUBCOMTB_USED DC F’15’.

3. Find the end of the subcommand table, just before the label PACKTB or
PACKTB_HEADER, and add the following lines:
SUBCOMTB_NAME_REXXIX DC CL8’SYSCALL ’
SUBCOMTB_ROUTINE_REXXIX DC CL8’BPXWREXX’
SUBCOMTB_TOKEN_REXXIX DC CL16’ ’

4. Assemble and link-edit the module and replace the default TSO/E module.
These are normally installed in SYS1.LPALIB.

See z/OS TSO/E REXX Reference for additional information on customizing the
default environments.

Authorization
Users authorized to perform special functions are defined as having appropriate
privileges, and they are called superusers. Appropriate privileges also belong to
users with:

v A user ID of zero

v RACF-supported user privileges trusted and privileged, regardless of their user
ID

A user can switch to superuser authority (with an effective UID of 0) if the user is
permitted to the BPX.SUPERUSER FACILITY class profile within RACF. Either the
ISPF Shell or the su shell command can be used to switch to superuser authority.

Security
This document assumes that your operating system contains Resource Access
Control Facility (RACF). You could use an equivalent security product updated
to handle z/OS UNIX security.

Chapter 1. Using TSO/E REXX for z/OS UNIX processing 13

14 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 2. z/OS UNIX REXX programming services

An application that supports scripting or macro languages, such as an editor, can
use REXX as the macro language. An application that is written in a programming
language such as C can create a z/OS UNIX REXX environment and run a REXX
program directly. For information on using the TSO/E REXX programming services,
such as IRXJCL and IRXEXEC, see z/OS TSO/E REXX Reference.

Creating a z/OS UNIX REXX environment from an application
To create a z/OS UNIX REXX environment, fetch and call the module BPXWRBLD
from a key 8 problem state program. z/OS linkage for C (that is, standard OS
linkage) is required.

The BPXWRBLD module requires the following parameters:

16K area A 16,000-byte environment area. This must persist
for the life of the REXX environment.

arg count The count of the number of REXX initialization
arguments.

arg pointer array An array of pointers to null-terminated strings, one
for each REXX initialization argument. The array
and the null-terminated strings must persist for the
life of the REXX environment.

env count The count of the number of environment variables
to be exported to the REXX program.

env length pointer array An array of pointers to fullwords, one for each
environment variable. The fullword contains the
length of the string that defines the environment
variable, including the terminating null. The last
element of the array must point to a fullword of 0.

The array and the fullwords must persist for the life
of the REXX environment.

env pointer array An array of pointers to null-terminated strings, one
for each environment variable. Each string defines
one environment variable. The array and the
null-terminated strings must persist for the life of the
REXX environment.

The format of the string is
NAME=value

where NAME is the environment variable name, and
value is the value for the environment variable
followed by a null character.

REXX env addr The address of a fullword where the address of the
newly created REXX environment is returned.

If BPXWRBLD fails to create the environment, it returns the return code it received
from the IRXINIT service. BPXWRBLD does not return any other codes.

© Copyright IBM Corp. 1996, 2002 15

The parameter list is a standard MVS variable-length parameter list. On entry, the
following registers must be set:

Register 1 Address of the parameter list

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Register 1 contains the address of the parameter list:
R1 --> --------+

| --+----> 16K area
--------+
| --+----> arg count
--------+
| --+----> arg pointer array
--------+
| --+----> env count
--------+
| --+----> env length pointer array
--------+
| --+----> env pointer array
--------+
|1 --+----> Rexx env addr
--------+

When constructing arguments to the REXX program that are also passed to
BPXWRBLD, keep in mind that:

v The only use of the argument count and argument array is to populate the
_ _argv. REXX variables. You can set the argument count to 0 if the REXX
programs will always get their arguments using PARSE ARG or the arg(1) REXX
function call. In this case, _ _argv.0 is set to 0 when the REXX program is run.

v After the call to BPXWRBLD, do not alter the data that is pointed to by the
environment pointer arrays or the arg pointer array.

Signals are not supported in this environment.

Running the REXX program
Before calling a TSO/E REXX service to run the program, ensure that file
descriptors 0, 1, and 2 are open. The REXX program will fail if it attempts a PARSE
EXTERNAL, EXECIO, or SAY and that function fails.

After the REXX environment is established, the program can call either the IRXJCL
or the IRXEXEC TSO/E REXX service to run the REXX program.

v If the IRXJCL service is used, the name of the REXX program is the first word of
the IRXJCL parameter string. It is limited to 8 characters.

v If you request the IRXEXEC service to load the program, you must provide the
name of the REXX program in the member field of the EXECBLK. Set the
DDNAME field to spaces. This also limits the name of the REXX program to 8
characters. Names longer than 8 characters can be supported with additional
programming effort. You would need to preload the program and build an
INSTBLK instead of an EXECBLK for the IRXEXEC call. If the REXX program is
compiled in CEXEC format, load it as a single-record program.

If the name of the REXX program does not contain a slash (/), the PATH
environment variable is used to locate the program.

16 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

The current REXX environment must be the z/OS UNIX REXX environment. You
cannot pass the environment to be used in Register 0.

When the REXX program is being loaded, the IRXEXEC or the IRXJCL service
uses one file descriptor to open the file, read it, and close it. If no file descriptor is
available because the maximum number of file descriptors are already open, the
program cannot be loaded.

Example: C/370 ™ program
This program creates a REXX environment and runs a REXX program:
#pragma strings(readonly)
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

typedef int EXTF();
#pragma linkage(EXTF,OS)

int main(int argc, char **argv) {
extern char **environ; /* access environ variables */
EXTF *irxjcl; /* pointer to IRXJCL routine */
EXTF *bpxwrbld; /* pointer to BPXWRBLD routine */
char *penvb; /* addr of REXX environment */
int i,j; /* temps */
long rcinit; /* return code */
int **environlp; /* ptr to env length pointers */
int *environl; /* ptr to env lengths */
char rxwork[16000]; /* OE MVS env work area */
char *execname="execname"; /* name of exec up to 8 chars */
char *execparm="exec parameter string"; /* parm to exec */
struct s_rxparm { /* parm to IRXJCL */

short len; /* halfword length of parm */
char name[8]; /* area to hold exec name */
char space; /* one space */
char text[253]; /* big area for exec parm */
} *rxparm;

/* if stdin or stdout are not open you might want to open file */
/* descriptors 0 and 1 here */

/* if no environ, probably tso or batch - make one */
if (environ==NULL) {

environ=(char **)malloc(8); /* create one */
environ[0]="PATH=."; /* set PATH to cwd */
environ[1]=NULL; /* env terminator */
};

/* need to build the environment in the same format as expected by */
/* the exec() callable service. See */
/* Assembler Callable Services for UNIX System Services. */

/* the environ array must always end with a NULL element */
for (i=0;environ[i]!=NULL;i++); /* count vars */
environlp=(int **)malloc(i*4+4); /* get array for len ptrs */
environl=(int *)malloc(i*4+4); /* get words for len vals */
for (j=0;j<i;j++) {

environlp[j]=&environl[j]; /* point to len */
environl[j]=strlen(environ[j])+1; /* set len word */
};

environlp[j]=NULL; /* null entry at end */
environl[j]=0;

/* load routines */
irxjcl=(EXTF *)fetch("IRXJCL ");

Chapter 2. z/OS UNIX REXX programming services 17

bpxwrbld=(EXTF *)fetch("BPXWRBLD ");

/* build the REXX environment */
rcinit=bpxwrbld(rxwork,

argc,argv,
i,environlp,environ,

&penvb);
if (rcinit!=0) {

printf("environment create failed rc=%d\n",rcinit);
return 255;
};

/* if you need to add subcommands or functions to the environment, */
/* or create a new environment inheriting the current one, this is */
/* the place to do it. The user field in the environment is used */
/* by the z/OS UNIX REXX support and must be preserved. */

/* run exec */
rxparm=(struct s_rxparm *)malloc(strlen(execname)+

strlen(execparm)+
sizeof(struct s_rxparm));

memset(rxparm->name,’ ’,sizeof(rxparm->name));
memcpy(rxparm->name,execname,strlen(execname));
rxparm->space=’ ’;
memcpy(rxparm->text,execparm,i=strlen(execparm));
rxparm->len=sizeof(rxparm->name)+sizeof(rxparm->space)+i;
return irxjcl(rxparm);

}

18 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 3. The syscall commands

Syscall commands invoke the z/OS UNIX callable service that corresponds to the
command verb (the first word of the command). The parameters that follow the
command verb are specified in the same order as in POSIX.1 and the z/OS UNIX
callable services, where applicable.

For complete information about the processing of a particular syscall command,
read about the callable service that it invokes, as described in z/OS UNIX System
Services Programming: Assembler Callable Services Reference.

Specifying a syscall command
You must specify the syscall command parameters in the order indicated in the
syscall command description.

syscall command name
The syscall command name is case-insensitive: you can specify it as
uppercase, lowercase, or mixed case.

Parameters
You can specify several types of parameters, but most fall into the following
categories:

pathname
The pathname is case-sensitive, and it is specified as a string. The
syscall commands can take a relative or absolute pathname as a
parameter. The search for a relative pathname begins in your working
directory:

v If you are running a REXX program from a z/OS shell, your working
directory is inherited from your z/OS shell session.

v If you are running a REXX program in TSO/E, your working directory
is typically your home directory.

Portable pathnames can use only the characters in the POSIX portable
filename character set:
v Uppercase or lowercase A to Z
v Numbers 0 to 9
v Period (.)
v Underscore (_)
v Hyphen (-)

Do not include any nulls in a pathname.

mode The mode is a three- or four-digit number that corresponds to the
access permission bits. Each digit must be in the range 0–7, and at
least three digits must be specified. See Appendix B for more
information on permissions.

stem The name of a stem variable. A stem can be used for input, output, or
both. A stem is indicated by a . (period) at the end of the variable
name.

v The variable name for the first value consists of the name of the
stem variable with a 1 appended to it. The number is incremented for
each value—for example, vara.1, vara.2, and vara.3.

© Copyright IBM Corp. 1996, 2002 19

v The variable name that contains the number of variables returned
(excluding 0) consists of the name of the stem variable with a 0
appended to it—for example, vara.0

If you omit the period from the end of the variable name, a numeric
suffix is appended to the name (for example, foo would become foo0,
foo1, and so on).

The name of a stem variable is case-insensitive.

variable
The name of a REXX variable. The name is case-insensitive.

Specifying numerics
All numbers are numeric REXX strings. Negative numbers can be preceded by a
minus sign (−); others must be unsigned.

The SYSCALL environment supports a 10-digit field. If you are performing
arithmetic on a field longer than 9 digits, you must set precision to 10. A range of up
to 231−1 is supported.

Specifying strings
You can specify a string in any of these ways:

String Example

Any series of characters not containing a
space. This example shows a pathname with
no space in it.

"creat /u/wjs/file 700"

Any series of characters delimited by ' and
not containing '. This example shows a
pathname with a space in it.

"creat ’u/wjs/my file’ 700"

Any series of characters delimited by " and
not containing ". This example shows a
pathname with a space in it.

’creat "u/wjs/my file" 700’

A variable name enclosed in parentheses.
Strings that contain both the single and
double quote characters must be stored in a
variable, and you must use the variable
name.

file=’/u/wjs/my file’
"creat (file) 700"

The following example uses a variable enclosed in parentheses to avoid problems
with a blank in the filename:
file=’/u/wjs/my file’
"creat (file) 700"

If you incorrectly coded the second line as:
"creat /u/wjs/my file 700"

it would contain four tokens instead of three.

20 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Using predefined variables
The predefined variables that are available to a REXX program in a z/OS shell
environment make symbolic references easier and more consistent—for example,
when you are specifying a flag or using a stem variable. Instead of coding a
numeric value, you can specify the predefined variable that is used to derive that
numeric value.

Appendix A lists all the predefined variables alphabetically and shows their numeric
value and data type. If a variable is a stem variable, this shows the data type for
the stem variable.

You can also use the index of this document as a reference: under the name of
each syscall command are grouped the names of the predefined variables
associated with it.

Return values
A command can be issued to the SYSCALL environment or the SH environment,
and the return values are different in the two environments.

Returned from the SYSCALL environment
When a syscall command completes, the environment can set four reserved
variables:

RC A numeric return code from the command execution.

Value Range Meaning

0 The command finished successfully. If there is an
error code for the requested function, it is returned
in RETVAL and ERRNO.

>0 The command finished successfully, but a
function-specific warning is indicated.

−3 The command environment has not been called.
Probably the syscalls('ON') function did not end
successfully, or the current address environment is
not SYSCALL.

−20 The command was not recognized, or there was an
improper number of parameters specified on the
command.

−21,−22, ... The first, second, ... parameter is in error. (The
parameter is indicated by the second digit.)

<0 Other negative values may be returned by the
REXX language processor. A negative value means
that the command did not finish successfully.

RETVAL A numeric return value from the callable service. This variable is
valid only if the return code (RC) is not negative.

Value Range Meaning

−1 −1 is returned in RETVAL on failure.

Chapter 3. The syscall commands 21

ERRNO A hexadecimal error number from the callable service. This variable
is valid only if the return code (RC) is not negative and RETVAL is
−1.

ERRNOJR A hexadecimal reason code from the callable service. This variable
is valid only if the return code (RC) is not negative and RETVAL is
−1.

Returned from the SH environment
When a command completes in the SH environment, the return code is set in the
variable RC. Unusual situations cause the return code to be set to a negative value:
−1xxx Terminated by signal xxx
−2xxx Stopped by signal xxx
−3xxx Fork failed with error number xxx
−4xxx Exec failed with error number xxx
−5xxx Wait failed with error number xxx

Syscall command descriptions

22 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

access

ÊÊ access pathname flags ÊÍ

Function
access invokes the access callable service to determine if the caller can access a
file.

Parameters
pathname

The pathname of the file to be checked for accessibility.

flags
One or more numeric values that indicate the accessibility to be tested. You can
specify a numeric value (see Appendix A) or the predefined variable used to
derive the appropriate numeric value. The predefined variables you can specify
are:

Variable Description
F_OK Test for file existence
R_OK Test for permission to read
W_OK Test for permission to write
X_OK Test for permission to execute

For example, R_OK+W_OK tests for read and write permission.

Usage notes
1. Testing for file permissions is based on the real user ID (UID) and real group ID

(GID), not the effective UID or effective GID of the calling process.

2. The caller can test for the existence of a file or for access to the file, but not
both.

3. In testing for permission, the caller can test for any combination of read, write,
and execute permission. If the caller is testing a combination of permissions, a
−1 is returned if any one of the accesses is not permitted.

4. If the caller has appropriate privileges, the access test is successful even if the
permission bits are off, except when testing for execute permission. When the
caller tests for execute permission, at least one of the execute permission bits
must be on for the test to be successful.

Example
To test for permission to execute grep :
"access ’/bin/grep’" x_ok

access

Chapter 3. The syscall commands 23

acldelete

ÊÊ acldelete pathname acltype ÊÍ

Function
acldelete deletes an access control list (ACL) associated with pathname.

Parameters
pathname

The pathname of the file or directory the ACL is associated with.

acltype
Indicates the type of ACL. This parameter can have the following values:

Variable Description
ACL_TYPE_ACCESS (1) An access ACL
ACL_TYPE_FILEDEFAULT (2) A file default ACL
ACL_TYPE_DIRDEFAULT (3) A directory default ACL

Usage notes
1. For regular files, the acltype must indicate it is an access ACL that is to be

deleted.

2. For a directory, the acltype must indicate one of the three types of ACLs
(access, file default, or directory default).

Example
To delete the access ACL from the /tmp directory, this example assumes the user
has set the appropriate stem variable before the call:
"acldelete /tmp/ acl." acl_type_access

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

acldelete

24 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

acldeleteentry

ÊÊ acldeleteentry variable stem ÊÍ

Function
acldeleteentry deletes a specific entry in the access control list (ACL) represented
by variable.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

stem
The name of a stem variable that contains an ACL entry. STEM.0 contains a
count of the number of variables set in the stem. The following variables may
be used to access the stem variables. The number in parentheses is the actual
value of the variable:

Variable Description
ACL_ENTRY_TYPE (1) Indicates the type of ACL entry:

ACL_ENTRY_USER (1) (User ACL)
ACL_ENTRY_GROUP (2) (Group ACL)

ACL_ID (2) The numeric id, uid or gid of the entry
ACL_READ (3) Indicates read access (1 = yes, 0 = no)
ACL_WRITE (4) Indicates write access (1 = yes, 0 = no)
ACL_EXECUTE (5) Indicates execute or search access (1 = yes, 0 = no)
ACL_DELETE (6) Indicates that the ACL entry is deleted (1 = yes, 0 = no)

Usage notes
1. The entry to delete is identified by the entry type and ID, and is contained in

stem.

2. If the entry does not exist, the service will return retval= −1 and errno=enoent

Example
To delete the ID in an ACL, this example assumes the user has set the appropriate
stem variable before the call:
"acldeleteentry tokenvar acl." acli_id

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

acldeleteentry

Chapter 3. The syscall commands 25

aclfree

ÊÊ aclfree variable ÊÍ

Function
aclfree releases resources associated with the access control list (ACL)
represented by variable and obtained using the aclinit syscall command.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

Example
"aclfree tokenvar"

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclfree

26 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

aclget

ÊÊ aclget variable pathname acltype ÊÍ

Function
aclget reads an access control list (ACL) of the specified type associated with the
file identified by pathname. The ACL is associated with the specified variable, and is
accessed and altered using the acldeleteentry, aclgetentry , and aclupdateentry
services.

Before using aclget , the variable must be initialized by using aclinit .

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

pathname
The pathname of the file or directory the ACL is associated with.

acltype
Indicates the type of ACL. This parameter can have the following values:

Variable Description
ACL_TYPE_ACCESS (1) An access ACL
ACL_TYPE_FILEDEFAULT (2) A file default ACL
ACL_TYPE_DIRDEFAULT (3) A directory default ACL

Example
"aclget tokenvar /lpp/payroll" acl_type_access

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclget

Chapter 3. The syscall commands 27

aclgetentry

ÊÊ aclgetentry variable stem
index

ÊÍ

Function
aclgetentry reads an access control list (ACL) entry from the ACL represented by
variable.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

stem
The name of a stem variable that contains an ACL entry. STEM.0 contains a
count of the number of variables set in the stem. The following variables may
be used to access the stem variables. The number in parentheses is the actual
value of the variable:

Variable Description
ACL_ENTRY_TYPE (1) Indicates the type of ACL entry:

ACL_ENTRY_USER (1) (User ACL)
ACL_ENTRY_GROUP (2) (Group ACL)

ACL_ID (2) The numeric id, uid or gid of the entry
ACL_READ (3) Indicates read access (1 = yes, 0 = no)
ACL_WRITE (4) Indicates write access (1 = yes, 0 = no)
ACL_EXECUTE (5) Indicates execute or search access (1 = yes, 0 = no)
ACL_DELETE (6) Indicates that the ACL entry is deleted (1 = yes, 0 = no)

index
Specifies the relative ACL entry to access. The first entry is 1.

Usage notes
1. An entry is identified by index, if index is specified. Otherwise, the entry is

identified by the type and ID specified in stem.

2. If the entry does not exist, the service will return retval= −1 and errno=enoent .

Example
To read an ACL entry, this example assumes the user has set the appropriate stem
variable before the call:
"aclgetentry tokenvar acl."

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclgetentry

28 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

aclinit

ÊÊ aclinit variable ÊÍ

Function
aclinit obtains resources necessary to process access control lists (ACLs) and
associates those resources with variable.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

Usage notes
1. The variable associated with the obtained resources must be passed to other

services that operate on an ACL.

2. Any one variable can only represent one ACL at a time.

3. aclfree must be used to release the resources obtained by aclinit .

Example
"aclinit tokenvar"

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclinit

Chapter 3. The syscall commands 29

aclset

ÊÊ aclset variable pathname acltype ÊÍ

Function
aclset replaces the access control list (ACL) associated with pathname with the
ACL represented by variable.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

pathname
The pathname of the file or directory the ACL is associated with.

acltype
Indicates the type of ACL. This parameter can have the following values:

Variable Description
ACL_TYPE_ACCESS (1) An access ACL
ACL_TYPE_FILEDEFAULT (2) A file default ACL
ACL_TYPE_DIRDEFAULT (3) A directory default ACL

Example
This example replaces the directory default ACL:
"aclset tokenvar /u/dept58" acl_type_dirdefault

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclset

30 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

aclupdateentry

ÊÊ aclupdateentry variable stem
index

ÊÍ

Function
aclupdateentry updates an existing access control list (ACL) entry or creates a
new entry if the entry does not already exist in the ACL contained in variable.

Parameters
variable

The name of a REXX variable that contains a token to access an ACL.

stem
The name of a stem variable that contains an ACL entry. STEM.0 contains a
count of the number of variables set in the stem. The following variables may
be used to access the stem variables. The number in parentheses is the actual
value of the variable:

Variable Description
ACL_ENTRY_TYPE (1) Indicates the type of ACL entry:

ACL_ENTRY_USER (1) (User ACL)
ACL_ENTRY_GROUP (2) (Group ACL)

ACL_ID (2) The numeric id, uid or gid of the entry
ACL_READ (3) Indicates read access (1 = yes, 0 = no)
ACL_WRITE (4) Indicates write access (1 = yes, 0 = no)
ACL_EXECUTE (5) Indicates execute or search access (1 = yes, 0 = no)
ACL_DELETE (6) Indicates that the ACL entry is deleted (1 = yes, 0 = no)

index
Specifies the relative ACL entry to access. The first entry is 1.

Usage notes
1. An entry is identified by either the entry type and ID contained in stem or by the

relative entry number if index is specified. If index is 0 or greater than the
current number of ACL entries, a new entry is created.

2. aclupdateentry can update a deleted ACL entry, mark an entry as deleted,
mark the entry as not deleted, or add a new entry that is also marked as
deleted by appropriate setting of stem.acl_delete. Also, duplicate entries can be
added when using index. This may result in an unexpected ACL and should be
avoided.

3. The read, write, execute, and deleted attributes are set based on the
corresponding stem variables. A value of 1 indicates the attribute is to be set to
1. Any other value, including not setting the variable, results in the attribute
being set to 0.

4. If the requested entry cannot be located, a new entry is created and the relative
index for that entry is returned in retval . If an existing entry is updated, retval
will contain 0. If retval= −1 and errno=enoent , then a new entry could not be
created because it would exceed the maximum number of entries (1024).

aclupdateentry

Chapter 3. The syscall commands 31

Example
To update an ACL entry, this example assumes the user has set the appropriate
stem variable before the call.
"aclupdateentry tokenvar acl."

For a complete example that uses several of the ACL services to list ACLs, see
“List the ACL entries for a file” on page 206.

For more information about access control lists, see z/OS UNIX System Services
Planning.

aclupdateentry

32 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

alarm

ÊÊ alarm seconds ÊÍ

Function
alarm invokes the alarm callable service to generate a SIGALRM signal after the
number of seconds specified have elapsed.

Parameters
seconds

The number of seconds to pass between receipt of this request and generation
of the SIGALRM signal.

Usage notes
1. The default action for an alarm signal is to end a process.

2. The alarm callable service is always successful, and no return value is reserved
to indicate an error.

3. An abend is generated when failures are encountered that prevent the alarm
callable service from completing successfully.

4. Alarm requests are not stacked; only one SIGALRM can be scheduled to be
generated at a time. If the previous alarm time did not expire and a new alarm
is scheduled, the most recent alarm reschedules the time that SIGALRM is
generated.

5. See “Using the REXX signal services” on page 9 for additional information on
using signals.

Example
To generate a SIGALRM after 10 seconds:
"alarm 10"

alarm

Chapter 3. The syscall commands 33

catclose

ÊÊ catclose catalog_descriptor ÊÍ

Function
catclose closes a message catalog that was opened by catopen .

Parameters
catalog_descriptor

The catalog descriptor (a number) returned by catopen when the message
catalog was opened.

Usage notes
If it is unsuccessful, catclose returns −1 and sets ERRNO to indicate the error.

Example
See the example for “catgets” on page 35.

catclose

34 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

catgets

ÊÊ catgets catalog_descriptor set_number message_number variable ÊÍ

Function
catgets locates and returns a message in a message catalog.

Parameters
catalog_descriptor

The catalog descriptor (a number) returned by catopen when a message
catalog was opened earlier.

set_number
A number that identifies a message set in the message catalog.

message_number
A number that identifies a message in a message set in the message catalog.

variable
The name of the buffer in which the message string is returned.

Usage notes
1. Set variable to a default message text prior to invoking the catgets command. If

the message identified by message_number is not found, variable is not altered
and can be used after the command has been invoked.

2. If the command is unsuccessful, variable is returned and ERRNO may be set to
indicate the error.

Example
"catopen mymsgs.cat"
cd=retval...
msg='error processing request'
"catgets (cd) 1 3 msg"
say msg...
"catclose" cd

catgets

Chapter 3. The syscall commands 35

catopen

ÊÊ catopen catalog_name ÊÍ

Function
catopen opens a message catalog that has been built by the gencat utility. (For
more information about gencat , see z/OS UNIX System Services Command
Reference.) The catalog descriptor is returned in RETVAL.

Parameters
catalog name

The pathname for the message catalog. If the pathname contains a slash (/),
the environment variables NLSPATH and LANG do not affect the resolution of
the pathname.

Usage notes
1. The catalog descriptor returned in RETVAL can be used with the catgets and

catclose commands. Do not use the catalog descriptor with any other
commands.

2. If it is unsuccessful, catopen returns a −1 and sets ERRNO to indicate the
error.

Example
See the example for “catgets” on page 35.

catopen

36 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

cert

ÊÊ cert cert_variable cert_length flag ÊÍ

Function
cert calls BPX1SEC to register or deregister a certificate with the calling user.

Parameters
cert_variable

The name of the variable that contains the certificate.

cert_length
The length of the certificate

flag
Valid values for the flag are:

v 0 — register

v 1 — deregister

Usage notes
1. The intent of the cert service is to provide a way for the caller to

associate/disassociate a certificate with the calling user. No new security
environment is created and no authentication of the user is conducted.

2. The caller needs access to the RACDCERT facility class (as defined in the
initACEE documentation) to register/deregister a certificate. No other authority
above that is required to use cert .

3. The certificate is a data area that includes a 4-byte length field, header
information for some certificate types, the actual certificate, and trailer
information for some certificate types. The length passed in on the cert syscall
is the whole length of that data area. It is up to the caller to build the
appropriate structure.

Example
’cert newcert’ length(newcert) 1

cert

Chapter 3. The syscall commands 37

chattr

ÊÊ chattr pathname attribute_list ÊÍ

Function
chattr invokes the chattr callable service to set the attributes associated with a file.
You can change the file mode, owner, access time, modification time, change time,
reference time, audit flags, general attribute flags, and file size.

Parameters
pathname

The pathname of the file.

attribute_list
A list of attributes to be set and their values. The attributes are expressed either
as numeric values (see Appendix A), or as the predefined variables beginning
with ST_, followed by arguments for that attribute. The attributes that may be
changed and their parameters are:

Variable Description
ST_CCSID Coded character set ID; first 4 characters are the file tag.
ST_MODE 1 argument: permission bits as 3 octal digits.
ST_UID 2 arguments: UID and GID numbers.
ST_SIZE 1 argument: new file size.
ST_ATIME 1 argument for access time: new time or −1 for TOD.
ST_MTIME 1 argument for modification time: new time or −1 for TOD.
ST_CTIME 1 argument for change time: new time or −1 for TOD.
ST_SETUID No arguments.
ST_SETGID No arguments.
ST_AAUDIT 1 argument: new auditor audit value.
ST_UAUDIT 1 argument: new user audit value.
ST_STICKY No arguments.
ST_GENVALUE 2 arguments: names of two variables. The first variable

contains the general attribute mask and the second
contains the general attribute value.

ST_RTIME 1 argument for reference time: new time or −1 for TOD.
ST_FILEFMT Format of the file. To specify the format, you can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate
numeric value:
S_FFBINARY Binary data
S_FFCR Text data delimited by a carriage return

character
S_FFCRLF Text data delimited by carriage return

and line feed characters
S_FFLF Text data delimited by a line feed

character
S_FFLFCR Text data delimited by a line feed and

carriage return characters
S_FFNA Text data with the file format not

specified
S_FFNL Text data delimited by a newline

character

chattr

38 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Usage notes
1. Some of the attributes changed by the chattr service can also be changed by

other services.

2. When changing the mode:

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

v Setting the set-group-ID-on-execution permission (in mode) means that when
this file is run (through the exec service), the effective GID of the caller is set
to the file’s owner GID, so that the caller seems to be running under the GID
of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the
following are true:

– The caller does not have appropriate privileges.

– The GID of the file’s owner does not match the effective GID, or one of
the supplementary GIDs, of the caller.

v Setting the set-user-ID-on-execution permission (in mode) means that when
this file is run, the process’s effective UID is set to the file’s owner UID, so
that the process seems to be running under the UID of the file’s owner, rather
than that of the actual invoker.

3. When changing the owner:

v For changing the owner UID of a file, the caller must have appropriate
privileges.

v For changing the owner GID of a file, the caller must have appropriate
privileges, or meet all of these conditions:

– The effective UID of the caller matches the file’s owner UID.

– The owner UID value specified in the change request matches the file’s
owner UID.

– The GID value specified in the change request is the effective GID, or one
of the supplementary GIDs, of the caller.

v When changing the owner, the set-user-ID-on-execution and
set-group-ID-on-execution permissions of the file mode are automatically
turned off.

v When the owner is changed, both UID and GID must be specified as they are
to be set. If you want to change only one of these values, you need to set the
other to its present value for it to remain unchanged.

4. For general attribute bits to be changed, the calling process must have write
permission for the file.

5. When changing the file size:

v The change is made beginning from the first byte of the file. If the file was
previously larger than the new size, the data from file_size to the original end
of the file is removed. If the file was previously shorter than file_size, bytes
between the old and new lengths are read as zeros. The file offset is not
changed.

v If file_size is greater than the current file size limit for the process, the
request fails with EFBIG, and the SIGXFSZ signal is generated for the
process.

v Successful change clears the set-user-ID, the set-group-ID, and the save-text
(sticky bit) attributes of the file, unless the caller is a superuser.

6. When changing times:

chattr

Chapter 3. The syscall commands 39

v For the access time or the modification time to be set explicitly (using either
st_atime or st_mtime with the new time), the effective ID must match that of
the file’s owner, or the process must have appropriate privileges.

v For the access time or modification time to be set to the current time (using
either st_atime or st_mtime with −1), the effective ID must match that of the
file’s owner, the calling process must have write permission for the file, or the
process must have appropriate privileges.

v For the change time or the reference time to be set explicitly (using either
st_ctime or st_rtime with the new time), the effective ID must match that of
the file’s owner, or the process must have appropriate privileges.

v For the change time or reference time to be set to the current time (using
either st_ctime or st_rtime with −1), the calling process must have write
permission for the file.

v When any attribute field is changed successfully, the file’s change time is also
updated.

7. For auditor audit flags to be changed, the user must have auditor authority. The
user with auditor authority can set the auditor options for any file, even those to
which they do not have path access or authority to use for other purposes.

Auditor authority is established by issuing the TSO/E command ALTUSER
AUDITOR.

8. For the user audit flags to be changed, the user must have appropriate
privileges or be the owner of the file.

Example
To set permissions for /u/project to 775:
"chattr /u/project" st_mode 775

chattr

40 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

chaudit

ÊÊ chaudit pathname audit_flags option ÊÍ

Function
chaudit invokes the chaudit callable service to change audit flags for a file.

Parameters
pathname

The pathname of the file.

audit_flags
One or more numeric values that indicate the type of access to be tested. You
can specify a numeric value (see Appendix A) or the predefined variable used
to derive the appropriate numeric value. The predefined variables you can
specify are:

Variable Description
AUD_FREAD Audit failed read requests
AUD_SREAD Audit successful read requests
AUD_FWRITE Audit failed write requests
AUD_SWRITE Audit successful write requests
AUD_FEXEC Audit failed execute or search requests
AUD_SEXEC Audit successful execute or search requests

option
A number indicating whether user-requested or auditor-requested auditing is
being changed:

v 0 if user-requested auditing is being changed.

v 1 if auditor-requested auditing is being changed.

Usage notes
1. If option indicates that the auditor audit flags are to be changed, you must have

auditor authority for the request to be successful. If you have auditor authority,
you can set the auditor options for any file, even those to which you do not
have path access or authority to use for other purposes.

You can get auditor authority by entering the TSO/E command ALTUSER
AUDITOR.

2. If option indicates that the user audit flags are to be changed, you must have
appropriate privileges or be the owner of the file.

Example
In the following example, assume that pathname was assigned a value earlier in the
exec. To change user-requested auditing so that failed read, write, and execute
attempts for pathname are audited:
"chaudit (pathname)" aud_fread+aud_fwrite+aud_fexec 0

chaudit

Chapter 3. The syscall commands 41

chdir

ÊÊ chdir pathname ÊÍ

Function
chdir invokes the chdir callable service to change the working directory.

Parameters
pathname

The pathname of the directory.

Usage notes
If you use chdir to change a directory in a REXX program that is running in a
TSO/E session, the directory is typically reset to your home directory when the
REXX program ends. When a REXX program changes directories and then exits,
the thread is undubbed. If this was the only thread dubbed in your TSO/E session,
the working directory is reset to the home directory the next time a syscall
command is issued. However, if there is more than one dubbed thread in the
address space, the remaining threads keep the working directory even when the
REXX program exits.

Example
To change the working directory to /u/lou/dirb :
"chdir /u/lou/dirb"

chdir

42 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

chmod

ÊÊ chmod pathname mode
setuid setgid

sticky

ÊÍ

Function
chmod invokes the chmod callable service to change the mode of a file or
directory.

Parameters
pathname

The pathname of the file or directory.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

setuid
Sets the set-user-ID-on-execution permission. Specify 1 to set this permission
on, or 0 to set it off. The default is 0.

setgid
Sets the set-group-ID-on-execution permission. Specify 1 to set this permission
on, or 0 to set it off. The default is 0.

sticky
The sticky bit for a file indicates where the file should be fetched from. If the file
resides in the link pack area (LPA), link list, or STEPLIB, specify 1. The default
is 0.

Setting the sticky bit for a directory to 1 indicates that to delete or rename a file,
the effective user ID of the process must be the same as that of the directory
owner or file owner, or that of a superuser. Setting the sticky bit for a directory
to 0 indicates that anyone who has write permission to the directory can delete
or rename a file.

Usage notes
1. One bit sets permission for set-user-ID on access, set-group-ID on access, or

the sticky bit. You can set this bit in either of two ways:
v Specifying four digits on the mode parameter; the first digit sets the bit.
v Specifying the setuid, setgid, or sticky parameters.

2. When a chmod or fchmod has occurred for an open file, fstat reflects the
change in mode. However, no change in access authorization is apparent when
the file is accessed through a previously opened file descriptor.

3. For mode bits to be changed, the effective UID of the caller must match the
file’s owner UID, or the caller must be a superuser.

4. When the mode is changed successfully, the file’s change time is also updated.

5. Setting the set-group-ID-on-execution permission means that when this file is
run (through the exec service), the effective GID of the caller is set to the file’s
owner GID, so that the caller seems to be running under the GID of the file,
rather than that of the actual invoker.

chmod

Chapter 3. The syscall commands 43

The set-group-ID-on-execution permission is set to zero if both of the following
are true:

v The caller does not have appropriate privileges.

v The GID of the file’s owner does not match the effective GID or one of the
supplementary GIDs of the caller.

6. Setting the set-user-ID-on-execution permission means that when this file is run,
the process’s effective UID is set to the file’s owner UID, so that the process
seems to be running under the UID of the file’s owner, rather than that of the
actual invoker.

Example
In the following example, assume that pathname was assigned a value earlier in the
exec. This example changes the mode of the file to read-write-execute for the
owner, and read-execute for all others:
"chmod (pathname) 755"

chmod

44 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

chown

ÊÊ chown pathname uid gid ÊÍ

Function
chown invokes the chown callable service to change the owner or group for a file
or directory.

Parameters
pathname

The pathname of a file or directory.

uid
The numeric UID for the new owner of the file or the present UID, or −1 if there
is no change.

gid
The numeric GID for the group for the file or the present GID, or −1 if there is
no change.

Usage notes
1. The chown service changes the owner UID and owner GID of a file. Only a

superuser can change the owner UID of a file.

2. The owner GID of a file can be changed by a superuser, or if a caller meets all
of these conditions:

v The effective UID of the caller matches the file’s owner UID.

v The uid value specified in the change request matches the file’s owner UID.

v The gid value specified in the change request is the effective GID, or one of
the supplementary GIDs, of the caller.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

4. If the change request is successful, the change time for the file is updated.

5. Values for both uid and gid must be specified as they are to be set. If you want
to change only one of these values, the other must be set to its present value to
remain unchanged.

Example
In the following example, assume that pathname, uid, and gid were assigned a
value earlier in the exec:
"chown (pathname) (uid) (gid)"

chown

Chapter 3. The syscall commands 45

close

ÊÊ close fd ÊÍ

Function
close invokes the close callable service to close a file.

Parameters
fd The file descriptor (a number) for the file to be closed.

Usage notes
1. Closing a file closes, or frees, the file descriptor by which the file was known to

the process. The system can then reassign the file descriptor to the same file or
to another file when it is opened.

2. Closing a file descriptor also unlocks all outstanding byte range locks that a
process has on the associated file.

3. If a file has been opened by more than one process, each process has a file
descriptor. When the last open file descriptor is closed, the file itself is closed. If
the file’s link count is zero at that time, the file’s space is freed and the file
becomes inaccessible. When the last open file descriptor for a pipe or FIFO
special file is closed, any data remaining in the file is discarded.

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"close" fd

close

46 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

closedir

ÊÊ closedir fd ÊÍ

Function
closedir invokes the closedir callable service to close a directory.

Parameters
fd The file descriptor (a number) for the directory to be closed.

Usage notes
closedir closes a directory file descriptor opened by the opendir syscall command.
The rddir command reads a directory in the readdir callable service format. You
can use opendir , rewinddir , and closedir together with the rddir syscall
command, but not with the readdir syscall command. Alternatively, you can simply
use the readdir syscall command to read an entire directory and format it in a
stem.

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"closedir" fd

closedir

Chapter 3. The syscall commands 47

creat

ÊÊ creat pathname mode ÊÍ

Function
creat invokes the open callable service to open a new file. The file descriptor is
returned in RETVAL.

Parameters
pathname

The pathname of a file.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

Usage notes
Using creat is the equivalent of using the open callable service with the create,
truncate, and write-only options:

v When a file is created with the create option, the file permission bits as specified
in mode are modified by the process’s file creation mask (see “umask” on
page 181) and then used to set the file permission bits of the file being created.

v The truncate option opens the file as though it had been created earlier, but
never written into. The mode and owner of the file do not change (although the
change time and modification time do), but the file’s contents are discarded. The
file offset, which indicates where the next write is to occur, points to the first byte
of the file.

Example
To open a new file, /u/lou/test.exec , with read-write-execute permission for the
owner only:
"creat /u/lou/test.exec 700"

creat

48 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

dup

ÊÊ dup fd ÊÍ

Function
dup invokes the fcntl callable service to duplicate an open file descriptor. The file
descriptor is returned in RETVAL.

Parameters
fd An opened file descriptor (a number) to be duplicated.

Usage notes
dup fd is equivalent to F_DUPFD fd 0.

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"dup (fd)"

dup

Chapter 3. The syscall commands 49

dup2

ÊÊ dup2 fd fd2 ÊÍ

Function
dup2 invokes the fcntl callable service to duplicate an open file descriptor to the file
descriptor of choice. The file descriptor returned is equal to fd2. If fd2 is already in
use, it is closed and fd is duplicated. If fd is equal to fd2, fd2 is returned without
closing it. The file descriptor is returned in RETVAL.

Parameters
fd An opened file descriptor (a number) to be duplicated.

fd2 The file descriptor (a number) to be changed.

Usage notes
dup fd fd2 is equivalent to F_DUPFD fd fd2.

Example
In the following example, assume that fd1 and fd2 were assigned values earlier in
the exec:
"dup2" fd1 fd2

dup2

50 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

exec
There is no exec syscall command. Instead of using exec , see “spawn” on
page 166.

exec

Chapter 3. The syscall commands 51

extlink

ÊÊ extlink extname linkname ÊÍ

Function
extlink invokes the extlink callable service to create a symbolic link to an external
name. This creates a symbolic link file.

Parameters
extname

The external name of the file for which you are creating a symbolic link.

linkname
The pathname for the symbolic link.

Usage notes
1. The object identified by extname need not exist when the symbolic link is

created, and refers to an object outside a hierarchical file system.

2. The external name contained in an external symbolic link is not resolved. The
linkname cannot be used as a directory component of a pathname.

Example
To create a symbolic link named mydsn for the file WJS.MY.DSN:
"extlink WJS.MY.DSN /u/wjs/mydsn"

extlink

52 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fchattr

ÊÊ fchattr fd attribute_list ÊÍ

Function
fchattr invokes the fchattr callable service to modify the attributes that are
associated with a file represented by a file descriptor. You can change the mode,
owner, access time, modification time, change time, reference time, audit flags,
general attribute flags, and file size.

Parameters
fd The file descriptor for the file.

attribute_list
A list of attributes to be set and their values. The attributes are expressed either
as numeric values (see Appendix A), or as the predefined variables beginning
with ST_ followed by arguments for that attribute. The attributes that may be
changed and their parameters are:

Variable Description
ST_CCSID Coded character set ID; first 4 characters are the file tag.
ST_MODE 1 argument: permission bits as 3 octal digits.
ST_UID 2 arguments: UID and GID numbers.
ST_SIZE 1 argument: new file size.
ST_ATIME 1 argument for access time: new time or −1 for TOD.
ST_MTIME 1 argument for modification time: new time or −1 for TOD.
ST_CTIME 1 argument for change time: new time or −1 for TOD.
ST_SETUID No arguments.
ST_SETGID No arguments.
ST_AAUDIT 1 argument: new auditor audit value.
ST_UAUDIT 1 argument: new user audit value.
ST_STICKY No arguments.
ST_GENVALUE 2 arguments: names of two variables. The first variable

contains the general attribute mask and the second
contains the general attribute value.

ST_RTIME 1 argument for reference time: new time or −1 for TOD.
ST_FILEFMT Format of the file. To specify the format, you can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate
numeric value:
S_FFBINARY Binary data
S_FFCR Text data delimited by a carriage return

character
S_FFCRLF Text data delimited by carriage return

and line feed characters
S_FFLF Text data delimited by a line feed

character
S_FFLFCR Text data delimited by a line feed and

carriage return characters
S_FFNA Text data with the file format not

specified
S_FFNL Text data delimited by a newline

character

fchattr

Chapter 3. The syscall commands 53

Usage notes
1. Some of the attributes changed by the fchattr service can also be changed by

other services.

2. When changing the mode:

v The effective UID of the calling process must match the file’s owner UID, or
the caller must have appropriate privileges.

v Setting the set-group-ID-on-execution permission (in mode) means that when
this file is run (through the exec service), the effective GID of the caller is set
to the file’s owner GID, so that the caller seems to be running under the GID
of the file, rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the
following are true:

– The caller does not have appropriate privileges.

– The GID of the file’s owner does not match the effective GID, or one of
the supplementary GIDs, of the caller.

v Setting the set-user-ID-on-execution permission (in mode) means that when
this file is run, the process’s effective UID is set to the file’s owner UID, so
that the process seems to be running under the UID of the file’s owner, rather
than that of the actual invoker.

3. When changing the owner:

v For changing the owner UID of a file, the caller must have appropriate
privileges.

v For changing the owner GID of a file, the caller must have appropriate
privileges, or meet all of these conditions:

– The effective UID of the caller matches the file’s owner UID.

– The owner UID value specified in the change request matches the file’s
owner UID.

– The GID value specified in the change request is the effective GID, or one
of the supplementary GIDs, of the caller.

v When the owner is changed, the set-user-ID-on-execution and
set-group-ID-on-execution permissions of the file mode are automatically
turned off.

v When the owner is changed, both UID and GID must be specified as they are
to be set. If you want to change only one of these values, you need to set the
other to its present value for it to remain unchanged.

4. For general attribute bits to be changed, the calling process must have write
permission for the file.

5. When changing the file size:

v The change is made beginning from the first byte of the file. If the file was
previously larger than the new size, the data from file_size to the original end
of the file is removed. If the file was previously shorter than file_size, bytes
between the old and new lengths are read as zeros. The file offset is not
changed.

v If file_size is greater than the current file size limit for the process, the
request fails with EFBIG and the SIGXFSZ signal is generated for the
process.

v Successful change clears the set-user-ID, set-group-ID, and save-text (sticky
bit) attributes of the file unless the caller is a superuser.

6. When changing times:

fchattr

54 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v For the access time or the modification time to be set explicitly (using either
st_atime or st_mtime with the new time), the effective ID must match that of
the file’s owner, or the process must have appropriate privileges.

v For the access time or modification time to be set to the current time (using
either st_atime or st_mtime with −1), the effective ID must match that of the
file’s owner, the calling process must have write permission for the file, or the
process must have appropriate privileges.

v For the change time or the reference time to be set explicitly (using either
st_ctime or st_rtime with the new time) the effective ID must match that of the
file’s owner, or the process must have appropriate privileges.

v For the change time or reference time to be set to the current time (using
either st_ctime or st_rtime with −1), the calling process must have write
permission for the file.

v When any attribute field is changed successfully, the file’s change time is also
updated.

