
z/OS

MVS Programming: Callable Services for
High-Level Languages

SA22-7613-01

IBM

z/OS

MVS Programming: Callable Services for
High-Level Languages

SA22-7613-01

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page C-1.

Second Edition, September 2002

This is a major revision of SA22-7613-00.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), to Version 1 Release 4 of z/OS.e (5655-G52), and to
all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi
Who should use this document xi
How to use this document . xi
Where to find more information xi

Information updates on the web xi
Accessing z/OS licensed documents on the Internet xi
Using LookAt to look up message explanations xii

Summary of changes . xiii

Part 1. Window Services

Chapter 1. Introduction to Window Services 1-1
Structure of a Data Object . 1-1
What Does Window Services Provide? 1-2

The Ways That Window Services Can Map an Object 1-3
Access to Permanent Data Objects 1-6
Access to Temporary Data Objects 1-7

Chapter 2. Using Window Services 2-1
Obtaining Access to a Data Object 2-2

Identifying the Object . 2-2
Specifying the Object’s Size 2-3
Specifying the Type of Access 2-3
Obtaining a Scroll Area . 2-3

Defining a View of a Data Object 2-4
Identifying the Data Object 2-4
Identifying a Window . 2-4
Defining the Disposition of a Window’s Contents 2-5
Defining the Expected Reference Pattern 2-5
Identifying the Blocks You Want to View 2-6
Extending the Size of a Data Object 2-7

Defining Multiple Views of an Object. 2-7
Nonoverlapping Views . 2-7
Overlapping Views . 2-7

Saving Interim Changes to a Permanent Data Object 2-8
Updating a Temporary Data Object 2-8
Refreshing Changed Data . 2-9
Updating a Permanent Object on DASD 2-9

When There is a Scroll Area 2-10
When There is No Scroll Area 2-10

Changing a View in a Window 2-10
Terminating Access to a Data Object 2-12
Handling Return Codes and Abnormal Terminations 2-12

Chapter 3. Window Services 3-1
CSREVW — View an Object and Sequentially Access It 3-1

Abend Codes . 3-3
Return Codes and Reason Codes 3-3

© Copyright IBM Corp. 1994, 2002 iii

||

CSRIDAC — Request or Terminate Access to a Data Object. 3-5
Abend Codes . 3-7
Return Codes and Reason Codes 3-7

CSRREFR — Refresh an Object 3-9
Abend Codes. 3-10
Return Codes and Reason Codes 3-10

CSRSAVE — Save Changes Made to a Permanent Object 3-11
Abend Codes. 3-12
Return Codes and Reason Codes 3-13

CSRSCOT — Save Object Changes in a Scroll Area 3-14
Abend Codes. 3-15
Return Codes and Reason Codes 3-15

CSRVIEW — View an Object 3-16
Abend Codes. 3-19
Return Codes and Reason Codes 3-19

Chapter 4. Window Services Coding Examples 4-1
ADA Example . 4-1
C/370™ Example . 4-6
COBOL Example . 4-9
FORTRAN Example . 4-13
Pascal Example . 4-17
PL/I Example . 4-21

Part 2. Reference Pattern Services

Chapter 5. Introduction to Reference Pattern Services 5-1
How Does the System Manage Data? 5-1
An Example of How the System Manages Data in an Array 5-2

What Pages Does the System Bring in When a Gap Exists? 5-4

Chapter 6. Using Reference Pattern Services 6-1
Defining the Reference Pattern for a Data Area. 6-1

Defining the Range of the Area 6-1
Identifying the Direction of the Reference 6-2
Defining the Reference Pattern. 6-2
Choosing the Number of Bytes on a Page Fault 6-4

Examples of Using CSRIRP to Define a Reference Pattern 6-5
Removing the Definition of the Reference Pattern 6-6
Handling Return Codes . 6-7

Chapter 7. Reference Pattern Services 7-1
CSRIRP — Define a Reference Pattern 7-1

Return Codes and Reason Codes 7-3
CSRRRP — Remove a Reference Pattern 7-3

Return Codes and Reason Codes 7-4

Chapter 8. Reference Pattern Services Coding Examples 8-1
C/370 Example . 8-1
COBOL Example . 8-4
FORTRAN Example. 8-8
Pascal Example . 8-11
PL/I Example . 8-13

Part 3. Global Resource Serialization Latch Manager Services

iv z/OS V1R4.0 MVS Callable Services for HLL

Chapter 9. Using the Latch Manager Services 9-1
Syntax and Linkage Conventions for Latch Manager Callable Services 9-1
ISGLCRT — Create a Latch Set 9-2

ABEND Codes. 9-3
Return Codes . 9-3
Examples of Calls to Latch Manager Services 9-3

ISGLOBT — Obtain a Latch . 9-5
ABEND Codes. 9-7
Return Codes . 9-7
Example . 9-8

ISGLREL — Release a Latch 9-8
ABEND Codes . 9-10
Return Codes . 9-10
Example . 9-11

ISGLPRG — Purge a Requestor from a Latch Set 9-11
ABEND Codes . 9-12
Return Codes . 9-12
Example . 9-12

ISGLPBA — Purge a Group of Requestors from a Group of Latch Sets 9-12
ABEND Codes . 9-14
Return Codes . 9-14

Part 4. Resource Recovery Services (RRS)

Chapter 10. Using Protected Resources 10-1
Resource Recovery Programs 10-1
Two-Phase Commit Protocol 10-2
Resource Recovery Process 10-2
Requesting Resource Protection and Recovery 10-4
Using Distributed Resource Recovery 10-5
Application_Backout_UR (SRRBACK). 10-5

Description . 10-5
Application_Commit_UR (SRRCMIT) 10-9

Description . 10-9

Part 5. Other Callable Services

Chapter 11. IEAAFFN — Assign Processor Affinity for Encryption or
Decryption . 11-1

Restrictions and Limitations 11-2
Requirements. 11-2
Return Codes. 11-2

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-1
Defining the Entry Characteristics of the Target Routine 12-1
Freeing Dynamic Storage Associated with the Caller 12-2
Programming Requirements 12-2
Restrictions . 12-5
Performance Implications . 12-5
Syntax Diagram . 12-5

C/370 Syntax. 12-5
PL/I Syntax . 12-6

Parameters . 12-6
Return Codes . 12-6
Example . 12-7

Contents v

C/370 Example Program 12-7
Assembler program for use with the C/370 example 12-8

Chapter 13. CSRSI — System Information Service 13-1
Description . 13-1

Environment . 13-1
Programming Requirements 13-1
Restrictions . 13-1
Input Register Information 13-1
Output Register Information 13-2
Syntax . 13-2
Parameters . 13-2
Return Codes . 13-3

CSRSIC C/370 Header File 13-4

Part 6. Appendixes

Appendix A. General use C/C++ header files A-1

Appendix B. Accessibility . B-1
Using assistive technologies B-1
Keyboard navigation of the user interface. B-1

Notices . C-1
Programming Interface Information C-2
Trademarks. C-2

Glossary . D-1

Index . X-1

vi z/OS V1R4.0 MVS Callable Services for HLL

||

Figures

1-1. Structure of a Data Object . 1-2
1-2. Mapping a Permanent Object That Has No Scroll Area 1-3
1-3. Mapping a Permanent Object That Has a Scroll Area 1-4
1-4. Mapping a Temporary Object . 1-4
1-5. Mapping an Object to Multiple Windows . 1-5
1-6. Mapping Multiple Objects . 1-6
5-1. Illustration of a Reference Pattern with a Gap 5-4
6-1. Two Typical Reference Patterns . 6-2
6-2. Illustration of Forward Direction of Reference 6-3
6-3. Illustration of Backward Direction of Reference 6-4
10-1. ATM Transaction . 10-2
10-2. Two-Phase Commit Actions . 10-3
10-3. Backout — Application Request . 10-4
10-4. Backout — Resource Manager Votes NO . 10-4
10-5. Transaction — Distributed Resource Recovery 10-5
12-1. CSRLJC declarations for the L16J parameter list for C/370 12-3
12-2. CSRLJPLI declarations for return codes for PL/I 12-5
13-1. CSRSIC from SYS1.SAMPLIB . 13-5

© Copyright IBM Corp. 1994, 2002 vii

viii z/OS V1R4.0 MVS Callable Services for HLL

Tables

3-1. CSREVW Return and Reason Codes . 3-4
3-2. CSRIDAC Return and Reason Codes. 3-8
3-3. CSRREFR Return and Reason Codes . 3-10
3-4. CSRSAVE Return and Reason Codes . 3-13
3-5. CSRSCOT Return and Reason Codes . 3-15
3-6. CSRVIEW Return and Reason Codes . 3-19
9-1. ISGLCRT Return Codes. 9-3
9-2. ISGLOBT Return Codes. 9-7
9-3. ISGLREL Return Codes . 9-10
9-4. ISGLPRG Return Codes . 9-12
9-5. ISGLPBA Return Codes . 9-14
11-1. IEAAFFN Return Codes . 11-2
12-1. CSRL16J Return Codes . 12-6

© Copyright IBM Corp. 1994, 2002 ix

x z/OS V1R4.0 MVS Callable Services for HLL

About this document

This document supports z/OS (5694) and z/OS.e (5655-G52).

Callable services are for use by any program coded in C, COBOL, FORTRAN,
Pascal, or PL/I — this document refers to programs written in these languages as
high-level language (HLL) programs. Callable services enable HLL programs to use
specific MVS™ services by issuing program CALLs.

Who should use this document
This document is for programmers who code in C, COBOL, FORTRAN, Pascal, or
PL/I and want to use the callable services that MVS provides.

How to use this document
This document is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information
Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and
Documentation APARs for z/OS™ and z/OS.e, see the online document at:

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:
http://www.ibm.com/servers/resourcelink

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

© Copyright IBM Corp. 1994, 2002 xi

|

|
|

|
|

|
|

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

xii z/OS V1R4.0 MVS Callable Services for HLL

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Summary of changes

Summary of changes
for SA22-7613-01
z/OS Version 1 Release 4

This document contains information previously presented in z/OS MVS
Programming: Callable Services for HLL, SA22-7613-00, which supports z/OS
Version 1 Release 1.

New information

v An appendix listing general use C/C++ header files has been added.

v Information is added to indicate this document supports z/OS.e.

v An appendix with z/OS product accessibility information has been added.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for SA22-7613-00
z/OS Version 1 Release 1

This document contains information also presented in OS/390® MVS Programming:
Callable Services for High-Level Languages.

© Copyright IBM Corp. 1994, 2002 xiii

xiv z/OS V1R4.0 MVS Callable Services for HLL

Part 1. Window Services

Chapter 1. Introduction to Window Services 1-1
Structure of a Data Object . 1-1
What Does Window Services Provide? 1-2

The Ways That Window Services Can Map an Object 1-3
Example 1 — Mapping a Permanent Object that has no Scroll Area . . . 1-3
Example 2 — Mapping a Permanent Object that has a Scroll Area . . . 1-3
Example 3 — Mapping a Temporary Object 1-4
Example 4 — Mapping Multiple Windows® to an Object 1-4
Example 5 — Mapping Multiple Objects 1-5

Access to Permanent Data Objects 1-6
Access to Temporary Data Objects 1-7

Chapter 2. Using Window Services 2-1
Obtaining Access to a Data Object 2-2

Identifying the Object . 2-2
Permanent Object . 2-2
Temporary Object . 2-3

Specifying the Object’s Size 2-3
Specifying the Type of Access 2-3
Obtaining a Scroll Area . 2-3

Defining a View of a Data Object 2-4
Identifying the Data Object 2-4
Identifying a Window . 2-4
Defining the Disposition of a Window’s Contents 2-5

Replace Option . 2-5
Retain Option . 2-5

Defining the Expected Reference Pattern 2-5
Identifying the Blocks You Want to View 2-6
Extending the Size of a Data Object 2-7

Defining Multiple Views of an Object. 2-7
Nonoverlapping Views . 2-7
Overlapping Views . 2-7

Saving Interim Changes to a Permanent Data Object 2-8
Updating a Temporary Data Object 2-8
Refreshing Changed Data . 2-9
Updating a Permanent Object on DASD 2-9

When There is a Scroll Area 2-10
When There is No Scroll Area 2-10

Changing a View in a Window 2-10
Terminating Access to a Data Object 2-12
Handling Return Codes and Abnormal Terminations 2-12

Chapter 3. Window Services 3-1
CSREVW — View an Object and Sequentially Access It 3-1

Abend Codes . 3-3
Return Codes and Reason Codes 3-3

CSRIDAC — Request or Terminate Access to a Data Object. 3-5
Abend Codes . 3-7
Return Codes and Reason Codes 3-7

CSRREFR — Refresh an Object 3-9
Abend Codes. 3-10
Return Codes and Reason Codes 3-10

CSRSAVE — Save Changes Made to a Permanent Object 3-11

© Copyright IBM Corp. 1994, 2002

Abend Codes. 3-12
Return Codes and Reason Codes 3-13

CSRSCOT — Save Object Changes in a Scroll Area 3-14
Abend Codes. 3-15
Return Codes and Reason Codes 3-15

CSRVIEW — View an Object 3-16
Abend Codes. 3-19
Return Codes and Reason Codes 3-19

Chapter 4. Window Services Coding Examples 4-1
ADA Example . 4-1
C/370™ Example . 4-6
COBOL Example . 4-9
FORTRAN Example . 4-13
Pascal Example . 4-17
PL/I Example . 4-21

z/OS V1R4.0 MVS Callable Services for HLL

Chapter 1. Introduction to Window Services

Window services allow HLL programs to:
v Read or update an existing permanent data object
v Create and save a new permanent data object
v Create and use a temporary data object

Window services enable your program to access data objects without your program
performing any input or output (I/O) operations. All your program needs to do is
issue a CALL to the appropriate service program. The service program performs
any I/O operations that are required to make the data object available to your
program. When you want to update or save a data object, window services again
perform any required I/O operations.

Permanent Data Objects

A permanent data object is a virtual storage access method (VSAM) linear data
set that resides on DASD. (This type of data set is also called a data-in-virtual
object.) You can read data from an existing permanent object and also update the
content of the object. You can create a new permanent object and when you are
finished, save it on DASD. Because you can save this type of object on DASD,
window services calls it a permanent object . Window services can handle very
large permanent objects that contain as many as 4 gigabytes (four billion bytes).

Note: Installations whose FORTRAN programs used data-in-virtual objects prior to
MVS/SP™ 3.1.0 had to write an Assembler language interface program to
allow the FORTRAN program to invoke the data-in-virtual program. Window
services eliminates the need for this interface program.

Temporary Data Objects

A temporary data object is an area of expanded storage that window services
provides for your program. You can use this storage to hold temporary data, such
as intermediate results of a computation, instead of using a DASD workfile. Or you
might use the storage area as a temporary buffer for data that your program
generates or obtains from some other source. When you finish using the storage
area, window services deletes it. Because you cannot save the storage area,
window services calls it a temporary object. Window services can handle very large
temporary objects that contain as many as 16 terabytes (16 trillion bytes).

Structure of a Data Object
Think of a data object as a contiguous string of bytes organized into blocks, each
4096 bytes long. The first block contains bytes 0 to 4095 of the object, the second
block contains bytes 4096 to 8191, and so forth.

Your program references data in the object by identifying the block or blocks that
contain the desired data. Window services makes the blocks available to your
program by mapping a window in your program storage to the blocks. A window is
a storage area that your program provides and makes known to window services.
Mapping the window to the blocks means that window services makes the data
from those blocks available in the window when you reference the data. You can
map a window to all or part of a data object depending on the size of the object and

© Copyright IBM Corp. 1994, 2002 1-1

the size of the window. You can examine or change data that is in the window by
using the same instructions that you use to examine or change any other data in
your program storage.

The following figure shows the structure of a data object and shows a window
mapped to two of the object’s blocks.

What Does Window Services Provide?
Window services allows you to view and manipulate data objects in a number of
ways. You can have access to one or more data objects at the same time. You can
also define multiple windows for a given data object. You can then view a different
part of the object through each window. Before you can access any data object, you
must request access from window services.

When you request access to a permanent data object, you must indicate whether
you want a scroll area. A scroll area is an area of expanded storage that window
services obtains and maps to the permanent data object. You can think of the
permanent object as being available in the scroll area. When you request a view of
the object, window services maps the window to the scroll area. If you do not
request a scroll area, window services maps the window directly to the object on
DASD.

A scroll area enables you to save interim changes to a permanent object without
changing the object on DASD. Also, when your program accesses a permanent
object through a scroll area, your program might attain better performance than it
would if the object were accessed directly on DASD.

When you request a temporary object, window services provides an area of
expanded storage. This area of expanded storage is the temporary data object.
When you request a view of the object, window services maps the window to the
temporary object. Window services initializes a temporary object to binary zeroes.

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

2nd block

1st block

4096 bytes

4096 bytes

4096 bytes

4096 bytes

4096 bytes

your address
space data object

window

Figure 1-1. Structure of a Data Object

1-2 z/OS V1R4.0 MVS Callable Services for HLL

Notes:

1. Window services does not transfer data from the object on DASD, from the
scroll area, or from the temporary object until your program references the data.
Then window services transfers those blocks.

2. The expanded storage that window services uses for a scroll area or for a
temporary object is called a hiperspace . A hiperspace is a range of contiguous
virtual storage addresses that a program can indirectly access through a
window in the program’s virtual storage. Window services uses as many
hiperspaces as needed to contain the data object.

The Ways That Window Services Can Map an Object
Window services can map a data object a number of ways. The following examples
show how window services can:
v Map a permanent object that has no scroll area
v Map a permanent object that has a scroll area
v Map a temporary object
v Map an object to multiple windows
v Map multiple objects

Exampl e 1 — Mapping a Permanent Object that has no Scroll
Area
If a permanent object has no scroll area, window services maps the object from
DASD directly to your window. In this example, your window provides a view of the
first and second blocks of an object.

Exampl e 2 — Mapping a Permanent Object that has a Scroll Area
If the object has a scroll area, window services maps the object from DASD to the
scroll area. Window services then maps the blocks that you wish to view from the
scroll area to your window. In this example, your window provides a view of the
third and fourth blocks of an object.

space

window

your address

1st block

2nd block

permanent object
on DASD

1st block

2nd block

3rd block

.

.

last block

Figure 1-2. Mapping a Permanent Object That Has No Scroll Area

Chapter 1. Introduction to Window Services 1-3

Exampl e 3 — Mapping a Temporary Object
Window services uses a hiperspace as a temporary object. In this example, your
window provides a view of the first and second blocks of a temporary object.

Exampl e 4 — Mapping Multiple Windows ® to an Object
Window services can map multiple windows to the same object. In this example,
one window provides a view of the second and third blocks of an object, and a
second window provides a view of the last block.

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

4th block

3rd block

your address
space

scroll area

window

permanent object
on DASD

DIV
object

Figure 1-3. Mapping a Permanent Object That Has a Scroll Area

/ /

/ /

.

.

.

.

1st block

3rd block

4th block

last block

2nd block

2nd block

1st block

your address
space temporary object

window

Figure 1-4. Mapping a Temporary Object

1-4 z/OS V1R4.0 MVS Callable Services for HLL

Exampl e 5 — Mapping Multiple Objects
Window services can map windows in the same address space to multiple objects.
The objects can be temporary objects, permanent objects, or a combination of
temporary and permanent objects. In this example, one window provides a view of
the second block of a temporary object, and a second window provides a view of
the fourth and fifth blocks of a permanent object.

/ /

/ /

.

.

.

.

1st block

3rd block2nd block

3rd block 4th block

last block

2nd block

last block

your address
space

temporary object

window

window
second

first

Figure 1-5. Mapping an Object to Multiple Windows

Chapter 1. Introduction to Window Services 1-5

Access to Permanent Data Objects
When you have access to a permanent data object, you can:

v View the object through one or more windows — Depending on the object
size and the window size, a single window can view all or part of a permanent
object. If you define multiple windows, each window can view a different part of
the object. For example, one window might view the first block of the permanent
object and another window might view the second block. You can also have
several windows view the same part of the object or have views in multiple
windows overlap. For example, one window might view the first and second
blocks of a data object while another window views the second and third blocks.

v Change data that appears in a window — You can examine or change data
that is in a window by using the same instructions you use to examine or change
any other data in your program’s storage. These changes do not alter the object
on DASD or in the scroll area.

/ /

/ /

/ /

/ /

.

.

.

.

.

.

.

1st block

1st block

3rd block

3rd block

4th block

4th block

5th block

5th block

4th block

last block

last block

2nd block

2nd block

2nd block

your address
space

scroll area

temporary object

window

window

second

first

permanent object
on DASD

DIV
object

Figure 1-6. Mapping Multiple Objects

1-6 z/OS V1R4.0 MVS Callable Services for HLL

v Save interim changes in a scroll area — After changing data in a window, you
can have window services save the changed blocks in a scroll area, if you have
requested one. Window services replaces blocks in the scroll area with
corresponding changed blocks from the window. Saving changes in the scroll
area does not alter the object on DASD or alter data in the window.

v Refresh a window or the scroll area — After you change data in a window or
save changes in the scroll area, you may discover that you no longer need those
changes. In that case, you can have window services refresh the changed data.
To refresh the window or the scroll area, window services replaces changed data
with data from the object as it appears on DASD.

v Replace the view in a window — After you finish using data that is in a window,
you can have window services replace the view in the window with a different
view of the object. For example, if you are viewing the third, fourth, and fifth
blocks of an object and are finished with those blocks, you might have window
services replace that view with a view of the sixth, seventh, and eighth blocks.

v Update the object on DASD — If you have changes available in a window or in
the scroll area, you can save the changes on DASD. Window services replaces
blocks on DASD with corresponding changed blocks from the window and the
scroll area. Updating an object on DASD does not alter data in the window or in
the scroll area.

Access to Temporary Data Objects
When you have access to a temporary data object, you can:

v View the object through one or more windows — Depending on the object
size and the window size, a single window can view all or part of a temporary
object. If you define multiple windows, each window can view a different part of
the object. For example, one window might view the first block of the temporary
object and another window might view the second block. Unlike a permanent
object, however, you cannot define multiple windows that have overlapping views
of a temporary object.

v Change data that appears in a window — This function is the same for a
temporary object as it is for a permanent object: you can examine or change
data that is in a window by using the same instructions you use to examine or
change any other data in your address space.

v Update the temporary object — After you have changed data in a window, you
can have window services update the object with those changes. Window
services replaces blocks in the object with corresponding changed blocks from
the window. The data in the window remains as it was.

v Refresh a window or the object — After you change data in a window or save
changes in the object, you may discover that you no longer need those changes.
In that case, you can have window services refresh the changed data. To refresh
the window or the object, window services replaces changed data with binary
zeroes.

v Replace the view in a window — After you finish using data that is in a window,
you can have window services replace the view in the window with a different
view of the object. For example, if you are viewing the third, fourth, and fifth
blocks of an object and are finished with those blocks, you might have window
services replace that view with a view of the sixth, seventh, and eighth blocks.

Chapter 1. Introduction to Window Services 1-7

1-8 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 2. Using Window Services

To use, create, or update a data object, you call a series of programs that window
services provides. These programs enable you to:

v Access an existing object, create and save a new permanent object, or create a
temporary object

v Obtain a scroll area where you can make interim changes to a permanent object

v Define windows and establish views of an object in those windows

v Change or terminate the view in a window

v Update a scroll area or a temporary object with changes you have made in a
window

v Refresh changes that you no longer need in a window or a scroll area

v Update a permanent object on DASD with changes that are in a window or a
scroll area

v Terminate access to an object

The window services programs that you call and the sequence in which you call
them depends on your use of the data object.

The first step in using any data object is to gain access to the object. To gain
access, call CSRIDAC. The object can be an existing permanent object, or a new
permanent or temporary object you want to create. For a permanent object, you can
request an optional scroll area. A scroll area enables you to make interim changes
to an object’s data without affecting the data on DASD. When CSRIDAC grants
access, it provides an object identifier that identifies the object. Use that identifier to
identify the object when you request other services from window services.

After obtaining access to an object, define one or more windows and establish
views of the object in those windows. To establish a view of an object, tell window
services which blocks you want to view and in which windows. You can view
multiple objects and multiple parts of each object at the same time. To define
windows and establish views, call CSRVIEW or CSREVW. After establishing a view,
you can examine or change data that is in the window using the same instructions
you use to examine or change other data in your program’s storage.

After making changes to the part of an object that is in a window, you will probably
want to save those changes. How you save changes depends on whether the
object is permanent, is temporary, or has a scroll area.

If the object is permanent and has a scroll area, you can save changes in the scroll
area without affecting the object on DASD. Later, you can update the object on
DASD with changes saved in the scroll area. If the object is permanent and has no
scroll area, you can update it on DASD with changes that are in a window. If the
object is temporary, you can update it with changes that are in a window. To update
an object on DASD, call CSRSAVE. To update a temporary object or a scroll area,
call CSRSCOT.

After making changes in a window and possibly saving them in a scroll area or
using them to update a temporary object, you might decide that you no longer need
those changes. In this case, you can refresh the changed blocks. After refreshing a
block of a permanent object or a scroll area to which a window is mapped, the
refreshed block contains the same data that the corresponding block contains on

© Copyright IBM Corp. 1994, 2002 2-1

DASD. After refreshing a block of a temporary object to which a window is mapped,
the block contains binary zeroes. To refresh a changed block, call CSRREFR.

After finishing with a view in a window, you can use the same window to view a
different part of the object or to view a different object. Before changing the view in
a window, you must terminate the current view. If you plan to view a different part of
the same object, terminate the current view by calling CSRVIEW. If you plan to view
a different object or will not reuse the window, you can terminate the view by calling
CSRIDAC.

When you finish using a data object, terminate access to the object by calling
CSRIDAC.

The following restrictions apply to using window services:

1. When you attach a new task, you cannot pass ownership of a mapped virtual
storage window to the new task. That is, you cannot use the ATTACH or
ATTACHX keywords GSPV and GSPL to pass the mapped virtual storage.

2. While your program is in cross-memory mode, your program cannot invoke
data-in-virtual services; however, your program can reference and update data
in a mapped virtual storage window.

3. The task that obtains the ID (through DIV IDENTIFY) is the only one that can
issue other DIV services for that ID.

4. When you identify a data-in-virtual object using the IDENTIFY service, you
cannot request a checkpoint until you invoke the corresponding UNIDENTIFY
service.

This chapter explains how to do the previously described functions and contains the
following topics:
v “Obtaining Access to a Data Object”
v “Defining a View of a Data Object” on page 2-4
v “Defining Multiple Views of an Object” on page 2-7
v “Saving Interim Changes to a Permanent Data Object” on page 2-8
v “Updating a Temporary Data Object” on page 2-8
v “Refreshing Changed Data” on page 2-9
v “Updating a Permanent Object on DASD” on page 2-9
v “Changing a View in a Window” on page 2-10
v “Terminating Access to a Data Object” on page 2-12
v “Handling Return Codes and Abnormal Terminations” on page 2-12.

Obtaining Access to a Data Object
To obtain access to a permanent or temporary data object, call CSRIDAC. Indicate
that you want to access an object by specifying BEGIN as the value for op_type.
For a description of the CSRIDAC parameters and return codes, see “CSRIDAC —
Request or Terminate Access to a Data Object” on page 3-5.

Identifying the Object
You must identify the data object you wish to access. How you identify the object
depends on whether the object is permanent or temporary.

Permanent Object
For a permanent object, object_name and object_type work together. For
object_name you have a choice: specify either the data set name of the object or
the DDNAME to which the object is allocated. The object_type parameter must then
indicate whether object_name is a DDNAME or a data set name:

2-2 z/OS V1R4.0 MVS Callable Services for HLL

v If object_name is a DDNAME, specify DDNAME as the value for object_type.

v If object_name is a data set name, specify DSNAME as the value for
object_type.

If you specify DSNAME for object_type, indicate whether the object already exists
or whether window services is to create it:

v If the object already exists, specify OLD as the value for object_state.

v If window services is to create the object, specify NEW as the value for
object_state.

Requirement for NEW objects

If you specify NEW as the value for object_state, your system must include
MVS/Data Facility Product. (MVS/DFP™) 3.1.0 and SMS must be active.

Temporary Object
To identify a temporary object, specify TEMPSPACE as the value for object_type.
Window services assumes that a temporary object is new and ignores the value
that you specify for object_state.

Specifying the Object’s Size
If the object is permanent and new or is temporary, you must tell window services
the size of the object. You specify object size through the object_size parameter.
The size specified becomes the maximum size that window services will allow for
that object. You express the size as a number of 4096-byte blocks. If the number of
bytes in the object is not an exact multiple of 4096, round object_size to the next
whole number. For example:
v If the object size is to be less than 4097 bytes, specify 1.
v If the object size is 5000 bytes, specify 2.
v If the object size is 410,000 bytes, specify 101.

Specifying the Type of Access
For an existing (OLD) permanent object, you must specify how you intend to access
the object. You specify your intentions through the access_mode parameter:
v If you intend to only read the object, specify READ for access_mode.
v If you intend to update the object, specify UPDATE for access_mode.

For a new permanent object and for a temporary object, window services assumes
you will update the object and ignores the value you specify for access_mode.

Obtaining a Scroll Area
A scroll area is storage that window services provides for your use. This storage is
outside your program’s storage area and is accessible only through window
services.

For a permanent object, a scroll area is optional. A scroll area allows you to make
interim changes to a permanent object without altering the object on DASD. Later, if
you want, you can update the object on DASD with the interim changes. A scroll
area might also improve performance when your program accesses a permanent
object.

Chapter 2. Using Window Services 2-3

For a temporary object, the scroll area is the object. Therefore, for a temporary
object, a scroll area is required.

To indicate whether you want a scroll area, provide the appropriate value for
scroll_area:

v To request a scroll area, supply a value of YES. YES is required for a temporary
object.

v To indicate you do not want a scroll area, supply a value of NO.

Defining a View of a Data Object
To view all or part of a data object, you must provide window services with
information about the object and how you want to view it. You must provide window
services with the following information:

v The object identifier

v Where the window is in your address space

v Window disposition — that is, whether window services is to initialize the window
the first time you reference data in the window

v Whether you intend to reference blocks of data sequentially or randomly

v The blocks of data that you want to view

v Whether you want to extend the size of the object

To define a view of a data object, call CSRVIEW or CSREVW. Whether you use
CSRVIEW or CSREVW depends on how you plan to reference the data. “Defining
the Expected Reference Pattern” on page 2-5 describes the differences between the
two services. Specify BEGIN on CSRVIEW or CSREVW as the type of operation.
For descriptions of the CALL syntax and return codes from CSRVIEW or CSREVW,
see “CSRVIEW — View an Object” on page 3-16 or “CSREVW — View an Object
and Sequentially Access It” on page 3-1.

Identifying the Data Object
To identify the object you want to view, specify the object identifier as the value for
object_id. Use the same value CSRIDAC returned in object_id when you requested
access to the object.

Identifying a Window
You must identify the window through which you will view the object. The window is
a virtual storage area in your address space. You are responsible for obtaining the
storage, which must meet the following requirements:

v The storage must not be page fixed.

v Pages in the window must not be page loaded (must not be loaded by the
PGLOAD macro).

v The storage must start on a 4K boundary and must be a multiple of 4096 bytes
in length.

To identify the window, use the window_name parameter. The value supplied for
window_name must be the symbolic name you assigned to the window storage
area in your program.

Defining a window in this way provides one window through which you can view the
object. To define multiple windows that provide simultaneous views of different parts
of the object, see “Defining Multiple Views of an Object” on page 2-7.

2-4 z/OS V1R4.0 MVS Callable Services for HLL

Defining the Disposition of a Window’s Contents
You must specify whether window services is to replace or retain the window
contents. You do this by selecting either the replace or retain option. This option
determines how window services handles the data that is in the window the first
time you reference the data. You select the option by supplying a value of
REPLACE or RETAIN® for disposition.

Replace Option
If you specify the replace option, the first time you reference a block to which a
window is mapped, window services replaces the data in the window with
corresponding data from the object. For example, assume you have requested a
view of the first block of a permanent object and have specified the replace option.
The first time you reference the window, window services replaces the data in the
window with the first 4096 bytes (the first block) from the object.

If you have selected the replace option and then call CSRSAVE to update a
permanent object, or call CSRSCOT to update a scroll area, or call CSRSCOT to
update a temporary object, window services updates only the specified blocks that
have changed and to which a window is mapped.

Select the replace option when you want to examine, use, or change data that is
currently in an object.

Retain Option
If you select the retain option, window services retains data that is in the window.
When you reference a block in the window the first time, the block contains the
same data it contained before the reference.

When you select the retain option, window services considers all of the data in the
window as changed. Therefore, if you call CSRSCOT to update a scroll area or a
temporary object, or call CSRSAVE to update a permanent object, window services
updates all of the specified blocks to which a window or scroll area are mapped.

Select the retain option when you want to replace data in an object without regard
for the data that it currently contains. You also use the retain option when you want
to initialize a new object.

Defining the Expected Reference Pattern
You must tell window services whether you intend to reference the blocks of an
object sequentially or randomly. An intention to access randomly tells window
services to bring one block (4096 bytes) of data into the window at a time. An
intention to access sequentially tells window services to read more than one block
into your window at one time. The performance gain is in having blocks of data
already in central storage at the time the program needs to reference them. You
specify the intent on either CSRVIEW or CSREVW, two services that differ on how
to specify sequential access.

v CSRVIEW allows you a choice between random or sequential access.

If you specify random , when you reference data that is not in your window,
window services brings in one block — the one that contains the data your
program references.

If you specify sequential , when you reference data that is not in your window,
window services transfers up to 16 blocks — the one that contains the data your
program requests, plus the next 15 consecutive blocks. The number of
consecutive blocks varies, depending on the size of the window and availability
of central storage. Use CSRVIEW if one of the following is true:

Chapter 2. Using Window Services 2-5

– You are going to access randomly.
– You are going to access sequentially, and you are satisfied with a maximum of

16 blocks coming into the window at a time.

v CSREVW is for sequential access only. It allows you to specify the maximum
number of consecutive blocks that window services brings into the window at one
time. The number ranges from one block through 256 blocks. Use CSREVW if
you want fewer than 16 blocks or more than 16 blocks at one time. Programs
that benefit from having more than 16 blocks come into a window at one time
reference data areas that are greater than one megabyte.

To specify the reference pattern on CSRVIEW, supply a value of SEQ or RANDOM
for usage.

To specify the reference pattern on CSREVW, supply a number from 0 through 255
for pfcount. pfcount represents the number of blocks window services will bring into
the window, in addition to the one that it always brings in.

Note that window services brings in multiple pages differently depending on whether
your object is permanent or temporary and whether the system has had to move
pages of your data from central storage to make those pages of central available
for other programs. The rule is that SEQ on CSRVIEW and pfcount on CSREVW
apply to:

v A permanent object when movement is from the object on DASD to central
storage

v A temporary object when your program has scrolled the data out and
references it again

SEQ and pfcount do not apply after the system has had to move data (either
changed or unchanged) to auxiliary or expanded storage, and your program again
references it, requiring the system to bring the data back into central storage.

End the view, whether established with CSRVIEW or CSREVW, with CSRVIEW
END.

Identifying the Blocks You Want to View
To identify the blocks of data you want to view, use offset and span. The values you
assign to offset and span, together, define a contiguous string of blocks that you
want to view:

v The value assigned to offset specifies the relative block at which to start the
view. An offset of 0 means the first block; an offset of 1 means the second block;
an offset of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to view. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it means the view is to start at the specified offset and extend
until the currently defined end of the object.

The following table shows examples of several offset and span combinations and
the resulting view in the window.

Offset Span Resulting view in the window

0 0 view the entire object
0 1 view the first block only
1 0 view the second block through the last block
1 1 view the second block only

2-6 z/OS V1R4.0 MVS Callable Services for HLL

Offset Span Resulting view in the window

2 2 view the third and fourth blocks only

Extending the Size of a Data Object
You can use offset and span to extend the size of an object up to the previously
defined maximum size for the object. You can extend the size of either permanent
objects or temporary objects. For objects created through CSRIDAC, the value
assigned to object_size defines the maximum allowable size. When you call
CSRIDAC to gain access to an object, CSRIDAC returns a value in high_offset that
defines the current size of the object.

For example, assume you have access to a permanent object whose maximum
allowable size is four 4096-byte blocks. The object is currently two blocks long. If
you define a window and specify an offset of 1 and a span of 2, the window
contains a view of the second block and a view of a third block, which does not yet
exist in the permanent object. When you reference the window, the content of the
second block, as seen in the window, depends on the disposition you selected,
replace or retain. The third block, as seen in the window, initially contains binary
zeroes. If you later call CSRSAVE to update the permanent object with changes
from the window, window services extends the size of the permanent object to three
blocks by appending the new block of data to the object.

Defining Multiple Views of an Object
You might need to view different parts of an object at the same time. For a
permanent object, you can define windows that have nonoverlapping views as well
as windows that have overlapping views. For a temporary object, you can define
windows that have only nonoverlapping views.

v A nonoverlapping view means that no two windows view the same block of the
object. For example, a view is nonoverlapping when one window views the first
and second blocks of an object and another window views the ninth and tenth
blocks of the same object. Neither window views a common block.

v An overlapping view means that two or more windows view the same block of
the object. For example, the view overlaps when the second window in the
previous example views the second and third blocks. Both windows view a
common block, the second block.

