
z/OS

TSO/E Customization

SA22-7783-03

���

z/OS

TSO/E Customization

SA22-7783-03

���

Note
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 767.

Fourth Edition, September 2002

This edition applies to Version 1 Release 4 of z/OS (5694-A01), and Version 1, Release 4 of z/OS.e (5655-G52), and
to all subsequent releases and modifications until otherwise indicated in new editions.

This is a major revision of SA22-7783-02.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . xi

Tables . xv

About this document . xix
Who should use this document xix
How this document is organized xix
How to use this document. xxi
Where to find more information xxii

Summary of changes . xxv

Part 1. Introduction . 1

Chapter 1. Customization Overview 3
Required Customization . 4
Optional Customization . 5

Chapter 2. Writing Exit Routines. 25
Overview of Exits that TSO/E Provides 26
General Programming Considerations 33
TSO/E Standard-Format Exits 34
Format of the Exit Descriptions 44

Part 2. Considerations for Installing, Migrating and Activating the Functions of
TSO/E. 47

Chapter 3. Considerations for Installing TSO/E 49
REXX Parameter Modules. 49
Using the LINKPGM, ATTCHPGM, LINKMVS, and ATTCHMVS Host Command

Environments . 49
Installing the APPC/MVS Administration Dialog 49
Allocating the User Attributes Data Set (SYS1.UADS) 50
Migrating Customized Parts . 50
Using SYS1.PARMLIB Member IKJTSOxx 52
Migrating TSO/E Commands . 52
National Language Considerations. 52
LOGON Considerations. 53
Considerations for Katakana Devices. 53
Using Security Labels . 54
Reviewing Macro Libraries for TSO/E 54
Installing a REXX Compiler . 55
Installing TSO/E for the First Time 55
Installing the Information Center Facility for the First Time 55

Chapter 4. Considerations for Migrating TSO/E 57
Migrating from One TSO/E Release to Another 57

Chapter 5. Activating the Functions of TSO/E 61
Using TSO/E . 61
Using Specific Functions of TSO/E 62

© Copyright IBM Corp. 1988, 2002 iii

Part 3. Setting Up and Customizing the TSO/E Environment 69

Chapter 6. Defining and Customizing TSO/VTAM and TSO/TCAM Time
Sharing . 71

Defining and Customizing TSO/VTAM Time Sharing 71
Defining and Customizing TSO/TCAM Time Sharing 76

Chapter 7. Setting up Logon Processing 79
Controlling Logons . 79
Limiting the Size of Each User’s Address Space 80
Writing and Giving Users Access to Logon Procedures 81

Chapter 8. Customizing the Logon and Logoff Process. 87
Customizing Logon Messages 89
Limiting the Number of Logon Attempts 90
Customizing the Reconnect Option of the LOGON Command. 90
Suppressing the SYSOUT Data Set Generated from the Logon Job 91
Improving the Performance of the Logon Process 91
Using SECLABEL on the Logon Process 92
Overview of Logon Exit Processing 92
Writing a Logon Pre-Prompt Exit (IKJEFLD/IKJEFLD1) 93
Writing a Logon Pre-Display Exit (IKJEFLN1) 118
Writing a Logon Post-Display Exit (IKJEFLN2) 129
Writing a Logon Post-Prompt Exit (IKJEFLD3) 140
Writing a Logoff Exit (IKJEFLD2) 143
Customizing Logon Panels and Logon Help Panels 146

Chapter 9. Defining TSO/E to ISPF and ISPF/PDF 151
Customizing the Logon Procedure for ISPF and ISPF/PDF 151
Specifying the TSO/E Commands Users Can Issue from ISPF/PDF 151
Defining the TSO/E Session Manager to ISPF/PDF 152

Chapter 10. Specifying Authorized Commands/Programs, and Commands
Not Supported in the Background. 153

Using SYS1.PARMLIB Member IKJTSOxx 154
Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS 155

Chapter 11. Specifying Commands and Programs for the
Command/Program Invocation Platform 159

Considerations for Specifying Commands and Programs 159
Using the PLATCMD and PLATPGM Statements 160

Chapter 12. Setting Up the TRANSMIT and RECEIVE Environment 163
Specifying Installation Defaults for TRANSMIT and RECEIVE 163
Modifying JES Initialization Statements 164

Chapter 13. Customizing the HELP Data Set 167
Updating the HELP Data Set 167

Chapter 14. Making Host Services Available to PC Users 169
Initializing MVSSERV for the TSO/E Enhanced Connectivity Facility 169

Chapter 15. Monitoring TSO/E Resources 171
Monitoring TSO/E Commands 171
Monitoring the Performance of TSO/E Users 171

iv z/OS V1R4.0 TSO/E Customization

Chapter 16. Defining Performance Objectives for TSO/E 173
Deciding What Kind of Response Time TSO/E Users Will Have 173
Deciding About Better Performance for Certain Users and Commands 174
Making TSO/E Response Time More Consistent 175

Chapter 17. Protecting the Resources TSO/E Users Can Access. 177
Limiting the Use of TSO/E Commands. 177
Limiting Access to Data Sets 181

Chapter 18. Customizing PUTGET and GETLINE Processing 183
Customizing PUTGET and GETLINE 183

Chapter 19. Customizing TSO/E for Different Languages. 187
Providing Translated Messages 187
Specifying Help Data Sets . 188
Setting Up Languages for Users 189

Chapter 20. Security Considerations for Customizing TSO/E 193
TSO/E User Identification . 193
Security Label (SECLABEL) at Logon 193
Protecting User’s Messages 193
Accesses to Spool Data Sets 194
TSO/E TRANSMIT and RECEIVE Commands 194

Part 4. Maintaining the UADS, RACF Data Base, and Broadcast Data Set . . . 195

Chapter 21. Content and Structure of the UADS and Broadcast Data Set 197
Content and Structure of the UADS 197
Content of the Broadcast Data Set 200

Chapter 22. Working with the UADS and Broadcast Data Set 201
Creating the UADS and the Broadcast Data Set 202
Reformatting the UADS and the Broadcast Data Set 204
Updating the UADS and the Broadcast Data Set 206
Switching between broadcast data sets 207
Changing the Allocation of the Broadcast Data Set 208
Maintaining Directory Entries in the Broadcast Data Set 208
Global Resource Serialization 209
Broadcast data set in a sysplex 210

Chapter 23. Using the RACF Data Base to Maintain TSO/E Users 211
Processing of User Information 211
Converting to the RACF Data Base 212

Chapter 24. Changing the Amount of Space Reserved for Notices 217

Part 5. Customizing TSO/E Commands 219

Chapter 25. Customizing How Users Allocate and Manage Data Sets 221
Specifying a Default Data Set Disposition for the ALLOCATE Command . . . 222
Changing the Defaults for Managing Data Set Space 223
Writing Exits for the ALLOCATE Command 225

Chapter 26. Customizing the ALTLIB Command 231
Writing Exits for the ALTLIB Command. 231

Contents v

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 235
Defining Installation Defaults for the CONSOLE Command 237
Writing Exits for the CONSOLE Command 237
Writing Exits for the CONSPROF Command 249

Chapter 28. Customizing the EDIT Command 257
Defining Data Set Types and Changing the Default Attributes 259
Writing a Syntax Checker . 260
Writing an Exit for Syntax Checkers 265
Writing an Exit for the RENUM, MOVE, and COPY Subcommands 267
Adding EDIT Subcommands 272
Allocating Space for the Utility Work Data Sets 275

Chapter 29. Customizing the EXEC Command 279
Writing Exits for the EXEC Command 279

Chapter 30. Customizing the FREE Command 285
Writing Exits for the FREE Command 285

Chapter 31. Customizing the PARMLIB Command 289
Writing Exits for the PARMLIB Command. 290

Chapter 32. Customizing the SUBMIT Command and Job Output
Processing . 295

Setting Defaults for Jobs Submitted By TSO/E Users 296
Customizing How Users Submit Jobs and Process the Output 297
Writing an Exit for the SUBMIT Command 298
Writing an Exit for the OUTPUT, STATUS, and CANCEL Commands 308

Chapter 33. Customizing How Users Print Data Sets 317
Defining OUTPUT JCL Statements 319
Writing Exits for the OUTDES Command 321
Writing Exits for the PRINTDS Command. 325

Chapter 34. Customizing How Users Send and Retrieve Messages 335
Defining Installation Defaults for SEND, OPERATOR SEND, and LISTBC 337
Storing SEND Messages . 339
Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands 343

Chapter 35. Customizing the TEST Command 371
Adding TEST Subcommands and Command Processors 372
Writing Exits for the TEST Command 374
Writing Exits for Subcommands of the TEST Command 377

Chapter 36. Customizing the TESTAUTH Command. 383
Adding TESTAUTH Subcommands and Command Processors 384
Writing Exits for the TESTAUTH Command 384
Writing Exits for Subcommands of the TESTAUTH Command 389

Chapter 37. Customizing TRANSMIT and RECEIVE 395
Writing Exits for the TRANSMIT and RECEIVE Commands 396
TRANSMIT and RECEIVE NAMES Data Set Pre-allocation Exit — INMCZ21R 404
TRANSMIT Startup Exit — INMXZ01R or INMXZ01 407
TRANSMIT Termination Exit — INMXZ02R or INMXZ02 416
TRANSMIT Encryption Exit — INMXZ03R or INMXZ03 419
TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R 425

vi z/OS V1R4.0 TSO/E Customization

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R. 428
RECEIVE Termination Exit — INMRZ02 or INMRZ02R. 432
RECEIVE Notification Exit — INMRZ04 or INMRZ04R 435
RECEIVE Acknowledgment Notification Exit — INMRZ05R 440
RECEIVE Pre-acknowledgment Notification Exit — INMRZ06R. 443
RECEIVE Data Set Pre-Processing Exit — INMRZ11 or INMRZ11R 448
RECEIVE Data Set Post-Processing Exit — INMRZ12 or INMRZ12R 456
RECEIVE Data Set Decryption Exit — INMRZ13 or INMRZ13R 461
RECEIVE Post-Prompt Exit — INMRZ15R 467
RECEIVE Log Data Set Pre-Allocation Exit — INMRZ21R 471
Text Units and Text Unit Pointer Lists 474
Format of Transmitted Data . 481

Chapter 38. Customizing the TSOLIB Command 485
Writing Exits for the TSOLIB Command 485

Part 6. Customizing CLIST and REXX Processing 489

Chapter 39. Customizing CLIST Processing 493
Writing an Exit for Installation-Written Built-in Functions (IKJCT44B) 493
Writing an Exit for Installation-Written Statements (IKJCT44S) 497

Chapter 40. Customizing REXX Processing 501
Overview of Customizing REXX Processing 501
Language Processor Environments 501
Initializing and Terminating a Language Processor Environment 502
Characteristics for a Language Processor Environment 503
Replaceable Routines . 511
TSO/E REXX Exits . 512

Part 7. Support for a REXX Compiler. 525

Chapter 41. Routines and Interfaces to Support a REXX Compiler 527
Overview of Routines and Interfaces to Support a REXX Compiler 527
How REXX Identifies a Compiled Exec 528
The Compiler Programming Table 528
The Compiler Runtime Processor 530
Compiler Interface Routines. 534
Compiler Interface Initialization Routine 534
Compiler Interface Termination Routine 536
Compiler Interface Load Routine 537
Compiler Interface Variable Handling Routine 540

Chapter 42. Programming Routines for a REXX Compiler Runtime
Processor . 545

Overview of Programming Routines for a REXX Compiler Runtime Processor 545
External Routine Search Routine (IRXERS) 545
Host Command Search Routine (IRXHST) 549
Exit Routing Routine (IRXRTE) 552

Part 8. Session Manager . 555

Chapter 43. Setting Up a Session Manager Environment 557
SYS1.PARMLIB Changes . 557
Logon Procedure Changes . 558

Contents vii

Message Handler and Message Control Program Changes (TCAM Only) 559
Session Manager Environment Considerations 560

Chapter 44. Customizing Session Manager 563
Stream Definitions . 563
Modifying a Default Environment 566
Providing Multiple Default Environments 568
Writing Session Manager Exits 572

Part 9. Information Center Facility . 585

Chapter 45. Preparing the Information Center Facility for Use. 587
Information Center Facility Structure 588
Information Center Facility Libraries 590
Changing the Location of Program Libraries. 590
Identifying CLISTs and REXX Execs to VLF 591
Making Products Available . 591
Creating and Tailoring Application Definitions 593
Changing Information Center Facility Defaults 594
Making Installation Changes Available 614
Defining Printers to the Information Center Facility 615
Making Performance Decisions for Names Service 615
Estimating Space Requirements 616

Chapter 46. Customizing the Information Center Facility 619
Adding a Product or Service 620
Deleting a Product or Service 640
Changing a Product or Service 641
Creating or Tailoring Application Definitions 641
Invoking an Application . 641
Modifying ICF Start-up and Termination Processing 644
Adding Commands to the Command Table 646
Resynchronizing the Enrollment Default Profiles 647
Writing an Exit for ADRS . 647
Writing an Exit for the ICF Names Service 647
Writing Exits for Application Manager 650
Using the ICF Naming Conventions 655
Application, Panel, CLIST, and REXX Exec Hierarchy 663
Menu, Data Entry Panel, and Help Panel Associations 702

Chapter 47. Diagnosing Problems with the Information Center Facility 709
Displaying the Panel ID . 709
Activating and Using Trace . 709
Deactivating Trace . 711

Part 10. Reference . 713

Chapter 48. Overview of Facilities for Customizing TSO/E 715
ISPF/PDF Macro Statements and Exits 715
JES2 Exits and Initialization Statements 715
JES3 Exits and Initialization Statements 717
MVS Data Sets . 718
SMF Exits . 720
SYS1.PARMLIB Members . 720
TSO/E Macro Statements . 721

viii z/OS V1R4.0 TSO/E Customization

VTAM Exits. 722
VTAM Statements . 723

Chapter 49. Macro Syntax . 725
Coding the Macro Instructions 725
IKJBCAST Macro . 727
IKJEDIT Macro . 728
IKJIFRIF Macro . 732
IKJTSO Macro . 740
INMEND Macro . 740
INMNODE Macro . 740
INMXP Macro . 741

Part 11. Appendixes . 747

Appendix A. Executing the Terminal Monitor Program. 749
Writing JCL for Command Execution 749
Considerations for Executing Commands in the Background. 754
Considerations for Programs That Invoke the TMP 755

Appendix B. Example Logon Pre-Prompt Exit IKJEFLD 757

Appendix C. Accessibility . 765
Using assistive technologies 765
Keyboard navigation of the user interface. 765

Notices . 767
Programming Interface Information 769
Trademarks. 769

Bibliography . 771
TSO/E Publications . 771
Related Publications . 771

Index . 773

Contents ix

x z/OS V1R4.0 TSO/E Customization

Figures

1. Format of the TSO/E Standard Exit Parameter List and Exit-Dependent Data for TSO/E
Standard-Format Exits . 36

2. Format of the Command Buffer . 38
3. Output of the TSO/E Example Installation Exit IKJEXIT. 44
4. SMP/E Job to Move Logon Panels . 53
5. Sample Procedure to Start TSO/VTAM Time Sharing 72
6. Example of a CSECT Containing Translation Tables 76
7. Sample Procedure to Start TSO/TCAM Time Sharing 77
8. Sample Logon Procedure. 82
9. TSO/E Logon Exit Flow . 92

10. Exit-Dependent Data for the Logon Pre-Prompt Exit IKJEFLD1 97
11. Parameter List for Logon Pre-Prompt Exit IKJEFLD 100
12. Exit-Dependent Data for the Logon Pre-Display Exit IKJEFLN1 120
13. Installation-Defined Parameter Entries to IKJEFLN1 (Pointed to by Parameter Entry 16) 124
14. Exit-Dependent Data for the Logon Post-Display Exit IKJEFLN2 131
15. Installation-Defined Parameter Entries to IKJEFLN2 (Pointed to by Parameter Entry 16) 136
16. Exit-Dependent Data for the Logon Post-Prompt Exit IKJEFLD3 141
17. Exit-Dependent Data for the Logoff Exit IKJEFLD2 144
18. Sample Logon Panel . 149
19. Exit-Dependent Data for Exit IKJEFXG1 . 184
20. TSO/E Language Search Order . 190
21. Organization of the UADS . 198
22. The Simplest Structure for a Typical UADS Entry 199
23. A Complex Structure for a Typical UADS Entry 199
24. Creating the UADS and the Broadcast Data Set with a Batch Job 204
25. Allocating the New UADS as a Batch Job . 205
26. Reformatting the UADS and the Broadcast Data Set 205
27. Resetting the UADS Catalog Entry with a Batch Job 206
28. Updating the UADS with a Batch Job . 207
29. Synchronizing the Broadcast Data Set and RACF Data Base 215
30. Synchronizing the Broadcast Data Set, UADS and RACF Data Base 216
31. Exit-Dependent Data for the ALTLIB Command Termination Exit 233
32. Exit-Dependent Data for the CONSOLE Pre-Parse Exit 239
33. Exit-Dependent Data for the CONSOLE Activation Exit 240
34. Exit-Dependent Data for the CONSOLE Deactivation Exit 242
35. Exit-Dependent Data for the CONSOLE 80% Message Capacity Exit 243
36. Exit-Dependent Data for the CONSOLE 100% Message Capacity Exit. 245
37. Exit-Dependent Data for the CONSPROF Initialization Exit 250
38. Exit-Dependent Data for the CONSPROF Pre-Display Exit 251
39. Exit-Dependent Data for the CONSPROF Termination Exit 253
40. Format of Records Passed to Syntax Checkers 261
41. Interface Between the EDIT Program and Syntax Checkers 262
42. Example of Specifying the Data Set Types that a RENUM, MOVE, COPY Exit Processes 271
43. Example of Including IKJEBEST in Your Macro Library 274
44. Exit-Dependent Data for the EXEC Command Termination Exit 281
45. Exit-Dependent Data for the PARMLIB Initialization Exit 291
46. Using the Output Descriptor in the ALLOCATE Command 320
47. Using the Output Descriptor in the PRINTDS Command 321
48. Exit-Dependent Data for the PRINTDS Initialization Exit 326
49. Exit-Dependent Data for the SEND Initialization Exit 349
50. Exit-Dependent Data for the SEND Pre-Display Exit 350
51. Exit-Dependent Data for the SEND Pre-Save Exit 351
52. Exit-Dependent Data for the SEND Failure Exit 351

© Copyright IBM Corp. 1988, 2002 xi

53. Exit-Dependent Data for the SEND Termination Exit 352
54. Exit-Dependent Data for the OPERATOR SEND Initialization Exit 353
55. Exit-Dependent Data for the OPERATOR SEND Pre-Display Exit 353
56. Exit-Dependent Data for the OPERATOR SEND Pre-Save Exit 354
57. Exit-Dependent Data for the OPERATOR SEND Failure Exit 355
58. Exit-Dependent Data for the OPERATOR SEND Termination Exit 356
59. Command Buffer Parameter Entry When LISTBC Initialization Exit Gets Control During Logon 356
60. Exit-Dependent Data for the LISTBC Initialization Exit During Logon Processing 357
61. Exit-Dependent Data for the LISTBC Initialization Exit When User Issues LISTBC Command 357
62. Exit-Dependent Data for the LISTBC Pre-List Exit 358
63. Exit-Dependent Data for the LISTBC Pre-Allocate Exit 358
64. Exit-Dependent Data for the LISTBC Pre-Read Exit 359
65. Exit-Dependent Data for the LISTBC Pre-Display Exit 359
66. Exit-Dependent Data for the LISTBC Failure Exit 360
67. Exit-Dependent Data for the LISTBC Termination Exit 360
68. Format of Entries in IKJEGSCU . 374
69. Exit-Dependent Data for the TEST Subcommand Initialization Exit 379
70. Exit-Dependent Data for the TEST Subcommand Termination Exit 379
71. Exit-Dependent Data for the TESTAUTH Initialization Exit 386
72. Exit-Dependent Data for the TESTAUTH Subcommand Initialization Exit 390
73. Exit-Dependent Data for the TESTAUTH Subcommand Termination Exit 391
74. Exit-Dependent Data on Entry to INMCZ21R . 405
75. Exit-Dependent Data on Entry to INMXZ01R . 410
76. Exit-Dependent Data on Entry to INMXZ02R . 417
77. Exit-Dependent Data on Entry to INMXZ03R . 420
78. Exit-Dependent Data on Entry to INMXZ21R . 426
79. Exit-Dependent Data on Entry to INMRZ01R . 429
80. Exit-Dependent Data on Entry to INMRZ02R . 433
81. Exit-Dependent Data on Entry to INMRZ04R . 436
82. Exit-Dependent Data on Entry to INMRZ05R . 441
83. Exit-Dependent Data on Entry to INMRZ06R . 445
84. Exit-Dependent Data on Entry to INMRZ11R . 449
85. Exit-Dependent Data on Entry to INMRZ12R . 457
86. Exit-Dependent Data on Entry to INMRZ13R . 462
87. Exit-Dependent Data on Entry to INMRZ15R . 468
88. Exit-Dependent Data on Entry to INMRZ21R . 472
89. Format of Text Unit Pointer Lists and Text Units 475
90. Format of Control Records and Data Records. 482
91. Exit-Dependent Data for the TSOLIB Command Termination Exit. 486
92. Exit-Dependent Data for the CLIST Built-in Function Exit. 495
93. Exit-Dependent Data for the CLIST Statement Exit 498
94. Sample Compiler Programming Table . 530
95. Default Environment Module Structure . 569
96. Default Environment Header . 570
97. Session Manager Commands Table . 572
98. Overview of How Session Manager Determines Which Exit to Use 580
99. Initialization Exit to Log Line Mode Output While in Full-Screen Programs 583

100. Example of Adding a New Education Services Data Set 602
101. Format of a Panel Installation File . 622
102. Format of a Function Installation File . 626
103. Format of an Environment Installation File . 632
104. Sample Panel Installation File . 637
105. Sample Function Installation File . 638
106. Sample Environment Installation File . 638
107. Sample Function Installation File Using INVOKING_PANEL Entry 639
108. ICQICF Invocation Syntax . 644

xii z/OS V1R4.0 TSO/E Customization

109. Exit-Dependent Data for the Application Manager Function Pre-Initialization Exit 651
110. Exit-Dependent Data for the Application Manager Function Post-Termination Exit 652
111. Exit-Dependent Data for the Application Manager Panel Pre-Display Exit 653
112. Exit-Dependent Data for the Application Manager Post-Display Exit 653
113. Identifying Types of Elements in the Information Center Facility 656
114. Naming Conventions: Administrator Tutorial Panels Not Describing a Function 659
115. Naming Conventions: User Tutorial Panels Not Describing a Function 660
116. Naming Conventions: Administrator Tutorial Panels Describing a Function 661
117. Naming Conventions: User Tutorial Panels Describing a Function 661
118. Naming Conventions: Help Panels for Data Entry Panels and Menus 662
119. Naming Conventions: Help Panels for Messages 663
120. Naming Conventions: Help Panels for Messages, Second and Third Panels 663
121. Administration Services Application, Panel, CLIST, and REXX Exec Hierarchy 665
122. Administrator NEWS Application, Panel, CLIST, and REXX Exec Hierarchy 666
123. Administrator NAMES Application, Panel, CLIST, and REXX Exec Hierarchy 667
124. Administrator Enrollment Application, Panel, CLIST, and REXX Exec Hierarchy 669
125. Administrator User Types Application, Panel, CLIST, and REXX Exec Hierarchy 670
126. Administrator Printer Defaults Application, Panel, CLIST, and REXX Exec Hierarchy 672
127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy 674
128. Administrator COURSES Application, Panel, CLIST, and REXX Exec Hierarchy 681
129. User Services Application, Panel, CLIST, and REXX Exec Hierarchy 683
130. User Services—Print Utility Application, Panel, CLIST, and REXX Exec Hierarchy 685
131. User NEWS Application, Panel, CLIST, and REXX Exec Hierarchy 686
132. User NAMES Application, Panel, and CLIST Hierarchy 687
133. APLDI II Application, Panel, and CLIST Hierarchy 688
134. APLDI II Hierarchy for the CLIST That Accesses Requested Files (ICQGCC30) 690
135. ADRS II Application, Panel, and CLIST Hierarchy 691
136. Chart Creation Services Application, Panel, and CLIST Hierarchy 693
137. User Courses Application, Panel, CLIST, and REXX Exec Hierarchy 694
138. APL2 and VS APL Program Environment Application, Panel, and CLIST Hierarchy 695
139. Mass Installation File Processing Application, Panel, CLIST, and REXX Exec Hierarchy 696
140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy. 697
141. APPC/MVS Administration Utility Request Application and REXX Exec Hierarchy. 702
142. Attribute Defaults for Parameters Not Explicitly Specified on the IKJEDIT Macro 732
143. Parameter List Structure for IKJIFRIF (Single User ID) 736
144. Parameter List Structure for IKJIFRIF (Multiple Directory Entries) 737
145. JCL Needed to Process Commands in the Background 750
146. Example Logon Pre-Prompt Exit. 757

Figures xiii

xiv z/OS V1R4.0 TSO/E Customization

Tables

1. Definition of Keys for Standard Exit Parameter List 37
2. Standard Return Codes for the TSO/E Standard-Format Exits 42
3. Information Center Facility Applications for TSO/E 59
4. Information Center Facility Data Sets to Allocate 66
5. Control Switch Bits the Logon Pre-Prompt Exit Sets 101
6. Additional Control Switch Bits that Logon Pre-Prompt Exit IKJEFLD1 Sets 102
7. IKJEFLD and IKJEFLD1 Control Switch Bit Configuration 102
8. Return Codes for the Logon Exit IKJEFLD1 . 112
9. Control Switches for Logon Exit IKJEFLN1 . 121

10. Re-prompting Codes for the Logon Processor. 123
11. Return Codes for Logon Exit IKJEFLN1 . 127
12. Control Switches for Logon Exit IKJEFLN2 . 132
13. Re-prompting Codes for the Logon Processor. 134
14. Return Codes for Logon Exit IKJEFLN2 . 139
15. Return Codes for the Logon Exit IKJEFLD3 . 142
16. Return Codes for the Logoff Exit IKJEFLD2 . 144
17. Help Panel Number Codes for Logon . 150
18. Required Entries in the Lists of Commands and Programs 153
19. Contents of CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS 156
20. Usage of INMXPARM CSECT versus TRANSREC Statement 164
21. Commands You Can Limit . 177
22. Flags for IKJEFXG1 . 184
23. Members Created by RACONVRT . 213
24. Space Management Parameters and Defaults. 225
25. Return Codes for the ALLOCATE Initialization and Termination Exits 227
26. Library Search Order . 231
27. Return Codes for the ALTLIB Initialization and Termination Exits 233
28. Flags Passed to the CONSOLE Pre-Parse Exit 239
29. Flags Passed to the CONSOLE Activation Exit 241
30. Flags Passed to the CONSOLE Deactivation Exit 242
31. Flags Passed to the CONSOLE 80% Message Capacity Exit 244
32. Flags Passed to the CONSOLE 100% Message Capacity Exit 245
33. Standard Return Codes that all CONSOLE Exits Support 246
34. Flags Passed to the CONSPROF Initialization Exit 251
35. Flags Passed to the CONSPROF Pre-Display Exit 252
36. Flags Passed to the CONSPROF Termination Exit 253
37. Standard Return Codes that all CONSPROF Exits Support 253
38. TSO/E Pre-Defined Data Set Types and Attributes 258
39. Contents of the Buffer Control Block . 262
40. Contents of the Syntax Checker Communication Area. 262
41. Contents of the Option Word . 263
42. RENUM Format of Subcommand Interface Area 268
43. MOVE/COPY Format of Subcommand Interface Area 269
44. Return Codes for Edit Subcommands . 272
45. Return Codes for the EXEC Initialization and Termination Exits 281
46. Symbolic Variables Used to Set CLIST CONTROL Options 283
47. Return Codes for the FREE Initialization and Termination Exits 286
48. Return Codes for the PARMLIB Initialization and Termination Exits 291
49. Return Codes for the OUTDES Initialization and Termination Exits 322
50. Format of the Default Exit Parameter List . 326
51. Return Codes for the PRINTDS Initialization and Termination Exits 328
52. PRINTDS Operands in the Default Exit Parameter List (DEPL) 330
53. SEND PARMLIB Control Block Format . 347

© Copyright IBM Corp. 1988, 2002 xv

54. Meaning of Bit Settings in SEND PARMLIB Control Block 348
55. Format of the LISTBC Indicator Flags. 357
56. Standard Return Codes That All SEND Exits Support 360
57. Additional Return Codes for SEND Exits. 361
58. Standard Return Codes That All OPERATOR SEND Exits Support 361
59. Additional Return Codes for OPERATOR SEND Exits 362
60. Standard Return Codes That All LISTBC Exits Support 362
61. Additional Return Codes for LISTBC Exits . 362
62. Return Codes for the TEST Initialization and Termination Exits 375
63. Return Codes for the TEST Subcommand Initialization Exit 380
64. Return Codes for the TEST Subcommand Termination Exit 380
65. Return Codes for the TESTAUTH Initialization and Termination Exits 386
66. Return Codes for the TESTAUTH Subcommand Initialization Exit 391
67. Return Codes for the TESTAUTH Subcommand Termination Exit 392
68. Standard Return Codes That All INMxxxxR Exits Support 402
69. Return Codes That All INMxxxx Exits Support. 402
70. Text Unit Descriptions and Format . 476
71. Return Codes for the TSOLIB Initialization and Termination Exits. 486
72. Return Codes for the CLIST Built-in Function Exit 496
73. Return Codes for the CLIST Statement Exit . 499
74. Language Codes and Their Meanings . 503
75. Summary of Each Flag Bit . 505
76. Values TSO/E Provides in the Default Parameters Modules. 508
77. Values TSO/E Provides in the Field Name in the Module Name Table 509
78. Values TSO/E Provides in the Field Name in the Host Command Environment Table 510
79. Values TSO/E Provides in the Field Name in the Function Package Table 511
80. Summary of Replaceable Routines . 511
81. Format of the Attention Handling Routine Control Block 516
82. Valid Return Codes for the Attention Handling Exit Routine 516
83. Parameters for the IRXINITX Exit . 517
84. Parameters for the Exec Processing Exit . 518
85. Return Codes for the REXX Exits . 520
86. Return Codes for the Exec Initialization and Termination Exits 521
87. Compiler Programming Table Header Information 529
88. Compiler Programming Table Entry Information 529
89. Compiler Runtime Processor Expected Results 531
90. Parameters for a Compiler Runtime Processor 532
91. Return Codes from a REXX Compiler Runtime Processor 533
92. Parameter List for the Compiler Interface Initialization Routine. 535
93. Return Codes from the Compiler Interface Initialization Routine 535
94. Parameter List for the Compiler Interface Termination Routine. 536
95. Parameter List for the Compiler Interface Load Routine 538
96. Return Codes from the Compiler Interface Load Routine 540
97. Parameter List for the Compiler Interface Variable Handling Routine 541
98. Return Codes from the Compiler Interface Variable Handling Routine 543
99. Parameters for the External Routine Search Routine 547

100. Return Codes from the External Routine Search Routine 548
101. Parameters for the Host Command Search Routine 550
102. Return Codes from the Host Command Search Routine 552
103. Parameters for the Exit Routing Routine . 553
104. Return Codes from the Exit Routing Routine . 554
105. Default Stream Definitions . 563
106. Information Center Facility Libraries . 590
107. Variables for GDDM/PGF Libraries . 593
108. Variables for Names . 595
109. Variables for APPC/MVS Administration Dialog 597

xvi z/OS V1R4.0 TSO/E Customization

110. Variables for Libraries That Contain Program Load Modules for GDDM/PGF 599
111. Variables for the Interactive Chart Utility . 599
112. Variables for the Image Symbol Editor . 600
113. Variables for the Vector Symbol Editor . 601
114. Variables for VS APL . 603
115. Variables for APL2 . 605
116. APLDI-II Variables for Defining OS Data Set Names 608
117. APLDI-II Variables Containing the Input String 608
118. APLDI-II Variable Identifying the Workspace and Group for non-APL Keyboards 609
119. APLDI-II Variables Identifying the Character Set 609
120. APLDI-II Variables for DICREATE . 609
121. ADRS-II Variables Defining the Name and Location of the Load Module 610
122. ADRS-II Variables Containing Input Strings. 610
123. Variables Controlling User Access to Other User’s Catalogs 610
124. Variables Controlling the Catalog or Qualifier for Naming Workspaces 611
125. Variable Containing the Command and Parameters Used to Invoke APL 611
126. Variables for Customizing Application Manager Functions 612
127. Return Codes that All Application Manager Exits Support 654
128. Menu, Data Entry Panel, and Help Panel Cross Reference 702
129. ISPF/PDF Macro Statements and Exits . 715
130. JES2 Exits. 715
131. JES2 Initialization Statements . 716
132. JES3 Exits. 717
133. JES3 Initialization Statements . 718
134. MVS Data Sets . 718
135. SMF Exits . 720
136. SYS1.PARMLIB Members . 720
137. TSO/E Macro Statements . 721
138. VTAM Exits . 722
139. VTAM Statements . 723

Tables xvii

xviii z/OS V1R4.0 TSO/E Customization

About this document

This document supports z/OS (5694-A01) and z/OS.e (5655-G52).

TSO/E provides many ways to customize the functions and services that it provides.
This document describes how you can maintain and customize TSO/E to suit your
installation’s data processing requirements.

Who should use this document
This document is intended for system programmers who are responsible for
maintaining and customizing TSO/E on z/OS. You should have a good
understanding and working knowledge of TSO/E operations and functions and your
installation’s processing requirements.

How this document is organized
This document is organized by parts and within each part, by chapters. Each part
contains information about a specific category of customization tasks. Installation
exits are described under the particular task that the exit is for. For a quick overview
of customization facilities, see Part 10, “Reference” on page 713.

Parts in this document provide the following information:

v Part 1, “Introduction” on page 1 provides an overview of the ways you can
customize TSO/E and a summary of the TSO/E exits. The first chapter introduces
both required and optional customization. Each topic explains what you can
customize and then provides a reference to another topic or document where you
can get detailed customization information.

The chapter on exits describes the standard-format exits that TSO/E provides. It
also discusses the TSO/E standard exit parameter list that the standard-format
exits receive, the standard return codes that the exits support, how you can
install the exits, and the example exit (IKJEXIT) that TSO/E provides. The
chapter also explains how this document describes the individual exits and
contains a list of the exits that TSO/E provides. This list gives a brief description
of each exit and refers you to the appropriate section of the document for more
information.

v Part 2, “Considerations for Installing, Migrating and Activating the Functions of
TSO/E” on page 47 gives considerations on installing TSO/E. When you have
already installed TSO/E on your system and want to migrate to a higher z/OS
level, then you find migration considerations in Chapter 4, “Considerations for
Migrating TSO/E” on page 57. How to activate the TSO/E functions after installing
or migrating TSO/E, is described in: Chapter 5, “Activating the Functions of
TSO/E” on page 61.

v Part 3, “Setting Up and Customizing the TSO/E Environment” on page 69
describes different ways you can change the TSO/E environment, and includes
explanations about how to:

– Define and customize TSO/TCAM or TSO/VTAM

– Set up the logon process by providing TSO/E logon procedures, controlling or
limiting user access to TSO/E, and limiting the user’s region size

– Customize the TSO/E logon process, which includes customizing logon
messages, customizing the reconnect option, limiting incorrect logon attempts,
logon performance evaluation, using the logon pre-prompt exit, the logon

© Copyright IBM Corp. 1988, 2002 xix

|

pre-display and post-display exits, the logon post-prompt exit, the logoff exit,
and using logon language csects and load modules

– Define TSO/E to ISPF and ISPF/PDF

– Specify the authorized commands and programs that you want to allow users
to use, and how to prevent the use of specific commands in the background

– Specify the unauthorized commands that you want to run on the command
invocation platform

– Enable users to use the TRANSMIT and RECEIVE commands

– Customize the way HELP data is used by including HELP members within
other HELP members and by extending the use of the prompt mode HELP
function

– Make host services available to PC users

– Monitor TSO/E resources and why you might want to do this

– Define TSO/E performance objectives

– Protect TSO/E resources by limiting user access to commands and data sets

– Customize TSO/E for different languages

With RACF installed, your installation can use security enhancements. This part
also explains how the security enhancements affect customizing TSO/E.

v Part 4, “Maintaining the UADS, RACF Data Base, and Broadcast Data Set” on
page 195 contains information about maintaining TSO/E users on your system in
the user attributes data set (UADS), the RACF data base, and the broadcast
data set. It explains how to create, reformat, and update the UADS and
broadcast data set and how to convert UADS information to a format acceptable
to the RACF data base so you can use the RACF data base to maintain TSO/E
users. This part also explains how to change the number of records that are
reserved in the broadcast data set for notices.

v Part 5, “Customizing TSO/E Commands” on page 219 describes how to
customize the following TSO/E commands:
– ALLOCATE
– ALTLIB
– CONSOLE and CONSPROF
– EDIT and its subcommands
– EXEC
– FREE
– OUTDES
– OUTPUT, STATUS, and CANCEL
– PARMLIB
– PRINTDS
– SEND, LISTBC, and OPERATOR SEND
– SUBMIT
– TEST
– TESTAUTH
– TRANSMIT and RECEIVE
– TSOLIB

This part also explains how to customize the ways that users submit jobs and
process job output, and what you must do to enable users to use individual user
logs instead of the broadcast data set to store messages. With RACF installed,
your installation can use security protected individual user logs with security
labels. This part explains how to set up the security protected individual user logs
with security labels. It also describes how to use various functions to customize
the way in which TSO/E users allocate and manage data sets, including the use

xx z/OS V1R4.0 TSO/E Customization

of Storage Management Subsystem (SMS). It explains how you can define
output descriptors using either OUTPUT JCL statements or the OUTDES
command, and how to add TEST and TESTAUTH commands and subcommands
to be invoked under TEST and TESTAUTH.

v Part 6, “Customizing CLIST and REXX Processing” on page 489 describes how
to write exits to customize CLIST and REXX processing.

It also briefly describes REXX language processor environments and replaceable
routines.

v Part 7, “Support for a REXX Compiler” on page 525 describes the support that
TSO/E Release 3.1 provides for the installation and execution of a REXX
compiler runtime processor. This part describes the routines and interfaces that
TSO/E uses during the execution of compiled execs under a compiler runtime
processor. This part also describes programming routines that TSO/E provides
for use by a compiler runtime processor.

v Part 8, “Session Manager” on page 555 describes how to set up and customize a
Session Manager environment. This includes changes you may have to make
before using the Session Manager and different ways you can tailor the default
environment. It also describes how you can monitor Session Manager users
using three exits that TSO/E provides.

v Part 9, “Information Center Facility” on page 585 describes how to set up and
customize the Information Center Facility. Set up procedures include library
considerations, logon procedures for Information Center Facility users, and
changes to support the use of additional products. This part also describes how
you can tailor Information Center Facility start-up and termination processing,
variables, and the processing of different services or products. It also describes
how to use the Application Manager to add applications to the Information Center
Facility and add or change the panels for your own requirements. This part also
contains information about the Information Center Facility naming conventions,
application, panel, and CLIST and REXX exec hierarchy, panels and their
associated HELP panels, and the PANELID and TRACE commands, which help
you locate any problems when you change the default panel hierarchy.

v Part 10, “Reference” on page 713 summarizes the customization facilities you
can use to customize TSO/E. Also included in this part is the syntax for TSO/E
macros.

v The appendices include a description of how to execute the terminal monitor
program as a batch job, and an example for the logon pre-prompt exit.

How to use this document
First review the table of contents to become familiar with the document’s structure.
After that, read Part 1, “Introduction” on page 1 to learn about the different ways you
can customize TSO/E and the exits TSO/E provides. Chapter 1, “Customization
Overview” on page 3 explains both required and optional customization tasks. It
provides an overview of each task and refers you to another topic or document for
detailed information. Chapter 2, “Writing Exit Routines” on page 25 is of particular
interest to system programmers who write exits to customize different TSO/E
functions. You may also want to browse through other chapters to determine how
you want to customize TSO/E.

After you decide how to customize TSO/E, you will most likely refer to the individual
chapter that describes a particular customization task. On an ongoing basis, you
may use this document as a reference. For these purposes, you can refer to the
table of contents and the index to find the information you need.

About this document xxi

Where to find more information
Please see z/OS Information Roadmap for an overview of the documentation
associated with z/OS, including the documentation available for z/OS TSO/E.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for most of the
z/OS, z/VM, and VSE messages you encounter, as well as system abends and
some codes. Using LookAt to find information is faster than a conventional search
because in most cases LookAt goes directly to the message explanation.

You can access LookAt from the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

or from anywhere in z/OS where you can access a TSO/E command line (for
example, TSO/E prompt, ISPF, z/OS UNIX System Services running OMVS). You

xxii z/OS V1R4.0 TSO/E Customization

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

can also download code from the z/OS Collection (SK3T-4269) and the LookAt Web
site so you can access LookAt from a PalmPilot (Palm VIIx suggested).

To use LookAt on the Internet to find a message explanation, go to the LookAt Web
site and simply enter the message identifier (for example, $HASP701 or $HASP*). You
can select a specific release to narrow your search.

To use LookAt as a TSO/E command, you must have LookAt installed on your host
system. You can obtain the LookAt code for TSO/E from a disk on your z/OS
Collection (SK3T-4269) or from the LookAt Web site. To obtain the code from the
LookAt Web site, do the following:

1. Go to http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

2. Click News.

3. Scroll to Download LookAt Code for TSO/E and z/VM.

4. Click the ftp link, which will take you to a list of operating systems. Click the
appropriate operating system. Then click the appropriate release.

5. Open the lookat.me file and follow its detailed instructions.

After you have LookAt installed, you can access a message explanation from a
TSO/E command line by entering: lookat message-id. LookAt will display the
message explanation for the message requested.

Note: Some messages have information in more than one document. For example,
IEC192I can be found in z/OS MVS System Messages, Vol 7 (IEB-IEE) and
also in z/OS MVS Routing and Descriptor Codes. For such messages,
LookAt displays a list of documents in which the message appears. You can
then click the message identifier under each document title to view
information about the message.

About this document xxiii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

xxiv z/OS V1R4.0 TSO/E Customization

Summary of changes

Summary of changes
for SA22-7783-03
z/OS Version 1 Release 4

This document contains information previously presented in z/OS TSO/E
Customization, SA22-7783-02, which supports z/OS TSO/E Version 1 Release 3.

The following summarizes the changes to that information.

New information

Information was added to indicate this document supports z/OS.e.

Information was added in “TSO/E Environment” on page 5 and “Controlling Logons”
on page 79 to document the TSO/E limits with z\OS.e.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7783-02
z/OS Version 1 Release 3

This document contains information previously presented in z/OS TSO/E
Customization, SA22-7783-01, which supports z/OS TSO/E Version 1 Release 2.

The following summarizes the changes to that information.

New information

“Writing a Logoff Exit (IKJEFLD2)” on page 143.

Information was added for dynamic broadcast support in

v Chapter 21, “Content and Structure of the UADS and Broadcast Data Set” on
page 197

v Chapter 22, “Working with the UADS and Broadcast Data Set” on page 201

v Chapter 23, “Using the RACF Data Base to Maintain TSO/E Users” on page 211

v the section “IKJIFRIF Macro” on page 732

An appendix with z/OS product accessibility information has been added.

Changed information

Most references to the specific broadcast data set, SYS1.BRODCAST, were
replaced by the generic phrase ″the broadcast data set″ throughout the document.

© Copyright IBM Corp. 1988, 2002 xxv

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

Starting with z/OS V1R2, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and format.
The changes are ongoing improvements to the consistency and retrievability of
information in our books.

Summary of changes
for SA22-7783-01
z/OS Version 1 Release 2

This document contains information previously presented in z/OS TSO/E
Customization, SA22-7783-00, which supports z/OS TSO/E Version 1 Release 1.

The following summarizes the changes to that information.

Changed information

v “Allocating Space for the Utility Work Data Sets” on page 275 (APAR OW47115)

v “Defining Installation Defaults for SEND, OPERATOR SEND, and LISTBC” on
page 337 and “Storing SEND Messages” on page 339 (APAR OW47839)

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability.

xxvi z/OS V1R4.0 TSO/E Customization

Part 1. Introduction

This part provides an overview of the TSO/E customization process and introduces
TSO/E exits. Before you start to customize TSO/E, IBM recommends that you
develop a customization plan. In the plan, identify specific customization that you
intend to do and how you intend to do it. Chapter 1, “Customization Overview” on
page 3, provides information to help you develop that plan. There you can read a
short summary about each customization task that will help you decide whether to
do that task. If you need more detailed information to help you plan, a pointer
directs you to another topic in this book or to another book.

Chapter 2, “Writing Exit Routines” on page 25, introduces the exits that TSO/E
provides. The introduction includes a list of the exits, a summary of the ways you
can use each exit, and a pointer to detailed information you need for coding the
exit. This chapter also discusses the standard exit interfaces and exit installation.

© Copyright IBM Corp. 1988, 2002 1

2 z/OS V1R4.0 TSO/E Customization

Chapter 1. Customization Overview

Required Customization . 4
Access Methods - VTAM and TCAM 4
User Definitions . 4
TSO/E Logon Procedure . 5

Optional Customization . 5
TSO/E Environment . 5
UADS and Broadcast Data Set Maintenance 13
UADS to RACF Conversion 13
Commands . 13
CLIST and REXX Processing 20
Session Manager . 22
Information Center Facility. 22

TSO/E customization is the process whereby you tailor TSO/E functions to fit the
specific needs of your installation. To tailor a TSO/E function, you might make a
change or addition to TSO/E itself or to some other related IBM product or z/OS
element, such as the Advanced Communications Function for VTAM.1

Some customization is required before you can use TSO/E, but most is optional. If
you elect not to do optional customization on a specific TSO/E function, that
function then works according to IBM-provided defaults. If TSO/E is new to your
installation, you initially might want to do a minimum amount of optional
customization. Your users can then use TSO/E, and you can do additional
customization only when inadequate TSO/E performance or reduced TSO/E
capabilities indicate the need to do so.

There are a number of ways for you to customize TSO/E and the processing of jobs
submitted through TSO/E. TSO/E itself provides exits for which you can write exit
routines, initialization values you can change, macros you can use, and procedures
you can change. Each of the following z/OS elements and products interact with
TSO/E. They provide interfaces that you can use to customize the way TSO/E and
the element work together. The elements are:

v OS/390 SP

v MVS/Data Facility Product (MVS/DFP)

v Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)

v Job Entry Subsystems (JES2 and JES3)

v RACF

v TCAM

v VTAM

v Print Services Facility (PSF)

The customization facilities discussed in this document are summarized in several
places. For a description of the TSO/E macros, see Chapter 49, “Macro Syntax” on
page 725. For a brief description of TSO/E exits, see Chapter 2, “Writing Exit
Routines” on page 25. For a list of the other customization facilities, see Chapter 48,
“Overview of Facilities for Customizing TSO/E” on page 715.

1. Virtual Telecommunications Access Method

© Copyright IBM Corp. 1988, 2002 3

Required Customization
Before users can use TSO/E, you must do several customization tasks. After you
complete required customization, users will be able to log on and issue commands
from TSO/E READY mode. You must:
v Define TSO/E to VTAM or TCAM depending on which access method you use
v Define those users who will be allowed to log on to TSO/E
v Create at least one TSO/E logon procedure for users

If you currently have TSO or TSO/E, the required TSO/E customization discussed in
this topic was probably done previously. However, when you upgrade to a new
release of TSO/E, IBM recommends that you ensure that the user definition data
sets that you are now using are correctly formatted. The data sets are the user
attributes data set (UADS) and the broadcast data set. If you have RACF installed,
you can define your TSO/E user information in the RACF data base. For more
information, see Part 4, “Maintaining the UADS, RACF Data Base, and Broadcast
Data Set” on page 195. You must ensure that the UADS and/or the RACF data
base and the broadcast data set are synchronized.

Even if you don’t currently have TSO/E, the UADS and broadcast data sets may
already be cataloged on your system. MVS requires that they be cataloged unless
you have customized MVS to eliminate the requirement.

Note: The IBM-provided MVS master JCL refers to the UADS as SYS1.UADS and
to the broadcast data set as SYS1.BRODCAST.

Access Methods - VTAM and TCAM
The access methods, VTAM and TCAM, provide an interface that enables terminals
and TSO/E to communicate. If your installation uses TCAM, you must write a
procedure for starting TSO/TCAM. For details about defining TSO/E to TCAM, see
Chapter 6, “Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing” on
page 71.

If your installation uses VTAM, you must write a procedure for starting TSO/VTAM,
and you must use VTAM APPL definition statements to define the TSO/E
application and to define the terminals from which users will be allowed to use
TSO/E. In addition, because VTAM does not recognize the TSO/E LOGON
command defined in z/OS TSO/E Command Reference you must define the
LOGON command to VTAM. For details about defining TSO/E to VTAM, see
Chapter 6, “Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing” on
page 71.

User Definitions
Before a user can log on to TSO/E, you must define that user to TSO/E. You do this
by storing information about the user in the UADS or the RACF data base.

You can use the RACF data base only if your installation is using RACF. If your
installation is using RACF, you can use the UADS only, the RACF data base only,
or both. Even if you use only the RACF data base, z/OS requires that you keep the
UADS cataloged unless you have customized MVS to eliminate this requirement.

For information about defining users, see Part 4, “Maintaining the UADS, RACF
Data Base, and Broadcast Data Set” on page 195.

Required Customization

4 z/OS V1R4.0 TSO/E Customization

TSO/E Logon Procedure
A TSO/E logon procedure contains JCL statements that execute the required
program and allocate the required data sets to enable a user to acquire the
resources needed to use TSO/E. You must provide at least one logon procedure for
your installation’s TSO/E users. For information about how to write a logon
procedure, see Chapter 7, “Setting up Logon Processing” on page 79.

Optional Customization
Optional customization enables you to change or extend the capabilities of TSO/E
functions or to make other IBM products available to TSO/E users. This topic
introduces the kinds of optional customization you can do. Other chapters in this
document provide the detailed information you need to do a particular customization
task. This topic introduces how you can:

v Customize the TSO/E environment, which includes: customizing VTAM or TCAM,
defining logon limits, customizing the logon process, making commands and
programs available, specifying commands not supported in the background,
specifying commands and programs to run on the command/program invocation
platform, customizing HELP data, making host services or ISPF/PDF available,
setting performance objectives, monitoring and protecting TSO/E resources, and
customizing TSO/E for different languages

v Maintain the UADS, the broadcast data set, and the RACF data base

v Customize the use of commands

v Customize CLIST and REXX processing

v Make Session Manager available and customize the Session Manager

v Make the Information Center Facility available and customize the Information
Center Facility

TSO/E Environment
Customization of the TSO/E environment generally refers to customization that
makes a TSO/E facility available or customization that changes default values that
affect TSO/E. You can customize:

v VTAM -- You can change VTAM session protocols, provide substitute characters
for unavailable keyboard characters, and override the default values used to start
VTAM.

v TCAM -- You can override the default values used to start TCAM.

v Logon limits -- You can limit and manage the maximum number of concurrent
logons, limit the user’s region size, and limit user access to applications.

Restriction: In z/OS.e, the number of concurrent TSO/E sessions is limited to
eight.

v The logon/logoff process -- You can change how often the system displays the
logon proceeding message, limit the number of attempts a user can make at
entering information in response to logon prompts, tailor the reconnect option,
and suppress messages that are generated during the execution of the logon job.
You can also review factors that affect logon performance, such as using
STEPLIBs in logon JCL, and you can write exits to further customize the
logon/logoff process. Your installation can use security labels (SECLABEL) if the
proper products are installed.

v ISPF/PDF -- You can make ISPF/PDF available to TSO/E users.

v Authorized commands and programs -- You can select which authorized
commands and programs users can use.

Required Customization

Chapter 1. Customization Overview 5

|
|

v Command/program invocation platform support -- You can invoke TSO/E
commands and programs on the command/program invocation platform. Both
authorized and unauthorized commands and programs are supported.

v Command availability in the background -- You can make specific commands
unavailable for use in the background.

v TRANSMIT and RECEIVE availability -- You can make the TRANSMIT and
RECEIVE commands available.

v HELP data set usage -- You can customize the use of HELP data set members.

v Host services availability -- You can make host services available to personal
computer (PC) users.

v Language support -- You can provide information to users in their national
language.

