
z/OS

MVS Interactive Problem
Control System (IPCS)
Customization

SA22-7595-02

IBM

z/OS

MVS Interactive Problem
Control System (IPCS)
Customization

SA22-7595-02

IBM

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 191.

Third Edition, September 2002

This is a major revision of SA22-7595-01.

This edition applies to Version 1 Release 4 of z/OS (5694-A01), Version 1 Release 4 of z/OS.e (5655-G52), and to
all subsequent releases and modifications until otherwise indicated in new editions.

Order documents through your IBM® representative or the IBM branch office serving your locality. Documents are not
stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this document, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink™ (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . vii

Tables . ix

About this document . xi
Who should use this document xi
Where to find more information xi

Information updates on the web xi
Accessing z/OS licensed documents on the Internet xi
Using LookAt to look up message explanations xii

Summary of changes . xiii

Chapter 1. IPCS Installation Package 1
Installation Package . 1
SYS1.PARMLIB Members Related to IPCS 1
IPCS Subcommands . 3
IPCS REXX Execs and CLISTs 4
IPCS Dialog Programs . 4
SYS1.MIGLIB System Library . 6
IPCS Macros and Mapping Macros 6

IPCS Macro for Invoking an IPCS Exit Service within an IPCS Exit Routine 6
IPCS Macros for Using an IPCS Exit Service within an IPCS Exit Routine . . 7
IPCS Macros for Writing IPCS Exit Routines 8
IPCS Macros for Creating a Control Block Model 10
Non-IPCS Macros for IPCS Customization. 10

IPCS Exit Services . 12
Customizing the IPCS Installation Package 14

Chapter 2. Customizing IPCS Session Parameters 17
Session Parameters . 17
Customizing Session Parameters 18
Creating an Alternate Parmlib 18
Indicating Which IPCSPRxx Member IPCS Should Use 18
Using Problem and Data Set Management Facilities 19

Chapter 3. Customizing the Dump Directory 21
Customizing the Directories . 21
Editing the BLSCDDIR CLIST 21
Dump Directories and Performance 22

Chapter 4. Customizing Access to IPCS 25
Planning for Customized Access 25
Decisions to Make Before Starting Customization 25

Starting IPCS: Deciding Which Method to Provide 26
Invoking the IPCS Dialog: Deciding Which Function to Use 27

Customizing Access . 32
Customizing Access when Using the BLSCLIBD CLIST 32
Customizing Access when Using the BLSG Dialog Program 35

Chapter 5. Customizing the IPCS Dialog 39
Using the ISPF SELECT Service with IPCS Dialog Programs 39

Recursive Invocations of the ISPF and IPCS Dialogs 39

© Copyright IBM Corp. 1988, 2002 iii

||

Tailoring the IPCS Dialog to Identify the IPCS Level 40
Dumps of IPCS. 40

BLSGDCDA Dialog Program - Display Component Data Analysis 40
BLSGDUIN Dialog Program - Display Dump Inventory 41
BLSGSCMD Dialog Program - Process an IPCS Subcommand or CLIST . . . 41
BLSGSETD Dialog Program - Check Defaults 42
BLSLDISP Dialog Program - Browse an IPCS Dump Data Set 43

Chapter 6. Using IPCS on Another System 47

Chapter 7. Providing Security for IPCS 49
Providing z/OS Security Server Protection 49
Using BLSUGWDM to Disable Access to TSO/E Commands 49

Chapter 8. Writing IPCS Exit Routines 51
Exit Routines . 51
General Information about Writing an IPCS Exit Routine. 51

Conditions on Entry to an IPCS Exit Routine 52
Services Available to an IPCS Exit Routine 53
Restrictions and Limitations of an IPCS Exit Routine 54
Discontinuing Processing for an Interactive User 55
Communication Between IPCS Exit Routines 55
External Routines Invoked by IPCS Exit Routines 56
IPCS Data Areas, Macros, and Mapping Macros to be Used by IPCS Exit

Routines . 56
Conventions for Return to Caller for an IPCS Exit Routine 57
Making Load Libraries Available to IPCS 57
Managing Storage for IPCS Exit Routines 57

ANALYZE Exit Routine . 59
Possible Uses . 60
Programming Considerations. 60
Input. 61
Output . 61
Example . 61

Address Space Control Block (ASCB) Exit Routine 63
Possible Uses . 63
Programming Considerations. 64
Input. 65
Output . 66

Component Trace Exit Routines 66
CTRACE Format Table . 68
IPCS Models . 69
CTRACE Formatter . 70
CTRACE Buffer Find Exit Routine 71
CTRACE Filter/Analysis (CTRF) Exit Routine 73

Control Block Formatter Exit Routine 76
Possible Uses . 76
Programming Considerations. 76
Input. 78
Output . 78

Control Block Status (CBSTAT) Exit Routine 78
Possible Uses . 79
Programming Considerations. 79
Input. 80
Output . 81

Find Exit Routine . 81

iv z/OS V1R4.0 MVS IPCS Customization

Possible Uses . 81
Programming Considerations. 82
Input. 82
Output . 83

GTFTRACE Filter/Analysis Exit Routine 84
Possible Uses . 84
Programming Considerations. 84
Input. 85
Output . 85

GTFTRACE Formatting Appendage 85
Possible Uses . 85
Programming Considerations. 85
Input. 86
Output . 87

Model Processor Formatting (MPF) Exit Routine 87
Possible Uses . 87
Programming Considerations. 87
Input. 89
Output . 89

Post-Formatting Exit Routine . 89
Possible Uses . 89
Programming Considerations. 90
Input. 91
Output . 91

Scan Exit Routine . 92
Possible Uses . 92
Programming Considerations. 92
Input. 93
Output . 94

Task Control Block (TCB) Exit Routine 95
Possible Uses . 95
Programming Considerations. 96
Input. 97
Output . 97

Verb Exit Routine . 98
Possible Uses . 98
Programming Considerations. 99
Input. 99

Chapter 9. Installing IPCS Exit Routines 101
Installing Routine For ABEND/SNAP Formatting 101
Installing Routine for IPCS Formatting 101

Chapter 10. IPCS Exit Services 105
Exit Services . 105
Invoking with the Exit Services Router 107

Add Symptom Service. 109
Control Block Formatter Service 111
Control Block Status (CBSTAT) Service 117
Contention Queue Element (CQE) Create Service 119
Equate Symbol Service . 122
Exit Control Table (ECT) Service 125
Expanded Print Service . 127
Format Model Processor Service 132
Format Models . 134
Get Symbol Service . 135

Contents v

Name Service . 137
Name/Token Lookup Service 140
Obtaining Information About Coupling Facility Structures 143
Obtaining Information About Loaded Modules 143
Quiesce IPCS Transaction 144
Select Address Space Identifier (ASID) Service 145
Standard Print Service . 149
Storage Access Service . 150
Storage Map Service . 153
Symbol Service . 156
Table of Contents Service 162
TOD Clock Service . 164
WHERE Service . 165
17-Character Time Stamp Service 167
26-Character Time Stamp Service 169

Chapter 11. The IPCS Debug Tool 173
Implementing the Debug Tool 173
Enabling IPCS-Supplied Traps. 173

Output from the TRAPON Subcommand 174
Stopping and Resuming IPCS Trap Processing 177
Disabling IPCS-Supplied Traps 177
Getting the Status of IPCS-Supplied Traps 178

Appendix. IPCS Exit Services Supported for Compatibility 179
Services . 179
Dump Index Service . 179
Format Service . 181

Format Patterns . 182
Old Storage Access Service 185
Print Service . 187
Summary Dump Data Access Service 188

Specifying Format Subroutines for Summary Dump Records 189

Notices . 191
Programming Interface Information 192
Trademarks. 192

Index . 195

vi z/OS V1R4.0 MVS IPCS Customization

||

||

Figures

1. An ISPF Panel for Starting the IPCS Dialog through BLSCLIBD 33
2. TSO/E Logon Procedure for Use with BLSCLIBD 34
3. CLIST for use with PROC1 . 34
4. IPCS Command for IPCSU1.IPCS.CLIST(START1) 35
5. An ISPF Panel for Starting the IPCS Dialog through BLSG 36
6. TSO/E Logon Procedure for Use with BLSG. 37
7. CLIST for use with PROC2 . 37
8. IPCS Command for IPCSU1.IPCS.CLIST(START2) 38
9. Example - IPCS Browse Terminated Panel . 45

10. A TSO/E LOGON Procedure for Using SYS1.MIGLIB 48
11. Formatting Installation-Supplied Application Trace Data with IPCS. 68
12. FXL Data Area as Displayed by the IPCS Debug Tool 88
13. Example - Invoking the Add Symptom Service. 111
14. Example - Invoking the Control Block Formatter Service 115
15. Example - View Control Displaying Key Fields 117
16. Example - View Control Displaying Reserved Fields 117
17. Example - Invoking the CBSTAT Service. 119
18. Example - Invoking the CQE Create Service . 122
19. Example - Invoking the Equate Symbol Service 125
20. Example - Invoking the ECT Service . 127
21. Example - Invoking the Expanded Print Service 131
22. Example - Invoking the Format Model Processor Service 134
23. Example - Invoking the Get Symbol Service . 137
24. Name Service Output. 138
25. Example - Invoking the Name Service . 140
26. Name/Token Lookup Service Output . 142
27. Example - Invoking the Name/Token Lookup Service 143
28. Example - Invoking the Quiesce IPCS Transaction Service 145
29. Example - Invoking the Select ASID Service . 149
30. Example - Invoking the Print Service . 150
31. Example - Invoking the Storage Access Service 153
32. Example - Invoking the Storage Map Service . 156
33. Example - Invoking the Symbol Service . 162
34. Example - Invoking the Table of Contents Service 164
35. Example - Invoking the WHERE Service. 167
36. Example - Invoking the 17-Character Time Stamp Service with LINK 169
37. Example - Calling the 17-Character Time Stamp Service. 169
38. Output from the CBFORMAT Subcommand with the IPCS Debug Tool Active 175
39. Example - Using the Dump Index Service . 181
40. Example - Using the Format Service . 182
41. Format Pattern Description and Format Pattern Extension 183
42. Sample Format Patterns . 185
43. Example - Using the Storage Access Routine . 187
44. Example - Using the Print Service Routine . 188

© Copyright IBM Corp. 1988, 2002 vii

viii z/OS V1R4.0 MVS IPCS Customization

Tables

1. IPCS Mapping Macros for IPCS Exit Services . 7
2. Non-IPCS Mapping Macros Needed for IPCS Customization 11
3. Invoking Exit Services . 12
4. Customizing the IPCS Installation Package . 14
5. IPCS Session Parameters Specified in an IPCSPRxx Parmlib Member 17
6. BLSG Dialog Program Return Codes . 29
7. BLSGLIBD Dialog Program Return Codes . 31
8. ISPF Variables to Identify IPCS Release . 40
9. Storage Management Macros . 58

10. Installing IPCS Exit Routines in the BLSCUSER Parmlib Member 102
11. Exit Services, Service Codes, Parameter Lists, and Mapping Macros 108
12. View Control Bits and Their Recommended Meaning 116
13. The symbol service parameter list, XSSP, as mapped by macro BLSRXSSP 157
14. Symbol Service Function Code Constants . 158
15. BLSRESSY expansion for ESR fields . 160
16. Trapping IPCS Information . 174
17. Format Pattern Extension and Code Byte . 184

© Copyright IBM Corp. 1988, 2002 ix

x z/OS V1R4.0 MVS IPCS Customization

About this document

This document supports z/OS (5694-A01) and z/OS.e™ (5655-G52).

This document explains how to customize the interactive problem control system
(IPCS) for some or all IPCS sessions with the following:
v Customized parmlibs
v Customized parmlib members
v IPCS subcommands
v The BLSCDDIR CLIST
v SYS1.MIGLIB
v IPCS exit routines

Customization can also apply to ABEND/SNAP formatting.

IPCS operates in interactive and batch environments supported by TSO/E.

Who should use this document
This document is for people whose job is to:
v Use IPCS to format dumps
v Write IPCS exit routines
v Customize IPCS for an installation.

Where to find more information
Where necessary, this document references information in other documents, using
shortened versions of the document title. For complete titles and order numbers of
the documents for all products that are part of z/OS, see z/OS Information
Roadmap.

Information updates on the web
For the latest information updates that have been provided in PTF cover letters and
Documentation APARs for z/OS and z/OS.e, see the online document at:

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS

This document is updated weekly and lists documentation changes before they are
incorporated into z/OS publications.

Accessing z/OS licensed documents on the Internet
z/OS licensed documentation is available on the Internet in PDF format at the IBM
Resource Link™ Web site at:
http://www.ibm.com/servers/resourcelink

Licensed documents are available only to customers with a z/OS license. Access to
these documents requires an IBM Resource Link user ID and password, and a key
code. With your z/OS order you received a Memo to Licensees, (GI10-0671), that
includes this key code. 1

To obtain your IBM Resource Link user ID and password, log on to:

1. z/OS.e™ customers received a Memo to Licensees, (GI10-0684) that includes this key code.

© Copyright IBM Corp. 1988, 2002 xi

|

|
|

|
|

|
|

http://www.s390.ibm.com:80/bookmgr-cgi/bookmgr.cmd/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/servers/resourcelink

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed documents:

1. Sign in to Resource Link using your Resource Link user ID and password.

2. Select User Profiles located on the left-hand navigation bar.

Note: You cannot access the z/OS licensed documents unless you have registered
for access to them and received an e-mail confirmation informing you that
your request has been processed.

Printed licensed documents are not available from IBM.

You can use the PDF format on either z/OS Licensed Product Library CD-ROM or
IBM Resource Link to print licensed documents.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most
messages you encounter, as well as for some system abends and codes. Using
LookAt to find information is faster than a conventional search because in most
cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You
can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site that will allow you to access LookAt from a handheld computer (Palm Pilot VIIx
suggested).

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the News section on the LookAt Web site.

Some messages have information in more than one document. For those
messages, LookAt displays a list of documents in which the message appears.

xii z/OS V1R4.0 MVS IPCS Customization

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

Summary of changes

Summary of changes
for SA22-7595-02
z/OS Version 1 Release 4

The document contains information previously presented in z/OS MVS IPCS
Customization, SA22-7595-01, which supports z/OS Version 1 Release 2.

New information

v Information is added to indicate this document supports z/OS.e.

v The TOD Clock Service and the 26-Character Time Stamp Service are extended
to support the values provided by the STCKE instruction.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our documents.

Summary of changes
for SA22-7595-01
z/OS Version 1 Release 2

The document contains information previously presented in z/OS MVS IPCS
Customization, SA22-7595-00, which supports z/OS Version 1 Release 1.

New information

v The IPCS dialog primary option menu displays the z/OS release for which the
version of IPCS being used was intended. Users can customize this panel using
ISPF variables. See “Tailoring the IPCS Dialog to Identify the IPCS Level” on
page 40.

v Macros for managing blocks of storage in IPCS and SNAP/ABDUMP
environments are provided. See “Managing Storage for IPCS Exit Routines” on
page 57.

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Summary of Changes
for SA22-7595-00
z/OS Version 1 Release 1

The document contains information also presented in OS/390® IPCS Customization.

© Copyright IBM Corp. 1988, 2002 xiii

xiv z/OS V1R4.0 MVS IPCS Customization

Chapter 1. IPCS Installation Package

This chapter describes the IPCS installation package and introduces customization
of the package.

Installation Package

Item in IPCS Installation Package Purpose

SYS1.PARMLIB members related to IPCS v Define data areas, symbols, component analysis dialogs, and IBM-
and installation-supplied exit routines for IPCS dump formatting
and analysis.

v Imbed IBM- and installation-supplied parmlib members.

v Specify parameters to be used during an IPCS session.

IPCS subcommands v Analyze, view, and format dump data.

v Combine trace data from dump or trace data sets, or both, into a
single trace data set.

v Debug an IPCS exit routine.

v Maintain the IPCS dump directory, symbol table, and storage map.

v Merge and display formatted output from multiple application
traces and generalized trace facility (GTF) traces.

v Perform utility functions, including customization of IPCS sessions.

IPCS restructured extended executor
language (REXX) EXECs and command
lists (CLISTs)

v Begin an IPCS dialog.
v Create a dump directory.
v Generate problem screening reports.
v Perform initial dump analysis.
v Print system storage areas.
v Process one or more IPCS subcommands.
v Provide examples of IPCS subcommands.

IPCS dialog programs v Generate the functions associated with the IPCS dialog.
v Customize the IPCS dialog.

SYS1.MIGLIB system library v Allow IPCS and the component formatting and analysis programs
in one version of MVS™ to function in another version of MVS.

v Install exit routines.

IPCS macros and mapping macros Allow programmers to map data areas and perform functions needed
when writing IPCS exit routines that format and analyze dump data.

IPCS exit services Provide services to IPCS exit routines necessary for performing tasks
related to accessing, formatting, analyzing, printing, or displaying
information contained in a dump data set.

SYS1.PARMLIB Members Related to IPCS
IPCS provides parmlib members to control IPCS processing.

The BLSCECT, BLSCECTX, and BLSCUSER parmlib members define data areas,
symbols, component analysis dialogs, and IBM- and installation-supplied exit
routines for IPCS dump formatting and analysis. These parmlib members may also
embed IBM- or installation-supplied parmlib members. Note that the data areas, exit
routines, and embedded parmlib members can also be used for ABEND and SNAP
dump formatting.

© Copyright IBM Corp. 1988, 2002 1

For SNAP formatting, IPCS procedure BLSJPRMI initializes IPCS formatting tables.
During system initialization, a START command from parmlib member IEACMD00
initiates BLSJPRMI. BLSJPRMI issues the following return codes. If BLSJPRMI fails
to initialize the IPCS tables for SNAP dump processing, IPCS issues message
BLS001E.

Return Code Description

0 Normal completion.

4 Attention; condition(s) occurred, but did not prevent successful
completion of processing.

8 Error condition(s) occurred, but did not prevent successful
completion of processing.

12 Serious conditions occurred; problems pertaining to the syntax or
consistent semantic of the parmlib statements) prevented
completion of some portion of processing.

16 Terminating conditions occurred; problems pertaining to the
processing environment prevented completion of some portion of
processing.

The IPCSPRxx members define IPCS session parameters. When starting an IPCS
session, most IPCS users enter the IPCS NOPARM command to indicate that IPCS
is not to use session parameters specified in the IPCSPR00 or any other IPCSPRxx
parmlib member.

The parmlib members to control IPCS processing are:

BLSCECT

BLSCECT is an IBM-supplied default member of SYS1.PARMLIB. This default
member embeds BLSCECTX, other IBM-supplied parmlib members, and
BLSCUSER.

BLSCECTX

BLSCECTX is an IBM-supplied default member of SYS1.PARMLIB. This
member specifies the format exit routines for IBM programs not in the base
system. This member also embeds other IBM-supplied parmlib members used
by MVS components to define their IPCS support.

BLSCUSER

BLSCUSER is an optional parmlib member an installation can create and use
for customization. IBM does not supply a BLSCUSER member.

IPCSPR00

The IBM-supplied default is the IPCSPR00 member in SYS1.PARMLIB. This
member contains parameters for an IPCS session.

IPCSPRxx

Installations can supply one or more IPCSPRxx parmlib members to identify
customized parameters to be used during IPCS sessions. These parameters let
an installation tailor IPCS sessions to its requirements.

Installation Package

2 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v Chapter 2, “Customizing IPCS Session Parameters” for using IPCS parmlib
members and alternate parmlibs to customize IPCS session parameters

v “CTRACE Filter/Analysis (CTRF) Exit Routine” on page 73 for using the
PANDEF statement in a BLSCUSER parmlib member to create a
component analysis dialog

v Chapter 9, “Installing IPCS Exit Routines” for using IPCS parmlib members
to install IPCS exit routines

v z/OS MVS Initialization and Tuning Reference for the BLSCECT,
BLSCUSER, and IPCSPRxx members

IPCS Subcommands
IPCS supplies subcommands to do the following:

v Analyze, view, and format dump data

v Combine trace data from dump or trace data sets, or both, into a single trace
data set

v Debug an IPCS exit routine by setting traps through the IPCS debug tool

v Maintain the IPCS dump directory, symbol table, and storage map

v Merge and display formatted output from multiple application traces and GTF
traces

v Perform utility functions, including customization of IPCS sessions

For customization, use the following subcommands:

Subcommand Purpose

COPYDDIR To allow IPCS users to copy data from one dump directory for a
particular dump related to a particular data set into another dump
directory.

COPYTRC To combine trace data from dump or trace data sets, or both, into a
single trace data set.

GO To allow IPCS users to resume IPCS trap processing performed by
the IPCS debug tool. The traps can be used to obtain diagnostic
input and output information about exit routines that use one of the
IPCS exit services.

MERGE To display formatted output that is merged from multiple component
traces and from generalized trace facility (GTF) traces.

NOTE To allow IPCS users to send messages to the IPCSPRNT data set.

PROFILE To customize the line widths and the number of lines per printed
page of IPCS reports.

SETDEF To customize IPCS subcommand parameters.

TRAPLIST To display the status of IPCS-supplied traps.

TRAPOFF To deactivate an IPCS-supplied trap.

TRAPON To activate an IPCS-supplied trap.

Installation Package

Chapter 1. IPCS Installation Package 3

References
See the following:

v Chapter 11, “The IPCS Debug Tool” for information about using the debug
tool through the GO, TRAPLIST, TRAPOFF, and TRAPON subcommands

v z/OS MVS IPCS Commands for information about the COPYDDIR,
COPYTRC, GO, MERGE, NOTE, PROFILE, SETDEF, TRAPLIST,
TRAPOFF, and TRAPON subcommands

IPCS REXX Execs and CLISTs
The system library, SYS1.SBLSCLI0, contains copies of the REXX EXECs and
CLISTs supplied by IBM. All IPCS REXX EXECs begin with the prefix BLSX. All
IPCS CLISTs begin with the prefix BLSC. Use REXX EXECs and CLISTs to:
v Begin an IPCS dialog
v Create a dump directory
v Generate problem screening reports
v Perform initial dump analysis
v Print system storage areas
v Process one or more IPCS subcommands
v Provide examples of IPCS subcommands

For customization:

v Individual IPCS users can invoke the BLSCDDIR CLIST supplying parameters to
change dump directory defaults, such as the dump directory volume serial or the
number of records provided for dump directories.

v Installations can edit the BLSCDDIR CLIST to customize the dump directory for
the entire installation.

v Individual users or installations can run the BLSCLIBD CLIST to begin an IPCS
dialog. IBM recommends using this CLIST rather than using the BLSGLIBD
dialog program.

References
See the following:

v z/OS MVS IPCS User’s Guide for information about writing REXX EXECs
and CLISTs for IPCS and invoking them from an IPCS session

v Chapter 3, “Customizing the Dump Directory” for editing the BLSCDDIR
CLIST to customize a dump directory for an entire installation

v Chapter 5, “Customizing the IPCS Dialog” for using the BLSCLIBD CLIST to
start an IPCS dialog

v z/OS MVS IPCS User’s Guide for using the BLSCDDIR CLIST to customize
a dump directory for an individual IPCS user

IPCS Dialog Programs
IPCS supplies dialog programs and a CLIST to generate and customize the IPCS
dialog.

IPCS supplies the following dialog programs:

Installation Package

4 z/OS V1R4.0 MVS IPCS Customization

Dialog Program Purpose

BLSG Begins an IPCS dialog.

BLSGLIBD An alternative way to begin an IPCS dialog.

In addition to the function provided by BLSG,
BLSGLIBD allocates, through the ISPF LIBDEF
service, the following ddnames and associated data
sets:

Ddname Associated Data Set

ISPPLIB SYS1.SBLSPNL0

ISPMLIB SYS1.SBLSMSG0

ISPSLIB SYS1.SBLSKEL0

ISPTLIB SYS1.SBLSTBL0

Note: IPCS supplies the BLSCLIBD CLIST to start
an IPCS dialog. BLSCLIBD performs the
same function as the BLSGLIBD dialog
program. IBM recommends using the
BLSCLIBD CLIST rather than using the
BLSGLIBD dialog program to begin an IPCS
dialog.

BLSGSCMD Causes IPCS to process an IPCS subcommand or
CLIST.

BLSLDISP Browses an IPCS dump data set.

BLSGDCDA Displays the list of component data analysis
routines found in either:

v The BLSCECT parmlib member

v In parmlib members embedded in the BLSCECT
parmlib member

BLSGDUIN Displays a list of dumps found in the dump
directory.

Dialog programs BLSG, BLSGLIBD, and BLSGSCMD may be used in a TSO/E
batch environment. All others require an interactive ISPF environment where both
full screen and line mode output are presented in real time.

To customize the IPCS dialog, use:

v The ISPF LIBDEF service

v ISPEXEC to use the Interactive System Productivity Facility (ISPF) SELECT
service with the IPCS dialog programs

Installation Package

Chapter 1. IPCS Installation Package 5

References
See the following:

v Chapter 5, “Customizing the IPCS Dialog” for information about customizing
the IPCS dialog by using:

– The ISPF LIBDEF service

– The ISPF ISPEXEC and SELECT services with the IPCS dialog
programs

v z/OS ISPF Dialog Tag Language Guide and Reference for information about
the ISPF ISPEXEC, SELECT, and LIBDEF services and dialog programs

SYS1.MIGLIB System Library
IPCS supplies the SYS1.MIGLIB system library to:

v Allow IPCS and the component formatting and analysis programs in one version
of MVS to function in another version of MVS.

v Allow you to install installation-provided IPCS exit routines in your system.

References
See the following:

v Chapter 6, “Using IPCS on Another System” for information about using
SYS1.MIGLIB to process multiple levels of dumps

v Chapter 9, “Installing IPCS Exit Routines” for information about using
SYS1.MIGLIB to install IPCS exit routines

IPCS Macros and Mapping Macros
The system supplies macros and mapping macros to allow you to:
v Map IPCS data areas
v Create IPCS exit routines
v Invoke and use IPCS exit services within those exit routines

Create IPCS exit routines, using exit services, to:
v Add symptom strings
v Analyze dump data
v Create diagnostic reports of unlimited possibilities
v Format dump data
v Generate titles and table of contents entries
v Locate data in a dump
v Validate data in a dump

IPCS Macro for Invoking an IPCS Exit Service within an IPCS Exit
Routine

Programming Interface information

Mapping macro BLSABDPL maps field ADPLSERV, which contains the address of

Installation Package

6 z/OS V1R4.0 MVS IPCS Customization

the exit services router. Use the exit services router to invoke many of the exit
services. Table 3 on page 12 indicates which exit services are invoked through the
exit services router.

References
See the following:

v “Invoking with the Exit Services Router” on page 107 for information about
the exit services router

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of BLSABDPL

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
coding the BLSABDPL macro

End of Programming Interface information

IPCS Macros for Using an IPCS Exit Service within an IPCS Exit
Routine

Programming Interface information

IPCS mapping macros are supplied to map exit service parameter lists needed to
use IPCS exit services within an IPCS exit routine. Table 1 lists the IPCS exit
services, and gives the mapping macro that maps the exit service parameter list for
each exit service.

Table 1. IPCS Mapping Macros for IPCS Exit Services

IPCS Exit Service Mapping Macro
as Listed In
z/OS MVS Data
Areas, Vol 1
(ABEP-DALT)

Maps Exit
Service
Parameter List

Add symptom BLSADSY BLSADSY*

Control block formatter BLSABDPL ADPLPFMT

Control block status (CBSTAT) BLSACBSP BLSACBSP*

Create contention queue element (CQE) BLSAPCQE BLSAPCQE*

Equate symbol BLSRESSY BLSRESSY*

Exit control table (ECT) BLSABDPL ADPLPECT

Expanded print BLSUPPR2 BLSUPPR2*

Format model processor BLSABDPL ADPLPFMT

Get symbol BLSRESSY BLSRESSY*

Name BLSRNAMP BLSRNAMP*

Name/token lookup BLSQNTKP BLSQNTKP*

Select address space identifier (ASID) BLSABDPL ADPLPSEL

Standard print BLSUPPR2 BLSUPPR2*

Storage access BLSABDPL ADPLPACC

Storage map BLSRXMSP BLSRXMSP*

Symbol service BLSRXSSP BLSRXSSP*

Installation Package

Chapter 1. IPCS Installation Package 7

Table 1. IPCS Mapping Macros for IPCS Exit Services (continued)

IPCS Exit Service Mapping Macro
as Listed In
z/OS MVS Data
Areas, Vol 1
(ABEP-DALT)

Maps Exit
Service
Parameter List

WHERE BLSRPWHS BLSRPWHS*

Note: * The mapping macro that supports this parameter list permits the user to specify the
name of the parameter list. The name shown is the one that appears in z/OS MVS Data
Areas, Vol 1 (ABEP-DALT)

References
See the following:

v Chapter 10, “IPCS Exit Services” for information about using the mapping
macros when using the IPCS exit services

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
coding the macros to generate macro mappings

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for macro mappings

End of Programming Interface information

IPCS Macros for Writing IPCS Exit Routines

Programming Interface information

You may need the data areas mapped by the following mapping macros to write
IPCS exit routines:
v BLSQFXL
v BLSRDATC
v BLSRDATS
v BLSRDATT
v BLSRDRPX
v BLSRPRD
v BLSRSASY

BLSQFXL

Maps the format exit routine list (FXL) used by model processor formatting
(MPF) exit routines. FXL contains the addresses of data of potential interest to
the MPF exit routine, as well as a description of the formatted line.

BLSRDATC

Maps the data area used by IPCS to describe relocatable attributes of a block of
storage. This includes the length, data type, offset, plus the dimension and initial
subscript for blocks of storage that are described as one-dimensional arrays.
The BLSRDATC data area appears within the BLSRESSY data area as field
ESSYD; it also appears within the BLSRSASY data area as field SASYF.

BLSRDATS

Maps the data area used by IPCS to describe an address space in a dump
source. BLSRDATS maps the data for the IPCS address space selection
parameters.

Installation Package

8 z/OS V1R4.0 MVS IPCS Customization

The data in BLSRDATS can be for a symbolic literal that describes an address
space. When BLSRDATS contains a symbolic literal, the T field contains C’LI’
for the literal symbol ZZZASTLI, the 1 field contains a numeric index assigned to
the literal when it was created, and the other fields contain reserved values.

If the numeric index is zero, the address space contains no storage; IPCS
services return LITERAL(0) when a caller refers to an address space with no
storage.

The BLSRDATS data area appears within the BLSRESSY data area as field
ESSYAS; it also appears within the BLSRSASY data area as field SASYAS. In
addition, it appears within a number of parameter lists, such as the WHERE exit
service parameter list and the CQE create exit service parameter list.

BLSRDATT

Maps the data area used by IPCS to describe the data type of a block of
storage. IPCS defines equates within the BLSRDATT macro that match the data
types:

Type of Data Equate

Pointer ZZZDTYA

Bit string ZZZDTYB

Character string ZZZDTYC

Signed number ZZZDTYF

Module name ZZZDTYL

Structure or control block ZZZDTYM

Area (not a module or control block)
ZZZDTYU

Unsigned number ZZZDTYY

Use one of these equates to set field ESSYDTY. For example, when retrieving a
control block, use the equate ZZZDTYM or when retrieving the symbol for the
PRIVATE area, use the equate ZZZDTYU.

The BLSRDATT data area appears within the BLSRDATC data area, and,
therefore, within both the BLSRESSY and BLSRSASY data areas. In the
BLSRESSY data area, it appears as field ESSYDT; in the BLSRSASY data
area, it appears as field SASYFT. It also appears directly within the BLSRSASY
data area as field SASYDT. In a storage map that is properly filled in, fields
SASYDT and SASYFT usually contain the same data. The two fields may differ
when the block in question is part of a group. For example, SASYDT may
record that the block is an instance of data type STRUCTURE (UCB) while
SASYFT refines that description to record that it, more accurately, is an instance
of data type STRUCTURE (UCBTAPE).

BLSRDRPX

Maps the dump record prefix, which contains the title of the dump and other
information needed for interpretation of the dump. BLSRPRD invokes this to
map part of the total dump record, but BLSRDRPX can be invoked
independently.

BLSRPRD

Maps the format of dump records that may be accessed by the summary dump
access service.

BLSRSASY

Installation Package

Chapter 1. IPCS Installation Package 9

Maps the structure of a dump directory storage address (SA) record. This is a
key structure in the interface to scan exits and to the storage map service.

References
See the following:

v “Model Processor Formatting (MPF) Exit Routine” on page 87

v “Scan Exit Routine” on page 92

v “Storage Map Service” on page 153

v “Summary Dump Data Access Service” on page 188

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
coding the macros to generate the macro mappings

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for macro mappings

End of Programming Interface information

IPCS Macros for Creating a Control Block Model

Programming Interface information

The following macros are supplied to allow you to create a control block model:

BLSQMDEF

Starts and ends the definition of a formatting model.

BLSQMFLD

Identifies fields that are to be formatted.

BLSQSHDR

Defines a text string, called a subheader, to appear as part of the output of the
model processor.

References
See the following:

v “Format Model Processor Service” on page 132 and “Format Models” on
page 134 for information about using the BLSQMDEF, BLSQMFLD, and
BLSQSHDR macros to create a control block model

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about the BLSQMDEF, BLSQMFLD, and BLSQSHDR macros

End of Programming Interface information

Non-IPCS Macros for IPCS Customization

Programming Interface information

Other mapping macros you may need when customizing IPCS are the following:

Installation Package

10 z/OS V1R4.0 MVS IPCS Customization

Table 2. Non-IPCS Mapping Macros Needed for IPCS Customization

Macro In Data Areas Books
Under:

Used for the Following:

AHLFFAP FFAP To write GTFTRACE formatting appendages and GTFTRACE
filter/analysis exit routines .

AHLWKAL WKAL To write GTFTRACE formatting appendages .

AHLZGTO GTO To write GTFTRACE formatting appendages and GTFTRACE
filter/analysis exit routines .

AHLZGTS GTS To write GTF formatting appendages and GTFTRACE
filter/analysis exit routines .

CSVMODI CSVMODI To retrieve information about loaded modules.

IHASMDLR SMDLR To map dump record headers that describe data in the record in a
summary dump data contained in an SVC dump. The summary
dump data access service allows you to access these dump
records.

IKJCPPL CPPL To write a BLSUGWDM validity check routine , which is used to
disable access to TSO/E commands.

ITTCTE ITTCTE To create an installation-provided CTRACE entry. Use field
CTEFMTID (format ID key) to provide an index into the CTRACE
format table .

ITTCTXI CTXI To create CTRACE filter/analysis (CTRF) exit routines and
CTRACE format tables .

ITTFMTB See z/OS MVS
Programming:
Authorized Assembler
Services Reference
ENF-IXG

To create the CTRACE format table , used in conjunction with the
CTRACE buffer find exit routine and the CTRACE filter/analysis
exit routine .

To create unique trace identifiers. Each trace identifier contains:

v Mnemonic name to describe the type of event (MNEMONIC
parameter)

v Entry description (DESCRIPTION parameter)

v Formatting program or model for formatting the entry
(FORMATNAME, FORMATADDR, MODELNAME, MODELADDR
parameters)

v Address space identifier (ASID) offsets (OFFSETASID parameter)

v JOBNAME offsets (OFFSETJOBNAME parameter)

v Exception indicator (EXCEPTION/NOEXCEPTION parameter)

v Summary formatting view (VIEWSUMMARY parameter)

v Full formatting view (VIEWFULL parameter)

Installation Package

Chapter 1. IPCS Installation Package 11

References
See the following:

v Chapter 7, “Providing Security for IPCS” for information about creating a
BLSUGWDM validity check routine

v Chapter 8, “Writing IPCS Exit Routines” for information about using the
mapping macros to write IPCS exit routines

v “CTRACE Buffer Find Exit Routine” on page 71 for the CTRACE buffer find
exit routine

v “CTRACE Format Table” on page 68 for the CTRACE format table

v z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG for the ITTFMTB macro

v For macro mappings:

z/OS MVS Data Areas, Vol 1 (ABEP-DALT)
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)
z/OS MVS Data Areas, Vol 3 (IVT-RCWK)
z/OS MVS Data Areas, Vol 4 (RD-SRRA)
z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)

End of Programming Interface information

IPCS Exit Services

Programming Interface information

Table 3 lists the IPCS exit services available to IPCS exit routines. Services that are
invoked through the exit services router are preferred to those services invoked in
other ways because you can use the debug tool on services invoked through the
router; the debug tool is used through the IPCS subcommands GO, TRAPLIST,
TRAPOFF, and TRAPON.

Table 3. Invoking Exit Services

Service Recommended? See the following:

Add symptom Yes Chapter 10, “IPCS Exit Services”

Control block formatter Yes Chapter 10, “IPCS Exit Services”

Control block status
(CBSTAT)

Yes Chapter 10, “IPCS Exit Services”

Contention queue element
(CQE) create

Yes Chapter 10, “IPCS Exit Services”

Dump index No, use table of contents
service

“IPCS Exit Services Supported for Compatibility”

Equate symbol Yes Chapter 10, “IPCS Exit Services”

Exit control table (ECT) Yes Chapter 10, “IPCS Exit Services”

Expanded print Yes Chapter 10, “IPCS Exit Services”

Format No, use control block
formatter or format model
processor service

“IPCS Exit Services Supported for Compatibility”

Installation Package

12 z/OS V1R4.0 MVS IPCS Customization

Table 3. Invoking Exit Services (continued)

Service Recommended? See the following:

Format model processor Yes Chapter 10, “IPCS Exit Services”

Get symbol Yes Chapter 10, “IPCS Exit Services”

Name Yes Chapter 10, “IPCS Exit Services”

Name/token lookup Yes Chapter 10, “IPCS Exit Services”

Old storage access No, use storage access
service for exit routines that
do SNAP or both SNAP and
IPCS formatting. Use
storage map or symbol
service for exit routines that
do IPCS formatting.

“IPCS Exit Services Supported for Compatibility”

Quiesce IPCS transaction Yes Chapter 10, “IPCS Exit Services”

Print No, use standard print or
expanded print service

“IPCS Exit Services Supported for Compatibility”

Select address space
identifier (ASID)

Yes Chapter 10, “IPCS Exit Services”

Standard print Yes, but use expanded print
service, especially for exit
routines that issue
messages with prefixes

Chapter 10, “IPCS Exit Services”

Storage access Yes Chapter 10, “IPCS Exit Services”

Storage map Yes Chapter 10, “IPCS Exit Services”

Summary dump data access No, use symbol service with
an ACC code that identifies
the summary dump as
desired storage

“IPCS Exit Services Supported for Compatibility”

Symbol Yes Chapter 10, “IPCS Exit Services”

Table of contents Yes Chapter 10, “IPCS Exit Services”

Time of day clock Yes Chapter 10, “IPCS Exit Services”

WHERE Yes Chapter 10, “IPCS Exit Services”

17-character time stamp Yes Chapter 10, “IPCS Exit Services”

26-character time stamp Yes Chapter 10, “IPCS Exit Services”

References
See the following:

v “IPCS Macros and Mapping Macros” on page 6 for the macros used to map
the exit services parameter lists

v Chapter 8, “Writing IPCS Exit Routines” for information about invoking these
services in an IPCS exit routine

v Chapter 10, “IPCS Exit Services” for information about invoking and using
these services

v Chapter 11, “The IPCS Debug Tool” for information about using the IPCS
debug tool to debug IPCS exit routines that use exit services

Installation Package

Chapter 1. IPCS Installation Package 13

End of Programming Interface information

Customizing the IPCS Installation Package
The following table summarizes the various IPCS customization possibilities:

Table 4. Customizing the IPCS Installation Package

To Customize or
Create:

Do the Following: Reference

Access to IPCS To simplify or customize access, use any of
the following:

v A TSO/E LOGON procedure

v A customized ISPF/PDF selection panel, if
IPCS is set up in a TSO/E environment

v User-written CLISTs with the TSO/E
ALLOCATE command

v JCL

See Chapter 4, “Customizing Access to
IPCS”

Access to the IPCS
dialog

Use either a TSO/E LOGON procedure or a
customized ISPF/PDF selection panel.

See Chapter 4, “Customizing Access to
IPCS”

IPCS exit routines To write exits, use the following:
v IPCS mapping macros
v IPCS macros
v IPCS exit services
v IPCS debug tool

To install exits, use one or more of the
following:
v SYS1.MIGLIB
v SYS1.LPALIB
v SYS1.PARMLIB
v Alternate parmlibs

See the following:

v Chapter 8, “Writing IPCS Exit Routines”
and Chapter 10, “IPCS Exit Services” for
information about using IPCS, macros,
mapping macros, and exit services to write
IPCS exit routines

v Chapter 9, “Installing IPCS Exit Routines”
for information about installing the exit
routines

v Chapter 11, “The IPCS Debug Tool” for
information about debugging IPCS exit
routines

IPCS dialog To customize the dialog, do the following:

v Use the ISPF LIBDEF service.

v Use ISPEXEC to invoke the ISPF SELECT
service with the IPCS dialog programs.

To create your own dialog, create your own
panels.

See the following:

v Chapter 5, “Customizing the IPCS Dialog”

v z/OS ISPF Dialog Tag Language Guide
and Reference for how to create dialog
panels

Dump directory copies Use the IPCS COPYDDIR subcommand. See z/OS MVS IPCS Commands

Defaults for user and
sysplex dump
directories

Use the BLSCDDIR CLIST. See the following:

v Chapter 3, “Customizing the Dump
Directory”

v z/OS MVS IPCS User’s Guide

IPCS session
parameters

Create either:

v One or more IPCSPRxx members in an
alternate parmlib

v One or more IPCSPRxx parmlib members
in SYS1.PARMLIB

See Chapter 2, “Customizing IPCS Session
Parameters”

IPCS subcommand
parameters

Use the IPCS SETDEF subcommand. See z/OS MVS IPCS Commands

Installation Package

14 z/OS V1R4.0 MVS IPCS Customization

Table 4. Customizing the IPCS Installation Package (continued)

To Customize or
Create:

Do the Following: Reference

Line widths for IPCS
reports

Use the IPCS PROFILE subcommand. See z/OS MVS IPCS Commands

Security for IPCS
sessions

Create a BLSUGWDM validity check module. See Chapter 7, “Providing Security for IPCS”

Installation Package

Chapter 1. IPCS Installation Package 15

Installation Package

16 z/OS V1R4.0 MVS IPCS Customization

Chapter 2. Customizing IPCS Session Parameters

IPCSPRxx parmlib members contain the parameters that control an IPCS session.
This chapter describes the session parameters.

Session Parameters
IPCS session parameters appear in an IPCSPRxx parmlib member and can specify
the following for a session:

Table 5. IPCS Session Parameters Specified in an IPCSPRxx Parmlib Member

Session Parameter Specifies: Default in IPCSPR00:

DSD(dsn) The data set name of the IPCS data set directory, which is
used for problem and data set management.

Not supplied

NODSD The suppression of problem and data set management use. NODSD

PDR(dsn) The data set name of the IPCS problem directory. Not supplied

NOPDR The suppression of problem and data set management use. NOPDR

PROBIDPREFIX(prefix) The 3-character value used to form a problem identifier. Not supplied

SYSTEM(system-id) The default system identifier. Not supplied

GROUP(group-id) The default group identifier. Not supplied

ADMINAUTHORITY
(userid-list)

The TSO/E userids of the persons with IPCS administrative
authority.

Not supplied

DELETEAUTHORITY
(userid-list)

The TSO/E userids of the persons with IPCS delete authority. Not supplied

LINELENGTH(value) The default logical record length (LRECL) for the IPCS print
output data set.

LINELENGTH(137)

PAGESIZE(value) The default number of lines per page for the IPCS print
output data set.

PAGESIZE(60)

References
See z/OS MVS Initialization and Tuning Reference for more information about
the session parameters contained in a IPCSPRxx parmlib member.

The session parameters include:

v Problem and data set management parameters. These parameters are usually
not needed if the installation uses the recommended IBM Information/Family
programs for problem management.

v IPCS print data set defaults. These are needed only if you want to print IPCS
output.

IPCS supplies default session parameters in IPCSPR00, including the print data set
defaults, but not the problem and data set management functions. When starting an
IPCS session, most IPCS users enter the IPCS NOPARM command to indicate that
IPCS is not to use session parameters specified in IPCSPR00 or any other
IPCSPRxx parmlib member. Note that NOPARM does not affect the use of the
BLSCECT parmlib member. If NOPARM is specified, you cannot use the IPCS
problem management or data set management subcommands.

© Copyright IBM Corp. 1988, 2002 17

Customizing Session Parameters
If you choose to use session parameters other than the defaults, IPCS allows
installations to create one or more IPCSPRxx parmlib members to customize some
or all IPCS sessions. To customize the IPCS session parameters, do one, or all, of
the following:
v Customize the IBM-supplied IPCSPR00 parmlib member.
v Create one or more IPCSPRxx parmlib members.
v Create an alternate parmlib containing one or more IPCSPRxx members.

Indicate which IPCSPRxx parmlib member IPCS is to use for session parameters
on the IPCS command that begins an IPCS session. See “Indicating Which
IPCSPRxx Member IPCS Should Use”.

Creating an Alternate Parmlib
To create an alternate parmlib containing one or more IPCSPRxx members, do the
following:

1. Make sure that you are not in an IPCS session.

2. Edit a copy of IPCSPRxx into an alternate parmlib called DEPTXYZ.PARMLIB,
for example. Call the copy IPCSPR05, for example.

3. Specify the parameters in the IPCSPR05 member of DEPTXYZ.PARMLIB.

4. Enter the following TSO/E command:
allocate file(ipcsparm) dsn(’deptxyz.parmlib’ ’sys1.parmlib’) shr

The result of this allocate command is that IPCS will use IPCSPR05 in
DEPTXYZ.PARMLIB for the session parameters.

5. Begin an IPCS session by entering the following command so that IPCS will
syntax-check IPCSPR05:
IPCS PARM(05)

All users needing special session parameters can store customized IPCSPRxx
members in DEPTXYZ.PARMLIB. Users do not need update authority to
SYS1.PARMLIB to tell IPCS which problem and data set directories have been
established for users.

Indicating Which IPCSPRxx Member IPCS Should Use
If you choose to customize the IPCSPR00 parmlib member or create an IPCSPRxx
member containing session parameters, you can indicate which member IPCS
should use for session parameters as follows:

To Bypass the Use of Any IPCSPRxx Member

Begin your IPCS session by entering IPCS NOPARM. IPCS will not use session
parameters.

To Use the IBM-Supplied or Installation-Customized IPCSRP00 Member

Begin your IPCS session by entering IPCS. Do not enter the PARM or
NOPARM parameter on the IPCS command. IPCS will use the IPCSPR00
parmlib member for session parameters.

To Use an Installation-Provided IPCSPRxx Member

Begin your IPCS session by entering IPCS PARM(xx), where xx is the suffix of
the IPCSPRxx parmlib member containing the session parameters to be used.

IPCS Session Parameters

18 z/OS V1R4.0 MVS IPCS Customization

Reference
See z/OS MVS IPCS User’s Guide for information about the IPCS command
used to start an IPCS session.

Using Problem and Data Set Management Facilities
IPCS users who previously depended upon the IBM-supplied IPCSPR00 to specify
the data set name for IPCS problem and data set management and the IPCS
problem directory will have to add the following lines to the IPCSPR00 or a
IPCSPRxx parmlib member:
DSD(IPCS.DATA.SET.DIRECTRY)
PDR(IPCS.PROBLEM.DIRECTRY)

These data sets are usually not needed and should not be allocated if the
installation uses the recommended IBM Information/Family programs for problem
management.

IPCS Session Parameters

Chapter 2. Customizing IPCS Session Parameters 19

20 z/OS V1R4.0 MVS IPCS Customization

Chapter 3. Customizing the Dump Directory

Users or installations who use IPCS extensively or want to improve IPCS
performance can customize the dump directories:

v User dump directory: Each IPCS user has a user dump directory, which lists
the sources the user can process with IPCS. IPCS uses it while processing the
user’s subcommands and commands.

v Sysplex dump directory: This directory lists the SVC dumps produced by
systems in the sysplex and can list other sources. A user can transfer the source
description for a dump, trace, or data set from the sysplex dump directory to the
user’s current user dump directory.

The directory used by a subcommand is the directory allocated with ddname
IPCSDDIR.

Customizing the Directories
To customize all user dump directories created by IPCS users at an installation or
to customize the sysplex dump directory, the installation can alter the dump
directory defaults by:

v Running the BLSCDDIR CLIST with appropriate DSNAME, RECORDS, or
VOLUME parameter values before users invoke IPCS

v Editing the BLSCDDIR CLIST to specify the name, size, or volume for user dump
directories

In TSO/E, the IPCS command uses the defaults in BLSCDDIR to dynamically
create a user dump directory for an IPCS session.

References
See the z/OS MVS IPCS User’s Guide for information about starting an IPCS
session, including creating a dump directory, and the TSO/E commands used
to create, initialize, and allocate a dump directory. See z/OS MVS IPCS
Commands for invoking the BLSCDDIR CLIST and descriptions of the
DSNAME, RECORDS, or VOLUME parameters.

Editing the BLSCDDIR CLIST
An installation can edit the BLSCDDIR CLIST to change dump directory defaults
supplied by the BLSCDDIR CLIST, such as:
v The dump directory name
v The dump directory size
v The dump directory volume

It is recommended that you use storage management subsystem (SMS) constructs
established at your installation, such as management class and data class, in
preference to using the VOLUME parameter in the IBM-supplied BLSCDDIR CLIST.

In systems with Data Facility Storage Management Subsystem/MVS
(DFSMS/MVS®), you can place a directory in an extended sequential data set. You
may request compression, especially in a system running stable production loads

© Copyright IBM Corp. 1988, 2002 21

that produce few dumps and, thus require few updates to the dump directory.
However, compression might save little space because much of the data is placed
in the keys, which are not compressed.

To change the user dump directory defaults in BLSCDDIR CLIST, do one or more of
the following:

v Change the DSNAME assignment in the BLSCDDIR CLIST to contain a new
data set name for the directory. The name should be fully-qualified.

v Change the RECORDS assignment in the BLSCDDIR CLIST to specify a new
number of records to maintain a larger dump directory. The default dump
directory size is 5000 records. The number should be the records accommodated
by the primary and secondary dump directory allocation.

For most processing, determine the space needed for a user dump directory by
using the following rule:

Number of tracks allocated = 5% of the total number of tracks in the dumps
to be represented in the directory.

An installation should try to find a default for space that will provide the
least-active IPCS users with enough space to do their work with a directory that
uses just one extent. Then the most active IPCS users’ directories should be
examined to verify that they are no more than 256 times as large as the default
you chose. If not, either:

1. Allocate space for dump directories using an amount that will accommodate
the more active IPCS users. This may be quite acceptable in installations
where tools like the hierarchical storage manager (HSM) are used to archive
little-used data sets. Because HSM uses data compression techniques to
save space on archival storage, the over-allocated user dump directories of
the least active IPCS users will not cause storage problems.

2. Warn the more active IPCS users that they should change the defaults
provided by BLSCDDIR when they allocate replacement user dump
directories, using the procedure in the z/OS MVS IPCS User’s Guide.

v Change the VOLUME assignment in the BLSCDDIR CLIST to specify a new
volume serial for user dump directories. The default volume serial for directories
is VSAM01.

VSAM allows 256 extents of a data set to be allocated on each volume, so you
will probably be able to find a value that satisfies both casual and extensive IPCS
users.

If all user dump directories cannot be placed on a single volume, add the
following to the BLSCDDIR CLIST:
IF &LENGTH(&VOLUME) = 0 THEN +
IF &SUBSTR(1:1,&SYSUID)=A THEN SET VOLUME=VOLA
ELSE IF &SUBSTR(1:1,&SYSUID)=B THEN SET VOLUME=VOLB
.
.
.

Dump Directories and Performance
IPCS uses a user dump directory to process dumps efficiently. IPCS determines the
most efficient method of mapping storage and creating symbols for its use. IPCS
and VSAM, however, sometime do not agree on the most efficient use of the dump
directory. You cannot alter the IPCS code, but you can do several VSAM-related
things to your dump directory to try to improve performance.

Using System-Managed Storage

Dump Directory

22 z/OS V1R4.0 MVS IPCS Customization

To use system-managed storage, specify in the BLSDDIR CLIST the
parameters: DATACLAS, MGMTCLAS, and/or STORCLAS.

Changing the Control Interval Size

One of the potential bottlenecks in IPCS processing is the number of control
interval splits in the dump directory. Periodically review the rate of control
interval splits your IPCS users experience. To minimize splits, adjust the
NDXCISZ parameter value in the BLSCDDIR CLIST to tune the size of the
index and data in the dump directory.

Copying Source Descriptions

The COPYDDIR subcommand allows VSAM to reorganize the source
descriptions as it copies descriptions from one dump directory to another. To
take advantage of COPYDDIR, you can modify your installation’s dump
management procedures as follows:

1. Have the jobs that produce initial problem screening reports save the source
descriptions in the sysplex dump directory.

2. Have individual users invoke COPYDDIR to copy the source description to
their own user dump directories. Not only to the users avoid IPCS
initialization processing, but the source description is less fragmented.