Nonoverlapping Views
To define multiple windows that have a nonoverlapping view, call CSRIDAC once to
obtain the object identifier. Then call CSRVIEW or CSREVW once to define each
window. On each call, specify the value BEGIN for operation_type, the same object
identifier for object_id, and a different value for window_name. Define each
window’s view by specifying values for offset and span that create windows with
nonoverlapping views.

Overlapping Views
To define multiple windows that have an overlapping view of a permanent object,
define each window as though it were viewing a different object. That is, define
each window under a different object identifier. To obtain the object identifiers, call
CSRIDAC once for each identifier you need. Only one of the calls to CSRIDAC can
specify an access mode of UPDATE. Other calls to CSRIDAC must specify an
access mode of READ.

Chapter 2. Using Window Services 2-7

After calling CSRIDAC, call CSRVIEW or CSREVW once to define each window.
On each call, specify the value BEGIN for the operation type, a different object
identifier for object_id, and a different value for window_name. Define each
window’s view by specifying values for offset and span that create windows with the
required overlapping views.

Saving Interim Changes to a Permanent Data Object
Window services allows you to save interim changes you make to a permanent
object. You must have previously requested a scroll area for the object, however.
You request a scroll area when you call CSRIDAC to gain access to the object.
Window services saves changes by replacing blocks in the scroll area with
corresponding changed blocks from a window. Saving changes in the scroll area
does not alter the object on DASD.

After you have a view of the object and have made changes in the window, you can
save those changes in the scroll area. To save changes in the scroll area, call
CSRSCOT. For a description of the CSRSCOT parameters and return codes, see
“CSRSCOT — Save Object Changes in a Scroll Area” on page 3-14.

To identify the object, you must supply an object identifier for object_id. The value
supplied for object_id must be the same value CSRIDAC returned in object_id when
you requested access to the object.

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

v The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services save all changed blocks to
which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Updating a Temporary Data Object
After making changes in a window to a temporary object, you can update the object
with those changes. You must identify the object and must specify the range of
blocks that you want to update. To be updated, a block must be mapped to a
window and must contain changes in the window. Window services replaces each
block within the specified range with the corresponding changed block from a
window.

To update a temporary object, call CSRSCOT. For a description of the CSRSCOT
parameters and return codes, see “CSRSCOT — Save Object Changes in a Scroll
Area” on page 3-14.

To identify the object, you must supply an object identifier for object_id. The value
you supply for object_id must be the same value CSRIDAC returned in object_id
when you requested access to the object.

2-8 z/OS V1R4.0 MVS Callable Services for HLL

To identify the blocks in the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

v The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped.

Window services replaces each block within the range specified by offset and span
providing the block has changed and a window is mapped to the block.

Refreshing Changed Data
You can refresh blocks that are mapped to either a temporary object or to a
permanent object. You must identify the object and specify the range of blocks you
want to refresh. When you refresh blocks mapped to a temporary object, window
services replaces, with binary zeros, all changed blocks that are mapped to the
window. When you refresh blocks mapped to a permanent object, window services
replaces specified changed blocks in a window or in the scroll area with
corresponding blocks from the object on DASD.

To refresh an object, call CSRREFR. For a description of CSRREFR parameters
and return codes, see “CSRREFR — Refresh an Object” on page 3-9.

To identify the object, you must supply an object identifier for object_id. The value
supplied for object_id must be the same value CSRIDAC returned in object_id when
you requested access to the object.

To identify the blocks of the object that you want to refresh, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

v The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services refresh all changed blocks to
which a window is mapped, or that have been saved in a scroll area.

Window services refreshes each block within the range specified by offset and span
providing the block has changed and a window or a scroll area is mapped to the
block. At the completion of the refresh operation, blocks from a permanent object
that have been refreshed appear the same as the corresponding blocks on DASD.
Refreshed blocks from a temporary object contain binary zeroes.

Updating a Permanent Object on DASD
You can update a permanent object on DASD with changes that appear in a
window or in the object’s scroll area. You must identify the object and specify the
range of blocks that you want to update.

Chapter 2. Using Window Services 2-9

To update an object, call CSRSAVE. For a description of theCSRSAVE parameters
and return codes, see “CSRSAVE — Save Changes Made to a Permanent Object”
on page 3-11.

To identify the object, you must supply an object identifier for object_id. The value
you provide for object_id must be the same value CSRIDAC returned when you
requested access to the object.

To identify the blocks of the object that you want to update, use offset and span.
The values assigned to offset and span, together, define a contiguous string of
blocks in the object:

v The value assigned to offset specifies the relative block at which to start. An
offset of 0 means the first block; an offset of 1 means the second block; an offset
of 2 means the third block, and so forth.

v The value assigned to span specifies the number of blocks to save. A span of 1
means one block; a span of 2 means two blocks, and so forth. A span of 0 has
special meaning: it requests that window services update all changed blocks to
which a window is mapped, or have been saved in the scroll area.

When There is a Scroll Area
When the object has a scroll area, window services first updates blocks in the scroll
area with corresponding blocks from windows. To be updated, a scroll area block
must be within the specified range, a window must be mapped to the block, and the
window must contain changes. Window services next updates blocks on DASD with
corresponding blocks from the scroll area. To be updated, a DASD block must be
within the specified range and have changes in the scroll area. Blocks in the
window remain unchanged.

When There is No Scroll Area
When there is no scroll area, window services updates blocks of the object on
DASD with corresponding blocks from a window. To be updated, a DASD block
must be within the specified range, mapped to a window, and have changes in the
window. Blocks in the window remain unchanged.

Changing a View in a Window
To change the view in a window so you can view a different part of the same object
or view a different object, you must first terminate the current view. To terminate the
view, whether the view was mapped by CSRVIEW or CSREVW, call CSRVIEW and
supply a value of END for operation_type. You must also identify the object, identify
the window, identify the blocks you are currently viewing, and specify a disposition
for the data that is in the window. For a description of CSRVIEW parameters and
return codes, see “CSRVIEW — View an Object” on page 3-16.

To identify the object, supply an object identifier for object_id. The value supplied for
object_id must be the value you supplied when you established the view.

To identify the window, supply the window name for window_name. The value
supplied for window_name must be the same value you supplied when you
established the view.

To identify the blocks you are currently viewing, supply values for offset and span.
The values you supply must be the same values you supplied for offset and span
when you established the view.

2-10 z/OS V1R4.0 MVS Callable Services for HLL

To specify a disposition for the data you are currently viewing, supply a value for
disposition. The value determines what data will be in the window after the CALL to
CSRVIEW completes.

v For a permanent object that has no scroll area:

– To retain the data that is currently in the window, supply a value of RETAIN
for disposition.

– To discard the data that is currently in the window, supply a value of
REPLACE for disposition. After the operation completes, the window contents
are unpredictable.

For example, assume that a window is mapped to one block of a permanent
object that has no scroll area. The window contains the character string
AAA......A and the block to which the window is mapped contains BBB......B. If
you specify a value of RETAIN, upon completion of the CALL, the window still
contains AAA......A, and the mapped block contains BBB......B. If you specify a
value of REPLACE, upon completion of the CALL, the window contents are
unpredictable and the mapped block still contains BBB......B.

v For a permanent object that has a scroll area or for a temporary object:

– To retain the data that is currently in the window, supply a value of RETAIN
for disposition. CSRVIEW also updates the mapped blocks of the scroll area
or temporary object so that they contain the same data as the window.

– To discard the data that is currently in the window, supply a value of
REPLACE for disposition. Upon completion of the operation, the window
contents are unpredictable.

For example, assume that a window is mapped to one block of a temporary
object. The window contains the character string AAA......A and the block to
which the window is mapped contains BBB......B. If you specify a value of
RETAIN, upon completion of the CALL, the window still contains AAA......A and
the mapped block of the object also contains AAA......A. If you specify a value of
REPLACE, upon completion of the CALL, the window contents are unpredictable
and the mapped block still contains BBB......B.

CSRVIEW ignores the values you assign to the other parameters.

When you terminate the view of an object, the type of object that is mapped and
the value you specify for disposition determine whether CSRVIEW updates the
mapped blocks. CSRVIEW updates the mapped blocks of a temporary object or a
permanent object’s scroll area if you specify a disposition of RETAIN. In all other
cases, to update the mapped blocks, call the appropriate service before terminating
the view:

v To update a temporary object, or to update the scroll area of a permanent object,
call CSRSCOT.

v To update an object on DASD, call CSRSAVE.

Upon successful completion of the CSRVIEW operation, the content of the window
depends on the value specified for disposition. The window is no longer mapped to
a scroll area or to an object, however. The storage used for the window is available
for other use, perhaps to use as a window for a different part of the same object or
to use as a window for a different object.

Chapter 2. Using Window Services 2-11

Terminating Access to a Data Object
When you finish using a data object, you must terminate access to the object.
When you terminate access, window services returns to the system any virtual
storage it obtained for the object: storage for a temporary object or storage for a
scroll area. If the object is temporary, window services deletes the object. If the
object is permanent and window services dynamically allocated the data set when
you requested access to the object, window services dynamically unallocates the
data set. Your window is no longer mapped to the object or to a scroll area.

When you terminate access to a permanent object, window services does not
update the object on DASD with changes that are in a window or the scroll area. To
update the object, call CSRSAVE before terminating access to the object.

To terminate access to an object, call CSRIDAC and supply a valueof END for
operation_type. To identify the object, supply an object identifier for object_id. The
value you supply for object_id must be the same value CSRIDAC returned when
you obtained access to the object.

Upon successful completion of the call, the storage used for the window is available
for other use, perhaps as a window for viewing a different part of the same object
or to use as a window for viewing a different object.

Handling Return Codes and Abnormal Terminations
Each time you call a service, your program receives either a return code and
reason code or an abend code and a reason code. These codes indicate whether
the service completed successfully, encountered an unusual condition, or was
unable to complete successfully.

When you receive a return code that indicates a problem or an unusual condition,
your program can either attempt to correct the problem or can terminate its
execution. Return codes and reason codes are explained in Chapter 3, “Window
Services” with the description of each callable service program.

When an abend occurs, the system passes control to a recovery routine, if you or
your installation have provided one. A recovery routine might be able to correct the
problem that caused the abend and allow your program to continue execution. If a
recovery routine has been provided, it can handle the abend condition the same
way it handles other abend conditions. If a recovery routine has not been provided,
the system terminates execution of your program. For an explanation of the abend
codes, see z/OS MVS System Codes.

2-12 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 3. Window Services

To use window services, you issue CALLs that invoke the appropriate window
services program. Each service program performs one or more functions and
requires a set of parameters coded in a specific order on the CALL statement.

Depending on the function requested from a service, there might be one or more
parameter values that the service ignores. Although a service might ignore a
parameter value, you must still code that parameter on the CALL statement.
Because the service ignores the parameter value, you can assign the parameter
any value that is acceptable for the parameter’s data type. If the service uses a
particular parameter value, the CALL statement description in this chapter defines
the allowable values that you can assign to the parameter.

This chapter describes the CALL statements that invoke window services. Each
description includes a syntax diagram, parameter descriptions, and return code and
reason code explanations with recommended actions. Return codes and reason
codes are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. For examples of how to code the CALL statements, see Chapter 4,
“Window Services Coding Examples” on page 4-1.

This chapter contains the following topics:
v “CSREVW — View an Object and Sequentially Access It”
v “CSRIDAC — Request or Terminate Access to a Data Object” on page 3-5
v “CSRREFR — Refresh an Object” on page 3-9
v “CSRSAVE — Save Changes Made to a Permanent Object” on page 3-11
v “CSRSCOT — Save Object Changes in a Scroll Area” on page 3-14
v “CSRVIEW — View an Object” on page 3-16

CSREVW — View an Object and Sequentially Access It
Call CSREVW if you reference data in a sequential pattern and you want to:

v Map a window to one or more blocks (4096 bytes) of a data object. If you
specified scrolling when you called CSRIDAC to identify the object, CSREVW
maps the window to the blocks in the scroll area and maps the scroll area to the
object.

v Specify how many blocks window services is to bring into the window each time
CSREVW needs more data from the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW and CSRVIEW services differ on how to specify sequential access:

v If you use CSRVIEW and specify sequential , when you reference data that is
not in your window, window services reads up to 16 blocks — the one that
contains the data your program requests, plus the next 15 consecutive blocks.
The number of consecutive blocks varies, depending on the size of the window
and the availability of central storage.

v If you use CSREVW, you can specify the number of additional consecutive
blocks that window services reads into the window at one time. The number
ranges from 0 through 255.

© Copyright IBM Corp. 1994, 2002 3-1

Use CSREVW if your program has sequential access and can benefit from having
more than 16 blocks come into a window at one time, or fewer than 16 blocks at
one time.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSREVW
uses to obtain input values, assign appropriate values. For parameters that
CSREVW ignores, assign any value that is valid for the particular parameter’s data
type.

v To map a window to a data object and begin viewing the object, specify BEGIN
and SEQ and assign values, acceptable to CSREVW, to:

– object_id

– offset

– span

– window_name

– disposition

– pfcount

CSREVW returns values in return_code and in reason_code.

v To end the view and unmap the data object, use CSRVIEW END and specify all
values, except for pfcount, that you specified when you mapped the window.

CALL CSREVW (operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,pfcount
,return_code
,reason_code)

operation_type
Specify BEGIN to request that CSREVW map a data object.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

CSREVW

3-2 z/OS V1R4.0 MVS Callable Services for HLL

,usage
Specify SEQ to tell CSREVW that the expected pattern of references to data in
the object will be sequential.

Define this field as character data of length 6. Pad the string on the right with 1
blank.

,disposition
Defines how CSREVW is to handle data that is in the window when you begin a
view. When you specify CSREVW BEGIN and a disposition of:

REPLACE The first time you reference a block to which the window is
mapped, CSREVW replaces the data in the window with the
data from the referenced block.

RETAIN When you reference a block to which the window is mapped,
the data in the window remains unchanged. When you call
CSRSAVE to save the mapped blocks, CSRSAVE saves all of
the mapped blocks because CSRSAVE considers them
changed.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with 1 blank.

,pfcount
Specifies the number of additional blocks you want window services to bring
into the window each time your program references data that is not already in
the window. The number you specify is added to the minimum of one block that
window services always brings in. That is, if you specify a value of 20, window
services brings in a total of 21. The number of additional blocks ranges from
zero through 255.

Define pfcount as integer data of length 4.

,return_code
When CSREVW completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

,reason_code
When CSREVW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

Abend Codes
CSREVW issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return Codes and Reason Codes
When CSREVW returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes
are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-1 on page 3-4 identifies return code and reason code
combinations, tells what each means, and recommends an action that you should
take.

CSREVW

Chapter 3. Window Services 3-3

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with any
reason code means that data-in-virtual encountered a problem or an unexpected
condition. Data-in-virtual reason codes, which are two bytes long and right justified,
are explained in z/OS MVS Programming: Assembler Services Reference
ABE-HSP. To resolve a data-in-virtual problem, request help from your system
programmer.

Table 3-1. CSREVW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning : The operation was successful. The service could not
retain all the data that was in the scroll area, however.

Action : Notify your system programmer.

00000012 (18) xxxx000A (10) Meaning : There is another service currently executing with the
specified ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning : An I/O error has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning : The specified range does not encompass any mapped
area of the object.

Action : If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the wrong
range of blocks on CSRVIEW or on CSRREFR. If you do not find
any errors in your program, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning : The object cannot be accessed at the current time.

Action : Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0040 (64) Meaning : The specified MAP range would cause the hiperspace
data-in-virtual object to be extended such that the installation data
space limits would be exceeded.

Action : Change the MAP range you have specified or request
your system programmer to increase the installation’s data space
limits.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning : System error — I/O driver failure.

Action : Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning : System error — A necessary page table could not be
read into real storage.

Action : Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning : System error — Catalog update failed.

Action : Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning : System error — I/O error.

Action : Notify your system programmer.

CSREVW

3-4 z/OS V1R4.0 MVS Callable Services for HLL

Table 3-1. CSREVW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRIDAC — Request or Terminate Access to a Data Object
Call CSRIDAC to:
v Request access to a data object
v Terminate access to a data object

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRIDAC
uses to obtain input values, assign values that are acceptable to CSRIDAC. For
parameters that CSRIDAC ignores, assign any value that is valid for the particular
parameter’s data type.

The parameter values that CSRIDAC uses depends on whether you are requesting
access to an object or terminating access.

v To request access to a data object, specify BEGIN for operation_type, and assign
values, acceptable to CSRIDAC, to the following parameters:

– object_type

– object_name if the object is permanent

– scroll_area

– object_state if the object is permanent and object_type specifies DSNAME

– access_mode if the object exists and is permanent

– object_size if the object is new or temporary

– object_size if the object is new or temporary

CSRIDAC ignores other parameter values. CSRIDAC returns values in object_id,
high_offset, return_code, and reason_code.

v To terminate access to a data object, specify END for operation_type, and assign
a value, acceptable to CSRIDAC, to object_id. CSRIDAC ignores other
parameter values. CSRIDAC returns values in return_code and reason_code.

CALL CSRIDAC (operation_type
,object_type
,object_name
,scroll_area
,object_state
,access_mode
,object_size
,object_id
,high_offset
,return_code
,reason_code)

CSREVW

Chapter 3. Window Services 3-5

operation_type
Specifies the type of operation the service is to perform:
v To request access to an object, specify BEGIN.
v To terminate access to an object, specify END. If the object is temporary,

CSRIDAC deletes it.

Define operation_type as character data of length 5. If you specify END, pad
the string on the right with 1 or 2 blanks.

,object_type
Specifies the type of object. The types are:

DDNAME The object is an existing (OLD) VSAM linear data set allocated
to the file whose DDNAME is specified by object_name.

DSNAME The object is the linear VSAM data set whose name is specified
by object_name. The data set may already exist or may be a
new data set that you want window services to create.

TEMPSPACE The object is a temporary data object. Window services deletes
the object when your program calls CSRIDAC and
operation_type equals END.

If operation_type is BEGIN, you must supply a value.

Define this parameter as character data of length 9. If you specify either
DDNAME or DSNAME, pad the string on the right with 1 to 3 blanks.

,object_name
Specifies the data set name of a permanent object or the DDNAME of a data
definition (DD) statement that defines a permanent object.

v If object_type is DDNAME, object_name must contain the name of a DD
statement.

v If object_type is DSNAME, object_name must contain the data set name of
the permanent object.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for object_name.

Define object_name as character data of length 1 to 45. If object_name
contains fewer than 45 characters, pad the name on the right with a blank.

,scroll_area
Specifies whether window services is to create a scroll area for the data object.
YES Create a scroll area.
NO Do not create a scroll area.

If operation_type is BEGIN and object_type is TEMPSPACE, specify YES.

Define scroll_area as character data of length 3. If you specify NO, pad the
string on the right with a blank.

,object_state
Specifies the state of the object.
OLD The object exists.
NEW The object does not exist and window services must create it.

If operation_type is BEGIN and object_type is DSNAME, you must supply a
value for object_state.

CSRIDAC

3-6 z/OS V1R4.0 MVS Callable Services for HLL

Define object_state as character data of length 3.

,access_mode
Specifies the type of access required.
READ READ access.
UPDATE UPDATE access.

If operation_type is BEGIN and object_type is DDNAME or DSNAME, you must
supply a value for access_mode. For a new or temporary data object, window
services assumes UPDATE.

Define access_mode as character data of length 6. If you specify READ, pad
the string on the right with 1 or 2 blanks.

,object_size
Specifies the maximum size of the new object in units of 4096 bytes.

This parameter is required if either of the following conditions is true:

v Operation_type is BEGIN, object_type is DSNAME, and object_state is NEW

v Operation_type is BEGIN and object_type is TEMPSPACE

Define object_size as integer data of length 4.

,object_id
Specifies the object identifier.

When operation_type is BEGIN, the service returns the object identifier in this
parameter. Use the identifier to identify the object to other window services.

When operation_type is END, you must supply the object identifier in this
parameter.

Define object_id as character data of length 8.

,high_offset
When CSRIDAC completes, high_offset contains the size of the existing object
expressed in blocks of 4096 bytes

Define high_offset as integer data of length 4.

,return_code
When CSRIDAC completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

,reason_code
When CSRIDAC completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

Abend Codes
CSRIDAC issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return Codes and Reason Codes
When CSRIDAC returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes

CSRIDAC

Chapter 3. Window Services 3-7

are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-2 identifies return code and reason code combinations, tells
what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason
codes. Data-in-virtual reason codes are two bytes long and right justified. To resolve
a data-in-virtual problem, request help from your system programmer. For
information about data-in-virtual, see the z/OS MVS Programming: Assembler
Services Guide.

Table 3-2. CSRIDAC Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000008 (8) 00000118 (280) Meaning : The system could not obtain enough storage to create a
hiperspace for the temporary object or the scroll area.
Note: Hiperspace™ is the name the system uses to identify the
storage it uses to create a temporary object or a scroll area for a
permanent object.

Action : Notify your system programmer. The system programmer
might have to increase the SMF limit for data spaces and
hiperspace that are intended for the user.

00000008 (8) 00000119 (281) Meaning : The system could not delete or unidentify the temporary
object or the scroll area.

Action : Notify your system programmer.

00000008 (8) 0000011A (282) Meaning : The system was unable to create a new VSAM linear
data set. DFP 3.1 must be running and SMS must be active.

Action : Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning : Another service currently is executing with the specified
ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning : The object cannot be accessed at the current time.

Action : Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0037 (55) Meaning : The caller invoked ACCESS. The access is successful,
but the system is issuing a warning that the data set was not
allocated with a SHAREOPTIONS(1,3).

Action : Notify your system programmer.

0000000C (12) xxxx003E (62) Meaning : The hiperspace data-in-virtual object may not be
accessed at this time. (If MODE=READ, the object is already
accessed under a different ID for UPDATE. If MODE=UPDATE,
the object is already accessed under at least one other ID.)

Action : Try running your program at a later time. If the problem
persists, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning : System error — I/O driver failure.

Action : Notify your system programmer.

CSRIDAC

3-8 z/OS V1R4.0 MVS Callable Services for HLL

Table 3-2. CSRIDAC Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0805 (2053) Meaning : System error — A system error of indeterminate origin
has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

00000010 (16) rrrrnnnn Meaning : The system was unable to allocate or unallocate the
data set specified as object_name. The value rrrr is the return
code from dynamic allocation. The value nnnn is the two-byte
reason code from dynamic allocation. See z/OS MVS
Programming: Authorized Assembler Services Guide for dynamic
allocation return and reason codes.

Action : If object_state is NEW, make sure that a data set of the
same name does not already exist. If one does already exist,
either use the existing data set or change the name of your data
set. If you are unable to correct the problem, notify your system
programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRREFR — Refresh an Object
To refresh changed data that is in a window, a scroll area, or a temporary object,
call CSRREFR. CSRREFR refreshes changed data within specified blocks as
follows:

v If the object is permanent, CSRREFR replaces specified changed blocks in
windows or the scroll area with corresponding blocks from the object on DASD.

v For a temporary object, CSRREFR refreshes specified changed blocks in
windows and the object by setting the blocks to binary zeroes.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRREFR
uses to obtain input values, assign values that are acceptable to CSRREFR. For
parameters that CSRREFR ignores, assign any value that is valid for the particular
parameter’s data type.

Assign values, acceptable to CSRREFR, to object_id, offset, and span. CSRREFR
ignores other parameter values. CSRREFR returns values in return_code and
reason_code.

CALL CSRREFR (object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

CSRIDAC

Chapter 3. Window Services 3-9

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0
specifies the first block of 4096 bytes or bytes 0 to 4095 of the object; a value
of 1 specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the
object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services
refreshes. To refresh the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRREFR is to refresh.

Define span as integer data of length 4.

,return_code
When CSRREFR completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

,reason_code
When CSRREFR completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

Abend Codes
CSRREFR issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return Codes and Reason Codes
When CSRREFR returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes
are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-3 identifies return code and reason code combinations, tells
what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason
codes. Data-in-virtual reason codes are two bytes long and right justified. To resolve
a data-in-virtual problem, request help from your system programmer.

Table 3-3. CSRREFR Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000008 (8) 00000152 (338) Meaning : The system could not refresh all of the temporary object
within the specified span.

Action : Notify your system programmer.

CSRREFR

3-10 z/OS V1R4.0 MVS Callable Services for HLL

Table 3-3. CSRREFR Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx000A (10) Meaning : There is another service currently executing with the
specified ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning : An I/O error has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning : The specified range does not include any mapped block
of the object.

Action : If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the wrong
range of blocks on CSRVIEW or on CSRREFR. If you do not find
any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning : System error — A necessary page table could not be
read into real storage.

Action : Notify your system programmer.

0000000C (12) xxxx0805 (2053) Meaning : System error — A system error of indeterminate origin
has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning : System error — I/O error.

Action : Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRSAVE — Save Changes Made to a Permanent Object
To update specified blocks of a permanent object with changes, call CSRSAVE. The
changes can be in blocks that are mapped to the scroll area, in blocks that are
mapped to windows, or in a combination of these places.

Usage Note
You cannot use CSRSAVE to save changes made to a temporary object. If
you call CSRSAVE for a temporary object, CSRSAVE ignores the request and
returns control to your program with a return code of 8. To save changes
made to a temporary object, call CSRSCOT.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRSAVE

CSRREFR

Chapter 3. Window Services 3-11

uses to obtain input values, assign values that are acceptable to CSRSAVE. For
parameters that CSRSAVE ignores, assign any value that is valid for the particular
parameter’s data type.

Assign values, acceptable to CSRSAVE, to object_id, offset, and span. CSRSAVE
ignores other parameter values. CSRSAVE returns values in new_hi_offset,
return_code, and reason_code.

CALL CSRSAVE (object_id
,offset
,span
,new_hi_offset
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0
specifies the first block of 4096 bytes or bytes 0 to 4095 of the object; a value
of 1 specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the
object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object window services
saves. To save the entire object, specify 0 for offset and 0 for span.

,span
Specifies how many 4096-byte blocks CSRSAVE is to save.

Define span as integer data of length 4.

,new_hi_offset
When CSRSAVE completes, new_hi_offset contains the new size of the object
expressed in units of 4096 bytes.

Define new_hi_offset as integer data of length 4.

,return_code
When CSRSAVE completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes” on page 3-13.

,reason_code
When CSRSAVE completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes” on page 3-13.

Abend Codes
CSRSAVE issues abend code X'019'. For more information, see z/OS MVS System
Codes.

CSRSAVE

3-12 z/OS V1R4.0 MVS Callable Services for HLL

Return Codes and Reason Codes
When CSRSAVE returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes
are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-4 identifies return code and reason code combinations, tells
what each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0807' or a return code of X'C' with any
reason code means that data-in-virtual encountered a problem or an unexpected
condition. Data-in-virtual reason codes are two bytes long and right justified. To
resolve a data-in-virtual problem, request help from your system programmer. For
information about data-in-virtual, see the z/OS MVS Programming: Assembler
Services Guide.

Table 3-4. CSRSAVE Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning : Media damage may be present in allocated DASD
space. The damage is beyond the currently saved portion of the
object. The SAVE operation completed successfully.

Action : Notify your system programmer.

00000008 (8) xxxx0143 (323) Meaning : You cannot use the SAVE service for a temporary
object.

Action : Use the scrollout (CSRSCOT) service.

0000000C (12) xxxx000A (10) Meaning : There is another service currently executing with the
specified ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning : An I/O error has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning : The specified range does not encompass any mapped
area of the object.

Action : If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the wrong
range of blocks on CSRVIEW or on CSRREFR. If you do not find
any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning : System error — I/O driver failure.

Action : Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning : System error — A necessary page table could not be
read into real storage.

Action : Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning : System error — Catalog update failed.

Action : Notify your system programmer.

CSRSAVE

Chapter 3. Window Services 3-13

Table 3-4. CSRSAVE Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0806 (2054) Meaning : System error — I/O error.

Action : Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRSCOT — Save Object Changes in a Scroll Area
Call CSRSCOT to:

v Update specified blocks of a permanent object’s scroll area with changes that
appear in a window you have defined for the object. CSRSCOT requires that the
permanent object have a scroll area. CSRSCOT changes only the content of the
scroll area and not the content of the permanent data object.

v Update specified blocks of a temporary data object with the changes that appear
in a window you have defined for the data object.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRSCOT
uses to obtain input values, assign values that are acceptable to CSRSCOT. For
parameters that CSRSCOT ignores, assign any value that is valid for the particular
parameter’s data type.

Assign values, acceptable to CSRSCOT, to object_id, offset, and span. CSRSCOT
ignores other parameter values. CSRSCOT returns values in return_code and
reason_code.

CALL CSRSCOT (object_id
,offset
,span
,return_code
,reason_code)

object_id
Specifies the object identifier. Supply the same object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset into the object in blocks of 4096 bytes. A value of 0
specifies the first block of 4096 bytes or bytes 0 to 4095 of the object; a value
of 1 specifies the second block of 4096 bytes, or bytes 4096 to 8191 of the
object, and so forth.

Define offset as integer data of length 4.

offset and span, together, determine which part of the object CSRSCOT
updates. To update the entire object, specify 0 for offset and 0 for span.

CSRSAVE

3-14 z/OS V1R4.0 MVS Callable Services for HLL

,span
Specifies how many 4096-byte blocks CSRSCOT is to update.

Define span as integer data of length 4.

,return_code
When CSRSCOT completes, return_code contains the return code. Define
return_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

,reason_code
When CSRSCOT completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

Abend Codes
CSRSCOT issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return Codes and Reason Codes
When CSRSCOT returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes
are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-5 identifies return code and reason code combinations, tells
what each means, and recommends an action that you should take.

A return code of X'C' means that data-in-virtual encountered a problem or an
unexpected condition. The associated reason codes are data-in-virtual reason
codes. Data-in-virtual reason codes are two bytes long and right justified. For
information about data-in-virtual, see z/OS MVS Programming: Assembler Services
Guide. To resolve the problem, request help from your system programmer.

Table 3-5. CSRSCOT Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000004 (4) xxxx0807 (2055) Meaning : Media damage may be present in allocated DASD
space. The damage is beyond the currently saved portion of the
object. The SAVE operation completed successfully.

Action : Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning : There is another service currently executing with the
specified ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning : An I/O error has occurred.

Action : Notify your system programmer.

CSRSCOT

Chapter 3. Window Services 3-15

Table 3-5. CSRSCOT Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx001A (26) Meaning : The specified range does not encompass any mapped
area of the object.

Action : If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the wrong
range of blocks on CSRVIEW or on CSRREFR. If you do not find
any errors in your program, notify your system programmer.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning : System error — I/O driver failure.

Action : Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning : System error — A necessary page table could not be
read into real storage.

Action : Notify your system programmer.

0000000C (12) xxxx0804 (2052) Meaning : System error — Catalog update failed.

Action : Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning : System error — I/O error.

Action : Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRVIEW — View an Object
Call CSRVIEW to:

v Map a window to one or more blocks of a data object. If you specified scrolling
when you called CSRIDAC to identify the object, CSRVIEW maps the window to
the scroll area and the scroll area to the object.

v Specify that the reference pattern you are using is either random or sequential.

v End a view that you previously created through CSRVIEW or CSREVW and
unmap the object.

Mapping a data object enables your program to access the data that is viewed
through the window the same way it accesses other data in your storage.

The CSREVW service also maps a data object. Use that service if your program
can benefit from having more than 16 blocks come into a window at one time or if it
can benefit from having fewer than 16.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRVIEW
uses to obtain input values, assign values that are acceptable to CSRVIEW. For
parameters that CSRVIEW ignores, assign any value that is valid for the particular
parameter’s data type.

CSRSCOT

3-16 z/OS V1R4.0 MVS Callable Services for HLL

The type of function you request determines which parameter values CSRVIEW
uses to obtain input values:

v To map a window to a data object and begin viewing the object, specify BEGIN
for operation_type, and assign values, acceptable to CSRVIEW, to:

– object_id

– offset

– span

– window_name

– usage

– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in
return_code and in reason_code.

v To end a view set by either CSRVIEW or CSREVW and to unmap the data
object, specify END for operation_type, and assign values, acceptable to
CSRVIEW, to:

– object_id

– offset

– span

– window_name

– usage

– disposition

CSRVIEW ignores other parameter values. CSRVIEW returns values in
return_code and reason_code.

CALL CSRVIEW (operation_type
,object_id
,offset
,span
,window_name
,usage
,disposition
,return_code
,reason_code)

operation_type
Specifies the type of operation CSRVIEW is to perform. To begin viewing an
object, specify BEGIN. To end a view, specify END.

Define operation_type as character data of length 5. If you specify END, pad
the string on the right with 1 or 2 blanks.

,object_id
Specifies the object identifier. Supply the object identifier that CSRIDAC
returned when you obtained access to the object.

Define object_id as character data of length 8.

,offset
Specifies the offset of the view into the object. Specify the offset in blocks of
4096 bytes.

Define offset as integer data of length 4.

CSRVIEW

Chapter 3. Window Services 3-17

,span
Specifies the window size in blocks of 4096 bytes.

Define span as integer data of length 4.

,window_name
Specifies the symbolic name you assigned to the window in your address
space.

,usage
Specifies the expected pattern of references to pages in the object. Specify one
of the following values:

SEQ The reference pattern is expected to be sequential. If you
specify SEQ, window services brings up to 16 blocks of data
into the window at a time, depending on the size of the window.

RANDOM The reference pattern is expected to be random. If you specify
RANDOM, window services brings data into the window one
block at a time.

Define usage as character data of length 6. If you specify SEQ, pad the string
on the right with 1 to 3 blanks.

,disposition
Defines how CSRVIEW is to handle data that is in the window when you begin
or end a view.

v When you specify CSRVIEW with an operation_type of BEGIN and a
disposition of:

REPLACE The first time you reference a block to which the window is
mapped, CSRVIEW replaces the data in the window with the
data from the referenced block.

RETAIN When you reference a block to which the window is mapped,
the data in the window remains unchanged. When you call
CSRSAVE to save the mapped blocks, CSRSAVE saves all
of the mapped blocks because CSRSAVE considers them
changed.

v When you specify CSRVIEW with an operation_type of END and a
disposition of:

REPLACE CSRVIEW discards the data that is in the window making the
window contents unpredictable. CSRVIEW does not update
mapped blocks of the object or scroll area.

RETAIN If the object is permanent and has no scroll area, CSRVIEW
retains the data that is in the window. CSRVIEW does not
update mapped blocks of the object. If the object is
permanent and has a scroll area, or if the object is
temporary, CSRVIEW retains the data that is in the window
and updates the mapped blocks of the object or scroll area.

Define disposition as character data of length 7. If you specify RETAIN, pad the
string on the right with a blank.

,return_code
When CSRVIEW completes, return_code contains the return code. Define
return_code as integer data of length 4.

CSRVIEW

3-18 z/OS V1R4.0 MVS Callable Services for HLL

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

,reason_code
When CSRVIEW completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return codes and reason codes are explained under “Return Codes and
Reason Codes”.

Abend Codes
CSRVIEW issues abend code X'019'. For more information, see z/OS MVS System
Codes.

Return Codes and Reason Codes
When CSRVIEW returns control to your program, return_code contains a return
code and reason_code contains a reason code. Return codes and reason codes
are shown in hexadecimal followed by the decimal equivalent enclosed in
parentheses. Table 3-6 identifies return code and reason code combinations, tells
what each means, and recommends an action that you should take.

A return code of X'4' with a reason code of X'0125' or a return code of X'C' with any
reason code means that data-in-virtual encountered a problem or an unexpected
condition. Data-in-virtual reason codes are two bytes long and right justified. For
information about data-in-virtual, see z/OS MVS Programming: Assembler Services
Guide. To resolve the problem, request help from your system programmer.

Table 3-6. CSRVIEW Return and Reason Codes

Return Code Reason Code Meaning and Action

00000000 (0) 00000000 (0) Meaning : The operation was successful.

Action : Continue normal program execution.

00000004 (4) xxxx0125 (293) Meaning : The operation was successful. The service could not
retain all the data that was in the scroll area, however.

Action : Notify your system programmer.

0000000C (12) xxxx000A (10) Meaning : There is another service currently executing with the
specified ID.

Action : Use a different ID or wait until the other service
completes. If the problem persists, notify your system programmer.

0000000C (12) xxxx0017 (23) Meaning : An I/O error has occurred.

Action : Notify your system programmer.

0000000C (12) xxxx001A (26) Meaning : The specified range does not encompass any mapped
area of the object.

Action : If you expect this reason code, take whatever action the
design of your program dictates. If the reason code is unexpected,
check your program for errors: you might have specified the wrong
range of blocks on CSRVIEW or on CSRREFR. If you do not find
any errors in your program, notify your system programmer.

0000000C (12) xxxx001C (28) Meaning : The object cannot be accessed at the current time.

Action : Try running your program at a later time. If the problem
persists, notify your system programmer.

CSRVIEW

Chapter 3. Window Services 3-19

Table 3-6. CSRVIEW Return and Reason Codes (continued)

Return Code Reason Code Meaning and Action

0000000C (12) xxxx0040 (64) Meaning : The specified MAP range would cause the hiperspace
data-in-virtual object to be extended such that the installation data
space limits would be exceeded.

Action : Change the MAP range you have specified or request
your system programmer to increase the installation’s data space
limits.

0000000C (12) xxxx0801 (2049) Meaning : System error — Insufficient storage available to build
the necessary data-in-virtual control block structure.

Action : Notify your system programmer.