In addition, this topic also discusses how you can monitor and protect TSO/E
resources and provides guidance for setting TSO/E performance objectives.

VTAM
VTAM installations have several customization options available. SYS1.PARMLIB
member TSOKEY00, or an alternate member, contains values used to initialize
TSO/VTAM. You have the option to change these values. If you plan to use Session
Manager, you may have to make additional changes to TSOKEY00 or the alternate
member. For information about SYS1.PARMLIB members, see z/OS MVS
Initialization and Tuning Reference. For information about changes you may have to
make for Session Manager, see Chapter 43, “Setting Up a Session Manager
Environment” on page 557.

Session protocols define the rules that VTAM uses to manage a terminal session. If
you wish, you may change the protocols. For information about changing the
protocols, see Chapter 6, “Defining and Customizing TSO/VTAM and TSO/TCAM
Time Sharing” on page 71.

Some terminal keyboards may not contain all of the characters your installation
needs. If this is the case, you can provide translation tables that allow users to
substitute other characters for the unavailable characters. For information about
providing translation tables, see Chapter 6, “Defining and Customizing TSO/VTAM
and TSO/TCAM Time Sharing” on page 71.

TCAM
SYS1.PARMLIB member IKJPRM00, or an alternate member, contains default
values used to initialize TCAM. TCAM installations have the option to override these
values. For information about the TCAM default values stored in the
SYS1.PARMLIB member, see z/OS MVS Initialization and Tuning Reference.

If you plan to use the Session Manager, you may have to change the TCAM
message control program and SYS1.PARMLIB member IKJPRM00 or the alternate
member. For information about changes you may have to make, see Chapter 43,
“Setting Up a Session Manager Environment” on page 557.

Concurrent Logons
In z/OS, three factors determine the maximum numbers of users who can be
logged onto TSO/E concurrently: the number of available logons, the number of
address spaces that can execute concurrently, and the number of VTAM APPL
definition statements defined to VTAM. The smaller of these three factors limits the
number of concurrent logons. You should examine, and if necessary, adjust these
factors to meet your installation’s needs.

Optional Customization

6 z/OS V1R4.0 TSO/E Customization

|

If you need to further control or limit logons, you can define groups and assign
TSO/E users to these groups. You can then write a logon pre-prompt exit routine
that allows or disallows a user to log on based on the group to which the user is
assigned.

For more information about limiting concurrent logons, see Chapter 7, “Setting up
Logon Processing” on page 79.

Restriction: In z/OS.e, the number of concurrent TSO/E sessions is limited to
eight.

Region Size and User Access to Applications
You have the option to limit the size of a TSO/E user’s region and the applications
that a user can access. When users log on to TSO/E, they can specify a region
size, or they can accept an installation-defined default. You can define a default that
applies to all TSO/E users, a default that varies from one logon procedure to
another, or a default that varies from one user to another. Through the use of the
logon pre-prompt exit, you can monitor, and if necessary, adjust the region size
requested by a user.

Different users or groups of users might need to access different sets of
applications. Some users may need to access all applications while other users
need to access only one or two applications. By providing several logon
procedures, each providing access to different applications, and by restricting
individuals to only certain logon procedures, you can limit the applications to which
any user has access.

For more information about limiting these factors, see Chapter 7, “Setting up Logon
Processing” on page 79.

Logon and Logoff Process
There are several ways you can customize the logon and logoff process. By
changing initialization values, you can:

v Change the frequency with which TSO/E issues the logon proceeding message

v Limit the number of attempts a user who is not defined to RACF can make at
entering information in response to logon prompts

v Tailor the reconnect process

v Suppress messages generated during execution of the logon job

There are also steps you can take that may improve logon performance and exits
that you can write to further customize logon processing. The remainder of this
topic provides an overview of the ways you can customize logon processing.

The logon proceeding message tells the user that the logon process is taking
place. TSO/E issues this message when the logon process has taken more than a
predefined amount of time (the TSO/E-provided default is to issue the message
every five minutes). If you wish, you can change the frequency with which TSO/E
issues this message.

If a user supplies an incorrect operand when attempting to log on, TSO/E requests
that the user reenter the operand. TSO/E allows the user to supply a predefined
number of incorrect operands before TSO/E cancels the logon attempt. The
TSO/E-provided default is 10. If a user who is not defined to RACF exceeds the
allowable number of attempts, TSO/E discontinues the logon process for that user.
To log on, that user must start over by again issuing the LOGON command. You

Optional Customization

Chapter 1. Customization Overview 7

|
|

have the option to change the total number of attempts a user can make to enter
operands before having to reissue the LOGON command.

When a user disconnects from the system, the user’s address space remains
available to that user for a predefined amount of time. During the time the address
space is available, the user can reconnect to the system without going through the
logon process. After the time limit expires, the user can no longer reconnect and
must log on to reaccess the system. If you wish, you can change the amount of
time the address space remains available.

Each logon job produces a number of messages that the system writes to a system
output (SYSOUT) data set. The data set, by default, is sent to output class A.
Rarely is it necessary to refer to these messages. Therefore, you may wish to send
these messages to a different class, one that you can hold and later purge.

There are a number of steps you can take that may improve the performance of the
logon process. If you feel that the logon process takes too long, review the factors
that can affect its performance and make the necessary changes.

The logon pre-prompt exits enable you to do additional customization of the logon
process. Exit IKJEFLD lets you monitor, change, or supplement information
provided on the LOGON command, cancel a logon, or interact with the user by
sending messages and requesting a reply. You can use the authorized logon exit
IKJEFLD1, which receives the standard TSO/E exit parameter list and lets you
perform the same functions as IKJEFLD, as well as authorized functions. With
IKJEFLD1, you can also:

v Specify the first TSO/E user command to be issued in the session.

v Specify job and SYSOUT classes.

v Bypass RACF processing.

v Specify the relative block address (RBA) of the user’s mail directory entry in the
broadcast data set.

v Provide a four-byte user word for communication with other logon and logoff
exits.

v Specify a default security label (SECLABEL) to be used for the session.
SECLABEL is recognized only when RACF is active and security label checking
has been activated.

v Set up the console profile for the user.

v Specify primary and secondary languages to be used for displaying translated
information.

TSO/E also provides the post-prompt exit IKJEFLD3 to further customize the logon
process. After the prompting for logon input is complete, you can use this exit to
add, examine, and modify JCL statements associated with the terminal job.

You can customize logon panels and logon help panels using logon panel modules.
TSO/E supports these logon panel modules in different languages.

TSO/E provides pre-display and post-display logon exits that let you further
customize the logon process. These exits, IKJEFLN1 and IKJEFLN2, allow you to
supply default information, update information, validate user-supplied information,
and re-prompt the user for information, if needed.

The pre-display exit IKJEFLN1 allows you to:
v Update information contained on the logon panel

Optional Customization

8 z/OS V1R4.0 TSO/E Customization

v Process any installation-defined fields on the logon panel
v Update fields in the PSCB and the UPT

The post-display exit IKJEFLN2 allows you to:
v Process and validate fields on the logon panel
v Request display of help screens

With TSO/E, you can use the authorized logoff exit IKJEFLD2 to customize the
logoff process. IKJEFLD2 receives the standard TSO/E exit parameter list, including
the user-word value set by logon exit IKJEFLD1. IKJEFLD2 can perform clean-up
operations, gather accounting information, control information written to the UADS
and RACF data base, and issue the LOGOFF or LOGON command to control
re-logons.

For detailed information about each customization procedure and the exits, see
Chapter 8, “Customizing the Logon and Logoff Process” on page 87.

ISPF/PDF
To enable TSO/E users to use ISPF/PDF, you must define ISPF/PDF to TSO/E. You
do this by modifying the users’ logon procedures to allocate the ISPF/PDF data
sets.

Optionally, you can specify the TSO/E commands that a user can issue from
ISPF/PDF panels, and you can allow users to use the Session Manager from
ISPF/PDF. By default, ISPF/PDF users can issue all TSO/E commands that reside
in the link pack area (LPA) except:
v LOGOFF
v LOGON
v PRINTDS
v RACONVRT
v SYNC
v TEST

You can change this list by modifying an ISPF/PDF module.

In order for a user to keep a session journal, ISPF/PDF and Session Manager must
run concurrently. To allow Session Manager and ISPF/PDF to run concurrently, you
must install specific ISPF/PDF exit routines (ISPSC93 and ISPSC94) andpanels.
See z/OS ISPF Planning and Customizing about these exits.

For more information about how to make ISPF/PDF available, see Chapter 9,
“Defining TSO/E to ISPF and ISPF/PDF” on page 151.

Authorized Commands and Programs and Unavailable
Background Commands
You have the option to make authorized commands and programs available and to
make specific commands unavailable in the background. TSO/E users cannot use
authorized commands or programs until you define the authorized commands and
programs you want them to be able to use. In addition, there may be TSO/E
commands that you do not want invoked in the background. If there are such
commands, you must also define them.

During installation, TSO/E requires you to specify certain authorized commands and
programs that users are to be able to issue and certain unsupported background
commands. You may also want to add to that list. For a list of the commands and
programs that TSO/E requires you to specify, see SYS1.SAMPLIB member
IKJTSO00. For more information about defining these commands or programs, see

Optional Customization

Chapter 1. Customization Overview 9

Chapter 10, “Specifying Authorized Commands/Programs, and Commands Not
Supported in the Background” on page 153.

Command/Program Invocation Platform
An application program can run commands and programs on a command/program
invocation platform. Command/program invocation platforms eliminate the need for
MVS task initialization and termination each time you invoke a command or
program. The TSO/E service facility allows installations to create a
command/program invocation platform on which to run TSO/E commands and
programs. Authorized commands and programs can execute on a
command/program invocation platform, even if you are not using the TSO/E service
facility.

This support helps reduce the system overhead associated with the initialization
and termination of TSO/E commands and programs by creating a
command/program invocation task once per command or program invocation in a
TSO/E environment.

You can identify which programs can execute on a program invocation platform by
using the PLATPGM statement in SYS1.PARMLIB member IKJTSOxx.

You can identify which commands can execute on a command invocation platform
by using the PLATCMD statement in SYS1.PARMLIB member IKJTSOxx.

You can use the TSO/E service facility to create the command/program invocation
platform environment, execute commands and programs, and terminate the
command/program invocation platform environment. For more information about
specifying eligible commands and programs, see Chapter 11, “Specifying
Commands and Programs for the Command/Program Invocation Platform” on
page 159.

TRANSMIT and RECEIVE Availability
To enable TSO/E users to use the TRANSMIT and RECEIVE commands, you must
add the TRANSMIT and RECEIVE commands to the list of authorized commands,
specify installation defaults for TRANSMIT and RECEIVE, and possibly modify job
entry subsystem (JES) initialization statements. For information on how to make
these commands available, see Chapter 12, “Setting Up the TRANSMIT and
RECEIVE Environment” on page 163.

HELP Data
There are two ways you can customize the use of HELP data. You can set up
HELP members so they merge information from other members for display to the
user. You can also provide the prompt mode HELP function, which provides help
from the HELP data set for a user who omits or incorrectly specifies a positional
operand on a TSO/E command. The function provides help when the user requests
a second-level message and none are available or all have been displayed. TSO/E,
by default, provides the prompt mode HELP function for:
v ALTLIB
v ATTRIB
v CALL
v CANCEL
v EDIT
v EXEC
v HELP
v OUTPUT
v RACONVRT
v RUN

Optional Customization

10 z/OS V1R4.0 TSO/E Customization

v SEND
v SYNC
v TRANSMIT

For information about customizing HELP processing, see Chapter 13, “Customizing
the HELP Data Set” on page 167.

Host Services Availability
MVSSERV, a TSO/E command processor, enables personal computer (PC)
programs to use host computer resources. Server programs on the host computer
provide services to requester programs on the PC. Before TSO/E users can use
this facility, the PC must be properly configured, and you must make the servers
and requesters available.

A program called an access method driver defines the protocol for managing
server/requester communication. You can change this protocol by providing your
own access method drivers.

For more information about what you must do to make MVSSERV available and
information about customization options, see Chapter 14, “Making Host Services
Available to PC Users” on page 169.

Resource Monitoring
After your installation starts to use TSO/E, you may want to monitor command use
and transaction performance and keep statistics. By monitoring commands, you
can:

v Identify the most frequently used commands; you may want to improve the
performance of these commands

v Use information such as frequency of use as a basis for billing customers

v Audit for security violations

Monitoring TSO/E performance helps you determine whether TSO/E performance is
satisfactory. For more information about monitoring TSO/E, see Chapter 15,
“Monitoring TSO/E Resources” on page 171.

Performance Objectives
Part of TSO/E customization should include setting performance objectives for
TSO/E. When you set performance objectives, ask yourself the following kinds of
questions:
v What kind of user response do I want TSO/E to provide?
v Which commands do I want to provide the best response?
v Do some users require better response time than others?
v What performance impact will TSO/E have on the rest of my system?

There are a number of factors to consider and trade-offs to make when you define
performance objectives. Also, you should keep in mind that a change you make to
improve TSO/E performance will probably have an opposite affect in some other
part of your system. For more information about setting performance objectives, see
Chapter 16, “Defining Performance Objectives for TSO/E” on page 173.

TSO/E Resource Protection
To protect TSO/E resources, you can limit the commands that users can issue and
limit user access to data sets. You can limit the commands that users can issue
from TSO/E READY mode, from Session Manager, from the background, and from
ISPF/PDF.

From TSO/E READY mode, by default, users cannot use the ACCOUNT,
CONSOLE, CONSPROF, OPERATOR, RACONVRT, SYNC, SUBMIT, OUTPUT,

Optional Customization

Chapter 1. Customization Overview 11

STATUS, CANCEL, PARMLIB, and TESTAUTH commands. You give users authority
to use these commands when you define them to TSO/E by using either the
ACCOUNT command and/or RACF commands. You can optionally write TSO/E
exits to authorize users to use the CONSOLE, CONSPROF, PARMLIB, and
TESTAUTH commands. For the SUBMIT, OUTPUT, STATUS, and CANCEL
commands, you can also write TSO/E exits and exits provided by JES2 and JES3
to customize and restrict how users submit jobs and process job output.

By default, users can use the SEND, LISTBC, TRANSMIT, RECEIVE, FREE,
OUTDES, EXEC, and PRINTDS commands from TSO/E READY mode. You can
write TSO/E exits to restrict the use of these commands. You can also write exits
for the SEND subcommand of the OPERATOR command to restrict users who are
authorized to use the OPERATOR command from using the SEND subcommand.

A user who is using Session Manager can, by default, issue all TSO/E commands
and Session Manager commands. By writing Session Manager exits, you can limit
the commands that users can issue from Session Manager.

Users, by default, can also issue most TSO/E commands from the background or
from ISPF/PDF panels. By changing a SYS1.PARMLIB member or by coding a
TSO/E CSECT, you can limit the use of commands in the background. Modifications
you can make to an ISPF/PDF module allow you to limit the commands used from
ISPF/PDF.

You also have the option to limit a user’s access to data sets. You can enforce this
option through RACF or through the MVS allocation input validation routine
(IEFDB401).

With RACF installed, your installation can use security labels (SECLABELs) and
your security administrator can activate security label checking. In this case,
resources and users have security labels associated with them. Users can only
access resources that have been authorized for them to use through RACF.

Security label checking affects the processing of several TSO/E commands, such
as SEND, LISTBC, TRANSMIT, and RECEIVE. For information about the
processing of these TSO/E commands with security labels, see the individual topics
in this document.

For information about setting up security labels, see z/OS Security Server RACF
Security Administrator’s Guide. For more information about providing TSO/E
resource protection, see Chapter 17, “Protecting the Resources TSO/E Users Can
Access” on page 177.

Language Support
TSO/E takes advantage of the MVS message service to allow you to provide
TSO/E information to users in their national language. TSO/E information includes
TSO/E messages, help information for TSO/E commands, and the TRANSMIT
command full-screen panel. In addition, the TSO/E CONSOLE command supports
the display of translated system messages issued during an extended MCS console
session.

To provide translated information at your installation, you need to:
v Initialize and activate the MVS message service (MMS).
v Set up languages for users.

Optional Customization

12 z/OS V1R4.0 TSO/E Customization

For help information, you also need to specify the help data sets for each language
supported by your installation.

For each user, you can specify a primary language and a secondary language to be
used for displaying translated information. Languages can be specified using one of
the following methods:

v If your installation has RACF installed, you can use RACF commands to set up
languages for users

v You can use the logon pre-prompt exit, IKJEFLD1, to set up languages for users

v Individual users can use the TSO/E PROFILE command to set up or change
languages for themselves.

You can use the IKJTSOxx member of SYS1.PARMLIB to define the help data sets
to be used for different languages. In IKJTSOxx, you can:
v Specify help for any number of languages
v Specify up to 255 data sets to be searched for help text in a particular language.

For more information about customizing TSO/E for language support, see
Chapter 19, “Customizing TSO/E for Different Languages” on page 187.

UADS and Broadcast Data Set Maintenance
During daily operation, you will probably add new users to TSO/E, delete users, or
change information about users. After a number of these changes, available space
in the UADS and broadcast data sets may become fragmented. To reduce
fragmentation, you can reformat and synchronize these data sets. If the data sets
need more space, you can reallocate them. For information about maintaining these
data sets, see Chapter 22, “Working with the UADS and Broadcast Data Set” on
page 201.

If you have RACF installed, you can define your TSO/E user information in the
RACF data base. For more information, see Part 4, “Maintaining the UADS, RACF
Data Base, and Broadcast Data Set” on page 195. If you use the RACF data base,
you must synchronize the RACF data base with the broadcast data set.

UADS to RACF Conversion
If your installation uses RACF, you have the option to define TSO/E users through
the RACF data base instead of through the UADS. To do so you must first convert
the UADS information to a form acceptable to RACF. If you use the RACF data
base, MVS still requires that the UADS remain cataloged unless you have
customized MVS to eliminate the requirement. For information about converting
from the UADS to RACF, see Chapter 23, “Using the RACF Data Base to Maintain
TSO/E Users” on page 211.

Commands
TSO/E customization facilities enable you to customize a number of TSO/E
commands. You can:

v Customize the way users run a console session using the CONSOLE and
CONSPROF commands.

v Customize the way users allocate and manage data sets.

v Customize the way users define alternative libraries of REXX execs and CLISTs
using the ALTLIB command.

v Customize the way both EDIT and EXEC work.

Optional Customization

Chapter 1. Customization Overview 13

v Customize how users send and retrieve messages using the SEND and LISTBC
commands, and the SEND subcommand of the OPERATOR command.

v Allow or prevent users from using TRANSMIT and RECEIVE. If you allow these
commands, you can tailor their processing.

v Customize how the FREE, PARMLIB, and OUTDES commands work.

v Customize the way users submit jobs, process output, and print data sets.

v Customize the way users test assembler programs.

v Customize the way users define alternative load module libraries using the
TSOLIB command.

Data Set Allocation and Space Management
There are several ways you can customize how users allocate and manage data
sets. You can use Storage Management Subsystem, the MVS allocation input
validation routine, output descriptors, or the Information Center Facility space
management service. You can write exit routines to customize ALLOCATE
command processing. You can set a default data set disposition for the ALLOCATE
command in SYS1.PARMLIB member IKJTSOxx.

You can use Storage Management Subsystem to manage your system’s data and
storage and simplify how users allocate data sets. When users issue the TSO/E
ALLOCATE command, they need not be concerned with different storage, data, or
management-related operands. Instead, they can use ALLOCATE operands that are
related to Storage Management Subsystem to define various data set attributes.

The MVS allocation input validation routine (IEFDB401) enables you to monitor
each ALLOCATE command. You can check and, if necessary, change information
that the user provides on the ALLOCATE command.

An output descriptor specifies processing options for a system output (SYSOUT)
data set. You can use output descriptors to eliminate the need for users to specify
output-related operands on the ALLOCATE or PRINTDS commands. If an output
descriptor has been defined, when a user issues the ALLOCATE command to
allocate a system output data set or issues the PRINTDS command, the user can
specify the OUTDES operand and the name of an output descriptor instead of
specifying output-related operands. You can define output descriptors by naming
and coding OUTPUT JCL statements. If you have JES2 installed, you and your
installation’s users can also use the TSO/E OUTDES command to define output
descriptors. TSO/E provides two exits for the OUTDES command that allow you to
customize the use of OUTDES.

The Information Center Facility space management service manages data set
space. It does this when the data set is almost full by either compressing the data
set or by reallocating a larger data set. It can also allocate a data set that does not
exist. This service is available to not only the Information Center Facility, but to
anyone who wants to use it. Parameter values, available in a CLIST, define the
parameters that this service uses to manage data sets. You have the option of
changing the default parameter values.

TSO/E provides initialization and termination exits that you can use to customize
the ALLOCATE command. The initialization exit can restrict users from using the
ALLOCATE command, can change operands supplied by the user, or pass the
address of a new command buffer. The termination exit can perform clean-up
processing, such as releasing storage obtained by the initialization exit.

Optional Customization

14 z/OS V1R4.0 TSO/E Customization

You can use member IKJTSOxx of SYS1.PARMLIB to set a default value for the
data set disposition specified on the ALLOCATE command. You can set the default
to SHR or OLD. If a user issues the ALLOCATE command without specifying a data
set disposition, the disposition defaults to the setting in IKJTSOxx.

When you set a default data set disposition in IKJTSOxx, you can make it take
effect immediately using the PARMLIB command with the UPDATE operand. You
can also list the current ALLOCATE default using the LIST operand of PARMLIB.

For information about data set allocation and the space management service, see
Chapter 25, “Customizing How Users Allocate and Manage Data Sets” on page 221.

ALTLIB Command
TSO/E provides the ALTLIB command, which lets users define alternative libraries
of REXX execs and CLISTs for implicit execution. TSO/E also provides initialization
and termination exits that you can use to customize the ALTLIB command. The
initialization exit can restrict users from using the ALTLIB command, can change
operands supplied by the user, or pass the address of a new command buffer. The
termination exit can perform clean-up processing, such as releasing storage
obtained by the initialization exit. For more information, see Chapter 26,
“Customizing the ALTLIB Command” on page 231.

CONSOLE and CONSPROF Commands
The CONSOLE command allows users with CONSOLE command authority to
perform MVS operator functions from a TSO/E terminal. The CONSOLE command
establishes an extended MCS console session with MVS console services. During
the console session, users can issue MVS system and subsystem commands and
obtain responses to those commands (solicited messages). Users can also receive
unsolicited system messages.

The CONSPROF command lets users with CONSOLE command authority establish
or change their console profiles used to tailor message processing during an
extended MCS console session.

You can customize the use and processing of these commands by:

v Setting up a console profile for each user

v Defining console attributes for each user

v Defining installation defaults for the user’s message tables in SYS1.PARMLIB
member IKJTSOxx

v Writing CONSOLE and CONSPROF exits

You can set up a console profile for a user using the authorized logon pre-prompt
exit IKJEFLD1. The console profile controls the display of system messages issued
during an extended MCS console session. For more information about using
IKJEFLD1, see “Possible Uses” on page 114.

The console attributes define various characteristics of a user’s console session,
including the user’s MVS command authority. You can use the MVS VARY
command to specify the console attributes for a user. If you have RACF installed,
you can optionally specify the console attributes in the OPERPARM segment of the
user’s RACF profile using the RACF ADDUSER or ALTUSER command.

You can use SYS1.PARMLIB member IKJTSOxx to define installation defaults for
users’ message tables. Message tables hold system messages the user does not
want displayed during a console session. IKJTSOxx contains a CONSOLE

Optional Customization

Chapter 1. Customization Overview 15

statement you can use to specify the initial and maximum sizes of the message
tables. For more information about SYS1.PARMLIB member IKJTSOxx, see
“Defining Installation Defaults for the CONSOLE Command” on page 237.

TSO/E provides exits you can use to customize the use and processing of the
CONSOLE and CONSPROF commands. Using these exits, you can:
v Change operands that users specify on the CONSOLE and CONSPROF

commands
v Control the size of the message tables
v Take action if a message table reaches 80% or 100% capacity
v Grant or deny CONSOLE command authority to users
v Customize the console profile message, IKJ55351I, or issue an installation

defined message
v Request termination of the console session

For more information on the CONSOLE and CONSPROF commands, see
Chapter 27, “Customizing the CONSOLE and CONSPROF Commands” on
page 235.

EDIT Command
TSO/E provides several ways for you to customize the EDIT command. Using the
facilities provided, you can:

v Define additional data set types

v Change the attributes of data set types

v Write syntax checkers and syntax checker exits for installation-defined data set
types

v Write an exit to change how the RENUM, MOVE, and COPY subcommands
handle line numbering

v Define additional subcommands

v Preallocate EDIT utility work data sets

TSO/E has defined a number of data set types. If these types fail to meet your
needs, you can either change the attributes of the data set types or you can define
your own data set types.

For each data set type that you define, you can write a syntax checker and a
syntax checker exit. The syntax checker can detect errors when a user edits a data
set of the type recognized by the syntax checker. You can use the exit to obtain
information that the user specifies on the EDIT command.

The EDIT subcommands, COPY, MOVE, and RENUM all change line numbers or
add line numbers to a data set. If the numbering algorithms these subcommands
use do not meet your needs, or you wish to change the way these subcommands
work, you can write an exit. One exit serves all three subcommands.

If the functions provided by the EDIT command are inadequate, you can
supplement those functions. You do this by writing your own subcommand
processors and adding them to the system.

The EDIT subcommands, MOVE and COPY, both require the allocation of data sets
for work space. Depending on a number of factors, the subcommands use either
temporary space or permanent space. You have the option to either preallocate the
space or to allow EDIT to allocate it dynamically as it’s needed.

Optional Customization

16 z/OS V1R4.0 TSO/E Customization

For a description of EDIT and its subcommands, see z/OS TSO/E Command
Reference.

For more customization information, see Chapter 28, “Customizing the EDIT
Command” on page 257.

EXEC Command
TSO/E provides two exits that enable you to customize the EXEC command. The
initialization exit enables you to monitor, change, or supplement information that
users provide on the EXEC command. The termination exit enables you to do any
clean-up that may be needed because of processing the initialization exit performs
and change the default CONTROL options for CLISTs. For information, see
Chapter 29, “Customizing the EXEC Command” on page 279.

FREE Command
TSO/E provides two exits that enable you to customize the FREE command. The
initialization exit enables you to monitor, change, or supplement information that
users provide on the FREE command. The termination exit enables you to do any
clean-up that may be needed because of processing the initialization exit performs.
For information, see Chapter 30, “Customizing the FREE Command” on page 285.

LISTBC, OPERATOR SEND, and SEND Commands
Users issue the SEND command to send messages to other users. Users who are
authorized to use the OPERATOR command can issue the SEND subcommand to
send messages to users. The SEND command and the OPERATOR SEND
subcommand may store messages in the broadcast data set depending on the
operands the user specifies. Users issue the LISTBC command to retrieve
messages that SEND stores.

By default, SEND and OPERATOR SEND store messages in the broadcast data set
and LISTBC retrieves stored messages from this data set. You can define individual
user logs that SEND, OPERATOR SEND, and LISTBC use to store and retrieve
messages instead of using the broadcast data set.

To customize SEND, OPERATOR SEND, and LISTBC processing, you can use
SYS1.PARMLIB member IKJTSOxx to define installation defaults. You can:

v Specify whether users can use the SEND command

v Specify whether users who are authorized to use the OPERATOR command can
use the SEND subcommand

v Specify whether user logs are used and name those logs

v With RACF installed, specify whether security labels (SECLABELs) will be used
to protect messages

To further tailor the process, you can write exits for LISTBC, OPERATOR SEND,
and SEND. Using these exits, you can:
v Provide additional restrictions on who can or cannot send messages
v Override defaults that you previously set in IKJTSOxx
v Tailor the use of user logs
v Change operands that users specify on LISTBC, OPERATOR SEND, or SEND
v Change message text or format messages

For more information, see Chapter 34, “Customizing How Users Send and Retrieve
Messages” on page 335.

Optional Customization

Chapter 1. Customization Overview 17

PARMLIB Command
TSO/E provides the PARMLIB command, which lets users list TSO/E options that
are in effect on the system and update the options as specified in IKJTSOxx
members of SYS1.PARMLIB. You can also use the CHECK parameter of PARMLIB
to check the syntax of any IKJTSOxx member of SYS1.PARMLIB including the
active member.

TSO/E provides initialization and termination exits that you can use to customize
the PARMLIB command. The initialization exit can restrict users from using the
PARMLIB command, change operands supplied by the user, or pass the address of
a new command buffer. The termination exit can perform clean-up processing, such
as releasing storage obtained by the initialization exit.

TEST and TESTAUTH Commands
The TEST command lets users test unauthorized assembler programs. The
TESTAUTH command lets users test authorized assembler programs. Users can
also test APPC/MVS transaction programs written in assembler with the TEST and
TESTAUTH commands. You can customize these commands in the following ways:

v Supply installation-written subcommands of the TEST and TESTAUTH
commands, and installation-written command processors to be invoked under
TEST and TESTAUTH. You must define those subcommands and command
processors to TEST and TESTAUTH using CSECT IKJEGSCU or member
IKJTSOxx in SYS1.PARMLIB.

v You can write exit routines to tailor the processing of the TEST and TESTAUTH
commands and their subcommands.

The command and subcommand exits for TEST and TESTAUTH allow you to:

– Restrict certain users from using the command or subcommands.

– Change the operands a user specifies on the command or subcommands.

– Perform clean-up processing before the command or subcommand ends.

For more information, see Chapter 35, “Customizing the TEST Command” on
page 371 and Chapter 36, “Customizing the TESTAUTH Command” on page 383.

TRANSMIT and RECEIVE Commands
If you have made TRANSMIT and RECEIVE available, you may wish to customize
the use of those commands. Through the customization facilities provided, you can:

v Restrict who can use the commands and on which network paths

v Allow, disallow, or require encryption of transmitted data

v Modify data encryption and decryption processing

v Enable users to transmit and receive data set types that TRANSMIT and
RECEIVE do not support

v Notify the sender when an acknowledgment is available to receive

v Delete transmissions from the JES spool

v Collect and report on statistics related to network usage

If you add the TRANSMIT and RECEIVE commands to the table of authorized
commands, the TSO/E default allows all users to use those commands. By writing
exits, you can limit the use of TRANSMIT and RECEIVE to specific users. You can
also use exits to restrict the nodes to which a user can send transmitted data, to
allow users to receive data sets intended for other users, and to allow users to
transmit and receive data set types that TRANSMIT and RECEIVE do not support.

TSO/E allows you to decide on an installation-wide basis whether transmitted data
will be encrypted. You can require all transmitted data to be encrypted, you can

Optional Customization

18 z/OS V1R4.0 TSO/E Customization

allow the user to decide whether to encrypt data, or you can disallow encryption
altogether. If you allow encryption, you can use TRANSMIT and RECEIVE exits to
selectively prevent encryption or decryption. You can also use exits to modify the
encryption and decryption options the user specifies, or to use your own encryption
algorithm instead of the one TSO/E invokes by default. By default, TSO/E users are
not notified when they have a transmission to receive. You can use exits to provide
that notification. JES2 and JES3 provide exits for notifying the receiver that a
transmission has arrived. JES2, JES3, and TSO/E all provide exits for notifying the
sender that an acknowledgment is available to receive.

Periodically you might need to delete from the JES spool those data sets that have
been sent to incorrect user IDs, or to users who have not logged on for a given
period of time. JES2 and JES3 provide exits you can use for that purpose.

TSO/E enables you to collect statistics on network usage and to report those
statistics. Two TSO/E exits that you can write collect the statistics. SMF macros,
that you code in those exits, report the statistics.

For more information, see Chapter 37, “Customizing TRANSMIT and RECEIVE” on
page 395.

TSOLIB Command
TSO/E provides the TSOLIB command, which lets users dynamically link load
module libraries of their choice from within their TSO/E sessions. TSO/E also
provides initialization and termination exits that you can use to customize the
TSOLIB command. The initialization exit can restrict users from using the TSOLIB
command, can change operands supplied by the user, or pass the address of a
new command buffer. The termination exit can perform clean-up processing, such
as releasing storage obtained by the initialization exit. For more information, see
Chapter 38, “Customizing the TSOLIB Command” on page 485.

Job Submission and Output Processing
IBM provides a number of facilities you can use to customize the way MVS
processes jobs and job output. You can use these facilities to:
v Override the IBM-provided default job processing characteristics
v Monitor, change, or supplement the JCL users use to submit a job
v Cancel a job
v Tailor the way the TSO/E SUBMIT, CANCEL, OUTPUT, and STATUS commands

work
v Delete, release, or reroute job output
v Submit jobs as a surrogate user

JES2 or JES3, depending on which you have, provides the default job processing
characteristics. You can use JES initialization statements to change these defaults.

TSO/E, JES2, JES3, and SMF all provide exits that enable you to further customize
job and output processing. TSO/E provides two exits, one for the SUBMIT
command and one for the CANCEL, OUTPUT, and STATUS commands. TSO/E
also provides default routines for these exits. The SUBMIT default exit allows users
to use the SUBMIT command as they wish. The default exit for the CANCEL,
OUTPUT, and STATUS commands allows users to examine the status of any job. It
prohibits users, however, from using the CANCEL or OUTPUT commands on any
job other than their own. For more information, see Chapter 32, “Customizing the
SUBMIT Command and Job Output Processing” on page 295.

Optional Customization

Chapter 1. Customization Overview 19

Printing Data Sets
Users print data sets using either the ALLOCATE or PRINTDS commands or by
invoking an application that uses the printer support service. You can customize
how users print data sets in several ways.

TSO/E provides two exits for the PRINTDS command, an initialization exit and a
termination exit. You can use the initialization exit to change, delete, or add
operands to a PRINTDS command, to change the PRINTDS operands that have
fixed default values, or to prohibit specific users from using the command. You use
the termination exit to perform any clean-up that is required because of an action
taken by the initialization exit. When users issue the ALLOCATE command to
allocate a system output (SYSOUT) data set or issue the PRINTDS command, they
can specify the OUTDES operand and the name of an output descriptor. The output
descriptor defines printer-related information and simplifies the use of the
commands. Without an output descriptor, users must provide printer-specific
operands. You can define output descriptors by including OUTPUT JCL statements
in the user’s logon procedure. If you have JES2 installed, you and your installation’s
users can also define output descriptors using the TSO/E OUTDES command.

To use the printer support service to print a data set, a user simply invokes an
installation-written application, and selects a printer and print options from a display
panel. There is no need for the user to code JCL statements or issue the
ALLOCATE or PRINTDS commands. To make printer support available, the
Information Center Facility must be available. You must define your printers using
Information Center Facility panels and provide the necessary application programs
that invoke printer support CLISTs.

With RACF installed, your installation can use security labels. If your installation is
using security labels, the security label is printed on each page of output. Printing of
the security label can be overridden with the correct RACF access authority.

For more information, see the following documents or topic:

v For a description of the PRINTDS, ALLOCATE, and OUTDES commands, see
z/OS TSO/E Command Reference.

v For an explanation of security controls on printed output, see z/OS Security
Server RACF Security Administrator’s Guide.

v For an explanation of how to customize the way users print data sets, see
Chapter 33, “Customizing How Users Print Data Sets” on page 317.

CLIST and REXX Processing
TSO/E provides exits that you can use to customize the processing of REXX execs
and CLISTs.

Customizing CLISTs
TSO/E provides two exits you can use to customize CLIST processing. One exit is
for installation-written built-in functions, and the other is for installation-written
statements.

The exit for installation-written built-in functions enables you to define and process
your own built-in functions. The exit receives control each time TSO/E encounters a
CLIST built-in function that it does not recognize.

The exit for installation-written statements enables you to define and process your
own CLIST statements. You can also use this exit to do your own processing of

Optional Customization

20 z/OS V1R4.0 TSO/E Customization

TSO/E commands. This exit receives control each time TSO/E encounters a TSO/E
command or an unrecognized statement in a CLIST.

For more information, see Part 6, “Customizing CLIST and REXX Processing” on
page 489.

Customizing REXX Processing
TSO/E provides load modules, exits, and replaceable routines that you can use to
customize REXX processing.

For REXX, TSO/E provides three default parameters modules that are load
modules containing the default values for initializing language processor
environments. A language processor environment is the environment in which a
REXX exec executes. The parameter modules are:
v IRXTSPRM for TSO/E
v IRXISPRM for ISPF
v IRXPARMS for MVS.

You can change the default values used to initialize a language processor
environment by providing your own parameters module. For more information, see
“Characteristics for a Language Processor Environment” on page 503.

The following describes the REXX exits:

v Pre-environment initialization exit (IRXINITX)

IRXINITX performs processing before a new language processor environment is
initialized. Use it to prevent the initialization of a language processor
environment, change parameters used for initializing a language processor
environment, or perform special pre-environment initialization processing.

v Post-environment initialization exit (IRXITTS or IRXITMV)

IRXITTS performs processing after the new language processor environment is
initialized for an environment integrated with TSO/E. Use it to perform special
processing for a language processor environment initialized with the parameters
of the IRXINITX exit.

IRXITMV performs processing after a new language processor environment is
initialized for an environment not integrated with TSO/E. Use it to perform special
processing for a language processor environment initialized with the parameters
of the IRXINITX exit.

v Environment termination exit (IRXTERMX)

IRXTERMX performs processing before a language processor environment is
terminated. Use IRXTERMX to prevent the termination of a language processor
environment or perform special processing with the parameters of the IRXINITX
exit.

v Exec processing exit

Use the exec processing exit to prevent the execution of a REXX exec or
perform special processing before a REXX exec is executed.

v Exec initialization exit

Use this exit to access and update REXX variables before the first clause in the
exec is processed.

v Exec termination exit

Use this exit to access and update REXX variables before the REXX variable
pool is terminated.

v Attention handling exit

Optional Customization

Chapter 1. Customization Overview 21

Use the attention handling exit to perform special attention processing. This exit
can only be used for an environment integrated with TSO/E.

For information about the REXX exits, see Part 6, “Customizing CLIST and REXX
Processing” on page 489.

In addition to the REXX exits, TSO/E supplies replaceable routines you can use to
customize REXX processing. TSO/E provides the following routines that handle
different types of system services, which you can replace:

v Loading and freeing execs

v Reading and writing output

v Handling data stack services

v Obtaining and freeing storage

v Obtaining the user or terminal ID

v Determining whether the message ID is displayed with a REXX error message

v Handling host commands for a specific language processor environment

For information about the replaceable routines, see “Replaceable Routines” on
page 511.

Session Manager
To enable users to use Session Manager, you must make several modifications.
The user’s TSO/E logon procedure must invoke a program that attaches the
Session Manager initialization task. Therefore, you must either change the existing
logon procedure or write a new one. You may have to modify the message control
program and the message handler. You may also have to modify initialization
parameters in a SYS1.PARMLIB member; TSOKEY00 or its alternate if you use
VTAM, or IKJPRM00 or its alternate if you use TCAM.

For information about how to make Session Manager available to your users, see
Chapter 43, “Setting Up a Session Manager Environment” on page 557.

There are several ways you can customize Session Manager. You can customize
the IBM-provided environment definition, you can provide your own environment
definitions, and you can write Session Manager exits. The environment definition
defines the user’s screen layout, program function key definitions, and stream
defaults. You can use the IBM-provided definition as is, or you can modify the
IBM-provided definition. You can also provide multiple definitions so different users
can use different definitions. Multiple definitions allow you to customize the
environment definition to individual user needs.

Three Session Manager exits allow you to monitor a user’s interaction with Session
Manager. You can write an initialization exit, a stream monitoring exit, and a
termination exit. IBM provides no defaults for these exits.

For information about defining and customizing Session Manager, see Part 8,
“Session Manager” on page 555.

Information Center Facility
Before the administrator can use the Information Center Facility, you must allocate
the required libraries. In addition, you must provide the administrator with a logon
procedure that accesses the Information Center Facility. If you are upgrading to a
new level of TSO/E, you may have to convert Information Center Facility libraries

Optional Customization

22 z/OS V1R4.0 TSO/E Customization

and tables to be compatible with the new release level. You also have the option to
move the programs that provide dialog functions from SYS1.CMDLIB to a different
library.

After the Information Center Facility is made available, you can customize it to fit
the needs of your installation. You can:

v Add your own applications and the panels for accessing the applications

v Tailor application definitions for specific groups of users or for individual users

v Modify the start-up and termination process

v Add commands to the list of commands that users can issue from Information
Center Facility panels

v Change the default values of Information Center Facility variables

v Write exits for ADRS-II, the names service, or Application Manager

For more information, see Part 9, “Information Center Facility” on page 585.

Optional Customization

Chapter 1. Customization Overview 23

Optional Customization

24 z/OS V1R4.0 TSO/E Customization

Chapter 2. Writing Exit Routines

Overview of Exits that TSO/E Provides 26
Exits for TRANSMIT and RECEIVE Commands 26
Exits for Logon and Logoff Processing 27
Exit for OUTPUT, STATUS, and CANCEL Commands 27
Exit for SUBMIT Command 28
Exit for EDIT Command . 28
Exits for Session Manager. 28
Exits for Information Center Facility 28
Exits for ALLOCATE Command 28
Exits for Application Manager 29
Exits for CLIST Processing 29
Exits for REXX Processing 29
Exits for EXEC Command . 29
Exits for ALTLIB Command 30
Exits for PARMLIB Command 30
Exits for TEST Command . 30
Exits for TESTAUTH Command. 30
Exits for FREE Command . 30
Exits for LISTBC Command 31
Exits for OUTDES Command 31
Exits for PRINTDS Command 31
Exits for SEND Command and OPERATOR SEND Subcommand 31
Exits for CONSOLE Command 32
Exits for CONSPROF Command 32
Exit for PUTGET and GETLINE Processing 32
Exits for TSOLIB Command 33

General Programming Considerations 33
TSO/E Standard-Format Exits 34

TSO/E Standard Exit Parameter List 35
Parameter Entries . 37
Standard Return Codes. 42
Installing the Standard-Format Exits 42
Example Installation Exit . 43

Format of the Exit Descriptions 44

TSO/E provides exit points for many TSO/E functions and commands. An exit point
is a specific point in a function’s or command’s processing where the function or
command invokes an exit routine if one exists. You write an exit routine to perform
special processing and customize how the function or command works. When your
exit routine completes its processing, it returns control to the function or command
that invoked the routine.

Exit routines let you change default values or actions or extend a TSO/E function.
You can write an exit routine to change default processing, change the information
a user specifies on a command, or extend the processing capabilities of a TSO/E
command or function. TSO/E commands base their processing on input that users
enter when they issue the command. You can write an exit routine to change the
operands the user specified and therefore change the command’s processing. You
may also want to restrict users from using certain operands of a command.

For some functions or commands, TSO/E provides a default exit routine. If you do
not write your own exit routine, the function or command invokes the default routine.

© Copyright IBM Corp. 1988, 2002 25

If you do write your own exit routine, you replace the routine that TSO/E provides
with your own exit routine. The function or command then invokes your exit rather
than the default exit TSO/E provides.

For other functions or commands, TSO/E does not provide a default exit routine. If
you do not write your own exit routine, the function or command simply continues
processing without invoking an exit routine. If you do write an exit routine, the
function or command invokes your routine.

The individual descriptions of the exits in this document describe whether TSO/E
provides a default exit routine for the particular exit.

Overview of Exits that TSO/E Provides
The following sections give an overview on the exits that TSO/E provides for
functions and commands. Also shown are the exit names if they must follow a
naming convention.

Many TSO/E exits receive a TSO/E standard exit parameter list. Other TSO/E exits
receive parameter lists that are different from the standard parameter list and which
vary for each exit. To distinguish the exits that receive the standard exit parameter
list from exits that receive different parameter lists, this document refers to TSO/E
exits that receive the standard list as standard-format exits. “TSO/E
Standard-Format Exits” on page 34 describes standard-format exits and the
standard exit parameter list. In the following sections the standard-format exits are
designated by a footnote2 following the name of the exit.

The individual descriptions of the exits in this document describe the parameter list
each exit receives. The descriptions also describe whether TSO/E provides a
default exit routine for the exit and if so, what processing the default exit routine
performs. TSO/E does not provide default exit routines for the standard-format exits.

Exits for TRANSMIT and RECEIVE Commands
Use the various TRANSMIT and RECEIVE exits together to perform different types
of processing. Use the exits to monitor transmission activity or customize how
TRANSMIT and RECEIVE operate. For example, you can use the exits to:

v Collect statistics about network usage

v Control which users can use a particular network path

v Support data sets that the Interactive Data Transmission Facility does not support

v Tailor encryption and decryption processing

Refer to Chapter 37, “Customizing TRANSMIT and RECEIVE” on page 395.

Note: If you have a standard-format exit and a “non-standard” exit installed for the
same TRANSMIT or RECEIVE function, the command processor invokes
only the standard-format exit. For example, suppose you have two
TRANSMIT start-up exits INMXZ01 and INMXZ01R. TRANSMIT invokes only
INMXZ01R. The INMXZ01 exit does not receive control.

v Common exit:

– NAMES data set pre-allocation: INMCZ21R2

v TRANSMIT exits:

2. Name of standard-format exit.

26 z/OS V1R4.0 TSO/E Customization

– Start-up: INMXZ01, INMXZ01R2

– Log data set pre-allocation: INMXZ21R2

– Encryption: INMXZ03, INMXZ03R2

– Termination: INMXZ02, INMXZ02R2

v RECEIVE exits:

– Initialization: INMRZ01, INMRZ01R2

– Log data set pre-allocation: INMRZ21R2

– Data set pre-processing: INMRZ11, INMRZ11R2

– Data set decryption: INMRZ13, INMRZ13R2

– Notification: INMRZ04, INMRZ04R2

– Acknowledgment notification: INMRZ05R2

– Pre-acknowledgment notification: INMRZ06R2

– Data set post-processing: INMRZ12, INMRZ12R2

– Post-prompt: INMRZ15R2

– Termination:INMRZ02, INMRZ02R2

Exits for Logon and Logoff Processing
v Logon pre-prompt: IKJEFLD

Tailor the TSO/E logon process. Verify, change, or supply logon parameters and
system characteristics, cancel logon requests, provide your own JCL statements,
or display your own full-screen logon panel.

v Logon pre-prompt: IKJEFLD12

Perform the functions of IKJEFLD, plus authorized functions. Specify the first
TSO/E command, return Job and SYSOUT classes, bypass RACF, return the
RBA, pass data to the logoff exit, specify SECLABEL of current logon session,
set up a console profile, and set up languages for users. Refer to “Writing a
Logon Pre-Prompt Exit (IKJEFLD/IKJEFLD1)” on page 93.

v Logon pre-display: IKJEFLN1

Edit logon information prior to display or re-display of the logon panel. Process
installation-defined fields on the logon panel. Refer to “Writing a Logon
Pre-Display Exit (IKJEFLN1)” on page 118.

v Logon post-display: IKJEFLN2

Validate and process fields on the logon panel after the user has entered the
information on the logon panel. Request logon panel reprompting. Request help
panels. Refer to “Writing a Logon Post-Display Exit (IKJEFLN2)” on page 129.

v Logon post-prompt: IKJEFLD3

Edit TSO/E logon JCL and control blocks after prompting has completed. Refer to
“Writing a Logon Post-Prompt Exit (IKJEFLD3)” on page 140.

v Logoff: IKJEFLD22

Tailor the TSO/E logoff process. Gather accounting information, control UADS
and RACF data base updates, control re-logons. Refer to “Writing a Logoff Exit
(IKJEFLD2)” on page 143.

Exit for OUTPUT, STATUS, and CANCEL Commands
v IKJEFF53:

Tailor the way users can handle the processing of batch jobs and their output.

Overview of Exits that TSO/E Provides

Chapter 2. Writing Exit Routines 27

Refer to “Writing an Exit for the OUTPUT, STATUS, and CANCEL Commands” on
page 308.

Exit for SUBMIT Command
v IKJEFF10:

Check submitted JCL statements and accept, reject, or modify them.

Refer to “Writing an Exit for the SUBMIT Command” on page 298.

Exit for EDIT Command
v Syntax checkers:

Write an exit for syntax checkers that your installation provides. The exit fills in
the option word with information the user specifies on the EDIT command. Refer
to “Writing an Exit for Syntax Checkers” on page 265.

v RENUM, MOVE, and COPY subcommands:

Customize how the subcommands handle line numbering whenever a user
issues the subcommands. Refer to “Writing an Exit for the RENUM, MOVE, and
COPY Subcommands” on page 267.

Exits for Session Manager
v Initialization:

Indicate which streams you want to monitor and whether the Session Manager
should log line mode output while users are executing full-screen programs.

v Stream monitoring:

Monitor the individual streams you specified in the initialization exit and perform
required processing.

v Termination:

Perform special processing before the Session Manager ends.

Refer to “Writing Session Manager Exits” on page 572.

Exits for Information Center Facility
v ADRS:

Add processing, such as displaying panels or allocating data sets, whenever a
user selects the ADRS option from the Information Center Facility. Refer to
“Writing an Exit for ADRS” on page 647.

v Names service:

Keep track of changes that are made to the private and master directories
whenever Information Center Facility users use the names service. Refer to
“Writing an Exit for the ICF Names Service” on page 647.

Exits for ALLOCATE Command
v Initialization: IKJEFD47

Check and change the command users issue or provide pseudo-operands.

v Termination: IKJEFD49

Perform clean-up processing. Specify an alternative return code.

Refer to “Writing Exits for the ALLOCATE Command” on page 225.

Overview of Exits that TSO/E Provides

28 z/OS V1R4.0 TSO/E Customization

Exits for Application Manager
v Function pre-initialization: ICQAMFX12

Check a user’s authorization to use an application, allocate data sets for an
application, and prepare to gather accounting data.

v Function post-termination: ICQAMFX22

Free data sets the function pre-initialization exit allocated and summarize
accounting data.

v Panel pre-display: ICQAMPX12

Set default values for the panel to be displayed.

v Panel post-display: ICQAMPX22

Validate the information the user entered on the panel.

Refer to “Writing Exits for Application Manager” on page 650.

Exits for CLIST Processing
v Built-in functions: IKJCT44B2

Add installation-written built-in functions.

v Statements: IKJCT44S2

Add installation-written CLIST statements.

Refer to Chapter 39, “Customizing CLIST Processing” on page 493.

Exits for REXX Processing
v Pre-environment initialization: IRXINITX

Perform processing before a new language processor environment is initialized.

v Post-environment initialization: IRXITTS or IRXITMV

Perform processing after a language processor environment is initialized.

v Environment termination: IRXTERMX

Perform processing before a language processor environment is terminated.

v Exec processing:

Perform special processing before a REXX exec is executed.

v Attention handling:

Perform special attention processing in an environment integrated with TSO/E.

v Exec initialization:

Access or update REXX variables.

v Exec termination:

Access or update REXX variables.

Refer to Chapter 40, “Customizing REXX Processing” on page 501.

Exits for EXEC Command
v Initialization: IKJCT43I2

Change the command the user issues.

v Termination: IKJCT43T2

Perform clean-up processing and set the defaults for the control characteristics of
the CLISTs or REXX execs.

Overview of Exits that TSO/E Provides

Chapter 2. Writing Exit Routines 29

Refer to Chapter 29, “Customizing the EXEC Command” on page 279.

Exits for ALTLIB Command
v Initialization: IKJADINI2

Change the command the user issues.

v Termination: IKJADTER2

Perform clean-up processing.

Refer to Chapter 26, “Customizing the ALTLIB Command” on page 231.

Exits for PARMLIB Command
v Initialization: IKJPRMX12

Change the command the user issues.

v Termination: IKJPRMX22

Perform clean-up processing.

Refer to “Writing Exits for the PARMLIB Command” on page 290.

Exits for TEST Command
v Initialization: IKJEGMIE2

Change the command the user issues.

v Termination: IKJEGMTE2

Perform clean-up processing.

v Subcommand initialization: IKJEGCIE2

Change the subcommand the user issues.

v Subcommand termination: IKJEGCTE2

Perform clean-up processing.

Refer to “Writing Exits for the TEST Command” on page 374.