Refreshing Dump Directories

You or an individual user can invoke the TSO/E REPRO command to copy the
contents of a dump directory to a temporary data set, then back into the dump
directory. This allows VSAM to reorganize the data in the dump directory. See
z/OS MVS IPCS User’s Guide for a sample CLIST to refresh the dump directory.

Changing the Buffer Space

You or an individual user can use the TSO/E ALTER command to change the
amount of virtual storage IPCS uses to buffer the data portion of a dump
directory. IPCS will override the value specified if space for less than 16 control
intervals or more than 1024 control intervals is specified.

Dump Directory

Chapter 3. Customizing the Dump Directory 23

Dump Directory

24 z/OS V1R4.0 MVS IPCS Customization

Chapter 4. Customizing Access to IPCS

This chapter describes how to customize access to IPCS, and is written primarily
for the system programmer who wants to customize access to IPCS for users at the
installation. However, individual users can also follow these procedures to
customize access to IPCS for themselves.

IBM recommends that all installations customize access for IPCS users. By
providing customized access, you give users a convenient way to start IPCS and
ensure that the method for starting IPCS is consistent with the standards of the
installation.

Planning for Customized Access
Before you begin any actual customization, you need to make two decisions related
to setting up an IPCS session for the user:
v The method to use for starting IPCS
v The function to use for invoking the IPCS dialog.

Regardless of the method for starting IPCS or the function for invoking the IPCS
dialog, IBM recommends that you:

v Add an IPCS option to an ISPF selection panel.

As supplied by IBM, there is no option for selecting the IPCS dialog on any ISPF
panel. To provide a simple means for users to start the IPCS dialog, you should
add an option for the IPCS dialog to an ISPF selection panel.

v Create a TSO/E logon procedure that the user can invoke to set up the
environment for the IPCS session.

This customization might also involve providing an accompanying CLIST that is
invoked by the logon procedure. The logon procedure and CLIST can automate
various functions for the user, such as:
– Concatenating the IPCS libraries
– Starting IPCS in line mode
– Starting an ISPF session.

There is one other point that you should consider when providing customized
access to IPCS: If the definition for the dump directory is not managed through the
storage management subsystem (SMS), IBM recommends that you edit the
BLSCDDIR CLIST to specify the default volume for the dump directory. See
Chapter 3, “Customizing the Dump Directory” on page 21 for further information.

Note: You can use different release levels of IPCS on the same system. The
examples in this chapter show only how to access the level of IPCS that
matches the system’s release level (assuming IPCS libraries are not
renamed at your installation). See Chapter 6, “Using IPCS on Another
System” on page 47 for information on using different release levels of IPCS.

Decisions to Make Before Starting Customization
Before you begin any actual customization, you should decide which method for
starting IPCS you want to provide for the user. There are two basic methods, and
there are certain advantages to each.

© Copyright IBM Corp. 1988, 2002 25

You should also decide which function to use for invoking the IPCS dialog. Part of
the recommended customization involves adding an IPCS option to an ISPF
selection panel. The option that you provide will use one of the functions for
invoking the IPCS dialog.

This section describes each of these decisions, explains the choices available, and
helps you determine which choices are best suited to your requirements. The
specific customization that you provide depends on the decisions you make.

Starting IPCS: Deciding Which Method to Provide
There are two basic ways for users to start the IPCS dialog:

v Start the IPCS dialog directly from ISPF without starting IPCS in line mode

In this case, the user invokes the IPCS dialog directly from ISPF, without entering
the IPCS command before starting ISPF.

Requirement

To start IPCS without entering the IPCS command, you must run IPCS
under the terminal monitor program supplied with TSO/E Version 2.4.

v Start IPCS in line mode before starting ISPF .

In this case, the user must perform the following steps to start the IPCS dialog:
1. Enter the IPCS command to start IPCS line mode before starting ISPF.
2. Start an ISPF session.
3. Invoke the IPCS dialog from ISPF.

This section describes the two methods and compares their relative advantages
and disadvantages.

Comparison of the Two Methods
In most cases, starting the IPCS dialog directly from ISPF (without first starting
IPCS in line mode) is probably the best method to use. This method makes the
most efficient use of system resources, in that the storage needed to run IPCS is
not required until the user actually invokes the IPCS dialog.

In contrast, starting IPCS line mode before beginning an ISPF session causes
system resources for IPCS to be held for the entire ISPF session. This use of
resources is of no real consequence if the user plans to use IPCS for most of the
time the ISPF session is active. Most users, however, do not need to use IPCS for
a large portion of their ISPF session. For such users, entering the IPCS command
before starting ISPF causes unnecessary use of system resources, and a
corresponding decrease in performance for other ISPF services.

However, there are certain situations in which it might be desirable to start IPCS in
line mode before starting ISPF:

v The user plans to use IPCS many different times during an ISPF session.

The IPCS dialog starts more quickly, once invoked, when the IPCS command
has been entered to start IPCS before starting the ISPF session. For users who
plan to invoke the IPCS dialog many times during the course of an ISPF session,
the benefit of improved response time might outweigh the disadvantage of
reduced performance for other ISPF services.

v The user plans to use IPCS in line mode.

Entering the IPCS command is the only way to start IPCS in line mode.

Customizing Access to IPCS

26 z/OS V1R4.0 MVS IPCS Customization

v The user needs the problem management and data set management functions.

These functions are available only by entering the IPCS command with the
PARM(nn) parameter. See z/OS MVS IPCS User’s Guide and z/OS MVS IPCS
Commands for further information on managing problems and data sets.

Even if a customized access procedure has started an ISPF session without
entering the IPCS command, users can still enter the IPCS command explicitly. The
user can exit ISPF, enter the IPCS command, and either use IPCS in line mode or
re-enter ISPF to invoke the IPCS dialog.

Invoking the IPCS Dialog: Deciding Which Function to Use
There are three functions that you can use to invoke the IPCS dialog:
v The BLSCLIBD CLIST
v The BLSG dialog program
v THE BLSGLIBD dialog program

The BLSCLIBD CLIST is usually the preferred function for invoking the IPCS dialog
when users do not need to run different release levels of IPCS on the same
system. Most people use IPCS for only a small portion of their ISPF session, and
do not start and exit the IPCS dialog more than a few times during an ISPF
session. With BLSCLIBD, the libraries required for the IPCS dialog are not
concatenated until the user actually invokes the IPCS dialog. This method of
concatenating the IPCS libraries provides an overall improvement in the
performance of ISPF services for most IPCS users.

Where it is necessary to run different release levels of IPCS on the same system,
the BLSG dialog program must be used to invoke the IPCS dialog. BLSG might
also be preferred in cases where the user intends to enter and exit the dialog
frequently during an ISPF session. The libraries required for the IPCS dialog must
be concatenated before BLSG is invoked, and therefore they do not have to be
concatenated each time the user invokes BLSG. As a result, there is improved
response time when starting and exiting the IPCS dialog. BLSG also allows you to
use private versions of IPCS dialog panels.

The BLSGLIBD dialog program performs a function similar to that of the BLSCLIBD
CLIST. The difference is that BLSGLIBD does not set up SYS1.SBLSCLI0 as an
ALTLIB application CLIST library for the IPCS dialog session, whereas BLSCLIBD
does. Therefore, in most cases, IBM recommends that you use the BLSCLIBD
CLIST instead of the BLSGLIBD dialog program. You might, however, want to use
BLSGLIBD if you have modified the IPCS dialog to include private versions of IPCS
panels, but want a function similar to that of BLSCLIBD. Because you cannot use
the BLSCLIBD CLIST to access these panels, you need to write your own CLIST. In
this case, include BLSGLIBD as the step of your CLIST that invokes the IPCS
dialog.

The following sections describe the functions for invoking the IPCS dialog and the
LIBDEF service.

BLSCLIBD CLIST - Activate IPCS Dialog Services
The BLSCLIBD CLIST requires the ISPF LIBDEF service introduced in ISPF
Version 2 Release 2.

Invoke the BLSCLIBD CLIST through one of the following methods:

v Use the TSO/E EXECUTE command, entered on the TSO commands option in
the ISPF dialog:

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 27

EX ’SYS1.SBLSCLI0(BLSCLIBD)’

v Add an option to an ISPF panel that users can select to start the IPCS dialog.
The line to add to the processing section of the panel is:
I,’CMD(%BLSCLIBD) NEWAPPL(BLSG) PASSLIB’

BLSCLIBD invokes the BLSCALTL CLIST. This CLIST invokes the TSO/E ALTLIB
command to set up SYS1.SBLSCLI0 as an ALTLIB application CLIST library for the
IPCS dialog session.

BLSCLIBD requests the following ISPF services and sets up the allocations for
these data sets through the LIBDEF service:
ISPEXEC LIBDEF ISPMLIB DATASET ID(’SYS1.SBLSMSG0’) COND
ISPEXEC LIBDEF ISPPLIB DATASET ID(’SYS1.SBLSPNL0’) COND
ISPEXEC LIBDEF ISPSLIB DATASET ID(’SYS1.SBLSKEL0’) COND
ISPEXEC LIBDEF ISPTLIB DATASET ID(’SYS1.SBLSTBL0’) COND

Through these allocations, BLSCLIBD supplements the allocations made in a logon
procedure or in a startup CLIST. With BLSCLIBD, the libraries and data sets
required for IPCS are not allocated until the user actually requests the IPCS dialog.
The fact that BLSCLIBD allocates these resources only when needed is an
advantage for most people, who typically use IPCS for only a small portion of their
ISPF session. By contrast, when a logon procedure or startup CLIST allocates the
libraries and data sets required for IPCS, these resources are searched for
materials during periods when other facilities are being used. The extra time
required for this search can slow the performance of ISPF services for other
facilities. Also, allocations of data sets may be impacted, if the user has many other
data sets to allocate and the installation has defined a maximum number of
allocations per user.

By using BLSCLIBD, the libraries and data sets needed for IPCS are not allocated
until the IPCS dialog is actually requested.

Restriction: You can define and use up to 10 global variables in CLISTs invoked
through the IPCS dialog, if CLIST BLSCLIBD started the IPCS dialog. IPCS does
not restrict the number of global variables you can define when the IPCS dialog is
started using other approved methods. If CLIST BLSCLIBD started the IPCS dialog,
and if you require more than 10 global variables, create your own copy of CLIST
BLSCALTL and add more global variables. Modify CLIST BLSCLIBD to point to
your copy of BLSCALTL rather than to SYS1.SBLSCLI0(BLSCALTL). For
information about defining and using global variables, see z/OS TSO/E CLISTs.

BLSG Dialog Program - Activate IPCS Dialog Services
Invoke the BLSG dialog program through one of the following methods:

v Use ISPEXEC with the ISPF SELECT service. From ISPF, enter:
ISPEXEC SELECT PGM(BLSG) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB

Using Alternate Panels: You can use panels other than BLSPPRIM as the entry
to the IPCS dialog, and you can use command and program logic to determine
which panel to display at the time the dialog is activated. To specify an alternate
panel, replace PANEL(BLSPPRIM) with another value that the ISPF SELECT
service accepts, as shown in the following examples:

Example 1: Specify that ISPF is to display an installation-written panel called
PANLIPCS instead of BLSPPRIM as the initial panel of the IPCS dialog.
ISPEXEC SELECT PGM(BLSG) PARM(PANEL(PANLIPCS)) NEWAPPL(BLSG) PASSLIB

Customizing Access to IPCS

28 z/OS V1R4.0 MVS IPCS Customization

Example 2: Specify that ISPF is to process an installation-written command
called CMDIPCS that determines which panel is displayed as the initial panel of
the IPCS dialog.
ISPEXEC SELECT PGM(BLSG) PARM(CMD(CMDIPCS)) NEWAPPL(BLSG) PASSLIB

This option might be useful if IPCS users at the installation specialize in different
areas, and you want to provide panels tailored to the specific needs of each
area. This command can be implemented using a CLIST or REXX exec, or as an
unauthorized TSO/E command.

Example 3: Specify that ISPF is to process an installation-written dialog program
called PGMIPCS that displays installation-developed dialog panels.
ISPEXEC SELECT PGM(BLSG) PARM(PGM(PGMIPCS)) NEWAPPL(BLSG) PASSLIB

Alternate Panels and Performance: If you are using alternate panels to create
a customized dialog, keep in mind that the point at which you invoke BLSG can
affect performance. While BLSG is active, it serves as the owner of data sets
used to support ISPF logical screens. BLSG closes these data sets when the
SELECT service returns control to BLSG and BLSG ends. You can structure the
dialog using either of the following methods:

– Invoke BLSG before displaying the primary option panel

– Display the primary option panel first, and then invoke BLSG when the user
requests a specific IPCS function from the primary option panel.

The first method is more efficient, in that IPCS releases the resources it has
accumulated only when the user exits the IPCS dialog. With the second method,
IPCS releases resources after each request completes. Thus, with the second
method, response time is longer when the user requests different functions,
because IPCS must prepare and release resources as part of each request. You
might want to use the second method, however, if other services that you want to
provide during the ISPF session will not operate effectively while IPCS holds
resources.

v Use the ISPSTART command. From TSO/E READY or from IPCS line mode,
enter:
ISPSTART PGM(BLSG) NEWAPPL(BLSG) PASSLIB PARM(PANEL(BLSPPRIM))

v Add an option to an ISPF panel that users can select to start the IPCS dialog.
The line to add to the processing section of the panel is:
I,’PGM(BLSG) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB’

Note: Specify PASSLIB only if both of the following are true:
1. You also specify NEWAPPL(BLSG).
2. You are running ISPF Version 2 Release 2 or later.

Return Codes:

Table 6. BLSG Dialog Program Return Codes

Code Explanation

00 Successful completion.

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 29

Table 6. BLSG Dialog Program Return Codes (continued)

Code Explanation

16 Ending error with two possible meanings:

v The program invoked BLSG in an environment where one or more of the
following is true:
– IPCS is used recursively.
– There is no supported level of TSO/E installed.
– BLSG is invoked without first starting IPCS line mode, but TSO/E

Version 2.4 is not installed.

v The ISPF SELECT service generated a return code of 16.

other Return code from the ISPF SELECT service. See z/OS ISPF Dialog Tag
Language Guide and Reference for more information.

BLSGLIBD Dialog Program - Activate IPCS Dialog Services
The BLSGLIBD dialog program, like the BLSCLIBD CLIST, requires the ISPF
LIBDEF service.

Invoke the BLSGLIBD dialog program through one of the following methods:

v Use ISPEXEC with the ISPF SELECT service. From ISPF, enter:
ISPEXEC SELECT PGM(BLSGLIBD) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB

Using Alternate Panels: You can use panels other than BLSPPRIM as the entry
to the IPCS dialog, and you can use command and program logic to determine
which panel to display at the time the dialog is activated. To specify an alternate
panel, replace PANEL(BLSPPRIM) with another value that the ISPF SELECT
service accepts, as shown in the following examples:

Example 1: Specify that ISPF is to display an installation-written panel called
PANLIPCS instead of BLSPPRIM as the initial panel of the IPCS dialog.
ISPEXEC SELECT PGM(BLSGLIBD) PARM(PANEL(PANLIPCS)) NEWAPPL(BLSG) PASSLIB

Example 2: Specify that ISPF is to process an installation-written command
called CMDIPCS that determines which panel is displayed as the initial panel of
the IPCS dialog.
ISPEXEC SELECT PGM(BLSGLIBD) PARM(CMD(CMDIPCS)) NEWAPPL(BLSG) PASSLIB

This option might be useful if IPCS users at the installation specialize in different
areas, and you want to provide panels tailored to the specific needs of each
area. This command can be implemented using a CLIST or REXX exec, or as an
unauthorized TSO/E command.

Example 3: Specify that ISPF is to process an installation-written dialog program
called PGMIPCS that displays installation-developed dialog panels.
ISPEXEC SELECT PGM(BLSGLIBD) PARM(PGM(PGMIPCS)) NEWAPPL(BLSG) PASSLIB

Alternate Panels and Performance: If you are using alternate panels to create
a customized dialog, keep in mind that the point at which you invoke BLSGLIBD
can affect performance. While BLSGLIBD is active, it serves as the owner of
data sets used to support ISPF logical screens. BLSGLIBD closes these data
sets when the SELECT service returns control to BLSGLIBD and BLSGLIBD
ends. You can structure the dialog using either of the following methods:

– Invoke BLSGLIBD before displaying the primary option panel

Customizing Access to IPCS

30 z/OS V1R4.0 MVS IPCS Customization

– Display the primary option panel first, and then invoke BLSGLIBD when the
user requests a specific IPCS function from the primary option panel.

The first method is more efficient, in that IPCS releases the resources it has
accumulated only when the user exits the IPCS dialog. With the second method,
IPCS releases resources after each request completes. Thus, with the second
method, response time is longer when the user requests different functions,
because IPCS must prepare and release resources as part of each request. You
might want to use the second method, however, if other services that you want to
provide during the ISPF session will not operate effectively while IPCS holds
resources.

v Use the ISPSTART command. From TSO/E READY or IPCS line mode, enter:
ISPSTART PGM(BLSGLIBD) NEWAPPL(BLSG) PASSLIB PARM(PANEL(BLSPPRIM))

v Add an option to an ISPF panel that users can select to start the IPCS dialog.
The line to add to the processing section of the panel is:
I,’PGM(BLSGLIBD) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB’

Note: Specify PASSLIB only if both of the following are true:
1. You also specify NEWAPPL(BLSG).
2. You are running ISPF Version 2 Release 2 or later (required for

BLSGLIBD).

BLSGLIBD requests the following ISPF services and sets up the allocations for
these data sets through the LIBDEF service:
ISPEXEC LIBDEF ISPMLIB DATASET ID(’SYS1.SBLSMSG0’) COND
ISPEXEC LIBDEF ISPPLIB DATASET ID(’SYS1.SBLSPNL0’) COND
ISPEXEC LIBDEF ISPSLIB DATASET ID(’SYS1.SBLSKEL0’) COND
ISPEXEC LIBDEF ISPTLIB DATASET ID(’SYS1.SBLSTBL0’) COND

Like the BLSCLIBD CLIST, BLSGLIBD supplements the allocations made in a logon
procedure or in a CLIST, and thus saves system resources by doing these
allocations only when they are needed. Thus, the libraries and data sets needed for
IPCS are not allocated until the IPCS dialog is actually requested.

BLSGLIBD then proceeds to perform the same processing as does BLSG,
assuming that the same parameters are passed to both programs.

Return Codes:

Table 7. BLSGLIBD Dialog Program Return Codes

Code Explanation

00 Successful completion.

16 Ending error with two possible meanings:

v The program invoked BLSGLIBD in an environment where one or more
of the following is true:
– IPCS is used recursively.
– There is no supported level of TSO/E installed.
– BLSG is invoked without first starting IPCS line mode, but TSO/E

Version 2.4 is not installed.

v The ISPF SELECT service generated a return code of 16.

other Return code from the ISPF SELECT service. See z/OS ISPF Dialog Tag
Language Guide and Reference for more information.

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 31

ISPF LIBDEF Service
You can use the ISPF LIBDEF service to access IPCS messages, panels, and data
set-tailoring skeletons. The use of LIBDEF is not required. However, effective use of
LIBDEF can improve the performance of your IPCS dialogs. You should consider
the following points about using LIBDEF:

1. Performance gains depend on the activities that the installation’s IPCS users do
most often.

v LIBDEF improves performance when:

– Users logon to TSO/E; four fewer allocations take place.

– Users run dialogs other than the IPCS dialog; fewer libraries are searched.

v LIBDEF slows performance when:

– Users enter the IPCS dialog; ISPF dynamically allocates four libraries and
opens them.

– Users leave the IPCS dialog; ISPF closes and frees the four libraries.

If users enter and leave the IPCS dialog frequently, the use of LIBDEF might
slow performance.

2. LIBDEF cannot be used to access IPCS program libraries concatenated to the
ISPLLIB data set.

The BLSCLIBD CLIST and the BLSGLIBD dialog program both use the LIBDEF
service.

See z/OS ISPF Dialog Tag Language Guide and Reference for more information on
the LIBDEF service.

Customizing Access
At this point, you are ready to begin customizing access to IPCS. This section
describes the actual customization that IBM recommends when using either the
BLSCLIBD CLIST or the BLSG dialog program as the function for invoking the
IPCS dialog. The description for each of these functions includes an explanation of
how to provide either method for starting IPCS with that particular function.

You should note that the examples in this section do not represent the only ways to
customize access to IPCS. There are a great number of methods that you could
use. The methods shown in these examples are intended to provide a simple
approach to customization, an approach that meets the requirements of most
installations.

Customizing Access when Using the BLSCLIBD CLIST
This section shows how to customize access to IPCS when using the BLSCLIBD
CLIST to invoke the IPCS dialog. There are two primary tasks involved in this
customization, as described in the following sections:
v “Adding an ISPF Option to Invoke the BLSCLIBD CLIST”
v “Providing a TSO/E Logon Procedure and CLIST” on page 33

Adding an ISPF Option to Invoke the BLSCLIBD CLIST
Figure 1 on page 33 shows two lines added to the ISPF/PDF primary option menu,
ISR@PRIM, to provide customized access to the IPCS primary option menu. The
two lines are underlined in the figure to highlight their placement in the ISPF/PDF
primary option menu. Note that the following selection is added to the part of the
menu that ISPF displays on the user’s screen:

Customizing Access to IPCS

32 z/OS V1R4.0 MVS IPCS Customization

% I +IPCS - IPCS problem analysis services

A corresponding line is added to the processing section of the menu. This line
invokes the BLSCLIBD CLIST to start the IPCS dialog.
I,’CMD(%BLSCLIBD) NEWAPPL(BLSG) PASSLIB’

After you have modified the panel, the user simply selects the option to invoke the
IPCS dialog.

Providing a TSO/E Logon Procedure and CLIST
When you use BLSCLIBD to invoke the IPCS dialog, IBM recommends that you
provide a customized TSO/E logon procedure that, in turn, invokes a CLIST. The
CLIST can then perform functions such as the following:

%----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
%OPTION ===]_ZCMD +
% +USERID - &ZUSER
% 0 +ISPF PARMS - Specify terminal and user parameters +T IME - &ZTIME
% 1 +BROWSE - Display source data or output listings +T ERMINAL - &ZTERM
% 2 +EDIT - Create or change source data +P F KEYS - &ZKEYS
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO/E command or CLIST
% 7 +DIALOG TEST - Perform dialog testing
% 8 +
.LM UTILITIES- Perform library management utility functions
% C +CHANGES - Display summary of changes for this release
% I +IPCS - IPCS problem analysis services
% T +TUTORIAL - Display information about ISPF/PDF
% X +EXIT - Terminate ISPF using log and list defaults
%
+Enter%END+command to terminate ISPF.
%
)INIT
.HELP = ISR00003
&ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */
VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0,’PANEL(ISPOPTA)’
1,’PGM(ISRBRO) PARM(ISRBRO01)’
2,’PGM(ISREDIT) PARM(P,ISREDM01)’
3,’PANEL(ISRUTIL)’
4,’PANEL(ISRFPA)’
5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’
6,’PGM(ISRPTC)’
7,’PGM(ISRYXDR) NOCHECK’
8,’PANEL(ISRLPRIM)’
C,’PGM(ISPTUTOR) PARM(ISR00005)’
I,’CMD(%BLSCLIBD) NEWAPPL(BLSG) PASSLIB’
T,’PGM(ISPTUTOR) PARM(ISR00000)’

’ ’,’ ’
X,’EXIT’
*,’?’)

&ZTRAIL = .TRAIL
)END

Figure 1. An ISPF Panel for Starting the IPCS Dialog through BLSCLIBD

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 33

v Enter the TSO/E ALTLIB command to concatenate the SYS1.SBLSCLI0 library to
the SYSPROC data set. SYS1.SBLSCLI0 contains IPCS CLISTs and REXX
execs. IBM recommends the addition of SYS1.SBLSCLI0 to the SYSPROC
concatenation.

The BLSCLIBD CLIST uses the LIBDEF service to concatenate other IPCS
libraries required for running the IPCS dialog. See “BLSCLIBD CLIST - Activate
IPCS Dialog Services” on page 27 for further information.

v Enter the IPCS command (if you want to start IPCS in line mode for users).

v Enter the ISPF command (if you want to start ISPF for users).

Examples: The examples in Figure 2 and Figure 3 show a statement in a logon
procedure and an associated CLIST for use with BLSCLIBD.

Note: The allocation to SYSHELP is not required to start the IPCS dialog, but does
provide IBM-supplied help text for users.

To make the procedure available to users, do the following:

1. Add the procedure to a JCL procedure library from which JES2 or JES3
retrieves TSO/E logon procedures.

2. Have the TSO/E administrator for the installation authorize individuals who
require access to IPCS to use the logon procedure.

When the user logs on using PROC1, the logon procedure invokes the CLIST in
Figure 3. The CLIST then concatenates SYS1.SBLSCLI0 to SYSPROC and starts
ISPF. Thus, by logging on with PROC1, the user is automatically placed in an ISPF
session. From that point, a user who wants to start IPCS can simply select the
IPCS option from the modified ISPF panel.

//*============ TSO/E LOGON PROCEDURE FOR USE WITH BLSCLIBD =========**
//PROC1 EXEC PGM=IKJEFT01,ROLL=(NO,NO),DYNAMNBR=100,
// PARM=’EXEC ’IPCSU1.IPCS.CLIST(START1)’
//SYSPROC DD DSN=COMPCTR.CLIST,DISP=SHR Installation CLISTs
// DD DSN=ISR.V310.ISRCLIB,DISP=SHR ISPF Version 3 CLISTs
//ISPMLIB DD DSN=COMPCTR.ISPMLIB,DISP=SHR Installation messages
// DD DSN=ISR.V310.ISRMLIB,DISP=SHR ISPF Version 3 messages
//ISPPLIB DD DSN=COMPCTR.ISPPLIB,DISP=SHR Installation panels
// DD DSN=ISR.V310.ISRPLIB,DISP=SHR ISPF Version 3 panels
//ISPSLIB DD DSN=COMPCTR.ISPSLIB,DISP=SHR Installation skeletons
// DD DSN=ISR.V310.ISRSLIB,DISP=SHR ISPF Version 3 skeletons
//ISPTLIB DD DSN=COMPCTR.ISPTLIB,DISP=SHR Installation tables
// DD DSN=ISR.V310.ISRTLIB,DISP=SHR ISPF Version 3 tables
//SYSHELP DD DSN=COMPCTR.HELP,DISP=SHR Installation help text
// DD DSN=SYS1.HELP,DISP=SHR IBM-supplied help text

Figure 2. TSO/E Logon Procedure for Use with BLSCLIBD

/* IPCSU1.IPCS.CLIST(START1) */

PROC 0
CONTROL LIST
ALTLIB ACTIVATE +

APPLICATION(CLIST) +
DA(’SYS1.SBLSCLI0’) /* CLISTS AND REXX EXECS */

ISPF /* START ISPF */

Figure 3. CLIST for use with PROC1

Customizing Access to IPCS

34 z/OS V1R4.0 MVS IPCS Customization

Methods for Starting IPCS: Note that the CLIST in Figure 3 on page 34 does not
enter the IPCS command. If you want to make IPCS available to the user through
the method that starts IPCS in line mode, you can add the IPCS command to the
CLIST. To have the CLIST enter the IPCS command, add the line shown in Figure 4
to the CLIST in Figure 3 on page 34, directly before the ISPF command.

Customizing Access when Using the BLSG Dialog Program
This section shows how to customize access to IPCS when using the BLSG dialog
program to invoke the IPCS dialog. There are two primary tasks involved in doing
this customization, as described in the following sections:
v “Adding an ISPF Option to Invoke the BLSG Dialog Program”
v “Providing a TSO/E Logon Procedure and CLIST” on page 36

Adding an ISPF Option to Invoke the BLSG Dialog Program
Figure 5 on page 36 shows two lines added to the ISPF/PDF primary option menu,
ISR@PRIM, to provide customized access to the IPCS primary option menu. The
two lines are underlined in the figure to highlight their placement in the ISPF/PDF
primary option menu. Note that the following selection is added to the part of the
menu that ISPF displays on the user’s screen:
% I +IPCS - IPCS problem analysis services

A corresponding line is added to the processing section of the menu. This line
invokes the BLSG dialog program to start the IPCS dialog.
I,’PGM(BLSG) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB’

IPCS /* START IPCS LINE MODE */

Figure 4. IPCS Command for IPCSU1.IPCS.CLIST(START1)

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 35

After you have modified the panel, the user simply selects the option to invoke the
IPCS dialog. See z/OS ISPF Planning and Customizing.

Providing a TSO/E Logon Procedure and CLIST
When you use BLSG to invoke the IPCS dialog, IBM recommends that you provide
a customized TSO/E logon procedure that:

v Concatenates the following IPCS libraries to ISPF data sets:

IPCS Library ISPF Data Set
Concatenation

Library Contents

SYS1.SBLSCLI0 SYSPROC IPCS CLISTs and REXX execs

SYS1.SBLSMSG0 ISPMLIB IPCS messages

SYS1.SBLSPNL0 ISPPLIB IPCS panels

%----------------------- ISPF/PDF PRIMARY OPTION MENU ------------------------
%OPTION ===]_ZCMD +
% +USERID - &ZUSER
% 0 +ISPF PARMS - Specify terminal and user parameters +T IME - &ZTIME
% 1 +BROWSE - Display source data or output listings +T ERMINAL - &ZTERM
% 2 +EDIT - Create or change source data +P F KEYS - &ZKEYS
% 3 +UTILITIES - Perform utility functions
% 4 +FOREGROUND - Invoke language processors in foreground
% 5 +BATCH - Submit job for language processing
% 6 +COMMAND - Enter TSO/E command or CLIST
% 7 +DIALOG TEST - Perform dialog testing
% 8 +
.LM UTILITIES- Perform library management utility functions
% C +CHANGES - Display summary of changes for this release
% I +IPCS - IPCS problem analysis services
% T +TUTORIAL - Display information about ISPF/PDF
% X +EXIT - Terminate ISPF using log and list defaults
%
+Enter%END+command to terminate ISPF.
%
)INIT
.HELP = ISR00003
&ZPRIM = YES /* ALWAYS A PRIMARY OPTION MENU */
&ZHTOP = ISR00003 /* TUTORIAL TABLE OF CONTENTS */
&ZHINDEX = ISR91000 /* TUTORIAL INDEX - 1ST PAGE */
VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC
&ZSEL = TRANS(TRUNC (&ZCMD,’.’)

0,’PANEL(ISPOPTA)’
1,’PGM(ISRBRO) PARM(ISRBRO01)’
2,’PGM(ISREDIT) PARM(P,ISREDM01)’
3,’PANEL(ISRUTIL)’
4,’PANEL(ISRFPA)’
5,’PGM(ISRJB1) PARM(ISRJPA) NOCHECK’
6,’PGM(ISRPTC)’
7,’PGM(ISRYXDR) NOCHECK’
8,’PANEL(ISRLPRIM)’
C,’PGM(ISPTUTOR) PARM(ISR00005)’
I,’PGM(BLSG) PARM(PANEL(BLSPPRIM)) NEWAPPL(BLSG) PASSLIB’
T,’PGM(ISPTUTOR) PARM(ISR00000)’

’ ’,’ ’
X,’EXIT’
*,’?’)

&ZTRAIL = .TRAIL
)END

Figure 5. An ISPF Panel for Starting the IPCS Dialog through BLSG

Customizing Access to IPCS

36 z/OS V1R4.0 MVS IPCS Customization

IPCS Library ISPF Data Set
Concatenation

Library Contents

SYS1.SBLSKEL0 ISPSLIB IPCS skeletons

SYS1.SBLSTBL0 ISPTLIB IPCS tables

The addition of SYS1.SBLSCLI0 to the SYSPROC concatenation is
recommended. The library concatenations for the IPCS messages, panels,
skeletons, and tables are required for the IPCS dialog.

v Invokes a CLIST, if you want to do either of the following:
– Enter the IPCS command (to start IPCS in line mode for users)
– Enter the ISPF command (to start ISPF for users).

Examples: Figure 6 and Figure 7 show examples of a logon procedure and CLIST
for use with BLSG.

Note: The allocation to SYSHELP is not required to start the IPCS dialog, but does
provide IBM-supplied help text for users.

To make the logon procedure available to users, do the following:

1. Add the procedure to a JCL procedure library from which JES2 or JES3
retrieves TSO/E logon procedures.

2. Have the TSO/E administrator for the installation authorize individuals who
require access to IPCS to use the logon procedure.

When the user logs on using PROC2, the logon procedure concatenates the IPCS
libraries and invokes the CLIST in Figure 7. The CLIST then starts ISPF. Thus, by

//*============ TSO/E LOGON PROCEDURE FOR USE WITH BLSG =============**
//PROC2 EXEC PGM=IKJEFT01,ROLL=(NO,NO),DYNAMNBR=100,
// PARM=’EXEC ’IPCSU1.IPCS.CLIST(START2)’
//SYSPROC DD DSN=COMPCTR.CLIST,DISP=SHR Installation CLISTs
// DD DSN=ISR.V310.ISRCLIB,DISP=SHR ISPF Version 3 CLISTs
// DD DSN=SYS1.SBLSCLI0,DISP=SHR IPCS CLISTs
//ISPMLIB DD DSN=COMPCTR.ISPMLIB,DISP=SHR Installation messages
// DD DSN=ISR.V310.ISRMLIB,DISP=SHR ISPF Version 3 messages
// DD DSN=SYS1.SBLSMSG0,DISP=SHR IPCS messages
//ISPPLIB DD DSN=COMPCTR.ISPPLIB,DISP=SHR Installation panels
// DD DSN=ISR.V310.ISRPLIB,DISP=SHR ISPF Version 3 panels
// DD DSN=SYS1.SBLSPNL0,DISP=SHR IPCS panels
//ISPSLIB DD DSN=COMPCTR.ISPSLIB,DISP=SHR Installation skeletons
// DD DSN=ISR.V310.ISRSLIB,DISP=SHR ISPF Version 3 skeletons
// DD DSN=SYS1.SBLSKEL0,DISP=SHR IPCS skeletons
//ISPTLIB DD DSN=COMPCTR.ISPTLIB,DISP=SHR Installation tables
// DD DSN=ISR.V310.ISRTLIB,DISP=SHR ISPF Version 3 tables
// DD DSN=SYS1.SBLSTBL0,DISP=SHR IPCS tables
//SYSHELP DD DSN=COMPCTR.HELP,DISP=SHR Installation help text
// DD DSN=SYS1.HELP,DISP=SHR IBM-supplied help text

Figure 6. TSO/E Logon Procedure for Use with BLSG

/* IPCSU1.IPCS.CLIST(START2) */

PROC 0
CONTROL LIST
ISPF /* START ISPF */

Figure 7. CLIST for use with PROC2

Customizing Access to IPCS

Chapter 4. Customizing Access to IPCS 37

logging on with PROC2, the user is automatically placed in an ISPF session. From
that point, a user who wants to start IPCS can simply select the IPCS option from
the modified ISPF panel.

Methods for Starting IPCS: Note that the CLIST in Figure 7 on page 37 does not
enter the IPCS command. If you want to make IPCS available to the user through
the method that starts IPCS in line mode, you can add the IPCS command to the
CLIST. To have the CLIST enter the IPCS command, add the line shown in Figure 8
to the CLIST in Figure 7 on page 37, directly before the ISPF command.

IPCS /* START IPCS LINE MODE */

Figure 8. IPCS Command for IPCSU1.IPCS.CLIST(START2)

Customizing Access to IPCS

38 z/OS V1R4.0 MVS IPCS Customization

Chapter 5. Customizing the IPCS Dialog

Programming Interface information

Installations can customize the IPCS full-screen dialog panels for a number of
reasons. For example:

v An installation might want to customize one of the menu panels to integrate
support for other IBM products besides MVS.

v An option provided on a low-level panel, such as the COMPONENT option of the
IPCS MVS Analysis of Dump Contents panel, is used frequently by the
installation and would be more accessible if placed in the IPCS Primary Option
Menu.

v An installation may want to add options to invoke other IPCS subcommands.

References
See the following:

v Chapter 4, “Customizing Access to IPCS” on page 25 and z/OS MVS IPCS
User’s Guide for information about accessing the IPCS dialog.

v z/OS ISPF Dialog Tag Language Guide and Reference for information about
the IPCS dialog programs and the ISPF SELECT service.

Using the ISPF SELECT Service with IPCS Dialog Programs
If you intend to tailor the IPCS dialog to satisfy user requirements or if you intend to
implement a separate dialog using IPCS services, use the dialog programs in this
chapter.

Recursive Invocations of the ISPF and IPCS Dialogs
You can design your ISPF installation dialogs to use BLSG recursively. When BLSG
is entered recursively, it yields its resource ownership responsibilities to the first
copy of BLSG activated under the dialog task. It does not close dump data sets or
end the IPCS dialog when it ends in a recursive context.

An example of how you might design your ISPF installation dialogs to use BLSG
recursively follows:

1. Alter the ISPF/PDF Primary Option Menu as described in “Adding an ISPF
Option to Invoke the BLSG Dialog Program” on page 35.

2. Alter SYS1.SBLSPNL0(BLSPPRIM) to contain the following line in the body:
% I +ISPF - ISPF/PDF PRIMARY OPTION MENU

3. Alter SYS1.SBLSPNL0(BLSPPRIM) to contain the following line in the)PROC
section:
I,’PANEL(ISR@PRIM) NEWAPPL(ISR)’

This permits the user of these panels to do the following:

1. Activate the IPCS dialog from ISPF by entering:
I

2. Keep the IPCS dialog active and display the ISPF/PDF Primary Option Menu
again by entering:
I

© Copyright IBM Corp. 1988, 2002 39

3. Activate the IPCS dialog recursively by entering:
I

Tailoring the IPCS Dialog to Identify the IPCS Level
Starting with z/OS Release 2, IPCS identifies the z/OS release for which the version
of IPCS being used was intended. This information appears on the IPCS dialog
primary option menu. Users who need to customize this panel can access the
following ISPF variables to show the release of IPCS being used. The variables are
defined in the ISPF shared pool for application BLSG by z/OS R2 and subsequent
releases.

Table 8. ISPF Variables to Identify IPCS Release

ISPF Variable Length Content of variable

BLSYSFMI 8 Product FMID

BLSYSMOD 2 Product modification level

BLSYSNAM 16 Product name

BLSYSPID 8 PID number

BLSYSREL 2 Product release

BLSYSVER 2 Product version

Dumps of IPCS
If a dump is generated while z/OS R2 or later release of IPCS is active, load
module BLSU will always be active. CSECT IEASYSID will always be present in the
load module. IEASYSID contains all of the information shown in Table 8. It can be
used to confirm whether a mismatch between the level of IPCS and the materials
being processed played a role in the problem leading to the dump.

BLSGDCDA Dialog Program - Display Component Data Analysis
Use dialog program BLSGDCDA to display the list of analysis exit routines in the
BLSCECT parmlib member. You must invoke either the BLSGLIBD or the BLSG
dialog program to begin an IPCS dialog before you invoke the BLSGDCDA dialog
program.

Customizing Use of BLSGDCDA

Use ISPEXEC with the ISPF SELECT service to invoke BLSGDCDA directly, as
follows:
ISPEXEC SELECT PGM(BLSGDCDA) [NEWAPPL(BLSG) PASSLIB]

Notes:

1. Instead of using ISPEXEC to invoke the ISPF SELECT service, you can use
other equivalent means to request the ISPF SELECT service.

2. BLSGDCDA does not expect any parameters when it is invoked.

3. The NEWAPPL and PASSLIB options may be omitted if BLSGDCDA is invoked
when NEWAPPL(BLSG) is already active.

4. Specify PASSLIB only if both of the following conditions exist:
a. You also specify NEWAPPL(BLSG).
b. You are running ISPF Version 2 Release 2 or later.

IPCS Dialog

40 z/OS V1R4.0 MVS IPCS Customization

BLSGDUIN Dialog Program - Display Dump Inventory
Use dialog program BLSGDUIN to display the list of dumps in the dump directory.
You must invoke either the BLSGLIBD or the BLSG dialog program to begin an
IPCS dialog before you invoke the BLSGDUIN dialog program.

Customizing Use of BLSGDUIN

Use ISPEXEC with the ISPF SELECT service to invoke BLSGDUIN directly, as
follows:
ISPEXEC SELECT PGM(BLSGDUIN) [NEWAPPL(BLSG) PASSLIB] [PARM(source)]

Notes:

1. Instead of using ISPEXEC to invoke the ISPF SELECT service, you can use
other equivalent means to request the ISPF SELECT service.

2. BLSGDUIN does not expect any parameters when it is invoked.

3. The NEWAPPL and PASSLIB options may be omitted if BLSGDUIN is invoked
when NEWAPPL(BLSG) is already active.

4. Specify PASSLIB only if both of the following conditions exist:
a. You also specify NEWAPPL(BLSG).
b. You are running ISPF Version 2 Release 2 or later.

5. Use the PARM parameter to place the specified source at the top of the screen
initially displayed. The source is as follows; see the SETDEF subcommand in
z/OS MVS IPCS Commands for coding the values.
{ ACTIVE | MAIN | STORAGE }
{ DSNAME(dsname) | DATASET(dsname) }
{ FILE(ddname) | DDNAME(ddname) }

If the specified source is not in the dump directory, the source that would collate
immediately before the specified source is shown at the top of the screen. If no
source would collate before the specified source, the first source in the dump
directory is shown at the top of the screen.

BLSGSCMD Dialog Program - Process an IPCS Subcommand or CLIST
Use dialog program BLSGSCMD to cause IPCS to process an IPCS subcommand
or CLIST. You must invoke either the BLSGLIBD or the BLSG dialog program to
begin an IPCS dialog before you invoke the BLSCSCMD dialog program.

Customizing Use of BLSGSCMD

Use ISPEXEC with the ISPF SELECT service to invoke BLSGSCMD directly, as
follows:
ISPEXEC SELECT PGM(BLSGSCMD) PARM(text) [NEWAPPL(BLSG)] PASSLIB

Use dialog program BLSGSCMD to allow a function other than IPCS to use an
IPCS subcommand or CLIST. A selection menu processed by the ISPF SELECT
service is a common example of this situation.

You can use dialog program BLSGSCMD when you want any report written to the
terminal by the IPCS subcommand or CLIST to be treated as a complete report.
BLSGSCMD will discard any report written to the terminal before returning control to
the invoker.

v Consider an example. Assume that the following ISPF SELECT service request
invokes a CLIST.

IPCS Dialog

Chapter 5. Customizing the IPCS Dialog 41

ISPEXEC SELECT CMD(’%ISPFPROC’)

ISPF processes CLIST ISPFPROC. CLIST ISPFPROC can invoke BLSGSCMD
multiple times. Each request is a request to write a report to the terminal. Each
report will be processed separately, presented as a complete report to the user
by IPCS, and discarded when the END primary command is entered. ISPFPROC
generates each report separately. ISPFPROC can present selection or data entry
panels to the user between each report to determine which report the user
desires next.

v Contrast the previous example with another. Assume that the following ISPF
SELECT service request invokes a CLIST:
ISPEXEC SELECT PGM(BLSGSCMD) PARM(’%IPCSPROC’)

IPCS processes CLIST IPCSPROC. CLIST IPCSPROC can invoke many IPCS
subcommands, each of which write part of a single report to the terminal. IPCS
can process many subcommands within IPCSPROC to satisfy a single DOWN
primary command entered on the IPCS dump display reporter panel.

CLIST IPCSPROC can complete a report in two ways:

1. CLIST IPCSPROC can end. Dialog program BLSGSCMD will recognize the
end of the report.

2. CLIST IPCSPROC can invoke BLSGSCMD recursively, using a request such
as
ISPEXEC SELECT PGM(BLSGSCMD) PARM(IEFBR14)

Notes:

1. Instead of using ISPEXEC to invoke the ISPF SELECT service, you can use
other equivalent means to request the ISPF SELECT service.

2. The text passed as a parameter to dialog program BLSGSCMD is the
subcommand or CLIST invocation to be processed.

3. Dialog program BLSGSCMD must run under ISPF application identifier BLSG.
Specify the ISPF SELECT service option NEWAPPL(BLSG) if another
application identifier might be active when the SELECT service is requested.

4. Specify PASSLIB only if both of the following conditions exist:
a. You also specify NEWAPPL(BLSG).
b. You are running ISPF Version 2 Release 2 or later.

Return Codes

Code Explanation

00 Successful completion.

other Return code from the ISPF SELECT service. See z/OS ISPF Dialog Tag
Language Guide and Reference for more information.

16 Ending error with two possible meanings:
v The program invoked BLSG in an inappropriate environment.
v The ISPF SELECT service generated a return code of 16.

BLSGSETD Dialog Program - Check Defaults
Use dialog program BLSGSETD to check the values entered on the Defaults Option
Data Entry panel. You must invoke either the BLSGLIBD or the BLSG dialog
program to begin an IPCS dialog before you invoke the BLSGSEDT dialog
program.

IPCS Dialog

42 z/OS V1R4.0 MVS IPCS Customization

You are not required to customize BLSGSETD.

The BLSGSETD dialog program should be used instead of the BLSCSETD CLIST;
BLSGSETD checks values more thoroughly than BLSCSETD does. However, an
installation that has customized BLSCSETD may continue to use it.

A REXX exec, BLSXSETD, also provides the same function as the BLSGSETD
dialog program and the BLSCSETD CLIST.

Customizing Use of BLSGSEDT

Use ISPEXEC with the ISPF SELECT service to invoke BLSGSETD directly, as
follows:
ISPEXEC SELECT PGM(BLSGSETD) [NEWAPPL(BLSG) PASSLIB]

Notes:

1. Instead of using ISPEXEC to invoke the ISPF SELECT service, you can use
other equivalent means to request the ISPF SELECT service.

2. BLSGSETD does not expect any parameters when it is invoked.

3. The NEWAPPL and PASSLIB options may be omitted if BLSGSETD is invoked
when NEWAPPL(BLSG) is already active.

4. Specify PASSLIB only if both of the following conditions exist:
a. You also specify NEWAPPL(BLSG).
b. You are running ISPF Version 2 Release 2 or later.

BLSLDISP Dialog Program - Browse an IPCS Dump Data Set
Use dialog program BLSLDISP to browse an IPCS dump data set. You must invoke
either the BLSGLIBD or the BLSG dialog program to begin an IPCS dialog before
you invoke the BLSLDISP dialog program.

Customizing Use of BLSLDISP

Use ISPEXEC with the ISPF SELECT service to invoke BLSLDISP directly, as
follows:
ISPEXEC SELECT PGM(BLSLDISP) PARM(text) [NEWAPPL(BLSL)] PASSLIB

You can invoke IPCS dialog program BLSLDISP with a parameter that causes
the immediate display of either the BROWSE option pointer panel or the
BROWSE option storage panel. The syntax of the optional parameter, text,
follows.

Problem analysis dialogs that are designed to show storage during their
operation can bypass the IPCS dialog BROWSE option entry panel.

PANEL(POINTER)
PANEL(STORAGE)

Specifies the panel that IPCS is to display on entry to IPCS BROWSE
processing in place of the BROWSE option entry panel (BLSPOPT).

[PANEL({ POINTER })]
[{ STORAGE }]

[ACTIVE | MAIN | STORAGE]
[DSNAME(dsname) | DATASET(dsname)]
[FILE(ddname) | DDNAME(name)]

IPCS Dialog

Chapter 5. Customizing the IPCS Dialog 43

PANEL(POINTER)
Specifies that the BLSLDISP dialog program is to display the pointer
panel. If a dump source is specified and the PANEL parameter is
omitted, the pointer panel is displayed when BROWSE is requested on
the IPCS Primary Option Menu.

PANEL(STORAGE)
Specifies that the storage panel is to be displayed by the BLSLDISP
dialog program upon entry.

Symbol X for the dump is used to determine which storage is to be
initially displayed. Symbol X is the name of the symbol which always
contains the address of the last address referenced. If symbol X is not
defined, location 0 in the default address space for the dump is initially
displayed.

Enter the END primary command on the storage panel to display the
pointer panel. This allows using the pointer panel in BROWSE
processing initiated with the PANEL(STORAGE) option.

Enter the CANCEL primary command to exit BROWSE processing
directly from the storage panel.

ACTIVE | MAIN | STORAGE
Specifies the main storage for the address space in which IPCS is currently
running and allows you to access that active storage as the dump source.
You can access private storage and any common storage accessible by an
unauthorized program.

Reference
See the SETDEF subcommand in the z/OS MVS IPCS Commands for
more information about the ACTIVE, MAIN, and STORAGE
parameters.

DSNAME(dsname) | DATASET(dsname)
FILE(ddname) | DDNAME(name)

Specifies the dump source to be browsed.

If a dump source is specified and the PANEL parameter is omitted,
PANEL(POINTER) is assumed.

If the parameter list passed to BLSLDISP is incorrect, then IPCS displays the
IPCS BROWSE TERMINATED panel (see Figure 9 on page 45). This panel
shows the parameter list and an error message to describe the problem.

IPCS Dialog

44 z/OS V1R4.0 MVS IPCS Customization

Notes:

1. Instead of using ISPEXEC to invoke the ISPF SELECT service, you can use
other equivalent means to request the ISPF SELECT service.

2. The text passed as a parameter to dialog program BLSLDISP is explained in
the 43 section.

3. Dialog program BLSLDISP must run under ISPF application identifier BLSL.
Specify the ISPF SELECT service option NEWAPPL(BLSL) when
requesting the SELECT service.

4. Specify PASSLIB only if both of the following conditions exist:
a. You also specify NEWAPPL(BLSL).
b. You are running ISPF Version 2 Release 2 or later.

End of Programming Interface information

-------------- IPCS BROWSE TERMINATED --------------- INVALID PANEL
COMMAND ===] _

IPCS BROWSE processing is being terminated at 10:15 on 10/25/86.

The reason for termination is indicated in the message area of
this panel.
This may be related to the parameters passed to IPCS BROWSE which
are shown below:

PARAMETERS ===] PANEL(POINTED) ACTIVE

Press the ENTER key to terminate IPCS BROWSE processing.

Figure 9. Example - IPCS Browse Terminated Panel

IPCS Dialog

Chapter 5. Customizing the IPCS Dialog 45

IPCS Dialog

46 z/OS V1R4.0 MVS IPCS Customization

Chapter 6. Using IPCS on Another System

Programming Interface information

The IPCS of z/OS must be used to format dump and trace data sets from z/OS
systems.

Similarly:

v The IPCS of MVS/ESA™ SP 5 must be used to format dump and trace data sets
from MVS/ESA SP 5.

v The IPCS of MVS/ESA SP 4 must be used to format dump and trace data sets
from MVS/ESA SP 4.

v The IPCS of MVS/SP™ Version 3 must be used to format dump and trace data
sets from MVS/SP Version 3.

v The IPCS of MVS/XA™ must be used to format MVS/XA dump data sets.

v The IPCS of MVS/370 must be used to format MVS/370 dump data sets.

During transition from one system to another, the new IPCS may run under your
previous system. Situations such as the following require consideration:

v You were running a sysplex with two or more releases on various systems,
generating traces on each. A problem occurred, and now you want to merge the
traces. To accomodate you in this situation, IPCS, the central tracing
components, and most components of z/OS permit the use of IPCS in the most
recent release to process trace data sets . You may need to use COPYTRC to
extract traces from dumps if that was the mechanism used to capture some of
the traces, and you should confirm that the tracing support supplied by the
components that wrote the trace entries supports this use.

v You are a support programmer, and you are presented with a dump. The
presenter cannot pinpoint the release that generated the dump. To accomodate
you in this situation, IPCS from the most recent release will attempt dump
initialization and basic processing sufficient to identify the release that generated
the dump. Do not attempt to do any analysis beyond identifying the generating
release, and do be prepared for some messages that result from data area
changes between releases. Use DROPDUMP to remove all analysis records
from the dump directory before performing analysis using IPCS from the correct
release.

The procedure in Figure 10 on page 48 allows IPCS to process dumps produced by
system SY1 on any MVS system that can access both the dumps produced by SY1
and the data sets that support SY1’s IPCS, all of which are assumed to reside on
3380 SY1PAK.

Rather than using the system catalog on SY2 to locate IPCS data sets, a process
that would cause SY2’s IPCS data sets to be used, the LOGON procedure specifies
the unit and volume serial number of the volume on which SY1’s IPCS data sets
have been placed.

© Copyright IBM Corp. 1988, 2002 47

The data sets for SY1 (or copies of them) that contain IPCS code and related
materials are the following:

SYS1.HELP - TSO/E HELP command data
SYS1.MIGLIB - Code
SYS1.PARMLIB - Parmlib data
SYS1.SBLSCLI0 - CLISTs
SYS1.SBLSKEL0 - ISPF skeletons
SYS1.SBLSMSG0 - ISPF messages
SYS1.SBLSPNL0 - ISPF panels
SYS1.SBLSTBL0 - ISPF tables

Make sure that you place all installation-provided IPCS exit routines in
SYS1.MIGLIB.

References
See the following:

v Chapter 9, “Installing IPCS Exit Routines” on page 101 for information about
installing IPCS exit routines in SYS1.MIGLIB.

v z/OS MVS System Data Set Definition for a description of SYS1.MIGLIB.