7. For auditor audit flags to be changed, the user must have auditor authority. The
user with auditor authority can set the auditor options for any file, even those to
which they don’t have path access or authority to use for other purposes.

Auditor authority is established by issuing the TSO/E command ALTUSER
AUDITOR.

8. For the user audit flags to be changed, the user must have appropriate
privileges or be the owner of the file.

Example
In the following example, assume that fd was assigned a value earlier in the exec.
This truncates a file to 0 bytes and sets the file permissions to 600:
"fchattr" fd st_size 0 st_mode 600

fchattr

Chapter 3. The syscall commands 55

fchaudit

ÊÊ fchaudit fd audit_flags option ÊÍ

Function
fchaudit invokes the fchaudit callable service to change audit flags for a file
identified by a file descriptor. The file descriptor is specified by a number.

Parameters
fd The file descriptor for the file.

audit_flags
One or more numeric values that indicate the type of access to be tested. You
can specify a numeric value (see Appendix A) or the predefined variable used
to derive the appropriate numeric value. The predefined variables you can
specify are:

Variable Description
AUD_FREAD Audit failed read requests
AUD_SREAD Audit successful read requests
AUD_FWRITE Audit failed write requests
AUD_SWRITE Audit successful write requests
AUD_FEXEC Audit failed execute or search requests
AUD_SEXEC Audit successful execute or search requests

option
A number indicating whether user-requested or auditor-requested auditing is
being changed:
v 0 if user-requested auditing is being changed.
v 1 if auditor-requested auditing is being changed.

Usage notes
1. If option indicates that the auditor audit flags are to be changed, you must have

auditor authority for the request to be successful. If you have auditor authority,
you can set the auditor options for any file, even those to which you do not
have path access or authority to use for other purposes.

You can get auditor authority by entering the TSO/E command ALTUSER
AUDITOR.

2. If option indicates that the user audit flags are to be changed, you must have
appropriate privileges or be the owner of the file.

Example
To change user-requested auditing so that failed read requests for the file identified
by file descriptor 0 are audited:
"fchaudit 0 (aud_fread) 0"

fchaudit

56 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fchmod

ÊÊ fchmod fd mode
setuid setgid

sticky

ÊÍ

Function
fchmod invokes the fchmod callable service to change the mode of a file or
directory indicated by a file descriptor. The file descriptor is specified by a number.

Parameters
fd The file descriptor for the file or directory.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

setuid
Sets the set-user-ID-on-execution permission. Specify 1 to set this permission
on, or 0 to set it off. The default is 0.

setgid
Sets the set-group-ID-on-execution permission. Specify 1 to set this permission
on, or 0 to set it off. The default is 0.

sticky
Sets the sticky bit to indicate where the file should be fetched from. If the file
resides in the link pack area (LPA), link list, or STEPLIB, specify 1. The default
is 0.

Usage notes
1. One bit sets permission for set-user-ID on access, set-group-ID on access, or

the sticky bit. You can set this bit in either of two ways:
v Specifying four digits on the mode parameter; the first digit sets the bit.
v Specifying the setuid, setgid, or sticky parameters.

2. When a chmod or fchmod has occurred for an open file, fstat reflects the
change in mode. However, no change in access authorization is apparent when
the file is accessed through a previously opened file descriptor.

3. For mode bits to be changed, the effective UID of the caller must match the
file’s owner UID, or the caller must be a superuser.

4. When the mode is changed successfully, the file’s change time is also updated.

5. Setting the set-group-ID-on-execution permission means that when this file is
run, through the exec service, the effective GID of the caller is set to the file’s
owner GID, so that the caller seems to be running under the GID of the file,
rather than that of the actual invoker.

The set-group-ID-on-execution permission is set to zero if both of the following
are true:

v The caller does not have appropriate privileges.

v The GID of the file’s owner does not match the effective GID or one of the
supplementary GIDs of the caller.

fchmod

Chapter 3. The syscall commands 57

6. Setting the set-user-ID-on-execution permission means that when this file is run,
the process’s effective UID is set to the file’s owner UID, so that the process
seems to be running under the UID of the file’s owner, rather than that of the
actual invoker.

Example
In the following example, assume that fd was assigned a value earlier in the exec.
This changes the mode for the file identified by the file descriptor so that only a
superuser can access the file:
"fchmod (fd) 000"

fchmod

58 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fchown

ÊÊ fchown fd uid gid ÊÍ

Function
fchown invokes the fchown callable service to change the owner and group of a file
or directory indicated by a file descriptor. The file descriptor is specified by a
number.

Parameters
fd The file descriptor for a file or directory.

uid
The numeric UID for the new owner of the file or the present UID, or −1 if there
is no change.

gid
The numeric GID for the new group for the file or the present GID, or −1 if there
is no change.

Usage notes
1. The fchown service changes the owner UID and owner GID of a file. Only a

superuser can change the owner UID of a file.

2. The owner GID of a file can be changed by a superuser, or if a caller meets all
of these conditions:

v The effective UID of the caller matches the file’s owner UID.

v The uid value specified in the change request matches the file’s owner UID.

v The gid value specified in the change request is the effective GID, or one of
the supplementary GIDs, of the caller.

3. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

4. If the change request is successful, the change time for the file is updated.

5. Values for both uid and gid must be specified as they are to be set. If you want
to change only one of these values, the other must be set to its present value to
remain unchanged.

Example
In the following example, assume that fd, uid, and gid were assigned a value earlier
in the exec:
"fchown" fd uid gid

fchown

Chapter 3. The syscall commands 59

f_closfd

ÊÊ f_closfd fd fd2 ÊÍ

Function
f_closfd invokes the fcntl callable service to close a range of file descriptors.

Parameters
fd The file descriptor (a number) for a file. This is the first file descriptor to be

closed.

fd2 The file descriptor (a number) for a file, which must be greater than or
equal to fd. If a −1 is specified for fd2, all file descriptors greater than or
equal to fd are closed.

Usage notes
1. A process can use f_closfd to close a range of file descriptors. fd2 must be

greater than or equal to fd, or it can also be −1, which indicates that all file
descriptors greater than or equal to fd are to be closed.

2. Use of f_closfd is meant to be consistent with the close callable service. You
cannot close file descriptors that could not also be closed using the close
service.

3. When a file descriptor cannot be closed, it is considered an error, but the
request continues with the next file descriptor in the range. File descriptors that
are not in use are ignored.

Example
In the following example, assume that fd and fd2 were assigned values earlier in
the exec:
"f_closfd" fd fd2

f_closfd

60 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_control_cvt

ÊÊ f_control_cvt fd filetag command program-ccsid file-ccsid ÊÍ

Function
f_control_cvt controls automatic file conversion and specifies the program and file
CCSIDs (character code set identifiers) for an opened I/O stream.

Parameters
fd The file descriptor (a number) for the file. It must be a regular file, FIFO, or

character special file.

filetag
The name of a 4-byte hex variable describing the file tag. The CCSID (coded
character set identifier) of the file tag occupies the first 2 bytes. For more
information, see the mapping macro BPXYSTAT in z/OS UNIX System Services
Programming: Assembler Callable Services Reference or the C header file
stat.h in z/OS C/C++ Run-Time Library Reference.

command
The command can be one of these variables:

Variable Description
CVT_SETCVTOFF Turns off any conversion that may be in effect. A hex

value of 0 for both program-ccsid and file-ccsid is
recommended.

CVT_SETCVTON Turns automatic conversion on for the stream and,
optionally, sets the program CCSID or file CCSID, or
both. A hex value of 0 for program-ccsid indicates using
ThliCcsid (the current program CCSID) at the time of
each read or write. ThliCcsid is initially 1047, but can
be reset directly by the program, or indirectly by setting
the appropriate run-time option or environment variable.
A hex value of 0 for file-ccsid indicates not changing
ThliCcsid

CVT_SETAUTOCVTON Conditionally turns automatic conversion on for the
stream and, optionally, sets the program CCSID or file
CCSID, or both. Conversion will be in effect for this
stream only if the system or the local run-time
environment has been enabled for conversion. A hex
value of 0 for program-ccsid indicates using ThliCcsid
at the time of each read or write. ThliCcsid is initially
1047, but can be changed by this variable, or by setting
the appropriate run-time option or environment variable.
A hex value of 0 for file-ccsid indicates not changing
ThliCcsid.

CVT_QUERYCVT Returns an indicator that lets you know whether
automatic conversion is in effect or not, and also
returns the program and file CCSIDs that are being
used (if conversion is in effect). The variables
command, program-ccsid, and file-ccsid are set when
you have a successful return. command is set to either
cvt_setcvtoff or cvt_setcvton . program-ccsid and
file-ccsid are set to the CCSID values that would be in
use if conversion were to occur.

f_control_cvt

Chapter 3. The syscall commands 61

program-ccsid
The name of a 2-byte hex variable that describes the CCSID for the running
program.

Note: For EBCDIC (1047) the CCSID is ’0417’X; for ASCII (819) it is ’0333’X.

file-ccsid
The name of a 2-byte hex variable that describes the CCSID for the file opened
with the file descriptor fd.

Example
This example turns automatic file conversion on for a stream opened with fd as the
file descriptor:
pccsid = ’0000’x
fccsid = ’0000’x
cmd = cvt_setautocvton
"f_control_cvt (fd) cmd pccsid fccsid"

This example queries the current conversion state:
pccsid = ’0000’x
fccsid = ’0000’x
cmd = cvt_querycvt
"f_control_cvt (fd) cmd pccsid fccsid"

f_control_cvt

62 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fcntl

Function
fcntl is supported as a set of syscall commands whose names begin with f_:
v “f_closfd” on page 60
v “f_dupfd” on page 64
v “f_dupfd2” on page 65
v “f_getfd” on page 66
v “f_getfl” on page 67
v “f_getlk” on page 68
v “f_setfd” on page 75
v “f_setfl” on page 76
v “f_setlk” on page 77
v “f_setlkw” on page 79

fcntl

Chapter 3. The syscall commands 63

f_dupfd

ÊÊ f_dupfd fd fd2 ÊÍ

Function
f_dupfd invokes the fcntl callable service to duplicate the lowest file descriptor that
is equal to or greater than fd2 and not already associated with an open file. The file
descriptor is returned in RETVAL.

Parameters
fd The file descriptor (a number) that you want to duplicate.

fd2 The file descriptor (a number) at which to start looking for an available file
descriptor.

Example
In the following example, assume that fd and fd2 were assigned values earlier in
the exec:
"f_dupfd" fd fd2

f_dupfd

64 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_dupfd2

ÊÊ f_dupfd2 fd fd2 ÊÍ

Function
f_dupf2d invokes the fcntl callable service to duplicate a file descriptor that is equal
to fd2.

Parameters
fd An opened file descriptor (a number) to be duplicated.

fd2 The file descriptor of choice.

Usage notes
If fd2 is already in use, f_dupfd2 closes it. If fd is equal to fd2, fd2 is returned but
not closed.

Example
In the following example, assume that fd and fd2 were assigned values earlier in
the exec:
"f_dupfd" fd fd2

f_dupfd2

Chapter 3. The syscall commands 65

f_getfd

ÊÊ f_getfd fd ÊÍ

Function
f_getfd invokes the fcntl callable service to get the file descriptor flags for a file.

Parameters
fd The file descriptor (a number) for the file.

Usage notes
The file descriptor flags are returned in RETVAL. The only POSIX-defined flag is
FCTLCLOEXEC. To determine if this flag is set, use this expression:
(retval//2)=1

Example
To get the file descriptor flags for file descriptor 0:
"f_getfd 0"

f_getfd

66 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_getfl

ÊÊ f_getfl fd ÊÍ

Function
f_getfl invokes the fcntl callable service to get the file status flags for a file.

Parameters
fd The file descriptor (a number) for the file.

Usage notes
RETVAL returns the file status flags as a numeric value (see Appendix A):

Flag Description
O_CREAT Create the file if it does not exist.
O_EXCL Fail if the file does exist and O_CREAT is set.
O_NOCTTY Do not make this file a controlling terminal for the calling

process.
O_TRUNC If the file exists, truncate it to zero length.
O_APPEND Set the offset to EOF before each write.
O_NONBLOCK An open, read, or write on the file will not block (wait for

terminal input).
O_RDWR Open for read and write.
O_RDONLY Open for read-only.
O_WRONLY Open for write-only.
O_SYNC Force synchronous updates.

You can use the open flags to test specific values. The easiest way to test a value
is to convert both the RETVAL and the flags to binary data, and then logically AND
them. For example, to test O_WRITE and O_TRUNC:
wrtr=D2C(O_WRITE+O_TRUNC,4))
If BITAND(D2C(retval,4),wrtr)=wrtr Then

Do /* o_write and o_trunc are set */
End

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"f_getfl" fd

f_getfl

Chapter 3. The syscall commands 67

f_getlk

ÊÊ f_getlk fd stem ÊÍ

Function
f_getlk invokes the fcntl callable service to return information on a file segment for
which locks are set, cleared, or queried.

Parameters
fd The file descriptor (a number) for the file.

stem
The name of a stem variable that is the flock structure used to query, set, or
clear a lock; or to return information. To specify the information, you can specify
a numeric value (see Appendix A) or the predefined variables beginning with L_
used to derive the appropriate numeric value. For example, stem.1 and
stem.l_type are both the lock-type request:

Variable Description
L_LEN The length of the byte range that is to be set, cleared, or

queried.
L_PID The process ID of the process holding the blocking lock, if

one was found.
L_START The starting offset byte of the lock that is to be set,

cleared, or queried.
L_TYPE The type of lock being set, cleared, or queried. To specify

the information, you can specify a numeric value (see
Appendix A) or one of the following predefined variables
used to derive the appropriate numeric value:

F_RDLCK
Shared or read lock. This type of lock specifies
that the process can read the locked part of the
file, and other processes cannot write on that
part of the file in the meantime. A process can
change a held write lock, or any part of it, to a
read lock, thereby making it available for other
processes to read. Multiple processes can have
read locks on the same part of a file
simultaneously. To establish a read lock, a
process must have the file accessed for reading.

f_getlk

68 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description

F_WRLCK
Exclusive or write lock. This type of lock
indicates that the process can write on the
locked part of the file, without interference from
other processes. If one process puts a write lock
on part of a file, no other process can establish a
read lock or write lock on that same part of the
file. A process cannot put a write lock on part of
a file if there is already a read lock on an
overlapping part of the file, unless that process is
the only owner of that overlapping read lock. In
such a case, the read lock on the overlapping
section is replaced by the write lock being
requested. To establish a write lock, a process
must have the file accessed for writing.

L_TYPE
F_UNLCK

Unlock. This is used to unlock all locks held on
the given range by the requesting process.

L_WHENCE The flag for the starting offset. To specify the information,
you can specify a numeric value (see Appendix A) or one
of the predefined variables beginning with SEEK_ used to
derive the appropriate numeric value. Valid values are:

SEEK_CUR The current offset

SEEK_END The end of the file

SEEK_SET The specified offset

Example
In the following example, assume that rec was assigned a value earlier in the exec:
lock.l_len=40
lock.l_start=rec*40
lock.l_type=f_wrlck
lock.l_whence=seek_set
"f_getlk" fd "lock."
if lock.l_type=f_unlck then
/* lock is available for the requested 40 byte record */

f_getlk

Chapter 3. The syscall commands 69

fork
There is no fork syscall command. Instead of using fork , see “spawn” on page 166.

fork

70 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

forkexecm

ÊÊ forkexecm program
parm

ÊÍ

Function
forkexecm invokes the fork and execmvs callable services to fork and exec a
program to be executed from the LINKLIB, LPALIB, or STEPLIB library.

Parameters
program

The name of the program.

parm
A parameter to be passed to the program.

Usage notes
1. If the exec fails, the child process ends with a SIGABRT signal.

2. If the fork succeeds, RETVAL contains the PID for the child process.

3. The child process has a unique process ID (PID) that does not match any
active process group ID.

4. If a hierarchical file system (HFS) file has its FCTLCLOFORK flag set on, it is
not inherited by the child process. This flag is set with the fcntl callable service.

5. The process and system utilization times for the child are set to zero.

6. Any file locks previously set by the parent are not inherited by the child.

7. The child process has no alarms set (similar to the results of a call to the
alarm service with Wait_time specified as zero).

8. The child has no pending signals.

9. The following characteristics of the calling process are changed when the new
executable program is given control by the execmvs callable service:

v The prior process image is replaced with a new process image for the
executable program to be run.

v All open files marked close-on-exec and all open directory streams are
closed.

v All signals that have sigaction settings are reset to their default actions.

10. The input passed to the MVS executable file by the service is consistent with
what is passed as input to MVS programs. On input, the MVS program
receives a single-entry parameter list pointed to by register 1. The high-order
bit of the single parameter entry is set to 1.

The single parameter entry is the address of a 2-byte length field followed by
an argument string. The length field describes the length of the data that
follows it. If a null argument and argument length are specified in the call, the
length field specifies 0 bytes on input to the executable file.

11. The call can invoke both unauthorized and authorized MVS programs:

v Unauthorized programs receive control in problem program state, with PSW
key 8.

v Authorized programs receive control in problem program state, with PSW
key 8 and APF authorization.

forkexecm

Chapter 3. The syscall commands 71

12. The TASKLIB, STEPLIB, or JOBLIB DD data set allocations that are active for
the calling task at the time of the call to the execmvs service are propagated to
the new process image, if the data sets they represent are found to be
cataloged. Uncataloged data sets are not propagated to the new process
image. This causes the program that is invoked to run with the same MVS
program search order as its invoker.

Example
In the following example, assume that pgm was assigned a value earlier in the
exec:
"forkexecm (pgm) ’hello world’"

forkexecm

72 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fpathconf

ÊÊ fpathconf fd name ÊÍ

Function
fpathconf invokes the fpathconf callable service to let a program determine the
current value of a configurable limit or variable associated with a file or directory.
The value is returned in RETVAL.

Parameters
fd The file descriptor (a number) for the file or directory.

name
A numeric value that indicates which configurable limit will be returned. You can
specify a numeric value (see Appendix A) or one of the following predefined
variables used to derive the appropriate numeric value:

Variable Description
PC_ACL Test if access control lists (ACLs) are

supported.
PC_ACL_MAX Maximum number of entries allowed

in an ACL.
PC_LINK_MAX Maximum value of a file’s link count.
PC_MAX_CANON Maximum number of bytes in a

terminal canonical input line.
PC_MAX_INPUT Minimum number of bytes for which

space will be available in a terminal
input queue; therefore, the maximum
number of bytes a portable
application may require to be typed
as input before reading them.

PC_NAME_MAX Maximum number of bytes in a
filename (not a string length; count
excludes a terminating null).

PC_PATH_MAX Maximum number of bytes in a
pathname (not a string length; count
excludes a terminating null).

PC_PIPE_BUF Maximum number of bytes that can
be written atomically when writing to
a pipe.

PC_POSIX_CHOWN_RESTRICTED Change ownership (“chown” on
page 45) function is restricted to a
process with appropriate privileges,
and to changing the group ID (GID)
of a file only to the effective group ID
of the process or to one of its
supplementary group IDs.

PC_POSIX_NO_TRUNC Pathname components longer than
255 bytes generate an error.

PC_POSIX_VDISABLE Terminal attributes maintained by the
system can be disabled using this
character value.

fpathconf

Chapter 3. The syscall commands 73

Usage notes
1. If name refers to MAX_CANON, MAX_INPUT, or _POSIX_VDISABLE, the

following applies:

v If fd does not refer to a terminal file, the function returns −1 and sets the
ERRNO to EINVAL.

2. If name refers to NAME_MAX, PATH_MAX, or _POSIX_NO_TRUNC, the
following applies:
v If fd does not refer to a directory, the function still returns the requested

information using the parent directory of the specified file.

3. If name refers to PC_PIPE_BUF, the following applies:
v If fd refers to a pipe or a FIFO, the value returned applies to the referred-to

object itself. If fd refers to a directory, the value returned applies to any FIFOs
that exist or that can be created within the directory. If fd refers to any other
type of file, the function returns −1 in RETVAL and sets the ERRNO to
EINVAL.

4. If name refers to PC_LINK_MAX, the following applies:
v If fd refers to a directory, the value returned applies to the directory.

Example
To determine the maximum number of bytes that can be written atomically to the file
identified by file descriptor 1:
"fpathconf 1 (pc_pipe_buf)"

fpathconf

74 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_setfd

ÊÊ f_setfd fd close_exec ÊÍ

Function
f_setfd invokes the fcntl callable service to set file descriptor flags.

Parameters
fd The file descriptor (a number) for the file.

close_exec
A numeric value to indicate whether this file descriptor should remain open after
an exec:
v 0 indicates that it should remain open.
v 1 indicates that it should be closed.

Example
To set the flags for the file identified by file descriptor 0 and indicate that this file
descriptor should remain open during an exec:
"f_setfd 0 0"

f_setfd

Chapter 3. The syscall commands 75

f_setfl

ÊÊ f_setfl fd flags ÊÍ

Function
f_setfl invokes the fcntl callable service to set file status flags.

Parameters
fd The file descriptor (a number) for the file.

flags
A value that sets the file status flags. To specify the information, you can specify
a numeric value (see Appendix A) or a predefined variable beginning with O_
used to derive the appropriate numeric value. The permitted values are:

Variable Description
O_APPEND Set offset to EOF on write.
O_NONBLOCK Do not block an open, a read, or a write on the file (do

not wait for terminal input).
O_SYNC Force synchronous updates.

Example
To set the O_APPEND file status flag for the file identified by file descriptor 1:
"f_setfl 1" o_append

f_setfl

76 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_setlk

ÊÊ f_setlk fd stem ÊÍ

Function
f_setlk invokes the fcntl callable service to set or release a lock on part of a file.

Parameters
fd The file descriptor (a number) for the file.

stem
The name of a stem variable that is the flock structure used to set or release
the lock. To access the information, you can specify a numeric value (see
Appendix A) or the predefined variables beginning with L_ that derive the
appropriate numeric value. For example, stem.1 and stem.l_type are both the
lock-type request.

Variable Description
L_LEN The length of the byte range that is to be set, cleared, or

queried.
L_PID The process ID of the process holding the blocking lock, if

one was found.
L_START The starting offset byte of the lock that is to be set,

cleared, or queried.
L_TYPE The type of lock being set, cleared, or queried. To specify

the information, you can specify a numeric value (see
Appendix A) or one of the following predefined variables
used to derive the appropriate numeric value:

F_RDLCK
Shared or read lock. This type of lock specifies
that the process can read the locked part of the
file, and other processes cannot write on that
part of the file in the meantime. A process can
change a held write lock, or any part of it, to a
read lock, thereby making it available for other
processes to read. Multiple processes can have
read locks on the same part of a file
simultaneously. To establish a read lock, a
process must have the file accessed for reading.

F_WRLCK
Exclusive or write lock. This type of lock
indicates that the process can write on the
locked part of the file, without interference from
other processes. If one process puts a write lock
on part of a file, no other process can establish a
read lock or write lock on that same part of the
file. A process cannot put a write lock on part of
a file if there is already a read lock on an
overlapping part of the file, unless that process is
the only owner of that overlapping read lock. In
such a case, the read lock on the overlapping
section is replaced by the write lock being
requested. To establish a write lock, a process
must have the file accessed for writing.

f_setlk

Chapter 3. The syscall commands 77

Variable Description
L_TYPE

F_UNLCK
Unlock. This is used to unlock all locks held on
the given range by the requesting process.

L_WHENCE The flag for the starting offset. To specify the information,
you can specify a numeric value (see Appendix A) or one
of the predefined variables beginning with SEEK_ used to
derive the appropriate numeric value. Valid values are:

SEEK_CUR The current offset

SEEK_END The end of the file

SEEK_SET The specified offset

Usage notes
If the lock cannot be obtained, a RETVAL of −1 is returned along with an
appropriate ERRNO and ERRNOJR. You can also use F_SETLK to release locks
already held, by setting l_type to F_UNLCK.

Multiple lock requests: A process can have several locks on a file simultaneously,
but it can have only one type of lock set on any given byte. Therefore, if a process
puts a new lock on part of a file that it had previously locked, the process has only
one lock on that part of the file and the lock type is the one given by the most
recent locking operation.

Releasing locks: When an f_setlk or f_setlkw request is made to unlock a byte
region of a file, all locks held by that process within the specified region are
released. In other words, each byte specified on an unlock request is freed from
any lock that is held against it by the requesting process.

All of a process’s locks on a file are removed when the process closes a file
descriptor for that file. Locks are not inherited by child processes created with the
fork service.

Advisory locking: All locks are advisory only. Processes can use locks to inform
each other that they want to protect parts of a file, but locks do not prevent I/O on
the locked parts. A process that has appropriate permissions on a file can perform
whatever I/O it chooses, regardless of which locks are set. Therefore, file locking is
only a convention, and it works only when all processes respect the convention.

Example
The following example locks a 40-byte record (rec). Assume that rec was assigned
a value earlier in the exec:
lock.l_len=40
lock.l_start=rec*40
lock.l_type=f_wrlck
lock.l_whence=seek_set
"f_setlk (fd) lock."

f_setlk

78 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_setlkw

ÊÊ f_setlkw fd stem ÊÍ

Function
f_setlkw invokes the fcntl callable service to set or release a lock on part of a file
and, if another process has a lock on some or all of the requested range, wait until
the specified range is free and the request can be completed.

fd The file descriptor (a number) for the file.

stem
The name of a stem variable that is the flock structure used to set or release
the lock. To specify the lock information, you can specify a numeric value (see
Appendix A) or the predefined variables beginning with L_ used to derive the
appropriate numeric value. For example, stem.1 and stem.l_type are both the
lock-type request.

Variable Description
L_LEN The length of the byte range that is to be set, cleared, or

queried.
L_PID The process ID of the process holding the blocking lock, if

one was found.
L_START The starting offset byte of the lock that is to be set,

cleared, or queried.
L_TYPE The type of lock being set, cleared, or queried. To specify

the information, you can specify a numeric value (see
Appendix A) or one of the following predefined variables
used to derive the appropriate numeric value:

F_RDLCK
Shared or read lock. This type of lock specifies
that the process can read the locked part of the
file, and other processes cannot write on that
part of the file in the meantime. A process can
change a held write lock, or any part of it, to a
read lock, thereby making it available for other
processes to read. Multiple processes can have
read locks on the same part of a file
simultaneously. To establish a read lock, a
process must have the file accessed for reading.

F_WRLCK
Exclusive or write lock. This type of lock
indicates that the process can write on the
locked part of the file, without interference from
other processes. If one process puts a write lock
on part of a file, no other process can establish a
read lock or write lock on that same part of the
file. A process cannot put a write lock on part of
a file if there is already a read lock on an
overlapping part of the file, unless that process is
the only owner of that overlapping read lock. In
such a case, the read lock on the overlapping
section is replaced by the write lock being
requested. To establish a write lock, a process
must have the file accessed for writing.

f_setlkw

Chapter 3. The syscall commands 79

Variable Description
L_TYPE

F_UNLCK
Unlock. This is used to unlock all locks held on
the given range by the requesting process.

L_WHENCE The flag for the starting offset. To specify the information,
you can specify a numeric value (see Appendix A) or one
of the predefined variables beginning with SEEK_ used to
derive the appropriate numeric value. Valid values are:

SEEK_CUR The current offset

SEEK_END The end of the file

SEEK_SET The specified offset

Usage notes
If the lock cannot be obtained because another process has a lock on all or part of
the requested range, the f_setlkw request waits until the specified range becomes
free and the request can be completed. You can also use f_setlkw to release locks
already held, by setting l_type to F_UNLCK.

If a signal interrupts a call to the fcntl service while it is waiting in an f_setlkw
operation, the function returns with a RETVAL of −1 and an ERRNO of EINTR.

f_setlkw operations have the potential for encountering deadlocks. This happens
when process A is waiting for process B to unlock a region, and B is waiting for A to
unlock a different region. If the system detects that a f_setlkw might cause a
deadlock, the fcntl service returns with a RETVAL of −1 and an ERRNO of
EDEADLK.

See “f_setlk” on page 77 for more information about locks.

Example
The following example locks a 40-byte record (rec). Assume that rec was assigned
a value earlier in the exec:
lock.l_len=40
lock.l_start=rec*40
lock.l_type=f_wrlck
lock.l_whence=seek_set
"f_setlkw (fd) lock."

f_setlkw

80 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

f_settag

ÊÊ f_settag fd filetag ÊÍ

Function
f_settag can be used to directly control basic file tagging for an opened file. The
setting of the file tag may be immediate or deferred until the first write, depending
upon the input parameters.

fd The file descriptor (a number) for the file. It must be a regular file, FIFO, or
character special file.

filetag
The name of a 4-byte hex variable describing the file tag. The CCSID (coded
character set identifier) of the file tag occupies the first 2 bytes. For more
information, see the mapping macro BPXYSTAT in z/OS UNIX System Services
Programming: Assembler Callable Services Reference or the C header file,
stat.h in z/OS C/C++ Run-Time Library Reference.

Example
The following example sets a file tag for an opened file to ASCII ISO88591–1, with
the text conversion flag on as well:
tag = ’03338000’x
"f_settag (fd) tag"

f_settag

Chapter 3. The syscall commands 81

fstat

ÊÊ fstat fd stem ÊÍ

Function
fstat invokes the fstat callable service to get status information about a file that is
identified by its file descriptor.

Parameters
fd The file descriptor (a number) for the file.

stem
The name of a stem variable used to return the status information. Upon return,
stem.0 contains the number of variables that are returned. To access the status
values, you can use a numeric value (see Appendix A) or any of the predefined
variables that begin with ST_. For example, stem.9 and stem.st_atime are both
the request for the time of last access.

Variable Description
ST_AAUDIT Auditor audit information
ST_ACCESSACL 1 if there is an access ACL (access control list)
ST_ATIME Time of last access
ST_AUDITID RACF File ID for auditing
ST_BLKSIZE File block size
ST_BLOCKS Blocks allocated
ST_CCSID Coded character set ID; first 4 characters are the file tag
ST_CRTIME File creation time
ST_CTIME Time of last file status change
ST_DEV Device ID of the file
ST_DMODELACL 1 if there is a directory model access control list (ACL)
ST_EXTLINK External symbolic link flag, set to 0 or 1
ST_FID File identifier
ST_FILEFMT Format of the file. To specify the format, you can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate
numeric value:
S_FFBINARY Binary data
S_FFCR Text data delimited by a carriage return

character
S_FFCRLF Text data delimited by carriage return

and line feed characters
S_FFLF Text data delimited by a line feed

character
S_FFLFCR Text data delimited by a line feed and

carriage return characters
S_FFNA Text data with the file format not

specified
S_FFNL Text data delimited by a newline

character
ST_FMODELACL 1 if there is a file model ACL
ST_GENVALUE General attribute values
ST_GID Group ID of the group of the file
ST_INO File serial number
ST_MAJOR Major number for a character special file

fstat

82 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description
ST_MINOR Minor number for a character special file
ST_MODE File mode, permission bits only
ST_MTIME Time of last data modification
ST_NLINK Number of links
ST_RTIME File backup time stamp (reference time)
ST_SETGID Set Group ID on execution flag, set to 0 or 1
ST_SETUID Set User ID on execution flag, set to 0 or 1
ST_SIZE File size for a regular file, in bytes. If file size exceeds

231−1 bytes, size is expressed in megabytes, using an M
(for example, 3123M).

ST_STICKY Sticky bit flag (keep loaded executable in storage), set to
0 or 1

ST_TYPE Numeric value that represents the file type for this file.
You can use a numeric value (see Appendix A) or any of
the predefined variables that begin with S_ to determine
the file type:

S_ISCHR Character special file

S_ISDIR Directory

S_ISFIFO FIFO special file

S_ISREG Regular file

S_ISSYM Symbolic link
ST_UAUDIT Area for user audit information
ST_UID User ID of the owner of the file

Usage notes
All time values returned in stem are in POSIX format. Time is in seconds since
00:00:00 GMT, January 1, 1970. You can use gmtime to convert it to other forms.

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"fstat (fd) st."

fstat

Chapter 3. The syscall commands 83

fstatvfs

ÊÊ fstatvfs fd stem ÊÍ

Function
fstatvfs invokes the fstatvfs callable service to obtain information about a file
system identified by a file descriptor that refers to a file in that file system.

Parameters
fd A file descriptor referring to a file from the desired file system.

stem
The name of a stem variable used to return the information. On return, stem.0
contains the number of variables returned. You can use the predefined variables
beginning with STFS_ or their equivalent numeric values to access the status
values they represent. (See Appendix A for the numeric values.) For example,
stem.stfs_avail accesses the number of blocks available in the file system.

Variable Description
STFS_AVAIL Space available to unprivileged users in block-size units.
STFS_BFREE Total number of free blocks.
STFS_BLOCKSIZE Block size.
STFS_FAVAIL Number of free file nodes available to unprivileged users.
STFS_FFREE Total number of free file nodes.
STFS_FILES Total number of file nodes in the file system.
STFS_FRSIZE Fundamental file system block size.
STFS_FSID File system ID set by the logical file system.
STFS_INUSE Allocated space in block-size units.
STFS_INVARSEC Number of seconds the file system will remain unchanged.
STFS_NAMEMAX Maximum length of file name.
STFS_NOSEC Mount data set with no security bit.
STFS_NOSUID SETUID and SETGID are not supported.
STFS_RDONLY File system is read-only.
STFS_TOTAL Total space in block-size units.

Example
In the following example, assume that fd was assigned a value earlier in the exec:
"fstatvfs" fd st.

fstatvfs

84 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

fsync

ÊÊ fsync fd ÊÍ

Function
fsync invokes the fsync callable service to write changes on the direct access
storage device that holds the file identified by the file descriptor.

Parameters
fd The file descriptor (a number) for the file.

Usage notes
On return from a successful call, all updates have been saved on the direct access
storage that holds the file.

Example
To invoke fsync for file descriptor 1:
"fsync 1"

fsync

Chapter 3. The syscall commands 85

ftrunc

ÊÊ ftrunc fd file_size ÊÍ

Function
ftrunc invokes the ftrunc callable service to change the size of the file identified by
the file descriptor.

Parameters
fd The file descriptor (a number) for the file.

file_size
The new size of the file, in bytes.

Usage notes
1. The ftrunc service changes the file size to file_size bytes, beginning at the first

byte of the file. If the file was previously larger than file_size, all data from
file_size to the original end of the file is removed. If the file was previously
shorter than file_size, bytes between the old and new lengths are read as zeros.

2. Full blocks are returned to the file system so that they can be used again, and
the file size is changed to the lesser of file_size or the current length of the file.

3. The file offset is not changed.

Example
In the following example, assume that fd was assigned a value earlier in the exec.
To truncate fd to 0 bytes:
"ftrunc" fd 0

ftrunc

86 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getcwd

ÊÊ getcwd variable ÊÍ

Function
getcwd invokes the getcwd callable service to get the pathname of the working
directory.

Parameters
variable

The name of the variable where the pathname of the working directory is to be
stored.

Example
To get the pathname of the working directory:
"getcwd cwd"

getcwd

Chapter 3. The syscall commands 87

getegid

ÊÊ getegid ÊÍ

Function
getegid invokes the getegid callable service to get the effective group ID (GID) of
the calling process.

Usage notes
1. The effective GID is returned in RETVAL.
2. If the service fails, the process abends.

getegid

88 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

geteuid

ÊÊ geteuid ÊÍ

Function
geteuid invokes the geteuid callable service to get the effective user ID (UID) of the
calling process.

Usage notes
1. The effective UID is returned in RETVAL.
2. If the service fails, the process abends.

geteuid

Chapter 3. The syscall commands 89

getgid

ÊÊ getgid ÊÍ

Function
getgid invokes the getgid callable service to get the real group ID (GID) of the
calling process.

Usage notes
1. The GID is returned in RETVAL.
2. If the service fails, the process abends.

getgid

90 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getgrent

ÊÊ getgrent stem ÊÍ

Function
getgrent invokes the getgrent callable service to retrieve a group database entry.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the status values,
you can specify a numeric value (see Appendix A) or the predefined variable
beginning with GR_ used to derive the appropriate numeric value. For example,
you can specify stem.2 or stem.gr_gid to access the group ID:

Variable Description
GR_GID The group ID
GR_MEM The stem index of the first member name returned
GR_MEMBERS The number of members returned
GR_NAME The name of the group

Usage notes
1. The service is intended to be used to search the group database sequentially.

The first call to this service from a given task returns the first group entry in the
group database. Subsequent calls from the same task return the next group
entry found, until no more entries exist, at which time a RETVAL of 0 is
returned.

2. The setgrent service can be used to reset this sequential search.

Example
To list all groups in the group data base:
do forever

"getgrent gr."
if retval=0 | retval=-1 then

leave
say gr.gr_name

end

getgrent

Chapter 3. The syscall commands 91

getgrid

ÊÊ getgrgid gid stem ÊÍ

Function
getgrgid invokes the getgrgid callable service to get information about a group and
its members; the group is identified by its group ID (GID).

Parameters
gid

A numeric value.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the status values,
you can specify a numeric value (see Appendix A) or the predefined variable
beginning with GR_ used to derive the appropriate numeric value. For example,
you can specify stem.2 or stem.gr_gid to access the group ID:

Variable Description
GR_GID The group ID
GR_MEM The stem index of the first member name returned
GR_MEMBERS The number of members returned
GR_NAME The name of the group

Usage notes
A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates
failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

Example
In the following example, assume that gid was assigned a value earlier in the exec.
To get a list of names connected with a group ID:
"getgrgid (gid) gr."
say ’Users connected to group number’ gid ’:’
do i=gr_mem to gr.0

say gr.i
end

getgrid

92 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getgrnam

ÊÊ getgrnam name stem ÊÍ

Function
getgrnam invokes the getgrnam callable service to get information about a group
and its members. The group is identified by its name.

Parameters
name

A string that specifies the group name as defined to the system.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the status values,
you can specify a numeric value (see Appendix A) or the predefined variable
beginning with GR_ used to derive the appropriate numeric value. For example,
you can specify stem.2 or stem.gr_gid to access the group ID:

Variable Description
GR_GID The group ID
GR_MEM The stem index of the first member name returned
GR_MEMBERS The number of members returned
GR_NAME The name of the group

Usage notes
1. A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates

failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

2. The return values point to data that can change or disappear after the next
getgrnam or getgrgid call from that task. Each task manages its own storage
separately. Move data to your own dynamic storage if you need it for future
reference.

3. The storage is key 0 non-fetch-protected storage that is managed by z/OS UNIX
System Services.

Example
To get information about the group named SYS1:
"getgrnam SYS1 gr."
say ’Users connected to group SYS1:’
do i=gr_mem to gr.0

say gr.i
end

getgrnam

Chapter 3. The syscall commands 93

getgroups

ÊÊ getgroups stem ÊÍ

Function
getgroups invokes the getgroups callable service to get the number of
supplementary group IDs (GIDs) for the calling process and a list of those
supplementary group IDs.

Parameters
stem

The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. stem.1 to stem.n (where n is
the number of variables returned) each contain a group ID.

Usage notes
A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates
failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

Example
To invoke getgroups:
"getgroups grps."

getgroups

94 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getgroupsbyname

ÊÊ getgroupsbyname name stem ÊÍ

Function
getgroupsbyname invokes the getgroupsbyname callable service to get the
number of supplementary group IDs (GIDs) for a specified user name and,
optionally, get a list of those supplementary group IDs.

Parameters
name

A string that specifies the name of the user as defined to the system.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. stem.1 to stem.n (where n is
the number of variables returned) each contain a supplementary group ID for
name.

Usage notes
A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates
failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

Example
To get the number of supplementary group IDs for the user MEGA:
"getgroupsbyname MEGA supgrp."

getgroupsbyname

Chapter 3. The syscall commands 95

getlogin

ÊÊ getlogin variable ÊÍ

Function
getlogin invokes the getlogin callable service to get the user login name associated
with the calling process.

Parameters
variable

The name of the variable in which the login name is returned

Usage notes
If the service fails, the process abends.

Example
To invoke getlogin and store the login name in the variable myid:
"getlogin myid"

getlogin

96 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getment

ÊÊ getment length variable ÊÍ

Function
getment invokes the w_getmntent callable service to get information about the
mounted file systems and return the information in the format used by the z/OS
UNIX callable services. Alternatively, you can use the getmntent syscall command
to format the mount entries in a stem.

Parameters
length

The size of the specified variable. If the length is 0, RETVAL contains the total
number of mounted file systems; otherwise, RETVAL contains the number of
entries returned.

variable
The name of the buffer where the information about the mount entries is to be
stored. Clear the buffer on the first call and do not alter it between calls.

Usage notes
1. Before a program calls getment for the first time, the variable should be

dropped, set to blanks, or set to nulls.

2. If more than one call is made to getment , use the same variable on each call,
because part of the information returned in the variable tells the file system
where to continue retrieving its information.

3. getment normally returns information about as many file systems as are
mounted, or as many as fit in the passed variable. The number of entries
contained in the variable is returned. The caller must have a variable large
enough to receive information about at least a single mount entry with each call.
If a zero-length variable is passed, no information is returned, but the return
value contains the total number of mounted file systems. This value could then
be used to get enough storage to retrieve information on all these file systems
in one additional call.

4. You could also retrieve all mount entries by setting up a loop that continues to
call getment until a return value of either −1 (in an error) or 0 (no more entries
found) is returned.

Example
In the following example, assume that buf was assigned a value earlier in the exec.
This example returns the number of mounted file systems in RETVAL:
"getment 0 buf"

getment

Chapter 3. The syscall commands 97

getmntent

ÊÊ getmntent stem
devno

ÊÍ

Function
getmntent invokes the w_getmntent callable service to get information about the
mounted file systems, or a specific mounted file system, and return the information
formatted in a stem.

Parameters
stem

The name of a stem variable used to return the mount table information. The
stem has two dimensions: the field name, followed by a period and the number
of the mount table entry. For example, you can access the file system name for
the first entry in the mount table as stem.mnte_fsname.1.

For the field name, you can specify a numeric value (see Appendix A) or the
predefined variable beginning with MNTE_ used to derive the appropriate
numeric value. For example, you could use stem.mnte_fsname.1 or stem.6.1 to
access the file system name for the first entry:

Variable Description
MNTE_BYTESREADHW The number of bytes read (high-word value).
MNTE_BYTESREADLW The number of bytes read (low-word value).
MNTE_BYTESWRITTENHW The number of bytes written (high-word value).
MNTE_BYTESWRITTENLW The number of bytes written (low-word value).
MNTE_DD The ddname specified on the mount.
MNTE_DEV The device ID of the file system.
MNTE_DIRIBC The number of directory I/O blocks.
MNTE_FROMSYS The file systems are to be moved from here.
MNTE_FSNAME The name of the HFS data set containing the file system.
MNTE_FSTYPE The file system type; for example, HFS.
MNTE_MODE The file system type mount method. You can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate numeric
value:
MNT_MODE_RDWR File system mounted

read-write.
MNT_MODE_RDONLY File system mounted

read-only.
MNT_MODE_AUNMOUNT The file system can be

unmounted if the
system’s owner crashes.

MNT_MODE_CLIENT The file system is a
client.

MNT_MODE_EXPORT The file system exported
by DFS™.

MNT_MODE_NOAUTOMOVE Automove is not allowed.
MNT_MODE_NOSEC No security checks are

enforced.
MNT_MODE_NOSETID SetUID is not permitted

for files in this filesystem.
MNTE_PARDEV The ST_DEV of the parent file system.

getmntent

98 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description
MNTE_PARM The parameter specified with mount() .
MNTE_PATH The mountpoint pathname.
MNTE_QJOBNAME The job name of the quiesce requestor.
MNTE_QPID The PID of the quiesce requestor.
MNTE_QSYSNAME The name of the quiesce system name.
MNTE_READCT The number of reads from filesys.
MNTE_READIBIC The number of read I/O blocks.
MNTE_RFLAGS The request flags.
MNTE_ROOTINO The inode of the mountpoint.
MNTE_STATUS The status of the file system. To specify the information, you

can specify a numeric value (see Appendix A) or one of the
following predefined variables used to derive the appropriate
numeric value:
MNT_ASYNCHMOUNT Asynchronous mount in

progress for this file
system.

MNT_FILEACTIVE File system is active.
MNT_FILEDEAD File system is dead.
MNT_FILEDRAIN File system is being

unmounted with the drain
option.

MNT_FILEFORCE File system is being
unmounted with the force
option.

MNT_FILEIMMED File system is being
unmounted with the
immediate option.

MNT_FILENORM File system is being
unmounted with the
normal option.

MNT_FILERESET File system is being
reset.

MNT_IMMEDTRIED File system unmount with
the immediate option
failed.

MNT_MOUNTINPROGRESS Mount in progress for this
file system

MNT_QUIESCED File system is quiesced.
MNTE_STATUS2 The status of the file system.
MNTE_SUCCESS Successful moves.
MNTE_SYSLIST A list of system names.
MNTE_SYSNAME The name of the owning system.
MNTE_TYPE The file system type.
MNTE_WRITECT The number of writes done.
MNTE_WRITEIBC The number of write I/O blocks.

devno
An optional parameter, this is the device number for a specific file system for
which you want the mount information. Specifying 0 is the equivalent of not
specifying a device number.