Exits for TESTAUTH Command
v Initialization: IKJEGAUI2

Perform security verification.

v Termination: IKJEGAUT2

Perform clean-up processing.

v Subcommand initialization: IKJEGASI2

Change the subcommand the user issues.

v Subcommand termination: IKJEGAST2

Perform clean-up processing.

Refer to “Writing Exits for the TESTAUTH Command” on page 384.

Exits for FREE Command
v Initialization: IKJEFD21

Check and change the command users issue or provide pseudo-operands.

v Termination: IKJEFD22

Perform clean-up processing.

Overview of Exits that TSO/E Provides

30 z/OS V1R4.0 TSO/E Customization

Refer to Chapter 30, “Customizing the FREE Command” on page 285.

Exits for LISTBC Command
v Initialization: IKJEESX52

Initialize the environment for later exits, restrict users from using the command,
or change the operands a user specifies on the command.

v Pre-display: IKJEESX62

If using individual user logs, provide special formatting, append diagnostic
information to a message, and support special features of output devices.

v Pre-list: IKJEESX72

If using individual user logs, modify user log data set names and prepare for the
pre-read exit.

v Pre-read: IKJEESX82

If using individual user logs, tailor I/O.

v Pre-allocate: IKJEESX92

If using individual user logs, allocate the user log data set.

v Failure: IKJEESXA2

If using individual user logs, perform failure processing and clean-up after an I/O
failure.

v Termination: IKJEESXB2

Perform clean-up or special termination processing.

Refer to “Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands”
on page 343.

Exits for OUTDES Command
v Initialization: IKJEFY11

Check and change the command users issue or provide pseudo-operands.

v Termination: IKJEFY12

Perform clean-up processing.

Refer to “Writing Exits for the OUTDES Command” on page 321.

Exits for PRINTDS Command
v Initialization: IKJEFY602

Tailor the fixed default values for specific operands. Restrict users from using the
command or change the operands a user specifies on the command.

v Termination: IKJEFY642

Perform clean-up processing.

Refer to “Writing Exits for the PRINTDS Command” on page 325.

Exits for SEND Command and OPERATOR SEND Subcommand
v Initialization: IKJEESX02, IEEVSNX02

Initialize the environment for later exits, change the defaults in SYS1.PARMLIB,
restrict users from using the command, provide different user log data set names,
and reroute messages by changing the user ID of the target user.

v Pre-display: IKJEESX12, IEEVSNX12

Overview of Exits that TSO/E Provides

Chapter 2. Writing Exit Routines 31

If using individual user logs, provide special formatting, add diagnostic
information, and support special features of output devices.

v Pre-save: IKJEESX22, IEEVSNX22

If using individual user logs, override the user log data set name, support special
I/O, and perform open and write operations. If used with the LISTBC pre-read
exit, process the message or add information to it such as a sequence number,
compress the message, and change parameters.

v Failure: IKJEESX32, IEEVSNX32

If using individual user logs, perform failure processing and clean-up after an I/O
failure.

v Termination: IKJEESX42, IEEVSNX42

Perform clean-up or special termination processing.

Refer to “Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands”
on page 343.

Exits for CONSOLE Command
v Pre-parse: IKJCNXPP2

Check and, if necessary, change the command the user issues.

v Activation: IKJCNXAC2

Establish a communication area, end a console activation request, change
settings specified by the user, and grant or deny CONSOLE command authority
to the user.

v 80% message capacity: IKJCNX502

Take action when the solicited or unsolicited message table becomes 80% full.

v 100% message capacity: IKJCNX642

Take action when the solicited or unsolicited message table becomes 100% full.

v Deactivation: IKJCNXDE2

Perform clean-up processing.

Refer to “Writing Exits for the CONSOLE Command” on page 237.

Exits for CONSPROF Command
v Initialization: IKJCNXCI2

Check and, if necessary, change the command the user issues, update the
console profile with an installation portion, and grant or deny CONSOLE
command authority to the user.

v Pre-display: IKJCNXCD2

Add information to the console profile display message, IKJ55351I, or issue an
installation-defined message instead of IKJ55351I.

v Termination: IKJCNXCT2

Perform clean-up processing and store the installation portion of the console
profile in a permanent place.

Refer to “Writing Exits for the CONSPROF Command” on page 249.

Exit for PUTGET and GETLINE Processing
v IKJEFXG1:

Tailor PUTGET and GETLINE processing.

Overview of Exits that TSO/E Provides

32 z/OS V1R4.0 TSO/E Customization

Refer to Chapter 18, “Customizing PUTGET and GETLINE Processing” on
page 183.

Exits for TSOLIB Command
v Initialization: IDYTSINI2

Change the command the user issues.

v Termination: IDYTSTER2

Perform clean-up processing.

Refer to Chapter 38, “Customizing the TSOLIB Command” on page 485.

General Programming Considerations
An exit routine must follow standard linkage conventions. Whenever an exit
receives control, the contents of the general registers are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

When an exit receives control, it must save the caller’s registers. Register 13
contains the address of the register save area. Before the exit returns control to the
invoking program, it must restore the caller’s registers and set a return code in
register 15, if the exit supports return codes.

When an exit receives control, register 1 contains the address of a parameter list.
The parameter list provides information the exit needs to perform its processing.
Exits also use the parameter list to return information to the invoking program.

All exits, except the logon pre-prompt exit IKJEFLD and the three Session Manager
exits, support the use of return codes. The exit routine passes back the return code
to the invoking program in register 15. Return codes indicate what action the
invoking program should take. For example, a return code may indicate that the exit
routine’s processing was successful and that the invoking program should continue
processing. A different return code may indicate that the invoking program should
terminate processing.

If the invoking program expects specific values for a return code and the exit
returns a value that the invoking program does not recognize, the invoking program
either:
v Issues an error message and terminates processing, or
v Terminates processing without displaying an error message to the user.

The standard-format exits support a standard set of return codes. “Standard Return
Codes” on page 42 describes the return codes for these exits.

When you write an exit routine, there are several things you must consider:

Overview of Exits that TSO/E Provides

Chapter 2. Writing Exit Routines 33

v The environment of the invoking program because the exit routine runs as an
extension of that environment. This includes such things as AMODE, RMODE,
state, and key.

v Programming considerations, including whether the exit should be reentrant,
refreshable, and reusable.

v Error conditions. The exit routine must handle its own error conditions and
provide its own error recovery.

v Testing. You should test your exit before you integrate it into the system. You can
easily test exits using a logon STEPLIB. Testing exits in this way does not affect
other user’s work on the system. You must ensure that the STEPLIB has the
correct authorization to perform the testing.

The TSO/E functions and command processors may encounter errors when they
invoke an exit or while an exit is processing. The function or command processor
then displays an error message to the user. z/OS TSO/E Messages lists the
messages that TSO/E displays.

The description of each exit in this document includes details about the registers on
entry and return, the return codes, parameter lists, and environment considerations.
“Format of the Exit Descriptions” on page 44 highlights the format that this
document uses to describe each individual exit.

TSO/E Standard-Format Exits
Many TSO/E exits receive a TSO/E standard exit parameter list and are referred to
in this document as standard-format exits. “TSO/E Standard Exit Parameter List” on
page 35 describes the standard parameter list for these exits.

If TSO/E provides a standard-format exit for a function or command processor,
TSO/E provides both an initialization exit and a termination exit. For some TSO/E
commands, TSO/E provides other exits in addition to an initialization and
termination exit. For example, for the SEND command, TSO/E provides the
following exits:
v Initialization
v Pre-display
v Pre-save
v Failure
v Termination.

See “Overview of Exits that TSO/E Provides” on page 26 for a lists all of the exits
that TSO/E provides.

You use the initialization exit to receive control at the beginning of the execution of
a specific command or function and to change the default processing or extend
processing capability. The initialization exit for a TSO/E command processor
receives control before the command processor invokes the parse service routine to
parse the command. You can use initialization exits to change the operands a user
specifies on a command and to perform other processing to customize a
command’s or a function’s processing.

Termination exits receive control just before a function’s or command processor’s
completion. You can use termination exits for clean-up processing. If the
initialization exit or other exits for a command or function obtain storage, you must
write a termination exit to free the storage.

General Programming Considerations

34 z/OS V1R4.0 TSO/E Customization

TSO/E provides an example exit (IKJEXIT) in SYS1.SAMPLIB that uses the
standard exit parameter list. The example may be helpful in writing exit routines for
standard-format exits. “Example Installation Exit” on page 43 describes the example.

TSO/E Standard Exit Parameter List
The TSO/E standard exit parameter list is a standard set of data that all of the
standard-format exits receive. Register 1 points to a list of addresses. Each address
points to a parameter entry that has a key, length, and data format. The first nine
parameter entries are standard for all of the standard-format exits.

Following the standard set of data (the first nine parameter entries), an exit can also
receive exit-dependent data. The end of the parameter list is indicated by the
high-order bit being on in the parameter list pointed to by register 1.

Figure 1 on page 36 shows the standard exit parameter list that the standard-format
exits receive. The figure also illustrates that an exit can receive exit-dependent data
starting at offset +36 (decimal) in the parameter list. In Figure 1, the offsets for the
parameter entries are shown in decimal. The key, length, and data fields for each
parameter entry are in hexadecimal notation.

“Parameter Entries” on page 37 describes the parameter entries and the key,
length, and data fields.

TSO/E Standard-Format Exits

Chapter 2. Writing Exit Routines 35

00000002

Command
buffer
length

Command
buffer
address

Address of
parameter entry 1

Address of
parameter entry 4

Address of
parameter entry 5

Address of
parameter entry 6

Address of
parameter entry 7

Address of
parameter entry 8

Address of
parameter entry 9

Address of
parameter entry 10

Address of
parameter entry 11

00000000

00000002

00000002

00000002

00000000

00000000

00000000

00000000

0000000x

0000000x

00000004

00000004

00000004

00000004

00000004

UPT
length

ECT
length

PSCB
length

Length
of data

Length
of data

00000000

00000000

00000000

00000000

00000000

UPT
address

ECT
address

PSCB
address

Address of
data or
actual data

Address of
data or
actual data

Register 1
on entry

+0 +4 +8

+12

+16

+20

+24

+28

+32

+36

+40

+8

+4

+0

Parameter Entry's
Key, Length, and Data Description

Exit-dependent data

Exit-dependent data0000000x
Length
of data

Address of
data or
actual data

Exit-dependent data
1

high order bit on

+x

Key Length Data

Address of
parameter entry 2

Address of
parameter entry 3

Command buffer

New command buffer

User profile table
(UPT)

Exit reason code

Reserved for
future use

Reserved for
future use

Address of
parameter
entry n

Environmental control
table (ECT)

Protected step control
block (PSCB)

Exit-to-exit
communication word

Figure 1. Format of the TSO/E Standard Exit Parameter List and Exit-Dependent Data for TSO/E Standard-Format
Exits

TSO/E Standard-Format Exits

36 z/OS V1R4.0 TSO/E Customization

Parameter Entries
Data is passed as parameter entries in a key, length, and data format. Figure 1 on
page 36 shows that Register 1 points to a list of addresses. Each address in the list
points to a parameter entry.

The three parameter entry fields (key, length, and data) are described below:

Key The key field is one fullword that contains a hexadecimal value.
Table 1 shows the keys that have been defined for communication
between the exit and the invoking program. Any other values are
reserved and must not be used.

Table 1. Definition of Keys for Standard Exit Parameter List

Key Description

X'00' No data is passed in this parameter entry.
X'01' The data field contains the actual data for the parameter entry.
X'02' The data field contains the address of the actual data for the

parameter entry.
X'03' This is a special key that only certain standard-format exits support.

The exit requests that the function or command processor that
invoked the exit routine use the exit reason code as the function’s or
command processor’s return code. A key of X'03' is valid only for the
exit reason code parameter entry (parameter entry 7). For more
information, see “Exit Reason Code” on page 40.

X'04' This is a special key that only certain standard-format exits support.
The field is validated. This key indicates that the field contains valid
data. When this key is set, the field is locked and cannot be altered.

Length The length field is one fullword that contains the length of the data,
in hexadecimal. For a key of X'01', the length is the length of the
data in the data field. For a key of X'02', the length is the length of
the data that the address in the data field points to.

The length field cannot be X'00'. If no data is passed in a
parameter entry (key of X'00'), the length field must contain X'04'. If
you use a key of X'03', the length field must also contain X'04'.

Data The data field contains either the address of the data, the actual
data, or a value of X'00'.

The value in the data field depends on the value in the key field.
The following shows the relationship between the key and the value
in the data field:
Key Data Field

X'00' X'00'
X'01' Actual data
X'02' Address of the data
X'03' Exit reason code
X'04' Field is validated

Figure 1 on page 36 shows the values of the parameter entries that the first exit for
a function or command processor receives. The first exit is usually the “initialization”
exit for the function or command. The individual descriptions of each exit in this
document describe any exceptions to the standard exit parameter list.

TSO/E Standard-Format Exits

Chapter 2. Writing Exit Routines 37

If information about a particular parameter is unavailable to a function or command
processor, the function or command processor passes the following for the
parameter entry:

Key X'00'

Length X'04'

Data X'00'

An exit can change only the following parameter entries in the standard exit
parameter list:

v New command buffer.

v Exit-to-exit communication word.

Depending on the individual exit, the exit may be able to change exit-dependent
data that it receives. The individual descriptions of the exits in this document
describe any exit-dependent data and whether the exit can change the parameter
entries for this data. If the exit changes any of the other parameter entries,
unpredictable results can occur.

If an exit changes the new command buffer, the exit-to-exit communication word, or
any exit-dependent data, the function or command processor passes the changes
to the next exit it invokes.

The following topics describe each of the standard parameter entries and the
exit-dependent data.

Command Buffer
Figure 2 shows the format of the command buffer.

When a command processor gets control, the command buffer contains:

v A 4-byte header that consists of:

– A 2-byte length field that contains the length of the command buffer. The
length includes the 4-byte header.

– A 2-byte offset field. The content of the offset field depends on whether the
user specifies operands on the command and when the exit routine receives
control:

- If the user specifies operands on the command and the exit routine
receives control before the parse service routine, the offset field contains
the number of text bytes that precede the first operand.

- If the user does not specify any operands on the command or the exit
routine receives control after the parse service routine, the offset field
contains the length of the text field of the command buffer.

Length Offset Text

2 Bytes 2 Bytes

Length

Figure 2. Format of the Command Buffer

TSO/E Standard-Format Exits

38 z/OS V1R4.0 TSO/E Customization

v A text field that contains the command name followed by any operands that the
user specifies on the command.

In the standard exit parameter list, the length field of the command buffer
(parameter entry 1) is the same value as the value in the 2-byte length field of the
command buffer. This length includes the 4-byte header in the command buffer.

For example, suppose the user issues the following command:
PRINTDS DATASET(TEST.DATA) CLASS(B)

In the standard exit parameter list, the length field for the command buffer would be
X'23'. In the command buffer itself, the:

v 2-byte length field would also be X'23'

v 2-byte offset field would be X'08'

v Text field would contain the command the user issues:
PRINTDS DATASET(TEST.DATA) CLASS(B)

An exception is the command buffer for the SEND subcommand of the OPERATOR
command. The command buffer does not contain the four-byte header field. It
contains only the text field.

Some initialization exits for commands receive control before the command
processor invokes the parse service routine to check the syntax of the command
and convert operands to uppercase characters. Therefore, when these initialization
exits receive the command buffer:

v The command the user issued may not be syntactically correct, and

v The command and operands are passed exactly the same way the user specified
them. That is, they may be all uppercase, all lowercase, or mixed case.

These exits must not change the command buffer they receive. These exits must
use the new command buffer (parameter entry 2) to return an updated command
buffer to the invoking command processor. For more information about returning a
new command buffer, see “New Command Buffer”.

New Command Buffer
The new command buffer allows an initialization exit to change the command that a
user issues. Figure 2 on page 38 shows the format of the command buffer.

To change the command buffer, the exit must:

v Obtain storage for a new command buffer

v Build the new command buffer. When you build the new command buffer, make
sure the 4-byte header of the command buffer contains the correct length and
offset values.

v Update the key, length, and data fields in the parameter list for the new
command buffer as follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

If the exit returns a new command buffer, the command processor uses the new
command buffer for the remainder of its processing. The command processor
passes the new command buffer to all subsequent exits that it invokes.

TSO/E Standard-Format Exits

Chapter 2. Writing Exit Routines 39

You must also provide a termination exit to free the storage that the initialization exit
obtained for the new command buffer.

User Profile Table (UPT)
The exit receives the address of the user profile table (UPT), which allows you to
use the TSO/E service routines. For more information about the service routines,
see z/OS TSO/E Programming Services.

Environmental Control Table (ECT)
The exit receives the address of the environmental control table (ECT), which
allows you to use the TSO/E service routines. For more information about the
service routines, see z/OS TSO/E Programming Services.

Protected Step Control Block (PSCB)
The exit receives the address of the Protected Step Control Block (PSCB), which
allows you to use the TSO/E service routines. For more information about the
service routines, see z/OS TSO/E Programming Services.

Exit-to-Exit Communication Word
You can use the exit-to-exit communication word to pass information between the
different exits that a specific command processor or function invokes. The command
processor or function passes the exit-to-exit communication word to each exit it
invokes. The exit routines themselves are responsible for using and maintaining this
parameter entry.

To return a value in the exit-to-exit communication word, update the parameter entry
key, length, and data fields. If the exit returns the actual data in the data field, the
exit updates the key, length, and data fields as follows:

Key X'01'

Length X'04'

Data data

If the exit returns the address of the data in the data field, the exit updates the key,
length, and data fields as follows:

Key X'02'

Length the length of the data

Data the address of the data

For example, the SEND command processor may invoke five exits:
1. Initialization
2. Pre-display
3. Pre-save
4. Failure
5. Termination

If the initialization exit returns a value in the exit-to-exit communication word, SEND
passes the value to the next exit it invokes, for example, the pre-display exit. If the
pre-display exit changes the exit-to-exit communication word, SEND passes the
new value to the next exit it invokes.

Exit Reason Code
Use the exit reason code parameter to return an exit reason code to the function or
command processor.

TSO/E Standard-Format Exits

40 z/OS V1R4.0 TSO/E Customization

If an exit sets a return code of 12, the command processor or function displays an
error message to the user and then terminates processing. The error message
indicates that the exit requested termination of the command or function. The
message also contains an exit reason code. If the exit does not return an exit
reason code, the command processor or function specifies a reason code of 0 in
the error message. If the exit returns an exit reason code, the error message
specifies the reason code that the exit returned. By using return code 12 and
different exit reason codes, you can determine why a particular exit requested
termination of a function or command.

To return an exit reason code, the exit must update the key and data fields for the
exit reason code (parameter entry 7) as follows:

Key X'01'

Data the value of the exit reason code

For certain exits, you can request that the invoking program use the exit reason
code as its return code by using a key of X'03'. Only some exits support a key of
X'03'. The individual descriptions of each exit in this document describe whether
you can use a key of X'03'.

To have the function or command processor use the exit reason code as its return
code, the exit must update the key and data fields for the exit reason code
(parameter entry 7) as follows:

Key X'03'

Data the value of the exit reason code

If you write several exits for a command and more than one exit indicates that the
command should use the exit reason code as its return code, the command
processor uses the reason code from the last exit it invokes. For example, suppose
you write an initialization and a termination exit for the EXEC command. If both
exits request that the exit reason code is used as the return code from EXEC, the
EXEC command processor uses the reason code from the termination exit.

You must ensure that the exit reason code you want to use as a command’s return
code is not the same as an existing return code for the command processor. For a
list of the TSO/E return codes for each command, see z/OS TSO/E Command
Reference.

Reserved for TSO/E
Parameter entries 8 and 9 are reserved for TSO/E. Do not use these two parameter
entries.

Exit-Dependent Data
Starting at offset +36 (decimal) in the parameter list, the remaining parameter
entries are for exit-dependent data. An individual function or command processor
may pass additional data to an exit in these parameter entries. The individual
descriptions of each exit in this document indicate whether the exit receives
exit-dependent data.

The end of the parameter list is indicated by the high-order bit being on in the
parameter list pointed to by register 1.

TSO/E Standard-Format Exits

Chapter 2. Writing Exit Routines 41

Standard Return Codes
Table 2 shows the standard return codes that the TSO/E standard-format exits
support. Some standard-format exits support other return codes in addition to the
three standard return codes. The individual descriptions of the exits in this
document describe any additional return codes that each exit supports.

Table 2. Standard Return Codes for the TSO/E Standard-Format Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. The function or command
processor that invoked the exit continues processing.

12 Exit processing was unsuccessful. The function or command
processor that invoked the exit issues an error message to the
terminal user and then terminates processing. The error message
indicates that the exit routine requested termination of the
command or function.

The error message that the function or command processor
displays includes an exit reason code. For more information about
using exit reason codes with return code 12, see “Exit Reason
Code” on page 40.

16 Exit processing was unsuccessful. The function or command
processor that invoked the exit terminates processing without
issuing an error message to the terminal user.

If an exit returns with an undefined return code, the function or command processor
terminates processing without displaying a message to the user.

Installing the Standard-Format Exits
Installing the TSO/E standard-format exits is simpler than the installation procedures
for other TSO/E exits that do not use the standard exit parameter list. All
standard-format exits must have a specific name and be link-edited as separate
load modules.

You can link-edit all of the standard-format exits in a separate load library that is
exclusively for TSO/E exits or in an existing library that contains other routines. The
standard-format exits can reside in:

v The link pack area (LPA), which makes them available to all of your users. If you
change the exit and want to make the changes available in LPA for all of your
users, you must re-IPL your system.

v Linklist (LNKLST), which makes them available to all of your users. You can also
easily change the exit.

v A logon STEPLIB, which is helpful for limited use and for testing the exit before
you integrate it into your system. In this case, you can easily change the exit.
However, the use of a STEPLIB is not recommended for all of your users
because of the extra search time required to locate and invoke the exit.

For more information about LPA, LNKLST, and STEPLIB, see z/OS MVS
Initialization and Tuning Guide.

TSO/E determines the exact location of each exit (STEPLIB, LNKLST, or LPA).
TSO/E then invokes the exit from that location and only from that location during

TSO/E Standard-Format Exits

42 z/OS V1R4.0 TSO/E Customization

that entire TSO/E session. If the location of the exit is changed, the change only
goes into effect when a new TSO/E session is initiated. The search order is
STEPLIB, LPA, and then LNKLST.

You can also install the exits using System Modification Program (SMP/E), which
allows you to maintain a record of the exits you have installed. For more information
about SMP/E, see the following publications:
v SMP/E Reference
v SMP/E User’s Guide

If you use SMP/E, you must ensure that you generate your own functional module
ID (FMID) that does not duplicate any of the FMIDs that IBM uses.

The individual descriptions of each exit in this document discuss how you install
TSO/E exits that do not use the standard exit parameter list.

Example Installation Exit
TSO/E provides an example installation exit in SYS1.SAMPLIB. The member name
of the example is IKJEXIT. IKJEXIT is an example of how you can write an exit
routine only for the standard-format exits because it uses the standard exit
parameter list.

IKJEXIT has the following attributes:
v Reusable
v Refreshable
v Reentrant
v AMODE(ANY)
v RMODE(31)

IKJEXIT can be either APF-authorized or not APF-authorized. APF-authorization
depends on how you link-edit the exit.

You must assemble IKJEXIT with the High Level Assembler, or an assembler that
provides equivalent function.

IKJEXIT performs the following:

v Identifies each parameter entry and associates the parameter entry it is currently
processing with a hexadecimal value

v Displays the key, length, and data fields for each parameter entry

For the key and length fields, the values IKJEXIT displays are the actual values
contained in the fields. For the data field, IKJEXIT displays the address of the
data and then lists the actual data.

v Detects any errors with the parameter entry key or parameter entry length fields
and displays an appropriate informational message.

Figure 3 on page 44 shows the output that IKJEXIT displays for each parameter
entry. In the figure, the:

v ZZ fields indicate the parameter entry that is displayed. For example, if the
information is for the UPT (parameter entry 3), ZZ would be 03.

v X..X fields are fullwords that indicate the:
– Address of where the parameter entry starts
– Key for the parameter entry
– Length of the data
– Address of the data.

TSO/E Standard-Format Exits

Chapter 2. Writing Exit Routines 43

For more information, refer to the prologue of the example in
SYS1.SAMPLIB(IKJEXIT).

Format of the Exit Descriptions
This document describes each of the individual exits using the same format. The
format of the description is shown below.

Functional Description
provides an overview of the function or command that the exit is for. It
describes at what point in the function’s or command’s processing the exit
receives control. It also highlights how you can use the exit.

TSO/E-Supplied Exit
describes the processing of the default TSO/E exit routine if TSO/E provides
one.

Entry Specifications
describes the contents of the registers on entry.

Parameter Descriptions
describes the contents of the parameter list that the exit receives from the
invoking program.

Return Specifications
describes what the registers must contain when the exit returns control to the
invoking program. It also describes the possible return codes from the exit.

Programming Considerations
describes various considerations for writing the exit. It contains information,
such as whether the exit must be reentrant, refreshable, and reusable,
APF-authorization, and the TSO/E service routines the exit can use. It also
includes information about:

v Installing the exit, including:
– Naming conventions, if any
– Where the exit can reside (for example, STEPLIB, LPALIB)
– Linkage considerations.

v Environment

IKJEXIT

PARAMETER_ENTRY_ZZ IS AT -> X..X (ADDRESS OF WHERE THE
PARAMETER_ENTRY STARTS)

PE_ZZ KEY -> X..X LENGTH OF DATA -> X..X ADDRESS OF DATA -> X..X
DATA +00000000 E3C8C9E2 40C9E240 E3C8C540 C4C1E3C1

+00000010 40C6D6D9 40E3C8C9 E340C5E7 C1D4D7D3
+00000020 C5

...

PARAMETER_ENTRY_ZZ IS AT -> X..X (ADDRESS OF WHERE THE
PARAMETER_ENTRY STARTS)

PE_ZZ KEY -> X..X LENGTH OF DATA -> X..X ADDRESS OF DATA -> X..X
DATA +00000000 E3C8C9E2 40C9E240 E3C8C540 C4C1E3C1

+00000010 40C6D6D9 40E3C8C9 E340C5E7 C1D4D7D3
+00000020 C5

Figure 3. Output of the TSO/E Example Installation Exit IKJEXIT

TSO/E Standard-Format Exits

44 z/OS V1R4.0 TSO/E Customization

Includes the state and key that the exit executes in, AMODE and RMODE
requirements, and other operational considerations.

v Restrictions and Limitations

Lists any restrictions or limitations for the exit itself or any effect on other
system processing because of exit processing.

Possible Uses
describes different tasks you can perform using the exit.

Format of the Exit Descriptions

Chapter 2. Writing Exit Routines 45

Format of the Exit Descriptions

46 z/OS V1R4.0 TSO/E Customization

Part 2. Considerations for Installing, Migrating and Activating
the Functions of TSO/E

© Copyright IBM Corp. 1988, 2002 47

48 z/OS V1R4.0 TSO/E Customization

Chapter 3. Considerations for Installing TSO/E

REXX Parameter Modules. 49
Using the LINKPGM, ATTCHPGM, LINKMVS, and ATTCHMVS Host Command

Environments . 49
Installing the APPC/MVS Administration Dialog 49
Allocating the User Attributes Data Set (SYS1.UADS) 50
Migrating Customized Parts . 50

Deleted Exit Routines and CSECTs 50
Changed Exit Routines . 51
New Information Center Facility Tables 51

Using SYS1.PARMLIB Member IKJTSOxx 52
New TRANSREC NODESMF Parameter 52

Migrating TSO/E Commands . 52
National Language Considerations. 52
LOGON Considerations. 53

Naming Conventions for the Load Modules and CSECTs 53
Considerations for Katakana Devices. 53
Using Security Labels . 54

TSO/E Full-Screen Logon Panel 54
TSO/E Logon Pre-Prompt Exit 54

Reviewing Macro Libraries for TSO/E 54
Installing a REXX Compiler . 55
Installing TSO/E for the First Time 55
Installing the Information Center Facility for the First Time 55

The above sections describe planning considerations for installing TSO/E from a
previous TSO/E release.

REXX Parameter Modules
If you have modified the parameter modules (IRXISPRM, IRXTSPRM, or
IRXPARMS), you may want to copy them to another data set, because they are
overlaid at install time.

Using the LINKPGM, ATTCHPGM, LINKMVS, and ATTCHMVS Host
Command Environments

If you have created your own REXX parameter modules for your installation or have
tailored the parameter modules (IRXREXX1, IRXREXX2, and IRXREXX3
respectively TSOREXX1, TSOREXX2 and TSOREXX3 for TSO/E 2.5 and lower)
supplied by IBM, you must add entries to the host command environment table
defined in those modules, in order to access the new LINKPGM, ATTCHPGM,
LINKMVS, and ATTCHMVS host command environments.

Installing the APPC/MVS Administration Dialog
The APPC/MVS administration dialog is shipped with the Information Center Facility.
An installation file is shipped in AICQILIB and is provided for installing the
APPC/MVS administration dialog on the Information Center Facility as an option on
the main administrator panel, ICQADMIN. The APPC/MVS administration dialog can
also be invoked as a REXX exec from an ISPF panel.

© Copyright IBM Corp. 1988, 2002 49

Allocating the User Attributes Data Set (SYS1.UADS)
When TSO/E is installed, member IBMUSER0 will be placed in the data set pointed
to by the UADS DDDEF or DD statement in the SMP/E procedure. If you have
previously installed TSO/E, you should allocate a dummy user attributes data set
(UADS) for installation. This will prevent SMP/E from putting IBMUSER0 back in
your UADS data set (if you have deleted it), or replacing it with the default
IBMUSER entry (if you use the IBMUSER0 user ID and have changed its
attributes).

The dummy UADS data set may have any high-level qualifier, and need not be
cataloged in the master catalog. It should be available for SMP/E processing, in
case the IBMUSER0 default entry is changed, or other entries are added, by
service.

If you are installing TSO/E for the first time, allocate a SYS1.UADS data set and
catalog it in the master catalog.

Notes:

1. If you are installing TSO/E for the first time and reallocate the UADS data set,
or if you have deleted IBMUSER0 and allow SMP/E to replace it in your
production UADS data set during the installation of TSO/E you will need to use
the SYNC command to re-synchronize the UADS and BRODCAST data sets.

2. SYS1.UADS must be allocated with LRECL=80 for installation. When the
SMP/E installation is complete, it should be reallocated with LRECL=172. Any
high level qualifier can be used for UADS when installing. However, when you
IPL, a SYS1.UADS must exist, be cataloged, and contain at least one user.

It is recommended that you optimize the block size of SYS1.UADS to minimize
waste of space. For more information about allocating the UADS, see Chapter 22,
“Working with the UADS and Broadcast Data Set” on page 201.

Migrating Customized Parts
Installation of TSO/E may replace exits, CSECTs or tables that you changed in the
course of the customization of a previous release. If you have customized any of
the parts mentioned in the following three sections, take the suggested action.

Deleted Exit Routines and CSECTs
Installing TSO/E replaces the following exit routines and CSECTs:

v SUBMIT exit, IKJEFF10

v OUTPUT/STATUS/CANCEL exit, IKJEFF53

v TRANSMIT and RECEIVE exits:
– TRANSMIT startup exit (INMXZ01 or INMXZ01R)
– TRANSMIT termination exit (INMXZ02 or INMXZ02R)
– TRANSMIT encryption exit (INMXZ03 or INMXZ03R)
– RECEIVE initialization exit (INMRZ01 or INMRZ01R)
– RECEIVE termination exit (INMRZ02 or INMRZ02R)
– RECEIVE notification exit (INMRZ04 or INMRZ04R)
– RECEIVE data set pre-processing exit (INMRZ11 or INMRZ11R)
– RECEIVE data set post-processing exit (INMRZ12 or INMRZ12R)
– RECEIVE data set decryption exit (INMRZ13 or INMRZ13R)

v The TRANSMIT and RECEIVE CSECT INMXPARM

Allocating the User Attributes Data Set

50 z/OS V1R4.0 TSO/E Customization

v The APF-authorized command and program CSECTs, IKJEFTE2, IKJEFTE8, and
IKJEFTAP

v CSECT IKJEFTNS, which contains commands not supported in the background.

If you have versions of the exit routines listed above, you must save your versions
and reinstall them after installing OS/390 V2R4 TSO/E.

Installing TSO/E will delete the following exit routines and CSECTs, if they were
installed using SMP/E and have the same FMID as the TSO/E version being
deleted in the installation logic:

v TRANSMIT/RECEIVE NAMES data set pre-allocation exit (INMCZ21R)

v TRANSMIT log data set pre-allocation exit (INMXZ21R)

v RECEIVE acknowledgment notification exit (INMRZ05R)

v RECEIVE pre-acknowledgment notification exit (INMRZ06R)

v RECEIVE post-prompt exit (INMRZ15R)

v RECEIVE log data set pre-allocation exit (INMRZ21R)

v Session Manager exits ADFEXIT1, ADFEXIT2, and ADFEXIT3

If you have versions of the exit routines listed above, you might need to save your
versions and reinstall them after installing OS/390 V2R4 TSO/E. IBM recommends
you use SYS1.PARMLIB member IKJTSO00 (IKJTSOxx) instead of CSECTs
INMXPARM, IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS. For more
information see Chapter 10, “Specifying Authorized Commands/Programs, and
Commands Not Supported in the Background” on page 153 and Chapter 12,
“Setting Up the TRANSMIT and RECEIVE Environment” on page 163.

Either SYS1.PARMLIB member IKJTSOxx or CSECTs INMXPARM, IKJEFTE2,
IKJEFTE8, IKJEFTAP, and IKJEFTNS must contain certain commands and
programs for TSO/E to function properly.

Changed Exit Routines
Some exit routine requirements have changed since TSO/E 2.3:

v If you currently have a SUBMIT exit, IKJEFF10, that retrieves passwords from
the TSB, you might need to change the SUBMIT exit. The password is no longer
stored in the TSB. See “Writing an Exit for the SUBMIT Command” on page 298
for more information about the SUBMIT exit and for information about changing
your logon pre-prompt exit to have the password stored in the TSB.

New Information Center Facility Tables
If you previously installed the Information Center Facility and you made changes to
the tables listed below, you should save the tables in a temporary library, otherwise
they will be deleted when you install JTE26D0.

Table Name SMP/E System Library

ICQABT00 ICQ.ICQTABLS
ICQADT00 ICQ.ICQTABLS
ICQAPL01 ICQ.ICQAPL
ICQSB001 through ICQSB021 ICQ.ICQABTXT

Plan to reinstall those parts that were customized by manual updates or usermods.

Migrating Customized Parts

Chapter 3. Considerations for Installing TSO/E 51

Using SYS1.PARMLIB Member IKJTSOxx
See Chapter 10, “Specifying Authorized Commands/Programs, and Commands Not
Supported in the Background” on page 153 for more information about the usage of
IKJTSOxx.

New TRANSREC NODESMF Parameter
Since TSO/E 2.5 the TRANSREC NODESMF parameter accepts wild card notation
for the node/smfid parameter. If this support is not documented in the version of
z/OS MVS Initialization and Tuning Reference that you have received, browse
SYS1.PARMLIB member IKJTSO00 and read the comments included in the text.

Migrating TSO/E Commands
During the installation of TSO/E, SMP/E will link edit all TSO/E commands into the
data set pointed to by the CMDLIB DDDEF or the CMDLIB DD statement in the
SMP/E procedure. If you have previously copied any TSO/E commands to LPALIB,
and do not identify them to SMP/E, they will not be deleted or replaced by the
installation.

Add SYS1.CMDLIB to LNKLSTxx in SYS1.PARMLIB if:
v the TSO logon procedures do not specifically have a STEPLIB assigned to

SYS1.CMDLIB, or
v the commands were not copied to SYS1.LPALIB.

If you have not previously copied TSO/E commands from CMDLIB to LPALIB, skip
the rest of this section.

If you have previously copied TSO/E commands from CMDLIB to LPALIB, the old
copies must be deleted from LPALIB or replaced with the new version of the
commands. IBM recommends you to MLPA the commands or add CMDLIB to the
LPA list rather than copy the commands to LPALIB.

Note: If you choose to add CMDLIB to the LPA list, it must also be added to the
APF list.

However, if you choose to copy the commands to LPALIB, you should also identify
this dual residency to SMP/E, so that future product and service installations do not
cause problems.

IBM also recommends you not to move TSO/E commands from CMDLIB; if the
commands are copied to LPALIB, do not delete them from CMDLIB. However, if
you choose to move modules to LPALIB from CMDLIB, this movement should be
identified to SMP/E, so that future product and service installations do not cause
problems.

The SMP/E UCLIN command can be used to identify dual residency, or movement,
of the modules for TSO/E commands. For more information about UCLIN, see the
SMP/E Reference.

National Language Considerations
If you are currently using a national language support (NLS) feature of TSO/E, it is
deleted when you install TSO/E.

Using SYS1.PARMLIB Member IKJTSOxx

52 z/OS V1R4.0 TSO/E Customization

LOGON Considerations
This section contains LOGON considerations when installing TSO/E.

Naming Conventions for the Load Modules and CSECTs
The naming convention of the modules and CSECTs containing the definitions of
the logon panels are:
v The first five characters are

– IKJLP for logon panels
– IKJLH for logon help panels

v The last three characters are the 3-character code for the language that the user
has selected.

Your installation may have any number of these load modules. There is one load
module for each language that your installation uses.

The mixed case U.S. English (ENU) and uppercase U.S. English (ENP) panels are
supplied with TSO/E. Panels for other languages are supplied with the
corresponding language feature.

Logon Panel Customization
LOGON processing is enhanced in TSO/E 2.3.0 and later to use logon panel
modules to define the logon panels and logon help panels. If you customized your
logon panels or logon help panels prior to TSO/E 2.3.0, these changes will no
longer be automatically processed. To use the old logon processing temporarily, run
the SMP/E job shown in Figure 4. This SMP/E job moves the logon panel modules
from SYS1.LPALIB to SYS1.LINKLIB. After you complete your modifications to the
logon panel modules IKJLPxxx and IKJLHxxx (where xxx is the 3 character
language code), you must return these modules to LPA using SMP/E. Source code
for the logon panel modules for U.S. English (IKJLPENU and IKJLHENU) and upper
case U.S. English (IKJLPENP and IKJLHENP) can be found in SYS1.SAMPLIB.

Considerations for Katakana Devices
If using a Katakana device with the U.S. English language, set the language to
English Uppercase (ENP). If lower case U.S. English characters are used on a
Katakana device, the characters are Katakana characters and the text that is
displayed is in uppercase English characters with some Katakana characters.

++USERMOD(UM99999) .
++VER(Z038) FMID(HTE23D2)

/*
PROBLEM DESCRIPTION:
MOVE LMODS IKJLPENU AND IKJLHENP FROM LPALIB TO LINKLIB
TEMPORARILY. EXPECT RC=4 DURING THE RECEIVE SINCE NO OBJECT
DECKS ARE SUPPLIED. EXPECT RC=0 DURING THE APPLY. DO NOT
ACCEPT THIS USERMOD.
*/ .

++MOVE(IKJLPENU) SYSLIB(LPALIB) TOSYSLIB(LINKLIB) LMOD.
++MOVE(IKJLPENP) SYSLIB(LPALIB) TOSYSLIB(LINKLIB) LMOD.

Figure 4. SMP/E Job to Move Logon Panels

LOGON Considerations

Chapter 3. Considerations for Installing TSO/E 53

Using Security Labels
With Security Server (RACF), you can use security labels to protect system
resources. Use Security Server (RACF) to define security labels for TSO/E users.
When TSO/E users log on, the security label (SECLABEL) is associated with their
TSO/E logon session. You must define all TSO/E users through Security Server
(RACF) and create TSO segments for those users so that the system saves each
user’s SECLABEL from logon session to logon session.

You can also protect the security classification of messages that are sent from one
user to another. Messages must be stored in the logname.userid user log (not the
broadcast data set), where logname is the name specified on the LOGNAME
operand of the SEND PARMLIB parameter and userid is the user’s user ID. Users
can only view their logname.userid user logs by using the TSO/E LISTBC
command. Procedures to protect the user logs are described in Chapter 5,
“Activating the Functions of TSO/E” on page 61.

Note: If you want to use security labels, do not activate the Information Center
Facility. The Information Center Facility does not support the security
enhancements.

TSO/E Full-Screen Logon Panel
If you have installed Security Server (RACF), the TSO/E full-screen logon panel has
a SECLABEL field. This field allows users to specify a security label for their TSO/E
session.

TSO/E Logon Pre-Prompt Exit
If you plan to use security labels and the logon pre-prompt exit (IKJEFLD1), the exit
has been updated to include the SECLABEL operand in the parameter list.
SECLABEL is a field on the full-screen logon panel and a operand on the LOGON
command.

Reviewing Macro Libraries for TSO/E
You must review and modify, as necessary, the names of macro libraries specified
in the following:
v JCL procedures
v ISPF-generated JCL
v Installation and maintenance procedures.

The following identifies the distribution libraries for TSO/E.

v ATSOMAC is the distribution library that contains executable and mapping
macros used for general programming interfaces.

v AMODGEN is the distribution library that contains executable and mapping
macros that are not used for general programming interfaces. These macros can
be used to customize product function, diagnose product problems, and monitor
or tune the product.

The following identifies the target libraries for TSO/E:

v MACLIB is the target library that contains executable and mapping macros used
for general programming interfaces.

Using Security Labels

54 z/OS V1R4.0 TSO/E Customization

v MODGEN is the target library that contains executable and mapping macros that
are not used for general programming interfaces. These macros can be used to
customize product function, diagnose product problems, and monitor or tune the
product.

Installing a REXX Compiler
If you plan to install a REXX compiler on your system, the compiler’s run-time
processor and its associated compiler interface routines are identified to REXX
through the use of the compiler programming table. This table needs to be link
edited into the compiler programming table module, IRXCMPTM. An example of the
source to create the module IRXCMPTM is shipped as member IRXREXX4 in
SYS1.SAMPLIB.

For more information about the compiler programming table, see Chapter 41,
“Routines and Interfaces to Support a REXX Compiler” on page 527.

Installing TSO/E for the First Time
Do not customize TSO/E until the SMP/E installation of TSO/E is complete.

v Customize your installation’s sample logon procedure, ICQAPROC, in
SYS1.SAMPLIB.

Installing the Information Center Facility for the First Time
This section applies to new Information Center Facility installations.

v Execute ICQPOST1 and ICQPOST2 to distribute Information Center Facility parts
to the appropriate execution libraries. Both macros are in SYS1.SAMPLIB.

v You can customize all non-display panels to meet your installation’s needs.

For information about activating the Information Center Facility, see “Activating the
Information Center Facility” on page 65.

Reviewing Macro Libraries for TSO/E

Chapter 3. Considerations for Installing TSO/E 55

Installing the Information Center Facility for the First Time

56 z/OS V1R4.0 TSO/E Customization

Chapter 4. Considerations for Migrating TSO/E

Migrating from One TSO/E Release to Another 57
Preparing Application Manager Tables for TSO/E 57
Migrating Application Manager Tables From Previous Releases of the

Information Center Facility 58

Migrating from One TSO/E Release to Another
The following sections apply to installations that are migrating from previous
releases of TSO/E to the new release of TSO/E.

v CLIST libraries are originally installed in fixed-blocked format. If you previously
reformatted your CLIST libraries to variable-blocked format for your SYSPROC
concatenation, you must either convert the CLIST libraries for TSO/E to
variable-blocked format, or convert any other CLIST libraries that are
concatenated with those for TSO/E to fixed-blocked format.

v During the installation process, all non-display panels are replaced, and may be
in a different format from the existing ones. If you want to preserve prior
customization, do not restore backed-up copies of the old, customized panels.
Re-do the customization in the equivalent non-display panels of the new release.

For example, the non-display panel ICQSIEAM is replaced when TSO/E is
installed. Your installation may have customized ICQSIEAM. See “Changing
Information Center Facility Defaults” on page 594 for the new fields in
ICQSIEAM.

v To preserve customized data, do not execute the ICQPOST1 and ICQPOST2
jobs. These jobs replace tables that contain current Information Center Facility
data for your installation.

v A new version of the sample logon procedure, ICQAPROC, is distributed with
TSO/E. Compare it with your existing user and administrator logon procedures to
determine any changes that need to be made.

v If you used the SYSDEF function to customize user enrollment profile defaults,
you must customize those defaults again.

Preparing Application Manager Tables for TSO/E
This section describes how to prepare Application Manager Tables for TSO/E.

Preparing Modified or New Application Manager Tables
If you used the Application Manager either to modify the Information Center Facility
distributed applications or to add new applications, you must convert your current
Application Manager tables as follows:

v Convert your current Application Manager tables using the conversion routine,
ICQAMCR1. The conversion procedures are described in section “Migrating
Application Manager Tables From Previous Releases of the Information Center
Facility” on page 58.

v Use the ADD function of the Application Manager to install the new installation
files. These files install the new Information Center Facility functions available
with TSO/E. They are described on page 59.

Preparing Unmodified Application Manager Tables
If you either have not modified the Information Center Facility distributed
applications or have not added new applications, do not convert your Application
Manager tables. Instead, execute the ICQPOST1 job, which replaces tables that
contain current Information Center Facility data for your installation.

© Copyright IBM Corp. 1988, 2002 57

Migrating Application Manager Tables From Previous Releases of the
Information Center Facility

This section contains the steps to convert the Application Manager tables from
previous releases of the Information Center Facility.

v Ensure that you are in an active ISPF session (for example, use the TSO/E
option under ISPF) to make the Information Center Facility inactive.

v Activate the ISPF log data set, so that messages are logged into it. For example,
select option 0.2 on the ISPF/PDF main panel to use or change the log data set
default options.

v Select ISPF option 6 (COMMAND) on the ISPF/PDF main panel.

v Allocate the following file names from the previous release:

– ICQAMTAB data set for the administrator Application Manager tables that are
to be converted.

– ICQCMTAB data set for the user Application Manager tables that are to be
converted.

v Execute the following command to convert your existing Application Manager
tables. You must specify the panel and message libraries. For example:
exec ’icq.tsoe25.icqcclib(icqamcr1)’ ’panels(icq.tsoe24.icqplib)
messages(icq.tsoe24.icqnew.mlib)’

where exec is the command that is executing the conversion CLIST
(ICQAMCR1) and panels and messages are the parameters passed to
ICQAMCR1.

Note: The data set names mentioned in the preceding example should be
changed to those of the actual CLIST, panel, and message libraries that
were used to install TSO/E. Specify the data set names fully qualified and
without quotes.

The TSO/E panel and message libraries are required because ICQAMCR1 needs
the constant values in the non-display panel, ICQSIEAM, and in the new
messages. The conversion procedure may be performed before or after
customizing the values in ICQSIEAM. Customizing the values in ICQSIEAM is
described in Chapter 45, “Preparing the Information Center Facility for Use” on
page 587.

Messages on your screen report the progress of the conversion, first a
“Beginning conversion” indicator, then table-by-table status messages, indications
of applications being converted, and finally an “Ending conversion” indicator.
These messages are also written to the ISPF log data set.

The conversion routine creates the following data sets, which contain the newly
converted tables:
(prefix).ICQAMCNV - for the new system

administrator library
(prefix).ICQCMCNV - for the new system user library

If you set the prefix using the TSO PROFILE(PREFIX) command, the prefix is
syspref. If you do not set the prefix, the system defaults it to SYSUID.

v Free the old allocations to ICQAMTAB and ICQCMTAB.

v Either rename the data sets (containing the newly converted tables) using the
names specified in the logon procedure for ICQAMTAB and ICQCMTAB, or
change the logon procedure to include the correct data set names.

Migrating from One TSO/E Release to Another

58 z/OS V1R4.0 TSO/E Customization

v Use the converted tables either to allocate the new data sets to the file names
ICQAMTAB and ICQCMTAB, or to re-logon with the updated logon procedure
described in the previous step.

v After the tables have been converted, start the Information Center Facility as an
Application Manager administrator.

v To complete the installation process of TSO/E, install the applications using the
member names shown in Table 3. Several of the applications are replacements
for older applications. Therefore, compare the new installation files with your
current application definitions to determine any customization that may have to
be re-done.

The applications are provided in ICQ.ICQILIB. When installing the applications
from ICQ.ICQILIB, set the Available field on the main application definition
panels (ICQAME20, ICQAME30, and ICQAME35) to Y. It is important that this
field is correctly set for ICQAPPLMGR.

The first seven applications shown in Table 3 contain Application Manager
functions and must be installed first. Then install the last four. ICQAPPC must be
installed last.

Table names shown are the names that are distributed with TSO/E 2.3.0 and
later. If you have used Application Manager to convert the Information Center
Facility prior to TSO/E 2.3.0, the created names may be different from those
listed in Table 3.

Table 3. Information Center Facility Applications for TSO/E

Application Name Application Description Member Name Table Name

ICQPVTAMGR TSO/E Private Application
Manager

ICQFF004 ICQMFAA6

ICQGRPAMGR TSO/E Group Application
Manager

ICQFF000 ICQMFABD

ICQGRPSPEC TSO/E Group Specification ICQFF001 ICQMFABE

ICQGCPRT End-User Interface to Print
Services

ICQFF002 ICQMFABF

ICQISPFDEF Set ISPF System Defaults ICQFF003 ICQMFAAQ

ICQAPPLMGR TSO/E Application Manager ICQFF005 ICQMFAAE

ICQENROLL TSO/E User Enrollment ICQFF006 ICQMFAAJ

ICQPROGRAM TSO/E Programmer Services ICQFP000 ICQMPAA#

ICQUTILITY Information Center Facility
Utilities

ICQFP002 ICQMPABG

ICQUSER TSO/E User Services ICQFP001 ICQMPAA9

ICQAPPC APPC/MVS Administration
Dialog

ICQFF007 ICQMFABH

Migrating from One TSO/E Release to Another

Chapter 4. Considerations for Migrating TSO/E 59

Migrating from One TSO/E Release to Another

60 z/OS V1R4.0 TSO/E Customization

Chapter 5. Activating the Functions of TSO/E

Using TSO/E . 61
Using Specific Functions of TSO/E 62

Activating Base TSO/E Functions 62
Activating the Information Center Facility 65

After installing TSO/E, you must perform procedures to activate certain functions.
The following section is an overview of the activation procedures for TSO/E. You
must perform certain steps before users can use TSO/E. Other steps are required
before users can use specific functions of TSO/E. For details about the procedures,
see other publications as indicated.

Using TSO/E
The following steps must be performed before users can use TSO/E:

1. Initialize time sharing using the TCAM or VTAM access method.

Before terminal users can log on to TSO/E, TCAM or VTAM must be active on
the system. For how to initialize TCAM or VTAM, see Chapter 6, “Defining and
Customizing TSO/VTAM and TSO/TCAM Time Sharing” on page 71

2. To define users to the system, you can use either the user-attribute data set
(SYS1.UADS) or the RACF data base, as described in Part 4, “Maintaining the
UADS, RACF Data Base, and Broadcast Data Set” on page 195.

If your installation has not installed TSO/E before and you intend to use
SYS1.UADS rather than the RACF data base, make the following changes to
the UADS:

v Use the UADSREFM program to reformat SYS1.UADS, expanding it to 172
bytes for each user ID.

v Optionally, use the ADD or CHANGE subcommand of the TSO/E ACCOUNT
command to assign the RECOVER user attribute. Users must be authorized
by the RECOVER attribute to use TSO/E EDIT command recovery. Also,
assign installation defaults for the following user attributes:

HOLD to assign a default for output class

JOBCLASS to assign a default for job class

MSGCLASS to assign a default for message class

SYSOUT to assign a default for SYSOUT class

You can convert some or all of the user IDs from SYS1.UADS to the RACF data
base using the RACONVRT command. After UADS has been converted, you
can use RACF commands to maintain the user information in the RACF data
base. For more information about converting UADS, see Chapter 23, “Using the
RACF Data Base to Maintain TSO/E Users” on page 211.

3. If you have not installed TSO/E before and you are not using individual user
logs, you must reformat the broadcast data set using the SYNC command to
allow the new broadcast data set to be used. Reformatting with the SYNC
command also reduces channel, control unit, and device busy time when a new
record is written to the broadcast data set. For more information about the
SYNC command, see z/OS TSO/E System Programming Command Reference.
For more information about reformatting the broadcast data set, see Chapter 22,
“Working with the UADS and Broadcast Data Set” on page 201.