End of Programming Interface information

//*========= TSO/E LOGON PROCEDURE FOR USING SYS1.MIGLIB ============**
//IPCSPROC EXEC PGM=IKJEFT01,DYNAMNBR=70,REGION=3072K
//STEPLIB DD DSN=SYS1.MIGLIB, DISP=SHR, Steplib for SYS1.MIGLIB
// UNIT=3380,VOL=SER=SY1PAK defining alternate system
//SYSPROC DD DSN=COMPCTR.CLIST,DISP=SHR Installation CLISTs
// DD DSN=ISR.V210.ISRCLIB,DISP=SHR ISPF Version 2 CLISTs
// DD DSN=SYS1.SBLSCLI0,DISP=SHR, IPCS CLISTs
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//ISPMLIB DD DSN=COMPCTR.ISPMLIB,DISP=SHR Installation messages
// DD DSN=ISR.V210.ISRMLIB,DISP=SHR ISPF Version 2 messages
// DD DSN=SYS1.SBLSMSG0,DISP=SHR, IPCS messages
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//ISPPLIB DD DSN=COMPCTR.ISPPLIB,DISP=SHR Installation panels
// DD DSN=ISR.V210.ISRPLIB,DISP=SHR ISPF Version 2 panels
// DD DSN=SYS1.SBLSPNL0,DISP=SHR, IPCS panels
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//ISPSLIB DD DSN=COMPCTR.ISPSLIB,DISP=SHR Installation skeletons
// DD DSN=ISR.V210.ISRSLIB,DISP=SHR ISPF Version 2 skeletons
// DD DSN=SYS1.SBLSKEL0,DISP=SHR, IPCS skeletons
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//ISPTLIB DD DSN=COMPCTR.ISPTLIB,DISP=SHR Installation tables
// DD DSN=ISR.V210.ISRTLIB,DISP=SHR ISPF Version 2 tables
// DD DSN=SYS1.SBLSTBL0,DISP=SHR, IPCS tables
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//SYSHELP DD DSN=COMPCTR.HELP,DISP=SHR Installation help text
// DD DSN=SYS1.HELP,DISP=SHR, IBM-supplied help text
// UNIT=3380,VOL=SER=SY1PAK define alternate system
//IPCSPARM DD DSN=SYS1.PARMLIB,DISP=SHR, Parmlib to use when
// UNIT=3380,VOL=SER=SY1PAK processing dumps

Figure 10. A TSO/E LOGON Procedure for Using SYS1.MIGLIB

Using IPCS on Another System

48 z/OS V1R4.0 MVS IPCS Customization

Chapter 7. Providing Security for IPCS

Programming Interface information

Provide security for IPCS by using:

v The z/OS SecureWay® Security Server, which includes the Resource Access
Control Facility (RACF®)

v BLSUGWDM validity check module to disable access to TSO/E commands

Providing z/OS Security Server Protection
Security of IPCS-formatted dumps is handled in the same way as in the MVS
system; for example, protection through data set passwords and verification of a
TSO/E LOGON. You can use the Security Server to provide additional security, as
required.

Your installation must continue to take specific action to prevent unauthorized
access to dumps containing sensitive data.

Using BLSUGWDM to Disable Access to TSO/E Commands
For security, create a validity check module named BLSUGWDM. Place in this
module your command name validation routine. Use the routine to disable access
to TSO/E commands. Providing the validation routine prevents unauthorized users
from accessing certain programs. IPCS calls BLSUGWDM during processing for the
IPCS TSO subcommand and all TSO/E commands invoked under IPCS. IPCS
passes BLSUGWDM the command processor parameter list (CPPL) and the
command scan output area (CSOA), as filled in by the TSO/E IKJSCAN routine.

BLSUGWDM can change CSOA bits to indicate whether either:
v A TSO/E command is incorrect (bit CSOABAD is set on)
v A TSO/E command is valid only as a CLIST (bit CSOAEXEC is set on)

If the CSOAEXEC bit is on upon entry to BLSUGWDM, the routine should not turn
it off.

References
See z/OS TSO/E System Diagnosis: Data Areas for the data areas.

Note: IBM supplies a sample BLSUGWDM installation exit with the name of
BLSXGWDM in the SYS1.SAMPLIB parmlib member. The sample will help
you understand the capabilities and limitations of this interface.

End of Programming Interface information

© Copyright IBM Corp. 1988, 2002 49

IPCS Security

50 z/OS V1R4.0 MVS IPCS Customization

Chapter 8. Writing IPCS Exit Routines

Programming Interface information

You can customize and enhance IPCS by providing exit routines.

Exit Routines
The IPCS exit routines are:

Exit Routine Description Use the Routine When You Want to:

“ANALYZE Exit Routine” on page 59 Generate data for contention analysis.

“Address Space Control Block (ASCB) Exit Routine” on
page 63

Generate information related to the address space or
ASCB being processed.

“Control Block Formatter Exit Routine” on page 76 Assist in formatting a control block.

“Control Block Status (CBSTAT) Exit Routine” on page 78 Perform analysis and generate condensed output
describing information relevant to the debugging process.

“CTRACE Buffer Find Exit Routine” on page 71 Locate the component trace buffers in a dump for a
particular component.

“CTRACE Filter/Analysis (CTRF) Exit Routine” on
page 73

v Perform statistical analysis of the component trace.
v Provide additional component trace filtering.
v Limit the number of component trace entries (CTE)

processed.

“Find Exit Routine” on page 81 Associate a symbol with an AREA or STRUCTURE in a
dump.

“GTFTRACE Filter/Analysis Exit Routine” on page 84 v Do statistical analysis of GTF trace records.
v Provide additional GTF trace record filtering.
v Limit the number of GTF trace records processed.

“GTFTRACE Formatting Appendage” on page 85 Obtain formatted output of GTF trace records containing
a particular FID and an EID in the user range.

“Model Processor Formatting (MPF) Exit Routine” on
page 87

Dynamically interact with the formatting service to
augment its function.

“Obtaining Information About Loaded Modules” on
page 143

Retrieve information associated with a loaded module
from a dump.

“Post-Formatting Exit Routine” on page 89 Supply a routine for any type of structure that can be
described by a parmlib data statement.

“Scan Exit Routine” on page 92 Check the validity of an AREA or STRUCTURE in a
dump.

“Task Control Block (TCB) Exit Routine” on page 95 Generate information related to the task control block
(TCB) being processed.

“Verb Exit Routine” on page 98 Print a title for each major report and generate table of
contents entries. Exploit exit services to perform a variety
of installation or user functions.

General Information about Writing an IPCS Exit Routine
You can write an IPCS exit routine for two types of formatting:

v IPCS formatting: This type of formatting is for unformatted dumps and traces
processed by IPCS:
– SVC dumps

© Copyright IBM Corp. 1988, 2002 51

– Stand-alone dumps
– ABEND dumps written to SYSMDUMP data sets
– CTRACE trace data
– GTFTRACE trace data.

v ABEND/SNAP formatting: This type of formatting is used for formatted dumps.
These dumps are:
– ABEND dumps written to SYSABEND data sets
– ABEND dumps written to SYSUDUMP data sets
– SNAP dumps.

The following topics describe these items that you should be aware of when writing
an exit routine:
v Conditions on entry to an IPCS exit routine
v Services available to an IPCS exit routine
v Restrictions and limitations of an IPCS exit routine
v Discontinuing processing for an interactive user
v Communication between IPCS exit routines
v External routines invoked by IPCS exit routines
v IPCS data areas and mapping macros to be used by IPCS exit routines
v Conventions for return to the caller of an IPCS exit routine
v Making load libraries available to IPCS
v Using IPCS exit routines to format installation-supplied application trace data

Programming considerations that differ for IPCS formatting and ABEND/SNAP
formatting are described.

Conditions on Entry to an IPCS Exit Routine
For IPCS and ABEND/SNAP Formatting

The exit routine receives control for either type of formatting with:

– A program status word (PSW) in primary mode and enabled, pageable, in
task mode

– The addressing and residence modes specified when the exit was link-edited

The exit routine should obtain working storage from the subpool specified in field
ADPLSBPL, by coding:
GETMAIN ... SP=adplsbpl_value

adplsbpl_value is the value in field ADPLSBPL, contained in BLSABDPL.

The exit routine must release all resources it acquired before the routine
completes processing.

For both ABEND/SNAP and IPCS formatting, the system provides recovery for
an exit routine. Use the ESTAE and ESTAEX macros to provide additional
recovery if desired, but do not have recovery routines request retry. To ensure
appropriate resource clean-up, permit percolation to the recovery routines
supplied by the system.

For IPCS Formatting

An exit routine runs in PSW key 8 and problem state under a task control block
(TCB) established for IPCS or ISPF logical screen processing.

For ABEND/SNAP Formatting

An exit routine runs in PSW key 0 and supervisor state under any TCB for
which SNAP (direct request) or ABEND (indirect request) processing has been

General Information

52 z/OS V1R4.0 MVS IPCS Customization

requested. The routine should be carefully audited to ensure that it introduces
neither security nor integrity exposures into the system.

No locks are held when the exit routine receives control. The exit routine cannot
issue the ENQ macro or obtain any locks.

Services Available to an IPCS Exit Routine
For IPCS Formatting

An exit routine can use the following services:

– System Services:

- Any system service available to programs that are enabled and in task
mode. Use such service carefully so that the exit routine exits in the same
state in which it was entered.

- Any system service available to unauthorized programs.

– IPCS Exit Services:
- Add symptom
- Control block formatter
- Control block status
- Exit control table (ECT)
- Equate symbol
- Expanded print
- Format model processor
- Get symbol
- Name
- Name/token lookup
- Select ASID
- Standard print
- Storage access
- Storage map
- Symbol
- Table of contents
- WHERE

– TSO/E Services: IPCS makes a command processor parameter list, CPPL
(mapped by mapping macro IKJCPPL), available to all exit routines to
facilitate the use of TSO/E services. IPCS initializes all fields in the CPPL
except for CPPLCBUF upon entry to all exit routines. IPCS initializes the
CPPLCBUF field only upon entry to verb exit routines.

Notes:

1. The use of IKJPARS and IKJSCAN services of TSO/E is recommended
for analyzing the syntax of free-form user input text passed to verb exit
routines.

2. The STACK service and the TSO/E EXEC command can be used to
queue subcommands and CLISTs, respectively, to be processed by IPCS
immediately after completion of the current subcommand.

– Other Services:

- ISPF services. Use the ISPF SELECT service to invoke the IPCS dialog
programs.

- PDF services, if installed.

- DATABASE 2 (DB2®) services.

- Graphical data display manager (GDDM®) services.

- Other application services.

For ABEND/SNAP Formatting

General Information

Chapter 8. Writing IPCS Exit Routines 53

An exit routine can use the following services:

– System Services:

- Any system service available to programs that are enabled and in task
mode. Use such service carefully so that the exit routine exits in the same
state in which it was entered.

- Any system service available to authorized programs.

– IPCS Exit Services:
- Control block formatter
- Expanded print
- Format model processor
- Standard print
- Storage access

Restrictions and Limitations of an IPCS Exit Routine
For IPCS and ABEND/SNAP Formatting

An exit routine can use system services that cause TCBs and service request
blocks (SRB) other than the original TCB to perform processing. Such TCBs and
SRBs cannot request dump-processing services.

Entry to exit routines must be in primary mode, and all services invoked by the
exit routine expect to receive control in primary mode. In between, however, an
exit routine may switch to AR mode for any processing that might require AR
mode.

For IPCS Formatting

Exit routines should be reentrant and recursively enterable. Existing verb exit
routines that do not satisfy this criterion can be used with the restriction that the
IPCS dialog user cannot call for their recursive use. In this case, the verb exit
routines should be marked with neither the RENT nor the REUS linkage editor
attributes so that the user of the IPCS dialog can cause multiple, independent
copies of the exit routine to be loaded and run under each ISPF logical screen
task.

When using any of the IPCS print services, follow these guidelines to design
messages issued by IPCS:

1. Do not use EBCDIC codes that cannot be represented on all the media to
which IPCS messages may be transmitted. Lowercase EBCDIC letters may
be treated as an exception to this rule because IPCS will translate lowercase
letters to uppercase if the user requests.

2. IPCS limits the EBCDIC codes that you may use by translating all
unprintable codes to EBCDIC periods. IBM does not recommend that you
use richer fonts than the CHARS=DUMP font, but IPCS does not prevent
you from using these fonts.

Reference
See z/OS MVS IPCS User’s Guide for information about how IPCS
treats different print fonts.

3. Do not design reports in which lines of text refer to other parts of the report
through page numbers. For reports that are quite extensive, consider using
the table of contents service to help the report user find the parts of the
report that are of interest. The table of contents service allows the report
user to:

– Supply a data set specifically for the table of contents information

General Information

54 z/OS V1R4.0 MVS IPCS Customization

– Direct the IPCS print output to another data set where IPCS can include
page headers that include the referenced page numbers.

If the report user decides not to use the table of contents entries, IPCS
discards them.

When a report is written to a terminal instead of a print data set, no page
headers (and, therefore, no page numbers) are displayed. Thus, references
to page numbers are of limited value in a report written to a terminal; the
page number references merely provide some indication of the relative
locations of various items in a report.

For ABEND/SNAP Formatting

An exit routine should not alter the environment being dumped. Resources that
are allocated for processing by an the routine should be returned to their original
state before the routine ends processing.

Discontinuing Processing for an Interactive User
An exit routine should be prepared to handle the request of an interactive user tp
terminate report processing. IPCS handles requests for transaction termination by
turning on bit ADPLSYNO as soon as the request is recognized. IPCS then denies
subsequent requests for services until the end of the transaction.

For exits that retrieve a small amount of data, format it immediately, and then iterate
the process, IPCS responds quickly to a request to terminate the transaction.
However, for exits that perform a significant amount of data analysis before actually
providing any output, some additional provision should be made to the exit
processing. Such exits should include tests of ADPLSYNO in their processing when
IPCS services are denied. If ADPLSYNO is on in these circumstances, the exit
should terminate as quickly as possible.

Communication Between IPCS Exit Routines
For IPCS and ABEND/SNAP Formatting

One exit routine can communicate with another by invoking the other exit routine
and supplying parameters. No mechanism is supplied to remember data
between invocations or to share information between separate exit routines
when an exit routine is invoked multiple times.

For IPCS Formatting

To avoid repetitive processing, IPCS provides the following functions through the
dump directory:

– Definitions of symbols in the IPCS symbol table save repetitive look-up
operations for such blocks as the communications vector table (CVT).
Centralizing the look-up process for these blocks helps independently-written
functions come to the same conclusions regarding whether a usable instance
of a block can be found.

Use the equate symbol service, get symbol service, and symbol service to
exploit this communication mechanism.

Defining types of data and naming conventions for IPCS symbols and
supplying find routines to locate instances of that data by name will extend
the communications mechanism.

– Entries in the IPCS storage map are designed to save repetitive validation of
data areas, such as the CVT. IPCS storage map entries have other uses as
well.

General Information

Chapter 8. Writing IPCS Exit Routines 55

Use the get symbol service, storage map service, and symbol service to
exploit the IPCS storage map.

Extend the communications mechanism by defining types of data and
supplying scan exit routines to determine whether instances of the data
appear to be usable.

References
For information about the exit services you can use for communication
between exit routines, see the following:
– “Equate Symbol Service” on page 122
– “Get Symbol Service” on page 135
– “Storage Map Service” on page 153
– “Symbol Service” on page 156

External Routines Invoked by IPCS Exit Routines
For IPCS Formatting

An exit routine can invoke external routines freely. The system provides the
external routine IEAVTFRD.

For ABEND/SNAP Formatting

An exit routine should use only external routines accessible in the link pack area
(LPA) for performance reasons.

IPCS Data Areas, Macros, and Mapping Macros to be Used by IPCS
Exit Routines

For IPCS and ABEND/SNAP Formatting

When writing an exit routine, do not define any persistent data areas. Any
storage that the routine obtains with the GETMAIN macro should be released
with a FREEMAIN macro before the routine completes processing.

IPCS provides mapping macros to map data areas needed to write IPCS exit
routines and access IPCS exit services. IPCS also provides macros used to
write certain IPCS exit routines.

References
See the following:

– “IPCS Macros and Mapping Macros” on page 6 for information about
the IPCS macros and mapping macros needed to write IPCS exit
routines

– z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information coding the macros

– For macro mappings:
z/OS MVS Data Areas, Vol 1 (ABEP-DALT)
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)
z/OS MVS Data Areas, Vol 3 (IVT-RCWK)
z/OS MVS Data Areas, Vol 4 (RD-SRRA)
z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)
z/OS TSO/E System Diagnosis: Data Areas

For ABEND/SNAP Formatting

General Information

56 z/OS V1R4.0 MVS IPCS Customization

Data areas may be defined by coding the DATA statement in the BLSCUSER
parmlib member. To format BLSCUSER-defined data areas, code a SNAP exit
routine.

Reference
See z/OS MVS Installation Exits for information about writing SNAP exit
routines.

Conventions for Return to Caller for an IPCS Exit Routine
For IPCS and ABEND/SNAP Formatting

All exit routines must return control to their calling routine using standard
linkage. Register 15 contains a return code that is used by some of the IPCS
functions that call exit routines. Return code conventions differ from one type of
exit routine to another and are discussed as part of the “Output” topic for each
type of exit routine.

Making Load Libraries Available to IPCS
For IPCS Formatting

You can make load libraries available to IPCS through any of the following
methods:

– Bring a load module into the job pack area through the use of the ATTACH,
LINK, LOAD, or XCTL macros.

– Define your own library, which contains exit routines, and identify it to IPCS
through one of the following methods:

- Specify the TASKLIB parameter as part of the TSO/E IPCS command
used to start IPCS.

- Make DD statement ISPLLIB available at the time the ISPF session is
started.

- Use the IBM STEPLIB program offering (5798-DZW).

– Use JOBLIB or STEPLIB DD statements in the JCL of a LOGON procedure.

– Place a load module into the link pack area (LPA).

– Use SYS1.LINKLIB, LNKLSTxx data sets, or SYS1.MIGLIB.

For all but the first method, the linkage editor places load modules into the
library.

For ABEND/SNAP Formatting

The load module must be available in the link pack area (LPA) or in
SYS1.LINKLIB, LNKLSTxx data sets, or SYS1.MIGLIB. Use of the LPA is
preferred because you do not need to use the private area.

Managing Storage for IPCS Exit Routines
z/OS Release 2 provides macros that can be used to manage blocks of storage in
IPCS and SNAP/ABDUMP environments. Table 9 on page 58 summarizes the
macros for use in allocating and releasing storage. Following the table is a
description of the meaning of each column.

General Information

Chapter 8. Writing IPCS Exit Routines 57

Table 9. Storage Management Macros

Allocate macro Free macro Storage location Register saving Host
environment

ABDPL address

BLSQAANS BLSQFANS ANY STM SNAP 0r IPCS Parm 1

BLSQALLR BLSQFRER BELOW STM SNAP 0r IPCS Reg 1

BLSQALLS BLSQFRES BELOW STM SNAP 0r IPCS Parm 1

BLSUA24R BLSUF24R BELOW BAKR IPCS Reg 1

BLSUA24S BLSUF24S BELOW BAKR IPCS Parm 1

BLSUA31R BLSUF31R ANY BAKR IPCS Reg 1

BLSUA31S BLSUF31S ANY BAKR IPCS Parm 1

BLSUAANR BLSUFANR ANY STM IPCS Reg 1

BLSUAANS BLSUFANS ANY STM IPCS Parm 1

BLSUALL2 BLSUFRE2 BELOW STM IPCS Parm 2

BLSUALLR BLSUFRER BELOW STM IPCS Reg 1

BLSUALLS BLSUFRES BELOW STM IPCS Parm 1

Storage Location
‘BELOW’ storage indicates that the macro allocates storage below the 16 MB line.
Modules executing in either 24-bit or 31-bit addressing mode can request BELOW
storage.

‘ANY’ storage indicates that the macro may allocate storage above or below the
line. Only modules executing in 31-bit addressing mode can request ANY storage.

The storage allocation macros execute in the addressing mode of the caller and
initialize the first word of the storage allocated to conform with IBM standards:

v Bits 0-7 of word 0 are set to zero to indicate that an assembler language
program owns the storage rather than a program generated by a HLL compiler.

v Bits 8-31 of word 0 are set to indicate the length of the storage.

Register Saving
The IPCS automatic storage allocation macros require the saving of all registers.

v Traditional module linkage involves the saving of registers passed in a 72-byte
save area via STM. Modules using this means to save registers should select
macros from rows in Table 9 where the “Register saving” column says “STM”.

v A newer, hardware-assisted linkage convention employs the BAKR instruction to
save registers. Modules using this means to save registers should select macros
from rows where the “Register saving” column says “BAKR”.

Host Environment
The following recommendations apply:

v Modules that must execute as part of SNAP/ABDUMP processing should select
macros where the “Host environment” column says “SNAP or IPCS”. Because
SNAP/ABDUMP processing may need to be performed in environments where
virtual storage is constrained, a very small amount of automatic storage data is
recommended. It is also recommended that the location be ANY, if possible.

v Modules that only need to execute as part of an IPCS session should select
macros from a row where the “Host environment” column says “IPCS”. The path
length for these macros is slightly shorter than equivalent “SNAP or IPCS”

General Information

58 z/OS V1R4.0 MVS IPCS Customization

macros, and the modules that acquire system storage to support this purpose
ask for larger increments, reducing the frequency with which system services
need to be explicitly requested.

ABDPL Address
The BLSABDPL mapping macro is the IPCS exit routine parameter list. There are
three ways in which the ABDPL address can be passed to the storage management
macros:

1. Routines that require no formal parameter may accept control in primary mode
with the ABDPL address loaded into general purpose register 1. Such modules
must use macros from rows where the “ABDPL address” column reads “Reg 1”.

2. Routines that require formal parameters should be designed to accept control in
primary mode and receive the ABDPL address as the first formal parameter.
Modules that do so should use macros from rows where the “ABDPL address”
column reads “Parm 1”.

3. IKJPARS validity-check routines, many of which have been written for use by
IPCS, receive control in primary mode with IKJPARS forwarding an address
supplied to it as a second formal parameter. IKJPARS validity-check routines
written for use by modules that supply IKJPARS with the ABDPL address should
use macros from rows where the “ABDPL address” column reads “Parm 2”.

Programming Considerations

Register Usage: The allocation macros and the modules that they invoke
presume the right to alter a large number of general purpose registers. Assembler
language programs using the macros must exercise caution regarding registers
loaded prior to using the macros and expected to remain unaltered by them.

The storage allocation macros intended for use in both SNAP and IPCS host
environments load registers 1, 9, and 10 with the addresses of the storage
assigned for automatic storage purposes, the ABDPL, and internal use. Registers 0,
2-5, 11, 14, and 15 may be altered unpredictably. Register 13 is expected to contain
the address of the 72-byte save area supplied by the caller of the module. The
storage allocation macros intended for use in only the IPCS host environment load
registers 1 and 9 with the addresses of the storage assigned for automatic storage
purposes and of the ABDPL respectively. Registers 0, 2-7, 11, 14, and 15 may be
altered unpredictably. Register 13 is expected to contain the address of the 72-byte
save area supplied by the caller of the module.

Error Return: If storage cannot be allocated, all IPCS automatic storage allocation
return to the caller of the module requesting automatic storage with return code 16.

ANALYZE Exit Routine
An ANALYZE exit routine is a way for IPCS to detect resource contention that
existed in the system at the time the system wrote the dump. The ANALYZE exit
routine uses the CQE create service to describe the contention to IPCS so that
IPCS can analyze contention on a system-wide basis and generate appropriate
reports.

Define the ANALYZE exit routine in the BLSCUSER parmlib member with the
following statement:
EXIT EP(name) ANALYZE

name is the name of the ANALYZE exit routine.

General Information

Chapter 8. Writing IPCS Exit Routines 59

References
See the following:

v “Contention Queue Element (CQE) Create Service” on page 119 for
information about using the CQE create service to describe contention
information

v z/OS MVS IPCS Commands for examples of the reports produced by the
ANALYZE subcommand

v z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in a BLSCUSER parmlib member

Possible Uses
ANALYZE exit routines can enhance the analysis provided by IBM-supplied
ANALYZE exit routines by processing either:
v Installation resources
v IBM component or subsystem resources that do not supply ANALYZE exit

routines

ANALYZE exit routines increase the diagnostic value of the ANALYZE subcommand
reports.

Programming Considerations
Be aware of the following information when writing an ANALYZE exit routine.

Performance Implications
When the IPCS user enters the ANALYZE subcommand against a dump, IPCS
gives each ANALYZE exit routine control once. An ANALYZE exit routine uses the
CQE create service to make contention information available. IPCS records this
contention information in the dump directory; this information can be reused as
often as needed.

Restrictions and Limitations
None.

Data Areas
ADPLEXTN: (Mapped by mapping macro BLSABDPL) IPCS sets field
ADPLEFCD to ADPLEFAN (X'0001') upon entry to an ANALYZE exit routine to
permit a common entry point to serve as an ANALYZE exit routine, as well as
one of the following types of exit routines:
– ASCB exit routine
– Post-formatting exit routine
– TCB exit routine
– Verb exit routine

The registers and other conditions on entry to each of these types of exit
routines are the same. Use field ADPLEXTN to determine the purpose of a
given call to a multi-function entry point.

ANALYZE Exit Routine

60 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about the BLSABDPL macro

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of BLSABDPL

Passing Control
An ANALYZE exit routine receives control from IPCS when the IPCS user enters
the ANALYZE subcommand against a dump. IPCS invokes the ANALYZE exit
routines in the order they are listed in the installation-supplied BLSCUSER parmlib
member.

Reference
See Chapter 9, “Installing IPCS Exit Routines” on page 101 for information
about installing exit routines by listing them in the installation-supplied
BLSCUSER parmlib member.

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to
ANALYZE exit routines.

On entry to an ANALYZE exit routine, register 1 points directly to the IPCS exit
parameter list (ABDPL data area).

Field ADPLEFCD of ABDPL is an exit function code. IPCS sets ADPLEFCD to
ADPLEFAN (X'0001'). The ADPLEFCD field allows a user to write an exit routine
that acts as both a verb exit routine, which formats data, and an ANALYZE exit
routine, which simply reports on contention. The exit routine can follow a data area
chain and perform formatting or call the CQE create service depending on the value
in ADPLEFCD.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57, the following special output
considerations apply to ANALYZE exit routines:

Registers at Exit

Register Contents

0 through 14 Same as on entry

15 Ignored

Example
The following notes describe how a user might go about writing an ANALYZE exit
routine for a mythical resource called WIDGET:

1. Choose a name for the WIDGET ANALYZE exit routine, such as ANLZWIDG,
and install it.

ANALYZE Exit Routine

Chapter 8. Writing IPCS Exit Routines 61

Reference
See Chapter 9, “Installing IPCS Exit Routines” on page 101 for information
about installing IPCS exit routines.

2. In module ANLZWIDG, establish addressability to the ABDPL data area. The
simplest way to establish addressability to ABDPL is to use the following
instruction:
USING ABDPL,R1

This takes advantage of the fact that register 1 directly addresses ABDPL upon
entry. A more practical example would be:
LR ABDPLPTR,R1
USING ABDPL,ABDPLPTR

Since register 1 is used to invoke services, most ANALYZE exits will need to
copy register 1 to another register before using it.

3. Use the storage access service to locate the major WIDGET data area
(WIDGMAJ) that contains the anchor to a chain of WIDGET control elements
(WIDGCE). Each WIDGCE points to a list of WIDGET data areas (WIDGCB)
that indicate the owner or waiter for a particular WIDGET. Examine the
WIDGMAJ to make sure the data area is valid and has not be overlaid with bad
data. If the data area is bad, issue an error message and stop processing.

Reference
See “Storage Access Service” on page 150 for information about using the
storage access service.

4. Code a loop that accesses each WIDGCE in the chain. Possibly add checks or
controls to prevent infinite looping if the chain has become broken or circular.
The following steps apply for each WIDGCE:

a. If there are no units of work waiting for this particular WIDGET, go on to the
next WIDGCE.

Note: If the act of owning a WIDGET is a significant piece of debugging
information, it might be desirable to report the owner of the WIDGET
using the CQE create service. This information could then be viewed
in the ASID or RESOURCE report generated on the ANALYZE
subcommand.

b. If the WIDGET has both units of work owning it and waiting for it, then
invoke the CQE create service for each of these units of work. The type of
information needed is:

Resource name
Start all resource names for a particular class of resources with the
same characters (for example ENQs start with MAJOR= , locks start with
Local lock ...). This will cause the ANALYZE RESOURCE report to
group similar resources together. If WIDGETs were identified by their
position on the queue, the resource name might be WIDGET 00001.

Additional Data
Additional data is usually unique to each resource type. For ENQs, the
GRS ANALYZE exit routine indicates if the ENQ is a result of a
RESERVE macro. For local locks, the additional data indicates that the

ANALYZE Exit Routine

62 z/OS V1R4.0 MVS IPCS Customization

owner is actively running on a certain CPU. For WIDGETs, there might
be some special characteristics that are useful to know. This information
is placed in the additional data and is formatted in the ANALYZE reports.

Unit of Work
There are fields in the CQE create parameter list that allow the user to
define the unit of work that owns or is waiting for the resource. The exit
routine specifies any information that might be needed to identify the
unit of work, such as the system name, ASID, data area name (for
example TCB), data area address, job name, and processor address.
This information is used to tell the user exactly which units of work are
the bottlenecks in a contention situation. The information allows the
ANALYZE process to correlate resource information from multiple
classes for a single unit of work. For example, a task (TCB) might own
WIDGET 00005 and ENQ, and be waiting for an I/O device. Be sure to
save any information needed by the exit routine in control blocks where
the information will be available to the exit routine.

Reference
See “Contention Queue Element (CQE) Create Service” on page 119 for
information about the CQE create service.

Address Space Control Block (ASCB) Exit Routine
Write an ASCB exit routine to either:

v Generate a unique diagnostic report about a specific address space data area
(ASCB)

v Enhance the output generated by the IPCS SUMMARY subcommand for each
ASCB processed

Define the ASCB exit routine in the BLSCUSER parmlib member with the following
statement:
EXIT EP(name) ASCB

name is the name of the ASCB exit routine.

In lieu of writing an ASCB exit routine, a post-formatting exit routine can be written
to generate a unique diagnostic report about any data area.

References
See the following:

v “Post-Formatting Exit Routine” on page 89 for information about
post-formatting exit routines

v z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in a BLSCUSER parmlib member

Note: IBM does not provide any ASCB exit routines.

Possible Uses
The ASCB exit routine generates information related to an ASCB in a dump
currently being processed by IPCS, which could be either:

ANALYZE Exit Routine

Chapter 8. Writing IPCS Exit Routines 63

v Installation address space storage
v IBM component address space storage

Programming Considerations
Be aware of the following information when writing an ASCB exit routine.

Performance Implications
When the IPCS user enters either the ASCBEXIT or the SUMMARY subcommand
with the FORMAT parameter, IPCS gives each ASCB exit routine control once.

IPCS records the information collected by the ASCB exit routine in the dump
directory; this information can be reused as often as needed.

Reference
See z/OS MVS IPCS Commands for information about the ASCBEXIT and
SUMMARY subcommands.

Restrictions and Limitations
None.

Data Areas
ADPLEXTN: (Mapped by mapping macro BLSABDPL) IPCS sets field
ADPLEFCD to ADPLEFAC (X'0002') upon entry to an ASCB exit routine to
permit a common entry point to serve as an ASCB exit routine as well as one of
the following types of exit routines:
– ANALYZE exit routine
– Post-formatting exit routine
– TCB exit routine
– Verb exit routine

The registers and other conditions on entry to each of these types of exit
routines are the same. Use field ADPLEXTN to determine the purpose of a
given call to a multi-function entry point.

Passing Control
An ASCB exit routine receives control in one of the following ways:

v The ASCBEXIT subcommand allows the IPCS user to invoke one or all ASCB
exit routines. To have the ASCBEXIT subcommand invoke an
installation-provided ASCB exit routine, either:
– Define the ASCB exit routine in the BLSCUSER parmlib member
– Invoke the ASCB exit routine by module name

v The CBFORMAT subcommand with the EXIT parameter will invoke all ASCB exit
routines defined in the totality of IPCS parmlib members, if an ASCB is selected
for formatting. IPCS invokes the ASCB exit routines immediately after IPCS
formats the ASCB.

v The SUMMARY subcommand with the FORMAT parameter invokes all ASCB exit
routines defined in the totality of IPCS parmlib members. IPCS invokes the ASCB
exit routines immediately after IPCS formats the ASCB and related data areas.

ASCB Exit Routine

64 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v Chapter 9, “Installing IPCS Exit Routines” on page 101 for information about
installing exit routines

v z/OS MVS IPCS Commands for the ASCBEXIT, CBFORMAT, and
SUMMARY subcommands

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to ASCB
exit routines.

Note: The following section describes what IPCS sets on entry to an ASCB exit
routine. However, if you are trying to invoke an ASCB exit routine, you must
set these values.

On entry to an ASCB exit routine, register 1 points directly to the IPCS exit
parameter list (ABDPL data area).

v IPCS sets field ADPLASID to identify the address space for which ASCB
formatting is requested, whenever the ASCB resides in virtual storage.

This field can be set by ASCB exit routines to specify an ASID before the exit
routines invoke the storage access service to retrieve virtual storage, or when the
exit routines call formatter or model processor services to retrieve virtual storage
data before formatting it.

v IPCS sets field ADPLCBP (also known as ADPLTCB) to contain the virtual
storage dump address of the block being processed. If a block does not reside in
virtual storage, this field is zeroed, and the exit routine must use ADPLESYP to
find the address of the block in the storage mapped by BLSRESSY. This can
only happen in the IPCS environment.

v When the exit routine is written to run in an IPCS environment, IPCS sets field
ADPLESYP to address a block of storage described by mapping macro
BLSRESSY. That block of storage in turn describes the address space, address,
and the type of data for which a formatting exit routine is being invoked. This
allows the exit routine to pass the data unaltered, to the storage access function
of the IPCS symbol service and retrieve an image of the block from the dump.

Note: The block of storage described by mapping macro BLSRESSY can reside
in storage whose address is greater than X'FFFFFF'. Formatting exit
routines that wish to utilize this support must run in AMODE(31) during
that portion of their processing that accesses this parameter.

When the exit routine is written to run in a SNAP environment, this pointer
contains zero upon entry to the post-formatting exit routine.

v IPCS sets field ADPLEFCD of the IPCS task variable to ADPLEFAN (X'0001').
The ADPLEFCD field allows a user to write an exit routine which acts as both a
verb exit routine which formats data and as an ASCB exit routine which produces
information about a specific ASCB.

ASCB Exit Routine

Chapter 8. Writing IPCS Exit Routines 65

Reference
See z/OS MVS Programming: Assembler Services Reference ABE-HSP and
z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for information about the
BLSABDPL and BLSRESSY macros.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57, the following special output
considerations apply to ASCB exit routines.

Registers at Exit

Register Contents

0 through 14 Same as on entry

15 Ignored

Component Trace Exit Routines
You can use the IPCS CTRACE subcommand to format your installation-supplied
application trace data. To use IPCS to format this data, you provide the following:

CTRACE format table
Informs IPCS of the component trace entries (CTEs) and how they are to be
formatted. Through the FMTTAB parameter on the CTRACE macro with the
DEFINE parameter, you specify the name of the load module containing the
CTRACE format table. With Release 10, you can define components through
the CTRACE statement of the BLSCUSER parmlib member or other parmlib
members starting with BLSCECT.

See “CTRACE Format Table” on page 68.

IPCS model
Specifies a template for the format of a particular CTE. A model is optional.

See “IPCS Models” on page 69.

CTRACE formatter
Consists of executable code that formats a CTE. The code can use an IPCS
model. A formatter is optional.

See “CTRACE Formatter” on page 70.

CTRACE buffer find exit routine
Locates trace buffers, if the buffers are externalized in a dump. The routine
places the locations of the buffers into the equate symbol (ES) record. You
place the name of the routine in the CTRACE format table. The CTRACE buffer
find exit routine is required.

See “CTRACE Buffer Find Exit Routine” on page 71.

CTRACE filter/analysis (CTRF) exit routine
Filters trace entries for formatting purposes or for analysis of the data. The
routine applies filter options to each CTE. You place the name of the routine in
the CTRACE format table. The CTRF routine is optional.

See “CTRACE Filter/Analysis (CTRF) Exit Routine” on page 73.

ASCB Exit Routine

66 z/OS V1R4.0 MVS IPCS Customization

After you set up the table, model, and routines, IPCS does the following in
response to a CTRACE subcommand:

1. Locates the CTRACE format table.

2. Loads the CTRACE buffer find exit routine. Calls the routine repeatedly to locate
the trace buffers in the dump until all trace buffers are located.

3. Loads the CTRF exit routine, if you specified one. Calls the routine for each
entry in the trace buffers.

If you did not specify a CTRF exit routine, IPCS formats all CTEs in the buffers
that pass the component trace global filters, such as timestamp range selection.

4. Formats all CTEs that pass the filters. To format the CTEs, IPCS uses your
CTRACE formatter, your models, or both, if provided. If not provided, IPCS
displays the information in hexadecimal.

Figure 11 on page 68 illustrates the interactions among the following. In the figure,
the format table is located in SYS1.MIGLIB. However, the format table can be in
any library available to IPCS.

ABC An application, running in ASID(01), that generates component
trace data. ABC issues the CTRACE macro to define the ABC
application to the component trace service.

IPCS IPCS running in the user’s TSO/E address space. From IPCS, a
user enters the CTRACE subcommand CTRACE COMP(ABC) to
request that trace data from ABC be processed.

FORMAT The name of the load module containing the CTRACE format table.
FORMAT contains non-executable code that defines a CTRACE
format table (FORMTAB) through multiple invocations of the
ITTFMTB macro.

FORMTAB The name of the CTRACE format table.

FINDRTN The name of the CTRACE buffer find exit routine.

FILTERTN The name of the CTRF exit routine.

FORMAT1 The name of the formatter associated with event identifier 1, as
specified by the ITTFMTB macro.

MODEL1 The name of the model associated with event identifier 2, as
specified by the ITTFMTB macro.

Component Trace Exit Routines

Chapter 8. Writing IPCS Exit Routines 67

CTRACE Format Table
The CTRACE format table provides information to IPCS for formatting CTEs. To set
up a format table, do the following:

ASID(01)

1st Buffer 2nd Buffer Etc.

FILTERTN (OPTIONAL)

* Receive ABDPL and CTXI
* Apply filter options to each

trace entry
* Use model to format entry

BLSABDPL
ITTCTXI

* looks at format table for names of buffer find routine and CTRF routine
* loads buffer find routine
* loads CTRF routine

CTRACE COMP(ABC)

IPCS (Runs in your TSO user address space)

CTRACE DEFINE,NAME=ABC,
STARTNAM=SSEXIT,
FMTTAB=FORMAT,
USERDATA=BUFFER@...

CTXI

Buffer@

FINDRTN

* Receive ABDPL and CTXI
* Locate trace buffers
* Fill in ES record for

each buffer

BLSABDPL
ITTCTXI
BLSRESSY

FORMATABC

SYS1.MIGLIB (or any load library available to IPCS)

ITTFMTB TABLEDATA=FORMTAB, X
LOCBUFNAME=FINDRTN, X
FILTERNAME=FILTERTN

ITTFMTB EVENTDATA=1, X
FORMATNAME=FORMAT1

ITTFMTB EVENTDATA=2, X
MODELNAME=MODEL1

FORMTAB

HEADER

FINDRTN

FILTERTN

1

2

.

.

.

END

FINDRTN

FILTERTN

FORMAT1

MODEL1

X
X
X

.

.

.

Figure 11. Formatting Installation-Supplied Application Trace Data with IPCS

Component Trace Exit Routines

68 z/OS V1R4.0 MVS IPCS Customization

1. Specify the name of the format table on the FMTTAB parameter of the CTRACE
macro with the DEFINE parameter.

2. Use the ITTFMTB macro to create and map the format table. Create the format
table as follows:

a. In a separate load module, issue the ITTFMTB macro to define the
beginning of the table (TABLEDATA parameter). At this time, you can also
identify the name of your CTRACE buffer find exit routine (LOCBUFNAME
parameter) and the name of your CTRF exit routine (FILTERNAME), if being
provided.

b. Issue an ITTFMTB macro for each unique CTE type that your component or
application uses. In each ITTFMTB, the EVENTDATA parameter specifies
the event identifier (CTEFMTID) for the CTE type. For example, if you have
50 types of CTEs, issue the ITTFMTB macro 50 times, once for each
CTEFMTID.

When you create each CTE using a ITTCTE mapping macro, the
CTEFMTID field indicates the format table entry.

c. Issue the ITTFMTB macro to define the end of the format table (TABLEEND
parameter).

3. Place the load module in a load library available to IPCS. See “Making Load
Libraries Available to IPCS” on page 57 for information about making a load
library available to IPCS.

4. The system creates the format table at assembly time.

Contents of the CTRACE Format Table
The table contains:
v Optional entries that point to CTRACE formatting support
v The name of your CTRACE buffer find exit routine
v The name of your CTRF exit routine
v Using the ITTFMTB macro, unique trace identifiers

References
See the following:

v z/OS MVS Programming: Authorized Assembler Services Reference
ALE-DYN for information about the CTRACE macro

v z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG for information about the ITTFMTB macro

IPCS Models
To display a CTE, you can use a model, which is a template. For most CTEs,
usually only a model is needed, rather than a formatter or formatter and model.

In the CTRACE format table, specify a model by either a name or address on the
MODELNAME or MODELADDR parameter of the ITTFMTB macro. Use
MODELADDR when the model resides in the same load module as the CTRACE
format table. Use MODELNAME when the model does not reside in the same load
module as the CTRACE format table. The model must reside in a load library
available to IPCS. See “Making Load Libraries Available to IPCS” on page 57 for
how to make a load library available to IPCS.

When a model is specified by name in the format table, CTRACE loads it and
retains its entry point for subsequent use. All such loaded support is deleted when
CTRACE completes.

Component Trace Exit Routines

Chapter 8. Writing IPCS Exit Routines 69

If the model for a particular format ID key (CTEFMTID in the ITTCTE mapping
macro) is a model, IPCS calls the model processor service specifying that model
and the appropriate view control value from the table.

References
See the following:

v “Model Processor Formatting (MPF) Exit Routine” on page 87 for
information about models

v z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG for information about the ITTFMTB macro

CTRACE Formatter
To display a CTE, you can use a formatter, which is executable code. The formatter
may use an IPCS model.

In the CTRACE format table, specify a formatter by either a name or address on
the FORMATNAME or FORMATADDR parameter of the ITTFMTB macro.
Specifying it by address is more efficient. Use FORMATADDR when the formatter
code resides in the same load module as the CTRACE format table. Use
FORMATNAME when the formatter code does not reside in the same load module
as the CTRACE format table. The formatter must reside in a load library available
to IPCS. See “Making Load Libraries Available to IPCS” on page 57 for how to
make a load library available to IPCS.

References
See the following:

v z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG for information about the ITTFMTB macro

Programming Considerations
IPCS calls the CTRACE formatter for each CTE.

A CTRACE formatter may use a 4-kilobyte work area. The address of the work area
is in the CTXIUSWA field of the CTXI data area. Each time a formatter is used, it
can use the same work area, providing continuity across multiple invocations of the
formatters. However, this work area is not preserved for use by other CTRACE exit
routines.

When a formatter is specified by name in the format table, CTRACE loads it and
retains its entry point for subsequent use. All such loaded support is deleted when
CTRACE completes.

Performance Implications: Some components might produce a very large
number of CTEs, and because a CTRACE formatter might be called for each one,
consider exploiting the 4-kilobyte work area, or the CTXIUSER and CTXIUSRL
fields to anchor storage obtained by the formatters. On the first call, IPCS initializes
CTXIUSER and CTXIUSRL to a value of zero. If, on some subsequent call (call n),
a formatter updates either of these fields, the updated information appears in the
field as input to a formatter on the next call (call n+1). CTRACE frees any storage
anchored in CTXIUSER.

Component Trace Exit Routines

70 z/OS V1R4.0 MVS IPCS Customization

Restrictions and Limitations: The 4-kilobyte work area, pointed to by
CTXIUSWA, provided by CTRACE for use by all exit routines and formatters can be
used only by component-supplied routines or formatters. Do not attempt other uses.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the CTXI
data area.

Data Areas:
ABDPL (mapped by mapping macro BLSABDPL)
ADPLPFMT (mapped by mapping macro BLSABDPL)
ADPLPFXT (mapped by mapping macro BLSABDPL)
CTXI (mapped by mapping macro ITTCTXI)

Input
On entry to a CTRACE formatter, register 1 points to a parameter list containing the
addresses of the following data areas:
1. ABDPL
2. CTXI

The CTXIFMP field points to an initialized format parameter. If the format table
specifies a model by address for the current CTE, IPCS loads that model; if the
format table specifies the model by name, IPCS sets the format parameter field,
ADPLPPTR, to point to the model.

Output
The CTRACE formatter must call the formal model processor or the print service to
produce printed output.

See
“Format Model Processor Service” on page 132 and “Standard Print Service”
on page 149 for information about these services.

CTRACE Buffer Find Exit Routine
In order for the CTRACE subcommand to process the CTEs produced by an
installation-supplied application, IPCS requires an installation-supplied CTRACE
buffer find exit routine.

To define a CTRACE buffer find exit routine to IPCS, the routine must reside in a
load library available to IPCS and the name of the exit routine must be provided in
the CTRACE format table.

Component Trace Exit Routines

Chapter 8. Writing IPCS Exit Routines 71

References
See the following:

v “Making Load Libraries Available to IPCS” on page 57 for information about
making a load library available to IPCS

v “Component Trace Exit Routines” on page 66 for information about using a
CTRACE buffer find exit routine in formatting installation-supplied
application trace data

v “CTRACE Format Table” on page 68 for information about creating the
CTRACE format table

v z/OS MVS Programming: Authorized Assembler Services Guide for
producing CTEs for an installation-supplied application

Possible Uses
CTRACE buffer find routines are used exclusively by the CTRACE subcommand to
locate the CTRACE buffers in a dump associated with a particular component.

Programming Considerations
IPCS calls the CTRACE buffer find routine until all buffers are located.

The CTRACE buffer find routine may use a 4-kilobyte work area. The address of
the work area is in the CTXIUSWA field of the CTXI data area. Each time the
routine is used, it can use the same work area, providing continuity across multiple
invocations of the routine. However, this area is not preserved for use by other
CTRACE exit routines or CTRACE formatters.

Performance Implications: Consider exploiting the 4-kilobyte work area, or the
CTXIUSER and CTXIUSRL fields to anchor storage obtained by the CTRACE buffer
find exit routine. On the first call, IPCS initializes CTXIUSER and CTXIUSRL to a
value of zero. If, on some subsequent call (call n), the exit routine updates either of
these fields, the updated information appears in the field as input to the exit routine
on the next call (call n+1). CTRACE frees any storage anchored in CTXIUSER.

Restrictions and Limitations: The 4-kilobyte work area, pointed to by
CTXIUSWA, provided by CTRACE for use by all exit routines and formatters can be
used only by component-supplied routines or formatters. Do not attempt other uses.

The CTRACE buffer find exit routine must reside in a library available to IPCS.

Data Areas:
ABDPL (mapped by mapping macro BLSABDPL)
CTXI (mapped by mapping macro ITTCTXI)
Equate symbol (ES) record

Reference
See “Equate Symbol Service” on page 122 for more information on equate
symbol records.

Passing Control: When the IPCS user enters the CTRACE subcommand, IPCS
calls the installation-supplied CTRACE buffer find exit routine to locate the buffers in

Component Trace Exit Routines

72 z/OS V1R4.0 MVS IPCS Customization

a dump. IPCS saves this information in the symbol table for the dump. As long as
the symbols remain intact, the CTRACE buffer find exit routine is not called again
for the same dump.

Returning to Caller: The following list describes the return codes and the actions
they cause.

Code Action

00 The ES record defines a buffer, and there may be more buffers, so call
again.

04 The ES record defines a buffer, and there are no more buffers, so do not
call again.

08 The ES record does not define a buffer, and there are no more buffers, so
do not call again.

16 Difficulties encountered, like missing storage in the path to the buffers. ES
record does not describe a buffer, do not call again.

Design Example: The following is a high-level example of a CTRACE buffer find
exit routine:

1. Locate the work area (field CTXIUSWA in the CTXI data area) and determine if
this routine has been called before.

2. For the first call to this routine, do the following:

a. Initialize CTXIUSWA.

b. Use IPCS exit services or CTXI USERDATA, or both, to locate control
information in the dump needed to identify the trace buffers. Save the
anchor address in the work area.

3. Locate the next trace buffer defined by the CTRACE control structure. Save the
buffer identified in the work area.

4. Fill in the ES record to identify the trace buffer.

5. Set the return code.

6. Return to the caller.

Input
On entry to a CTRACE buffer find exit routine, register 1 points to a parameter list
containing the addresses of the following data areas:
1. ABDPL
2. CTXI

Field CTXIESR (in CTXI) points to an initialized ES record.

Output
The CTRACE buffer find exit routine should accurately describe the CTRACE
buffers by filling in the ES record.

CTRACE Filter/Analysis (CTRF) Exit Routine
If an application supports specific tracing options, the application can provide a
CTRF exit routine. This routine receives control for each installation-supplied CTE.

Possible Uses
A CTRACE filter/analysis (CTRF) exit routine can:
v Perform statistical analysis of the CTEs
v Provide additional filtering
v Limit the number of entries processed

Component Trace Exit Routines

Chapter 8. Writing IPCS Exit Routines 73

To define a CTRF exit routine to IPCS, the routine must reside in a load library
available to IPCS. There are two ways to define a CTRF exit routine to IPCS:

v Through the FILTERNAME parameter on the ITTFMTB macro.

Use this method when you are designing CTRACE support and you want to
include a CTRF exit routine as part of your design. See “Component Trace Exit
Routines” on page 66 for further information.

v Through the USEREXIT parameter on the CTRACE subcommand in IPCS.

This method is useful for someone doing problem determination who decides that
additional filtering (beyond that provided in the original design) is necessary. See
z/OS MVS IPCS Commands for information about the CTRACE subcommand.

You can use the PANDEF parameter in a BLSCUSER parmlib member to define an
input panel to accompany your CTRF exit routine. The input panel will be available
when the CTRACE processing option in the IPCS dialog is used. The user can
specify CTRACE options through the input panel. If you want to provide an
accompanying help panel for the input panel, specify the help panel within the
contents of the input panel.

The naming convention for input panels is to begin all names with COMPOPT. This
ISPF variable should be set with the string of options to be collected on the input
panel.

References
See the following:

v The section on the ANALYSIS option of the IPCS dialog in z/OS MVS IPCS
User’s Guide for information on the CTRACE processing option.

v z/OS ISPF Dialog Tag Language Guide and Reference for information about
creating panels.

v z/OS MVS Initialization and Tuning Reference for information about using
the PANDEF parameter in a BLSCUSER parmlib member.

Programming Considerations
IPCS calls the CTRF exit routine for each CTE.

The CTRF exit routine may use a 4-kilobyte work area. The address of the work
area is in the CTXIUSWA field of the CTXI data area. Each time the routine is used,
it can use the same work area, providing continuity across multiple invocations of
the routine. However, this work area is not preserved for use by either the CTRACE
buffer find exit routine or a CTRACE formatter.

Performance Implications: Some components might produce a very large
number of CTEs, and because the CTRF exit routine might be called for each one,
consider exploiting the 4-kilobyte work area, or the CTXIUSER and CTXIUSRL
fields to anchor storage obtained by the exit routine. On the first call, IPCS
initializes CTXIUSER and CTXIUSRL to a value of zero. If, on some subsequent
call (call n), the exit routine updates either of these fields, the updated information
appears in the field as input to the exit routine on the next call (call n+1). CTRACE
frees any storage anchored in CTXIUSER.

Restrictions and Limitations: The 4-kilobyte work area, pointed to by
CTXIUSWA, provided by CTRACE for use by all exit routines and formatters can be
used only by component-supplied routines or formatters. Do not attempt other uses.

Component Trace Exit Routines

74 z/OS V1R4.0 MVS IPCS Customization

Data Areas:
ABDPL (mapped by mapping macro BLSABDPL)
CTXI (mapped by mapping macro ITTCTXI)

Passing Control: When the IPCS user enters a CTRACE subcommand with the
USEREXIT parameter, CTRACE calls, in this order:

v Any component-supplied CTRF exit routines, as defined through the
FILTERNAME parameter on the ITTFMTB macro

v Any CTRF exit routines, as specified through the USEREXIT parameter on the
CTRACE subcommand.

CTRACE calls the exit routines for each CTE that passes the standard filtering
options in effect.

IPCS calls the CTRF exit routine one additional time, with the bit CTXIDONE in the
CTXI turned on, after all CTEs are processed. This last call will not occur if either
exit routine returns code 16, or if the exit routine returns code 12.

Returning to Caller: The following list describes the return codes and the actions
they cause.