Example
To invoke w_getmntent:
"getmntent mounts."

getmntent

Chapter 3. The syscall commands 99

||

getpgrp

ÊÊ getpgrp ÊÍ

Function
getpgrp invokes the getpgrp callable service to get the process group ID (PGID) of
the calling process.

Usage notes
1. The PGID for the calling process is returned in RETVAL.
2. If the service fails, the process abends.

getpgrp

100 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getpid

ÊÊ getpid ÊÍ

Function
getpid invokes the getpid callable service to get the process ID (PID) of the calling
process.

Usage notes
1. The PID for the calling process is returned in RETVAL.
2. If the service fails, the process abends.

getpid

Chapter 3. The syscall commands 101

getppid

ÊÊ getppid ÊÍ

Function
getppid invokes the getppid callable service to get the parent process ID (PPID) of
the calling process.

Usage notes
1. The parent PID for the calling process is returned in RETVAL.
2. If the service fails, the process abends.

getppid

102 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getpsent

ÊÊ getpsent stem ÊÍ

Function
getpsent invokes the w_getpsent callable service to provide data describing the
status of all the processes to which you are authorized. The data is formatted in a
stem. The PS_ variables, or their numeric equivalents, are used to access the
fields.

Parameters
stem

Upon return, stem.0 contains the number of processes for which information is
returned. stem.1 through stem.n (where n is the number of entries returned)
each contain process information for the nth process.

You can use the predefined variables that begin with PS_ or their equivalent
numeric values (see Appendix A) to access the information. For example,
stem.1.ps_pid is the process ID for the first process returned.

Variable Description
PS_CMD Command
PS_CONTTY Controlling tty
PS_EGID Effective group ID
PS_EUID Effective user ID
PS_FGPID Foreground process group ID
PS_MAXVNODES Maximum number of vnode tokens allowed
PS_PATH Pathname
PS_PGPID Process Group ID
PS_PID Process ID
PS_PPID Parent Process ID
PS_RGID Real group ID
PS_RUID Real user ID
PS_SERVERFLAGS Server flags
PS_SERVERNAME Server name supplied on registration
PS_SERVERTYPE Server type (File=1; Lock=2)
PS_SGID Saved set group ID
PS_SID Session ID (leader)
PS_SIZE Total size
PS_STARTTIME Starting time, in POSIX format (seconds since the Epoch,

00:00:00 on 1 January 1970)
PS_STAT Process status

getpsent

Chapter 3. The syscall commands 103

Variable Description
PS_STATE Process state This value can be expressed as one of the

following predefined variables or as an alphabetic value
(see Appendix A):
PS_CHILD Waiting for a child

process
PS_FORK fork() a new process
PS_FREEZE QUIESCEFREEZE
PS_MSGRCV IPC MSGRCV WAIT
PS_MSGSND IPC MSGSND WAIT
PS_PAUSE MVSPAUSE
PS_QUIESCE Quiesce termination

wait
PS_RUN Running, not in kernel

wait
PS_SEMWT IPC SEMOP WAIT
PS_SLEEP sleep() issued
PS_WAITC Communication kernel

wait
PS_WAITF File system kernel

wait
PS_WAITO Other kernel wait
PS_ZOMBIE Process cancelled
PS_ZOMBIE2 Process terminated

yet still the session or
process group leader

PS_SUID Saved set user ID
PS_SYSTIME System CPU time, a value of the type clock_t, which

needs to be divided by sysconf(_SC_CLK_TK) to convert
it to seconds. For z/OS UNIX, this value is expressed in
hundredths of a second.

PS_USERTIME User CPU time, a value of the type clock_t, which needs
to be divided by sysconf(_SC_CLK_TK) to convert it to
seconds. For z/OS UNIX, this value is expressed in
hundredths of a second.

PS_VNODECOUNT Current number of vnode tokens

Usage notes
1. Information is returned for only those processes for which RACF allows the user

access based on effective user ID, real user ID, or saved set user ID.

2. PS_STARTTIME is in seconds since the Epoch (00:00:00 on 1 January 1970).

3. PS_USERTIME and PS_SYSTIME are task-elapsed times in 1/100ths of
seconds.

4. PS_SYSTIME reports the system CPU time consumed for the address space
that the process is running in. When only one process is running in the address
space, this time represents the accumulated system CPU time for that process.
However, when more than one process is running in an address space, the
information that is returned is actually the accumulated system CPU time
consumed by all of the work running in the address space.

Example
This exec will produce output similar to the ps -A shell command, displaying
information on all accessible processes:
/* rexx */
address syscall
say right(’PID’,12) left(’TTY’,10) ’ TIME’ ’COMMAND’
ps.0=0

getpsent

104 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|
|
|
|
|

’getpsent ps.’ /* get process data */
do i=1 to ps.0 /* process each entry returned */

t=(ps.i.ps_usertime + 50) % 100 /* change time to seconds */
’gmtime (t) gm.’ /* convert to usable format */
if gm.tm_hour=0 then /* set hours: samp ignores day */

h=’ ’
else
h=right(gm.tm_hour,2,0)’:’

m=right(gm.tm_min,2,0)’:’ /* set minutes */
parse value reverse(ps.i.ps_contty),

with tty ’/’ /* get tty filename */
tty=reverse(tty)
say right(ps.i.ps_pid,12), /* display process id */
say right(ps.i.ps_pid,12), /* display process id */

left(tty,10), /* display controlling tty */
h || m || right(gm.tm_sec,2,0), /* display process time */
ps.i.ps_cmd /* display command */

end
return 0

getpsent

Chapter 3. The syscall commands 105

getpwent

ÊÊ getpwent stem ÊÍ

Function
getpwent invokes the getpwent callable service to retrieve a user database entry.

Parameters
stem

The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. You can use a numeric value
(see Appendix A) or the predefined variables beginning with PW_ to access the
values:

Variable Description
PW_DIR The initial working directory
PW_GID The group ID
PW_NAME The TSO/E user ID
PW_SHELL The name of the initial user program.
PW_UID The user ID (UID) as defined to RACF.

Example
To list all users in the user database:
do forever

"getpwent pw."
if retval=0 | retval=-1 then

leave
say pw.pw_name

end

getpwent

106 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getpwnam

ÊÊ getpwnam name stem ÊÍ

Function
getpwnam invokes the getpwnam callable service to get information about a user,
identified by user name.

Parameters
name

The user name as defined to the system.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the information,
you can specify a numeric value (see Appendix A) or the predefined variable
beginning with PW_ used to derive the appropriate numeric value. For example,
to access the name of the user’s initial working directory, you can specify
stem.4 or stem.pw_dir:

Variable Description
PW_DIR The initial working directory
PW_GID The group ID
PW_NAME The TSO/E user ID
PW_SHELL The name of the initial user program.
PW_UID The user ID (UID) as defined to RACF.

Usage notes
1. A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates

failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

2. If an entry for the specified name is not found in the user database, the
RETVAL is 0.

Example
To get information about the user JANET:
"getpwnam JANET pw."

getpwnam

Chapter 3. The syscall commands 107

getpwuid

ÊÊ getpwuid uid stem ÊÍ

Function
getpwuid invokes the getpwuid callable service to get information about a user,
identified by UID.

Parameters
uid

A numeric value that is the user’s UID as defined to the system.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. You can use a numeric value
(see Appendix A) or the predefined variables beginning with PW_ to access the
values:

Variable Description
PW_DIR The initial working directory
PW_GID The group ID
PW_NAME The TSO/E user ID
PW_SHELL The name of the initial user program.
PW_UID The user ID (UID) as defined to RACF.

Usage notes
A RETVAL greater than zero indicates success. A RETVAL of −1 or 0 indicates
failure. A RETVAL of 0 has an ERRNOJR, but no ERRNO.

Example
To get information about the user with UID 42:
"getpwuid 42 pw."

getpwuid

108 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

getrlimit

ÊÊ getrlimit resource stem ÊÍ

Function
getrlimit invokes the getrlimit callable service to get the maximum and current
resource limits for the calling process.

Parameters
resource

The resource whose limit is being requested. Resources that have limits with
values greater than RLIM_INFINITY will return values of RLIM_INFINITY.

You can use the predefined variables beginning with RLIMIT_ or their
equivalent numeric values to access the limits. (See Appendix A for the numeric
values.)

Variable Description
RLIMIT_AS Maximum address space size for a process
RLIMIT_CORE Maximum size (in bytes) of a core dump created by a

process
RLIMIT_CPU Maximum amount of CPU time (in seconds) used by a

process
RLIMIT_FSIZE Maximum files size (in bytes) created by a process
RLIMIT_NOFILE Maximum number of open file descriptors for a process

stem
The name of the stem variable used to return the limit. stem.1 is the first word
and stem.2 is the second word. The first word contains the current limit; the
second word contains the maximum limit. The values for each word are
dependent on the resource specified.

Example
To print the maximum and current limit for number of open files allowed:
"getrlimit" rlimit_nofile r.
say ’maximum open limit is’ r.2
say ’current open limit is’ r.1

getrlimit

Chapter 3. The syscall commands 109

getuid

ÊÊ getuid ÊÍ

Function
getuid invokes the getuid callable service to get the real user ID of the calling
process.

Usage notes
Upon return, RETVAL contains the UID. If the service fails, the process abends.

getuid

110 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

gmtime

ÊÊ gmtime time stem ÊÍ

Function
gmtime converts time expressed in seconds since Epoch into month, day, and year
time format.

Parameters
time

A numeric value, the time expressed as “POSIX time,” the number of seconds
since the Epoch (00:00:00 on 1 January 1970).

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the status values,
you can specify a numeric value (see Appendix A) or the predefined variable
beginning with TM_ used to derive the appropriate numeric value. For example,
to access the year, you can specify stem.6 or stem.tm_year:

Variable Description
TM_HOUR The hour of the day.
TM_ISDST The daylight saving time flag. This flag is always zero (−1)

for Greenwich Mean Time (GMT).
TM_MDAY The day of the month, 1 to 31.
TM_MIN The minutes after the hour, 0 to 59.
TM_MON The months since January, 0 to 11.
TM_SEC The seconds after the minute, 0 to 59.
TM_WDAY The days since Sunday, 0 to 6.
TM_YDAY The days since January 1, 0 to 365.
TM_YEAR The year.

Example
The st_ctime in the following example was set with a stat call:
"gmtime" st.st_ctime "tm."

gmtime

Chapter 3. The syscall commands 111

ioctl

ÊÊ ioctl fd command buffer
length

ÊÍ

Function
ioctl invokes the w_ioctl service to issue ioctl commands to a file.

Note: Hierarchical file system (HFS) files and pipes do not support ioctl commands.

Parameters
fd A file descriptor for an open file.

Note: REXX does not support ioctl commands for sockets.

command
The numeric value for an ioctl command. The commands that can be specified
vary by device and are defined by the device driver.

buffer
The name of a buffer containing the argument to be passed to the device driver.
The argument is limited to 1024 bytes.

length
An optional numeric value indicating the length of the argument. If length is not
specified, the length of the buffer is used.

ioctl

112 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

isatty

ÊÊ isatty fd ÊÍ

Function
isatty invokes the isatty callable service to determine if a file is a terminal.

Parameters
fd The file descriptor (a number) for the file.

Usage notes
On return, RETVAL contains either 0 (not a tty) or 1 (a tty).

Example
To test if file descriptor 0 is a terminal:
"isatty 0"

isatty

Chapter 3. The syscall commands 113

kill

ÊÊ kill pid signal ÊÍ

Function
kill invokes the kill callable service to send a signal to a process or process group.

Parameters
pid

A number, the process ID of the process or process group to which the caller
wants to send a signal.

signal
The signal to be sent. You can set the value by using a numeric value (see
Appendix A) or the predefined variable beginning with SIG used to derive the
numeric value:

Variable Description

SIGABND Abend

SIGABRT Abnormal termination

SIGALRM Timeout

SIGBUS Bus error

SIGCHLD Child process terminated or stopped

SIGCONT Continue if stopped

SIGDCE Exclusive use by DCE

SIGFPE Erroneous arithmetic operation, such as division by zero or an operation
resulting in an overflow

SIGHUP Hangup detected on the controlling terminal

SIGILL Termination (cannot be caught or ignored)

SIGINT Interactive attention

SIGIO Completion of input or output

SIGIOERR Error on input/output; used by the C runtime library

SIGKILL Termination that cannot be caught or ignored

SIGPIPE Write on a pipe with no readers

SIGPOLL Pollable event

SIGPROF Profiling timer expired

SIGQUIT Interactive termination

SIGSEGV Detection of an incorrect memory reference

SIGSTOP Stop that cannot be caught or ignored

SIGSYS Bad system call

SIGTERM Termination

SIGTRAP Trap used by the ptrace callable service

SIGTSTP Interactive stop

kill

114 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description

SIGTTIN Read from a controlling terminal attempted by a member of a
background process group

SIGTTOU Write from a controlling terminal attempted by a member of a
background process group

SIGURG High bandwidth data is available at a socket

SIGUSR1 Reserved as application-defined signal 1

SIGUSR2 Reserved as application-defined signal 2

SIGVTALRM Virtual timer expired

SIGXCPU CPU time limit exceeded

SIGXFSZ File size limit exceeded

Usage notes
1. A caller can send a signal if the real or effective user ID of the caller is the

same as the real or saved set user ID of the intended recipient. A caller can
also send signals if it has appropriate privileges.

2. Regardless of user ID, a caller can always send a SIGCONT signal to a
process that is a member of the same session as the sender.

3. A caller can also send a signal to itself. If the signal is not blocked, at least one
pending unblocked signal is delivered to the sender before the service returns
control. Provided that no other unblocked signals are pending, the signal
delivered is the signal sent.

See “Using the REXX signal services” on page 9 for information on using signal
services.

Example
In the following example, assume that pid was assigned a value earlier in the exec:
"kill" pid sighup

kill

Chapter 3. The syscall commands 115

lchown

ÊÊ lchown pathname uid gid ÊÍ

Function
lchown invokes the lchown callable service to change the owner or group for a file,
directory, or symbolic link.

Parameters
pathname

The pathname for a file, directory, or symbolic link.

uid
The numeric UID for the new owner or the present UID, or −1 if there is no
change to the UID.

GID
The numeric GID for the new group or the present GID, or −1 if there is no
change to the GID.

Usage notes
1. If lchown’s target is a symbolic link, it modifies the ownership of the actual

symbolic link file instead of the ownership of the file pointed to by the symbolic
link.

2. The lchown service changes the owner UID and owner GID of a file. Only a
superuser can change the owner UID of a file.

3. The owner GID of a file can be changed by a superuser, or if a caller meets all
of these conditions:

v The effective UID of the caller matches the file’s owner UID.

v The uid value specified in the change request matches the file’s owner UID.

v The gid value specified in the change request is the effective GID, or one of
the supplementary GIDs, of the caller.

4. The set-user-ID-on-execution and set-group-ID-on-execution permissions of the
file mode are automatically turned off.

5. If the change request is successful, the change time for the file is updated.

6. Values for both uid and gid must be specified as they are to be set. If you want
to change only one of these values, the other must be set to its present value to
remain unchanged.

Example
In the following example, assume that pathname, uid, and gid were assigned a
value earlier in the exec:
"lchown (pathname) (uid) (gid)"

lchown

116 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

link

ÊÊ link old_path new_path ÊÍ

Function
link invokes the link callable service to create a hard link to a file (not a directory);
that is, it creates a new name for an existing file. The new name does not replace
the old one.

Parameters
old_path

A pathname, the current name for the file.

new_path
A pathname, the new name for the file.

Usage notes
1. The link service creates a link named new_path to an existing file named

old_path. This provides an alternate pathname for the existing file, so that the
file can be accessed by the old name or the new name. The link can be stored
in the same directory as the original file, or in a different directory.

2. The link and the file must be in the same file system.

3. If the link is created successfully, the service increments the link count of the
file. The link count shows how many links exist for a file. If the link is not
created successfully, the link count is not incremented.

4. Links are allowed only to files, not to directories.

5. If the link is created successfully, the change time of the linked-to file is updated
and the change and modification times of the directory that holds the link are
updated.

Example
To create the hard link /usr/bin/grep to the file /bin/grep :
"link /bin/grep /usr/bin/grep"

link

Chapter 3. The syscall commands 117

lseek

ÊÊ lseek fd position whence ÊÍ

Function
lseek invokes the lseek callable service to change the file offset of a file to a new
position. The file offset is the position in a file from which data is next read or to
which data is next written.

Parameters
fd The file descriptor (a number) for the file whose offset you want to change. The

file descriptor is returned when the file is opened.

position
A number indicating the number of bytes by which you want to change the
offset. If the number is unsigned, the offset is moved forward that number of
bytes; if the number is preceded by a − (minus sign), the offset is moved
backward that number of bytes.

whence
A numeric value that indicates the point from which the offset is calculated. You
can specify a numeric value (see Appendix A) or the predefined variable
beginning with SEEK_ used to derive the appropriate numeric value:

Variable Description
SEEK_CUR Set the file offset to current offset plus the specified offset.
SEEK_END Set the file offset to EOF plus the specified offset.
SEEK_SET Set the file offset to the specified offset.

Usage notes
1. position gives the length and direction of the offset change. whence states

where the change is to start. For example, assume that a file is 2000 bytes
long, and that the current file offset is 1000:

Position Specified Whence New File Offset
80 SEEK_CUR 1080
1200 SEEK_SET 1200
−80 SEEK_END 1920
132 SEEK_END 2132

2. The file offset can be moved beyond the end of the file. If data is written at the
new file offset, there will be a gap between the old end of the file and the start
of the new data. A request to read data from anywhere within that gap
completes successfully, and returns bytes with the value of zero in the buffer
and the actual number of bytes read.

Seeking alone, however, does not extend the file. Only if data is written at the
new offset does the length of the file change.

Example
To change the offset of file descriptor fd (assuming that it was assigned a value
earlier in the exec) to the beginning of the file (offset 0):
"lseek" fd 0 seek_set

lseek

118 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

lstat

ÊÊ lstat pathname stem ÊÍ

Function
lstat invokes the lstat callable service to obtain status information about a file.

Parameters
pathname

A pathname for the file.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To obtain the desired status
information, you can use a numeric value (see Appendix A) or the predefined
variables beginning with ST_ used to derive the numeric value. See “fstat” on
page 82 for a list of those variables.

Usage notes
1. If the pathname specified is a symbolic link, the status information returned

relates to the symbolic link, rather than to the file to which the symbolic link
refers.

2. All time values returned are in POSIX format. Time is in seconds since 00:00:00
GMT, January 1, 1970. You can use gmtime to convert it to other forms.

Example
In the following example, assume that pathname was assigned a value earlier in the
exec:
"lstat (pathname) st."

Chapter 3. The syscall commands 119

mkdir

Format

ÊÊ mkdir pathname mode ÊÍ

Purpose
mkdir invokes the mkdir callable service to create a new, empty directory.

Parameters
pathname

A pathname for the directory.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

Usage
1. The file permission bits specified in mode are modified by the file creation mask

of the calling process (see “umask” on page 181), and are then used to set the
file permission bits of the new directory.

2. The new directory’s owner ID is set to the effective user ID (UID) of the calling
process.

3. The mkdir service sets the access, change, and modification times for the new
directory. It also sets the change and modification times for the directory that
contains the new directory.

Examples
In the following example, assume that pathname and mode were assigned a value
earlier in the exec:
"mkdir (pathname)" mode

120 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

mkfifo

Format

ÊÊ mkfifo pathname mode ÊÍ

Purpose
mkfifo invokes the mknod callable service to create a new FIFO special file.

Parameters
pathname

A pathname for the file.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

Usage
1. The file permission bits specified in mode are modified by the process’s file

creation mask (see “umask” on page 181), and then used to set the file
permission bits of the file being created.

2. The file’s owner ID is set to the process’s effective user ID (UID). The group ID
is set to the group ID (GID) of the directory containing the file.

3. The mknod service sets the access, change, and modification times for the new
file. It also sets the change and modification times for the directory that contains
the new file.

Examples
In the following example, assume that pathname was assigned a value earlier in the
exec. The mode 777 grants read-write-execute permission to everyone.
"mkfifo (pathname) 777"

Chapter 3. The syscall commands 121

mknod

Format

ÊÊ mknod pathname mode major minor ÊÍ

Purpose
mknod invokes the mknod callable service to create a new character special file.
You must be a superuser to use this function.

Parameters
pathname

A pathname for the file.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

major
The device major number corresponds to a device driver supporting a class of
devices (for example, interactive terminals). For information on specifying the
device major number, see z/OS UNIX System Services Planning.

minor
The number that corresponds to a specific device within the class of devices
referred to by the device major number. For information on specifying the
device minor number, see z/OS UNIX System Services Planning.

Usage
1. The file permission bits specified in mode are modified by the process’s file

creation mask (see “umask” on page 181), and then used to set the file
permission bits of the file being created.

2. The file’s owner ID is set to the process’s effective user ID (UID). The group ID
is set to the group ID (GID) of the directory containing the file.

3. The mknod service sets the access, change, and modification times for the new
file. It also sets the change and modification times for the directory that contains
the new file.

Examples
To create /dev/null with read-write-execute permission for everyone:
"mknod /dev/null 777 4 0"

122 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

mount

Format

ÊÊ mount pathname name type flags
parm

ÊÍ

ÊÊ mount stem ÊÍ

Purpose
mount invokes the mount callable service to mount a file system, making the files
in it available for use. You must be a superuser to use this function.

When used in a sysplex, mount may also be used to change some of the mounted
file system attributes, including the system that owns that mount.

Parameters
pathname

The pathname for the mount point.

name
The name of the file system to be mounted. You must specify HFS data set
names as fully qualified names in uppercase letters. Do not enclose the data
set name in single quotes.

type
The type of file system, as defined by the FILESYSTYPE parameter on the
BPXPRMxx parmlib member (for example, HFS). Specify this as it is specified
on the parmlib member.

flags
A value indicating how the file system is to be mounted. To specify the
information, you can specify a numeric value (see Appendix A), or one or more
of the predefined variables beginning with MTM_. If more than one variable is
specified, they are added together like open flags. (RDONLY and RDWR cannot
be specified together.) The predefined variables used to derive the appropriate
numeric value are:
MTM_NOSECURITY

Mount with no security.
MTM_NOSUID

The SETUID and SETGID mode bits on any executable in this file
system are to be ignored when the program is run.

MTM_RDONLY
Mount read-only.

MTM_RDWR
Mount read-write.

MTM_SYNCHONLY
Mount must be completed synchronously; that is, mount() must not
return +1.

parm
The name of a variable that contains a parameter string to be passed to the

Chapter 3. The syscall commands 123

physical file system. The format and content of the string are specified by the
physical file system that is to perform the logical mount.

For an HFS file system, parm is not used.

stem
The name of a stem variable which contains the mount variables. To set the
mount variables, you can use a numeric value (see Appendix A) or the
predefined variables beginning with MNTE_ used to derive the numeric value.
Unused stem variables should be set to the null string.

The following variables are used for mount requests:

Variable Description
MNTE_FILETAG 4-byte file tag, the contents of which are mapped by the

ST_FILETAG structure in the BPXYSTAT mapping macro.
BPXYSTAT is described in z/OS UNIX System Services
Programming: Assembler Callable Services Reference.

MNTE_FSNAME The name of the HFS data set containing the file system.
MNTE_FSTYPE The file system type; for example, HFS.
MNTE_MODE The file system type mount method. You can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate numeric
value:
MNT_MODE_RDWR

File system mounted read-write.
MNT_MODE_RDONLY

File system mounted read-only.
MNT_MODE_AUNMOUNT

The file system can be unmounted if the system’s
owner crashes.

MNT_MODE_NOAUTOMOVE
Automove is not allowed.

MNT_MODE_NOSEC
No security checks are enforced.

MNT_MODE_NOSETID
SetUID is not permitted for files in this filesystem.

MNTE_PARM The parameter specified with mount() .
MNTE_PATH The mountpoint pathname.
MNTE_SYSLIST A list of system names.
MNTE_SYSNAME The name of the file system to be mounted on.

The following variables are used for changing mount attributes:

Variable Description
MNTE_FSNAME The name of the HFS data set containing the file system.
MNTE_MODE The file system type mount method. You can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate numeric
value:
MNT_MODE_RDWR

File system mounted read-write.
MNT_MODE_RDONLY

File system mounted read-only.
MNT_MODE_AUNMOUNT

The file system can be unmounted if the system’s
owner crashes.

MNT_MODE_NOAUTOMOVE
Automove is not allowed.

124 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

||

Variable Description
MNTE_RFLAGS Request flags (set to 3 to change the automove attribute, 1

to change mount owner).
MNTE_SYSNAME The name of the system to be mounted on.
MNTE_SYSLIST A list of system names.

Usage
1. In order to mount a file system, the caller must be a superuser.

2. The mount service effectively creates a virtual file system. After a file system is
mounted, references to the pathname that is mounted refer to the root directory
on the mounted file system.

3. A file system can be mounted at only one point.

4. Parameter specifics for the HFS physical file system:
v The name value must be uppercase and must be the name of the data set.
v The parm parameter is not used.

Examples
1. To mount the HFS data set HFS.BIN.V1R1M0 on the mountpoint /v1r1m0 as a

read-only file system:
"mount /v1r1m0 HFS.BIN.V1R1M0 HFS" mtm_rdonly

2. To mount an HFS read/write with this system as the owner:
m.=" /* set all of the stem variables to the null string */
m.mnte_mode=mnt_mode_rdwr
m.mnte_fsname=’OMVS.HFS.U.WJS’
m.mnte_fstype=’HFS’
m.mnte_path=’/u/wjs’
address syscall ’mount m.’

3. To mount an HFS file system read/write with system SYS2 as the owner and
with NOAUTOMOVE:
m.="
m.mnte_mode=mnt_mode_rdwr+mnt_mode_noautomove
m.mnte_fsname=’OMVS.HFS.U.WJS’
m.mnte_fstype=’HFS’
m.mnte_path=’/u/wjs’
m.mnte_sysname=’SYS2’
address syscall ’mount m.’

Chapter 3. The syscall commands 125

open

ÊÊ open pathname o_flags
mode

ÊÍ

Function
open invokes the open callable service to access a file and create a file descriptor
for it. The file descriptor is returned in RETVAL.

Parameters
pathname

A pathname for the file.

o_flags
One or more numeric values that describe how the file is to be opened. You can
specify a numeric value (see Appendix A) or any of the predefined variables
that begin with O_ used to derive the appropriate numeric value. For example,
the numeric values 128+3 or 131 or the predefined variables o_creat+o_rdwr
could be used to specify how the file is to be opened:

Variable Description
O_APPEND Set the offset to EOF before each write.
O_CREAT Create the file if it does not exist.
O_EXCL Fail if the file does exist and O_CREAT is set.
O_NOCTTY Do not make this file a controlling terminal for the calling

process.
O_NONBLOCK Do not block an open, a read, or a write on the file (do

not wait for terminal input).
O_RDONLY Open for read-only.
O_RDWR Open for read and write.
O_SYNC Force synchronous updates.
O_TRUNC Write, starting at the beginning of the file.
O_WRONLY Open for write-only.

mode
A three- or four-digit number, corresponding to the access permission bits. If
this optional parameter is not supplied, the mode is defaulted to 000, which is
useful for opening an existing file. For an explanation of how mode is handled if
you are creating a file, see the usage notes below.

Each digit must be in the range 0–7, and at least three digits must be specified.
For more information on permissions, see Appendix B.

Usage notes
When a file is created with the O_CREAT or O_EXCL options, the file permission
bits as specified in the mode parameter are modified by the process’s file creation
mask (see “umask” on page 181), and then used to set the file permission bits of
the file being created.

O_EXCL option: If the O_EXCL bit is set and the create bit is not set, the O_EXCL
bit is ignored.

O_TRUNC option: Turning on the O_TRUNC bit opens the file as though it had
been created earlier but never written into. The mode and owner of the file do not

open

126 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

change (although the change time and modification time do); but the file’s contents
are discarded. The file offset, which indicates where the next write is to occur,
points to the first byte of the file.

O_NONBLOCK option: A FIFO special file is a shared file from which the first data
written is the first data read. The O_NONBLOCK option is a way of coordinating
write and read requests between processes sharing a FIFO special file. It works this
way, provided that no other conditions interfere with opening the file successfully:

v If a file is opened read-only and O_NONBLOCK is specified, the open request
succeeds. Control returns to the caller immediately.

v If a file is opened write-only and O_NONBLOCK is specified, the open request
completes successfully, provided that another process has the file open for
reading. If another process does not have the file open for reading, the request
ends with RETVAL set to −1.

v If a file is opened read-only and O_NONBLOCK is omitted, the request is
blocked (control is not returned to the caller) until another process opens the file
for writing.

v If a file is opened write-only and O_NONBLOCK is omitted, the request is
blocked (control is not returned to the caller) until another process opens the file
for reading.

v If the O_SYNC update option is used, the program is assured that all data
updates have been written to permanent storage.

Example
To open or create the file /u/linda/my.exec with read-write-execute permission for
the owner, and to read and write starting at the beginning of the file:
"open /u/linda/my.exec" o_rdwr+o_trunc+o_creat 700

open

Chapter 3. The syscall commands 127

opendir

ÊÊ opendir pathname ÊÍ

Function
opendir invokes the opendir callable service to open a directory stream so that it
can be read by rddir . The file descriptor is returned in RETVAL.

Parameters
pathname

A pathname for the directory.

Usage notes
1. You can use opendir and closedir together with the rddir syscall command,

but not with the readdir command. The rddir command reads a directory in the
readdir callable service format. Alternatively, you can simply use the readdir
syscall command to read an entire directory and format it in a stem.

2. The opendir service opens a directory so that the first rddir service (see “rddir”
on page 137) starts reading at the first entry in the directory.

3. RETVAL is a file descriptor for a directory only. It can be used only as input to
services that expect a directory file descriptor. These services are closedir ,
rewinddir , and rddir .

Example
To open the directory /u/edman :
"opendir /u/edman"

opendir

128 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

pathconf

ÊÊ pathconf pathname name ÊÍ

Function
pathconf invokes the pathconf callable service to determine the current values of a
configurable limit or option (variable) that is associated with a file or directory. The
limit or option is returned in RETVAL.

Parameters
pathname

A pathname for a file or directory.

name
A numeric value that indicates which limit is returned. You can specify a
numeric value (see Appendix A) or the predefined variable beginning with PC_
used to derive the appropriate numeric value.

Variable Description
PC_ACL Test if access control lists (ACLs) are

supported.
PC_ACL_MAX Maximum number of entries allowed

in an ACL.
PC_LINK_MAX Maximum value of a file’s link count.
PC_MAX_CANON Maximum number of bytes in a

terminal canonical input line.
PC_MAX_INPUT Minimum number of bytes for which

space will be available in a terminal
input queue; therefore, the maximum
number of bytes a portable
application may require to be typed
as input before reading them.

PC_NAME_MAX Maximum number of bytes in a
filename (not a string length; count
excludes a terminating null).

PC_PATH_MAX Maximum number of bytes in a
pathname (not a string length; count
excludes a terminating null).

PC_PIPE_BUF Maximum number of bytes that can
be written atomically when writing to
a pipe.

PC_POSIX_CHOWN_RESTRICTED Change ownership (“chown” on
page 45) function is restricted to a
process with appropriate privileges,
and to changing the group ID (GID)
of a file only to the effective group ID
of the process or to one of its
supplementary group IDs.

PC_POSIX_NO_TRUNC Pathname components longer than
255 bytes generate an error.

PC_POSIX_VDISABLE Terminal attributes maintained by the
system can be disabled using this
character value.

pathconf

Chapter 3. The syscall commands 129

Usage notes
1. If name refers to MAX_CANON, MAX_INPUT, or _POSIX_VDISABLE, the

following applies:
v If pathname does not refer to a terminal file, the service returns −1 in

RETVAL and sets ERRNO to EINVAL.

2. If name refers to NAME_MAX, PATH_MAX, or _POSIX_NO_TRUNC, the
following applies:
v If pathname does not refer to a directory, the service still returns the

requested information using the parent directory of the specified file.

3. If name refers to PC_PIPE_BUF, the following applies:
v If pathname refers to a pipe or a FIFO, the value returned applies to the

referred-to object itself. If pathname refers to a directory, the value returned
applies to any FIFOs that exist or can be created within the directory. If
pathname refers to any other type of file, the pathconf service returns −1 in
RETVAL and sets the ERRNO to EINVAL.

4. If name refers to PC_LINK_MAX, the following applies:
v If pathname refers to a directory, the value returned applies to the directory.

Example
To determine the maximum number of bytes allowed in a pathname in the root
directory:
"pathconf /" pc_name_max

pathconf

130 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

pause

ÊÊ pause ÊÍ

Function
pause invokes the pause callable service to suspend execution of the calling thread
until delivery of a signal that either executes a signal-catching function or ends the
thread. See “Using the REXX signal services” on page 9 for more information.

Usage notes
1. A thread that calls pause does not resume processing until a signal is delivered

with an action to either process a signal-handling function or end the thread.
Some signals can be blocked by the thread’s signal mask; see “sigprocmask” on
page 163 for details.

2. If an incoming unblocked signal ends the thread, pause never returns to the
caller.

3. A return code is set when any failures are encountered that prevent this function
from completing successfully.

pause

Chapter 3. The syscall commands 131

pfsctl

ÊÊ pfsctl type command buffer
length

ÊÍ

Function
pfsctl invokes the pfsctl service to issue physical file system (PFS) control
commands to a PFS. The meaning of the command and argument are specific to
and defined by the PFS.

Parameters
type

The type of file system, as defined by the FILESYSTYPE parameter on the
BPXPRMxx parmlib member—for example, HFS. Specify this as it is specified
on the parmlib member.

command
The name of a PFS control command.

buffer
The name of a buffer containing the argument to be passed to the PFS. The
argument is limited to 4095 bytes.

length
An optional numeric value, indicating the length of the argument. If length is not
specified, the length of the buffer is used. The maximum length allowed is 4095
bytes.

Usage notes
1. This service is provided for communication between a program running in a

user process and a physical file system.

It is similar to ioctl , but the command is directed to the physical file system itself
rather than to, or for, a particular file or device.

2. As an example of how you could use this function in writing a physical file
system, consider the requirement to display status and performance statistics
about the physical file system. You can collect this information in the physical
file system, but you need a way to display it to the user. For more information
about the use of pfsctl , see z/OS DFSMS: Using Data Sets.

With pfsctl , your status utility program can easily fetch the information it needs
from the physical file system.

pfsctl

132 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

pipe

ÊÊ pipe stem ÊÍ

Function
pipe invokes the pipe callable service to create a pipe; or an I/O channel that a
process can use to communicate with another process, another thread (in this same
process or another process), or, in some cases, with itself. Data can be written into
one end of the pipe and read from the other end.

Parameters
stem

On return, stem.0 contains the number of variables returned. Two stem
variables are returned:

stem.1 The file descriptor for the end of the pipe that you read from

stem.2 The file descriptor for the end of the pipe that you write to

Usage notes
When the pipe call creates a pipe, the O_NONBLOCK and FD_CLOEXEC flags are
turned off on both ends of the pipe. You can turn these flags on or off by invoking:
v “f_setfl” on page 76 for the flag O_NONBLOCK
v “f_setfd” on page 75 for the flag FD_CLOEXEC

Example
To create a pipe:
"pipe pfd."

pipe

Chapter 3. The syscall commands 133

pt3270

ÊÊ pt3270 fd option ÊÍ

Function
pt3270 invokes the tcgetattr and tcsetattr callable services to query, set, and reset
3270 passthrough mode.

A REXX program running under a shell started from the OMVS TSO/E command
can use this service to send and receive a 3270 data stream or issue TSO/E
commands.

Parameters
fd The file descriptor for the file.

option
A number that identifies the service being requested:

Number Service

1 Query 3270 passthrough support for this file.

On return, RETVAL will contain a code for the current state of
the file descriptor, or -1 if there is an error.

0 or -1 This file cannot support 3270 passthrough
mode.

1 This file can support 3270 passthrough mode.

3 This file is currently in 3270 passthrough mode.

2 Set 3270 passthrough support for this file. If this is attempted
on a file that does not support 3270 passthrough mode, on
return RETVAL contains -1 and ERRNO contains the value for
ENOSYS.

3 Reset 3270 passthrough support for this file.

Example
The following is an example of a REXX program that can accept a TSO/E
command as its argument and issue the command through OMVS using 3270
passthrough mode. This REXX program would be located in the HFS and run as a
command from the shell.
/* rexx */
parse arg cmd
if cmd=’ then return
address syscall
’pt3270 1 2’ /* set passthrough mode on stdout */
if retval=-1 then

do
say ’Cannot set passthrough mode’ retval errno errnojr
return
end

buf=’ff51000000010001’x ||, /* OMVS passthrough command */
d2c(length(cmd),4) || cmd

pt3270

134 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

"write 1 buf" /* send command to OMVS */
"read 1 ibuf 1000" /* discard the response */
’pt3270 1 3’ /* reset passthrough mode */
return 0

pt3270

Chapter 3. The syscall commands 135

quiesce

ÊÊ quiesce name ÊÍ

Function
quiesce invokes the quiesce callable service to quiesce a file system, making the
files in it unavailable for use. You must be a superuser to quiesce a file system.

Parameters
name

The name of the file system to be quiesced, specified as the name of an HFS
data set. You must specify HFS data set names as fully qualified names in
uppercase letters. Do not enclose the data set name in single quotes.

Usage notes
1. After a quiesce service request, the file system is unavailable for use until a

subsequent unquiesce service request is received.

2. Users accessing files in a quiesced HFS file system are suspended until an
unquiesce request for the file system is processed. Other file systems may send
an EAGAIN instead of suspending the user.

3. If a file system that is not mounted is quiesced, that file system cannot be
mounted until the file system is unquiesced. This ensures that no one can use
the file system while it is quiesced.

Example
To quiesce an HFS data set named HFS.USR.SCHOEN:
"quiesce HFS.USR.SCHOEN"

quiesce

136 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

rddir

ÊÊ rddir fd variable length ÊÍ

Function
rddir invokes the readdir callable service to read multiple name entries from a
directory and format the information in the readdir callable service format. To format
this type of information in a stem, see “readdir” on page 141. The number of entries
read is returned in RETVAL.

Parameters
fd The file descriptor (a number) for the directory to be read.

variable The name of the buffer into which the directory entries are to be
read.

length The size of the buffer. After the read completes, the length of
variable is the size of the buffer. The number of entries is returned
in RETVAL.

Usage notes
1. You can use this command only with file descriptors opened using the opendir

syscall command. The rddir syscall command reads a directory in the readdir
callable service format. You can use opendir , rewinddir , and closedir together
with the rddir syscall command, but not with the readdir syscall command.
Alternatively, you can use the readdir syscall command to read an entire
directory and format it in a stem.

2. The buffer contains a variable number of variable-length directory entries. Only
full entries are placed in the buffer, up to the buffer size specified, and the
number of entries is returned.

3. Each directory entry returned has the following format:

2-byte Entry_length The total entry length, including itself.

2-byte Name_length Length of the following Member_name subfield.

Member_name A character field of length Name_length. This
name is not null-terminated.

File system specific data If name_length + 4 = entry_length, this subfield
is not present.

The entries are packed together, and the length fields are not aligned on any
particular boundary.

4. The buffer returned by one call to the readdir service must be used again on the
next call to the readdir service to continue reading entries from where you left
off. The buffer must not be altered between calls, unless the directory has been
rewound.

5. The end of the directory is indicated in either of two ways:

v A RETVAL of 0 entries is returned.

v Some physical file systems may return a null name entry as the last entry in
the caller’s buffer. A null name entry has an Entry_length of 4 and a
Name_length of 0.

rddir

Chapter 3. The syscall commands 137

The caller of the readdir service should check for both conditions.

Example
To read the entries from the directory with file descriptor 4 into the buffer named
buf, which is 300 bytes long:
"rddir 4 buf 300"

rddir

138 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

read

ÊÊ read fd variable length ÊÍ

Function
read invokes the read callable service to read a specified number of bytes from a
file into a buffer that you provide. The number of bytes read is returned in RETVAL.

Parameters
fd The file descriptor (a number) for the file to be read.

variable The name of the buffer into which the data is to be read.

length The maximum number of characters to read. After the read
completes, the length of variable is the number of bytes read. This
value is also returned in RETVAL.

Usage notes
Length: The value of length is not checked against any

system limit.

Access time: A successful read updates the access time of the
file read.

Origin of bytes read: If the file specified by fd is a regular file, or any
other type of file where a seek operation is
possible, bytes are read from the file offset
associated with the file descriptor. A successful read
increments the file offset by the number of bytes
read.

For files where no seek operation is possible, there
is no file offset associated with the file descriptor.
Reading begins at the current position in the file.

Number of bytes read: When a read request completes, the RETVAL field
shows the number of bytes actually read—a
number less than or equal to the number specified
as length. The following are some reasons why the
number of bytes read might be less than the
number of bytes requested:

v Fewer than the requested number of bytes
remained in the file; the end of file was reached
before length bytes were read.

v The service was interrupted by a signal after
some but not all of the requested bytes were
read. (If no bytes were read, the return value is
set to −1 and an error is reported.)

v The file is a pipe, FIFO, or special file and fewer
bytes than length specified were available for
reading.

There are several reasons why a read request
might complete successfully with no bytes read

read

Chapter 3. The syscall commands 139

(that is, with RETVAL set to 0). For example, zero
bytes are read in these cases:

v The call specified a length of zero.

v The starting position for the read was at or
beyond the end of the file.

v The file being read is a FIFO file or a pipe, and
no process has the pipe open for writing.

v The file being read is a slave pseudoterminal and
a zero-length canonical file was written to the
master.

Nonblocking: If a process has a pipe open for reading with
nonblocking specified, a request to read from the
file ends with a return value of −1 and a “Resource
temporarily unavailable” return code. But if
nonblocking was not specified, the read request is
blocked (does not return) until some data is written
or the pipe is closed by all other processes that
have the pipe open for writing.

Both master and slave pseudoterminals operate this
way, too, except that how they act depends on how
they were opened. If the master or the slave is
opened blocking, the reads are blocked if there is
no data. If it is opened nonblocking, EAGAIN is
returned if there is no data.

SIGTTOU processing: The read service causes signal SIGTTIN to be sent
under the following conditions:
v The process is attempting to read from its

controlling terminal, and
v The process is running in a background process

group, and
v The SIGTTIN signal is not blocked or ignored,

and
v The process group of the process is not

orphaned.

If these conditions are met, SIGTTIN is sent. If
SIGTTIN has a handler, the handler gets control
and the read ends with the return code set to
EINTRO. If SIGTTIN is set to default, the process
stops in the read and continues when the process
is moved to the foreground.

Example
In the following example, assume that fd was assigned a value earlier in the exec.
This reads 1000 characters from the file fd into the buffer buf:
"read (fd) buf 1000"

read

140 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

readdir

ÊÊ readdir pathname stem
stem2

ÊÍ

Function
readdir invokes the opendir, readdir, and closedir callable services to read multiple
name entries from a directory and format the information in a stem.

Parameters
pathname A pathname for a directory.

stem Upon return, stem.0 contains the number of directory entries
returned. stem.1 through stem.n (where n is the number of entries
returned) each contain a directory entry.

stem2 If the optional stem2 is provided, stem2.1 through stem2.n (where n
is the number of structures returned) each contain the stat structure
for a directory entry.

You can use the predefined variables that begin with ST_ or their
equivalent numeric values (see Appendix A) to access the stat
values. For example, stem2.1.st_size or stem2.1.8 accesses the file
size for the first directory entry. See “fstat” on page 82 for a list of
the ST_ variables.

Usage notes
The rddir command reads a directory in the readdir callable service format. You
can use opendir and closedir together with the rddir syscall command, but not
with the readdir syscall command. The readdir syscall command reads a directory
and formats it in a stem.

Example
To read the root directory and return information about the directory entries and a
stat structure for each directory entry:
"readdir / root. rootst."

readdir

Chapter 3. The syscall commands 141

readfile

ÊÊ readfile pathname stem ÊÍ

Function
readfile invokes the open, read, and close callable services to read from a text file
and format it in a stem.

Parameters
pathname A pathname for the file to be read.

stem Upon return, stem.0 contains the number of lines read. stem.1
through stem.n (where n is the number of lines) each contain a line
read.

Usage notes
1. The maximum allowable length of a line in the file is 1024 characters; if there

are lines longer than that, the RC is −23.

2. The newline characters that delimit the lines in a text file are stripped before the
lines are saved in the stem.

Example
In the following example, assume that pathname was assigned a value earlier in the
exec:
"readfile (pathname) file."

readfile

142 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

readlink

ÊÊ readlink pathname
variable

ÊÍ

Function
readlink invokes the readlink callable service to read the contents of a symbolic
link. A symbolic link is a file that contains the pathname for another file. The length,
in bytes, of the contents of the link is returned in RETVAL. If a variable is specified,
the pathname is read into it.

Parameters
pathname A pathname for the symbolic link.

variable The name of the variable to hold the contents of the symbolic link.
After the link is read, the length of the variable is the length of the
symbolic link.