0000000C (12) xxxx0802 (2050) Meaning : System error — I/O driver failure.

Action : Notify your system programmer.

0000000C (12) xxxx0803 (2051) Meaning : System error — A necessary page table could not be
read into real storage.

Action : Notify your system programmer.

0000000C (12) xxx00804 (2052) Meaning : System error — Catalog update failed.

Action : Notify your system programmer.

0000000C (12) xxxx0806 (2054) Meaning : System error — I/O error.

Action : Notify your system programmer.

0000000C (12) xxxx0808 (2056) Meaning : System error — I/O from a previous request has not
completed.

Action : Notify your system programmer.

0000002C (44) 00000004 (4) Meaning : Window services have not been defined to your system
or the link to the service failed.

Action : Notify your system programmer.

CSRVIEW

3-20 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 4. Window Services Coding Examples

The following examples show how to invoke window services from each of the
supported languages. Following each program example is an example of the JCL
needed to compile, link edit, and execute the program example. Use these
examples to supplement and reinforce information that is presented elsewhere in
this book.

Note: Included in the FORTRAN example is the code for a required assembler
language program. This program ensures that the window for the FORTRAN
program is aligned on a 4K boundary.

The examples are presented on the following pages:
v “ADA Example”
v “C/370™ Example” on page 4-6
v “COBOL Example” on page 4-9
v “FORTRAN Example” on page 4-13
v “Pascal Example” on page 4-17
v “PL/I Example” on page 4-21

ADA Example
-- --- --
-- This program illustrates how Data Window services are invoked --
-- using ADA. Note that the data object referenced in this program --
-- is permanent and already allocated, and is defined by the DD --
-- statement CSRDD1 in the JCL. --
-- --
-- This program must be linkedited with the CSR linkage-assist --
-- routines (also known as stubs) in SYS1.CSSLIB. --
-- --- --

with EBCDIC; use EBCDIC;
with System;
with Text_Io;
with Unchecked_Conversion;
with Td_Standard; use Td_Standard;

procedure CRTPAN06 is

subtype Str3 is EString (1..3);
subtype Str5 is EString (1..5);
subtype Str6 is EString (1..6);
subtype Str7 is EString (1..7);
subtype Str8 is EString (1..8);
subtype Str9 is EString (1..9);

function Integer_Address is new Unchecked_Conversion
(System.Address, Integer);

function Int_To_32 is new Unchecked_Conversion
(Integer, Integer_32);

Orig, -- Index to indicate the ’start’
-- of an array

Ad, I : Integer; -- Temporary variables
Voffset, -- Offset passed as parameter
Vofset2, -- Offset passed as parameter
Vobjsiz, -- Object size, as parameter
Vwinsiz, -- Window size, as parameter
High_Offset, -- Size of object in pages
New_Hi_Offset, -- New max size of the object

© Copyright IBM Corp. 1994, 2002 4-1

Return_Code, -- Return code
Reason_Code : Integer_32; -- Reason code
Object_Id : Str8; -- Identifying token
Cscroll : Str3; -- Scroll area YES/NO
Cobstate : Str3; -- Object state NEW/OLD
Coptype : Str5; -- Operation type BEGIN/END
Caccess : Str6; -- Access RANDOM/SEQ
Cusage : Str6; -- Usage READ/UPDATE
Cdisp : Str7; -- Disposition RETAIN/REPLACE
Csptype : Str9; -- Object type DSNAME/DDNAME/TEMPSPACE
Cobname : Str7; -- Object name
K : constant Integer := 1024; -- One kilo-byte
Pagesize : constant Integer := 4 * K; -- Page (4K) boundary
Offset : constant Integer_32 := 0; -- Start of permanent object
Window_Size : constant Integer := 40; -- Window size in pages
Num_Win_Elem : constant Integer := Window_Size*K; -- Num of 4-byte

-- elements in window
Object_Size : constant Integer := 3*Window_Size; -- Chosen object

-- size in pages
Num_Sp_Elem : constant Integer := (Window_Size+1)*K; -- Num of

-- 4-byte elements in space

type S is array (positive range <>) of Integer; -- Define byte
-- aligned space

Sp : S (1..Num_Sp_Elem); -- Space allocated for window

procedure CSRIDAC (Op_Type : in Str5;
Object_Type : in Str9;
Object_Name : in Str7;
Scroll_Area : in Str3;
Object_State: in Str3;
Access_Mode : in Str6;
Vobjsiz : in Integer_32;
Object_Id : out Str8;
High_Offset : out Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRIDAC);

procedure CSRVIEW (Op_Type : in Str5;
Object_Id : in Str8;
Offset : in Integer_32;
Window_Size : in Integer_32;
Window_Name : in S;
Usage : in Str6;
Disposition : in Str7;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRVIEW);

procedure CSRSCOT (Object_Id : in Str8;
Offset : in Integer_32;
Span : in Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRSCOT);

procedure CSRSAVE (Object_Id : in Str8;
Offset : in Integer_32;
Span : in Integer_32;
New_Hi_Offset : out Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRSAVE);

procedure CSRREFR (Object_Id : in Str8;
Offset : in Integer_32;

ADA Example

4-2 z/OS V1R4.0 MVS Callable Services for HLL

Span : in Integer_32;
Return_Code : out Integer_32;
Reason_Code : out Integer_32);

pragma Interface (Assembler, CSRREFR);

begin
Text_Io.Put_Line ("<<Begin Window Services Interface Validation>>");
Text_Io.New_Line;

Vobjsiz := Int_To_32(Object_Size); -- Set object size in variable
Voffset := Offset; -- Set offset to 0 for 1st map
Vwinsiz := Int_To_32(Window_Size); -- Set window size in variable
Vofset2 := Offset+Vwinsiz; -- Set offset to 40 for 2nd map

Coptype := "BEGIN";
Csptype := "DDNAME ";
Cobname := "CSRDD1 ";
Cscroll := "YES";
Cobstate := "OLD";
Caccess := "UPDATE";

CSRIDAC (Coptype, -- Set up access to the
Csptype, -- permanent object and
Cobname, -- request a scroll area
Cscroll,
Cobstate,
Caccess,
Vobjsiz,
Object_Id,
High_Offset,
Return_Code,
Reason_Code);

-- When you want to map a window to your object, data window services
-- expects the address of the start of the window to be on a page (4K)
-- boundary, and the length of the window to be a multiple of 4096 bytes.
-- If your window is an array, the address of the first element
-- of the array must be on a page boundary. If this is not the case,
-- you can appropriately choose one slice of your array that starts
-- on a 4K boundary and is a multiple of 4096 bytes in length to map
-- onto your object.
-- To illustrate, consider the array A(1..max_len). If the address of
-- A(1) is not on page boundary, you cannot map A(1..max_len) to your
-- object. You can, however, map A(n..m) to your object if you choose
-- some appropriate values n and m such that A(n) starts on a 4K
-- boundary and A(n..m) is a multiple of 4096 bytes in length.

Ad := Integer_Address(Sp(1)’Address); -- Get address of start of array

-- Determine the first element whose address is on page boundary
-- and use that element as the origin of the array.

Orig := (Ad mod Pagesize); -- See where the start of
-- array is in page

if Orig = 0 then -- If already on page boundary
Orig := 1; -- Keep the old origin

else
Orig := (Pagesize - Orig) / 4 + 1; -- Need new origin

end if;

Coptype := "BEGIN";
Cusage := "RANDOM";
Cdisp := "REPLACE";

-- You can pass an array slice as a parameter to a non-Ada subprogram,
-- and because the slice is a composite object, the parameter list

ADA Example

Chapter 4. Window Services Coding Examples 4-3

-- contains the actual address of the first element in the slice.
-- To elaborate further:
-- Scalar data is passed by copy, but composite data is passed by
-- reference. If the scalar value was passed as a scalar, the assemble\
-- program would receive the address of the copy and not the address of
-- the scalar. By passing the scalar value as an array slice, a
-- composite data type is being passed and thus is passed by reference.
-- Using this technique, the assembler code receives the actual address
-- of the scalar, not a copy of the scalar.

CSRVIEW (Coptype, -- Now map a window (the array)
Object_Id, -- to the permanent object.
Voffset, -- (Actually, CSRVIEW will map the
Vwinsiz, -- window to the blocks in the
Sp(Orig..Num_Sp_Elem), -- scroll area and map the scroll
Cusage, -- area to the object.)
Cdisp,
Return_Code,
Reason_Code);

for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
Sp(I+Orig) := I+1;

end loop;

CSRSCOT (Object_Id, -- Capture the view in window.
Voffset, -- Note: only the scroll area
Vwinsiz, -- is updated, the permanent
Return_Code, -- object remains unchanged.
Reason_Code);

Coptype := "END ";
Cusage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the view in window
Object_Id,
Voffset,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "BEGIN";
Cusage := "RANDOM";
Cdisp := "REPLACE";

CSRVIEW (Coptype, -- Now map the same window
Object_Id, -- to different part of the
Vofset2, -- permanent object.
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

for I in 0 .. Num_Win_Elem-1 loop -- Put data in window area
Sp(I+Orig) := I+1;

end loop;

CSRSAVE (Object_Id, -- Capture the view in window.
Vofset2, -- Note: this time the permanent
Vwinsiz, -- object is updated with the
New_Hi_Offset, -- changes.

ADA Example

4-4 z/OS V1R4.0 MVS Callable Services for HLL

Return_Code,
Reason_Code);

Coptype := "END ";
CUsage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the current view in
Object_Id, -- the window
Vofset2,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "BEGIN";
Cusage := "RANDOM";
Cdisp := "REPLACE";

CSRVIEW (Coptype, -- Now go back to reestablish
Object_Id, -- the 1st map using the same
Voffset, -- window area
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

CSRREFR (Object_Id, -- Refresh the data in the window
Voffset,
Vwinsiz,
Return_Code,
Reason_Code);

Coptype := "END ";
Cusage := "RANDOM";
Cdisp := "RETAIN ";

CSRVIEW (Coptype, -- End the view in window
Object_Id,
Voffset,
Vwinsiz,
Sp(Orig..Num_Sp_Elem),
Cusage,
Cdisp,
Return_Code,
Reason_Code);

Coptype := "END ";
Csptype := "DDNAME ";
Cobname := "CSRDD1 ";
Cscroll := "YES";
Cobstate := "OLD";
Caccess := "UPDATE";

CSRIDAC (Coptype, -- Terminate access to the
Csptype, -- permanent object
Cobname,
Cscroll,
Cobstate,
Caccess,
Vwinsiz,
Object_Id,
High_Offset,

ADA Example

Chapter 4. Window Services Coding Examples 4-5

Return_Code,
Reason_Code);

end CRTPAN06;

//ADAJOB JOB 00000100
//* 00000500
//* JCL USED TO COMPILE, LINK, AND EXECUTE THE ADA PROGRAM CRTPAN06 00000600
//* THAT USES DATA WINDOW SERVICES 00000700
//* 00000800
/*JOBPARM T=2,L=99 00050000
//ADACOBI EXEC PGM=IKJEFT01,DYNAMNBR=133 00055813
//SYSTSPRT DD SYSOUT=* 00055913
//SYSTSIN DD * 00056008
ALLOC FI(SYSLIB) DS(’SYS1.CSSLIB’) SHR 00056147
EX ’HLQ.SEVGEXE1(ADA)’ ’USERID.DWS.ADA’’ (MAI CRE’ 00056251

/* 00057008
//ADARUN EXEC PGM=CRTPAN06,DYNAMNBR=133 00070036
//STEPLIB DD DISP=SHR,DSN=HLQ.SEVHMOD1 00100051
// DD DISP=SHR,DSN=USERID.LOAD 00110051
//CSRDD1 DD DSN=USERID.ADA.DWSTEST.DATA,DISP=SHR 00120051
//CONOUT DD SYSOUT=*, 00130013
// DCB=(LRECL=133,RECFM=F) 00140027

C/370™ Example
The following example, coded in C/370, creates and uses a temporary data object.
#include <stdio.h>
#include <stdlib.h>
/* Defined macros that will be used in the program. */
#define SIZE 8*1024
#define OBJ_SIZE 8
#define PAGE_SIZE (4*1024)
#define DWS_FILE "DWS.FILE1 "
#define TRUE 1
#define FALSE 0
char windows[SIZE];
char *view;
void init_mem(char init_value, char *low_mem, int size);
int chk_code(long int ret, long int reason, int linenumber);
main()
{
/* Initialized variables that will be used in the Callable */
/* Services. */
char op_type1[5] = "BEGIN";
char op_type2[5] = "END ";
char object_type[9] = "TEMPSPACE";
char object_name[45] = DWS_FILE;
char scroll_area[3] = "YES";
char object_state[3] = "NEW";
char access_mode[6] = "UPDATE";
long int object_size = OBJ_SIZE;
char disposition[7] = "REPLACE";
char usage[6] = "SEQ ";
char object_id[8];
long int high_offset, return_code, reason_code;
long int offset, window_size, window_addr;
long int span, new_hi_offset;
long int addr;
int i, ret, origin, errflag = FALSE;
double id;
/* Set up access to a Hiperspace object using TEMPSPACE. */
/* Check for return code and reason code after the call. */
csridac(op_type1, object_type, object_name, scroll_area, object_state,

access_mode,&object_size,&object_id,&high_offset,&return_code,;
&reason_code);

ADA Example

4-6 z/OS V1R4.0 MVS Callable Services for HLL

chk_code(return_code,reason_code,__LINE__);
/* Define a window in a 4K region and initialize */
/* variables for CSRVIEW. Define the window for the */
/* TEMPSPACE and verify the return code and reason code. */
init_mem(’0’,windows,SIZE);
addr = (int) windows % 4096;
if (addr != 0) view = windows + 4096 - addr;
offset = 0; window_size = 1;
csrview(op_type1,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Change values in the window into 1. */
init_mem(’1’,view,4096);
/* Capture the view in the 1st window. */
offset = 0; window_size = 1;
csrscot(&object_id, &offset, &window_size,&return_code,;

&reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Make sure that CSRSAVE will not save changes for temporary */
/* object. The return code should be equal to 8 and control */
/* will be returned to the program. */
offset = 0; window_size = 1;
csrsave(&object_id, &offset, &window_size, &high_offset,;

&return_code, &reason_code);
if (return_code != 8) {

errflag = TRUE;
printf("return_code was not set to proper value.\n");

}
/* Terminate the view to the window. */
offset = 0; window_size = 1;
csrview(op_type2,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Change values in the window array into 0’s. */
init_mem(’0’,view,4096);
/* View the window again. */
offset = 0; window_size = 1;
csrview(op_type1,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* The values in the window should remain to 1’s. */
for (i=0; i<4096; i++) {

if (errflag == TRUE) printf("%d %c ", i, view[i]);
if (view[i] != ’1’) errflag = TRUE;

}
/* Refresh the window to 0’s. */
offset = 0; window_size = 1;
csrrefr(&object_id, &offset, &window_size,;

&return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* The values inside the window should equal to 0’s. */
for (i=0; i<4096; i++) {

if (errflag == TRUE) printf("%d %c ", i, view[i]);
if (view[i] != 0) errflag = TRUE;

}
/* Terminate the view to the window. */
offset = 0; window_size = 1;
csrview(op_type2,&object_id,&offset,&window_size,view,;

usage, disposition, &return_code, &reason_code);
chk_code(return_code,reason_code,__LINE__);
/* Terminate the access to the Hiperspace object. */
csridac(op_type2, object_type, object_name, scroll_area, object_state,

access_mode,&object_size,&object_id,&high_offset,&return_code,;
&reason_code);

chk_code(return_code,reason_code,__LINE__);
/* Report the status of the test. */
if (errflag) {

C/370 Example

Chapter 4. Window Services Coding Examples 4-7

printf("Test failed at line %d\n", __LINE__);
exit(1);

}
else {

printf("Test successful : %s\n", __FILE__);
exit(0);

}
}
/* Functions that will be used in the program. */
/* chk_code will check return code and reason code returned from*/
/* the Callable Services. It will report an error if the code(s)*/
/* is not equal to 0. */
int chk_code(long int ret, long int reason, int linenumber)
{

if (ret != 0)
printf("return_code = %ld instead of 0 at line %d\n",

ret, linenumber);
if (reason != 0)

printf("reason_code = %ld instead of 0 at line %d\n",
reason, linenumber);

}
/* init_mem will initialize a block of memory starting at a */
/* given location to a specified value. */
void init_mem(char init_val, char *low_mem, int size)
{

int i;
for (i=0; i<size; i++) *(low_mem+i) = init_val;

}
//*
//*--
//* JCL USED TO COMPILE, LINK, AND, EXECUTE THE C/370 PROGRAM
//*--
//*
//DPTTST1A JOB ’DPT04P,DPT,?,S=I’,’DPTTST1’,MSGCLASS=H,
// CLASS=J,NOTIFY=DPTTST1,MSGLEVEL=(1,1)
//CC EXEC EDCC,INFILE=’DPTTST1.DWS.SOURCE(DWS1)’,
// CPARM=’NOOPT,SOURCE,NOSEQ,NOMAR’,
// OUTFILE=’DPTTST1.DWS.OBJECT(DWS1)’
//*--
//* LINK STEP
//*--
//LKED EXEC PGM=IEWL,PARM=’MAP,RMODE=ANY,AMODE=31’
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
// DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJECT DD DSN=DPTTST1.DWS.OBJECT,DISP=SHR
//SYSLIN DD *

ENTRY CEESTART
INCLUDE OBJECT(DWS1)
NAME DWS1(R)

//SYSLMOD DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA,DISP=(NEW,DELETE,DELETE),
// SPACE=(32000,(30,30))
//*--
//* GO STEP. THIS STEP DEFINES A NAME FOR A PERMANENT OBJECT THAT
//* THE DDNAME OBJECT TYPE WILL REFERENCE.
//*--
//GO EXEC PGM=DWS1,REGION=4M
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=DPTTST1.DWS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=125,BLKSIZE=6000)
//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DD1 DD DSN=DPTTST1.DWS.FILE1,DISP=SHR

C/370 Example

4-8 z/OS V1R4.0 MVS Callable Services for HLL

COBOL Example
IDENTIFICATION DIVISION.

* Program using COBOL to create a 40-page window *
* aligned on a page boundary. This is done by locating a *
* page boundary within a 40*4096+4095 byte work area. *
* The DWS interface validation routine is then called passing *
* the 40 page window. *

PROGRAM-ID. DWSCBSAM.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 WORKAREA.
2 FILLER PIC X OCCURS 167935 TIMES.

PROCEDURE DIVISION.
DISPLAY " DWSCBSAM CALLING DWSCB4K "
CALL "DWSCB4K" USING WORKAREA
DISPLAY " DWSCBSAM BACK FROM DWSCB4K "
GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. DWSCB4K.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
1 P POINTER.
1 PR REDEFINES P PIC 9(9) COMP.
1 DUMMY PIC 9(9) COMP.
1 R PIC 9(9) COMP.
LINKAGE SECTION.
1 INWORK PIC X(167935).
1 WINDOW.

2 FILLER PIC X(4096) OCCURS 40 TIMES.
PROCEDURE DIVISION USING INWORK.

SET P TO ADDRESS OF INWORK
DIVIDE PR BY 4096
GIVING DUMMY
REMAINDER R

IF R NOT EQUAL 0 THEN
COMPUTE PR = PR + 4096 - R
SET ADDRESS OF WINDOW TO P
DISPLAY " DWSCBK4 CALLING DWSCB2 "
CALL "DWSCB2" USING WINDOW.
DISPLAY " DWSCBK4 BACK FROM DWSCB2 "
GOBACK.

IDENTIFICATION DIVISION.
PROGRAM-ID. DWSCB2.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* WINDOW SIZE CHOSEN TO BE 40 PAGES
1 NWINPG PIC 9(9) COMP VALUE 40.
1 NWINEL PIC 9(9) COMP.
1 NWLAST PIC 9(9) COMP.
1 NOBJPG PIC 9(9) COMP.

* WINDOWS WILL BEGIN ORIGIN-ING AT OFFSET 0 IN DATA OBJECT
1 WINOFF PIC 9(9) COMP VALUE 0.
1 RETRN1 PIC 9(9) COMP.
1 REASON PIC 9(9) COMP.
1 NEWOFF PIC 9(9) COMP.
1 OBSIZ PIC 9(9) COMP.
1 TOKEN PIC X(8).

COBOL Example

Chapter 4. Window Services Coding Examples 4-9

1 K PIC 9(9) COMP.
LINKAGE SECTION.
1 WINDOW.

2 FILLER PIC X(4096) OCCURS 40 TIMES.
1 WINDOW-ARRAY REDEFINES WINDOW.

2 A PIC S9(8) COMP OCCURS 40960 TIMES.
PROCEDURE DIVISION USING WINDOW.

DISPLAY "Begin Data Windowing Services Interface Validation"
* WINDOW COMPOSED OF 4-BYTE ELEMENTS

COMPUTE NWINEL = 1024 * NWINPG.
* WINDOW MAY NOT BEGIN AT ARRAY ELEMENT 1, SO LEAVE ROOM

COMPUTE NWLAST = 1024 * NWINPG + 1023
* IN THE FOLLOWING, ARBITRARILY SET OBJECT SIZE = 3 WINDOWS WORTH

COMPUTE NOBJPG = 3 * NWINPG
* SET UP ACCESS TO A HIPERSPACE OBJECT

CALL "CSRIDAC" USING
BY CONTENT
"BEGIN",
"TEMPSPACE",
"MY FIRST HIPERSPACE",
"YES",
"NEW",
"UPDATE",

BY REFERENCE
NOBJPG,
TOKEN,
OBSIZ,
RETRN1,
REASON

* PUT SOME DATA INTO THE WINDOW AREA
MOVE ALL "DATA" TO WINDOW

* NOW VIEW SOMETHING IN THE WINDOW
CALL "CSRVIEW" USING
BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"REPLACE",

BY REFERENCE
RETRN1,
REASON

* CALCULATE SOMETHING IN THE WINDOW AREA
PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL

MOVE K TO A(K)
END-PERFORM

* CAPTURE THE VIEW IN THE WINDOW
CALL "CSRSCOT" USING

TOKEN,
WINOFF,
NWINPG,
RETRN1,
REASON

* END THE VIEW IN THE WINDOW
CALL "CSRVIEW" USING
BY CONTENT
"END ",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT

COBOL Example

4-10 z/OS V1R4.0 MVS Callable Services for HLL

"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* NOW VIEW SOMETHING ELSE (2ND WINDOW"S WORTH OF DATA) IN WINDOW
ADD NWINPG TO WINOFF
CALL "CSRVIEW" USING
BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN",

BY REFERENCE
RETRN1,
REASON

* CALCULATE SOMETHING NEW IN THE WINDOW AREA
PERFORM VARYING K FROM 1 BY 1 UNTIL K = NWINEL

COMPUTE A(K) = - K
END-PERFORM

* SAVE THE DATA IN THE WINDOW
CALL "CSRSCOT" USING

TOKEN,
WINOFF,
NWINPG,
RETRN1,
REASON

* NOW END THE CURRENT VIEW IN WINDOW
CALL "CSRVIEW" USING
BY CONTENT
"END ",

BY REFERENCE
TOKEN,
WINOFF
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* NOW GO BACK TO THE FIRST VIEW IN THE WINDOW
MOVE 0 TO WINOFF
CALL "CSRVIEW" USING
BY CONTENT
"BEGIN",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"REPLACE",

BY REFERENCE
RETRN1,
REASON

* REFRESH THE DATA IN THE WINDOW FOR THIS VIEW
CALL "CSRREFR" USING

TOKEN,
WINOFF,

COBOL Example

Chapter 4. Window Services Coding Examples 4-11

NWINPG,
RETRN1,
REASON

* NOW END THE VIEW IN THE WINDOW
CALL "CSRVIEW" USING
BY CONTENT
"END ",

BY REFERENCE
TOKEN,
WINOFF,
NWINPG,
WINDOW,

BY CONTENT
"RANDOM",
"RETAIN ",

BY REFERENCE
RETRN1,
REASON

* TERMINATE ACCESS TO THE HIPERSPACE OBJECT
CALL "CSRIDAC" USING
BY CONTENT
"END ",
"TEMPSPACE",
"MY FIRST HIPERSPACE ENDS HERE ",
"YES",
"NEW",
"UPDATE",

BY REFERENCE
NOBJPG,
TOKEN,
OBSIZ,
RETRN1,
REASON

DISPLAY "-*** Run ended with Object Size in pages = " NEWOFF
GOBACK

**
* *
* JCL FOR COBOL EXAMPLE *
* *
**
//JOB1XXX JOB ’A9907P,B9222095’, 00010000
// ’A.A.USER’,RD=R, 00020000
// MSGCLASS=H,NOTIFY=AAUSER, 00030000
// MSGLEVEL=(1,1),CLASS=7 00040000
//LKED EXEC PGM=IEWL,PARM=’SIZE=(1024K,512K),LIST,XREF,LET,MAP’, 00080000
// REGION=1024K 00090000
//SYSLIN DD DDNAME=SYSIN 00110000
//SYSLMOD DD DSNAME=AAUSER.USER.LOAD(CRTCON01),DISP=SHR 00120000
//SYSLIB DD DSNAME=CEE.SCEELED,DISP=SHR 00140000
//* 00150100
//* FF310.OBJ HOLDS OBJECT CODE FROM THE COMPILE 00150200
//* 00150300
//MYLIB DD DSN=AAUSER.FF310.OBJ,DISP=SHR 00151000
//* 00151100
//* THE CSR STUBS ARE IN SYS1.CSSLIB 00151200
//* 00151300
//INLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00152000
//SYSPRINT DD SYSOUT=* 00170000
//SYSIN DD * 00230000
INCLUDE MYLIB(DWSCBSAM,DWSCB4K,DWSCB2) 00231000
LIBRARY INLIB(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00240000
NAME CRTCON01(R) 00250000

COBOL Example

4-12 z/OS V1R4.0 MVS Callable Services for HLL

FORTRAN Example
**
* *
* *
* FORTRAN EXAMPLE. THE FORTRAN EXAMPLE IS FOLLOWED BY AN *
* ASSEMBLER PROGRAM CALLED ADDR. YOU MUST LINKEDIT THIS *
* ASSEMBLER PROGRAM WITH THE FORTRAN PROGRAM OBJECT *
* CODE AND THE CSR STUBS. THE ASSEMBLER PROGRAM ENSURES *
* THAT YOUR WINDOW IS ALIGNED ON A 4K BOUNDARY . *
* *
**
@PROCESS DC(WINCOM)

PROGRAM CRTFON01
C
C Test Program for Data Window Services
C
C Window size chosen to be 40 pages

PARAMETER (NWINPG = 40)
C Window composed of 4-byte elements

PARAMETER (NWINEL = 1024*NWINPG)
C Window may not begin at array element 1, so leave room

PARAMETER (NWLAST = 1024*NWINPG+1023)
C In the following, arbitrarily set object size = 3 windows worth

PARAMETER (NOBJPG = 3*NWINPG)
C Windows will begin origin-ing at offset 0 in data object

INTEGER WINOFF
PARAMETER (WINOFF = 0)

C
INTEGER RETRN1, REASON, HIOFF, NEWOFF, OBSIZ, OFF
INTEGER ADDR, PAGE, A
INTEGER JUNK /-1599029040/
REAL*8 TOKEN
COMMON /WINCOM/ A(NWLAST)

C
C

WRITE (6, 91)
91 FORMAT(’1*** Begin Data Windowing Services Interface Validation’)

C
C Set up access to a Hiperspace object

CALL CSRIDAC(’BEGIN’,
* ’TEMPSPACE’,
* ’MY FIRST HIPERSPACE’,
* ’YES’,
* ’NEW’,
* ’UPDATE’,
* NOBJPG,
* TOKEN,
* OBSIZ,
* RETRN1,
* REASON)

C
C Determine first page-boundary element in Window Array "A"

PAGE = ADDR(A(1))
PAGE = MOD(PAGE, 4096)
IF (PAGE .NE. 0) PAGE = (4096 - PAGE) / 4
PAGE = PAGE + 1

C
C Put data into the window

DO 100 K = 1, NWINEL
A(K+PAGE-1) = JUNK

100 CONTINUE
C
C Now view data in the window

CALL CSRVIEW(’BEGIN’,
* TOKEN,
* WINOFF,

FORTRAN Example

Chapter 4. Window Services Coding Examples 4-13

* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Calculate a value in the window area

DO 101 K = 1, NWINEL
A(K+PAGE-1) = K

101 CONTINUE
C
C Capture the view in the window

CALL CSRSCOT(TOKEN,
* WINOFF,
* NWINPG,
* RETRN1,
* REASON)

C
C End the view in the window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Now view other data (2nd window’s worth of data) in window

CALL CSRVIEW(’BEGIN’,
* TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Calculate a new value in the window

DO 102 K = 1, NWINEL
A(K+PAGE-1) = -K

102 CONTINUE
C
C Capture the view in the window

CALL CSRSCOT(TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* RETRN1,
* REASON)

C
C Now end the current view in window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF + NWINPG,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Now go back to the first view in the window

CALL CSRVIEW(’BEGIN’,
* TOKEN,

FORTRAN Example

4-14 z/OS V1R4.0 MVS Callable Services for HLL

* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’REPLACE’,
* RETRN1,
* REASON)

C
C Refresh the data in the window for this view

CALL CSRREFR(TOKEN,
* WINOFF,
* NWINPG,
* RETRN1,
* REASON)

C
C Now end the view in the window

CALL CSRVIEW(’END ’,
* TOKEN,
* WINOFF,
* NWINPG,
* A(PAGE),
* ’RANDOM’,
* ’RETAIN ’,
* RETRN1,
* REASON)

C
C Terminate access to the Hiperspace object

CALL CSRIDAC(’END ’,
* ’TEMPSPACE’,
* ’MY FIRST HIPERSPACE ENDS HERE ’,
* ’YES’,
* ’NEW’,
* ’UPDATE’,
* NOBJPG,
* TOKEN,
* OBSIZ,
* RETRN1,
* REASON)

C
STOP
END

**
* *
* *
* THIS ASSEMBLER PROGRAM ENSURES THAT YOUR WINDOW IS ALIGNED *
* ON A 4K BOUNDARY. ASSEMBLE THIS PROGRAM AND LINKEDIT THE *
* OBJECT CODE WITH THE FORTRAN CODE AND THE CSR STUBS. *
* *
**
ADDR TITLE ’LOC/ADDR Function for Fortran’
*
* Calling Sequence:
*
* INTEGER ADDR
* - - -
* L = LOC(x)
* L = ADDR(x)
*
* Returns address of "x" in R0, with high-order bit set to zero
*
ADDR CSECT

ENTRY LOC
LOC EQU *

USING *,15
L 0,0(,1) Get pointer to x
N 0,MASK Set sign bit to 0
BR 14 Return

FORTRAN Example

Chapter 4. Window Services Coding Examples 4-15

MASK DC A(X’7FFFFFFF’) Mask with high-order bit 0
END

**
* *
* JCL TO COMPILE AND LINKEDIT THE ASSEMBLER PROGRAM, THE *
* FORTRAN PROGRAM, AND THE STUBS. *
* *
**
//FORTJOB JOB 00255013
//* 00003100
//* 00003100
//* Compile and linkedit for FORTRAN 00003100
//* 00003100
//* 00003100
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00001000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM=’SYSOUT=A’, 00002000
// PGMNAME=MAIN,PGMLIB=’&&GOSET’,FVLNSPC=’3200,(25,6)’ 00003000
//* 00003100
//* PARAMETER DEFAULT-VALUE USAGE 00003900
//* 00004000
//* FVPGM FORTVS2 COMPILER NAME 00005000
//* FVREGN 2100K FORT-STEP REGION 00006000
//* FVPDECK NODECK COMPILER DECK OPTION 00007000
//* FVPOLST NOLIST COMPILER LIST OPTION 00008000
//* FVPOPT 0 COMPILER OPTIMIZATION 00009000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00010000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00011000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00012000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00013000
//* 00014000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00015000
// PARM=’&FVPDECK,&FVPOLST,OPT(&FVPOPT)’ 00016000
//STEPLIB DD DSN=HLLDS.FORT230.VSF2COMP,DISP=SHR 00017000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00018000
//SYSTERM DD &FVTERM 00019000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00020000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00021000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00022000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00023000
// PARM=’LET,LIST,XREF’ 00024000
//SYSPRINT DD SYSOUT=A 00025000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00027000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00028000
// SPACE=(TRK,(10,10,1),RLSE) 00029000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00030000
// DD DDNAME=SYSIN 00040000
// PEND
// EXEC VSF2CL,FVTERM=’SYSOUT=H’,
// PGMNAME=CRTFON01,PGMLIB=’WINDOW.USER.LOAD’ 00003000
//FORT.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTFON01),DISP=SHR
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00026000
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380,
// VOL=SER=VM2TSO
//LKED.SYSIN DD *
LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC,ADDR)
NAME CRTFON01(R)

/*
//* The CSR stubs are available in SYS1.CSSLIB.
//* The object code for the ADDR routine is in
//* TEST.OBJ
//*
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
// DD DSN=WINDOW.TEST.OBJ,DISP=SHR
//*
//*
**

FORTRAN Example

4-16 z/OS V1R4.0 MVS Callable Services for HLL

* *
* JCL TO EXECUTE THE FORTRAN PROGRAM. *
* *
**
//FON01 JOB MSGLEVEL=(1,1)
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00001000
// GOF5DD=’DDNAME=SYSIN’, 00002000
// GOF6DD=’SYSOUT=A’, 00003000
// GOF7DD=’SYSOUT=B’ 00004000
//* 00005000
//* PARAMETER DEFAULT-VALUE USAGE 00007000
//* 00008000
//* GOPGM MAIN PROGRAM NAME 00009000
//* GOREGN 100K GO-STEP REGION 00010000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00011000
//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00012000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00013000
//* 00014000
//* 00015000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00016000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
//FT05F001 DD &GOF5DD 00018000
//FT06F001 DD &GOF6DD 00019000
//FT07F001 DD &GOF7DD 00020000
// PEND
//GO EXEC VSF2G,GOPGM=CRTFON01,GOREGN=999K
//GO.STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00017000
// DD DSN=WINDOW.USER.LOAD,DISP=SHR,VOL=SER=VM2TSO,UNIT=3380

Pascal Example
**
* *
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
* *
* *
**
program CRTPAN06;
const
K = 1024; (* One kilo-byte *)
PAGESIZE = 4 * K; (* 4K page boundary *)
OFFSET = 0; (* Windows starts *)
WINDOW_SIZE = 40; (* Window size in pages *)
NUM_WIN_ELEM = WINDOW_SIZE*K; (* Num of 4-byte elements *)
OBJECT_SIZE = 3*WINDOW_SIZE; (* Chosen object size in pages*)
SPACE_SIZE = (WINDOW_SIZE+1)*4*K; (* Space allocated for window *)

type
S = space[SPACE_SIZE] of INTEGER; (* Define byte aligned space *)
STR3 = packed array (. 1..3 .) of CHAR;
STR5 = packed array (. 1..5 .) of CHAR;
STR6 = packed array (. 1..6 .) of CHAR;
STR7 = packed array (. 1..7 .) of CHAR;
STR9 = packed array (. 1..9 .) of CHAR;
STR44 = packed array (. 1..44 .) of CHAR;

var
SP : @S; (* Declare pointer to space *)
ORIG, (* Start address of window *)
AD, I, (* Temporary variables *)
VOFFSET, (* Offset passed as parameter *)
VOFSET2, (* Offset passed as parameter *)
VOBJSIZ, (* Object size, as parameter *)
VWINSIZ, (* Window Size, as parameter *)
HIGH_OFFSET, (* Size of object in pages *)
NEW_HI_OFFSET, (* New max size of the object *)

FORTRAN Example

Chapter 4. Window Services Coding Examples 4-17

RETURN_CODE, (* Return code *)
REASON_CODE : INTEGER; (* Reason code *)
OBJECT_ID : REAL; (* Identifying token *)
CSCROLL : STR3; (* Scroll area YES/NO *)
COBSTATE : STR3; (* Object state NEW/OLD *)
COPTYPE : STR5; (* Operation type BEGIN/END *)
CACCESS : STR6; (* Access RANDOM/SEQ *)
CUSAGE : STR6; (* Usage READ/UPDATE *)
CDISP : STR7; (* Disposition RETAIN/REPLACE *)
CSPTYPE : STR9; (* Object type DSNAME/DDNAME/TEMPSPACE *)
COBNAME : STR44; (* Object name *)

procedure CSRIDAC (var OP_TYPE : STR5;
var OBJECT_TYPE : STR9;
var OBJECT_NAME : STR44;
var SCROLL_AREA : STR3;
var OBJECT_STATE : STR3;
var ACCESS_MODE : STR6;
var VOBJSIZ : INTEGER;
var OBJECT_ID : REAL;
var HIGH_OFFSET : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRVIEW (var OP_TYPE : STR5;
var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var WINDOW_SIZE : INTEGER;
var WINDOW_NAME : INTEGER;
var USAGE : STR6;
var DISPOSITION : STR7;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRSCOT (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRSAVE (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var NEW_HI_OFFSET : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

procedure CSRREFR (var OBJECT_ID : REAL;
var OFFSET : INTEGER;
var SPAN : INTEGER;
var RETURN_CODE : INTEGER;
var REASON_CODE : INTEGER); FORTRAN;

begin
TERMOUT(OUTPUT); (* Output to terminal *)
WRITELN (’<< Begin Data Windowing Services Interface Validation >>’);
WRITELN;
VOBJSIZ := OBJECT_SIZE; (* Set object size variable *)
VOFFSET := OFFSET; (* Set offset variable to 0 *)
VWINSIZ := WINDOW_SIZE; (* Set window size variable *)
VOFSET2 := OFFSET+WINDOW_SIZE; (* Set offset variable to 0 *)
COPTYPE := ’BEGIN’ ;
CSPTYPE := ’DDNAME ’ ;
COBNAME := ’CSRDD1 ’ ;
CSCROLL := ’YES’ ;
COBSTATE := ’NEW’ ;
CACCESS := ’UPDATE’ ;
CSRIDAC (COPTYPE, (* Set up access to a *)