Code Action

00 Normal processing of the entry

04 Reread CTEs from the first

08 The current entry is bypassed

12 No further calls to the CTRF exit routine

16 Ending of the subcommand

Design Example: The following is a high-level example of a CTRF exit routine:

1. Locate the work area (field CTXIUSWA in the CTXI data area) and determine if
this routine has been called before.

2. For the first call to this routine, do the following:

a. Initialize CTXIUSWA.

b. On the first call, parse the application-specific option string to determine
which CTEs must pass through filtering and be formatted. If any errors
occur, the CTRF exit routine issues an error message using the IPCS
expanded print service and sets a failing return code. The routine saves the
results in the work area.

3. Apply application-unique filter options, or defaults, to the CTE.

4. Set the return code.

5. Return to the caller.

Input
On entry to a CTRF exit routine, register 1 points to a parameter list containing the
addresses of the following data areas:
1. ABDPL
2. CTXI

Output
The CTRF exit routine can use the exit environment to produce any desired output.

Component Trace Exit Routines

Chapter 8. Writing IPCS Exit Routines 75

Control Block Formatter Exit Routine
The control block formatter exit routine is called by the control block formatter
service to assist in control block formatting.

Define a control block formatter exit routine in the BLSCUSER parmlib member with
the following statement:
DATA FORMAT(name[,level])

name is the name of the control block formatter exit routine. level is a function
systems mode ID (FMID), which indicates a version and release of the MVS
system. IPCS gives the formatting routine control when the control block to be
formatted is supported by that MVS version and release. The level qualifier
associates the formatter with an application programming interfaces supported by
MVS releases with one of the following FMIDs:

v JBB2125 supported data areas in virtual and real storage and had none of the
services involving the BLSRESSY structure. A formatter written at this level uses
the information in the ABDPL and ADPLEXT only. This level does not support
data blocks residing in a data space.

v HBB3310 introduced all of the services associated with IPCS and accomodated
description of data spaces. This level supports 31-bit storage formatting only.

v HBB7703 introduced a set of IPCS structures capable of describing 64-bit
storage. Formatter written to accept descriptions of their data anywhere in 64-bit
storage will be given control by IPCS in Release 10.

The default for API support is FMID HBB3310.

References
See the following:

v “Control Block Formatter Service” on page 111 for information about the
control block formatter service

v z/OS MVS Initialization and Tuning Reference for information about the
DATA statement and its parameters in a BLSCUSER parmlib member

Possible Uses
Control block formatter exit routines can be written to provide functions that cannot
be accomplished using the format model processor service. A control block
formatter exit routine can:
v Select the correct model for a block that has several variations
v Adjust the virtual address to account for a prefix
v Determine array or list dimensions and set the format parameter accordingly
v Establish the actual block length to limit formatting

Reference
See “Format Model Processor Service” on page 132 for information about the
format model processor service.

Programming Considerations
Be aware of the following information when writing a control block formatter exit
routine.

Control Block Formatter Exit Routine

76 z/OS V1R4.0 MVS IPCS Customization

Performance Implications
None.

Restrictions and Limitations
A control block formatter exit routine is considered to be an extension of the data
area formatter service, and as such is exposed to both the basic and the extended
format interfaces.

Any control block formatter exit routine should be able to interpret the format
parameters ADPLPFMT and ADPLPFXT. For those that can only interpret the basic
format interface (ADPLPFMT only), the control block formatter service will attempt
to convert to the basic interface. Specify JBB2125 as the second parameter of the
FORMAT parameter of the DATA statement in BLSCUSER parmlib member that
defines your control block formatter exit routine:
DATA FORMAT(name,JBB2125)

When writing a control block formatter exit routine for systems that support 64-bit
storage, specify HBB7703 as the second parameter of the FORMAT parameter of
the DATA statement in BLSCUSER. Exits written to accept the HBB7703 API that
also need to run against dumps of earlier releases should check the format of the
BLSRESSY structure(s) passed. Ones solely designed to run on HBB7703 or
higher levels may assume that the 64-bit format will be passed.

The interface cannot be converted if the block does not reside in:
v Virtual storage
v Real storage
v The dump header record
v The CPU status record

Reference
See z/OS MVS Initialization and Tuning Reference for information about
creating a BLSCUSER parmlib member.

Data Areas
ABDPL

ADPLPFMT, ADPLPFXT: The format parameters can be referenced for decision
making, and altered to influence the formatting process.

Passing Control
The control block formatter service calls control block formatter exit routines when
the control block formatter service has been called to format a data area with the
acronym that is associated with the control block formatter exit routine.

Returning to Caller
The following list describes the return codes and the actions they cause.

Return Code Action

00 Normal operation

Nonzero Sets ADPLPRNF and a return code of 4 is sent to the initiating exit
program.

Control Block Formatter Exit Routine

Chapter 8. Writing IPCS Exit Routines 77

Input
On entry to a control block formatter exit routine, register 1 points to a parameter
list containing the addresses of the following data areas:
1. ABDPL
2. ADPLPFMT

Output
A control block formatter exit routine is expected to call the format model processor
service after it has adjusted the format parameters.

Reference
See “Format Model Processor Service” on page 132 for information about the
format model processor service.

Control Block Status (CBSTAT) Exit Routine
Write a control block status (CBSTAT) exit routine to do the following:

v Perform analysis and generate a unique diagnostic report that is not currently
available in IPCS

v Perform analysis and enhance the report produced by IBM-supplied CBSTAT exit
routines

CBSTAT exit routines do not format data areas or report on normal conditions.

This exit routine might process a dump for either:
v Installation application storage
v IBM component data areas and storage

Before writing a CBSTAT exit routine, become familiar with the existing CBSTAT exit
routines to avoid duplicating functions that are already available. IBM supplies
CBSTAT exit routines for ASCBs and TCBs. CBSTAT exit routines for ASCBs
generate status for the ASCB or address space. CBSTAT exit routines for TCBs
generate status for the TCB or the task in general.

Define the CBSTAT exit routine in the BLSCUSER parmlib member with the
following statement:
EXIT EP(epname[HBB7703]) CBSTAT(cbname)

epname is the name of the CBSTAT exit routine.

cbname is the name of the control block for which status is being obtained.

EP(epname,HBB7703) indicates that the CBSTAT routine will accept a BLSACBSP
in 64-bit format. Exits written to accept the HBB7703 API that also need to run
against dumps of earlier releases should check the format of the BLSACBSP
structure passed. Ones solely designed to run on HBB7703 or higher levels may
assume that the 64-bit format will be passed.

Control Block Formatter Exit Routine

78 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v z/OS MVS IPCS Commands for information about the CBSTAT exit routines
supplied by IBM

v z/OS MVS Initialization and Tuning Reference for information about the
DATA statement in a BLSCUSER parmlib member

Possible Uses
Write a CBSTAT exit routine to generate the status for other data areas in the
system besides the ASCB and TCB. For example, a CBSTAT exit routine could be
written to describe the status of a data set data area (DCB) or a unit data area
(UCB).

Programming Considerations
Be aware of the following information when writing a CBSTAT exit routine.

Performance Implications
When the IPCS user enters the CBSTAT subcommand against a dump, IPCS gives
each CBSTAT exit routine control once.

IPCS records the information collected by the CBSTAT exit routine in the dump
directory; this information can be reused as often as needed.

Restrictions and Limitations
To print data area status, the exit routines must use the expanded print service to
print all messages. Set the PPR2OCOL option flag in BLSUPPR2 to indicate that
IPCS is to use the predetermined indentation level set in ADPLSCOL.

Leave the overflow indentation level at the default of 2, unless a specific reason
exists for formatting it differently. By using the expanded print service in this way,
the output will merge consistently with IBM generated output to produce easily
readable reports.

Reference
See “Expanded Print Service” on page 127 for information about the expanded
print service.

Data Areas
ABDPL: IPCS task variable (mapped by mapping macro BLSABDPL)
CBSP: The CBSTAT parameter list (mapped by mapping macro BLSACBSP)

Passing Control
A CBSTAT exit routine receives control from IPCS when the IPCS user enters the
CBSTAT subcommand against a dump. IPCS invokes CBSTAT exit routines in the
order in which they are listed in the BLSCUSER parmlib member.

CBSTAT Exit Routine

Chapter 8. Writing IPCS Exit Routines 79

References
See the following:

v Chapter 8, “Writing IPCS Exit Routines” on page 51 for information about
installing IPCS exit routines by listing them in the BLSCUSER parmlib
member.

v z/OS MVS Initialization and Tuning Reference for information about creating
BLSCUSER parmlib members.

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to
CBSTAT exit routines.

On entry to a CBSTAT exit routine, register 1 points to a parameter list that contains
the addresses of the following:
v The exit parameter list (data area ABDPL)
v The CBSTAT parameter list CBSP (mapped by mapping macro BLSACBSP)

The CBSTAT parameter list contains the following information that is useful for a
CBSTAT exit routine:

Field Description

CBSPAS Address space description (see mapping macro BLSRDATS within
BLSACBSP).

CBSPIDL Whether the ABITS=31 or ABITS=64 format pf BLSACBSP has
been passed to the CBSTAT exit. The ABITS=64 format will always
be used by IPCS in Release 10 when HBB7703 exits are given
control. The ABITS=31 format is always used otherwise.

CBSPAS2 Fullword containing the ASID.

CBSPLAD Virtual address of the data area being processed.

CBSPD Data description (see mapping macro BLSRDATC within
BLSACBSP).

CBSPDLE Length of the data area.

If the data area length was not provided as input to the CB status
service and IPCS does not recognize the structure type, the length
of the data area will take the default length specified on the
SETDEF subcommand. This will generate a situation where the
entire data area might not be contained in the buffer being passed
to the CB status exit routine. CB status exit routines for data areas
that are not known to IPCS must check the CBSPDLE field to
determine if the entire data area is contained in the passed buffer. If
the passed length is too short, the CB status exit routine must do a
dump access for the correct length, in order to view the entire data
area.

CBSPDTD The name of the data area being processed (for example, ASCB).

CBSPBFAD Address of a buffer containing the data area being processed. For
prefixed data areas, the passed buffer will contain the prefix and the

CBSTAT Exit Routine

80 z/OS V1R4.0 MVS IPCS Customization

main body of the data area. The address placed in CBSPBFAD will
point to the start of the main body of the data area.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for information about the
BLSABDPL and BLSACBSP mapping macros.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57 the following special output
considerations apply to CBSTAT exit routines.

Registers at Exit

Register Contents

0 through 14 Same as on entry

15 Ignored

Find Exit Routine
A find exit routine associates a symbol with an AREA or STRUCTURE in a dump. A
find routine is given:

v A symbol, such as ASCB00001, CVT, or PRIVATEX

v An IPCS data type, such as STRUCTURE(ASCB), STRUCTURE(CVT), or
AREA(PRIVATEX)

v Access to a dump or the active system (ACTIVE | MAIN | STORAGE)

It returns a return code, indicating whether the symbol could be defined, and if it
could, returns a definition of the symbol (see BLSRESSY). Filling in all of the fields
in BLSRESSY constitutes defining the symbol. Note that in Release 10, IPCS
passes BLSRESSY in ABIT=31 format.

Define the find exit routine in the BLSCUSER parmlib member with the following
statement:
DATA STRUCTURE(structure) FIND(name)

structure is the name of the data area to be defined.

name is the name of the find exit routine.

Reference
See z/OS MVS Initialization and Tuning Reference for information about the
DATA statement in a BLSCUSER parmlib member.

Possible Uses
Write a find exit routine to process installation application storage in a dump or IBM
component data areas and storage.

CBSTAT Exit Routine

Chapter 8. Writing IPCS Exit Routines 81

Programming Considerations
Be aware of this information when writing a find exit routine.

Performance Implications
IPCS records the information collected by the find exit routine in the IPCS symbol
table; this information can be reused as often as needed.

Restrictions and Limitations
All IPCS services can be used to resolve the definition.

The only restriction is that the definition of the symbol being resolved by the find
exit routine cannot be requested directly or indirectly while the find exit routine is
active. If it is, the IPCS get symbol service will detect the incorrect recursion and
return with return code 12.

Data Areas
ABDPL (mapped by mapping macro BLSABDPL)
BLSRESSY: BLSRESSY contains the symbol in the SYM field and the encoded
representation of AREA(name) or STRUCTURE(name) in the DATA statement in
the BLSCUSER parmlib member.

Passing Control
A find exit routine receives control when:

v IPCS receives a request for the definition of a symbol that is not currently defined
in the symbol table for the dump being processed.

v Attribute AREA(name) or STRUCTURE(name) is associated with the request in
the BLSCUSER parmlib member.

v A find routine has been associated with the type of AREA or STRUCTURE
named in the BLSCUSER parmlib member.

Reference
See z/OS MVS Initialization and Tuning Reference for information about
creating the BLSCUSER parmlib member.

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to find exit
routines.

Two parameters are passed to the find exit routine:
1. BLSABDPL
2. BLSRESSY (Note that ABITS=31 format is always used.)

BLSRESSY contains the symbol in the SYM field and the encoded representation
of AREA(name) or STRUCTURE(name) in the DATA statement in the BLSCUSER
parmlib member.

v If multiple instances of AREA(name) or STRUCTURE(name) exist in a dump, the
symbol should be used to determine which instance should be located and
associated with the symbol.

IPCS might edit symbols before passing control to a find exit routine. For
example, for the ASCB, the following statement appears in an IBM-supplied
parmlib member embedded in BLSCECT:
SYMBOL PREFIX(ASCB) SUFFIX(COUNT1) STRUCTURE(ASCB)

Find Exit Routine

82 z/OS V1R4.0 MVS IPCS Customization

If symbol ASCB00001 is not defined in the symbol table and the subcommand
CBFORMAT ASCB1 is entered, the SYMBOL statement above causes IPCS to
edit the symbol to ASCB00001 prior to passing control to the find routine for
STRUCTURE(ASCB).

v If only one instance of AREA(name) or STRUCTURE(name) should exist in a
dump, the symbol in BLSRESSY should be ignored.

Output
The most important output from a find routine is a description of the named AREA
or STRUCTURE. The description is provided by filling in fields in the BLSRESSY
data area. The definition may be returned in either the ABITS=31 format passed to
the FIND exit or in ABITS=64 format. The buffer passed is sized to accomodate the
largest BLSRESSY structure supported by IPCS.

The find routine fills in the fields of BLSRESSY as follows:

v The address space in which the block was found in the AS field within
BLSRESSY. The AS field is, itself, a structure that is described by BLSRDATS
(contained in BLSRESSY mapping macro).

v The address of the block in the LAD field within BLSRESSY.

v Other attributes of the block in the D field within BLSRESSY. The D field is, itself,
a structure that is described by BLSRDATC (contained in BLSRESSY mapping
macro).

v A remark that pertains to the block in the R field within BLSRESSY. The R field
is, itself, a structure that consists of a halfword binary field and 512 bytes of
space for remark text. The halfword should be set to indicate the number of
bytes of EBCDIC text in the remark supplied.

If the routine receives a device number as the final characters of a symbol, for
example, UCBdddd, the device number consists of 4 digits, with leading zeros.

In addition to the above information, the following return codes are supplied:

Code Meaning

00 Successful completion - a usable definition of the AREA or STRUCTURE
has been returned in BLSRESSY.

04 Attention conditions detected - but a usable definition of the AREA or
STRUCTURE has been returned in BLSRESSY.

08 Error conditions detected - but a usable definition of the AREA or
STRUCTURE has been returned in BLSRESSY.

12 Symbol not resolved, possibly due to path to block not available, block
failed validation, or IPCS user requested early termination of processing -
NO usable definition of the AREA or STRUCTURE has been returned in
BLSRESSY.

16 Find exit unable to function, for example, GETMAIN failure - NO usable
definition of the AREA or STRUCTURE has been returned in BLSRESSY.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the
BLSRESSY data area.

Find Exit Routine

Chapter 8. Writing IPCS Exit Routines 83

GTFTRACE Filter/Analysis Exit Routine
The GTFTRACE subcommand formats and prints generalized trace facility (GTF)
trace output records.

The interface to filter exit routines and format appendages is upward compatible,
and has been extended to provide more facilities to exit routines and appendages.
This means that if you have any exit routines or appendages that worked with
PRINT DUMP EDIT, you can use them with GTFTRACE.

Possible Uses
GTFTRACE filter/analysis exit routines can:
v Do statistical analysis of the GTFTRACE records
v Provide additional filtering
v Limit the number of records processed

Reference
See z/OS MVS Diagnosis: Tools and Service Aids for the formats of the GTF
records.

Programming Considerations
Be aware of this information when writing a GTFTRACE filter/analysis exit routine.

Performance Implications
None.

Restrictions and Limitations
Name the GTFTRACE filter/analysis exit routine any name, but the routine must
reside in a load library currently available to IPCS. See “Making Load Libraries
Available to IPCS” on page 57 for how to make a library available to IPCS.

Data Areas
ABDPL (mapped by mapping macro BLSABDPL)
FFAP (mapped by mapping macro AHLFFAP)
GTO (mapped by mapping macro AHLZGTO)
GTS (mapped by mapping macro AHLZGTS)

Passing Control
IPCS calls an installation-provided GTFTRACE filter/analysis exit routine when the
EXIT parameter is specified on the GTFTRACE subcommand.

The GTFTRACE filter/analysis exit routine is called for each GTFTRACE record
before the standard filtering options are processed.

The GTFTRACE filter/analysis exit is called one additional time when there are no
more trace records to be processed, if the EOF parameter was specified on the
GTFTRACE subcommand. On the last call, register 2 contains the value 4. The last
call does not occur if the GTFTRACE filter/analysis exit routine returns code 16 or
20.

Returning to Caller
The following list describes the return codes provided and the actions they cause.

Code Action

GTFTRACE Filter/Analysis Exit Routine

84 z/OS V1R4.0 MVS IPCS Customization

00 Print the print buffer and call the exit routine again for the same trace
record

04 Print the print buffer, then locate the next record

08 Normal filtering of the record

12 Bypass the record, then locate the next record

16 Print the print buffer, then no further calls to the exit routine

20 Normal filtering, then no further calls to the exit routine

24 End the GTF subcommand

28 Unconditional formatting of the record

Input
On entry to a GTFTRACE filter/analysis exit routine, register 1 points to the FFAP.
Register 2 will contain zeros for all calls except the last call.

The FFAP contains the address of the ABDPL, therefore, all exit services are
available to your GTFTRACE filter/analysis exit routine.

Output
The GTFTRACE filter/analysis exit routine can use the exit environment to produce
any desired output.

GTFTRACE Formatting Appendage
The GTFTRACE subcommand formats and prints GTF trace output records. The
interface to filter exits and format appendages is upward compatible, and has been
extended to provide more facilities to exits and appendages. This means that if you
have any exits or appendages that worked with PRINT DUMP EDIT, you can use
them with GTFTRACE without modification.

Possible Uses
An installation-provided GTFTRACE formatting appendage can obtain formatted
output of GTF records containing a particular FID, and with an EID in the user
range.

Reference
See z/OS MVS Diagnosis: Tools and Service Aids for the formats of the GTF
records and a list of EIDs and FIDs for user trace records.

Programming Considerations
Be aware of this information when writing a GTFTRACE formatting appendage.

Performance Implications
IPCS calls the installation-provided GTFTRACE formatting appendage for each
trace record. For some components, the number of trace records can be very large.
Use the field in the WKAL to anchor dynamically acquired storage and improve
performance. Use the FID value of the record you are going to process as an index
into the WKAL.

GTFTRACE Filter/Analysis Exit Routine

Chapter 8. Writing IPCS Exit Routines 85

Restrictions and Limitations
Name the GTFTRACE formatting appendage one of the following:
v AMDUSRxx
v HMDUSRxx
v IMDUSRxx

xx is the character representation of the FID value in the records that the
GTFTRACE formatting appendage will format. The GTFTRACE formatting
appendage should reside in a load library currently available to IPCS. See “Making
Load Libraries Available to IPCS” on page 57 for how to make a library available to
IPCS.

Data Areas
ABDPL (mapped by mapping macro BLSABDPL)
ADPLPFMT (mapped by mapping macro BLSABDPL)
ADPLPFXT (mapped by mapping macro BLSABDPL)
FFAP (mapped by mapping macro AHLFFAP)
GTO (mapped by mapping macro AHLZGTO)
GTS (mapped by mapping macro AHLZGTS)
WKAL (mapped by mapping macro AHLWKAL)

Passing Control
IPCS calls an installation-provided GTFTRACE formatting appendage when it
encounters a GTF record that:
v Contains an element identifier (EID) with the first four bits equal to X‘E’
v Contains an FID equal to the name suffix
v Passes the standard filtering options in effect

When IPCS encounters an installation record that satisfies current filtering options,
and an eligible formatting appendage cannot be loaded, the record is displayed in
hexadecimal dump format. This also happens for a particular record if the
appendage returns code 12, and for all associated records after the appendage
returns code 16.

Returning to Caller
The following list describes the return codes provided and the actions they cause.

Code Action

00 Print the print buffer and call the appendage again for the same trace
record

04 Print the print buffer, then locate the next record

08 Locate the next record. When your appendage uses the model processor to
display the record, use this value.

12 Display the record in hexadecimal dump format, then locating the next
record

16 Disable the appendage, with a message describing the situation.

Input
On entry to a GTFTRACE formatting appendage, register 1 points to the FFAP.

The FFAP contains the address of the ABDPL; therefore, all exit services are
available to your GTFTRACE formatting appendage.

GTFTRACE Formatting Appendage

86 z/OS V1R4.0 MVS IPCS Customization

Output
The GTFTRACE formatting appendage can use exit services to produce any
desired output.

IPCS initializes a format parameter and passes it to your GTFTRACE formatting
appendage, such that the appendage might have little more to do than specify a
model and a view control value, then call the model processor exit service.

Model Processor Formatting (MPF) Exit Routine
A model processor formatting exit (MPF) routine is a way to extend the capabilities
of the format model processor service.

Reference
See “Format Model Processor Service” on page 132 for information about the
format model processor service.

Possible Uses
An installation-provided MPF exit routine can enhance the output produced by the
model processor or augment its functions. Some functions a model processor can
provide include:

v Display a value in decimal rather than hexadecimal

v Add an eye-catcher to an exceptional value

v Interpret a field of data and formatting date by establishing an array, for example

v Capture formatted output and saving it for later processing

v Reject uninteresting data with zero or blank suppression

v Perform alternate character code translation

v Initiate another formatting operation

Programming Considerations
Be aware of this information when writing an MPF exit routine.

Performance Implications
If the MPF exit routine is called many times, consider providing its storage needs
from the initiating exit routine, and point to it using ADPLPFXC contained in the
ADPLPFMT.

Restrictions and Limitations
None.

Data Areas
ABDPL: The ABDPL contains the address of the print buffer, and other fields of
possible use to the MPF exit routine. ABDPL is mapped by mapping macro
BLSABDPL.

ADPLPFMT, ADPLPFXT: The format parameters can be referenced for
decision making, and altered to influence the formatting process. Of
particular interest is ADPLFXC, an address field that can be used to
communicate between the MPF exit and the initiating exit program.

FXL: The format exit routine list (FXL) is a data area for MPF exit routines. It is
mapped by macro BLSQFXL, and contains the addresses of data of potential
interest to the MPF exit routine, as well as a description of the formatted line.

GTFTRACE Formatting Appendage

Chapter 8. Writing IPCS Exit Routines 87

Figure 12 is a display of the FXL by the debug tool. The display shows data that
corresponds to the contents of the print buffer shown in the first line.

Notes:

1. When the call to the format model processor exit service is in response to
ADPLPOLM, the FXLMENT (model entry pointer) and FXLDPTR (data
pointer) refer to the first item on the line. If the call is made in response to a
CALLRTN flag in the model, those pointers refer to that entry and the
corresponding data. If more than one model entry contained the CALLRTN
flag, the pointers refer to the first. In the array of item descriptors, the first
always refers to the formatted offset or address, even if suppressed.

2. In Figure 12, entry number 2 in the list indicates that the label is in column
X‘0C’, the data is in column X‘16’, and the flags indicate that it is a
hexadecimal field.

address list: The address list is a list of buffer addresses that describe the data
areas currently being formatted. Entries in the list contain three addresses and
correspond to the SRCNDX values in the model.

1. The address of the byte of data in the buffer considered to be at offset zero
in the block

2. The address of the first byte of the buffer

3. The address of the last byte of the buffer

Passing Control
IPCS gives an MPF exit routine control from the format model processor service
after a line of output has been formatted, but before it is printed. IPCS passes
control to the MPF exit once for every line of output when the initiating exit program
sets the option bit ADPLPOLM on, and places the address of the MPF exit routine
in ADPLPLME.

IPCS also passes control to the MPF exit routine when a model entry with the
CALLRTN flag set on is processed. An additional call is made to the MPF exit after
the model processor has finished. The MPF exit sets a bit in the FXL, FXLLAST, to
indicate this special call took place.

Returning to Caller
The following list describes the return codes provided and the actions they cause.

+0004 FWDP..... 5C5C5C5C ASID..... 5C5C TRQP..... 5C5C5C5C

BLSQFXL: 02A249D8
+0000 MHDR..... 80068428 MENT..... 0006845C LPOS..... 0C
+0009 DPOS..... 16 DLEV..... 0001 DPTR..... 02A65004
+0010 LNO...... 0002 NLPOS.... 48 NDPOS.... 48
+0014 ENDX..... 0002 ITMC..... 04 CTF...... 00
+0018 COLD..... 0000 ENTNM.... 0000

LINE

ILBP IDTP IDTL IFLG
---- ---- ---- ----

001 00 06 00 00
002 0C 16 04 40
003 20 2A 02 40
004 34 3E 04 40

Figure 12. FXL Data Area as Displayed by the IPCS Debug Tool

Model Processor Formatting (MPF) Exit Routine

88 z/OS V1R4.0 MVS IPCS Customization

Code Action

00 The model processor continues and prints the line

04 The model processor continues but does NOT print the line

If the bit FXLQUIT is set on, the model processor ends processing.

Input
On entry to an MPF exit routine, register 1 points to a parameter list containing the
addresses of the following:
1. ABDPL data area (mapped by mapping macro BLSABDPL)
2. ADPLPFMT data area (mapped by mapping macro BLSABDPL)
3. FXL data area (mapped by mapping macro BLSQFXL)
4. Buffer address list

Note: Normal output of the format model processor is in the buffer pointed to by
ADPLBUF. However, when a message is being constructed in response to
the MSGID flag in the model, a different buffer is used, and it is not
addressable by the MPF exit routine.

Output
The MPF exit routine can use exit services to produce any desired output.

Post-Formatting Exit Routine
IPCS supports post-formatting exit routines for any type of structure that can be
described in a parmlib member DATA statement. ASCB and TCB exit routines are
two examples of post-formatting exit routines supported by IPCS.

Define the post-formatting exit routine in the BLSCUSER parmlib member with the
following statement:
EXIT EP(name) FORMAT(data_structure)

name is the name of the post-formatting exit routine.

data_structure is the name of the data area to be formatted.

EP(epname,HBB7703) indicates that the post-formatting exit routine will expect a
64-bit BLSRESSY. In the curcumstance that the block of interest resides above the
bar, ADPLCBP cannot hold the address of the referenced control block. Exits
written to accept the HBB7703 API that also need to run against dumps of earlier
releases should check the format of the BLSRESSY structure passed. Ones solely
designed to run on HBB7703 or higher levels may assume that the 64-bit format will
be passed.

Reference
See z/OS MVS Initialization and Tuning Reference for the EXIT statement in
the BLSCUSER parmlib member.

Possible Uses
A post-formatting exit routine can process installation application storage in a dump
or it can process IBM component data areas and storage. IBM supplies specific exit

Model Processor Formatting (MPF) Exit Routine

Chapter 8. Writing IPCS Exit Routines 89

routines for formatting ASCBs and TCBs, and with the post-formatting exit routine
you can supply your own formatting routine for any type of structure that can be
described in a parmlib member data statement. For example, you could write your
own service request block (SRB) formatting routine.

The installation-provided post-formatting exit routine generates information related
to the block currently being processed by IPCS.

Programming Considerations
Be aware of this information when writing an post-formatting exit routine.

Performance Implications
IPCS gives each post-formatting exit routine control once during the processing of
the SUMMARY subcommand with the FORMAT parameter. IPCS records in the
dump directory the information collected by the post-formatting exit routine; this
information can be reused as often as needed.

Reference
See z/OS MVS IPCS Commands for information about the SUMMARY
subcommand.

Restrictions and Limitations
None.

Data Areas
ADPLEXTN: (Mapped by the mapping macro BLSABDPL) IPCS sets field
ADPLEFCD to ADPLEFSR (X'0004') upon entry to a post-formatting exit routine
to permit a common entry point to serve as a post-formatting exit routine as well
as one of the following types of exit routines:
– ANALYZE exit routine
– ASCB exit routine
– TCB exit routine
– Verb exit routine

The registers and other conditions on entry to each of these types of exit
routines are the same. ADPLEXTN can be used to determine the purpose of a
given call to a multi-function entry point.

Passing Control
IPCS gives a post-formatting exit routine control when one of the following IPCS
subcommands are entered:

v The CBFORMAT subcommand with the EXIT parameter. IPCS invokes all
post-formatting exit routines defined in the parmlib members associated with the
structure name of the block being processed. IPCS invokes the post-formatting
exit routines immediately after the data area is formatted.

v The SUMMARY subcommand with the FORMAT parameter. IPCS invokes all
post-formatting exit routines defined in the parmlib members associated with the
structure name of the block being processed. IPCS invokes the post-formatting
exit routines immediately after the data areas are formatted.

Post-Formatting Exit Routine

90 z/OS V1R4.0 MVS IPCS Customization

Reference
See z/OS MVS IPCS Commands for information about the CBFORMAT and
SUMMARY subcommands.

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to
post-formatting exit routines.

On entry to an post-formatting exit routine, register 1 points directly to the IPCS
task variable (ABDPL data area).

v Field ADPLASID identifies the address space in which the block resides
whenever the block resides in virtual storage. When the block resides in an
address space other than virtual storage, field ADPLASID is set to zero.

This field can be set by post-formatting exit routines to specify an ASID before
the exit routines invoke the storage access service to retrieve virtual storage, or
when the exit routines call formatter or model processor services to retrieve
virtual storage data before formatting it.

v Field ADPLCBP, (also known as ADPLTCB) contains the virtual storage dump
address of the block being processed. If a block does not reside in virtual
storage, this field is zeroed, and the exit routine must use ADPLESYP to find the
address of the block in the storage mapped by BLSRESSY. This can only
happen in the IPCS environment.

v When IPCS is the host, field ADPLESYP is set to address a block of storage
described by macro BLSRESSY. That block of storage, in turn, describes the
address space, address, and the type of data for which a formatting exit routine
is being invoked. This allows the exit routine to pass the data unaltered, to the
storage access function of the IPCS symbol service and retrieve an image of the
block from the dump.

Note: The block of storage described by macro BLSRESSY can reside in
storage whose address is greater than X'FFFFFF'. Formatting exit routines
that wish to utilize this support must run in AMODE(31) during that portion
of their processing that accesses this parameter.

When SNAP is active, this pointer contains zero upon entry to the post-formatting
exit routine.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57 the following special output
considerations apply to post-formatting exit routines.

Registers at Exit

Register Contents

0 through 14 Same as on entry

15 Ignored

Post-Formatting Exit Routine

Chapter 8. Writing IPCS Exit Routines 91

Scan Exit Routine
Scan exit routines check the validity of an area or structure in a dump.

v The type of area or structure and its location in the dump is identified by the
caller.

v IPCS uses the DATA statements in BLSCUSER and other parmlib members
embedded during BLSCECT processing to associate the type of area or structure
with the name of the scan exit routine.

If you have coded a scan exit routine called MYSCAN for
STRUCTURE(MYDATAAREA) and you want to make it available to IPCS, do the
following:

1. Link-edit MYSCAN into a load module library that will be available during your
IPCS sessions.

2. Define the scan exit routine in the BLSCUSER parmlib member with the
following statement:
DATA STRUCTURE(MYDATAAREA) SCAN(MYSCAN)

Note: If the system is OS/390 Release 10 or higher, define the scan exit
routine in the BLSCUSER parmlib member with the following statement
that includes the level of the system.
DATA STRUCTURE(MYDATAAREA) SCAN(MYSCAN,HBB7703)

Exits written to accept the HBB7703 API that also need to run against
dumps of earlier releases should check the format of the BLSRSASY
structure passed. Ones solely designed to run on HBB7703 or higher
levels may assume that the 64-bit format will be passed.

3. Start a new IPCS session to cause your modified BLSCUSER to be processed.

If you have an instance of STRUCTURE(MYDATAAREA) at location 12345 in
ASID(45) DSPNAME(MYDATASP), you may request validation of that structure
during your IPCS session by entering the subcommand:
LIST 12345 ASID(45) DSPNAME(MYDATASP) STRUCTURE(MYDATAAREA)

MYSCAN will be invoked to verify that the structure is valid.

Reference
See z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in a BLSCUSER parmlib member.

Possible Uses
Write a scan exit routine to check the validity of either:
v Installation application storage
v IBM component data areas and storage

Programming Considerations
Be aware of this information when writing a scan exit routine.

Performance Implications
IPCS records in the IPCS symbol table the information collected by the scan exit
routine; this information can be reused as often as needed.

Scan Exit Routine

92 z/OS V1R4.0 MVS IPCS Customization

Restrictions and Limitations
None - Use any IPCS service to check validity.

Data Areas
BLSABDPL
BLSRSASY

The ABITS=64 format will be passed to any exit identified to IPCS with level
HBB7703. The ABITS=31 format will be used otherwise.

Passing Control
IPCS gives a scan exit routine control when:

v IPCS receives a request for the validation of AREA(name) or
STRUCTURE(name) at a designated location in some address space.

v The storage map for the dump being processed indicates one of the following
situations:
– No validation has been performed for the block.
– Validation has been started but remains incomplete.
– Validation determined that errors of interest to the user were discovered, and

the user wants to see the messages describing the error again.

v A scan exit routine has been associated with the type of AREA or STRUCTURE
named. Requests for validation of STRUCTUREs and AREAs may be made
through the use of the IPCS subcommands such as LIST. Requests may also be
made by analysis routines. Request code XMSPVAL for the storage map service
and request codes XSSPACCV and XSSPVAL for the symbol service are used to
make such requests in an analysis routine.

References
See the following:

v “Storage Map Service” on page 153 for information about the XMSPVAL
request code

v “Symbol Service” on page 156 for information about the XSSPACCV and
XSSPVAL request codes

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to scan
exit routines.

Three parameters are passed to the scan exit routine:
1. BLSABDPL
2. BLSRSASY
3. A parameter that should be forwarded to the service that describes the block

being scanned.

BLSRSASY is completely filled in upon entry.

v If the AREA(name) or STRUCTURE(name) is described externally, the
description in field D should be left unaltered, and validation should proceed
based on the description of the block passed.

v If the AREA(name) or STRUCTURE(name) is self-describing, the description in
field D should be updated to accurately describe the block.

Scan Exit Routine

Chapter 8. Writing IPCS Exit Routines 93

Output
After a scan exit routine has completed, it supplies a return code that indicates how
successful the routine was in producing a usable scan result:

Code Meaning

00 Successful completion - a usable scan result of the AREA or STRUCTURE
has been returned in BLSRSASY.

04 Attention conditions detected - but a usable scan result of the AREA or
STRUCTURE has been returned in BLSRSASY.

08 Error conditions detected - but a usable scan result of the AREA or
STRUCTURE has been returned in BLSRSASY.

12 Symbol not resolved, possibly due to path to block not available, block
failed validation, or IPCS user requested early termination of processing -
NO usable scan result of the AREA or STRUCTURE has been returned in
BLSRSASY.

16 Find exit unable to function, for example, GETMAIN failure - NO usable
scan result of the AREA or STRUCTURE has been returned in BLSRSASY.

The most important output from a scan exit routine is a description of the results of
scan processing. The description is provided by filling in fields in the BLSRSASY
data area.

The scan exit routine fills in the fields of BLSRSASY as follows:

v Attributes of the AREA or STRUCTURE are placed in the D field of BLSRSASY.
The D field is, itself, a structure that is described by the IPCS mapping macro
BLSRDATC.

v Scan flags are placed in the SF field within BLSRSASY.

v The GMT field within BLSRSASY is altered or set to zero (even if it was already
zero) to indicate that new scan results were produced.

v One of the following codes is placed in the SASYSRC field within BLSRSASY.
The code in the SASYSRC field summarizes the results of the scan processing
and indicates the validity of the scanned area or structure.

Code Meaning

00 Normal block

04 Attention condition(s) detected

Note: Scan routines provided by IBM use this code when no problem
with the block can be identified on the basis of its address, and
the image of the block cannot be retrieved from the dump.

08 Error condition(s) detected

Note: Scan routines provided by IBM use this code when pointers in the
block scanned address a block in which serious conditions are
detected.

12 Serious condition(s) detected

Note: A scan exit routine must produce this code the first time that it is
called to scan a block. The process of following pointers to add

Scan Exit Routine

94 z/OS V1R4.0 MVS IPCS Customization

addressed blocks to the IPCS storage map and determine
whether they, in turn, are usable may require multiple calls to the
scan exit routine.

Code 00, 04, or 08 indicate that the block is usable. Code 12 indicates that it is
not.

v The C field within BLSRSASY may be used to save data between invocations of
a scan exit routine for one AREA or STRUCTURE. The data can include
information from the scanning of an unusable block or information that is
incomplete. Saving data in the C field can cause subsequent calls to the scan
exit routine to bypass the processing related to the saved data.

The C field is, itself, a structure that consists of a halfword binary field and 2816
bytes of space for data. The halfword should be set to indicate the number of
bytes of data supplied.

Task Control Block (TCB) Exit Routine
A TCB exit routine can:
v Generate a unique diagnostic report about a specific TCB
v Enhance the output generated by the IPCS SUMMARY subcommand for each

TCB processed

A TCB exit routine can process either:
v Installation application storage
v IBM component data areas and storage

Define the TCB exit routine in the BLSCUSER parmlib member with the following
statement:
EXIT EP(name) FORMAT(TCB)

name is the name of the TCB exit routine.

Reference
See z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in a BLSCUSER parmlib member.

Possible Uses
A TCB exit routine generates information related to the TCB currently being
processed by IPCS.

To avoid duplicating functions that are already available, you should know about
existing TCB exit routines before you decide to write new ones. IBM supplies TCB
exit routines for the following items:
v Addressing registers
v Data management data areas
v Execute channel program (EXCP) data areas
v Input/output supervisor (IOS) data areas
v Linkage stacks
v Recovery termination manager (RTM) data areas
v Vector Facility data

Scan Exit Routine

Chapter 8. Writing IPCS Exit Routines 95

Reference
See z/OS MVS IPCS Commands for information about the TCBEXIT
subcommand.

Programming Considerations
Be aware of this information when writing a TCB exit routine.

Performance Implications
IPCS gives each TCB exit routine control once when processing a TCBEXIT
subcommand or the SUMMARY subcommand with the FORMAT parameter.

IPCS records in the dump directory the information collected by the TCB exit
routine; this information can be reused as often as needed.

Reference
See z/OS MVS IPCS Commands for information about the TCBEXIT and
SUMMARY subcommands.

Restrictions and Limitations
None.

Data Areas
ADPLEXTN: (Mapped by mapping macro BLSABDPL) IPCS sets field
ADPLEFCD to ADPLEFTC (X'0003') upon entry to a TCB exit routine to permit a
common entry point to serve as a TCB exit routine as well as one of the
following types of exit routines:
– ANALYZE exit routine
– ASCB exit routine
– Post-formatting exit routine
– Verb exit routine

The registers and other conditions on entry to each of these types of exit
routines are the same. Use field ADPLEXTN to determine the purpose of a
given call to a multi-function entry point.

Passing Control
IPCS gives a TCB exit routine control when the following subcommands are
entered:

v The CBFORMAT subcommand with the EXIT parameter. IPCS invokes all TCB
exit routines defined in parmlib members if a TCB is selected for formatting.
IPCS invokes the TCB exit routines immediately after the TCB is formatted.

v The TCBEXIT subcommand. This subcommand allows the IPCS user to request
one or all TCB exit routines to be invoked. TCB exit routines can be defined in
parmlib member BLSCUSER, or they can be invoked by module name.

v The SUMMARY subcommand with the FORMAT parameter. IPCS invokes all
TCB exit routines defined in the BLSCUSER parmlib member. IPCS invokes the
TCB exit routines immediately after the TCB and related data areas are
formatted.

Task Control Block (TCB) Exit Routine

96 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v Chapter 8, “Writing IPCS Exit Routines” on page 51 for information about
installing IPCS exit routines

v z/OS MVS IPCS Commands for information about the CBFORMAT,
TCBEXIT, or SUMMARY subcommands

v z/OS MVS Initialization and Tuning Reference for information about the
BLSCUSER parmlib member

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to TCB
exit routines.

On entry to a TCB exit routine, register 1 points directly to the IPCS task variable
(ABDPL data area).

v Field ADPLASID identifies the address space in which the TCB resides whenever
the address space resides in virtual storage. When the address space resides in
an address space other than virtual storage, field ADPLASID is set to zero.

This field can be set by TCB exit routines to specify an ASID before t he exit
routines invoke the storage access service to retrieve virtual storage, or when the
exit routines call formatter or model processor services to retrieve virtual storage
data before formatting it.

v Field ADPLTCB (also called ADPLCBP) contains the virtual storage dump
address of the TCB being processed. If a block does not reside in virtual storage,
this field is zeroed, and the exit routine must use ADPLESYP to find the address
of the block in the storage mapped by BLSRESSY. This can only happen in the
IPCS environment.

v When IPCS is the host, field ADPLESYP is set to address a block of storage
described by mapping macro BLSRESSY. That block of storage, in turn,
describes the address space, address, and the type of data for which a
formatting exit routine is being invoked. This allows the exit routine to pass the
data unaltered, to the storage access function of the IPCS symbol service and
retrieve an image of the block from the dump.

Note: The block of storage described by mapping macro BLSRESSY can reside
in storage whose address is greater than X'FFFFFF'. Formatting exit
routines that wish to utilize this support must run in AMODE(31) during
that portion of their processing that accesses this parameter.

When SNAP is active, this pointer contains zero upon entry to the post-formatting
exit routine.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57 the following special output
considerations apply to TCB exit routines.

Registers at Exit

Register Contents

Task Control Block (TCB) Exit Routine

Chapter 8. Writing IPCS Exit Routines 97

0 through 14 Same as on entry

15 Ignored

Verb Exit Routine
A verb exit routine can generate a unique diagnostic report that is not currently
available in IPCS. A verb exit routine can process either:
v Installation application storage
v IBM component data areas and storage

Verb exit routines can be defined in BLSCUSER, in the IPCSPARM concatenation
data set, or invoked by name. Define the verb exit routine in the BLSCUSER
parmlib member with the following statement:
EXIT EP(name) VERB(verb_name) AMASK(X’aaFFFFFF’)
ABSTRACT(’text’) HELP(helppanel)

The variables are the following:

name
The exit routine name.

verb_name
The exit routine verb name.

aa Can be either:
00 Indicates 24-bit storage accessing.
7F Indicates 31-bit storage accessing.

text
The abstract shown on the component data analysis panel entry associated
with this verb exit.

helppanel
The help panel to accompany this exit routine.

The AMASK, ABSTRACT, and HELP parameters are optional. If the AMASK
parameter is not used in the exit entry, the storage accessing mask will default to a
31-bit mask. If the verb_name of the exit routine is not defined, IPCS will use this
verb_name as the module name to locate it. If the module name with the matching
verb_name is found, but is not a valid verb exit routine, the user should modify the
verb exit entry in BLSCUSER by replacing the name with the user-written module
name. The VERBEXIT subcommand allows the IPCS user to request one or all
verb exit routines to be invoked.

Reference
See z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in a BLSCUSER parmlib member.

Possible Uses
Besides generating a unique diagnostic report, verb exit routines also print a title for
each major report, and generate table of contents entries.

Before writing a verb exit routine, become familiar with the existing verb exit
routines to avoid duplicating functions that are already available.

Task Control Block (TCB) Exit Routine

98 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v “Table of Contents Service” on page 162 for information about the table of
contents service

v z/OS MVS IPCS Commands for a list of some of the verb exit routines
provided by IBM

Programming Considerations
Be aware of this information when writing a verb exit routine.

Performance Implications
None.

Restrictions and Limitations
None.

Data Areas
ADPLEXTN: (Mapped by mapping macro BLSABDPL) IPCS sets field
ADPLEFCD to X'0000' upon entry to a verb exit routine to permit a common
entry point to serve as a verb exit routine as well as one of the following types
of exits:
– ANALYZE exit routine
– ASCB exit routine
– Post-formatting exit routine
– TCB exit routine

The registers and other conditions on entry to each of these types of exit
routines are the same. Use field ADPLEXTN to determine the purpose of a
given call to a multi-function entry point.

Passing Control
A verb exit routine receives control when the VERBEXIT subcommand is issued
with the module name or verb name of this user-written verb exit routine.

References
See the following:

v z/OS MVS IPCS Commands for information about the VERBEXIT
subcommand

v z/OS MVS Initialization and Tuning Reference for information about the
EXIT statement in the BLSCUSER parmlib member

Input
In addition to the input considerations described in “Conditions on Entry to an IPCS
Exit Routine” on page 52, the following special input considerations apply to verb
exit routines.

On entry to a verb exit routine, register 1 points directly to the IPCS task variable
(ABDPL data area). Field ADPLEXT in ABDPL points to the ABDPL extension,
ADPLEXTN. Field ADPLCPPL in ADPLEXTN points to the valid CPPL. If
parameters were specified on the VERBEXIT subcommand, field ADPLOPTR (in

Verb Exit Routine

Chapter 8. Writing IPCS Exit Routines 99

the ABDPL extension, ADPLEXTN) contains the address of a buffer that contains
the parameters. If parameters were specified, field ADPLOPLN (in the ABDPL)
contains the length of the parameters. The exit routine must then parse the input
parameters and perform the requested functions. In order to be consistent with
IPCS, it is suggested that the user take advantage of the TSO/E parser, IKJPARS.

Output
In addition to the output considerations described in “Conventions for Return to
Caller for an IPCS Exit Routine” on page 57 the following special output
considerations apply to verb exit routines.

A verb exit routine can specify an additional return code in the ABDPL parameter
list extension. If a parameter on a user control statement contains an error, the
parameter list pointer, ADPLOPTR, in the extension should be changed by the exit
to a code of 04, 08, or 12. This code causes IPCS to print an error message on the
SYSPRINT data set.

The following shows the user control statement error codes and their corresponding
messages:

Code Message

04 Delimiter error in operand field, which contains the parameters

08 Incorrect parameter

12 Syntax error in the parameters

End of Programming Interface information

Verb Exit Routine

100 z/OS V1R4.0 MVS IPCS Customization

Chapter 9. Installing IPCS Exit Routines

IPCS exit routines can be installed to format either ABEND and SNAP dumps or
dumps formatted by IPCS.

Installing Routine For ABEND/SNAP Formatting
To install an IPCS exit routine for use in formatting ABEND or SNAP dumps, place
the exit routine in:
v The SYS1.LPALIB library
v The SYS1.MIGLIB library

Create or customize a BLSCUSER parmlib member to indicate the name and
function of the exit routine.

Installing Routine for IPCS Formatting
To install an IPCS exit routine for use by IPCS, place the exit routine in:

v A library in the LNKLST

v A library that is part of the JOBLIB or STEPLIB,

v A library accessed through the TASKLIB parameter of the TSO/E IPCS command

v A data set specified by the ISPLLIB DDNAME, if the exit routine is only accessed
during IPCS dialog processing

v The SYS1.MIGLIB library

Then do the following:

v For most exit routines, create or customize a BLSCUSER parmlib member to
indicate the name and function of the exit routine.

v For all CTRACE-related exit routines, place the exit routines in a load library
available to IPCS.

For a CTRACE buffer find exit routine, the name of the routine must be placed in
the CTRACE format table. Create the CTRACE format table with the ITTFMTB
macro.

For a CTRACE filter/analysis exit routine, invoke the routine explicitly by name on
the USEREXIT parameter of the CTRACE subcommand.

v For GTFTRACE-related exit routines, do the following:

– Give a GTFTRACE filter/analysis exit routine any name. Place the routine in a
load library available to IPCS.

– Give a GTFTRACE formatting appendage one of the following names:
- AMDUSERxx
- IMDUSERxx
- HMDUSERxx

xx is the character value of the FID records to be processed by the
appendage.

© Copyright IBM Corp. 1988, 2002 101

References
See the following:

v “Making Load Libraries Available to IPCS” on page 57

v z/OS MVS Programming: Authorized Assembler Services Reference
ENF-IXG for information about the ITTFMTB macro used to create the
CTRACE format table

v z/OS MVS IPCS Commands for information about the IPCS command used
to initiate an IPCS session

v z/OS MVS Initialization and Tuning Reference for information about creating
the BLSCUSER parmlib member

The following table shows examples of the lines needed in the BLSCUSER parmlib
member to install any of these exit routines:

Table 10. Installing IPCS Exit Routines in the BLSCUSER Parmlib Member

Exit Routine Line Added to BLSCUSER Purpose of Line

ANALYZE EXIT EP(ANALYZED) ANALYZE Identifies entry point ANALYZED to IPCS as
an ANALYZE exit routine.

Address space control
block (ASCB)

EXIT EP(ASCBEXIT) ASCB Identifies entry point ASCBEXIT to IPCS as a
ASCB exit routine.

Control block formatter DATA STRUCTURE(THAT)
FORMAT(FORMATTER)

Identifies control block formatter exit routine
FORMATTER with the structure THAT.

Control block status
(CBSTAT)

EXIT EP(CBEXIT) CBSTAT(ASCB) Identifies entry point CBEXIT to IPCS as a
CBSTAT exit routine for the ASCB control
block.

Find DATA STRUCTURE(IT) FIND(FINDIT) Associates find exit routine FINDIT with the
structure IT.

Post-formatting EXIT EP(POSTEXIT)
FORMAT(data_structure)

Identifies entry point POSTEXIT to IPCS as a
post-formatting exit routine which will format
the data area data_structure .

Scan DATA SCAN(SCANIT) Identifies scan exit routine SCANIT.

Task control block
(TCB)

EXIT EP(TCBEXIT) FORMAT(TCB) Identifies entry point TCBEXIT to IPCS as a
TCB exit routine. TCB exit routines are
defined as post-formatting exit routines to
IPCS.

Installing IPCS Exit Routines

102 z/OS V1R4.0 MVS IPCS Customization

Table 10. Installing IPCS Exit Routines in the BLSCUSER Parmlib Member (continued)

Exit Routine Line Added to BLSCUSER Purpose of Line

Verb EXIT EP(VERBAL) VERB(MYDATA)
AMASK(X'aaFFFFFF') ABSTRACT(‘text ’)
HELP(helppanel)

Identifies entry point VERBAL to IPCS as a
verb exit routine. MYDATA is a verb name
used with the exit identified with the IPCS
VERBEXIT subcommand.

For example, by entering VERBEXIT
MYDATA, you give verb exit routine VERBAL
control.

aa is either 00, to indicate 24-bit storage
accessing, or 7F to indicate 31-bit storage
accessing.

‘text ’ is the text of the abstract shown on the
component data analysis panel entry
associated with this verb exit.

helppanel is the name of the help panel that
accompanies this exit routine.

The AMASK, ABSTRACT, and HELP
parameters are optional.

Installing IPCS Exit Routines

Chapter 9. Installing IPCS Exit Routines 103

Installing IPCS Exit Routines

104 z/OS V1R4.0 MVS IPCS Customization

Chapter 10. IPCS Exit Services

Programming Interface information

This chapter describes the exit services that give your IPCS exit routine access to
the basic services necessary for accessing, formatting, analyzing, printing, or
displaying information contained in a dump data set.

Exit Services
The following services are recommended.

Service Use When You Want to: Invoked Through:

“Add Symptom Service” on
page 109

Generate symptoms from stand-alone dumps,
SVC dumps, or ABEND dumps written to
SYSMDUMP data sets

Exit services router

“Control Block Formatter
Service” on page 111

Format and print a complete data area in one
invocation

Exit services router

“Control Block Status (CBSTAT)
Service” on page 117

Invoke all CBSTAT exit routines for a requested
data area

Exit services router

“Contention Queue Element
(CQE) Create Service” on
page 119

Create contention queue elements (CQE) that
are called by ANALYZE exit routines

Exit services router

“Equate Symbol Service” on
page 122

Create a symbol entry in the symbol table Exit services router

“Exit Control Table (ECT)
Service” on page 125

Invoke an exit routine within an exit routine, or
invoke a group of exit routines

Exit services router

“Expanded Print Service” on
page 127

Display data at a terminal and write data to the
IPCS print data set

Exit services router

“Format Model Processor
Service” on page 132

Format and print an entire data area using a
control block model

Exit services router

“Get Symbol Service” on
page 135

v Retrieve symbols from the symbol table
v Initialize the BLSRESSY macro for your exit

routine

Exit services router

“Name Service” on page 137 Describe the data space and/or address space
associated with a specified STOKEN

Exit services router

“Name/Token Lookup Service”
on page 140

Retrieve the token from a name/token pair Exit services router

“Obtaining Information About
Coupling Facility Structures” on
page 143

Search for information about coupling facility
structures

Issue an IXLZSTR macro

“Obtaining Information About
Loaded Modules” on page 143

Search for information about loaded modules Issue a CSVINFO macro

© Copyright IBM Corp. 1988, 2002 105

Service Use When You Want to: Invoked Through:

“Quiesce IPCS Transaction” on
page 144

Quiesce a transaction that is currently being
processed by IPCS.