Example
In the following example, assume that sl and linkbuf were assigned a value earlier
in the exec:
"readlink (sl) linkbuf"

readlink

Chapter 3. The syscall commands 143

realpath

ÊÊ realpath pathname variable ÊÍ

Function
realpath invokes the realpath callable service to resolve a pathname to a full
pathname without any symbolic links.

Parameters
pathname The pathname to resolve.

variable The name of the variable to contain the resolved pathname that is
returned.

Example
The following example retrieves the real pathname for the working directory:
"realpath . mycwd"

realpath

144 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

rename

ÊÊ rename old_pathname new_pathname ÊÍ

Function
rename invokes the rename callable service to change the name of a file or
directory.

Parameters
old_pathname

An existing pathname.

new_pathname
A new pathname.

Usage notes
The rename service changes the name of a file or directory from old_pathname to
new_pathname. When renaming finishes successfully, the change and modification
times for the parent directories of old_pathname and new_pathname are updated.

The calling process needs write permission for the directory containing
old_pathname and the directory containing new_pathname. The caller does not
need write permission for the files themselves.

Renaming files: If old_pathname and new_pathname are links referring to the
same file, rename returns successfully.

If old_pathname is the name of a file, new_pathname must also name a file, not a
directory. If new_pathname is an existing file, it is unlinked. Then the file specified
as old_pathname is given new_pathname. The pathname new_pathname always
stays in existence; at the beginning of the operation, new_pathname refers to its
original file, and at the end, it refers to the file that used to be old_pathname.

Renaming directories: If old_pathname is the name of a directory, new_pathname
must also name a directory, not a file. If new_pathname is an existing directory, it
must be empty, containing no files or subdirectories. If empty, it is removed, as
described in “rmdir” on page 147.

new_pathname cannot be a directory under old_pathname; that is, the old directory
cannot be part of the pathname prefix of the new one.

Example
In the following example, assume that old and new were assigned values earlier in
the exec:
"rename (old) (new)"

rename

Chapter 3. The syscall commands 145

rewinddir

ÊÊ rewinddir fd ÊÍ

Function
rewinddir invokes the rewinddir callable service to “rewind”, or reset, to the
beginning of an open directory. The next call to rddir reads the first entry in the
directory.

Parameters
fd The file descriptor (a number) returned from an opendir syscall command. This

is the file descriptor for the directory to be reset.

Usage notes
You can use this command only with file descriptors opened using the opendir
syscall command. The rddir syscall command reads a directory in the readdir
callable service format. You can use opendir , rewinddir , and closedir together
with the rddir syscall command, but not with the readdir syscall command.
Alternatively, you can use readdir syscall command to read an entire directory and
format it in a stem.

If the contents of the directory you specify have changed since the directory was
opened, a call to the rewinddir service will reset the pointer into the directory to the
beginning so that a subsequent call to the readdir service will read the new
contents.

Example
To rewind the directory associated with file descriptor 4:
"rewinddir 4"

rewinddir

146 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

rmdir

ÊÊ rmdir pathname ÊÍ

Function
rmdir invokes the rmdir callable service to remove a directory. The directory must
be empty.

Parameters
pathname A pathname for the directory.

Usage notes
1. The directory must be empty.

2. If the directory is successfully removed, the change and modification times for
the parent directory are updated.

3. If the link count of the directory becomes zero and no process has the directory
open, the directory itself is deleted. The space occupied by the directory is freed
for new use.

4. If any process has the directory open when the last link is removed, the
directory itself is not removed until the last process closes the directory. New
files cannot be created under a directory after the last link is removed, even if
the directory is still open.

Example
To remove the directory /u/ehk0 :
"rmdir /u/ehk0"

rmdir

Chapter 3. The syscall commands 147

setegid

ÊÊ setegid gid ÊÍ

Function
setegid invokes the setegid callable service to set the effective group ID (GID) of
the calling process.

Parameters
gid

The numeric GID that the calling process is to assume.

Usage notes
1. If gid is equal to the real group ID or the saved set group ID of the process, the

effective group ID is set to gid.

2. If gid is not the same as the real group ID, and the calling process has the
appropriate privileges, the effective group ID is set to gid.

3. The setegid service does not change any supplementary group IDs of the
calling process.

Example
In the following example, assume that gid was assigned a value earlier in the exec:
"setegid" gid

setegid

148 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

seteuid

ÊÊ seteuid uid ÊÍ

Function
seteuid invokes the seteuid callable service to set the effective user ID (UID) of the
calling process.

Parameters
uid

The numeric UID that the calling process is to assume.

Usage notes
1. A user can switch to superuser authority (with an effective UID of 0) if the user

is permitted to the BPX.SUPERUSER FACILITY class profile within RACF.

2. If uid is the same as the process’s real or saved set UID, or the user has the
appropriate privilege, the seteuid service sets the effective UID to be the same
as uid.

Example
In the following example, assume that uid was assigned a value earlier in the exec:
"seteuid (uid)"

seteuid

Chapter 3. The syscall commands 149

setgid

ÊÊ setgid gid ÊÍ

Function
setgid invokes the setgid callable service to set the real, effective, and saved set
group IDs (GIDs) for the calling process.

Parameters
gid

The numeric GID that the calling process is to assume.

Usage notes
1. If gid is equal to the real group ID or the saved set group ID of the process, the

effective group ID is set to gid.

2. If gid is not the same as the real group ID, and the calling process has the
appropriate privileges, then the real, saved set, and effective group IDs are set
to gid.

3. The setgid service does not change any supplementary group IDs of the calling
process.

Example
In the following example, assume that gid was assigned a value earlier in the exec:
"setgid (gid)"

setgid

150 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

setgrent

ÊÊ setgrent ÊÍ

Function
setgrent invokes the setgrent callable service to rewind, or reset to the beginning,
the group database, allowing repeated searches. For more information, see
“getgrent” on page 91.

setgrent

Chapter 3. The syscall commands 151

setgroups

ÊÊ setgroups stem ÊÍ

Function
setgroups invokes the setgroups callable service to set the supplemental group list
for the process.

Parameters
stem

The name of a stem variable used to set the group list. Upon return, stem.0
contains the number of variables containing a group id. stem.1 to stem.n (where
n is the number of variables) each contain one group id number.

Usage notes
A RETVAL of −1 indicates failure.

Example
In the following example, assume that the stem gr. was setup earlier in the exec:
"setgroups gr."

setgroups

152 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

setpgid

ÊÊ setpgid pid pgid ÊÍ

Function
setpgid invokes the setpgid callable service to place a process in a process group.
To identify the group, you specify a process group ID. You can assign a process to
a different group, or you can start a new group with that process as its leader.

Parameters
pid The numeric process ID (PID) of the process to be placed in a process

group. If the ID is specified as 0, the system uses the process ID of the
calling process.

pgid The ID of the process group. If the ID is specified as 0, the system uses the
process group ID indicated by pid.

Usage notes
1. The process group ID to be assigned to the group must be within the calling

process’s session.

2. The subject process (the process identified by pid) must be a child of the
process that issues the service, and it must be in the same session; but it
cannot be the session leader. It can be the caller.

Example
In the following example, assume that pid and pgid were assigned values earlier in
the exec:
"setpgid" pid pgid

setpgid

Chapter 3. The syscall commands 153

setpwent

ÊÊ setpwent ÊÍ

Function
setpwent invokes the setpwent callable service to effectively rewind the user
database to allow repeated searches. For more information, see “getpwent” on
page 106.

setpwent

154 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

setrlimit

ÊÊ setrlimit resource stem ÊÍ

Function
setrlimit invokes the setrlimit callable service to set resource limits for the calling
process. A resource limit is a pair of values; one specifies the current limit and the
other a maximum limit.

Parameters
resource

The resource whose limit is being set. The maximum resource limit is
RLIM_INFINITY.

You can use the predefined variables beginning with RLIMIT_, or their
equivalent numeric values, to specify the resource. (See Appendix A for the
numeric values.)

Variable Description Allowable Range
RLIMIT_AS Maximum address space size

for a process.
10 485 760—2 147 483 647

RLIMIT_CORE Maximum size (in bytes) of a
core dump created by a
process.

0—2 147 483 647

RLIMIT_CPU Maximum amount of CPU
time (in seconds) used by a
process.

7—2 147 483 647

RLIMIT_FSIZE Maximum files size (in bytes)
created by a process.

0—2 147 483 647

RLIMIT_NOFILE Maximum number of open file
descriptors for a process.

5-65 535

stem
The name of the stem variable used to set the limit. stem.1 is the first word,
which sets the current limit, and stem.2 is the second word, which sets the
maximum limit. The values for each word depend on the resource specified. To
specify no limit, use RLIM_INFINITY.

Usage notes
1. The current limit may be modified to any value that is less than or equal to the

maximum limit. For the RLIMIT_CPU, RLIMIT_NOFILE, and RLIMIT_AS
resources, if the setrlimit service is called with a current limit that is lower than
the current usage, the setrlimit service fails with an EINVAL errno.

2. The maximum limit may be lowered to any value that is greater than or equal
to the current limit.

3. The maximum limit can only be raised by a process that has superuser
authority.

4. Both the current limit and maximum limit can be changed via a single call to
setrlimit.

5. If the setrlimit service is called with a current limit that is greater than the
maximum limit, setrlimit returns an EINVAL errno.

setrlimit

Chapter 3. The syscall commands 155

6. The resource limit values are propagated across exec and fork. An exception
exists for exec. If a daemon process invokes exec and it invoked setuid before
invoking exec, the limit values are set based on the limit values specified in
parmlib member BPXPRMxx.

7. For a process that is not the only process within an address space, the
RLIMIT_CPU and RLIMIT_AS limits are shared with all the processes within
the address space. For RLIMIT_CPU, when the current limit is exceeded,
action is taken on the first process within the address space. If the action is
termination, all the processes within the address space are terminated.

8. In addition to the RLIMIT_CORE limit values, CORE dump defaults are set by
SYSMDUMP defaults. See z/OS MVS Initialization and Tuning Guide for
information on setting up SYSMDUMP defaults via the IEADMR00 parmlib
member.

9. Core dumps are taken in 4160-byte increments. Therefore, RLIMIT_CORE
values affect the size of core dumps in 4160-byte increments. For example, if
the RLIMIT_CORE current limit value is 4000, core dumps will contain no data.
If the RLIMIT_CORE current limit value is 8000, the maximum size of a core
dump is 4160 bytes.

10. Limits may have an infinite value of RLIM_INFINITY.

11. When setting RLIMIT_NOFILE, the maximum limit cannot exceed the system
defined limit of 65 535.

12. When setting RLIMIT_NOFILE, the current limit must be set higher than the
value of the highest open file descriptor. Attempting to lower the current limit to
a value less than or equal to the highest open file descriptor results in an error
of EINVAL.

13. When setting RLIMIT_FSIZE, a limit of 0 prevents the creation of new files and
the expansion of existing files.

Example
To reduce the maximum number of open files to 100 and the current limit to 50:
r.2=100
r.1=50
"setrlimit" rlimit_nofile r.

setrlimit

156 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

setsid

ÊÊ setsid sid ÊÍ

Function
setsid invokes the setsid callable service to create a new session with the calling
process as its session leader. The caller becomes the group leader of a new
process group.

Parameters
sid

The process ID of the calling process, which becomes the session or process
group ID of the new process group.

Usage notes
The calling process does not have a controlling terminal.

Example
In the following example, assume that sid was assigned a value earlier in the exec:
"setsid" sid

setsid

Chapter 3. The syscall commands 157

setuid

ÊÊ setuid uid ÊÍ

Function
setuid invokes the setuid callable service to set the real, effective, and saved set
user IDs for the calling process.

Parameters
uid

The numeric UID the process is to assume.

Usage notes
1. A user can switch to superuser authority (with an effective UID of 0) if the user

is permitted to the BPX.SUPERUSER FACILITY class profile within RACF.

2. If uid is the same as the process’s real UID or the saved set UID, the setuid
service sets the effective UID to be the same as uid.

If uid is not the same as the real UID of the process, and the calling process
has appropriate privileges, then the real, effective, and saved set UIDs are set
to uid.

Example
In the following example, assume that uid was assigned a value earlier in the exec:
"setuid" uid

setuid

158 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

sigaction

ÊÊ sigaction signal new_handler new_flag old_handler old_flag ÊÍ

Function
sigaction invokes the sigaction callable service to examine, change, or both
examine and change the action associated with a specific signal for all the threads
in the process.

Note: All threads within a process share the signal handlers (a set of additional
signals to be masked) and the flags specified by the sigaction callable
service.

Parameters
signal

The signal, as specified by a numeric value or a predefined variable beginning
with SIG.

Variable Description

SIGABND Abend

SIGABRT Abnormal termination

SIGALRM Timeout

SIGBUS Bus error

SIGCHLD Child process terminated or stopped

SIGCONT Continue if stopped

SIGDCE Exclusive use by DCE

SIGFPE Erroneous arithmetic operation, such as division by zero or an operation
resulting in an overflow

SIGHUP Hangup detected on the controlling terminal

SIGILL Termination (cannot be caught or ignored)

SIGINT Interactive attention

SIGIO Completion of input or output

SIGIOERR Error on input/output; used by the C runtime library

SIGKILL Termination that cannot be caught or ignored

SIGPIPE Write on a pipe with no readers

SIGPOLL Pollable event

SIGPROF Profiling timer expired

SIGQUIT Interactive termination

SIGSEGV Detection of an incorrect memory reference

SIGSTOP Stop that cannot be caught or ignored

SIGSYS Bad system call

SIGTERM Termination

SIGTRAP Trap used by the ptrace callable service

SIGTSTP Interactive stop

sigaction

Chapter 3. The syscall commands 159

Variable Description

SIGTTIN Read from a controlling terminal attempted by a member of a
background process group

SIGTTOU Write from a controlling terminal attempted by a member of a
background process group

SIGURG High bandwidth data is available at a socket

SIGUSR1 Reserved as application-defined signal 1

SIGUSR2 Reserved as application-defined signal 2

SIGVTALRM Virtual timer expired

SIGXCPU CPU time limit exceeded

SIGXFSZ File size limit exceeded

new_handler
Specifies the new setting for handling the signal. The following predefined
variables may be used for new_handler:

Variable Description
SIG_CAT Set signal handling to catch the signal.
SIG_DFL Set signal handling to the default action.
SIG_IGN Set signal handling to ignore the signal.
SIG_QRY Query the handling for that signal.

new_flag
Used to modify the behavior of the specified signal. Specify one of these:

Variable Description
0 Use the default behavior.
SA_NOCLDWAIT Do not create zombie processes when child

processes exit.
SA_RESETHAND Reset the signal action to the default, SIG_DFL,

when delivered.
SA_NOCLDSTOP Do not generate SIGCHLD when the child

processes stop.

old_handler
A variable name for the buffer where the system returns the old (current) signal
handling action.

old_flag
The name of the variable that will store the old (current) signal action flags.

Usage notes
1. If new_handler is set to the action SIG_DFL for a signal that cannot be caught

or ignored, the sigaction request is ignored and the return value is set to 0.

2. Setting a signal action to ignore for a signal that is pending causes the pending
signal to be discarded.

3. Setting signal action SIG_IGN or catch for signals SIGSTOP or SIGKILL is not
allowed.

4. Setting signal action SIG_IGN for SIGCHLD or SIGIO is not allowed.

sigaction

160 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

5. The sigaction caller’s thread must be registered for signals. You can register the
thread by calling syscalls('SIGON') . If the thread is not registered for signals,
the sigaction service fails with an ERRNO of EINVAL and ERRNOJR of
JRNotSigSetup.

Example
To catch a SIGALRM signal:
"sigaction" sigalrm sig_cat 0 "prevhndlr prevflag"

sigaction

Chapter 3. The syscall commands 161

sigpending

ÊÊ sigpending variable ÊÍ

Function
sigpending invokes the sigpending callable service to return the union of the set of
signals pending on the thread and the set of signals pending on the process.
Pending signals at the process level are moved to the thread that called the
sigpending callable service.

Parameters
variable

The name of the variable that will store a string of 64 characters with values 0
or 1, representing the 64 bits in a signal mask.

Example
To invoke sigpending:
"sigpending sigset"

sigpending

162 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

sigprocmask

ÊÊ sigprocmask number new_mask variable ÊÍ

Function
sigprocmask invokes the sigprocmask callable service to examine or change the
calling thread’s signal mask.

Parameters
number

To specify the action to be taken on the thread’s signal mask, you can specify a
numeric value (see Appendix A) or the predefined variable beginning with SIG_
used to derive the appropriate numeric value. Use one of the following
predefined variables:

Variable Description
SIG_BLOCK Add the signals in new_mask to those to be blocked for

this thread.
SIG_SETMASK Replace the thread’s signal mask with new_mask.
SIG_UNBLOCK Delete the signals in new_mask from those blocked for

this thread.

new_mask
The new signal mask, a string of 64 characters with values 0 or 1. The first
character represents signal number 1. A string shorter than 64 characters is
padded on the right with zeros. Mask bits set on represent signals that are
blocked. For more information on signals, see Using the REXX signal services.

variable
The name of the buffer that will store the old signal mask, a string of 64
characters with values 0 or 1, representing the 64 bits in a signal mask. Mask
bits set on represent signals that are blocked. A zero indicates that no signal
mask was returned.

Usage notes
1. The sigprocmask service examines, changes, or both examines and changes

the signal mask for the calling thread. This mask is called the thread’s signal
mask. If there are any pending unblocked signals, either at the process level or
at the current thread’s level after changing the signal mask, at least one of the
signals is delivered to the thread before the sigprocmask service returns.

2. You cannot block the SIGKILL and the SIGSTOP signals. If you call the
sigprocmask service with a request that would block those signals, that part of
your request is ignored and no error is indicated.

3. A request to block signals that are not supported is accepted, and a return value
of zero is returned.

4. All pending unblocked signals are moved from the process level to the current
thread.

Example
In the following example, assume that newsigset was assigned a value earlier in the
exec:
"sigprocmask" sig_setmask newsigset "oldsigset"

sigprocmask

Chapter 3. The syscall commands 163

sigsuspend

ÊÊ sigsuspend mask ÊÍ

Function
sigsuspend invokes the sigsuspend callable service to replace a thread’s current
signal mask with a new signal mask; then it suspends the caller’s thread until
delivery of a signal whose action is either to process a signal-catching service or to
end the thread.

Parameters
mask The new signal mask, a string of up to 64 characters with the values 0 or 1.

The first character represents signal number 1. A string shorter than 64
characters is padded on the right with zeros. For more information on
signals, see Using the REXX signal services.

Usage notes
1. The caller’s thread starts running again when it receives one of the signals not

blocked by the mask set by this call, or a system failure occurs that sets the
return code to some value other than EINTR.

2. The signal mask represents a set of signals that will be blocked. Blocked
signals do not “wake up” the suspended service. The signals SIGSTOP and
SIGKILL cannot be blocked or ignored; they are delivered to the program no
matter what the signal mask specifies.

3. If the signal action is to end the thread, the sigsuspend service does not return.

4. All pending unblocked signals are moved from the process level to the current
thread.

Example
In the following example, assume that sigmask was assigned a value earlier in the
exec:
"sigsuspend" sigmask

164 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

sleep

ÊÊ sleep number ÊÍ

Function
sleep invokes the sleep callable service to suspend running of the calling thread
(process) until either the number of seconds specified by number has elapsed, or a
signal is delivered to the calling thread to invoke a signal-catching function or end
the thread.

Parameters
number

The number of seconds to suspend the process. For more information on
signals, see “Using the REXX signal services” on page 9.

Usage notes
1. The suspension can actually be longer than the requested time, due to the

scheduling of other activity by the system.

2. The sleep service suspends the thread running for a specified number of
seconds, or until a signal is delivered to the calling thread that invokes a
signal-catching function or ends the thread. An unblocked signal received during
this time prematurely “wakes up” the thread. The appropriate signal-handling
function is invoked to handle the signal. When that signal-handling function
returns, the sleep service returns immediately, even if there is “sleep time”
remaining.

3. The sleep service returns a zero in RETVAL if it has slept for the number of
seconds specified. If the time specified by number has not elapsed when the
sleep service is interrupted because of the delivery of a signal, the sleep service
returns the unslept amount of time (the requested time minus the time actually
slept when the signal was delivered) in seconds. Any time consumed by
signal-catching functions is not reflected in the value returned by the sleep
service.

4. The following are usage notes for a SIGALRM signal generated by the alarm or
kill calls during the execution of the sleep call:

v If the calling thread has SIGALRM blocked prior to calling the sleep service,
the sleep service does not return when SIGALRM is generated, and the
SIGALRM signal is left pending when sleep returns.

v If the calling process has SIGALRM ignored when the SIGALRM signal is
generated, then the sleep service does not return and the SIGALRM signal is
ignored.

v If the calling process has SIGALRM set to a signal-catching function, that
function interrupts the sleep service and receives control. The sleep service
returns any unslept amount of time, as it does for any other type of signal.

5. An EC6 abend is generated when the caller’s PSW key or RB state prevents
signals from being delivered.

Example
In the following example, assume that timer was assigned a value earlier in the
exec:
"sleep (timer)"

sleep

Chapter 3. The syscall commands 165

spawn

ÊÊ spawn pathname fd_count fd_map arg_stem env_stem ÊÍ

Function
spawn invokes the spawn callable service to create a new process, called a child
process, to run a hierarchical file system (HFS) executable file. It remaps the calling
process’s file descriptors for the child process.

Parameters
pathname

A pathname for the executable file. Pathnames can begin with or without a
slash:

v A pathname that begins with a slash is an absolute pathname, and the
search for the file starts at the root directory.

v A pathname that does not begin with a slash is a relative pathname, and the
search for the file starts at the working directory.

fd_count
The number of file descriptors that can be inherited by the child process. In the
new process, all file descriptors greater than or equal to fd_count are closed.

fd_map
A stem variable. The stem index specifies the child’s file descriptor; for
example, stem.0 specifies the child’s file descriptor 0. This array selects the file
descriptors to be inherited. The value assigned to the variable indicates the
parent’s file descriptor that will be mapped to the child’s file descriptor. For
example, if stem.0 is 4, the child process inherits the parent’s file descriptor 4
as its descriptor 0. Any of the stem variables that contains a negative number or
a nonnumeric value is closed in the child.

arg_stem
A stem variable. stem.0 contains the number of arguments you are passing to
the program. The first argument should always specify the absolute or relative
pathname of the program to be executed. If a relative pathname is used and
PATH is specified, PATH is used to resolve the name; otherwise, the name is
processed as relative to the current directory. If a PATH environment variable is
not passed, the first argument should specify the absolute pathname or a
relative pathname for the program.

env_stem
A stem variable. stem.0 contains the number of environment variables that you
want the program to be run with. To propagate the current environment, pass
_ _environment. Specify each environment variable as VNAME=value.

Usage notes
1. The new process (called the child process) inherits the following attributes from

the process that calls spawn (called the parent process):

v Session membership.

v Real user ID.

v Real group ID.

v Supplementary group IDs.

166 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v Priority.

v Working directory.

v Root directory.

v File creation mask.

v The process group ID of the parent is inherited by the child.

v Signals set to be ignored in the parent are set to be ignored in the child.

v The signal mask is inherited from the parent.

2. The new child process has the following differences from the parent process:

v The child process has a unique process ID (PID) that does not match any
active process group ID.

v The child has a different parent PID (namely, the PID of the process that
called spawn).

v If the fd_count parameter specified a 0 value, the child has its own copy of
the parent’s file descriptors, except for those files that are marked
FCTLCLOEXEC or FCTLCLOFORK. The files marked FCTLCLOEXEC or
FCTLCLOFORK are not inherited by the child. If the filedesc_count
parameter specifies a value greater than 0, the parent’s file descriptors are
remapped for the child as specified in the fd_map stem with a negative
number or non-numeric value.

v The FCTLCLOEXEC and FCTLCLOFORK flags are not inherited from the
parent file descriptors to the child’s.

v The foreground process group of the session remains unchanged.

v The process and system utilization times for the child are set to zero.

v Any file locks previously set by the parent are not inherited by the child.

v The child process has no alarms set (similar to the results of a call to the
alarm service with Wait_time specified as zero) and has no interval timers
set.

v The child has no pending signals.

v The child gets a new process image, which is not a copy of the parent
process, to run the executable file.

v Signals set to be caught are reset to their default action.

v Memory mappings established by the parent via the shmem or mmap
services are not inherited by the child.

v If the set-user-ID mode bit of the new executable file is set, the effective user
ID and saved set-user-ID mode of the process are set to the owner user ID
of the new executable file.

v If the set-group-ID mode bit of the new executable file is set, the effective
group ID and saved set-group-ID bit of the process are set to the owner user
ID of the new executable file.

The last parameter that spawn passed to the executable file identifies the caller
of the file as the exec or spawn service.

3. To control whether the spawned child process runs in a separate address space
from the parent address space or in the same address space, you can specify
the _BPX_SHAREAS environment variable. If _BPX_SHAREAS is not specified,
is set to NO, or contains an unsupported value, the child process to be created
will run in a separate address space from the parent process.

_BPX_SHAREAS=YES indicates that the child process to be created is to run in
the same address space as the parent. If the program to be run is a set-user-ID
or set-group-ID program that will cause the effective user-ID or group-ID of the

spawn

Chapter 3. The syscall commands 167

child process to be different from that of the parent process, the
_BPX_SHAREAS=YES value is ignored and the child process runs in its own
address space.

4. In addition to recognizing the _BPX_SHAREAS environment variable, spawn
recognizes all of the environment variables that are recognized by the fork and
exec callable services.

5. The fd_count parameter can be 0, which means that all file descriptors are
inherited by the child.

6. The fd_count parameter is limited to a maximum value of 1000.

Example
In the following example, /bin/ls is run mapping its STDOUT and STDERR to file
descriptors 4 and 5, which were previously opened in the exec, and STDIN is
closed:
map.0=-1
map.1=4
map.2=5
parm.0=2
parm.1=’/bin/ls’
parm.2=’/’
’spawn /bin/ls 3 map. parm. _ _environment.’

spawn

168 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

spawnp

ÊÊ spawnp filename fd_count fd_map arg_stem env_stem ÊÍ

Function
spawnp invokes the spawn callable service and creates a new process, called a
child process, to run a hierarchical file system (HFS) executable file. spawnp
functions identically to the spawn function, except that it uses the PATH
environment variable to resolve relative filenames.

See “spawn” on page 166 for more information.

spawnp

Chapter 3. The syscall commands 169

stat

ÊÊ stat pathname stem ÊÍ

Function
stat invokes the stat callable service to obtain status about a specified file. You
specify the file by its name. If the pathname specified refers to a symbolic link, the
symbolic link name is resolved to a file and the status information for that file is
returned. To obtain status information about a symbolic link, rather than the file it
refers to, see “lstat” on page 119.

To use a file descriptor to obtain this information, see “fstat” on page 82.

Parameters
pathname

A pathname for the file.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. You can use the predefined
variables beginning with ST_ or their equivalent numeric values to access the
values they represent. (See Appendix A for the numeric values.)

Variable Description
ST_AAUDIT Auditor audit information
ST_ACCESSACL 1 if there is an access ACL (access control list)
ST_ATIME Time of last access
ST_AUDITID RACF File ID for auditing
ST_BLKSIZE File block size
ST_BLOCKS Blocks allocated
ST_CCSID Coded character set ID; first 4 characters are the file tag
ST_CRTIME File creation time
ST_CTIME Time of last file status change
ST_DEV Device ID of the file
ST_DMODELACL 1 if there is a directory model access control list (ACL)
ST_EXTLINK External symbolic link flag, set to 0 or 1
ST_FID File identifier
ST_FILEFMT Format of the file. To specify the format, you can specify a

numeric value (see Appendix A) or one of the following
predefined variables used to derive the appropriate
numeric value:
S_FFBINARY Binary data
S_FFCR Text data delimited by a carriage return

character
S_FFCRLF Text data delimited by carriage return

and line feed characters
S_FFLF Text data delimited by a line feed

character
S_FFLFCR Text data delimited by a line feed and

carriage return characters
S_FFNA Text data with the file format not

specified
S_FFNL Text data delimited by a newline

character

stat

170 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description
ST_FMODELACL 1 if there is a file model ACL
ST_GENVALUE General attribute values
ST_GID Group ID of the group of the file
ST_INO File serial number
ST_MAJOR Major number for a character special file
ST_MINOR Minor number for a character special file
ST_MODE File mode, permission bits only
ST_MTIME Time of last data modification
ST_NLINK Number of links
ST_RTIME File backup time stamp (reference time)
ST_SETGID Set Group ID on execution flag, set to 0 or 1
ST_SETUID Set User ID on execution flag, set to 0 or 1
ST_SIZE File size for a regular file, in bytes. If file size exceeds

231−1 bytes, size is expressed in megabytes, using an M
(for example, 3123M).

ST_STICKY Sticky bit flag (keep loaded executable in storage), set to
0 or 1

ST_TYPE Numeric value that represents the file type for this file.
You can use a numeric value (see Appendix A) or any of
the predefined variables that begin with S_ to determine
the file type:

S_ISCHR Character special file

S_ISDIR Directory

S_ISFIFO FIFO special file

S_ISREG Regular file

S_ISSYM Symbolic link
ST_UAUDIT Area for user audit information
ST_UID User ID of the owner of the file

The stem variable stem.st_type is a number that represents the file type for this
file. You can use the predefined variables beginning with S_ or their equivalent
numeric values to determine the file type. For example, if stem.st_type is
S_ISDIR, the file is a directory.

Usage notes
All time fields in stem are in POSIX format. You can use gmtime to convert it to
other forms.

Example
In the following example, assume that path was assigned a value earlier in the
exec:
"stat (path) st."

stat

Chapter 3. The syscall commands 171

statfs

ÊÊ statfs name stem ÊÍ

Function
statfs invokes the statfs callable service to obtain status information about a
specified file system.

Parameters
name

The name of the file system to be mounted, specified as the name of an HFS
data set. You must specify the HFS data set name as a fully qualified name in
uppercase letters. Do not enclose the data set name in single quotes.

stem
The name of a stem variable used to return the information. On return, stem.0
contains the number of variables returned. You can use the predefined variables
beginning with STFS_ or their equivalent numeric values to access the status
values they represent. (See Appendix A for the numeric values.) For example,
stem.stfs_avail accesses the number of blocks available in the file system.

Variable Description
STFS_AVAIL Space available to unprivileged users in block-size units.
STFS_BFREE Total number of free blocks.
STFS_BLOCKSIZE Block size.
STFS_FAVAIL Number of free file nodes available to unprivileged users.
STFS_FFREE Total number of free file nodes.
STFS_FILES Total number of file nodes in the file system.
STFS_FRSIZE Fundamental file system block size.
STFS_FSID File system ID set by the logical file system.
STFS_INUSE Allocated space in block-size units.
STFS_INVARSEC Number of seconds the file system will remain unchanged.
STFS_NAMEMAX Maximum length of file name.
STFS_NOSEC Mount data set with no security bit.
STFS_NOSUID SETUID and SETGID are not supported.
STFS_RDONLY File system is read-only.
STFS_TOTAL Total space in block-size units.

Example
In the following example, assume that fsname was assigned a value earlier in the
exec:
"statfs (fsname) st."

statfs

172 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

statvfs

ÊÊ statvfs pathname stem ÊÍ

Function
statvfs invokes the statvfs callable service to obtain status information about a file
system, given the name of a file in the file system.

Parameters
pathname

The name of a file in a file system for which status information is to be
obtained.

stem
The name of a stem variable used to return the information. On return, stem.0
contains the number of variables returned. You can use the predefined variables
beginning with STFS_ or their equivalent numeric values (see Appendix A) to
access the status values they represent. For example, stem.stfs_avail accesses
the number of blocks available in the file system.

Variable Description
STFS_AVAIL Space available to unprivileged users in block-size units.
STFS_BFREE Total number of free blocks.
STFS_BLOCKSIZE Block size.
STFS_FAVAIL Number of free file nodes available to unprivileged users.
STFS_FFREE Total number of free file nodes.
STFS_FILES Total number of file nodes in the file system.
STFS_FRSIZE Fundamental file system block size.
STFS_FSID File system ID set by the logical file system.
STFS_INUSE Allocated space in block-size units.
STFS_INVARSEC Number of seconds the file system will remain unchanged.
STFS_NAMEMAX Maximum length of file name.
STFS_NOSEC Mount data set with no security bit.
STFS_NOSUID SETUID and SETGID are not supported.
STFS_RDONLY File system is read-only.
STFS_TOTAL Total space in block-size units.

Example
In the following example, assume that fsname was assigned a value earlier in the
exec:
"statvfs (fsname) st."

statvfs

Chapter 3. The syscall commands 173

strerror

ÊÊ strerror error_code reason_code stem ÊÍ

Function
strerror retrieves diagnostic text for error codes and reason codes.

Parameters
error_code

Hex value for an error code as returned in ERRNO for other SYSCALL host
commands. Specify 0 if text for this code is not being requested.

reason_code
Hex value for the reason code as returned in ERRNOJR for other SYSCALL
host commands. Specify 0 if this code is not being requested.

stem
The name of a stem variable used to return the information. On return, stem.0
contains the number of variables returned. You can use the predefined variables
beginning with SE_ or their equivalent numeric values to access the values that
they represent. See Appendix A for the numeric values. For example,
stem.se_reason accesses the reason code text. If text is unavailable, a null
string is returned.

Variable Description
SE_ERRNO Text for the error number.
SE_REASON Text for the reason code.
SE_ACTION Text for any action to be taken to correct this error. This

variable will be available only when a reason code is
requested.

SE_MODID Name of the module that detected the error. This variable
will be available only when a reason code is requested.

Example
To get error text for the last syscall error:
"strerror" errno errnojr "err."

strerror

174 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

symlink

ÊÊ symlink pathname linkname ÊÍ

Function
symlink invokes the symlink callable service to create a symbolic link to a
pathname. This creates a symbolic link file.

Parameters
pathname

A pathname for the file for which you are creating a symbolic link.

linkname
The pathname for the symbolic link.

Usage notes
Like a hard link (described in “link” on page 117), a symbolic link allows a file to
have more than one name. The presence of a hard link guarantees the existence of
a file, even after the original name has been removed. A symbolic link, however,
provides no such assurance; in fact, the file identified by pathname need not exist
when the symbolic link is created. In addition, a symbolic link can cross file system
boundaries.

When a component of a pathname refers to a symbolic link rather than to a
directory, the pathname contained in the symbolic link is resolved. If the pathname
in the symbolic link begins with / (slash), the symbolic link pathname is resolved
relative to the process root directory. If the pathname in the symbolic link does not
begin with /, the symbolic link pathname is resolved relative to the directory that
contains the symbolic link.

If the symbolic link is not the last component of the original pathname, remaining
components of the original pathname are resolved from there. When a symbolic link
is the last component of a pathname, it may or may not be resolved. Resolution
depends on the function using the pathname. For example, a rename request does
not have a symbolic link resolved when it appears as the final component of either
the new or old pathname. However, an open request does have a symbolic link
resolved when it appears as the last component. When a slash is the last
component of a pathname, and it is preceded by a symbolic link, the symbolic link
is always resolved.

Because the mode of a symbolic link cannot be changed, its mode is ignored during
the lookup process. Any files and directories to which a symbolic link refers are
checked for access permission.

Example
To create a symbolic link named /bin for the file /v.1.1.0/bin :
"symlink /v.1.1.0/bin /bin"

symlink

Chapter 3. The syscall commands 175

sysconf

ÊÊ sysconf name ÊÍ

Function
sysconf invokes the sysconf callable service to get the value of a configurable
system variable.

Parameters
name

A numeric value that specifies the configurable variable to be returned. You can
specify a numeric value (see Appendix A) or the predefined variable beginning
with SC_ used to derive the appropriate numeric value:

Variable Description
SC_ARG_MAX The maximum length of all arguments and

environment strings to exec()
SC_CHILD_MAX The maximum number of simultaneous processes

per real user ID
SC_CLK_TCK The number of intervals per second used in defining

the type clock_t, which is used to measure process
execution times

SC_JOB_CONTROL Support for job control
SC_NGROUPS_MAX Maximum number of simultaneous supplementary

group IDs per process
SC_OPEN_MAX Maximum number of simultaneous open files per

process
SC_SAVED_IDS Support for saved set-user-IDs and set-group-IDs
SC_THREAD_TASKS_MAX_NP Constant for querying the maximum number of

threaded tasks per calling process
SC_THREADS_MAX_NP Constant for querying the maximum number of

threads per calling process
SC_TZNAME_MAX The number of bytes supported for the name of a

time zone
SC_VERSION The integer value 199009L
SC_2_CHAR_TERM Constant for querying whether the system supports

at least one raw mode terminal

Usage notes
SC_MAX_THREADS_NP and SC_MAX_THREAD_TASKS_NP return the limits
defined for the caller’s process, not the systemwide limits.

Example
To determine the maximum number of files that a single process can have open at
one time:
"sysconf" sc_open_max

sysconf

176 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

time

ÊÊ time ÊÍ

Function
time returns in RETVAL the time in POSIX format (seconds since the Epoch,
00:00:00 on 1 January 1970). You can use gmtime to convert it to other forms.

time

Chapter 3. The syscall commands 177

times

ÊÊ times stem ÊÍ

Function
times invokes the times callable service to collect information about processor time
used by the current process or related processes. The elapsed time since the
process was dubbed is returned in RETVAL. This value is of the type clock_t, which
needs to be divided by sysconf(_SC_CLK_TK) to convert it to seconds. For z/OS
UNIX, this value is expressed in hundredths of a second.

Parameters
stem

The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. Four variables are returned in
the stem. To access the stem variables, use a numeric value or the predefined
variables beginning with TMS_ used to derive that numeric value. (For the
numeric values, see Appendix A, “REXX predefined variables” on page 277.)
For example, you could specify stem.4 or stem.tms_cstime to obtain system
CPU values:

Variable Description
TMS_CSTIME The sum of system CPU time values and child system

CPU time values for all waited-for child processes that
have terminated. Zero if the current process has no
waited-for children.

TMS_CUTIME The sum of user CPU time values and child user CPU
time values for all waited-for child processes that have
terminated. Zero if the current process has no waited-for
children.

TMS_STIME The system CPU time of current process in hundredths of
a second. This is the task control block (TCB) time
accumulated while running in the kernel address space.

TMS_UTIME The user CPU time of current process in hundredths of a
second. This includes the TCB and service request block
(SRB) time of the calling process minus the TCB time
accumulated while running in the kernel address space.

Usage notes
Processor times for a child process that has ended are not added to the
TMS_CUTIME and TMS_CSTIME of the parent process until the parent issues a
wait or waitpid for that child process.

Example
"times tm."

times

178 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

trunc

ÊÊ trunc pathname file_size ÊÍ

Function
trunc invokes the trunc callable service to change the size of the file identified by
pathname.

Parameters
pathname

The pathname of the file.

file_size
The new size of the file, in bytes.

Usage notes
1. The file specified must be a regular file to which the calling process has write

access.

2. The file size changes beginning from the first byte of the file. If the file was
previously larger than the new size, the data from file_size to the original end of
the file is removed. If the file was previously shorter than file_size, bytes
between the old and new lengths are read as zeros.

3. If file_size is greater than the current file size limit for the process, the request
fails with EFBIG, and the SIGXFSZ signal is generated for the process.

Example
To set the file size of /tmp/xxx to 1000 bytes:
"trunc /tmp/xxx 1000"

trunc

Chapter 3. The syscall commands 179

ttyname

ÊÊ ttyname fd variable ÊÍ

Function
ttyname invokes the ttyname callable service to obtain the pathname of the
terminal associated with the file descriptor.

Parameters
fd The file descriptor (a number) for the character special file for the terminal.

variable
The name of the variable that stores the pathname for the character special file
for the terminal.

Usage notes
This service does not return −1 to indicate a failure. If the file descriptor is incorrect,
a null string is returned.

Example
To obtain the pathname for file descriptor 0:
"ttyname 0 path"

ttyname

180 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

umask

ÊÊ umask mask ÊÍ

Function
umask invokes the umask callable service to change your process’s file mode
creation mask. The file mode creation mask is used by the security package
(RACF) to turn off permission bits in the mode parameter specified. Bit positions
that are set in the file mode creation mask are cleared in the mode of the created
file.

Parameters
mask

A permission bit mask that you specify as a three-digit number. Each digit must
be in the range 0 to 7, and all digits must be specified. For more information on
permissions, see Appendix B.

Usage notes
1. The umask service changes the process’s file creation mask. This mask

controls file permission bits that are set whenever the process creates a file.
File permission bits that are turned on in the file creation mask are turned off in
the file permission bits of files created by the process. For example, if a call to
the open service, BPX1OPN, specifies a mode argument with file permission
bits, the process’s file creation mask affects that argument: bits that are on in
the mask will be turned off in the mode argument, and therefore in the mode of
the created file.

2. Only the file permission bits of new mask are used.

Example
To create a mask that sets read-write-execute permission on for the owner of the
file and off for everyone else:
"umask 077"

umask

Chapter 3. The syscall commands 181

uname

ÊÊ uname stem ÊÍ

Function
uname invokes the uname callable service to obtain information about the system
you are running on.

Parameters
stem

The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the information,
you can specify a numeric value (see Appendix A) or the predefined variables
beginning with U_ that derive the appropriate numeric value. For example, both
stem.1 and stem.u_sysname access the name of the operating system.

Variable Description
U_MACHINE The name of the hardware type on which the system is

running
U_NODENAME The name of this node within the communication network
U_RELEASE The current release level of this implementation
U_SYSNAME The name of this implementation of the operating system

(z/OS)
U_VERSION The current version level of this release

Example
"uname uts."

uname

182 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

unlink

ÊÊ unlink pathname ÊÍ

Function
unlink invokes the unlink callable service to remove a directory entry.

Parameters
pathname

A pathname for the directory entry. The directory entry could be identified by a
pathname for a file, the name of a hard link to a file, or the name of a symbolic
link.

Usage notes
1. If the name specified refers to a symbolic link, the symbolic link file named by

pathname is deleted.

2. If a file is deleted (that is, if the unlink service request is successful and the link
count becomes zero), the contents of the file are discarded, and the space it
occupied is freed for reuse. However, if another process (or more than one) has
the file open when the last link is removed, the file is not removed until the last
process closes it.

3. When the unlink service is successful in removing the directory entry and
decrementing the link count, whether or not the link count becomes zero, it
returns control to the caller with RETVAL set to 0. It updates the change and
modification times for the parent directory, and the change time for the file itself
(unless the file is deleted).

4. Directories cannot be removed using unlink. To remove a directory, refer to
“rmdir” on page 147.

Example
In the following example, assume that file was assigned a value earlier in the exec:
"unlink (file)"

unlink

Chapter 3. The syscall commands 183

unmount

ÊÊ unmount name flags ÊÍ

Function
unmount invokes the umount callable service to unmount a file system; that is, it
removes a file system from the file hierarchy. You must be a superuser to unmount
a file system.

Parameters
name

The name of the file system to be unmounted, specified as the name of an HFS
data set. You must specify the HFS data set name as a fully qualified name in
uppercase letters. Do not enclose the data set name in single quotes.

flags
The unmount options, expressed as a numeric value. You can specify a
numeric value (see Appendix A) or the predefined variable beginning with
MTM_ used to derive the appropriate numeric value:

Variable Description
MTM_DRAIN An unmount drain request. All uses of the file system are

normally ended before the file system is unmounted.
MTM_FORCE An unmount force request. The file system is unmounted

immediately, forcing any users of the named file system to
fail. All data changes made up to the time of the request
are saved. If there is a problem saving data, the unmount
continues and the data may be lost. So that data will not
be lost, you must issue an unmount immediate request
before an unmount force request.

MTM_IMMED An unmount immediate request. The file system is
unmounted immediately, forcing any users of the named
file system to fail. All data changes made up to the time of
the request are saved. If there is a problem saving data,
the unmount request fails.

MTM_NORMAL A normal unmount request. If no one is using the named
file system, the unmount request is done. Otherwise, the
request is rejected.

MTM_RESET A reset unmount request. This stops a previous unmount
drain request.

MTM_REMOUNT Unmounts the file system, changes the mount mode, and
remounts the file system. A read/write mount mode
changes to read-only. A read-only mount mode changes
to read/write.

Usage notes
1. A file system that has file systems mounted on it cannot be unmounted. Any

child file systems must be unmounted first.

2. A reset request can stop only an unmount service drain request. There is no
effect if it is issued when there is no umount request outstanding.

unmount

184 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Example
To request a normal unmount of the file system HFS.USR.CRISP:
"unmount HFS.USR.CRISP" mtm_normal

unmount

Chapter 3. The syscall commands 185

unquiesce

ÊÊ unquiesce name flag ÊÍ

Function
unquiesce invokes the unquiesce callable service to unquiesce a file system,
making the files in it available for use again. You must be a superuser to use this
function.

Parameters
name

The name of the file system to be unquiesced. You must specify an HFS data
set name as a fully qualified name in uppercase letters. Do not enclose the data
set name in single quotes.

flag
A number specifying the type of unquiesce:
0 Normal unquiesce
1 Forced unquiesce. Request is allowed even if the requester process is

not the process that made the quiesce request.

Usage notes
An unquiesce service makes a file system available for use again following a
previous quiesce request.

Example
To request a normal unquiesce of the file system HFS.USR.ELIZAB:
"unquiesce HFS.USR.ELIZAB 0’

unquiesce

186 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

utime

ÊÊ utime pathname atime mtime ÊÍ

Function
utime invokes the utime callable service to set the access and modification times of
a file.