© Copyright IBM Corp. 1988, 2002 61

To reduce contention for the broadcast data set, you can use individual user
logs to store messages (mail) for users instead of using the broadcast data set.
To use individual user logs, update the SEND command defaults in
SYS1.PARMLIB member IKJTSOxx, as described in Chapter 34, “Customizing
How Users Send and Retrieve Messages” on page 335.

4. If you have existing versions of CSECTs INMXPARM, IKJEFTE2, IKJEFTE8,
IKJEFTNS, and IKJEFTAP, you can reinstall the CSECTs, or you can use
SYS1.PARMLIB member IKJTSOxx to perform the functions of those CSECTs.

If you have no existing versions of the CSECTs, use IKJTSOxx instead. If you
decide to use the CSECTs, you must modify them as described.

For more information on CSECTs and IKJTSOXX, see Chapter 10, “Specifying
Authorized Commands/Programs, and Commands Not Supported in the
Background” on page 153 and on INMXPARM see Chapter 12, “Setting Up the
TRANSMIT and RECEIVE Environment” on page 163.

5. New RACF programs need to get control authorized. If you have the existing
version of CSECT IKJEFTE8, you can reinstall it, or you can use
SYS1.PARMLIB member IKJTSOxx to perform the function of IKJEFTE8.

If you have no existing version of CLIST IKJEFTE8, use IKJTSOxx instead. If
you decide to use IKJEFTE8, you must modify it as described.

6. IPL, specifying “clpa” to refresh the LPA.

Using Specific Functions of TSO/E
The following steps must be performed before users can use specific functions of
TSO/E.

Activating Base TSO/E Functions
To activate specific functions of base TSO/E, perform the following:

v If you have not already done so, add the subcommands of the TSO/E TEST
command (AND, OR, LISTVSR, and UNALLOC) to the SMF CSECT IEEMB846.
If the subcommands are not in IEEMB846, they are recorded as *OTHER on
Type 32 SMF records. See z/OS MVS System Management Facilities (SMF) for
the SMF record format.

v If your installation plans to record CONSOLE subcommands, add the
subcommands to the SMF CSECT IEEMB846. If the subcommands are not in
IEEMB846, they are recorded as *OTHER on Type 32 SMF records. For
information about SMF record format, see z/OS MVS System Management
Facilities (SMF).

v Reinstall your installation’s versions of TSO/E exit routines that were deleted or
replaced when you installed TSO/E. See Chapter 3, “Considerations for Installing
TSO/E” on page 49 for information about the exit routines that are deleted or
replaced when you install TSO/E.

v For the TESTAUTH, TESTA, and MVSSERV commands to work under ISPF, you
must update the ISPF command table, ISPTCM. For information about updating
the table, see z/OS ISPF Planning and Customizing.

v To use security labels to protect system resources, do the following:

– Use RACF to define security labels and to activate security label checking.

– Define all TSO/E users through RACF and specify a security label
(SECLABEL) for each user’s user ID. Each user may have a TSO segment
created within that user’s RACF profile.

Using TSO/E

62 z/OS V1R4.0 TSO/E Customization

Note: If you want to use security labels, do not activate the Information Center
Facility. The Information Center Facility does not support the security
enhancements.

v If your installation plans to use the RACF resource classes JESJOBS and
JESSPOOL, you should reinstall the OUTPUT/CANCEL/STATUS sample exit,
IKJEFF53, supplied in SYS1.SAMPLIB. For more information about the sample
exit, see Chapter 32, “Customizing the SUBMIT Command and Job Output
Processing” on page 295.

v To protect the security classification of messages, do the following:

– Change the SEND PARMLIB parameter by editing the IKJTSOxx member of
SYS1.PARMLIB (where xx is a member name suffix) to:

- Set the LOGNAME operand to the high-level qualifiers for the user log data
set name, which must be other than SYS1.BRODCAST or *.

- Set the MSGPROTECT operand to ON so that the logname.userid user log
is protected and the message can be viewed only if the user is logged on
with the proper security label. With this setting, the user log data set
naming convention is logname.userid and the sender’s security label is
associated with the message.

- Set the USEBROD operand to OFF so that messages are not stored in the
broadcast data set. Instead, they are stored in the logname.userid user log.
Users can only view their logname.userid user log by using the TSO/E
LISTBC command or logging on.

For more information about the USEBROD and MSGPROTECT operands,
see Chapter 34, “Customizing How Users Send and Retrieve Messages” on
page 335.

v During IPL, the IKJTSO00 member is read. IBM recommends you to edit the
IKJTSO00 member, so that security protection is automatically activated at each
IPL time.

If you do not update IKJTSO00, you need to issue the dynamic PARMLIB
command using the UPDATE operand and specify the suffix of the member (xx)
you have edited. Note that you must have UPDATE authority to the RACF
security resource class, TSOAUTH, to issue the dynamic PARMLIB command.

v If you are using security labels, create a generic profile for logname.* (user-log
data-set name) with a universal access of NONE, and specify SYSHIGH for the
SECLABEL to protect each user’s individual user log, which contains protected
messages. Creating this generic profile prevents other users from viewing the
contents of the user’s user log and defines the user log as system-high because
it may contain any level of information.

v Define the broadcast data set to RACF with UACC(READ) and
SECLABEL(SYSLOW). This allows system notices to be stored in and retrieved
from the broadcast data set.

v To control the use of the TSO/E SEND and LISTBC commands when using the
security enhancements, see z/OS Security Server RACF Security Administrator’s
Guide.

v To control and audit the use of the TSO/E SEND command, define the new
RACF security resource class, SMESSAGE, for your users. For more information
about using SMESSAGE to control the use of the TSO/E SEND command, see
z/OS Security Server RACF Security Administrator’s Guide.

Activating Language Enablement
This section explains how to activate Language Enablement.

Using Specific Functions of TSO/E

Chapter 5. Activating the Functions of TSO/E 63

Translated TSO/E Messages: If your installation plans to enable TSO/E to
provide translated TSO/E messages, you must compile the message skeletons and
initialize the MVS Message Service (MMS). In order to compile the message
skeletons, you need the install message files that contain U.S. English message
skeletons and translated message skeletons for each language you want to enable.

The message skeletons for U.S. English, listed below, are contained in
SYS1.MSGENU.
v ADFSMREN
v IKJEDTEN
v IKJSCHEN
v IKJTSTEN
v IKJUTLEN
v IKJXMTEN

The message skeletons for uppercase U.S. English, listed below, are contained in
SYS1.MSGENP.
v ADFSMREP
v IKJEDTEP
v IKJSCHEP
v IKJTSTEP
v IKJUTLEP
v IKJXMTEP

For more information and other languages see Chapter 19, “Customizing TSO/E for
Different Languages” on page 187.

Translated Help Information for TSO/E Commands: You can use
SYS1.PARMLIB member IKJTSOxx to define help data sets for different languages.

U.S. English help remains in SYS1.HELP. Corresponding help text in uppercase
U.S. English is contained in SYS1.HELPENP. For more information and other
languages see Chapter 19, “Customizing TSO/E for Different Languages” on
page 187.

Activating TRANSMIT and RECEIVE
Perform the following steps to activate TRANSMIT and RECEIVE:

v If TRANSMIT and RECEIVE are not already in your tables of authorized
commands, add them. IBM recommends you to use SYS1.PARMLIB member
IKJTSO00 to authorize commands. For more information about using IKJTSO00
to add authorized commands, see Chapter 10, “Specifying Authorized
Commands/Programs, and Commands Not Supported in the Background” on
page 153. You can also add them to the tables in CSECTs IKJEFTE2 and
IKJEFTE8.

v Specify defaults for the TRANSMIT and RECEIVE commands in member
IKJTSO00, copied from SYS1.SAMPLIB to SYS1.PARMLIB, or in CSECT
INMXPARM. If you choose to use an existing version of INMXPARM, you must
reinstall and reassemble it. For more information, see Chapter 12, “Setting Up
the TRANSMIT and RECEIVE Environment” on page 163.

v If you use JES2, you must specify the JES2 initialization parameter TSUCLASS
OUTPUT=YES. Otherwise, the TRANSMIT command will not work because the
SYSOUT data from the TRANSMIT command will be deleted.

v JES2, JES3, and MVS are unaware that data sets being routed among nodes in
a network are in transit to other nodes. Consequently, data sets are not checked
for valid destinations during transmission. You are recommended to check
periodically for invalid destinations.

Using Specific Functions of TSO/E

64 z/OS V1R4.0 TSO/E Customization

If you have JES2, you can either:

– Use the $DF command to list all data sets in transit, and then use the
RECEIVE command with the USERID parameter to delete or reroute data
sets with invalid destinations.

– Use JES2 exit 13, the TSO/E TRANSMIT and RECEIVE Screening and
Notification exit, to check for invalid destinations. See z/OS JES2 Installation
Exits for information about that exit.

If you have JES3, you can use exit IATUX42 to check for invalid destinations.
See z/OS JES3 Customization for information about that exit.

v You can alter the limit on punch-card output for TSO/E sessions, which governs
the size of a data set a TSO/E user can send using the TRANSMIT command,
using the JES2 parameter ESTPUN (for FMID HJE1367 or later). Either:

– Set ESTPUN to a high value to avoid D37 ABENDs when the TRANSMIT
command is used, or

– Use IKJTSO00 or INMXPARM to control output limits, as described in
Chapter 10, “Specifying Authorized Commands/Programs, and Commands Not
Supported in the Background” on page 153 and Chapter 12, “Setting Up the
TRANSMIT and RECEIVE Environment” on page 163.

v If your installation wants users to be notified when transmitted data arrives, you
must use either RECEIVE exit INMRZ05R, exit 13 for JES2, or exit IATUX42 for
JES3. If there is no exit routine, JES does not notify the user receiving the data.

Activating the Session Manager
Perform the following steps to activate the Session Manager:

v If you do not already have a logon procedure for Session Manager, create one.
See Chapter 43, “Setting Up a Session Manager Environment” on page 557 for
more information, including a sample logon procedure for the Session Manager.

v For performance, consider adding the load modules ADFIDF00, ADFMDF01 and
ADFMDF03 to the MLPA.

Activating MVSSERV
To activate MVSSERV, if you have not done so previously, install any servers and
initialize the input parameter data set as described in z/OS TSO/E Guide to SRPI.

Activating the Information Center Facility
This section describes activating the Information Center Facility for existing and new
users.

Note: If you want to use security labels, do not activate the Information Center
Facility. The Information Center Facility does not support the security
enhancements.

v Certain data sets are required for the Information Center Facility. You must create
any of the data sets listed in Table 4 that are not present on your system. The
attributes for these data sets must conform to the attributes of your ISPF/PDF
table libraries. The minimum space allocation for each data set is 221 blocks.
You may want to allocate more space to allow room for future expansion.

The tables distributed with the Information Center Facility are copied to the data
sets shown in Table 4 by the ICQPOST1 and ICQPOST2 jobs. These jobs are in
SYS1.SAMPLIB.

Using Specific Functions of TSO/E

Chapter 5. Activating the Functions of TSO/E 65

Table 4. Information Center Facility Data Sets to Allocate

Data Set Description

ICQ.ICQABTAB Course abstracts

ICQ.ICQGCTAB User requests

ICQ.ICQAATAB Names

ICQ.ICQANTAB News

ICQ.ICQTLIB User enrollment tables

ICQ.ICQAPTAB Printer support

ICQ.ICQAMTAB Administrator Application Manager tables

ICQ.ICQCMTAB User Application Manager tables

The data sets are assigned to DD names in the Information Center Facility logon
procedure. It is recommended that data set names match their DD names to
simplify installation and problem determination. However, TSO/E does not define
the data set names explicitly, so you can rename them to match naming
conventions used on your system.

If you rename data sets or DD names, you must update the Information Center
Facility logon procedure with the data-set or DD names.

Exception: If you rename any of the data sets or DD names listed below, you
must use the Information Center Facility application manager to change the data
set names or DD names listed to the right.

If you rename: Change DD or data set names for:

ICQGCTAB or Administrator and user courses,
ICQ.ICQGCTAB administrator and user names

ICQTABL or User enrollment, ISPF defaults,
ICQ.ICQTLIB user types, and administrator names

You can also use a single data set for all functions by using the same data set
name on all DD statements. However, using separate data sets allows you to
identify a different administrator for each function. You could then use RACF or
another protection facility to restrict access as needed.

v If you activated the Information Center Facility in TSO/E Version 2.1.0, run the
conversion routine described in “Migrating Application Manager Tables From
Previous Releases of the Information Center Facility” on page 58 to preserve
customization.

v If you have never activated the Information Center Facility before, copy, edit, and
execute members ICQPOST1 and ICQPOST2 in ICQ.ICQSAMP. When you
execute ICQPOST1 and ICQPOST2, certain shipped library members are copied
to other libraries.

v The Information Center Facility provides some non-display panels for
customization. For example, if your installation calls IEBCOPY differently, you
need to modify the following command in non-display panel ICQSIE00:

Using Specific Functions of TSO/E

66 z/OS V1R4.0 TSO/E Customization

&IEBCOPY = ’TSOEXEC CALL ’’’’SYS1.LINKLIB(IEBCOPY)’’’’’
/* TSO command to invoke IEBCOPY.
/* Extra quotes are required for
/* passing the string into the CLIST.

For more information about customizing the non-display panels, see Chapter 46,
“Customizing the Information Center Facility” on page 619.

v If you have APL installed and have not done so for a previous release, create a
physical sequential data set with the name @PL.@W000051.ICQUPDTS. The
data set must have a RECFM of FBS, an LRECL of 80, and a BLKSIZE of 4240.
The minimum space you can allocate is 5 blocks. You might want to allocate
more space to allow room for future expansion.

Copy member ICQAPL01 from ICQ.ICQAPL to @PL.@W000051.ICQUPDTS. If
you have changed any workspace-naming variables in module APLYUOPT, make
certain you use the same names in naming workspace 51 ICQUPDTS and in
panel ICQSIECR. The default data set name is @PL.@W000051.ICQUPDTS.
Panel ICQSIECR is a member of ICQ.ICQPLIB.

v If you have not already done so, create two logon procedures; one for
administrators and one for end users. If you created the logon procedures
previously, you might need to modify them. You can find a sample procedure,
ICQAPROC, in ICQ.ICQSAMP. Edit ICQAPROC to create the administrator logon
procedure. Then make a copy of ICQAPROC, and edit it to create the end user
logon procedure, ICQPROC.

ICQAPROC is based on an existing ISPF logon procedure. ICQAPROC uses
CLIST ICQICF, which resides in ICQ.ICQCCLIB. ICQAPROC calls ICQICF to
invoke ISPF and use application manager to invoke the initial application. You
might want to rename and modify ICQICF for your installation. ICQICF checks
the user’s profile data set to see if the EDIT and PROFILE tables exist. The ISPF
profile must be cataloged, if it exists.

Read the prologue for instructions if ICQAPROC on DD statements to delete.

v The CLIST libraries ICQ.ICQACLIB and ICQ.ICQCCLIB are distributed with a
RECFM of FB and an LRECL of 80. If your production ISPF CLIST data sets
have a RECFM of VB, run the CLIST ICQSMC00, a member of ICQ.ICQSAMP,
against ICQ.ICQACLIB and ICQ.ICQCCLIB. ICQSMC00 converts the CLIST data
set members from a RECFM of FB to a RECFM of VB.

Maintenance for TSO/E CLISTs is supplied through PUT tapes. For SMP/E users,
PTFs are held for documentation by the ++HOLD card.

Using Specific Functions of TSO/E

Chapter 5. Activating the Functions of TSO/E 67

Using Specific Functions of TSO/E

68 z/OS V1R4.0 TSO/E Customization

Part 3. Setting Up and Customizing the TSO/E Environment

When setting up and customizing TSO/E, you must perform certain tasks before
users can use TSO/E. Other customization tasks are optional and can be done at
any time. This part describes how to set up and customize TSO/E. For more
information about TSO/E customization and required and optional customization
tasks, see Part 1, “Introduction” on page 1.

Before users can use TSO/E, you must define TSO/E to an access method, either
TCAM or VTAM. After you complete the definitions, you can customize how TSO/E
operates with TCAM or VTAM. Chapter 6, “Defining and Customizing TSO/VTAM
and TSO/TCAM Time Sharing” on page 71 describes the tasks you perform to
define and tailor the access methods.

Users must have access to the system before they can log on. You must write at
least one logon procedure that users can use to log on to the system. Chapter 7,
“Setting up Logon Processing” on page 79 describes how you control system
access, limit address space size, and write logon procedures for different types of
users.

You can customize the logon process in many ways. You can tailor logon messages
and the use of the reconnect option. With RACF installed, you can define security
labels and users can specify a security label (SECLABEL) for their TSO/E session
when they log on. You can also hold and purge the SYSOUT data set that logon
processing creates and limit the number of times TSO/E prompts a user for logon
information. Chapter 8, “Customizing the Logon and Logoff Process” on page 87
describes how to customize logon processing, including writing a logon pre-prompt
exit and a logoff exit, and different ways you may improve performance during
logon.

If your installation uses ISPF and ISPF/PDF, you must define TSO/E to ISPF and
ISPF/PDF. You must write a logon procedure that allocates the required data sets.
You can also specify which TSO/E commands users can issue from ISPF/PDF
panels. If your installation uses Session Manager, you can define the Session
Manager to ISPF/PDF so users can use Session Manager from ISPF/PDF.
Chapter 9, “Defining TSO/E to ISPF and ISPF/PDF” on page 151 describes how to
perform these tasks.

To allow users to issue authorized commands and programs, you must define the
commands and programs to the system. You can also specify commands that users
cannot issue from the background. Chapter 10, “Specifying Authorized
Commands/Programs, and Commands Not Supported in the Background” on
page 153 describes how to specify these commands and programs using either
SYS1.PARMLIB member IKJTSOxx or CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP,
and IKJEFTNS.

The TSO/E service facility allows application programs to run unauthorized
commands on a command invocation platform. In order for commands to run on the
platform, you must define the eligible commands to the system. Chapter 11,
“Specifying Commands and Programs for the Command/Program Invocation
Platform” on page 159 describes how to specify the eligible commands using
SYS1.PARMLIB member IKJTSOxx.

Before users can use the TRANSMIT and RECEIVE commands, you must set up
the TRANSMIT and RECEIVE environment. Chapter 12, “Setting Up the TRANSMIT

© Copyright IBM Corp. 1988, 2002 69

and RECEIVE Environment” on page 163 describes the tasks you must perform to
make TRANSMIT and RECEIVE available to your users, including how to write the
installation options CSECT, INMXPARM, or how to specify TRANSMIT and
RECEIVE defaults using SYS1.PARMLIB member IKJTSOxx.

Chapter 13, “Customizing the HELP Data Set” on page 167 discusses the HELP
data set and how you can customize it to include installation-specific information.
The prompt mode HELP function lets users obtain additional on-line HELP
information about a command’s positional operands. By default, TSO/E provides
this function for several TSO/E commands. You can update members in the HELP
data set to provide the prompt mode HELP function for other TSO/E commands and
for subcommands with positional operands. In addition you can use the include
control character to include help information contained in a separate member.

The TSO/E Enhanced Connectivity Facility allows PC users to access host
services. To use the Enhanced Connectivity Facility, you must perform initialization
tasks related to the input parameter data set, diagnostic data sets, and servers and
initialization/termination programs. Chapter 14, “Making Host Services Available to
PC Users” on page 169 describes how to set up and customize the TSO/E
Enhanced Connectivity Facility.

You can use other facilities, such as System Management Facilities (SMF) and
RMF, to monitor the way users issue TSO/E commands and monitor the
performance of TSO/E users. Monitoring TSO/E resources gives you the statistics
that help you analyze and improve performance of on-line users and batch
transactions. Chapter 15, “Monitoring TSO/E Resources” on page 171 discusses
ways to monitor performance.

After you have monitored your TSO/E resources, you can decide what kinds of
response time to give TSO/E users in general, and whether certain individuals and
special groups should have better response time. Information about performance
objectives is described in Chapter 16, “Defining Performance Objectives for TSO/E”
on page 173.

You can limit users from issuing certain commands and accessing certain data sets.
Chapter 17, “Protecting the Resources TSO/E Users Can Access” on page 177
provides an overview of the commands you can restrict from TSO/E READY mode,
Session Manager, background mode, and ISPF/PDF panels. It also describe how to
control the access TSO/E users have to certain data sets by using the MVS
allocation input validation routine or RACF.

TSO/E provides support for displaying TSO/E information to users in different
languages. The CONSOLE command also supports the displaying of translated
system messages issued during a console session. Chapter 19, “Customizing
TSO/E for Different Languages” on page 187 describes what you must do to
provide information to users in their national language.

With RACF installed, you can use security enhancements. Chapter 20, “Security
Considerations for Customizing TSO/E” on page 193 gives a brief description of the
security considerations for customizing TSO/E and gives references to additional
information.

70 z/OS V1R4.0 TSO/E Customization

Chapter 6. Defining and Customizing TSO/VTAM and
TSO/TCAM Time Sharing

Defining and Customizing TSO/VTAM Time Sharing 71
Defining TSO/E Address Spaces to VTAM 72
Writing the Procedure That Starts TSO/VTAM Time Sharing 72
Tailoring VTAM Session Protocols 73
Defining the LOGON Command to VTAM 73
Building Translation Tables for TSO/VTAM Users 73

Defining and Customizing TSO/TCAM Time Sharing 76
Writing an MCP Procedure to Start TSO/TCAM 77

Before users can log on to TSO/E, you must define TSO/E to one of two terminal
access methods:

v Advanced Communications Function for VTAM3

v Advanced Communications Function for TCAM4

You can then customize how TSO/E works with either TCAM or VTAM to suit the
needs of your installation. This chapter describes how to define TSO/E to either
VTAM or TCAM, and how you can customize TSO/VTAM and TSO/TCAM.

Defining and Customizing TSO/VTAM Time Sharing
The following is an overview of the steps you must perform to define TSO/E to
VTAM:

v Define the primary TSO/E address space and TSO/E user address spaces to
VTAM. For more information, see “Defining TSO/E Address Spaces to VTAM” on
page 72.

v Write a procedure to start TSO/E and include it in a procedure library. For more
information, see “Writing the Procedure That Starts TSO/VTAM Time Sharing” on
page 72.

The following steps are optional:

v Tailor the session protocols, or rules, VTAM uses to start a session between a
terminal and TSO/E. For more information, see “Tailoring VTAM Session
Protocols” on page 73.

v Define the TSO/E LOGON command to VTAM. See “Defining the LOGON
Command to VTAM” on page 73 for more information.

v Create SYS1.PARMLIB member TSOKEY00, or an installation-defined alternate
member, to override the default values that are used to start TSO/VTAM. For
more information, see z/OS MVS Initialization and Tuning Reference.

v If you plan to use the TSO/E Session Manager, see “SYS1.PARMLIB Changes”
on page 557 about changes you may need to make to the SYS1.PARMLIB
member to support a Session Manager environment.

v Build translation tables for your installation’s requirements. For more information,
see “Building Translation Tables for TSO/VTAM Users” on page 73.

v Write VTAM exit routines to customize the connection between TSO/E and
VTAM. For example, you can write exit routines to:

3. Virtual Telecommunications Access Method

4. Telecommunications Access Method

© Copyright IBM Corp. 1988, 2002 71

– Tailor default logon error messages

– Set the terminal type and buffer size

– Support terminals not supported by IBM

– Modify the way attention interrupts are handled. You may want to intercept
and suppress attention interruptions that interfere with important processing.

Before a user can log on to TSO/E, both VTAM and the terminal control address
space (TCAS) must be active in the system. The system operator enters the START
command to start VTAM. After VTAM has been started, the system operator enters
the START command to start TSO/E and activate TCAS. TCAS accepts logons from
TSO/VTAM users and creates an address space for each user.

When a user logs on, the VTAM terminal I/O coordinator (VTIOC) is initialized.
VTIOC controls the movement of data between TSO/E and VTAM. SYS1.PARMLIB
member TSOKEY00 or an installation-defined alternate member contains
parameters that are used during VTIOC initialization. If a member other than
TSOKEY00 is used, the operator must include the member name either on the
START command or in the procedure that the START command invokes. For a
description of TSOKEY00, see z/OS MVS Initialization and Tuning Reference.

The system operator uses the MODIFY command to modify TSO/VTAM and the
STOP command to stop TSO/VTAM. For more information on the START, MODIFY,
and STOP commands and how they pertain to TSO/VTAM time sharing, see z/OS
MVS System Commands.

Defining TSO/E Address Spaces to VTAM
To define TSO/E address spaces to VTAM, use VTAM APPL definition statements.
You must code one APPL definition statement to define the primary TSO/E address
space, and at least as many APPL definition statements as there will be users
logged on to TSO/E at one time. For example, if you want to allow 50 users to use
TSO/E simultaneously, code 51 APPL definition statements: one for the primary
TSO/E address space and one for each user address space. You might want to
code more APPL definition statements than you currently need, to accommodate
users you plan to add to your system later. For more information about using the
APPL definition statement, see z/OS Communications Server: SNA Migration and
z/OS Communications Server: SNA Resource Definition Reference.

Writing the Procedure That Starts TSO/VTAM Time Sharing
You must write a procedure for starting TSO/VTAM time sharing. Include the
procedure in either SYS1.PROCLIB or in an installation-defined procedure library.

Figure 5 is an example of starting TSO/VTAM time sharing.

The procedure must contain the following statements:

PROC
names the procedure and, optionally, assigns default values to symbolic
parameters defined in the procedure. In Figure 5, the PROC statement assigns

//TSO PROC MBR=TSOKEY00
//STEP1 EXEC PGM=IKTCAS00,PARM=’&MBR’,TIME=1440
//PRINTOUT DD SYSOUT=A,FREE=CLOSE

Figure 5. Sample Procedure to Start TSO/VTAM Time Sharing

Defining and Customizing TSO/VTAM Time Sharing

72 z/OS V1R4.0 TSO/E Customization

the name TSO to the procedure and designates a default SYS1.PARMLIB
member (TSOKEY00). To start TSO/VTAM time sharing, the operator enters:
START TSO

EXEC
identifies the program to be executed (IKTCAS00), a parameter to be passed
on the invocation of IKTCASS00, and the maximum amount of time allowed for
executing STEP1 (1440).

The parameter passed to program IKTCASS00 is the symbolic parameter
&MBR, which is defined in the PROC statement.

PRINTOUT DD
identifies where the time sharing parameters used are written. In Figure 5 on
page 72, the PRINTOUT statement specifies that time sharing parameters be
written to the device associated with output class A, and that the output data set
be deallocated when it is closed.

Tailoring VTAM Session Protocols
VTAM supplies a logon mode table that defines default protocols. For information
about the default protocols, see z/OS Communications Server: SNA Customization.

To tailor the protocols, you can either:

v Modify the existing logon mode table to modify the defaults for all users,
including TSO/E, or

v Create supplementary tables to modify the defaults for TSO/E users only.

To specify that a logon mode table other than the default is used, specify the name
of the table on the VTAM:
v PU, LU, LOCAL, or TERMINAL definition statements, or
v USSPARM macro statement.

For more information about tailoring or creating a logon mode table and using the
USSPARM macro statement, see z/OS Communications Server: SNA
Customization. For more information about using definition statements, see z/OS
Communications Server: SNA Resource Definition Reference.

Defining the LOGON Command to VTAM
VTAM does not recognize the TSO/E LOGON command as described in z/OS
TSO/E Command Reference. For information about the LOGON command format
VTAM expects, see z/OS Communications Server: SNA Customization. Most
installations define either the TSO/E LOGON command or an installation-defined
logon command to VTAM. To define a LOGON command to VTAM, use the
following VTAM macro statements:
v INTAB
v LOGCHAR
v ENDINTAB.

For information about how to use these macro statements, see z/OS
Communications Server: SNA Customization.

Building Translation Tables for TSO/VTAM Users
Certain characters are unavailable on some types of keyboards. For example, on
correspondence keyboards, the characters “<”, “>”, and “|” are unavailable.

Defining and Customizing TSO/VTAM Time Sharing

Chapter 6. Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing 73

Translation tables allow TSO/VTAM users to internally replace unavailable
characters with characters that are available on the keyboard. For example, you
can represent the following, unavailable characters as different characters:

Character: Represented As:

< [

>]

| !

For character translation, either default translation tables (ones supplied by IBM) or
your own translation tables (ones that you write) are used. The default translation
tables are part of the TSO/VTAM programs. They translate each character to itself.

When translation tables are in use, input translations are done after TSO/VTAM
translates the line code to EBCDIC characters. Output translations take place
before TSO/VTAM translates the EBCDIC characters to line code.

With translation tables, a terminal user can use the TERMINAL command and its
operands TRAN and CHAR to specify replacement characters. The TERMINAL
command invokes the STTRAN macro instruction to set up the translation tables.

A user can specify the TERMINAL command with different combinations of the
CHAR and TRAN operands. The following describes the different combinations. See
z/OS TSO/E Command Reference for more information about the syntax of the
TERMINAL command and the TRAN and CHAR operands.

CHAR (characters)
Using the CHAR (characters) operand alone results in a copy of the default
translation tables in the user’s storage to be updated according to the
characters that the user specifies. The system then uses the updated tables to
translate all inbound and outbound characters. This method of translation takes
place until the user specifies the TERMINAL command with the NOTRAN or
NOTRAN operand or until the user’s terminal session ends.

TRAN (name)
Using the TRAN (name) operand alone results in a copy of the translation
tables located in name to be used to translate all inbound and outbound
characters. This method of translation takes place until the user specifies the
TERMINAL command with the NOTRAN operand or until the user’s terminal
session ends.

CHAR (characters)
TRAN (name)

Using the CHAR (characters) and TRAN (name) operands results in a copy of
the translation tables located in name to be updated according to the characters
which the user specifies. The system then uses the updated tables to translate
all inbound and outbound characters. This method of translation takes place
until the user specifies the TERMINAL command with either the NOTRAN or
NOCHAR operand or until the user’s terminal session ends.

The following steps describe how to build translation tables.

1. Code a pair of translation tables.

You need one table for input (to TSO/E) and one table for output (to the
terminal), with each pair in a control section. Each control section must consist
of a fullword containing the:

v Address of the output table, followed by

Defining and Customizing TSO/VTAM Time Sharing

74 z/OS V1R4.0 TSO/E Customization

v A 256-byte EBCDIC table (on a fullword boundary) for translating the inbound
code, followed by

v A 256-byte EBCDIC table for translating the outbound code.

Format the tables according to the rules for the TRANSLATE instruction. For
information about the TRANSLATE instruction, see z/Architecture Principles of
Operation, SA22-7832. Translation of numbers and uppercase letters is not
allowed.

2. Assemble the translation tables.

3. Link-edit the translation tables into a load module library. One CSECT is allowed
per member. The translation tables must be link edited as RMODE(24) to
ensure correct addressing to the TERMINAL command module.

4. Place a JOBLIB DD or STEPLIB DD statement, containing the name of the load
module library, into a logon procedure. The user can specify the logon
procedure when logging on.

Figure 6 on page 76 shows translation tables that perform the following translation:

Translates: To:

[(X'AD') < (X'4C')

] (X'BD') > (X'6E')

! (X'5A') | (X'4F')

In the figure, these characters are highlighted. All other characters are translated to
themselves.

Suppose the tables are located in member TRTAB1, and the data set which
contains the member was specified in a logon procedure when the user logged on.
To use the translation tables, the user would enter:
terminal tran (trtab1)

Defining and Customizing TSO/VTAM Time Sharing

Chapter 6. Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing 75

Defining and Customizing TSO/TCAM Time Sharing
The following is an overview of the steps for defining TSO/E to TCAM:

1. Write a message control program (MCP) procedure to start TSO/TCAM and
include it in a procedure library. For more information, see “Writing an MCP
Procedure to Start TSO/TCAM” on page 77.

IBM provides a default MCP, which you can tailor to suit your installation’s
needs. For more information, see ACF/TCAM Version 2 Base Installation Guide.

If you plan to use the Session Manager, see “Message Handler and Message
Control Program Changes (TCAM Only)” on page 559 about changes you may
need to make to the MCP to support a Session Manager environment.

2. Optionally, you can create SYS1.PARMLIB member IKJPRM00 (or an
installation-defined alternate member) to override the default values used to
start TSO/TCAM. For more information, see z/OS MVS Initialization and Tuning
Reference.

If you plan to use the Session Manager, see “SYS1.PARMLIB Changes” on
page 557 about changes you may need to make to the SYS1.PARMLIB
member to support a Session Manager environment.

TRTAB1 CSECT
OUTADR DC A(OUTTAB)
INTAB DS OF

DC X’000102030405060708090A0B0C0D0E0F’ 0X
DC X’101112131415161718191A1B1C1D1E1F’ 1X
DC X’202122232425262728292A2B2C2D2E2F’ 2X
DC X’303132333435363738393A3B3C3D3E3F’ 3X
DC X’404142434445464748494A4B4C4D4E4F’ 4X
DC X’505152535455565758594F5B5C5D5E5F’ 5X
DC X’606162636465666768696A6B6C6D6E6F’ 6X
DC X’707172737475767778797A7B7C7D7E7F’ 7X
DC X’808182838485868788898A8B8C8D8E8F’ 8X
DC X’909192939495969798999A9B9C9D9E9F’ 9X
DC X’A0A1A2A3A4A5A6A7A8A9AAABAC4CAEAF’ AX
DC X’B0B1B2B3B4B5B6B7B8B9BABBBC6EBEBF’ BX
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’ CX
DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’ DX
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’ EX
DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’ FX

OUTTAB DS OF
DC X’000102030405060708090A0B0C0D0E0F’ 0X
DC X’101112131415161718191A1B1C1D1E1F’ 1X
DC X’202122232425262728292A2B2C2D2E2F’ 2X
DC X’303132333435363738393A3B3C3D3E3F’ 3X
DC X’404142434445464748494A4BAD4D4E5A’ 4X
DC X’505152535455565758595A5B5C5D5E5F’ 5X
DC X’606162636465666768696A6B6C6DBD6F’ 6X
DC X’707172737475767778797A7B7C7D7E7F’ 7X
DC X’808182838485868788898A8B8C8D8E8F’ 8X
DC X’909192939495969798999A9B9C9D9E9F’ 9X
DC X’A0A1A2A3A4A5A6A7A8A9AAABACADAEAF’ AX
DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’ BX
DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’ CX
DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’ DX
DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’ EX
DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’ FX
END

Figure 6. Example of a CSECT Containing Translation Tables

Defining and Customizing TSO/TCAM Time Sharing

76 z/OS V1R4.0 TSO/E Customization

Before a user can log on, TCAM must be active in the system and the terminal I/O
controller (TIOC) must be initialized. The initialization of the TIOC completes the
initialization for the time sharing subsystem and allows TCAM to accept logon
commands and pass them to the TIOC for processing.

To start TCAM, the system operator enters the following START command. In the
command, tcam is the name of a procedure that executes the TCAM MCP.
start tcam

After TCAM has been started, the system operator enters the MODIFY command to
activate the TIOC as a subtask of TCAM:
modify tcam,ts=start

If you use a SYS1.PARMLIB member other than IKJPRM00 to override the
parameters used to start TSO/E, the operator must include the member name on
the MODIFY command. For example, if you want to use SYS1.PARMLIB member
IKJPRM01, the operator must enter the following command:
modify tcam,ts=start,ikjprm01

For more information about IKJPRM00, see z/OS MVS Initialization and Tuning
Guide.

To terminate all time sharing users’ connections with the system, the system
operator must issue the MODIFY command as follows:
modify tcam,ts=stop

For more information about the START and MODIFY commands, see z/OS MVS
System Commands.

Writing an MCP Procedure to Start TSO/TCAM
You must write a message control program (MCP) procedure for starting
TSO/TCAM time sharing. Include the procedure in either SYS1.PROCLIB or in an
installation-defined procedure library. In the procedure, you must include an EXEC
statement and DD statements. Figure 7 is a sample procedure for starting
TSO/TCAM time sharing.

EXEC
identifies the MCP, IEDQTCAM, to be executed. If you omit the name of an
MCP on the EXEC statement, the first MCP listed in the TST (TCAM subtask
table) is attached. For more information, see TCAM Operations Guide.

If you use an MCP other than IEDQTCAM, you must specify the name of the
MCP in the TCAM program properties table (PPT) and mark it nonswappable.
The PPT describes the environment TCAM requires to operate properly. For
more information, see z/OS MVS Initialization and Tuning Reference.

//TCAM EXEC PGM=IEDQTCAM,DPRTY=(13,9) TIME=1440
//
//R5041 DD UNIT=0A1
// DD UNIT=0A2
// DD UNIT=0A3
//L3270 DD UNIT=01D

Figure 7. Sample Procedure to Start TSO/TCAM Time Sharing

Defining and Customizing TSO/TCAM Time Sharing

Chapter 6. Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing 77

DD
identifies the line addresses dedicated to TCAM. The ddnames must be the
names identified on the DDNAME parameter of the TCAM LINEGRP macro
statement used in TCAM initialization. For more information about the LINEGRP
macro statement, see ACF/TCAM Version 2 Base Installation Guide.

Defining and Customizing TSO/TCAM Time Sharing

78 z/OS V1R4.0 TSO/E Customization

Chapter 7. Setting up Logon Processing

Controlling Logons . 79
Controlling the Total Number of Users Who Can Log On 79
Controlling Logons Within Groups of Users 80

Limiting the Size of Each User’s Address Space 80
Writing and Giving Users Access to Logon Procedures 81

Deciding the Number of Logon Procedures You Will Make Available 81
Writing a Logon Procedure 82
Defining Data Sets in a Logon Procedure 83
Storing Logon Procedures . 84
Giving Users Access to Logon Procedures. 85
Giving Users Access to SECLABELs 86

Before users can log on to TSO/E, you must give them access to the system. You
must review and, if necessary, adjust the variables that limit the number of users
who can be logged on at one time. You must also review the size of users’ address
spaces and, if necessary, change the size. You can specify a default size that
applies to all users, a default that varies from one logon procedure to another, or a
default that applies to individual users.

You must write and make available the logon procedures that give users access to
the resources they need.

Controlling Logons
Several related factors, such as the number of available logons, the number of
address spaces that can execute concurrently in your system, the number of VTAM
APPL definition statements, and what operating system you are using, determine
the number of users who can log on to TSO/E at one time. You can control both the
total number of users who can be logged on to TSO/E at one time and the number
of users in a group who can be logged on.

Restriction: In z/OS.e, the number of concurrent TSO/E sessions is limited to
eight.

Controlling the Total Number of Users Who Can Log On
You can control the number of users who can be logged on to TSO/E at one time.
Several factors determine the total number of users. These factors are:

v The number of available logons. You must ensure that you specify enough
logons to accommodate the number of users you want to have logged on to
TSO/E at one time. To specify the number of users who can be logged on at one
time, use the USERMAX parameter in SYS1.PARMLIB member TSOKEYxx. For
more information about the USERMAX parameter, see z/OS MVS Initialization
and Tuning Reference.

v The number of address spaces that can execute concurrently in your system.
Because each TSO/E user requires an address space, you must ensure that the
total number of address spaces is at least as large as the number of available
TSO/E logons. To specify the number of address spaces, use the following
parameters in SYS1.PARMLIB member IEASYSxx: RSVNONR, RSVSTRT, and
MAXUSER. For more information about these parameters, see z/OS MVS
Initialization and Tuning Guide.

© Copyright IBM Corp. 1988, 2002 79

|
|

|
|

v The number of VTAM APPL definition statements that have been specified at
your installation. You must ensure that you have at least as many VTAM APPL
definition statements as available TSO/E logons. For more information about
specifying VTAM APPL definition statements, see “Defining TSO/E Address
Spaces to VTAM” on page 72 and z/OS Communications Server: SNA Resource
Definition Reference.

v The operating system that you are using.

Restriction: In z/OS.e, the number of concurrent TSO/E sessions is limited to
eight.

Each of these factors can limit the number of users who can log on. For example, if
you have fewer APPL definition statements than the number of available logons, the
number of users who can be logged on concurrently is limited by the number of
APPL definition statements.

Controlling Logons Within Groups of Users
You can control the number of TSO/E logons by limiting them according to groups,
such as application developers or end users, and using the logon pre-prompt exit
(IKJEFLD or IKJEFLD1) to limit the number of users in each group who can be
logged on concurrently. Limiting the logons within groups of users allows you to
give certain groups better access to the system than other groups have. For more
information about using the logon pre-prompt exit, see “Writing a Logon Pre-Prompt
Exit (IKJEFLD/IKJEFLD1)” on page 93.

Limiting the Size of Each User’s Address Space
After you have limited the number of users who can log on to TSO/E, you may want
to limit the size of users’ address spaces (region size) so they cannot run
commands or programs that use large amounts of virtual storage. You can then
override, for individual users, the default limit you set; so they can run programs or
commands that require additional storage.

You can use several methods to limit the size of each user’s address space, or
region:

v To specify a default region size that applies to all TSO/E users and jobs
submitted by TSO/E users, use the JES2 TSUCLASS initialization statement. For
more information about the TSUCLASS statement, see z/OS JES2 Initialization
and Tuning Reference. You can override the region size for individual users or
jobs by using either the MVS IEALIMIT exit for storage below 16 MB in virtual
storage, or the MVS IEFUSI exit for storage above 16 MB in virtual storage.

v To specify a region size for a certain set of users, use the REGION operand of
the EXEC statement in the logon procedure.

v To specify a default region size for an individual user, you can use either the
ACCOUNT command, or the RACF ADDUSER or ALTUSER command. Which
command you use depends on whether you store information about users in the
RACF data base or in UADS. (If you have RACF installed, you can define user
information in the RACF data base. For more information, see Part 4,
“Maintaining the UADS, RACF Data Base, and Broadcast Data Set” on
page 195.)

Users can override the default region size when they log on. You can limit the
region size with which a user can log on by specifying the maximum region size
on either the ACCOUNT command or the RACF ADDUSER or ALTUSER
command. Users can log on with a region size that is larger than the maximum

Controlling Logons

80 z/OS V1R4.0 TSO/E Customization

|

|
|

only if you specify in the logon pre-prompt exit that neither the UADS nor the
RACF data base be checked to verify logon information.

v To override the region size a user specifies on the LOGON command, use the
logon pre-prompt exit. If you use the logon pre-prompt exit to override the region
size, you must specify that neither the UADS nor the RACF data base be
checked to verify logon information.

TSO/E uses the following search order to determine the region size for a TSO/E
user:

1. Logon pre-prompt exit specifies the size

2. The SIZE operand of the LOGON command

3. The default region size defined for the user

4. The REGION operand on the EXEC statement in the user’s logon procedure

5. The JES2 TSUCLASS initialization statement

When TSO/E obtains a valid region size, it stops searching

Writing and Giving Users Access to Logon Procedures
To enable users to log on to TSO/E and access system resources, you must write
logon procedures, and give users access to them. A logon procedure:

v Specifies the system resources available to the user logging on

v Specifies the number of data sets the user can have dynamically allocated

v Specifies which program is invoked after the user has logged on. The program
can be the TSO/E terminal monitor program (TMP), Session Manager, or an
installation-written program.

Deciding the Number of Logon Procedures You Will Make Available
The number of logon procedures you need depends on the different types of users
at your installation and the applications and data sets to which the users need to
access. Using multiple logon procedures allows you to give users access to only
the resources they need. For example, you can create a logon procedure that gives
users access to line-mode TSO/E only, or one that also gives users access to the
TSO/E Information Center Facility.

However, you should not write more logon procedures than required, for the
following reasons:

v If users want to access a different logon procedure than the one with which they
logged on, they must log off and log back on.

v Minimizing the number of logon procedures at your installation makes it easier to
maintain the users on the system, because you must keep track of and give
users access to each additional logon procedure.

One way of minimizing the number of logon procedures at your installation is to
create a few logon procedures that allocate the data sets most users require, and
allocate the data sets required by individuals in a CLIST or REXX exec. Individuals
can maintain their own CLISTs or REXX execs. Specify the name of the CLIST or
REXX exec in the logon procedure as the first command that is executed when the
user logs on.

Note, however, that when you allocate data sets from CLISTs or REXX execs, the
data sets are not permanently allocated, and a user can accidentally deallocate
them. To avoid the possibility of a user accidentally deallocating a data set, you can

Limiting the Size of Each User’s Address Space

Chapter 7. Setting up Logon Processing 81

write a command processor to permanently allocate the data sets for the duration of
the user’s session. For more information about writing command processors, see
z/OS TSO/E Programming Guide.

Removing Complexity from Logon Procedures with the TSOLIB
Command
The TSOLIB command, introduced with TSO/E Release 5, allows users to
dynamically link to load module libraries of their choice while remaining in their
active TSO/E session. The TSOLIB command saves your installation from having to
maintain several versions of logon procedures, or several user IDs with different
logon procedures, for programmers who require the allocation of different versions
of load module libraries.

Using the TSOLIB command to link to libraries or products — only when required
— allows your installation to reduce the number of different logon procedures and
to simplify existing logon procedures. You can reduce the number of default data
set allocations at logon time, thus gaining improved performance.

See z/OS TSO/E Command Reference for command details and advantages of the
TSOLIB command.

Chapter 38, “Customizing the TSOLIB Command” on page 485 gives details on
writing exits.

Writing a Logon Procedure
Figure 8 shows a sample logon procedure. The statements specify the
TSO/E-supplied TMP (IKJEFT01) for execution, and define the CLIST library, the
work data sets for the assembler, and the assembler macro library, and specify that
SYSIN and SYSPRINT are to be directed to the user’s terminal.
The only statement you must include in a logon procedure is an EXEC statement

that identifies the TMP. You can only include one EXEC statement in each logon
procedure. Logon procedure names (for example, AFPROC) must begin with A-Z;
other characters can be alphanumeric. The name must not match that of any
subsystem.

The TMP provided by TSO/E is named IKJEFT01. To use an installation-written
TMP for a procedure, substitute the module name for IKJEFT01 in the PGM=
operand in the EXEC statement. The following are additional operands you can use
on the EXEC statement:

REGION
limits the address spaces of users who log on with this logon procedure.

DYNAMNBR
defines the number of data sets that can be dynamically allocated at the same

//AFPROC EXEC PGM=IKJEFT01,DYNAMNBR=20
//SYSUT1 DD DSN=&SYSUT1,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSUT2 DD DSN=&SYSUT2,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSUT3 DD DSN=&SYSUT3,UNIT=SYSDA,SPACE=(1700,(400,50))
//SYSPROC DD DSN=CLIST.PROC.LIB,DISP=SHR
//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR
//SYSIN DD TERM=TS
//SYSPRINT DD TERM=TS

Figure 8. Sample Logon Procedure

Writing and Giving Users Access to Logon Procedures

82 z/OS V1R4.0 TSO/E Customization

time. A constant of 2 is always added to the DYNAMNBR value you specify. If
DYNAMNBR= is omitted, the number of allocations is determined by the
number of DD DYNAM statements. If DD DYNAM statements and
DYNAMNBR= are both present, the number of concurrent allocations equals
the combined total.

Using DYNAMNBR allows data sets to be more quickly reallocated because
control blocks for data sets remain in storage, even after the data sets have
been deallocated. You should choose the value for DYNAMNBR carefully. The
value should be large enough so that it is not readily exceeded by the number
of dynamic allocation requests made during the user’s session. However, the
larger the value you specify for DYNAMNBR the more virtual storage is used.
The actual amount of virtual storage depends on the number of data sets the
user allocates and deallocates in a session. The value cannot exceed the
number of concurrently-allocated resources specified in the SYS1.PARMLIB
member ALLOCxx, parameter TIOT SIZE. For details refer to z/OS MVS
Initialization and Tuning Reference. For more information about DYNAMNBR,
see z/OS MVS JCL Reference.

PARM
specifies a command, CLIST, or REXX exec to be interpreted as the first line of
input from the terminal. The command, CLIST, or REXX exec is the first to
execute after the user has logged on. For example, you could specify the name
of a CLIST that allocates data sets required by the user.

Note: TSO/E does not execute a command the user enters in the COMMAND
field of the logon panel if the command specified in the PARM field of the
logon procedure fails. For example, a command the user enters will fail if
TSO/E cannot find the command in the PARM field on the EXEC
statement of the logon procedure.

TIME
provides job step timing. The value you specify overrides the default values you
specified via JES initialization statements. You can use JES exits to override the
job step timing for individual users. For more information about the JES
initialization statements you can use, see either z/OS JES2 Initialization and
Tuning Reference or z/OS JES3 Initialization and Tuning Guide. For more
information about the JES exits you can use, see either z/OS JES2 Installation
Exits or z/OS JES3 Customization.

Defining Data Sets in a Logon Procedure
Data sets required by the user can either be defined dynamically, through the
ALLOCATE command or dynamic allocation, or they can be defined in a logon
procedure. Defining the data sets in a logon procedure has the following
advantages:

v May improve on-line performance. Data sets required by a command or program
do not have to be allocated each time the command or program is run.

v Allows volumes to be mounted. If the data set is on an unmounted volume, the
operator is notified. Ordinarily, unless the user is authorized to mount volumes,
dynamic allocation requests do not allow volumes to be mounted. If the volume is
not already mounted, the request fails.

v Provides recovery from an off-line device condition. Messages tell the operator to
vary the device on-line.

However, using DD statements in a logon procedure may increase the time it takes
for users to log on. To improve the performance of the logon process, you may

Writing and Giving Users Access to Logon Procedures

Chapter 7. Setting up Logon Processing 83

want to minimize the number of data sets you allocate in the logon procedure. For
more information about the factors that improve logon performance, see “Improving
the Performance of the Logon Process” on page 91.

The following DD statements have special meaning and can be included in the
logon procedure:

SYSEXEC
defines the current REXX exec library concatenation to the EXEC command
when users use the implicit form of the command. By default, the system
searches SYSEXEC first, followed by SYSPROC.

The data set described by this DD statement must be partitioned, and have a
record format of V, VB, F or FB. Instead of allocating the REXX exec library in
the logon procedure, you can allocate it dynamically using the ALLOCATE
command. For example:
allocate da(’rexx.proc.lib’) f(sysexec) shr

SYSPROC
defines the current REXX exec or CLIST library concatenation to the EXEC
command when users use the implicit form of the command. The data set
described by this DD statement must be partitioned, and have a record format
of V, VB, F or FB. Instead of allocating the REXX exec or CLIST library in the
logon procedure, you can allocate it dynamically, by using the ALLOCATE
command. For example:
allocate da(’clist.proc.lib’) f(sysproc) shr

To explicitly activate REXX execs or CLISTs, use the ALTLIB command. By
using ALTLIB, you do not need to include all application-level REXX execs or
CLISTs in the user’s logon procedure. For information about the ALTLIB
command, see z/OS TSO/E Command Reference. The search order for the
user, application, and system libraries is shown and explained in Chapter 26,
“Customizing the ALTLIB Command” on page 231.

By default, the system searches SYSEXEC first, followed by SYSPROC.

STEPLIB
defines a private step library, which can contain command processors. You
should avoid using STEPLIB data sets in logon procedures, however, because
they may adversely affect performance. Each time the user loads a module, the
system searches the STEPLIB data set before searching any others. As an
alternative, users can use the TSO/E TSOLIB command.

Storing Logon Procedures
You can store logon procedures in either SYS1.PROCLIB or in an installation data
set. SYS1.PROCLIB cannot be shared among systems in a multiple system
complex. If you want to share logon procedures among systems, you must place
them in an installation data set that can be shared.

If you use an installation data set, the data set must be partitioned, and contain
logon procedures only. Note that the name of a TSO/E logon procedure must not be
the same as any subsystem.

If you use JES2, code a PROCxx DD statement to define the data set in the
procedure for starting JES2. Use the TSUCLASS initialization statement to refer to
the DD statement. For more information about specifying the TSUCLASS
initialization statement, see z/OS JES2 Initialization and Tuning Reference.

Writing and Giving Users Access to Logon Procedures

84 z/OS V1R4.0 TSO/E Customization

If you use JES3, code an IATPLBxx DD statement to define the data set in the
procedure for starting JES3. Use the STANDARDS initialization statement to refer
to the DD statement. For more information about specifying the STANDARDS
initialization statement, see z/OS JES3 Initialization and Tuning Reference.