Three ways:

v From an authorized program,
different task: Schedule an
IRB.

v From an authorized program,
same task: Issue a LOAD
macro, then a SYNCH macro.

v From an unauthorized
program, same task: Issue a
LINK macro or issue a LOAD
macro followed by a call.

“Select Address Space Identifier
(ASID) Service” on page 145

Scan ASCBs in a dump and generate a list of
entries for selected address spaces

Exit services router

“Standard Print Service” on
page 149

Print a line of output.
Note: Use expanded print service, especially for
exit routines that issue messages with prefixes.

Exit services router

“Storage Access Service” on
page 150

Access data in a dump and read dump data into
storage

Exit services router

“Storage Map Service” on
page 153

Process storage map entries and obtain the data
they represent

Exit services router

“Symbol Service” on page 156 Process symbols and obtain the data they
represent

Exit services router

“Table of Contents Service” on
page 162

Add entries to the table of contents Exit services router

“TOD Clock Service” on
page 164

Obtain time-of-day (TOD) clock image Two ways:

v Issue a LINK macro.

v Issue a LOAD macro followed
by a call.

“WHERE Service” on page 165 Determine the system area in which an address
resides

Exit services router

“17-Character Time Stamp
Service” on page 167

Obtain 17-character EBCDIC time stamp Two ways:

v Issue a LINK macro.

v Issue a LOAD macro followed
by a call.

“26-Character Time Stamp
Service” on page 169

Obtain 26-character EBCDIC time stamp Two ways:

v Issue a LINK macro.

v Issue a LOAD macro followed
by a call.

Services Supporting 64-Bit Addresses and Lengths

With OS/390 Release 10 and higher, the following IPCS exit services support the
processing of 64-bit addresses and lengths in dump data set information:
v Control block formatter
v Control block status (CBSTAT)
v Contention queue element create (CQE)
v Format model processor
v Storage map
v Symbol
v WHERE

IPCS Exit Services

106 z/OS V1R4.0 MVS IPCS Customization

Services Not Recommended

These exit services were provided in systems before MVS/SP Version 3 and are
maintained in later systems for compatibility. These exit services are not
recommended.

Note: “IPCS Exit Services Supported for Compatibility” on page 179 describes how
to invoke these services directly through pointers in the BLSABDPL exit
parameter list. These services cannot be invoked through the exit services
router.

The format service is not the same as the control block formatter or the format
model processor, which replace it.

Service Maintained Use When You Want to: Invoked Through:

“Dump Index Service” on
page 179

Print a table of contents for each of the
significant parts.

Use instead the table of contents service.

Load register 15 with contents of
ADPLNDX. Use BALR instruction to
branch to address in register 15.

“Format Service” on
page 181

Convert data to printable hexadecimal, if
necessary, and format data in the output
buffer.

Use instead the control block formatter or
format model processor service.

Obtain the address of the format service
from field ADPLFRMT in the BLSABDPL
parameter list. Use standard linkage
conventions to invoke the service.

“Old Storage Access
Service” on page 185

Obtain data from a dump data set.

Use instead:
v The storage access service, for exit

routines that do SNAP or both SNAP
and IPCS formatting

v The storage map or symbol service, for
exit routines that do IPCS formatting

Two ways:

v Exit service router.

v Obtain the address of the storage
access routine from the ADPLMEMA
field of the BLSABDPL exit parameter
list. Use standard linkage conventions
to invoke the service.

“Print Service” on page 187 Print an output line of a dump.

Use instead the standard print or
expanded print.

Obtain the address of the print service
from the ADPLPRNT field of the
BLSABDPL exit parameter list. Use
standard linkage conventions to invoke the
service.

“Summary Dump Data
Access Service” on
page 188

Access the summary dump data contained
in an SVC dump.

Use instead the symbol service, with an
ACC code identifying the summary dump
as desired storage.

Use a CALL macro to pass control to
IEAVTFRD, using standard linkage
contentions. Register 1 must contain the
address of the exit parameter list.

Invoking with the Exit Services Router
Use the exit services router to invoke most of the exit services. The address of the
exit services router is in field ADPLSERV, mapped by mapping macro BLSABDPL.

Your exit routine must pass the save area address in register 13.

Your exit routine invokes the requested exit service by calling the exit services
router through the CALL macro and by putting the address of a parameter list into
register 1. The parameter list must contain the following:

IPCS Exit Services

Chapter 10. IPCS Exit Services 107

v The address of the ABDPL: This parameter establishes addressability to all the
fields that your exit routine might want to reference in BLSABDPL.

v The address of a word containing the exit service code: This parameter
identifies the requested service.

v The address of the parameter list for the requested service, if applicable:
This parameter establishes addressability to the fields within the requested
service parameter list. Some fields must be initialized, other fields are optional.
See the description of the individual exit service for the required and optional
information.

Table 11 lists the service codes with the corresponding exit services.

Table 11. Exit Services, Service Codes, Parameter Lists, and Mapping Macros

Exit Service Service Code Exit Service
Parameter List

Parameter List
Mapping Macro

Valid for
ABEND/SNAP
Formatting?

Add symptom ADPLSADS ADSY BLSADSY No

Control block formatter ADPLSCBF ADPLPFMT BLSABDPL Yes

Control block status (CBSTAT) ADPLSCBS CBSP BLSACBSP No

Contention queue element (CQE)
create

ADPLSCQE PCQE BLSAPCQE No

Exit control table (ECT) exit ADPLSECT ADPLPECT BLSABDPL No

Equate symbol ADPLSEQS BLSRESSY BLSRESSY No

Expanded print ADPLSPR2 PPR2 BLSUPPR2 Yes

Format model processor ADPLSFMT ADPLPFMT BLSABDPL Yes

Get symbol ADPLSGTS BLSRESSY BLSRESSY No

Name ADPLSNAM NAMP BLSRNAMP No

Name/token lookup ADPLSNTK NTKP BLSQNTKP No

Select address space identifier
(ASID)

ADPLSSEL ADPLPSEL BLSABDPL No

Standard print ADPLSPRT BLSUPPR2 BLSUPPR2 Yes

Storage access ADPLSACC ADPLPACC BLSABDPL Yes

Storage map ADPLSMAP XMSP BLSRXMSP No

Symbol ADPLSSYM XSSP BLSRXSSP No

Table of contents ADPLSNDX None None No

WHERE ADPLSWHS PWHS BLSRPWHS No

The exit services router uses the exit service code to obtain the address of the
requested exit service. If ABEND/SNAP formatting does not support the exit service,
register 15 contains a return code of zero and field ADPLCODE contains a value of
X'04' Otherwise, the exit services router calls the service for your exit routine. After
the service has performed its processing, register 15 contains a return code from
the requested exit service.

Invoking with Exit Services Router

108 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v “Format Service” on page 181 for information about the format service that
uses patterns

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about coding the mapping macros listed in Table 11 on
page 108

v For macro mappings:
z/OS MVS Data Areas, Vol 1 (ABEP-DALT)
z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC)
z/OS MVS Data Areas, Vol 3 (IVT-RCWK)
z/OS MVS Data Areas, Vol 4 (RD-SRRA)
z/OS MVS Data Areas, Vol 5 (SSAG-XTLST)

Add Symptom Service
The add symptom service permits exit routines to generate symptoms to
stand-alone dumps, SVC dumps, and SYSMDUMP ABEND dumps. The service
does the following:
v Provides symptoms
v Makes symptoms available in machine readable format

An IPCS exit routine can provide one symptom or a pair of symptoms on each
invocation of the service.

Prior to Release 10, if you are authorized to update the dump data set, you can use
the IPCS add symptom service to add secondary symptom strings up to 2048
bytes; the actual length may be fewer bytes, depending on the space available in
the dump header record. IPCS creates a literal definition of the symbol
SECONDARYSYMPTOMS from the first 256 bytes of the new symptom string. With
Release 10, IPCS only records symptom strings in the dump directory. Dump data
sets are treated as read-only.

Restrictions
The add symptom service is subject to the following restriction:

v The service is only supported in an IPCS environment. This service is not
supported in a SNAP environment.

Requirements
Before invoking this service, your exit routine must place the following information in
the BLSADSY mapping macro:

Field Description

ADSYMP First symptom passed

ADSYML Length of first symptom

ADSYMP2 Second symptom passed (if symptoms are paired)

ADSYML2 Length of second symptom (if symptoms are paired)

ADSYNOSV Bit field in byte ADSYFL1. This bit is turned on by the caller when
the symptom is inappropriate for an SVC dump. This bit causes the
add symptom service to ignore the symptom when processing an
SVC dump. This bit is set to 0 in BLSADSY.

Invoking with Exit Services Router

Chapter 10. IPCS Exit Services 109

In addition to these requirements, the following considerations should be given to
the symptoms provided:
v The symptom must be in the form of KEYWORD/DATA
v Total length cannot exceed 15 characters
v Parameter cannot exceed 8 characters
v Paired symptoms are not the same

The symptoms passed should contain valid RETAIN® parameters. See z/OS MVS
Diagnosis: Procedures for a description of the valid RETAIN parameters. The add
symptom service does not check for the validity of the parameters.

Invoking the Service
After setting the required field, your exit routine can invoke the add symptom
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Set register 1 to contain the address of the
following three consecutive parameters:
v The address of the ABDPL
v The address of the add symptom service code (ADPLSADS)
v The address of the area mapped by the BLSADSY mapping macro, which is set

to describe the symptom(s) being passed

Output
When the add symptom service returns control to your exit routine, register 15
contains one of the following return codes:

Code Meaning

00 The add symptom service successfully added the symptom(s)

04 The symptoms already exist

12 A user requested attention exit

Example
Figure 13 on page 111 illustrates subroutine ADSYS using the add symptom service
to add paired symptoms.

Add Symptom Service

110 z/OS V1R4.0 MVS IPCS Customization

Control Block Formatter Service
The control block formatter service formats and prints a complete control block in
one invocation. To invoke the service, place required information into the parameter
list for the control block formatter service (ADPLPFMT) mapped by the BLSABDPL
mapping macro.

The maximum size of the control block is 64 kilobytes.

Reference
See z/OS MVS IPCS Commands for a list of the control blocks this service
supports.

You can use the control block formatter service to format literal data as if it were a
valid instance of a control block. IBM does not normally recommend this use. For
example, you could ask the service to format a symbolic literal as a task control
block (TCB); however, it would be inappropriate to use the formatted “TCB” for
diagnosis.

Note that in OS/390 Release 10 and higher, the control block formatter service
supports 64-bit addresses and lengths.

Requirements
Prior to invoking this service, your exit routine must place the following information
into the ADPLPFMT parameter list:

*
*The ADDSYMP subroutine calls the add symptom service to
*put paired symptoms
*in section 4, symptom area, of the dump header.
*
*======] Set up for call to add symptom service
ADDSYMP LA R15,SYMP1 Load address of 1st symptom into R9

ST R15,ADSYMP Address if 1st symptom
LA R15,L’SYMP1 Load length of 1st symptom into R9
ST R15,ADSYML Length of 1st symptom
LA R15,SYMP2 Load address of 2nd symptom into R10
ST R15,ADSYMP2 Address of 2nd symptom
LA R15,L’SYMP2 Load length of 2nd symptom into R10
ST R15,ADSYML2 Length of 2nd symptom
OI ADSYFL1,ADSYNOSV Do not add symptom on an SVC dump

*======] Call the add symptom service
L R15,ADPLSERV -]Exit services router
CALL (15),((R11),REQCODE,ADSY) Call the add symptom ser
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),RC=0

R01 EQU 1 Register 1 - Parameter list address
R11 EQU 11 Register 11 - ABDPL address
R12 EQU 12 Register 12 - TADSYASM base register
R13 EQU 13 Register 13 - Save area address
R15 EQU 15 Register 15 - Entry point address
SYMP1 DC C’FLDS/CHRID’ First symptom
SYMP2 DC C’VALU/CBADID’ Second symptom
REQCODE DC A(ADPLSADS) Request is for add symptom service
SAVEAREA DS 18F Register save area
ADSY BLSADSY DSECT=NO Add symptom service parameter list

BLSABDPL , Common parameter list

Figure 13. Example - Invoking the Add Symptom Service

Control Block Formatter Service

Chapter 10. IPCS Exit Services 111

v Set field ADPLPCHA to contain the requested control block acronym.

v Set field ADPLPVCL to contain the view control to select the individual fields for
display from the control block. If you do not specify view control, your exit routine
does not receive any output.

Reference
See “View Control” on page 115 for information about specifying the view
control.

v If the data is not in a buffer and the data is in an address space, call the storage
access service. Set field ADPLPBAV to contain the address of the control block
in the dump. Set field ADPLASID to contain the address space identifier. Set
fields ADPLPBAS and ADPLPBLS to 0.

v If the data is in a buffer, set field ADPLPBAS to contain the buffer address. Set
field ADPLPBLS to contain the length of the dump data if your exit routine has
already accessed the requested control block or if the control block is of variable
length. Set field ADPLPBAV to contain the address of the control block in the
dump.

Invoking the Service
After setting the required fields, your exit routine can invoke the control block
formatter service by calling the exit services router whose address is in field
ADPLSERV in the BLSABDPL mapping macro. Set register 1 to contain the
address of the following three consecutive parameters:
v The address of the ABDPL.
v The address of the control block formatter service code (ADPLSCBF).
v The address of the control block formatter service parameter list (ADPLSCBF)

mapped by the BLSABDPL mapping macro, which is set to describe the control
block being formatted.

You must obtain storage for or establish addressability to BLSABDPL. Before
initializing the fields, remember to set the fields to 0.

By setting the individual bit strings within field ADPLPFMT of the BLSABDPL
mapping macro, you can request formatting of a control block by specifying its
acronym in field ADPLPCHA.

Note: To format a literal value, the third parameter must be the address of the
area mapped by the BLSRESSY mapping macro. The BLSRDATS area,
which is part of the BLSRESSY area, must refer to the literal value.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for the BLSABDPL mapping
macro.

Output
When the control block formatter service returns control to your exit routine, IPCS
sets register 15 to contain one of the following return codes:

Code Meaning

00 The control block formatter service completed normally

04 Attention: Check the following bit string flags in the ADPLPRET field (within
BLSABDPL) for additional diagnostic information:

Control Block Formatter Service

112 z/OS V1R4.0 MVS IPCS Customization

ADPLPRAC Control block acronym check failed

ADPLPRNL Unable to load the control block formatting model

ADPLPRNB Unable to access the control block

ADPLPRNF Unable to format the control block

ADPLPRTB Truncated control block

ADPLPRNC No entry in the CBAT

ADPLPRNE Null entry in the CBAT

ADPLPRNG Storage not available for the CBAT

ADPLPRUU Control block formatter previously marked unusable

ADPLPRIM Incorrect control block formatting model

ADPLPRCM Control block formatting model error

ADPLPNVM No view match and therefore, no output

ADPLPBXI Identifier on parameter list extension is bad

ADPLPFEF Formatting exit failure

ADPLPNXD No exit data

16 The system stopped processing this service because of a lack of sufficient
storage for the CBAT

If the control block formatter service completed successfully, your exit routine has a
formatted control block.

Notes:

1. This service changes the contents of fields ADPLPBAS (buffer address in
central storage) and ADPLPBLS (length of the block in central storage). These
two fields must be set by your exit routine, otherwise the control block
formatting service interprets the nonzero contents of these fields to indicate that
the control block is in a buffer.

2. Some formatting programs must perform another dump access to get
extensions to the first control block, and in some environments, the same buffer
location is reused. The buffer might not contain an image of the first control
block. Therefore, your exit routine should do its own dump access if it needs
information out of a control block.

Customization
The bits in flag byte ADPLPOPT can be set to customize the control block formatter
service:

To Check the Validity of the Requested Acronym: Your exit routine can set bit
ADPLPOAC. If the acronym in the model is blank, the bit is ignored. The acronym
in the model is compared with the contents of the dump at the offset and length
specified in the model. If the comparison fails, a message is issued (unless error
messages are suppressed by setting bit ADPLNMSG), no formatting is done, and
bit ADPLPRAC is set to indicate that the control block failed the acronym check.

To Suppress the Dump Header: Your exit routine can set bit ADPLPSDH. The
header consists of the acronym or control block label from the model and the dump
address.

Control Block Formatter Service

Chapter 10. IPCS Exit Services 113

To Suppress the Dump Data Offsets: Your exit routine can set bit ADPLPSOF.
The offset of the first data item on each line is usually printed at the left of the
formatted output. Your exit routine should suppress the dump data offsets if the
fields are not in order or if you specified a view control resulting in a subset of the
fields being formatted.

To Print the Dump Address: Your exit routine can set bit ADPLPPDA. This
causes a display of the dump address of the data (instead of an offset) with the first
line of formatted output. The ADPLPPDA bit and suppressing the header can be
used together to obtain a compact display of small control blocks.

To Request Line Mode: Your exit routine can set bit ADPLPOLM. The format
model processing service gives control to the routine whose address is specified in
field ADPLPLME after each line is formatted and before the line is printed.

Any field entry in the model can be marked to cause the model processor to call a
routine specified by ADPLPLME when that field is processed. A parameter list is
passed that specifies the address of the ABDPL and the address of a data area
containing information pertinent to the formatting process.

Through the use of this facility, your exit routine can inspect the print buffer contents
for information or modification, before printing the buffer contents.

If ADPLPOLM (line mode bit) is set, and ADPLPLME contains a nonzero value,
control is given to that program after each line is formatted into the print buffer,
regardless of the control bits in the model.

To Suppress Messages that Indicate Truncation Has Occurred: Your exit
routine can set bit ADPLPSTM. The length of the control block, as indicated by
ADPLPBLS, is usually added to the location in field ADPLPBAS. This service uses
the resulting address to limit the scope of storage referenced by the model
processor. If the model directs the processor to exceed that address, processing of
that field is inhibited and a message is issued. Setting the ADPLPSTM bit
suppresses that message. This bit setting is useful for formatting a data area of
arbitrary length in hexadecimal dump format.

Use fields ADPLPBLC, ADPLPDAC, ADPLPOSI, ADPLPDL1, ADPLPDL2,
ADPLPDU1, and ADPLPDU2 to tailor the output from a general model.

To Print Blank Lines: Your exit routine can set field ADPLPBLC to a requested
number (including 0).

When this field is nonzero, the service prints the specified number of blank lines
before the control block is formatted. If no formatted lines are generated, the
service does not print any blank lines.

To Format a Dynamic Array: Your exit routine must set field ADPLPDAC to the
number of entries in the dynamic array, unless the array count is in the model.

To Change the Starting Offset of Dump Data: Your exit routine can set field
ADPLPOSI to a requested offset.

The service adds the signed value in this field to the offset normally generated.

Setting ADPLPOSI is useful for mapped data areas imbedded in control blocks at
an offset other than zero.

Control Block Formatter Service

114 z/OS V1R4.0 MVS IPCS Customization

To Control the Number of Formatted Entries for an Array: Your exit routine can
set these fields: ADPLPDL1 (the lower limit of the first dimension), ADPLPDU1 (the
upper limit of the first dimension), ADPLPDL2 (the lower limit of the second
dimension), and ADPLPDU2 (the upper limit of the second dimension). If one of
these limits is coded with an * in the BLSQMFLD macro, your exit routine must
provide the dimension. Setting these fields permits the processing of a large array
to be displayed in pieces.

To Communicate Additional Information to the Formatting Service: The
ADPLPFXT data area maps the format parameter extension. This data area is used
by exit routines to communicate additional information to the formatting service. It is
pointed to from the ADPLPEXP field in the format parameter. It can be used
together with current models if only one data area is described. The advantage of
its use is the ability to describe a data area in terms of an equate symbol record,
and the availability of additional formatting specifications.

It must be used together with a multiple source model, and the areas described
must match with the source index values in the model.

Example
Figure 14 illustrates the subroutine FORMAT using the IPCS-supplied control block
formatter service to format the PSA using the IBM-supplied format model.

View Control
Use the view control bits in field ADPLPVCL to enable your exit routine to provide
multiple levels of detail in the formatting of a control block with only one control
block model. Set various view control bits in your exit routine to control the
formatting of a requested control block.

*--
*The FORMAT subroutine calls the control block formatter service
*to format the PSA using the IBM-supplied formatter model.
*ABDPLPTR is a pointer to the DSECT created by the second invocation
*of BLSABDPL. ABDPLPTR is stored in register 11 to preserve the pointer
*across the call to the control block formatter service.
*ADPLPFMT refers to the DS set up by the first invocation of BLSABDPL.
*--
FORMAT MVI ADPLPOPT,ADPLPOAC Check acronym

MVC ADPLPCHA,=CL8’PSA’ Name of control block to format
L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODECBF,ADPLPFMT) Invoke service
LTR R15,R15 Was the PSA displayed?
BNZ EXIT No. End processing

CODECBF DC A(ADPLSCBF) Control block formatter code
ABDPLPTR EQU 11 General register 11
*--
* Reserve space for an initialized control block formatter
* service parameter list.
* The view control field is set to X’0300’.
*--

BLSABDPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO, *
AMDPACC=NO,AMDPFMT=YES,AMDPECT=NO,AMDPSEL=NO

*--
* Define the format of the ABDPL addressed by R1 on input
*--

BLSABDPL DSECT=YES,AMDEXIT=YES,AMDOSEL=NO, *
AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

Figure 14. Example - Invoking the Control Block Formatter Service

Control Block Formatter Service

Chapter 10. IPCS Exit Services 115

The IPCS-supplied control block model contains a 16 bit view control field for each
field in the control block. The view control field is divided into two sections, a
general view of 12 bits and a component view of 4 bits. The format model
processor compares the views specified by the model and your exit routine to
determine if a field should be formatted or not. At least one bit in the general
section must match, and if the model view component section is not all zero, at
least one component section bit must also match.

When VIEWMATCH=VALUE is coded on the BLSQMDEF macro, a bit is set in the
model header that causes the model processor to perform view matching in a
different manner. In this mode, the first byte of the view control fields in the model
and in the format parameter list must match exactly in order to display the
corresponding field of data. The rules for a match in the component portion of the
view are the same as for bit matching.

Table 12 lists the general view control bits, their hexadecimal settings, and their
usage conventions.

Table 12. View Control Bits and Their Recommended Meaning

Setting Name Recommended Meaning

X'8000' ADPLPKEY Exhibits/inhibits key fields of a defined control
block (as defined by the KEYFIELD parameter)

X'4000' ADPLPSUM Exhibits/inhibits the summary fields

X'2000' ADPLPREG Exhibits/inhibits the register save area (The 16
general purpose registers are formatted as four
lines of four words with a leading caption)

X'1000' ADPLPLIN Exhibits/inhibits the linkage fields

X'0800' ADPLPEFD Exhibits/inhibits the error indicating fields

X'0400' ADPLPHEX* Exhibits/inhibits the data in a hexadecimal dump
format

X'0200' ADPLPNOR Exhibits/inhibits the non-reserved (defined) fields

X'0100' ADPLPRES Exhibits/inhibits the reserved fields

X'0080' ADPLPSTA Exhibits/inhibits arrays in the control block with a
static dimension

X'0080' ADPLPDCD Exhibits/inhibits decoding of flag fields

X'0040' ADPLPDYN Exhibits/inhibits arrays in the control block with a
dynamic dimension

X'0020' ADPLPINP Exhibits/inhibits input fields in a two-way
communication area

X'0010' ADPLPOUT Exhibits/inhibits output fields in a two-way
communication area

X'0008' Component use

X'0004' Component use

X'0002' Component use

X'0001' Component use

Note: * ADPLPHEX is static. You will always get a hexadecimal dump format if you specify
this view control bit.

If you want your exit routine to format a hexadecimal dump of the requested control
block, set field ADPLPVCL to X'0400' by setting bit ADPLPHEX. If you want your

Control Block Formatter Service

116 z/OS V1R4.0 MVS IPCS Customization

exit routine to format a summary of the requested control block and the register
save area, set field ADPLPVCL to X'6000' by setting bits ADPLPSUM and
ADPLPREG respectively. To completely format a control block, your exit routine
should set both ADPLPNOR and ADPLPRES bits, thereby setting field ADPLPVCL
to X'0300'.

The 4 bits in the component section are named ADPLPCV1 through ADPLPCV4
and have no assigned significance. These are used by formatting modules
associated with a model and can be used as needed.

The component view bits work in a slightly different manner from the general view
bits. If a field in the model has any component view bit on, then there must be a
match of at least one general view bit and at least one component view bit in order
for the field to be displayed.

An example of the output that the view control can produce follows. These
examples do not reflect dump data. Only the fields for the specified view control are
shown. If your exit routine wanted to format the key fields of the ASCB, you would
call the control block formatter service and provide:
v The control block acronym, ASCB
v The view control X'8000'
v The address of the ASCB in field ADPLBAV (0CBADD00 is a fictitious address)

Figure 15 illustrates the report that would be produced:
Or if your exit routine wanted to format the reserved fields of the ASCB, you would

call the control block formatter service and provide the same information as
previously stated except the view control would be X'0100'.

Figure 16 illustrates the report that would be produced:

Control Block Status (CBSTAT) Service
The control block status (CBSTAT) service invokes all CBSTAT exit routines for a
requested control block. New IPCS exit routines can be defined in IPCS parmlib
member BLSCUSER. The exit routines must generate output by using the
expanded print service.

The callers of the CB status service must fill in parameter list (BLSACBSP) with
information describing the request for control block status. If any errors are detected
in the CBSTAT parameter list, IPCS issues message BLS01042I.

ASCB: 0CBADD00
+0004 FWDP..... 00000000 ASID..... 0000 CSCB..... 00000000
+003C TSB...... 00000000 AFFN..... 0000 ASXB..... 00000000
+0072 DSP1..... 00 FLG2..... 00 SRBS..... 0000
+0080 LOCK..... 00000000 ASSB..... 00000000

Figure 15. Example - View Control Displaying Key Fields

ASCB: 0CBADD00
+0029 R029..... 00 R02C..... 00000000 R035..... 000000
+0074 RSV...... 0000 R09B..... 00 R121..... 000000
+0158 R158..... 00000000 00000000 00000000 00000000
+0170 R170..... 00000000

Figure 16. Example - View Control Displaying Reserved Fields

Control Block Formatter Service

Chapter 10. IPCS Exit Services 117

Note that in OS/390 Release 10 and higher, the CBSTAT service supports 64-bit
addresses and lengths.

Requirements
Prior to invoking this service, your exit routine must set field ESSYSYM in the
BLSRESSY mapping macro to contain the equated symbol. If the get symbol
service processed successfully, then your exit routine has a completely initialized
BLSRESSY macro that defines the requested symbol.

Invoking the Service
After setting the required field, your exit routine can invoke the CBSTAT service by
calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the CBSTAT service code (ADPLSCBS)
v The address of the area mapped by the BLSACBSP mapping macro, which is

set to describe the control block being analyzed

Output
When the CBSTAT service returns control to your exit routine, register 15 contains
one of the following return codes:

Code Meaning

00 The CBSTAT service completed normally.

04 The symbol was created but an attention condition was detected. Preceding
this return code, there are informational messages that provide additional
diagnostic aid.

08 The symbol was created but an error condition was detected. Preceding
this return code, there are informational messages that provide additional
diagnostic aid.

12 No symbol was created. The attention interrupt key might have been
pressed.

16 An error in the IPCS environment was encountered.

Example
Figure 17 illustrates the subroutine CBSTATUS setting up the CBSTAT parameter
list (CBSP) and calling the CBSTAT service to invoke all CBSTAT exit routines.

CBSTAT Service

118 z/OS V1R4.0 MVS IPCS Customization

Contention Queue Element (CQE) Create Service
ANALYZE exit routines call the contention queue element (CQE) create service to
create CQEs. Each time an ANALYZE exit routine calls the CQE create service,
IPCS creates one CQE. The ANALYZE exit routine fills in the CQE create service
parameter list (PCQE mapped by the BLSAPCQE mapping macro), with information
relating to a unit of work that holds or is waiting for a resource. The exit routine
then passes the PCQE to the CQE create service by calling the exit services router
with a router value of ADPLSCQE.

Reference
See “ANALYZE Exit Routine” on page 59 for a description of ANALYZE exit
routines.

Requirements
Prior to invoking this service, your exit routine must place information into
BLSAPCQE. There are two methods that you can use:

v If you are writing non-reentrant code, you can issue the BLSAPCQE mapping
macro using the DSECT=NO parameter. This method is used in Figure 18 on
page 122, where PCQESYNM and PCQEJOBN are not explicitly provided, but
are filled in because DSECT=NO is specified on BLSAPCQE at label PCQE.

v If you are writing reentrant code, you can issue BLSAPCQE two times, once
specifying DSECT=YES to describe a dynamic parameter list, and once
specifying DSECT=NO to create an initialized image. Before invoking the service,
copy required information from the initialized image to the dynamic parameter list.

Field Description

RSA A pointer to a buffer containing the resource name.

ADA A pointer to additional data for owners of a resource. The additional data is
optional. If additional data is provided, it should contain data relevant to
debugging.

RSL The length of the resource name.

ADL The length of any additional data.

SYNM The system name (SYSNAME) where the unit of work is running. This must

*
*The CBSTATUS subroutine sets up the CBSTAT parameter
*list (CBSP) and calls the CBSTAT service to invoke
*all CBSTAT exit routines.
*
*====== Set up for call to CBSTAT service
CBSTATUS MVC CBSPD,ESSYD Data description

MVC CBSPAS,ESSYAS Address space description
MVC CBSPLAD,ESSYLAD Address of control block

*====== Call the CBSTAT service
L R15,ADPLSERV - Exit services router
CALL (15),((R11),REQCODE,CBSP) Call the CBSTAT se

R01 EQU 1 Register 1 - Parameter list address
R11 EQU 11 Register 11 - ABDPL address
R15 EQU 15 Register 15 - Entry point address
REQCODE DC A(ADPLSCBS)
CBSP BLSACBSP DSECT=NO CBSTAT service parameter list

BLSABDPL , Common parameter list

Figure 17. Example - Invoking the CBSTAT Service

CQE Create Service

Chapter 10. IPCS Exit Services 119

be provided when the resource has cross system contention. The name of
the dumped system is in CVTSNAME. If a SYSNAME is different from
CVTSNAME, no attempt is made to access the current dump on behalf of
this request; for example, the ASCB and TCB are not accessed to produce
further status. The SYSNAME should be left justified and padded with
blanks.

EAS An instance of the BLSRDATS macro within BLSAPCQE. Specify in
BLSRDATS the following:

v Field AS1: The central processor address, which is used to uniquely
identify active system request blocks (SRBs).

CPU(n)
NOCPU

For CPU(n), specify X'00000000' for processor 0, X'00000001', for
processor 1, and so forth.

If the unit of work is not associated with a particular processor, specify
the value ZZZAS1NO to indicate NOCPU.

v Field AS2: The address space identifier (ASID) of the unit of work:
ASID(n).

DTD DTD in PCQED indicates the type of work being performed (such as TCB,
SRB, or any name up to 31 characters). This control block name is used in
the analysis process to call the CBSTAT service to extract more information
about a unit of work. In order to conform to the IPCS standard for structure
names, the name should start with an alphabetic character and contain only
alphanumeric characters.

LAD The address of the control block.

OW Indicates whether the unit of work owns (C‘O ’) or is waiting (C‘W ’) for this
resource.

JOBN An optional 8-character JOBNAME. This should be filled in by exit routines
that are producing contention entries that describe contention caused by
another system. This must be done because the ASCB for another system
is not available in the dump. The job name should also be provided when
the work being performed has a special relationship to the address space,
as in the case of SRBs that are performing a service and always run in an
address space such as MASTER.

If the job name has not been saved in an easily accessible control block, it
is recommended that you let the ANALYZE exit routine find it in the ASCB.
The ANALYZE exit routine can determine the job name from the ASID.

Initially, the exit routine sets PEQEJOBN to zero. When the exit routine fills
in the field, the job name should be left-justified and padded with blanks.

MODN
An optional 8-byte field that contains the CSECT name of the module
calling the CQE create service. This field is used in error messages to
identify the caller that passed a bad parameter list.

If an incorrect PCQE is passed to the CQE create service, IPCS issues message
BLS01001I to help diagnose the problem.

CQE Create Service

120 z/OS V1R4.0 MVS IPCS Customization

Invoking the Service
After setting the required field, your exit routine can invoke the CQE create service
by calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the CQE create service code (ADPLSCQE)
v The address of the area mapped by the BLSAPCQE mapping macro, which is

set with the contention information

Output
The contention queue service returns these standard IPCS return codes to the
caller:

Code Meaning

00 The CQE create service completed normally.

04 The CQE was not created after an attention condition was detected.
Preceding this return code, there are informational messages that provide
additional diagnostic aid.

08 The symbol was not created after an error condition was detected.
Preceding this return code, there are informational messages that provide
additional diagnostic aid.

12 No CQE was created. The attention interrupt key might have been pressed.

16 An error in the IPCS environment was encountered. If the exit routine
passed an incorrect PCQE, IPCS issues message BLS01001I to help you
diagnose the problem with the parameter list.

A return code greater than 00 from the CQE create service should cause the
ANALYZE exit routine to end processing.

When control is returned to the exit routine, IPCS will create a CQE, add it to the
contention queue, and save it in the IPCS dump directory data set.

An exit routine can call the contention queue service as many times as is necessary
for a given contention situation.

Example
Figure 18 illustrates the subroutine ANLZ using the get symbol service to obtain a
definition of master scheduler’s ASCB. ANLZ builds the CQE create service
parameter list to define master scheduler’s ASCB as waiting for RESOURCE
NUMBER 1.

CQE Create Service

Chapter 10. IPCS Exit Services 121

Note: In order to run this code properly, it must be placed in a module which is
defined as an ANALYZE exit routine in the BLSCUSER parmlib member, or
in a parmlib member imbedded in the BLSCUSER member.

Reference
See Chapter 9, “Installing IPCS Exit Routines” on page 101 for information
about installing IPCS exit routines.

Equate Symbol Service
The equate symbol service stores a symbol entry in the symbol table.

By maintaining this symbol table, you can reduce the access time for subsequent
references to the same control block or data area. Each symbol entry can consist of
associated attributes, such as the address and the length. If a symbol for the

*======] Invoke Get Symbol Service for ASCB
ANLZ MVC ESSYSYM(31),=CL31’ASCB00001’ Symbol

MVI ESSYDTY,ZZZDTYM Structure
MVC ESSYDTD(31),=CL31’ASCB’ Data name
L R15,ADPLSERV -]Exit services router
CALL (15),((R11),CODEGTS,ESSY) Invoke Get Symbol service
CH R15,=H’12’ Was get symbol service successful?
BNL EXIT No. End processing

*======] Set up for call to CQE Create service
SPACE 1 Begin dump formatting
MVC PCQEMODN,MODNAME Module name for diagnostics
LA R02,RESNAME Address of resource name
ST R02,PCQERSA Is placed in the parameter list
LA R02,RESLEN(0) Length of resource name
STH R02,PCQERSL Is placed in the parameter list
LA R02,ADDDATA Address of additional data
ST R02,PCQEADA Is placed in the parameter list
LA R02,ADDLEN(0) Length of additional data
STH R02,PCQEADL Is placed in the parameter list

*======] Define the control block which represents the unit of work
MVC PCQEAS,ESSYAS Address space description from ESSY
MVC PCQELAD,ESSYLAD Address of control block
MVC PCQED,ESSYD Data characteristics from ESSY
MVC PCQEOW,WAITER Indicate unit of work is waiting

*======] Call the CQE Create service
SPACE 1 Begin standard module epilogue
L R15,ADPLSERV -]Exit services router
CALL (15),((R11),REQCODE,PCQE) Call the CQE Create service

R11 EQU 11 Register 11 - ABDPL address
REQCODE DC A(ADPLSCQE)
CODEGTS DC A(ADPLSGTS) Get symbol service code
RESNAME DC CL20’RESOURCE NUMBER 1’ Resource name
RESLEN EQU *-RESNAME Resource name length
ADDDATA DC CL20’ADDITIONAL DATA ’ Additional data
ADDLEN EQU *-ADDDATA Additional data length
WAITER DC CL2’W ’ Waiting for resource indicator
MODNAME DC CL8’TCQECASM’ Module name for diagnostics
SAVEAREA DS 18F’0’ Register save area
PCQE BLSAPCQE DSECT=NO CQE Create service parameter list
ESSY BLSRESSY DSECT=NO IPCS ES record buffer

BLSABDPL , Common parameter list

Figure 18. Example - Invoking the CQE Create Service

CQE Create Service

122 z/OS V1R4.0 MVS IPCS Customization

processing entry does not exist, the symbol entry is added to the symbol table.
However, if a symbol already exists in the symbol table for the processing entry, the
new definition overlays the existing one.

If the symbol is a literal, the equate symbol service derives the symbol from the
definition of another literal symbol. For example, your exit routine issued the
following subcommand to retrieve the definition of the literal:
literal astring c’ABC’

Use the get symbol service to retrieve the symbol ABC from the symbol table and
place it in the BLSRESSY area. The definition in the BLSRESSY area is:
ESSYSYM CL31’ASTRING’
ESSYAST C’LI’ (symbol ZZZASTLI)
ESSYAS1 F’n₁’ (an arbitrary number assigned by IPCS)
ESSYDLE F’3’

Your exit routine changes the definition to the following:
ESSYSYM CL31’BSTRING’
ESSYDLE F’2’

Your exit routine calls the equate symbol service and receives a return code of 0.
Symbol BSTRING is now defined in the symbol table in your dump directory as
though IPCS had processed the following subcommand:
literal bstring c’AB’

In addition, the equate symbol service customized BLSRESSY to match the
definition in the symbol table by changing the following:
ESSYAS1 F’n₁’ (an arbitrary number assigned by IPCS)

Symbol BSTRING describes the first 2 bytes of a LITERAL(n₂) address space. The
first 2 bytes are occupied by C’AB’. None of the remaining bytes of the address
space are available.

Requirements
Prior to invoking this service, your exit routine must:

1. Prepare a definition of the requested symbol in a block of storage whose format
is described by mapping macro BLSRESSY. Set all fields, including reserved
fields, except the ESSYRDX field.

Use one of these methods to prepare a definition:

v Place blanks in field ESSYSYM within the buffer in which you compose your
definition. Pass that buffer to the get symbol service to initialize the buffer.

v Invoke macro BLSRESSY in a CSECT to generate an initialized block of
storage. Copy that block into the buffer in which you compose your definition.

For a literal, use the BLSRDATS area in the BLSRESSY area to identify
LITERAL(n), which is an address space that contains the literal from which
the new definition is to be derived. The address field LAD and the fields in
the BLSRDATS area indicate the part of the literal to be included in the
derived definition. Using the values in the areas, the caller of the service can
specify all or part of the actual literal value.

v Use the get symbol service to retrieve a definition of another block into the
buffer in which you compose your definition. Check that the fields you expect
to use are unchanged as part of your definition.

2. Change only those fields that are needed to define the symbol, address space,
address, and attributes that you wish to associate with a block of storage.

Equate Symbol Service

Chapter 10. IPCS Exit Services 123

Invoking the Service
After setting the required fields, your exit routine can invoke the equate symbol
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Set register 1 to contain the address of the
following three consecutive parameters:
v The address of the ABDPL
v The address of the equate symbol service code (ADPLSEQU)
v The address of the area mapped by the BLSRESSY mapping macro, which is

set to the symbol information

Output
When the equate symbol service returns control to your exit routine, register 15
contains one of the following return codes:

Code Meaning

00 The equate symbol service completed normally.

04 The symbol was created but an attention condition was detected. Preceding
this return code, there are informational messages that provide additional
diagnostic aid.

08 The symbol was created but an error condition was detected. Preceding
this return code, there are informational messages that provide additional
diagnostic aid.

12 No symbol was created. The attention interrupt key might have been
pressed.

16 An error in the IPCS environment was encountered.

If the equate symbol service was storing a literal, the service updates the area
mapped by the BLSRESSY mapping macro with a description of the derived
symbol.

Example
Figure 19 illustrates the subroutine EQUATE using the equate symbol service to
store symbol MYASCB in the IPCS symbol table. The subroutine uses the same
definition of ASCB00001 that IPCS returns after processing the get symbol service.

Equate Symbol Service

124 z/OS V1R4.0 MVS IPCS Customization

Exit Control Table (ECT) Service
The exit control table (ECT) service allows you to invoke an exit routine within an
exit routine or to invoke a group of exit routines. You might use this service to
process a verb exit routine by supplying either the exit verb name (such as
CVTMAP) or the exit verb module name.

The ECT service uses the local defaults of your exit routine when giving control to
an exit routine, subcommand, or command. For example, your exit routine,
MYPGMA, received control as follows:
setdef terminal noprint
verbexit mypgma noterminal print

When MYPGMA invokes the ECT service, the local defaults are NOTERMINAL and
PRINT. When the ECT service invokes exit routines or issues subcommands or
commands, the local defaults are also NOTERMINAL and PRINT. Note that, in the
IPCS of systems prior to MVS/ESA SP 5.2, the subcommands or commands
instead use the TERMINAL and NOPRINT defaults established by the SETDEF
subcommand.

Requirements
Prior to invoking this service, your exit routine must place the following information
into BLSABDPL:

v If your exit routine wants to invoke an exit verb name, set field ADPLPEFG to
contain zeros, and set field ADPLPEVB to contain the requested verb name,
such as ASMDATA.

v If your exit routine wants to invoke a particular type of exit, set the appropriate
bits in field ADPLPEFG. For example, set bit ADPLPEPN to invoke the print
nucleus exit.

v If your exit routine wants to execute an IPCS subcommand or an IPCS command
procedure, set the ADPLPESC bit in the ADPLPECT parameter list and set
ADPLPEPL to the address of a standard TSO command buffer that contains the
text to be processed. These fields are described in the BLSABDPL mapping
macro. (See z/OS MVS Data Areas, Vol 1 (ABEP-DALT)).

*
*After processing the get symbol service
*(as described in
Figure 23 on page 137),
*the EQUATE subroutine calls the equate symbol service to
*store symbol MYASCB in the IPCS symbol table,
*using the same definition of ASCB00001.
*
EQUATE MVC ESSYSYM(31),=CL31’MYASCB’ Symbol

L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODEEQS,ESSY) Invoke service
CH R15,=H’12’ ASCB located?
BNL EXIT No. Quit

CODEEQS DC A(ADPLSEQS) Equate symbol service code
ABDPLPTR EQU 11 General register 11
ESSY BLSRESSY DSECT=NO IPCS ES record buffer
*--
* Define the format of the ABDPL addressed by R1 on input
*--

BLSABDPL

Figure 19. Example - Invoking the Equate Symbol Service

ECT Service

Chapter 10. IPCS Exit Services 125

Invoking the Service
After setting the required fields, your exit routine can invoke the ECT service by
calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL.
v The address of the ECT service code (ADPLSECT).
v The address of the ECT service parameter list (ADPLPECT) mapped by the

BLSABDPL mapping macro. You must obtain storage for or establish
addressability to the ECT service parameter list. Before initializing the fields,
remember to set the fields to 0.

Field ADPLPECT in data area BLSABDPL maps the ECT parameter list. If you want
your exit routine to request a type of exit, set the individual bit strings within field
ADPLPEFG. For example, to process the TCB exit routines, set the ADPLPETB bit
to 1, and set the ABPLCBP field to contain the address of the block. To process the
ASCB exit routines, set the ADPLPEAS bit to 1, and set the ADPLCBP field to
contain the address of the block. Set field ADPLPEFG to contain zeros. Set field
ADPLPEVB to contain one of the IBM-supplied verb names or its corresponding
module name.

References
See the following:

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the
BLSABDPL data area

v z/OS MVS IPCS Commands for the VERBEXIT subcommand and the list of
verb names and module names that you can specify

Output
When the ECT service returns control to your exit routine, register 15 contains one
of the following return codes:

Code Meaning

00 The ECT service completed normally.

04 Attention: Check the following bit string flags in the ADPLPERR field (within
mapping macro BLSABDPL) for additional diagnostic information.

ADPLPEST Insufficient storage available

ADPLPENV Verb name was not found in the ECT

ADPLPELI LINK macro failed with an X'806' ABEND

ADPLPENE No ESTAE recovery environment established

16 There was no ESTAE recovery routine.

If the ECT service completed successfully, your exit routine has access to the
requested exit.

Example
Figure 20 illustrates the subroutine ECT using the IPCS-supplied ECT service to
invoke the MTRACE verb exit routine. When your exit routine invokes another exit
for which parameters are defined, your exit routine can specify these parameters as
follows:

v Set ADPLOPTR to the address of the character string containing the parameter.

ECT Service

126 z/OS V1R4.0 MVS IPCS Customization

v Set ADPLOPLEN to the length of the character string.

Expanded Print Service
The expanded print service provides a means for exit routines to write data to both
the terminal and the IPCS print data set, IPCSPRNT. The expanded print service
differs from the standard print service, in that it requires a parameter list PPR2
(mapped by BLSUPPR2) to be passed that describes which new print functions are
to be used. The expanded print service provides the following functions:

Conditional headings
Expanded print service saves a predetermined heading and writes it only if
some future action occurs that calls the service to print data.

*
*The ECT subroutine calls the ECT service to
*display master trace data using the IBM-supplied MTRACE verb.
*
TSTSECT TITLE ’TSTSECT--ECT Service Usage Example’
TSTSECT START 0 Sample dump processing exit

SPACE 2 Begin standard module prolog
*====== Standard module prolog

SPACE 1 Begin standard module prolog
SAVE (14,12),T,* Save registers
LR R12,R15 Base register for TSTSECT
USING TSTSECT,R12 Base register for TSTSECT
LA R15,SAVEAREA Address of local save area
ST R13,SAVEAREA+4 Chain input save area to local
ST R15,8(,R13) Chain local save area to input
LR R13,R15 Establish use of local save area
LR ABDPLPTR,R01 Base register for ABDPL
USING ABDPL,ABDPLPTR Base register for ABDPL
SPACE 2 Begin dump formatting

*====== Use the ECT service to invoke the MTRACE verb exit
SPACE 1 Begin dump formatting
MVC ADPLPEVB,=CL8’MTRACE’ Verb name
L R15,ADPLSERV - Services router
CALL (15),((ABDPLPTR),ECT#SERVICE,ADPLPECT) Invoke the exit
SPACE 2 Begin standard module epilogue

*====== Standard module epilogue
SPACE 1 Begin standard module epilogue
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),T,RC=(15) Restore registers and return
SPACE 2 Begin data definitions

*====== Define data
SPACE 1 Begin data definitions

R00 EQU 0 Register 0
R01 EQU 1 Register 1
ABDPLPTR EQU 11 ABDPL base register
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
SAVEAREA DC 18F’0’ Register save area
ECT#SERVICE DC A(ADPLSECT) ECT service request code

LTORG , Literal pool
BLSABDPL DSECT=NO,AMDPECT=YES,AMDEXIT=NO,AMDPACC=NO, *

AMDPFMT=NO,AMDPSEL=NO,AMDOSEL=NO
BLSABDPL DSECT=YES,AMDPECT=NO,AMDEXIT=YES,AMDPACC=NO, *

AMDPFMT=NO,AMDPSEL=NO,AMDOSEL=NO
END TSTSECT Test dump formatting exit

Figure 20. Example - Invoking the ECT Service

ECT Service

Chapter 10. IPCS Exit Services 127

If the expanded print service is called to define a conditional heading when a
conditional heading is already in place, the previous conditional heading is
written out. 250 characters is the maximum size of a conditional header.

A flag in the PPR2 allows the user to request the cancelation of a conditional
header.

For this call, the expanded print service sets a return code of 0 to indicate that
the header was canceled and a return code of 4 to indicate that the conditional
header was already written out. This allows the program establishing the
conditional header to know whether any data was written following the
conditional header.

A token field (PPR2TOKN) is provided to allow the user to identify a specific
conditional header for cancelation.

If the PPR2TOKN field does not match the token saved at the time the
conditional header was saved, the conditional header is not canceled. If the
PPR2TOKN field is all blanks, any conditional header is canceled.

Indentation
The expanded print service uses the ADPLSCOL field to determine the number
of spaces to indent the output. This function allows a service to generate output
that appears in multiple reports at varying indentation levels without requiring
any extra coding.

Print buffer
The user must specify the address of a print buffer that contains the data to be
printed. The expanded print service requires the length of the print buffer.
Specifying the address of a print buffer removes the burden of formatting and
requesting multiple prints for data that is considered one logical line. The user
of the expanded print service can specify the address of the print buffer in the
print service parameter list.

Truncation avoidance
The expanded print service uses the recommended line width to break up the
data, in the print buffer, into sections that fit within the recommended line width.
As part of this function, the caller can specify the indentation level to be applied
to all overflow lines. This allows generation of reports with consistent
indentation.

Controlled truncation
The user can request truncating the line being printed at the recommended line
width. This truncation occurs after all requested indentation has been applied to
the output buffer.

Message support
The user can specify that the print buffer contains a message.

When this occurs, the message identifier is assumed to occupy all positions in
the print buffer, up to the first blank. The expanded print service examines the
user profile table (UPT) and either removes the message identifier (PROFILE
NOMSGID) or leaves the identifier in the message (PROFILE MSGID). All
truncation and indentation rules apply to messages.

New line support
The expanded print service recognizes the EBCDIC new line character (X'15')
when requested by setting the new line flag on in the PPR2. The new line
character causes the preceding data to be printed and the following data to be
started on a new line.

Expanded Print Service

128 z/OS V1R4.0 MVS IPCS Customization

Terminal only support
When OPTIONS(TERM) is specified on the BLSUPPR2 expansion, the print
request is only sent to the terminal.

Print Line Width
When print line width is specified, the print request uses the current print data
set line width as the criteria for where to split a line of text. This action allows
old formatter exit routines to preserve their old output format while using the
new expanded print service.

Requirements
Before invoking this service, your exit routine must set the desired fields in
BLSUPPR2.

Field Description

PPR2PFL1 Contains the following flags:

Flag Description

PPR2CNH A conditional heading has been placed in the output
buffer.

PPR2OCOL The data is to be indented by the number of spaces
specified by ADPLSCOL. If this flag is on when the
conditional heading is requested, the conditional
heading is saved with the current indentation taken
from ADPLSCOL. An ADPLSCOL value of zero
means the data starts in column one.

PPR2CCNH The conditional heading request should be
canceled.

PPR2TRUN The data in the print buffer should be truncated, so
as to fit on 1 output line.

PPR2MSG The data in the print buffer is a message with a
message identifier that should be treated according
to the rules of PROFILE MSGID/NOMSGID.

PPR2EJEC A page eject is performed when the first line of
output is written out.

PPR2NL New line characters (X'15') are to cause the printing
of any prior text and the start of a new line.

PPR2TERM The output is only written to the terminal for IPCS.

PPR2PLW The output width is taken from the print data set
LRECL.

PPR2BUF This field contains the address of a print buffer to be used by the
expanded print service. The user can specify the address from
ADPLBUF or user storage in this field.

PPR2BUFL This field contains the length of the data to be printed.

PPR2OVIN The overflow lines indentation level. This field is defaulted to 2.

PPR2TOKN An 8-character user-specified token used to identify a conditional
header. The token is used only to cancel a conditional header
request.

PPR2MODN An 8-character field that contains the name of the module that is

Expanded Print Service

Chapter 10. IPCS Exit Services 129

calling the expanded print service. This name is used to issue any
error messages about the print request.

Invoking the Service
After setting the required field, your exit routine can invoke the expanded print
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Set register 1 to contain the address of the
following three consecutive parameters:
v The address of the ABDPL
v The address of the expanded print service code (ADPLSPR2)
v The address of the PPR2 area mapped by the BLSUPPR2 mapping macro,

which is set to describe the data to be printed

Output
When the expanded print service returns control to your exit routine, register 15
contains one of the following return codes:

Code Meaning

00 The expanded print service completed normally and the requested function
was performed.

04 The cancelation of a conditional header was requested, but no conditional
header existed.

12 An attention interrupt occurred during print processing. This return code
occurs only in the IPCS environment.

16 A bad input parameter list (PPR2) was passed to the expanded print
service. Message BLS21100I explains the error that was identified.