Parameters
pathname

A pathname for the file.

atime
A numeric value for the new access time for the file, specified as POSIX time
(seconds since the Epoch, 00:00:00 1 January 1970).

mtime
A numeric value for the new modification time for the file, specified as POSIX
time (seconds since the Epoch, 00:00:00 1 January 1970).

Example
In the following example, assume that file, atm, and mtm were assigned values
earlier in the exec:
"utime (file)" atm mtm

utime

Chapter 3. The syscall commands 187

wait

ÊÊ wait stem ÊÍ

Function
wait invokes the wait callable service to obtain the status of any child process that
has ended or stopped. You can use the wait service to obtain the status of a
process that is being debugged with the ptrace facilities. The term child refers to a
child process created by a fork as well as a process attached by ptrace.

Parameters
stem

The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the information in
the stem variables, you can specify a numeric value (see Appendix A) or the
predefined variables beginning with W_ that derive the appropriate numeric
value.

Variable Description
W_CONTINUED Process continued from stop
W_EXITSTATUS The exit status of the child process
W_IFEXITED The child process ended normally
W_IFSIGNALED The child process ended because of a signal that

was not caught
W_IFSTOPPED Wait if the child process is stopped
W_STAT3 Byte 3 of the BPXYWAST macro, documented in

z/OS UNIX System Services Programming:
Assembler Callable Services Reference

W_STAT4 Byte 4 of the BPXYWAST macro, documented in
z/OS UNIX System Services Programming:
Assembler Callable Services Reference .

W_STOPSIG The signal number that caused the child process to
stop

W_TERMSIG The signal number that caused the child process to
end

Usage notes
1. The wait service suspends execution of the calling thread until one of the

requested child or debugged processes ends or until it obtains information about
the process that ended. If a child or debugged process has already ended but
its status has not been reported when wait is called, the routine immediately
returns with that status information to the caller.

2. If the WUNTRACED option is specified, the foregoing also applies for stopped
children or stopped debugged processes.

3. The wait service always returns status for stopped debugged processes, even if
WUNTRACED is not specified.

4. If status is available for one or more processes, the order in which the status is
reported is unspecified.

Note: A debugged process is one that is being monitored for debugging purposes
with the ptrace service.

wait

188 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Example
See “Set up a signal to enforce a time limit for a program” on page 204 for an
example of signal coding that interprets the stem this returns:
"wait wstat."

wait

Chapter 3. The syscall commands 189

waitpid

ÊÊ waitpid pid stem option ÊÍ

Function
waitpid invokes the wait callable service to obtain the status of a child process that
has ended or stopped. You can use the wait service to obtain the status of a
process that is being debugged with the ptrace facilities. The term child refers to a
child process created by a fork as well as a process attached by ptrace.

Parameters
pid

A numeric value indicating the event the caller is waiting upon:

v A value greater than zero is assumed to be a process ID. The caller waits for
the child or debugged process with that specific process ID to end or to stop.

v A value of zero specifies that the caller is waiting for any children or
debugged processes with a process group ID equal to the caller’s to end or
to stop.

v A value of −1 specifies that the caller is waiting for any of its children or
debugged processes to end or to stop.

v If the value is negative and less than −1, its absolute value is assumed to be
a process group ID. The caller waits for any children or debugged processes
with that process group ID to end or to stop.

stem
The name of a stem variable used to return the information. Upon return,
stem.0 contains the number of variables returned. To access the information in
the stem variables, you can use numeric values (see Appendix A), or the
predefined variables beginning with W_ (see their description in “wait” on
page 188).

options
A numeric value or its equivalent predefined variable beginning with W_ that
indicates the wait options for this invocation of the wait service. These options
can be specified separately or together. (For the numeric values, see
Appendix A.)

Variable Description
0 Wait for the child process to end (default processing)
W_NOHANG The wait service does not suspend execution of the

calling process if status is not immediately available for
one of the child processes specified by Process_ID.

W_UNTRACED The wait service also returns the status of any child
processes specified by Process_ID that are stopped, and
whose status has not yet been reported since they
stopped. If this option is not specified, the wait service
returns only the status of processes that end.

Usage notes
1. Use waitpid when you want to wait for a specified child process. The pid

argument specifies a set of child processes for which status is requested;
waitpid returns the status of a child process from this set.

waitpid

190 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

2. The waitpid service suspends execution of the calling thread until one of the
requested child or debugged processes ends or until it obtains information about
the process that ended. If a child or debugged process has already ended but
its status has not been reported when waitpid is called, the routine immediately
returns with that status information to the caller.

3. If the WUNTRACED option is specified, the foregoing also applies for stopped
children or stopped debugged processes. A debugged process is one that is
being monitored for debugging purposes with the ptrace service.

4. The wait service always returns status for stopped debugged processes, even if
WUNTRACED is not specified.

5. If status is available for one or more processes, the order in which the status is
reported is unspecified.

Example
See “Set up a signal to enforce a time limit for a program” on page 204 for an
example of signal coding that interprets the stem this returns:
"waitpid -1 wst. 0"

waitpid

Chapter 3. The syscall commands 191

write

ÊÊ write fd variable
length

ÊÍ

Function
write invokes the write callable service to copy data to a buffer and then write it to
an open file. The number of bytes written is returned in RETVAL.

Parameters
fd The file descriptor (a number) for a file.

variable
The name of the variable that is to store the data to be written to the file.

length
The number of bytes to be written to the file identified by fd. If you want a
length longer than 4096 bytes, specify the length parameter. If you do not
specify length, the length of variable is used, up to a maximum length of 4096
bytes. A variable longer than 4096 bytes is truncated to 4096, and RC is set to
4.

Usage notes
1. Within the variable, you can use the predefined variables beginning with ESC_

the same way you use C language escape sequences to avoid code page
dependence with some control characters. For example:
buf=’line 1’ || esc_n

appends a newline character to the string ’line 1’.

ESC_A Alert (bell)

ESC_B Backspace

ESC_F Form feed (new page)

ESC_N Newline

ESC_R Carriage return

ESC_T Horizontal tab

ESC_V Vertical tab

2. Return codes:

v 4 indicates one of these:

– If length was specified, the number of characters specified by length is not
the same as the length of variable. The data is truncated or padded as
required. The characters used for padding are arbitrarily selected.

– If length was not specified, 4 indicates that a variable longer than 4096
bytes was truncated to 4096.

v −24 indicates that storage could not be obtained for the buffer.

3. File offset: If fd specifies a regular file or any other type of file on which you
can seek, the write service begins writing at the file offset associated with that
file descriptor. A successful write operation increments the file offset by the

write

192 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

number of bytes written. If the incremented file offset is greater than the
previous length of the file, the file is extended: the length of the file is set to the
new file offset.

If the file descriptor refers to a file on which you cannot seek, the service begins
writing at the current position. No file offset is associated with such a file.

If the file was opened with the “append” option, the write routine sets the file
offset to the end of the file before writing output.

4. Number of bytes written: Ordinarily, the number of bytes written to the output
file is the number you specify in the length parameter. (This number can be
zero. If you ask to write zero bytes, the service simply returns a return value of
zero, without attempting any other action.)

If the length you specify is greater than the remaining space on the output
device, fewer bytes than you requested are written. When at least 1 byte is
written, the write is considered successful. The return value shows the number
of bytes written. An attempt to write again to the same file, however, causes an
ENOSPC error unless you are using a pseudoterminal. With a pseudoterminal,
if there is not enough room in the buffer for the whole write, the number of bytes
that can fit are written, and the number of bytes written is returned. However, on
the next write (assuming the buffer is still full) there is a block or EAGAIN is
returned, depending on whether the file was opened blocking or nonblocking.

Similarly, fewer bytes are written if the service is interrupted by a signal after
some but not all of the specified number of bytes are written. The return value
shows the number of bytes written. If no bytes were written before the routine
was interrupted, the return value is −1 and an EINTR error is reported.

5. The write service causes signal SIGTTOU to be sent under all the following
conditions:
v The process is attempting to write to its controlling terminal.
v TOSTOP is set as a terminal attribute.
v The process is running in a background process group.
v The SIGTTOU signal is not blocked or ignored.
v The process is not an orphan.

If all the conditions are met, SIGTTOU is sent.

6. Write requests to a pipe (FIFO) are handled in the same as write requests to a
regular file, with the following exceptions:

v There is no file offset associated with a pipe; each write request appends to
the end of the pipe.

v If the size of the write request is less than or equal to the value of the
PIPE_BUFF variable (described in the pathconf service), the write is
guaranteed to be atomic. The data is not interleaved with data from other
write processes on the same pipe. If the size of the write request is greater
than the value of PIPE_BUFF, the data can be interleaved, on arbitrary
boundaries, with writes by other processes, whether or not the
O_NONBLOCK flag is set.

Example
In the following example, assume that fd and buf were assigned values earlier in
the exec:
"write" fd "buf"

write

Chapter 3. The syscall commands 193

writefile

ÊÊ writefile pathname mode stem ÊÍ

Function
writefile invokes the open, write, and close callable services to write text files, with
lines up to 1024 characters long.

Parameters
pathname

A pathname for the file.

mode
A three- or four-digit number, corresponding to the access permission bits. Each
digit must be in the range 0–7, and at least three digits must be specified. For
more information on permissions, see Appendix B.

stem
The name of a stem variable that contains the information to be written to the
file. stem.0 is set to the number of lines to be written. stem.1 through stem.n,
where n is the total number of variables written, each contain a line to be
written. A newline is written to the file following each line.

Within the stem, you can use the predefined variables beginning with ESC_ the
same way you use C language escape sequences to avoid code page
dependence with some control characters. See the usage notes for “write” on
page 192.

Usage notes
File I/O stops when writefile sets a return code. writefile can set the following
return codes:

4 A line is longer than 1024 characters.

8 A write was attempted, but failed. RETVAL, ERRNO, and ERRNOJR
contain the return values from the write callable service.

For further usage notes, see:
v “close” on page 46
v “open” on page 126
v “write” on page 192

Example
In the following example, assume that fname and the stem file. were assigned
values earlier in the exec:
"writefile (fname) 600 file."

writefile

194 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 4. Examples: using syscall commands

The examples in this chapter are provided to assist you with coding REXX
programs that use z/OS UNIX syscall commands.

The first three examples can run in TSO/E, batch, or from the z/OS shells. They
begin with the call syscalls(’ON’) .

Read the root directory into a stem and print it
This example prints the contents of the root directory to standard output:
/* rexx */
call syscalls ’ON’
address syscall
’readdir / root.’
do i=1 to root.0

say root.i
end

The following line saves the results from the previous example in a text file:
’writefile /u/schoen/root.dir 777 root.’

Open, write, and close a file
/* rexx */
call syscalls ’ON’
address syscall
path=’/u/schoen/my.file’
’open’ path,

O_rdwr+O_creat+O_trunc,
660

if retval=-1 then
do

say ’file not opened, error codes’ errno errnojr
return
end

fd=retval
rec=’hello world’ || esc_n
’write’ fd ’rec’ length(rec)
if retval=-1 then

say ’record not written, error codes’ errno errnojr
’close’ fd

Open a file, read, and close it
/* rexx */

call syscalls ’ON’
address syscall
path=’/u/schoen/my.file’
’open (path)’,

O_rdonly,
000

if retval=-1 then
do
say ’file not opened, error codes’ errno errnojr
return
end

fd=retval
’read’ fd ’bytes 80’
if retval=-1 then

© Copyright IBM Corp. 1996, 2002 195

say ’bytes not read, error codes’ errno errnojr
else

say bytes
’close’ fd

Display the working directory and list a specified directory
This REXX program runs in the z/OS shells; it uses both the SH and SYSCALL
environments. The program identifies your working directory and lists the contents
of a directory that you specify as a parameter or after a prompt.
/* rexx */
parse arg dir
address syscall ’getcwd cwd’
say ’current directory is’ cwd
if dir=’ ’ then

do
say ’enter directory name to list’
parse pull dir
end

’ls -l’ dir
return

Parse arguments passed to a REXX program: the getopts function
The following simple utility function is used by some of the examples to parse the
arguments to a REXX program that is run from a shell. This function parses the
stem _ _argv for options in the format used by most POSIX commands.
/***/
/* Function: getopts */
/* This function parses --argv. stem for options in the format */
/* used by most POSIX commands. This supports simple option */
/* letters and option letters followed by a single parameter. */
/* The stem OPT. is setup with the parsed information. The */
/* options letter in appropriate case is used to access the */
/* variable: op=’a’; if opt.op=1 then say ’option a found’ */
/* or, if it has a parameter: */
/* op=’a’; if opt.op<>’ then say ’option a has value’ opt.op */
/* */
/* Parameters: option letters taking no parms */
/* option letters taking 1 parm */
/* */
/* Returns: index to the first element of --argv. that is not */
/* an option. This is usually the first of a list of files.*/
/* A value of 0 means there was an error in the options and */
/* a message was issued. */
/* */
/* Usage: This function must be included in the source for the exec */
/* */
/* Example: the following code segment will call GETOPTS to parse */
/* the arguments for options a, b, c, and d. Options a */
/* and b are simple letter options and c and d each take */
/* one argument. It will then display what options were */
/* specified and their values. If a list of files is */
/* specified after the options, they will be listed. */
/* */
/* parse value ’a b c d’ with, */
/* lca lcb lcc lcd . */
/* argx=getopts(’ab’,’cd’) */
/* if argx=0 then exit 1 */
/* if opt.0=0 then */
/* say ’No options were specified’ */
/* else */
/* do */
/* if opt.lca<>’ then say ’Option a was specified’ */

196 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

/* if opt.lcb<>’ then say ’Option b was specified’ */
/* if opt.lcc<>’ then say ’Option c was specified as’ opt.lcc */
/* if opt.lcd<>’ then say ’Option d was specified as’ opt.lcd */
/* end */
/* if --argv.0>=argx then */
/* say ’Files were specified:’ */
/* else */
/* say ’Files were not specified’ */
/* do i=argx to --argv.0 */
/* say --argv.i */
/* end */
/* */
/***/

getopts: procedure expose opt. --argv.
parse arg arg0,arg1
argc=--argv.0
opt.=’
opt.0=0
optn=0
do i=2 to argc

if substr(--argv.i,1,1)<>’-’ then leave
if --argv.i=’-’ then leave

opt=substr(--argv.i,2)
do j=1 to length(opt)

op=substr(opt,j,1)
if pos(op,arg0)>0 then

do
opt.op=1
optn=optn+1
end

else
if pos(op,arg1)>0 then

do
if substr(opt,j+1)<>’ then

do
opt.op=substr(opt,j+1)
j=length(opt)
end

else
do
i=i+1
if i>argc then

do
say ’Option’ op ’requires an argument’
return 0
end

opt.op=--argv.i
end

optn=optn+1
end

else
do
say ’Invalid option =’ op
say ’Valid options are:’ arg0 arg1
return 0
end

end
end
opt.0=optn
return i

Chapter 4. Examples: using syscall commands 197

Count newlines, words, and bytes
This is an example of a REXX program that can run as a shell command or filter. It
is a REXX implementation of the wc (word count) utility supporting the options −c,
−w, and −l.

The program uses open , close , and EXECIO. To read standard input, it accesses
the file /dev/fd0 .

/* rexx */
parse value ’l w c’ with,

lcl lcw lcc . /* init lower case access vars */
argx=getopts(’lwc’) /* parse options */
if argx=0 then return 1 /* return on error */
if opt.0=0 then /* no opts, set defaults */

parse value ’1 1 1’ with,
opt.lcl opt.lcw opt.lcc .

if --argv.0>argx then /* multiple files specified */
single=0

else
if --argv.0=argx then /* one file specified */

single=1
else

do /* no files specified, use stdin */
single=2
--argv.argx=’/dev/fd0’ /* handle it like fd0 specified */
--argv.0=argx
end

parse value ’0 0 0’ with,
twc tcc tlc . /* clear total counters */

address syscall
do i=argx to --argv.0 /* loop through files */

fi=--argv.i /* get file name */
parse value ’0 0 0’ with,

wc cc lc . /* clear file counters */
’open (fi)’ o_rdonly 000 /* open the file */
fd=retval
if fd=-1 then

do /* open failed */
say ’unable to open’ fi
iterate
end

do forever /* loop reading 1 line at a time */
address mvs ’execio 1 diskr’ fd ’(stem LN.’
if rc<>0 | ln.0=0 then leave /* error or end of file */
if opt.lcw=1 then

wc=wc+words(ln.1) /* count words in line */
if opt.lcc=1 then

cc=cc+length(ln.1)+1 /* count chars in line + NL char */
if opt.lcl=1 then

lc=lc+1 /* count lines */
end
’close’ fd /* close file */
twc=twc+wc /* accumulate total words */
tlc=tlc+lc /* accumulate total lines */
tcc=tcc+cc /* accumulate total chars */
if opt.lcw<>1 then wc=’’ /* format word count */

else wc=right(wc,7)
if opt.lcl<>1 then lc=’’ /* format line count */

else lc=right(lc,7)
if opt.lcc<>1 then cc=’’ /* format char count */

else cc=right(cc,7)
if single=2 then fi=’’ /* if stdin used clear filename */
say lc wc cc ’ ’fi /* put out counts message */

198 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

end
if single=0 then /* if multiple files specified */

do /* format and output totals line */
if opt.lcw<>1 then twc=’

else twc=right(twc,7)
if opt.lcl<>1 then tlc=’

else tlc=right(tlc,7)
if opt.lcc<>1 then tcc=’

else tcc=right(tcc,7)
say tlc twc tcc ’ total’
end

return 0

Obtain information about the mounted file system
This REXX program uses getmntent and statfs to list all mount points, the name of
the mounted file system, and the available space in the file system. This sample
REXX program, as coded, must be run from a shell.
/* rexx */
address syscall
numeric digits 12
’getmntent m.’
do i=1 to m.0

’statfs’ m.mnte_fsname.i ’s.’
j=s.stfs_avail * s.stfs_blocksize
if length(m.mnte_path.i)>20 then

say m.mnte_path.i’ ’strip(m.mnte_fsname.i) ’(’j’)’
else
say left(m.mnte_path.i,20) strip(m.mnte_fsname.i) ’(’j’)’

end

Mount a file system
This REXX program uses mount to mount a file system, an action that requires
superuser authority. The name of this program is mountx , and it is in /samples .

The syntax is:
mountx pathname fsn options

where pathname is the name of the directory where the file system is to be
mounted, and fsn is the name of the HFS data set. The options are:

-p parm Parameter data, in the form of a single string.

-r Mount file system as read-only.

-t type File system type (for example, HFS). The default file system type to
HFS. If the file system type is HFS, the program changes the file
system name to uppercase.

The pathname and the file system name can be specified in any order. stat is used
to determine which name is the pathname.

For the getopts function called in this program, see “Parse arguments passed to a
REXX program: the getopts function” on page 196.

/* rexx */
/**/
/* Determine which options were specified. */
/**/

Chapter 4. Examples: using syscall commands 199

lcp=’p’
lcr=’r’
lct=’t’
ix=getopts(’r’,’pt’)
/**/
/* If -r specified, mount file system read-only. */
/**/
if opt.lcr<>’ then

mtm=mtm_rdonly
else
mtm=mtm_rdwr

/**/
/* If -t ’name’ specified, direct mount request to file system ’name’.*/
/* Otherwise, direct mount request to file system named HFS. */
/**/
if opt.lct<>’ then

type=translate(opt.lct)
else
type=’HFS’

/**/
/* Complain if required parameters are missing. */
/**/
if __argv.0<>ix+1 then

do
say ’Pathname and file system name are required, and ’
say ’they must follow the options: MOUNT <options> <pathname> <fsn>’
return 1
end

/**/
/* Direct function calls to REXX z/OS UNIX services. */
/**/
address syscall
/**/
/* Determine which of the parameters is the mount point name */
/* (it must be a pathname), and which is the file system to be */
/* mounted. */
/**/
’stat (__argv.ix) st.’
if st.st_type<>s_isdir then

do
fsn=__argv.ix
ix=ix+1
path=__argv.ix
end

else
do
path=__argv.ix
ix=ix+1
fsn=__argv.ix
end

’stat (path) st.’
if st.st_type<>s_isdir then

do
say "Can’t figure out pathname, neither name is a directory:"
say path
say fsn
return 1
end

/**/
/* HFS file system requires mounted file systems to be data sets, */
/* so translate the file system name to upper case. */
/**/
if type=’HFS’ then

fsn=translate(fsn)
/**/
/* Mount the file system. */

200 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

/* Return code Return code Meaning */
/* from system to caller */
/* 0 0 Success, file system now mounted */
/* 1 2 Success, file system mount in progress */
/* -1 1 Error, explained by ERRNO and reason code*/
/**/
"mount (path) (fsn) (type) (mtm) (opt.lcp)"
select
when retval= 0 then
do
say fsn ’is now mounted at’
say path
return 0
end

when retval= 1 then
do
say fsn ’will be mounted asynchronously at’
say path
return 2
end

otherwise
do
say ’Mount failed:’
say ’ Error number was’ errno’x(’x2d(errno)’)’
say ’ Reason code was ’ right(errnojr,8,0)
return 1
end

end

Unmount a file system
This REXX program uses unmount to unmount a file system, an action that
requires superuser authority. The name of this program is unmountx , and it is in
/samples .

The syntax is:
unmountx name

or
unmountx -t filesystype

where:

v name is the pathname where the file system is mounted, or the name of an HFS
data set.

v filesystype is the type name of the physical file system (PFS).

The program assumes that the case of the requested file system name is entered
correctly in uppercase. If the unmount fails, it folds the file system name to
uppercase and retries the unmount.
/**/
/* Direct commands to REXX z/OS UNIX services. */
/**/

address syscall

/**/
/* Verify that exactly one operand or a pfs type was specified. */
/**/
if __argv.0=3 & __argv.2=’-t’ then

return fstype(__argv.3)
if __argv.0<>2 then

do

Chapter 4. Examples: using syscall commands 201

say ’Syntax: unmount <name> or unmount -t <filesystype>’
return 2
end

/**/
/* Determine if the name is a pathname. If so, determine file system */
/* name via stat(). Otherwise, use the name as entered. */
/**/
’stat (__argv.2) st.’
if retval =0 & st.st_type=s_isdir then

do
getmntent mnt. x2d(st.st_dev)
fsn=mnt.mnte_fsname.1
end

else
fsn=__argv.2

/**/
/* Unmount the file system, trying both the name as entered */
/* and the name uppercased, since the HFS file system requires */
/* mounted file systems to be data sets. */
/* */
/* Return code Return code Meaning */
/* from system to caller */
/* Not -1 0 Success, file system unmount complete */
/* -1 1 Error, explained by ERRNO and reason code*/
/**/
"unmount (fsn)" mtm_normal /* unmount name as specified */
if retval =0 then

do
fsn=translate(fsn) /* if fails, upcase name and retry */
"unmount (fsn)" mtm_normal
end

if retval<>-1 then
do
say ’Unmount complete for’ fsn
return 0
end

else
do
say ’Unmount failed:’
say ’ Error number was’ errno’x(’x2d(errno)’)’
say ’ Reason code was ’ right(errnojr,8,0)
return 1
end

/**/
/* Unmount all file systems for a PFS type */
/**/
fstype:

arg name . /* make upper case */
/***/
/* Loop through mount table until unable to do any unmounts. */
/* This handles cascaded mounts. */
/***/
do until didone=0

didone=0
’getmntent m.’
do i=1 to m.0

if m.mnte_fstype.i=name then
do
"unmount (m.mnte_fsname.i)" mtm_normal
if retval<>-1 then

do
didone=1
say ’unmounted:’ m.mnte_fsname.i
end

end
end

end

202 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

/***/
/* Make one more pass and show errors for failed unmounts */
/***/
goterr=0
’getmntent m.’
do i=1 to m.0

if m.mnte_fstype.i=name then
do
"unmount (m.mnte_fsname.i)" mtm_normal
if retval=-1 then

do
say ’Unmount failed for’ m.mnte_fsname.i’:’
say ’ Error number was’ errno’x(’x2d(errno)’)’
say ’ Reason code was ’ right(errnojr,8,0)
goterr=1
end

else
say ’unmounted:’ m.mnte_fsname.i

end
end
return goterr

Run a shell command and read its output into a stem
This REXX program runs the ls shell command and reads the output from the
command into a stem. The program uses pipe , close , and EXECIO. It accesses
/dev/fd n, where n is a number that the exec concatenates to /dev/fd .

Note: You can use this example to trap output from commands when the output is
relatively small (less than 100KB). For command output that could be larger,
you should use the spawn service.

/* rexx */
address syscall ’pipe p.’ /* make a pipe */
’ls>/dev/fd’ || p.2 /* run the ls command and

redirect output to the
write end of the pipe */

address syscall ’close’ p.2 /* close output side */
address mvs ’execio * diskr’ p.1 ’(stem s.’ /* read data in pipe */
do i=1 to s.0 /* process the data */

say s.i
end

Print the group member names
This REXX program uses getgrgid , getgrgnam , and write to print the names of
the users that are connected to a group. The group can be specified as either a
GID or a group name.
/* rexx */
arg group .
address syscall
if datatype(group,’W’)=1 then

’getgrgid (group) gr.’ /* use getgrgid if GID specified */
else
’getgrnam (group) gr.’ /* use getgrgnam if group name specified */

if retval<=0 then /* check for error */
do
say ’No information available for group’ group
return 1
end

say ’Connected users for group’ strip(gr.gr_name)’(’gr.gr_gid’)’
j=1
do i=gr_mem to gr.0

buf=’ ’ gr.i

Chapter 4. Examples: using syscall commands 203

if j//5=0 | i=gr.0 then
buf=buf || esc_n /* write newline every 5 groups or at end */

j=j+1
’write 1 buf’

end
return 0

Obtain information about a user
This REXX program prints information from the user database for a user. The user
can be specified as either a UID or a user name. The program uses getpwuid ,
getpwnam , getgrgid , getgroupsbyname , and write .

/* rexx */
arg user .
address syscall
if datatype(user,’W’)=1 then

’getpwuid (user) pw.’ /* use getpwuid if UID specified */
else
’getpwnam (user) pw.’ /* use getpwnam if user name specified */

if retval<=0 then /* check for error */
do
say ’No information available for user’ user
return 1
end

say ’Information for user’ strip(pw.pw_name)’(’pw.pw_uid’)’
say ’ Home directory: ’ strip(pw.pw_dir)
say ’ Initial program:’ strip(pw.pw_shell)
’getgrgid’ pw.pw_gid ’gr.’
if retval<=0 then /* check for error */

do
say ’ Group information not available’
return 1
end

say ’ Primary group: ’ strip(gr.gr_name)’(’gr.gr_gid’)’
’getgroupsbyname’ pw.pw_name ’s.’
if retval<=0 then /* check for error */

do
say ’ Supplemental group information not available’
return 1
end

say ’ Supplemental GIDs:’
do i=1 to s.0

buf=right(s.i,12)
if i//5=0 | i=s.0 then

buf=buf || esc_n /* write newline every 5 groups or at end */
’write 1 buf’

end
return 0

Set up a signal to enforce a time limit for a program
This REXX program runs /bin/ls to list files in the /bin directory, and sets up a
signal that enforces a time limit of 10 seconds for the program to run:

/* REXX */
address syscall
/* initialize file descriptor map (see note 1) */
fd.0=-1
fd.2=-1
’creat /tmp/dirlist 600’
fd.1=retval
/* initialize parameter stem (see note 2) */
parm.1=’/bin/ls’

204 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

parm.2=’-l’
parm.3=’/bin’
parm.0=3
/* spawn new process (see note 3) */
’spawn /bin/ls 3 fd. parm. --environment.’
pid=retval
/* set up signals to wait up to 10 seconds (see note 4) */
call syscalls ’SIGON’
’sigaction’ sigalrm sig_cat 0 ’oldh oldf’
’sigprocmask’ sig_unblock sigaddset(sigsetempty(),sigalrm) ’mask’
’alarm’ 10 /* set alarm */
’waitpid (pid) st. 0’ /* wait for process term or alarm */
srv=retval
’alarm 0’ /* make sure alarm is now off */
if srv=-1 then /* if alarm went off */

do
’kill’ pid sigkill /* cancel child process */
’waitpid (pid) st. 0’ /* wait for completion */
end

call syscalls ’SIGOFF’ /* turn off signals */
/* determine process status code (see note 5) */
select

when st.w_ifexited then
say ’exited with code’ st.w_exitstatus

when st.w_ifsignaled then
say ’terminated with signal’ st.w_termsig

when st.w_ifstopped then
say ’stopped by signal’ st.w_stopsig

end
return
sigsetempty: return copies(0,64)
sigaddset: return overlay(1,arg(1),arg(2))

Notes:

1. The file descriptor map is set up so that the file descriptor for the new file being
created is remapped to file descriptor 1 (standard output) for the new process.
File descriptors 0 and 2 will not be opened in the new process.

2. The first parameter is set to the pathname for the file being spawned. Additional
parameters are set in the format the program expects. In this case, they specify
a long directory listing for the /bin directory.

3. The new process is spawned to run /bin/ls . File descriptors greater than or
equal to 3 are not available to the new process. fd.0 to fd.2 are used in
remapping file descriptors from the parent. The current environment for the
parent is passed to the new process.

4. The syscalls function is called to enable signals. If this program were to be
exec’d (run from the shell), this would not be necessary, and, similarly, the call
later on to turn off signals would also be unnecessary.

sigaction is used to set the action for sigalrm to be caught. sigprocmask is
used to unblock sigalrm . This call also uses sigaddset and sigsetempty to
create a signal mask with the sigalrm bit.

The alarm is set by using the alarm service, and the process waits for
completion of the child or the alarm. "ALARM 0" is used just to make sure the
alarm is off.

5. A SELECT instruction is used on the status stem returned by the waitpid
service. This determines if the process was terminated by a signal, if it exited,
or if the process is stopped. If it exited, the exit status is available; otherwise,
the signal number is available.

Chapter 4. Examples: using syscall commands 205

List the ACL entries for a file
This example will show the access ACL entries for a pathname given as a
parameter:
/* REXX */
parse arg path
call syscalls ’ON’
address syscall
’aclinit acl’ /* init variable ACL to hold acl */
’aclget acl (path)’ acl_type_access /* get the file access acl */
do i=1 by 1 /* get each acl entry */

’aclgetentry acl acl.’ i
if rc<0 | retval=-1 then leave /* error, assume no more */
parse value ’- - -’ with pr pw px
if acl.acl_read=1 then pr=’R’ /* set rwx permissions */
if acl.acl_write=1 then pw=’W’
if acl.acl_execute=1 then px=’X’
aclid=acl.acl_id /* get uid or gid */

/* determine acl type */
if acl.acl_entry_type=acl_entry_user then type=’UID=’
else
if acl.acl_entry_type=acl_entry_group then type=’GID=’
else
type=’???=’

say pr || pw || px type || aclid /* print line */
end
’aclfree acl’ /* must free acl buffer */

206 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 5. z/OS UNIX REXX functions

The z/OS UNIX REXX functions extend the REXX language on z/OS when it is
used in the z/OS UNIX REXX environment. With the exception of bpxwunix() and
syscalls() , these functions must be run in a z/OS UNIX environment. The z/OS
UNIX REXX functions include functions for standard REXX I/O, and for accessing
common file services and environment variables.

All of the functions are fully enabled for large files (>2GB).

All numbers that are used as input on the functions must be integers. The default
precision for REXX is 9 digits. If arithmetic is used on large numbers, be sure to
change your precision appropriately, using the NUMERIC DIGITS statement.

REXX I/O functions
The REXX input functions are charin() and linein() . The chars() and lines()
functions determine if data remains in an input stream.

The REXX output functions are charout() and lineout() .

The REXX stream() function controls the processing of I/O streams (file streams
and process streams) and obtains their status. A number of commands are used
within the stream() function to control stream processing.

Opening a stream implicitly
File streams can be opened implicitly or explicitly. You open a stream implicitly by
using a pathname as the stream name for one of the six input or output functions. If
the function is charout() or lineout() , the file is opened for output. If the file does
not exist, it is created. For newly created files, the permission bits 0666 are applied
to your process umask. The position for the first write is set to the end of file,
unless the function call explicitly specifies a write location. If one of the four input
functions is used, the file is opened for input.

When it is opened implicitly, a stream can be opened for both input and output. The
input and output locations are independent of each other. If the stream is opened
for both input and output, two file descriptors are used. The stream close
command closes the stream and both file descriptors.

Opening a stream explicitly
You open a stream explicitly by using the stream() function.

To explicitly open a file stream, use the open command. The advantage of opening
file streams explicitly is that the program can determine that the stream open failed.
The program can also have several separate streams for the same file.

The stream open command fails if:
v The file does not exist.
v The pathname cannot be accessed for either input or output.

If the file cannot be opened, a message is written to stderr . The I/O function
returns as if the stream is empty, at end of file, and the file cannot be extended.

© Copyright IBM Corp. 1996, 2002 207

|

|

|
|
|
|
|

|

|
|
|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|

|
|
|
|

|

|

|
|
|

|
|
|

|
|

When a stream is explicitly opened, the stream() function returns a string that is the
name of the stream. This is the only name that can be used to identify that stream.
Multiple opens for the same pathname open multiple streams, each with its own
name.

Process streams
Process streams can only be opened explicitly, with the popen command. With
process streams, you can run a shell command and provide its input or receive its
output. To write the input for the command, use the popen write command. To
receive the command’s output, use the popen read command. The stream()
function returns a string that is the name of the process stream. Use this name on
the input functions for popen read or the output functions for popen write .

A process stream spawns /bin/sh -c your_command. The process inherits stderr
and either stdin or stdout . If the process is opened for read, stdout for the
process is a pipe; otherwise, stdin is a pipe. The shell completion code is returned
as the result for the stream pclose command. pclose closes your end of the pipe
and waits for the process to terminate.

208 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

bpxwunix()

ÊÊ bpxwunix (cmd
,stdin

,stdout
,stderr

,env

) ÊÍ

Function
Runs a shell command and optionally:

v Provides its stdin

v Traps its stdout

v Traps its stderr

v Exports a set of environment variables

Parameters
cmd

The shell command that you want to run. The shell is run as /bin/sh -c followed
by the string you specify as the command.

stdin
An optional argument, stdin is the name of a compound variable (stem) that
contains one of these:

v Input for the command

v The string STACK, if the input is on the stack

v DD:ddname, where ddname is an allocated DD to be read

stdin.0 must contain the number of lines that are to be redirected to the
command. stdin.1, stdin.2, ... contain the lines. If this argument is not specified,
your current stdin file is passed to the shell for stdin.

stdout
An optional argument, stdout is the name of a compound variable (stem) that,
on return, contains the normal output from the command. stdout.0 is the
number of lines output by the command. stdout.1, stdout.2, ... contain the
output lines.

stdout can also be specified as:

v The string STACK, if the output is to be returned on the stack

v DD:ddname, if the output is to be written to an allocated DD

If stdout is not specified, your current stdout file is passed to the shell for
stdout.

stderr
An optional argument, stderr is the name of a compound variable (stem) that,
on return, contains the error output from the command. stderr.0 is the number
of lines output by the command. stderr.1, stderr.2, ... contain the output lines.
stderr can also be specified as:

v The string STACK, if the output is to be returned on the stack

v DD:ddname, if the output is to be written to an allocated DD

bpxwunix()

Chapter 5. z/OS UNIX REXX functions 209

|
|

|

|||||||||||||||||||||||||||||||||||

|
|

|

|

|

|

|

|

|

|
|
|

|
|
|

|

|

|

|
|
|

|
|
|
|
|

|

|

|

|
|

|
|
|
|
|

|

|

If this argument is not specified, your current stderr file is passed to the shell for
stderr.

env
An optional argument, env is the name of a compound variable (stem) that
contains environment variables for the command. env.0 must contain the
number of environment variables to be passed to the command. env.1, env.2, ...
contain the variables in the form variable_name=variable_value. If env is not
specified, your current environment is passed to the shell for stdin.

Usage notes
1. The bpxwunix() function runs the shell by passing a single command similar to

sh -c cmd . It does not run a login shell.

2. bpxwunix() can be used outside of the z/OS UNIX REXX environment (for
example, in TSO/E). In this case, stdin, stdout, stderr, and environment
variables are not inherited from the current process environment.

3. If the stdout or stderr stems are specified, they are filled as appropriate:

v A return value in the range 0-255 is the exit status of the command.

v A negative return value indicates failure, and is usually a signal number.

v A number less than −1000 indicates a stop code.

4. The DD names that are used for input and output are processed by the
standard REXX input and output services. They have the same restrictions as
REXX in terms of the types of allocations they can handle.

Example
To trap output from the ls command and display it:
call bpxwunix ’ls -l’,,out.

do i=1 to out.0
say out.i

end

To send output from the above example to word count and print byte count:
call bpxwunix ’wc’,out.,bc.

parse var bc.1 . . count
say ’byte count is’ count

To trap output on stack and feed it to word count:
if bpxwunix(’ls -l’,,stack)=0 then

call bpxwunix ’wc’,stack

bpxwunix()

210 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|
|
|
|
|
|

|

|
|

|
|
|

|

|

|

|

|
|
|

|

|

|
|
|
|

|

|
|
|

|

|
|

|

charin()

ÊÊ charin (
name , start ,length

) ÊÍ

Function
Returns a string of up to length characters read from the stream specified by name.
The location for the next read is the current location increased by the number of
characters returned. This function does no editing of the data.

Parameters
name

The name for the stream can be a pathname or a string that was returned from
the stream open or popen commands. If name is omitted, the standard input
stream is used.

start
For a persistent stream, specifies the byte number in the file where the read
begins. start should not be specified for other types of streams.

length
The number of bytes returned by the function. If length bytes are not available
in the stream, the function returns the number of bytes that are available and
marks an error condition on the stream. For non-persistent streams, this
function either blocks until length bytes are available, or returns with fewer
bytes, depending on the file type and open flags. If length is 0, no characters
are read, a null string is returned, and the read position is set based on the
value of start.

Example
To read the next 256 characters:
say charin(file,,256)

To set the read location to the sixth 80-byte record:
call charin file,5*80+1,0

charin()

Chapter 5. z/OS UNIX REXX functions 211

|
|

|

||||||||||||||||||||||||||||||||||

|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

charout()

ÊÊ charout (
name , string ,start

) ÊÍ

Function
Returns the number of characters remaining after an attempt to write string to the
stream specified by name. The location for the next write is the current location
increased by the number of characters returned.

Parameters
name

The name for the stream can be a pathname or a string that was returned from
the stream open or popen commands. If name is omitted, the standard output
stream is used.

string
Data to be written to the stream specified byname.

start
For a persistent stream, specifies the byte number in the file where the write
begins. start should not be specified for other types of streams.

Usage notes
1. If string is omitted, no data is written, 0 is returned, and the write location is set

to the value start.

2. If start is also omitted, the write position is set to the end of file.

Example
To write the string to stdout :
call charout ,’hello world’esc_n

To set the write position to end:
call charout file

charout()

212 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||||||||||||||||||

|
|

|

|
|
|

|

|
|
|
|

|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

chars()

ÊÊ chars (
name

) ÊÍ

Function
Returns the number of characters remaining in the input stream specified by name.
For persistent streams, this is the number of characters between the current read
location and the end of the stream. If the stream was created by the stream popen
command, chars() , while the process is active or bytes remain in the stream,
returns either 1 or the number of bytes in the stream. After the process has
terminated and the stream is empty, chars() returns a value of 0.

Parameters
name

The name for the stream, which can be a pathname or a string that was
returned from the stream open or popen commands. If name is omitted, the
standard input stream is used.

Example
To get the number of bytes in the stdin stream:
remainder=chars()

chars()

Chapter 5. z/OS UNIX REXX functions 213

|
|

|

||||||||||||||||||

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|

|

|

|

chmod()

ÊÊ chmod (pathname ,
operation

mode) ÊÍ

Function
Changes the mode for the specified pathname. It returns 0 if the mode for the
specified pathname is changed; otherwise, it returns the system call error number.

Parameters
pathname

An absolute or relative pathname for a file.

operation
Specifies whether mode bits are to be set, added, or deleted:

= Set the mode bits. If an operation is not specified, = is used.

+ Add the mode bits to what is currently set for the file.

− Remove the mode bits from what is currently set for the file.

mode
A string of octal digits for the new file mode.

Example
To set permissions for owner and group to read-write:
call chmod file,660

To add read permission for other:
call chmod file,+4

chmod()

214 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||||||||

|
|

|

|
|

|

|
|

|
|

||

||

||

|
|

|

|

|

|

|

|

convd2e()

ÊÊ convd2e (timestamp) ÊÍ

Function
Converts timestamp to POSIX epoch time, and returns the time in seconds past the
POSIX epoch (1/1/1970).

Parameters
timestamp

A 14-character string in the form mmddyyyyHHMMSS.

Example
To set POSIX time for 4/21/99 7:15:00 :
say convd2e(’04211999071500’)

convd2e()

Chapter 5. z/OS UNIX REXX functions 215

|
|

|

|||||||||||||
|
|

|

|
|

|

|
|

|

|

|

|

directory()

ÊÊ directory (
newdirectory

) ÊÍ

Function
Returns the full pathname to the current directory, first changing it to newdirectory if
the argument is supplied and you have access to that directory.

Parameters
newdirectory

An absolute or relative pathname for a directory.

Example
To change the current directory to /u/ehk:
call directory ’/u/ehk’

directory()

216 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||

|
|

|

|
|

|

|
|

|

|

|

|

environment()

ÊÊ environment (variable name
, new value

) ÊÍ

ÊÊ environment (variable name
, , operation

) ÊÍ

Function
Queries and alters environment variables. The stem __environment. is not altered
through this service. That stem contains the environment variables on entry to the
REXX program, and is available for your use. Alterations of the environment are
used on subsequent calls to the stream popen command and ADDRESS SH.

Parameters
variable name

The name of the environment variable to operate on. If this is the only argument
specified, the value of the variable is returned and the variable is not affected.

new value
A string to replace the value of variable name. The previous value of the
variable is returned.

operation
An optional argument that specifies the operation to be performed. Only the first
character is significant. The values can be:

exists Tests the existence of the variable. The function returns 1 if the
variable is defined, and 0 if it is not defined.

delete Deletes the variable from the environment, if it exists. The
function returns 0 if the variable is successfully deleted, and 1 if
the variable is not defined.

Example
To get the value of the PATH environment variable:
path=environment(’PATH’)

To reset PATH to the current directory:
call environment ’PATH’,’.’

To delete the PATH environment variable:
call environment ’PATH’,,’d’

environment()

Chapter 5. z/OS UNIX REXX functions 217

|
|

|

||||||||||||||||||||||||

|
||

||||||||||||||||||||||||

|
|

|

|
|
|
|

|

|
|
|

|
|
|

|
|
|

||
|

||
|
|

|

|

|

|

|

|

|

|

exists()

ÊÊ exists (filename) ÊÍ

Function
Returns the full pathname for the specified file. If the file does not exist, the function
returns a null string.

Parameters
filename

A string that names a file

Example
To print the full pathname for the file myfile:
say exists(’myfile’)

exists()

218 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

|||||||||||||
|
|

|

|
|

|

|
|

|

|

|

|

getpass()

ÊÊ getpass (prompt) ÊÍ

Function
Prints prompt on the controlling TTY and reads and returns one line of input with
terminal echo suppressed.

Parameters
prompt

A string that prints on the controlling TTY

Example
To prompt for a password and read it:
psw=getpass(’enter password’)

getpass()

Chapter 5. z/OS UNIX REXX functions 219

|
|

|

|||||||||||||
|
|

|

|
|

|

|
|

|

|

|

|

linein()

ÊÊ linein (
name

,start
,count

) ÊÍ

Function
Returns one line or no lines from the stream specified in name, and sets the
location for the next read to the beginning of the next line. The data is assumed to
be text. The newline character is the line delimiter and is not returned. A null string
is returned if no line is returned; this appears exactly the same as a null line in the
file. Use chars() or lines() to determine if you are at end of file. Use stream() to
determine if there is an error condition on the stream.

Parameters
name

The name for the stream can be a pathname or a string that was returned from
the stream open or popen commands. If name is omitted, the standard input
stream is used.

start
For a persistent stream only, this argument can have the value 1, to begin
reading at the beginning of the stream. No other value for start is supported. Do
not specify start for other types of streams.

count
Specify 0 or 1 for the number of lines to be returned by the function. If one line
is not available in the stream, the function returns a null string and marks an
error condition on the stream. For non-persistent streams, this function either
blocks until a line is available, or returns as though it is end of file, depending
on whether any data remains in the file, on the file open flags, and on the type
of file. If count is 0, no lines are read, a null string is returned, and, if start is 1,
the read position is set to the beginning of the stream.

Example
To read the next line:
line=linein(file)

To read the first line in the file:
line=linein(file,1)

linein()

220 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||||||||||||

|
|

|

|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|

|

|

|

lineout()

ÊÊ lineout (
name

,string
,start

) ÊÍ

Function
Returns 1 line or 0 lines that are remaining to be written after an attempt to write
string to the stream specified by name. A newline character is written following
string. If an error occurs on the write, some data may be written to the stream, and
the function returns the value 1.