CSPTYPE, (* hiperspace object *)
COBNAME,
CSCROLL,
COBSTATE,
CACCESS,

Pascal Example

4-18 z/OS V1R4.0 MVS Callable Services for HLL

VOBJSIZ,
OBJECT_ID,
HIGH_OFFSET,
RETURN_CODE,
REASON_CODE);

NEW(SP); (* Allocate space *)
AD := ADDR(SP@); (* or ORD(SP) *) (* Get address of space *)
ORIG := AD mod PAGESIZE; (* See where space is in page *)
if ORIG <> 0 then (* If not on page boundary *)
ORIG := PAGESIZE-ORIG; (* then locate page boundary *)

for I := 0 to NUM_WIN_ELEM-1 do (* Put data into window *)
SP@[4*I+ORIG] := 999999; (* area *)

COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now view data in 1st *)

OBJECT_ID, (* window *)
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a value in 1st *)
SP@[4*I+ORIG] := I+1; (* window *)

CSRSCOT(OBJECT_ID, (* Capture the view in 1st *)
VOFFSET, (* window *)
VWINSIZ,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the view in 1st window *)

OBJECT_ID,
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now view other data in the *)

OBJECT_ID, (* 2nd window *)
VOFSET2,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

for I := 0 to NUM_WIN_ELEM-1 do (* Calculate a new value in *)
SP@[4*I+ORIG] := I-101; (* the window *)

CSRSAVE (OBJECT_ID,
VOFSET2,
VWINSIZ,
NEW_HI_OFFSET,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the current view in *)

Pascal Example

Chapter 4. Window Services Coding Examples 4-19

OBJECT_ID, (* window *)
VOFSET2,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’BEGIN’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’REPLACE’ ;
CSRVIEW (COPTYPE, (* Now go back to the view in *)

OBJECT_ID, (* the 1st window *)
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

CSRREFR (OBJECT_ID, (* Refresh the data in 1st *)
VOFFSET, (* window *)
VWINSIZ,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CUSAGE := ’RANDOM’ ;
CDISP := ’RETAIN’ ;
CSRVIEW (COPTYPE, (* End the view in 1st window *)

OBJECT_ID,
VOFFSET,
VWINSIZ,
SP@[ORIG],
CUSAGE,
CDISP,
RETURN_CODE,
REASON_CODE);

COPTYPE := ’END’ ;
CSPTYPE := ’DDNAME ’ ;
COBNAME := ’CSRDD1 ’ ;
CSCROLL := ’YES’ ;
COBSTATE := ’NEW’ ;
CACCESS := ’UPDATE’ ;
CSRIDAC (COPTYPE, (* Terminate access to the *)

CSPTYPE, (* Hiperspace object *)
COBNAME,
CSCROLL,
COBSTATE,
CACCESS,
VWINSIZ,
OBJECT_ID,
HIGH_OFFSET,
RETURN_CODE,
REASON_CODE);

end.
**
* *
* JCL to compile and linkedit *
* *
**
//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000

Pascal Example

4-20 z/OS V1R4.0 MVS Callable Services for HLL

// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000
LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
NAME CRTPAN06(R) 00600006

/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000
**
* *
* JCL to execute. A DD statement, CSRDD1, is needed to define *
* the permanent object which already exists. *
* *
* *
**
//PASC2JOB JOB MSGLEVEL=(1,1) 00010000
//GO EXEC PGM=CRTPAN06 00020002
//STEPLIB DD DSN=WINDOW.PASCAL22.LINKLIB, 00030000
// DISP=SHR,UNIT=3380, 00040000
// VOL=SER=VM2TSO 00050000
// DD DSN=WINDOW.USER.LOAD, 00060000
// DISP=SHR,UNIT=3380, 00070000
// VOL=SER=VM2TSO 00080000
//CSRDD1 DD DSN=DIV.TESTDS01,DISP=SHR
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00090000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00100000

PL/I Example

* *
* PL/I EXAMPLE *
* OBJECT IS TEMPORARY *
* *
* *
* *

CRTPLN3: PROCEDURE OPTIONS (MAIN); CSR00010

CSR00020
DCL CSR00030
(CSR00040
K INIT(1024), /* ONE KILO-BYTE */ CSR00050
PAGESIZE INIT(4096), /* 4K PAGE BOUNDARY */ CSR00060
OFFSET INIT(0), /* WINDOWS STARTS */ CSR00070
WINDOW_SIZE INIT(20), /* WINDOW SIZE IN PAGES */ CSR00080
NUM_WIN_ELEM INIT (20480), /* NUM OF 4-BYTE ELEMENTS */ CSR00090
OBJECT_SIZE INIT (60)) /* CHOSEN OBJECT SIZE IN PGS */ CSR00100
FIXED BIN(31); CSR00110

CSR00120
DCL CSR00130
/* 32767 IS UPPER LIMIT FOR ARRAY BOUND. */ CSR00140
S(32767) BIN(31) FIXED BASED(SP); /* DEFINE WORD ALIGNED SPACE */ CSR00150

CSR00160
DCL SP PTR; CSR00170

CSR00180
DCL CSR00190
(CSR00200
ORIG, /* START ADDRESS OF WINDOW */ CSR00210
AD, I, /* TEMPORARY VARIABLES */ CSR00220
HIGH_OFFSET, /* SIZE OF OBJECT IN PAGES */ CSR00230
NEW_HI_OFFSET, /* NEW MAX SIZE OF THE OBJECT */ CSR00240
RETURN_CODE, /* RETURN CODE */ CSR00250
REASON_CODE) FIXED BIN(31); /* REASON CODE */ CSR00260

CSR00270
DCL CSR00280
OBJECT_ID CHAR(8); /* IDENTIFYING TOKEN */ CSR00290

CSR00300

Pascal Example

Chapter 4. Window Services Coding Examples 4-21

/**/ CSR00310
CSR00320

DCL CSRIDAC ENTRY(CHAR(5), /* OP_TYPE */ CSR00330
CHAR(9), /* OBJECT_TYPE */ CSR00340
CHAR(44), /* OBJECT_NAME */ CSR00350
CHAR(3), /* SCROLL_AREA */ CSR00360
CHAR(3), /* OBJECT_STATE */ CSR00370
CHAR(6), /* ACCESS_MODE */ CSR00380
FIXED BIN(31), /* OBJECT_SIZE */ CSR00390
CHAR(8), /* OBJECT_ID */ CSR00400
FIXED BIN(31), /* HIGH_OFFSET */ CSR00410
FIXED BIN(31), /* RETURN_CODE */ CSR00420
FIXED BIN(31)) /* REASON_CODE */ CSR00430
OPTIONS(ASSEMBLER); CSR00440

CSR00450
CSR00460

DCL CSRVIEW ENTRY(CHAR(5), /* OP_TYPE */ CSR00470
CHAR(8), /* OBJECT_ID */ CSR00480
FIXED BIN(31), /* OFFSET */ CSR00490
FIXED BIN(31), /* WINDOW_SIZE */ CSR00500
FIXED BIN(31), /* WINDOW_NAME */ CSR00510
CHAR(6), /* USAGE */ CSR00520
CHAR(7), /* DISPOSITION */ CSR00530
FIXED BIN(31), /* RETURN_CODE */ CSR00540
FIXED BIN(31)) /* REASON_CODE */ CSR00550
OPTIONS(ASSEMBLER); CSR00560

CSR00570
CSR00580

DCL CSRSCOT ENTRY(CHAR(8), /* OBJECT_ID */ CSR00590
FIXED BIN(31), /* OFFSET */ CSR00600
FIXED BIN(31), /* SPAN */ CSR00610
FIXED BIN(31), /* RETURN_CODE */ CSR00620
FIXED BIN(31)) /* REASON_CODE */ CSR00630
OPTIONS(ASSEMBLER); CSR00640

CSR00650
CSR00660

DCL CSRSAVE ENTRY(CHAR(8), /* OBJECT_ID */ CSR00670
FIXED BIN(31), /* OFFSET */ CSR00680
FIXED BIN(31), /* SPAN */ CSR00690
FIXED BIN(31), /* NEW_HI_OFFSET */ CSR00700
FIXED BIN(31), /* RETURN_CODE */ CSR00710
FIXED BIN(31)) /* REASON_CODE */ CSR00720
OPTIONS(ASSEMBLER); CSR00730

CSR00740
CSR00750

DCL CSRREFR ENTRY(CHAR(8), /* OBJECT_ID */ CSR00760
FIXED BIN(31), /* OFFSET */ CSR00770
FIXED BIN(31), /* SPAN */ CSR00780
FIXED BIN(31), /* RETURN_CODE */ CSR00790
FIXED BIN(31)) /* REASON_CODE */ CSR00800
OPTIONS(ASSEMBLER); CSR00810

CSR00820
/**/ CSR00830

CSR00840
CSR00850

PUT SKIP LIST CSR00860
(’<< BEGIN DATA WINDOWING SERVICES INTERFACE VALIDATION >>’); CSR00870

PUT SKIP LIST (’ ’); CSR00880
CSR00890

CALL CSR00900
CSRIDAC (’BEGIN’, /* SET UP ACCESS TO A HIPER- */ CSR00910

’TEMPSPACE’, /* SPACE OBJECT */ CSR00920
’MY FIRST HIPERSPACE’, CSR00930
’YES’, CSR00940
’NEW’, CSR00950
’UPDATE’, CSR00960
OBJECT_SIZE, CSR00970

PL/I Example

4-22 z/OS V1R4.0 MVS Callable Services for HLL

OBJECT_ID, CSR00980
HIGH_OFFSET, CSR00990
RETURN_CODE, CSR01000
REASON_CODE); CSR01010

CSR01020
ALLOC S; /* ALLOCATE SPACE */ CSR01030
AD = UNSPEC(SP); /* GET ADDRESS OF SPACE */ CSR01040
ORIG = MOD(AD,PAGESIZE); /* SEE WHERE SPACE IS IN PAGE */ CSR01050
IF ORIG ¬= 0 THEN /* IF NOT ON PAGE BOUNDARY */ CSR01060
ORIG = (PAGESIZE-ORIG) / 4; /* THEN LOCATE PAGE BOUNDARY */ CSR01070

ORIG = ORIG + 1; CSR01080
CSR01090

DO I = 1 TO NUM_WIN_ELEM; /* PUT SOME DATA INTO WINDOW */ CSR01100
S(I+ORIG-1) = 99; /* AREA */ CSR01110

END; CSR01120
CSR01130

CALL CSR01140
CSRVIEW (’BEGIN’, /* NOW VIEW DATA IN FIRST */ CSR01150

OBJECT_ID, /* WINDOW */ CSR01160
OFFSET, CSR01170
WINDOW_SIZE, CSR01180
S(ORIG), CSR01190
’RANDOM’, CSR01200
’REPLACE’, CSR01210
RETURN_CODE, CSR01220
REASON_CODE); CSR01230

CSR01240
DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE VALUE IN 1ST */ CSR01250

S(I+ORIG-1) = I+1; /* WINDOW */ CSR01260
END; CSR01270

CSR01280
CALL CSR01290
CSRSCOT(OBJECT_ID, /* CAPTURE THE VIEW IN 1ST */ CSR01300

OFFSET, /* WINDOW */ CSR01310
WINDOW_SIZE, CSR01320
RETURN_CODE, CSR01330
REASON_CODE); CSR01340

CSR01350
CALL CSR01360
CSRVIEW (’END ’, /* END THE VIEW IN 1ST WINDOW */ CSR01370

OBJECT_ID, CSR01380
OFFSET, CSR01390
WINDOW_SIZE, CSR01400
S(ORIG), CSR01410
’RANDOM’, CSR01420
’RETAIN ’, CSR01430
RETURN_CODE, CSR01440
REASON_CODE); CSR01450

CSR01460
CALL CSR01470
CSRVIEW (’BEGIN’, /* NOW VIEW OTHER DATA IN */ CSR01480

OBJECT_ID, /* 2ND WINDOW */ CSR01490
OFFSET+WINDOW_SIZE, CSR01500
WINDOW_SIZE, CSR01510
S(ORIG), CSR01520
’RANDOM’, CSR01530
’REPLACE’, CSR01540
RETURN_CODE, CSR01550
REASON_CODE); CSR01560

CSR01570
DO I = 1 TO NUM_WIN_ELEM; /* CALCULATE NEW VALUE IN */ CSR01580

S(I+ORIG-1) = I-101; /* WINDOW */ CSR01590
END; CSR01600

CSR01610
CALL CSR01620
CSRSCOT (OBJECT_ID, CSR01630

OFFSET+WINDOW_SIZE, CSR01640

PL/I Example

Chapter 4. Window Services Coding Examples 4-23

WINDOW_SIZE, CSR01650
RETURN_CODE, CSR01670
REASON_CODE); CSR01680

CSR01690
CALL CSR01700
CSRVIEW (’END ’, /* END THE CURRENT VIEW IN */ CSR01710

OBJECT_ID, /* WINDOW */ CSR01720
OFFSET+WINDOW_SIZE, CSR01730
WINDOW_SIZE, CSR01740
S(ORIG), CSR01750
’RANDOM’, CSR01760
’RETAIN ’, CSR01770
RETURN_CODE, CSR01780
REASON_CODE); CSR01790

CSR01800
CALL CSR01810
CSRVIEW (’BEGIN’, /* NOW GO BACK TO THE VIEW IN */ CSR01820

OBJECT_ID, /* THE 1ST WINDOW */ CSR01830
OFFSET, CSR01840
WINDOW_SIZE, CSR01850
S(ORIG), CSR01860
’RANDOM’, CSR01870
’REPLACE’, CSR01880
RETURN_CODE, CSR01890
REASON_CODE); CSR01900

CSR01910
CALL CSR01920
CSRREFR (OBJECT_ID, /* REFRESH THE DATA IN 1ST */ CSR01930

OFFSET, /* WINDOW */ CSR01940
WINDOW_SIZE, CSR01950
RETURN_CODE, CSR01960
REASON_CODE); CSR01970

CSR01980
CALL CSR01990
CSRVIEW (’END ’, /* END THE VIEW IN 1ST WINDOW */ CSR02000

OBJECT_ID, CSR02010
OFFSET, CSR02020
WINDOW_SIZE, CSR02030
S(ORIG), CSR02040
’RANDOM’, CSR02050
’RETAIN ’, CSR02060
RETURN_CODE, CSR02070
REASON_CODE); CSR02080

CSR02090
CALL CSR02100
CSRIDAC (’END ’, /* TERMINATE ACCESS TO THE */ CSR02110

’TEMPSPACE’, /* HIPERSPACE OBJECT */ CSR02120
’MY FIRST HIPERSPACE ENDS HERE ’, CSR02130
’YES’, CSR02140
’NEW’, CSR02150
’UPDATE’, CSR02160
WINDOW_SIZE, CSR02170
OBJECT_ID, CSR02180
HIGH_OFFSET, CSR02190
RETURN_CODE, CSR02200
REASON_CODE); CSR02210

CSR02220
FREE S; CSR02230

END CRTPLN3; CSR02260

* *
* *
* JCL TO COMPILE AND LINKEDIT PL/I PROGRAM. *
* *
* *
* *

PL/I Example

4-24 z/OS V1R4.0 MVS Callable Services for HLL

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL 00050000
//PLI.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPLN3),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,UNIT=3380,VOL=SER=VM2TSO, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000
LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00100001
NAME CRTPLN3(R) 00110008

/* 00120000
//* 00121001
//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1) 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=WINDOW.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
//SYSLIB DD DSN=CEE.SCEERUN,DISP=SHR 00050000
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I Example

Chapter 4. Window Services Coding Examples 4-25

PL/I Example

4-26 z/OS V1R4.0 MVS Callable Services for HLL

Part 2. Reference Pattern Services

Chapter 5. Introduction to Reference Pattern Services 5-1
How Does the System Manage Data? 5-1
An Example of How the System Manages Data in an Array 5-2

What Pages Does the System Bring in When a Gap Exists? 5-4
Example 1 . 5-4
Example 2 . 5-4
Example 3 . 5-5

Chapter 6. Using Reference Pattern Services 6-1
Defining the Reference Pattern for a Data Area. 6-1

Defining the Range of the Area 6-1
Identifying the Direction of the Reference 6-2
Defining the Reference Pattern. 6-2

Using CSRIRP When a Gap Exists 6-3
Choosing the Number of Bytes on a Page Fault 6-4

Examples of Using CSRIRP to Define a Reference Pattern 6-5
Removing the Definition of the Reference Pattern 6-6
Handling Return Codes . 6-7

Chapter 7. Reference Pattern Services 7-1
CSRIRP — Define a Reference Pattern 7-1

Return Codes and Reason Codes 7-3
CSRRRP — Remove a Reference Pattern 7-3

Return Codes and Reason Codes 7-4

Chapter 8. Reference Pattern Services Coding Examples 8-1
C/370 Example . 8-1
COBOL Example . 8-4
FORTRAN Example. 8-8
Pascal Example . 8-11
PL/I Example . 8-13

© Copyright IBM Corp. 1994, 2002

z/OS V1R4.0 MVS Callable Services for HLL

Chapter 5. Introduction to Reference Pattern Services

Reference pattern services allow HLL programs to define a reference pattern for a
specified area of virtual storage that the program is about to reference. Additionally,
the program specifies how much data it wants the operating system to bring into
central storage at one time. Data and instructions in virtual storage must reside in
central storage before they can be processed. The system honors the request
according to the availability of central storage. By bringing in more data at one time,
the system might improve the performance of your program.

The term reference pattern refers to the order in which a program’s instructions
process a range of data, such as an array or part of an array.

Programs that benefit most from reference pattern services are those that reference
amounts of data that are greater than one megabyte. The program should reference
the data in a sequential manner and in a consistent direction, either forward or
backward. In forward direction, the program references data elements in order of
ascending addresses. In backward direction, the program references data elements
in order of decreasing addresses. In addition, if the program “skips over” certain
areas, and these areas are of uniform size and are repeated at regular intervals
throughout the area, reference pattern services might provide additional
performance improvement.

Two reference pattern services are available through program CALLs:

v CSRIRP identifies the range of data and the reference pattern, and defines the
number of bytes that the system is requested to bring into central storage at one
time. These activities are called “defining the reference pattern”.

v CSRRRP removes the definition; it tells the system that the program has stopped
using the reference pattern with the range of data.

A program might have a number of different ways of referencing a particular area.
In this case, the program can issue multiple pairs of CSRIRP and CSRRRP
services for the area. Only one pattern can be in effect at a time.

Although reference pattern services can be used for data structures other than
arrays, for simplicity, examples in this chapter and in the next use the services with
arrays.

How Does the System Manage Data?
Before you can evaluate the performance advantage that reference pattern services
offer, you must understand some facts about how the operating system handles the
data your program references. The system divides the data into 4096-byte chunks;
each chunk is called a “page”. For the processor to execute an instruction, the page
that contains the data that the instruction requires must reside in central storage.
Central storage contains pages of data for many programs — your program, plus
other programs that the system is working on. The system brings a page of your
data into central storage when your program needs data on that page. If the
program uses the data in a sequential manner, once the program finishes using the
data on that page, it will not immediately use the page again. After your program
finishes using that page, the system might remove the page from central storage to
make room for another page of your data or maybe a page of some other

© Copyright IBM Corp. 1994, 2002 5-1

program’s data. The system allows pages to stay in central storage if they are
referenced frequently enough and if the system does not need those pages for
other programs.

The process that the system goes through when it pauses to bring a page into
central storage is called a “page fault”. This interruption causes the system to stop
working on your program (or “suspend” your program) while more of your program’s
data comes into central storage. Then, when the page is in central storage and the
system is available to your program again, the system resumes running your
program at the instruction where it left off.

Reference pattern services can change the way the system handles your program’s
data. With direction from reference pattern services, the system moves multiple
pages into central storage at a time. By bringing in many pages at a time, the
system takes fewer page faults. Fewer page faults mean possible performance
gains for your program.

An Example of How the System Manages Data in an Array
To evaluate the performance advantage reference pattern services offers, you need
to understand how the system handles a range of data. The best way to describe
this is through an example of a simple two-dimensional array. As array A(i,j) of 3
rows and 4 columns illustrates, the system stores arrays in FORTRAN programs in
column-major order and stores arrays in COBOL, Pascal, PL/1, and C programs in
row-major order.

A(1,1) A(1,2) A(1,3) A(1,4)
A(2,1) A(2,2) A(2,3) A(2,4)
A(3,1) A(3,2) A(3,3) A(3,4)

The system stores the elements of the arrays in the following order:
Sequence of FORTRAN COBOL, Pascal, PL/1, C

Element in Storage Array Element Array Element

1 A(1,1) A(1,1)
2 A(2,1) A(1,2)
3 A(3,1) A(1,3)
4 A(1,2) A(1,4)
5 A(2,2) A(2,1)
6 A(3,2) A(2,2)
7 A(1,3) A(2,3)
8 A(2,3) A(2,4)
9 A(3,3) A(3,1)
10 A(1,4) A(3,2)
11 A(2,4) A(3,3)
12 A(3,4) A(3,4)

Examples in this chapter and the next depict data as a horizontal string. The
elements in the arrays, therefore, would look like the following:

Location of elements

1 2 3 4 5 6 7 8 9 10 11 12

Consider a two-dimensional array, ARRAY1, that has 1024 columns and 1024 rows
and each element is eight bytes in size. The size of the array, therefore, is 1048576
elements or 8388608 bytes. For simplicity, assume the array is aligned on a page
boundary. Also, assume the data is not in central storage. The program references
each element in the array in a forward direction, starting with the first element.

5-2 z/OS V1R4.0 MVS Callable Services for HLL

First, consider how the system brings data into central storage without information
from reference pattern services. At the first reference of ARRAY1, the system takes
a page fault and brings into central storage the page (of 4096 bytes) that contains
the first element. After the program finishes processing the 512th (4096 divided by
8) element in the array, the system takes another page fault and brings in a second
page. The system takes a page fault every 512 elements, throughout the array.

The following linear representation shows the elements in the array and the page
faults the system takes as a program processes the array.

By bringing in one page at a time, the system takes 2048 page faults (8388608
divided by 4096), each page fault adding to the elapsed time of the program.

Suppose, through CSRIRP, the system knew in advance that a program would be
using the array in a consistently forward direction. The system could then assume
that the program’s use of the pages of the array would be sequential. To decrease
the number of page faults, each time the program requested data that was not in
central storage, the system could bring in more than one page at a time. Suppose
the system brought the next 20 consecutive pages (81920 bytes) of the array into
central storage on each page fault. In this case, the system takes not 2048 page
faults, but 103 (8388608 divided by 81920=102.4). Page faults occur in the array as
follows:

The system brings in successive pages only to the end of the array.

Consider another way of referencing ARRAY1. The program references the first
twenty elements, then skips over the next 1004 elements, and so forth through the
array. CSRIRP allows you to tell the system to bring in only the pages that contain
the data the program references. In this case, the reference pattern includes a
repeating gap of 8032 bytes (1004×8) every 8192 bytes (1024×8). The pattern
looks like this:

The grouping of consecutive bytes that the program references is called a
reference unit . The grouping of consecutive bytes that the program skips over is

0 512th 1024th . . .

. . .

1048576element element
. . .

1 page fault each 512 elements (1 page)

.

1 page fault each 10240 elements (20 pages)

skip skip

.

skip

309330732069204910451025
elements ...

211

skip

Chapter 5. Introduction to Reference Pattern Services 5-3

called a gap . Reference units and gaps alternate throughout the array at regular
intervals. The reference pattern is as follows:

v The reference unit is 20 elements in size — 160 consecutive bytes that the
program references.

v The gap is 1004 elements in size — 8032 consecutive bytes that the program
skips over.

Figure 5-1 shows this reference pattern and the pages that the system does not
bring into central storage.

What Pages Does the System Bring in When a Gap Exists?
When a gap exists, the number of pages the system brings in depends on the size
of the gap, the size of the reference unit, and where the page boundary lies in
relation to the gap and the reference unit. The following examples illustrate those
factors.

Example 1
Figure 5-1 illustrates ARRAY1, the 1024-by-1024 array of eight-byte elements,
where the program references 20 elements, then skips over the next 1004, and so
forth in a forward direction throughout the array. The reference pattern includes a
reference unit of 160 and a gap of 8032 bytes. The reference units begin on every
other page boundary.

Every other consecutive page of the data does not come into central storage; those
pages contain only the “skipped over” data.

Example 2
In example 2, the reference pattern includes a reference unit of 4800 bytes and a
gap of 3392 bytes. The example assumes that the area to be referenced starts on a
page boundary.

Because each page contains data that the program references, the system brings in
all pages.

1st 2nd 3rd 4th 5th 6th 7th
page

...
pagepage page page page page

not brought into central storage

reference units

page
2048th

Figure 5-1. Illustration of a Reference Pattern with a Gap

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

all pages brought into central storage

reference units

page
2048th

5-4 z/OS V1R4.0 MVS Callable Services for HLL

Example 3
In example 3, the area to be referenced does not begin on a page boundary. The
reference pattern includes a reference unit of 2000 bytes and a gap of 5000 bytes.
When you specify a reference pattern that includes a gap, the reference unit must
be at the start of the area, as the following illustration shows:

Because the gap is larger than 4096 bytes, some pages do not come into central
storage. Notice that the system does not bring in the fifth page.

Summary of how the size of the gap affects the number of pages the system
brings into central storage :

v If the gap is less than 4096 bytes, the system has to bring into central all pages
of the array.

v If the gap is greater than 4095 bytes and less than 8192, the system might not
have to bring in certain pages. Pages that contain only data in the gap do not
come in.

v If the gap is greater than 8191 bytes, the system definitely does not have to bring
in certain pages that contain the gap.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

most pages brought into central storage

Start of
reference
pattern

Chapter 5. Introduction to Reference Pattern Services 5-5

5-6 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 6. Using Reference Pattern Services

The two reference pattern services are CSRIRP and CSRRRP. First, you issue
CALL CSRIRP to define a reference pattern for an area; then, issue CALL CSRRRP
to remove the definition of reference pattern for the area. To avoid unnecessary
processing, issue the calls outside of the loops that control processing of the data
elements contained in the area.

Defining the Reference Pattern for a Data Area
On CSRIRP, you tell the system:

v The lowest address of the area to be referenced

v The size of the area

v The direction of reference

v The reference pattern, in terms of reference unit and gap (if one exists)

v The number of reference units the system is to bring into central storage on a
page fault

The system will not process CSRIRP unless the values you specify can result in a
performance gain for your program. To make sure the system processes CSRIRP,
ask the system to bring in more than three pages (that is, 12288 bytes) on each
page fault.

Your program can have only one pattern defined for that area at one time. If your
program will later reference the same area with another reference pattern, use
CSRRRP to remove the definition, and then use CSRIRP to define another pattern.

Although the system brings in pages 4096 bytes at a time, you do not have to
specify values on CSRIRP or CSRRRP in increments of 4096.

Defining the Range of the Area
On CSRIRP, you define the range of the area to be referenced:
v low_address identifies the lowest addressed byte in the range.
v size identifies the size, in bytes, of the range.

When reference is forward, low_address identifies the first element that the program
can reference in the range. When reference is backward, low_address identifies the
last element that the program can reference in the range: reference proceeds from
the high-address end in the range towards low_address.

The following parameters define the lowest address and the size of ARRAY1, a
1024-by-1024 array that consists of 8-byte elements. ARRAY1(1,1) identifies the
element in the first row and the first column.
CSRIRP with low_address of ARRAY1(1,1)

size of 1024*1024*8 bytes

When a gap exists, define the range according to the following rules:

v If direction is forward, low_address must be the first data element in a reference
unit.

v If direction is backward, the value you use for size must be such that the first
data element the program references is the high-address end of a reference unit.

© Copyright IBM Corp. 1994, 2002 6-1

These two rules are described and illustrated in “Using CSRIRP When a Gap
Exists” on page 6-3.

Identifying the Direction of the Reference
On direction, you specify the direction of reference through the array. Forward
reference means instructions start with the element indicated by low_address and
proceed through the range of data specified by size. Backward reference means the
program starts processing the high-address end of the range specified by size and
proceeds toward the low_address end.
v “+1” indicates forward direction.
v “−1” indicates backward direction.

An example of forward reference through ARRAY1 is specified as follows:
CSRIRP with direction of +1

“Using CSRIRP When a Gap Exists” on page 6-3 contains examples of forward and
backward references when a gap exists.

Defining the Reference Pattern
Figure 6-1 identifies two reference patterns that characterize most of the reference
patterns that reference pattern services applies to.

How you define the reference pattern depends on whether your program’s
reference pattern is like pattern #1 or pattern #2.

v With pattern #1 where no uniform gap exists , the program uses every
element, every other element, or at least most elements on each page of array
data. No definable gap exists. Do not use reference pattern services if the
reference pattern is irregular and includes skipping over many areas larger than
a page.

– The unitsize parameter identifies the reference pattern; it indicates the number
of bytes you want the system to use as a reference unit. Look at logical
groupings of bytes, such as one row, a number of rows, or one element, if the
elements are large in size. Or, you might choose to divide the area to be
referenced, and bring in that area on a certain number of page faults. Use the
value 0 on gapsize.

0

0

20

4096

xxxxx

xx

5020

8192

5040 10040

12288

10060 15060

16384

15080

20480

20080

...

...

Characteristics of pattern:
- Gaps of uniform size
- Reference units, uniform in size, that occur in a repeating pattern

Characteristics of pattern:
- No uniform gap
- Reference in regular intervals (such as every element) or in irregular intervals

Pattern #2: Uniform gap

Pattern #1: No uniform gap

Figure 6-1. Two Typical Reference Patterns

6-2 z/OS V1R4.0 MVS Callable Services for HLL

– The units parameter tells the system how many reference units to try to bring
in on a page fault. For a reference pattern that begins on a page boundary
and has no gaps, the total number of bytes the system tries to bring into
central storage at a time is the value on unitsize times the number on units,
rounded up to the nearest multiple of 4096. See “Choosing the Number of
Bytes on a Page Fault” on page 6-4 for more information on how to choose
the total number of bytes.

v With pattern #2 where a uniform gap exists , the pattern includes alternating
gaps and reference units. Specify the reference pattern carefully. If you identify a
reference pattern and do not adhere to it, the system will work harder than if you
had not used the service.

– The unitsize and gapsize parameters identify the reference pattern. Pattern #2
in Figure 6-1 on page 6-2 includes a reference unit of 20 bytes and a gap of
5000 bytes. Because the gap is greater than 4095, some pages of the array
might not be brought into central storage.

– The units parameter tells the system how many reference units to try to bring
into central storage at a time. “What Pages Does the System Bring in When a
Gap Exists?” on page 5-4 can help you understand how many bytes come
into central storage at one time when a gap exists.

Using CSRIRP When a Gap Exists
When a gap exists, you have to follow one of two rules in coding the two
parameters, low_address and size, that define the range of data. The direction of
reference determines which rule you follow:

v When reference is forward , low_address must identify the beginning of a
reference unit.

Figure 6-2 illustrates forward reference through a range of data that includes
gaps. Consider the reference pattern where the program references 2000 bytes
and skips the next 5000 bytes, and so forth throughout the array. The range of
data starts at low_address and ends at the point identified in the figure by A. A
can be any part of a gap or reference unit.

v When reference is backward , the value you code on size determines the
location of the first element the program actually references. Calculate that value
so that the first element the program references is the high-address end of a
reference unit.

Figure 6-3 on page 6-4 illustrates backward reference through the same array as
in Figure 6-2. Again, the program references 2000 bytes and skips the next 5000
bytes, and so forth throughout the array. The range starts at low_address and
ends at the point identified in the figure by B, where B must be the high-address
end of a reference unit. low_address can be any part of a gap or reference unit.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

low address
A

forward direction

size

Figure 6-2. Illustration of Forward Direction of Reference

Chapter 6. Using Reference Pattern Services 6-3

Choosing the Number of Bytes on a Page Fault
An important consideration in using reference pattern services is how many bytes to
ask the system to bring in on a page fault. To determine this, you need to
understand some factors that affect the performance of your program.

Pages do not stay in central storage if they are not referenced frequently enough
and other programs need that central storage. The longer it takes for a program to
begin referencing a page in central storage, the greater the chance that the page
has been moved out before being referenced. When you tell the system how many
bytes it should try and bring into central at one time, you have to consider the
following:

1. Contention for central storage

Your program contends for central storage along with all other submitted jobs.
The greater the size of central storage, the more bytes you can ask the system
to bring in on a page fault. The system responds with as much of the data you
request as possible, given the availability of central storage.

2. Contention for processor time

Your program contends for the processor’s attention along with all other
submitted jobs. The more competition, the less the processor can do for your
program and the smaller the number of bytes you should request.

3. The elapsed time of processing one page of your data

How long it takes a program to process a page depends on the number of
references per page and the elapsed time per reference. If your program uses
only a small percentage of elements on a page and references them only once
or twice, the program completes the use of pages quickly. If the processing of
each referenced element includes processor-intensive operations or a
time-intensive operation, such as I/O, the time the program takes to process a
page increases.

Conditions might vary between the peak activity of the daytime period and the low
activity of the nighttime. You might be able to request a greater number at night
than during the day.

What if you specify too many bytes? What if you ask the system to bring in so
many pages that, by the time your program needs to use some of those pages,
they have left central storage? The answer is that the system will have to bring
them in again. This action causes an extra page fault and extra system overhead
and decreases the benefit of reference pattern services.

1st 2nd 3rd 4th 5th 6th 7th
pagepagepage page page page page

backward direction

low addressB

size

Figure 6-3. Illustration of Backward Direction of Reference

6-4 z/OS V1R4.0 MVS Callable Services for HLL

For example, suppose you ask the system to bring in 204800 bytes, or 50 pages, at
a time. But, by the time your program begins referencing the data on the 30th page,
the system has moved that page and the ones after it out of central storage. It
moved them out because the program did not use them soon enough. In this case,
your program has lost the benefit of moving the last 21 pages in. Your program
would get more benefit by requesting fewer than 30 pages.

What if you specify too few bytes? If you specify too small a number, the system
will take more page faults than it needs to and you are not taking full advantage of
reference pattern services.

For example, suppose you ask the system to bring in 40960 bytes (or 10 pages) at
a time. Your program’s use of each page is not time-intensive, meaning that the
program finishes using the pages quickly. The program can request a number
greater than 10 without causing additional page faults.

IBM recommends that you use one of the following approaches, depending on
whether you want to involve your system programmer in the decision.

v The first approach is the simple one. Choose a conservative number of bytes,
around 81920 (20 pages), and run the program. Look for an improvement in the
elapsed time. If you like the results, you might increase the number of bytes. If
you continue to increase the number, at some point you will notice a diminishing
improvement or even an increase in elapsed time. Do not ask for so much that
your program or other programs suffer from degraded performance.

v The second approach is for the program that needs very significant performance
improvements — those programs that require amounts in excess of 50 pages. If
you have such a program, you and your system programmer should examine the
program’s elapsed time, paging speeds, and processor execution times. In fact,
the system programmer can tune the system with your program in mind,
providing the needed paging resources. z/OS MVS Initialization and Tuning
Guide can provide information on tuning the system.

Reference pattern services affects movement of pages from auxiliary and
expanded storage to central storage. To gain insight into the effectiveness of your
reference patterns, you and your system programmer will need the kind of
information that the SMF Type 30 record provides. A Type 30 record includes
counts of pages moved in anticipation of your program’s use of those pages. The
record provides counts of pages moved between expanded and central and
between auxiliary and central. It also provides elapsed time values. Use this
information to calculate rates of movement in determining whether to specify a
very large number of bytes — for example, amounts greater than 204800 bytes
(50 pages).

Examples of Using CSRIRP to Define a Reference Pattern
To clarify the relationships between the unitsize, gapsize, and units parameters, this
section contains three examples of defining a reference pattern. So that you can
compare the three examples with what the system does without information from
CSRIRP, the following call approximates the system’s normal paging operation:
CSRIRP with unitsize of 4096 bytes

gapsize of 0 bytes
units of 1 reference unit (that is, one page)

Each time the system takes a page fault, it brings in 4096 bytes (one page), the
system’s reference unit. It brings in one reference unit at a time.