Notes on the Expanded Print Service
The following list describes how the expanded print service functions for various
parameter specifications:

v The overflow indentation level is added to ADPLSCOL (when ADPLSCOL has
been activated) to determine the actual starting point of overflow data.

v If the requested indentation exceeds half the size of the recommended line width,
indentation stops at the halfway point and overflow indentation stops at the
halfway point plus 2.

v The expanded print service truncates all blanks from the end of the print buffer.
For example, if the buffer contains 20 characters of data followed by blanks and
the specified length is 132, only the 20 characters are written.

v In the processing of a long print buffer, if an entire line within the buffer contains
blanks, that blank line is not written. An exception to this is when the new line
character is used to force a new line. In this case a blank line might be printed.

v For message processing, the first blank delimits the message identifier. If there is
no data following the message identifier, one blank line is written.

v For message processing, the overflow indentation used is the sum of the
specified overflow indentation and the length of the message identifier. If
PROFILE NOMSGID is in effect, the length of the message identifier is zero.

v If a conditional heading has been saved and the current exit routine fails, the exit
service cleans up the conditional heading so as not to affect the next exit to get
control.

v The expanded print service does not change any fields in the PPR2 parameter
list. If the user provides their own print buffer, the contents of the print buffer are

Expanded Print Service

130 z/OS V1R4.0 MVS IPCS Customization

not changed. If the user points to the buffer supplied by IPCS and addressed by
ADPLBUF as the print buffer, the buffer is blanked out on return from the
expanded print service.

v When the new line character appears in the print buffer multiple times, a skip to
a new line occurs for each occurrence. In the following example NL represents
the EBCDIC new line character:
NLITEM A NLNL ITEM B

produces the following data:
Line 1: blanks
Line 2: ITEM A
Line 3: blanks
Line 4: ITEM B

v All leading new line characters are processed before doing any message
identifier processing.

v An expanded print parameter list that specifies a zero length for the text causes
one blank line to be written.

v Any new line characters that appear in the message identifier can cause
unpredictable results depending on whether message identifiers are being
suppressed.

Example
Figure 21 illustrates the subroutine EXPRINT using the expanded print service to
transmit a simple user message with a message identifier.

Notes:

1. This is a non-reentrant example that depends on the DC statements produced
by macro BLSUPPR2 to initialize most of the storage occupied by the expanded
print service parameter list.

2. The print buffer supplied by IPCS or SNAP is used as the buffer that the
message is composed in. This is indicated to the expanded print service by
placing the address of the buffer into PPR2BUF and the length of the message
into PPR2BUFL. In this case the message is a simple literal message:

*
*The EXPRINT subroutine calls the expanded print service to
*transmit a simple user message with a message identifier.
*
*====== Set up for call to expanded print service

L R02,ADPLBUF Address of print buffer
ST R02,PPR2BUF Put address into parameter list
MVC PPR2BUFL,=A(132) Length of print buffer
MVC 0(132,R02),MESSAGE Fill print buffer
MVI PPR2PFL1,PPR2MSG Indicate buffer contains a message

*====== Call the expanded print service
SPACE 1 Begin standard module epilogue
L R15,ADPLSERV - Exit services router
CALL (15),((ABDPLPTR),REQCODE,PPR2) Call expanded print

ABDPLPTR EQU 11 Register 11 - ABDPL address
REQCODE DC A(ADPLSPR2) Request code for service router
MESSAGE DC CL132’USR12345I User message with an identifier’
PPR2 BLSUPPR2 DSECT=NO expanded print Parameter list
*---
* Define the format of the ABDPL addressed by R1 on input
*---

BLSABDPL , Common parameter list

Figure 21. Example - Invoking the Expanded Print Service

Expanded Print Service

Chapter 10. IPCS Exit Services 131

User message with an identifier’

3. The message has the message identifier:
’USR12345I

that is removed when it is transmitted to a user who has NOMSGID in the
TSO/E PROFILE command in effect. The message identifier is retained as part
of the message when the message is transmitted to a user who has MSGID in
effect. The presence of a message identifier as part of the message is indicated
by turning on bit PPR2MSG in flag byte PPR2PFL1.

4. Once the message buffer has been prepared and described in the expanded
print service parameter list, all that remains is to call the service router,
indicating that the expanded print service is desired. The message is
transmitted.

Format Model Processor Service
The format model processor service formats and prints an entire control block using
a control block model. If a model name is specified, the service loads the model. If
a dump address is specified instead of a buffer address, the service accesses the
storage, using either the length indicated in the model or the value in ADPLPBLS, if
it is not zero.

The maximum size of the control block is 64 kilobytes

You can create your own model by using the BLSQMDEF, BLSQMFLD and
BLSQSHDR macros. These macros allow you to tailor your requested control
block’s output.

You can extend the capabilities of the format model processor service by writing a
model processor formatting (MPF) exit routine.

References
See the following:

v “Model Processor Formatting (MPF) Exit Routine” on page 87 for
information about writing model processor formatting (MPF) exit routines

v “Format Models” on page 134 for a discussion of the format models

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about the BLSQMDEF, BLSQMFLD, and BLSQSHDR macros

Note that in OS/390 Release 10 and higher, 64-bit addresses and dimensions may
be designated.

Requirements
Before invoking this service, your exit routine must place the following information
into ADPLPFMT:

v Set field ADPLPPTR to contain the model’s address, or set field ADPLPCHA to
contain the name of a model to be loaded.

v Set field ADPLPBAV to contain the dump data’s address, or set field ADPLPBAS
to contain the buffer address.

v Set field ADPLPBLS to contain the length of the buffer, if ADPLPBAS is specified.

v Set field ADPLPVCL to contain a view control specification.

Expanded Print Service

132 z/OS V1R4.0 MVS IPCS Customization

Invoking the Service
After setting the required fields, your exit routine can invoke the format model
processor service by calling the exit services router whose address is in field
ADPLSERV in the BLSABDPL mapping macro. Set register 1 to contain the
address of the following three consecutive parameters:
v The address of the ABDPL.
v The address of the format model service code (ADPLSFMT).
v The address of the format model service parameter list (ADPLPFMT) mapped by

the BLSABDPL mapping macro. You must obtain storage for or establish
addressability to the format model processor service parameter list. Before
initializing the fields, remember to set the fields to 0.

Note: To format a literal value, the third parameter must be the address of the
area mapped by the BLSRESSY mapping macro. The BLSRDATS area,
which is part of the BLSRESSY area, must refer to the literal value.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for the control block formatter
and format model parameter list, ADPLPFMT, in the BLSABDPL data area.

Output
When the format model processor service returns control to your exit routine,
register 15 contains one of the following return codes:

Code Meaning

00 The format model service completed normally

04 The control block was truncated, or there was no view match

08 There is an error in the control block model

16 Failure in processing this service because of an incorrect model
specification caused ending

If the format model processor service completed successfully, your exit routine has
a formatted control block or data area.

Customization
The information that can be customized is identical to that described for the control
block formatter, which is discussed in the previous topic.

Example
Figure 22 illustrates the subroutine MODEL using the format model processor
service to format a user defined control block.

Format Model Processor Service

Chapter 10. IPCS Exit Services 133

Format Models
A format model is a nonexecutable, read-only data structure that is used by the
format model processor service to format a control block (or any data area). By
assembling the set of macros, BLSQMDEF, BLSQSHDR, and BLSQMFLD, you can
create format models. The format model contains:
v A header, created by the BLSQMDEF macro
v Subheaders, specified by the BLSQSHDR macro
v A list of entries that describe each field, created by the BLSQMFLD macro

*
*The MODEL subroutine calls the format model processor service
*to format a user defined control block, MYBLK.
*
MODEL MVC ADPLPPTR,=A(CBMODEL) Model’s address

MVC ADPLPBAV,ADPLPAAD Dumped address to access
MVC ADPLPBAS,ADPLPART Address of buffer
MVC ADPLPBLS,ADPLDLEN Length accessed
L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODEFMT,ADPLPFMT) Invoke service
LTR R15,R15 Was MYBLK displayed?
BNZ EXIT No. End processing.

* Clean up before reuse of ADPLPFMT below
XC ADPLPFMT,ADPLPFMT Zero entire parameter list

CODEFMT DC A(ADPLSFMT) Format service code
ABDPLPTR EQU 11 General register 11
*
*Specify the format of the parameter lists for services and
*obtain enough space for them
*
CBMODEL BLSQMDEF BASELBL=MYBLK,CBLEN=MYBLKEND-MYBLK,PREFIX=5, *

ACRONYM=PSA,ACROLBL=MYBLKPSA, Acronym field data *
HEADER=MYBLOCK Heading for block in dump

BLSQMFLD NAME=MYBLKPSA,DTYPE=EBCDIC Show it as EBCDIC data
BLSQMFLD NAME=MYBLKDEF
BLSQMFLD NAME=MYBLKGHI
BLSQMDEF END End definition of alternate model

*--
* Reserve space for an initialized format model processor
* service parameter list.
* The view control bit is set to X’0300’.
*--

BLSABDPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO, *
AMDPACC=NO,AMDPFMT=YES,AMDPECT=NO,AMDPSEL=NO

*--
* Define the format of the ABDPL addressed by R1 on input
*--

BLSABDPL DSECT=YES,AMDEXIT=YES,AMDOSEL=NO, *
AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

*
* MYBLK--Define the format of a very simple control block
* Note that this could be done by using a macro-invocation
*
MYBLK DSECT , My simplest control block ever
MYBLKPSA DC C’PSA’ Identifier
MYBLKDEF DC X’00’ Flags
MYBLKD80 EQU X’80’ 1st flag bit
MYBLKD40 EQU X’40’ 2nd flag bit
MYBLKGHI DC V(MYENTRY) Address of my program
MYBLKEND EQU * End of my control block

Figure 22. Example - Invoking the Format Model Processor Service

Format Models

134 z/OS V1R4.0 MVS IPCS Customization

References
See the following:

v Figure 22 on page 134 for an example of how to create your own model
using the BLSQMDEF and BLSQMFLD macros

v z/OS MVS Programming: Assembler Services Reference ABE-HSP for
information about the BLSQMDEF, BLSQSHDR, and BLSQMFLD macros

Residence of Models
Models can reside in either a single or multi-CSECT load module or reside in the
program referencing it.

Other Uses for Models
Format models and the format model processor can be used for purposes other
than formatting control blocks. They can be used for decoding flag bytes where
each bit has a unique significance. You can construct a model of subheaders,
where each one of the subheaders has a unique general view definition that
corresponds to the bit position in the flag byte. To perform the decoding, take the
contents of the flag byte and use it for the view control in field ADPLPFMT. Put the
address of the model in field ADPLPPTR and call the format model processor
service. A nonzero buffer address should be provided to prevent any storage
access attempt by the format model processor service.

Another use of models is to present summarized dump data. This is done by
moving the data into a locally defined structure and creating a model with labels,
offsets and lengths corresponding to the structure.

Still another use is to obtain a hexadecimal dump representation of storage that
contains variable length fields. Construct a model with one field entry that specifies
the hexadecimal dump view (X'0400'), data offset 0, and a field length of the
maximum size expected. Then do the following:
v Set field ADPLPBLS to the actual length of the desired display
v Set field ADPLPSTM to suppress truncation messages
v Establish addressability to the model and dump data
v Call the format model processor

Get Symbol Service
The get symbol service retrieves symbols from the symbol table in the dump
directory. This service can also be used to initialize the BLSRESSY macro for your
exit routine, whether your symbol is in the symbol table or not. IBM recommends
that you use this service prior to invoking the equate symbol service, which creates
and adds entries to the symbol table. Use of these services can reduce the access
time for subsequent references to the same control block or data area.

The get symbol service can retrieve literal values for symbols. The definition of a
symbolic literal specifies the address space as LITERAL(0), which is an address
space containing no storage.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for more information on the
BLSRESSY mapping macro.

Format Models

Chapter 10. IPCS Exit Services 135

Requirements
Prior to invoking this service, your exit routine must place the following information
into fields ESSYSYM, ESSYDTY, and ESSYDTD of the BLSRESSY mapping
macro. The service assumes that the data is passed in ABITS=31 format and is
expected in that format on return. Requests for valid definitions describing storage
in ABITS=64 format will result in a “not found” return from this service.

Using these fields as search arguments, the get symbol service searches the
symbol table for your requested symbol.

v Set field ESSYSYM to contain the equated symbol. When the symbol that you
are retrieving is the UCB for device number 0003, code the symbol as
‘UCB0003’; when retrieving pointer seven from the stack, code the symbol as
‘Z00007’.

For example, IPCS uses the symbol UCBdddd for a device number, with leading
zeros before the number. For subcommand LISTUCB 12, IPCS creates the
symbol UCB0012.

Note that IPCS removes the leading zeros in the device number before
displaying a UCB. For example, for subcommand LISTUCB 1D0, IPCS creates
the symbol as UCB01D0, but displays the symbol as UCB1D0.

v Set field ESSYDTY to contain the data type code. The data type is a symbol’s
attribute. It might be a module, control block, character string, or any one of the
attribute parameters that describe data. See 9 for the BLSRDATT macro.

v Field ESSYDTD must contain the data name. For this field either supply a
meaningful name (such as MYAPPL for a module, or MYCB for a control block)
or supply blanks.

Invoking the Service
After initializing the required fields, your exit routine can invoke the get symbol
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Register 1 must contain the address of the
following three consecutive parameters:
v The address of the ABDPL
v The address of the get symbol service code (ADPLSGTS)
v The address of the area mapped by the BLSRESSY mapping macro, which is

set to the symbol information

Output
When the get symbol service returns control to your exit routine, a copy of the
symbol is in the area mapped by the BLSRESSY mapping macro.

Register 15 contains one of the following return codes:

Code Meaning

00 The get symbol service completed normally.

04 The symbol was returned but an attention condition was detected.
Preceding this return code, there are informational messages that provide
additional diagnostic aid.

08 The symbol was returned but an error condition was detected. Preceding
this return code, there are informational messages that provide additional
diagnostic aid.

12 No symbol was returned.

16 An error in the IPCS environment was encountered.

Get Symbol Service

136 z/OS V1R4.0 MVS IPCS Customization

Your exit routine receives an initialized BLSRESSY area whenever either:

v Field ESSYSYM is blanks.

v IPCS performs a search of the symbol table and cannot find the symbol defined
in field ESSYSYM.

If the get symbol service is retrieving a literal, the system returns the literal in the
area defined by the BLSRDATS mapping macro; this area is part of the BLSRESSY
area. For more information, see BLSRESSY in z/OS MVS Data Areas, Vol 1
(ABEP-DALT).

Example
Figure 23 illustrates the subroutine GET using the IPCS-supplied get symbol service
to locate the ASCB for address space 1. GET sets field ESSYSYM by using the
naming conventions for IPCS symbols. GET sets field ESSYDTY by using the
equate that corresponds to the data type for a control block. GET sets field
ESSYDTD by using the actual control block’s name.

Name Service
The name service is used to convert an STOKEN or real address of a data space
ASTE into:
v An ASID for an address space
v A data space name and owning ASID
v A hiperspace name and owning ASID
v A common addressable data space (CADS) name and owning ASID
v A subspace name and owning ASID

The name service can identify the data space for an STOKEN or a real ASTE
address if the data space is accessible in the dumped environment; storage from
the data space does not need to be dumped to enable the identification.

If requested, the service generates one line of output (see Figure 24) describing the
data space and/or address space associated with the specified STOKEN.

*
* The GET subroutine calls the get symbol service to
* find the ASCB for ASID 1.
*
GET MVC ESSYSYM(31),=CL31’ASCB00001’ Symbol

MVI ESSYDTY,ZZZDTYM Structure
MVC ESSYDTD(31),=CL31’ASCB’ Data name
L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODEGTS,ESSY) Invoke service
CH R15,=H’12’ Was get symbol service successful?
BNL EXIT No. End processing

ABDPLPTR EQU 11 General register 11
CODEGTS DC A(ADPLSGTS) Get symbol service code
ESSY BLSRESSY DSECT=NO IPCS ES record buffer
*---
* Define the format of the ABDPL addressed by R1 on input
*---

BLSABDPL

Figure 23. Example - Invoking the Get Symbol Service

Get Symbol Service

Chapter 10. IPCS Exit Services 137

Requirements
Prior to invoking this service, your exit routine must place the following information
in the name parameter list (NAMP):

Field Description

NAMPID A standard control block identifier field.

NAMPPFLG Contains the following input flag:

Flag Description

NAMPFNOT A flag that indicates that no output is requested
listing the results of the translation. Messages are
issued for errors detected in performing the
translation.

NAMPASTE The input is the real address of a data space ASTE.

NAMPSTKN The input STOKEN to be translated.

When the NAMPASTE field is specified, NAMPSTKN is an output
field that contains the STOKEN.

NAMPMODN Contains the name of the module calling the name service. The
name is used for diagnostic error messages only.

If the NAMP is incorrect, IPCS issues a message.

Invoking the Service
After setting the required field, your exit routine can invoke the name service by
calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the name service code (ADPLSNAM)
v The address of the name service parameter list (NAMP) mapped by the

BLSRNAMP mapping macro

The routine is called with the following attributes:
v AMODE(31)
v Task mode
v PRIMARY = SECONDARY = HOME
v Enabled
v Problem program state
v Key 8

See Figure 25 on page 140 for an example of calling the name service.

ADDRESS SPACE ASID(X’asid’) STOKEN(X’stokenvalue’)
DATA SPACE ASID(X’asid’) DSPNAME(name) STOKEN(X’stokenvalue’)

HIPERSPACE ASID(X’asid’) DSPNAME(name) STOKEN(X’stokenvalue’)
COMMON DSP ASID(X’asid’) DSPNAME(name) STOKEN(X’stokenvalue’)
SUBSPACE ASID(X’asid’) SSPNAME(name) STOKEN(X’stokenvalue’)

Figure 24. Name Service Output

Name Service

138 z/OS V1R4.0 MVS IPCS Customization

Output
If processing is successful, the return code is set to zero and the following fields are
filled in:

Field Description

NAMPPFLG Contains the following output flags:

Flag Description

NAMPFAS A flag that indicates that the STOKEN was
identified as an address space and that an ASID
was returned.

NAMPFDS A flag that indicates that the STOKEN was
identified as a data space and that the data space
name and owning ASID were returned.

NAMPFHS A flag that indicates that the STOKEN was
identified as a hiperspace and that the hiperspace
name and owning ASID were returned.

NAMPFCAD A flag indicating that the STOKEN was identified as
a common data space and that the data space
name and owning ASID were returned.

NAMPSTKN When the NAMPASTE field is specified on input, NAMPSTKN is an
output field that contains the STOKEN.

NAMPASID The address space ASID or the owning ASID if the STOKEN
represents a data space.

NAMPDSPN The data space name.

NAMPOUT A character field containing the space addressable by the STOKEN
in standard IPCS display format.

NAMPOUTL The length of the contents of the NAMPOUT field.

If an error in translation occurs, IPCS issues a message and sets the return code to
12.

Figure 25, shows how a dump exit routine would invoke the name service to
translate a STOKEN:

Name Service

Chapter 10. IPCS Exit Services 139

Name/Token Lookup Service
Use the name/token lookup service to obtain the token from a name/token pair. You
specify the name and the level of the name/token pair. The name/token lookup
service returns the following information:
v The token data
v Whether the name/token pair is persistent
v Whether an authorized program created the name/token pair
v The ASID for the address space associated with a name/token pair

Requirements
Prior to invoking this service, your exit routine must place information in the
following fields of the name/token parameter list (NTKP). The NTKP is mapped by
macro BLSQNTKP.

Field Description

NTKPID A standard control block identifier field. The identifier is NTKP1.

TSTSNAM TITLE ’TSTSNAM--Name Service Usage Example’
TSTSNAM START 0 Sample dump processing exit

SPACE 2 Begin standard module prolog
*====== Standard module prolog

SPACE 1 Begin standard module prolog
SAVE (14,12),T,* Save registers
LR R12,R15 Base register for TSTSNAM
USING TSTSNAM,R12 Base register for TSTSNAM
LA R15,SAVEAREA Address of local save area
ST R13,SAVEAREA+4 Chain input save area to local
ST R15,8(,R13) Chain local save area to input
LR R13,R15 Establish use of local save area
LR ABDPLPTR,R01 Base register for ABDPL
USING ABDPL,ABDPLPTR Base register for ABDPL
SPACE 2 Begin dump formatting

*====== Use the name service to see whether XL8’1234567812345678’
*====== is a valid STOKEN in this dump.

SPACE 1 Begin dump formatting
MVC NAMPMODN,=CL8’TSTSNAM’ Module requesting service
MVC NAMPSTKN,=XL8’1234567812345678’ STOKEN
L R15,ADPLSERV - Services router
CALL (15),((ABDPLPTR),name#SERVICE,NAMP) Check the STOKEN
SPACE 2 Begin standard module epilogue

*====== Standard module epilogue
SPACE 1 Begin standard module epilogue
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),T,RC=(15) Restore registers and return
SPACE 2 Begin data definitions

*====== Define data
SPACE 1 Begin data definitions

R00 EQU 0 Register 0
R01 EQU 1 Register 1
ABDPLPTR EQU 11 ABDPL base register
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
NAMP BLSRNAMP DSECT=NO Name service parameter list
SAVEAREA DC 18F’0’ Register save area
name#SERVICE DC A(ADPLSNAM) Name service request code

LTORG , Literal pool
BLSABDPL , Common parameter list
END TSTSNAM Test dump formatting exit

Figure 25. Example - Invoking the Name Service

Name/Token Lookup Service

140 z/OS V1R4.0 MVS IPCS Customization

NTKPNAME The name of the name/token pair.

NTKPMODN The name of the module calling the name/token lookup service.
IPCS uses this information for diagnostic error messages only.

NTKPASID The ASID for the address space associated with the name/token
pair.

For primary- and home-address-space-level name/token pairs,
specify the ASID for the address space associated with the pair. For
task-level name/token pairs, specify the ASID for the address space
in which the TCB is located.

For a system-level name/token pair, set the field to zeros.

NTKPTCBP The TCB address for a task-level name/token pair. For primary-,
home-, and system-level name/token pairs, set this field to zeros.

NTKPPFL1 Contains the following flag:

Flag Description

NTKPFNOT A flag to suppress the printed output. Set this flag
to 1 to suppress the output. Set this flag to 0 to
display the output as shown in Figure 26 on
page 142.

If you fill in NTKP incorrectly, IPCS indicates the error through a message.

Invoking the Service
After setting the required fields, your exit routine can invoke the name/token lookup
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Set register 1 to contain the address of the
following three consecutive parameters:
v The address of the ABDPL
v The address of the name/token lookup service code (ADPLSNTK)
v The address of the name/token lookup service parameter list (NTKP) mapped by

the BLSQNTKP mapping macro

The routine is called with the following attributes:
v AMODE(31)
v Task mode
v PRIMARY = SECONDARY = HOME
v Enabled
v Problem program state
v Key 8

Output
When the name/token lookup service returns control to your exit routine, register 15
contains one of the following return codes:

Code Meaning

00 Processing completed successfully

16 An error occurred in the lookup

If processing is successful, the following fields of NTKP are filled in:

Field Description

NTKPPFL2 Contains the following output flags:

Name/Token Lookup Service

Chapter 10. IPCS Exit Services 141

Flag Description

NTKPNOTF A flag that indicates that the name/token pair was
not found.

NTKPAUTH A flag that indicates that the name/token pair was
created by an authorized program.

NTKPPRST A flag that indicates that the name/token pair is
persistent.

NTKPMSTG A flag that indicates that dump storage needed for
processing was missing.

NTKPFLERR A flag that indicates that the service found an error
in the dump data.

NTKPTOKN The output token.

NTKPCASID The ASID of the address space that created the name/token pair.
This field is filled in for system-level name/token pairs only.

If field NTKPFNOT was set to 0, the name/token lookup service also lists the
results (see Figure 26) of the lookup.

If an error occurs in the lookup, IPCS issues a message.

Figure 27 shows how a dump exit routine would invoke the name/token lookup
service to retrieve a token:

System level
TOKEN.... SYSTLEV_TOKN_003
NAME..... SYSTLEV_NAME_003
ASID..... 000F
Persistent
Created by authorized program

Figure 26. Name/Token Lookup Service Output

Name/Token Lookup Service

142 z/OS V1R4.0 MVS IPCS Customization

Obtaining Information About Coupling Facility Structures
You can issue the IXLZSTR macro from your IPCS exit to search a dump for
information about coupling facility structures. To use the IXLZSTR macro, you must
provide a user-written routine to access the data. See z/OS MVS Programming:
Sysplex Services Reference for the following information:
v What information you can obtain through the use of IXLZSTR
v A sample program using IXLZSTR

For complete information about how to code the IXLZSTR macro, see z/OS MVS
Programming: Sysplex Services Reference.

Obtaining Information About Loaded Modules
You can issue the CSVINFO macro from your IPCS exit to search a dump for
information about loaded modules. To use the CSVINFO macro, you must provide a
user-written module information processing routine (MIPR), which is given control

TSTSNTK TITLE ’TSTSNTK--Name/Token Service Usage Example’
TSTSNTK START 0 Sample dump processing exit

SPACE 2 Begin standard module prolog
*======] Standard module prolog

SPACE 1 Begin standard module prolog
SAVE (14,12),T,* Save registers
LR R12,R15 Base register for TSTSNTK
USING TSTSNTK,R12 Base register for TSTSNTK
LA R15,SAVEAREA Address of local save area
ST R13,SAVEAREA+4 Chain input save area to local
ST R15,8(,R13) Chain local save area to input
LR R13,R15 Establish use of local save area
LR ABDPLPTR,R01 Base register for ABDPL
USING ABDPL,ABDPLPTR Base register for ABDPL
SPACE 2 Begin dump formatting

*======] Use the name/token exit service to get the system-level
*======] token associated with name "NAMETESTVALUE"

SPACE 1 Begin dump formatting
MVC NTKPMODN,=CL8’TSTSNTK’ Module requesting service
MVC NTKPNAME,=CL13’NAMETESTVALUE’ NAME
L R15,ADPLSERV -]Services router
CALL (15),((ABDPLPTR),NTK#SERVICE,NTKP) Get the TOKEN

*======] Results will be displayed to user
SPACE 2 Begin standard module epilog

*======] Standard module epilog
SPACE 1 Begin standard module epilog
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),T,RC=(15) Restore registers and return
SPACE 2 Begin data definitions

*======] Define data
SPACE 1 Begin data definitions

R00 EQU 0 Register 0
R01 EQU 1 Register 1
ABDPLPTR EQU 11 ABDPL base register
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
NTKP BLSQNTKP DSECT=NO Name service parameter list
SAVEAREA DC 18F’0’ Register save area
NTK#SERVICE DC A(ADPLSNTK) Name service request code

LTORG , Literal pool
BLSABDPL , Common parameter list
END TSTSNTK Test dump formatting exit

Figure 27. Example - Invoking the Name/Token Lookup Service

Obtaining Information About Coupling Facility Structures

Chapter 10. IPCS Exit Services 143

by CSVINFO to process the information that CSVINFO obtains. See z/OS MVS
Programming: Authorized Assembler Services Guide for the following information:
v What information you can obtain through the use of CSVINFO
v How to write a MIPR.

For complete information about how to code the CSVINFO macro, see z/OS MVS
Programming: Assembler Services Reference ABE-HSP.

Quiesce IPCS Transaction
The quiesce IPCS transaction service permits exit routines to quiesce a transaction
that is currently being processed by IPCS. The service allows any programs actively
processing on behalf of the transaction to complete, but will not accept further
requests to:
v Send output to the terminal
v Send output to the print data set
v Initiate dump directory I/O
v Retrieve dump or trace data

The service also quiesces command procedures such as CLISTs and REXX execs,
unless the procedure has been coded to prevent such action, for example, by
issuing the CLIST statement CONTROL NOFLUSH.

Notes:

1. The service is designed to end only batch and interactive line mode
transactions, not IPCS dialog transactions.

2. The service is not designed to end transactions for programs or command
procedures that are in protracted loops.

Requirements
Your exit routine must have the following environment:

Minimum authorization: Problem state with PSW key 8.
Note: PSW keys 9-15 are not supported by TSO/E,

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Your exit routine may hold locks, but is not required to hold

any.
Control parameters: None

Before invoking the service, your exit routine must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register Contents

1 Register 1 is not required on input. It is recommended, however,
that register 1 contain the address of a fullword pointer. In the
fullword pointer, the high-order bit should be set, and the low-order
bits should contain the address of a fullword that contains X'0'.

13 Address of a 72-byte register save area, which is in the primary
address space.

Obtaining Information About Loaded Modules

144 z/OS V1R4.0 MVS IPCS Customization

14 Return address. Bit 0 must contain 1 to indicate that control is to be
returned in 31-bit addressing mode or contain 0 to indicate 24-bit
addressing mode.

15 The entry point address of the quiesce IPCS transaction service,
BLSUSTOP.

Invoking the Service
The quiesce IPCS transaction service is reentrant and may be loaded once and
used repeatedly, as required. Invoke the service, BLSUSTOP, as follows:

v From an authorized program, different task: Schedule an IRB. See z/OS MVS
Programming: Authorized Assembler Services Guide for information about
scheduling an IRB.

v From an authorized program, same task: Issue a LOAD macro with
EP=BLSUSTOP, then issue a SYNCH macro to reduce authority.

v From an unauthorized program, same task: Do one of the following:
– Issue a LINK macro with EP=BLSUSTOP
– Issue a LOAD macro with EP=BLSUSTOP, then call the service, using the

address obtained from the LOAD macro

Output
When the quiesce IPCS transaction service returns control to your exit routine,
register 15 contains one of the following hexadecimal return codes:

Code Meaning

00 Request for quiesce processing accepted.

04 The request for quiesce processing was accepted, but IPCS detected
potential error conditions.

08 The request for quiesce processing was accepted, but IPCS detected error
conditions.

10 The quiesce request was rejected. This can happen for various reasons,
such as:

v A shortage of virtual storage exists

v The service was invoked in an environment where IPCS was not
established

v Your exit routine did not meet the specified requirements

Example
Figure 28 illustrates the subroutine STOPIT invoking the quiesce IPCS transaction
service.

Select Address Space Identifier (ASID) Service
The select address space identifier (ASID) service scans the ASCBs in a dump by
following the pointers in the ASVT and then generates a list of entries for selected

STOPIT START 0
USING STOPIT,15
LINK EP=BLSUSTOP,PARAM=(NULLPARM),VL=1
DROP 15
BR 14

NULLPARM DC F’0’
END STOPIT

Figure 28. Example - Invoking the Quiesce IPCS Transaction Service

Quiesce IPCS Transaction Service

Chapter 10. IPCS Exit Services 145

address spaces within that dump. The select ASID service returns a list of ASCBs
meeting selection criteria. The ASID service also creates storage maps entries for
ASCBs, which indirectly improve performance.

The following address space selection criteria describe the types of address spaces
that you might select:

ALL
Selects all address spaces in the dump.

CURRENT
Selects each address space that was active at the time the dump was
generated.

When CURRENT is selected, a storage map entry is created for each address
space selected. Each storage map entry describes the private area of one
address space selected as AREA(CURRENT).

ERROR
Specifies processing of trace entries for address space identifiers (ASID)
associated with tasks and/or address spaces in error. ERROR will process trace
entries for any ASIDs associated with tasks or address spaces in error. To
process just the trace entries for ASIDs associated with tasks in error, use
TCBERROR.

TCBERROR
Specifies processing of trace entries for ASIDs associated with tasks in error.
TCBERROR will process trace entries for any ASIDs associated with tasks in
error; TCBERROR ignores errors that pertain to the whole address space.

Note: When you specify ERROR and TCBERROR in the same subcommand,
IPCS processes all error address spaces, but will also identify those that
are both ERROR and TCBERROR.

ASIDLIST
Selects a list of address spaces, a range of address spaces, or a single
address space.

JOBLIST
Selects address spaces associated with a list of job names.

When JOBLIST is selected, a storage map entry is created for each address
space selected. Each storage map entry describes the private area of one
address space selected as AREA(JOBaaaaaaaa) where aaaaaaaa is one of two
things:

1. MASTER for the master address space, ASID(1). The system carries the
name of the master address space as *MASTER*, but the asterisks cannot
be used in an IPCS data name and are removed as a special case.

2. In all other cases aaaaaaaa is the job name or the name of the started task.

Restriction : Job names are checked to ensure that their names are valid in an
IPCS data name, and, if they are not, no storage map entries are created.
However, this is largely a theoretical concern. Use of normal system interfaces
that create address spaces causes those address spaces to be given names
that IPCS can use.

You can invoke this service by using the SELECT subcommand.

Select ASID Service

146 z/OS V1R4.0 MVS IPCS Customization

Requirements
Prior to invoking this service, your exit routine must place the following information
into BLSABDPL:

v Set field ADPLPSEL to the requested address space selection criteria.

Bit Meaning When Set to 1

ADPLPSAL Obtains all address spaces that are marked assigned in the
ASVT.

ADPLPSCR Obtains the address space that was running on each processor
and related address spaces.

ADPLPSER Obtains any address space that satisfies the ERROR selection
criterion.

ADPLPSTE Obtains address spaces that satisfy the TCBERROR selection
criterion.

ADPLPSJL Obtains address spaces whose name matches a name in the list.

ADPLPSAS Obtains address spaces corresponding to the ASIDs in the list.

v If job list or job name is requested, field ADPLPSJN must contain the address of
the job name list. The job name list must be in the form of IKJIDENT PDEs for a
list of 8-character identifiers. Field ADPLPSJN must point to the first PDE.

v If ASID list is requested, field ADPLPSAI must contain the address of the ASID
list. The ASID list must be in the form of IKJIDENT PDEs for a list of ranges.
Field ADPLPSAI must point to the first PDE. The ASID list can contain ranges of
ASIDs as well as single ASIDs.

Note: Both the job name list and ASID list are in the form of IKJIDENT PDEs. Your
exit routine can either build the parameter list directly or link to module
IKJPARS to detect parameters and build the chain of PDEs for ASIDLIST
and JOBLIST. After processing, your exit routine should free the storage
occupied by the PDEs.

Invoking the Service
After setting the required fields, your exit routine can invoke the select ASID service
by calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Register 1 must contain the address of the following
three consecutive parameters:
v The address of the ABDPL.
v The address of the select ASID service code (ADPLSSEL).
v The address of the select ASID service parameter list (ADPLPSEL) mapped by

the BLSABDPL mapping macro, which has individual bits set to request the
address spaces to be processed. You must obtain storage for or establish
addressability to the select ASID service parameter list. Before initializing the
fields, remember to set the fields to 0.

You may use the ADPLPSXL bit in the ADPLPS31 field to avoid the 1023 entry
limit. When this bit is set on, it tells the service to use the alternate length field.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the
BLSABDPL data area.

Select ASID Service

Chapter 10. IPCS Exit Services 147

Output
When the select ASID service returns control to your exit routine, register 15
contains one of the following return codes:

Code Meaning

00 The select ASID service completed normally

04 The requested ASIDs were not all assigned or that a requested job name
could not be found

08 A failure to access some data in the dump occurred

16 The service encountered an ending failure because of one of the following:
v The CVT pointer is 0
v Failure to access the CVT or ASVT in the dump
v Unable to obtain a work area

If the select ASID service completed successfully, your exit routine has, in field
ADPLPSOL, the address of the list of address space descriptors.

The ASIDLIST is a data structure consisting of a header and an array of entries,
one for each selected address space.

The header contains the following information:

v The number of entries in the array (ADPLOSCT)

v The size of the output list, in bytes (ADPLOSSZ)

v The subpool of the output list (ADPLOSSP)

v The selection flags (ADPLOSSF) indicating why some ASIDs or job names were
not found

v The dump flags (ADPLOSDF) indicating the type of dump

Each array of entries contains the following information:

v A pointer to the ASCB for the requested address space (ADPLOSAP)

v Selection flags (ADPLOSF1) indicating why the ASID was selected

v Status flags (ADPLOSF2) indicating the status of the address space

v The CPUID (ADPLOSCP) if the address space was selected by specifying
CURRENT

v The ASID (ADPLOSAI) of the address space

v The job name (ADPLOSJB) associated with the address space

Example
Figure 29 illustrates the subroutine SELECT using the select ASID service to
determine which ASIDs have ERROR and TCBERROR selection criteria conditions.
SELECT sets field ADPLPSF1 to contain the indicators for the ERROR and
TCBERROR address spaces (ADPLPSER and ADPLPSTE respectively).

Note: Issue the FREEMAIN macro to release the storage obtained for the output
list if the return code from the select ASID service processing is not 16. Field
ADPLOSSZ provides you with the size of the output list and field
ADPLOSSP gives the subpool number. When the ADPLPSXL bit is set, use
the value in ADPLPS31 (full word) for the FREEMAIN.

Select ASID Service

148 z/OS V1R4.0 MVS IPCS Customization

Standard Print Service
The print service prints data from a dump.

Reference
See also “Expanded Print Service” on page 127 for alternate ways of printing
data.

Requirements
Prior to invoking this service, your exit routine must fill in the print line with
formatted data. The print service causes the output buffer, which is a 133-character
work area, to be printed, and returns a new 133-character buffer (set to blanks).
IPCS supplies the carriage control character. When a print line is built, the print
service must be given control to print the line.

Invoking the Service
After filling the print line, your exit routine can invoke the print service by calling the
exit services router whose address is in field ADPLSERV in the BLSABDPL
mapping macro. Set register 1 to contain the address of the following two
consecutive parameters:
v The address of the ABDPL
v The address of the print service code (ADPLSPRT)

Output
Before the print service returns control to your exit routine, it clears the buffer.
Register 15 contains one of the following return codes:

Code Meaning

00 The line was printed

*
* The SELECT subroutine calls the select ASID service to
* process those ASIDs that have ERROR or TCBERROR conditions.
*
SELECT MVI ADPLPSF1,ADPLPSER+ADPLPSTE Set the parameter flags

L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODESEL,ADPLPSEL) Invoke service
CH R15,=H’8’ Was the select ASID service successful?
BNL EXIT No. End processing
L R1,ADPLPSOL Load address of Select ASID output list
LH R0,ADPLOSSZ-ADPLOSEL(,R1) Length of output list
ICM R0,B’1000’,ADPLOSSP Subpool number
FREEMAIN R,LV=(0),A=(1) Free the output list, RC ¬=16

CODESEL DC A(ADPLSSEL) Select ASID service code
ABDPLPTR EQU 11 General register 11
*--
* Reserve space for an initialized select ASID service
* parameter list
*--

BLSABDPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO, *
AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=YES

*--
* Define the format of the ABDPL addressed by R1 on input
*--

BLSABDPL DSECT=YES,AMDEXIT=YES,AMDOSEL=YES, *
AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

Figure 29. Example - Invoking the Select ASID Service

Standard Print Service

Chapter 10. IPCS Exit Services 149

04 The line was not printed or that the attention interrupt key was pressed

Customization

To Override the Routing Parameter: Your exit routine can set bit ADPLPRT on
and output will be sent to the terminal.

To Print a Blank Line: Your exit routine must pass control with a blank output
buffer.

To Begin Printing at the Top of a New Page: Your exit routine must turn on the
ADPLEJEC bit in field ADPLFLAG. This causes IPCS to skip to the top of a new
page before printing the output buffer. IPCS turns the bit off when control is
returned to your exit routine.

Example
Figure 30 illustrates the subroutine PRINT using the print service to print data in a
dump.

Storage Access Service
The storage access service accesses data in a dump. You can specify a real or
virtual address, the length of the data, and, optionally, an address space; in
response, the storage access service reads the requested dump data into a buffer
in storage.

Note: To access data in a data space, use the storage access function of the
symbol service. See “Symbol Service” on page 156.

Requirements
Prior to invoking this service, your exit routine must place the following information
into BLSABDPL or ADPLPACC, the access parameter.

v Field ADPLPAAD in ADPLPACC must contain the address of the requested dump
data.

v Field ADPLDLEN must contain the length of the requested dump data. The
maximum length that you can specify is 4096 bytes.

v Field ADPLPRDP must contain a bit indicator for the address qualification. If no
bit is set, the default qualifier is virtual.

*
* The PRINT subroutine calls the print service to
* print MYBLK from the dump.
*
PRINT L R15,ADPLBUF Address of output buffer

MVC 0(15,R15),=C’My Control Block’ Fill output buffer
L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODEPRT) Invoke the print service
LTR R15,R15 Was the print service successful?
BNZ EXIT No. End processing

CODEPRT DC A(ADPLSPRT) Print service code
ABDPLPTR EQU 11 General register 11
*---
* Define the format of the ABDPL addressed by R1 on input
*---

BLSABDPL

Figure 30. Example - Invoking the Print Service

Standard Print Service

150 z/OS V1R4.0 MVS IPCS Customization

v Bit ADPLSAMK in field ADPLPRDP is the 24 bit address mask and must be set
if you want to specify that the address in ADPLPAAD should be treated as a
24-bit address.

v Field ADPLASID must contain the ASID for accesses to information within an
address space.

Invoking the Service
After setting the required fields, your exit routine can invoke the storage access
service by calling the exit services router whose address is in field ADPLSERV in
the BLSABDPL mapping macro. Set register 1 to contain the address of the
following three consecutive parameters:
v The address of the ABDPL.
v The address of the storage access service code (ADPLSACC).
v The address of the storage access parameter list (ADPLPACC) mapped by the

BLSABDPL mapping macro. You must obtain storage for or establish
addressability to the storage access parameter list.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of the
BLSABDPL data area.

Output
When the storage access service returns control to your exit routine, field
ADPLPART contains the address of the buffer containing the requested data, if the
processing was successful. Register 15 contains one of the following return codes:

Code Meaning

00 The storage was accessed successfully

04 The requested storage was not in the dump or the service was unable to
access the storage.

Notes:

1. Your exit routine must test the contents of register 15.

2. Your routine must use the data in the buffer to which ADPLPART points before
the routine makes another call to an IPCS service. The reason is that the buffer
contents are changed by a call to the storage access service and might be
changed by a call to another IPCS service.

Customization
The following customization is available when using the storage access service.

Specifying a Different ASID Instead of the Current (Default) ASID: Your exit
routine must store the requested ASID in field ADPLASID in BLSABDPL. If you do
not specify an ASID to access storage IPCS uses the current ASID being
processed, or in the case of exit routines called by the VERBEXIT subcommand,
the ASID in the dump header record is passed.

Specifying Requests: To specify requests for any of the following:
v Data at a specified real storage address
v Processor status records
v The dump header record

Your exit routine can do the following:

Storage Access Service

Chapter 10. IPCS Exit Services 151

v For real storage address requests, field ADPLPAAD must contain the real
address of the data to be read.

v For processor status record requests, field ADPLPAAD must contain the
processor address.

In SADMP, the processor address is between X'0' and X'3F'. In an SVC dump
the only valid processor address is X'0'.

v For header record requests, bit ADPLHDR must be set to 1.

IPCS determines the type of read operation requested by checking the bits in field
ADPLPRDP. The following bit flags are used for address qualification:

Bit Flag Meaning When Set to 1

ADPLVIRT Request for virtual data

ADPLREAL Request for real data

ADPLCPU Request for processor data

ADPLHDR Request for the dump header

When more than one bit in this field is on, IPCS considers the request incorrect and
returns a nonzero value in register 15. When no bits are on, IPCS processes a
request for data at a virtual storage address.

Note: The length field ADPLDLEN is not applicable for processor status and
header record reads.

In the example in Figure 31, the subroutine ACCESS uses the IPCS-supplied
storage access service to access data within a dump. Fields ADPLDLEN and
ADPLPAAD are set prior to invoking the storage access service.

Storage Access Service

152 z/OS V1R4.0 MVS IPCS Customization

Storage Map Service
The storage map service allows exit routines to process storage map entries and to
obtain data represented by the storage map entries.

The functions provided by the storage map service are:

Storage Access (SA)
The storage map service accesses the storage requested in the storage map
record that is passed as input. Because storage map records are being
changed to describe data space storage, this function can be used to obtain
data space storage from the dump. There are several ways to request the
dump access by setting the function code flags.

The storage map service can retrieve literal values. The service can retrieve the
entire literal value or an arbitrary, contiguous portion of it. The service does not
add storage map entries to the storage map for symbolic literals; scan
processing results are returned only to the caller.

Validity check
The storage map service allows the user to request that a control block be
validity checked and an SA record (BLSRSASY macro) be created.

Describe block being scanned
The storage map service allows a user-supplied scan routine to introduce a
control block in error, prior to describing the particular errors detected.

*
* The ACCESS subroutine calls the storage access service to
* access MYBLK from the dump.
*
ACCESS MVC ADPLDLEN,=Y(MYBLKEND-MYBLK) Length of stor to access

MVC ADPLPAAD,=A(X’200’) Dump address to access
L R15,ADPLSERV Load address of exit services router
CALL (15),((ABDPLPTR),CODEACC,ADPLPACC) Invoke service
LTR R15,R15 Was storage retrieved?
BNZ EXIT No. End processing
L R10,ADPLPART Yes. Load address of buffer

*
* MYBLK--Define the format of a very simple control block
* Note that this could be done by using a macro-invocation
*
CODEACC DC A(ADPLSACC) Dump access service code
ABDPLPTR EQU 11 General register 11
*---
* Define the format of the ABDPL addressed by R1 on input and
* reserve space for an initialized storage access service
* parameter list
*---

BLSABDPL DSECT=NO,AMDEXIT=NO,AMDOSEL=NO, *
AMDPACC=YES,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

MYBLK DSECT , My simplest control block ever
MYBLKPSA DC C’PSA’ Identifier
MYBLKDEF DC X’00’ Flags
MYBLKD80 EQU X’80’ 1st flag bit
MYBLKD40 EQU X’40’ 2nd flag bit
MYBLKGHI DC V(MYENTRY) Address of my program
MYBLKEND EQU * End of my control block
*---
* Define the format of the ABDPL addressed by R1 on input and
*---

BLSABDPL AMDPACC=NO,AMDPFMT=NO,AMDPECT=NO,AMDPSEL=NO

Figure 31. Example - Invoking the Storage Access Service

Storage Map Service

Chapter 10. IPCS Exit Services 153

Note that in OS/390 Release 10 and higher, the storage map service supports
64-bit addresses and lengths.

Requirements
The storage map service parameter list is mapped by macro BLSRXMSP. The
BLSRXMSP macro defines the following fields:

Field Description

XMSPID A standard control block identifier field.

XMSPPFLG Processing flags.

XMSPNOMS Indicates that wherever possible, no error or
diagnostic messages should be issued.

XMSPV64 Indicates whether the input to the storage map
service is in ABITS=31 or ABITS=64 format.

XMSPCODE Function code that requests the major function to be performed.

XMSPSAR The address of the storage map record being processed. Points to
an area of storage mapped by mapping macro BLSRSASY.

XMSPBUF The address of a buffer to contain the accessed storage when a
storage access function is called.

The following function code constants are declared:

XMSPACC 1 - requests that the storage described by the storage map record
be accessed and copied into the specified buffer location.

XMSPVAL 2 - requests that the storage described by the storage map record
be processed by the appropriate validity check routine. Validity
check routines are also known as scan routines and are defined to
IPCS in parmlib members embedded in the BLSCECT parmlib
member.

XMSPDIAG 3 - requests that the block described by the storage map record be
designated as being in error. IPCS issues message BLS18058I,
and also issues message BLS18059I if the address of the locating
area for the block is known.

If an incorrect storage map service parameter list is passed to the storage map
service, IPCS issues a message and sets a return code of 16.

The storage map service is supported only under IPCS. If the storage map service
is requested under SNAP, the return code is zero and field ADPLCODE is set to 4.

Invoking the Service
After setting the required field, your exit routine can invoke the storage map service
by calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the storage map service code (ADPLSMAP)
v The address of the storage map service parameter list (XMSP) mapped by the

BLSRXMSP mapping macro

Output
The storage map service returns standard IPCS return codes to the caller. Specific
storage map service return codes are:

Storage Map Service

154 z/OS V1R4.0 MVS IPCS Customization

Code Explanation

00 All requested functions were performed successfully.

04 Attention (unusual but not necessarily erroneous) conditions were detected,
but the requested function completed successfully. Most callers of the
storage map service will want to treat this as a normal completion of the
service.

08 Error conditions were detected, but the requested function completed
successfully. Most callers of the storage map service will want to treat this
as a normal completion of the service.

For example, assume that the validity check service was requested. An
error condition would be indicated if the structure whose definition was
retrieved contained a pointer to another structure that failed validation.

12 The request was not satisfied. This could be the result of user action such
as the use of the attention mechanism or the END primary command of the
dump display reporter. It could also be due to the absence of needed
information in the dump data set.

16 The request was not satisfied. The reason is that errors in the current
processing environment have been detected.

For example, this return code is returned if a bad input parameter list
(XMSP) is passed to the storage map service. In this case, the system
issues messages to explain the error that was identified.

Reference
See z/OS MVS IPCS User’s Guide for a list of standard IPCS return codes.

The following example shows how a dump exit routine would invoke the storage
map service to access storage:

Storage Map Service

Chapter 10. IPCS Exit Services 155

Symbol Service
The symbol service enables exit routines to process symbols and obtain data
represented by the symbols. The symbol service differs from the get and equate
symbol services by requiring callers to pass parameter list XSSP (mapped by
mapping macro BLSRXSSP) that describes which symbol functions to use. For
reasons of completeness and compatibility, some of the symbol service functions
duplicate the functions provided by the equate symbol and get symbol services.

TSTSMAP TITLE ’TSTSMAP--Storage Map Service Usage Example’
TSTSMAP START 0 Sample dump processing exit

SPACE 2 Begin standard module prolog
*====== Standard module prolog

SPACE 1 Begin standard module prolog
SAVE (14,12),T,* Save registers
LR R12,R15 Base register for TSTSMAP
USING TSTSMAP,R12 Base register for TSTSMAP
LA R15,SAVEAREA Address of local save area
ST R13,SAVEAREA+4 Chain input save area to local
ST R15,8(,R13) Chain local save area to input
LR R13,R15 Establish use of local save area
LR ABDPLPTR,R01 Base register for ABDPL
USING ABDPL,ABDPLPTR Base register for ABDPL
SPACE 2 Begin dump formatting

*====== Use the storage map service to scan the CVT in the dump
SPACE 1 Begin dump formatting
MVC XMSPMODN,=CL8’TSTSMAP’ Module requesting service
LA R15,SAAU - Storage map record
ST R15,XMSPSAR - Storage map record
MVC XMSPCODE,=Y(XMSPVAL) Validity check request
MVC SAAUAST,VIRTUAL#STORAGE Virtual storage address space*

type
MVC SAAUAS2,=F’1’ Master address space ASID
MVC SAAULAD,ADPLCVT - CVT (common storage)
MVI SAAUDTY,ZZZDTYM STRUCTURE data type code
MVC SAAUDTD,NAMECVT CVT data name
L R15,ADPLSERV - Services router
CALL (15),((ABDPLPTR),MAP#SERVICE,XMSP) Scan the CVT
SPACE 2 Begin standard module epilogue

*====== Standard module epilogue
SPACE 1 Begin standard module epilogue
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),T,RC=(15) Restore registers and return
SPACE 2 Begin data definitions

*====== Define data
SPACE 1 Begin data definitions

R00 EQU 0 Register 0
R01 EQU 1 Register 1
ABDPLPTR EQU 11 ABDPL base register
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
XMSP BLSRXMSP DSECT=NO Storage map service parameter list
SAAU BLSRSASY DSECT=NO Storage map record
SAVEAREA DC 18F’0’ Register save area
MAP#SERVICE DC A(ADPLSMAP) Storage map service request code
NAMECVT DC CL(L’SAAUDTD)’CVT’ Data name for STRUCTURE(CVT)
VIRTUAL#STORAGE DC AL(L’SAAUAST)(ZZZASTCV) Virtual storage address *

space type
LTORG , Literal pool
BLSABDPL , Common parameter list
END TSTSMAP Test dump formatting exit

Figure 32. Example - Invoking the Storage Map Service

Symbol Service

156 z/OS V1R4.0 MVS IPCS Customization

The functions provided by the symbol service are:

Equate Symbol
This function adds the specified symbol to the dump directory. The symbol can
be for a literal value.

Get Symbol
This function retrieves the equate symbol record (ESR) for the specified symbol.

Storage Access
This function accesses the storage requested in the equate symbol record that
is passed as input.

Validity check
This function allows the user to request a validity check for a control block and
the creation of an SA record (BLSRSASY macro).

Check for Active TCB
This function allows the user to determine if the task described by the passed
equate symbol record was active at the time of dump. Checks for active tasks
are only valid on a SADMP.

Note that in OS/390 Release 10 and higher, the symbol service supports 64-bit
addresses and lengths.

Requirements
The symbol service parameter list is mapped by macro BLSRXSSP. Table 13 is a
description of the fields defined by the macro, and the information required before
your exit routine can invoke this service. Whenever field names are mentioned in
the table, it is assumed that the symbol service parameter list was defined with a
prefix of XSSP and that the equate symbol record was defined with a prefix of ESR.
A complete listing of the ESR fields is given in Table 15.

Table 13. The symbol service parameter list, XSSP, as mapped by macro BLSRXSSP

Field Name Field Description Required Information

XSSPID A standard control block identifier field C‘XSSP1’ - generated from an XSSP
expansion that specifies COMPLETE.

XSSPPFLG Processing flags

XSSPNOMS This flag indicates that,
whenever possible, no error
or diagnostic messages
should be issued.

XSSPDCS This flag indicates that data
characteristics have been
supplied. This is necessary
when externally- described
data entities (e.g. SGT,
PGT) are specified with the
equate symbol record
passed.

XSSPBIT64 This flag indicates whether
BLSRESSY structures
should be returned in
ABITS=31 or ABITS=64
format.

XSSPCODE Function code that requests the major
function to be performed.

Must contain a value greater than 0 and less
than the highest defined code. Use the
constants provided to set this field.