Parameters
name

The name for the stream can be a pathname or a string that was returned from
the stream open or popen commands. If name is omitted, the standard output
stream is used.

string
Data that is to be written to the stream specified by name. If string is omitted,
no data is written, 0 is returned, and the write position is set based on the value
of start. If both string and start are omitted, the write position is set to the
beginning of the file.

start
For a persistent stream, this argument can have the value 1, to begin writing at
the beginning of the stream. No other value for start is supported. Do not
specify start for other types of streams.

Example
to write the line to stdout :
call lineout ,’hello world’

lineout()

Chapter 5. z/OS UNIX REXX functions 221

|
|

|

||||||||||||||||||||||||||||

|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|

lines()

ÊÊ lines (
name

) ÊÍ

Function
Returns 1 if data remains in the stream; otherwise it returns 0. Programs should
check for a value of 0 or nonzero.

Parameters
name

The name for the stream can be a pathname or a string that was returned from
the stream open or popen commands. If name is omitted, the standard output
stream is used.

Example
To set more to nonzero, if stdin has data:
more=lines()

lines()

222 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||

|
|

|

|
|

|

|
|
|
|

|

|

|

|

outtrap()

ÊÊ outtrap (
name

,max
,catopt

) ÊÍ

Function
Enables or disables the trapping of output from commands run using ADDRESS
TSO, and returns the name of the variable in which trapped output is stored. If
trapping is off, the word OFF is returned. Note that outtrap does not trap output for
ADDRESS SH or any other command environment besides TSO. To trap shell
command output, see “bpxwunix()” on page 209.

Parameters
name

The name of a stem, a variable prefix used to contain command output, or the
string OFF to turn off trapping.

max
The maximum number of lines to trap. If max is not specified, or if it is specified
as * or a blank, the number of lines is set to 999 999 999.

catopt
Specify one of these:

concat

Each command output trapping begins following
the previous command output.

noconcat Output from each command is trapped starting
with the variable concatenated with 1. Unused
variables do not have their values altered.

For additional information about using the TSO command environment, see
“The TSO command environment” on page 5.

Example
To trap TSO command output, use the stem OUT, rewriting the stem on each
command:
call outtrap ’out.’,,’NOCONCAT’

outtrap()

Chapter 5. z/OS UNIX REXX functions 223

|
|

|

||||||||||||||||||||||||||||

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|

|
|

|

|
|

||
|
|

|
|

|

|
|

|

|

procinfo()

ÊÊ procinfo (
pid

,request

) ÊÍ

Function
Retrieves information about one or more processes.

Parameters
pid

The process ID number of the process for which information is to be returned. If
pid is not specified, basic information is retrieved for all processes you have
authorization to view.

request
Specify one of these:

process Retrieve information about the specified process. This is the
default.

file Retrieve file information for the specified process.

thread Retrieve information for all threads in the specified process.

Results
Information is returned in simple and compound variables. Each variable name has
a prefix that defaults to bpxw_. This prefix can be changed using the rexxopt()
function. A stem can be used as the prefix, in which case the tails are the simple
suffixes set by this function.

If pid is not specified, the following suffixes are set:

Suffix Description

PID.n Each variable contains one process ID
number. PID.0 is the number of PIDs
returned. PID.1, PID.2, ... are the PID
numbers.

THREADS.n The number of threads for the process in the
corresponding PID.n

ASID.n The address space ID for the process in the
corresponding PID.n

JOBNAME.n The jobname for the process in the
corresponding PID.n

LOGNAME.n The login name (user ID) for the process in
the corresponding PID.n

procinfo()

224 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

|||||||||||||||||||||||

|
|

|

|

|

|
|
|
|

|
|

||
|

||

||

|

|
|
|
|

|

|||

||
|
|
|

||
|

||
|

||
|

||
|
|

If process information is requested for a process, the following suffixes are set:

Suffix Description

STATE Contains 0 or more of the following strings:
v MULPROCESS
v SWAP
v TRACE
v STOPPED
v INCOMPLETE
v ZOMBIE

PID Process ID number

PPID Parent process ID number

PGRID Process group ID number

SID Session ID number

FPGID Foreground process group number

EUID Effective user ID

RUID Real user ID

SUID Saved set user ID

EGID Effective group ID

RGID Real group ID

SGID Saved set group ID

SIZE Region size

SLOWPATH Number of slow path syscalls

USERTIME Time spent in user code

SYSTIME Time spent in system code

STARTTIME Time when the process started (dub time)

OETHREADS Number of z/OS UNIX threads

PTCREATE Number of threads created using
pthread_create

THREADS Number of threads in the process

ASID Address space ID of the process

JOBNAME Jobname for the process

LOGNAME Login name (user ID) for the process

CONTTY Pathname for the controlling TTY

CMDPATH Pathname for the command that started the
process

CMDLINE Command line that started the process

If file information is requested for a process, the following suffixes are set:

TYPECD Type code of the file:
v rd : root directory
v cd : current directory
v fd : file descriptor
v vd : vnode descriptor

TYPE Type number of the file

OPENF Open flags

procinfo()

Chapter 5. z/OS UNIX REXX functions 225

|

|||

||
|
|
|
|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

||

||

||

||

||

||
|

||
|

|

|||
|
|
|
|

||

||

INODE Inode number

DEVNO Device number

NODES Count of the total number of file nodes
returned

If thread information is requested for a process, the following suffixes are set:

Suffix Description

THREAD_ID Thread ID

SYSCALL Current syscall, if in kernel

TCB TCB address

RUNTIME Time running in milliseconds

WAITTIME Time waiting in milliseconds

SEMNUM Semaphore number if on a semop
(ptrunwait.x=’D’)

SEMVALUE Semaphore value if on a semop
(ptrunwait.x=’D’)

LATCHPID Latch that the process waited for

SIGPENDMASK Signal pending mask

LOGNAME Login name

LASTSYSCALL.n Last 5 syscalls

PTCREATED Contains J if this was pthread-created

PTRUNWAIT Contains one of the following letters, to
indicate the current run or wait state of the
thread:

A msgrecv wait

B msgsend wait

C communication wait

D Semaphore wait

F File System Wait

G MVS in Pause

K Other kernel wait

P PTwaiting

R Running or non-kernel wait

S Sleep

W Waiting for child

X Fork new process

Y MVS wait

procinfo()

226 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

||

||

||
|
|

|

|||

||

||

||

||

||

||
|

||
|

||

||

||

||

||

||
|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

Suffix Description

PTTYPE Contains one of the following letters to
indicate thread type:

N Medium-wait thread

O Asynchronous thread

U Initial process thread

Z Process terminated and parent has
not completed wait

PTDETACH Contains V if the thread is detached

PTTRACE Contains E if the thread is in quiesce freeze

PTTAG Contains the ptagdata string if it exists

THREADS Contains the total number of threads

Usage notes
1. This function uses the __getthent callable service. For additional information,

see that service description in z/OS UNIX System Services Programming:
Assembler Callable Services Reference.

2. The procinfo() function returns as its value the prefix used to create variable
names. If there is an error returned by the__getthent service, the function
returns a null string, and sets the variables ERRNO and ERRNOJR to the hex
values of the error codes returned by the__getthent service.

Example
To show the command line for each process:
call procinfo

do i=1 to bpxw_pid.0
if procinfo(bpxw_pid.1)<>’’ then /* ignore processes that ended */

say bpxw_cmdline
end

To show the current directory for each process:
call procinfo
do i=1 to bpxw_pid.0

if procinfo(bpxw_pid.i)<>’’ then /* ignore processes that ended */
do j=1 to bpxw_nodes

if bpxw_typecd.j=’cd’ then
do
address syscall ’getmntent m.’ bpxw_devno.j
strm=stream(,’c’,popen ’find’ m.mnte_path ’-xdev -ino’, bpxw_inode.j)
say right(bpxw_pid.i,12) linein(strm)
call stream(strm,’c’,’pclose’)
leave
end

end
end

procinfo()

Chapter 5. z/OS UNIX REXX functions 227

||

||
|

||

||

||

||
|

||

||

||

||
|

|

|
|
|

|
|
|
|

|

|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

rexxopt()

ÊÊ rexxopt (
option ,arg1

) ÊÍ

Function
Sets, resets, or queries z/OS UNIX REXX options.

Parameters
option

Specify one of these:

immed
Associates the immediate command interrupt handler to a signal number.

noimmed
Restores the default action for a signal. arg1 is the signal number.

version
Returns a string showing last compile time for the function package.

varpref
Sets the variable name prefix used by some of the REXX functions. arg1 is
the new prefix. If arg1 is not specified, the current value is not changed. If it
is specified but null, it is defaulted to bpxw_. This returns a string that is the
current setting.

notsoin
Disables any input to the TSO command processor that was started using
ADDRESS TSO, including the stack. This returns the string TSO input
disabled.

tsoin
Sets back to its default setting the input mode to the TSO command
processor that was started using ADDRESS TSO. This returns the string
TSO input enabled.

arg1
A signal number.

Example
To make the interrupt signal prompt for a command:
call rexxopt ’immed’,sigint

rexxopt()

228 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

|||||||||||||||||||||||

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|

|

|

|

sleep()

ÊÊ sleep (seconds) ÊÍ

Function
Places the process in a signals-enabled wait, and returns after the wait expires. If a
signal interrupts the wait, the function returns the number of seconds remaining for
the wait, otherwise it returns 0.

Parameters
seconds

A positive whole number for the number of seconds to sleep

Example
To wait 5 seconds:
call sleep 5

sleep()

Chapter 5. z/OS UNIX REXX functions 229

|
|

|

|||||||||||||
|
|

|

|
|
|

|

|
|

|

|

|

|

stream

ÊÊ stream (
name

,operation
,command

) ÊÍ

Function
Returns the state of the stream or the result of the command.

Parameters
name

The stream name for the operation. This argument is case-sensitive.

operation
The operation that is to be performed. Only the first character is significant. The
operations can be:

S Returns the current state of the stream. This is the default operation.
The following values can be returned:

ready The stream is available for normal input or output
operations.

error The stream encountered an error on an input or output
operation. After this call, the error condition is reset,
and normal input or output operations can be attempted
once again.

unknown The specified stream is not open.

D This operation is almost the same as S, with one exception. When
ERROR is returned, it is followed by text describing the error. This text
usually contains the error number and reason code if the failure is due
to a system call failure.

C Execute a command for the specified stream. The command is
specified as the third argument.

command
The stream command that is to be executed. This argument is valid only when
the operation is C. The following commands are supported:

clearfile Truncates a file to zero bytes for a stream that is opened for
write. clearfile should only be used on a persistent stream.

This example empties the file:
call stream name,’c’,’clearfile’

close Closes a stream. On success, the function returns the string
ready. If the stream is not known, it returns the string UNKNOWN.

This example closes the stream:
call stream file,’c’,’close’

infileno Returns the file descriptor number of the input side of a stream.
The file descriptor can be used on lower-level system calls,

stream

230 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

||||||||||||||||||||||||||||

|
|

|

|

|

|
|

|
|
|

||
|

||
|

||
|
|
|

||

||
|
|
|

||
|

|
|
|

||
|

|

|

||
|

|

|

||
|

using, for example, ADDRESS SYSCALL. This example gets
the file descriptor for the read side of the stream:
fd=stream(name,’c’,’infileno’)

nosignal Disables Halt Interruption for stream errors. See 232. This
example disables the halt signal for the standard input/output
stream:
call stream ,’c’,’nosignal’

open < open-type>
Opens a stream. open-type specifies either read or write. If
<open-type> is not specified, read is assumed. The function
returns a string that is the name to be used for the stream on
subsequent I/O functions. This string is the only name by which
this stream will be known. Note that streams do not have to be
explicitly opened. A pathname that is used as a stream name
on the other I/O functions will cause the stream to be opened,
and the name of the stream will be that pathname. Optional
arguments may be specified with write, optionally followed by
octal permission bits. Write always opens the file with
O_CREAT, creating the file if it does not exist. The additional
arguments are:

replace Opens the file with O_TRUNC, setting the file
size to 0.

append Opens the file with O_APPEND, causing all
writes to be appended to the file.

This example opens a stream for the file mydata.txt:
file=stream(’mydata.txt’,’c’,’open write’)

This example opens a stream for the file mydata.txt, but
replaces the file if it exists:
file=stream(’mydata.txt’,’c’,’open write replace’)

outfileno Returns the file descriptor number of the output side of a
stream. The file descriptor can be used on lower-level system
calls, using, for example, ADDRESS SYSCALL. This example
gets the file descriptor for the write side of the stream:
fd=stream(name,’c’,’outfileno’)

pclose Closes a process stream. On success, the function returns the
completion code for the process run via the popen command.

pid Returns the process ID number for the shell process opened
with popen. This example gets the PID for a stream opened
with popen :
pid=stream(name,’c’,’pid’)

popen < open-type>
Opens a pipe to a shell command that is specified by the
stream name.<open-type> must specify read or write. If read is
specified, the input functions can be used to read the standard
output from the command. If write is specified, the output
functions can be used to pipe data to the standard input of the
shell command. In either case, the shell command inherits the
standard error file for the calling process.

stream

Chapter 5. z/OS UNIX REXX functions 231

|
|

|

||
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

||
|

||
|

|

|

|
|

|

||
|
|
|

|

||
|

||
|
|

|

|
|
|
|
|
|
|
|

The command that is run is always /bin/sh -c followed by the
specified shell command. This means that the completion code
is the one returned by the shell. It usually returns the
command’s completion code. You can obtain the completion
code by using the pclose command.

The function returns a string that is the name to be used for the
stream on subsequent I/O functions. This string is the only
name by which this stream will be known.

This example opens a pipe stream to the output from the shell
command ls | wc:

file=stream(’ls | wc’,’c’,’popen read’)

query < attribute>
Queries a stream attribute and returns the result:

exists Returns the full pathname of the stream name.
This is equivalent to the exists() function, but is
more portable. This command does not cause a
stream to be opened.

size Returns the size of the stream. This is
equivalent to the size stream command, but is
more portable.

This example prints the pathname of the stream:
say stream(’myfile’,’c’,’query exists’)

readpos [location]
Returns the position in the file where the next read will begin. If
location is specified, the position is also set to the byte
specified by location. location is specified as a number
optionally preceded by one of the following characters:

= An absolute byte location. This is the default.

< An offset from the end of the stream.

+ An offset forward from the current location.

− An offset backward from the current location.

This example gets the read location in the file, and then sets
the read location to the sixth 80-byte record:
pos=stream(name,’c’,’readpos’) /* get read location */
call stream name,’c’,’readpos’ 5*80+1 /* set read location*/

signal Enables Halt Interruption for stream errors. Note that the
NOTREADY REXX signal is not supported. This example
enables the halt signal for the standard input/output stream:
call stream ,’c’,’signal’

size Returns the size of the file associated with the stream. This
example prints the size of the file:
say stream(name,’c’,’size’)

writepos < location>
Returns the position in the file where the next write will begin. If
location is specified, the position is also set to the byte
specified by location. location is specified as a number
optionally preceded by one of the following characters:

stream

232 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|
|
|
|

|
|
|

|
|

|

|
|

||
|
|
|

||
|
|

|

|

|
|
|
|
|

||

||

||

||

|
|

|
|

||
|
|

|

||
|

|

|
|
|
|
|

= An absolute byte location. This is the default.

< An offset from the end of the stream.

+ An offset forward from the current location.

− An offset backward from the current location.

This example sets the position to the end of the file:
call stream name,’c’,’writepos <0’

This example sets the position to the start of the file:
call stream name,’c’,’writepos 1’

stream

Chapter 5. z/OS UNIX REXX functions 233

||

||

||

||

|

|

|

|

|

submit()

ÊÊ submit (stem.) ÊÍ

Function
Submits a job to the primary subsystem (JES), returning the job ID of the submitted
job.

Parameters
stem.

The stem compound variable contains the number of lines in stem.0 , and each
variable from stem.1, stem.2, ... contains a line for the job that is being
submitted.

Example
This example reads the file into the stem, sets the number of lines, and submits the
job:
do i=1 by 1 while lines(fn)>0

fn.i=linein(fn)
end
fn.0=i-1
say submit(’fn.’)

submit()

234 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|

|||||||||||||
|
|

|

|
|

|

|
|
|
|

|

|
|

|
|
|
|
|

|

syscalls()

ÊÊ syscalls (control) ÊÍ

Function
Establishes the SYSCALL environment or ends it; or establishes or deletes the
signal interface routine (SIR).

Parameters
ON

Establishes the SYSCALL environment. It sets up the REXX predefined
variables and blocks all signals.

OFF
Ends the connection between the current task and z/OS UNIX. It is usually not
necessary to make a syscalls (OFF) call.

SIGON
Establishes the signal interface routine.

SIGOFF
Deletes the signal interface routine, and resets the signal process mask to block
all signals that can be blocked.

Usage notes
1. This function can be used outside of the z/OS UNIX REXX environment (for

example, in TSO/E). When syscalls is used in such an environment, stdin ,
stdout , stderr , and environment variables are not inherited from the current
process environment.

2. For more usage information, see “The SYSCALL environment” on page 2.

Example
See “The SYSCALL environment” on page 2.

syscalls()

Chapter 5. z/OS UNIX REXX functions 235

|
|

|

|||||||||||||
|
|

|

|
|

|

|
|
|

|
|
|

|
|

|
|
|

|

|
|
|
|

|

|

|

236 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 6. BPXWDYN: a text interface to dynamic allocation
and dynamic output

BPXWDYN is a text interface to a subset of the SVC 99 (dynamic allocation) and
SVC 109 (dynamic output) services. BPXWDYN supports data set allocation,
unallocation, concatenation, and the addition and deletion of output descriptors.
BPXWDYN is designed to be called from REXX, but it may be called from several
other programming languages, including Assembler, C, and PL/I.

This interface makes dynamic allocation and dynamic output services easily
accessible to programs running outside of a TSO environment; however, it also
functions in a TSO environment.

The syntax for allocation is quite similar to that of TSO for the TSO ALLOCATE and
FREE commands. It should be possible to provide parameters to BPXWDYN that
would be acceptable as a TSO ALLOCATE or FREE command. However, there are
keys supported by TSO ALLOCATE that are not currently supported by BPXWDYN.
There are also some keys that can be used with BPXWDYN which are not
compatible with TSO.

The syntax for accessing dynamic output facilities is similar to that of the TSO
OUTDES command, but the name of the output descriptor is identified differently.
You associate an output descriptor with a SYSOUT allocation by using the
OUTDES key on the SYSOUT allocation request, or by creating a default output
descriptor.

Calling conventions
BPXWDYN must be called in 31-bit mode in an environment that permits dynamic
allocation and dynamic output requests. To call BPXWDYN from REXX or any other
program, three parameter list forms can be used:

v REXX external function parameter list

v Conventional MVS variable-length parameter string

v Null-terminated parameter string

REXX external function parameter list
The external function parameter list allows a REXX program to call the BPXWDYN
program as a function or subroutine. The BPXWDYN program must be called with a
single string parameter. For example:
if BPXWDYN("alloc dd(sysin) da(my.dataset) shr")<>0 then
call allocfailed

Conventional MVS variable-length parameter string
This is the same parameter list as the one generated by ADDRESS LINKMVS with one
parameter, and by JCL with EXEC PGM=,PARM=. Any program can easily use this
parameter list form. Note that this is a single-item variable-length parameter list.
The high bit is on in the parameter address word, and length is a halfword.

© Copyright IBM Corp. 1996, 2002 237

|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|

|

|

|

|
|
|

|
|

|

|
|
|
|

-------------------*
R1-->|1| parm string addr *---*

-------------------* |

| *-------*---------------------*
*---->| length| parameter string |

------*---------------------*

PL/I usage might include the following statements:
DCL PLIRETV BUILTIN;
DCL BPXWDYN EXTERNAL ENTRY OPTIONS(ASM INTER RETCODE);
DCL ALLOC_STR CHAR(100) VAR

INIT(’ALLOC FI(SYSIN) DA(MY.DATASET) SHR’);
FETCH BPXWDYN;
CALL BPXWDYN(ALLOC_STR);

Null-terminated parameter string
This parameter list is used most easily from C, passing a string to BPXWDYN
defined with a #pragma for OS linkage, or extern "OS" for C++. Note that the high
bit is on in the parameter address word.

-------------------*
R1-->|1| parm string addr *---*

-------------------* |

| *----------------------*---*
*---->| parameter string |00x|

-------------------------*

C usage might include the following statements:
typedef int EXTF();
#pragma linkage(EXTF,OS)
EXTF *bpxwdyn;
int rc;
bpxwdyn=(EXTF *)fetch("BPXWDYN");
rc=bpxwdyn("alloc fi(sysin) da(my.dataset) shr");

Request types
The request is specified in a string parameter. The request type should be the first
keyword in the parameter string. If a valid request type is not the first keyword, or
no request type is specified, the request type defaults to ALLOC.

The following request types are supported:

ALLOC Dynamic allocation of a data set

FREE Dynamic unallocation of a ddname, or freeing of an output
descriptor

CONCAT Dynamic concatenation of a ddname list

OUTDES Creation of an output descriptor

Keywords
The ordering of keywords on the request is arbitrary. You cannot specify the same
keys multiple times for one request.

238 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|

|
|
|

|

||

||
|

||

||

|
|

|
|

BPXWDYN does no consistency checking on keys. If some keys are not valid when
combined together on a single request, dynamic allocation or dynamic output fails
the request.

Some keywords accept arguments:

v Keyword arguments must be specified within parentheses. Spaces are not
permitted between the key and the opening parenthesis, or anywhere within the
additional argument string through the closing parenthesis, unless the argument
string is quoted. Spaces are permitted between key specifications. Where
multiple arguments are permitted, the arguments must be separated by commas.

v An argument may be enclosed within single (’) or double (″) quotes. Two
adjacent quotes cannot be used to represent a single quote within a quoted
string.

v Arguments that are not quoted are treated as uppercase. Arguments that are
quoted are only treated as mixed case if it makes sense for the keyword.

Return codes
When BPXWDYN is called as a REXX function or subroutine, the return code can
be accessed in RESULT or as the value of the function. When BPXWDYN is called
as a program, the return code is available in R15.

BPXWDYN returns the following codes:

0 Success.

20 Invalid parameter list. See “Calling conventions” on page 237 for
parameter list formats·.

-21 to -9999 Key error.

-100nn Message processing error. IEFDB476 returned code nn.

>0 Dynamic allocation or dynamic output error codes.

Key errors
The low-order two digits are the number of the key that failed the parse, offset by
20. The first key has the value 21, resulting in a return code of −21.

The high-order two digits are an internal diagnostic code that indicates where in the
code the parse failed. If the high digits are 0, the key itself was probably not
recognized. Other values usually indicate a problem with the argument for the
failing keyword. Likely causes for failure are:

v Blanks in arguments that are not quoted

v Misspelling of keywords

Dynamic allocation error codes
The return code contains the dynamic allocation error reason code in the high two
bytes, and the information reason code in the low two bytes.

You can use the high four hex digits to look up the error code in the dynamic
allocation error reason codes table found in the z/OS MVS Programming:
Authorized Assembler Services Guide.

Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic output 239

|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|

||

||
|

||

||

||

|

|
|

|
|
|
|

|

|

|

|
|

|
|
|

Dynamic output error codes
Dynamic output errors do not produce messages. The return code contains:

v The dynamic output return code (S99ERROR) in the high two bytes

v The information code (S99INFO) in the low two bytes

You can use the high four hex digits to look up the error code in the dynamic output
return codes table found in the .z/OS MVS Programming: Authorized Assembler
Services Guide. You can use the low four digits to look up the information code.

There is no indication of the key that is in error.

Some of the most common reason codes are:

300-30C,312,380 The arguments may be specified incorrectly.

401 The output descriptor already exists.

402 The output descriptor does not exist.

403 Output descriptors created by JCL cannot be
deleted by dynamic output.

Message processing
Dynamic allocation provides message text for failed allocation requests. It is usually
easier to use this message text rather than decode allocation return codes.

BPXWDYN can return these messages to a REXX program. By default, the
messages are returned in the S99MSG. stem. S99MSG.0 contains the number of
messages and S99MSG.1, ... contains the message text.

To change the name of the stem, use the MSG key. A stem is not required. Digits
are simply appended to the variable specified by the MSG key.

You can also use the MSG key to request allocation to issue the messages to your
job log (write to programmer using WTO).

Under z/OS UNIX, you can have messages written to opened files by providing the
file descriptor number as the argument to the MSG key. For example, MSG(2)
writes messages to the STDERR file.

Requesting dynamic allocation
To request dynamic allocation, specify alloc at the beginning of the parameter
string.

BPXWDYN supports single data set allocation. Many of the common allocation keys
can be used. For detailed information about those common allocation keys, see
z/OS TSO/E Command Reference. Some additional keys are supported to access
additional functions.

240 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

|

|

|

|
|
|

|

|

||

||

||

||
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

BPXWDWYN supports the following keys:

Table 3. Common keys used for dynamic allocation

DA(data set name[(member name)]) |
DSN(data set name[(member name)])

Data set name to allocate. The name must
be fully qualified and may include a member
name. Quotes can be used for TSO
compatibility.

DUMMY Allocates a dummy data set.

FI(name) | DD(name) ddname to free or allocate.

FILEDATA(TEXT | BINARY) Tells the sequential access method services
whether the data is to be treated as text or
binary.

OLD | SHR | MOD | NEW | SYSOUT[(class)] Specifies the data set status. SYSOUT
specifies that the data set is to be a system
output data set and optionally defines the
output class.

VOL(volser [,volser...]) Specifies the serial number(s) for eligible
direct access volume(s) where the data set is
to reside.

DATACLAS(data class) With SMS, specifies the data class for the
data set.

MGMTCLAS(management class) With SMS, specifies the management class
for the data set.

STORCLAS(storage class) With SMS, specifies the storage class for the
data set.

SPACE(primary[,secondary]) Specifies primary and optionally secondary
space allocations.

BLOCK Specifies the unit of space in blocks.

TRACKS Specifies the unit of space in tracks.

CYL Specifies the unit of space in cylinders.

BLKSIZE(block size) Specifies the block size.

DIR(directory blocks) Specifies the number of directory blocks.

DEST({destination| destination[.user]}) Specifies the output destination or the output
destination and node.

REUSE Causes the named DD to be freed before the
function is performed.

UNIT(unit name) Specifies unit name, device type, or unit
address.

MAXVOL(num vols) Number of volumes for a multi-volume data
set.

KEEP | DELETE | CATALOG | UNCATALOG Specifies the data set disposition after it is
freed.

BUFNO(number) Sets the number of buffers. This number
should be in the range 1–255. Numbers
outside that range give unpredictable results.

LRECL(record length) Specifies the logical record length.

RECFM(format[,format...]) Specifies the record format. The valid values
are A, B, D, F, M, S, T, U, and V. Several of
these can be used in combination.

DSORG(PS | PO | DA) Specifies the data set organization.

Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic output 241

|

||

|
|
|
|
|
|

||

||

||
|
|

||
|
|
|

||
|
|

||
|

||
|

||
|

||
|

||

||

||

||

||

||
|

||
|

||
|

||
|

||
|

||
|
|

||

||
|
|

||

Table 3. Common keys used for dynamic allocation (continued)

COPIES(number of copies) Specifies the number of copies to print.

FORMS(forms name) Specifies the print form.

LIKE(model data set name) Copies attributes for the allocation from the
model data set.

OUTDES(output descriptor name) Specifies the output descriptor name.

SPIN(UNALLOC) Spins off a sysout data set at unallocation.

DSNTYPE(LIBRARY | PDS | HFS) Specifies the data set type.

WRITER(external writer name) Names the external writer.

PATH(pathname) Specifies the pathname of an HFS file to
allocate.

PATHDISP(KEEP |
DELETE[,KEEP|DELETE])

Specifies the file disposition for normal and
abnormal termination of the job step.

PATHMODE(path mode list) Set mode bits for a new allocation. This list
is a list of keywords separated with commas.
The supported keywords are:

SIRUSR
SIWUSR
SIXUSR
SIRWXU
SIRGRP
SIWGRP
SIXGRP
SIRWXG
SIROTH
SIWOTH
SIXOTH
SIRWXO
SISUID
SISGID
SISVTX

PATHOPTS(path options list) Sets options for pathname allocation. The
options list is a list of keywords separated
with commas. The supported keywords are:

ORDWR
OEXCL
OSYNC
OTRUNC
OCREAT
OWRONLY
ORDONLY
OAPPEND
ONOCTTY
ONONBLOCK

RECORG(LS) Creates a VSAM linear data set.

242 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

||

||

||
|

||

||

||

||

||
|

|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|

||
|

The following additional keys are unique to BPXWDYN.

Table 4. Additional keys used for dynamic allocation

MSG (WTP | default.S99MSG.| stemname |
fdnum)

Directs allocation messages to your job log
(WTP), a REXX stem, or a file identified by a
file descriptor number. If this key is not
specified, messages will be returned in the
S99MSG. stem, if possible. If BPXWDYN
was not called from a REXX environment,
the messages will be lost.

NORECALL Fail the allocation request if the data set is
migrated.

PATHPERM(octal path mode) Set mode bits for a new allocation. This key
is effectively the same as PATHMODE but
accepts a simple octal number for the mode
bit settings.

RTDDN(variable) Return allocated ddname into the REXX
variable variable.

RTDSN(variable) Return allocated data set name into the
REXX variable variable.

RTVOL(variable) Return allocated volume name into the
REXX variable variable.

SHORTRC If the dynamic allocation fails, the dynamic
allocation error code (S99ERROR) is
returned in R15 and the information code is
not returned. This is useful if the application
can only process R15 as a halfword, such as
with PL/I.

SYNTAX When this is used, BPXWDYN parses the
request and does not issue the dynamic
allocation or dynamic output request.

Requesting dynamic unallocation
To request dynamic unallocation, specify free at the beginning of the parameter
string.

BPXWDYN supports single data set allocation. Many of the common unallocation
keys can be used. For detailed information about those common keys, see z/OS
TSO/E Command Reference. Some additional keys are supported to access
additional functions.

Table 5. Common keys used for dynamic unallocation

DA(data set name[(member name)]) |
DSN(data set name[(member name)])

Specifies the data set name to free. The
name must be fully qualified and may include
a member name. Quotes are optional.

FI(name) | DD(name) Identifies the ddname to free.

KEEP | DELETE | CATALOG | UNCATALOG Overrides the data set disposition.

SPIN(UNALLOC) Spins off a sysout data set at unallocation.

SYSOUT(class) Overrides the output class.

Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic output 243

|

||

|
|
|
|
|
|
|
|
|

||
|

||
|
|
|

||
|

||
|

||
|

||
|
|
|
|
|

||
|
|
|

|
|

|
|

|
|
|
|

||

|
|
|
|
|

||

||

||

||
|

The following additional keys are unique to BPXWDYN.

Table 6. Additional keys used for dynamic unallocation

MSG (WTP | default.S99MSG.| stemname |
fdnum)

Directs allocation messages to your job log
(WTP), a REXX stem, or a file identified by a
file descriptor number. If this key is not
specified, messages will be returned in the
S99MSG. stem, if possible. If BPXWDYN
was not called from a REXX environment,
the messages will be lost. WTP should be
specified to obtain messages.

SHORTRC If the dynamic allocation fails, the dynamic
allocation error code (S99ERROR) is
returned in R15 and the information code is
not returned. This is useful if the application
can only process R15 as a halfword, such as
with PL/I.

Requesting dynamic concatenation
To request dynamic concatenation, specify concat at the beginning of the
parameter string.

This function concatenates multiple DDs to a single DD. The DDs are concatenated
in the order specified in the DDLIST key.

Table 7. Keys used for dynamic concatenation

DDLIST(DDname1,DDname2[,DDnamex...]) Specifies a list of ddnames to concatenate to
DDname1. Use this key with the CONCAT
key.

MSG (WTP | default.S99MSG.| stemname |
fdnum)

Directs allocation messages to your job log
(WTP), a REXX stem, or a file identified by a
file descriptor number. If this key is not
specified, messages will be returned in the
S99MSG. stem, if possible. If BPXWDYN
was not called from a REXX environment,
the messages will be lost.

SHORTRC If the dynamic allocation fails, the dynamic
allocation error code (S99ERROR) is
returned in R15 and the information code is
not returned. This is useful if the application
can only process R15 as a halfword, such as
with PL/I.

Requesting dynamic output
To request dynamic output, specify outdes at the beginning of the parameter string.
This keyword takes an argument that names the output descriptor. The keyword is
described in the following table. These are the supported keys:

Table 8. Keys used for dynamic output

OUTDES(descriptor name) Names the output descriptor to be added.
This must be the first key specified in the
parameter string.

244 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

||

|
|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

|
|

|
|

|
|

||

||
|
|

|
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

|
|

|
|
|

||

||
|
|

Table 8. Keys used for dynamic output (continued)

ADDRESS(address[,address...]) Specifies the delivery address. Dynamic
output allows up to four arguments to be
specified.

BUILDING(building) Specifies the building location.

BURST Directs output to a stacker.

CHARS(chars[,chars...]) Names the character arrangement tables.

CLASS(class) Assigns the SYSOUT class.

CONTROL(spacing) Specifies either line spacing or that the
records begin with carriage control
characters. The valid values are:
Single Single spacing
Double Double spacing
Triple Triple spacing
Program

Records begin with carriage control
characters

COPIES(number of copies) Specifies the number of copies to be printed.

DEFAULT Specifies that this is a default output
descriptor.

DEPT(department) Specifies the department identification.

DEST(node[.user]) Sends the SYSOUT to the specified
destination.

DPAGELBL Specifies that a security label be placed on
the output.

FCB(fcb name) Specifies the FCB image.

FLASH Specifies the forms overlay.

FORMDEF(formdef name) Names the formdef.

FORMS(forms name) Names the forms to print on.

MODIFY(trc number) Specifies which character arrangement table
is to be used.

NAME(owner name) Specifies the owner’s name.

NOTIFY([node.]user) Sends print completion message to the
destination.

OUTDISP(disposition) Specifies the data set disposition.

PAGEDEF(pagedef name) Names the pagedef.

PRMODE(print mode) Identifies the process mode (LINE or PAGE).

ROOM(room identification) Specifies the room identification.

TITLE(separator title) Specifies the separator page title.

TRC Specifies that the data set contains TRC
codes.

UCS(UCS name) Names the UCS or character arrangement
table.

WRITER(external writer name) Names an external writer to process the data
set.

Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic output 245

|

||
|
|

||

||

||

||

||
|
|
||
||
||
|
|
|

||

||
|

||

||
|

||
|

||

||

||

||

||
|

||

||
|

||

||

||

||

||

||
|

||
|

||
|
|

Freeing an output descriptor
To request that an output descriptor be freed, specify free at the beginning of the
parameter string. Only one keyword is supported:

Table 9. Key used to free an output descriptor

OUTDES(descriptor name) Names the output descriptor to be freed.

Examples: calling BPXWDYN from REXX

Allocate
This example allocates SYS1.MACLIB to SYSLIB and directs messages to z/OS
UNIX standard error (sdterr):
call bpxwdyn "alloc fi(syslib) da(sys1.maclib) shr msg(2)"

Free
This example frees SYSLIB and traps messages in stem S99MSG.:
call bpxwdyn "free fi(syslib)"

Concatenate
This example concatenates SYS1.SBPXEXEC to SYSPROC:
if bpxwdyn("alloc fi(tmp) da(sys1.sbpxexec) shr msg(2)")=0 then

call bpxwdyn "concat ddlist(sysproc,tmp) msg(2)"

Create dynamic output descriptor
This example creates descriptor P20 with distribution information:

call bpxwdyn "outdes(p20) dest(kgn.p20n10)",
"address(’WJ Schoen’,’M/S 619’)",
"name(wschoen) bin(0004) dept(64ba)"

Free descriptor
This example frees descriptor P20:
call bpxwdyn "free outdes(p20)"

Example: calling BPXWDYN from C
This example allocates SYS1.MACLIB to SYSLIB and directs messages to z/OS
UNIX standard error (stderr):

typedef int EXTF();
#pragma linkage(EXTF,OS)

int call_alloc()
{
EXTF *bpxwdyn=(EXTF *)fetch("BPXWDYN");
return bpxwdyn("alloc fi(syslib) da(sys1.maclib) shr msg(2)")
}

246 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|
|

|
|

||

||
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|

|

|
|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|

Chapter 7. Virtual file system (VFS) server syscall commands

A number of syscall commands are intended for file system server applications,
such as a Network File System server. Although it is unlikely that you would
implement a Network File System server using REXX, you can access the server
callable services using z/OS UNIX REXX syscall commands. Because it is possible
for a server to create a file in the file hierarchy with a name that cannot be
accessed through conventional C functions—for example, a filename that has a
slash (/) in it—these syscall commands may be useful if you need to obtain local
access to such a file.

For detailed information about these services, see z/OS UNIX System Services File
System Interface Reference.

Security
The file system server services are available only to a registered server. Only a
superuser can use the callable service v_reg to register the process as a server.

The server services can bypass system security for file access.

For examples of REXX coding using these commands, see Chapter 8.

Tokens
Many tokens flow across the server interface. The types of tokens are:

VFS Represents a mounted file system.

vnode Represents a file or directory that is currently in use. This identifier is valid
only until the token is released, using the v_rel callable service.

FID Uniquely identifies a file or directory in a particular mounted file system. The
file or directory may or may not be currently in use. This identifier is valid
across mounting and unmounting of the file system, as well as across z/OS
UNIX re-IPLs.

You must specify tokens as variable names, not as strings. See “Specifying a
syscall command” on page 19 for information on specifying variable names. When a
token is returned to the exec, the value of the token is stored in the variable. When
a token variable is used as a parameter on a syscall command, the token value is
extracted from the variable. The format for a token is 8 bytes of binary data.

© Copyright IBM Corp. 1996, 2002 247

v_create

ÊÊ v_create vntoken filename type mode stem vntoken2 Ê

Ê
major minor

ÊÍ

Function
v_create invokes the v_create callable service to create a new file in the directory
represented by vntoken. The file can be a regular, FIFO, or character special file.

Parameters
vntoken

A variable name that contains the vnode token for the directory in which the file
filename is to be created.

filename
The name of the file. It must not contain null characters.

type
A number used to specify the type of file to be created: a regular, FIFO, or
character special file. You can specify one of the predefined variables beginning
with S_ to set the value—for example, S_ISREG. For a list of the variables, see
“fstat” on page 82.

mode
A three-digit number, corresponding to the access permission bits. Each digit
must be in the range 0–7, and all three digits must be specified. For more
information on permissions, see Appendix B.

stem
The name of a stem variable used to return the status information. Upon return,
stem.0 contains the number of variables that are returned. To obtain the desired
status information, you can use a numeric value or the predefined variables
beginning with ST_ used to derive the numeric value. See “stat” on page 170
for a list of the predefined variables or Appendix A for the numeric values.

vntoken2
A variable name that will contain the vntoken of the created file on return.

major
For a character special file (S_ISCHR), the device major number. For a
complete description, see “mknod” on page 122.

minor
For a character special file (S_ISCHR), the device minor number. For a
complete description, see “mknod” on page 122.

Usage notes
1. If the file named in filename already exists, the v_create service returns a failing

return code, and no vnode token is returned.

2. The caller is responsible for freeing vnode tokens returned by the service by
calling to the v_rel service when they are no longer needed.

v_create

248 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Example
In the following example, assume that filenm and vnod were assigned values earlier
in the exec:
"v_create vnod (filenm)" s_isreg 777 "st. filetok"

v_create

Chapter 7. Virtual file system (VFS) server syscall commands 249

v_fstatfs

ÊÊ v_fstatfs vntoken stem ÊÍ

Function
v_fstatfs invokes the v_fstatfs callable service to return file system status for the
file system containing the file or directory represented by the specified vntoken.

Parameters
vntoken

A variable name that contains the vnode token for a file or directory in the file
system whose status is to be checked.

stem
The name of a stem variable used to return the status information. Upon return,
stem.0 contains the number of variables that are returned. To obtain the desired
status information, you can use a numeric value or the predefined variables
beginning with STFS_ used to derive the numeric value. For example,
stem.stfs_avail accesses the number of blocks available in the file system. See
“statfs” on page 172 for a list of the predefined variables, or Appendix A for the
numeric values.

Example
In the following example, assume that vnod was assigned a value earlier in the
exec:
" v_fstatfs vnod st."

v_fstatfs

250 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_get

ÊÊ v_get vfstoken fid vntoken ÊÍ

Function
v_get invokes the v_get callable service to return a vnode token for the file or
directory represented by the input FID within the mounted file system represented
by the input VFS token.

Parameters
vfstoken

A variable name that contains the VFS token for the file system where the file
identified by fid resides.

fid A variable that contains a file ID. File IDs are returned in the file attribute
structure in the stem index ST_FID.

vntoken
A variable name that stores the vnode token for the requested file.

Usage notes
1. The FID (file identifier) uniquely identifies a file in a particular mounted file

system, and its validity persists across mounting and unmounting of the file
system, as well as z/OS UNIX re-IPLs. This distinguishes the FID from the
vnode token, which relates to a file in active use, and whose validity persists
only until the token is released via the v_rel callable service.

A server application uses v_get to convert an FID to a vnode token when it is
preparing to use a file, since the vnode token identifies the file to the other
services.

2. The FID for a file is returned in a stem variable by such services as v_rpn and
v_lookup.

3. The caller is responsible for freeing vnode tokens returned by v_get by calling
to the v_rel service when they are no longer needed.

Example
In the following example, assume that vfs and st.st_fid were assigned values earlier
in the exec:
"v_get vfs st.st_fid vnod"

v_get

Chapter 7. Virtual file system (VFS) server syscall commands 251

v_getattr

ÊÊ v_getattr vntoken stem ÊÍ

Function
v_getattr invokes the v_getattr callable service to get the attributes of the file
represented by vntoken.

Parameters
vntoken

A variable name that contains the vnode token of the file for which the attributes
are returned.

stem
The name of a stem variable used to return the file attribute information. Upon
return, stem.0 contains the number of attribute variables returned. To obtain the
desired information, you can use a numeric value or the predefined variables
beginning with ST_ used to derive the numeric value. See “stat” on page 170
for a list of the variables, or Appendix A for the numeric values.

Example
In the following example, assume that vnod was assigned a value earlier in the
exec:
"v_getattr vnod attr."

v_getattr

252 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_link

ÊÊ v_link vntoken filename vntoken2 ÊÍ

Function
v_link invokes the v_link callable service to create a link to the file specified by
vntoken in the directory specified by vntoken2. The link is a new name, filename,
identifying an existing file.

Parameters
vntoken

A variable name that contains the vnode token for the file being linked to.

filename
The new name for the existing file.

vntoken2
A variable name that contains the vnode token for the directory to which
filename is to be added.

Usage notes
1. v_link creates a link named filename to an existing file specified by vntoken.

This provides an alternative pathname for the existing file, so that you can
access it by the old name or the new name. You can store the link under the
same directory as the original file, or under a different directory on the same file
system.

2. If the link is created successfully, the service routine increments the link count of
the file. The link count shows how many links to a file exist. (If the link is not
created successfully, the link count is not incremented.)

3. Links are not allowed to directories.

4. If the link is created successfully, the change time of the linked-to file is
updated, as are the change and modification times of the directory that contains
filename—that is, the directory that holds the link.

Example
In the following example, assume that filetok, name, and dirtok were assigned
values earlier in the exec:
"v_link filetok (name) dirtok"

v_link

Chapter 7. Virtual file system (VFS) server syscall commands 253

v_lockctl

ÊÊ v_lockctl v_command stem ÊÍ

Function
v_lockctl invokes the v_lockctl callable service to control advisory byte-range locks
on a file.

Note: All locks are advisory only. Client and local processes can use locks to
inform each other that they want to protect parts of a file, but locks do not
prevent I/O on the locked parts. A process that has appropriate permissions
on a file can perform whatever I/O it chooses, regardless of which locks are
set. Therefore, file locking is only a convention, and it works only when all
processes respect the convention.

Parameters
v_command

The name of a predefined command variable that is used to control the lock.
You can specify a numeric value (see Appendix A) or a predefined
VL_command variable that derives the appropriate numeric value. The
command variables are

Variable Description
VL_REGLOCKER Register the lock server (locker).
VL_UNREGLOCKER Unregister the locker.
VL_LOCK Set a lock in a specified byte range.
VL_LOCKWAIT Set a lock in a specified byte range or wait to set

the lock until the byte range is free.
VL_UNLOCK Unlock all locks in a specified byte range.
VL_QUERY Query for lock information about a file.
VL_PURGE Release all locks on all files, held by a locker or a

group of lockers.

stem
The name of a stem variable that is the structure used to obtain information
about the lock. To access the information, you can specify a numeric value (see
Appendix A) or the predefined variables beginning with VL_ or L_ that derive
the appropriate numeric value—for example, stem.vl_serverpid. The variables
beginning with VL_ are:

Variable Description
VL_SERVERPID Server’s PID
VL_CLIENTPID Server’s client’s process ID (PID)
VL_LOCKERTOK Token for locker
VL_CLIENTTID Client’s thread’s TID. The TID is the individual lock

owner within a locker.
VL_OBJCLASS The class for an object (a single locked file)—for

example, HFS for an HFS file, MVS for an MVS
data set, LFSESA for a LAN file server.

v_lockctl

254 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Variable Description
VL_OBJID The unique ID for an object (locked file) within its

class. For an HFS file, the VL_OBJID contains the
device number and FID of the file.

VL_OBJTOK A token to identify the object (locked file) on a
subsequent lock request.