Chapter 6. Using Reference Pattern Services 6-5

Example 1 The program processes all elements in an array in a forward direction.
The processing of each element is fairly simple. The program runs during the peak
hours, and many programs compete for processor time and central storage. A
reasonable value to choose for the number of bytes to come into central on a page
fault might be 80000 bytes (around 20 pages); unitsize can be 4000 bytes and units
can be 20. The following CSRIRP service communicates this pattern to the system:
CSRIRP with unitsize of 4000 bytes

gapsize of 0 bytes
units of 20
direction of +1

Example 2 The program performs the same process as in Example 1, except the
program does not reference every element in the array. The program runs during
the night hours when contention for the processor and for central storage is light. In
this case, a reasonable value to choose for the number of bytes to come into
central storage on a page fault might be 200000 bytes (around 50 pages). unitsize
can again be 4000 bytes and units can be 50. The following CSRIRP service
communicates this pattern:
CSRIRP with unitsize of 4000 bytes

gapsize of 0 bytes
units of 50
direction of +1

Example 3 The program references in a consistently forward direction through the
same large array. The pattern of reference in this example includes a gap. The
program references 8192 bytes, then skips the next 4096 bytes, references the next
8192 bytes, skips the next 4096 bytes throughout the array. The program chooses
to bring in data 8 pages at a time. Because of the placement of reference units and
gaps on page boundaries, the system does not bring in the data in the gaps.

The following CSRIRP service reflects this reference pattern:
CSRIRP with unitsize of 4096*2 bytes

gapsize of 4096 bytes
units of 4
direction of +1

where the system is to bring into central storage 8 pages (4×4096×2 bytes) on a
page fault. The system’s response to CSRIRP is illustrated as follows:

Removing the Definition of the Reference Pattern
When a program is finished referencing the array in the way you specified on
CSRIRP, use CSRRRP to remove the definition. The following example tells the
system that the program in “Defining the Range of the Area” on page 6-1 has
stopped referencing the array. low_address and size have the same values you
coded on the CSRIRP service that defined the reference pattern for that area.
CSRRRP with low_address of ARRAY1(1,1)

size of 1024*1024*8 bytes

not brought into central storage

4 x 8194 bytes on each page fault

6-6 z/OS V1R4.0 MVS Callable Services for HLL

Handling Return Codes
Each time you call CSRIRP or CSRRRP, your program receives a return code and
a reason code. These codes indicate whether the service completed successfully or
whether the system rejected the service.

When you receive a return code that indicates a problem or an unusual condition,
try to correct the problem, and rerun the program. Return codes and reason codes
are described in Chapter 7, “Reference Pattern Services” with the description of
each reference pattern service.

Chapter 6. Using Reference Pattern Services 6-7

6-8 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 7. Reference Pattern Services

To use reference pattern services, you issue CALLs that invoke the appropriate
reference pattern services program. Each service program performs one or more
functions and requires a set of parameters coded in a specific order on the CALL
statement.

This chapter describes the CALL statements that invoke reference pattern services.
Each description includes a syntax diagram, parameter descriptions, and return
code and reason code explanations with recommended actions. For examples of
how to code the CALL statements, see Chapter 8, “Reference Pattern Services
Coding Examples” on page 8-1.

This chapter contains the following topics:
v “CSRIRP — Define a Reference Pattern”
v “CSRRRP — Remove a Reference Pattern” on page 7-3.

CSRIRP — Define a Reference Pattern
Call CSRIRP to define a reference pattern for a large data area, such as an array,
that you are about to reference. Through CSRIRP, you identify the data area and
describe the reference pattern. Additionally, you tell the system how many bytes of
data you want it to bring into central storage on a page fault (that is, each time the
program references data that is not in central storage). This action might
significantly improve the performance of the program.

Two parameters define the reference pattern:

v unitsize refers to a reference unit — a grouping of consecutive bytes that the
program references.

v gapsize refers to a gap — a grouping of consecutive bytes that the program
repeatedly skips over; when a pattern has a gap, reference units and gaps
alternate throughout the data area.

Reference units and gaps must each be uniform in size and appear throughout the
data area at repeating intervals.

Another parameter, units, allows you to specify how many reference units you want
the system to bring into central storage each time the program references data that
is not in central storage.

When you end the reference pattern in that data area, call the CSRRRP service.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRIRP
uses to obtain input values, assign appropriate values.

On entry to CSRIRP, register 1 points to the reference pattern service parameter
list. Note that when a FORTRAN program calls CSRIRP, and it is running in access
register (AR) mode, register 1 does not point to the reference pattern service
parameter list; it points to a list of parameter addresses. Each address in this list
points to the data in the corresponding parameter of the reference pattern service
parameter list. To use reference pattern services in this environment, the caller must
provide an assembler interface routine to convert the FORTRAN parameter list to
the form expected by reference services.

© Copyright IBM Corp. 1994, 2002 7-1

Assign values, acceptable to CSRIRP, to low_address, size, direction, unitsize,
gapsize, and units. CSRIRP returns values in return_code and reason_code.

CALL CSRIRP (low_address
,size
,direction
,unitsize
,gapsize
,units
,return_code
,reason_code)

The parameters are explained as follows:

low_address
Specifies the beginning point of the data to be referenced.

low_address is the name of the data that resides at the beginning of the data
area. When the direction is forward and a gap exists, low_address must identify
the beginning of a reference unit.

,size
Identifies the size, in bytes, of the data area to be accessed. When direction is
backward and a gap exists, the value of size must be such that the first data
element the program references is the high-address end of a reference unit.

Define size as integer data of length 4.

,direction
Indicates the direction of reference, either “+1” for forward or “−1” for backward.

Define direction as integer data of length 4.

,unitsize
Specifies the size of a reference unit.

If the pattern does not have a gap, define the reference unit as a logical
grouping according to the structure of the data array. Examples are: one row, a
number of rows, one element, or one page (4096 bytes). If the pattern has a
gap, define unitsize as the grouping of bytes that the program references and
gap as the grouping of bytes that the program skips over.

Define unitsize as integer data of length 4.

,gapsize
Specifies the size, in bytes, of a gap. If the pattern has a gap, define the gap as
the grouping of bytes that the program skips over. If the pattern does not have
a gap, use the value “0”.

Define gapsize as integer data of length 4.

,units
Indicates how many reference units the system is to bring into central storage
each time the program needs data that is not in central storage.

Define units as integer data of length 4.

,return_code
When CSRIRP completes, return_code contains the return code. Define
return_code as integer data of length 4.

7-2 z/OS V1R4.0 MVS Callable Services for HLL

,reason_code
When CSRIRP completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return Codes and Reason Codes
When CSRIRP returns control to your program, return_code contains a return and
reason_code contains a reason code. The following table identifies return code and
reason code combinations and tells what each means.

Return and reason codes, in hexadecimal, from CSRIRP are:

Return Code Reason Code Meaning

00 None CSRIRP completed successfully.

04 xx0001xx CSRIRP completed successfully; however, the system did
not accept the reference pattern the caller specified. The
system decided that bringing in pages of 4096 bytes would
be more efficient.

08 xx0002xx Unsuccessful completion. The range that the caller
specified overlaps the range that a previous request
specified.

08 xx0003xx Unsuccessful completion. The number of CSRIRP requests
for the user exceeds 100, the maximum number the
system allows.

08 xx0004xx Unsuccessful completion. Storage is not available for the
CSRIRP service.

08 00000004 Unsuccessful completion. The direction that the caller
specified is not valid.

CSRRRP — Remove a Reference Pattern
Call CSRRRP to remove the reference pattern for a data area, as specified by the
CSRIRP service. On CSRRRP, you identify the beginning of the data area and its
size. Code low_address and size exactly as you coded them on the CSRIRP
service that defined the reference pattern.

Code the CALL following the syntax of the high-level language you are using and
specifying all parameters in the order shown below. For parameters that CSRRRP
uses to obtain input values, assign values that are acceptable to CSRRRP.

Assign values to CSRRRP, to low_address and size. CSRRRP returns values in
return_code and reason_code.

CALL CSRRRP (low_address
,size
,return_code
,reason_code)

The parameters are explained as follows:

low_address
Specifies the beginning point of the data to be referenced.

Chapter 7. Reference Pattern Services 7-3

low_address is the name of the data that resides at the beginning of the data
area.

,size
Specifies the size, in bytes, of the data area.

Define size as integer data of length 4.

,return_code
When CSRRRP completes, return_code contains the return code. Define
return_code as integer data of length 4.

,reason_code
When CSRRRP completes, reason_code contains the reason code. Define
reason_code as integer data of length 4.

Return Codes and Reason Codes
When CSRRRP returns control to your program, return_code contains a
hexadecimal return code and reason_code contains a hexadecimal reason code.
The following table identifies return code and reason code combinations and tells
what each means.

Return Code Reason Code Meaning

00 None CSRRRP completed successfully.

08 xx0101xx Unsuccessful completion. No CSRIRP service request was
in effect for the specified data area. Check to see if the
system rejected the previous CSRIRP request for the data
area.

CSRRRP

7-4 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 8. Reference Pattern Services Coding Examples

The following examples show how to invoke reference pattern services from each of
the supported languages. Following each program example is an example of the
JCL needed to compile, link edit, and execute the program example. Use these
examples to supplement and reinforce information that is presented elsewhere in
this book.

Note: Included in the FORTRAN example is the code for a required assembler
language program. This program ensures that the reference pattern for the
FORTRAN program is aligned on a 4K boundary.

The programs in this chapter are similar. They each process two arrays, A and B.
The arrays are 200×200 in size, each element consisting of 4 bytes. Processing is
as follows:
v Declare the arrays.
v Define reference patterns for A and B.
v Initialize A and B.
v Remove the definitions of the reference patterns for A and B.
v Define new reference patterns for A and B.
v Multiply A and B, generating array C.
v Remove the definitions of the reference patterns for A and B.

The examples are presented on the following pages:
v “C/370 Example”
v “COBOL Example” on page 8-4
v “FORTRAN Example” on page 8-8
v “Pascal Example” on page 8-11
v “PL/I Example” on page 8-13

C/370 Example
The following example is coded in C/370:

#include <stdio.h>
#include <stdlib.h>
#include "csrbpc"

#define m 200
#define n 200
#define p 200
#define kelement_size 4
int chk_code(long int ret, long int reason, int linenumber);

main()
{
long int A[m] [n];
long int B[m] [n];
long int C[m] [n];
long int i;
long int j;
long int k;
long int rc;
long int rsn;
long int arraysize;
long int direction;
long int unitsize;
long int gap;

© Copyright IBM Corp. 1994, 2002 8-1

long int units;

arraysize = m*n*kelement_size;
direction = csr_forward;
unitsize = kelement_size*n;
gap = 0;
units = 20;

csrirp(A, &arraysize, &direction,;
&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*p*kelement_size;

csrirp(B, &arraysize, &direction,;
&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
for (i=0; i<m; i++) {
for (j=0; j<n; j++) {
A[i][j] = i + j;

}
}
for (i=0; i<n; i++) {
for (j=0; j<p; j++) {
B[i][j] = i + j;

}
}

arraysize = m*n*kelement_size;

csrrrp(A, &arraysize,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*p*kelement_size;
csrrrp(B, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = m*n*kelement_size;
units = 25;
csrirp(A, &arraysize, &direction,;

&unitsize,;
&gap,;
&units,;
&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);

arraysize = n*p*kelement_size;
gap = (p-1)*kelement_size;
units = 50;
csrirp(B, &arraysize, &direction,;

&unitsize,;
&gap,;
&units,;

C/370 Example

8-2 z/OS V1R4.0 MVS Callable Services for HLL

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
for (i=0; i<m; i++) {
for (j=0; j<p; j++) {
C[i][j] = 0;
for (k=0; k<n; k++) {
C[i][j] = C[i][j] + A[i][k] * B[k][j];

}
}

}
arraysize = m*n*kelement_size;
csrrrp(A, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
arraysize = n*p*kelement_size;
csrrrp(B, &arraysize,;

&rc,;
&rsn);

chk_code(rc,rsn,__LINE__);
}

/* chk_code will check return code and reason code from previous */
/* calls to HLL services. It will print a message if any of the */

int chk_code(long int ret, long int reason, int linenumber)
{

if (ret != 0)
printf("return_code = %ld instead of 0 at line %d\n",

ret, linenumber);
if (reason != 0)

printf("reason_code = %ld instead of 0 at line %d\n",
reason, linenumber);

}
//*--
//* JCL USED TO COMPILE, LINK, THE C/370 PROGRAM
//*--
//CJOB JOB
//CCSTEP EXEC EDCCO,
// CPARM=’LIST,XREF,OPTIMIZE,RENT,SOURCE’,
// INFILE=’REFPAT.SAMPLE.PROG(C),DISP=SHR’
//COMPILE.SYSLIN DD DSN=’TEST.MPS.OBJ(C),DISP=SHR’
//COMPILE.USERLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM=’AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF’ 00022007
//PLKED.SYSIN DD DSN=’TEST.MPS.OBJ(C),DISP=SHR’
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *
LIBRARY IN(CSRIRP,CSRRRP)
NAME BPGC(R)

//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR
//*--
//* JCL USED TO EXECUTE THE C/370 PROGRAM
//*--
//CGO JOB TIME=1440,MSGLEVEL=(1,1),MSGCLASS=A
//RUN EXEC PGM=BPGC,TIME=1440 00110804
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00111002
// UNIT=3380,VOL=SER=VM2TSO 00111101
// DD DSN=CEE.SCEERUN,DISP=SHR 0111002
//SYSPRINT DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

C/370 Example

Chapter 8. Reference Pattern Services Coding Examples 8-3

COBOL Example
//*--
//* THE FOLLOWING EXAMPLE IS CODED IN COBOL:
//*--

IDENTIFICATION DIVISION.

* MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C *
* USE THE REFERENCE PATTERN CALLABLE SERVICES TO IMPROVE THE *
* PERFORMANCE. *

PROGRAM-ID. TESTCOB.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

* COPY THE INCLUDE FILE (WHICH DEFINES CSRFORWARD, CSRBACKWARD)
COPY CSRBPCOB.

* DIMENSIONS OF ARRAYS - A IS M BY N, B IS N BY P, C IS M BY P
1 M PIC 9(9) COMP VALUE 200.
1 N PIC 9(9) COMP VALUE 200.
1 P PIC 9(9) COMP VALUE 200.

* ARRAY DECLARATIONS FOR ARRAY A - M = 200, N = 200
1 A1.
2 A2 OCCURS 200 TIMES.
3 A3 OCCURS 200 TIMES.
4 ARRAY-A PIC S9(8).

* ARRAY DECLARATIONS FOR ARRAY B - N = 200, P = 200
1 B1.
2 B2 OCCURS 200 TIMES.
3 B3 OCCURS 200 TIMES.
4 ARRAY-B PIC S9(8).

* ARRAY DECLARATIONS FOR ARRAY C - M = 200, P = 200
1 C1.
2 C2 OCCURS 200 TIMES.
3 C3 OCCURS 200 TIMES.
4 ARRAY-C PIC S9(8).

1 I PIC 9(9) COMP.
1 J PIC 9(9) COMP.
1 K PIC 9(9) COMP.
1 X PIC 9(9) COMP.
1 ARRAY-A-SIZE PIC 9(9) COMP.
1 ARRAY-B-SIZE PIC 9(9) COMP.
1 UNITSIZE PIC 9(9) COMP.
1 GAP PIC 9(9) COMP.
1 UNITS PIC 9(9) COMP.
1 RETCODE PIC 9(9) COMP.
1 RSNCODE PIC 9(9) COMP.
PROCEDURE DIVISION.

DISPLAY " BPAGE PROGRAM START "

* CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY A
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 25
* SO WE’RE ASKING FOR 25 ROWS TO COME IN AT A TIME

COMPUTE ARRAY-A-SIZE = M * N * 4
COMPUTE UNITSIZE = N * 4
COMPUTE GAP = 0
COMPUTE UNITS = 25

COBOL Example

8-4 z/OS V1R4.0 MVS Callable Services for HLL

CALL "CSRIRP" USING
ARRAY-A(1, 1),
ARRAY-A-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "FIRST RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR INITIALIZING ARRAY B
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 25
* SO WE’RE ASKING FOR 25 ROWS TO COME IN AT A TIME

COMPUTE ARRAY-B-SIZE = N * P * 4
COMPUTE UNITSIZE = P * 4
COMPUTE GAP = 0
COMPUTE UNITS = 25
CALL "CSRIRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "SECOND RETURN CODE IS "
DISPLAY RETCODE

* INITIALIZE EACH ARRAY A ELEMENT TO THE SUM OF ITS INDICES
PERFORM VARYING I FROM 1 BY 1 UNTIL I = M

PERFORM VARYING J FROM 1 BY 1 UNTIL J = N
COMPUTE X = I + J
MOVE X TO ARRAY-A(I, J)
END-PERFORM

END-PERFORM

* INITIALIZE EACH ARRAY B ELEMENT TO THE SUM OF ITS INDICES
PERFORM VARYING I FROM 1 BY 1 UNTIL I = N
PERFORM VARYING J FROM 1 BY 1 UNTIL J = P

COMPUTE X = I + J
MOVE X TO ARRAY-B(I, J)

END-PERFORM
END-PERFORM

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
CALL "CSRRRP" USING

ARRAY-A(1, 1),
ARRAY-A-SIZE,
RETCODE,
RSNCODE

DISPLAY "THIRD RETURN CODE IS "
DISPLAY RETCODE

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
CALL "CSRRRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
RETCODE,

COBOL Example

Chapter 8. Reference Pattern Services Coding Examples 8-5

RSNCODE

DISPLAY "FOURTH RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR ARRAY A
* UNITSIZE WILL BE THE SIZE OF ONE ROW.
* UNITS WILL BE 20
* SO WE’RE ASKING FOR 20 ROWS TO COME IN AT A TIME

COMPUTE ARRAY-A-SIZE = M * N * 4
COMPUTE UNITSIZE = N * 4
COMPUTE GAP = 0
COMPUTE UNITS = 20

CALL "CSRIRP" USING
ARRAY-A(1, 1),
ARRAY-A-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "FIFTH RETURN CODE IS "
DISPLAY RETCODE

* CALCULATE CSRIRP PARAMETERS FOR ARRAY B
* UNITSIZE WILL BE THE SIZE OF ONE ELEMENT.
* GAP WILL BE (N-1)*4 (IE. THE REST OF THE ROW).
* UNITS WILL BE 50
* SO WE’RE ASKING FOR 50 ELEMENTS OF A COLUMN TO COME IN
* AT ONE TIME

COMPUTE ARRAY-B-SIZE = N * P * 4
COMPUTE UNITSIZE = 4
COMPUTE GAP = (N - 1) * 4
COMPUTE UNITS = 50

CALL "CSRIRP" USING
ARRAY-B(1, 1),
ARRAY-B-SIZE,
CSRFORWARD,
UNITSIZE,
GAP,
UNITS,
RETCODE,
RSNCODE

DISPLAY "SIXTH RETURN CODE IS "
DISPLAY RETCODE

* MULTIPLY ARRAY A TIMES ARRAY B GIVING ARRAY C
PERFORM VARYING I FROM 1 BY 1 UNTIL I = M
PERFORM VARYING J FROM 1 BY 1 UNTIL J = P

COMPUTE ARRAY-C(I, J) = 0
PERFORM VARYING K FROM 1 BY 1 UNTIL K = N
COMPUTE X = ARRAY-C(I, J) +

ARRAY-A(I, K) * ARRAY-B(K, J)
END-PERFORM

END-PERFORM
END-PERFORM

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY A
CALL "CSRRRP" USING

ARRAY-A(1, 1),
ARRAY-A-SIZE,
RETCODE,

COBOL Example

8-6 z/OS V1R4.0 MVS Callable Services for HLL

RSNCODE

DISPLAY "SEVENTH RETURN CODE IS "
DISPLAY RETCODE

* REMOVE THE REFERENCE PATTERN ESTABLISHED FOR ARRAY B
CALL "CSRRRP" USING

ARRAY-B(1, 1),
ARRAY-B-SIZE,
RETCODE,
RSNCODE

DISPLAY "EIGHTH RETURN CODE IS "
DISPLAY RETCODE

DISPLAY " BPAGE PROGRAM END "
GOBACK.

//*--
//* JCL USED TO COMPILE, LINK, THE COBOL PROGRAM
//*--
//FCHANGC JOB ’D3113P,D31,?’,’FCHANG6-6756’,CLASS=T,
// MSGCLASS=H,NOTIFY=FCHANG,REGION=0K
//CCSTEP EXEC EDCCO,
// CPARM=’LIST,XREF,OPTIMIZE,RENT,SOURCE’,
// INFILE=’FCHANG.PUB.TEST(C)’
//COMPILE.SYSLIN DD DSN=’FCHANG.MPS.OBJ(C),DISP=SHR’
//COMPILE.USERLIB DD DSN=’FCHANG.DECLARE.SET,DISP=SHR
//LKSTEP EXEC EDCPLO,
// LPARM=’AMOD=31,LIST,REFR,RENT,RMOD=ANY,XREF’ 00022007
//PLKED.SYSIN DD DSN=’FCHANG.MPS.OBJ(C),DISP=SHR’
//LKED.SYSLMOD DD DSN=RSMID.FBB4417.LINKLIB,DISP=SHR,
// UNIT=3380,VOL=SER=RSMPAK
//LKED.SYSIN DD *
LIBRARY IN(CSRIRP,CSRRRP)
NAME BPGC(R)

//LKED.IN DD DSN=FCHANG.MPS.OBJ,DISP=SHR
//*--
//* LINK PROGRAM
//*--
//COBOLLK JOB 00010002
//LINKEDIT EXEC PGM=IEWL, 00040000
// PARM=’MAP,XREF,LIST,LET,AC=1,SIZE=(1000K,100K)’ 00050000
//SYSLIN DD DDNAME=SYSIN 00051000
//SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=OLD 00052002
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00053000
//MYLIB DD DSN=REFPAT.COBOL.OBJ,DISP=SHR 00053102
//CSRLIB DD DSN=SYS1.CSSLIB,DISP=SHR 00053202
//SYSPRINT DD SYSOUT=H 00053300
//* 00053400
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053500
//SYSUT2 DD UNIT=SYSDA,SPACE=(TRK,(20,10)) 00053600
//SYSIN DD * 00053700
INCLUDE MYLIB(COBOL) 00053802
LIBRARY CSRLIB(CSRIRP,CSRRRP) 00053901
NAME COBLOAD(R) 00054002

/* 00055000
//*--
//* JCL USED TO EXECUTE THE COBOL PROGRAM
//*--
//COB2 JOB MSGLEVEL=(1,1),TIME=1440 00010000
//GO EXEC PGM=COBLOAD 00020001
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR 00030001
// DD DSN=REFPAT.USER.LOAD,DISP=SHR,VOL=SER=RSMPAK, 00040001
// UNIT=3380 00041001
//SYSABOUT DD SYSOUT=* 00050000

COBOL Example

Chapter 8. Reference Pattern Services Coding Examples 8-7

//SYSOUT DD SYSOUT=A 00051001
//SYSDBOUT DD SYSOUT=* 00060000
//SYSUDUMP DD SYSOUT=* 00070000

FORTRAN Example
**
* *
* *
* This is FORTRAN. Followed by an assembler routine *
* called ADDR that has to be linkedited with the object *
* code from this testcase, and the CSR stubs. *
* *
**
@PROCESS DC(BPAGEFOR)

PROGRAM BPAGEFOR
C

INCLUDE ’SYS1.SAMPLIB(CSRBPFOR)’
C
C Multiply two arrays together - testing CSRIRP, CSRRRP services
C
C

INTEGER M /200/
INTEGER N /200/
INTEGER P /200/
PARAMETER (NKELEMENT_SIZE=4)
INTEGER RC,RSN
COMMON /WINCOM/A(200,200)
COMMON /WINCOM/B(200,200)
COMMON /WINCOM/C(200,200)

C
C Initialize the arrays
C

CALL CSRIRP(A(1,1),
* M*N*NKELEMENT_SIZE,
* CSR_FORWARD,
* M*NKELEMENT_SIZE,
* 0,
* 20,
* RC,
* RSN)
CALL CSRIRP(B(1,1),

* N*P*NKELEMENT_SIZE,
* CSR_FORWARD,
* N*NKELEMENT_SIZE,
* 0,
* 20,
* RC,
* RSN)
DO 102 J = 1, N
DO 100 I = 1, M
A(I,J) = I + J

100 CONTINUE
102 CONTINUE

DO 106 J = 1, P
DO 104 I = 1, N
B(I,J) = I + J

104 CONTINUE
106 CONTINUE

C
CALL CSRRRP(A(1,1),

* M*N*NKELEMENT_SIZE,
* RC,
* RSN)
CALL CSRRRP(B(1,1),

* N*P*NKELEMENT_SIZE,
* RC,

COBOL Example

8-8 z/OS V1R4.0 MVS Callable Services for HLL

* RSN)
C
C Multiply the two arrays together
C

CALL CSRIRP (A(1,1),
* M*N*NKELEMENT_SIZE,
* CSR_FORWARD,
* N*NKELEMENT_SIZE,
* (N-1)*KELEMENT_SIZE,
* 50,
* RC,
* RSN)
CALL CSRIRP (B(1,1),

* N*P*NKELEMENT_SIZE,
* CSR_FORWARD,
* NKELEMENT_SIZE*N,
* 0,
* 20,
* RC,
* RSN)
DO 112 I = 1, M
DO 110 J = 1, N
DO 108 K = 1, P
C(I,J) = C(I,J) + A(I,K) * B(K,J)

108 CONTINUE
110 CONTINUE
112 CONTINUE

CALL CSRRRP (A(1,1),
* M*N*NKELEMENT_SIZE,
* RC,
* RSN)
CALL CSRRRP (B(1,1),

* N*P*NKELEMENT_SIZE,
* RC,
* RSN)

STOP
END

** 00010000
* * 00020000
* THIS IS THE JCL THAT COMPILES THE PROGRAM. * 00030000
* * 00020000
** 00080000
//FORTJOB JOB 00090007
// MSGCLASS=H,RDR=R, 00110007
// MSGLEVEL=(1,1),CLASS=T 00120000
//* 00130000
//* 00140000
//* COMPILE AND LINKEDIT FOR FORTRAN 00150000
//* 00160000
//* 00170000
//* 00180000
//VSF2CL PROC FVPGM=FORTVS2,FVREGN=2100K,FVPDECK=NODECK, 00190000
// FVPOLST=NOLIST,FVPOPT=0,FVTERM=’SYSOUT=A’, 00200000
// PGMNAME=MAIN,PGMLIB=’&&GOSET’,FVLNSPC=’3200,(25,6)’ 00210000
//* 00220000
//* COPYRIGHT: 5668-806 00230000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00240000
//* LICENSED MATERIALS - PROPERTY OF IBM 00250000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00260000
//* 00270000
//* STATUS: 02.03.00 (VV.RR.MM) 00280000
//* 00290000
//* PARAMETER DEFAULT-VALUE USAGE 00300000
//* 00310000
//* FVPGM FORTVS2 COMPILER NAME 00320000
//* FVREGN 2100K FORT-STEP REGION 00330000

FORTRAN Example

Chapter 8. Reference Pattern Services Coding Examples 8-9

//* FVPDECK NODECK COMPILER DECK OPTION 00340000
//* FVPOLST NOLIST COMPILER LIST OPTION 00350000
//* FVPOPT 0 COMPILER OPTIMIZATION 00360000
//* FVTERM SYSOUT=A FORT.SYSTERM OPERAND 00370000
//* FVLNSPC 3200,(25,6) FORT.SYSLIN SPACE 00380000
//* PGMLIB &&GOSET LKED.SYSLMOD DSNAME 00390000
//* PGMNAME MAIN LKED.SYSLMOD MEMBER NAME 00400000
//* 00410000
//FORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT), 00420000
// PARM=’&FVPDECK,&FVPOLST,OPT(&FVPOPT)’ 00430000
//STEPLIB DD DSN=D24PP.FORT230.VSF2COMP,DISP=SHR 00440000
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=3429 00450000
//SYSTERM DD &FVTERM 00460000
//SYSPUNCH DD SYSOUT=B,DCB=BLKSIZE=3440 00470000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00480000
// SPACE=(&FVLNSPC),DCB=BLKSIZE=3200 00490000
//LKED EXEC PGM=HEWL,REGION=768K,COND=(4,LT), 00500000
// PARM=’LET,LIST,XREF’ 00510000
//SYSPRINT DD SYSOUT=A 00520000
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00530000
//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20)) 00540000
//SYSLMOD DD DSN=&PGMLIB.(&PGMNAME),DISP=(,PASS),UNIT=SYSDA, 00550000
// SPACE=(TRK,(10,10,1),RLSE) 00560000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00570000
// DD DDNAME=SYSIN 00580000
// PEND 00590000
// EXEC VSF2CL,FVTERM=’SYSOUT=H’, 00600000
// PGMNAME=FORTRAN,PGMLIB=’REFPAT.USER.LOAD’ 00680008
//FORT.SYSIN DD DSN=REFPAT.SAMPLE.PROG(FORTRAN),DISP=SHR 00690008
//LKED.SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR 00700000
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR 00710007
//LKED.SYSIN DD * 00720000
INCLUDE IN(CSRIRP,CSRRRP,ADDR) 00730000
NAME BPGFORT(R) 00740006

/* 00750000
//* THE CSR STUBS ARE AVAILABLE IN SYS1.CSSLIB, 00760007
//* THE OBJ FOR THE ADDR ROUTINE IS IN TEST.OBJ 00770007
//* 00780000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00790007
// DD DSN=REFPAT.TEST.OBJ,DISP=SHR 00mm0007

** 00010000
* * 00020000
* THIS IS THE JCL I USE TO EXECUTE THE PROGRAM. * 00030000
* * 00060000
** 00070000
//FONO1 JOB MSGLEVEL=(1,1),TIME=1440 00080003
//VSF2G PROC GOPGM=MAIN,GOREGN=100K, 00090000
//* 00100000
//* 00110000
//* EXECUTE A FORTRAN TESTCASE - CHANGE ALL CRTFONXX TO CRTFONZZ 00120000
//* 00130000
// GOF5DD=’DDNAME=SYSIN’, 00140000
// GOF6DD=’SYSOUT=A’, 00150000
// GOF7DD=’SYSOUT=B’ 00160000
//* 00170000
//* COPYRIGHT: 5668-806 00180000
//* (C) COPYRIGHT IBM CORP 1985, 1988 00190000
//* LICENSED MATERIALS - PROPERTY OF IBM 00200000
//* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083 00210000
//* 00220000
//* STATUS: 02.03.00 (VV.RR.MM) 00230000
//* 00240000
//* PARAMETER DEFAULT-VALUE USAGE 00250000
//* 00260000
//* GOPGM MAIN PROGRAM NAME 00270000
//* GOREGN 100K GO-STEP REGION 00280000
//* GOF5DD DDNAME=SYSIN GO.FT05F001 DD OPERAND 00290000

FORTRAN Example

8-10 z/OS V1R4.0 MVS Callable Services for HLL

//* GOF6DD SYSOUT=A GO.FT06F001 DD OPERAND 00300000
//* GOF7DD SYSOUT=B GO.FT07F001 DD OPERAND 00310000
//* 00320000
//* 00330000
//GO EXEC PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT) 00340000
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR 00350004
//FT05F001 DD &GOF5DD 00360000
//FT06F001 DD &GOF6DD 00370000
//FT07F001 DD &GOF7DD 00380000
// PEND 00390000
//GO EXEC VSF2G,GOPGM=BPGFORT,GOREGN=999K 00400004
//GO.STEPLIB DD DSN=WINDOW.D24PP.FORTLIB,DISP=SHR, 00410004
// VOL=SER=VM2TSO,UNIT=3380 00410104
// DD DSN=WINDOW.R40.VSF2LOAD,DISP=SHR, 00411004
// VOL=SER=VM2TSO,UNIT=3380 00412004
// DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00420003
// VOL=SER=VM2TSO,UNIT=3380 00430004

Pascal Example
**
* *
* PASCAL example. The data object is permanent and already *
* allocated. A scroll area is used. *
* *
**
program BPAGEPAS;

%include CSRBPPAS

CONST
m = 250;
n = 250;
p = 250;
kelement_size = 4;
a_size = m*n*kelement_size;
b_size = n*p*kelement_size;
c_size = m*p*kelement_size;

VAR
a : array (.1..m, 1..n.) of integer;
b : array (.1..n, 1..p.) of integer;
c : array (.1..m, 1..p.) of integer;
i : integer;
j : integer;
k : integer;
rc : integer;
rsn : integer;

BEGIN
csrirp (a(.1,1.), a_size, csr_forward,

kelement_size*m,
0,
50,
rc,
rsn);

csrirp (b(.1,1.), b_size, csr_forward,
kelement_size*n,
0,
20,
rc,
rsn);

for i:=1 to m do
for j:=1 to n do
a(.i,j.) := i + j;

for i:=1 to n do
for j:=1 to p do

FORTRAN Example

Chapter 8. Reference Pattern Services Coding Examples 8-11

b(.i,j.) := i + j;
csrrrp (a(.1,1.), a_size,

rc,
rsn);

csrrrp (b(.1,1.), b_size,
rc,
rsn);

/* Multiply the two arrays together */

csrirp (a(.1,1.), m*n*kelement_size, csr_forward,
kelement_size*n,
0,
20,
rc,
rsn);

csrirp (b(.1,1.), n*p*kelement_size, csr_forward,
(p-1)*kelement_size,
0,
50,
rc,
rsn);

for i:=1 to m do
for J:=1 to p do
begin;
c(.i,j.) := 0;
for k:=1 to n do
c(.i,j.) := c(.i,j.) + a(.i,k.) * b(.k,j.);

end;

csrrrp (a(.1,1.), m*n*kelement_size,
rc,
rsn);

csrrrp (b(.1,1.), n*p*kelement_size,
rc,
rsn);

END.
** 00010000
* * 00020000
* JCL TO COMPILE AND LINKEDIT * 00030000
* * 00040000
** 00050000
//PASCJOB JOB 00060008
//GOGO EXEC PAS22CL 00100000
//* 00110000
//* COMPILE AND LINKEDIT FOR PASCAL 00120000
//* 00130000
//* CHANGE THE MEMBER NAME ON THE NEXT LINE AND THE 00140000
//* NAME CRTPANXX(R) SIX LINES DOWN 00150000
//* 00160000
//PASC.SYSLIB DD 00161006
// DD 00162006
// DD DSN=REFPAT.DECLARE.SET(CSRBPPAS),DISP=SHR 00163008
//PASC.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PASCAL),DISP=SHR 00170008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,DISP=SHR,UNIT=3380, 00180008
// VOL=SER=VM2TSO 00190009
//LKED.SYSIN DD * 00200000
LIBRARY IN(CSRIRP,CSRRRP) 00210005
NAME BPGPASC(R) 00220003

/* 00230000
//* SYS1.CSSLIB IS THE SOURCE OF THE CSR STUBS 00240008
//* 00250000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00260008
**
* *
* JCL TO EXECUTE PASCAL *
* *
**

Pascal Example

8-12 z/OS V1R4.0 MVS Callable Services for HLL

//PASC1JOB JOB 00010005
//GO EXEC PAS22CL 00050000
//* 00050102
//* Compile and linkedit for PASCAL 00050202
//* 00050302
//PASC.SYSIN DD DSN=WINDOW.XAMPLE.LIB(CRTPAN06),DISP=SHR 00060006
//LKED.SYSLMOD DD DSN=WINDOW.USER.LOAD,DISP=SHR,UNIT=3380, 00560000
// VOL=SER=VM2TSO 00570000
//LKED.SYSIN DD * 00580000
LIBRARY IN(CSRSCOT,CSRSAVE,CSRREFR,CSRSAVE,CSRVIEW,CSRIDAC) 00590000
NAME CRTPAN06(R) 00600006

/* 00610000
//* SYS1.CSSLIB is the source of the CSR stubs 00620002
//* 00650002
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00690000

* *
* *
* JCL TO COMPILE AND LINKEDIT. *
* *
* *
* *

** 00010000
* * 00020000
* JCL TO EXECUTE. THIS ONE NEEDS A DD STATEMENT FOR THE * 00030000
* PERMANENT DIV OBJECT - CSRDD1. DATASET ALREADY EXISTS. * 00040000
* * 00060000
** 00070000
//PASCGO JOB MSGLEVEL=(1,1),TIME=1440 00080002
//* 00090000
//* 00100000
//* RUN A PASCAL TESTCASE - CHANGE THE NAME ON THE NEXT LINE 00110000
//* 00/20000
//* 00130000
//GO EXEC PGM=BPGPASC 00140000
//STEPLIB DD DSN=REFPAT.USER.LOAD, 00150002
// DISP=SHR,UNIT=3380, 00190000
// VOL=SER=VM2TSO 00200003
//CSRDD1 DD DSN=DIV.TESTDS,DISP=SHR 00210000
//OUTPUT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00220000
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=133) 00230000

PL/I Example
**
* *
* PLI example *
* *
**
BPGPLI: PROCEDURE OPTIONS(MAIN); 00010023

00020002
%INCLUDE SYSLIB(CSRBPPLI); 00020122

00020222
/* INITs */ 00021013

DCL M INIT(512) FIXED BIN(31); 00022035
DCL N INIT(512) FIXED BIN(31); 00023035
DCL P INIT(512) FIXED BIN(31); 00024035

00025013
/* Arrays */ 00026013

DCL A (M,N) BIN FIXED(31); /* First array */ 00029113
DCL B (N,P) BIN FIXED(31); /* Second array */ 00029213
DCL C (M,P) BIN FIXED(31); /* Product of first and second */ 00029313
DCL KELEMENT_SIZE INIT(4) FIXED BIN(31); /* Size of an element of an 00029416

array. This value is tied 00029513
directly to the data type of 00029613

Pascal Example

Chapter 8. Reference Pattern Services Coding Examples 8-13

the three arrays (ie. FIXED(31)00029713
is 4 bytes */ 00029813

00029913
/* Indices */ 00030013

DCL I FIXED BIN(31), 00031013
J FIXED BIN(31), 00031113
K FIXED BIN(31); 00031213

00032013
/* Others */ 00037013

DCL RC FIXED BIN(31); 00039013
DCL RSN FIXED BIN(31); 00039113

00390108
00391808

/* Initialize the first two arrays such that each element 00411013
equals the sum of the indices for that element (eg. 00412013
A(4,10) = 14 */ 00413013