Symbol Service

Chapter 10. IPCS Exit Services 157

Table 13. The symbol service parameter list, XSSP, as mapped by macro BLSRXSSP (continued)

Field Name Field Description Required Information

XSSPESR The address of the equate symbol record
being processed. Points to an area of storage
mapped by BLSRESSY.

Must contain the address of a properly
initialized equate symbol record.

XSSPBUF The address of a buffer to contain the
accessed storage when a storage access
function is called.

Must contain the address of a buffer when
the service is requested to access storage for
the user.

XSSPMODN The name of the module calling the symbol
service. This is used for diagnostic error
messages only.

Should contain the module name of the caller
for diagnostic purposes.

Table 14 describes the declared code constants, their required information, and their
output.

Table 14. Symbol Service Function Code Constants

Constant
Name

Constant Description Required Information Output

XSSPEQU
(Equate
symbol)

Requests the symbol service to
add or replace the symbol,
represented by the passed
ESR, in the dump directory.

All ESR fields are required
except ESRRDX. The fields
most often set by dump exit
routines are the ESRSYM,
ESRAS, ESRLAD and ESRD.

No direct output is generated.
The IPCS symbol table is
updated with the new symbol or
an identical symbol is replaced.

XSSPGET (Get
symbol)

Requests the symbol service to
extract the ESR for the passed
symbol from the dump directory.

The ESR fields required by the
get symbol service are the
ESRSYM, ESRDTY and
ESRDTD.

The output from this function is
a completely filled in ESR.

XSSPACC
(Storage
access)

Requests the symbol service to
access and copy the storage
described by the ESR into a
specified buffer location.
Note: Some dump exit routines
only need to access storage
from the summary dump or a
SADMP. The regular portion of
an SVC dump is volatile and
might not be useful. In order to
accomplish this, the exit routine
should use the SV or SS
address space type code in the
equate symbol record.

All ESR fields are required
except ESRRDX. The fields
most often set by dump exit
routines accessing virtual
storage are the ESRSYM,
ESRAST, ESRAS2, ESRLAD,
ESRDTY, ESRDTD and
ESRDLE.

The buffer pointed to by
XSSPBUF is filled in with the
requested data.

XSSPACCN
(Resolve
symbol and get
storage)

Requests the symbol service to
resolve the symbol definition
and then access and copy the
storage described by the ESR
into the specified buffer
location. The main purpose of
this function is to access control
block storage for which validity
check and find routines are
defined.

The ESR fields required by the
“Resolve” portion of the service
are the ESRSYM, ESRDTY,
and ESRDTD. The “access”
function uses the callers ESRD
fields together with the ESRLAD
and ESRAS fields to access a
section of storage and place it
in the buffer pointed to by
XSSPBUF.

On return to the caller, the ESR
is in the state that was used to
do the access and the buffer is
filled in with required data.

Symbol Service

158 z/OS V1R4.0 MVS IPCS Customization

Table 14. Symbol Service Function Code Constants (continued)

Constant
Name

Constant Description Required Information Output

XSSPACCV
(Find, validity
check, and
access)

Requests the symbol service to
validity check and then access
and copy the storage described
by the ESR into the specified
buffer location. The main
purpose of this function is to
access control block storage for
which validity check and find
routines are defined.

The ESR fields required by the
“Find” portion of the service are
the ESRSYM, ESRDTY, and
ESRDTD. The “access” function
uses the callers ESRD fields
together with the ESRLAD and
ESRAS fields (provided by the
find routine) to access a section
of storage and place it in the
buffer pointed to by XSSPBUF.

On return to the caller, the ESR
is in the state that was used to
do the access and the buffer is
filled in with required data.

XSSPVAL
(Validity check)

Requests the symbol service to
process the storage described
by the ESR using the
appropriate validity check
routine. Validity check routines
are also known as scan
routines and are defined to
IPCS in parmlib members
embedded in the BLSCECT
parmlib member.

The main result of this function
is to set the return code. A
return code of 8 or less
generally means that the control
block is usable. A return code
greater than 8 indicates a bad
control block or an
environmental error (e.g. user
attention entered).

All ESR fields are required
except ESRRDX. The fields
most often set by dump exit
routines for virtual storage are
ESRSYM, ESRAST, ESRAS2,
ESRLAD, ESRDTY and
ESRDTD.

The ESRD fields are changed
by this service to completely
describe the bounds of the
control block that was validity
checked.

XSSPACTV
(Check for
active TCB)

Requests the symbol service to
check the TCB described by the
ESR to determine if the task
was active at the time of the
dump. The results of the test
are returned in the AS1 field of
the ESR. A null value
(X‘FFFFFFFF’) indicates that
the task is not active or that the
dump is not an SADMP. A CPU
number (e.g. X‘00000001’ for
CPU 1) indicates that the task
was active on that CPU at the
time of the dump.

All ESR fields are required
except ESRRDX.

The ESR is generally the same
as for a validity check call. The
ESRDTY field must indicate a
data type of STRUCTURE. The
ESRDTD field must indicate a
structure name of TCB.

The output from this function is
the ESRAS1 field.

The ESRAS1 field is set to
X’FFFFFFFF’ for the following
cases:
v A virtual dump is being

processed
v The task was not active at

the time of a SADMP

This field is set to X’0000000n’
when the task was active at the
time of a SADMP. n is the CPU
on which the task was active.

If an incorrect symbol service parameter list is passed to the symbol service,
message BLS18460I is issued and a return code of 16 is set.

The symbol service is supported only under IPCS. If the symbol service is
requested under SNAP, the return code is zero and field ADPLCODE is set to 4.

Symbol Service

Chapter 10. IPCS Exit Services 159

Invoking the Service
After setting the required fields, your exit routine can invoke the symbol service by
calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the symbol service code (ADPLSSYM)
v The address of the symbol service parameter list (XSSP) mapped by the

BLSRXSSP mapping macro

Output
The symbol service returns standard IPCS return codes to the caller. See the table
below for specific symbol service return codes:

Code Explanation

00 All requested functions were performed successfully.

04 Attention (unusual but not necessarily erroneous) conditions were detected,
but the requested function completed successfully. Most callers of the
symbol service can treat this as a normal completion of the service.

08 Error conditions were detected, but the requested function completed
successfully. Most callers of the symbol service can treat this as a normal
completion of the service.

For example, this return code would be set if the get symbol service was
requested and the structure whose definition was retrieved contained a
pointer to another structure that failed validation.

12 The request was not satisfied. This could be the result of user action such
as the use of the attention mechanism or the END primary command of the
dump display reporter. It could also be due to the absence of needed
information in the dump data set. For the validity check function it means
that the requested control block failed validity check.

16 The request was not satisfied. The reason is that errors in the current
processing environment have been detected.

For example, this return code is set if a bad input parameter list (XSSP) is
passed to the symbol service. In this case, a message is issued to explain
the error.

Macro BLSRESSY expands to define a structure containing the following fields:

Table 15. BLSRESSY expansion for ESR fields

Field Name Field Description

ESRRID Identifier (must contain C‘ES’ on entry to any IPCS service that accepts this structure as a
parameter)

ESRRDX Dump data set index. Used by IPCS and not required to be set by a dump exit.

ESRSYM Symbol name. (must be 1 to 31 characters long, start with an alphabetic and not contain special
characters or imbedded blanks)

ESRAS Describes the address space of the area to be defined The BLSRDATS area in the BLSRESSY
area describes the address space characteristics. For information, see BLSRDATS in
BLSRESSY in z/OS MVS Data Areas, Vol 1 (ABEP-DALT).

ESRLAD Contains the logical address of an area described in a dump.

Symbol Service

160 z/OS V1R4.0 MVS IPCS Customization

Table 15. BLSRESSY expansion for ESR fields (continued)

Field Name Field Description

ESRD Describes the data characteristics of the area to be defined. The BLSRDATC and BLSRDATT
areas in the BLSRESSY area describe the data characteristics. For information, see BLSRDATC
and BLSRDATT in BLSRESSY in z/OS MVS Data Areas, Vol 1 (ABEP-DALT).

ESRMAD Address of first byte missing.

ESRF Informational flags relating to storage access

ESRABS Absolute storage address for the address in ESRLAD.

ESRR Any remark text that was associated with the symbol

The structure defined by macro BLSRESSY is used as a parameter to IPCS
services in two ways:

1. IPCS services might accept partial initialization of the structure. Where this is
accepted, the fields that must be set upon entry are enumerated as required
inputs to the service. Field ESRRID is always included in this list.

2. IPCS services might require complete, correct initialization of the structure,
except field ESRRDX. Complete, correct initialization of a base structure can be
accomplished in the following ways:

v BLSRESSY can be invoked to produce an image of a complete, correct
record in a CSECT during compilation. At run time that image can be
transcribed into a buffer in which an “interesting” record is to be built.

v A valid record identifier (field ESRRID), a blank symbolic name (field
ESRSYM), and any valid data type (field ESRDT) can be passed to the IPCS
get symbol service or the corresponding function of the IPCS symbol service.

The service will respond by creating a complete, correct record in the buffer
passed. It will return an attention return code (register 15 contains 4) to
indicate that no symbol table access was performed.

IPCS services that use the structure described by macro BLSRESSY as input can
change it; the services can attempt to change at least field ESRRDX. When return
codes less than 12 are returned by these services, the structure returned is
complete and correct.

Note: When a data set is in fast path access mode, as indicated by bit ESSYFFP,
access is only allowed using ESSYAST “BL”, and the block numbers must be
sequential starting from 0.

Reference
See z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a complete mapping of
the BLSRESSY macro expansion.

Figure 33 shows how a dump exit routine would invoke the symbol service to
retrieve a symbol definition:

Symbol Service

Chapter 10. IPCS Exit Services 161

Table of Contents Service
The table of contents service is used by dump exit routines to add entries to the
table of contents (TOC) data set.

Requirements
Before invoking this service, your exit routine must fill in the print buffer with:
v The length of the entry, which occupies the first fullword of the print buffer.
v The text of the table of contents entry. This text follows the fullword length and

must not exceed 40 characters.

TSTSSYM TITLE ’TSTSSYM--Symbol Service Usage Example’
TSTSSYM START 0 Sample dump processing exit

SPACE 2 Begin standard module prolog
*====== Standard module prolog

SPACE 1 Begin standard module prolog
SAVE (14,12),T,* Save registers
LR R12,R15 Base register for TSTSSYM
USING TSTSSYM,R12 Base register for TSTSSYM
LA R15,SAVEAREA Address of local save area
ST R13,SAVEAREA+4 Chain input save area to local
ST R15,8(,R13) Chain local save area to input
LR R13,R15 Establish use of local save area
LR ABDPLPTR,R01 Base register for ABDPL
USING ABDPL,ABDPLPTR Base register for ABDPL
SPACE 2 Begin dump formatting

*====== Use the symbol service to locate the CVT in the dump
SPACE 1 Begin dump formatting
MVC XSSPMODN,=CL8’TSTSSYM’ Module requesting service
LA R15,ESAU - Symbol record
ST R15,XSSPESR - Symbol record
MVC XSSPCODE,=Y(XSSPGET) Validity check request
MVC ESAUSYM,NAMECVT CVT symbolic name
MVI ESAUDTY,ZZZDTYM STRUCTURE data type code
MVC ESAUDTD,NAMECVT CVT data name
L R15,ADPLSERV - Services router
CALL (15),((ABDPLPTR),SYMBOL#SERVICE,XSSP) Scan the CVT
SPACE 2 Begin standard module epilogue

*====== Standard module epilogue
SPACE 1 Begin standard module epilogue
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),T,RC=(15) Restore registers and return
SPACE 2 Begin data definitions

*====== Define data
SPACE 1 Begin data definitions

R00 EQU 0 Register 0
R01 EQU 1 Register 1
ABDPLPTR EQU 11 ABDPL base register
R12 EQU 12 Register 12
R13 EQU 13 Register 13
R14 EQU 14 Register 14
R15 EQU 15 Register 15
XSSP BLSRXSSP DSECT=NO Symbol service parameter list
ESAU BLSRESSY DSECT=NO Symbol record
SAVEAREA DC 18F’0’ Register save area
SYMBOL#SERVICE DC A(ADPLSSYM) Symbol service request code
NAMECVT DC CL(L’ESAUDTD)’CVT’ Data name for STRUCTURE(CVT)

LTORG , Literal pool
BLSABDPL , Common parameter list
END TSTSSYM Test dump formatting exit

Figure 33. Example - Invoking the Symbol Service

Table of Contents Service

162 z/OS V1R4.0 MVS IPCS Customization

The table of contents service pads out the buffer with periods and inserts the
current page number. It then adds the entry to the table of contents data set.

Invoking the Service
After filling the print buffer, your exit routine can invoke the table of contents service
by calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
two consecutive parameters:
v The address of the ABDPL
v The address of the table of contents service code (ADPLSNDX)

The table of contents service can also be invoked on the control block formatter
service and the format model processor service.

Note: The table of contents data set must be allocated and opened. It is opened
automatically whenever the print data set is opened, as long as the table of
contents data set is allocated.

Output
An error message is printed if the length is zero or more than 40, or the text is all
blank.

Before the table of contents service returns control to your exit routine, it blanks the
buffer. Register 15 contains one of the following return codes:

Code Meaning

00 The entry was added to the table of contents data set

04 The entry was not added

Customization
To obtain indentation of the entry, your program can initialize field ADPLLEV in
BLSABDPL to values 1 through 4. Each higher level results in four more spaces of
indentation.

Example
Figure 34 illustrates the subroutine TOCRTN using the table of contents service to
create a table of contents entry in the table of contents data set.

Table of Contents Service

Chapter 10. IPCS Exit Services 163

TOD Clock Service
The time-of-day (TOD) clock service provides a caller, including your exit routine,
with a TOD clock image. In the clock image, bit 0 is set on to allow the service to
handle values from May 11,1971, at 11:56:53.685248 to January 25, 2114, at
11:50:41.055743. The system truncates partial microseconds and does no rounding.

Two services are provided, as described by the table below. The output from the
service is dependent on whether the input to the service is an STCK or STCKE
value.

STCK (8-bytes) STCKE (16-bytes) Description

BLSUXTOD
service

BLSUETOD
service

These services are made available in MIGLIB for invocation through LINK
or a similar invocation mechanism. The services each take two parameters:

1. Input — a binary TOD or STCKE value

2. Output — a 26-character buffer

The services update the output parameter, returning a 26-character time
stamp. Return code 0 is returned for successful completion of the request;
otherwise return code 12 is returned.

Requirements
The caller must have the following environment for either service:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Control parameters must be in the primary address space.

Restriction: Before invoking either service, the caller must not establish an
enabled, unlocked, and task-mode (EUT) function recovery routine (FRR) by
specifying EUT=YES on the SETFRR macro.

*
* The TOCRTN subroutine calls the TOC service to build and
* add a TOC entry to the TOC data set.
* Register 11 contains the address of the ABDPL.
*
TOCRTN L R02,ADPLBUF Address of print buffer

MVC 0(24,R02),TOCENT Fill print buffer
MVI ADPLLEV,2 Indentation level 2
L R15,ADPLSERV - Exit services router
CALL (15),((R11),REQCODE) Call Table of contents service
L R13,SAVEAREA+4 Resume use of input save area
RETURN (14,12),RC=0

REQCODE DC A(ADPLSNDX) Request code for service router
TOCENT DC A(20)

DC CL20’TOC entry for TOCRTN’
*---
* Define the format of the ABDPL addressed by R1 on input
*---

BLSABDPL

Figure 34. Example - Invoking the Table of Contents Service

TOD Clock Service

164 z/OS V1R4.0 MVS IPCS Customization

|

|
|
|
|

|
|
|

||||

|
|
|
|
|
|

|

|

|
|
|
|

|
|

|||
||
||
||
||
||
||
||
|

|
|
|

Registers: Before invoking either service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register Contents

1 If using a call, the address of 2 fullwords in the primary address
space:

v First fullword contains the address of a 26-byte time stamp,
which is in the primary address space.

v Next fullword contains the address of an 8-byte area to receive
the time-of-day (TOD) clock image. The area is in the primary
address space.

Note: If using a LINK macro, specify the addresses of the fullwords
in the PARAM parameter.

13 Address of a 72-byte register save area, which is in the primary
address space.

14 Return address. Bit 0 must contain 1 to indicate that control is to be
returned in 31-bit addressing mode or contain 0 to indicate 24-bit
addressing mode.

15 The entry point address of the TOD clock service.

Invoking the Service
The TOD clock service is reentrant so that it can be loaded once and used
repeatedly, as required. Invoke the service as follows:

v Issue a LINK macro with EP=service name.

v Issue a LOAD macro with EP=service name, then call the service, using the
address obtained from the LOAD macro.

Output
When the TOD clock service returns control to the caller, the registers contain the
following:

Register Contents

0-14 Unchanged.

15 Return code.

The hexadecimal return codes are:

Code Meaning

00 Successful completion.

12 Unsuccessful completion.

WHERE Service
The WHERE service identifies in the area mapped by the BLSRPWHS mapping
macro the storage map entry for the system area in which the specified address
resides.

Note that in OS/390 Release 10 and higher, the WHERE service supports 64-bit
addresses and lengths.

Requirements
Prior to invoking this service, your exit routine must place the following information
into the area mapped by a BLSRPWHS mapping macro:

TOD Clock Service

Chapter 10. IPCS Exit Services 165

|
|

||

||
|

|
|

|
|
|

|
|

||
|

||
|
|

||

|
|
|

|

|
|

|
|
|

||

||

||

|

||

||

||

Field Description
IDL Indicates whether the parameter list is in ABITS=31 or ABITS=64 format
AST Indicate the address is virtual
LAD Address for the WHERE service
AS2 The ASID of the address

Invoking the Service
After setting the required fields, your exit routine can invoke the WHERE service by
calling the exit services router whose address is in field ADPLSERV in the
BLSABDPL mapping macro. Set register 1 to contain the address of the following
three consecutive parameters:
v The address of the ABDPL
v The address of the WHERE service code (ADPLSWHS)
v The address of area mapped by the BLSRPWHS mapping macro, which is set to

describe the address for which information is being requested

Output
If the BLSRPWHS area contains errors, IPCS issues a message. If the BLSRPWHS
area is correct, the WHERE service returns information in the following fields in
BLSRPWHS:

Field Description
OUTP WHERE output area
OLAD Located object address
OD Storage characteristics of object
OOFF Offset into located object
OSAL Length of system area name
OSAN System area name
PWHSONOL Length of NAME+OFFSET string
ONMO NAME+OFFSET string
OMDP Address of non-standard module name

When the WHERE service returns control to your exit routine, register 15 contains
one of the following return codes:

Code Meaning

00 The WHERE service completed normally.

04 The address specified has not been identified as a MODULE,
STRUCTURE, or AREA.

08 An error condition was detected. Preceding this return code, there are
informational messages that provide additional diagnostic aid.

12 Processing was ended. The attention interrupt key might have been
pressed.

16 An error in the IPCS environment was encountered or the parameter list
passed was incorrect.

Example
Figure 35 illustrates the subroutine WHERES using the WHERE service to
determine the system area in which a specified address resides.

WHERE Service

166 z/OS V1R4.0 MVS IPCS Customization

17-Character Time Stamp Service
The 17-character time stamp service provides a caller, including your exit routine,
with an EBCDIC time stamp in 17-character format:
mm/dd/yy hh:mm:ss

Where:
mm Month 01 - 12
dd Day of the month 01 - 31
yy Year within the century 00 - 99
hh Hour in a 24-hour clock 00 - 23
mm Minute 00 - 59
ss Second 00 - 59

Requirements
The caller must have the following environment:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Control parameters must be in the primary address space.

Restriction: Before invoking the service, the caller must not establish an enabled,
unlocked, and task-mode (EUT) function recovery routine (FRR) by specifying
EUT=YES on the SETFRR macro.

Registers: Before invoking the service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register Contents

1 If using a call, the address of 2 fullwords in the primary address
space:

*
*The WHERES subroutine calls the WHERE service to
*determine the system area that a specified
*address resides in.
*
*======] Set up for call to WHERE service
WHERES MVC PWHSAST,=C’CV’ Virtual storage

MVC PWHSAS2,=A(1) ASID
MVC PWHSLAD,=A(X’01949110’) Address for WHERE service
MVI PWHSPFL1,PWHSPUT Print output

*======] Call the WHERE service
L R15,ADPLSERV -]Exit services router
CALL (15),((R11),REQCODE,PWHS) Call the WHERE service
LTR R15,R15 Was the WHERE service successful?
BNZ EXIT No. End processing

R11 EQU 11 Register 11 - ABDPL address
R15 EQU 15 Register 15 - Entry point address
REQCODE DC A(ADPLSWHS)
PWHS BLSRPWHS DSECT=NO WHERE service parameter list

BLSABDPL , Common parameter list

Figure 35. Example - Invoking the WHERE Service

17-Character Time Stamp Service

Chapter 10. IPCS Exit Services 167

v First fullword contains the address of an 8-byte time-of-day
(TOD) clock value, which resides in the primary address space.

In the clock value, bit 0 is treated as on to allow the service to
handle values from May 11, 1971, at 11:56:53 to September 17,
2042, at 23:53:47. In the value, the partial microseconds must be
truncated and not rounded.

v Next fullword contains the address of a 17-byte output area,
which is in the primary address space.

Note: If using a LINK macro, specify the addresses of the fullwords
in the PARAM parameter.

13 Address of a 72-byte register save area, which is in the primary
address space.

14 Return address. Bit 0 must contain 1 to indicate that control is to be
returned in 31-bit addressing mode or contain 0 to indicate 24-bit
addressing mode.

15 The entry point address of the 17-character time stamp service,
BLSUMTOD.

Invoking the Service
The 17-character time stamp service is reentrant and may be loaded once and
used repeatedly, as required. Invoke the service, BLSUMTOD, as follows:

v Issue a LINK macro with EP=BLSUMTOD.

v Issue a LOAD macro with EP=BLSUMTOD, then call the service, using the
address obtained from the LOAD macro.

Output
When the 17-character time stamp service returns control to the caller, the registers
contain the following:

Register Contents

0-14 Unchanged.

15 Return code.

The hexadecimal return codes are:

Code Meaning

00 Successful completion.

04 Bit 0 of the input TOD clock value was off. The service formats the value as
though the bit had been on. The caller should use the formatted time stamp
with caution. If it is being used as part of a report, the caller might issue a
message to the reader to use the time stamp with caution.

Example
Figure 36 on page 169 illustrates a LINK macro that invokes the service one time or
a small number of times during the operation of an exit routine.

17-Character Time Stamp Service

168 z/OS V1R4.0 MVS IPCS Customization

Figure 37 illustrates a LOAD macro that loads the service, then calls it several times
during the operation of an exit routine.

26-Character Time Stamp Service
The 26-character time stamp service provides a caller, including your exit routine,
with an EBCDIC time stamp in 26-character format:
mm/dd/yyyy hh:mm:ss.ffffff

Where:

mm Month 01 - 12

dd Day of the month 01 - 31

yyyy Year, including the century 1900 - 2099

hh Hour in a 24-hour clock 00 - 23

mm Minute 00 - 59

ss Second 00 - 59

ffffff Decimal parts of a second 000000 - 999999

LA 13,SAVEAREA Prepare GPR 13 for call to BLSUMTOD
.
.
.
LINK EP=BLSUMTOD,PARAM=(TODCLOCK,TIMESTAMP)
.
.
.

SAVEAREA DS 18F Standard GPR save area
TODCLOCK DC X’80000000000000000’ Clock value
TIMESTAMP DS CL17 Field to receive time stamp

Figure 36. Example - Invoking the 17-Character Time Stamp Service with LINK

LA 13,SAVEAREA Prepare GPR 13 for call to BLSUMTOD
.
.
.
LOAD EP=BLSUMTOD Get address of BLSUMTOD in GPR 0
.
. Top of processing loop
.
LR 15,0 Prepare GPR 15 for call to BLSUMTOD
LA 1,PARMLIST Prepare GPR 1 for call to BLSUMTOD
BASSM 14,15 Prepare GPR 14 and call BLSUMTOD

* Change to AMODE 31 if necessary
.
. Bottom of processing loop
.
DELETE EP=BLSUMTOD Done using BLSUMTOD
.
.
.

SAVEAREA DS 18F Standard GPR save area
PARMLIST DC A(TODCLOCK,TIMESTAMP) Parameter list for BLSUMTOD
TODCLOCK DC X’80000000000000000’ Clock value
TIMESTAMP DS CL17 Field to receive time stamp

Figure 37. Example - Calling the 17-Character Time Stamp Service

17-Character Time Stamp Service

Chapter 10. IPCS Exit Services 169

Two services are provided, as described in the table below. The output from the
service is dependent on whether you request a value comparable to that returned
by STCK or STCKE.

STCK (8-bytes) STCKE (16-bytes) Description

BLSUXTID service BLSUETID service These services are made available in MIGLIB for invocation through LINK
or a similar invocation mechanism. The services each take two parameters:

1. Input — a 26-character time stamp

2. Output — a buffer for a binary STCK or STCKE value

The services update the output parameter, returning a binary TOD value
(BLSUXTID service) or STCKE value (BLSUETID service). Return code 0 is
returned if a supported time stamp is passed; otherwise return code 12 is
returned.

Requirements
The caller for either service must have the following environment:

Minimum authorization: Problem state with any PSW key.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Control parameters must be in the primary address space.

Restriction: Before invoking either service, the caller must not establish an
enabled, unlocked, and task-mode (EUT) function recovery routine (FRR) by
specifying EUT=YES on the SETFRR macro.

Registers: Before invoking either service, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register Contents

1 If using a call, the address of 2 fullwords in the primary address
space:

v First fullword contains the address of an 8-byte time-of-day
(TOD) clock value, which resides in the primary address space.

In the clock value, bit 0 is treated as on to allow the service to
handle values from May 11, 1971, at 11:56:53.685248 to January
25, 2114, at 11:50:41.055743. In the value, the partial
microseconds must be truncated and not rounded.

v Next fullword contains the address of a 26-byte output area,
which is in the primary address space.

Note: If using a LINK macro, specify the addresses of the fullwords
in the PARAM parameter.

13 Address of a 72-byte register save area, which is in the primary
address space.

14 Return address. Bit 0 must contain 1 to indicate that control is to be
returned in 31-bit addressing mode or contain 0 to indicate 24-bit
addressing mode.

26-Character Time Stamp Service

170 z/OS V1R4.0 MVS IPCS Customization

15 The entry point address of the 26-character time stamp service,
BLSUXTID or BLSUETID.

Invoking the Service
The 26-character time stamp service is reentrant and may be loaded once and
used repeatedly, as required. Invoke the service as follows:

v Issue a LINK macro with EP=service name.

v Issue a LOAD macro with EP=service name, then call the service, using the
address obtained from the LOAD macro.

Output
When the 26-character time stamp service returns control to the caller, the registers
contain the following:

Register Contents

0-14 Unchanged.

15 Return code.

The hexadecimal return codes are:

Code Meaning

00 Successful completion.

12 Unsuccessful completion.

End of Programming Interface information

26-Character Time Stamp Service

Chapter 10. IPCS Exit Services 171

26-Character Time Stamp Service

172 z/OS V1R4.0 MVS IPCS Customization

Chapter 11. The IPCS Debug Tool

To assist you in debugging your IPCS exit routine, IPCS provides an exit routine
debugging tool. The debug tool can be used with IPCS exit routines that use IPCS
exit services invoked through the exit services router. Traps cannot be set on those
services that are not invoked through the exit services router.

Reference
See Table 3 on page 12 for a list of which exit services are and are not
invoked through the exit services router.

Implementing the Debug Tool
The debug tool is implemented through four IPCS subcommands:

When You Want to: Use the Following
Subcommand:

Selectively enable traps TRAPON

Selectively disable traps TRAPOFF

Resume trap processing from a STOP trap GO

Display the status of currently active traps TRAPLIST

Enabling IPCS-Supplied Traps
By using the TRAPON subcommand, traps can be set to perform trap processing
both before invoking a requested service and before returning to the caller of a
service after the service has completed processing.

IPCS supplies traps for the following exit services:

Exit Service: Code Specified on
the TRAPON
Subcommand:

All exit services ALL

Add symptom ADS

Contention queue element (CQE) create CQE

Control block formatter CBF

Control block status (CBSTAT) CBS

Equate symbol EQS

Exit control table (ECT) ECT

Expanded print PR2

Format model processor FMT

Get symbol GTS

Name NAM

Name/token lookup NTK

Select address space identifier (ASID) SEL

© Copyright IBM Corp. 1988, 2002 173

Exit Service: Code Specified on
the TRAPON
Subcommand:

Standard print PRT

Storage access ACC

Storage map MAP

Symbol SYM

Table of contents NDX

WHERE WHS

Specify the INPUT parameter on the TRAPON subcommand to request trapping
before invoking a requested service. Specify the OUTPUT parameter on the
TRAPON subcommand to request trapping after the completion of a requested
service. The default is NOINPUT, if INPUT is not specified, and NOOUTPUT, if
OUTPUT is not specified.

Table 16 describes the information that can be trapped and the subcommand used
to enable such a trap:

Table 16. Trapping IPCS Information

Information to be Trapped: Subcommand Example:

Contents of the exit parameter list (BLSABDPL) and its extension. The
extension is addressed in the BLSABDPL.

TRAPON INPUT(ABDPL)

Data passed to a service in addition to the basic parameters. This data can
be displayed only for the format processor service. Also displays the model
when the model address is supplied.

TRAPON (FMT) INPUT(DATA)

Data returned by a service in addition to basic parameters. This data can be
displayed only for the storage access and select ASID services.

TRAPON (ACC SEL) OUTPUT(DATA)

Parameters passed to a service. These parameters cannot be displayed for
the standard print or table of contents services.

TRAPON (code-list |ALL)
INPUT(PARMS)

Return code from the service and the service code-list. TRAPON (code-list |ALL)
OUTPUT(RETC)

Parameters returned by a service. This is the same parameter list that is
displayed as input, but it will show any values changed by the service. These
parameters cannot be displayed for the standard print or table of contents
services.

TRAPON (code-list |ALL)
OUTPUT(PARMS)

Error information. Displays specified information returned by a service only if
the return code from the service is nonzero.

TRAPON (code-list |ALL)
OUTPUT(RETC,ERROR)

Note: If only one code for an exit service is specified on the TRAPON subcommand, no parentheses are needed
around the code.

There are other parameters that can be specified on the TRAPON subcommand,
and the parameters illustrated in Table 16 can be used in combination with each
other.

Output from the TRAPON Subcommand
Figure 38 illustrates the output generated by entering the following subcommands in
this sequence:
TRAPON FMT INPUT(PARMS,ABDPL,DATA) OUTPUT(RETC)
CBFORMAT FD40D8. MODEL(XYZMOD1) ASID(1)

IPCS Debug Tool

174 z/OS V1R4.0 MVS IPCS Customization

*** FMT INPUT ABDPL ***

BLSABDPL: 0002A000
+0000 TCB...... 00000000 ASID..... 0001 SBPL..... 00
+0007 FLAG..... 90 BUF...... 00065008 PRNT..... 8002B4F8
+0010 CVT...... 00FD5AA0 MEMA..... 00061390 FRMT..... 8002B9C8
+001C COM1..... 00000000 COM2..... 00000000 COM3..... 00000000
+0028 COM4..... 00000000 FMT1..... 00000000 FMT2..... 00000000
+0034 EXT...... 00065408 ABDA..... 00000000 TRFM..... 00000000
+0040 SERV..... 8002B628 LEV...... 00 IDX...... 00
+0046 LNCT..... 003C LNRM..... 0037 DLEN..... 0000
+004C OPLN..... 0000 PRDP..... 00 NDX...... 00059738
+0054 PGNO..... 00000001 SRA...... 00065488

ADPLEXTN: 00065408
+0000 OPTR..... 00000000 CPPL..... 00065340 ESYP..... 00000000
+000C CODE..... 0000 PFLG..... 00 EFLG..... 00
+0010 MAXL..... 4E SCOL..... 04 COLS..... 14
+0014 EFCD..... 0000 RSV1..... 00000000 00000000 00000000
+0022 00000000 00000000 00000000 00000000 00000000
+0036 00000000 00000000 0000

*** FMT INPUT PARM ***

ADPLPFMT: 000815D8
+0000 OPT...... 80 RET...... 0000 BLC...... 01
+0004 CHA...... XYZMOD1 PTR...... 844D3098 BAS...... 00000000
+0014 DAC...... 0000 BLS...... 0000 BAV...... 00FD40D8
+001C LME...... 00000000 VCL...... 0200 OSI...... 0000
+0024 DL1...... 00000000 DL2...... 00000000 DU1...... 00000000
+0030 DU2...... 00000000 EXP...... 00081618 FXC...... 00000000
===] FORMATTING OPTIONS: CHECK ACRONYM.
===] RETURN INFORMATION NONE.

ADPLPFXT: 00081618
+0000 XID...... FEXT XOP...... 24000000 XRT...... 00000000
+000E XIL...... 00 XAC......
+002E XLX...... 00 XFC...... 00
===] EXTENDED OPTIONS NAME IS IN ES RECORD(N).
STORAGE DEFINED BY ES RECORDS.
===] EXTENDED RETURN INFO NONE.
+0040 BF0...... 00000000 ES0...... 00081320

ES: 00081320
+0000 RID...... ES RDX...... 00000006 SYM......
+002C RV1...... 40
+003C AST...... CV ASH...... 0000 AS1...... FFFFFFFF
+0044 AS2...... 00000001 AS3...... 00000000 LAD...... 00FD40D8
+0050 DOF...... 00000000 DLE...... 0000006A DOB...... 00
+0059 DLB...... 00 DTY...... U DTD......
+006C DTE...... 40
+007C DIM...... 00000000 DIL...... 00000000 DF....... 00000000
+008C MAD...... 00000000 KEY...... 00 FS....... 00
+00A2 FC....... 00 ABS...... 00000000 RL....... 0000
+00B6 RT.......
.
.
.

Figure 38. Output from the CBFORMAT Subcommand with the IPCS Debug Tool Active (Part
1 of 2)

IPCS Debug Tool

Chapter 11. The IPCS Debug Tool 175

References
See the following:

v Chapter 10, “IPCS Exit Services” on page 105 for the return codes from
each of the IPCS exit services

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for a mapping of BLSABDPL

v z/OS MVS IPCS Commands for the TRAPON subcommand

.

.

.
+0048 BF1...... 00000000 ES1...... 00000000
+0050 BF2...... 00000000 ES2...... 00000000
+0058 BF3...... 00000000 ES3...... 00000000
+0060 BF4...... 00000000 ES4...... 00000000
+0068 BF5...... 00000000 ES5...... 00000000
+0070 BF6...... 00000000 ES6...... 00000000
+0078 BF7...... 00000000 ES7...... 00000000
+0080 BF8...... 00000000 ES8...... 00000000
+0088 BF9...... 00000000 ES9...... 00000000
+0090 BFA...... 00000000 ESA...... 00000000
+0098 BFB...... 00000000 ESB...... 00000000
+00A0 BFC...... 00000000 ESC...... 00000000
+00A8 BFD...... 00000000 ESD...... 00000000
+00B0 BFE...... 00000000 ESE...... 00000000
+00B8 BFF...... 00000000 ESF...... 00000000

*** FMT INPUT DATA ***

MODEL: 844D3098
MODEL HEADER

+0000 CBACR.... CBLAB.... XYZENT MLVL..... HBB3310
+0018 CBLEN.... 006A ACROF.... 0000 ACLEN.... 00
+001D LABLN.... 08 BEGCL.... 0A CLDST.... 00
+0020 HFLGS.... 00 ENTOF.... 24 DEFLV.... 01

MODEL ENTRIES

LABT FLGS VIEW DATOF DATLN
-------- ---- ---- ----- -----

001 FIELD1 0400 8200 0000 0002
002 FIELD2 0400 0200 0002 0004
003 FIELD3 0400 8200 0006 0008
004 FIELD4 0400 0200 000E 0002
005 FIELD5 0400 0200 0010 0004
006 FIELD6 0400 0200 0014 0008
007 FIELD7 0400 8200 001C 0002
008 FIELD8 0400 0200 001E 0004
009 FIELD9 2400 0200 0022 0008
010 FIELDA 0000 0400 002A 0040

XYZENT: 00FD40D8
FIELD1... 005F FIELD2... F1100000 FIELD3... 00000000 00000000
FIELD4... 0000 FIELD5... 00000000 FIELD6... 00000000 7F746568
FIELD7... 0000 FIELD8... 00800400 FIELD9... ABCDEFGH

*** FMT RETURN CODE: 00000000 ***

Figure 38. Output from the CBFORMAT Subcommand with the IPCS Debug Tool Active (Part
2 of 2)

IPCS Debug Tool

176 z/OS V1R4.0 MVS IPCS Customization

Stopping and Resuming IPCS Trap Processing
The STOP parameter on the TRAPON subcommand and the GO subcommand are
used to stop and resume IPCS trap processing. The STOP parameter is only valid
when using IPCS in line-mode. If you specify either OUTPUT(STOP) or
INPUT(STOP) when using IPCS in the background or while in the full-screen dialog,
IPCS ignores it.

Use the STOP parameter on the TRAPON subcommand, and use the GO
subcommand, as follows:

v Stop the progress of an exit routine temporarily by specifying the STOP
parameter on the TRAPON subcommand. For example, enter the following
subcommand to request that an IPCS-supplied trap be enabled for the where
service to display the BLSABDPL and the parameters passed to the service, but
the exit service is to wait (stop) for input from you before beginning:
TRAPON WHS INPUT(ABDPL PARMS STOP)

v Resume the exit service processing by entering the GO subcommand.

You can also enter the following subcommands before entering the GO
subcommand:

Subcommand Purpose

HELP Obtains help information about the function, syntax, or parameters
of the IPCS subcommands

NOTE Generates a message to the IPCSPRNT data set.

TRAPLIST Obtains the status of IPCS-supplied traps.

TRAPOFF Disables specified IPCS-supplied traps.

TRAPON Enables specified IPCS-supplied traps. Use to alter the trap(s)
currently in effect.

Reference
See z/OS MVS IPCS Commands for the following subcommands:
v GO
v HELP
v NOTE
v TRAPLIST
v TRAPOFF
v TRAPON with the STOP parameter

Disabling IPCS-Supplied Traps
Use the TRAPOFF subcommand to disable IPCS-supplied traps. For example,
enter TRAPOFF ALL to disable all IPCS-supplied traps.

Reference
See z/OS MVS IPCS Commands for the TRAPOFF subcommand.

IPCS Debug Tool

Chapter 11. The IPCS Debug Tool 177

Getting the Status of IPCS-Supplied Traps
Use the TRAPLIST subcommand to display the status of IPCS-supplied traps. For
example, enter TRAPLIST ALL to get a list of all the exit services and the traps that
are currently set for those services.

Reference
See z/OS MVS IPCS Commands for the information about the TRAPLIST
subcommand.

IPCS Debug Tool

178 z/OS V1R4.0 MVS IPCS Customization

Appendix. IPCS Exit Services Supported for Compatibility

Programming Interface information

For compatibility, IPCS exit services developed before MVS/SP Version 3 are
supported.

Services
The services supported for compatibility are:

v The dump index service — used to print a table of contents for each of the
significant parts of the dump.

v The format service — used to convert data to printable hexadecimal (if
necessary) and format data in the output buffer.

v The old storage access service — used to obtain data from a dump data set.

v The print service — used to print an output line.

v The summary dump data access service — used to access the summary
dump data contained in an SVC dump.

IPCS currently provides equivalent services that these services provided. If you are
developing a new exit routine, or reworking an old exit routine, and you need any of
these services, use the IPCS service referenced at the beginning of each of the
service descriptions below.

This entire group of services is no longer recommended for two reasons:

1. Each member of the group expects non-standard input and generates
non-standard output — interfaces of a type that research has shown to be
error-prone when compared to services that are passed a formal parameter list.

2. Previously defined IPCS traps that assist in verifying the correct run of exits
under development are not available for these services.

Note: Although you can invoke the storage access and print services directly using
addresses in the BLSABDPL and standard linkage, it is recommended that
you invoke them through the exit services router. The following sections
explain how to invoke most of these routines directly.

You can only access the format service directly using the ADPLFRMT field in the
BLSABDPL. This routine causes the output buffer to be formatted.

References
See the following:
v Table 3 on page 12 for the recommended services
v “Format Service” on page 181

Dump Index Service
IPCS provides this service through the table of contents service.

© Copyright IBM Corp. 1988, 2002 179

Reference
See “Table of Contents Service” on page 162.

The dump index is a table of contents containing a description and page number for
each of the significant parts of the dump output. A blank line precedes the
descriptions for the major sections (level one). Each major section description might
have any number of subordinate descriptions, indicated by indentation, for parts or
subdivisions of the section. Up to four levels of subordination exist.

When your output contains more than one dump index, each index appears on a
new page. The title of the dump is printed at the top of each page of index output.
The title corresponds to the dump that the index describes.

The user designs each index entry. Prior to calling the index service, the user
moves the index entry to the output buffer pointed to by the ADPLBUF field in the
exit parameter list. Each index entry is limited to 40 characters of data preceded by
a four-byte header. When you specify more than 40 characters, the entry is
truncated to 40 characters. Using the ADPLNDX field in the exit parameter list, the
IPCS exit routine invokes the index service.

The index service writes the index entry from the buffer to the IPCS TOC data set.
If the dump index service is called and messages are being routed to the terminal,
then no index entry is written to the IPCS TOC data set.

When INDEX DD is not available, the index service writes the index entry to the
PRINTER DD data set. The current page number (field ADPLPGNO in the exit
parameter list) is used as the page reference for that index entry. On return from
the index service, the index service routine blanks out the output buffer.

The exit parameter list (ABDPL) has an optional field ADPLLEV for specifying
indentation levels. Valid values that you can specify for ADPLLEV are 1-4. When
you specify an incorrect value, the default is 1. The indentation level for the index
entry is equal to the ADPLLEV value multiplied by 4.

For any exit routine other than TCB exit routines, an index entry is added for your
control statement before giving control to your exit routine. The format for the entry
is:
OUTPUT FROM XXXXXXXX VERB00003000

where XXXXXXXX is your control statement name.

Figure 39 is an example using the dump index service.

Dump Index Service

180 z/OS V1R4.0 MVS IPCS Customization

Format Service
IPCS provides this service with the format model processor service.

Reference
See “Format Model Processor Service” on page 132.

The format service is available to format the output of your module. This service
performs two functions:
v Converts data to printable hexadecimal, if necessary
v Formats data in the output buffer

At each invocation, the format service formats a maximum of one output line. Your
routine must provide the following input:
v The address of the output buffer by passing the exit parameter list address
v The addresses of data items and/or labels by providing format patterns

The ADPLBUF field of the exit parameter list contains the address of the 133-byte
buffer where the output line is formatted. ADPLBUF also contains two words of
work area, ADPLFMT1 and ADPLFMT2, that the format service uses. The format
patterns indicate data and labels to be inserted in the output line.

Your module can invoke the format service once and specify format patterns to
create one output line or invoke the format service more than once and each time
specify patterns for part of an output line. Note that if you choose to format a
portion of a line, you must be careful not to overlay previously-formatted portions.

When a line is formatted, your module must invoke the print service to perform the
print operation. The format service does not print the buffer.

USING ABDPL,R3
LR R3,R1 SET UP ADDRESSABILITY FOR WORKAREA
LA R2,LEVEL PUT INDENTATION FACTOR IN WORKAREA
ST R2,ADPLLEV
L R4,ADPLBUF GET ADDRESS OF OUTPUT BUFFER
USING BUFR,R4
MVC BUFR(LENG),INDEXENT PUT TABLE OF CONTENTS ENTRY

* INTO OUTPUT BUFFER
LR R1,R3 SET UP REGISTER 1 WITH ADDRESS

* OF WORKAREA FOR SERVICE ROUTINE
L R15,ADPLNDX GET ADDRESS OF INDEX SERVICE
BALR R14,R15 INVOKE INDEX SERVICE...

LEVEL EQU 2 INDENTATION FACTOR...
INDEXENT EQU * TABLE OF CONTENTS ENTRY FOR THIS
* USER EXIT

DC XL3’0’
DC X’1D’
DC CL29’USER1 TABLE OF CONTENTS ENTRY’

LENG EQU *-INDEXENT
BUFR DSECT

DS CL132 OUTPUT BUFFER ADDRESSED BY ADPLBUF
BLSABDPL

Figure 39. Example - Using the Dump Index Service

Format Service

Appendix. IPCS Exit Services Supported for Compatibility 181

You can invoke the format service by obtaining the address of the format service
from the ADPLFRMT field in the IPCS exit parameter list, BLSABDPL, and using
standard linkage conventions. The following discussion gives details on this method
of invoking the format service.

When invoking the format service using standard linkage conventions, you must
pass the address of the first format pattern in register 0 and the address of the exit
parameter list in register 1.

When the format service passes control back to your module, register 15 contains a
return code of 00 or 04. The value of the code is the same as that received by the
format service when it used the storage access routine; the meanings of the codes
are the same as for the storage access routine.

Figure 40 shows how a format service is invoked. Figure 42 on page 185 shows
format patterns associated with that invocation.

Format Patterns
The format service uses the format pattern to locate information and position it in
the output buffer. A format pattern consists of four to seven fields. One field
indicates how the format service should process the pattern. Three fields describe
the position, length, and address of a label. Three fields describe the position,
length, and the address of a data item.

If a series of format patterns are set up by your routine, the patterns that describe
one line must be contiguous and have as a last entry a fullword of binary zeros.

The second and subsequent data and label addresses in a series are optional.

*THIS SECTION ACTUALLY OUTPUTS TWO LINES OF A TAPE UCB THEN SKIPS A LINE
OUTPUTIT LA R0,TAPE1 SET ADDR OF LINE 1 FORMAT PATTERN

BAL RLINK, FORMAT GO FORMAT LINE
BAL RLINK, PRINTIT GO TO PRINT IT WITH THE SERVICE RTN
LA R0, TAPEL2 SET ADDR OF LINE 2 FORMAT PATTERN
BAL RLINK, FORMAT GO FORMAT LINE
BAL RLINK, PRINTIT GO TO PRINT IT WITH THE SERVICE RTN
BAL RLINK, PRINTIT GO PRINT A BLANK LINE

*THIS SUBROUTINE CALLS THE FORMAT SERVICE TO AUTOMATICALLY
*FORMAT AN OUTPUT LINE OF THE UCB. INPUT TO THIS SECTION OF CODE
*IS THE ADDRESS OF THE FIRST FORMAT PATTERN IN REG 0. REG 1 MUST
*CONTAIN THE ADDRESS OF THE ORIGINAL EXIT PARAMETER LIST. IF
*DATA CANNOT BE OBTAINED BY THE SERVICE, CONTROL IS
*PASSED TO AN ERROR SUBROUTINE TO PRINT ERROR MESSAGE
FORMAT L R15,ADPLFRMT GET RTN ADDR FROM PARM LIST

BALR R14,R15 GO TO SERVICE TO FORMAT LINE
LTR R15,R15 WAS FORMAT SUCCESSFUL
BCR 8,RLINK YES, GO PRINT LINE IMMEDIATELY
B ERROR NO, GO TO ERROR ROUTINE

* THIS SECTION OF CODE IS USED TO CALL THE PRINT SERVICE.
* REGISTER 1 MUST CONTAIN THE ADDRESS OF THE ORIGINAL
* EXIT PARAMETER LIST.
PRINTIT L R15,ADPLPRNT GET PRINT RTN ADDR FROM PARM LIST

BALR R14,R15 GO TO PRINT ROUTINE
BR RLINK RETURN TO SECTION OF CODE ABOVE

Figure 40. Example - Using the Format Service

Format Service

182 z/OS V1R4.0 MVS IPCS Customization

If these fields are not provided, the service uses the last address plus the length to
locate a data item or label. To keep track of updated addresses, the format service
uses the twelfth and thirteenth words in the exit parameter list to store label and
data pointers.

Reference
See Figure 41 for information about defining fields in a format pattern.

Code byte
A 1-byte field that identifies the contents of a pattern. The settings are:

Bit Meaning

0-1 Reserved.

2 Data is not to be converted to printable hexadecimal.

3 Data is in the caller’s storage (not in the dump).

4 Data pointer follows (bit 5 must also be on). Either a dump address or a
storage address. (See bit 3)

5 Data is to be placed in buffer.

6 Label pointer follows (bit 7 must also be on).

7 Label is to be placed in buffer.

If you do not set bits 4 and/or 6, then you should omit the label pointer and/or
data pointer field(s) of the format pattern extension. Table 17 on page 184
shows the relationship between the bit settings of the code byte and the length
and contents of the format pattern extension.

Label/Data Length-1
a one byte field that contains two length counts. The first four bits are the label
length minus one. The last four bits are the data length minus one. This field is
used to update label/data addresses in the parameter list if addresses are not in
a pattern.

Label relative address
a one-byte field that indicates the position of labels in the buffer. Specify 0 as
the relative address to indicate the first character of the buffer.

Data relative address
a one-byte field that indicates the position of data in the buffer. Specify 0 as the
relative address to indicate the first character of the buffer.

Format Pattern Extension
an optional 8-byte field that contains one of the following:

0 1 2 3
┌────────────┬──────────────┬──────────────────┬───────────────────┐
│ Code byte │ Label/Data │ Label relative │ Data relative │
│ │ Length-1 │ address │ address │
├────────────┴──────────────┴──────────────────┴───────────────────┤
│ Format Pattern Extension - Pointer to Label │

4 ├──│
│ Format Pattern Extension - Pointer to Data │

8 └──┘

Figure 41. Format Pattern Description and Format Pattern Extension

Format Service

Appendix. IPCS Exit Services Supported for Compatibility 183

v A label pointer
v A data pointer
v Both a label pointer and a data pointer
v Neither a label pointer nor a data pointer.

Bits 4 and 6 of the code byte determine the length and contents of the format
pattern extension. Table 17 shows the values for bits 4 and 6 of the code byte,
and the resultant format pattern extension.

Table 17. Format Pattern Extension and Code Byte

Bit 4 of Code
Byte

Bite 6 of
Code Byte

Length of
Format
Pattern
Extension

Contents of Format Pattern Extension

0 1 4 bytes Label pointer

1 0 4 bytes Data pointer

1 1 8 bytes Label pointer and data pointer

0 0 0 bytes Format pattern extension does not exist

A label pointer contains the address of a character string that you want the
format service to use for labels. When you include a label pointer in the pattern,
you must set bits 6 and 7 of the code byte. When you do not specify a label
pointer, the format service updates the label address in the exit parameter list
and uses it.

A data pointer contains the address of the first byte of data that you want the
format service to place in the output line. When this data is not in the caller’s
storage, you must set bit 3 of the code byte to zero; this causes the format
service to use the storage access service to obtain the data. When you include
a data pointer in the pattern, you must set bits 4 and 5 of the code byte. When
you do not specify a data pointer, the format service updates the data address
in the exit parameter list and uses it. If bit 2 is zero, the format service converts
this data to printable hexadecimal.

Figure 42 shows sample format patterns.

Format Service

184 z/OS V1R4.0 MVS IPCS Customization

Old Storage Access Service
Notes:

1. If your exit must function in the SNAP environment or both the IPCS and SNAP
environments, it is recommended that the storage access service be used
instead of this service.

2. If your exit need only function in the IPCS environment, it is recommended that
the storage access functions supplied by the storage map service or the symbol
service be used instead of this service.

References
See the following:
v “Storage Access Service” on page 150
v “Storage Map Service” on page 153
v “Symbol Service” on page 156

* THIS CHARACTER STRING DEFINES LABELS TO BE USED BY THE SERVICE
* FOR THE FORMATTED UCBs
*
TAPELB DC C’FSCTFSEQVOLISTABDMCT’ UCB LABELS
* THE FOLLOWING FIVE FORMAT PATTERNS DESCRIBE THE FIRST OF THE
* TWO LINES FOR A TAPE UNIT CONTROL BLOCK (UCB). THE FIRST TWO
* PATTERNS ARE EXPLAINED FOR EACH FIELD.
* THIS PATTERN IDENTIFIES A LABEL AND DATA ITEM THAT WILL BE
* INSERTED IN THE FIRST LINE OF A TAPE UCB
TAPEL1 DS 0F THIS PATTERN SETS UP THE FSCT FIELD

DC X’2F’ THIS CODE BYTE IS SET FOR: NO CONVERSION,
* DATA AND LABEL POINTERS FOLLOWING, AND LABEL
* AND DATA ITEM TO BE PLACED IN BUFFER.