VL_DOSMODE DOS file-sharing field
VL_DOSACCESS DOS file-sharing field

For a description of the variables beginning with L_, see “f_getlk” on page 68.

Usage notes
1. The v_lockctl service locks out other cooperating lockers from part of a file, so

that the locker can read or write to that part of the file without interference from
others.

2. Each locker must be registered before issuing any lock requests. On a
REGLOCKER command, the caller must provide stem variables with these
suffixes:

VL_SERVERPID
VL_CLIENTPID

The VL_LOCKERTOK variable is returned to the caller; it is a token to identify
the locker on subsequent lock requests.

3. On a QUERY, LOCK, LOCKWAIT, or UNLOCK command, the caller provides
stem variables with these suffixes:

VL_LOCKERTOK
VL_CLIENTTID
VL_OBJCLASS
VL_OBJID
VL_OBJTOK (This is optional, but it will improve performance for multiple
lock requests)

To describe the byte range for the command, the caller must also provide stem
variables with the following L_ suffixes:

QUERY L_TYPE, L_START, L_LEN, L_WHENCE

LOCK L_TYPE, L_START, L_LEN, L_WHENCE

LOCKWAIT L_TYPE, L_START, L_LEN, L_WHENCE

UNLOCK L_START, L_LEN, L_WHENCE

The L_ variables are described in “f_getlk” on page 68.

VL_OBJTOK is returned to the caller; it is a token to identify the object on a
subsequent lock request. On a QUERY, lock information describing a lock that
would prevent the proposed lock from being set is returned to the caller.

4. Stem variables with the suffixes L_TYPE, L_START, and L_LEN are needed
whether the request is for setting a lock, releasing a lock, or querying a
particular byte range for a lock. L_WHENCE is always treated as SEEK_SET,
the start of the file.

The L_TYPE variable is used to specify the type of lock to be set or queried.
(L_TYPE is not used to unlock.) You can use a numeric value (see Appendix A
) or one of the following predefined variables used to derive the appropriate
value:

Type Description

v_lockctl

Chapter 7. Virtual file system (VFS) server syscall commands 255

F_RDLCK A read lock, also known as a shared lock. This
type of lock specifies that the locker can read
the locked part of the file, and other lockers
cannot write on that part of the file in the
meantime. A locker can change a held write
lock, or any part of it, to a read lock, thereby
making it available for other lockers to read.
Multiple lockers can have read locks on the
same part of a file simultaneously.

F_WRLCK A write lock, also known as an exclusive lock.
This type of lock indicates that the locker can
write on the locked part of the file, without
interference from other lockers. If one locker
puts a write lock on part of a file, no other
locker can establish a read lock or write lock
on that same part of the file. A locker cannot
put a write lock on part of a file if there is
already a read lock on an overlapping part of
the file, unless that locker is the only owner of
that overlapping read lock. In such a case, the
read lock on the overlapping section is
replaced by the write lock being requested.

F_UNLCK Returned on a query, when there are no locks
that would prevent the proposed lock operation
from completing successfully.

The L_WHENCE variable specifies how the byte range offset is to be found
within the file; L_WHENCE is always treated as SEEK_SET, which stands for
the start of the file.

The L_START variable is used to identify the part of the file that is to be
locked, unlocked, or queried. The part of the file affected by the lock begins at
this offset from the start of the file. For example, if L_START has the value 10,
a lock request attempts to set a lock beginning 10 bytes past the start of the
file.

Note: Although you cannot request a byte range that begins or extends
beyond the beginning of the file, you can request a byte range that
begins or extends beyond the end of the file.

The L_LEN variable is used to give the size of the locked part of the file, in
bytes. The value specified for L_LEN cannot be negative. If a negative value is
specified for L_LEN, a RETVAL of −1 and an EINVAL ERRNO are returned. If
L_LEN is zero, the locked part of the file begins at L_START and extends to
the end of the file.

The L_PID variable identifies the VL_CLIENTPID of the locker that holds the
lock found on a query request, if one was found.

5. You can set locks by specifying a VL_LOCK as the command parameter. If the
lock cannot be obtained, a RETVAL of −1 is returned along with an appropriate
ERRNO and ERRNOJR.

You can also set locks by specifying a VL_LOCKWAIT as the command
parameter. If the lock cannot be obtained because another process has a lock

v_lockctl

256 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

on all or part of the requested range, the LOCKWAIT request waits until the
specified range becomes free and the request can be completed.

If a signal interrupts a call to the v_lockctl service while it is waiting in a
LockWait operation, the function returns with a RETVAL of −1, and the ERRNO
EINTR.

LockWait operations have the potential for encountering deadlocks. This
happens when locker A is waiting for locker B to unlock a byte range, and B is
waiting for A to unlock a different byte range. If the system detects that a
LockWait might cause a deadlock, the v_lockctl service returns with a RETVAL
of −1 and the ERRNO EDEADLK.

6. A process can determine locking information about a file using VL_QUERY as
the command parameter. The stem should describe a lock operation that the
caller would like to perform. When the v_lockctl service returns, the structure is
modified to describe the first lock found that would prevent the proposed lock
operation from finishing successfully.

If a lock is found that would prevent the proposed lock from being set, the
query request returns a stem whose L_WHENCE value is always SEEK_SET,
whose L_START value gives the offset of the locked portion from the
beginning of the file, whose L_LEN value is set to the length of the locked
portion of the file, and whose L_PID value is set to the ClientProcessID of the
locker that is holding the lock. If there are no locks that would prevent the
proposed lock operation from finishing successfully, the returned structure is
modified to have an L_TYPE of F_UNLCK, but otherwise it remains
unchanged.

7. A locker can have several locks on a file simultaneously but can have only one
type of lock set on any given byte. Therefore, if a locker sets a new lock on
part of a file that it had previously locked, the locker has only one lock on that
part of the file, and the lock type is the one given by the most recent locking
operation.

8. When a VL_UNLOCK command is issued to unlock a byte range of a file, all
locks held by that locker within the specified byte range are released. In other
words, each byte specified on an unlock request is freed from any lock that is
held against it by the requesting locker.

9. Each locker should be unregistered when done issuing lock requests. On a
VL_UNLOCKER command, the caller provides the stem variable
VL_LOCKERTOK to identify the locker to unregister.

10. The VL_PURGE command releases all locks on all files, held by a locker or a
group of lockers. The following stem variables are provided by the caller:

VL_SERVERPID
VL_CLIENTPID
VL_CLIENTTID

Example
This example illustrates several calls to v_lockctl to register a locker, lock a range,
unlock a range, and unregister a locker:
/* rexx */
address syscall
’v_reg 2 RxLocker’ /* register server as a lock server */
/**/
/* register locker */
/**/
lk.vl_serverpid=0 /* use my pid as server pid */
lk.vl_clientpid=1 /* set client process id */
’v_lockctl’ vl_reglocker ’lk.’ /* register client as a locker */
c1tok=lk.vl_lockertok /* save client locker token */

v_lockctl

Chapter 7. Virtual file system (VFS) server syscall commands 257

/**/
/* lock a range */
/**/
lk.vl_lockertok=c1tok /* set client locker token */
lk.vl_clienttid=’thread1’ /* invent a thread id */
lk.vl_objclass=1 /* invent an object class */
lk.vl_objid=’objectname’ /* invent an object name */
lk.vl_objtok=’’ /* no object token */
lk.l_len=40 /* set length of range to lock */
lk.l_start=80 /* set start of range to lock */
lk.l_whence=seek_set /* start of range is absolute */
lk.l_type=f_wrlck /* set write lock */
’v_lockctl’ vl_lock ’lk.’ /* try to do the lock */
obj1=lk.vl_objtok /* keep returned object token */
/**/
/* unlock a range */
/**/
lk.vl_lockertok=c1tok /* set client locker token */
lk.vl_clienttid=’thread1’ /* invent a thread id */
lk.vl_objclass=1 /* invent an object class */
lk.vl_objid=’objectname’ /* invent an object name */
lk.vl_objtok=obj1 /* set object token */
lk.l_len=40 /* set length of range to lock */
lk.l_start=80 /* set start of range to lock */
lk.l_whence=seek_set /* start of range is absolute */
lk.l_type=f_unlck /* set unlock */
’v_lockctl’ vl_unlock ’lk.’ /* unlock the range */
/**/
/* unregister locker */
/**/
lk.vl_lockertok=c1tok /* set client locker token */
’v_lockctl’ vl_unreglocker ’lk.’ /* unregister client as a locker */
return

v_lockctl

258 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_lookup

ÊÊ v_lookup vntoken filename stem vntoken2 ÊÍ

Function
v_lookup invokes the v_lookup callable service to search a directory for a file.
v_lookup accepts a vnode token representing a directory and a name identifying a
file. If the file is found in the directory, a vnode token for the file and the attributes of
the file are returned.

Parameters
vntoken

A variable name that contains the vnode token for the directory in which
filename is looked up.

filename
The name of the file.

stem
The same file attribute information is returned in stem as if a v_getattr had been
used on the file looked up. Upon return, stem.0 contains the number of attribute
variables returned. To access the attribute values, you can use a numeric value
or the predefined variables beginning with ST_ used to derive the numeric
value. See “stat” on page 170 for a list of the predefined variables, or
Appendix A for the numeric values.

vntoken2
The variable name for the buffer that, when returned, will contain the vnode
token for the looked-up file.

Usage notes
The caller is responsible for freeing vnode tokens returned by the v_lookup service
by calling to the v_rel service when they are no longer needed.

Example
In the following example, assume that dirtok and file were assigned values earlier in
the exec:
"v_lookup dirtok (file) st. outtok"

v_lookup

Chapter 7. Virtual file system (VFS) server syscall commands 259

v_mkdir

ÊÊ v_mkdir vntoken directoryname mode stem vntoken2 ÊÍ

Function
v_mkdir invokes the v_mkdir callable service to create a new empty directory in the
directory represented by vntoken, with the permission specified in mode.

Parameters
vntoken

A variable name that contains the vnode token for the directory in which
filename is to be created.

directoryname
The name of the directory.

mode
A three-digit number, corresponding to the access permission bits for the
directory. Each digit must be in the range 0–7, and all three digits must be
specified. For more information on permissions, see Appendix B.

stem
The same file attribute information is returned in stem as if a v_getattr had been
used on the file specified. Upon return, stem.0 contains the number of attribute
variables returned. To access the attribute information, you can use a numeric
value or the predefined variables beginning with ST_ used to derive the numeric
value. See “stat” on page 170 for a list of the predefined variables, or
Appendix A for the numeric values.

vntoken2
The variable name for the buffer that will contain the vnode token for the newly
created directory.

Usage notes
1. If the directory that is named in directoryname already exists, the v_mkdir

service returns a failing return code, and no vntoken2 is returned.

2. The caller is responsible for freeing vnode tokens returned by the v_mkdir
service by calling to the v_rel service when they are no longer needed.

Example
In the following example, assume that dirtok, file, and perm were assigned values
earlier in the exec:
"v_mkdir dirtok (file)" perm "st. newtok"

v_mkdir

260 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_read

ÊÊ v_read vntoken variable length position stem
access_check

ÊÍ

Function
v_read invokes the v_rdwr callable service to accept a vnode token representing a
file and to read data from the file. The file attributes are returned when the read
completes. The number of bytes read is returned in RETVAL.

Parameters
vntoken

A variable name that contains the vnode token for the file to be read.

variable
The name of the buffer into which data will be read.

length
The maximum number of characters to read. After the read completes, the
length of variable is the number of bytes read. This value is also returned in
RETVAL.

position
The file offset where the read is to begin, specified in bytes.

stem
The name of a stem variable used to return the file attribute information. Upon
return, stem.0 contains the number of attribute variables returned. The same
information is returned in stem as if a v_getattr had been used on the file. To
obtain the attribute information, you can use a numeric value or the predefined
variables beginning with ST_ used to derive the numeric value. See “stat” on
page 170 for a list of the variables, or Appendix A for the numeric values.

access_check
Specify a 0 for no access check, or 1 to indicate the system is to check the
user for read access to the file. The user is defined by the effective UID and
GID. Setting the effective GID does not affect supplemental groups. Also, there
is no support for altering the MVS user identity of the task using the ACEE
(Accessor Environment Element).

Example
In the following example, assume that filetok, bytes, and pos were assigned values
earlier in the exec:
"v_read filetok buffer" bytes pos stem. 0

v_read

Chapter 7. Virtual file system (VFS) server syscall commands 261

v_readdir

ÊÊ v_readdir vntoken stem start
access_check

ÊÍ

Function
v_readdir invokes the v_readdir callable service to accept a vnode token
representing a directory and return directory entries from this directory.

Parameters
vntoken

A variable name that contains the vnode token for the directory to be read.

stem
The name of a stem variable used to return the directory entries. Upon return,
stem.0 contains the number of directory entries returned. stem.1 through stem.n
(where n is the number of entries returned) each contain a directory entry.

Note: Only small directories can be read in a single call. To ensure that you
read to the end of the directory, make calls to v_readdir until no entries
are returned.

start
The number of the first directory entry to be returned. The numbers 0 and 1
both indicate that the read should start at the beginning of the directory.

access_check
Specify a 0 for no access_check, or 1 to specify that the system is to check the
user for read access to the file. The user is defined by the effective UID and
GID. Setting the effective GID does not affect supplemental groups. Also, there
is no support for altering the MVS user identity of the task using the ACEE.

Example
In the following example, assume that dirtok was assigned a value earlier in the
exec:
"v_readdir dirtok dir. 0"

v_readdir

262 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_readlink

ÊÊ v_readlink vntoken variable ÊÍ

Function
v_readlink invokes the v_readlink callable service to read the symbolic link file
represented by the vnode token and return its contents in variable.

Parameters
vntoken

A variable name that contains the vnode token for the symbolic link to be read.

The attribute stem returned on call to another function (for example, v_getattr)
identifies whether the symbolic link is a link to an external name in the stem
index ST_EXTLINK. An external name is the name of an object outside the
HFS.

variable
The name of the buffer that, on return, contains the contents of the symbolic
link.

Example
In the following example, assume that symtok was assigned a value earlier in the
exec:
"v_readlink symtok link"

v_readlink

Chapter 7. Virtual file system (VFS) server syscall commands 263

v_reg

ÊÊ v_reg type name ÊÍ

Function
v_reg invokes the v_reg callable service to register a process as a server. A
process must be registered using this service before it can use any other vnode
interface services.

Parameters
type

A numeric value that defines the type of server. You can specify:
1 to indicate a file server
2 to indicate a lock server

name
The name of the server, a character string up to 32 bytes in length. There are
no restrictions on the name; for example, it does not have to be unique in the
system.

Usage notes
1. Only a superuser can register a process as a server.

2. The D OMVS command uses the values supplied in type and name fields to
display information about the currently active servers.

Example
To register a server:
’v_reg 1 "My REXX server"’

v_reg

264 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_rel

ÊÊ v_rel vntoken ÊÍ

Function
v_rel invokes the v_rel callable service to accept a vnode token representing a file
descriptor for a file or directory, and to release that token.

Parameters
vntoken

A variable name that contains the vnode token for the file descriptor to be
released.

Usage notes
1. The vnode token is no longer valid and cannot be used for subsequent requests

after v_rel has successfully processed it.

2. This service must be used to release all vnode tokens obtained from other
operations.

Example
In the following example, assume that vntok was assigned a value earlier in the
exec:
"v_rel vntok"

v_rel

Chapter 7. Virtual file system (VFS) server syscall commands 265

v_remove

ÊÊ v_remove vntoken filename ÊÍ

Function
v_remove invokes the v_remove callable service to remove a directory entry.

Parameters
vntoken

A variable name that contains the vnode token for the directory from which
filename is to be removed.

filename
The name for the directory entry. The directory entry could be identified by a
name for a file, the name of a hard link to a file, or the name of a symbolic link.

Usage notes
1. If the name specified refers to a symbolic link, the symbolic link file named by

filename is deleted.

2. If the v_remove service is successful and the link count becomes zero, the file
is deleted. The contents of the file are discarded, and the space it occupied is
freed for reuse. However, if another process (or more than one) has the file
open or has a valid vnode token when the last link is removed, the file contents
are not removed until the last process closes the file or releases the vnode
token.

3. When the v_remove service is successful in removing a directory entry and
decrementing the link count, whether or not the link count becomes zero, it
returns control to the caller with RETVAL 0. It updates the change and
modification times for the parent directory, and the change time for the file itself
(unless the file is deleted).

4. You cannot remove a directory using v_remove . To remove a directory, refer to
“v_rmdir” on page 268.

Example
In the following example, assume that dirtok and file were assigned values earlier in
the exec:
"v_remove dirtok (file)"

v_remove

266 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_rename

ÊÊ v_rename vntoken oldname vntoken2 newname ÊÍ

Function
v_rename invokes the v_rename callable service to rename a file or directory to a
new name.

Parameters
vntoken

A variable name that contains the vnode token for the directory that contains
the filename oldname.

oldname
The existing name for the file or directory.

vntoken2
A variable name that contains the vnode token for the directory that is to
contain the filename newname.

newname
The new name for the file or directory.

Usage notes
1. The v_rename service changes the name of a file or directory from oldname to

newname. When renaming completes successfully, the change and modification
times for the parent directories of oldname and newname are updated.

2. The calling process needs write permission for the directory containing oldname
and the directory containing newname. If oldname and newname are the names
of directories, the caller does not need write permission for the directories
themselves.

3. Renaming files: If oldname and newname are links referring to the same file,
v_rename returns successfully and does not perform any other action.

If oldname is the name of a file, newname must also name a file, not a
directory. If newname is an existing file, it is unlinked. Then the file specified as
oldname is given newname. The pathname newname always stays in existence;
at the beginning of the operation, newname refers to its original file, and at the
end, it refers to the file that used to be oldname.

4. Renaming directories: If oldname is the name of a directory, newname must
also name a directory, not a file. If newname is an existing directory, it must be
empty, containing no files or subdirectories. If it is empty, it is removed.
newname cannot be a directory under oldname; that is, the old directory cannot
be part of the pathname prefix of the new one.

Example
In the following example, assume that olddir, oldfile, newdir, and newfile were
assigned values earlier in the exec:
"v_rename olddir (oldfile) newdir (newfile)"

v_rename

Chapter 7. Virtual file system (VFS) server syscall commands 267

v_rmdir

ÊÊ v_rmdir vntoken dirname ÊÍ

Function
v_rmdir invokes the v_rmdir callable service to remove an empty directory.

Parameters
vntoken

A variable name that contains the vnode token for the directory from which
dirname is to be removed.

dirname
The name of the empty directory to be removed.

Usage notes
1. The directory specified by dirname must be empty.

2. If the directory is successfully removed, the change and modification times for
the parent directory are updated.

3. If any process has the directory open when it is removed, the directory itself is
not removed until the last process closes the directory. New files cannot be
created under a directory that is removed, even if the directory is still open.

Example
In the following example, assume that dirtok and dirname were assigned values
earlier in the exec:
"v_rmdir dirtok (dirname)"

v_rmdir

268 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_rpn

ÊÊ v_rpn pathname vfstoken vntoken stem stem2 ÊÍ

Function
v_rpn invokes the v_rpn callable service to accept a pathname of a file or directory
and return a vnode token that represents this file or directory and the VFS token
that represents the mounted file system that contains the file or directory.

Parameters
pathname

The absolute pathname to be resolved, specified as a string.

vfstoken
The name of a variable in which the VFS token for the resolved file is stored.

vntoken
The name of a variable in which the vnode token for the resolved file is stored.

stem
The name of a stem variable used to return the mount entry for the file system.
To access mount table information, you can use a numeric value or the
predefined variables beginning with MNTE_ used to derive the numeric value.
See “getmntent” on page 98 for a description of the MNTE_ variables; see
Appendix A for the numeric values.

stem2
Upon return, stem2.0 contains the number of attribute variables returned. The
same information is returned in stem2 as if a v_getattr had been used on the
file that was just resolved. You can use the predefined variables beginning with
ST_ to access those respective values. For example, stem2.st_size accesses
the file size. See “stat” on page 170 for a description of the ST_ variables.

Usage notes
1. The mount point pathname is not available in the MNTE_ structure returned by

the variable stem2.mnte_path.

2. The caller is responsible for freeing vnode tokens returned by the v_rpn service,
by calling to the v_rel service when they are no longer needed.

Example
In the following example, assume that path was assigned a value earlier in the
exec:
"v_rpn (path) vfstok filetok mnt. attr."

v_rpn

Chapter 7. Virtual file system (VFS) server syscall commands 269

v_setattr

ÊÊ v_setattr vntoken attribute_list ÊÍ

Function
v_setattr invokes the v_setattr callable service to set the attributes associated with
the file represented by the vnode token. You can change the mode, owner, access
time, modification time, change time, reference time, audit flags, general attribute
flags, and file size.

Parameters
vntoken

A variable name that contains the vnode token for the file for which the
attributes are to be set.

attribute_list
A list of attributes to be set and their values. The attributes are expressed either
as numeric values or as the predefined variables beginning with ST_, followed
by arguments for that attribute. For the predefined variables beginning with ST_,
see “chattr” on page 38; for the numeric values, see Appendix A.

Usage notes
For usage notes, see “chattr” on page 38.

Example
In the following example, assume that vntok was assigned a value earlier in the
exec. This example truncates a file to 0 length and sets the mode to 600:
"v_setattr vntok" st_size 0 st_mode 600

v_setattr

270 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_symlink

ÊÊ v_symlink vntoken filename pathname
extlink

ÊÍ

Function
v_symlink invokes the v_symlink callable service to create a symbolic link to a
pathname or external name. The contents of the symbolic link file is pathname.

Parameters
vntoken

A variable name for the directory that contains the vnode token in which
filename is being created.

filename
The name for the symbolic link.

pathname
The absolute or relative pathname of the file you are linking to (the contents of
the symbolic link).

extlink
Specify 1 if this is a symbolic link to an external name rather than to a
pathname in the file hierarchy. An external name is the name of an object
outside of the file hierarchy.

Usage notes
1. Like a hard link (described in “v_link” on page 253), a symbolic link allows a file

to have more than one name. The presence of a hard link guarantees the
existence of a file, even after the original name has been removed. A symbolic
link, however, provides no such assurance; in fact, the file identified by
pathname need not exist when the symbolic link is created. In addition, a
symbolic link can cross file system boundaries, and it can refer to objects
outside of a hierarchical file system.

2. When a component of a pathname refers to a symbolic link (but not an external
symbolic link) rather than to a directory, the pathname contained in the symbolic
link is resolved. For v_rpn or other z/OS UNIX callable services, a symbolic link
in a pathname parameter is resolved as follows:

v If the pathname in the symbolic link begins with / (slash), the symbolic link
pathname is resolved relative to the process root directory.

v If the pathname in the symbolic link does not begin with /, the symbolic link
pathname is resolved relative to the directory that contains the symbolic link.

v If the symbolic link is not the last component of the original pathname,
remaining components of the original pathname are resolved from there.

v When a symbolic link is the last component of a pathname, it may or may not
be resolved. Resolution depends on the function using the pathname. For
example, a rename request does not have a symbolic link resolved when it
appears as the final component of either the new or old pathname. However,
an open request does have a symbolic link resolved when it appears as the
last component.

v_symlink

Chapter 7. Virtual file system (VFS) server syscall commands 271

v When a slash is the last component of a pathname, and it is preceded by a
symbolic link, the symbolic link is always resolved.

v Because it cannot be changed, the mode of a symbolic link is ignored during
the lookup process. Any files and directories to which a symbolic link refers
are checked for access permission.

3. The external name contained in an external symbolic link is not resolved. The
filename cannot be used as a directory component of a pathname.

Example
In the following example, assume that dirtok, file, and linkname were assigned
values earlier in the exec:
"v_symlink dirtok (file) (linkname)"

v_symlink

272 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

v_write

ÊÊ v_write vntoken variable length position stem
access_check

ÊÍ

Function
v_rdwr invokes the v_rdwr callable service to accept a vnode token representing a
file and to write data to the file. The number of bytes written and the file attributes
are returned in RETVAL when the write completes.

Parameters
vntoken

A variable name that contains the vnode token for the file to be written.

variable
The name of the buffer from which data is to be written.

length
The number of characters to write.

position
The file offset where the write is to start from, specified in bytes.

stem
The name of a stem variable used to return the file attributes. Upon return,
stem.0 contains the number of attribute variables returned. The same
information is returned in stem as if a v_getattr was used on the file. To access
the file attributes, you can use a numeric value or the predefined variables
beginning with ST_ used to derive the numeric value. See “stat” on page 170
for more information about the ST_ predefined variables; see Appendix A for the
numeric values.

access_check
Specify 0 for no access check, or 1 for the system to check the user for read
access to the file. The user is defined by the effective UID and GID. Setting the
effective GID does not affect supplemental groups. Also, there is no support for
altering the MVS user identity of the task using the ACEE.

Example
In the following example, assume that filetok, buf, and pos were assigned values
earlier in the exec:
"v_write filetok buf" length(buf) pos

v_write

Chapter 7. Virtual file system (VFS) server syscall commands 273

274 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Chapter 8. Examples: using virtual file system syscall
commands

These are examples of REXX programs that use the virtual file system syscall
commands.

List the files in a directory
Given a directory pathname, this example lists the files in the directory.

/* rexx */
parse arg dir /* take directory path as argument */
if dir=’ ’ then

do
say ’directory argument required’
return
end

call syscalls ’ON’
address syscall
’v_reg 1 dirlist’ /* register as a file server */
if retval=-1 then

do
say ’error registering as a server - error codes:’ errno errnojr
return
end

’v_rpn (dir) vfs vn mnt. st.’ /* resolve the directory pathname */
if retval=-1 then

do
say ’error resolving path’ dir ’- error codes:’ errno errnojr
return
end

i=1 /* next dir entry to read is 1 */
do forever /* loop reading directory */

’v_readdir vn d.’ i /* read starting at next entry */
if retval=-1 then

do
say ’error reading directory - error codes:’ errno errnojr
leave
end

if d.0=0 then leave /* if nothing returned then done */
do j=1 to d.0 /* process each entry returned */

say d.j
end
i=i+d.0 /* set index to next entry */

end
’v_rel vn’ /* release the directory vnode */
return

Remove a file or empty directory
Given a directory pathname and the filename to delete, this example removes the
file or an empty directory.

/* rexx */
if --argv.0<>3 then /* check for right number of args */

do
say ’directory and filename required’
return
end

/* _ _argv.1 is program name */
dir=--argv.2 /* 1st arg is directory pathname */

© Copyright IBM Corp. 1996, 2002 275

file=--argv.3 /* 2nd arg is file name */
call syscalls ’ON’
address syscall
"v_reg 1 ’remove file’" /* register as a file server */
if retval=-1 then

do
say ’error registering as a server - error codes:’ errno errnojr
return
end

’v_rpn (dir) vfs vn mnt. st.’ /* resolve the directory pathname */
if retval=-1 then

do
say ’error resolving path’ dir ’- error codes:’ errno errnojr
return
end

’v_lookup vn (file) fst. fvn’ /* look up the file */
if retval=-1 then

do
say "error locating file" file
say " in directory" dir
say " error codes:" errno errnojr
end

else
do
if fst.st_type=s_isdir then /* if the file is a directory */

’v_rmdir vn (file)’ /* then delete it with v_rmdir */
else
’v_remove vn (file)’ /* else delete it with v_remove */

if retval=-1 then
say ’error deleting file - error codes:’ errno errnojr

’v_rel fvn’ /* release the file vnode */
end

’v_rel vn’ /* release the directory vnode */
return

276 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Appendix A. REXX predefined variables

Predefined variables make symbolic references easier and more consistent. Instead
of using a numeric value, you can use the predefined variable that will derive that
numeric value. The following list shows the data type and numeric value for each
predefined variable. Each variable is discussed in the section about the syscall
command with which it can be used. Most variable names correspond to the
POSIX-defined names in the C runtime library include files (also known as header
files).

Except for the error numbers and signal numbers, all variables contain an
underscore. This is also true of most of the POSIX names in the C include files.

The data types are:
Bin Binary: 2-byte hexadecimal
Char Character
Dec Decimal
Hex Hexadecimal: 4-byte hexadecimal
Tok Token
Oct Octal

The predefined variables listed alphabetically are:

Table 10. List of predefined variables

Variable Data Type Numeric Value

AUD_FEXEC Dec 512

AUD_FREAD Dec 33554432

AUD_FWRITE Dec 131072

AUD_SEXEC Dec 256

AUD_SREAD Dec 16777216

AUD_SWRITE Dec 65536

E2BIG Hex 91

EACCES Hex 6F

EAGAIN Hex 70

EBADF Hex 71

EBUSY Hex 72

ECHILD Hex 73

EDEADLK Hex 74

EDOM Hex 01

EEXIST Hex 75

EFAULT Hex 76

EFBIG Hex 77

EILSEQ Hex 93

EINTR Hex 78

EINVAL Hex 79

EIO Hex 7A

EISDIR Hex 7B

© Copyright IBM Corp. 1996, 2002 277

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

ELOOP Hex 92

EMFILE Hex 7C

EMLINK Hex 7D

EMVSBADCHAR Hex A0

EMVSCATLG Hex 99

EMVSCVAF Hex 98

EMVSDYNALC Hex 97

EMVSERR Hex 9D

EMVSINITIAL Hex 9C

EMVSNORTL Hex A7

EMVSNOTUP Hex 96

EMVSPARM Hex 9E

EMVSPATHOPTS Hex A6

EMVSPFSFILE Hex 9F

EMVSPFSPERM Hex A2

EMVSSAF2ERR Hex A4

EMVSSAFEXTRERR Hex A3

EMVSTODNOTSET Hex A5

ENAMETOOLONG Hex 7E

ENFILE Hex 7F

ENODEV Hex 80

ENOENT Hex 81

ENOEXEC Hex 82

ENOLCK Hex 83

ENOMEM Hex 84

ENOSPC Hex 85

ENOSYS Hex 86

ENOTDIR Hex 87

ENOTEMPTY Hex 88

ENOTTY Hex 89

ENXIO Hex 8A

EPERM Hex 8B

EPIPE Hex 8C

ERANGE Hex 02

EROFS Hex 8D

ESC_A Hex 2F

ESC_B Hex 16

ESC_F Hex 0C

ESC_N Hex 15

ESC_R Hex 0D

278 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

ESC_T Hex 05

ESC_V Hex 0B

ESPIPE Hex 8E

ESRCH Hex 8F

EXDEV Hex 90

F_OK Dec 8

F_RDLCK Dec 1

F_UNLCK Dec 3

F_WRLCK Dec 2

GR_GID Dec 2

GR_MEM Char 4

GR_MEMBERS Dec 3

GR_NAME Char 1

L_LEN Dec 4

L_PID Dec 5

L_START Dec 3

L_TYPE Dec 1

L_WHENCE Dec 2

MNT_ASYNCHMOUNT Dec 130

MNT_FILEACTIVE Dec 0

MNT_FILEDEAD Dec 1

MNT_FILEDRAIN Dec 4

MNT_FILEFORCE Dec 8

MNT_FILEIMMED Dec 16

MNT_FILENORM Dec 32

MNT_FILERESET Dec 2

MNT_IMMEDTRIED Dec 64

MNT_MODE_AUNMOUNT Dec 64

MNT_MODE_CLIENT Dec 32

MNT_MODE_EXPORT Dec 4

MNT_MODE_NOAUTOMOVE Dec 16

MNT_MODE_NOSEC Dec 8

MNT_MODE_NOSETID Dec 2

MNT_MODE_RDONLY Dec 1

MNT_MODE_RDWR Dec 0

MNT_MODE_SECACL Dec 128

MNT_MOUNTINPROGRESS Dec 129

MNT_QUIESCED Dec 128

MNTE_BYTESREADHW Dec 25

MNTE_BYTESREADLW Dec 26

Appendix A. REXX predefined variables 279

|||

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

MNTE_BYTESWRITTENHW Dec 27

MNTE_BYTESWRITTENLW Dec 28

MNTE_DD Char 4

MNTE_DEV Dec 3

MNTE_DIRIBC Dec 22

MNTE_FILETAG Char 29

MNTE_FROMSYS Char 18

MNTE_FSNAME Char 6

MNTE_FSTYPE Char 5

MNTE_MODE Dec 2

MNTE_PARDEV Dec 9

MNTE_PARM Char 13

MNTE_PATH Char 7

MNTE_QJOBNAME Char 11

MNTE_QPID Dec 12

MNTE_QSYSNAME Char 16

MNTE_READCT Dec 20

MNTE_READIBC Dec 23

MNTE_RFLAGS Dec 14

MNTE_ROOTINO Dec 10

MNTE_STATUS Dec 8

MNTE_STATUS2 Dec 15

MNTE_SUCCESS Dec 19

MNTE_SYSLIST Char 31

MNTE_SYSNAME Char 17

MNTE_TYPE Dec 1

MNTE_WRITECT Dec 21

MNTE_WRITEIBC Dec 24

MTM_DRAIN Dec 2

MTM_FORCE Dec 4

MTM_IMMED Dec 8

MTM_NORMAL Dec 16

MTM_NOSUID Dec 262144

MTM_RDONLY Dec 128

MTM_RDWR Dec 64

MTM_REMOUNT Dec 65536

MTM_RESET Dec 1

MTM_SYNCHONLY Dec 131072

O_APPEND Dec 8

O_CREAT Dec 128

280 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|||

|||

|||

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

O_EXCL Dec 64

O_NOCITY Dec 32

O_NONBLOCK Dec 4

O_RDONLY Dec 2

O_RDWR Dec 3

O_SYNC Dec 256

O_TRUNC Dec 16

O_WRONLY Dec 1

PC_ACL Dec 10

PC_ACL_MAX Dec 11

PC_LINK_MAX Dec 2

PC_MAX_CANON Dec 3

PC_MAX_INPUT Dec 4

PC_NAME_MAX Dec 5

PC_PATH_MAX Dec 7

PC_PIPE_BUF Dec 8

PC_POSIX_CHOWN_RESTRICTED Dec 1

PC_POSIX_NO_TRUNC Dec 6

PC_POSIX_VDISABLE Dec 9

PS_CHILD Char W

PS_CMD Dec 19

PS_CONTTY Dec 17

PS_EGID Dec 10

PS_EUID Dec 7

PS_FGPID Dec 6

PS_FORK Char X

PS_FREEZE Char E

PS_MAXVNODES Dec 25

PS_MSGRCV Char A

PS_MSGSND Char B

PS_PATH Char 18

PS_PAUSE Char G

PS_PGPID Dec 5

PS_PID Dec 2

PS_PPID Dec 3

PS_QUIESCE Char Q

PS_RGID Dec 11

PS_RUID Dec 8

PS_RUN Char R

PS_SEMWT Char D

Appendix A. REXX predefined variables 281

|||

|||

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

PS_SERVERFLAGS Dec 27

PS_SERVERNAME Dec 22

PS_SERVERTYPE Dec 21

PS_SGID Dec 12

PS_SID Dec 4

PS_SIZE Dec 13

PS_SLEEP Char S

PS_STARTTIME Dec 14

PS_STAT Dec 1

PS_STATE Char 20

PS_SUID Dec 9

PS_SYSTIME Dec 16

PS_USERTIME Dec 15

PS_VNODECOUNT Dec 26

PS_WAITC Char C

PS_WAITF Char F

PS_WAITO Char K

PS_ZOMBIE Char Z

PS_ZOMBIE2 Char L

PW_DIR Char 4

PW_GID Dec 3

PW_NAME Char 1

PW_SHELL Char 5

PW_UID Dec 2

R_OK Dec 4

RLIMIT_AS Dec 5

RLIMIT_CORE Dec 4

RLIMIT_CPU Dec 0

RLIMIT_FSIZE Dec 1

RLIMIT_INFINITY Dec 2147483647

RLIMIT_NOFILE Dec 6

S_FFBINARY Dec 1

S_FFCR Dec 3

S_FFCRLF Dec 5

S_FFLF Dec 4

S_FFLFCR Dec 6

S_FFNA Dec 0

S_FFNL Dec 2

S_ISCHR Dec 2

S_ISDIR Dec 1

282 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

S_ISFIFO Dec 4

S_ISREG Dec 3

S_ISSYM Dec 5

SA_NOCLDSTOP Dec 32768

SA_NOCLDWAIT Dec 512

SA_NORESETHAND Dec 4096

SC_2_CHAR_TERM Dec 12

SC_ARG_MAX Dec 1

SC_CHILD_MAX Dec 2

SC_CLK_TCK Dec 3

SC_JOB_CONTROL Dec 4

SC_NGROUPS_MAX Dec 5

SC_OPEN_MAX Dec 6

SC_SAVED_IDS Dec 7

SC_TREAD_TASKS_MAX_NP Dec 11

SC_THREADS_MAP_NP Dec 13

SC_TZNAME_MAX Dec 9

SC_VERSION Dec 10

SE_ERRNO Dec 1

SE_REASON Dec 2

SE_ACTION Dec 3

SE_MODID Dec 4

SEEK_CUR Dec 1

SEEK_END Dec 2

SEEK_SET Dec 0

SIG_BLOCK Dec 0

SIG_CAT Dec 10

SIG_DFL Dec 0

SIG_IGN Dec 1

SIG_QRY Dec 11

SIG_SETMASK Dec 2

SIG_UNBLOCK Dec 1

SIGABND Dec 18

SIGABRT Dec 3

SIGALRM Dec 14

SIGBUS Dec 10

SIGCHLD Dec 20

SIGCONT Dec 19

SIGDANGER Dec 33

SIGDCE Dec 38

Appendix A. REXX predefined variables 283

|||

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

SIGFPE Dec 8

SIGHUP Dec 1

SIGILL Dec 4

SIGINT Dec 2

SIGIO Dec 23

SIGIOERR Dec 27

SIGKILL Dec 9

SIGPIPE Dec 13

SIGPOLL Dec 5

SIGPROF Dec 32

SIGQUIT Dec 24

SIGSEGV Dec 11

SIGSTOP Dec 7

SIGSYS Dec 12

SIGTERM Dec 15

SIGTRAP Dec 26

SIGTSTP Dec 25

SIGTTIN Dec 21

SIGTTOU Dec 22

SIGUSR1 Dec 16

SIGUSR2 Dec 17

SIGURG Dec 6

SIGVTALRM Dec 31

SIGXCPU Dec 29

SIGXFSZ Dec 30

ST_AAUDIT Dec 16

ST_ACCESSACL Dec 29

ST_ATIME Dec 9

ST_AUDITID Char 20

ST_BLKSIZE Dec 18

ST_BLOCKS Dec 22

ST_CCSID Char 21

ST_CRTIME Dec 19

ST_CTIME Dec 11

ST_DEV Hex 4

ST_DMODELACL Dec 31

ST_EXTLINK Dec 24

ST_FID Bin 27

ST_FILEFMT Dec 28

ST_FMODELACL Dec 30

284 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|||

|||

|||

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

ST_GENVALUE Bin 25

ST_GID Dec 7

ST_INO Hex 3

ST_MAJOR Dec 14

ST_MINOR Dec 15

ST_MODE Oct 2

ST_MTIME Dec 10

ST_NLINK Dec 5

ST_RTIME Dec 26

ST_SETGID Dec 13

ST_SETUID Dec 12

ST_SIZE Dec 8

ST_STICKY Dec 23

ST_TYPE Dec 1

ST_UAUDIT Dec 17

ST_UID Dec 6

STFS_AVAIL Dec 4

STFS_BFREE Dec 6

STFS_BLOCKSIZE Dec 1

STFS_FAVAIL Dec 9

STFS_FILES Dec 7

STFS_FFREE Dec 8

STFS_FRSIZE Dec 5

STFS_FSID Dec 10

STFS_INUSE Dec 3

STFS_INVARSEC Dec 15

STFS_NAMEMAX Dec 13

STFS_NOSUID Dec 12

STFS_RDONLY Dec 11

STFS_TOTAL Dec 2

TM_HOUR Dec 1

TM_ISDST Dec 9

TM_MDAY Dec 5

TM_MIN Dec 2

TM_MON Dec 4

TM_SEC Dec 3

TM_WDAY Dec 8

TM_YDAY Dec 7

TM_YEAR Dec 6

TMS_CSTIME Dec 4

Appendix A. REXX predefined variables 285

Table 10. List of predefined variables (continued)

Variable Data Type Numeric Value

TMS_CUTIME Dec 3

TMS_STIME Dec 2

TMS_UTIME Dec 1

U_MACHINE Char 5

U_NODENAME Char 2

U_RELEASE Char 3

U_SYSNAME Char 1

U_VERSION Char 4

VL_CLIENTPID Dec 7

VL_CLIENTTID Char 9

VL_DOSMODE Char 13

VL_DOSACCESS Char 14

VL_LOCK Dec 3

VL_LOCKERTOK Tok 8

VL_LOCKWAIT Dec 4

VL_OBJCLASS Char 10

VL_OBJID Char 11

VL_OBJTOK Tok 12

VL_PURGE Dec 7

VL_QUERY Dec 6

VL_REGLOCKER Dec 1

VL_SERVERPID Dec 6

VL_UNREGLOCKER Dec 2

VL_UNLOCK Dec 5

W_CONTINUED Dec 3

W_EXITSTATUS Dec 4

W_IFEXITED Dec 3

W_IFSIGNALED Dec 5

W_IFSTOPPED Dec 7

W_NOHANG Dec 1

W_OK Dec 2

W_STAT3 Dec 1

W_STAT4 Dec 2

W_STOPSIG Dec 8

W_TERMSIG Dec 6

W_UNTRACED Dec 2

X_OK Dec 1

286 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Appendix B. Setting permissions for files and directories

Typically, octal permissions are specified with three or four numbers, in these
positions:
1234

Each position indicates a different type of access:

v Position 1 is the bit that sets permission for set-user-ID on access, set-group-ID
on access, or the sticky bit. Specifying this bit is optional.

v Position 2 is the bit that sets permissions for the owner of the file. Specifying this
bit is required.

v Position 3 is the bit that sets permissions for the group that the owner belongs to.
Specifying this bit is required.

v Position 4 is the bit that sets permissions for others. Specifying this bit is
required.

Position 1
Specifying the bit in position 1 is optional. You can specify one of these values:

0 Off

1 Sticky bit on

2 Set-group-ID-on execution

3 Set-group-ID-on execution and set the sticky bit on

4 Set-user-ID on execution

5 Set-user-ID on execution and set the sticky bit on.

6 Set-user-ID and set-group-ID on execution

7 Set-user-ID and set-group-ID on execution and set the sticky bit on

Positions 2, 3, and 4
Specifying these bits is required. For each type of access—owner, group, and
other—there is a corresponding octal number:

0 No access (---)

1 Execute-only access (--x)

2 Write-only access (-w-)

3 Write and execute access (-wx)

4 Read-only access (r--)

5 Read and execute access (r-x)

6 Read and write access (rw-)

7 Read, write, and execute access (rwx)

To specify permissions for a file or directory, you use at least a 3-digit octal number,
omitting the digit in the first position. When you specify just three digits, the first
digit describes owner permissions, the second digit describes group permissions,
and the third digit describes permissions for all others. When the first digit is not

© Copyright IBM Corp. 1996, 2002 287

set, some typical 3-digit permissions are specified in octal as shown in Figure 1.

Example: using BITOR and BITAND to set mode bits
To set a file’s mode bits, use the REXX functions BITOR() and BITAND() with the
octal numbers.

For example, if you have obtained a file’s permission bits and want to use chmod
to turn on the write bits, you could code:
’chmod (file)’ BITOR(st.st_mode, 222)

To turn the same bits off, you could code:
’chmod (file)’ BITAND(st.st_mode, 555)

Octal Number Meaning

666

700

755

777

owner (rw-)
group (rw-)
other (rw-)

owner (rwx)
group (---)
other (---)

owner (rwx)
group (r-x)
other (r-x)

owner (rwx)
group (rwx)
other (rwx)

6 6 6

7 0 0

7 5 5

7 7 7

rw- rw- rw-

rwx --- ---

rwx r-x r-x

rwx rwx rwx

Figure 1. Three-digit permissions specified in octal

288 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Appendix C. Error messages from the REXX processor

All error messages are directed to standard output.

BPXW0000I Exec not found

Explanation: The REXX program could not be found.

System Action: The REXX program is not run.

User Response: Check the format of the REXX
program and make sure you have permission to
execute the program. Make sure you specified the
name with letters in the correct case (upper or lower). If
you specified a relative name, check that the program
can be found with the PATH environment variable used
to exec the REXX program.

When an external subroutine or function is called, you
may see the IRX0043I (routine not found) message.
Make sure the subroutine name is quoted if it contains
lowercase or special characters.

BPXW0001I Storage allocation error

Explanation: The REXX preprocessor was unable to
allocate sufficient storage to process the REXX
program.

System Action: The REXX program is not run.

User Response: Check whether the program is
looping on a call to an external function or subroutine.
Contact your system programmer to ensure that your
region size is sufficient for your application.

BPXW0002I Unable to read exec

Explanation: The REXX program could not be read.
The usual cause for this is that an I/O error occurred on
the read operation.

System Action: The REXX program is not run.

User Response: Ensure that the entire file can be
read.

BPXW0003I Improper text file

Explanation: The REXX program is not a compiled
exec and contains a line that is not terminated by a
<newline> character.

System Action: The REXX program is not run.

User Response: Check the format of the REXX
program. Make sure each line is terminated by a
<newline> character.