00414013
CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00415013

KELEMENT_SIZE*N, 00416013
0, 00417013
20, 00418013
RC, 00419013
RSN); 00419113

CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00419913
KELEMENT_SIZE*P, 00420013
0, 00420113
20, 00420213
RC, 00420313
RSN); 00420413

DO I = 1 TO M; 00421213
DO J = 1 TO N; 00421313

A(I,J) = I + J; 00421413
END; 00421513

END; 00421613
00421713

DO I = 1 TO N; 00421813
DO J = 1 TO P; 00421913

B(I,J) = I + J; 00422013
END; 00422113

END; 00422213
CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00422313

RC, 00422513
RSN); 00422613

CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00423413
RC, 00423613
RSN); 00423713

00424513
/* Multiply the two arrays together */ 00424613

00424713
CALL CSRIRP (A(1,1), M*N*KELEMENT_SIZE, CSR_FORWARD, 00424813

KELEMENT_SIZE*N, 00424913
0, 00425013
20, 00425133
RC, 00425213
RSN); 00425313

CALL CSRIRP (B(1,1), N*P*KELEMENT_SIZE, CSR_FORWARD, 00426113
KELEMENT_SIZE, 00426213
(P-1)*KELEMENT_SIZE, 00426313
50, 00426413
RC, 00426513
RSN); 00426613

DO I = 1 TO M; 00427413
DO J = 1 TO P; 00427513

C(I,J) = 0; 00427613
DO K = 1 TO N; 00427713
C(I,J) = C(I,J) + A(I,K) * B(K,J); 00427813

END; 00427913

PL/I Example

8-14 z/OS V1R4.0 MVS Callable Services for HLL

END; 00428013
END; 00428113

00428213
CALL CSRRRP (A(1,1), M*N*KELEMENT_SIZE, 00428313

RC, 00428513
RSN); 00428613

CALL CSRRRP (B(1,1), N*P*KELEMENT_SIZE, 00429413
RC, 00429613
RSN); 00429713

00430513
END BPGPLI; 01080024

* *
* *
* JCL TO COMPILE AND LINKEDIT. *
* *
* *
* *

//PLIJOB JOB 00010007
//* 00041001
//* PL/I Compile and Linkedit 00042001
//* 00043001
//* Change all CRTPLNx to CRTPLNy 00044001
//* 00045001
//GO EXEC PLIXCL,PARM.PLI=’MACRO’ 00050000
//PLI.SYSLIB DD DSN=REFPAT.DECLARE.SET,DISP=SHR
//PLI.SYSIN DD DSN=REFPAT.SAMPLE.PROG(PLI),DISP=SHR 00060008
//LKED.SYSLMOD DD DSN=REFPAT.USER.LOAD,UNIT=3380,VOL=SER=RSMPAK, 00070000
// DISP=SHR 00080000
//LKED.SYSIN DD * 00090000
INCLUDE IN(CSRIRP,CSRRRP) 00100001
NAME BPGPLI(R) 00110008

/* 00120000
//* 00121001
//* SYS1.CSSLIB is source of CSR stubs 00130001
//* 00190000
//LKED.IN DD DSN=SYS1.CSSLIB,DISP=SHR 00200000
//PLIJOB JOB 00010007

* *
* *
* JCL TO EXECUTE. *
* *
* *
* *

//PLIRUN JOB MSGLEVEL=(1,1),TIME=1440 00010000
//* 00011001
//* EXECUTE A PL/I TESTCASE - CHANGE NAME ON NEXT LINE 00012001
//* 00013001
//GO EXEC PGM=CRTPLN3 00020000
//STEPLIB DD DSN=REFPAT.USER.LOAD,DISP=SHR, 00030000
// UNIT=3380,VOL=SER=VM2TSO 00040000
// DD DSN=CEE.SCEERUN,DISP=SHR 0
//SYSABEND DD SYSOUT=* 00070000
//SYSLOUT DD SYSOUT=* 00080000
//SYSPRINT DD SYSOUT=* 00090000

PL/I Example

Chapter 8. Reference Pattern Services Coding Examples 8-15

PL/I Example

8-16 z/OS V1R4.0 MVS Callable Services for HLL

Part 3. Global Resource Serialization Latch Manager Services

Chapter 9. Using the Latch Manager Services 9-1
Syntax and Linkage Conventions for Latch Manager Callable Services 9-1
ISGLCRT — Create a Latch Set 9-2

ABEND Codes. 9-3
Return Codes . 9-3
Examples of Calls to Latch Manager Services 9-3

ISGLOBT — Obtain a Latch . 9-5
ABEND Codes. 9-7
Return Codes . 9-7
Example . 9-8

ISGLREL — Release a Latch 9-8
ABEND Codes . 9-10
Return Codes . 9-10
Example . 9-11

ISGLPRG — Purge a Requestor from a Latch Set 9-11
ABEND Codes . 9-12
Return Codes . 9-12
Example . 9-12

ISGLPBA — Purge a Group of Requestors from a Group of Latch Sets 9-12
ABEND Codes . 9-14
Return Codes . 9-14

© Copyright IBM Corp. 1994, 2002

z/OS V1R4.0 MVS Callable Services for HLL

Chapter 9. Using the Latch Manager Services

To use global resource serialization latch manager services, you issue CALLs from
high level language programs. Each service requires a set of parameters coded in a
specific order on the CALL statement.

This chapter describes the CALL statements that invoke latch manager services.
Each description includes a syntax diagram, parameter descriptions, and return and
reason code explanations with recommended actions. Return and reason codes are
shown in hexadecimal and decimal, along with the associated equate symbol.

This chapter contains the following topics:
v “ISGLCRT — Create a Latch Set” on page 9-2
v “ISGLOBT — Obtain a Latch” on page 9-5
v “ISGLREL — Release a Latch” on page 9-8
v “ISGLPRG — Purge a Requestor from a Latch Set” on page 9-11
v “ISGLPBA — Purge a Group of Requestors from a Group of Latch Sets” on

page 9-12

For information about the basic function of the latch manager, how to plan to use
the latch manager, and how to use the latch manager callable services, see the
serialization topic in z/OS MVS Programming: Authorized Assembler Services
Guide.

Syntax and Linkage Conventions for Latch Manager Callable Services
The latch manager callable services have the following general calling syntax:

CALL routine_name(parameters)

Some specific calling formats for languages that can invoke the latch manager
callable services are:

C routine_name (parm1,parm2,...return_code)

COBOL
CALL “routine_name” USING parm1,parm2,...return_code

FORTRAN
CALL routine_name (parm1,parm2,...return_code)

PL/I
CALL routine_name (parm1,parm2,...return_code)

REXX
ADDRESS LU62 “routine_name parm1 parm2...return_code”

IBM provides files, called interface definition files (IDFs), that define variables and
values for the parameters used with latch manager services. IBM provides IDFs for
some of the listed languages. See the serialization topic in z/OS MVS
Programming: Authorized Assembler Services Guide for information about the IDFs
that are available on MVS.

© Copyright IBM Corp. 1994, 2002 9-1

ISGLCRT — Create a Latch Set
Call the Latch_Create service to create a set of latches. Your application should call
Latch_Create during application initialization, and specify a number of latches that is
sufficient to serialize all the resources that the application requires. Programs that
run as part of the application can call the following related services:

ISGLOBT Requests exclusive or shared ownership of a latch.

ISGLREL Releases ownership of an owned latch or a pending request to
obtain a latch.

ISGLPRG Purges all granted and pending requests for a particular requestor
within a specific latch set.

In the following description of Latch_Create, constants defined in the latch manager
IDFs are followed by their numeric equivalents; you may specify either when coding
calls to Latch_Create.

Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v number_of_latches
v latch_set_name
v create_option

Latch_Create returns values in the following parameters:
v latch_set_token
v return_code

CALL ISGLCRT (number_of_latches
,latch_set_name
,create_option
,latch_set_token
,return_code)

The parameters are explained as follows:

number_of_latches
Specifies a fullword integer that indicates the number of latches to be created.

,latch_set_name
Specifies a 48-byte area that contains the name of the latch set. The latch set
name must be unique within the current address space. The latch set name can
be any value up to 48 characters, but the first character must not be binary
zeros or an EBCDIC blank. If the latch set name is less than 48 characters, it
must be padded on the right with blanks.

IBM recommends that you use a standard naming convention for the latch set
name. To avoid using a name that IBM uses, do not begin the latch set name
with the character string SYS. It is a good idea to select a latch set name that is
readable in output from the DISPLAY GRS command and interactive problem
control system (IPCS). Avoid ’@’, ’$’, and ’#’ because those characters do not
always display consistently.

ISGLCRT Callable Service

9-2 z/OS V1R4.0 MVS Callable Services for HLL

,create_option
Specifies a fullword integer that must have a value of ISGLCRT_PRIVATE (or a
value of 0).

,latch_set_token
Specifies an 8-byte area to contain the latch set token returned by the
Latch_Create service. The latch set token uniquely identifies the latch set.
Programs must specify this value on calls to the Latch_Obtain, Latch_Release,
and Latch_Purge services.

,return_code
A fullword integer to contain the return code from the Latch_Create service.

ABEND Codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return Codes
When the Latch_Create service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 9-1. ISGLCRT Return Codes

Return code and Equate
symbol

Meaning and Action

00
(0)
ISGLCRT_SUCCESS

Meaning : The Latch_Create service completed successfully.

Action : None required.

04
(4)
ISGLCRT_DUPLICATE_NAME

Meaning : The specified latch_set_name already exists, and is
associated with a latch set that was created by a program running
in the current primary address space. The latch manager does not
create a new latch set.

Action : To create a new latch set, specify a unique name on the
latch_set_name parameter, then call the Latch_Create service
again. Otherwise, continue processing with the returned latch set
token.

10
(16)
ISGLCRT_NO_STORAGE

Meaning : Environmental error. Not enough storage was available to
contain the requested number of latches. The latch manager does
not create a new latch set.

Action : Specify a smaller value on the number_of_latches
parameter.

Examples of Calls to Latch Manager Services
The following is an example of how to call all the latch manager services in C
language:
/***/
/* C Example */
/***/
#pragma linkage(setsup, OS)
#pragma linkage(setprob, OS)
#include <ISGLMC.H> /* Include C language IDF */

main()
{
const int numberOfLatches = 16; /* in this example we create 16

latches */

ISGLCRT Callable Service

Chapter 9. Using the Latch Manager Services 9-3

ISGLM_LSNM_type latchSetName
= "EXAMPLE.ONE_LATCH_SET_NAME ";

/* set up 48-byte latch set name */
ISGLM_LSTK_type latchSetToken; /* latch set token - output from

create and input to obtain,
release, and purge */

int returnCode = 0; /* return code from services */

const int latchNumber = 6; /* in this example we obtain latch
six */

ISGLM_LRID_type requestorID = "123";/* requestor ID - output from
obtain and input to purge */

int ECB = 0; /* ECB used for latch obtain
service */

ISGLM_EADDR_type ECBaddress = &ECB;/* pointer to ECB */
ISGLM_LTK_type latchToken; /* latch token - output from

obtain and input to release */
union {

double alignment; /* force double word alignment */
ISGLM_WA_type area; /* set up work area */

} work;

setsup(); /* set supervisor state PSW */

/***/
/* create a latch set with 16 latches */
/***/

isglcrt(numberOfLatches
,latchSetName
,ISGLCRT_PRIVATE
,&latchSetToken;
,&returnCode);

/***/
/* obtain latch */
/***/

isglobt(latchSetToken
,latchNumber
,requestorID
,ISGLOBT_SYNC /* suspend until granted */
,ISGLOBT_EXCLUSIVE /* access option (exclusive) */
,&ECBaddress /* required, but not used */
,&latchToken /* identifies request */
,&work.area
,&returnCode);

/***/
/* release latch */
/***/

isglrel(latchSetToken
,latchToken
,ISGLREL_UNCOND /* ABEND if latch not owned */
,&workarea
,&returnCode);

/***/
/* purge requestor from latch set */
/***/

isglprg(latchSetToken
,requestorID
,&returnCode);

setprob(); /* set problem state PSW */

ISGLCRT Callable Service

9-4 z/OS V1R4.0 MVS Callable Services for HLL

}
**
* SETSUP subroutine
**
SETSUP CSECT
SETSUP AMODE 31
SETSUP RMODE ANY

SAVE (14,12) save regs
SAC 0 ensure primary mode
LR 12,15 establish addressability
USING SETSUP,12
MODESET MODE=SUP set supervisor state
RETURN (14,12),RC=0 restore caller’s regs and return
END SETSUP

**
* SETPROB subroutine
**
SETPROB CSECT
SETPROB AMODE 31
SETPROB RMODE ANY

SAVE (14,12) save regs
LR 12,15 establish addressability
USING SETPROB,12
MODESET MODE=PROB set problem state
RETURN (14,12),RC=0 restore caller’s regs and return
END SETPROB

ISGLOBT — Obtain a Latch
Call the Latch_Obtain service to request exclusive or shared ownership of a latch.
When a requestor owns a particular latch, the requestor can use the resource
associated with that latch. The following callable services are related to
Latch_Obtain:

ISGLCRT Creates a latch set that an application can use to serialize
resources.

ISGLREL Releases ownership of an owned latch or a pending request to
obtain a latch.

ISGLPRG Purges all granted and pending requests for a particular requestor
within a specific latch set.

In the following description of Latch_Obtain:

v The term requestor describes a task or SRB routine that calls the Latch_Obtain
service to request ownership of a latch.

v Constants defined in the latch manager IDFs are followed by their numeric
equivalents; you may specify either when coding calls to Latch_Obtain. For
example, “ISGLOBT_COND (value of 1)” indicates the constant ISGLOBT_COND
and its associated value, 1.

Write the call as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v latch_number
v requestor_ID
v obtain_option
v access_option
v ECB_address

ISGLCRT Callable Service

Chapter 9. Using the Latch Manager Services 9-5

Latch_Obtain returns values in the following parameters:
v latch_set_token
v return_code

Latch_Obtain uses the following parameter for temporary storage:

v work_area

CALL ISGLOBT (latch_set_token
,latch_number
,requestor_ID
,obtain_option
,access_option
,ECB_address
,latch_token
,work_area
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token that the
Latch_Create service returned earlier when it created the latch set.

,latch_number
Specifies a fullword integer that contains the number of the latch to be obtained.
The latch_number must be in the range from 0 to the total number of latches in
the associated latch set minus one.

,requestor_ID
Specifies an 8-byte area that contains a value that identifies the caller of the
Latch_Obtain service. The requestor_ID can be any value except all binary
zeros.

Recovery routines can purge all granted and pending requests for a particular
requestor (identified by a requestor_id) within a specific latch set. When
specifying the requestor_ID on Latch_Obtain, consider which latches would be
purged if the Latch_Purge service were to be called with the specified
requestor_ID. For more information about the Latch_Purge service, see
“ISGLPRG — Purge a Requestor from a Latch Set” on page 9-11.

,obtain_option
A fullword integer that specifies how the system is to handle the Latch_Obtain
request if the latch manager cannot immediately grant ownership of the latch to
the requestor:

ISGLOBT_SYNC (value of 0)
The system processes the request synchronously. The system suspends
the requestor. When the latch manager eventually grants ownership of the
latch to the requestor, the system returns control to the requestor.

ISGLOBT_COND (value of 1)
The system processes the request conditionally. The system returns control
to the requestor with a return code of ISGLOBT_CONTENTION (value of
4). The latch manager does not queue the request to obtain the latch.

ISGLOBT_ASYNC_ECB (value of 2)
The system processes the request asynchronously. The system returns
control to the requestor with a return code of ISGLOBT_CONTENTION

ISGLOBT Callable Service

9-6 z/OS V1R4.0 MVS Callable Services for HLL

(value of 4). When the latch manager eventually grants ownership of the
latch to the requestor, the system posts the ECB pointed to by the value
specified on the ECB_address parameter.

When you specify this option, the ECB_address parameter must contain the
address of an initialized ECB that is addressable from the home address
space (HASN).

,access_option
A fullword or character string that specifies the access required:
v ISGLOBT_EXCLUSIVE (value of 0) - Exclusive (write) access
v ISGLOBT_SHARED (value of 1) - Shared (read) access

,ECB_address
Specifies a fullword that contains the address of an ECB. If you specify an
obtain_option of ISGLOBT_SYNC (value of 0) or ISGLOBT_COND (value of 1)
on the call to Latch_Obtain, the ECB_address field must be valid (though its
contents are ignored). IBM recommends that an address of 0 be used when no
ECB is to be processed.

If you specify an obtain_option of ISGLOBT_ASYNC_ECB (value of 2) and the
system returns a return code of ISGLOBT_CONTENTION (value of 4) to the
caller, the system posts the ECB pointed to by the value specified on the
ECB_address parameter when the latch manager grants ownership of the latch
to the requestor.

,latch_token
Specifies an 8-byte area to contain the latch token returned by the
Latch_Obtain service. You must provide this value as a parameter on a call to
the Latch_Release service to release the latch.

,work_area
Specifies a 256-byte work area that provides temporary storage for the
Latch_Obtain service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Obtain.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Obtain service.

ABEND Codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses for these codes.

Return Codes
When the Latch_Obtain service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 9-2. ISGLOBT Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLOBT_SUCCESS

Meaning : The Latch_Obtain service completed successfully.

Action : None.

ISGLOBT Callable Service

Chapter 9. Using the Latch Manager Services 9-7

Table 9-2. ISGLOBT Return Codes (continued)

Return code and Equate Symbol Meaning and Action

04
(4)
ISGLOBT_CONTENTION

Meaning : A requestor called Latch_Obtain with an
obtain_option of ISGLOBT_COND (value of 1) or
ISGLOBT_ASYNC_ECB (value of 2). The latch is not
immediately available.

Action : If the requestor specified an obtain_option of
ISGLOBT_COND (value of 1), no response is required. If the
requestor specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2), and the latch is still
required, wait on the ECB to be posted when the latch
manager grants ownership of the latch to the requestor.

Example
See “Examples of Calls to Latch Manager Services” on page 9-3 for an example of
how to call Latch_Obtain in C language.

ISGLREL — Release a Latch
Call the Latch_Release service to release ownership of an owned latch or a
pending request to obtain a latch. Requestors should call Latch_Release when the
use of a resource associated with a latch is no longer required. The following
callable services are related to Latch_Release:

ISGLCRT Creates a latch set that an application can use to serialize
resources.

ISGLOBT Requests exclusive or shared control of a latch.

ISGLPRG Purges all granted and pending requests for a particular requestor
within a specific latch set.

In the following description of Latch_Release:

v The term requestor describes a program that calls the Latch_Release service to
release ownership of an owned latch or a pending request to obtain a latch.

v Constants defined in the latch manager IDFs are followed by their numeric
equivalents; you may specify either when coding calls to Latch_Obtain. For
example, “ISGLREL_COND (value of 1)” indicates the constant ISGLREL_COND
and its associated value, 1.

Write the CALL as shown on the syntax diagram, coding all parameters in the
specified order.

Assign values to the following parameters:
v latch_set_token
v latch_token
v release_option

Latch_Release returns a value in the following parameter:

v return_code

Latch_Release uses the following parameter for temporary storage:

v work_area

ISGLOBT Callable Service

9-8 z/OS V1R4.0 MVS Callable Services for HLL

CALL ISGLREL (latch_set_token
,latch_token
,release_option
,work_area
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch set token returned to the caller
of the Latch_Create service. The latch set token identifies the latch set that
contains the latch to be released.

,latch_token
Specifies an 8-byte area that contains the latch token returned to the caller of
the Latch_Obtain service. The latch token identifies the request to be released.

,release_option
Specifies a fullword integer that tells the latch manager what to do when the
requestor either no longer owns the latch to be released or still has a pending
request to obtain the latch to be released:

ISGLREL_UNCOND (value of 0)
Abend the requestor:

v If a requestor originally specified an obtain_option of ISGLOBT_SYNC
(value of 0) when obtaining the latch, the latch manager does not release
the latch. The system abends the caller of Latch_Release with abend
X'9C6', reason code xxxx0009.

v If a requestor originally specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager does not release the latch. The system abends the caller of
Latch_Release with abend X'9C6', reason code xxxx0007.

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system abends the caller of Latch_Release with
abend X'9C6', reason code xxxx000A.

ISGLREL_COND (value of 1)
Return control to the requestor:

v If a requestor originally specified an obtain_option of
ISGLOBT_ASYNC_ECB (value of 2) when obtaining the latch, the latch
manager releases the request for ownership of the latch. The system
returns control to the caller of Latch_Release with a return code of
ISGLREL_NOT_OWNED_ECB_REQUEST (value of 4).

v If a requestor originally specified an obtain_option of ISGLOBT_SYNC
(value of 0) when obtaining the latch, the latch manager does not release
the request for ownership of the latch. The system returns control to the
caller of Latch_Release with a return code of
ISGLREL_STILL_SUSPENDED (value of 8).

v If the latch manager does not find a previous Latch_Obtain request for
the specified latch, the system returns control to the caller of
Latch_Release with a return code of
ISGLREL_INCORRECT_LATCH_TOKEN (value of 12).

,work_area
Specifies a 256-byte work area that provides temporary storage for the

ISGLREL Callable Service

Chapter 9. Using the Latch Manager Services 9-9

Latch_Release service. The work area should begin on a doubleword boundary
to optimize performance. The work area must be in the same storage key as
the caller of Latch_Release.

,return_code
Specifies a fullword integer that is to contain the return code from the
Latch_Release service.

ABEND Codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return Codes
When the Latch_Release service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in parentheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 9-3. ISGLREL Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLREL_SUCCESS

Meaning : The Latch_Release service completed
successfully. The caller released ownership of the
specified latch request.

Action : None.

04
(4)
ISGLREL_NOT_OWNED_ECB_REQUEST

Meaning : The requestor that originally called the
Latch_Obtain service is still expecting the system
to post an ECB (to indicate that the requestor has
obtained the latch). The call to the Latch_Release
service specified a release_option of
ISGLREL_COND (value of 1). The latch manager
does not post the ECB at the address specified on
the original call to Latch_Obtain. The latch
manager releases the latch.

Action : Validate the integrity of the resource
associated with the latch (the requestor might
have used the resource without waiting on the
ECB). If the resource is undamaged, no action is
necessary (a requestor routine may have been in
the process of cancelling the request to obtain the
latch).

08
(8)
ISGLREL_STILL_SUSPENDED

Meaning : Program error. The request specified a
correct latch token, but the program that originally
requested the latch is still suspended and waiting
to obtain the latch.

The latch requestor originally specified an
obtain_option of ISGLOBT_SYNC on the call to
the Latch_Obtain service. The call to the
Latch_Release service specified a release_option
of ISGLREL_COND (value of 1). The latch
manager does not release the latch. The latch
requestor remains suspended.

Action :
v Wait for the latch requestor to obtain the latch

and receive control back from the system; then
call the Latch_Release service again, or

v End the program that originally requested the
latch.

ISGLREL Callable Service

9-10 z/OS V1R4.0 MVS Callable Services for HLL

Table 9-3. ISGLREL Return Codes (continued)

Return code and Equate Symbol Meaning and Action

0C
(12)
ISGLREL_INCORRECT_LATCH_TOKEN

Meaning : The latch manager could not find a
granted or pending request associated with the
value on the latch token parameter. The latch
manager does not release a latch.

This return code does not indicate an error if a
routine calls Latch_Release to ensure that a latch
is released. For example, if an error occurs when
a requestor calls the Latch_Obtain service, the
requestor’s recovery routine might call
Latch_Release to ensure that the requested latch
is released. If the error prevented the requestor
from obtaining the latch, the recovery routine
receives this return code.

Action : If the return code is not expected, validate
that the latch token is the same latch token
returned to the caller of Latch_Obtain.

Example
See “Examples of Calls to Latch Manager Services” on page 9-3 for an example of
how to call Latch_Release in C language.

ISGLPRG — Purge a Requestor from a Latch Set
Call the Latch_Purge service to purge all granted and pending requests for a
particular requestor within a specific latch set. Recovery routines should call
Latch_Purge when one or more errors prevent requestors from releasing latches.
The following callable services are related to Latch_Purge:

ISGLCRT Creates a latch set that an application can use to serialize
resources.

ISGLOBT Requests exclusive or shared control of a latch.

ISGLREL Releases control of an owned latch or a pending request to obtain
a latch.

In the following description of Latch_Purge, constants defined in the latch manager
IDFs are followed by their numeric equivalents; you may specify either when coding
calls to Latch_Purge.

Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID

Latch_Purge returns a value in the return_code parameter.

CALL ISGLPRG (latch_set_token
,requestor_ID
,return_code)

ISGLREL Callable Service

Chapter 9. Using the Latch Manager Services 9-11

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service. The latch set token identifies the latch set from
which latch requests are to be purged.

,requestor_ID
Specifies an 8-byte area that contains the requestor_ID originally specified on
one or more previous calls to the Latch_Obtain service. The Latch_Purge
service is to release all Latch_Obtain requests that specify this requestor_ID.

,return_code
A fullword integer that contains the return code from the Latch_Purge service.

ABEND Codes
The caller might encounter abend code X'9C6' for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return Codes
When the Latch_Purge service returns control to your program, return_code
contains a hexadecimal return code. The following table identifies return codes in
hexadecimal and decimal (in paretheses), the equate symbol associated with each
return code, the meaning of each return code, and a recommended action:

Table 9-4. ISGLPRG Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning : The Latch_Purge service completed successfully.

Action : None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning : Program error. While purging all requests for a
particular requestor from a latch set, the latch manager
found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from
purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified
requestor.

Action : Take a dump and check for a storage overlay. If
your application can continue without the resources
serialized by the damaged latches, no action is required.

Example
See “Examples of Calls to Latch Manager Services” on page 9-3 for an example of
how to call Latch_Purge in C language.

ISGLPBA — Purge a Group of Requestors from a Group of Latch Sets
Call the Latch_Purge_by_Address_Space service to purge all granted and pending
requests for a group of requestors for a group of latch sets in the same address
space. To effectively use this service, your latch_set_names and your requestor_IDs
should be defined such that they have a common portion and a unique portion.
Groups of latch sets can then be formed by masking off the unique portion of the
latch_set_name, and groups of latch requests in a latch set can then be formed by
masking off the unique portion of the requestor_ID. Masking off the unique portion
of the requestor_ID allows a single purge request to handle multiple latch sets and

ISGLPRG Callable Service

9-12 z/OS V1R4.0 MVS Callable Services for HLL

multiple requests in a latch set. Recovery routines should call
Latch_Purge_by_Address_Space when one or more errors prevent requestors from
releasing latches.

The following callable services are related to Latch_Purge_by_Address_Space:

ISGLCRT Creates a latch set that an application can use to serialize
resources.

ISGLOBT Requests exclusive or shared control of a latch.

ISGLREL Releases control of an owned latch or a pending request to obtain
a latch.

ISGLPRG Purges all granted and pending requests for a particular requestor
within a specific latch set.

In the following description of Latch_Purge_by_Address_Space, equate symbols
defined in the ISGLMASM macro are followed by their numeric equivalents; you
may specify either when coding calls to Latch_Purge_by_Address_Space.

Write the CALL as shown on the syntax diagram. You must code all parameters on
the CALL statement in the order shown.

Assign values to the following parameters:
v latch_set_token
v requestor_ID
v requestor_ID_mask
v latch_set_name
v latch_set_name_mask

Latch_Purge_by_Address_Space returns a value in the return_code parameter.

CALL ISGLPBA (latch_set_token
,requestor_ID
,requestor_ID_mask
,latch_set_name
,latch_set_name_mask
,return_code)

The parameters are explained as follows:

latch_set_token
Specifies an 8-byte area that contains the latch_set_token previously returned
by the Latch_Create service or a value of zero. If the value is not zero, the
latch_set_token identifies the latch set from which latch requests are to be
purged. If the latch_set_token is set to zero, a group of latch sets, determined
by the latch_set_name and latch_set_name_mask, will have their latch requests
purged.

,requestor_id
Specifies an 8-byte area that contains a portion of the requestor_ID originally
specified on one or more previous calls to the Latch_Obtain service. This
operand will be compared to the result of logically ANDing each requestor_ID in
the latch set with the requestor_ID_mask. Make sure that any corresponding

ISGLPBA Callable Service

Chapter 9. Using the Latch Manager Services 9-13

bits that are zero in the requestor_ID_mask are also zero in this field, otherwise
no ID matches will occur. Each requestor_ID that has a name match will have
its Latch_Obtain requests released.

,requestor_id_mask
Specifies an 8-byte area that contains the requestor_ID_mask that will be
logically ANDed to each requestor_ID in the latch set and then compared to the
requestor_ID operand. Each requestor_ID that has a name match will have its
Latch_Obtain requests released.

,latch_set_name
Specifies a 48-byte area that contains the portion of the latch_set_name that
will be compared to the result of logically ANDing the latch_set_name_mask
with each latch set name in the primary address space. Make sure that any
corresponding bits that are zero in the latch_set_name_mask are also zero in
this field, otherwise no name matches will occur. Each latch set that has a
name match will have its Latch_Obtain requests released. If the latch_set_token
operand is non-zero this operand is ignored.

,latch_set_name_mask
Specifies a 48-byte area that contains the mask that will be logically ANDed to
each of the latch set names in the primary address apace and then compared
to the latch_set_name operand. Each latch set that has a name match will have
its Latch_Obtain requests released. If the latch_set_token operand is non-zero
this operand is ignored.

,return_code
A fullwprd integer that contains the return code from the
Latch_Purge_By_Address_Space service.

ABEND Codes
The caller might encounter abend code X’9C6’ for certain errors. See z/OS MVS
System Codes for explanations and responses.

Return Codes
When the Latch_Purge_by_Address_Space service returns control to your program,
the return_code contains a hexadecimal return code. The following table identifies
return codes in hexadecimal and decimal (in parentheses), the equate symbol
associated with each return code, the meaning of each return code, and a
recommended action:

Table 9-5. ISGLPBA Return Codes

Return code and Equate Symbol Meaning and Action

00
(0)
ISGLPRG_SUCCESS

Meaning : The Latch_Purge_by_Address_Space service
completed successfully.

Action : None.

04
(4)
ISGLPRG_DAMAGE_DETECTED

Meaning : Program error. While purging all requests for a
particular requestor from a latch set, the latch manager
found incorrect data in one or more latches. The latch
manager tries to purge the latches that contain incorrect
data, but the damage might prevent the latch manager from
purging those latches. The latch manager purges the
remaining latches (those with correct data) for the specified
requestor.

Action : Take a dump and check for a storage overlay. If your
application can continue without the resources serialized by
the damaged latches, no action is required.

ISGLPBA Callable Service

9-14 z/OS V1R4.0 MVS Callable Services for HLL

Part 4. Resource Recovery Services (RRS)

Chapter 10. Using Protected Resources 10-1
Resource Recovery Programs 10-1
Two-Phase Commit Protocol 10-2
Resource Recovery Process 10-2
Requesting Resource Protection and Recovery 10-4
Using Distributed Resource Recovery 10-5
Application_Backout_UR (SRRBACK). 10-5

Description . 10-5
Environment . 10-5
Programming Requirements 10-6

Application_Commit_UR (SRRCMIT) 10-9
Description . 10-9

Environment . 10-9
Programming Requirements 10-9
Restrictions . 10-10
Input Register Information. 10-10
Output Register Information 10-10
Performance Implications 10-11
Syntax . 10-11
Parameters . 10-11
ABEND Codes . 10-11
Return Codes . 10-11
Example . 10-13

© Copyright IBM Corp. 1994, 2002

z/OS V1R4.0 MVS Callable Services for HLL

Chapter 10. Using Protected Resources

Many computer resources are so critical to a company’s work that the integrity of
these resources must be guaranteed. If changes to the data in the resources are
corrupted by a hardware or software failure, human error, or a catastrophe, the
computer must be able to restore the data. These critical resources are called
protected resources or, sometimes, recoverable resources.

The system, when requested, can coordinate changes to one or more protected
resources so that all changes are made or no changes are made. Resources that
the system can protect are, for example:
v A hierarchical database
v A relational database
v A product-specific resource

Resource recovery is the protection of the resources. Resource recovery consists of
the protocols and program interfaces that allow an application program to make
consistent changes to multiple protected resources.

Resource Recovery Programs
Three programs work together to protect resources:

v Application program : The application program accesses protected resources
and requests changes to the resources.

v Resource manager : A resource manager is an authorized program that controls
and manages access to a resource. A resource manager provides interfaces that
allow the application program to read and change a protected resource. The
resource manager also takes actions that commit or back out changes to a
resource it manages.

Often an application changes more than one protected resource, so that more
than one resource manager is involved.

A resource manager may be an IBM product, part of an IBM product, or a
product from another vendor. A resource manager can be:

– A database manager, such as DB2®

– A program, such as IMS/ESA® Transaction Manager, that accepts work from
an end user or another system and manages that work

Note: The resource manager in resource recovery is different from an RTM
resource manager, which is related to the operating system’s recovery
termination management (RTM) and runs during termination processing.

v Sync-point manager : The sync-point manager coordinates changes to protected
resources, so that all changes are made or no changes are made. The z/OS
sync-point manager is recoverable resource management services (RRMS).
Three MVS components provide RRMS function; because resource recovery
services (RRS) provides the sync-point services, most technical information uses
RRS rather than RRMS.

If your resources are distributed, so that they are on multiple systems, the
communication resource manager on one system will coordinate the changes.
Each communication resource manager works with RRS on its system.

RRS can enable resource recovery on a single system or, with APPC/MVS, on
multiple systems.

© Copyright IBM Corp. 1994, 2002 10-1

The application program, resource manager, and sync-point manager use a
two-phase commit protocol to protect resources.

Two-Phase Commit Protocol
The two-phase commit protocol is a set of actions used to make sure that an
application program makes all changes to a collection of resources or makes no
changes to the collection. The protocol makes sure of the all-or-nothing changes
even if the system, RRS, or the resource manager fails.

The phases of the protocol are:

v Phase 1 : In the first phase, each resource manager must be prepared to either
commit or backout the changes. They prepare for the commit and tell RRS either
YES, the change can be made, or NO, the change cannot be made.

First, RRS decides the results of the YES or NO responses from the resource
managers. If the decision is YES to commit the changes, RRS hardens the
decision, meaning that it stores the decision in an RRS log.

Once a commit decision is hardened, the application changes are considered
committed. If there is a failure after this point, the resource manager will make
the changes during restart. Before this point, a failure causes the resource
manager to back out the changes during restart.

v Phase 2 : In the second phase, the resource managers commit or back out the
changes.

Resource Recovery Process
For a look at the resource recovery process, think of a person who requests an
automated teller machine (ATM) to transfer money from a savings account to a
checking account. The application program receives the person’s input from the
ATM. Each account is in a different database. Each database has its own resource
manager. The sync-point manager is RRS. Figure 10-1 shows how the ATM
application, resource managers, and RRS work together

The actions required to process the ATM transaction are:

RRS

Resource manager for
savings database

API

ATM application:
Subtract from savings
Add to checking
Commit the changes

C
o
m
m
i
t

API

Resource manager for
checking database

Figure 10-1. ATM Transaction

10-2 z/OS V1R4.0 MVS Callable Services for HLL

1. The ATM user requests transfer of money from a savings account to a
checking account.

2. The ATM application program receives the ATM input.

Figure 10-2 shows, for the same transaction, the sequence of the following actions,
with time moving from left to right, in the two-phase commit protocol RRS uses to
commit the changes. The top line in the figure shows the two phases of the protocol
described in “Two-Phase Commit Protocol” on page 10-2.

3. The ATM application requests the savings resource manager to subtract the
money from the savings database. For this step, the application uses the
resource manager’s application programming interface (API).

4. The ATM application requests the checking resource manager to add the
money to the checking database. The application uses this resource
manager’s API.

5. The ATM application issues a call to RRS to commit the database changes.

6. RRS asks the resource managers to prepare for the changes.

7. The resource managers indicate whether or not they can make the changes,
by voting YES or NO. In Figure 10-2, both resource managers vote YES.

8. In response, RRS notifies the resource managers to commit the changes, that
is, to make the changes permanently in the databases.

9. The resource managers complete the commit and return OK to RRS.

10. RRS gives a return code to the application program, indicating that all changes
were made in the databases.

If the ATM user decides not to transfer the money and presses a NO selection, the
application requests backout, instead of commit, in step 6. In this case, the changes
are backed out and are not actually made in any database. See Figure 10-3 on
page 10-4.

Return
Code:

Changes
Committed

(10)

OK

OK
(9)

Notify
Commit

(8)

YES

YES
(7)

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes
(3,4)

(Phase 2)(Phase 1)PROTOCOL PHASE

ATM application:
Subtract from savings
Add to checking Commit

(5)

Prepare
(6)

Figure 10-2. Two-Phase Commit Actions

Chapter 10. Using Protected Resources 10-3

Or if a resource manager cannot make the change to its database, the resource
manager votes NO during prepare. If any resource manager votes NO, all of the
changes are backed out. See Figure 10-4.