Like other tasks, some of the JCL for a time shared task for a TSO/E logon is
created automatically. The system generates a JOB and EXEC statement and gives
control to the TSO exits that allow the installation to manipulate the values that are
placed on the JOB and EXEC statements. In addition, TSO/E copies the
characteristics specified in the logon panel to the JOB statement. The procedure
name specified on a logon panel is placed in the EXEC PROC field to indicate
which procedure to use. TSO/E procedures must be single-step procedures.

TSO/E logon procedures are started under the primary job entry subsystem (JES).
A JES initialization statement determines the library that contains the TSO/E logon
procedure. (Often, TSO/E logon procedures are separated from other procedures.)

In a JES3 environment, the JCL used to submit a TSO/E logon is limited to
approximately 700 cards. For JES2, the limit is slightly more that 400.

Giving Users Access to Logon Procedures
To give a user access to a logon procedure, specify the name of the logon
procedure using either the ACCOUNT command, or the RACF RDEFINE and
PERMIT commands. Whether you use the ACCOUNT command or RACF
commands depends on whether the information about the user is contained in the
UADS or RACF data base. (If you have RACF installed, you can define user
information in the RACF data base. For more information, see Part 4, “Maintaining
the UADS, RACF Data Base, and Broadcast Data Set” on page 195.)

You can give users access to more than one logon procedure. Users can then
specify a particular procedure when they log on.

In line-mode TSO/E, if a user has access to more than one logon procedure and
does not enter a procedure name, TSO/E prompts the user for a procedure as
follows. If the user is defined in the RACF data base, TSO/E selects one of the
logon procedures from the RACF data base and displays a message with that
procedure name. The procedure TSO/E selects is the first one in alphabetical order.
To use the selected procedure, the user presses the Enter key. To use a different
procedure, the user can enter the procedure name. If the user is defined in the
UADS, TSO/E displays a message that prompts the user for a logon procedure
name.

If the user uses full-screen logon, TSO/E automatically displays the logon procedure
the user used for the last TSO/E session. If the user blanks out the procedure
name field on the panel, TSO/E does the following depending on whether the user
is defined in the UADS or in the RACF data base:

v If the user is defined in the UADS, TSO/E displays a message prompting the
user to specify a procedure name.

v If the user is defined in the RACF data base, TSO/E selects one of the logon
procedures from the RACF data base and displays the procedure name on the
panel. The procedure TSO/E selects is the first one in alphabetical order. TSO/E
also displays a message that prompts the user to change the procedure name, if
desired.

Writing and Giving Users Access to Logon Procedures

Chapter 7. Setting up Logon Processing 85

Note: In the previous description of how TSO/E selects a logon procedure, the
term “defined in the RACF data base” means the user is defined to RACF
and has a TSO/E segment.

Your installation can change the logon procedure the user specifies by using one of
the logon exits. For more information about the exits, see Chapter 8, “Customizing
the Logon and Logoff Process” on page 87.

Giving Users Access to SECLABELs
With RACF installed, your installation may be using security labels. Security labels
are associated with a TSO/E logon session, message, or data set. Security labels
are checked and the result of that check determines if processing continues.
Authority to use a security label is given using RACF. For more information about
setting up security labels, see z/OS Security Server RACF Security Administrator’s
Guide.

Writing and Giving Users Access to Logon Procedures

86 z/OS V1R4.0 TSO/E Customization

Chapter 8. Customizing the Logon and Logoff Process

Customizing Logon Messages 89
Limiting the Number of Logon Attempts 90
Customizing the Reconnect Option of the LOGON Command. 90
Suppressing the SYSOUT Data Set Generated from the Logon Job 91
Improving the Performance of the Logon Process 91
Using SECLABEL on the Logon Process 92
Overview of Logon Exit Processing 92

Logon Pre-Prompt Exit IKJEFLD/IKJEFLD1 92
Logon Pre-Display Exit IKJEFLN1 93
Logon Post-Display Exit IKJEFLN2 93
Logon Post-Prompt Exit IKJEFLD3 93

Writing a Logon Pre-Prompt Exit (IKJEFLD/IKJEFLD1) 93
Functional Description . 94
TSO/E-Supplied Exits . 95
Entry Specifications . 95
Parameter List for IKJEFLD1. 95
Parameter List for IKJEFLD 98
Parameter Descriptions for IKJEFLD and IKJEFLD1. 101
Parameters for IKJEFLD1 Only 110
Return Specifications . 112
Programming Considerations 112
Possible Uses . 114

Writing a Logon Pre-Display Exit (IKJEFLN1) 118
TSO/E Supplied Exits . 118
Entry Specifications . 118
Parameter List for IKJEFLN1 118
Parameter Descriptions . 121
Return Specifications for IKJEFLN1 127
Programming Considerations 128
Possible Uses. 129

Writing a Logon Post-Display Exit (IKJEFLN2) 129
TSO/E Supplied Exits . 129
Entry Specifications. 129
Parameter List for IKJEFLN2 130
Parameter Descriptions . 132
Return Specifications for IKJEFLN2 138
Programming Considerations 139
Possible Uses. 139

Writing a Logon Post-Prompt Exit (IKJEFLD3) 140
TSO/E-Supplied Exits . 140
Entry Specifications. 140
Parameter List for IKJEFLD3 140
Parameter Descriptions . 141
Return Specifications . 142
Installing the Exit. 142
Possible Uses. 143

Writing a Logoff Exit (IKJEFLD2) 143
Functional Description . 143
TSO/E-Supplied Exits . 143
Entry Specifications. 143
Parameter Descriptions . 143
Return Specifications . 144
Programming Considerations 144

© Copyright IBM Corp. 1988, 2002 87

Possible Uses. 145
Customizing Logon Panels and Logon Help Panels 146

Functions Activated by the Presence of Logon Load Modules 146
Logon Panel . 147
Logon Help Panel . 149
Invoking the Help Panel . 150
Programming Considerations for Logon and Logon Help Panel Csects 150

This chapter describes how you can customize the logon and logoff process to suit
the needs of your installation.

When users log on, they may receive a message notifying them that logon is in
process. “Customizing Logon Messages” on page 89 describes how to change how
often the message occurs.

If a user supplies incorrect information when attempting to log on, TSO/E requests
that the user reenter the information. “Limiting the Number of Logon Attempts” on
page 90 explains how to change the number of times a user can unsuccessfully
enter information before having to start over and reissue the LOGON command.

When a user disconnects from the system, the user’s address space remains
available for a certain period of time. While the address space is available, the user
can reconnect without going through the logon process. “Customizing the
Reconnect Option of the LOGON Command” on page 90 describes how to change
the length of time a user’s address space remains available.

Each time a user logs off, the system writes several messages to a SYSOUT data
set. Because you rarely need to refer to the messages, you may want to send the
SYSOUT data set to a class you can hold and later purge. For more information,
see “Suppressing the SYSOUT Data Set Generated from the Logon Job” on
page 91.

You may want to review the factors that affect the performance of the logon
process. For an overview of those factors, see “Improving the Performance of the
Logon Process” on page 91.

With RACF installed, your installation can use security labels (SECLABELs). Users
can specify a SECLABEL during logon. For an overview of security labels, see
“Using SECLABEL on the Logon Process” on page 92.

TSO/E provides several exits that enable you to customize the logon and logoff
processes. Using the exits, you can modify the logon process:
v Before the logon prompt, using the pre-prompt exit IKJEFLD/IKJEFLD1
v Before the display of the logon panel, using the pre-display exit IKJEFLN1
v After the display of the logon panel, using the post-display exit IKJEFLN2
v After the prompting has completed, using the post-prompt exit IKJEFLD3.

You can perform several functions to customize the logon process:
v Verify, change, or supply various logon parameters
v Modify JCL associated with the logon procedure
v Reference or update various TSO/E control blocks.

For an overview of each logon exit and the different processing operations each exit
performs, see “Overview of Logon Exit Processing” on page 92.

88 z/OS V1R4.0 TSO/E Customization

TSO/E supports the authorized logoff exit, IKJEFLD2, to customize the logoff
process. IKJEFLD2 allows your installation to perform clean-up operations and
tasks. During logoff, IKJEFLD2 can:
v Change certain data areas and control blocks
v Control information written to the UADS data set
v Issue the LOGOFF or LOGON command to control re-logons.

For more information about the logoff exit, see “Writing a Logoff Exit (IKJEFLD2)”
on page 143.

Also, you can customize the logon panels using the source provided. You can
customize panels in a variety of ways, including adding or changing fields in a
panel. See “Customizing Logon Panels and Logon Help Panels” on page 146 for
more information on the logon panel modules.

You can also customize the logon help panels by using the source provided. See
“Logon Help Panel” on page 149 for more information on the help panel modules.

Customizing Logon Messages
If logon processing takes more than the amount of time specified through the
IKJTSO macro statement, the system issues a message to notify the user that the
logon is still in process. You can change the number of seconds that elapse before
users receive the logon proceeding message. By default, 300 seconds elapse
before the message is issued. In most cases, the default is adequate. If users
regularly receive the logon proceeding message, you may want to review the
factors that affect logon performance, instead of changing how often the message is
issued. For an overview of some of the factors you should consider when reviewing
logon performance, see “Improving the Performance of the Logon Process” on
page 91.

To change the number of times the logon proceeding message is issued, use the
IKJTSO macro instruction and submit a System Modification Program Extended
(SMP/E) job to make the change. For example, to specify that two minutes elapse
before the message is issued, code IKJTSO as follows:
LIMITS IKJTSO LOGTIME=120

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJTSO.

Instructions for using the sample job are included in the SYS1.SAMPLIB member.
“IKJTSO Macro” on page 740 describes the syntax of IKJTSO.

If you used the TSO SYSGEN macro to change the default number of times the
logon proceeding message is issued, when you install a new release of TSO/E, the
default that TSO/E provides overlays your changes. After system generation, use
IKJTSO to change the default attributes. By using IKJTSO, future SYSGENs or
IOGENs do not replace your values.

You may also want to customize the text of error messages issued during logon
processing. z/OS Communications Server: SNA Messages lists the messages you
can customize. For information about how to customize the messages, see z/OS
Communications Server: SNA Customization.

Chapter 8. Customizing the Logon and Logoff Process 89

Limiting the Number of Logon Attempts
The number of unsuccessful attempts users can make at entering information in
response to logon prompts is limited to the value specified on the IKJTSO macro
statement. If users exceed the limit, they must reissue the LOGON command. By
default, a user can make 10 attempts at entering information in response to logon
prompts. For example, a user can unsuccessfully respond to any of the logon
prompts—password, account number, or procedure—and press the Enter key a
total of 10 times before having to log on again. You may want to reduce the number
of attempts a user can make to enter information, thus making it more difficult for
unauthorized users to gain access to the system.

To change the number of unsuccessful attempts a user can make at entering
information, use the IKJTSO macro instruction and submit a System Modification
Program Extended (SMP/E) job to make the change. For example, to specify that a
user can make 3 attempts before having to reenter the LOGON command, code
IKJTSO as follows:
LIMITS IKJTSO LOGLINE=3

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJTSO.

Instructions for using the sample job are included in the SYS1.SAMPLIB member.
“IKJTSO Macro” on page 740 describes the syntax of IKJTSO.

If you used the TSO SYSGEN macro to change the number of unsuccessful
attempts a user can make at entering logon information, when you install a new
release of TSO/E, the default that TSO/E provides overlays your changes. After
system generation, use IKJTSO to change the default attributes. By using IKJTSO,
future SYSGENs or IOGENs do not replace your values.

Customizing the Reconnect Option of the LOGON Command
By default, after a user’s terminal disconnects, the user’s address space remains
available for the period of time as defined by the RECONLIM parameter in
SYS1.PARMLIB member TSOKEYxx. To reconnect while the address space is still
available, users can use the RECONNECT operand of the LOGON command, and
bypass the logon process. After the time limit expires, however, the address space
is no longer available, and the user must reissue the LOGON command. You can
change the amount of time during which a user can reconnect.

To prevent users from unnecessarily tying up available logons, you may want to
reduce the amount of time users’ address spaces remain available. Be careful,
however, that you do not limit the time to a point where users do not have enough
time available to reconnect. To limit the amount of time available for reconnecting,
use the RECONLIM parameter in SYS1.PARMLIB member TSOKEYxx. For more
information about the RECONLIM parameter, see z/OS MVS Initialization and
Tuning Reference.

You can write a logon pre-prompt exit to make it easier for users to reconnect after
their terminals have been disconnected. For more information, see “Writing a Logon
Pre-Prompt Exit (IKJEFLD/IKJEFLD1)” on page 93.

Limiting the Number of Logon Attempts

90 z/OS V1R4.0 TSO/E Customization

Suppressing the SYSOUT Data Set Generated from the Logon Job
Each time a user logs off, the system generates a SYSOUT data set containing
messages from the processing of the logon job. By default, the data set is sent to
output class A. Because you probably only rarely have to refer to this data set, you
may want to send it to either a class that is held, so you can selectively purge the
output, or to a purge class, so all output is purged. To change the output class to
which the data set is sent, use the JES2 STCCLASS or TSUCLASS initialization
statement or JES3 exit IATUX19. For more information about using the JES2
STCCLASS or TSUCLASS initialization statement, see z/OS MVS Initialization and
Tuning Reference. For more information about writing JES3 exit IATUX19, see z/OS
JES3 Customization.

One problem with sending the SYSOUT data set to a held or purge class is that
messages from jobs submitted by TSO/E users are sent to the same class. So, you
may want to direct messages from jobs submitted by TSO/E users to a separate
class. To direct messages to a separate class, use either the ACCOUNT command,
or the RACF ADDUSER or ALTUSER command. Which command you use depends
on whether you store information about users in the UADS or the RACF data base.
(If you have RACF installed, you can define user information in the RACF data
base. For more information, see Part 4, “Maintaining the UADS, RACF Data Base,
and Broadcast Data Set” on page 195.)

For more information about using the ACCOUNT command, see z/OS TSO/E
System Programming Command Reference. For more information about using
RACF commands, see z/OS Security Server RACF Command Language
Reference.

Improving the Performance of the Logon Process
You should review the performance of the logon process, and, if necessary, adjust
the factors that affect logon performance. The following are some guidelines for
improving the performance of the logon process:

v Shorten logon procedures by allocating as few data sets as possible. However,
note that allocating data sets in a logon procedure may improve on-line
performance, after a user has logged on. For more information, see “Defining
Data Sets in a Logon Procedure” on page 83.

v Avoid the use of STEPLIBs in logon JCL.

v Reduce the amount of searching the system does to locate a logon procedure:

– Rename or move logon procedures so they are at the beginning of the
procedure library or at the beginning of the library concatenation.

– If you are using JES3, specify commonly-used logon procedures in a BLDL
list. To specify a BLDL list, use the JES3 PROC initialization statement. For
more information about using the JES3 PROC initialization statement, see
z/OS JES3 Initialization and Tuning Guide.

v Place logon procedures in a procedure library that is likely to be open when a
user logs on. For example, if possible, place all your procedures—both those for
batch and for on-line—in the same procedure library.

v Allow users to reconnect after being disconnected (thus bypassing the logon
process). Use SYS1.PARMLIB member TSOKEYxx to extend the amount of time
address spaces remain active after users have been disconnected. One problem
with extending the amount of time is that it can allow users to tie up logons. For
more information, see “Customizing the Reconnect Option of the LOGON
Command” on page 90.

Suppressing the SYSOUT Data Set ...

Chapter 8. Customizing the Logon and Logoff Process 91

v Bypass or reduce the use of the broadcast data set. You can:

– Use individual user log data sets to store messages sent to individual users.

– Limit the use of the OPERATOR SEND command at your installation.

– Have users bypass the use of the broadcast data set by using the
NONOTICES and NOMAIL parameters of the LOGON command. For more
information about using the LOGON command, see z/OS TSO/E Command
Reference.

– Use the SYSPLEXSHR option of the SEND PARMLIB parameter to avoid I/O
to the broadcast data set for the display of system notices. For more
information, see “Broadcast data set in a sysplex” on page 210.

Using SECLABEL on the Logon Process
With RACF installed, you can use security labels to protect messages and data
sets. If security labels are used, a SECLABEL is assigned to the user’s session.
This SECLABEL can be specified in the SECLABEL field in full-screen logon or as
an operand on the logon command in line- mode logon. For more information on
setting up SECLABELs and security label checking, see z/OS Security Server
RACF Security Administrator’s Guide.

Overview of Logon Exit Processing
This section provides a brief overview of how logon exits let you customize the
logon process.

When the TSO/E user enters the LOGON command, the command initiates a
terminal session by supplying the system with information that the user specifies on
the command, such as user ID, password, and account number. For more
information about the LOGON command and its operands, see z/OS TSO/E
Command Reference.

During logon processing, TSO/E invokes installed logon exit routines. These logon
exit routines allow you to tailor various stages of the logon process to meet the
needs of your installation. Figure 9 illustrates the flow of TSO/E logon exits. The
figure shows the division of logon exit processing into four stages: pre-prompt,
pre-display, post-display, and post-prompt. These stages are described in the
following sections.

Logon Pre-Prompt Exit IKJEFLD/IKJEFLD1
The logon pre-prompt exit IKJEFLD or IKJEFLD1 receives control:

v After the logon processor receives a LOGON command from the TSO/E user

v Before the logon processor accesses the UADS data set or the RACF data base
to verify logon information

LOGON DISPLAY
IKJEFLD/
IKJEFLD1

IKJEFLN1 IKJEFLN2 IKJEFLD3

(Pre-prompt) (Pre-display) (Post-display) (Post-prompt)PANEL

Figure 9. TSO/E Logon Exit Flow

Improving Performance of Logon Process

92 z/OS V1R4.0 TSO/E Customization

v Before the logon processor displays the full-screen logon panel for the first time.
(If your installation does not use full-screen processing, the exit receives control
before the user is prompted for information.)

Using exit IKJEFLD, you can verify, change, or supply various logon operands, or
cancel a logon. You can use the authorized logon exit, IKJEFLD1, to perform the
same functions as IKJEFLD, and additional authorized functions. For more
information about the logon exits, see “Writing a Logon Pre-Prompt Exit
(IKJEFLD/IKJEFLD1)”.

Logon Pre-Display Exit IKJEFLN1
The pre-display exit, IKJEFLN1, receives control just before the logon panel is
displayed to the TSO/E user. This exit receives control each time the logon panel is
re-displayed, just before the panel is displayed to the TSO/E user.

You can use exit IKJEFLN1 to update information specified on the logon panel
before the panel is displayed at the terminal and to provide information for the fields
on the logon panel. IKJEFLN1 also can update fields in the PSCB and the UPT. For
more information about IKJEFLN1, see “Writing a Logon Pre-Display Exit
(IKJEFLN1)” on page 118.

After returning from the exit, the logon panel is displayed. The TSO/E user can then
enter the required logon information and press the Enter key.

Logon Post-Display Exit IKJEFLN2
The post-display exit, IKJEFLN2, receives control after the logon panel is displayed
to the TSO/E user. This exit receives control when the TSO/E user presses the
Enter key after a logon panel has been presented.

You can use exit IKJEFLN2 to validate and modify fields on the logon panel after
the user has entered information on the panel. For more information about
IKJEFLN2, see “Writing a Logon Post-Display Exit (IKJEFLN2)” on page 129.

Logon Post-Prompt Exit IKJEFLD3
When prompting has completed and the logon processor has processed the
LOGON command, the logon post-prompt exit, IKJEFLD3, receives control. Using
IKJEFLD3, you can:
v Examine and modify the JCL statements built by logon processing
v Reference or update various TSO/E control blocks after they are built
v Provide additional JCL statements
v Terminate the logon process.

For more information about IKJEFLD3, see “Writing a Logon Post-Prompt Exit
(IKJEFLD3)” on page 140.

Writing a Logon Pre-Prompt Exit (IKJEFLD/IKJEFLD1)
Two exits enable your installation to modify the way logon operations are performed
before the initial logon prompt:
v Logon pre-prompt exit IKJEFLD
v Authorized logon pre-prompt exit IKJEFLD1.

Exit IKJEFLD1 offers several advantages over IKJEFLD. IKJEFLD1 receives control
in an authorized state and receives the standard TSO/E exit parameter list. With
IKJEFLD1, you can perform the same functions as IKJEFLD, and:

Overview of Logon Exit Processing

Chapter 8. Customizing the Logon and Logoff Process 93

v Specify the first TSO/E user command to be issued in the session.

v Specify job and SYSOUT classes.

v Specify that RACF processing is to be bypassed.

v Specify the relative block address (RBA) of the user’s mail directory entry in the
broadcast data set.

v Specify a 4-byte user word (value or address) of information to be used during
the TSO/E session or at logoff.

v Specify a default security label (SECLABEL) to be used for the session.
SECLABEL is recognized only when RACF is installed and security label
checking has been activated. For information about setting up security labels,
see z/OS Security Server RACF Security Administrator’s Guide.

v Set up the console profile for the user. For information about the console profile,
see Chapter 27, “Customizing the CONSOLE and CONSPROF Commands” on
page 235.

v Specify primary and secondary languages to be used for displaying translated
information. For information about other tasks you need to perform to provide
translated information, see Chapter 19, “Customizing TSO/E for Different
Languages” on page 187.

IKJEFLD1 resides in its own load module, whereas IKJEFLD has to be link-edited
with load module IKJEFLA in SYS1.LPALIB.

If both exits are installed, IKJEFLD1 receives control instead of IKJEFLD. If
IKJEFLD1 is not installed but IKJEFLD is installed, logon processing passes control
to IKJEFLD. The following is a functional description of logon processing and
common elements in the logon pre-prompt exits. Exit-specific information follows the
functional description.

Functional Description
The logon pre-prompt exit routine initially receives control after the logon processor
receives a LOGON command from a terminal user and before:

v The logon processor accesses the UADS or the RACF data base to verify logon
information, and

v Displays the full-screen logon panel, if your installation uses full-screen logon
processing, or

v Prompts the user for information in addition to the user ID, if your installation
does not use full-screen logon.

Note: For more information about defining users in the RACF data base rather
than in the UADS, see Part 4, “Maintaining the UADS, RACF Data Base, and
Broadcast Data Set” on page 195.

You can write a logon pre-prompt exit to verify, change, or supply various logon
operands and system characteristics. The exit can display a message at the user’s
terminal, request a response, and for full-screen logon, display your own logon
panel instead of the default panel. You cannot change the TSO/E full-screen logon
panel, but you can use the exit to display your own panel. The exit can also cancel
a logon request to prevent a user from logging on.

The following highlights some ways you can use the logon pre-prompt exits. For
more information, see “Possible Uses” on page 114.

v Supply information for the LOGON command, such as user ID, password,
procedure name, account number, region size, and performance group.

Writing a Logon Pre-Prompt Exit

94 z/OS V1R4.0 TSO/E Customization

v Supply system attributes and user attributes for the protected step control block
(PSCB), the generic unit name, and default SYSOUT destination. The user
attributes can include authorization for the ACCOUNT, CONSOLE, and
OPERATOR commands.

v Provide your own JCL statements instead of the standard JOB and EXEC
statements that the logon processor builds.

v Validate the logon information that users specify.

v Display your own logon panel.

v Prevent users from logging on.

v Change logon processing depending on whether a user was disconnected or
logged off from a previous TSO/E session.

v For IKJEFLD1 only:

– Supply a TSO/E user command to be executed at the start of the user’s
session.

– Supply job and SYSOUT classes.

– Supply a security label (SECLABEL) for the session, if you have RACF
installed and you use security label checking at your installation.

– Set up the console profile for the user.

– Specify primary and secondary languages to be used for displaying translated
information.

– Perform RACF processing and instruct logon processing not to issue a RACF
RACINIT command.

– Supply the relative block address (RBA) of the user’s mail directory entry in
the broadcast data set.

– Supply a 4-byte user word for information to be used by the other logoff and
logon exits.

TSO/E-Supplied Exits
TSO/E does not provide default logon pre-prompt exits.

Entry Specifications
The contents of the registers on entry for the logon pre-prompt exits are:

Register 0 Unpredictable

Register 1 Pointer to a list of addresses, with one address for
each parameter

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter List for IKJEFLD1
The logon pre-prompt exit IKJEFLD1 receives the standard exit parameter list. For
a description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. Note that IKJEFLD1 does not use the following fields in the standard
parameter list:

v The new command buffer field pointed to at offset +4

v The PSCB field pointed to at offset +16

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 95

IKJEFLD1 cannot use the new command buffer parameter, parameter entry 2 in
“TSO/E Standard Exit Parameter List” on page 35, however the exit can use the
command buffer parameter, parameter entry 1 in “TSO/E Standard Exit Parameter
List” on page 35. The exit changes the command buffer it receives and updates the
length field (parameter entry 1) to specify the length of the updated command
buffer.

The command buffer format for IKJEFLD1 differs from the regular command buffer
format described in Figure 2 on page 38 in that the command buffer for IKJEFLD1
does not contain the four-byte header field. It contains only the text field. The
command buffer for IKJEFLD1 may be altered as described in “Command and Input
Buffer” on page 107.

Figure 10 on page 97 shows the exit-dependent data that IKJEFLD1 receives
beginning at offset +36 (decimal) in the parameter list. Each parameter entry is
described following the figure. You can give the parameters any names because
their meanings are determined by their order. The names used in the figure are only
for illustration.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Writing a Logon Pre-Prompt Exit

96 z/OS V1R4.0 TSO/E Customization

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

+40

+44

+48

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

Address of
parameter entry 19

Address of
parameter entry 20

Address of
parameter entry 21

Address of
parameter entry 22

Address of
parameter entry 23

Control
switches

User ID

Password

Account
number

Procedure
name

Region size

JCL
statements

New
password

System
attribute bits

User
attribute bits

Performance
group

Default
SYSOUT
destination

00000002 00000004

00000002 00000007

00000002 00000008

00000002 00000028

00000002 00000008

00000002 00000004

00000002 00000320

00000002 00000008

00000002 00000002

00000002 00000002

00000002 00000008

00000002 00000004

00000002 00000004

00000002 00000008

Generic unit

Cancel ECB

Address of
parameter entry 24 00000002 00000008

Group
destination

+52

+56

+60

+64

+68

+72

+76

+80

+84

+88

+92

Figure 10. Exit-Dependent Data for the Logon Pre-Prompt Exit IKJEFLD1 (Part 1 of 2)

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 97

Parameter List for IKJEFLD
Figure 11 on page 100 shows the format of the parameter list for IKJEFLD. You can
give the parameters any names. Their meanings are determined by their order. The
names used in the figure are only for illustration.

As Figure 11 illustrates, the entries in the address list point either directly to the
parameter or to a two-word descriptor. The four entries that point directly to the
parameter are:
v Region size
v Cancel ECB
v Last step completion code
v Performance group

The remaining entries point to a two-word descriptor that consists of the:
v Address of the parameter (four bytes)
v Maximum length of the parameter (two bytes)

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+96

Address of
parameter entry 25

Address of
parameter entry 26

Address of
parameter entry 27

Address of
parameter entry 28

Address of
parameter entry 29

Address of
parameter entry 30

+100

+104

+108

Address of
parameter entry 31

Address of
parameter entry 32

Address of
parameter entry 33

Address of
parameter entry 34

Submit hold
class

Submit class

Submit
message class

SYSOUT
class

First
command

RBA

SECLABEL

Address of the
console profile

Primary
language ID

Secondary
language ID

00000002 00000001

00000002 00000001

00000002 00000001

00000002 00000001

00000002 00000050

00000002 00000003

00000002 00000008

00000002 00000018

00000000 00000004

00000000 00000004

+112

+116

+120

+124

+128

+132

Figure 10. Exit-Dependent Data for the Logon Pre-Prompt Exit IKJEFLD1 (Part 2 of 2)

Writing a Logon Pre-Prompt Exit

98 z/OS V1R4.0 TSO/E Customization

v Current length of the data in the parameter (two bytes)

For example, in the address list “Account Number Desc.” points to a two-word
descriptor that has the following information:
v The address of the parameter (pointer to account number)
v The maximum length of the parameter (40 bytes)
v The current length of the data in the parameter (0 bytes)

For each parameter, the maximum length allowed for the data and the current
length of the data are either expressed in bits or in bytes. In Figure 11, the lengths
that are expressed in bits are indicated by an asterisk (*). The other lengths are
expressed in bytes.

For example, in the address list “UPT Desc.” points to a two-word descriptor where
the maximum length of the parameter is 448 bits; whereas in the address list “User
ID Desc.” the maximum length of the parameter is 7 bytes.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 99

Control Switch Desc.

Input Buffer Desc.

Password Desc.

Account Number Desc.

Procedure Name Desc.

Region Size

JCL Desc.

New Password Desc.

System Attribute Desc.

User Attribute Desc.

Generic Unit Desc.

UPT Desc.

ECT Desc.

Cancel ECB

Last Step Completion Code

Input Buffer

252 Variable

Control Switches*

32 32

Password

8 0

Account Number

40 0

Procedure Name

8 0

New Password

8 0

Generic Unit

8 0

System Attributes*

16 0

User Attributes*

16 0

Group

8 0

Generic Unit

UPT Image

ECT (Actual)

*Current and maximum length are in bits.

Address List Descriptors Data Areas

Register 1

SYSOUT Destination Desc.

Group Desc.

JCL Statements

800 0

ECT*

448 448

SYSOUT Destination

Group

SYSOUT Destination

8 0

New Password

System Attributes

User Attributes

Control Switches

Input Buffer

Procedure Name

Region Size

10 JCL Statements

User ID Desc.
User ID

7 0

Performance Group

User ID

Password

Account Number

CHCECB

LWARTCD

Performance Group

UPT Image*

448 448

Figure 11. Parameter List for Logon Pre-Prompt Exit IKJEFLD

Writing a Logon Pre-Prompt Exit

100 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions for IKJEFLD and IKJEFLD1
The following information describes the parameters for the logon pre-prompt exits
IKJEFLD and IKJEFLD1. Parameters available to IKJEFLD1 only are described in
“Parameters for IKJEFLD1 Only” on page 110.

For IKJEFLD only: Note that, in the following parameter descriptions, the values
for a) the maximum length of a parameter, and b) the current
length of the data in a parameter, are expressed in bits or
bytes. See “Parameter List for IKJEFLD” on page 98 and
Figure 11 on page 100.

Control Switches
The exit routine tailors logon processing by using the control switches and other
parameters. Either the logon processor or the exit sets the different bits in the
control switches parameter.

v The control switch bits that the logon processor sets indicate to the exit that
certain system conditions exist.

v The bits that the exit sets indicate one of two things to the logon processor:
– The exit is returning a value in a specific parameter
– The logon processor needs to take some action.

Certain control switch bits that the exit can set relate directly to parameters in which
the exit provides information. If the exit returns a value to the logon processor in a
particular parameter, it must also set the corresponding control switch bit on. For
example, if the exit routine provides its own JCL, it returns the JCL statements to
the logon processor in the JCL parameter and sets the JCL control switch bit on.

Table 5 shows the control switch bits that the logon exits must set on if they return
data in a particular parameter.

Table 6 on page 102 shows additional parameters for IKJEFLD1 only, with the
control switch bits that IKJEFLD1 must set on if it returns data in those parameters.

Table 7 on page 102 shows the control switch bit configuration.

Table 5. Control Switch Bits the Logon Pre-Prompt Exit Sets

Parameter Control Switch Bit

Input buffer No control switch bit is required

User ID Don’t Prompt bit

Password Don’t Prompt bit

Account number Don’t Prompt bit

Procedure name Don’t Prompt bit

Region size Don’t Prompt bit

JCL statements JCL bit

New password Don’t Prompt bit

System attributes System Attributes bit, or
Don’t Prompt and No UADS bits.

User attributes User Attributes bit, or
Don’t Prompt and No UADS bits.

Generic unit Generic Unit bit, or
Don’t Prompt and No UADS bits.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 101

Table 5. Control Switch Bits the Logon Pre-Prompt Exit Sets (continued)

Parameter Control Switch Bit

UPT UPT bit, or
Don’t Prompt and No UADS bits.

ECT No control switch bit is required

Performance group Don’t Prompt bit

Default SYSOUT
destination

Destination bit

Group Don’t Prompt bit

Table 6. Additional Control Switch Bits that Logon Pre-Prompt Exit IKJEFLD1 Sets

Parameter (IKJEFLD1
only)

Control Switch Bit (IKJEFLD1 only)

Submit Hold Class Submit Hold Class bit

Submit Class Submit Class bit

Submit Message
Class

Submit Message Class bit

SYSOUT Class SYSOUT Class bit

First Command First Command bit

RBA RBA bit

SECLABEL SECLABEL bit

Console Profile Console Profile bit

Primary Language Primary Language bit

Secondary Language Secondary Language bit

The control switches bit configuration is as follows:

Table 7. IKJEFLD and IKJEFLD1 Control Switch Bit Configuration

Byte Bit Field Name Set By

0 0 User ID ENQ Failed Logon processor

1 Don’t issue RACINIT IKJEFLD1

2 Resource Failure Logon processor

3 Disconnect IKJEFLD, IKJEFLD1

4 Don’t Prompt IKJEFLD, IKJEFLD1

5 No UADS IKJEFLD, IKJEFLD1

6 JCL IKJEFLD, IKJEFLD1

7 No UADSE IKJEFLD, IKJEFLD1

1 0 System Attributes IKJEFLD, IKJEFLD1

1 User Attributes IKJEFLD, IKJEFLD1

2 Generic Unit IKJEFLD, IKJEFLD1

3 UPT IKJEFLD, IKJEFLD1

4 Don’t ENQ User ID IKJEFLD, IKJEFLD1

5 Destination IKJEFLD, IKJEFLD1

6 ABEND Logon processor

Writing a Logon Pre-Prompt Exit

102 z/OS V1R4.0 TSO/E Customization

Table 7. IKJEFLD and IKJEFLD1 Control Switch Bit Configuration (continued)

Byte Bit Field Name Set By

7 Reconnect IKJEFLD, IKJEFLD1

2 0 Mail IKJEFLD, IKJEFLD1

1 Notices IKJEFLD, IKJEFLD1

2 No Full-Screen Panel IKJEFLD, IKJEFLD1

3 Store Password in TSB IKJEFLD, IKJEFLD1

4 SUBMIT Hold Class IKJEFLD1

5 SUBMIT Class IKJEFLD1

6 SUBMIT Message Class IKJEFLD1

7 SYSOUT Class IKJEFLD1

3 0 First Command IKJEFLD1

1 RBA IKJEFLD1

2 SECLABEL IKJEFLD1

3 Console Profile IKJEFLD1

4 Primary Language IKJEFLD1

5 Secondary Language IKJEFLD1

6 Don’t Save IKJEFLD1

7 Reserved Reserved

A description of the field names follows:

User ID ENQ Failed
If the ENQ on the user ID was unsuccessful, the logon processor sets this bit
on to indicate that the user ID is in use.

The logon processor does not do an ENQ on the user ID before it initially
invokes the exit. Therefore, when the exit first receives control, the User ID
ENQ Failed bit is off.

If the exit sets the Don’t ENQ User ID bit off, the logon processor performs an
ENQ on the user ID after the exit returns control to the logon processor. If the
user ID is in use (the ENQ failed), the logon processor sets the User ID ENQ
Failed bit on and invokes the exit again.

Don’t Issue RACINIT (IKJEFLD1 only)
If IKJEFLD1 performs RACF processing and you do not want the logon
processor to issue a RACINIT, IKJEFLD1 must set the Don’t Issue RACINIT
and the Don’t Prompt bits on.

Resource Failure
If the logon processor was unable to obtain a resource other than the user ID, it
sets this bit on.

Disconnect
The exit sets this bit on to tell the logon processor to terminate the session. The
logon processor sends no further messages to the terminal. Before the exit
returns control to the logon processor, it can issue an explanation to the user,
for example, using PUTLINE.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 103

Don’t Prompt
If you do not want the logon processor to prompt the user for information, the
exit must set the Don’t Prompt bit on.

If the exit supplies any of the following information (not in the input buffer), it
must set the Don’t Prompt bit on:
v User ID
v Password
v Account number
v Procedure name
v Region size
v New password
v Performance group
v Group
v SECLABEL

If the exit sets the Don’t Prompt bit on, it must return at least the following
information to the logon processor:
v User ID
v Password
v Procedure name
v Account number (if your installation uses account numbers)

If the exit supplies any information in the input buffer, that information is
ignored.

If you want the logon processor to prompt the TSO/E user for logon information,
the exit must not set the Don’t Prompt bit on (the bit must be off).

No UADS
The exit sets this bit on to tell the logon processor not to check either the UADS
or the RACF data base to verify logon information. If the No UADS bit is on, no
logon information is saved. If the user is defined to RACF, TSO/E always
verifies the user ID and the password information with RACF even if the exit
routine sets the No UADS bit on.

If the exit sets the No UADS bit on, it must supply the following information:
v System attributes
v User attributes (if your installation uses user attributes)
v Generic unit
v UPT

If the exit sets the Don’t Prompt bit off, the logon processor ignores the No
UADS bit. Here, the logon processor prompts the user for information. The
logon processor also verifies the logon information with information either in the
UADS or the RACF data base, depending on where the user is defined.

JCL
If the exit supplies JCL statements, it must set this bit on. The exit can supply a
maximum of ten 80-byte JCL statements (in standard format) in the JCL
parameter provided, or the exit can supply its own parameter for JCL. Logon
processing will accept a JCL parameter containing up to 409 JCL statements,
but your installation’s JES capability determines the actual number of JCL
statements allowed. Logon processing does not check that number. For
information about the format of JCL statements, see z/OS MVS JCL Reference.

Writing a Logon Pre-Prompt Exit

104 z/OS V1R4.0 TSO/E Customization

No UADSE
The exit sets this bit on to tell the logon processor to use the UADS or the
RACF data base only for the LISTBC performance enhancement. If the exit sets
the No UADSE bit on, it must also:
v Set the Don’t Prompt and the No UADS bits on
v Set the Don’t ENQ bit off

System Attributes
If the exit supplies the system attributes, it must set this bit on. If the exit sets
this bit on, the system attributes are not saved. The exit supplies the attributes
in the system attributes parameter.

User Attributes
If the exit supplies the user attributes, it must set this bit on. If the exit sets this
bit on, the user attributes are not saved. The exit supplies the attributes in the
user attributes parameter.

Generic Unit
If the exit supplies a generic unit name, it must set this bit on. The exit supplies
the name in the generic unit parameter.

UPT
If the exit supplies the UPT, it must set this bit on. If the exit sets this bit on, the
UPT is not saved. The exit supplies the UPT in the UPT parameter.

Don’t ENQ User ID
The exit sets this bit on to tell the logon processor not to ENQ on the user ID. If
the exit sets the Don’t ENQ User ID bit on, it must also set the No UADS bit on
and supply the following information:
v System attributes
v User attributes (if your installation uses user attributes)
v Generic unit
v UPT

Destination
If the exit supplies the default SYSOUT destination descriptor, it must set this
bit on. The exit supplies the destination descriptor in the default SYSOUT
destination parameter.

ABEND
The logon processor’s ESTAI retry routine sets this bit on to indicate that an
ABEND has occurred and that the logon processor is retrying.

Reconnect
If the user specified RECONNECT on the LOGON command, and the exit sets
the “Don’t Prompt” bit on, the exit must also set this bit on. The exit determines
whether the user specified RECONNECT by checking the input buffer. When
the Reconnect bit is on, a user’s disconnected session is reconnected when the
user logs on again.

If the Reconnect bit is on and there is no disconnected session, the user is
automatically logged on normally when the Don’t Prompt bit is off or when all of
the following are true:
v The Don’t Prompt bit is on
v The Don’t ENQ User ID bit is off
v The necessary logon information (user ID, password, procedure, and so on)

have been supplied

Mail
If the user is to receive mail, the exit must set this bit on. However, if the user

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 105

specified MAIL on the LOGON command or the full-screen panel, the exit is
overridden unless the Don’t Prompt and No Full-Screen Panel bits are set. By
default, the Mail bit is off.

Notices
If the user is to receive notices, the exit must set this bit on. However, if the
user specified NOTICES on the LOGON command or the full-screen panel, the
exit is overridden unless the Don’t Prompt and No Full-Screen Panel bits are
set on. By default, the Notices bit is off. If the user specified NOTICES on the
LOGON command, the exit must set this bit on. The exit determines whether
the user specified NOTICES by checking the input buffer.

No Full-Screen Panel
If you do not want the logon processor to display the default full-screen logon
panel, the exit must set this bit on.

Store Password in TSB
If you want the logon processor to store logon passwords in the terminal status
block (TSB) for RACF users, the exit must set this bit on. By default, the
passwords of users defined to RACF are not stored in the TSB. If you use the
SUBMIT exit (IKJEFF10) to tailor job processing, you may want to retrieve
passwords from the TSB. Usually, passwords are not required on the JOB
statement. However, passwords are required on the JOB statement if:

v Your RACF users are defined with the same user ID and password on more
than one node in a network, and

v These users use the JES control statement //*ROUTE XEQ to route jobs to
another node.

In this case, if you set the Store Password in TSB bit on to have the logon
processor store passwords in the TSB, the SUBMIT exit can retrieve the
passwords from the TSB and add them to the JOB statement. For more
information about the SUBMIT exit, see “Writing an Exit for the SUBMIT
Command” on page 298.

You should use the Store Passwords in TSB bit only if:

1. You use the SUBMIT exit, and

2. Your RACF users are defined with the same user ID and password on more
than one node in a network, and these users use the JES control statement
//*ROUTE XEQ to route jobs from one node to another.

SUBMIT Hold Class (IKJEFLD1 only)
If you want IKJEFLD1 to return a SUBMIT hold class, IKJEFLD1 must set the
SUBMIT Hold Class bit on.

SUBMIT Class (IKJEFLD1 only)
If you want IKJEFLD1 to return a SUBMIT class, IKJEFLD1 must set the
SUBMIT Class bit on.

SUBMIT Message Class (IKJEFLD1 only)
If you want IKJEFLD1 to return a SUBMIT message class, IKJEFLD1 must set
the SUBMIT Message Class bit on.

SYSOUT Class (IKJEFLD1 only)
If you want IKJEFLD1 to return a SYSOUT class, IKJEFLD1 must set the
SYSOUT Class bit on.

First Command (IKJEFLD1 only)
If you want IKJEFLD1 to return a TSO/E command to be issued at the
beginning of the user’s session, IKJEFLD1 must set the First Command bit on.

Writing a Logon Pre-Prompt Exit

106 z/OS V1R4.0 TSO/E Customization

If the exit does not set the No Prompt bit on and allows logon to display the
full-screen panel, the first command set by the exit will be displayed and the
user can modify it.

RBA (IKJEFLD1 only)
If you want IKJEFLD1 to return the relative block address (RBA) within the
broadcast data set, IKJEFLD1 must set the RBA bit on.

SECLABEL bit (IKJEFLD1 only)
If you want IKJEFLD1 to return a SECLABEL, IKJEFLD1 must set the
SECLABEL bit on.

Console Profile (IKJEFLD1 only)
If you want IKJEFLD1 to return a console profile, IKJEFLD1 must set the
Console Profile bit on.

Primary Language (IKJEFLD1 only)
If you want IKJEFLD1 to return a primary language to be used for displaying
translated information, IKJEFLD1 must set the Primary Language bit on.

Secondary Language (IKJEFLD1 only)
If you want IKJEFLD1 to return a secondary language to be used for displaying
translated information, IKJEFLD1 must set the Secondary Language bit on.

Don’t Save (IKJEFLD1 only)
If you do not want the logon processor to save the values the user enters on
the full-screen logon panel or values provided in the data areas in IKJEFLD1,
IKJEFLD1 must set the Don’t Save bit on.

This bit is applicable only for users defined to RACF. It has no effect if user
information is stored in the UADS instead.

The fields that this bit controls are:
v Procedure name
v Account number
v Region size
v Performance group
v First command
v No Mail
v No Notices
v Reconnect
v Operator ID card
v Security Label

Command and Input Buffer
The command buffer for IKJEFLD1 or input buffer for IKJEFLD contains the
information the user entered when logging on including the LOGON command. For
example, suppose the user entered:
LOGON USER1

the command or input buffer would contain LOGON USER1.

The logon processor obtains the buffer and passes it to the exit. The exit can alter
the command or input buffer.

If IKJEFLD alters the input buffer, it must update the current length of the data in
the parameter. However, IKJEFLD must not change the maximum length of the
parameter. See “Parameter List for IKJEFLD” on page 98.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 107

IKJEFLD1 changes the command buffer it receives and updates the length field
(parameter entry 1 in “TSO/E Standard Exit Parameter List” on page 35) to specify
the length of the updated command buffer.

Note: If the exit sets the Don’t Prompt bit on, the logon processor ignores the
altered input buffer.

If an ABEND occurred and the logon processor is retrying, the logon processor may
pass a buffer length of zero to the exit. If there is a JCL error, the logoff processor
may call the exit and pass a buffer length of zero.

User ID
The exit can return a user ID to the logon processor in the User ID parameter. The
exit must also set the Don’t Prompt bit on.

Password
The exit can return a password to the logon processor in the Password parameter.
The exit must also set the Don’t Prompt bit on.

Account Number
The exit can return an accounting string to the logon processor in the Account
Number parameter. The exit must also set the Don’t Prompt bit on.

Procedure Name
The exit can return the name of a cataloged procedure to the logon processor in
the Procedure Name parameter. The procedure contains JCL that defines the
resources the terminal job needs. The exit must also set the Don’t Prompt bit on.

Region Size
The exit can return a fullword to the logon processor in the Region Size parameter.
The fullword contains the region size (Kbytes), in hexadecimal, for the terminal job.
The exit must also set the Don’t Prompt bit on.

If the user does not specify the SIZE operand on the LOGON command, the logon
processor passes a region size of zero to the exit.

JCL
The exit can provide JCL statements to the logon processor in the JCL parameter.
The JCL defines terminal job resources. The logon processor uses this JCL instead
of the JOB and EXEC statements that it constructs. The default JCL parameter is a
maximum of 800 bytes in length, in which the exit can return a maximum of ten JCL
statements. To return more than ten JCL statements, the exit can provide its own
parameter for JCL. Logon processing will accept a JCL parameter containing up to
409 JCL statements, but your installation’s JES capability determines the actual
number of JCL statements allowed. Logon processing does not check that number.
To provide your own parameter for JCL, replace the JCL parameter address
supplied by LOGON with the address of the alternative parameter. Then set the
current length to the number of JCL statements multiplied by 80.

The logon processor expects that each 80 bytes of the parameter contains a full
80-byte JCL statement in standard format. It uses the current length field of the
parameter to determine the number of statements that the exit is returning (current
length/80 = n statements).

If the exit provides JCL, it must also set the JCL bit on.

Writing a Logon Pre-Prompt Exit

108 z/OS V1R4.0 TSO/E Customization

If you issue the GETMAIN macro to obtain storage for an alternative JCL
parameter, you must use a job-oriented subpool (such as subpools 0 to 127) whose
storage will be automatically freed when the logon job ends, or you can use the
user word to save the address so that logoff exit IKJEFLD2 can access it and issue
the FREEMAIN macro to free storage in the subpool.

New Password
For users who are defined to RACF, the exit can return a new password to the
logon processor in the New Password parameter. The new password replaces the
current password. The exit must also set the Don’t Prompt bit on.

System Attributes
The exit can return a value for the PSCBATR1 bit string in the PSCB to the logon
processor in the System Attributes parameter. The system attributes include
authorization for the ACCOUNT, CONSOLE, SUBMIT, and OPERATOR commands,
and other system attributes for the user. The exit must also set either of the
following bits on:
v The System Attributes bit, or
v The Don’t Prompt and the No UADS bits

For a description of the PSCB, see z/OS TSO/E System Diagnosis: Data Areas.

User Attributes
The exit can return a value for the PSCBATR2 bit string in the PSCB to the logon
processor in the User Attributes parameter. The PSCBATR2 field is for use by the
installation. The exit must also set either of the following bits on:
v The User Attributes bit, or
v The Don’t Prompt and the No UADS bits

For a description of the PSCB, see z/OS TSO/E System Diagnosis: Data Areas.

Generic Unit
The exit can return a value for the PSCBGPNM field of the PSCB to the logon
processor in the Generic Unit parameter. The exit must also set either of the
following bits on:
v The Generic Unit bit, or
v The Don’t Prompt and the No UADS bits

If the exit does not provide a generic unit to the logon processor, the logon
processor initializes the generic unit name from the UADS.

For a description of the PSCB, see z/OS TSO/E System Diagnosis: Data Areas.

UPT
The logon processor passes to the exit a UPT that contains binary zeros. The exit
can update and return the UPT to the logon processor in the UPT parameter. If the
exit returns an updated UPT, it must also set either of the following bits on:
v The UPT bit, or
v The Don’t Prompt and the No UADS bits

Note: If the exit passes the UPT back but leaves the length or version fields zero,
these fields are filled in by logon. If the primary or secondary language
translation fields are left null or blank, the logon defaults them to ENU for
mixed case U.S. English. If any of these fields are filled in by the exit, their
validity is determined by the exit. For a description of the UPT, see z/OS
TSO/E System Diagnosis: Data Areas.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 109

ECT
The logon processor passes the ECT to the exit, which is the actual ECT that the
logon processor builds. The exit can modify the ECT. If the exit modifies the ECT, it
does not have to set any control switch bits.

Cancel ECB
The system uses the ECB for cancel processing. The exit can read the ECB, but it
cannot alter it. If the operator has cancelled all TSO/E sessions, the Cancel ECB
parameter is not zero and the logon processor ends the session of the user who is
logging on.

Last Step Completion Code
When the logon processor is retrying, it passes a fullword that contains the
completion code for the user ID that it just logged off.

Performance Group
The exit can return a fullword to the logon processor in the Performance Group
parameter. The fullword contains the performance group number, in hexadecimal,
for the terminal job. The exit must also set the Don’t Prompt bit on.

If the exit does not return a performance group or returns a performance group of
zero, the logon processor uses the system default performance group.

For more information about performance groups, see z/OS MVS Initialization and
Tuning Reference.

Default SYSOUT Destination
The exit can return the default SYSOUT destination for a user ID to the logon
processor in the Default SYSOUT Destination parameter. The exit must also set the
Destination bit on.

Group
For users who are defined to RACF, the exit can return a group name to the logon
processor in the Group parameter. The group name is used as the user’s current
connect group. The exit must also set the Don’t Prompt bit on.

Parameters for IKJEFLD1 Only
The following are the parameters for IKJEFLD1 only:

Submit Hold Class
IKJEFLD1 can return a Submit hold class that is stored in the PSCB and serves as
a default in the user’s session. IKJEFLD1 must also set the Submit Hold bit on.

Submit Class
IKJEFLD1 can return a Submit class that is stored in the PSCB and serves as a
default in the user’s session. IKJEFLD1 must also set the Submit Class bit on.

Submit Message Class
IKJEFLD1 can return a Submit message class that is stored in the PSCB and
serves as a default in the user’s session. IKJEFLD1 must also set the Submit
Message Class bit on.

SYSOUT Class
IKJEFLD1 can return a SYSOUT class that is stored in the PSCB and serves as a
default in the user’s session. IKJEFLD1 must also set the SYSOUT Class bit on.

Writing a Logon Pre-Prompt Exit

110 z/OS V1R4.0 TSO/E Customization

First Command
IKJEFLD1 can return the first TSO/E command to be executed. The command can
be up to 80 bytes long. IKJEFLD1 must also set the First Command bit on. The first
command can be returned regardless of the settings of the Don’t Prompt and No
UADS bits. However, if IKJEFLD1 does not set the Don’t Prompt bit and allows
logon to display the full-screen logon panel, the first command is displayed on the
panel and the user can modify or delete it.

RBA
IKJEFLD1 can return the relative block address of the user’s mail directory within
the broadcast data set. IKJEFLD1 must set the RBA bit on.

SECLABEL
IKJEFLD1 can return a security label to the logon processor in the SECLABEL
parameter.

IKJEFLD1 must set the SECLABEL bit on. The exit must also set the Don’t Prompt
bit on.

Console Profile
IKJEFLD1 can return a console profile that serves as the initial values for the user’s
session. IKJEFLD1 must also set the Console Profile bit on. For information about
the console profile, see Chapter 27, “Customizing the CONSOLE and CONSPROF
Commands” on page 235.