BPXW0004I Parameter string too long

Explanation: The parameter passed to a REXX
program exceeds 4096 characters. This is most likely to

occur when you run a REXX program under a shell,
using shell wildcards to pass a long file list or passing
the output of another command as the parameter.

System Action: The REXX program is not run.

User Response: Run the REXX program with fewer
parameters.

BPXW9000I Wrong number of arguments.

Explanation: You specified the wrong number of
arguments.

System Action: The REXX function fails.

User Response: Specify the correct number of
arguments.

BPXW9001I Error allocating result block

Explanation: An error occurred during allocation of a
result block. The most common reason for this is an
insufficient region size.

System Action: The stream function fails.

User Response: Increase the region size.

BPXW9002I DD names not currently supported

Explanation: The stream name begins with DD: and
was assumed to be a ddname. ddnames are not
supported.

System Action: The stream function fails.

User Response: Use a different naming convention.

BPXW9003I Too many arguments

Explanation: You specified too many arguments on a
REXX function.

System Action: The REXX function fails.

User Response: Use the correct number of
arguments.

BPXW9004I Invalid stream name

Explanation: You specified an invalid stream name on
the stream function.

System Action: The stream function fails.

User Response: Use a valid stream name.

© Copyright IBM Corp. 1996, 2002 289

||

|
|

|

|
|

||

|
|
|

|

|

||

|
|
|

|

|

||

|
|

|

|
|

||

|
|

|

|

BPXW9005I Invalid start parameter

Explanation: You specified an invalid start parameter
on the stream function.

System Action: The stream function fails.

User Response: Use a valid start parameter.

BPXW9006I lseek error

Explanation: There was an lseek error. Stream
positioning arguments can only be used on a persistent
stream.

System Action: The stream function fails.

User Response: Correct the arguments on the stream
function.

BPXW9007I Invalid I/O length

Explanation: You specified an invalid I/O length on
the stream function.

System Action: The stream function fails.

User Response: Correct the I/O length.

BPXW9008I read error

Explanation: The system encountered an I/O error
while trying to read the stream.

System Action: The stream function fails.

User Response: Use the stream() function with the D
operation on the stream name that failed to obtain
detailed error information.

BPXW9009I write error

Explanation: The system encountered an I/O error
while trying to open the stream for write.

System Action: The stream function fails.

User Response: Use the stream() function with the D
operation on the stream name that failed to obtain
detailed error information.

BPXW9010I Invalid line number parameter

Explanation: You specified an invalid line number
parameter on the stream function.

System Action: The stream function fails.

User Response: Correct the line number parameter.

BPXW9011I Invalid line count parameter

Explanation: You specified an invalid line count
parameter on the stream function.

System Action: The stream function fails.

User Response: Correct the line count parameter.

BPXW9012I I/O error

Explanation: The system encountered an I/O error
while trying to open the stream for read or write.

System Action: The stream function fails.

User Response: Use the stream() function with the D
operation on the stream name that failed to obtain
detailed error information.

BPXW9013I Invalid command argument

Explanation: You specified an invalid command
argument on a REXX function.

System Action: The REXX function fails.

User Response: Use a valid command argument.

BPXW9014I Invalid stream command

Explanation: You specified an invalid stream
command.

System Action: The stream() function fails.

User Response: Use a valid stream() command.

BPXW9015I Unknown stream action argument

Explanation: You specified an unknown stream action
argument. The valid arguments are D, S, and C.

System Action: The stream function fails.

User Response: Correct the stream action argument.

BPXW9016I Internal error

Explanation: An internal error occurred.

System Action: The REXX function fails.

User Response: Call the IBM support center.

BPXW9017I Unable to create stream for read

Explanation: The system was unable to create a
stream for read. Messages previously issued, such as
BPXW9018I, provide details about the error.

System Action: The particular stream operation fails.

User Response: Use the information provided in the
previously issued message to correct any errors.

BPXW9018I open error: d(X) X

Explanation: Open error d(X) X occurred. In the
message text:
v d is the error number, in decimal.
v The first X is the error number, in hexadecimal.
v The second X is the reason code.

290 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

||

|
|

|

|

||

|
|
|

|

|
|

||

|
|

|

|

||

|
|

|

|
|
|

||

|
|

|

|
|
|

||

|
|

|

|

||

|
|

|

|

||

|
|

|

|
|
|

||

|
|

|

|

||

|
|

|

|

||

|
|

|

|

||

|

|

|

||

|
|
|

|

|
|

||

|
|
|
|
|

System Action: The stream function fails.

User Response: Use the information provided in the
message text to correct the error.

BPXW9019I Missing file name

Explanation: You did not specify a file name. The
exists() function requires a file name.

System Action: The exists() function fails.

User Response: Specify the required file name.

BPXW9020I ioctl error: d(X) X

Explanation: An ioctl error d(X) X occurred. In the
message text:
v d is the error number, in decimal.
v The first X is the error number, in hexadecimal.
v The second X is the reason code.

System Action: The getpass() function fails.

User Response: Use the information provided in the
message text to correct the error.

BPXW9021I Invalid position argument

Explanation: You specified an invalid position
argument on the stream function.

System Action: The stream function fails.

User Response: Use a valid position argument.

BPXW9022I lseek error ignored

Explanation: An lseek error occurred on the stream
function with the readpos or writepos command, and
was ignored.

System Action: Either nothing was done, or the
position was set to the beginning of the file.

User Response: Use readpos and writepos with
persistent streams only.

BPXW9023I Pipe create failed

Explanation: An internal error occurred. The most
likely reason for this error is that the user has too many
files open.

System Action: The popen command on the stream
function fails, or ADDRESS TSO fails while attempting
to set up the TSO co-process.

User Response: Check to see whether there are too
many files open.

BPXW9024I Wrong use for open type

Explanation: You used the open-type argument
incorrectly on the stream function. open-type cannot be
changed on explicitly opened streams.

System Action: The stream function fails.

User Response: Do not change the open-type on
explicitly opened streams.

BPXW9025I Invalid OPEN argument

Explanation: The open argument you specified on the
stream() function is not valid.

System Action: The stream() function fails.

User Response: Use a valid open argument.

BPXW9026I Missing argument

Explanation: The REXX function contains a missing
argument.

System Action: The REXX function fails.

User Response: Specify the missing argument.

BPXW9027I Missing octal digits

Explanation: You specified the mode argument
incorrectly. Permission bits must be specified in octal
digits (0–7).

System Action: The REXX function fails.

User Response: Correct the mode argument.

BPXW9028I Invalid argument

Explanation: You specified an argument that is not
valid.

System Action: The REXX function fails.

User Response: Correct the argument.

BPXW9030I Insufficient storage

Explanation: There was insufficient region size to
read a full line. The most likely reason for this is that the
file is not a text file. The linein() function can be used
only on text files.

System Action: The linein() function fails.

User Response: Make sure that the file to be read is
a text file. If appropriate, increase the region size.

BPXW9031I Argument must be in the form
mmddyyyyhhmmss

Explanation: You specified the timestamp argument
on the convd2e() function incorrectly.

Appendix C. Error messages from the REXX processor 291

|

|
|

||

|
|

|

|

||

|
|
|
|
|

|

|
|

||

|
|

|

|

||

|
|
|

|
|

|
|

||

|
|
|

|
|
|

|
|

||

|
|
|

|

|
|

||

|
|

|

|

||

|
|

|

|

||

|
|
|

|

|

||

|
|

|

|

||

|
|
|
|

|

|
|

||
|

|
|

System Action: The convd2e() function fails.

User Response: Correct the timestamp argument.

BPXW9032I Year must be between 1970 and 2037

Explanation: You specified the year in the timestamp
argument incorrectly.

System Action: The convd2e() function fails.

User Response: Correct the timestamp argument.

BPXW9040I Invalid option

Explanation: You specified an option on the rexxopt()
function that is not valid.

System Action: The rexxopt() function fails.

User Response: Correct the invalid option.

BPXW9041I Missing arguments

Explanation: You did not specify required arguments
for thebpxwunix() function.

System Action: The bpxwunix() function fails.

User Response: Specify the required arguments.

BPXW9043I Invalid argument length

Explanation: You specified an argument on the
outtrap() function that has an incorrect length. The
maximum length of the first argument is 254 characters.

System Action: The outtrap() function fails.

User Response: Correct the argument length.

BPXW9044I spawn for BPXWRTSO failed

Explanation: You may not have execute access to
/bin/bpxwrtso . This is probably an install error, or the
user could have too many processes.

System Action: ADDRESS TSO fails.

User Response: Contact the system programmer.

BPXW9045I Invalid continue from BPXWRTSO

Explanation: You may have killed the bpxwrtso
process, or it may have failed.

System Action: ADDRESS TSO fails.

User Response: Contact the system programmer.

BPXW9046I Unable to send command to TSO
process

Explanation: You may have killed the bpxwrtso
process, or it may have failed.

System Action: ADDRESS TSO fails.

User Response: Contact the system programmer.

BPXW9047I select error

Explanation: There was an error in processing input
to or output from a TSO command. It is possible that
the user closed a file descriptor that ADDRESS TSO
was using to communicate with bpxwrtso .

System Action: None.

User Response: Check to see if a file descriptor that
ADDRESS TSO was using to communicate with
bpxwrtso was closed. If not, contact the system
programmer.

BPXW9048I Stream command argument is missing

Explanation: You used the stream() function with the
C operation. The C operation requires a command, but
you did not specify one.

System Action: The stream() function fails.

User Response: Specify the command argument.

BPXW9049I Missing stream name

Explanation: The stream() function requires a stream
name. The stream name is missing.

System Action: The stream() function fails.

User Response: Specify a stream name.

BPXW9050I Token not supported on OPEN

Explanation: You specified a token for the file name
on open . Tokens are not supported; a pathname is
required.

System Action: The stream function fails.

User Response: Specify a pathname for the file.

BPXW9051I Stream not open for read

Explanation: The stream you specified is not open for
read (it is open for write).

System Action: The stream function fails.

User Response: Correct the stream command.

BPXW9054I Unable to create stream for write

Explanation: The system was unable to create a
stream for write. Messages previously issued, such as
BPXW9018I, provide details about the error.

System Action: The particular stream operation fails.

User Response: Use the information provided in the
previously issued message to correct any errors.

292 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

|

|

||

|
|

|

|

||

|
|

|

|

||

|
|

|

|

||

|
|
|

|

|

||

|
|
|

|

|

||

|
|

|

|

||
|

|
|

|

|

||

|
|
|
|

|

|
|
|
|

||

|
|
|

|

|

||

|
|

|

|

||

|
|
|

|

|

||

|
|

|

|

||

|
|
|

|

|
|

BPXW9055I Stream not open for write

Explanation: The stream you specified is not open for
write (it is open for read).

System Action: The stream function fails.

User Response: Correct the stream command.

BPXW9090I Select an immediate command by
number:

1 Continue
2 Halt interpretation
3 Start trace
4 End trace
5 Halt type
6 Resume type

Explanation: In response to an interrupt signal, the
REXX interrupt handler has suspended execution of the
REXX program and is prompting for an immediate
command.

System Action: The execution of the REXX program
is suspended.

User Response: Select an immediate command by
number.

BPXW9091I Interrupt ignored for setuid/setgid

Explanation: REXX programs that are run as setuid or
setgid programs cannot be interrupted to issue an
immediate command.

System Action: The interrupt is ignored and REXX
program continues running.

User Response: None.

Appendix C. Error messages from the REXX processor 293

||

|
|

|

|

||
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|

||

|
|
|

|
|

|

294 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Appendix D. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1996, 2002 295

296 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2002 297

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of z/OS UNIX System Services (z/OS
UNIX).

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

C/370
DFS
IBM
IBMLink
Library Reader
OS/390
RACF
Resource Link
z/OS

UNIX® is a registered trademark of The Open Group in the United States and other
countries.

Microsoft®, Windows®, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

298 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Index

Numerics
3270 data stream 134
3270 passthrough mode 134

A
access syscall command 23
access time, set 187
accessibility 295
acl entry, read 28
acl entry, update 31
ACL_DELETE 25, 28, 31
ACL_ENTRY_GROUP 25, 28, 31
ACL_ENTRY_TYPE 25, 28, 31
ACL_ENTRY_USER 25, 28, 31
ACL_EXECUTE 25, 28, 31
ACL_ID 25, 28, 31
ACL_READ 25, 28, 31
ACL_TYPE_ACCESS 24, 27, 30
ACL_TYPE_DIRDEFAULT 24, 27, 30
ACL_TYPE_FILEDEFAULT 24, 27, 30
ACL_WRITE 25, 28, 31
acl, deleting 25
ACL, deleting 24
acl, obtain resources 29
acl, read 27
acl, release resources 26
acl, replace 30
acldelete syscall command 24, 25
aclfree syscall command 26
aclget syscall command 27
aclgetentry syscall command 28
aclinit syscall command 29
aclset syscall command 30
aclupdateentry syscall command 31
ADDRESS TSO 5
alarm syscall command 33
appropriate privileges 13
AUD_FEXEC 41, 56
AUD_FREAD 41, 56
AUD_FWRITE 41, 56
AUD_SEXEC 41, 56
AUD_SREAD 41, 56
AUD_SWRITE 41, 56
audit flags 41, 56
authorization 13
automatic file conversion

control 61

B
batch, running a REXX program 2
BITAND 288
BITOR 288
BPX.SUPERUSER FACILITY 13
BPXWDYN 237

calling conventions 237

BPXWDYN (continued)
examples 246
freeing an output descriptor 246
message processing 240
request types 238
requesting dynamic allocation 240
requesting dynamic concatenation 244
requesting dynamic output 244
requesting dynamic unallocation 243

BPXWRBLD module 15
bpxwunix() function 209

C
calling process

effective group ID 148, 150
effective user ID 89, 149
making it a session leader 157
parent process ID 102
process group ID 100
process ID 101
real group ID 150
real user ID 110, 158
saved set group ID 150
saved set user ID 158

calling process, effective group ID 88
calling process, real group ID 90
calling process, supplementary group ID 94
calling thread

signal mask 163
suspending 131, 164, 165

catclose syscall command 34
catgets syscall command 35
catopen syscall command 36
cert syscall command 37
certificate registration 37
character set portable filename 19
character special file 122
charin() function 211
charout() function 212
chars() function 213
chattr syscall command 38
chaudit syscall command 41
chdir syscall command 42
child process 166, 169
chmod syscall command 43
chmod() function 214
chown syscall command 45
close syscall command 46
closedir syscall command 47
coding examples 195, 275
command

syntax diagrams xiv
command output

trapping 209, 223
command, shell, su 13
commands

stream() 230

© Copyright IBM Corp. 1996, 2002 299

configurable limit value 73, 129, 176
convd2e() function 215
creat syscall command 48
current directory

returning or changing 216
customization

host command environment 12
performance 12
REXX environment 12

CVT_QUERYCVT 62
CVT_SETAUTOCVTON 62
CVT_SETCVTOFF 62
CVT_SETCVTON 62

D
database, group

retrieving an entry 91
rewinding 151

database, user
entry retrieval 106
rewinding the 154

delete a directory
rmdir 147

delete a file 183
unlink 183

directory
changing group 45
changing mode 43
changing owner 45
closing 47
creating 120
entry 183
file 183
group 59
mode, changing 58
name, changing 145
owner 59, 116
reading multiple entries 137, 141
removing 147
rewind 146
stream 128

directory() function 216
disability 295
documents, licensed xi
dup syscall command 49
dup2 syscall command 50
dynamic allocation 237
dynamic output 237

E
effective group ID calling process 88, 148, 150
effective user ID calling process 89, 149, 158
entry, directory 183
environment

REXX 15
SH 3
SYSCALL 2

environment variable
altering 217

environment variable (continued)
querying 217

environment() function 217
Epoch, seconds since 177
ERRNO 22
ERRNOJR 22
error codes, retrieving text 174
ESC_A 192
ESC_B 192
ESC_F 192
ESC_N 192
ESC_R 192
ESC_T 192
ESC_V 192
examples, coding 195, 275
EXECIO 7, 8, 16
exists() function 218
exit status from REXX 8
external functions 4
extlink syscall command 52

F
f_closfd syscall command 60
f_control_cvt syscall command 61
f_dupfd syscall command 64
f_dupfd2 syscall command 65
f_getfd syscall command 66
f_getfl syscall command 67
f_getlk syscall command 68
F_OK 23
F_RDLCK 69, 78, 80, 256
f_setfd syscall command 75
f_setfl syscall command 76
f_setlk syscall command 77
f_setlkw syscall command 79
f_settag syscall command 81
F_UNLCK 69, 78, 80, 256
F_WRLCK 69, 78, 80, 256
fchattr syscall command 53
fchaudit syscall command 56
fchmod syscall command 57
fchown syscall command 59
fcntl syscall command 63
FD_CLOEXEC 75, 133
FID 247
FIFO special file 121
file

access and modification times 187
automatic conversion 61
changes on DASD 85
changing attributes 38, 53
changing group 45
changing mode 43, 214
changing owner 45, 116
changing size 86
closing 46
creating 48
deleting 183
erasing 183
group 59

300 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

file (continued)
locks 77
mode, changing 58, 214
name, changing 145
new, opening 48
offset 118
opening 126
owner 59
reading bytes 139
reading lines 142
removing 183
size 179
status 170
status flags 67, 76
status information 82, 119

file access
determining 222

file access, determining 23
file descriptor 126
file descriptors

0, 1, and 2 7, 16
closing a range 60
duplicating 49, 50, 64, 65
error 7
file attributes, changing 53
flags 66, 75
REXX environment 17

file locks 68, 79
file mode creation mask 181
file stream

opening 207
file system

mounted 84, 97, 98, 173
mounting 123
quiescing 136
status 172
unmounting 184
unquiescing 186

file system server
creating a file 248
creating a link 253
creating a new directory 260
creating a symbolic link 271
file attributes, setting 270
getting file attributes 252
locking 254
reading file data 261
registering a process as a server 264
releasing a vnode token 265
removing a directory entry 266
removing an empty directory 268
renaming a file or directory 267
returning a vnode token 251
returning entries from a directory 262
returning file system status 250
returning the contents of a symbolic link 263
returning vnode and VFS tokens 269
searching for a file 259
syscall commands

FID 247
security 247

file system server (continued)
syscall commands (continued)

tokens 247
VFS 247
vnode 247

writing file data 273
file tag 81
fork syscall command 70
forkexecm syscall command 71
fpathconf syscall command 73
fstat syscall command 82
fstatvfs syscall command 84
fsync syscall command 85
ftrunc syscall command 86
functions

REXX 207
functions, external 4

G
getcwd syscall command 87
getegid syscall command 88
geteuid syscall command 89
getgid syscall command 90
getgrent syscall command 91
getgrgid syscall command 92
getgrnam syscall command 93
getgroups syscall command 94
getgroupsbyname syscall command 95
getlogin syscall command 96
getment syscall command 97
getmntent syscall command 98
getopts function 196
getpass() function 219
getpgrp syscall command 100
getpid syscall command 101
getppid syscall command 102
getpsent syscall command 103
getpwent syscall command 106
getpwnam syscall command 107
getpwuid syscall command 108
getrlimit syscall command 109
getuid syscall command 110
gmtime syscall command 111
GR_GID 91, 92, 93
GR_MEM 91, 92, 93
GR_MEMBERS 91, 92, 93
GR_NAME 91, 92, 93
group 92

changing file or directory 45
file or directory 116
information 93
symbolic link 116

group database
retrieving an entry 91
rewinding 151

group, file or directory 59

Index 301

H
halt interruption 7
hard link 117

removing 183
host command environment

customizing 12
SH 3

input and output 7
return code 22

SYSCALL 2, 3
working directory 19

host command environments
z/OS UNIX 1

I
immediate commands 10
input and output

syscall commands 7
z/OS UNIX 7

ioctl syscall command 112
IRXEXEC service 16
IRXJCL service 16
isatty syscall command 113
ISPF editor 4

J
JES

submitting a job to 234

K
keyboard 295
kill syscall command 114

L
L_LEN 69, 78, 80
L_PID 69, 78, 80
L_START 69, 78, 80
L_TYPE 69, 78, 80
L_WHENCE 69, 78, 80
lchown syscall command 116
licensed documents xi
linein() function 220
lineout() function 221
lines() function 222
link

hard 117
symbolic 271

link syscall command 117
link, hard 183
link, symbolic 183

creating to an external name 52
reading the contents 143

linkage 15
LINKLIB 71
locks, file 77, 79

querying 68

login name 96
LookAt message retrieval tool xii
LPALIB 71
lseek syscall command 118
lstat syscall command 119

M
macro language, using REXX 15
message catalog 34, 36
message retrieval tool, LookAt xii
message, finding and returning 35
mkdir syscall command 120
mkfifo syscall command 121
mknod syscall command 122
MNT_ASYNCHMOUNT 99
MNT_FILEACTIVE 99
MNT_FILEDEAD 99
MNT_FILEDRAIN 99
MNT_FILEFORCE 99
MNT_FILEIMMED 99
MNT_FILENORM 99
MNT_FILERESET 99
MNT_IMMEDTRIED 99
MNT_MODE_AUNMOUNT 98, 124
MNT_MODE_CLIENT 98
MNT_MODE_EXPORT 98
MNT_MODE_NOAUTOMOVE 98, 124
MNT_MODE_NOSEC 98, 124
MNT_MODE_NOSETID 98, 124
MNT_MODE_RDONLY 98, 124
MNT_MODE_RDWR 98, 124
MNT_MOUNTINPROGRESS 99
MNT_QUIESCED 99
MNTE_BYTESREADHW 98
MNTE_BYTESREADLW 98
MNTE_BYTESWRITTENHW 98
MNTE_BYTESWRITTENLW 98
MNTE_DD 98
MNTE_DEV 98
MNTE_DIRIBC 98
MNTE_FILETAG 124
MNTE_FROMSYS 98
MNTE_FSNAME 98, 124
MNTE_FSTYPE 98, 124
MNTE_MODE 98, 124
MNTE_PARDEV 98
MNTE_PARM 99, 124
MNTE_PATH 99, 124
MNTE_QJOBNAME 99
MNTE_QPID 99
MNTE_QSYSNAME 99
MNTE_READCT 99
MNTE_READIBIC 99
MNTE_RFLAGS 99, 125
MNTE_ROOTINO 99
MNTE_STATUS 99
MNTE_STATUS2 99
MNTE_SUCCESS 99
MNTE_SYSLIST 99, 124, 125
MNTE_SYSNAME 99, 124, 125

302 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

MNTE_TYPE 99
MNTE_WRITECT 99
MNTE_WRITEIBC 99
mode changing 43, 58
mode specifying 19
modification time, set 187
mount syscall command 123

MNT_MODE_AUNMOUNT 124
MNT_MODE_NOAUTOMOVE 124
MNT_MODE_NOSEC 124
MNT_MODE_NOSETID 124
MNT_MODE_RDONLY 124
MNT_MODE_RDWR 124
MNTE_FILETAG 124
MNTE_FSNAME 124
MNTE_FSTYPE 124
MNTE_MODE 124
MNTE_PARM 124
MNTE_PATH 124
MNTE_RFLAGS 125
MNTE_SYSLIST 124, 125
MNTE_SYSNAME 124, 125

mounted file systems 97, 98
mountnt syscall command

MNTE_FSNAME 124
MTM_DRAIN 184
MTM_FORCE 184
MTM_IMMED 184
MTM_NORMAL 184
MTM_NOSECURITY 123
MTM_NOSUID 123
MTM_RDONLY 123
MTM_RDWR 123
MTM_REMOUNT 184
MTM_RESET 184
MTM_SYNCHONLY 123

N
Notices 297
NUMBER OFF 4
numerics 20

O
O_APPEND 67, 76, 126
O_CREAT 67, 126
O_EXCL 67, 126
O_NOCTTY 67, 126
O_NONBLOCK 67, 76, 126, 133
O_RDONLY 67, 126
O_RDWR 67, 126
O_SYNC 67, 76, 126
O_TRUNC 67, 126
O_WRONLY 67, 126
octal numbers 287
offset, file 118
open syscall command 126
opendir syscall command 128
opening

file stream 207

opening (continued)
process stream 208

outtrap() function 223
owner

changing file or directory 45
file or directory 116
symbolic link 116

owner, file or directory 59

P
parent process ID calling 102
PARSE EXTERNAL instruction 7, 16
PARSE SOURCE instruction tokens 8
passthrough mode, 3270 134
password

prompting for 219
returning 219

pathconf syscall command 129
pathname

returning a 218
specifying 19
terminal 180

pause syscall command 131
PC_ACL 130
PC_ACL_MAX 130
PC_LINK_MAX 74, 130
PC_MAX_CANON 74, 130
PC_MAX_INPUT 74, 130
PC_NAME_MAX 74, 130
PC_PATH_MAX 74, 130
PC_PIPE_BUF 74, 130
PC_POSIX_CHOWN_RESTRICTED 74, 130
PC_POSIX_NO_TRUNC 74, 130
PC_POSIX_VDISABLE 74, 130
pending signals 162
performance 12
permissions

octal 287
setting 287, 288

pfsctl syscall command 132
pipe syscall command 133
pipe, creating 133
portable filename character set 19
POSIX epoch time

converting timestamp to 215
predefined variables

data type and numeric value 277
effect of PROCEDURE 6
using 21

PROCEDURE instruction 6
process

creating 166
retrieving information about 224
signal actions 159
spawning a child 166, 169
starting time 111
status 103
wait

signals-enabled 229
process group ID 100

Index 303

process group ID (continued)
assigning 153

process ID 101
process stream

opening 208
processor time used 178
procinfo() function 224
program

executing from LINKLIB, LPALIB, or STEPLIB 71
run a REXX program 4

programming services 15
PS_CHILD 104
PS_CMD 103
PS_CONTTY 103
PS_EGID 103
PS_EUID 103
PS_FGPID 103
PS_FORK 104
PS_FREEZE 104
PS_MAXVNODES 103
PS_MSGRCV 104
PS_MSGSND 104
PS_PATH 103
PS_PAUSE 104
PS_PGPID 103
PS_PID 103
PS_PPID 103
PS_QUIESCE 104
PS_RGID 103
PS_RUID 103
PS_RUN 104
PS_SEMWT 104
PS_SERVERFLAGS 103
PS_SERVERNAME 103
PS_SERVERTYPE 103
PS_SGID 103
PS_SID 103
PS_SIZE 103
PS_SLEEP 104
PS_STARTTIME 103
PS_STAT 103
PS_STATE 104
PS_SUID 104
PS_SYSTIME 104
PS_USERTIME 104
PS_VNODECOUNT 104
PS_WAITC 104
PS_WAITF 104
PS_WAITO 104
PS_ZOMBIE 104
PS_ZOMBIE2 104
pt3270 syscall command 134
publications

on CD-ROM xi
softcopy xi

PW_DIR 106, 107, 108
PW_GID 106, 107, 108
PW_NAME 106, 107, 108
PW_SHELL 106, 107, 108
PW_UID 106, 107, 108

Q
quiesce syscall command 136

R
R_OK 23
RACF (Resource Access Control Facility)

BPX.SUPERUSER FACILITY 13
RC 21

REXX variable 6
rddir syscall command 137
read syscall command 139
readdir syscall command 141
readfile syscall command 142
readlink syscall command 143
real group ID calling process 90, 150
real user ID calling process 110, 158
realpath syscall command 144
relative pathname working directory 19
remove a directory

rmdir 147
remove a file

unlink 183
rename syscall command 145
reserved variables 21
Resource Access Control Facility (RACF) 13
resource limits 109, 155
return code

from a REXX program 8
SH host command environment 22
TSO/E 21
z/OS shell 22

RETVAL 21
rewinddir syscall command 146
REXX environment, customizing 12
REXX functions 207

bpxwunix() 209
charin() 211
charout() 212
chars() 213
chmod() 214
convd2e() 215
directory() 216
environment() 217
exists() 218
getpass() 219
linein() 220
lineout() 221
lines() 222
outtrap() 223
procinfo() 224
rexxopt() 228
sleep() 229
stream() 230
submit() 234
syscalls 235

REXX program
exit status 8
from TSO/E or batch 9
moving from TSO/E to a z/OS shell 11

304 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

REXX program (continued)
querying options 228
run from a program 9
run from a z/OS shell or a program 4
run from the z/OS shell 9
run from TSO/E or batch 2
setting options 228

REXX programming services 15
REXX service

IRXEXEC 16
IRXJCL 16

rexxopt() function 228
RLIM_INFINITY 155
RLIMIT_AS 109, 155
RLIMIT_CORE 109, 155
RLIMIT_CPU 109, 155
RLIMIT_FSIZE 109, 155
RLIMIT_NOFILE 109, 155
rmdir syscall command

remove or delete a directory 147
routine, signal interface 3

S
S_FFBINARY 83, 171
S_FFCR 83, 171
S_FFCRLF 83, 171
S_FFLF 83, 171
S_FFLFCR 83, 171
S_FFNA 83, 171
S_FFNL 83, 171
S_ISCHR 83, 171
S_ISDIR 83, 171
S_ISFIFO 83, 171
S_ISREG 83, 171
S_ISSYM 83, 171
SA_NOCLDSTOP 160
saved set group ID calling process 150
saved set user ID calling process 158
SAY 16
SAY instruction 7
SC_2_CHAR_TERM 176
SC_ARG_MAX 176
SC_CHILD_MAX 176
SC_CLK_TCK 176
SC_JOB_CONTROL 176
SC_NGROUPS_MAX 176
SC_OPEN_MAX 176
SC_SAVED_IDS 176
SC_THREAD_TASKS_MAX_NP 176
SC_THREADS_MAX_NP 176
SC_TZNAME_MAX 176
SC_VERSION 176
scope, variable 6
seconds since Epoch 177
security

file system server 247
Resource Access Control Facility (RACF) 13

SEEK_CUR 69, 78, 80, 118
SEEK_END 69, 78, 80, 118
SEEK_SET 69, 78, 80, 118

sequence numbers, ISPF 4
set the supplemental group list 152
setegid syscall command 148
seteuid syscall command 149
setgid syscall command 150
setgrent syscall command 151
setgroups syscall command 152
setpgid syscall command 153
setpwent syscall command 154
setrlimit syscall command 155

RLIM_INFINITY 155
setsid syscall command 157
setting, supplemental group list 152
setuid syscall command 158
SH environment 3

input and output 7
shell command, running 209
shortcut keys 295
SIG_BLOCK 163
SIG_CAT 160
SIG_DFL 160
SIG_IGN 160
SIG_QRY 160
SIG_SETMASK 163
SIG_UNBLOCK 163
SIGABND 115, 160
SIGABRT 115, 160
sigaction syscall command 159

SIG_QRY 160
SIGALRM 115, 160
SIGALRM, generating 33
SIGBUS 115, 160
SIGCHLD 115, 160
SIGCONT 115, 160
SIGDCE 115, 160
SIGFPE 115, 160
SIGHUP 115, 160
SIGILL 115, 160
SIGINT 115, 160
SIGIO 115, 160
SIGIOERR 115, 160
SIGKILL 115, 160
signal

catcher 9
interface routine (SIR) 3
mask 163, 164
pausing for delivery 131
pending 162
REXX environment 16
services 9
SIGALRM 33

signal action 159
signal interface routine

establish or delete 235
sigpending syscall command 162
SIGPIPE 115, 160
SIGPOLL 115, 160
sigprocmask syscall command 163
SIGPROF 115, 160
SIGQUIT 115, 160
SIGSEGV 115, 160

Index 305

SIGSTOP 115, 160
sigsuspend syscall command 164
SIGSYS 115, 160
SIGTERM 115, 160
SIGTRAP 115, 160
SIGTSTP 115, 160
SIGTTIN 115, 160
SIGTTOU 115, 160
SIGURG 115, 160
SIGUSR1 115, 160
SIGUSR2 115, 160
SIGVTALRM 115, 160
SIGWINCH 160
SIGXCPU 115, 160
SIGXFSZ 115, 160
sleep syscall command 165
sleep() function 229
spawn syscall command 166
spawnp syscall command 169
special file, character 122
special file, FIFO 121
ST_AAUDIT 39, 54, 83, 171
ST_ACCESSACL 83, 171
ST_ATIME 39, 54, 83, 171
ST_AUDITID 83, 171
ST_BLKSIZE 83, 171
ST_BLOCKS 83, 171
ST_CCSID 39, 54, 83, 171
ST_CRTIME 83, 171
ST_CTIME 39, 54, 83, 171
ST_DEV 83, 171
ST_DMODELACL 83, 171
ST_EXTLINK 83, 171
ST_FID 83, 171
ST_FILEFMT 83, 171
ST_FMODELACL 83, 171
ST_GENVALUE 39, 54, 83, 171
ST_GID 83, 171
ST_INO 83, 171
ST_MAJOR 83, 171
ST_MINOR 83, 171
ST_MODE 39, 54, 83, 171
ST_MTIME 39, 54, 83, 171
ST_NLINK 83, 171
ST_RTIME 39, 54, 83, 171
ST_SETGID 39, 54, 83, 171
ST_SETUID 39, 54, 83, 171
ST_SIZE 39, 54, 83, 171
ST_STICKY 39, 54, 83, 171
ST_TYPE 83, 171
ST_UAUDIT 39, 54, 83, 171
ST_UID 39, 54, 83, 171
starting time 111
stat syscall command 170
statfs syscall command 172
status

file 170
file system 172
process 103

statvfs syscall command 173
STDERR 7

STDIN 7
STDOUT 7
stem, specifying 19
STEPLIB 71
STFS_AVAIL 84, 172, 173
STFS_BFREE 84, 172, 173
STFS_BLOCKSIZE 84, 172, 173
STFS_FAVAIL 84, 172, 173
STFS_FFREE 84, 172, 173
STFS_FILES 84, 172, 173
STFS_FRSIZE 84, 172, 173
STFS_FSID 84, 172, 173
STFS_INUSE 84, 172, 173
STFS_INVARSEC 84, 172, 173
STFS_NAMEMAX 84, 172, 173
STFS_NOSEC 172, 173
STFS_NOSUID 84, 172, 173
STFS_RDONLY 84, 172, 173
STFS_TOTAL 84, 172, 173
stream

characters
returning a number of 212
returning a string of 211
returning the remaining 213

checking for data 222
file 207
opening implicitly 207
process 208
reading a line 220
return the state of 230
writing a line 221

stream()
commands 230

stream() function 230
strerror syscall command 174
strings, specifying 20
su shell command 13
submit() function 234
subroutines 4
superuser 13
supplementary group ID calling process 94
supplementary group ID user 95
symbolic link

creating 175
creating to an external name 52
owner 116
reading the contents 143
removing 183
resolving 271

symlink syscall command 175
syntax diagrams

how to read xiv
syscall command 1

specifying 19
syscall commands

VFS server 247
SYSCALL commands

for input and output 7
SYSCALL environment 2

establish or end 235
syscalls function 235

306 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

sysconf syscall command 176
sysplex

getmntent syscall command 98
mount syscall command 123

T
tag, file 81
terminal pathname 180
time

access and modification 187
processor 178

time syscall command 177
times syscall command 178
timestamp

converting to POSIX epoch time 215
TM_HOUR 111
TM_ISDST 111
TM_MDAY 111
TM_MIN 111
TM_MON 111
TM_SEC 111
TM_WDAY 111
TM_YDAY 111
TM_YEAR 111
TMS_CSTIME 178
TMS_CUTIME 178
TMS_STIME 178
TMS_UTIME 178
tokens

file system server 247
returned from PARSE SOURCE instruction 8

trunc syscall command 179
TSO

command environment 5
TSO command environment 5
TSO commands

examples 6
TSO/E, running a REXX program 2
ttyname syscall command 180

U
U_MACHINE 182
U_NODENAME 182
U_RELEASE 182
U_SYSNAME 182
U_VERSION 182
uname syscall command 182
unlink syscall command

remove or delete a file 183
unlink a file 183

unmount syscall command 184
unquiesce syscall command 186
user

identified by user ID 108
identified by user name 107
login name 96
supplementary group IDs 95

user database
entry retrieval 106

user database (continued)
rewinding the 154

utime syscall command 187

V
v_create syscall command 248
v_fstatfs syscall command 250
v_get syscall command 251
v_getattr syscall command 252
v_link syscall command 253
v_lockctl syscall command 254
v_lookup syscall command 259
v_mkdir syscall command 260
v_read syscall command 261
v_readdir syscall command 262
v_readlink syscall command 263
v_reg syscall command 264
v_rel syscall command 265
v_remove syscall command 266
v_rename syscall command 267
v_rmdir syscall command 268
v_rpn syscall command 269

MNT_MODE_AUNMOUNT 98
MNT_MODE_CLIENT 98
MNT_MODE_EXPORT 98
MNT_MODE_NOAUTOMOVE 98
MNT_MODE_NOSEC 98
MNT_MODE_NOSETID 98
MNTE_BYTESREADHW 98
MNTE_BYTESREADLW 98
MNTE_BYTESWRITTENHW 98
MNTE_BYTESWRITTENLW 98
MNTE_DIRIBC 98
MNTE_FROMSYS 98
MNTE_QSYSNAME 99
MNTE_READCT 99
MNTE_READIBIC 99
MNTE_RFLAGS 99
MNTE_STATUS2 99
MNTE_SUCCESS 99
MNTE_SYSLIST 99
MNTE_SYSNAME 99
MNTE_WRITECT 99
MNTE_WRITEIBC 99

v_setattr syscall command 270
v_symlink syscall command 271
v_write syscall command 273
variable

predefined 277
reserved 21
scope 6
specifying 20

VFS 247
VFS server, syscall commands 247
vnode 247

W
W_CONTINUED 188
W_EXITSTATUS 188

Index 307

w_getmntent syscall command
MNT_MODE_AUNMOUNT 98
MNT_MODE_CLIENT 98
MNT_MODE_EXPORT 98
MNT_MODE_NOAUTOMOVE 98
MNT_MODE_NOSEC 98
MNT_MODE_NOSETID 98
MNTE_BYTESREADHW 98
MNTE_BYTESREADLW 98
MNTE_BYTESWRITTENHW 98
MNTE_BYTESWRITTENLW 98
MNTE_DIRIBC 98
MNTE_FROMSYS 98
MNTE_QSYSNAME 99
MNTE_READCT 99
MNTE_READIBIC 99
MNTE_RFLAGS 99
MNTE_STATUS2 99
MNTE_SUCCESS 99
MNTE_SYSLIST 99
MNTE_SYSNAME 99
MNTE_WRITECT 99
MNTE_WRITEIBC 99

W_IFEXITED 188
W_IFSIGNALED 188
W_IFSTOPPED 188
W_OK 23
W_STAT3 188
W_STAT4 188
W_STOPSIG 188
W_TERMSIG 188
wait syscall command 188
waitpid syscall command 190
working directory 19

changing 42
pathname 87

write syscall command 192
writefile syscall command 194

X
X_OK 23

Z
z/OS shell

return code 22
run a REXX program from 4

z/OS UNIX
host command environments 1
REXX functions 207

z/OS UNIX processing
input and output 7
using TSO/E REXX 1

z/OS UNIX System Services
publications

on CD-ROM xi
softcopy xi

308 z/OS V1R4.0 Using REXX and z/OS UNIX System Services

Readers’ Comments — We’d Like to Hear from You

z/OS
Using REXX and z/OS UNIX System Services

Publication No. SA22-7806-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7806-03

SA22-7806-03

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7806-03

	Contents
	Tables
	About this document
	Who should read Using REXX and z/OS UNIX System Services
	Where to find more information
	Softcopy publications
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations
	IBM Systems Center publications
	z/OS UNIX porting information
	z/OS UNIX courses
	z/OS UNIX home page
	z/OS UNIX customization wizard
	Discussion list

	Finding more information about REXX
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	Summary of changes
	Chapter 1. Using TSO/E REXX for z/OS UNIX processing
	Host command environments for z/OS UNIX processing
	The SYSCALL environment
	Running a REXX program from TSO/E or MVS batch
	Establishing the SYSCALL environment
	Ending the SYSCALL environment
	Establishing and deleting the signal interface routine

	The SH environment
	Running a REXX program from the z/OS shells or from a program
	Using external functions and subroutines

	The TSO command environment
	Command input
	Command output
	Return codes
	Examples

	Variable scope
	Writing setuid and setgid REXX programs
	Input and output for z/OS UNIX processing
	Using standard input, output, and error (file descriptors 0, 1, and 2)
	Using SYSCALL commands
	Using EXECIO
	Exit status from a REXX program

	Tokens returned from the PARSE SOURCE instruction
	Running from a z/OS shell or from a program
	Example

	Running from TSO/E or batch

	Using the REXX signal services
	Using immediate commands
	Moving a REXX program from TSO/E to a z/OS shell
	Using argv and environment variables
	PGM1:
	PGM2:
	Sample execution

	Customizing the z/OS UNIX REXX environment
	Performance in the SYSCALL environment

	Authorization

	Chapter 2. z/OS UNIX REXX programming services
	Creating a z/OS UNIX REXX environment from an application
	Running the REXX program
	Example: C/370™ program

	Chapter 3. The syscall commands
	Specifying a syscall command
	Specifying numerics
	Specifying strings

	Using predefined variables
	Return values
	Returned from the SYSCALL environment
	Returned from the SH environment

	Syscall command descriptions
	access
	acldelete
	acldeleteentry
	aclfree
	aclget
	aclgetentry
	aclinit
	aclset
	aclupdateentry
	alarm
	catclose
	catgets
	catopen
	cert
	chattr
	chaudit
	chdir
	chmod
	chown
	close
	closedir
	creat
	dup
	dup2
	exec
	extlink
	fchattr
	fchaudit
	fchmod
	fchown
	f_closfd
	f_control_cvt
	fcntl
	f_dupfd
	f_dupfd2
	f_getfd
	f_getfl
	f_getlk
	fork
	forkexecm
	fpathconf
	f_setfd
	f_setfl
	f_setlk
	f_setlkw
	f_settag
	fstat
	fstatvfs
	fsync
	ftrunc
	getcwd
	getegid
	geteuid
	getgid
	getgrent
	getgrid
	getgrnam
	getgroups
	getgroupsbyname
	getlogin
	getment
	getmntent
	getpgrp
	getpid
	getppid
	getpsent
	getpwent
	getpwnam
	getpwuid
	getrlimit
	getuid
	gmtime
	ioctl
	isatty
	kill
	lchown
	link
	lseek
	lstat
	mkdir
	mkfifo
	mknod
	mount
	open
	opendir
	pathconf
	pause
	pfsctl
	pipe
	pt3270
	quiesce
	rddir
	read
	readdir
	readfile
	readlink
	realpath
	rename
	rewinddir
	rmdir
	setegid
	seteuid
	setgid
	setgrent
	setgroups
	setpgid
	setpwent
	setrlimit
	setsid
	setuid
	sigaction
	sigpending
	sigprocmask
	sigsuspend
	sleep
	spawn
	spawnp
	stat
	statfs
	statvfs
	strerror
	symlink
	sysconf
	time
	times
	trunc
	ttyname
	umask
	uname
	unlink
	unmount
	unquiesce
	utime
	wait
	waitpid
	write
	writefile

	Chapter 4. Examples: using syscall commands
	Read the root directory into a stem and print it
	Open, write, and close a file
	Open a file, read, and close it
	Display the working directory and list a specified directory
	Parse arguments passed to a REXX program: the getopts function
	Count newlines, words, and bytes
	Obtain information about the mounted file system
	Mount a file system
	Unmount a file system
	Run a shell command and read its output into a stem
	Print the group member names
	Obtain information about a user
	Set up a signal to enforce a time limit for a program
	List the ACL entries for a file

	Chapter 5. z/OS UNIX REXX functions
	REXX I/O functions
	Opening a stream implicitly
	Opening a stream explicitly
	Process streams

	bpxwunix()
	charin()
	charout()
	chars()
	chmod()
	convd2e()
	directory()
	environment()
	exists()
	getpass()
	linein()
	lineout()
	lines()
	outtrap()
	procinfo()
	rexxopt()
	sleep()
	stream
	submit()
	syscalls()

	Chapter 6. BPXWDYN: a text interface to dynamic allocation and dynamic output
	Calling conventions
	REXX external function parameter list
	Conventional MVS variable-length parameter string
	Null-terminated parameter string

	Request types
	Keywords
	Return codes
	Key errors
	Dynamic allocation error codes
	Dynamic output error codes

	Message processing
	Requesting dynamic allocation
	Requesting dynamic unallocation
	Requesting dynamic concatenation
	Requesting dynamic output
	Freeing an output descriptor
	Examples: calling BPXWDYN from REXX
	Allocate
	Free
	Concatenate
	Create dynamic output descriptor
	Free descriptor

	Example: calling BPXWDYN from C

	Chapter 7. Virtual file system (VFS) server syscall commands
	Security
	Tokens
	v_create
	v_fstatfs
	v_get
	v_getattr
	v_link
	v_lockctl
	v_lookup
	v_mkdir
	v_read
	v_readdir
	v_readlink
	v_reg
	v_rel
	v_remove
	v_rename
	v_rmdir
	v_rpn
	v_setattr
	v_symlink
	v_write

	Chapter 8. Examples: using virtual file system syscall commands
	List the files in a directory
	Remove a file or empty directory

	Appendix A. REXX predefined variables
	Appendix B. Setting permissions for files and directories
	Position 1
	Positions 2, 3, and 4
	Example: using BITOR and BITAND to set mode bits

	Appendix C. Error messages from the REXX processor
	Appendix D. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