Requesting Resource Protection and Recovery
To request resource protection, your application program must use resource
managers that work with RRS to protect resources. The code in your application
should do the following:

1. Request one or more accesses to resources for reads, writes, or both.

2. If all of the changes are to be made, request commit by issuing a call to the
Application_Commit_UR service.

3. If none of the changes are to be made, request backout by issuing a call to the
Application_Backout_UR service.

For details about the calls, see “Application_Backout_UR (SRRBACK)” on
page 10-5 and “Application_Commit_UR (SRRCMIT)” on page 10-9.

Return
Code:

Changes
Backed Out

OK

OK

Notify
BackoutRRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

ATM application:
Subtract from savings
Add to checking Backout

Figure 10-3. Backout — Application Request

Return
Code:

Changes
Backed Out

OK

OK

Notify
Backout

NO

YES

RRS

Resource manager for
checking database

Resource manager for
savings database

Resource
Changes

ATM application:
Subtract from savings
Add to checking Commit

Prepare

Figure 10-4. Backout — Resource Manager Votes NO

10-4 z/OS V1R4.0 MVS Callable Services for HLL

Using Distributed Resource Recovery
The databases for a work request may be distributed, residing on more than one
system. In this case, the application program initiating the work uses a distributed
communications manager, such as APPC/MVS, to request changes by an
application program on another system. The database resource managers,
communication resource managers, and RRS components work together to make
or not make all changes of both application programs. Figure 10-5 illustrates
distributed resource recovery.

Application_Backout_UR (SRRBACK)
Call the Application_Backout_UR service to indicate that the changes for the unit of
recovery (UR) are not to be made. A UR represents the application’s changes to
resources since the last commit or backout or, for the first UR, since the beginning
of the application. In response to the call, RRS requests that the resource
managers return their resources to the values they had before the UR was
processed.

An application might need to issue a call to the Application_Backout_UR service if:

v An APPC/MVS call returns a TAKE_BACKOUT return code. For example, a CI
send_data call to a communications manager could return TAKE_BACKOUT.

v A resource manager call returns a return code that indicates that a resource
manager directly backed out its resource. This situation can occur if the resource
manager does not have the capability to return a TAKE_BACKOUT code.

v A communications resource manager call returns a return code that indicates that
a backout must be done, such as a return code of
COM_RESOURCE_FAILURE_NO_RETRY from a CI call.

Description

Environment
The requirements for the caller are:

Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN

Application

RRS

Resource
manager

Commun-
ication
resource
manager

C
o
m
m
i
t

APIAPI

Commun-
ication
resource
manager

API

RRS

Resource
manager

Application

C
o
m
m
i
t

API

• • • • • • •

Figure 10-5. Transaction — Distributed Resource Recovery

Chapter 10. Using Protected Resources 10-5

AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming Requirements
The two methods described here can be used to access the callable service.

v Linkedit the stub routine ATRSCSS with the program that uses the service.
ATRSCSS resides in SYS1.CSSLIB.

v Code the MVS LOAD macro within a program that uses the service to obtain the
entry point address of the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can
provide the proper assembler interface. Other programming notations, such as
variable declarations, are also language-dependent.

SYS1.CSSLIB contains stubs for all of MVS’s callable services including RRS.
Other program products like DB2 and IMS™ also provide libraries that contain stubs
for their versions of SRRBACK and SRRCMIT.

Because other program products like DB2 and IMS provide their own stubs for
SRRBACK or SRRCMIT, you must make sure your program uses the correct stub.
You need to take particular care when recompiling and linkediting any application
that uses these services. When you linkedit, make sure that the data sets in the
syslib concatenation are in the right order. For example, if you want a DB2
application to use the RRS callable service SRRBACK or SRRCMIT, you must
ensure that SYS1.CSSLIB precedes the data sets with the stubs that DB2 provides
for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects
SRRCMIT for another program product like IMS, the application does not run
correctly, and your program receives an error return code from the call to
SRRCMIT.

For examples of the JCL link edit statements used with high-level languages, see
Chapter 4, “Window Services Coding Examples” on page 4-1 or Chapter 8,
“Reference Pattern Services Coding Examples” on page 8-1.

High Level Language (HLL) Definitions: The high level language (HLL)
definitions for the callable service are:

HLL Definition Description
ATRSASM 390 Assembler declarations
ATRSC C/390 declarations
ATRSCOB COBOL 390 declarations
ATRSPAS Pascal 390 declarations
ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either
use a BASSM instruction in place of the CALL or specify a LINKINST=BASSM
parameter on the CALL macro. For example:

Application_Backout_UR

10-6 z/OS V1R4.0 MVS Callable Services for HLL

CALL SRRBACK(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are
truncated at 30 characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are
truncated at 31 characters.

Restrictions: The state of the UR must be in-reset or in-flight . A successful call
creates a new UR that is in-reset .

The UR cannot be in local transaction mode.

Input Register Information: Before issuing the call, the caller does not have to
place any information into any register unless using it in register notation for the
parameter, or using it as a base register.

Output Register Information: When control returns to the caller, the GPRs
contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance Implications: None.

Syntax: Write the call as shown in the syntax diagram. You must code the
parameters in the CALL statement as shown.

CALL SRRBACK (return_code)

Parameters: The parameters are explained as follows:

return_code
Returned parameter
v Character Set: N/A
v Length: 4 bytes

Contains the return code from the Application_Backout_UR service.

Application_Backout_UR

Chapter 10. Using Protected Resources 10-7

ABEND Codes: The call might result in an abend X'5C4' with a reason code of
X'00150000' through X'00150010'. See z/OS MVS System Codes for the
explanations and actions.

If your application ends abnormally during sync-point processing, the condition is
called an asynchronous abend, and you might need to see the programmer at your
installation responsible for managing RRS. Under information about working with
application programs, z/OS MVS Programming: Resource Recovery contains
additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the
synch-point service results in an abend X'058'. When RRS restarts, transactions
that were in progress are resolved.

Return Codes: When the service returns control to your program, GPR 15 and
return_code contain a hexadecimal return code, shown in the following table. If you
need help with a return code, see the programmer at your installation responsible
for managing RRS. Under information about working with application programs,
z/OS MVS Programming: Resource Recovery contains additional details about
these return codes.

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

0 0 Code : RR_OK

Meaning : Successful completion. The resource managers returned
their resources to the values they had before the UR was
processed.

Action : None.

12D 301 Code : RR_BACKED_OUT_OUTCOME_PENDING

Meaning : Environmental error. The backout was not completed,
for one of the following reasons:

v RRS requested that the resource managers back out the
changes to the resources. However, the state of one or more of
the resources is not known.

v RRS is not active.

v The resource manager fails with an incomplete protected
interest in the UR, or RRS fails before the UR is complete.

Action : The action by an application depends on the system
environment. Some possible actions are:

v Display a warning message to the end user.

v Write an exception entry into an output log.

v Abnormally end the application because the resource manager
will not allow any further changes to the resource until the
situation is resolved.

12E 302 Code : RR_BACKED_OUT_OUTCOME_MIXED

Meaning : Environmental error. RRS requested that the resource
managers back out the changes to the resources. However, one or
more resources were changed.

Action : Same as the action for return code 12D (301).

Example: In the pseudocode example, the application issues a call to request that
RRS back out a UR.

Application_Backout_UR

10-8 z/OS V1R4.0 MVS Callable Services for HLL

...
CALL SRRBACK(RETCODE)...

Application_Commit_UR (SRRCMIT)
Call the Application_Commit_UR service to indicate that the changes for the unit of
recovery (UR) are to be made permanent. A UR represents the application’s
changes to resources since the last commit or backout or, for the first UR, since the
beginning of the application. In response to the call, RRS requests that the resource
managers make the changes permanent.

Certain resource managers, such as a communications manager, can issue a
TAKE_COMMIT return code to an application that has requested changes to resources.
In response to the TAKE_COMMIT code from the resource manager, the application
should request the changes to the resources:

v If all of the change requests are accepted, call the Application_Commit_UR
service again.

v If any of the change requests are not accepted. call the Application_Backout_UR
service to back out the changes.

Description

Environment
The requirements for the caller are:

Minimum authorization: Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space

and addressable by the caller.
Linkage: Standard MVS linkage conventions are used.

Programming Requirements
The two methods described here can be used to access the callable service.

v Linkedit the stub routine ATRSCSS with the program that uses the service.
ATRSCSS resides in SYS1.CSSLIB.

v Code the MVS LOAD macro within a program that uses the service to obtain the
entry point address of the service. Use that address to call the service.

Additional language-specific statements may be necessary so that compilers can
provide the proper assembler interface. Other programming notations, such as
variable declarations, are also language-dependent.

SYS1.CSSLIB contains stubs for all of MVS’s callable services including RRS.
Other program products like DB2 and IMS also provide libraries that contain stubs
for their versions of SRRBACK and SRRCMIT.

Because other program products like DB2 and IMS provide their own stubs for
SRRBACK or SRRCMIT, you must make sure your program uses the correct stub.
You need to take particular care when recompiling and linkediting any application

Application_Backout_UR

Chapter 10. Using Protected Resources 10-9

that uses these services. When you linkedit, make sure that the data sets in the
syslib concatenation are in the right order. For example, if you want a DB2
application to use the RRS callable service SRRBACK or SRRCMIT, you must
ensure that SYS1.CSSLIB precedes the data sets with the stubs that DB2 provides
for SRRBACK or SRRCMIT.

If you inadvertently cause your program to use SRRCMIT for RRS when it expects
SRRCMIT for another program product like IMS, the application does not run
correctly, and your program receives an error return code from the call to
SRRCMIT.

For examples of the JCL link edit statements for high-level languages, see
Chapter 4, “Window Services Coding Examples” on page 4-1 or Chapter 8,
“Reference Pattern Services Coding Examples” on page 8-1.

High Level Language (HLL) Definitions: The high level language (HLL)
definitions for the callable service are:

HLL Definition Description
ATRSASM 390 Assembler declarations
ATRSC C/390 declarations
ATRSCOB COBOL 390 declarations
ATRSPAS Pascal 390 declarations
ATRSPLI PL/I 390 declarations

Assembler: If you are an Assembler language caller running in AMODE 24, either
use a BASSM instruction in place of the CALL or specify a LINKINST=BASSM
parameter on the CALL macro. For example:
CALL SRRCMIT(RETCODE),LINKINST=BASSM

COBOL: The return/reason code names and abend code names in ATRSCOB are
truncated at 30 characters.

PL/I: The return/reason code names and abend code names in ATRSPLI are
truncated at 31 characters.

Restrictions
The state of the UR that represents the changes must be in-reset or in-flight .

The UR cannot be in local transaction mode.

Input Register Information
Before issuing the call, the caller does not have to place any information into any
register unless using it in register notation for the parameter, or using it as a base
register.

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Application_Commit_UR

10-10 z/OS V1R4.0 MVS Callable Services for HLL

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a call. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance Implications
None.

Syntax
Write the call as shown in the syntax diagram. You must code the parameter in the
CALL statement as shown.

CALL SRRCMIT (return_code)

Parameters
The parameters are explained as follows:

return_code
Returned parameter
v Type: Integer
v Length: 4 bytes

Contains the return code from the Application_Commit_UR service.

ABEND Codes
The call might result in an abend X'5C4' with a reason code of X'00160000' through
X'00160012'. See z/OS MVS System Codes for the explanations and actions.

If your application ends abnormally during sync-point processing, the condition is
called an asynchronous abend, and you might need to see the programmer at your
installation responsible for managing RRS. Under information about working with
application programs, z/OS MVS Programming: Resource Recovery contains
additional details about asynchronous abends.

Issuing SETRRS CANCEL for non-resource manager programs that use the
synch-point service results in an abend X'058'. When RRS restarts, transactions
that were in progress are resolved.

Return Codes
When the service returns control to your program, GPR 15 and return_code contain
a hexadecimal return code, shown in the following table. If you need help with a
return code, see the programmer at your installation responsible for managing RRS.
Under information about working with application programs, z/OS MVS
Programming: Resource Recovery contains additional details about these return
codes.

Application_Commit_UR

Chapter 10. Using Protected Resources 10-11

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

0 0 Code : RR_OK

Meaning : Successful completion. The changes to all protected
resources have been made permanent.

Action : None.

65 101 Code : RR_COMMITTED_OUTCOME_PENDING

Meaning : Environmental error. The commit was not completed:

v RRS requested that the resource managers make the changes
to the resources permanent. However, the state of one or more
of the resources is not known.

Action : The action by an application depends on the system
environment. Some possible actions are:

v Display a warning message to the end user.

v Write an exception entry into an output log.

v Abnormally end the application because the resource manager
will not allow any further changes to the resource until the
situation is resolved.

66 102 Code : RR_COMMITTED_OUTCOME_MIXED

Meaning : Environmental error. RRS requested that the resource
managers make the changes to the resources permanent. One or
more resources were changed, but one or more were not
changed.

Action : Same as the action for return code 65 (101).

C8 200 Code : RR_PROGRAM_STATE_CHECK

Meaning : Environmental error. The commit failed. The resource
managers did not make the changes to the resources because
one of the following occurred:

v A resource on the same system as the application is not in the
proper state for a commit.

v A protected conversation is not in the required state: send ,
send pending , defer receive , defer allocate , sync_point ,
sync_point send , sync_point deallocate .

v A protected conversation is in send state. The communications
manager started sending the basic conversation logical record,
but did not finish sending it.

Action : Initiate an action by a resource manager to get its
resource to a committable state, then call Application_Commit_UR
again. For example, if the application has allocated a protected
conversation through APPPC/MVS, and the conversation is in
receive state, the application gets this return code. It then must
use APPC/MVS services to change the conversation to send state
before issuing the commit request again.

12C 300 Code : RR_BACKED_OUT

Meaning : Environmental error. The commit failed. The resource
managers backed out the changes, returning the resources to the
values they had before the UR was processed.

Action : Same as the action for return code 65 (101).

Application_Commit_UR

10-12 z/OS V1R4.0 MVS Callable Services for HLL

Hexadecimal
Return Code

Decimal Return
Code

Meaning and Action

12D 301 Code : RR_BACKED_OUT_OUTCOME_PENDING

Meaning : Environmental error. The commit failed for one of the
following reasons:

v RRS requested that the resource managers back out the
changes to the resources. However, the state of one or more of
the resources is not known.

v RRS is not active.

Action : Same as the action for return code 65 (101).

12E 302 Code : RR_BACKED_OUT_OUTCOME_MIXED

Meaning : Environmental error. The commit failed. RRS requested
that the resource managers back out the changes to the
resources. One or more resources were backed out, but one or
more were changed.

Action : Same as the action for return code 65 (101).

Example
In the pseudocode example, the application issues a call to request that RRS
commit a UR.
...
CALL SRRCMIT(RETCODE)...

Application_Commit_UR

Chapter 10. Using Protected Resources 10-13

Application_Commit_UR

10-14 z/OS V1R4.0 MVS Callable Services for HLL

Part 5. Other Callable Services

Chapter 11. IEAAFFN — Assign Processor Affinity for Encryption or
Decryption . 11-1

Restrictions and Limitations 11-2
Requirements. 11-2
Return Codes. 11-2

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-1
Defining the Entry Characteristics of the Target Routine 12-1
Freeing Dynamic Storage Associated with the Caller 12-2
Programming Requirements 12-2
Restrictions . 12-5
Performance Implications . 12-5
Syntax Diagram . 12-5

C/370 Syntax. 12-5
PL/I Syntax . 12-6

Parameters . 12-6
Return Codes . 12-6
Example . 12-7

C/370 Example Program 12-7
Assembler program for use with the C/370 example 12-8

Chapter 13. CSRSI — System Information Service 13-1
Description . 13-1

Environment . 13-1
Programming Requirements 13-1
Restrictions . 13-1
Input Register Information 13-1
Output Register Information 13-2
Syntax . 13-2
Parameters . 13-2
Return Codes . 13-3

CSRSIC C/370 Header File 13-4

© Copyright IBM Corp. 1994, 2002

z/OS V1R4.0 MVS Callable Services for HLL

Chapter 11. IEAAFFN — Assign Processor Affinity for
Encryption or Decryption

Call IEAAFFN when the only function performed by your program is to encrypt or
decrypt data. Encryption and decryption take place on processors that have
Integrated Cryptographic Features (ICRFs) associated with them. IEAAFFN assigns
a program affinity to processors with an ICRF; that is, IEAAFFN makes sure the
system runs your program on a processor that has an ICRF associated with it.

You do not have to use the IEAAFFN service to ensure the system runs a program
on a processor with an ICRF; the system ensures that automatically. However, you
can avoid some of the system overhead involved in the selection process by using
the IEAAFFN service. IBM recommends that you use the service in programs
whose only function is encryption or decryption.

Note: When you use this service to either establish or remove processor affinity for
a program, the program permanently loses any processor affinity that the
system programmer assigned to it in the SCHEDxx member of
SYS1.PARMLIB.

Code the CALL following the syntax of the high level language you are using and
specifying all parameters in the order shown below.

CALL IEAAFFN (feature
,operation_type
,return_code)

The parameters are explained as follows:

feature
Specifies the feature required by your program. Specify CRYPTO to indicate an
ICRF.

Define feature as character data of length 10. Pad the string on the right with 4
blanks.

,operation_type
Specifies the type of action you want to take. The types are:

GRANT Establish affinity for the program to processors with an ICRF.

REMOVE Remove affinity for the program to processors with an ICRF.

Note: After you issue a REMOVE request, the program has no
processor affinity; it can run on any processor.

Define operation_type as character data of length 6. If you specify GRANT, pad
the string on the right with 1 blank.

,return_code
When IEAAFFN completes, return_code contains the return code from the
service. The return code value is also in register 15.

Define return_code as integer data of length 4. The return codes are explained
under “Return Codes” on page 11-2.

© Copyright IBM Corp. 1994, 2002 11-1

Restrictions and Limitations
Use the IEAAFFN service to request affinity to processors with an ICRF only for
sections of a program that require an ICRF and not other features, such as a Vector
Facility.

Requirements

Authorization: Supervisor state or Problem state, any PSW key
Dispatchable unit mode: Task
Cross memory mode: You can be either in cross memory mode or not
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: None held
Control parameters: Must be in the primary address space

Return Codes
When IEAAFFN returns control to your program, return_code and register 15
contain a return code. The following table identifies the return codes in hexadecimal
and decimal (in parentheses), tells what each means, and recommends an action
that you should take.

Table 11-1. IEAAFFN Return Codes

Return code Meaning and Action

00000000 (0) Meaning : The operation was successful.

Action : None required.

00000004 (4) Meaning : The program already had processor affinity assigned to it by the
system programmer. The system replaces that affinity with the affinity you
requested in this service.

Action : None required.

0000000C (12) Meaning : Your program was not running in task mode.

Action : This service is not available to SRB mode programs. See the
FEATURE= option on the SCHEDULE macro for the use of this function in SRB
mode.

00000010 (16) Meaning : The feature you specified was not a valid feature.

Action : Specify a valid feature name.

00000014 (20) Meaning : The operation type you specified was not valid.

Action : Specify a valid operation type.

00000018 (24) Meaning : The feature you specified is not installed on any of the processors in
the system.

Action : To the system programmer: See that the program runs on a system with
the feature installed.

0000001C (28) Meaning : A system error has occurred.

Action : To the system programmer: The error is recorded in LOGREC. Look for a
record with a subcomponent of “IEAAFFN CSS”; then call your IBM Support
Center.

11-2 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 12. CSRL16J — Transfer Control to Another Routine

The CSRL16J service allows you to transfer control to another routine running
under the same request block (RB) as the calling program. The CSRL16J service
will transfer control with the contents of all 16 registers intact. When you transfer
control to the other routine, use the CSRL16J service to:

v Define the entry characteristics and register contents for the target routine.

v Optionally free dynamic storage associated with the calling program.

When the service is successful, control transfers to the target routine. After the
target routine runs, it can transfer control to any program running under the same
request block (RB), including the calling program.

The CSRL16J service returns control to the calling program only when it cannot
transfer control successfully to the target because of an error.

Defining the Entry Characteristics of the Target Routine
Specify the entry characteristics for the target in data area L16J, which forms the
parameter list passed from the calling program to CSRL16J. Use the CSRYL16J
mapping macro to see the format of the L16J parameter list. To build the L16J
parameter list, first initialize the parameter list with zeroes and then fill in the
desired fields. This ensures that all fields requiring zeroes are correct. You can
specify the following characteristics for the target in L16J:

v Length of the L16J parameter list, L16JLENGTH field in mapping macro
CSRYL16J.

v Contents of the general purpose registers (GPRs) 0-15, L16JGRS field in
mapping macro CSRYL16J.

v Contents of the access registers (ARs) 0-15, L16JARS field in mapping macro
CSRYL16J.

v PSW information for the target routine, field L16JPSW field in mapping macro
CSRYL16J.
– PSW address and AMODE
– PSW ASC mode - primary or AR
– PSW program mask
– PSW condition code

Authorized callers, (callers in supervisor state, with PSW key 0-7, or with a PKM
that allows any key 0-7) can specify:
– PSW state - problem or supervisor
– PSW key.

For unauthorized callers, the system uses the PSW state and key of the calling
program for the target routine.

See Principles of Operation for more information about the contents of the PSW.

v Bit indicating whether or not you want to specify the contents of the access
registers (ARs) for the target routine. This is the L16JPROCESSARS bit in
mapping macro CSRYL16J.

Set the bit on if you want to specify the contents of the ARs. If you set the bit off,
the system determines the contents of the ARs.

© Copyright IBM Corp. 1994, 2002 12-1

If the bit is set on when CSRL16J passes control to the target routine, the access
registers (ARs) contain:

Register Contents

0-15 Specified by the caller

If the bit is set off when CSRL16J passes control to the target routine, the access
registers (ARs) contain:

Register Contents

0-1 Do not contain any information for use by the routine

2-13 The contents are the same as they were when the caller issued
the CSRL16J service.

14-15 Do not contain any information for use by the routine

Freeing Dynamic Storage Associated with the Caller
If the calling program has a dynamic storage area associated with it, you can
specify that some or all of this storage area be freed before CSRL16J transfers
control to the target. In the L16J parameter list, specify:

v The subpool of the area that you want the system to free. L16JSUBPOOL field in
mapping macro CSRYL16J.

v The length, in bytes, of the dynamic storage area you want the system to free.
L16JLENGTHTOFREE field in mapping macro CSRYL16J.

v The address of the dynamic storage area you want the system to free.
L16JAREATOFREE field in mapping macro CSRYL16J.

Make sure that the address is on a double-word boundary. Otherwise the service
ends with an abend code X'978'. See z/OS MVS System Codes for information
on abend code X'978'.

The system frees the storage only when the CSRL16J service is successful.

Programming Requirements
These are the requirements:

v The calling program must be in 31-bit addressing mode.

v Before you use the CSRL16J service, you must build a parameter list, L16J, to
pass to the service. The parameter list includes the entry characteristics and
environment for the target.

If you are coding in C/370, you can include the CSRLJC macro to provide
declarations in the calling program for the L16J parameter area and return codes.
See Figure 12-1 on page 12-3.

If you are coding in PL/I, you can include the CSRLJPLI macro to provide
declarations for the return codes only. See Figure 12-2 on page 12-5 for the
CSRLJPLI macro. Use the data area, mapped by the CSRYL16J mapping
macro, as a model for the structure of your parameter list when coding in PL/I.

CSRLJC provides the following declarations for use in your C/370 program:

12-2 z/OS V1R4.0 MVS Callable Services for HLL

/***
* Type Definitions for User Specified Parameters *
***/

/* Type for user supplied L16J */
typedef struct ??<
int Version; /* Must be 0 */
int Length; /* Initialize to CSRL16J_LENGTH */
int SubPool; /* Subpool of storage to be freed */
union ??<
char GRs??(64??); /* General registers */
int GR??(16??); /* General register 0-15 */

??> u1;
union ??<
char ARs??(64??); /* Access registers */
int AR??(16??); /* Access register 0-15 */

??> u2;
union ??<
char PSW??(8??); /* PSW: the processing will use the address,

AMODE, ASC mode, CC, and program mask. For a
supervisor state or PKM 0-7 or key 0-7
caller, it will use the state and key from
the PSW. Otherwise, it will set to caller
key and state. */

struct ??<
int PSWByte0to3 : 32; /* First 4 bytes */
union ??<
void *PSWAddr; /* Address and AMODE */
struct ??<
int PSWAmode : 1; /* AMODE */
int Rsvd0 : 31;

??> s2;
??> u4;

??> s1;
??> u3;
union ??<
struct ??<
int Flags : 8; /* Flags */
int Rsvd0 : 24; /* Reserved */

??> s3;
struct ??<
int ProcessARs : 1; /* If on, ARs will be processed. Otherwise

not. If not processed, ARs 0, 1, 14, and 15 are
unpredictable. ARs 2-13 are taken from the values
present when the service is entered. */

int Rsvd0 : 31; /* Reserved */
??> s4;

??> u5;

Figure 12-1. CSRLJC declarations for the L16J parameter list for C/370 (Part 1 of 2)

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-3

CSRLJPLI provides the following declarations for use in your PL/I program:

void *AreaToFree; /* Address of area to free. If this is non-0
then the area will be freed using the subpool
specified in L16J.Subpool. This can be used
to free the caller’s entire dynamic area if
so desired. When this option is specified, it
is necessary that the area begin on a
doubleword boundary. */

int LengthToFree; /* Length of area to free, in bytes. */
char Rsvd??(8??); /* Reserved */

??> L16J;
/***
* Fixed Service Parameter and Return Code Defines *
***/

#define CSRL16J_LENGTH 168 /* Length of L16J */

/* Service Return Codes */
#define CSRL16J_OK 0
#define CSRL16J_BAD_VERSION 4
#define CSRL16J_BAD_AMODE 8
#define CSRL16J_BAD_RESERVED 12
#define CSRL16J_BAD_LENGTH 16
#define CSRL16J_BAD_PSW 24

/***
* Function Prototypes for Service Routines *
***/

extern void csrl16j(
L16J *__L16J, /* Input - User supplied L16J block */
int *__RC); /* Output - Return code */

/***

#endif

Figure 12-1. CSRLJC declarations for the L16J parameter list for C/370 (Part 2 of 2)

12-4 z/OS V1R4.0 MVS Callable Services for HLL

Restrictions
None.

Performance Implications
None.

Syntax Diagram
Code the invocation following the syntax of the language you are using. Specify
parameters in the order shown.

C/370 Syntax

csrl16j (&L16J
,&return_code)

/**
* Constants for Fixed Return Codes *
**/

/* Load 16 and Jump Service Return Codes */

%DCL CSRL16J_OK FIXED;
%CSRL16J_OK = 0;

%DCL CSRL16J_BAD_VERSION FIXED;
%CSRL16J_BAD_VERSION = 4;

%DCL CSRL16J_BAD_AMODE FIXED;
%CSRL16J_BAD_AMODE = 8;

%DCL CSRL16J_BAD_RESERVED FIXED;
%CSRL16J_BAD_RESERVED = 12;

%DCL CSRL16J_BAD_LENGTH FIXED;
%CSRL16J_BAD_LENGTH = 16;

%DCL CSRL16J_BAD_PSW FIXED;
%CSRL16J_BAD_PSW = 24;

/**
* Service Entry Declarations *
**/

DCL CSRL16J ENTRY
(CHAR(168), /* Input - L16J */
FIXED BIN(31)) /* Output - Return code */

OPTIONS(INTER ASSEMBLER);

/* End of Load 16 and Jump Service Declares */

Figure 12-2. CSRLJPLI declarations for return codes for PL/I

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-5

PL/I Syntax

CALL CSRL16J (L16J
,return_code)

Parameters
The parameters are explained as follows:

L16J
Specifies a parameter list that the service uses to define the entry
characteristics and environment for the target.

return_code
When the service completes, return_code contains the return code.

Return Codes
If the CSRL16J service returns control to the caller, an error has occurred and the
service was unable to transfer control to the target routine. In this case, the return
code is always nonzero. When the service successfully transfers control to the
target routine, the return code is zero.

Return codes from the CSRL16J service are as follows:

Table 12-1. CSRL16J Return Codes

Return Code
(hexadecimal)

Meaning and Action

00 Meaning : Successful completion. The calling program will never see this return
code because it indicates that the target routine received control.

Action : None.

04 Meaning : The value specified in the L16JVERSION field of the L16J data area
was not a zero. The L16JVERSION field must contain a value of zero.

Action : When you build the L16J data area, first zero the entire L16J data area
and then fill in the required fields. This process ensures that all fields that must
contain zeroes are correct.

08 Meaning : The calling program was not in 31-bit addressing mode, which is
required.

Action : Make sure the calling program is in 31-bit addressing mode.

0C Meaning : One of the fields in the L16J data area that is reserved for IBM use
contained a nonzero value. Any field reserved for IBM use must contain a value
of zero.

Action : When you build the L16J data area, first zero the entire L16J data area
and then fill in the required fields. This process ensures that all fields that must
contain zeroes are correct

10 Meaning : The value specified in field L16JLENGTH in the L16J data area was
less than the actual length of the L16J.

Action : Make sure that the value in the L16JLENGTH field reflects the actual
length of the L16J data area.

18 Meaning : The PSW provided in field L16JPSW of the L16J data area specified
an incorrect ASC mode.

Action : In the L16JPSW field, specify either primary or AR ASC mode.

12-6 z/OS V1R4.0 MVS Callable Services for HLL

Example
The following example, coded in C/370 uses CSRL16J to transfer control to a
C/370 program. The target routine executes in the mode and with the register
contents specified by the calling program in the L16J parameter list.

This example performs the following operations:

v Fills in L16J parameter list with PSW and execution mode data.

v Calls an assembler routine to obtain the current register contents of registers 0
through 13 and copies them to the L16J parameter list.

v Defines the contents of registers 14 and 15 for the target routine.

v Issues setjmp to allow return from the target routine.

v Invokes the C/370 function L16JPrg through CSRL16J.

v CSRL16J issues longjmp to return to caller and complete processing.

To use this example, you must also use the assembler program following the C/370
example.

C/370 Example Program
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <setjmp.h>
#include "CSRLJC.H"

#define FALSE 0
#define TRUE 1

/* REG0TO13 is the assembler assist routine (below) to extract
registers 0 through 13, for C/370 addressability */

#pragma linkage(REG0TO13,OS)

int rcode;
int i;
unsigned int regs??(14??); /* Register save area */
jmp_buf JumpBuffer; /* Buffer for setjmp/longjmp */
L16J L16JParmArea; /* L16J parameter list structure */

/* Function prototype for function to be called via L16J */
void L16JPrg();

/* Invoke a C/370 function via L16J Callable Services */
main()
{
/* Start by initializing the entire L16J parameter list */
memset(&L16JParmArea,’\0’,sizeof(L16J));

/* The following fields were implicitly initialized to zero
by the preceding statement:
L16JParmArea.Version
L16JParmArea.SubPool
L16JParmArea.AreaToFree
L16JParmArea.LengthToFree

These field do not need to be explicitly set unless a value
other than zero is required */

/* Place parameter list length size into parameter list */
L16JParmArea.Length = sizeof(L16J);

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-7

/* Create a Problem State/Key 8 PSW */
L16JParmArea.u3.s1.PSWByte0to3 = 0x078D1000;
L16JParmArea.u3.s1.u4.PSWAddr = (void *) &L16JPrg;

/* Mode data */
L16JParmArea.u3.s1.u4.s2.PSWAmode = 1;
L16JParmArea.u5.s4.ProcessARs = 1;

/* Call assembler assist routine to obtain current register
values */

REG0TO13(®s);

/* Place register values into parameter list */
for (i=0;i<14;i++)

L16JParmArea.u1.GR??(i??)= regs??(i??);

/* Register 14 is not being used in this linkage, but we
have set it to zero for this example */

L16JParmArea.u1.GRAddr??(14??) = 0;

/* Set register 15 for entry to routine */
L16JParmArea.u1.GRAddr??(15??) = (void *) &L16JPrg;

printf("L16JC - Call L16J to invoke L16JPrg\n");

/* Use setjmp to allow return to this point in program. If
setjmp is being called for the first time, invoke L16JPrg
via L16J Callable Services. If returning from longjmp,
skip call to L16J services and complete processing. */

if (!setjmp(JumpBuffer))
{
csrl16j (&L16JParmArea,&rcode);

/* Demonstrate use of L16J C/370 declares */
switch (rcode)
{
/* Select on a particular return code value */
case CSRL16J_BAD_PSW:
printf("L16JC - L16J unsuccessful, bad PSW\n");
break;

/* Default error processing */
default:
printf("L16JC - L16J unsuccessful, RC = %d\n",rcode);
break;

}
}
printf("L16JC - Returned from L16JPrg\n");

}

/* The routine below receives control via L16J Callable Services.
control is passed back to main via longjmp. */

void L16JPrg(void)
{
printf("L16JC - L16JPrg got control\n");
longjmp(JumpBuffer,1);

}

Assembler program for use with the C/370 example
To use this example you must assemble the following program and linkedit it with
the C/370 program above.
SR0T013 CSECT
SR0T013 AMODE 31
SR0T013 RMODE ANY
*
* Assembler assist routine to save contents of registers 0 through 13

12-8 z/OS V1R4.0 MVS Callable Services for HLL

* to the area pointed to by register 1.
*
REG0TO13 DS 0H

ENTRY REG0TO13
* Get address of the save area

L 15,0(,1)
* Save registers 0 to 13

STM 0,13,0(15)
* Return to the caller

BR 14
END SR0TO13

Chapter 12. CSRL16J — Transfer Control to Another Routine 12-9

12-10 z/OS V1R4.0 MVS Callable Services for HLL

Chapter 13. CSRSI — System Information Service

Use the CSRSI service to retrieve system information. You can request information
about the machine itself, the logical partition (LPAR) in which the machine is
running, or the virtual machine hypervisor (VM) under which the system is running.
The returned information is mapped by DSECTs in macro CSRSIIDF (for assembler
language callers) or structures in header file CSRSIC (for C language callers).

The information available depends upon the availability of the Store System
Information (STSI) instruction. When the STSI instruction is not available (which
would be indicated by receiving the return code 4 (equate symbol
CSRSI_STSINOTAVAILABLE), only the SI00PCCACPID, SI00PCCACPUA, and
SI00PCCACAFM fields within the returned infoarea are valid. When the STSI
instruction is available, the validity of the returned infoarea depends upon the
system:

v If the system is running neither under LPAR nor VM, then only the
CSRSI_Request_V1CPC_Machine data are valid.

v If the system is running under a logical partition (LPAR), then both the
CSRSI_Request_V1CPC_Machine data and CSRSI_Request_V2CPC_LPAR
data are valid.

v If the system is running under a virtual machine hypervisor (VM), then all of the
data (CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM) are valid.

You can request any or all of the information regardless of your system, and validity
bits will indicate which returned areas are valid.

Description

Environment
The requirements for the caller are:

Minimum authorization: Problem state, key 8–15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in

C), 31-bit when using an alternate form
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold a LOCAL lock, the CMS lock, or the

CPU lock but is not required to hold any locks.

Programming Requirements
The caller should include the CSRSIIDF macro to map the returned information and
to provide equates for the service.

Restrictions
None.

Input Register Information
The caller is not required by the system to set up any registers.

© Copyright IBM Corp. 1994, 2002 13-1

Output Register Information
When control returns to the caller, the GPRs contain:

Register Contents
0-1 Used as work registers by the system
2-13 Unchanged
14-15 Used as work registers by the system

Syntax

CALL CSRSI, (Request
,Infoarealen
,Infoarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:
1. CSRSI (Request,...Returncode);

When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);
This second technique requires AMODE=31, and, before you issue the CALL,
you must verify that the CSRSI service is available (in the CVT, both
CVTOSEXT and CVTCSRSI bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL CSRSI:
1. LOAD EP=CSRSI

Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’220’(,15)
L 15,X’30’(,15) Get address of CSRSI
CALL (15),(...)

Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

Parameters
Request

Supplied parameter:
v Type: Integer
v Length: Full word

Request identifies the type of system information to be returned. The field must
contain a value that represents one or more of the possible request types. You
add the values to create the full word. Do not specify a request more than once.
The possible requests, and their meanings, are:

System Information Service (CSRSI)

13-2 z/OS V1R4.0 MVS Callable Services for HLL

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:
v Type: Integer
v Range: X’1040’, X’2040’, X’3040’, X’4040’
v Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:
v Type: Character
v Length: X’1040’, X’2040’, X’3040’, X’4040’ bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies
the length of the provided area.) The infoarea must be of the proper length to
hold the requested information. This length depends on the value of the
Request parameter.
v When the Request parameter is CSRSI_Request_V1CPC_Machine, the

returned infoarea is mapped by SIV1 and the infoarealen parameter must be
X’2040’.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2
and the infoarealen parameter must be X’3040’.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the
returned infoarea is mapped by SIV1V2V3 and the infoarealen parameter
must be X’4040’.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV1V3
and the infoarealen parameter must be X’3040’.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR, the
returned infoarea is mapped by SIV2 and the infoarealen parameter must be
X’1040’.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV2V3
and the infoarealen parameter must be X’2040’.

v When the Request parameter is CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV3 and the infoarealen parameter must be X’1040’.

,Returncode
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the CSRSI service.