Primary Language
IKJEFLD1 can return a primary language that is stored in the UPT and is used for
displaying translated information. IKJEFLD1 must set the Primary Language bit on if
it returns a primary language. The value specified must be a three-character
language code defined to the MVS message service. Logon processing does not
check that the three-character language code is defined.

The logon processor does not pass a value to the exit for this parameter. To provide
a value, specify a key of 1, a length of 3, and the language code as immediate
data.

For more information about language support and the tasks necessary to implement
language support, see Chapter 19, “Customizing TSO/E for Different Languages” on
page 187.

Secondary Language
IKJEFLD1 can return a secondary language that is stored in the UPT and is used
for displaying translated information. If the primary language is not available or not
supported by the user’s terminal and a secondary language is specified, TSO/E
uses the secondary language to display information. IKJEFLD1 must set the
Secondary Language bit on if it returns a secondary language. The value specified
must be a three-character language code defined to the MVS message service.
Logon processing does not check that the 3-character language code is defined.

The logon processor does not pass a value to the exit for this parameter. To provide
a value, specify a key of 1, a length of 3, and the language code as immediate
data.

For more information about language support and the tasks necessary to implement
language support, see Chapter 19, “Customizing TSO/E for Different Languages” on
page 187.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 111

Return Specifications
For IKJEFLD, logon processing set the contents of the registers on return to the
same values they had on entry. The logon processor does not expect a return code
from exit IKJEFLD.

For IKJEFLD1, the contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 8 shows the return codes that IKJEFLD1 supports.

Table 8. Return Codes for the Logon Exit IKJEFLD1

Return Code
(Decimal)

Description

0 Exit processing was successful. Logon processing continues.

12 Exit processing was unsuccessful. The logon processor issues an
error message to the user and the console and then terminates
processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the LOGON command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. The logon processor terminates
processing.

The LOGON command processor does not display a message to
the user or console if the exit sets a return code of 16. Before the
exit returns with return code 16, it can display a message to the
user, for example, using PUTLINE.

If the exit returns an undefined return code, the LOGON command processor
terminates without displaying a message.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant
and reusable.

The exits can use the I/O service routines through the assembler macro instructions
STACK, PUTLINE, GETLINE, and PUTGET. These macro instructions require the
addresses of the ECT and UPT, which the logon processor passes to the exit. For
information about the I/O service routines, see z/OS TSO/E Programming Services.

The exits must do the following for each parameter that they return:
v Move the data it wants to return to the logon processor into the appropriate

parameter
v Update the current length of the data in the parameter
v Set the appropriate control switch bit on if a bit is required for the parameter

For more information about the parameters and the control switch bits, see “Entry
Specifications” on page 95.

Writing a Logon Pre-Prompt Exit

112 z/OS V1R4.0 TSO/E Customization

You use the control switch bit, Store Password in TSB, and the New Password and
Group parameters for users who are defined to RACF. A user is defined to RACF if:

v The user ID information is stored in the UADS and the user is also defined to
RACF, or

v The user ID information is stored in the RACF data base

For more information about defining TSO/E users in the RACF data base instead of
in the UADS, see Part 4, “Maintaining the UADS, RACF Data Base, and Broadcast
Data Set” on page 195.

Environment
v IKJEFLD1

– State: Supervisor
– Key: 8
– AMODE(24), RMODE(24) or AMODE(31), RMODE(ANY)
– Not APF-authorized

v IKJEFLD
– State: Problem program
– Key: 8
– AMODE(24), RMODE(24)
– Not APF-authorized

Restrictions and Limitations
v The exit must not change the:

– Address of any parameter in the address list
– Address of any parameter (in the two-word descriptor) other than the JCL

parameter
– Maximum length of any parameter (in the two-word descriptor) other than the

JCL parameter

If the exit changes any of the fields, the logon processor issues an error
message to the console and an error message to the terminal, and then ends
processing. For information about the address list and the two-word descriptor,
see “Entry Specifications” on page 95.

v The exit must not activate the prompt mode HELP function or the exit will
ABEND with a 0B0 system completion code.

v TSO/E terminal users can change the characteristics of their user profile using
the PROFILE command. Using PROFILE, users can define how they want to use
the terminal. For information about the PROFILE command, see z/OS TSO/E
Command Reference.

Any profile changes that a user makes are stored in the user profile table (UPT).
The new characteristics then remain valid from one session to another. However,
profile changes are not saved if you use a logon pre-prompt exit and the exit
does one of the following:
– Supplies the UPT in the UPT parameter and sets the UPT bit on, or
– Sets the No UADS bit on

In either case, when a user logs off, the UPT is not updated with any PROFILE
changes.

Installing the Exits
You must name the exits as follows:

Authorized pre-prompt logon – IKJEFLD1
Unauthorized pre-prompt logon – IKJEFLD

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 113

Link-edit IKJEFLD1 as a separate load module. You can link-edit the exit in a
separate authorized load library that is exclusively for TSO/E exits or in an existing
library containing other routines. The exit can reside in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA or LNKLST, see “Installing the
Standard-Format Exits” on page 42.

You must link-edit IKJEFLD with load module IKJEFLA in SYS1.LPALIB. Consult the
output from stage 1 for correct linkage information. Use the system modification
program (SMP) to make this update.

Possible Uses
Some possible uses of the logon pre-prompt exits are described below. Additional
uses for IKJEFLD1 only are described in “Possible Uses for IKJEFLD1 Only” on
page 116.

v Supply or change values that users specify on the LOGON command.

When users issue the LOGON command, they specify information such as user
ID, password, account number, procedure name, region size, and performance
group. When the exit receives control, it is passed an input buffer that contains
the information that the user entered when logging on. The exit can change the
logon information users specify and return the information to the logon processor
in either an input buffer or a parameter. The exit can change the information in
the input buffer, update the current length of the input buffer, and return control to
the logon processor. The values that the exit can provide in the input buffer
correspond to the operands of the LOGON command. For more information
about the LOGON command, see z/OS TSO/E Command Reference.

The exit can also return the following logon information to the logon processor in
a parameter:
– User ID
– Password
– Account number
– Procedure name
– Region size
– New password (users defined to RACF only)
– Performance group
– Group (users defined to RACF only)

If the exit returns the above logon information in the parameter, it must:
– Supply the value in the parameter
– Update the current length of the parameter
– Set the Don’t Prompt control switch bit on

If the exit uses the parameters to supply this information, it must at least return
the user ID, password, procedure name, and account number (if your installation
uses account numbers) to the logon processor. These are required when the exit
sets the Don’t Prompt bit on.

You must decide whether the exit uses the input buffer or the specific parameters
to return logon information. Your decision depends on whether you want the
logon processor to prompt the user for information and validate the information in
the UADS or the RACF data base (depending on where the user information is
defined), and other processing the exit performs.

Writing a Logon Pre-Prompt Exit

114 z/OS V1R4.0 TSO/E Customization

As an example, suppose you want to use the same accounting number for a
specific group of user IDs. The exit checks the input buffer for the user ID and
corresponding account number, if any, that the user entered. If the user did not
specify an account number or it is incorrect, the exit can return the account
number to the logon processor using either the:

– Account Number parameter. The exit:
- Provides the accounting string in the Account Number parameter
- Updates the current length of the parameter
- Sets the Don’t Prompt bit on
- Returns control to the logon processor

The logon processor does not prompt the user for any information. The exit
can prompt the user and return logon information to the logon processor. The
exit must return at least the user ID, password, and procedure name to the
logon processor because it set the Don’t Prompt bit on.

– Input buffer. The exit:
- Updates the input buffer with the ACCOUNT operand
- Updates the current length of the input buffer
- Returns control to the logon processor

v Supply system attributes and user attributes for the protected step control block
(PSCB), the generic unit name, UPT, and default SYSOUT destination. The user
attributes can include authorization for the ACCOUNT, CONSOLE, and
OPERATOR commands.

The exit can supply one or more, or all of these values in the appropriate
parameters. If the exit supplies the default SYSOUT destination, it must set the
Destination bit on. If it returns the system attributes, user attributes, generic unit,
or the UPT it must:
– Set both the Don’t Prompt and No UADS bits on, or
– Set the individual bits on and supply the following information:

- System Attributes
- User Attributes
- Generic Unit
- UPT

Note: If the exit sets the Don’t Prompt and No UADS bits on, then it must supply
the system attributes, user attributes (if your installation uses user
attributes), generic unit, and the UPT. These parameters are required
whenever the exit sets the No UADS bit on. The system attribute bit for
RECOVER/NORECOVER should be set to:
– 0 to indicate RECOVER authority
– 1 to indicate NORECOVER authority

v Provide your own JCL statements.

The logon processor builds standard JOB and EXEC statements with logon
information that the user provides, such as user ID and procedure name. You
may want to provide your own JCL to add job parameters or supply DD
statements. The exit provides the JCL in the JCL parameter and sets the JCL bit
on. The logon processor then uses this JCL instead of the standard JOB and
EXEC statements that it builds. For information about JCL statements, see z/OS
MVS JCL Reference.

The logon processor constructs a standard JOB statement. If your installation
uses System Management Facilities (SMF) audit exits, the JOB statement is
passed to SMF. If you want to include installation-dependent information, use the
logon pre-prompt exit to provide your own JCL.

v Validate the logon information that users enter.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 115

The logon processor validates logon information with either the user information
stored in the UADS or in the RACF data base, depending on where the user
information is defined. The exit can check the information itself, for example, in
your own data set, rather than using the UADS or the RACF data base. The exit
can also verify logon information with information in the UADS or the RACF data
base.

If the exit validates the logon information, it must set both the No UADS bit and
the Don’t Prompt bit on. In this case, the exit must also provide at least the
following information:
– User ID
– Password
– Procedure name
– Account number (if your installation uses account numbers)
– System attributes
– User attributes (if your installation uses user attributes)
– Generic unit
– UPT

If the exit does not set the Don’t Prompt bit on, the logon processor ignores the
No UADS bit. The logon processor prompts the user and then validates the logon
information with information in either the UADS or the RACF data base.

v Display your own logon panel.

If your installation uses full-screen logon processing, the exit can display your
own full-screen logon panel instead of the panel that TSO/E provides. After the
exit displays your panel and verifies the input, it must set the No Full-Screen
Panel bit on to prevent the logon processor from displaying the default full-screen
panel. The exit must return the logon values it obtains from the user to the logon
processor.

v Prevent a user from logging on to TSO/E.

You can use the exit to prevent a user from logging on to TSO/E. The exit can
perform various types of checking and, based on your own criteria, cancel logon
processing by setting the Disconnect bit on. When the exit sets the Disconnect
bit on, the logon processor terminates the logon session and sends no further
messages to the user. Before the exit returns control to the logon processor, it
can issue an explanation to the user, for example, using PUTLINE.

Some reasons you may want to prevent a user from logging on are described
below:

– You may want to limit the number of logons according to groups of users. One
way of doing this is to categorize your users into groups and define different
naming conventions for user IDs for each group. Then the logon pre-prompt
exit can check the user ID, determine how many users in that group are
logged on, and then either cancel the logon session or allow the session to
continue.

– You may want to allow certain users or groups of users to log on only at
certain times of the day.

Possible Uses for IKJEFLD1 Only
Some additional uses for IKJEFLD1 only are described below:

v Execute privileged instructions, such as changing the PSW key, and perform
authorized functions, such as issuing RACF macros. For example, IKJEFLD1 can
issue the RACINIT macro to perform RACF authority checking. IKJEFLD1 can
then set the RACINIT control switch to prevent logon processing from issuing
RACINIT.

Writing a Logon Pre-Prompt Exit

116 z/OS V1R4.0 TSO/E Customization

v Supply the first TSO/E command to be executed in the user’s session. IKJEFLD1
can supply an 80-byte TSO/E command to be executed by the TMP at the
beginning of the session. This function is intended for installations that provide
their own full-screen logon panel. If IKJEFLD1 does not set the Don’t Prompt bit
and allows logon to display the full-screen logon panel, the first command is
displayed on the panel and the user can modify or delete it. IKJEFLD1 must also
set the First Command bit on.

For example, if IKJEFLD1 returned the MVSSERV command, an MVSSERV
would begin when the user logged on to TSO/E, unless the user modified or
deleted the MVSSERV command on the logon panel.

v Supply SYSOUT and job classes for the PSCB. IKJEFLD1 can specify the
following classes to be used in the session:
– Submit hold class
– Submit class
– Submit message class
– SYSOUT class

IKJEFLD1 must also set the appropriate control switch bits on. When IKJEFLD1
returns these job and SYSOUT classes, they are stored in the PSCB and remain
in effect throughout the user’s session.

v Supply the RBA of the user’s mail directory within the broadcast data set.
IKJEFLD1 can return the RBA, rather than request logon processing to obtain it
from the UADS or RACF. IKJEFLD1 must set the No UADS bit on, and must also
set the RBA bit on. The RBA is also available at logoff if you code logoff exit
IKJEFLD2.

v Monitor how long the user’s TSO/E session lasts.

You can use logon exit IKJEFLD1 and logoff exit IKJEFLD2 to monitor the
approximate duration of the user’s TSO/E session. When IKJEFLD1 receives
control, it can:

– Invoke the TIME macro

– Use the exit-to-exit communication word to return the time to the LOGON
command processor. The exit updates the Key, Length, and Data fields for the
exit-to-exit communication word as follows:

Key X'01'

Length Length of the data (time)

Data Data (time).

– Set a return code of 0 and return to the LOGON command processor.

When the logoff exit IKJEFLD2 gets control, it receives the time from IKJEFLD1
in the exit-to-exit communication word. Before IKJEFLD2 returns control to
LOGOFF, it can invoke the TIME macro. The exit can calculate the time
difference between the time from the logon exit (in the exit-to-exit communication
word) and the time it receives from issuing the TIME macro. The result is the
approximate duration of the session. The logoff exit can include the processing
time in a data set. You can then periodically print the data set and review the
time calculations.

v Supply the primary and secondary language values for displaying translated
information to users if your installation does not have RACF installed.

v Set up a console profile for the user.

Writing a Logon Pre-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 117

Writing a Logon Pre-Display Exit (IKJEFLN1)
You can use the logon pre-display exit, IKJEFLN1, to further customize the logon
process. This exit is invoked if:
v Logon language load modules are present in the LPA
v Exit IKJEFLD/IKJEFLD1 does not set the “Don’t Prompt” control bit

The logon processor can invoke this exit several times during logon processing. If a
re-prompt occurs for any data that is entered by the user, the logon processor
invokes this exit.

You can write a pre-display exit to perform the following:
v Supply any data for IBM or installation-defined input fields
v Indicate that the logon processor should refresh fields in the 3270 outbound

stream with data specified in the parameter entries defined for each field

TSO/E Supplied Exits
TSO/E does not provide a default logon pre-display exit routine.

Entry Specifications
The contents of the registers on entry for the logon exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter List for IKJEFLN1
Exit IKJEFLN1 receives the address of the standard exit parameter list in register 1.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. IKJEFLN1 does not use the following standard parameter list entries:
v The command buffer pointed to at offset +0
v The new command buffer pointed to at offset +4

The values of these parameter entries are:

Key X'00'

Length X'04'

Data X'00'

Figure 12 on page 120 shows the exit-dependent data that IKJEFLN1 receives
starting at offset +36 (decimal) in the parameter list. The parameter entries are
described following Figure 12.

Key Field Meanings
IKJEFLN1 uses the key field conventions described in Table 1 on page 37. Each
parameter may or may not use all the key field settings depending on the field’s
function. Figure 12 on page 120 shows the acceptable values of the key field for
each of the parameters.

Writing a Logon Pre-Display Exit

118 z/OS V1R4.0 TSO/E Customization

The IKJEFLN1 parameter list uses the key field value of X'04'. This value indicates
that the field has been validated. After logon processing determines that the field is
valid, it sets the key field to X'04' and locks the field to prohibit any additional
prompts for data. If IKJEFLN1 validates a field and does not want logon processing
to validate the field, it should set the key to X'04'.

Some fields must be validated by logon processing even if the exit sets the key to
X'04'. The fields that logon processing must validate are:
v User ID
v Password
v New password
v RACF group ID
v SECLABEL

If this exit marks a field as valid that is not valid, logon processing will issue an
abend 01A with a reason code of 36.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 119

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

+40

+44

+48

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

Address of
parameter entry 19

Address of
parameter entry 20

Address of
parameter entry 21

Address of
parameter entry 22

Address of panel module

Address of TGET buffer

Re-prompt code

Address of installation defined
field parameter list.

00000001 00000008 Control switches

00000002 Module length

00000002 Buffer length

00000000 00000004 Reserved

00000001 00000003 Language code for panel

0000000400000000
00000001

00000000
00000002

Parameter
list length

00000000 00000004 Reserved

00000000 00000004 Reserved

00000000
00000001

00000000
00000001

00000001
00000004

00000000
00000001
00000004

00000050 First message

00000050

00000007

00000008

Second message

User ID

Password

+52

+56

+60

+64

+68

+72

+76

+80

+84

Figure 12. Exit-Dependent Data for the Logon Pre-Display Exit IKJEFLN1 (Part 1 of 2)

Writing a Logon Pre-Display Exit

120 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions
The following sections describe the parameters for the logon pre-display exit.

Control Switches (Parameter Entry 10)
Control switches for logon exit IKJEFLN1 are described in Table 9.

Table 9. Control Switches for Logon Exit IKJEFLN1

Byte Bit Field Name Set By

0 0 RACF/UADS Logon processor

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+88

Address of
parameter entry 23

Address of
parameter entry 24

Address of
parameter entry 25

Address of
parameter entry 26

Address of
parameter entry 27

Address of
parameter entry 28

Address of
parameter entry 29

Address of
parameter entry 30

Address of
parameter entry 31

Address of
parameter entry 32

Address of
parameter entry 33

Address of
parameter entry 34

+92

+96

+100

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000028

00000008

00000007

00000003

00000008

00000008

00000001

00000001

00000001

00000001

00000050

00000008

Account number

Procedure name

Regionsize

Performancegroup

New password

RACF group ID

No Mail option

No Notices option

Reconnect option

Operator ID card option

First command

SECLABEL

+104

+108

+112

+116

+120

+124

+128

+132

Figure 12. Exit-Dependent Data for the Logon Pre-Display Exit IKJEFLN1 (Part 2 of 2)

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 121

Table 9. Control Switches for Logon Exit IKJEFLN1 (continued)

Byte Bit Field Name Set By

1 DBCS Logon processor

2–7 Reserved

1 0–7 Reserved

2 0 IBM-defined field refresh IKJEFLN1

1 User-defined field refresh IKJEFLN1

2 Don’t issue RACROUTE
REQUEST=VERIFY

IKJEFLN1

3–7 Reserved

3 0–7 Reserved

4 0 Don’t Prompt IKJEFLN1

1 Invoke IKJEFLN2 IKJEFLN1

2–7 Reserved

RACF/UADS
If this bit is on, the source for the default information is from the RACF data
base. If this bit is off, the source for the default information is the UADS data
set.

DBCS
If this bit is on, the language code selected, either by or for the user, is a
double-byte character set (DBCS) language. The 3270 data stream information
can contain DBCS characters.

IBM-defined field refresh
You can set this bit on to request that the LOGON command refresh the
IBM-defined fields in the 3270 outbound data stream with the values specified
in the parameter entries.

User-defined field refresh
You can set this bit on to request that the LOGON command refresh the
installation-defined fields in the 3270 outbound data stream with the values
specified in the parameter entries.

Don’t issue RACROUTE REQUEST=VERIFY
If IKJEFLN1 performs RACF processing and you do not want the logon
processor to issue a RACROUTE REQUEST=VERIFY, IKJEFLN1 must set the
“Don’t issue RACROUTE REQUEST=VERIFY” bit on.

Don’t Prompt
This bit should be set on if you want the logon processor to suppress display of
the logon panel. When this bit is set, TSO/E will not prompt the TSO/E user for
logon information.

Invoke IKJEFLN2
This bit should be set on if you want the logon processor to invoke IKJEFLN2
even if the “Don’t Prompt” bit is on. The “Don’t Prompt” bit indicates that the
logon processor should not prompt the TSO/E user.

Panel Module Address (Parameter Entry 11)
This parameter points to a local copy of the logon panel load module that resides
below 16 MB in virtual storage. Any changes made to this field are ignored by the
LOGON command.

Writing a Logon Pre-Display Exit

122 z/OS V1R4.0 TSO/E Customization

TGET Buffer Address (Parameter Entry 12)
This parameter points to the input buffer returned from the TGET operation. You
should not change this pointer. You can modify the data in the buffer, but any
modifications must follow the format returned by TGET.

Reserved (Parameter Entry 13)
This parameter is reserved for TSO/E. Do not use this parameter entry.

Language Code for the Panel (Parameter Entry 14)
This parameter is the three-character code for the language used on the logon
panel. This field is informational only. Any changes made to this field are ignored by
the LOGON command.

Re-prompt Code (Parameter Entry 15)
If the user enters data that is not valid and a re-prompt is necessary, this code
identifies which field on the logon panel is in error.

On entry to the exit, this field indicates the reason for the prompt. A zero indicates
that the prompting was for initial information. Other re-prompt codes are shown in
Table 10.

When the logon processor issues a re-prompt, the field in error is highlighted. All
fields except the highlighted field are locked and only the highlighted field can be
changed.

The logon processor displays the appropriate error message for the field in error.

Table 10. Re-prompting Codes for the Logon Processor

Code Meaning

0 Initial prompt for data
1 User ID
2 Password
3 Account number
4 Procedure name
5 Region size
6 Performance group ID
7 New password
8 RACF group ID
9 No Mail option
10 No Notices option
11 Reconnect option
12 Operator ID card option
13 First command
14 SECLABEL
-1 to -n Negative number of installation-defined parameters. If the exit sets

the value to -1, the logon processor re-prompts for the first
installation-defined field. If the exit sets the value to -2, the logon
processor re-prompts for the second installation-defined field.

Installation Panel Parameters (Parameter Entry 16)
This parameter points to the installation-defined field parameter list. Each entry in
the parameter list points to the parameter entry for an installation-defined field on
the logon panel. The logon processor sets the key field of this parameter entry to
X'02' if you have defined fields for your installation and to X'00' if you have not
defined fields. If you have defined fields for your installation, the length field is set
by the logon processor to the length of the installation panel field parameter list.

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 123

Installation-Defined Field Parameter Entries
On entry to the exit, the data field for each installation-defined field’s parameter
entry will be reset to what is in the field on the panel. This could be what was
originally defined on the panel as default data, what the user entered at the LOGON
prompt, or what a previous exit provided as data.

The length field for each installation-defined field’s parameter entry will be set to the
length of the data defined in the logon panel CSECT for the first invocation of
IKJEFLN1. Should the user change the data for an installation-defined field on the
LOGON panel, this length field will be updated to contain the length of the data
entered on the LOGON panel, including trailing blanks or nulls if present. LOGON
uses the length field for data movement from the exit’s parameter list to the LOGON
panel and vice-versa.

The example shown in Figure 13 illustrates how the parameter list, pointed to by
this parameter, is organized. You can use your defined parameter entries in exactly
the same way as the IBM-defined parameter entries. You can edit and change
information in these fields and request a re-prompt.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Reserved
Parameter entries 17 and 18 are reserved for TSO/E. Do not use these two
parameter entries.

First Message
This parameter contains the text of the message that the logon processor will place
in the first message area of the logon panel. You can change the message text in
this exit using this parameter.

To use this parameter, the first message area must be present in the logon panel. If
the first message area does not exist in the logon panel, the header for the first
message is zero and this parameter is ignored.

Key Length Data+0 +4 +8

Address of
installation-
defined parameter 1

Address of
installation-
defined parameter n

Address of
installation-
defined parameter 2

Installation-defined
parameter

Installation-defined
parameter

Installation-defined
parameter

Data
length

Data
length

Data
length

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

.

.

.

.

.

.

Figure 13. Installation-Defined Parameter Entries to IKJEFLN1 (Pointed to by Parameter
Entry 16)

Writing a Logon Pre-Display Exit

124 z/OS V1R4.0 TSO/E Customization

A X'00' in the key field of this parameter entry signals the logon processor not to
process the first message area parameter, even if the first message area exists in
the logon panel.

If the key of this parameter entry is X'01', the logon processor will process the first
message area. If there is text in this parameter, the text is placed in the first
message area defined on the logon panel.

Second Message
This parameter contains the text of the message that the logon processor will place
in the second message area of the logon panel. You can change the message text
using this parameter in this exit.

To use this parameter, the second message area must be present in the logon
panel. If the second message area does not exist in the logon panel, the header for
the second message is zero and this parameter is ignored.

A X'00' in the key field of this parameter entry also signals the logon processor not
to process the second message area parameter, even if the second message area
exists in the logon panel.

If the key of this parameter entry is X'01', the logon processor will process the
second message area. If there is text in this parameter, the text is placed in the
second message area defined on the logon panel.

User ID
This parameter contains the user ID that was specified by the user in the LOGON
command. You can change the user ID parameter using this exit. The maximum
length of the data is 7 bytes.

Password
Upon initial invocation of IKJEFLN1, this parameter does not contain any data. In
subsequent invocations of IKJEFLN1, this parameter contains the password entered
on the logon panel. You can supply a password to the logon panel using this
parameter. The maximum length of the field is 8 bytes.

Account Number
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value specified on the LOGON command. Upon
subsequent entry to IKJEFLN1, this parameter contains the account number
entered on the logon panel. You can supply a different account number to the logon
panel using this parameter. The maximum length of the field is 40 bytes.

Procedure Name
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value specified on the LOGON command. Upon
subsequent entry to IKJEFLN1, this parameter contains the logon procedure
entered on the logon panel. You can supply a different logon procedure name to the
logon panel using this parameter. The procedure contains JCL that defines the
resources that the terminal job needs. The maximum length of the field is 8 bytes.

Region Size
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous T1O/E session or the value specified on the LOGON command. Upon
subsequent entry to IKJEFLN1, this parameter contains the region size entered on
the logon panel. You can supply a different region size to the logon panel using this
parameter.

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 125

The region size is the number of kilobytes of main storage available for the TSO/E
session. The maximum length of the field is 7 bytes. The maximum allowable region
size is 2096128. The data contained in this parameter is in EBCDIC form.

Performance Group
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value specified on the LOGON command. Upon
subsequent entry to IKJEFLN1, this parameter contains the performance group
entered on the logon panel. You can supply a different performance group to the
logon panel using this parameter. The performance group associates the TSO/E
session with a set of performance characteristics. The maximum length of the
performance group is 3 bytes. The data contained in this parameter is in EBCDIC
form.

New Password
The new password field is used only if RACF is installed. Upon initial invocation of
IKJEFLN1, this parameter does not contain any data. Upon subsequent entry to
IKJEFLN1, this parameter contains the new password entered on the logon panel.
You can supply a new password to the logon panel using this parameter. The new
password replaces the current password. The maximum length of the new
password is 8 bytes.

RACF Group ID
The RACF group ID is used only if RACF is installed. Upon initial invocation of
IKJEFLN1, this parameter contains either the value from the previous TSO/E
session or the value specified on the LOGON command. Upon subsequent entry to
IKJEFLN1, this parameter contains the RACF group ID entered on the logon panel.
If your installation uses RACF, you can use this parameter to supply a different
RACF group ID to the logon panel. The RACF group ID identifies the security group
associated with this TSO/E session. The maximum length of the RACF group ID is
8 bytes.

No Mail Option
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the No
Mail Option select character entered on the logon panel. You can use this
parameter to supply a different No Mail Option select character to the logon panel.
The maximum length of this field is one byte. The only allowable values are the
character ’S’ and ’ ’. The session receives previously saved mail from the SEND
command during logon processing if this option is ’ ’. The session does not receive
previously saved mail from the SEND command during logon processing if this
option is ’S’.

No Notices Option
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the No
Notices Option select character entered on the logon panel. You can use this
parameter to supply a different No Notices Option select character to the logon
panel. The maximum length of this field is one byte. The only allowable values are
the character ’S’ and ’ ’. The session receives broadcast messages from TSO/E
during logon processing if this option is ’ ’. The session does not receive broadcast
messages from TSO/E during logon processing if this option is ’S’.

Writing a Logon Pre-Display Exit

126 z/OS V1R4.0 TSO/E Customization

Reconnect Option
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the
Reconnect Option select character entered on the logon panel. You can use this
parameter to supply a different Reconnect Option select character to the logon
panel. The maximum length of this field is one byte. The only allowable values are
the character ’S’ and ’ ’. If this option is ’S’, TSO/E attempts to resume a logon
session that was interrupted. If this option is ’S’ and there is no disconnected
session, the user is logged on normally. If this option is ’ ’, TSO/E starts a new
logon session.

Operator ID Card Option
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the
operator ID card select character entered on the logon panel. You can use this
parameter to supply a different operator ID card select character to the logon panel.
The maximum length of this field is one byte. The only allowable values are the
character ’S’ and ’ ’. If the field is ’ ’, the user is not prompted to enter the data
using the Operator ID Card Facility. If the field is ’S’, the user is prompted to enter
the data using the Operator ID Card Facility.

First Command
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the first
command text that the user entered on the logon panel. You can supply first
command text to the logon panel using this parameter. The maximum length of the
first command is 80 bytes.

SECLABEL
SECLABEL is only used if RACF is installed and security label checking is active.
Upon initial invocation of IKJEFLN1, this parameter contains either the value from
the previous TSO/E session or the value the user specified on the LOGON
command. Upon subsequent entry to IKJEFLN1, this parameter contains the RACF
security label entered on the logon panel. If your installation uses RACF, you can
use this parameter to supply a different RACF security label to the logon panel.
SECLABEL is the RACF security label. The maximum length of the SECLABEL is 8
bytes.

Return Specifications for IKJEFLN1
For IKJEFLN1, the contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for IKJEFLN1
Table 11 shows the return codes that IKJEFLN1 supports.

Table 11. Return Codes for Logon Exit IKJEFLN1

Return Code
(Decimal)

Description

0 Exit processing was successful. Logon processing continues.

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 127

Table 11. Return Codes for Logon Exit IKJEFLN1 (continued)

Return Code
(Decimal)

Description

12 Exit processing was unsuccessful. The logon processor issues an
error message to the user and the console and then terminates
processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the LOGON command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. The logon processor terminates
processing.

The LOGON command processor does not display a message to
the user or console if the exit sets a return code of 16. Before the
exit returns with return code 16, it can display a message to the
user, for example, using PUTLINE.

Note: If this exit issues return code 12 or 16, the post-display exit (IKJEFLN2) gets
control. If you do not want the post-display exit (IKJEFLN2) to get control
when IKJEFLN1 issues a return code of 12 or 16, then IKJEFLN1 should set
the don’t prompt bit on and the invoking of IKJEFLN2 should be turned off.

If the exit returns an undefined return code, the LOGON command processor
terminates without displaying a message.

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The exit must be reentrant,
refreshable, and reusable.

The logon pre-display exit receives control only if the logon pre-prompt exit
(IKJEFLD/IKJEFLD1) does not set the “Don’t Prompt” control bit. TSO/E can invoke
the logon pre-display exit several times on each invocation of the LOGON
command.

Installing the Exit
You must name the logon pre-display exit IKJEFLN1. Link-edit IKJEFLN1 as a
separate load module. You can link-edit the exit in a separate, authorized load
library that is exclusively for TSO/E exits or in an existing library containing other
routines. The exit can reside in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA or LNKLIST, see “Installing the
Standard-Format Exits” on page 42.

Environment
v State: Supervisor
v Key: 8
v AMODE(31), RMODE(ANY)
v Not APF-authorized
v Primary ASC mode

Writing a Logon Pre-Display Exit

128 z/OS V1R4.0 TSO/E Customization

Possible Uses
You can use this exit to supply information for the following fields on the logon
panel:
v User ID
v Password
v Procedure name
v Account number (if used by the installation)
v Region size
v Performance group
v First command
v SECLABEL (defined for RACF users only)
v New password (defined for RACF users only)
v RACF group ID (defined for RACF users only)
v No Mail option
v No Notices option
v Reconnect
v Operator ID card
v Installation defined fields

Writing a Logon Post-Display Exit (IKJEFLN2)
You can use the post-display exit, IKJEFLN2, to further customize the logon
process. This exit can receive control after the TSO/E user presses the Enter key
on the logon panel display.

The logon processor invokes this exit if:
v The logon panel load modules are present in the LPA
v Exit IKJEFLD/IKJEFLD1 does not set the “Don’t Prompt” control bit.

Note: If IKJEFLN1 sets the “Don’t Prompt” bit, IKJEFLN2 will not be invoked unless
IKJEFLN1 also sets the “Invoke IKJEFLN2” bit.

The logon processor can invoke this exit several times during logon processing. If a
re-prompt occurs for any data that is entered by the user, the logon processor
invokes this exit.

You can write a post-display exit to perform the following tasks:
v Update information contained on the logon panel
v Process any installation-defined fields
v Validate user-entered data
v Indicate that the LOGON command display a particular help panel
v Re-prompt for data

TSO/E Supplied Exits
TSO/E does not provide a default logon post-display exit routine.

Entry Specifications
The contents of the registers on entry for the logoff exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Writing a Logon Pre-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 129

Register 14 Return address

Register 15 Exit entry point address.

Parameter List for IKJEFLN2
Exit IKJEFLN2 receives the address of the standard exit parameter list in register 1.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. Note that IKJEFLN2 does not use the following standard parameter list
entries:
v The command buffer pointed to at offset +0
v The new command buffer pointed to at offset +4

The values of these parameter entries are:

Key X'00'

Length X'04'

Data X'00'

Note: This exit should not be used to update the fields in the PSCB and UPT. You
can update the fields of the PSCB and the UPT in the Logon Post-Prompt
Exit (IKJEFLD3). Figure 14 on page 131 shows the exit-dependent data that
IKJEFLN2 receives starting at offset +36 (decimal) in the parameter list. The
parameter entries are described following Figure 14 on page 131.

Key Field Meanings
IKJEFLN2 uses the key field conventions described in Table 1 on page 37. Each
parameter may or may not use all the key field settings depending on the field’s
function. Figure 12 on page 120 shows the acceptable values of the key field for
each of the parameters.

The IKJEFLN2 parameter list uses the key field value of X'04'. This value indicates
that the field has been validated. After logon processing determines that the field is
valid, it sets the key field to X'04' and locks the field to prohibit any additional
prompts for data. If IKJEFLN2 validates a field and does not want logon processing
to validate the field, it should set the key to X'04'.

Some fields must be validated by logon processing even if this exit sets the key to
X'04'. The fields that must be validated by logon processing are:
v User ID
v Password
v New password
v RACF group ID
v SECLABEL

If this exit marks a field as valid that is not valid, logon processing will issue an
abend 01A with a reason code of 36.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Writing a Logon Post-Display Exit

130 z/OS V1R4.0 TSO/E Customization

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

+40

+44

+48

Address of
parameter entry 16

Address of
parameter entry 17

Addressof
parameterentry18

Address of
parameter entry 19

Address of
parameter entry 20

Address of
parameter entry 21

Address of
parameter entry 22

Address of panel module

Address of TGET buffer

Re-prompt code

Help panel number

Address of installation-defined
field parameter list

00000001 00000008 Control switches

00000002 Module length

00000002 Buffer length

00000001 00000003 Language code for panel

00000004

00000004

00000000
00000001

00000000
00000001

00000000
00000002

Parameter
list length

00000000 00000004 Reserved

00000000 00000004 Reserved

00000000
00000001

00000000
00000001

00000001
00000004

00000000
00000001
00000004

00000050 First message

00000050

00000007

00000008

Second message

User ID

Password

+52

+56

+60

+64

+68

+72

+76

+80

+84

Figure 14. Exit-Dependent Data for the Logon Post-Display Exit IKJEFLN2 (Part 1 of 2)

Writing a Logon Post-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 131

Parameter Descriptions
The following sections describe the parameters for the logon post-display exit.

Control Switches (Parameter Entry 10)
Control switches for logon exit IKJEFLN2 are described in Table 12.

Table 12. Control Switches for Logon Exit IKJEFLN2

Byte Bit Field Name Set By

0 0 RACF/UADS Logon processor

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+88

Address of
parameter entry 23

Address of
parameter entry 24

Address of
parameter entry 25

Address of
parameter entry 26

Address of
parameter entry 27

Address of
parameter entry 28

Address of
parameter entry 29

Address of
parameter entry 30

Address of
parameter entry 31

Address of
parameter entry 32

Address of
parameter entry 33

Address of
parameter entry 34

+92

+96

+100

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

00000028

00000008

00000007

00000003

00000008

00000008

00000001

00000001

00000001

00000001

00000050

00000008

Account number

Procedure name

Region size

Performance group

New password

RACF group ID

No Mail option

No Notices option

Reconnect option

Operator ID card option

First command

SECLABEL

+104

+108

+112

+116

+120

+124

+128

+132

Figure 14. Exit-Dependent Data for the Logon Post-Display Exit IKJEFLN2 (Part 2 of 2)

Writing a Logon Post-Display Exit

132 z/OS V1R4.0 TSO/E Customization

Table 12. Control Switches for Logon Exit IKJEFLN2 (continued)

Byte Bit Field Name Set By

1 DBCS Logon processor

2–7 Reserved

1 0–7 Reserved

2 0 IBM-defined field refresh IKJEFLN2

1 User-defined field refresh IKJEFLN2

2 Don’t issue RACROUTE
REQUEST=VERIFY

IKJEFLN2

3–7 Reserved

3 0–7 Reserved

4 0 Re-prompt IKJEFLN2

1 Help Text IKJEFLN2

2–7 Reserved

RACF/UADS
If this bit is set on, the source for the default information is from the RACF data
base. If this bit is off, the source for the default information is the UADS data
set.

DBCS
If this bit is on, the language code selected, either by or for the user, is a
double-byte character set (DBCS) language. The 3270 data stream information
can contain DBCS characters.

IBM-defined field refresh
You can set this bit on to request that the LOGON command refresh the
IBM-defined fields in the 3270 outbound data stream with the values specified
in the parameter entries.

User-defined field refresh
You can set this bit on to request that the LOGON command refresh the
installation-defined fields in the 3270 outbound data stream with the values
specified in the parameter entries.

Don’t issue RACROUTE REQUEST=VERIFY
If IKJEFLN2 performs RACF processing and you do not want the logon
processor to issue a RACROUTE REQUEST=VERIFY, IKJEFLN2 must set the
“Don’t issue RACROUTE REQUEST=VERIFY” bit on.

Re-prompt
If you wish to re-prompt a TSO/E user for a field, you must set this bit on. The
Re-prompt Code parameter (parameter 15) describes the field for which the
re-prompt is necessary.

Help Text
If you wish to display help text, you must set this bit on. The logon processor
then displays the help text as requested in the Help Panel Number parameter
(parameter 13).

Panel Module Address (Parameter Entry 11)
This parameter points to a local copy of the logon language load module that
resides below 16 MB in virtual storage. Any changes made to this field are ignored
by the LOGON command.

Writing a Logon Post-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 133

TGET Buffer Address (Parameter Entry 12)
This parameter points to the input buffer returned from the TGET operation. You
should not change this pointer. You can modify the data in the buffer, but any
modifications must follow the format returned by TGET.

Help Panel Number (Parameter Entry 13)
This parameter entry allows you to request the display of a particular help panel. If
the exit requests that a help panel be displayed, the exit should set the key field of
the parameter entry to X'01' and the data field should specify the appropriate panel
number (in binary). The numbers of the IBM-defined help panels for the LOGON
command are listed in Table 17 on page 150. This exit must also set the help text
control switch indicating that the LOGON command should display the help text
(see Table 12 on page 132).

Language Code for the Panel (Parameter Entry 14)
The three-character code for the language used on the logon panel. This field is
informational only. Any changes made to this field are ignored by the LOGON
command.

Re-prompt Code (Parameter Entry 15)
If the user enters data that is not valid and a re-prompt is necessary, this code
identifies which field on the logon panel is in error.

On entry to the exit, this field indicates the reason for the prompt. A zero indicates
that the prompting was for initial information. Other re-prompt codes are shown in
Table 13.

You can set this code to indicate to the logon processor a field is in error. You must
also set the re-prompt control switch. The logon processor will re-prompt the user
for the specified field.

When the logon processor re-prompts the user for data, the field in error is
highlighted. All fields except the highlighted field are locked and only the highlighted
field can be changed.

The logon processor displays the appropriate error message for the field in error. If
the code indicates a re-prompt for an installation-defined field, exit IKJEFLN2 can
specify a message in parameter entry 19 or 20 that is displayed on the re-prompt.

Table 13. Re-prompting Codes for the Logon Processor

Code Meaning

0 Initial prompt for data
1 User ID
2 Password
3 Account number
4 Procedure name
5 Region size
6 Performance group ID
7 New password
8 RACF group ID
9 No Mail option
10 No Notices option
11 Reconnect option
12 Operator ID card option
13 First command
14 SECLABEL

Writing a Logon Post-Display Exit

134 z/OS V1R4.0 TSO/E Customization

Table 13. Re-prompting Codes for the Logon Processor (continued)

Code Meaning

-1 to -n Negative number of installation-defined parameters. If the exit sets
the value to -1, the logon processor re-prompts for the first
installation-defined field. If the exit sets the value to -2, the logon
processor re-prompts for the second installation-defined field.

Installation Panel Parameters (Parameter Entry 16)
This parameter points to the installation-defined field parameter list. Each entry in
the parameter list points to the parameter entry for an installation-defined field on
the logon panel. The logon processor sets the key field of this parameter entry to
X'02' if you have defined fields for your installation and to X'00' if you have not
defined fields. If you have defined fields for your installation, the length field is set
by the logon processor to the length of the installation panel field parameter list.

Installation-Defined Field Parameter Entries
On entry to the exit, the data field for each installation-defined field’s parameter
entry will be reset to what is in the field on the panel. This could be what was
originally defined on the panel as default data, what the user entered at the LOGON
prompt, or what a previous exit provided as data.

The length field for each installation-defined field’s parameter entry will be set to the
length of the data defined in the logon panel CSECT for the first invocation of
IKJEFLN1. Should the user change the data for an installation-defined field on the
LOGON panel, this length field will be updated to contain the length of the data
entered on the LOGON panel, including trailing blanks or nulls if present. LOGON
uses the length field for data movement from the exit’s parameter list to the LOGON
panel and vice-versa.

The example shown in Figure 15 on page 136 illustrates how the parameter list,
pointed to by this parameter, is organized. You can use your defined parameter
entries in exactly the same way as the IBM-defined parameter entries. You can edit
and change information in these fields and request a re-prompt.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Writing a Logon Post-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 135

Reserved
Parameter entries 17 and 18 are reserved for TSO/E. Do not use these two
parameter entries.

First Message
Using this parameter, you can provide message text that the logon processor will
place in the first message area of the logon panel.

To use this parameter, the first message area must be present in the logon panel. If
the first message area does not exist in the logon panel, the header for the first
message is zero and this parameter is ignored.

A X'00' in the key field of this parameter entry signals the logon processor not to
process the first message area parameter, even if the first message area exists in
the logon panel.

If the key of this parameter entry is X'01', the logon processor will process the first
message area. If there is text in this parameter, the text is placed in the first
message area defined on the logon panel.

Second Message
Using this parameter, you can provide message text that the logon processor will
place in the second message area of the logon panel.

To use this parameter, the second message area must be present in the logon
panel. If the second message area does not exist in the logon panel, the header for
the second message is zero and this parameter is ignored.

A X'00' in the key field of this parameter entry signals the logon processor not to
process the second message area parameter, even if the second message area
exists in the logon panel.

If the key of this parameter entry is X'01', the logon processor will process the
second message area. If there is text in this parameter, the text is placed in the
second message area defined on the logon panel.

Key Length Data+0 +4 +8

Address of
installation-
defined parameter 1

Address of
installation-
defined parameter n

Address of
installation-
defined parameter 2

Installation-defined
parameter

Installation-defined
parameter

Installation-defined
parameter

Data
length

Data
length

Data
length

00000000
00000001
00000004

00000000
00000001
00000004

00000000
00000001
00000004

.

.

.

.

.

.

Figure 15. Installation-Defined Parameter Entries to IKJEFLN2 (Pointed to by Parameter
Entry 16)

Writing a Logon Post-Display Exit

136 z/OS V1R4.0 TSO/E Customization

Note: If TSO/E needs to display a message, TSO/E chooses the first available
message area. For example, if an exit has specified a message for the first
message area, TSO/E will use the second message area to display a
message.

User ID
This parameter contains the user ID that was specified by the user in the LOGON
command. You can change the user ID using this parameter. The maximum length
of the data is seven bytes.

Note: For all enterable fields on the logon panel, the values of the fields presented
to this exit can be the values that the TSO/E user entered. These values can
also be from the previous logon session.

Password
This parameter contains the password that is present on the logon panel. You can
change the data in the password field using this parameter. The maximum length of
the field is 8 bytes.

Account Number
This parameter contains the account number that is present on the logon panel.
You can supply a different account number to the logon panel using this parameter.
The maximum length of the field is 40 bytes.

Procedure Name
This parameter contains the name of the logon procedure that is present on the
logon panel. You can change the name of the logon procedure using this
parameter. The procedure contains JCL that defines the resources that the terminal
job needs. The maximum length of the field is 8 bytes.

Region Size
This parameter contains the region size that is present on the logon panel. The
region size is the number kilobytes of main storage available for the TSO/E session.
You can change the region size using this parameter. The maximum length of the
field is 7 bytes. The maximum allowable region size is 2096128. The data contained
in this parameter is in EBCDIC form.

Performance Group
This parameter contains the performance group name that is present on the logon
panel. You can change the performance group name using this parameter. The
performance group associates the TSO/E session with a set of performance
characteristics. The maximum length of the performance group is 3 bytes. The data
contained in this parameter is in EBCDIC form.

New Password
For users who are defined to RACF, this parameter contains the new password
specified on the logon panel. You can change the value of the New Password field
using this parameter. The maximum length of the new password is 8 bytes.

RACF Group ID
For users who are defined to RACF, this parameter contains the RACF group
identifier entered on the logon panel. You can change the RACF group name using
this parameter. The RACF group ID identifies the security group associated with this
TSO/E session. The maximum length of the RACF group ID is 8 bytes.

No Mail Option
This parameter contains the No Mail Option select character that is present on the
logon panel. You can use this parameter to supply a different No Mail Option select

Writing a Logon Post-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 137

parameter to the logon panel. The maximum length of this field is one byte. The
only allowable values are the character ’S’ and ’ ’. The session receives previously
saved mail from the SEND command during logon processing if this option is ’ ’.
The session does not receive previously saved mail from the SEND command
during logon processing if this option is ’S’.

No Notices Option
This parameter contains the No Notices Option select character that is present on
the logon panel. You can use this parameter to supply a different No Notices Option
select parameter to the logon panel. The maximum length of this field is one byte.
The only allowable values are the character ’S’ and ’ ’. The session receives
broadcast messages from TSO/E during logon processing if this option is ’ ’. The
session does not receive broadcast messages from TSO/E during logon processing
if this option is ’S’.

Reconnect Option
This parameter contains the Reconnect Option select character that is present on
the logon panel. You can change the value of the Reconnect Option select
character using this parameter. The maximum length of this field is one byte. The
only allowable values are the character ’S’ and ’ ’. If this option is ’S’, TSO/E
attempts to resume a logon session that was interrupted. If this option is ’S’ and
there is no disconnected session, the user is logged on normally. If this option is ’ ’,
TSO/E starts a new logon session.

Operator ID Card Option
This parameter contains the operator ID (OID) card value that is present on the
logon panel. You can change the operator ID card value using this parameter. The
maximum length of this field is one byte. The only allowable values are the
character ’S’ and ’ ’. If the field is ’ ’, the user is not prompted to enter the data
using the Operator ID Card Facility. If the field is ’S’, the user is prompted to enter
the data using the Operator ID Card Facility.

First Command
This parameter contains text present on the logon panel to indicate the first
command is to be executed in the TSO/E session. The maximum length of the first
command is 80 bytes.

SECLABEL
The parameter contains the SECLABEL present on the logon panel. SECLABEL is
only used if RACF is installed and security label checking is active. This parameter
contains the SECLABEL value that is present on the logon panel. You can change
the RACF security label using this parameter. The maximum length of the
SECLABEL is 8 bytes.

Return Specifications for IKJEFLN2
For IKJEFLN2, the contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Writing a Logon Post-Display Exit

138 z/OS V1R4.0 TSO/E Customization

Return Codes for IKJEFLN2
Table 14 shows the return codes that IKJEFLN2 supports.

Table 14. Return Codes for Logon Exit IKJEFLN2

Return Code
(Decimal)

Description

0 Exit processing was successful. Logon processing continues.

12 Exit processing was unsuccessful. The logon processor issues an
error message to the user and console and then terminates
processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the LOGON command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. The logon processor terminates
processing.

The LOGON command processor does not display a message to
the user or console if the exit sets a return code of 16. Before the
exit returns with return code 16, it can display a message to the
user, for example, using PUTLINE.

If the exit returns an undefined return code, the logon command processor
terminates without displaying a message.

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The exit must be reentrant,
refreshable, and reusable.

The logon post-display exit receives control only if the logon pre-prompt exit
(IKJEFLD/IKJEFLD1) does not set the “Don’t Prompt” control bit. TSO/E can invoke
the logon post-display exit several times on each invocation of the LOGON
command.

Installing the Exit
You must name the logon post-display exit IKJEFLN2. Link-edit IKJEFLN2 as a
separate load module. You can link-edit the exit in a separate, authorized load
library that is exclusively for TSO/E exits or in an existing library containing other
routines. The exit can reside in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA or LNKLST, see “Installing the
Standard-Format Exits” on page 42.

Environment
v State: Supervisor
v Key: 8
v AMODE(31), RMODE(ANY)
v Not APF-authorized
v Primary ASC mode

Possible Uses
Some possible uses of this exit include the following:
v Processing fields on the logon panel

Writing a Logon Post-Display Exit

Chapter 8. Customizing the Logon and Logoff Process 139

v Validating data on the logon panel
v Re-prompting for data
v Displaying help panels

Writing a Logon Post-Prompt Exit (IKJEFLD3)
The logon post-prompt exit (IKJEFLD3) allows an installation to modify logon
processing. This exit receives control after the logon command processor has
processed the LOGON command and full-screen panel information. This exit
receives control in an authorized state and receives the standard TSO/E exit
parameter list, including a 4-byte user word, if supplied at logon by a logon exit.
The logon post-prompt exit routine can use the parameter list and user word to
perform the following functions:
v Examine the JCL statements
v Modify the JCL statements
v Provide additional JCL statements
v Terminate the LOGON command
v Update fields in the PSCB and the UPT

TSO/E-Supplied Exits
TSO/E does not provide a default logon post-prompt exit routine.

Entry Specifications
The contents of the registers on entry for the logon post-prompt exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter List for IKJEFLD3
Exit IKJEFLD3 receives the address of the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. IKJEFLD3 does not use the following standard parameter list entries:
v The command buffer pointed to at offset + 0
v The new command buffer pointed to at offset + 4

Figure 16 on page 141 shows the exit-dependent data that IKJEFLD3 receives
starting at offset + 36 (decimal) in the parameter list. The parameter entries are
described following Figure 16 on page 141.

Note: The value in the ″Data″ column contains actual data or the address of the
actual data depending on the value in the ″Key″ column. For a definition of
the Key values, see Table 1 on page 37.

Writing a Logon Post-Display Exit

140 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions
The following sections describe the parameters for the logon post-prompt exit.

Control Switches (Parameter Entry 10)
This parameter contains the control switches for logon post-prompt exit processing.
Currently no control switches are used. You should not modify this parameter.

The bit configuration is as follows:

Byte Bit Field Name Set By

0–3 0–7 Reserved Reserved

JCL Statements (Parameter Entry 11)
The exit receives the JCL statements built by the logon processor. The logon
processor constructs JOB and EXEC statements. If the logon pre-prompt exit
IKJEFLD or IKJEFLD1 changed the JCL parameter, this exit receives those JCL
statements in place of the JCL statements the logon processor constructs. The JCL
defines terminal job resources. The exit can modify the statements it receives, or it
can add additional statements.

The JCL parameter is 800 bytes in length, in which the exit can return a maximum
of ten JCL statements. To return more than ten JCL statements, the exit can provide
its own JCL parameter. Your installation’s JES capability determines the actual
number of JCL statements you can return. Logon processing does not check that
number. To provide your own JCL parameter, replace the parameter address
supplied by the LOGON command with the address of the alternative parameter.
Then set the current length to the number of JCL statements multiplied by 80.