DC X’31’ LABEL LENGTH-1 IS 3. DATA LENGTH-1 IS 1
DC FL1’12’ LABEL RELATIVE ADDRESS IN OUTPUT LINE IS 12
DC FL1’17’ DATA RELATIVE ADDRESS IN OUTPUT LINE IS 17
DC A(TAPELB) POINTER TO STRING OF LABELS

DATADDR DC A(0) ADDR OF DATA TO BE FILLED IN DURING EXECUTION
*
* NEXT PATTERN SETS THE FSEQ FIELD IN THE OUTPUT LINE. THIS
* PATTERN USES THE SAME LABEL STRING AND DATA ADDRESS. THE
* FORMAT SERVICE UPDATES ITS LABEL AND DATA ADDRESSES USING
* LENGTH FIELDS. TWO WORDS IN THE EXIT PARAMETER LIST STORE THE UPDATED
* ADDRESSES.
*

DC X’25’ CODE BYTE SET FOR: NO CONVERSION, PLACE
* LABEL AND DATA IN BUFFER(NO ADDRESSES-DO UPDATE

DC X’31’ LABEL LENGTH(4)-1 IS 3. DATA LENGTH(2)-1 IS 1.
DC FL1’28’ LABEL RELATIVE ADDRESS IN OUTPUT BUFFER IS 28.
DC FL1’33’ DATA RELATIVE ADDRESS IN OUTPUT LINE IS 33.

*
* THE REMAINING PATTERNS IN THIS LINE ARE CONDENSED
*

DC X’25’,X’35’,FL1’44’,FL1’49’ VOLI FIELD
DC X’25’,X’30’,FL1’59’,FL1’64’ STAB FIELD
DC X’25’,X’30’,FL1’76’,FL1’81’ DMCT FIELD
DC X’00’,X’00’,FL1’0’,FL1’0’ INDICATES END

* OF LINE
* THE SECOND LINE OF THE TAPE UCB IS DEFINED BY A SECOND SERIES OF
* FORMAT PATTERNS, TAPEL2.

Figure 42. Sample Format Patterns

Storage Access Service

Appendix. IPCS Exit Services Supported for Compatibility 185

Your routine can pass control to the storage access routine for all references to
storage in the dumped system (any reference to storage in a dumped system really
refers to a record in the dump data set).

You can invoke the storage access routine in one of two ways:

v By obtaining the address of the exit services router from the ADPLSERV field of
the exit parameter list, BLSABDPL.

v By obtaining the address of the storage access routine from the ADPLMEMA field
of the exit parameter list, BLSABDPL, and passing control using standard linkage
conventions. The following discussion illustrates this method of invoking the
storage access routine.

To pass control to the storage access routine using standard linkage conventions
register 0 must contain the address to be referenced and register 1 must contain
the original exit parameter list address when the storage access routine receives
control.

When the ADPLSAMK bit in the ADPLPRDP field equals 1, the storage access
service clears the high order byte of the virtual address in register 0 before using
the virtual address. For real addresses, the storage access service always clears
the high order bit in register 0.

You can specify the number of bytes of data to be read (between 1 and 4096) in
the ADPLDLEN field in the exit parameter list.

When the storage access routine returns control to your module, register 0 contains
the address of the data requested and register 15 contains a return code. When
you do not specify a length, the length of data available for reference depends on
the boundary of the address requested. If the address is on a byte boundary, only
one byte can be referenced. The maximum available is 4096 bytes on a 4K
boundary.

In the example in Figure 43, the subroutine MEMORY uses the storage access
routine, then checks to be sure the data is returned.

Note that your routine must test the contents of register 15 for a return code of 00
to indicate that the storage access routine was successful. A code of 04 indicates
that requested storage was not in the dump or the service was unable to access it.

The ASID used for accessing storage is the current ASID being processed, or, in
the case of exit routines called by a control statement, the ASID in the dump header
record is passed. Any ASID can be specified by the exit routine by storing the ASID
in the exit parameter list.

In addition to requests for data at a specified virtual storage address, requests for
data at a specified real storage address, requests for processor status records, and
requests for the dump header record are satisfied. For real storage address
requests, register 0 must contain the real address of the data to be read. For
processor status record requests, the low-order byte of register 0 must contain the
processor address.

In SADMP, the processor address is between X'0' and X'3F'. In an SVC dump the
only valid processor address is X'0'. For information on the processor status record
mapping macro, see “Invoking with the Exit Services Router” on page 107. Register
0 is not used for header record requests.

Storage Access Service

186 z/OS V1R4.0 MVS IPCS Customization

The type of read operation requested is determined from the parameter list field
ADPLPRDP. When more than one bit in this field is on, the request is incorrect and
a non-zero value is returned in register 15. When no bits are on, a request for data
at a virtual storage address is processed.

Note: The length field ADPLDLEN is not applicable for processor status and
header record reads.

Print Service
IPCS now provides this service through the standard print service and the
expanded print service.

Reference
See “Standard Print Service” on page 149 and “Expanded Print Service” on
page 127.

You can invoke the print service in one of two ways:

v Obtain the address of the exit services router from the ADPLSERV field of the
exit parameter list, BLSABDPL.

v Obtain the address of the print service from the ADPLPRNT field of the exit
parameter list, BLSABDPL, and pass control using standard linkage conventions.
The following discussion illustrates this method of invoking the print service.

To pass control to the print service using standard linkage conventions register 1
must contain the address of the original exit parameter list address when the print
service receives control.

Field ADPLPRNT in the exit parameter list is the address of the print routine that
your module can use to write out the buffer area.

Your module must pass control to the print routine using standard linkage
conventions. Upon entry to the print routine, register 1 must contain the address of
the original exit parameter list.

The print routine causes the output buffer pointed to by the parameter list to be
printed and returns a new 133-character buffer (set to blanks) to your module.

* THIS ROUTINE IS USED FOR ALL REFERENCES TO STORAGE IN THE SYSTEM.
* ’PREG’ ON ENTRY CONTAINS THE ADDRESS WANTED FROM THE SYSTEM; IT
* ALSO USES ’PREG’ TO RETURN TO THE CALLER THE ADDRESS OF THAT
* REQUESTED DATA. "R1" ALWAYS CONTAINS THE ADDRESS OF THE
* ORIGINAL PARAMETER LIST.
* IF THE REQUESTED ADDRESS IS NOT AVAILABLE, CONTROL IS PASSED
* TO THE ADDRESS IN ’ERROR’.
MEMORY LR R0,PREG SET REQUESTED ADDR TO REGISTER 0

L R15,ADPLMEMA GET STORAGE ACCESS ADDRESS FROM
* PARM LIST

BALR R14,R15 GO TO STORAGE ROUTINE
LR PREG,R0 RETURN REQUESTED ADDR IS SAME REG
LTR R15,R15 IS REQUESTED ADDRESS AVAILABLE
BC 8,USEDATA YES--USE IT
B ERROR NO--GO TO ERROR ROUTINE

USEDATA L RADDR,0(PREG) GET DATA AT REQUESTED ADDRESS

Figure 43. Example - Using the Storage Access Routine

Storage Access Service

Appendix. IPCS Exit Services Supported for Compatibility 187

The output buffer address points to a 133-character work area where a print line is
constructed. This buffer is blank on entry. The carriage control character is provided
for you. When a print line is built, the print routine must be given control to cause
the line to be printed. To print a blank line, your module must pass control with a
blank buffer. If bit 6 in the exit parameter list field ADPLFLAG is on when the print
service receives control, the output buffer is printed at the top of the next new page.
Bit 6 is turned off when control is returned to the exit routine. Output is based on
the message routing parameter used. If ADPLPRT is on then the routing parameter
is overridden and output is sent to the terminal.

In the example in Figure 44, the subroutine PRINTIT uses the print service
subroutine.

Summary Dump Data Access Service
The summary dump (SUMDUMP) data access service (IEAVTFRD) allows your
formatting routine to access the 31-bit portion of summary dump data contained in
an SVC dump. IEAVTFRD is reenterable and can be invoked in 24- or 31-bit
addressing mode.

Control is passed to IEAVTFRD with the CALL macro, using standard linkage
conventions. Register 1 must contain the address of the exit parameter list.
IEAVTFRD uses the ADPLCOM1 field of the exit parameter list during its
processing. This word must be set to zero prior to the first invocation of IEAVTFRD,
and must not be changed between invocations.

Summary dump data is returned as variable length records. Each record contains a
header that describes the data in the record. This header is described by mapping
macro IHASMDLR.

Note: Fields SMDLRSTK and SMDLRAST always contain binary zeros in z/OS
V1R2 and later.

* THIS SECTION OUTPUTS A LINE OF A TAPE UCB
OUTPUTIT LA R0,TAPEL2 SET ADDR OF LINE 1 FORMAT PATTERN

BAL RLINK,FORMAT GO TO FORMAT LINE
BAL RLINK,PRINTIT GO PRINT IT WITH SERV RTN
BAL RLINK,PRINTIT GO PRINT A BLANK LINE
B NEXTLINE GO TO PROCESS NEXT LINE

* THIS SECTION OF CODE IS USED TO CALL THE PRINT SERVICE
* ROUTINE. REGISTER 1 MUST CONTAIN THE ADDRESS OF THE ORIGINAL
* EXIT PARAMETER LIST.
PRINTIT L R15,ADPLPRNT GET PRINT RTN ADR FROM PARM LIST

BALR R14,R15 GO TO PRINT ROUTINE
BR RLINK RETURN TO SECTION OF CODE ABOVE

*THIS SUBROUTINE CALLS THE FORMAT SERVICE TO AUTOMATICALLY
*FORMAT AN OUTPUT LINE OF THE UCB. INPUT TO THIS SECTION OF CODE
*IS THE ADDRESS OF THE FIRST FORMAT PATTERN IN REG 0. REG 1 MUST
*CONTAIN THE ADDRESS OF THE ORIGINAL EXIT PARAMETER LIST. IF
*DATA CANNOT BE OBTAINED BY THE SERVICE ROUTINE, CONTROL IS
*PASSED TO AN ERROR SUBROUTINE TO PRINT ERROR MESSAGE
FORMAT L R15,ADPLFRMT GET RTN ADDR FROM PARM LIST

BALR R14,R15 GO TO SERVICE ROUTINE TO FORMAT LINE
LTR R15,R15 WAS FORMAT SUCCESSFUL
BCR 8,RLINK YES, GO PRINT LINE IMMEDIATELY
B ERROR NO, GO TO ERROR ROUTINE

Figure 44. Example - Using the Print Service Routine

Print Service

188 z/OS V1R4.0 MVS IPCS Customization

|

|
|
|

|
|

Summary dump records are sorted on the first invocation of IEAVTFRD. However,
only one of the sorted records is returned for each call to IEAVTFRD. The records
are returned in sorted address order.

You should invoke IEAVTFRD to read all of the available records, rather than
stopping when a particular record has been read.

Storage obtained by IEAVTFRD is not freed until the end of the summary dump
data is reached (return code 8 or greater). If all the records are not read, storage
remains allocated. The system will free it at the end of the session or earlier, but it
may impact other activities until this is done.

When IEAVTFRD returns control to your module, register 0 contains the address of
a simulated summary dump record. (This is only feasible for summary dump data in
the 31-bit portion of address spaces. Data outside the range is ignored.) Register
15 contains a return code. For nonzero return codes, IEAVTFRD prints an
explanatory message in the dump output.

Possible return codes from IEAVTFRD are:

Code Meaning

00 Register 0 contains the address of a summary dump record.

04 Register 0 contains the address of a partial summary dump record. During
summary dump processing, it was necessary to omit parts of this record. All
portions of the record beyond the first storage not recorded are replaced
with asterisks (X'5C') to maintain original relative displacements.

08 No data is returned. The normal end of the summary dump data has been
reached.

12 No data is returned. The end of the summary dump data has been reached
before the expected normal end.

16 There is no summary dump data available in the dump.

20 The CVT could not be located in the dump.

28 IEAVTFRD was unable to obtain sufficient storage for its processing.

32 The recovery termination manager control table (RTCT) could not be
located in the dump.*

36 The SMWK could not be located in the dump.*

*Information in the SMWK is used to determine whether a summary dump was in
progress at the time of a stand-alone dump. The RTCT is used to locate the
SMWK.

Note: Return codes 20 through 36 are not returned in z/OS V1R2 or later. No
SADUMP support is provided.

Specifying Format Subroutines for Summary Dump Records
Format subroutines for summary dump records are no longer invoked by verb exit
SUMDUMP. Alteration of load module IEAVTFSD to cause such routines to be given
control is no longer supported.

End of Programming Interface information

Summary Dump Data Access Service

Appendix. IPCS Exit Services Supported for Compatibility 189

|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|

|
|
|

Summary Dump Data Access Service

190 z/OS V1R4.0 MVS IPCS Customization

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 191

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book primarily documents information that is NOT intended to be used as
Programming Interfaces of z/OS.

This book also documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of z/OS. This information is identified where
it occurs, either by an introductory statement to a chapter or section or by the
following marking:

Programming Interface information

End of Programming Interface information

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v DB2
v DFSMS/MVS
v GDDM
v IBM
v IBMLink
v MVS
v MVS/ESA
v MVS/SP
v MVS/XA
v OS/390
v RACF
v Resource Link
v RETAIN
v SecureWay
v zSeries™

v z/OS

192 z/OS V1R4.0 MVS IPCS Customization

v z/OS.e

Other company, product, and service names may be trademarks or service marks
of others.

Notices 193

194 z/OS V1R4.0 MVS IPCS Customization

Index

Numerics
17-character time stamp service 167
26-character time stamp service 169

A
access

IPCS dialog
customizing 27

limiting
to TSO/E command 49

to IPCS
customize 14

to IPCS dialog
customize 14

access storage
exit service 150

access storage subroutine
example 152

acronym
validity check 113

activate
exit routine trap 173

add symptom service 109
BLSADSY mapping macro

ADSYML field 109
ADSYML2 field 109
ADSYMP field 109
ADSYMP2 field 109
ADSYNOSV field 109

example 110
invoking 110
invoking example 111
output 110
required information 109
restriction 109
return code 110

add symptom string 6
ADMINAUTHORITY parameter

of IPCSPRxx parmlib member 17
ADPBTCB field

of the ABDPL data area 91
ADPLASID field

of the ABDPL data area 65
ADPLCBP field

of the ABDPL data area 65, 91, 97
ADPLCODE field

of ABDPL data area 108
ADPLEFAN field

of the ABDPL data area 61, 65
ADPLEFCD field

of the ABDPL data area 61, 65
ADPLOPTR field

of the ABDPL data area 100
ADPLPACC exit service parameter list 7
ADPLPBLC bit

use in control block formatter service 114

ADPLPDAC bit
use in control block formatter service 114

ADPLPDL1 bit
use in control block formatter service 115

ADPLPDL2 bit
use in control block formatter service 115

ADPLPDU1 bit
use in control block formatter service 115

ADPLPDU2 bit
use in control block formatter service 115

ADPLPECT exit service parameter list 7, 126
ADPLPEFG field

use in ECT service 125
ADPLPEPN bit

use in exit control table service 125
ADPLPEVB field

use in ECT service 125
ADPLPFMT exit service parameter list 7, 77, 111, 132

use in control block formatter service 111
ADPLPFXT data area 115
ADPLPFXT exit service parameter list 77
ADPLPHEX bit

view control bit 117
ADPLPLME bit

use in control block formatter service 114
ADPLPNOR bit

view control 117
ADPLPOAC bit

use in control block formatter service 113
ADPLPOLM bit

use in control block formatter service 114
ADPLPOPT flag byte

use in control block formatter service 113
ADPLPOSI bit

use in control block formatter service 114
ADPLPPDA bit

use in control block formatter service 114
ADPLPRAC bit

use in control block formatter service 113
ADPLPREG bit

view control bit 117
ADPLPRES bit

view control 117
ADPLPSDH bit

use in control block formatter service 113
ADPLPSEL exit service parameter list 7
ADPLPSOF bit

use in control block formatter service 114
ADPLPSTM bit

use in control block formatter service 114
ADPLPSUM bit

view control 117
ADPLPVCL bit 115
ADPLSCOL field

of the ABDPL data area
use to set formatting start column 79

use in expanded print service 128

© Copyright IBM Corp. 1988, 2002 195

ADPLSCQE bit
use in CQE create service 119

ADPLSERV field
in ABDPL data area 107

ADPLTCB field
of the ABDPL data area 97

AHLFFAP mapping macro
use to write GTFTRACE filter/analysis exit

routine 11
use to write GTFTRACE formatting appendage 11

AHLWKAL mapping macro
use to write GTFTRACE formatting appendage 11

AHLZGTO mapping macro
use to write GTFTRACE filter/analysis exit

routine 11
use to write GTFTRACE formatting appendage 11

AHLZGTS mapping macro 11
use to write GTFTRACE filter/analysis exit

routine 11
use to write GTFTRACE formatting appendage 11

alternate parmlib
creating 18

AMDUSRxx formatting appendage 86
analyze

dump data 3, 6
ANALYZE exit routine 51, 59

example 61
guideline 61
input 61
output 61
programming consideration 60

archaic exit service 12
array

controlling 115
number of formatted entry 115

ASCB exit routine 51, 63
input 65
invoking with ASCBEXIT 64
invoking with CBFORMAT 64
invoking with SUMMARY 64
output 66
programming consideration 64

ASCBEXIT subcommand
invoking ASCB exit routines with 64

ASID (address space identifier)
with name service 137

B
begin an IPCS dialog

with an IPCS CLIST 4
blank line

print 114
BLSABDPL mapping macro 7

exit parameter list 107
use in ECT service 125
use in IPCS add symptom service 110
use in IPCS CBSTAT service 118
use in IPCS control block formatter service 112
use in IPCS equate symbol service 124
use in IPCS expanded print service 130

BLSABDPL mapping macro (continued)
use in IPCS format model processor service 133
use in IPCS get symbol service 136
use in IPCS name service 138
use in IPCS name/token lookup service 141
use in IPCS storage map service 154
use in IPCS table of contents service 163
use in standard print service 149
use in storage access service 150
use with symbol service 160

BLSACBSP exit service parameter list 7
BLSACBSP mapping macro 7, 80

for CBSTAT exit service parameter list 117
BLSACBSP parameter list 117
BLSADSY exit service parameter list 7
BLSADSY mapping macro 7, 109
BLSAPCQE exit service parameter list 7
BLSAPCQE mapping macro 7

use in CQE create service 119
BLSCDDIR CLIST

change default 22
edit dump directory defaults 21
modify to change installation dump directory

information 4
to allocate IPCS user and sysplex dump

directories 14
BLSCECT parmlib member 2

description 2
BLSCECTX parmlib member 2
BLSCLIBD CLIST 5, 27

to start an IPCS dialog 4
BLSCSETD CLIST

check defaults in IPCS 43
BLSCUSER parmlib member 2

use to install an IPCS exit routine 101
BLSG dialog program 5, 28

recursively, using 39
BLSGDCDA dialog program 5, 40

display component data analysis 40
invoking example 40

BLSGDUIN dialog program 5, 41
display dump inventory 41
invoking example 41

BLSGLIBD dialog program 5, 30
invoking 31

BLSGSCMD dialog program 5, 41
invoking example 41
process a CLIST 41
process an IPCS subcommand 41
usage guideline 41

BLSGSETD dialog program
check defaults in IPCS 42
invoking example 43

BLSJPRMI procedure
for SNAP formatting 2

BLSLDISP dialog program 5, 43
browse an IPCS dump data set 43
invoking example 43

BLSPPERR panel 45
BLSQFXL mapping macro

use with MPF exit routine 10

196 z/OS V1R4.0 MVS IPCS Customization

BLSQMDEF macro 10
use with format model 134
using to create control block model 132

BLSQMFLD macro 10
use with format model 134
using to create control block model 132

BLSQNTKP exit service parameter list 7
BLSQNTKP mapping macro 7

IPCS name/token parameter list 141
BLSQSHDR macro 10

use with format model 134
using to create control block model 132

BLSRDATC data area
mapped by BLSRESSY data area 8
mapped by BLSRSASY data area 8

BLSRDATS data area
mapped by BLSRESSY data area 9
mapped by BLSRSASY data area 9

BLSRDATT data area
mapped by BLSRESSY data area 9
mapped by BLSRSASY data area 9

BLSRDRPX mapping macro 8
use to map dump record prefix 9

BLSRESSY data area
to map BLSRDATC data area 8
to map BLSRDATS data area 9
to map BLSRDATT data area 9

BLSRESSY mapping macro 7
initialized by get symbol service 135
to map equate symbol exit service parameter list 7
use with CBSTAT exit service 118
use with equate symbol service 123
use with get symbol service 136

BLSRNAMP exit service parameter list 7
BLSRNAMP mapping macro 7

IPCS name service parameter list 138
BLSRPRD mapping macro

use with summary dump access service 9
BLSRPWHS exit service parameter list 8
BLSRPWHS mapping macro 8

use in WHERE service 165
BLSRPWHS parameter list 165
BLSRSASY data area

to map BLSRDATC data area 8
to map BLSRDATS data area 9
to map BLSRDATT data area 9

BLSRSASY mapping macro
use with scan exit routine 9
use with storage map service 9

BLSRXMSP exit service parameter list 7
BLSRXMSP mapping macro 7
BLSRXSSP exit service parameter list 7
BLSRXSSP mapping macro 7

use to map the XSSP parameter list 156
BLSUGWDM module 49

validity check 49
BLSUGWDM validity check routine

IKJCPPL macro needed to write 11
BLSUPPR2 exit service parameter list 7
BLSUPPR2 mapping macro 7

BLSXSETD REXX exec
check defaults in IPCS 43

BROWSE option
bypass BROWSE option entry panel 43
IPCS dialog 43

bypass BROWSE option entry panel 43

C
CADS (common data space)

with name service 137
CANCEL primary command 44
CBFORMAT subcommand

invoking ASCB exit routines with 64
invoking post-formatting exit routines with 90
invoking TCB exit routines with 96

CBSPAS field
of the CBSTAT parameter list 81

CBSPAS2 field
of the CBSTAT parameter list 81

CBSPBFAD field
of the CBSTAT parameter list 81

CBSPD field
of the CBSTAT parameter list 81

CBSPDLE field
of the CBSTAT parameter list 81

CBSPDTD field
of the CBSTAT parameter list 81

CBSPLAD field
of the CBSTAT parameter list 81

CBSTAT (control block status) exit service 117
BLSACBSP parameter list 117
example 118
invoking example 119
output 118
required information 118
return code 118
use in CQE create service 120

CBSTAT (control block status) exit service parameter
list 80

CBSTAT (control block status) service
invoking 118

CBSTAT exit routine 51, 78
CBSP (CBSTAT exit service parameter list) 80
for ASCB 78
for TCB 78
input 80
invoking with CBSTAT 79
output 81
programming consideration 79

CBSTAT subcommand
invoking CBSTAT exit routines with 79

change default
of BLSCDDIR CLIST 22

CLIST
BLSCLIBD 4

CLIST (command list)
BLSCDDIR 14
BLSCLIBD 27
IPCS 1, 4
limiting access 49

Index 197

CLIST (command list) (continued)
process using BLSGSCMD 41

component data analysis
display using BLSGDCDA 40

component trace
format with IPCS 66

illustration 68
contention 51, 59

detected in a dump 59
control

IPCS processing 1
control block formatter exit routine 51, 76

input 78
output 78
programming consideration 76

control block formatter service 111
BLSABDPL mapping macro

ADPLASID field 112
ADPLPBAL field 112
ADPLPBAS field 112
ADPLPBAV field 112
ADPLPBLS field 112
ADPLPCHA field 112
ADPLPVCL field 112

customization 113
example 115
invoking 112
output 112
parameter list 111
parameter list example 112
required information 111
return code 112
view control 115

control block model
create

macro needed 10
control interval size

recommendation for user dump directory 22
COPYDDIR subcommand 14

IPCS 3
COPYTRC subcommand 3
coupling facility structures

obtaining information
exit routine for 143

CPPL (command processor parameter list)
used for validity checking 49

CQE (contention queue element) create exit service
parameter list

to map BLSRDATS data area 9
CQE (contention queue element) create service 119

example 121
invoking 121
output 121
parameter list 119
parameter list content

ADA field 119
ADL field 119
D field 120
DTD field 120
JOBN field 120
LAD field 120

CQE (contention queue element) create service
(continued)

parameter list content (continued)
MODN field 120
OW field 120
RSA field 119
RSL field 119
SYNM field 119

required information 119
return code 121

create
alternate parmlib

to customize session parameter 18
IPCS exit routine 14
IPCSPRxx parmlib member 18

create CTRACE input panel
with PANDEF parameter in BLSCUSER parmlib

member 74
create diagnostic report 6
create dump directory 4
create IPCS exit routine 6
create symbols subroutine

example 124
CSOA (command scan output area)

validity check with 49
CSOABAD bit

in the CSOA data area 49
CSOAEXEC bit

in the CSOA data area 49
CSVINFO macro 143
CTE (component trace entry) 66
CTRACE buffer find exit routine

install 101
CTRACE buffer find routine 51, 71

input 73
output 73
programming consideration 72

CTRACE filter/analysis exit routine 51, 73
input 75
invoke 101
output 75
programming consideration 74

CTRACE format table 51, 68
ITTCTXI macro needed to create 11
ITTFMTB macro needed to create 11
ITTFMTB mapping macro 11

CTRACE formatter 51
for component trace entry 70
input 71
programming consideration 70

CTRACE help panel
create

PANDEF parameter in BLSCUSER parmlib
member 74

CTRACE input panel
create

PANDEF parameter in BLSCUSER parmlib
member 74

CTRACE macro
FMTTAB parameter 69
with the DEFINE parameter 66, 69

198 z/OS V1R4.0 MVS IPCS Customization

CTRACE subcommand
USEREXIT parameter 101

CTXI data area 11
customize

access to IPCS 14
access to the IPCS dialog 14
IPCS dialog 14
IPCS installation package 14
IPCS session 3
session parameter 17

IPCSPRxx parmlib member 18
use of IPCS dump directory 14

D
data area

mapped by IPCS mapping macro 1
data set directory 19
data set management facility 19
data set name of IPCS data set directory

session parameter 17
data set name of IPCS problem directory

session parameter 17
deactivate

exit routine trap 173
debug

IPCS exit routine 3
debug exit routine

subcommand 173
debug exit routine subcommand 173
debug tool 3

IPCS 173
default

checking for IPCS session 42
DELETEAUTHORITY parameter

of IPCSPRxx parmlib member 17
diagnostic report

create 6
dialog program 4, 28

BLSG dialog program 28
BLSGDCDA dialog program

invoking example 40
BLSGDUIN dialog program 40, 41

invoking example 41
BLSGLIBD

invoking 31
BLSGLIBD dialog program 30
BLSGSCMD dialog program 41

invoking example 41
BLSGSETD dialog program

invoking example 43
BLSGSETD dialog program for IPCS 42
BLSLDISP 43

invoking example 43
IPCS 1

dialog service 28
activate using BLSGLIBD 30
activating 28

disable
IPCS-supplied trap 177

documents, licensed xi

DSD parameter
of IPCSPRxx parmlib member 17

DSNAME parameter
on invocation of BLSCDDIR CLIST 21

dump address
print 114

dump analysis 173
perform initial 4

dump data
format 6
locate 6
validate 6

dump data offset
suppression 114

dump data set
browse using BLSLDISP 43

dump data starting offset
changing 114

dump directory
customizing 14
customizing for IPCS 21
name 21
size 21
volume 21

dump header
suppression 113

dump index service 179
dump list

display using BLSGDUIN 41
dump record prefix 9
dynamic array

formatting 114

E
ECT service (exit control table service)

required information 125
END primary command 44
equate symbol service 122

example 124
invoking 124
output 124
required information 123
return code 124

ERROR parameter
TRAPON subcommand 174

ESSYAS field
of BLSRESSY data area

to map BLSRDATS 9
ESSYD field

of BLSRESSY data area
to map BLSRDATC 8

ESSYDT field
of BLSRESSY data area

to map BLSRDATT 9
ESSYSYM field

use with CBSTAT exit service 118
use with equate symbol service 123

example
TRAPON subcommand 177

exit control table service 125

Index 199

exit control table service (continued)
example 126
invoking 126
output 126
parameter list 126

example 126
return code 126

exit example
ANALYZE exit routine 121
using CQE create service 121

exit parameter list 107
exit routine 51

CBSTAT (control block status) 78
choosing which exit routine to write 51
control block formatter 76
creating a CTRACE format table 68
how to write 51
installation-provided 51
IPCS

exit service needed to write 1
write ANALYZE exit routine 59
write ASCB exit routine 63
write CBSTAT exit routine 78
write control block formatter exit routine 76
write CTRACE buffer find routine 71
write CTRACE filter/analysis exit routine 73
write find exit routine 81
write GTFTRACE filter/analysis exit routine 84
write GTFTRACE formatting appendage 85
write model processor formatting exit routine 87
write post-formatting exit routine 89
write scan exit routine 92
write TCB exit routine 95
write verb exit routine 98

exit service
17-character time stamp service 167
26-character time stamp service 169
add symptom service 109
archaic 12
CBSTAT exit service 117
contention queue element create service 119
control block formatter service 111
equate symbol service 122
exit control table service 125
expanded print service 127
format model processor service 132
get symbol service 135
invoking 107
IPCS 1, 12
name service 137
name/token lookup service 140
quiesce IPCS transaction service 144
recommended 12
return code 108
select ASID service 145
service code 108
standard print service 149
storage access service 150
storage map service 153
symbol service 156
table of contents service 162

exit service (continued)
TOD clock service 164
WHERE service 165

exit service router
to invoke IPCS exit service 12

exit service trap
activate 173
deactivate 173
list 173
resume 173

exit services router
address in ADPLSERV 107

expanded print service 127
example 131
invoking 130
note 130
output 130
parameter list 127
parameter list content

PPR2BUF field 129
PPR2BUFL field 129
PPR2MODN field 129
PPR2OVIN field 129
PPR2PFL1 field 129
PPR2TOKN field 129

required information 129
return code 130

F
FFAP data area 84

use to write GTFTRACE filter/analysis exit
routine 11

use to write GTFTRACE formatting appendage 11
find exit routine 51, 81

input 82
output 83
programming consideration 82

format
dump data 3
GTF trace output record 84

format control blocks subroutine
example 115

format dump data 6
between versions of MVS

with SYS1.MIGLIB 6
format dump data subroutine

example 133
format model 134

other use 135
residence 135

format model processor service 132
customization 133
example 133
invoking 133
output 133
parameter list 132
parameter list content 132
required information 132
return code 133

format of dump record 9

200 z/OS V1R4.0 MVS IPCS Customization

format pattern 182
format service 181
formatter

for component trace entry 70
formatting model

IBM-supplied 111
FXL (format exit routine list)

to describe formatted line 10
use with MPF exit routine 10

G
generate a message

NOTE subcommand 177
generate problem screening report 4
generate title for diagnostic report 6
get symbol service 135

example 137
invoking 136
output 136
required information 136
return code 136

GO subcommand 3
to resume dump exit processing 173
to resume IPCS trap processing 177

group identifier
session parameter 17

GROUP parameter
of IPCSPRxx parmlib member 17

GTF (generalized trace facility) 1
GTF trace output record

format 84
print 84

GTFTRACE filter/analysis exit routine 51, 84
AHLFFAP macro needed to write 11
AHLZGTO macro needed to write 11
AHLZGTS macro 11
input 85
output 85
programming consideration 84

GTFTRACE formatting appendage 51, 85
AHLFFAP macro needed to write 11
AHLWKAL macro needed to write 11
AHLZGTO macro needed to write 11
AHLZGTS macro 11
input 86
output 87
programming consideration 85

GTFTRACE subcommand
to format and print GTF trace output record 84

H
help

obtain for IPCS subcommand
HELP subcommand 177

help panel
for CTRACE

specified within input panel 74
HELP subcommand

to obtain help information 177

hiperspace
with name service 137

HMDUSRxx formatting appendage 86
HSM (hierarchical storage manager) 22

I
IEAVTFRD module 56, 188
IHASMDLR mapping macro 188

used to map dump header record 11
IKJCPPL mapping macro 11
IMDUSRxx formatting appendage 86
indicate

which IPCSPRxx member to use
on IPCS command 18

Information/Family program
used for problem management 19

initial dump analysis 4
input panel

for CTRACE
with PANDEF parameter in BLSCUSER parmlib

member 74
install

CTRACE buffer find exit routine 101
IPCS exit routine 14

install an IPCS exit routine
in a BLSCUSER parmlib member 101

installation package
IPCS 1

invoke
CTRACE filter/analysis exit routine 101

invoke exits subroutine
example 126

invoke IPCS exit service 6
exit service router 12

IPCS (interactive problem control system)
CBSTAT subcommand

enhancing output 78
CLIST 1
CLIST (command list) 41
CLIST command list 4
control processing 1
COPYDDIR subcommand 3
COPYTRC subcommand 3
customizing 14
customizing session parameter 17
debug tool 3, 173
dialog

customize 14
customizing access 27
modify to use ISPF 32
panel to access 27

dialog program 1, 4
dialog programs

function 39
disable trap for 177
exit routine 2, 3

exit service needed to write 1
in BLSCECT parmlib member 2

exit service 1, 12
use within an IPCS exit routine 7

Index 201

IPCS (interactive problem control system) (continued)
installation package 1
macro 1, 6
mapping macro 1, 6
MERGE subcommand 3
NOTE subcommand 3
obtain status of traps 178
performance consideration. 22
print data set (IPCSPRNT) 127
process by non-IPCS function 41
PROFILE subcommand 3
providing security for 49
REXX EXEC 1
session parameter

invoke 18
SETDEF subcommand 3
starting

methods for 26
subcommand 1, 3

CLIST to process 4
CLIST with example 4
process by non-IPCS function 41

SUMMARY subcommand
enhancing output 63, 95

task variable 61, 65
trap

resume 177
stop 177

trap supplied by 173
TRAPLIST subcommand 3
TRAPOFF subcommand 3
TRAPON subcommand 3
user dump directory 21
writing to print data set (IPCSPRNT) 127

IPCS command 18
NOPARM parameter 2, 18
PARM parameter 18
to begin an IPCS session 18
to specify which IPCSPRxx parmlib member to

use 18
IPCS exit routine 14

install 14
IPCS problem and data set management facility 19
IPCS validation routine 49
IPCSPR00 parmlib member 2, 19

customizing 18
IPCSPRNT data set

IPCS print data set 127
IPCSPRxx parmlib member 2, 17

ADMINAUTHORITY parameter 17
creating 18
DELETEAUTHORITY parameter 17
description 2
DSD parameter 17
GROUP parameter 17
LINELENGTH parameter 17
NODSD parameter 17
NOPDR parameter 17
PAGESIZE parameter 17
PDR parameter 17
PROBIDPREFIX parameter 17

IPCSPRxx parmlib member (continued)
SYSTEM parameter 17
used to customize session parameter 18

ISPEXEC service 5
ISPEXEC subcommand 14
ISPF (interactive system productivity facility)

ISPEXEC service 5
LIBDEF service 5
SELECT service 5

ISPF (Interactive System Productivity Facility)
modifying the IPCS dialog to use 32

ISPF primary option menu
ISR@PRIM 32, 35

ISPF SELECT service
ISPEXEC activation 28, 30
NEWAPPL(BLSG) option 42
requesting 28, 30

ISPF/PDF selection panel 14
ISPMLIB 5
ISPPLIB ddname 5
ISPSLIB ddname 5
ISPTLIB ddname 5
ISR@PRIM 32, 35
ITTCTE mapping macro 11, 69, 70
ITTCTXI mapping macro

use to create CTRACE format table 11
use to create CTRF exit routine 11

ITTFMTB macro 69
ITTFMTB mapping macro

use to create CTRACE format table 11
IXLZSTR macro 143

J
JCL (job control language)

for accessing IPCS 14

L
LIBDEF service 32

ISPF (interactive system productivity facility) 5, 14
licensed documents xi
line mode

request 114
LINELENGTH parameter

of IPCSPRxx parmlib member 17
list

exit routine trap 173
loaded modules

obtaining information
exit routine for 143

locate dump data 6
LOGON verification 49
LookAt message retrieval tool xii
LRECL (logical record length) for output data set

session parameter 17

M
macro

BLSABDPL data area 107

202 z/OS V1R4.0 MVS IPCS Customization

macro (continued)
BLSQMDEF 135
BLSQMFLD 135
BLSQSHDR 135
BLSRESSY 136
IPCS 1, 6
needed to create a control block model 10

maintain
dump directory 3
storage map 3
symbol table 3

map data area 6
mapping macro

IPCS 1, 6
MERGE subcommand 3
message

generate
NOTE subcommand 177

message retrieval tool, LookAt xii
migration

of IPCS 47
MIPR (module information processing routine) 143
model

for component trace entry 69
formatting 134

model processor formatting exit routine 51, 87
input 89
output 89
programming consideration 87

modify dump directory information
with BLSCDDIR CLIST 4

modify session parameter 2
MVS/370 SP

IPCS used on system 47
MVS/XA SP

IPCS used on system 47

N
name service 137, 140

ASID (address space identifier) 137
CADS (common data space) 137
hiperspace 137
invoking 138

name/token lookup service 140, 143
invoking 141

NODSD parameter
of IPCSPRxx parmlib member 17

NOPARM parameter
on IPCS command 2, 18

to bypass use of session parameters 18
NOPDR parameter

of IPCSPRxx parmlib member 17
NOTE subcommand 3

to generate a message 177
Notices 191
number of lines per page for output data set

session parameter 17

O
obtain

status of IPCS-supplied traps 178
obtain help

HELP subcommand 177
obtaining information

about coupling facility structures 143
about loaded modules 143

OPTIONS(TERM)
use in expanded print service 129

P
PAGESIZE parameter

of IPCSPRxx parmlib member 17
PANDEF parameter

in the BLSCUSER parmlib member
to define CTRACE panels 74

PANEL parameter 43
parameter list

BLSABDPL mapping macro 107
print service 187

PARM parameter
on IPCS command 18

to use session parameters 18
to indicate which IPCSPRxx parmlib member to

use 18
parmlib

alternate 18
parmlib member

related to IPCS 1
related to IPCS (interactive problem control

system) 1
PCQE (CQE create service parameter list) 119
PDR parameter

of IPCSPRxx parmlib member 17
perform initial dump analysis 4
post-formatting exit

invoking with CBFORMAT 90
invoking with SUMMARY 90

post-formatting exit routine 51, 89
input 91
output 91
programming consideration 90

PPR2 exit service parameter list 7
PPR2 parameter list 127
PPR2OCOL option flag

use of with expanded print service 79
PPR2TOKN field

use in expanded print service 128
print

GTF trace output record 84
print data set

for IPCS 127
print dump data subroutine

example 163
print service 187, 188

expanded print service 127
print service maintained for compatibility 187
required information 149

Index 203

print service (continued)
standard print service 149

print system storage area 4
PROBIDPREFIX parameter

of IPCSPRxx parmlib member 17
problem directory 19
problem identifier

session parameter 17
problem management

Information/Family program 19
IPCS problem and data set management facility 19
IPCS.DATA.SET DIRECTRY 19
IPCS.PROBLEM.DIRECTRY 19

problem management facility 19
problem screening report 4
process IPCS subcommand 4
PROFILE subcommand

IPCS 3
protection

for IPCS 49

Q
quiesce IPCS transaction service 144

R
recommended exit service 12
RECORDS parameter

on invocation of BLSCDDIR CLIST 21
respecify session parameter 2
resume

exit routine trap 173
IPCS trap 177

retrieve symbols subroutine
example 137

REXX EXEC
IPCS 1, 4

S
SASYAS field

of BLSRSASY data area
to map BLSRDATS 9

SASYF field
of BLSRSASY data area

to map BLSRDATC 8
SASYFT field

of BLSRSASY data area
to map BLSRDATT 9

scan exit routine 51, 92
input 93
output 94
programming consideration 92

security
providing for IPCS 49

Security Server 49
use for IPCS 49

select address spaces subroutine
example 148

select ASID service 145

select ASID service (continued)
address space selection

ALL parameter 146
ASIDLIST parameter 146
CURRENT parameter 146
ERROR parameter 146
JOBLIST parameter 146
TCBERROR parameter 146

example 148
invoking 147
invoking example 149
output 148
parameter list example 148
required information 147
return code 148

SELECT service 28, 30
ISPF (interactive system productivity facility) 5, 14

service
exit

for IPCS 1
service code 108
service supported for compatibility

IPCS exit service
dump index service 179
exit services router 179
format pattern 182
format service 181
print service 187
sample user formatting routine 182
service 179
storage access service 185
summary dump data access service 188

service 179
dump index service 179
format service 181
print service 187, 188
storage access service 185
summary dump data access service 188

session parameter
customizing 17
data set name of IPCS data set directory 17
data set name of IPCS problem directory 17
group identifier 17
IPCS command entered to use 18
LRECL for output data set 17
number of lines per page for output data set 17
problem identifier 17
suppression of data set management use 17
suppression of problem management use 17
system identifier 17
TSO/E userid, authority for 17

session parameter parmlib member
for IPCS 2

set view control 115
SETDEF subcommand

IPCS 3
SMS (storage management subsystem)

construct 21
SNAP formatting

BLSJPRMI procedure 2

204 z/OS V1R4.0 MVS IPCS Customization

specify which IPCSPRxx parmlib member to use
through IPCS command 18

standard print dump data
exit service 149

standard print dump data subroutine
example 150

standard print service 149
customization 150
example 150
invoking 149
output 149
return code 149

status
of IPCS-supplied traps 178

stop
IPCS trap

STOP parameter on TRAPON subcommand 177
storage access service 150, 185

customization 151
example 152
invoking 151
invoking example 153
output 151
parameter list example 151
required information 150
return code 151

storage map service 153, 156
invoking 154

subcommand 41
IPCS 1, 3
process using BLSGSCMD 41
to debug an exit routine 173

summary dump data access service 188
IHASMDLR macro needed to use 11

SUMMARY subcommand
invoking ASCB exit routines with 64
invoking post-formatting exit routines with 90
invoking TCB exit routines with 96

suppression of data set management use
session parameter 17

suppression of problem management use
session parameter 17

symbol service 156, 162
invoking 160
required information 157

symptom service 109
SYS1.HELP 48
SYS1.LPALIB

placing user exit routines in 101
SYS1.MIGLIB 6, 47, 48

placing user exit routines in 101
SYS1.MIGLIB system library

use with IPCS 1
SYS1.PARMLIB 48
SYS1.PARMLIB member

related to IPCS 1
SYS1.PARMLIB system library 18

IPCS member 1
IPCSPRxx parmlib member 2
member 2
member BLSCECT 2

SYS1.PARMLIB system library (continued)
support for IPCS 1

SYS1.SBLSCLI0 48
SYS1.SBLSCLI0 system library 4
SYS1.SBLSKEL0 48
SYS1.SBLSKEL0 data set 5
SYS1.SBLSMSG0 48
SYS1.SBLSMSG0 data set 5
SYS1.SBLSPNL0 48
SYS1.SBLSPNL0 data set 5
SYS1.SBLSTBL0 48
SYS1.SBLSTBL0 data set 5
sysplex dump directory

customizing for IPCS 21
system identifier

session parameter 17
system library SYS1.SBLSCLI0 4
SYSTEM parameter

of IPCSPRxx parmlib member 17
system storage area

print 4

T
table of contents service 162

customization 163
example 163
invoking 163
invoking example 164
output 163
required information 162
return code 163

tailor session parameter 2
TCB exit

invoking with CBFORMAT 96
invoking with SUMMARY 96
invoking with TCBEXIT 96

TCB exit routine 51, 95
input 97
output 97
programming consideration 96

TCBEXIT subcommand
invoking TCB exit routines with 96

terminal
writing to 127

time stamp
exit service 167, 169

title for diagnostic report
generate 6

TOD (time-of-day)
exit service 164

TOD clock service 164
trap

activate 173
deactivate 173
list 173
resume 173
supplied by IPCS 173

TRAPLIST subcommand 3
to debug a dump exit 173
to get status of IPCS-supplied trap 178

Index 205

TRAPLIST subcommand (continued)
use after stopping exit service 177

TRAPOFF subcommand 3
to debug a dump exit 173
to disable IPCS-supplied trap 177
use after stopping exit service 177

TRAPON subcommand 3
ERROR parameter 174
example 177
STOP parameter

to stop IPCS trap processing 177
to debug a dump exit 173
use after stopping exit service 177

truncation message
suppression 114

TSO/E (Time Sharing Option Extensions)
command 49

limiting access 49
command name

validate 49
environment xi
LOGON verification 49
userid, authority for

session parameter 17
TSO/E ALLOCATE command

for accessing IPCS 14
TSO/E LOGON procedure 14
TSO/E parser 100

U
UPT (user profile table)

use in expanded print service 128
user dump directory

concurrent use 14
customizing 14
customizing for IPCS 21

user-written CLIST
for accessing IPCS 14

USEREXIT parameter
of CTRACE subcommand

to invoke a CTRACE filter/analysis exit
routine 101

utility function 3

V
validate

TSO/E command name 49
validate dump data 6
validity check

BLSUGWDM module 49
validity check exit routine 49
verb exit

invoking with VERBEXIT 99
verb exit routine 51, 98

input 99
output 100
programming consideration 99

VERBEXIT subcommand
invoking verb exit routines with 99

view
dump data 3

view control 115
ADPLPNOR bit 117
ADPLPREG bit 117
ADPLPRES bit 117
ADPLPSUM bit 117
example displaying key field 117
example displaying reserved field 117

view control bit 116
ADPLPHEX bit 117

VOLUME parameter
on invocation of BLSCDDIR CLIST 21

W
WHERE example

using WHERE service 166
WHERE exit service

parameter list
to map BLSRDATS data area 9

WHERE service 165
example 166
invoking 166
invoking example 167
output 166
parameter list 165
required information 165
return code 166

WKAL data area
use to write GTFTRACE formatting appendage 11

write
IPCS exit routine 14

write exit routine
choosing which exit routine to write 51

206 z/OS V1R4.0 MVS IPCS Customization

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Interactive Problem
Control System (IPCS)
Customization

Publication No. SA22-7595-02

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7595-02

SA22-7595-02

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY

12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5694-A01, 5655-G52

Printed in U.S.A.

SA22-7595-02

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	Where to find more information
	Information updates on the web

	Accessing z/OS licensed documents on the Internet
	Using LookAt to look up message explanations

	Summary of changes
	Chapter 1. IPCS Installation Package
	Installation Package
	SYS1.PARMLIB Members Related to IPCS
	IPCS Subcommands
	IPCS REXX Execs and CLISTs
	IPCS Dialog Programs
	SYS1.MIGLIB System Library
	IPCS Macros and Mapping Macros
	IPCS Macro for Invoking an IPCS Exit Service within an IPCS Exit Routine
	IPCS Macros for Using an IPCS Exit Service within an IPCS Exit Routine
	IPCS Macros for Writing IPCS Exit Routines
	IPCS Macros for Creating a Control Block Model
	Non-IPCS Macros for IPCS Customization

	IPCS Exit Services
	Customizing the IPCS Installation Package

	Chapter 2. Customizing IPCS Session Parameters
	Session Parameters
	Customizing Session Parameters
	Creating an Alternate Parmlib
	Indicating Which IPCSPRxx Member IPCS Should Use
	Using Problem and Data Set Management Facilities

	Chapter 3. Customizing the Dump Directory
	Customizing the Directories
	Editing the BLSCDDIR CLIST
	Dump Directories and Performance

	Chapter 4. Customizing Access to IPCS
	Planning for Customized Access
	Decisions to Make Before Starting Customization
	Starting IPCS: Deciding Which Method to Provide
	Comparison of the Two Methods

	Invoking the IPCS Dialog: Deciding Which Function to Use
	BLSCLIBD CLIST - Activate IPCS Dialog Services
	BLSG Dialog Program - Activate IPCS Dialog Services
	BLSGLIBD Dialog Program - Activate IPCS Dialog Services
	ISPF LIBDEF Service

	Customizing Access
	Customizing Access when Using the BLSCLIBD CLIST
	Adding an ISPF Option to Invoke the BLSCLIBD CLIST
	Providing a TSO/E Logon Procedure and CLIST

	Customizing Access when Using the BLSG Dialog Program
	Adding an ISPF Option to Invoke the BLSG Dialog Program
	Providing a TSO/E Logon Procedure and CLIST

	Chapter 5. Customizing the IPCS Dialog
	Using the ISPF SELECT Service with IPCS Dialog Programs
	Recursive Invocations of the ISPF and IPCS Dialogs

	Tailoring the IPCS Dialog to Identify the IPCS Level
	Dumps of IPCS

	BLSGDCDA Dialog Program - Display Component Data Analysis
	BLSGDUIN Dialog Program - Display Dump Inventory
	BLSGSCMD Dialog Program - Process an IPCS Subcommand or CLIST
	BLSGSETD Dialog Program - Check Defaults
	BLSLDISP Dialog Program - Browse an IPCS Dump Data Set

	Chapter 6. Using IPCS on Another System
	Chapter 7. Providing Security for IPCS
	Providing z/OS Security Server Protection
	Using BLSUGWDM to Disable Access to TSO/E Commands

	Chapter 8. Writing IPCS Exit Routines
	Exit Routines
	General Information about Writing an IPCS Exit Routine
	Conditions on Entry to an IPCS Exit Routine
	Services Available to an IPCS Exit Routine
	Restrictions and Limitations of an IPCS Exit Routine
	Discontinuing Processing for an Interactive User
	Communication Between IPCS Exit Routines
	External Routines Invoked by IPCS Exit Routines
	IPCS Data Areas, Macros, and Mapping Macros to be Used by IPCS Exit Routines
	Conventions for Return to Caller for an IPCS Exit Routine
	Making Load Libraries Available to IPCS
	Managing Storage for IPCS Exit Routines
	Storage Location
	Register Saving
	Host Environment
	ABDPL Address
	Programming Considerations

	ANALYZE Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output
	Example

	Address Space Control Block (ASCB) Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Component Trace Exit Routines
	CTRACE Format Table
	Contents of the CTRACE Format Table

	IPCS Models
	CTRACE Formatter
	Programming Considerations
	Input
	Output

	CTRACE Buffer Find Exit Routine
	Possible Uses
	Programming Considerations
	Input
	Output

	CTRACE Filter/Analysis (CTRF) Exit Routine
	Possible Uses
	Programming Considerations
	Input
	Output

	Control Block Formatter Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control
	Returning to Caller

	Input
	Output

	Control Block Status (CBSTAT) Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Find Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	GTFTRACE Filter/Analysis Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control
	Returning to Caller

	Input
	Output

	GTFTRACE Formatting Appendage
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control
	Returning to Caller

	Input
	Output

	Model Processor Formatting (MPF) Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control
	Returning to Caller

	Input
	Output

	Post-Formatting Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Scan Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Task Control Block (TCB) Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Verb Exit Routine
	Possible Uses
	Programming Considerations
	Performance Implications
	Restrictions and Limitations
	Data Areas
	Passing Control

	Input
	Output

	Chapter 9. Installing IPCS Exit Routines
	Installing Routine For ABEND/SNAP Formatting
	Installing Routine for IPCS Formatting

	Chapter 10. IPCS Exit Services
	Exit Services
	Invoking with the Exit Services Router
	Add Symptom Service
	Restrictions
	Requirements
	Invoking the Service
	Output
	Example

	Control Block Formatter Service
	Requirements
	Invoking the Service
	Output
	Customization
	Example
	View Control

	Control Block Status (CBSTAT) Service
	Requirements
	Invoking the Service
	Output
	Example

	Contention Queue Element (CQE) Create Service
	Requirements
	Invoking the Service
	Output
	Example

	Equate Symbol Service
	Requirements
	Invoking the Service
	Output
	Example

	Exit Control Table (ECT) Service
	Requirements
	Invoking the Service
	Output
	Example

	Expanded Print Service
	Requirements
	Invoking the Service
	Output
	Notes on the Expanded Print Service
	Example

	Format Model Processor Service
	Requirements
	Invoking the Service
	Output
	Customization
	Example

	Format Models
	Residence of Models
	Other Uses for Models

	Get Symbol Service
	Requirements
	Invoking the Service
	Output
	Example

	Name Service
	Requirements
	Invoking the Service
	Output

	Name/Token Lookup Service
	Requirements
	Invoking the Service
	Output

	Obtaining Information About Coupling Facility Structures
	Obtaining Information About Loaded Modules
	Quiesce IPCS Transaction
	Requirements
	Invoking the Service
	Output
	Example

	Select Address Space Identifier (ASID) Service
	Requirements
	Invoking the Service
	Output
	Example

	Standard Print Service
	Requirements
	Invoking the Service
	Output
	Customization
	Example

	Storage Access Service
	Requirements
	Invoking the Service
	Output
	Customization

	Storage Map Service
	Requirements
	Invoking the Service
	Output

	Symbol Service
	Requirements
	Invoking the Service
	Output

	Table of Contents Service
	Requirements
	Invoking the Service
	Output
	Customization
	Example

	TOD Clock Service
	Requirements
	Invoking the Service
	Output

	WHERE Service
	Requirements
	Invoking the Service
	Output
	Example

	17-Character Time Stamp Service
	Requirements
	Invoking the Service
	Output
	Example

	26-Character Time Stamp Service
	Requirements
	Invoking the Service
	Output

	Chapter 11. The IPCS Debug Tool
	Implementing the Debug Tool
	Enabling IPCS-Supplied Traps
	Output from the TRAPON Subcommand

	Stopping and Resuming IPCS Trap Processing
	Disabling IPCS-Supplied Traps
	Getting the Status of IPCS-Supplied Traps

	Appendix. IPCS Exit Services Supported for Compatibility
	Services
	Dump Index Service
	Format Service
	Format Patterns

	Old Storage Access Service
	Print Service
	Summary Dump Data Access Service
	Specifying Format Subroutines for Summary Dump Records

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