Return Codes
When the CSRSI service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-3

v If you are coding in assembler, include mapping macro CSRSIIDF, described in
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC).

v If you are coding in C, use include file CSRSIC. See Figure 13-1 on page 13-5.

The following table describes the return codes, shown in decimal.

Return Code and Equate Symbol Meaning and Action

00
(0)
CSRSI_SUCCESS

Meaning : The CSRSI service completed successfully. All
information requested was returned.

Action : Check the si00validityflags field to determine the
validity of each returned area.

04
(4)
CSRSI_STSINOTAVAILABLE

Meaning : The CSRSI service completed successfully, but
since the Store System Information (STSI) instruction was
not available, only the SI00PCCACPID, SI00PCCACPUA,
and SI00PCCACAFM fields are valid.

Action : None required.

08
(8)
CSRSI_SERVICENOTAVAILABLE

Meaning : Environmental error: The CSRSI service is not
available on this system.

Action : Avoid calling the CSRSI service unless running on a
system on which it is available.

12
(C)
CSRSI_BADREQUEST

Meaning : User error: The request parameter did not specify
a word formed from any combination of
CSRSI_Request_V1CPC_Machine,
CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM.

Action : Correct the parameter.

16
(10)
CSRSI_BADINFOAREALEN

Meaning : User error: The Infoarealen parameter did not
match the length of the area required to return the requested
information.

Action : Correct the parameter.

20
(14)
CSRSI_BADLOCK

Meaning : User error: The service was called while holding a
system lock other than CPU, LOCAL/CML, or CMS.

Action : Avoid calling in this environment.

CSRSIC C/370 Header File
For the C programmer, include file CSRSIC provides equates for return codes and
data constants, such as Register service request types. To use CSRSIC, copy the
file from SYS1.SAMPLIB to the appropriate local C library. The contents of the file
are displayed in Figure 13-1 on page 13-5.

System Information Service (CSRSI)

13-4 z/OS V1R4.0 MVS Callable Services for HLL

#ifndef __CSRSI

#define __CSRSI

/***
* Type Definitions for User Specified Parameters *
***/

/* Type for Request operand of CSRSI */
typedef int CSRSIRequest;

/* Type for InfoAreaLen operand of CSRSI */
typedef int CSRSIInfoAreaLen;

/* Type for Return Code */
typedef int CSRSIReturnCode;

/***
* Function Prototypes for Service Routines *
***/

#ifdef __cplusplus
extern "OS" ??<

#else
#pragma linkage(CSRSI_calltype,OS)

#endif
typedef void CSRSI_calltype(

CSRSIRequest __REQUEST, /* Input - request type */
CSRSIInfoAreaLen __INFOAREALEN, /* Input - length of infoarea */
void *__INFOAREA, /* Input - info area */
CSRSIReturnCode *__RC); /* Output - return code */

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
??>

#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??< \
struct CSRSI_PSA* CSRSI_pagezero = 0; \
CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \

(Request,Flen,Fptr,Rcptr); \
??>;
#endif
??>;

struct CSRSI_CSRT ??<
unsigned char CSRSI_csrt_filler1 ??(48??);
CSRSI_calltype* CSRSI_addr;

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 1 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-5

struct CSRSI_CVT ??<
unsigned char CSRSI_cvt_filler1 ??(116??);

struct ??<
int CSRSI_cvtdcb_rsvd1 : 4; /* Not needed */
int CSRSI_cvtosext : 1; /* If on, indicates that the

CVTOSLVL fields are valid */
int CSRSI_cvtdcb_rsvd2 : 3; /* Not needed */

??> CSRSI_cvtdcb;
unsigned char CSRSI_cvt_filler2 ??(427??);
struct CSRSI_CSRT * CSRSI_cvtcsrt;
unsigned char CSRSI_cvt_filler3 ??(716??);
unsigned char CSRSI_cvtoslv0;
unsigned char CSRSI_cvtoslv1;
unsigned char CSRSI_cvtoslv2;
unsigned char CSRSI_cvtoslv3;

struct ??<
int CSRSI_cvtcsrsi : 1; /* If on, indicates that the

CSRSI service is available */
int CSRSI_cvtoslv1_rsvd1 : 7; /* Not needed */

??> CSRSI_cvtoslv4;
unsigned char CSRSI_cvt_filler4 ??(11??); /* */

??>;

struct CSRSI_PSA ??<
char CSRSI_psa_filler??(16??);
struct CSRSI_CVT* CSRSI_cvt;

??>;

/* End of CSRSI Header */

#endif

/***/
/* si11v1 represents the output for a V1 CPC when general CPC */
/* information is requested */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned char si11v1cpcmanufacturer??(16??); /*

The 16-character (0-9
or uppercase A-Z) EBCDIC name
of the manufacturer of the V1
CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si11v1cpctype??(4??); /* The 4-character (0-9) EBCDIC

type identifier of the V1 CPC.
*/

unsigned char _filler2??(12??); /* Reserved */

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 2 of 14)

System Information Service (CSRSI)

13-6 z/OS V1R4.0 MVS Callable Services for HLL

unsigned char si11v1cpcmodel??(16??); /* The 16-character (0-9 or
uppercase A-Z) EBCDIC model
identifier of the V1 CPC. The
identifier is left-justified
with trailing blank characters
if necessary. */

unsigned char si11v1cpcsequencecode??(16??); /*
The 16-character (0-9
or uppercase A-Z) EBCDIC
sequence code of the V1 CPC.
The sequence code is
right-justified with leading
EBCDIC zeroes if necessary.

*/
unsigned char si11v1cpcplantofmanufacture??(4??); /* The 4-character

(0-9 or uppercase A-Z) EBCDIC
plant code that identifies the
plant of manufacture for the
V1 CPC. The plant code is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler3??(3996??); /* Reserved */

??> si11v1;

/***/
/* si22v1 represents the output for a V1 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned char si22v1cpucapability??(4??); /*

An unsigned binary integer
that specifies the capability
of one of the CPUs contained
in the V1 CPC. It is used as
an indication of the
capability of the CPU relative
to the capability of other CPU
models. */

unsigned int si22v1totalcpucount : 16; /* A 2-byte
unsigned integer
that specifies the
total number of CPUs contained
in the V1 CPC. This number
includes all CPUs in the
configured state, the standby
state, and the reserved state.

*/

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 3 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-7

unsigned int si22v1configuredcpucount : 16; /* A 2-byte
unsigned binary
integer that specifies
the total number of CPUs that
are in the configured state. A
CPU is in the configured state
when it is described in the
V1-CPC configuration
definition and is available to
be used to execute programs.

*/
unsigned int si22v1standbycpucount : 16; /* A 2-byte

unsigned integer
that specifies the
total number of CPUs that are
in the standby state. A CPU is
in the standby state when it
is described in the V1-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v1reservedcpucount : 16; /* A 2-byte

unsigned binary
integer that specifies
the total number of CPUs that
are in the reserved state. A
CPU is in the reserved state
when it is described in the
V1-CPC configuration
definition, is not available
to be used to execute
programs, and cannot be made
available to be used to
execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

struct ??<
unsigned char _si22v1mpcpucapaf??(2??); /* Each individual

adjustment factor. */
unsigned char _filler2??(4050??);

??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 4 of 14)

System Information Service (CSRSI)

13-8 z/OS V1R4.0 MVS Callable Services for HLL

/***/
/* si22v2 represents the output for a V2 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(32??); /* Reserved */
unsigned int si22v2cpcnumber : 16; /* A 2-byte

unsigned integer
which is the number of
this V2 CPC. This number
distinguishes this V2 CPC from
all other V2 CPCs provided by
the same logical-partition
hypervisor */

unsigned char _filler2; /* Reserved */
struct ??<
unsigned int _si22v2lcpudedicated : 1; /*

When one, indicates that
one or more of the logical
CPUs for this V2 CPC are
provided using V1 CPUs that
are dedicated to this V2 CPC
and are not used to provide
logical CPUs for any other V2
CPCs. The number of logical
CPUs that are provided using
dedicated V1 CPUs is specified
by the dedicated-LCPU-count
value. When zero, bit 0
indicates that none of the
logical CPUs for this V2 CPC
are provided using V1 CPUs
that are dedicated to this V2
CPC. */

unsigned int _si22v2lcpushared : 1; /*
When one, indicates that
or more of the logical CPUs
for this V2 CPC are provided
using V1 CPUs that can be used
to provide logical CPUs for
other V2 CPCs. The number of
logical CPUs that are provided
using shared V1 CPUs is
specified by the
shared-LCPU-count value. When
zero, it indicates that none
of the logical CPUs for this
V2 CPC are provided using
shared V1 CPUs. */

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 5 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-9

unsigned int _si22v2lcpuulimit : 1; /*
Utilization limit. When one,
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is limited. When zero, it
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is unlimited. */

unsigned int _filler3 : 5; /* Reserved
*/

??> si22v2lcpuc; /* Characteristics */
unsigned int si22v2totallcpucount : 16; /*

A 2-byte unsigned
integer that specifies the
total number of logical CPUs
that are provided for this V2
CPC. This number includes all
of the logical CPUs that are
in the configured state, the
standby state, and the
reserved state. */

unsigned int si22v2configuredlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs for this V2 CPC that are
in the configured state. A
logical CPU is in the
configured state when it is
described in the V2-CPC
configuration definition and
is available to be used to
execute programs. */

unsigned int si22v2standbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the standby
state. A logical CPU is in the
standby state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 6 of 14)

System Information Service (CSRSI)

13-10 z/OS V1R4.0 MVS Callable Services for HLL

unsigned int si22v2reservedlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the reserved
state. A logical CPU is in the
reserved state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v2cpcname??(16??); /*
The 8-character EBCDIC name of
this V2 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v2cpccapabilityaf??(4??); /* Capability Adjustment

Factor (CAF). An unsigned
binary integer of 1000 or
less. The adjustment factor
specifies the amount of the
V1-CPC capability that is
allowed to be used for this V2
CPC by the logical-partition
hypervisor. The fraction of
V1-CPC capability is
determined by dividing the CAF
value by 1000. */

unsigned char _filler4??(16??); /* Reserved */
unsigned int si22v2dedicatedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of configured-state
logical CPUs for this V2 CPC
that are provided using
dedicated V1 CPUs. (See the
description of bit
si22v2lcpudedicated.) */

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 7 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-11

unsigned int si22v2sharedlcpucount : 16; /*
A 2-byte unsigned
integer that specifies the
number of configured-state
logical CPUs for this V2 CPC
that are provided using shared
V1 CPUs. (See the description
of bit si22v2lcpushared.)

*/
unsigned char _filler5??(4012??); /* Reserved */
??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/***/
/* si22v3db is a description block that comprises part of the */
/* si22v3 data. */
/***/

typedef struct ??<
unsigned char _filler1??(4??); /* Reserved */
unsigned int si22v3dbtotallcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are provided for
this V3 CPC. This number
includes all of the logical
CPUs that are in the
configured state, the standby
state, and the reserved state.

*/
unsigned int si22v3dbconfiguredlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
configured state. A logical
CPU is in the configured state
when it is described in the
V3-CPC configuration
definition and is available to
be used to execute programs.

*/

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 8 of 14)

System Information Service (CSRSI)

13-12 z/OS V1R4.0 MVS Callable Services for HLL

unsigned int si22v3dbstandbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
standby state. A logical CPU
is in the standby state when
it is described in the V3-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v3dbreservedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
reserved state. A logical CPU
is in the reserved state when
it is described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v3dbcpcname??(8??); /* The 8-character EBCDIC name
of this V3 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v3dbcpccaf??(4??); /* A 4-byte unsigned binary

integer that specifies an
adjustment factor. The
adjustment factor specifies
the amount of the V1-CPC or
V2-CPC capability that is
allowed to be used for this V3
CPC by the
virtual-machine-hypervisor
program. */

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 9 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-13

unsigned char si22v3dbvmhpidentifier??(16??); /* The 16-character
EBCDIC identifier of the
virtual-machine-hypervisor
program that provides this V3
CPC. (This identifier may
include qualifiers such as
version number and release
level). The identifier is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler2??(24??); /* Reserved */

??> si22v3db;
/***/
/* si22v3 represents the output for a V3 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??<
unsigned char _filler1??(28??); /* Reserved */
unsigned char _filler2??(3??); /* Reserved */
struct ??<

unsigned int _filler3 : 4; /* Reserved
*/

unsigned int _si22v3dbcount : 4; /*
Description Block Count. A
4-bit unsigned binary integer
that indicates the number (up
to 8) of V3-CPC description
blocks that are stored in the
si22v3dbe array. */

??> si22v3dbcountfield; /* */
si22v3db si22v3dbe??(8??); /* Array of entries. Only the number

indicated by si22v3dbcount
are valid */

unsigned char _filler5??(3552??); /* Reserved */
??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/***/
/* SI00 represents the "starter" information. This structure is */
/* part of the information returned on every CSRSI request. */
/***/

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 10 of 14)

System Information Service (CSRSI)

13-14 z/OS V1R4.0 MVS Callable Services for HLL

typedef struct ??<
char si00cpcvariety; /* SI00CPCVariety_V1CPC_MACHINE,

SI00CPCVariety_V2CPC_LPAR, or
SI00CPCVariety_V3CPC_VM */

struct ??<
int _si00validsi11v1 : 1; /* si11v1 was requested and

the information returned is valid
*/

int _si00validsi22v1 : 1; /* si22v2 was requested and
the information returned is valid

*/
int _si00validsi22v2 : 1; /* si22v2 was requested and

the information returned is valid
*/

int _si00validsi22v3 : 1; /* si22v3 was requested and
the information returned is valid

*/
int _filler1 : 4; /* Reserved */

??> si00validityflags;
unsigned char _filler2??(2??); /* Reserved */
unsigned char si00pccacpid??(12??); /* PCCACPID value for this CPU

*/
unsigned char si00pccacpua??(2??); /* PCCACPUA value for this CPU

*/
unsigned char si00pccacafm??(2??); /* PCCACAFM value for this CPU

*/
unsigned char _filler3??(4??); /* Reserved */
unsigned char si00lastupdatetimestamp??(8??); /* Time of last STSI

update, via STCK */
unsigned char _filler4??(32??); /* Reserved */

??> si00;

#define si00validsi11v1 si00validityflags._si00validsi11v1
#define si00validsi22v1 si00validityflags._si00validsi22v1
#define si00validsi22v2 si00validityflags._si00validsi22v2
#define si00validsi22v3 si00validityflags._si00validsi22v3

/***/
/* siv1 represents the information returned when V1CPC_MACHINE */
/* data is requested */
/***/

typedef struct ??<
si00 siv1si00; /* Area mapped by

struct si00 */
si11v1 siv1si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1si22v1; /* Area

mapped by struct si22v1 */
??> siv1;

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 11 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-15

/***/
/* siv1v2 represents the information returned when V1CPC_MACHINE */
/* data and V2CPC_LPAR data is requested */
/***/

typedef struct ??<
si00 siv1v2si00; /* Area mapped by

by struct si00 */
si11v1 siv1v2si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2si22v1; /* Area

mapped by struct si22v2 */
si22v2 siv1v2si22v2; /* Area

mapped by struct si22v2 */
??> siv1v2;

/***/
/* siv1v2v3 represents the information returned when V1CPC_MACHINE */
/* data, V2CPC_LPAR data and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv1v2v3si00; /* Area

mapped by struct si00 */
si11v1 siv1v2v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2v3si22v1; /* Area

mapped by struct si22v1 */
si22v2 siv1v2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv1v2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v2v3;

/***/
/* siv1v3 represents the information returned when V1CPC_MACHINE */
/* data and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv1v3si00; /* Area mapped

by struct si00 */
si11v1 siv1v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v3si22v1; /* Area

mapped by struct si22v1 */
si22v3 siv1v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v3;

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 12 of 14)

System Information Service (CSRSI)

13-16 z/OS V1R4.0 MVS Callable Services for HLL

/***/
/* siv2 represents the information returned when V2CPC_LPAR */
/* data is requested */
/***/

typedef struct ??<
si00 siv2si00; /* Area mapped by

struct si00 */
si22v2 siv2si22v2; /* Area

mapped by struct si22v2 */
??> siv2;

/***/
/* siv2v3 represents the information returned when V2CPC_LPAR */
/* and V3CPC_VM data is requested */
/***/

typedef struct ??<
si00 siv2v3si00; /* Area mapped

by struct si00 */
si22v2 siv2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv2v3;

/***/
/* siv3 represents the information returned when V3CPC_VM */
/* data is requested */
/***/

typedef struct ??<
si00 siv3si00; /* Area mapped by

struct si00 */
si22v3 siv3si22v3; /* Area

mapped by struct si22v3 */
??> siv3;

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 13 of 14)

System Information Service (CSRSI)

Chapter 13. CSRSI — System Information Service 13-17

/**/
* Fixed Service Parameter and Return Code Defines *
***/

/* SI00 Constants */

#define SI00CPCVARIETY_V1CPC_MACHINE 1
#define SI00CPCVARIETY_V2CPC_LPAR 2
#define SI00CPCVARIETY_V3CPC_VM 3

/* CSRSI Constants */

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2
#define CSRSI_REQUEST_V3CPC_VM 4

/* CSRSI Return codes */

#define CSRSI_SUCCESS 0
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 20

Figure 13-1. CSRSIC from SYS1.SAMPLIB (Part 14 of 14)

13-18 z/OS V1R4.0 MVS Callable Services for HLL

Part 6. Appendixes

© Copyright IBM Corp. 1994, 2002

z/OS V1R4.0 MVS Callable Services for HLL

Appendix A. General use C/C++ header files

Programming Interface information

C/C++ header files are shipped in z/OS V1R4 SYS1.SAMPLIB. These header files
are analogous to traditional z/OS MVS mapping macros and are provided for
general use. The following table lists the members and describes the interface.
Descriptions of the data areas referenced can be found in z/OS MVS Data Areas,
Vol 1 (ABEP-DALT).

Member Description

BLSCADPL Describes same dara areas as assembler macro BLSABDPL. Depends
on BLSCDESC.

BLSCADSY Describes same data areas as assembler macro BLSADSY.

BLSCCBSP Describes same data areas as assembler macro BLSACBSP. Depends
on BLSCDESC.

BLSCDESC Describes same data areas as assembler macros BLSRDATC,
BLSRDATS, BLSRDATT, BLSRESSY, and BLSRSASY. Many of the
other members require that this header file be included before they are
included.

BLSCDRPX Describes same data areas as assembler macro BLSRDRPX. Depends
on BLSCDESC.

BLSCNAMP Describes same data areas as assembler macro BLSRNAMP. Depends
on BLSCDESC.

BLSCPCQE Describes same data areas as assembler macro BLSRPCQE. Depends
on BLSCDESC.

BLSCPPR2 Describes same data areas as assembler macro BLSUPPR2.

BLSCPWHS Describes same data areas as assembler macro BLSRPWHS. Depends
on BLSCDESC.

BLSCXMSP Describes same data areas as assembler macro BLSRXMSP. Depends
on BLSCDESC.

BLSCXSSP Describes same data areas as assembler macro BLSRXSSP. Depends
on BLSCDESC.

End of Programming Interface information

© Copyright IBM Corp. 1994, 2002 A-1

|

|

|

|
|
|
|
|

|||

||
|

||

||
|

||
|
|
|

||
|

||
|

||
|

||

||
|

||
|

||
|

C/C++ header files

A-2 z/OS V1R4.0 MVS Callable Services for HLL

Appendix B. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1994, 2002 B-1

B-2 z/OS V1R4.0 MVS Callable Services for HLL

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1994, 2002 C-1

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help the customer to write applications that use operating
system services. This book documents General-use Programming Interface and
Associated Guidance Information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v C/370
v DB2

Notices

C-2 z/OS V1R4.0 MVS Callable Services for HLL

v Hiperspace
v IBM
v IBMLink
v IMS
v IMS/ESA
v MVS
v MVS/DFP
v MVS/SP
v OS/390
v Resource Link
v RETAIN
v z/OS
v z/OS.e

Other company, product, and service names may be trademarks or service marks
of others.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Notices

Notices C-3

C-4 z/OS V1R4.0 MVS Callable Services for HLL

Glossary

This glossary defines technical terms and
abbreviations used in z/OS MVS documentation. If
you do not find the term you are looking for, view
IBM Glossary of Computing Terms, located at:
http://www.ibm.com/ibm/terminology

D
data object. (1) A VSAM linear data set. (2) A storage
area, outside the user’s storage, that window services
defines as a temporary object.

data-in-virtual. An MVS facility that enables a user to
access a data object as though that data object resided
in the user’s storage.

G
gap. The grouping of consecutive bytes that the
program repeatedly skips over. When a reference
pattern has a gap, gaps and reference units alternate
throughout the data area. See also reference pattern
and reference unit.

H
hiperspace. A range of up to two gigabytes of virtual
storage that a program can use like a buffer.

L
linear data set. A type of VSAM data set where data
is stored as a linear string of bytes.

M
mapping. A process where window services makes a
data object or part of a data object accessible to a user
program through a scroll area or through a window.

O
object. See data object.

P
permanent data object. A virtual storage access
method (VSAM) linear data set that resides on DASD
(also called a data-in-virtual object).

R
reference pattern. The order in which a program’s
instructions process a data structure, such as an array.
A reference pattern can be sequential or random and
can contain gaps.

reference unit. A grouping of consecutive bytes that
the program references. If the reference pattern has a
gap, the reference unit is the grouping of bytes between
gaps; gaps and reference units alternate throughout the
data area. If the reference pattern does not have gaps,
the reference unit is a logical grouping according to the
structure of the data.

S
scroll area. An area of expanded storage that window
services obtains. For a permanent object, window
services maps a window to the scroll area and maps
the scroll area to the permanent data object. You can
use the scroll area to make interim changes to a
permanent data object. For a temporary data object, the
scroll area is the data object. Window services maps
the window to the scroll area.

scrolling. A process where window services saves
changes that a user has made in a window. For a
permanent data object, window services saves the
changes in the scroll area, without updating the
permanent object. For a temporary object, window
services updates the temporary object.

T
temporary data object. An area of expanded storage
that window services provides for use by your program.
You can use this storage to hold temporary data instead
of using a DASD workfile. Window services provides no
means for you to save a temporary data object.

V
VSAM. Virtual storage access method.

W
window. An area in the user’s storage where the user
can view or change data in a data object that window
services has made available.

© Copyright IBM Corp. 1994, 2002 D-1

http://www.ibm.com/ibm/terminology

D-2 z/OS V1R4.0 MVS Callable Services for HLL

Index

A
access to a data object

permanent object 1-6
temporary object 1-7

access to an object
terminating 2-12

accessibility B-1
ADA programming language

example using window services 4-1
application

in resource recovery 10-1
application_backout_UR call 10-5

return and reason codes 10-8
syntax 10-7

application_commit_UR call 10-9
return and reason codes 10-11
syntax 10-11

B
back out changes to protected resources 10-5
blocks of an object

definition 1-1
identifying blocks to be viewed 2-6
size 1-1
updating blocks 2-9
updating blocks in a temporary object 2-8

C
C programming language

call syntax for latch manager services 9-1
example of reference pattern services 8-1
example using window services 4-6

call statements for latch manager services 9-1
call statements for reference pattern services 7-1, 8-1
call statements for window services 3-1, 4-1
call syntax

for latch manager service 9-1
changed data in an object

refreshing 2-9
COBOL programming language

call syntax for latch manager services 9-1
example using reference pattern services 8-4
example using window services 4-9

commit changes to protected resources 10-9
commit protocol, two-phase 10-2
CSREVW callable service

defining a view of an object 2-4
parameter descriptions 3-2, 3-17
purpose 3-1, 3-16
return codes and reason codes 3-3, 3-19
syntax 3-2, 3-17

CSRIDAC callable service
obtaining access to a data object 2-2
parameter descriptions 3-6
purpose 3-5

CSRIDAC callable service (continued)
return codes and reason codes 3-7
syntax 3-5
terminating access to an object 2-12

CSRIRP callable service
example 6-5
purpose 7-1

CSRIRR callable service
purpose 7-3

CSRL16J callable service
entry characteristics for the target routine 12-1
freeing dynamic storage for the target routine 12-2
parameter description 12-1
programming requirements 12-2
return codes 12-6
syntax 12-1

CSRREFR callable service
parameter descriptions 3-9
purpose 3-9
refreshing changed data 2-9
return codes and reason codes 3-10
syntax 3-9

CSRSAVE callable service
parameter descriptions 3-12
purpose 3-11
return codes and reason codes 3-13
syntax 3-12
updating a permanent object on DASD 2-10

CSRSCOT callable service
parameter descriptions 3-14
purpose 3-14
return codes and reason codes 3-15
saving interim changes in a scroll area 2-8
syntax 3-14
updating a temporary object 2-8

CSRSIC include file 13-4
CSRVIEW callable service

defining a view of an object 2-4
terminating a view of an object 2-10

D
DASD (direct access storage device)

data transfer from by window services 1-3
updating a permanent object 2-9

data object
define multiple views 2-7
defining a view 2-4
extending the size 2-7
identifying 2-2
mapping 1-1

DASD to a scroll area 1-3
DASD to a window 1-3
multiple objects 1-5
object to multiple windows 1-4
scroll area to a window 1-3
temporary object 1-4

obtaining 2-1

© Copyright IBM Corp. 1994, 2002 X-1

data object (continued)
access to a data object 2-1
scroll area 2-3

obtaining access 2-2
refreshing changed data 2-9
saving an interim change 2-8
specifying type of access 2-3
structure 1-1
terminating access to an object 2-12
updating a temporary object 2-8

data to be viewed
identifying 2-6

data-in-virtual object 1-1
DFP requirement for window services 2-3
direct access storage device 1-3
disability B-1
documents, licensed xi

E
examples

data object mapped to a window 1-2
mapping 1-3

multiple objects 1-5
object to multiple windows 1-4
permanent object that has a scroll area 1-3
permanent object that has no scroll area 1-3
temporary object 1-4

structure of a data object 1-2

F
FORTRAN programming language

call syntax for latch manager services 9-1
example using reference pattern services 8-8
example using window services 4-13

G
gap in reference pattern services

defining 5-4
definition 5-4

glossary of terms D-1

H
hiperspace

window services use 1-3

I
identifying data object 2-2
IEAAFFN callable service

parameter descriptions 11-1
purpose 11-1
requirements 11-2
restrictions and limitations 11-2
return codes 11-2
syntax 11-1

interim changes to a permanent object
saving 2-8

ISGLCRT callable service
purpose 9-2
syntax 9-2

ISGLOBT callable service
purpose 9-5
syntax 9-5

ISGLPBA callable service
purpose 9-12
syntax 9-12

ISGLPRG callable service
purpose 9-11
syntax 9-11

ISGLREL callable service
purpose 9-8
syntax 9-8

K
keyboard B-1

L
latch manager services

ISGLCRT callable service
syntax 9-2

ISGLOBT callable service
syntax 9-5

ISGLPBA callable service
syntax 9-12

ISGLPRG callable service
syntax 9-11

ISGLREL callable service
syntax 9-8

licensed documents xi
LookAt message retrieval tool xii

M
message retrieval tool, LookAt xii
multiple views of an object

defining 2-7

N
Notices C-1

O
object

data 2-1
permanent 2-1
temporary 2-1

P
Pascal programming language

example using window services 4-17, 8-11

X-2 z/OS V1R4.0 MVS Callable Services for HLL

permanent object
accessing an existing object 2-3
creating a new object 2-3
data transfer from 1-3
define multiple views 2-7
defining a view 2-4
definition 1-1
extending the size 2-7
functions supported 1-6
identifying 2-2
mapping a scroll area to a permanent object 1-3
mapping with no scroll area 1-3
maximum size 1-1
new object, creating 2-3
obtaining 2-1

access to a permanent object 2-1
access to a permanent object, procedure 2-2
scroll area 2-3

overview of supported functions 1-6
refreshing 2-1
refreshing changed data 2-9
relationship to a data-in-virtual object 1-1
requirements for new objects 2-3
saving an interim change 2-8
saving changes in 2-1
specifying new or old status 2-3
specifying type of access for an existing object 2-3
structure 1-1
terminating access to a permanent object 2-12
updating 2-9

PL/I programming language
call syntax for latch manager services 9-1
example using window services 4-21

processor affinity 11-1
protected

resource 10-1

R
reference pattern services 7-1

coding examples 8-1
C programming language 8-1
COBOL programming language 8-4
FORTRAN programming language 8-8
Pascal programming language 8-11

CSRIRP callable service 7-1
syntax 7-1

CSRRRP callable service 7-3
syntax 7-3

overview 5-1
use with data window services 2-5
using 6-1

reference services
call statements 7-1, 9-1
reference information 7-1, 9-1

reference unit in reference pattern services
choosing 5-3
definition 5-3, 5-4

REPLACE option for a window 2-5
requirements for window services

DFP requirement 2-3

requirements for window services (continued)
SMS requirement 2-3

resource
process for protecting 10-2
protecting 10-1
protection on multiple systems 10-5
requesting protection 10-4

resource manager
in resource recovery 10-1

resource recovery
distributed 10-5
process 10-2
programs 10-1
requesting 10-4
service 10-5, 10-9

RETAIN option for a window 2-5
REXX programming language

call syntax for latch manager services 9-1
RRS

application_backout_UR call 10-5
application_commit_UR call 10-9
as sync-point manager 10-1

S
scroll area

data transfer from 1-3
definition 1-2
mapping a scroll area to DASD 1-3
mapping a window to a scroll area 1-3
obtaining a scroll area 2-3
refreshing a scroll area 2-9
saving changes in 2-1
saving interim changes 2-8
storage used 1-2
updating a permanent object from a scroll area 2-9
updating DASD from 2-1
use 1-2

shortcut keys B-1
size of an object

extending 2-7
SMS requirement for window services 2-3
structure of a data object 1-1
sync-point manager

in resource recovery 10-1

T
temporary object

accessing a temporary object 2-2
creating a temporary object 2-2
data transfer from 1-3
define multiple views 2-7
defining a view 2-4
definition 1-1
extending the size 2-7
functions supported 1-7
initialized value 1-2
mapping a window 1-4
maximum size 1-1
obtaining 2-1

Index X-3

temporary object (continued)
access to a temporary object 2-1
access to a temporary object, procedure for 2-3
scroll area 2-4

overview of supported functions 1-7
refreshing 2-1
refreshing changed data 2-9
saving changes in 2-1
specifying the object size 2-3
storage used 1-2
structure 1-1
terminating access to a temporary object 2-12
updating a temporary object 2-8

terminology D-1
transferring control to another routine

CSRL16J 12-1
two-phase commit protocol 10-2

U
UR (unit of recovery)

backing out 10-5
committing 10-9

using protected resources 10-1

V
view of an object

terminating 2-10

W
ways that window services can map an object 1-3
what window services provides 1-2
window

affect of terminating access to an object 2-12
blocks to be viewed, identifying 2-6
changing a view in a window 2-10
changing the view 2-2
data to be viewed, identifying 2-6
defining 2-1

multiple windows 2-7
window 2-1
window disposition 2-5
window reference pattern 2-5
windows with overlapping views 2-7

definition 1-1
identifying a window 2-4
identifying blocks to be viewed 2-6
mapping 1-3

multiple objects 1-5
to a window 1-3
to multiple windows 1-4

refreshing a window 2-9
REPLACE option 2-5
RETAIN option 2-5
size 2-4
storage 2-4
terminating a view in a window 2-10
updating a permanent object from a window 2-9
use 1-1

window services
call statements 3-1
COBOL programming language 4-9
coding examples 4-1, 4-9

ADA programming language 4-1
C programming language 4-6
FORTRAN programming language 4-13
Pascal programming language 4-17
PL/I programming language 4-21

functions provided 1-2
handling abends 2-12
handling return codes 2-12
overview 1-1
reference information 3-1
services provided 1-2
using window services 2-1
ways to map an object 1-3

X-4 z/OS V1R4.0 MVS Callable Services for HLL

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming: Callable Services for High-Level Languages

Publication No. SA22-7613-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7613-01

SA22-7613-01

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7613-01

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How to use this document
	Where to find more information
	Information updates on the web
	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations

	Summary of changes
	Part 1. Window Services
	Chapter 1. Introduction to Window Services
	Structure of a Data Object
	What Does Window Services Provide?
	The Ways That Window Services Can Map an Object
	Example 1 — Mapping a Permanent Object that has no Scroll Area
	Example 2 — Mapping a Permanent Object that has a Scroll Area
	Example 3 — Mapping a Temporary Object
	Example 4 — Mapping Multiple Windows® to an Object
	Example 5 — Mapping Multiple Objects

	Access to Permanent Data Objects
	Access to Temporary Data Objects

	Chapter 2. Using Window Services
	Obtaining Access to a Data Object
	Identifying the Object
	Permanent Object
	Temporary Object

	Specifying the Object’s Size
	Specifying the Type of Access
	Obtaining a Scroll Area

	Defining a View of a Data Object
	Identifying the Data Object
	Identifying a Window
	Defining the Disposition of a Window’s Contents
	Replace Option
	Retain Option

	Defining the Expected Reference Pattern
	Identifying the Blocks You Want to View
	Extending the Size of a Data Object

	Defining Multiple Views of an Object
	Nonoverlapping Views
	Overlapping Views

	Saving Interim Changes to a Permanent Data Object
	Updating a Temporary Data Object
	Refreshing Changed Data
	Updating a Permanent Object on DASD
	When There is a Scroll Area
	When There is No Scroll Area

	Changing a View in a Window
	Terminating Access to a Data Object
	Handling Return Codes and Abnormal Terminations

	Chapter 3. Window Services
	CSREVW — View an Object and Sequentially Access It
	Abend Codes
	Return Codes and Reason Codes

	CSRIDAC — Request or Terminate Access to a Data Object
	Abend Codes
	Return Codes and Reason Codes

	CSRREFR — Refresh an Object
	Abend Codes
	Return Codes and Reason Codes

	CSRSAVE — Save Changes Made to a Permanent Object
	Abend Codes
	Return Codes and Reason Codes

	CSRSCOT — Save Object Changes in a Scroll Area
	Abend Codes
	Return Codes and Reason Codes

	CSRVIEW — View an Object
	Abend Codes
	Return Codes and Reason Codes

	Chapter 4. Window Services Coding Examples
	ADA Example
	C/370™ Example
	COBOL Example
	FORTRAN Example
	Pascal Example
	PL/I Example

	Part 2. Reference Pattern Services
	Chapter 5. Introduction to Reference Pattern Services
	How Does the System Manage Data?
	An Example of How the System Manages Data in an Array
	What Pages Does the System Bring in When a Gap Exists?
	Example 1
	Example 2
	Example 3

	Chapter 6. Using Reference Pattern Services
	Defining the Reference Pattern for a Data Area
	Defining the Range of the Area
	Identifying the Direction of the Reference
	Defining the Reference Pattern
	Using CSRIRP When a Gap Exists

	Choosing the Number of Bytes on a Page Fault

	Examples of Using CSRIRP to Define a Reference Pattern
	Removing the Definition of the Reference Pattern
	Handling Return Codes

	Chapter 7. Reference Pattern Services
	CSRIRP — Define a Reference Pattern
	Return Codes and Reason Codes

	CSRRRP — Remove a Reference Pattern
	Return Codes and Reason Codes

	Chapter 8. Reference Pattern Services Coding Examples
	C/370 Example
	COBOL Example
	FORTRAN Example
	Pascal Example
	PL/I Example

	Part 3. Global Resource Serialization Latch Manager Services
	Chapter 9. Using the Latch Manager Services
	Syntax and Linkage Conventions for Latch Manager Callable Services
	ISGLCRT — Create a Latch Set
	ABEND Codes
	Return Codes
	Examples of Calls to Latch Manager Services

	ISGLOBT — Obtain a Latch
	ABEND Codes
	Return Codes
	Example

	ISGLREL — Release a Latch
	ABEND Codes
	Return Codes
	Example

	ISGLPRG — Purge a Requestor from a Latch Set
	ABEND Codes
	Return Codes
	Example

	ISGLPBA — Purge a Group of Requestors from a Group of Latch Sets
	ABEND Codes
	Return Codes

	Part 4. Resource Recovery Services (RRS)
	Chapter 10. Using Protected Resources
	Resource Recovery Programs
	Two-Phase Commit Protocol
	Resource Recovery Process
	Requesting Resource Protection and Recovery
	Using Distributed Resource Recovery
	Application_Backout_UR (SRRBACK)
	Description
	Environment
	Programming Requirements

	Application_Commit_UR (SRRCMIT)
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Performance Implications
	Syntax
	Parameters
	ABEND Codes
	Return Codes
	Example

	Part 5. Other Callable Services
	Chapter 11. IEAAFFN — Assign Processor Affinity for Encryption or Decryption
	Restrictions and Limitations
	Requirements
	Return Codes

	Chapter 12. CSRL16J — Transfer Control to Another Routine
	Defining the Entry Characteristics of the Target Routine
	Freeing Dynamic Storage Associated with the Caller
	Programming Requirements
	Restrictions
	Performance Implications
	Syntax Diagram
	C/370 Syntax
	PL/I Syntax

	Parameters
	Return Codes
	Example
	C/370 Example Program
	Assembler program for use with the C/370 example

	Chapter 13. CSRSI — System Information Service
	Description
	Environment
	Programming Requirements
	Restrictions
	Input Register Information
	Output Register Information
	Syntax
	Parameters
	Return Codes

	CSRSIC C/370 Header File

	Part 6. Appendixes
	Appendix A. General use C/C++ header files
	Appendix B. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