The logon processor expects that each 80 bytes of the parameter contains a full
80-byte JCL statement in standard format. If your JCL statements are shorter than
80 bytes, pad them with blanks. The logon processor uses the current length field
of the parameter to determine the number of statements that the exit is returning
(current length/80 = n statements).

If you issue the GETMAIN macro to obtain storage for an alternative JCL
parameter, you must use a job-oriented subpool (such as subpools 0–127). Storage
is freed automatically when the logon job ends. Otherwise, you can use the user
word to save the address so the logoff exit IKJEFLD2 can access it and issue the
FREEMAIN macro to free storage in the subpool.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

JCL parameter

00000000 00000004 Control switches

00000002 000000A0

Figure 16. Exit-Dependent Data for the Logon Post-Prompt Exit IKJEFLD3

Writing a Logon Post-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 141

Return Specifications
The contents of the registers on return from IKJEFLD3 must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for IKJEFLD3
Table 15 shows the return codes that IKJEFLD3 supports.

Table 15. Return Codes for the Logon Exit IKJEFLD3

Return Code
(Decimal)

Description

0 Exit processing was successful. Logon processing continues.

12 Exit processing was unsuccessful. The logon processor issues an
error message to the user and console and then terminates
processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the LOGON command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. The logon processor terminates
processing.

The LOGON command processor does not display a message to
the user or console if the exit sets a return code of 16. Before the
exit returns with return code 16, it can display a message to the
user, for example, using PUTLINE.

If the exit returns an undefined return code, the LOGON command processor
terminates without displaying a message.

Programming Considerations
The logon post-prompt exit must follow standard linkage conventions. It must save
the registers on entry and restore the registers when it returns. The exit must be
reentrant, refreshable, and reusable.

Environment
The attributes for the logon post-prompt exit are:
v State Supervisor
v Key: 8
v AMODE(24), RMODE(24) or AMODE(31), RMODE(ANY)
v Not APF-authorized

Installing the Exit
You must name the logon post-prompt exit IKJEFLD3. Link-edit the exit as a
separate load module. You can link-edit the exit in a separate load library that is
exclusively for TSO/E exits or in an existing library containing other routines. The
exit can reside in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA or LNKLST, see “Installing the
Standard-Format Exits” on page 42.

Writing a Logon Post-Prompt Exit

142 z/OS V1R4.0 TSO/E Customization

Possible Uses
Some possible uses of the logon post-prompt exit include the following:
v Examine the JCL statements
v Modify the JCL statements
v Provide additional JCL statements
v Terminate the LOGON command

Writing a Logoff Exit (IKJEFLD2)

Functional Description
TSO/E users issue the LOGOFF command to end a session on TSO/E. This TSO/E
installation exit lets you customize logoff processing for your users. The exit
receives control before the LOGOFF command processor invokes the parse service
routine to parse the command. The exit receives control in an authorized state, and
receives the standard TSO/E exit parameter list, including a 4-byte user word, if
any, supplied at logon by a logon exit. The logoff exit routine can use the parameter
list and user word to perform the following functions:
v Free storage obtained by the logon exit
v Control re-logons
v Gather accounting information
v Control information written to the UADS data set

TSO/E-Supplied Exits
TSO/E does not provide a default logoff exit routine.

Entry Specifications
The contents of the registers on entry for the logoff exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The logoff exit IKJEFLD2 receives the standard exit parameter list. For a description
of this parameter list, see “TSO/E Standard Exit Parameter List” on page 35. Note
that IKJEFLD2 does not use the following standard parameter list fields:

v The new command buffer field pointed to at offset +4

Figure 17 on page 144 shows the exit-dependent data that IKJEFLD2 receives
beginning at offset +36 (decimal) in the parameter list. The exit-dependent
parameter is reserved for future use and should not be modified.

Writing a Logon Post-Prompt Exit

Chapter 8. Customizing the Logon and Logoff Process 143

Reserved (Parameter Entry 10)
This parameter entry is reserved.

Return Specifications
The contents of the registers on return from IKJEFLD2 must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 16 shows the return codes that the logoff exit supports.

Table 16. Return Codes for the Logoff Exit IKJEFLD2

Return Code
(Decimal)

Description

0 Exit processing was successful. Logoff processing continues.

12 Exit processing was unsuccessful. The logoff processor issues an
error message to the user and the console, and then terminates
processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the logoff command processor. For more information about
the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. The logoff processor terminates
processing.

The LOGOFF command processor does not display a message to
the user or console if the exit sets a return code of 16. Before the
exit returns with return code 16, it can display a message to the
user, for example, using PUTLINE.

If the exit returns an undefined return code, the LOGOFF command processor
terminates without displaying a message.

Either of the non-zero return codes or an undefined return code prevent the UADS
data base from being updated.

Programming Considerations
The logoff exit must follow standard linkage conventions. It must save the registers
on entry and restore the registers when it returns. The exit must be reentrant,
refreshable, and reusable.

Environment
The attributes for the logoff exit are:
v State: Supervisor

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Parameter Entry's
Key, Length, and Data

00000000 00000004 Reserved

Figure 17. Exit-Dependent Data for the Logoff Exit IKJEFLD2

Writing a Logoff Exit

144 z/OS V1R4.0 TSO/E Customization

v Key: 8
v AMODE(24), RMODE(24) or AMODE(31), RMODE(ANY)
v Not APF-authorized

Installing the Exit
You must name the logoff exit IKJEFLD2. Link-edit the exit as a separate load
module. You can link-edit the exit in a separate load library that is exclusively for
TSO/E exits or in an existing library containing other routines. The exit can reside
in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA or LNKLST, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the logoff exit include the following:

v Clean up storage obtained by the logon exit

Perform clean-up processing. For example, you can free storage that was
obtained in the logon exit.

v Control re-logons

The logoff exit receives the address of the command buffer containing the
LOGOFF or LOGON command.

To check the command buffer and change its contents, the logoff exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command that the user issued

– Supply or change values that users specify on the command.

The exit can change the information in the input buffer, update the current length
of the input buffer, and return control to the logon processor. The values that the
exit can provide in the input buffer correspond to the operands of the LOGOFF or
LOGON command. For more information about the LOGOFF and LOGON
commands, see z/OS TSO/E Command Reference.

v Gather accounting information

The logoff exit can gather and report accounting information for the user’s TSO/E
session. For example, the logoff exit can obtain the account number and
calculate the duration of the user’s TSO/E session, based on information passed
from logon exit IKJEFLD1 using the exit-to-exit communication word.

To record the account number and the session’s duration, the logon exit
IKJEFLD1 can:

– Obtain the account number from the LOGON command or panel.

– Invoke the TIME macro.

– Use the exit-to-exit communication word to return the time and account
number to the LOGON command processor. The exit updates the Key,
Length, and Data fields for the exit-to-exit communication word as follows:

Key X'01'

Length Length of the data (time and account number)

Data Data (time and account number)

– Set a return code of 0 and return to the logon command processor.

Writing a Logoff Exit

Chapter 8. Customizing the Logon and Logoff Process 145

When the logoff exit IKJEFLD2 receives control, it obtains the time and account
number from IKJEFLD1 in the exit-to-exit communication word. Before IKJEFLD2
returns control to the logoff command processor, it can invoke the TIME macro.
The exit can calculate the time difference between the time from the logon exit
(in the exit-to-exit communication word) and the time it receives from issuing the
TIME macro. The result is the approximate duration of the session. The logoff
exit can record the account number and processing time in a data set for
accounting purposes.

v Determine the userid

The userid for the logoff exit is found at offset 0 in the protected step control
block (PSCB). The PSCB contains the userid in PSCBUSER, a seven-character
field which is padded on the right with blanks. The length of the userid is found in
the following one byte field PSCBUSRL.

For a description of the PSCB, see z/OS TSO/E System Diagnosis: Data Areas.

v Provide information to be written to the UADS or RACF data base.

The logoff exit can update fields of the PSCB and UPT, whose addresses are
passed in the exit parameter list. The logoff command processor then writes the
contents of those fields back to the UADS or the RACF data base.

Customizing Logon Panels and Logon Help Panels
You can customize logon panels and logon help panels in a variety of ways,
including adding and removing fields.

You can use the source of logon panel modules and logon help panel modules to
suit the needs of your installation. You can also create your own panels.

Source for the logon panel module (IKJLPENU) and the logon help panel module
(IKJLHENU) is shipped in SYS1.SAMPLIB. Logon panel load modules are installed
in SYS1.LPALIB. Logon help panel load modules are installed in SYS1.LINKLIB.

To install a logon panel load module that you have customized, you must code and
assemble the logon panel csect and link it into the LPA library.

A logon panel load module consists of a single csect divided into two parts. The first
part is header information that contains offsets of the fields defined in the second
section. The second part of the csect is the 3270 data stream instructions that
comprise the logon panel.

The logon help panel load module consists of the same two parts, but the header
does not contain address attributes.

If your installation has a language feature installed, logon and logon help panels are
available in that language. You can customize logon panels and logon help panels
for a particular language by using logon panel and logon help panel csects. The
source for the logon panel csect is in SYS1.SAMPLIB. Chapter 19, “Customizing
TSO/E for Different Languages” on page 187 describes how you can select a
language for your installation or for users in your installation.

Functions Activated by the Presence of Logon Load Modules
If the LPA contains the load modules for the logon panels, these panels are used
and TSO/E invokes exits IKJEFLN1 and IKJEFLN2. If a logon panel load module is
not present in the LPA, TSO/E does not invoke exits IKJEFLN1 and IKJEFLN2.

Writing a Logoff Exit

146 z/OS V1R4.0 TSO/E Customization

The presence of a logon panel load module in the LPA signals TSO/E to re-prompt
the user for the new password when the user enters data in the new password
field. The logon processor re-displays the logon panel requesting the user to enter
the password again for verification. For further information on the re-prompt feature,
see z/OS TSO/E Command Reference.

Logon Panel
You can have any number of logon panel load modules in your LPA library.
However, there must be one load module for each language used by the
installation. The names of the load modules and csects containing the definitions of
the logon panels are constructed as IKJLPXXX where XXX is the three-character
code for the language.

For example, if a TSO/E user has been assigned U.S. English (mixed case) as their
selected language and invokes the LOGON command, the logon process searches
for IKJLPENU in the LPA.

Logon Panel Csect Information
The following dsect maps the start of the logon panel csect.
LOGONPAN DSECT
PANID DS CL8 Acronym of this csect
PANDATE DS CL8 Date of assembly
PANTIME DS CL8 Time of assembly
PANLEN DS AL2 Length of this csect
PANVERS DS AL2 Version of this panel
PANHEAD DS AL2 Offset to header offset array
PANBEGIN DS AL2 Offset to start of panel
PANMSG1 DS AL2 Offset to message 1
PANMSG2 DS AL2 Offset to message 2
PANICOFF DS AL2 Offset to Insert Cursor Address
PANINSTH DS AL2 Offset to first installation- *

defined field
PANLENGTH DS AL2 Length of panel
PANWCC DS AL2 Offset to Write Cursor Control
PANRACFT DS AL2 Offset to RACF Title
PANRACFL DS AL2 Length of RACF Title

Logon Panel Csect Header
Following the logon panel csect start information, the logon csect header contains
an array of offsets to the 3270 data stream instructions. The offsets are contained in
halfword addresses. Each field in the header contains the following offsets:

Highlighting Attribute Offset
This is the offset to the highlighting attribute instructions for the input field. For a
re-prompt, the LOGON command processor highlights the input field and does
so only on fields that have this attribute defined.

Highlighting Character Offset
This is the offset to a position on the panel to insert a highlighting character.
The LOGON command processor highlights a field by inserting an asterisk in
the byte that is pointed to by this offset. For a re-prompt, the LOGON command
processor inserts an asterisk in this field if this offset is present.

Field Attribute Offset
This is the offset to the field attribute instructions for the input field. The LOGON
command processor uses this field to protect and unprotect a field and does so
only on fields that have this attribute defined.

Address of Start of Field
This is the 12-bit address that identifies the starting point of the text on the

Customizing Logon Panels and Logon Help Panels

Chapter 8. Customizing the Logon and Logoff Process 147

screen. The 12-bit addresses are described in 3270 Information Display
System, Buffer Address Codes. The LOGON command uses this address to
identify the input fields that are returned in the TGET buffer.

Length of Input Field
A 2-byte length field of the input area.

Offset to Input Field
A 2-byte offset to the input field.

Reserved
Two reserved halfwords are included in each entry.

The size of the header for each header element of the array is 16 bytes. The
IBM-defined fields have the following header order. They are also in the same order
in the 3270 data stream instructions that follow the header:
v User ID
v Password
v Account number
v Procedure name
v Region size
v Performance group ID
v New password
v RACF group ID
v No Mail option
v No Notices option
v Reconnect option
v Operator ID card option
v First command
v SECLABEL
v Installation-defined fields (each entry in the header must be 16 bytes)
v End Header flag (16 bytes of X'FF')

Installations can insert as many installation-defined fields as needed. The fields
should conform to the format described above.

Logon Panel Body
The logon panel body consists of the data stream instructions that are sent to a
3270 device. These data stream instructions contain the IBM-defined fields and the
installation-defined fields. The data stream and the output screen fields can be in
any order as long as the header entries are in the correct order.

The source for the logon panel module for U.S. English (mixed case) is included in
SYS1.SAMPLIB and is called IKJLPENU. The logon panel that results from this
module is shown in Figure 18 on page 149.

Customizing Logon Panels and Logon Help Panels

148 z/OS V1R4.0 TSO/E Customization

Logon Help Panel
If you are using logon help panel load modules, you can use the help facility to
specify help for the entire panel or for a particular field.

There is one load module per language. The load module name is IKJLHXXX
where XXX is the three-character code for the language. For more information on
three-character codes, see z/OS MVS Programming: Assembler Services Guide.

Logon Help Panel Csect Information
The help panel csect is similar to the primary logon panel csect, but the size of the
header is smaller.

The following dsect maps the start of the help panel csect.
HELPPAN DSECT
HPANID DS CL8 Acronym of this csect
HPANDATE DS CL8 Date of assembly
HPANTIME DS CL8 Time of assembly
HPANLEN DS AL2 Length of this csect
HPANVERS DS AL2 Version of this panel
HPANHEAD DS AL2 Offset to header offset array
HPANINST DS AL2 Offset to first installation - *

defined field

Following the start information, the logon help panel csect header contains an array
of offsets to the 3270 data stream instructions. The offsets are contained in
halfword addresses. The size of the header is 12 bytes and consists of:

Start of Help Text Offset
This is the offset to the start of the help text for the field for which help text is
requested.

------------------------------- TSO/E LOGON ----------------------------------

Enter LOGON parameters below: Enter RACF LOGON parameters:

Userid ===> Seclabel ===>

Password ===> New Password ===>

Procedure ===> Group Ident ===>

Acct Nmbr ===>

Size ===>

Perform ===>

Command ===>

Enter an ’S’ before each option desired below:

-Nomail -Nonotice -Reconnect -OIDCard

PF1/PF13 ==> Help PF3/PF15 ==> Logoff PA1 ==> Attention PA2 ==> Reshow
You may request specific help information by entering a ’?’ in any entry field.

Figure 18. Sample Logon Panel

Customizing Logon Panels and Logon Help Panels

Chapter 8. Customizing the Logon and Logoff Process 149

Length of Help Text
This is the length of the help text associated with the field.

Four Reserved Halfwords
The next 4 halfwords are reserved.

The headers pointing to help text for IBM-defined fields have the same order as the
headers defining the logon panel csects. The end header flag is 12 bytes of X'FF'
instead of 16 bytes as in the logon panel csect.

If the user requests help text for a field and the corresponding help text header
entry is 0, no help text is displayed. A message is also displayed on the logon
panel.

The body of the help panel csect contains the 3270 data stream instructions
necessary to display the help text for a selected field. The help text fields can be in
any order as long as the header entries are in the correct order.

Invoking the Help Panel
When help text is selected, TSO/E uses a convention similar to logon panel
processing to determine the presence or absence of help panel load modules.
IKJLH is concatenated to the three-character language code.

Help Panel Number Codes
Exit IKJEFLN2 can specify a help panel code to indicate which help text should be
displayed. The help panel codes are described in Table 17.

Table 17. Help Panel Number Codes for Logon

Code Meaning

0 Display All Help Text
1 User ID Help Text
2 Password Help Text
3 Account Number Help Text
4 Procedure Name Help Text
5 Region Size Help Text
6 Performance Group ID Help Text
7 New Password Help Text
8 RACF Group ID Help Text
9 No Mail Option Help Text
10 No Notices Option Help Text
11 Reconnect Option Help Text
12 Operator ID Card Option Help Text
13 First Command Help Text
14 SECLABEL Help Text
-1 to -n Installation-defined Help Text

Programming Considerations for Logon and Logon Help Panel Csects
To use DBCS characters in a panel field, you should code the Start Field Extended
Instruction (X'29') with the Shift-In Shift-Out Attribute pair. The pair is coded X'FE01'.

If you are sending panels to a Katakana device, note that lower case English
characters become Katakana characters on Katakana devices. If you want to use
English Language panels, those panels should contain uppercase English
characters only.

Customizing Logon Panels and Logon Help Panels

150 z/OS V1R4.0 TSO/E Customization

Chapter 9. Defining TSO/E to ISPF and ISPF/PDF

Customizing the Logon Procedure for ISPF and ISPF/PDF 151
Specifying the TSO/E Commands Users Can Issue from ISPF/PDF 151
Defining the TSO/E Session Manager to ISPF/PDF 152

TSO/E users can use Interactive System Productivity Facility/Program Development
Facility (ISPF/PDF) panels to perform a variety of data processing tasks, such as
managing data sets and developing programs. They can use TSO/E commands
from ISPF/PDF panels to help perform some of those tasks.

This chapter is an overview of how to define TSO/E to ISPF and ISPF/PDF. You
must write a logon procedure to give TSO/E users access to ISPF and ISPF/PDF.
You can allow users to use TSO/E commands and Session Manager from
ISPF/PDF panels.

Customizing the Logon Procedure for ISPF and ISPF/PDF
To use ISPF and ISPF/PDF, TSO/E users must have access to ISPF and ISPF/PDF
data sets. You must modify the TSO/E logon procedure to allocate the required
ISPF and ISPF/PDF data sets.

Before you modify the logon procedure, however, you must decide how users will
access ISPF/PDF at your installation. To give users access, you can display the
primary ISPF/PDF panel first when users log on, or display a panel that gives users
access to the primary ISPF/PDF panel. For example, you could display the
Information Center Facility panel as the first panel, giving users indirect access to
ISPF/PDF. Instead of displaying a panel, you could simply allow users to invoke
ISPF/PDF from TSO/E READY mode in response to the READY message.

In the logon procedure, use the EXEC statement to point to a CLIST or REXX exec
that starts ISPF and displays either the primary ISPF/PDF panel, or a panel that
gives users access to ISPF/PDF. For information about writing a logon procedure
for TSO/E, see “Writing a Logon Procedure” on page 82. For more information
about how to write a logon procedure to allocate ISPF data sets, see z/OS ISPF
Planning and Customizing.

Specifying the TSO/E Commands Users Can Issue from ISPF/PDF
You can customize the set of TSO/E commands that users can issue from
ISPF/PDF panels. Users can issue commands under ISPF/PDF:
v On the command line, preceded by “TSO”
v From ISPF/PDF option 6
v Using the ISPF command SELECT CMD (command-procedure)

You can customize the set of TSO/E commands that all users, or individual users,
can issue from ISPF/PDF panels. By default, users can use all TSO/E commands
that reside in LPA (link pack area) except the following:
v PRINTDS
v RACONVRT
v SYNC
v TEST
v LOGON
v LOGOFF

© Copyright IBM Corp. 1988, 2002 151

To allow users to use those commands, add them to the ISPF module ISPTCM.
You can also restrict users from using commands from ISPF/PDF by deleting them
from ISPTCM. In addition, you can use RACF to restrict these commands in all
environments, including ISPF/PDF. For more information, see z/OS Security Server
RACF Command Language Reference.

You can use the ISPMTCM macro statement to add or delete commands from
ISPTCM.

Commands that do not reside in LPA can be used from ISPF/PDF panels,
regardless of whether they are in ISPTCM.

If the following commands reside in LPA, you must indicate in ISPTCM that they be
checked for authorization so that they receive control in an authorized state:
v RACONVRT
v SYNC
v SEND
v LISTBC
v SUBMIT

To override the defaults in ISPTCM for individual users, use ISPF/PDF command
start and stop exits. Using these exits, you can monitor and restrict the commands
individual users issue. For more information about the ISPMTCM macro statement
and the ISPF exits, see z/OS ISPF Planning and Customizing.

Defining the TSO/E Session Manager to ISPF/PDF
There are two ways to use Session Manager: from TSO/E READY mode or from
ISPF/PDF. By default, users who log on to TSO/E with the Session Manager
procedure can keep a journal of the work they do from READY mode only.

There is a limitation with using Session Manager from READY mode. After a user
has exited Session Manager, the user cannot reinvoke Session Manager without
first logging off and logging back on. Therefore, users cannot easily alternate
between Session Manager mode and non-Session Manager mode.

To overcome this limitation, you can allow users to use Session Manager from
ISPF/PDF. A user can issue a TSO/E command, CLIST or REXX exec from an
ISPF/PDF panel, log the output, then return to ISPF/PDF. To allow users to log
output from commands, CLISTs or REXX execs, they issue, or from different
language processors, you must:

v Install exit routines provided with ISPF for SVC 93 and 94

v Update and reassemble the ISRCONFG CSECT, setting the SESSMNGR value
to YES

For more information about defining Session Manager to ISPF/PDF, see z/OS ISPF
User’s Guide Volume I.

Specifying the TSO/E Commands from ISPF/PDF

152 z/OS V1R4.0 TSO/E Customization

Chapter 10. Specifying Authorized Commands/Programs, and
Commands Not Supported in the Background

Using SYS1.PARMLIB Member IKJTSOxx 154
Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS 155

Specifying Authorized Commands and Programs 156
Specifying Commands not Supported in the Background 157

At your installation, you must maintain lists of authorized commands and programs,
and commands not supported in the background. The lists allow users to execute
authorized commands and programs, and restrict users from executing certain
commands in background jobs. IBM provides copies of the lists, including all
required entries. Table 18 shows which entries are required in each list.

Table 18. Required Entries in the Lists of Commands and Programs

Maintain in the list of: These names:

Authorized commands RECEIVE
TRANSMIT
XMIT
SEND
SE
CONSPROF
LISTBC
LISTB
RACONVRT
SYNC
TESTAUTH
PARMLIB

Authorized programs IEBCOPY

Programs to be authorized when called through the TSO/E service
facility

IKJEFF76
IEBCOPY

Commands not supported in the background OPERATOR
OPER
TERMINAL
TERM

You might want to add commands and programs to the lists. You can add
authorized commands and programs, such as VLFNOTE, LISTDS, IEHMOVE, and
user-written ones, to make them available to users at your installation. You can also
add commands that you do not want used in the background, such as:

v User-written commands that do not work properly in the background (for
example, command processors that issue TPUTs and TGETs)

v Commands whose use you plan to restrict in the foreground. The ACCOUNT
command is one example of such a command. You might want to restrict its use
as described in “Limiting the Use of the ACCOUNT, OPERATOR, RACONVRT,
and SYNC Commands” on page 178.

For ISPF, you must ensure that the authorized commands receive control in an
authorized state under ISPF. For more information, see z/OS ISPF Planning and
Customizing.

You can maintain the lists of authorized commands and programs, and commands
not supported in the background, in one of the following:

© Copyright IBM Corp. 1988, 2002 153

v SYS1.PARMLIB member IKJTSOxx

v CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS.

Using SYS1.PARMLIB member IKJTSOxx has certain advantages:

v It makes it easy to maintain the lists of commands and programs. You avoid
having to update, assemble, and link-edit the CSECTs IKJEFTE2, IKJEFTE8,
IKJEFTAP, and IKJEFTNS.

v You can use the PARMLIB command if you want to use a different list of
authorized commands/programs, and commands not supported in the
background, without re-IPL of the system.

The PARMLIB command dynamically activates a SYS1.PARMLIB member
IKJTSOxx of your choice. Its specifications are replaced by those in member
IKJTSOxx of your choice. The chosen SYS1.PARMLIB member IKJTSOxx must
at least contain the required entries shown in Table 18 on page 153.

Use the PARMLIB command also to check the syntax of any IKJTSOxx member
of SYS1.PARMLIB before you are going to use it, and to view the specifications
in an active IKJTSOxx member. For more information about the PARMLIB
command, see z/OS TSO/E System Programming Command Reference.

Using CSECTS IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS does not allow for
dynamic changes.

When you IPL the system, the commands and programs listed in either
SYS1.PARMLIB member IKJTSOxx or in the individual CSECTs become available
or restricted as specified.

If you maintain the lists of authorized commands and programs, and commands not
supported in the background, in both the SYS1.PARMLIB member IKJTSOxx and
the CSECTS the following applies:

v If IKJEFTE2, IKJEFTE8, IKJEFTNS, IKJEFTAP are link-edited into load module
IKJTABLS in SYS1.LPALIB, IKJTABLS out of SYS1.LPALIB is used.

v If IKJEFTE2, IKJEFTE8, IKJEFTNS, IKJEFTAP, IKJTABLS are in an authorized
STEPLIB, then for the general users, SYS1.PARMLIB is used. For the user with
the STEPLIB however, the CSECTs are used.

See “Using SYS1.PARMLIB Member IKJTSOxx” and “Using CSECTs IKJEFTE2,
IKJEFTE8, IKJEFTAP, and IKJEFTNS” on page 155 for details on using either
method.

Using SYS1.PARMLIB Member IKJTSOxx
To use IKJTSOxx, do the following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB to contain the names of appropriate
commands and programs for your installation.

Entries in IKJTSOxx must be command or program names up to eight characters in
length, separated from other entries by one or more blanks, and enclosed in
parentheses after one of the following parameters:

154 z/OS V1R4.0 TSO/E Customization

AUTHCMD NAMES to specify authorized TSO/E commands.

AUTHPGM NAMES to specify programs that are authorized when
invoked via the CALL command.

AUTHTSF NAMES to specify programs that are authorized when
invoked through the TSO/E service facility.

NOTBKGND NAMES to specify commands not supported in the
background.

The following example shows required entries in the list of authorized commands
distributed in IKJTSOxx. In this and other lists, you can add your own entries. The
entries can contain comments and must use continuation symbols when the list
continues on the following line.
AUTHCMD NAMES(/* AUTHORIZED COMMANDS */ +

RECEIVE /* */ +
TRANSMIT XMIT /* */ +
LISTB LISTBC /* */ +
SE SEND /* */ +
RACONVRT /* */ +
CONSPROF /* */ +
SYNC /* */ +
TESTAUTH TESTA /* */ +
PARMLIB) /* */

The following example shows entries IEBCOPY and IEHMOVE in the list of
authorized programs in IKJTSOxx:
AUTHPGM NAMES(/* AUTHORIZED PROGRAMS */ +

IEBCOPY /* */ +
IEHMOVE) /* */

The following example shows required entries in the list of programs to be
authorized when called through the TSO/E service facility:
AUTHTSF NAMES(/* PROGRAMS TO BE AUTHORIZED */ +

/* WHEN CALLED THROUGH THE TSO */ +
/* SERVICE FACILITY. */ +

IEBCOPY /* */ +
IKJEFF76) /* */

Comparing the above two examples you will notice that IEBCOPY is an authorized
program either when invoked through the CALL command or through the TSO/E
service facility; IKJEFF76 is only authorized when invoked through the TSO/E
service facility; and IEHMOVE is only authorized when invoked through the CALL
command.

The following example shows required entries in the list of commands not
supported in the background:
NOTBKGND NAMES(/* COMMANDS WHICH MAY NOT BE */ +

/* ISSUED IN THE BACKGROUND. */ +
OPER OPERATOR /* */ +
TERM TERMINAL) /* */

Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS
If you choose not to use IKJTSOxx, you can use CSECTs IKJEFTE2, IKJEFTE8,
and IKJEFTAP to specify authorized commands and programs, and CSECT
IKJEFTNS to specify commands that are not supported in the background. If you
update these CSECTs, you must assemble them, link- edit them into load module
IKJTABLS in SYS1.LPALIB, and IPL the system before the updates take effect.

Using SYS1.PARMLIB Member IKJTSOxx

Chapter 10. Auth. Commands/Programs, Not Supported 155

Table 19 indicates the contents of the CSECTs.

Table 19. Contents of CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS

CSECT Table Contents

IKJEFTE2 APFCTABL Names of authorized command processors
that the TMP executes

IKJEFTE8 APFPTABL Names of programs that are authorized
when invoked via the CALL command

IKJEFTAP APFTTABL Names of programs that are authorized
when invoked through the TSO/E service
facility

IKJEFTNS NSCPTABL Names of commands not supported in the
background.

Note: The tables of authorized commands and programs must start 16 bytes
(X'10') into the appropriate CSECT on a doubleword boundary.

Specifying Authorized Commands and Programs
The lists in APFCTABL, APFPTABL, and APFTTABL must contain the names of
commands or programs, up to eight characters in length. Entries of less than eight
characters must be left-justified and padded to the right with blanks. You can
reserve extra space by adding blank strings at the end of the list. The system
ignores entries following a blank string.

You can replace the IBM-supplied modules IKJEFTE2, IKJEFTE8, and IKJEFTAP
by link-editing installation-supplied modules with these names into load module
IKJTABLS in SYS1.LPALIB. Specify RMODE(24) when link-editing IKJTABLS.
Consult the output from stage 1 for correct link-edit information. Any program that
depends on a job step environment such as the TMP should not be placed in the
lists.

v The following example shows how to include the list of authorized commands in
IKJEFTE2:

ENTRY APFCTABL
IKJEFTE2 CSECT

DC C’IKJEFTE2’ MODULE NAME
DC C’76.152 ’ RELEASE LEVEL

APFCTABL DS 0D ALIGNMENT
DC C’RECEIVE ’
DC C’TRANSMIT’
DC C’XMIT ’ NOTICE IT IS PADDED WITH BLANKS
DC C’SYNC ’
DC C’RACONVRT’
DC C’LISTB ’
DC C’LISTBC ’
DC C’CONSPROF’
DC C’SEND ’
DC C’SE ’
DC C’TESTAUTH’
DC C’TESTA ’
DC C’PARMLIB ’
DC C’ ’ TERMINATOR
END

v CSECT IKJEFTE8 of load module IKJTABLS contains a list of programs invoked
as authorized programs through the CALL command processor (for example,
IEBCOPY).

Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, IKJEFTNS

156 z/OS V1R4.0 TSO/E Customization

If you wanted to allow access to IEBCOPY through CALL, then the list might look
like:

ENTRY APFPTABL
IKJEFTE8 CSECT

DC CL8’IKJEFTE8’ MODULE NAME
DC CL8’85.092 ’ RELEASE LEVEL

APFPTABL DS 0D ALIGNMENT
DC CL8’IEBCOPY ’
DC CL8’ ’
END

v CSECT IKJEFTAP of load module IKJTABLS contains a list of program names
that the TSO/E service facility attaches as authorized programs. If you wanted to
allow access to IEBCOPY through the TSO/E service facility, then the list might
look like:

ENTRY APFTTABL
IKJEFTAP CSECT

DC CL8’IKJEFTAP’ MODULE NAME
DC CL8’86.120 ’ RELEASE LEVEL

APFTTABL DS 0D ALIGNMENT
DC CL8’IKJEFF76’ REQUIRED FOR FIB COMMANDS
DC CL8’IEBCOPY ’
DC CL8’ ’
END

Note: Table IKJEFTAP must include the module name IKJEFF76 for the
SUBMIT, OUTPUT, STATUS, and CANCEL commands to work properly.

Specifying Commands not Supported in the Background
CSECT IKJEFTNS lists the commands not supported in the background. The list as
distributed is shown in the following example. You can add any commands that you
wish to restrict from background jobs.

ENTRY NSCPTABL
IKJEFTNS CSECT

DC C’IKJEFTNS’ MODULE NAME
DC C’76.033 ’ RELEASE LEVEL

NSCPTABL DS 0D ALIGNMENT
DC AL2(8) LENGTH OF COMMAND NAME
DC C’OPERATOR’ COMMAND NAME
DC AL2(4) LENGTH OF COMMAND NAME
DC C’OPER ’ COMMAND NAME
DC AL2(8) LENGTH OF COMMAND NAME
DC C’TERMINAL’ COMMAND NAME
DC AL2(4) LENGTH OF COMMAND NAME
DC C’TERM ’ COMMAND NAME
DC AL2(0) TEN MORE BLANK ENTRIES
DC C’ ’ FOR INSTALLATION USE
DC X’FFFF’ TABLE TERMINATOR
END

Command Name List Format: (See the preceding example.) Each entry in the list
consists of a 2-byte length field (the length of the command name) and an 8-byte
command name field. The name is left-justified and padded with blanks, as
required. An unused entry consists of a 2-byte field containing zeroes and an 8-byte
field containing blanks. The end of the list is indicated by a 2-byte field containing
ones (X'FFFF').

Modifying the Command Name List: CSECT IKJEFTNS contains 10 entries
available for installation use. You can add command names and aliases to the list. If
10 entries are insufficient for your use, you can increase the length of the list. Each

Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, IKJEFTNS

Chapter 10. Auth. Commands/Programs, Not Supported 157

time you modify the list (add or delete an entry, or change the length of the list), re-
assemble CSECT IKJEFTNS and link-edit it into IKJTABLS.

When modifying the list, make sure that TERMINAL, TERM, OPERATOR, and
OPER are not deleted.

Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, IKJEFTNS

158 z/OS V1R4.0 TSO/E Customization

Chapter 11. Specifying Commands and Programs for the
Command/Program Invocation Platform

Considerations for Specifying Commands and Programs 159
Using the PLATCMD and PLATPGM Statements 160

An application program can run commands and programs in a command/program
invocation environment. This environment eliminates the need for MVS task
initialization and termination each time you invoke a command or program. This
support provides a potential performance benefit to users by helping to reduce
system overhead associated with the initialization and termination of commands and
programs.

You can invoke unauthorized commands and programs on a command/program
invocation platform using the platform initialization and termination routines of the
TSO/E service facility. The TSO/E service facility is an interface that allows a TSO/E
user to invoke functions such as commands, programs, CLISTs, and REXX execs
from an application program. For more information on the TSO/E service facility,
see z/OS TSO/E Programming Services. You can invoke authorized commands and
programs on a command/program invocation platform, even if you are not using the
TSO/E service facility.

In order for commands and programs to run in the command/program invocation
platform environment, your installation must first specify the eligible commands and
programs on the appropriate platform support statement in the IKJTSOxx member
of SYS1.PARMLIB. The PLATCMD statement identifies commands that are eligible
to run on a command/program invocation platform. Similarly, the PLATPGM
statement identifies programs that are eligible to run on a command/program
invocation platform. TSO/E determines authorization for commands and programs
from the list of authorized commands and programs that you maintain. For more
information on command and program authorization, see Chapter 10, “Specifying
Authorized Commands/Programs, and Commands Not Supported in the
Background” on page 153.

Considerations for Specifying Commands and Programs
Only commands and programs that do not require the services of MVS task
termination can run on the command/program invocation platform.

The PLATCMD statement in SYS1.SAMPLIB member IKJTSO00 contains a list of
recommended commands that you can run on the command/program invocation
platform. Unauthorized commands are:
v ALLOCATE
v ALTLIB
v ATTRIB
v CALL
v EXEC
v FREE
v PRINTDS
v PROFILE
v STATUS
v SUBMIT

Authorized commands are:

© Copyright IBM Corp. 1988, 2002 159

v CONSPROF
v LISTBC
v PARMLIB
v RACONVRT
v RECEIVE
v SEND
v SYNC
v TRANSMIT

The PLATPGM statement in SYS1.SAMPLIB member IKJTSO00 contains a list of
recommended programs you can run on the command/program invocation platform.

IEFBR14 is an unauthorized program you can run.

IKJEFF76 is an authorized program you can run.

You can also add installation-written commands and programs to platform support
statements in SYS1.PARMLIB, member IKJTSOxx. Before adding commands or
programs to a platform support statement, the following must be considered:

v Any task-related resources that the command or program obtains must be
explicitly released during normal processing (for example, subpool 0 storage or
ENQ serialization).

When a command or program that is running on the command/program
invocation platform abnormally terminates or terminates due to an attention
interruption, the system releases any task-related resources.

v If an installation-supplied command or program invokes dynamic allocation, it is
the responsibility of the command or program to provide its own remove in-use
processing, which is normally provided by the terminal monitor program (TMP).

To properly invoke remove in-use processing, you must be aware of the level of
the task that is issuing the dynamic allocation. If the allocation occurs at the
primary task level, you must invoke remove in-use processing (SVC 99 with verb
code 05) using the IEFZB4D2 mnemonic DRITCBAD and specifying the current
TCB address. The current TCB address is in the PSATOLD field of the PSA. The
mnemonic DRITCBAD specifies that the in-use attribute is to be used from all
resources associated with the specified TCB address.

When the allocation occurs below the primary task level you invoke, remove
in-use processing and the IEFZB4D2 mnemonic DRICURNT. DRICURNT
specifies that the in-use attribute is to be removed from all resources except
those associated with the current task and those associated with higher-level
tasks.

For more information about dynamic allocation and remove in-use processing,
see z/OS MVS Programming: Assembler Services Guide.

Using the PLATCMD and PLATPGM Statements
To use the PLATCMD or PLATPGM statements in IKJTSOxx, do the following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB and locate the PLATCMD or PLATPGM
statement.

Considerations for Specifying Commands and Programs

160 z/OS V1R4.0 TSO/E Customization

v Specify the eligible commands or programs for your installation.

Entries in the PLATCMD and PLATPGM statements in IKJTSOxx must be enclosed
in parentheses after the PLATCMD or PLATPGM NAMES statement. Each entry
must be a command name for PLATCMD or a program name for PLATPGM.
Command and program names must be 8 characters or less and separated from
other entries by at least one space. PLATCMD NONE and PLATPGM NONE are
valid statements that specify that no commands or programs are to run on the
command/program invocation platform. If the PLATCMD statement is not contained
in the current IKJTSOxx member, PLATCMD NONE is the default. Similarly, if the
PLATPGM statement is not contained in the current IKJTSOxx member, PLATPGM
NONE is the default.

The following example shows the PLATCMD and PLATPGM statements and the
eligible commands and program names:
PLATCMD NAMES(/* COMMANDS TO BE INVOKED */+

/* VIA THE TSO COMMAND/PROGRAM */+
/* INVOCATION PLATFORM */+
/* (COMMANDS IN THIS */+
/* LIST MUST NOT REQUIRE */+
/* TASK TERMINATION */+
/* CLEANUP PROCESSING) */+

ALLOCATE ALLOC /* */+
ALTLIB IKJADLIB /* */+
ATTRIB ATTR /* */+
CALL IKJEFG00 /* */+
EXEC EX IKJEXC2 /* */+
FREE UNALLOC /* */+
PRINTDS PR IKJEFY50 /* */+
PROFILE PROF /* */+
SUBMIT SUB /* */+
STATUS ST IKJEFFCA /* */+
LISTBC LISTB /* AUTHORIZED COMMANDS */+
PARMLIB IKJPRMLB /* (THESE COMMANDS MUST */+
RECEIVE /* BE LISTED IN AUTHCMD */+
SEND SE /* STATEMENT OR IKJEFTE2 */+
TRANSMIT XMIT /* TABLE) */+
SYNC /* */+
RACONVRT /* */+
CONSPROF) /* */

PLATPGM NAMES(/* PROGRAMS TO BE INVOKED */+
IEFBR14 /* ON THE TSO COMMAND/PROGRAM */+

/* INVOCATION PLATFORM */+
/* (PROGRAMS IN THIS */+
/* LIST MUST NOT REQUIRE */+
/* TASK TERMINATION */+
/* CLEANUP PROCESSING) */+
/* */+

IKJEFF76) /* AUTHORIZED PROGRAMS. */+
/* THESE PROGRAMS MUST */+
/* BE LISTED IN AUTHTSF */+
/* (OR THE IKJEFTAP TABLE) */+
/* */

Using the PLATCMD and PLATPGM Statements

Chapter 11. Specifying Commands and Programs for the Command/Program Invocation Platform 161

Using the PLATCMD and PLATPGM Statements

162 z/OS V1R4.0 TSO/E Customization

Chapter 12. Setting Up the TRANSMIT and RECEIVE
Environment

Specifying Installation Defaults for TRANSMIT and RECEIVE 163
Setting TRANSMIT and RECEIVE Defaults in IKJTSOxx 164
Writing and Installing the INMXPARM CSECT 164

Modifying JES Initialization Statements 164

Before people at your installation can use the TRANSMIT and RECEIVE
commands, you must:

v Specify installation defaults that control TRANSMIT and RECEIVE processing,
and system ID-node name associations, in one of the following:
– SYS1.PARMLIB member IKJTSOxx
– CSECT INMXPARM

“Setting TRANSMIT and RECEIVE Defaults in IKJTSOxx” on page 164 describes
how to use IKJTSOxx, and “Writing and Installing the INMXPARM CSECT” on
page 164 describes how to replace the IBM-supplied dummy INMXPARM CSECT
with your version. Unless you use IKJTSOxx or replace the dummy CSECT,
TRANSMIT and RECEIVE do not work.

v Add TRANSMIT, its alias XMIT, and RECEIVE to the table of authorized
commands. Chapter 10, “Specifying Authorized Commands/Programs, and
Commands Not Supported in the Background” on page 153 describes how to
maintain that table either in the IKJTSOxx member of SYS1.PARMLIB, or in the
IKJEFTE2 CSECT in load module IKJTABLS, which is in SYS1.LPALIB.

v Check and, if necessary, modify JES initialization statements. The JES
initialization statements must specify that SYSOUT data is to be written, that the
output class is punched, and that the punched card output limit is large enough
to transmit data sets. “Modifying JES Initialization Statements” on page 164 lists
the initialization statements you need to check.

v Unless you are using RACF, to enable users to issue RECEIVE in the
background, ensure that their user IDs are placed in the ASXBUSER field of the
ASXB control block. (RACF stores the user ID for you.) If the user ID is not
stored in that field, RECEIVE does not work in the background. If you allow users
to issue RECEIVE in the background, you might also need to write a RECEIVE
pre-processing exit (INMRZ11R or INMRZ11) to respond to the prompts that
RECEIVE issues to users.

After making TRANSMIT and RECEIVE available, you can use one or more TSO/E
or JES exits to monitor or modify TRANSMIT or RECEIVE processing. Chapter 37,
“Customizing TRANSMIT and RECEIVE” on page 395 describes the exits.

Specifying Installation Defaults for TRANSMIT and RECEIVE
Before people at your installation can use TRANSMIT and RECEIVE, you must
specify installation defaults that control TRANSMIT and RECEIVE processing, and
system ID-node name associations. To do so, you can use the INMXPARM CSECT
or member IKJTSOxx of SYS1.PARMLIB. With IKJTSOxx, you avoid having to
update, reassemble and link-edit the CSECT, and you can update or list the
defaults dynamically using the PARMLIB command. For information about using the
PARMLIB command, see z/OS TSO/E System Programming Command Reference.

© Copyright IBM Corp. 1988, 2002 163

If TSO/E finds both, the INMXPARM CSECT and the TRANSREC statement in
member IKJTSOxx of SYS1.PARMLIB, it uses either of it as shown:

Table 20. Usage of INMXPARM CSECT versus TRANSREC Statement

INMXPARM is IBM-supplied INMXPARM is customized

No TRANSREC statement
present

Error message INMR152I or
INMX152I is issued

INMXPARM is used

TRANSREC statement
present with operands 5

Defaults from IKJTSOxx are
used

Defaults from IKJTSOxx are
used

Setting TRANSMIT and RECEIVE Defaults in IKJTSOxx
To specify TRANSMIT and RECEIVE defaults in IKJTSOxx, do the following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB to contain the appropriate TSO/E options for
your installation.

In IKJTSOxx, code the TRANSMIT and RECEIVE defaults on the TRANSREC
statement. They include all the defaults you can specify in CSECT INMXPARM, and
some more in addition.

For information about the TRANSREC syntax in IKJTSOxx, see z/OS MVS
Initialization and Tuning Reference.

Writing and Installing the INMXPARM CSECT
IBM supplies a dummy INMXPARM CSECT that you can replace by editing and
executing the job stream in the INMINOPT member of SYS1.SAMPLIB. The job
stream creates an SMP/E user-supplied system modification (a USERMOD) that
replaces the IBM-supplied version of INMXPARM with your version. INMINOPT
includes instructions for updating the job stream to create the required USERMOD.

The job stream includes the following INMXP, INMNODE, and INMEND macro
instructions for specifying INMXPARM values. You must modify them:
INMXP
INMNODE NODENAME,SMFID
INMEND

Use INMXP to specify installation controls for TRANSMIT and RECEIVE
processing, and defaults for parameters on the TRANSMIT and RECEIVE
commands. Use INMNODE to associate a system ID with a network node name.
Use INMEND to mark the end of the list of INMNODE statements. Chapter 49,
“Macro Syntax” on page 725 gives the syntax and rules for specifying those macros.

Modifying JES Initialization Statements
If your installation has JES2 installed:

5. If the TRANSREC statement is found without operands in IKJTSOxx it is treated as if it is not present.

Specifying Defaults for TRANSMIT and RECEIVE

164 z/OS V1R4.0 TSO/E Customization

v Specify OUTPUT=YES on the TSUCLASS and STCCLASS JES2 initialization
statements to specify that SYSOUT data is to be written for jobs executed in time
sharing classes. JES2 treats a file submitted by TRANSMIT processing as an
output data set. Unless the SYSOUT data set can be written to a spool device,
TRANSMIT does not work.
TSUCLASS OUTPUT=YES, ...
STCCLASS OUTPUT=YES, ...

v Include a JES2 OUTCLASS initialization statement to specify the output class for
punched output:
OUTCLASS(v) OUTPUT=PUNCH, ...

The value you specify for OUTCLASS(v) should be identical to the value
specified on either:

– The SPOOLCL parameter on the TRANSREC statement in PARMLIB member
IKJTSOxx

– The INMXPARM CSECT

Refer to z/OS JES2 Initialization and Tuning Guide and z/OS JES2 Initialization
and Tuning Reference for additional JES2 initialization statements and z/OS
JES2 Installation Exits for installation exits that can affect punch card output
limits.

If your installation has JES3 installed:

v Include a JES3 SYSOUT initialization statement to specify that the output class is
to be punched:
SYSOUT, CLASS=outclass,TYPE=PUNCH, ...

The value you specify for the SYSOUT class should be identical to the value
specified on either:

– The SPOOLCL parameter on the TRANSREC statement in PARMLIB member
IKJTSOxx

– The INMXPARM CSECT

Refer to z/OS JES3 Initialization and Tuning Guide and z/OS JES3 Initialization
and Tuning Reference for additional JES3 initialization statements and z/OS
JES3 Customization for installation exits than can affect punched card output
limits.

Modifying JES Initialization Statements

Chapter 12. Setting Up the TRANSMIT and RECEIVE Environment 165

Modifying JES Initialization Statements

166 z/OS V1R4.0 TSO/E Customization

Chapter 13. Customizing the HELP Data Set

Updating the HELP Data Set 167
Using the Prompt Mode Function. 167
Using the Include Control Character 167

The SYS1.HELP data set contains a member for each TSO/E command. When a
user issues the HELP command, information from the HELP data set is displayed.
Control characters within each member determine the information that is displayed.

This chapter explains how you can customize the HELP data set by adding new
members or adding control characters to existing members.

You can also customize the HELP command to allocate different help data sets for
particular languages. See Chapter 19, “Customizing TSO/E for Different Languages”
on page 187 for information about providing help information in different languages.

Updating the HELP Data Set

Using the Prompt Mode Function
Whenever a user issues a command and does not enter a positional operand or
specifies the operand incorrectly, the parse service routine prompts the user. The
user can then enter question marks to receive second-level messages that provide
information about the operand. If second-level messages are unavailable or they
have all been displayed, parse determines whether it can use the prompt mode
HELP function. This function lets parse generate a HELP command and retrieve
information about the operand from the HELP data set.

The prompt mode HELP function is available for the following TSO/E commands:
ALTLIB, ATTRIB, CALL, CANCEL, EDIT, EXEC, HELP, OUTPUT, RUN, SEND,
RACONVRT, SYNC, and TRANSMIT.

You can provide the prompt mode HELP function for other TSO/E commands and
subcommands that have positional operands. The exceptions are the TEST and
TESTAUTH commands, which do not support this function. To provide the prompt
mode HELP function for these commands and subcommands, update the specific
HELP data set members for the command in SYS1.HELP. The member name is the
same name as the command. In the member, enter the positional control character
)P on the first line of each positional operand description for the command and its
subcommands. For more information about the prompt mode HELP function and
the)P positional control character, see z/OS TSO/E Programming Guide.

Note: If you update a member for this support, you must ensure that you insert a
)P for all of the positional operands for a command and its subcommands. If
you do not do this and a positional operand does not have an)P,
unpredictable results may occur when the parse service routine uses the
prompt mode HELP function.

Using the Include Control Character
In addition to displaying information from a single member of the HELP data set,
you can include help information contained in other members by using the include
control character followed by the member name. Using the include control character
is useful when you plan to add information that is not yet available, and also when

© Copyright IBM Corp. 1988, 2002 167

you must repeat information. For more information about the include control
character and other control characters for the HELP data set, see z/OS TSO/E
Programming Guide.

Updating the HELP Data Set

168 z/OS V1R4.0 TSO/E Customization

Chapter 14. Making Host Services Available to PC Users

Initializing MVSSERV for the TSO/E Enhanced Connectivity Facility 169

The TSO/E command processor MVSSERV allows IBM host computers and
properly-configured IBM personal computers to communicate. This communication
enables personal computer (PC) programs to access a host computer’s services,
using IBM System/370 to IBM Personal Computer Enhanced Connectivity Facilities
(ECF).

The host services are made available to the PC requester programs by
corresponding server programs on MVS. IBM provides several server and requester
programs, and you can write servers and requesters of your own.

Initializing MVSSERV for the TSO/E Enhanced Connectivity Facility
The TSO/E Enhanced Connectivity Facility (ECF) allows you to use IBM-supplied
servers or write your own servers for use on TSO/E. The tasks you can perform
using IBM-supplied server/requesters are:

v Use host disk space as if it were a personal computer fixed disk

v Print personal computer output on certain host printers as if they were personal
computer printers

v Copy files from the personal computer to the host

v Execute TSO/E commands, CLISTs, and REXX execs

For more information about the servers and requesters IBM provides, and PC
configurations supported, see Enhanced Connectivity Facilities Introduction.

You can write your own servers and requesters to provide additional host services
to PC users. You can provide any service that is available to a problem program on
MVS. Your servers are restricted only by MVS and PC resources, and by
conventions used in the requester program. For information about writing and
installing your own servers on TSO/E, see z/OS TSO/E Guide to SRPI. That
document describes how to:

v Supply and initialize the input parameter data set for MVSSERV

v Supply diagnostic data sets for MVSSERV

v Write and package the servers and their initialization/termination programs

v Install the servers, initialization/termination programs, and access method drivers

With ECF, you can customize the way in which servers and requesters
communicate. MVSSERV includes programs called access method drivers, which
manage communications with PCs attached to the host through an IBM 3174 or
3274 control unit in Distributed Function Terminal (DFT) or Control Unit Terminal
(CUT) mode. MVSSERV also provides an interface that lets you write and install
other access method drivers to support other modes of host-to-PC attachment. For
example, you could write an access method driver that supports a phone
connection between the host and a PC, allowing a PC user to access host services
by phone.

For information about writing and installing access method drivers, see z/OS TSO/E
Guide to SRPI.

© Copyright IBM Corp. 1988, 2002 169

Initializing MVSSERV for the TSO/E Enhanced Connectivity Facility

170 z/OS V1R4.0 TSO/E Customization

Chapter 15. Monitoring TSO/E Resources

Monitoring TSO/E Commands 171
Monitoring the Performance of TSO/E Users 171

Monitoring the Performance of TSO/E Users On-line 171
Collecting Statistics about Transactions in Batch 172

You can monitor certain TSO/E resources, such as TSO/E users and commands.
This chapter will help you decide whether to monitor the:
v TSO/E commands users issue
v Performance of TSO/E transactions.

Monitoring TSO/E Commands
You can monitor the TSO/E commands users issue and record the number of times
a user issues a specific command or subcommand. System Management Facilities
(SMF) records information about TSO/E commands in a type 32 SMF record. You
can write an application to process and report on the information that SMF records.
For example, you can:

v Keep track of and compare how frequently certain commands at your installation
are used. You may want to provide better performance for the more commonly
used commands by placing them in LPALIB.

v Keep track of the number of times users issue TSO/E commands so you can bill
users for their computer use.

v Audit the commands users issue to ensure they do not violate security practices
at your installation.

By default, SMF records contain certain statistics about most TSO/E commands.
You can record information about additional TSO/E commands, such as MVSSERV,
or keep information about certain TSO/E commands from being recorded. For
information about how to add or delete commands, see z/OS MVS System
Management Facilities (SMF).

You may also want to record additional information about each TSO/E command,
such as the number of TPUTs and TGETs that are issued for each command.
Monitoring the number of TPUTs and TGETs allows you to keep track of terminal
activity. To record additional information about each command, use the SYS
parameter in SYS1.PARMLIB member SMFPRMxx. For more information about
using SMFPRMxx, see z/OS MVS System Management Facilities (SMF).

Note that you cannot use SMF to restrict users from using commands. For
information about limiting commands, see Chapter 17, “Protecting the Resources
TSO/E Users Can Access” on page 177.

Monitoring the Performance of TSO/E Users
You can use SMF, System Resource Manager (SRM), and RMF to monitor the
performance of TSO/E users. You can monitor the performance of TSO/E users
on-line or in batch.

Monitoring the Performance of TSO/E Users On-line
You can use RMF Monitor III to monitor the performance of TSO/E users on-line,
identify performance problems as they occur, and identify the TSO/E users who are

© Copyright IBM Corp. 1988, 2002 171

delayed. You can customize RMF reports to include information about the relative
speed of domains, performance groups, or individual TSO/E users. You can also
report exceptional conditions, and request that RMF notify you when the
performance of a TSO/E user or group of users falls below a certain level.

For information about using RMF Monitor III to monitor the performance of TSO/E
users, see z/OS RMF Report Analysis.

Collecting Statistics about Transactions in Batch
You can use RMF Monitor I to collect statistics about users and commands in
batch. For each reporting performance group in your system, you can gather
information about the:
v Average service rate
v Number of completed transactions
v Average response time of each transaction

RMF Monitor I helps you find out about system performance over time, so you can
do capacity planning. RMF allows you to monitor the load a set of users places on
the system, or find out whether a particular TSO/E command is consuming too
many resources. For more information about using RMF Monitor I, see z/OS RMF
Report Analysis.

Monitoring the Performance of TSO/E Users

172 z/OS V1R4.0 TSO/E Customization

Chapter 16. Defining Performance Objectives for TSO/E

Deciding What Kind of Response Time TSO/E Users Will Have 173
Deciding About Better Performance for Certain Users and Commands 174
Making TSO/E Response Time More Consistent 175

You should review, and if necessary, adjust the factors that affect the performance
of TSO/E. To develop objectives for TSO/E, you must:

v Decide what kind of on-line response time you want for TSO/E users

v Balance TSO/E against other work at your installation, such as batch, and decide
the proportion of resources to be given TSO/E

v Decide whether to provide better performance for certain TSO/E users or
commands

v Decide whether to provide more consistent response time for TSO/E commands

To put the objectives into effect, change System Resource Management (SRM)
parameters in SYS1.PARMLIB. Before you change SRM parameters, review the
information about SRM in z/OS MVS Initialization and Tuning Reference.

As you tune your system to provide better response time for TSO/E users, you may
adversely affect the performance of other work at your installation, such as batch.
There is usually a trade-off between the performance of your batch system and
on-line response time.

Deciding What Kind of Response Time TSO/E Users Will Have
Before you can adjust TSO/E, you must determine what good performance is. The
basic criterion of TSO/E performance is response time. When deciding what kind of
response time you want, consider:

v The resources available at your installation, such as processor capacity

v What priority TSO/E users must have in relationship to other work at your
installation, such as batch. After you have decided what priority TSO/E users
have, you can decide the proportion of the resources to which TSO/E users have
access.

v The expectations of the users and what they use the system for

Because TSO/E users work interactively with TSO/E, it is important that overall
response time be fast enough so that users can work effectively. The optimum
response time varies depending on how you use the system. In systems where
users enter data rapidly and continuously, fast response time is more critical than in
a system that carries out complex calculations.

Because users expect good response time from TSO/E commands, you should try
to tune your system so that most TSO/E commands complete within one second.
Categorize TSO/E commands according to the resources they require and provide
better response time to commands that require fewer resources. To define your
objectives, use SYS1.PARMLIB member IEAIPSxx. For more information about
SYS1.PARMLIB member IEAIPSxx, see z/OS MVS Initialization and Tuning
Reference.

© Copyright IBM Corp. 1988, 2002 173

Deciding About Better Performance for Certain Users and Commands
You can allow individual users or groups of users to have different levels of
performance than they receive by default. For example, you can give users who
must accomplish high-priority work more resources and better response time. To
associate TSO/E users with different levels of performance, use SYS1.PARMLIB
member IEAICSxx. For more information about SYS1.PARMLIB member IEAICSxx,
see z/OS MVS Initialization and Tuning Reference.

Although you cannot, through SYS1.PARMLIB member IEAICSxx, associate TSO/E
commands with different levels of performance, you can provide different levels of
performance for both commands and user-written exit routines, depending on where
you place them. By default, most TSO/E commands reside in SYS1.CMDLIB, and
exits IBM provides reside in the same place as the load modules with which they
are associated. You can install commands and exit routines in PLPA (pageable link
pack area), in FLPA (fixed link pack area), in the LNKLST concatenation, or in a
private STEPLIB data set.

Using PLPA or FLPA provides the best performance. The commands reside in
virtual storage, so the system does not have to do the I/O required for retrieving
commands from SYS1.CMDLIB. However, placing commands in PLPA or FLPA:

v Uses more common storage.

v Makes it more difficult to make changes. To update commands or exits in PLPA
or FLPA, you must re-IPL your system.

v Makes the process of installing TSO/E less straight-forward. When you install a
new release of TSO/E, you must copy the new versions of the commands to
PLPA.

You should move all reentrant TSO/E modules that can reside either above or
below 16 MB in virtual storage to PLPA. If your system is storage-constrained, you
may want to move just the most commonly-used commands and exit routines to
PLPA. To identify the most commonly-used commands, use System Management
Facilities (SMF). For more information about using SMF, see Chapter 15,
“Monitoring TSO/E Resources” on page 171.

You may want to move commands that are infrequently used, but must provide
good response time, to FLPA. For example, if users log on infrequently, you may
want to page-fix the modules associated with the LOGON command. However, note
that some of the modules associated with the LOGON command reside below 16
MB in virtual storage. Therefore, if your system is storage-constrained, you may not
want to page-fix these modules. To page-fix modules associated with logon
processing, update SYS1.PARMLIB member IEAFIXxx. For more information about
IEAFIXxx, see z/OS MVS Initialization and Tuning Reference.

Although the performance of commands and exit routines in the LNKLST
concatenation is generally not as good as PLPA, modules are easier to update. To
update modules, you must build a new copy of the LNKLST directory. For
information about how to build a new copy of the LNKLST directory, see z/OS MVS
System Commands.

Note: If you move the following subcommands of the EDIT command from PLPA,
do not delete them from the LNKLST concatenation: ALLOCATE, ATTRIB,
EXEC, FREE, HELP, PROFILE, RUN, SEND, and SUBMIT.

Deciding About Better Performance ...

174 z/OS V1R4.0 TSO/E Customization

You should avoid placing commands and programs in STEPLIB data sets, except
when you are testing them. Using STEPLIB data sets could adversely affect the
performance of your system because each time you execute a command or load a
program, the system searches the STEPLIB data set before searching any others. If
you must use STEPLIB data sets, you should not concatenate them. Response
time is usually better if you use one large data set instead of concatenating several
smaller data sets.

Making TSO/E Response Time More Consistent
To make TSO/E response time more consistent, use the RTO parameter in
SYS1.PARMLIB member IEAIPSxx. You may want to keep TSO/E response time
from fluctuating if your system is used heavily during one part of the day, and used
little during others. If you are installing TSO/E for the first time, you may want to
reserve resources for the future to keep response time from declining noticeably as
you add users. Note that you cannot use SYS1.PARMLIB member IEAIPSxx to
improve response time in a heavily-loaded system, only to make response time
more consistent. One possible drawback to using the RTO parameter is that it
defines the minimum possible response time. The response time for TSO/E will
never be faster than the value you specify. For more information about
SYS1.PARMLIB member IEAIPSxx, see z/OS MVS Initialization and Tuning
Reference.

Deciding About Better Performance ...

Chapter 16. Defining Performance Objectives for TSO/E 175

Making TSO/E Response Time More Consistent

176 z/OS V1R4.0 TSO/E Customization

Chapter 17. Protecting the Resources TSO/E Users Can
Access

Limiting the Use of TSO/E Commands. 177
Limiting the TSO/E Commands Users Can Use from READY Mode 178
Limiting the Commands Users Can Use from Session Manager 180
Limiting the Commands Users Can Use in the Background 181
Limiting the Commands Users Can Issue from ISPF/PDF Panels 181

Limiting Access to Data Sets 181

You can use several facilities to limit the use of TSO/E commands and protect
TSO/E data sets. This chapter provides an overview of how to perform these tasks.

Limiting the Use of TSO/E Commands
You may want to limit the use of TSO/E commands at your installation. For
example, you may want to limit certain commands to conserve resources, such as
spool space. You can restrict the TSO/E commands users can use from:
v READY mode TSO/E
v The TSO/E Session Manager
v Background mode
v ISPF/PDF panels

Table 21 lists the commands you can limit from each environment and the functions
you can use to limit the commands.

Table 21. Commands You Can Limit

Environment Commands You Can Limit Method

READY mode TSO/E ACCOUNT, OPERATOR,
RACONVRT, and SYNC

ACCOUNT and RACF
commands, and the logon exit
IKJEFLD or IKJEFLD1

SUBMIT, OUTPUT, STATUS,
and CANCEL

ACCOUNT and RACF
commands, and exit routines

CONSOLE and CONSPROF RACF commands, logon exit
IKJEFLD or IKJEFLD1, and
the CONSOLE and
CONSPROF exit routines

PARMLIB and TESTAUTH RACF commands and exit
routines

TRANSMIT, RECEIVE,
SEND, LISTBC, LOGON,
LOGOFF, ALLOCATE,
ALTLIB, TEST, FREE,
OUTDES, PRINTDS, EXEC,
and OPERATOR SEND

Exit routines

TSO/E Session Manager Any TSO/E command Session Manager exit
routines

Background mode Any TSO/E command SYS1.PARMLIB member
IKJTSOxx or CSECT
IKJEFTNS

ISPF/PDF panels Any TSO/E command ISPMTCM macro statement

© Copyright IBM Corp. 1988, 2002 177

Limiting the TSO/E Commands Users Can Use from READY Mode
The following topics describe how you can limit the use of commands from READY
mode. Limiting the use of these commands from READY mode also limits their use
from ISPF/PDF and the TSO/E Session Manager, but not from the background.

Limiting the Use of the ACCOUNT, OPERATOR, RACONVRT, and
SYNC Commands
By default, users cannot use the ACCOUNT, OPERATOR, RACONVRT, or SYNC
commands. You should grant only a few users at your installation the authority to
use these commands. You should grant ACCOUNT command authority only to
users who must add and maintain user profiles. Granting users authority to use the
ACCOUNT command automatically allows them to use the SYNC command.
Because limiting the use of the broadcast data set may improve the performance of
the LOGON command, you may want to restrict the use of the OPERATOR
command to users who must send notices and cancel other users’ sessions. You
should restrict the use of the RACONVRT command to users responsible for
converting from SYS1.UADS to the RACF data base.

You grant users access to the ACCOUNT, OPERATOR, SYNC, and RACONVRT
commands when you add them to TSO/E. To specify whether a user can use these
commands, use either the ACCOUNT command or the RACF RDEFINE and
PERMIT commands depending on whether the user is defined in the UADS or the
RACF data base. You can also authorize users to the ACCOUNT, SYNC, and
OPERATOR commands using the logon pre-prompt exit IKJEFLD or IKJEFLD1.

For more information about using the ACCOUNT command, see z/OS TSO/E
System Programming Command Reference. For more information about using
RACF commands, see z/OS Security Server RACF Command Language
Reference.

Using RACF commands, the ACCOUNT command, or the logon exits to limit the
use of the ACCOUNT command limits its use in the foreground, but not in the
background. Users who have not been granted authority to use the ACCOUNT
command can still use it in background mode. To restrict the use of the ACCOUNT
command in the background:

v Restrict access to the user attributes data set (UADS). For example, you can use
RACF to limit users who have access to the data set.

v Use SYS1.PARMLIB member IKJTSOxx or CSECT IKJEFTNS to specify that the
ACCOUNT command cannot be used in the background.

It is probably better to restrict access to the UADS, rather than restricting the use of
the ACCOUNT command in the background. Restricting the use of the ACCOUNT
command in the background restricts all users from using it, and you may want
administrators at your installation to be able to run the command in the background.

Limiting the Use of the SUBMIT, OUTPUT, STATUS, and CANCEL
Commands
You can allow users to submit and process batch jobs with the TSO/E SUBMIT,
OUTPUT, STATUS, and CANCEL commands. By default, users cannot use these
commands. Because TSO/E jobs are submitted randomly, they may interfere with
other batch jobs. For this reason, you may want to grant only the users who must
submit and process batch jobs access to the SUBMIT, OUTPUT, STATUS, and
CANCEL commands. For example, you may want to keep users whose primary job
involves on-line data entry from submitting batch jobs and processing the output.

Limiting the Use of TSO/E Commands

178 z/OS V1R4.0 TSO/E Customization

You grant users access to the SUBMIT, OUTPUT, STATUS, and CANCEL
commands when you add them to TSO/E by using either the ACCOUNT command
or the RACF RDEFINE and PERMIT commands. You can only allow a user to use
all, or none, of these commands.

For more information about using the ACCOUNT command to restrict the use of the
SUBMIT, OUTPUT, STATUS, and CANCEL commands, see z/OS TSO/E
Administration. For more information about using RACF commands, see z/OS
Security Server RACF Command Language Reference.

To further control the use of these commands, use TSO/E, JES2, and JES3
installation exits as described in Chapter 32, “Customizing the SUBMIT Command
and Job Output Processing” on page 295. For example, you can use the TSO/E
OUTPUT, STATUS, and CANCEL command exit to restrict the jobs for which a user
can obtain status.

Limiting the Use of the CONSOLE and CONSPROF Commands
The CONSOLE command allows users to issue MVS system and subsystem
commands and obtain responses to those commands. By default, users cannot use
the CONSOLE command.

You can grant users access to the CONSOLE command using one of the following
methods:

v RACF RDEFINE and PERMIT commands.

Use the RACF RDEFINE command to define CONSOLE as a RACF resource
belonging to the TSOAUTH RACF class. Then grant selected users access to the
CONSOLE resource using the RACF PERMIT command.

v Logon pre-prompt exit IKJEFLD or IKJEFLD1.

v CONSOLE exit IKJCNXAC and CONSPROF exit IKJCNXCI. IKJCNXAC grants
users CONSOLE command authority for the duration of the console session.
IKJCNXCI grants users CONSOLE command authority for the duration of the
CONSPROF command.

Note: Because each of these exits can give users only temporary CONSOLE
command authority, it is recommended that you use both exits to
authorize users.

The CONSPROF command allows users to set up a console profile to tailor the
processing of the CONSOLE command. Users require CONSOLE command
authority to use the CONSPROF command. Granting users CONSOLE command
authority using RACF commands or the LOGON pre-prompt exit automatically
allows them to use the CONSPROF command.

For information about writing CONSOLE and CONSPROF exit routines, see
Chapter 27, “Customizing the CONSOLE and CONSPROF Commands” on
page 235.

Limiting the Use of the PARMLIB Command
You can list and update TSO/E specifications that are in effect on the system using
the PARMLIB command. By default, users cannot use this command.

You grant users access to the PARMLIB command using the RACF RDEFINE and
PERMIT commands, or by writing an exit routine for PARMLIB.

Limiting the Use of TSO/E Commands

Chapter 17. Protecting the Resources TSO/E Users Can Access 179

You can use the RACF RDEFINE command to define PARMLIB as a RACF
resource belonging to the TSOAUTH RACF class. Then grant selected users
access to the PARMLIB resource using the RACF PERMIT command.

For information about writing an exit routine to control access to PARMLIB, see
Chapter 31, “Customizing the PARMLIB Command” on page 289.

Limiting the Use of the TESTAUTH Command
You can issue the TESTAUTH command to test authorized assembler programs. By
default, users cannot use this command. The users of the TESTAUTH command
should be limited to system programmers who need to debug authorized exits,
commands, or programs for your installation.

You grant users access to the TESTAUTH command using the RACF RDEFINE
and PERMIT commands, or by writing an exit routine for TESTAUTH.

You can use the RACF RDEFINE command to define TESTAUTH as a RACF
resource belonging to the TSOAUTH RACF class. Then give selected users access
to the TESTAUTH resource using the RACF PERMIT command.

For information about writing an exit routine to control access to TESTAUTH, see
Chapter 36, “Customizing the TESTAUTH Command” on page 383.

Limiting the Use of Other Commands Using Exits
By default, users can issue the TRANSMIT, RECEIVE, SEND, LISTBC, LOGON,
LOGOFF, ALLOCATE, ALTLIB, TEST, FREE, OUTDES, PRINTDS, and EXEC
commands from READY mode. To limit these commands to certain users, you can
use the exit routines provided for these commands.

Users who are authorized to use the OPERATOR command can use the SEND
subcommand. You can restrict authorized users of the OPERATOR command from
using the SEND subcommand by writing an exit routine. For more information, see
the individual descriptions of the exit routines in this document.

Limiting the Commands Users Can Use from Session Manager
By default, users can use all TSO/E commands from the TSO/E Session Manager.
You can use Session Manager exits to restrict all users, or specific users, from
using any TSO/E command.

If users at your installation primarily use the TSO/E Session Manager to interact
with TSO/E, you may want to restrict the commands they can use under Session
Manager. For example, you could restrict the use of TRANSMIT and RECEIVE if
spool space at your installation is limited.

One problem with using Session Manager to restrict the use of commands is that
the commands are restricted only when users use Session Manager. Because
users can issue TSO/E commands from other environments, such as ISPF/PDF
and TSO/E READY mode, using Session Manager to restrict the commands users
can issue is effective only if users do all of their work under Session Manager.

For more information, see “Writing Session Manager Exits” on page 572.

Limiting the Use of TSO/E Commands

180 z/OS V1R4.0 TSO/E Customization

Limiting the Commands Users Can Use in the Background
By default, users can issue all TSO/E commands in background mode, except for
the OPERATOR and TERMINAL commands and their aliases OPER and TERM.
You may want to restrict the use of certain TSO/E commands to, for example, keep
users from:
v Using user-written commands that do not work in the background
v Using commands whose use you plan on restricting in foreground mode.

To limit the use of commands in the background, you can either use
SYS1.PARMLIB member IKJTSOxx, or update the CSECT IKJEFTNS. One
advantage of using SYS1.PARMLIB member IKJTSOxx is that it is easier to update.
You must reassemble and link-edit CSECT IKJEFTNS each time you update it.

Limiting the Commands Users Can Issue from ISPF/PDF Panels
By default, users can issue most TSO/E commands from ISPF/PDF panels. For a
list of the commands users can issue by default, see z/OS ISPF Planning and
Customizing. To restrict users from using TSO/E commands from ISPF/PDF panels,
modify the ISPTCM module. For example, if you wanted to keep users from using
any TSO/E commands, and restrict them to just ISPF/PDF panels, you would have
to remove the TSO/E commands from the module. To update the ISPTCM module,
use the ISPF ISPMTCM macro. For more information about the ISPMTCM macro,
see z/OS ISPF Planning and Customizing.

Limiting Access to Data Sets
You may want to control the access TSO/E users have to data sets. For example,
you may want to allow users to allocate only data sets having a high-level qualifier
of the user’s user ID, giving you more control over the use of DASD.

You can use several functions to control access to data sets and DASD, including:

v The MVS allocation input validation routine (IEFDB401). For example, you can
restrict the data sets a user can allocate. For more information, see z/OS MVS
Programming: Authorized Assembler Services Guide.

v RACF. You can use RACF to specify which users can access:
– Non-VSAM and VSAM data sets
– Generation data groups.

You can RACF-protect one data set at a time, or many. For example, you can
specify that all of the data sets beginning with the high-level qualifier ‘SYSTEM’
have the same protection.

To RACF-protect a data set, use either RACF commands or ISPF RACF panels
to build a profile for the data set. The profile contains information about the users
who can access the data set.

With RACF installed, security label checking can be activated. In this case, each
data set and each user have security labels associated with them. The security
label of the data set and the security label of the user’s current session are
checked. Access to the data set is determined by the result of that check.

For more information about using RACF to protect data sets, see z/OS Security
Server RACF Security Administrator’s Guide and z/OS Security Server RACF
General User’s Guide.

Limiting the Use of TSO/E Commands

Chapter 17. Protecting the Resources TSO/E Users Can Access 181

Users can password-protect their data sets by using the TSO/E PROTECT
command. You may want to limit the use of the PROTECT command at your
installation because it may be difficult to centrally manage data sets that are
individually password-protected. For more information about using the PROTECT
command, see z/OS TSO/E Command Reference.

With RACF installed, messages contained in individual user log data sets can be
protected from the user’s view while the user is logged on at an insufficient security
label. For more information, see Chapter 34, “Customizing How Users Send and
Retrieve Messages” on page 335.

Limiting Access to Data Sets

182 z/OS V1R4.0 TSO/E Customization

Chapter 18. Customizing PUTGET and GETLINE Processing

Customizing PUTGET and GETLINE 183
Functional Description . 183
TSO/E-Supplied Exits . 183
Entry Specifications. 183
Parameter Descriptions for IKJEFXG1 183
Return Specifications . 185
Programming Considerations 185

Commands and programs can invoke the PUTGET and GETLINE service routines
to obtain lines of input. You can use the pre-PUTGET and pre-GETLINE exit
(IKJEFXG1) to customize PUTGET and GETLINE processing.

Customizing PUTGET and GETLINE

Functional Description
The PUTGET macro instruction puts messages out to the terminal and obtains a
response to those messages. For example, the responses can be commands,
subcommands, and prompt messages. The GETLINE macro instruction obtains
lines of input. Both PUTGET and GETLINE obtain a line of input from the input
stack, the REXX data stack, or the terminal. For more information about PUTGET
and GETLINE, see z/OS TSO/E Programming Services.

To customize PUTGET and GETLINE processing, use the IKJEFXG1 exit. TSO/E
gives control to this exit when either PUTGET or GETLINE obtains a line of input.

TSO/E-Supplied Exits
TSO/E does not provide a default exit routine for IKJEFXG1.

Entry Specifications
For IKJEFXG1, the contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter Descriptions for IKJEFXG1
IKJEFXG1 receives the standard exit parameter list with the following exceptions:
v the command buffer field is not used
v the new command buffer is not used
v the exit reason code is not used

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

© Copyright IBM Corp. 1988, 2002 183

Figure 19 shows the exit-dependent data that IKJEFXG1 receives beginning at
offset +36 (decimal) in the parameter list.

IOPL Address to GETLINE (Parameter Entry 10)
This parameter is an address of a pointer to the input/output parameter list
(IOPL) received on invocation of the GETLINE service routine. The IOPL is
passed to the GETLINE service routine. Any modifications made to the IOPL
address are ignored by the GETLINE service routine. However, modifications
can be made to the IOPL itself. Parameter entry 10 is always passed to
IKJEFXG1 by the PUTGET and GETLINE service routines. For more
information about the IOPL, see z/OS TSO/E Programming Services.

IOPL Address to PUTGET (Parameter Entry 11)
This parameter is an address of a pointer to the input/output parameter list
(IOPL) received on invocation of the PUTGET service routine. The IOPL is
passed to the PUTGET service routine. Any modifications made to the IOPL
address are ignored by the PUTGET service routine. However, modifications
can be made to the IOPL itself. Parameter entry 11 is always passed to
IKJEFXG1 by the PUTGET service routine. For more information about the
IOPL, see z/OS TSO/E Programming Services.

Flags (Parameter Entry 12)
This parameter contains a word consisting of flags. The flags for this exit’s
processing are described in Table 22.

Table 22. Flags for IKJEFXG1

Number of Bytes Field Name Contents or Meaning

1
10.. The application program invoked the

GETLINE service routine.
Parameter entry 10 is always
passed to IKJEFXG1.

01.. The routine is invoked for PUTGET
processing. Parameter entry 11
contains a pointer to the PUTGET’s
IOPL.

..xx xxxx Reserved.
3 Reserved.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

0 or IOPL address

Flags

00000002 00000010 IOPL address

0 or 2 4 or 10

00000001 00000004

Figure 19. Exit-Dependent Data for Exit IKJEFXG1

Customizing PUTGET and GETLINE

184 z/OS V1R4.0 TSO/E Customization

Return Specifications
On return from IKJEFXG1, the contents of the registers must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for IKJEFXG1
IKJEFXG1 always sets a return code of zero.

Programming Considerations
IKJEFXG1 receives control whenever TSO/E is obtaining a line of input from the
input stack, the REXX data stack, or the terminal through the PUTGET or GETLINE
service routine. Recursive calls are possible if the exit attempts to invoke the
PUTGET or GETLINE service routine or any program (for example, the parse
service routine) that invokes PUTGET or GETLINE.

The exit must be reentrant, refreshable, reusable, and APF-authorized.

Environment
IKJEFXG1 requires the following environment:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v APF-authorized

Installing the Exit
You must name the exit IKJEFXG1. Link-edit the exit as a separate load module.
The exit must reside in an authorized library, preferably LPA.

Customizing PUTGET and GETLINE

Chapter 18. Customizing PUTGET and GETLINE Processing 185

Customizing PUTGET and GETLINE

186 z/OS V1R4.0 TSO/E Customization

Chapter 19. Customizing TSO/E for Different Languages

Providing Translated Messages 187
Initializing and Activating the MVS Message Service. 187

Specifying Help Data Sets . 188
Setting Up Languages for Users 189

Considerations for Setting Up Languages. 190

TSO/E takes advantage of the MVS message service to let you provide TSO/E
information to users in their national language. TSO/E information includes:

v TSO/E messages

v Help text for TSO/E commands

v The TRANSMIT command full-screen panel header information and PF key
definitions

In addition, the TSO/E CONSOLE command supports the display of translated
system messages issued during an extended MCS console session.

Note: The Session Manager does not support the display of translated information.

To provide translated messages and information (HELP and TRANSMIT), you need
to initialize and activate the MVS message service and set up languages for users.
For help information, you also need to specify the help data sets to be used for
each language in the IKJTSOxx member of SYS1.PARMLIB.

This chapter describes how you can:

v Initialize and activate the MVS message service

v Specify help data sets for different languages

v Set up languages for users

Providing Translated Messages
The MVS message service (MMS) enables your installation to use message files to
display translated messages. MMS substitutes a message translated into another
language for the equivalent U.S. English message.

For TSO/E to display translated messages, your installation needs to format install
message files that contain U.S. English message skeletons and the translated
language message skeletons using the MVS message compiler.

For MVS messages, IBM provides the install message file for U.S. English
messages and the install message file for Japanese translations. IBM also provides
TSO/E install message files in upper and mixed case U.S. English and Japanese.
For language translations other than Japanese, your installation must supply its own
version of the install message file with the appropriate translated message
skeletons. For more information, see z/OS MVS Planning: Operations.

Initializing and Activating the MVS Message Service
The following steps describe what your installation must do so TSO/E can display
translated messages. For complete information about these tasks, see z/OS MVS
Planning: Operations.

© Copyright IBM Corp. 1988, 2002 187

1. Ensure that the appropriate install message files have been installed on your
MVS/ESA System Product (MVS/ESA SP) system.

If your installation uses installation-written languages or symbolic language
names other then the standard three-character codes that are provided, these
languages and symbolic names must be defined to the MVS message service.

2. Allocate space for each run-time message file.

This run-time message file must be a VSAM linear data set. First, allocate a
VSAM linear data set for each run-time message file, then use the MVS
message compiler to format each install message file to a run-time message
file.

3. Use the MVS message compiler to format the install message file into a
run-time message file.

The input to the compiler is the install message file PDS. The output from the
compiler is the run-time message file allocated in step 2.

4. Create installation exits if you want to tailor MMS processing.

IBM provides two installation exits that an installation can use to customize
MMS processing. Specify the exit names in the MMSLSTxx member of
SYS1.PARMLIB.

5. Update the following SYS1.PARMLIB members to initialize values for MMS:

v MMSLSTxx, to define the available languages for message translation and
other message translation processing

v CNLcccxx, to define the date and time formats used in the display of
translated messages

v CONSOLxx, to specify the MMSLSTxx member in effect for the system

6. Activate MMS.

You can use the INIT statement in CONSOLxx to activate MMS at initialization.
The operator can activate MMS using the SET MMS command.

Specifying Help Data Sets
You can use the HELP statement in SYS1.PARMLIB member IKJTSOxx to define
help data sets for different languages. For the list of languages that IBM provides
help data sets for, see the appropriate installation manual.

On the HELP statement you can:
v Specify help for any number of languages
v Specify up to 255 data sets to be searched for help text in a particular language

To define help data sets in IKJTSOxx, do the following:

1. If you have not already done so, copy the sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
specify other installation defaults.

2. You can create alternate members using the IKJTSOxx naming convention.

3. Edit your IKJTSOxx member in SYS1.PARMLIB and locate the HELP statement.

4. Specify the operands for your installation requirements.

For more information about SYS1.PARMLIB, see z/OS MVS Initialization and
Tuning Reference.

The operands for the HELP statement are:
v language
v dsname

Providing Translated Messages

188 z/OS V1R4.0 TSO/E Customization

The syntax is:

PP Q

,

HELP language ('dsname') PR

The operands are described as follows:

language
specifies the language of the associated help data sets. You must specify the
three-character language code for the language. MMSLSTxx contains a list of
valid language codes.

dsname
specifies the name of the data set containing the help text for the associated
language. You may specify from 1 to 255 data sets, separating each with a
comma. The list of data set names must be enclosed in parentheses.

Note: When setting up the HELP parmlib statement, consider the DYNAMNBR
parameter on the JCL procedure used by LOGON. Each data set added
increases the number of the data sets dynamically allocated during the
TSO/E session.

A sample SYS1.PARMLIB HELP statement is shown in the following example:
HELP ENU(’SYS1.HELP’,’SYS1.HELP.MIGLIB’)

ESP(’SYS1.ESP.HELP’)
JPN(’SYS1.JPN.HELP’,’ANYUSER.TEST.JPN.HELP’)

When the HELP command locates information, it first checks the SYSHELP
ddname for allocation. If the file is allocated, it searches only those data sets. If the
file is not allocated, the HELP command checks the user profile table (UPT) for the
primary and secondary languages, allocates the corresponding data sets to a file,
and searches that file for the help information. If no entry is found for the primary or
secondary language, U.S. English is used as the default.

In all cases, if a user’s primary language is not supported at the user’s terminal or if
allocation problems occur, the HELP command attempts to use the secondary
language. If both attempts fail, U.S. English is used.

You can use the PARMLIB command to list the current HELP defaults in
SYS1.PARMLIB and dynamically update them (with the contents of IKJTSOxx)
without having to re-IPL the system. You can also use the PARMLIB command to
check the syntax of the HELP statement. For more information about using
SYS1.PARMLIB and the PARMLIB command, see z/OS TSO/E System
Programming Command Reference.

Setting Up Languages for Users
You can specify a primary language and a secondary language to be used for
displaying translated information. The primary and secondary languages you specify
need to be defined to the MVS message service. If the primary language is not
available or not supported by the user’s terminal and a secondary language has
been specified, information is displayed in the secondary language. If both the
primary and secondary languages fail, the default of U.S. English is used.

Languages can be specified in one of the following ways:

Specifying Help Data Sets

Chapter 19. Customizing TSO/E for Different Languages 189

v If your installation has RACF, you can use RACF commands to set up languages
for users. Installations can set up language segments for individual users with the
RACF ADDUSER or ALTUSER command. Users authorized to use the RACF
ALTUSER command can establish or change a language segment for
themselves. If a user has a language segment, the languages will be saved from
session to session.

Your installation can also use the SETROPTS command to establish a default
language for all users on the system. For more information about using the
SETROPTS command, see z/OS Security Server RACF Security Administrator’s
Guide.

v Your installation can use the logon installation exit IKJEFLD1 to set up language
values for users. For more information about this exit, see “Writing a Logon
Pre-Prompt Exit (IKJEFLD/IKJEFLD1)” on page 93.

v An individual user can use the TSO/E PROFILE command to set up or change
languages. For more information about this command, see z/OS TSO/E
Command Reference.

Considerations for Setting Up Languages
In deciding how to set up languages for the user, consider how TSO/E locates the
language it uses to display information. Figure 20 shows the language search order
that TSO/E uses.

TSO/E first checks the logon pre-prompt exit, IKJEFLD1, if it exists. If a language is
not defined in IKJEFLD1, then TSO/E takes one of two paths.

If you have RACF installed, TSO/E uses the primary and secondary languages from
the user’s RACF language segment if one has been defined. The language
segment reflects any changes made by the user with the TSO/E PROFILE
command. If a language segment has not been defined for the user, TSO/E uses
the installation defaults established using the RACF SETROPTS command. If you
have not specified language defaults, mixed case U.S. English (ENU) is used as
the primary and secondary languages.

Logonpre-prompt
exit IKJEFLD1

Logonpre-prompt
exit IKJEFLD1

With RACF Without RACF

RACFlanguage
segment

UserProfile
Table (UPT)

Installation
defaults

DefaultofU.S.
English (ENU)

Figure 20. TSO/E Language Search Order

Setting Up Languages for Users

190 z/OS V1R4.0 TSO/E Customization

If you do not have RACF installed and your version of the user profile table (UPT)
supports languages, TSO/E uses the primary and secondary languages from the
UPT. The default values in the UPT for the primary and secondary languages is
mixed case U.S. English (ENU), unless the user changes these using the TSO/E
PROFILE command.

Setting Up Languages for Users

Chapter 19. Customizing TSO/E for Different Languages 191

Setting Up Languages for Users

192 z/OS V1R4.0 TSO/E Customization

Chapter 20. Security Considerations for Customizing TSO/E

TSO/E User Identification . 193
Security Label (SECLABEL) at Logon 193
Protecting User’s Messages 193
Accesses to Spool Data Sets 194
TSO/E TRANSMIT and RECEIVE Commands 194

With RACF installed, your installation may use security enhancements. This chapter
briefly explains how the security enhancements affect customizing TSO/E, and
gives references to additional information.

TSO/E User Identification
If your installation uses security labels, and your installation uses the UADS and
broadcast data sets to maintain users, these data sets should be specifically
defined to RACF. For information about security labels and the UADS and
broadcast data sets, see Chapter 22, “Working with the UADS and Broadcast Data
Set” on page 201.

Your installation can maintain TSO/E users using the RACF data base by
converting your existing UADS data base to RACF. For more information about
converting from a UADS data base to a RACF data base, see Chapter 23, “Using
the RACF Data Base to Maintain TSO/E Users” on page 211.

Security Label (SECLABEL) at Logon
If your installation is using security labels, the SECLABEL field is available on both
the LOGON command and the LOGON panel. The SECLABEL set at LOGON time
is valid for the length of the TSO/E session.

If you write a logon pre-prompt exit (IKJEFLD1) for your installation, you can specify
a security label to be used for the session. For information about security labels and
customizing the logon process, see Chapter 8, “Customizing the Logon and Logoff
Process” on page 87.

Protecting User’s Messages
If your installation plans to use security labels to protect user’s messages, each
user should have an individual user log. For information about setting up individual
user logs, see “Converting from Using the Broadcast Data Set to User Logs” on
page 341 and “Security Protected User Logs” on page 342.

To ensure that the user’s messages are protected in an individual user log and
access to the messages is based on security label, the operand values in the
SEND PARMLIB parameter of the IKJTSOxx member of SYS1.PARMLIB should be
changed as follows:
v LOGNAME to logname
v USEBROD to OFF
v MSGPROTECT to ON

For more information about specifying the operands in the SEND PARMLIB
parameter, see Chapter 34, “Customizing How Users Send and Retrieve Messages”
on page 335.

© Copyright IBM Corp. 1988, 2002 193

Accesses to Spool Data Sets
You can control what job names a TSO/E user is allowed to submit by creating a
profile for each jobname in the RACF resource class JESJOBS. You can also
control what jobs a TSO/E user is allowed to cancel by creating a profile for
CANCEL in the RACF resource class JESJOBS.

You can control spool access of the SYSOUT data sets for the TSO/E OUTPUT
command by using the RACF resource class JESSPOOL.

If your installation uses the RACF resource classes JESJOBS and JESSPOOL, a
sample exit is supplied in member IKJEFF5X of SYS1.SAMPLIB that may be used
to replace the IBM supplied exit, IKJEFF53. This sample exit allows the JESJOBS
and JESSPOOL classes to control the jobname restrictions when these classes are
active. If you are using an installation-written exit, you may wish to look at the
sample exit in SYS1.SAMPLIB to determine if you need the same checking of the
JES classes in your exit.

For information about setting up the RACF resource classes JESJOBS and
JESSPOOL, see z/OS Security Server RACF Security Administrator’s Guide. For
information about the sample exit in SYS1.SAMPLIB, see “TSO/E Sample Exit” on
page 310.

TSO/E TRANSMIT and RECEIVE Commands
To allow TRANSMIT and RECEIVE access to the NAMES data set from any
security label, the installation-defined NAMES data sets must be allocated with a
SECLABEL of SYSLOW. For more information, see “Allocating NAMES and Log
Data Sets” on page 399.

If security label checking determines a receiving user is never authorized for the
proper security label, the data set may be deleted. The two JES exits (Exit 38 for
JES2, IATUX60 for JES3) can be written to hold or reroute data sets that would
otherwise be deleted.

Accesses to Spool Data Sets

194 z/OS V1R4.0 TSO/E Customization

Part 4. Maintaining the UADS, RACF Data Base, and
Broadcast Data Set

Before users can log on to TSO/E, you must make several data sets available to
the system. These data sets are needed to regulate access to the system and to
store messages intended for terminal users.

v Regulating Access to the System

To regulate access to the system, you can use either the RACF data base or
SYS1.UADS, the user attribute data set (UADS).

– If RACF is installed, you can use the RACF data base to regulate access to
the system and store information about each TSO/E user. The RACF data
base contains profiles for every entity (users, data sets or groups) defined to
RACF. If you use the RACF data base to maintain information about TSO/E
users, additional information about users is also stored in the RACF data
base. For more information about the RACF data base, see z/OS Security
Server RACF System Programmer’s Guide.

To add, change and delete user IDs, use RACF commands or panels. z/OS
TSO/E Administration provides an overview of the RACF commands you can
use to maintain user information.

– If RACF is not installed, you must use the user attribute data set. The UADS
is basically a list of terminal users who are authorized to use TSO/E.

To add, change and delete user IDs, use the TSO/E ACCOUNT command.
The ACCOUNT command and its subcommands are described in z/OS
TSO/E System Programming Command Reference.

To use the RACF data base instead of the UADS to store information about each
TSO/E user, convert user information that is defined in the UADS to the RACF
data base. You can convert all or only some user IDs to the RACF data base.
TSO/E continues to retrieve user information from the UADS for user IDs that are
not converted to the RACF data base. For more information, see Chapter 23,
“Using the RACF Data Base to Maintain TSO/E Users” on page 211.

An advantage of using the RACF data base instead of the UADS is that
maintenance of user ID information is simpler. You can use RACF commands to
maintain TSO/E users and allow them to use the RACF security functions.
Adding, changing, and deleting user ID information is simpler using the RACF
data base because you use only RACF commands.

v Storing Messages Intended for Terminal Users

The broadcast data set, for example, SYS1.BRODCAST, contains messages
intended for terminal users. These messages are sent using the SEND command
or the SEND subcommand of OPERATOR. The broadcast data set contains
messages intended for all users (notices) and messages sent to individual users
(mail). When you use either RACF commands or the ACCOUNT command and
its subcommands to add, change or delete user information, the broadcast data
set is updated simultaneously.

As an alternative to using the broadcast data set to store messages sent to
individual users (MAIL), you can store messages in a separate user log for each
user. However, the broadcast data set is needed to store messages intended for
all users (NOTICES).

The broadcast data set is discussed in the chapters that follow. For information
about individual user logs, refer to Chapter 34, “Customizing How Users Send
and Retrieve Messages” on page 335.

© Copyright IBM Corp. 1988, 2002 195

v Maintaining the Required Data Sets

If you decide to use the UADS and broadcast data sets to maintain TSO/E users,
you must make both data sets available to allow users to log on. That is, if you
are installing TSO/E on your system for the first time, you must create both data
sets. If you are installing a new release of TSO/E, you may have to reformat both
data sets. Periodically, you may have to reformat both data sets to eliminate
wasted space caused by adding, changing and deleting information. See
Chapter 22, “Working with the UADS and Broadcast Data Set” on page 201 for
more information.

If you convert from the UADS to the RACF data base, you may have to reformat
the broadcast data set periodically to eliminate wasted space caused by
additions, changes and deletions. See “Synchronizing the RACF Data Base with
the Broadcast Data Set” on page 215 for more information.

You can change the number of records in the broadcast data set that are used
for messages intended for all users (NOTICES). For more information, see
Chapter 24, “Changing the Amount of Space Reserved for Notices” on page 217.

196 z/OS V1R4.0 TSO/E Customization

Chapter 21. Content and Structure of the UADS and
Broadcast Data Set

Content and Structure of the UADS 197
Content of the Broadcast Data Set 200

Content and Structure of the UADS
The UADS (SYS1.UADS) is basically a list of terminal users who are authorized to
use TSO/E. The UADS contains information about each of the users, and is used to
regulate access to the system. An entry exists in the UADS for each authorized
user of TSO/E. Each entry contains:

v A user identification

v One or more passwords, or a single null field, associated with the user
identification

v One or more account numbers, or a single null field, associated with each
password

v One or more procedure names associated with each account number. Each
name identifies a procedure that may be invoked when the user enters the
LOGON command.

v Additional attribute information as described in z/OS TSO/E System
Programming Command Reference under the ACCOUNT command. The
ACCOUNT command and its subcommands allow you to create and update the
entries in the UADS.

The organization of the information contained in the UADS is shown in Figure 21.
Figure 22 shows the simplest structure that an entry in the UADS can have, and
Figure 23 shows a more complex structure.

© Copyright IBM Corp. 1988, 2002 197

The index points to each entry in the data set.

UADS index

(To other entries)

Procedure

Account

Password

User ID

The user identification identifies the entry and user
attributes, and points to the password fields.

Each password field points to the account number
fields that are associated with the password.

Each account number field points to the procedure
names that are associated with the account number.

Associated with each procedure are region
size requirements and device group.

(To other passwords)

(To other account numbers)

(To other procedure names)

Figure 21. Organization of the UADS

Content and Structure of the UADS

198 z/OS V1R4.0 TSO/E Customization

User identification

UADS data set

A null field

A null field

Procedure name

Other attributes

Figure 22. The Simplest Structure for a Typical UADS Entry

UADS data set

User identification

Password Password

Account numberAccount numberAccount number

Procedure name Procedure name Procedure name Procedure name Procedure name

Other attributesOther attributesOther attributesOther attributesOther attributes

Figure 23. A Complex Structure for a Typical UADS Entry

Content and Structure of the UADS

Chapter 21. Content and Structure of the UADS and Broadcast Data Set 199

Content of the Broadcast Data Set
The broadcast data set contains messages intended for terminal users. The
messages are saved in the broadcast data set using the SEND command or the
SEND subcommand of OPERATOR. The broadcast data set contains two sections:
the mail section and the notices section. The mail section contains messages
intended for particular users; the notices section contains messages intended for all
users.

By default, 100 records that are each 129 bytes long are set aside for broadcast
messages in the broadcast data set. You can change the number of records for
your installation’s processing needs. For more information, see Chapter 24,
“Changing the Amount of Space Reserved for Notices” on page 217.

Content of Broadcast Data Set

200 z/OS V1R4.0 TSO/E Customization

Chapter 22. Working with the UADS and Broadcast Data Set

Creating the UADS and the Broadcast Data Set 202
Creating from a Terminal . 202
Creating with a Batch Job 203

Reformatting the UADS and the Broadcast Data Set 204
Allocating a New UADS . 204
Using UADSREFM and the SYNC Command or Subcommand of

ACCOUNT . 205
Resetting the UADS Catalog Entry 206

Updating the UADS and the Broadcast Data Set 206
Switching between broadcast data sets 207

Switching the broadcast data set using SET IKJTSO=xx or PARMLIB
UPDATE . 207

Changing the Allocation of the Broadcast Data Set 208
Maintaining Directory Entries in the Broadcast Data Set 208
Global Resource Serialization 209
Broadcast data set in a sysplex 210

If you are installing TSO/E on your system for the first time, you must create both
the UADS and the broadcast data sets. If you are installing a new release of
TSO/E, you may have to reformat both data sets. During subsequent operation, you
may have to update both data sets by adding, changing, or deleting entries. In
addition, you may reformat the data sets to eliminate wasted space caused by
periodic additions, changes, and deletions.

When allocating or processing the UADS and the broadcast data set, take the
following into account:

v Do not allocate either SYS1.UADS or the broadcast data set on shared DASD
that is accessed by more than one processor, unless you use global resource
serialization. See “Global Resource Serialization” on page 209 for additional
information.

v If SYS1.UADS is modified by programs other than the reformatting program
(UADSREFM) or the ACCOUNT command, unpredictable results may occur later
during reformatting, or during processing using the subcommands of ACCOUNT.

v Do not move or copy either data set. If you want to allocate them to different
volumes, or change their attributes or sizes, read “Reformatting the UADS and
the Broadcast Data Set” on page 204 and “Changing the Allocation of the
Broadcast Data Set” on page 208.

v With RACF installed, your installation can use security labels. If security labels
are being used at your installation:

– SYS1.UADS should be defined to RACF with a UACC(NONE) and
SECLABEL(SYSLOW), and

– The broadcast data set should be defined to RACF with a UACC(READ) and
SECLABEL(SYSLOW).

Users that have ACCOUNT authority must be given UPDATE authority to the
UADS and broadcast data set.

If the RACF SECLABEL class is active and the RACF SETROPTS MLS
option is in effect, the user of the ACCOUNT command must log on using the
SYSLOW security label to use the ACCOUNT command. For information
about the SECLABEL class, the SYSLOW security label, and SETROPTS
options, see z/OS Security Server RACF Security Administrator’s Guide.

© Copyright IBM Corp. 1988, 2002 201

When allocating the UADS, reserve enough space to accommodate all of the users
you plan to allow to use TSO/E. Each user requires an entry in the directory and a
member in the data portion. Choose a block size for the data portion that makes the
most efficient use of storage. The block size should be large enough to contain all
of the logon data for most users. To determine if the block size for an existing
UADS is large enough list the data set’s members. If several users have more than
one entry, you should increase the block size. Note that one block is used for each
user record.

When creating or enlarging the broadcast data set, reserve enough space to ensure
that the data set does not become full. If the data set does become full, additional
messages cannot be stored. In addition, reallocating the data set causes the
contents to be lost.

When creating a new UADS or broadcast data set on the same volume as the old
data set, TSO/E can use the new data sets without an IPL, however, we suggest
that you IPL your system. If you are creating a new UADS or broadcast data set on
a different volume, you must IPL your system.

Creating the UADS and the Broadcast Data Set
You can create the UADS and the broadcast data set either from a terminal session
or by executing the terminal monitor program from a batch job. You do not have to
call the broadcast data set SYS1.BRODCAST. You should specify the broadcast
data set name that you want to use on the BROADCAST parameter on the SEND
statement of the IKJTSOxx member of parmlib. Use the ACCOUNT command and
its subcommands to create entries in the UADS and in the broadcast data set.
Specifically, use the ACCOUNT command to:
v Add new entries (ADD subcommand)
v Delete entries (DELETE subcommand)
v Build a new broadcast data set, and synchronize it with an existing UADS (SYNC

command or SYNC subcommand of ACCOUNT)

Creating from a Terminal
To create the UADS and the broadcast data set from a terminal, add a LOGON
procedure named IKJACCNT to the procedure library. During system installation,
one user ID (IBMUSER) is copied into the newly-created UADS. IBMUSER is
authorized to use one LOGON procedure, IKJACCNT. A sample IKJACCNT
LOGON procedure, which is also in IP01.PROCLIB for ServerPac users, follows:
//IKJACCNT EXEC PGM=IKJEFT01,DYNAMNBR=10
//SYSUADS DD DSN=SYS1.UADS
//SYSLBC DD DSN=SYS1.BRODCAST

Perform the following steps:

1. Activate TCAM or VTAM.

2. Log on using the following command:
logon ibmuser nonotices nomail

The keywords NONOTICES and NOMAIL are needed to prevent the LOGON
processor from accessing the broadcast data set before the data set is
formatted.

3. Enter the ACCOUNT command and issue the SYNC subcommand to format a
skeleton of the broadcast data set.

202 z/OS V1R4.0 TSO/E Customization

4. Issue ADD subcommands to add the new user IDs to both the UADS and the
broadcast data set.

5. For security reasons, you may want to delete the IBMUSER user ID. To delete
IBMUSER, perform the following steps:

a. Log on again with a new user ID that has ACCOUNT authority

b. Enter the ACCOUNT command and issue the DELETE subcommand to
delete the IBMUSER user ID.

Note: If you plan to install a security server (for example, RACF) that
requires the use of IBMUSER for installation, do not delete
IBMUSER. Instead, perform the following steps:

1) After creating the UADS, log off.

2) Log on with a new user ID that has ACCOUNT authority.

3) Issue the ACCOUNT command followed by the ADD
subcommand. Add a password and any necessary items, such as
account number and procedure name for the IBMUSER user ID.

Creating with a Batch Job
To create the UADS and the broadcast data set without having TSO/E active,
execute the terminal monitor program (TMP) as a batch job. Use the ACCOUNT
command and its subcommands, as follows:

1. Include the ACCOUNT command. Use the SYNC subcommand with the UADS
operand to format a skeleton of the broadcast data set.

2. Use the ADD subcommand to add each user ID and make a corresponding
entry in the broadcast data set.

3. For security reasons, you may want to delete IBMUSER (the user ID with
ACCOUNT authority provided during system installation) after creating the
UADS and ensuring that the data set is usable. To do this, use the DELETE
subcommand of ACCOUNT.

Note: If you plan to install a security server (for example, RACF) that requires
the use of IBMUSER for installation, do not delete IBMUSER. Instead,
perform the following steps:

a. Create a new user ID that has ACCOUNT authority.

b. Issue the ACCOUNT command followed by the ADD subcommand.
Add a password and any necessary items, such as account number
and procedure name for the IBMUSER user ID.

Figure 24 is a sample listing showing the creation of the UADS and broadcast data
set. An explanation of the JCL can be found in Appendix A, “Executing the Terminal
Monitor Program” on page 749.

Creating the UADS and the Broadcast Data Set

Chapter 22. Working with the UADS and Broadcast Data Set 203

Reformatting the UADS and the Broadcast Data Set
There are four major steps you must follow to reformat the UADS and the
broadcast data set:

1. Allocate a new UADS (see “Allocating a New UADS”).

2. Reformat the UADS and the broadcast data set, using UADSREFM and either
the SYNC command or the SYNC subcommand of ACCOUNT (see “Using
UADSREFM and the SYNC Command or Subcommand of ACCOUNT” on
page 205).

3. Reset the UADS catalog entry (see “Resetting the UADS Catalog Entry” on
page 206).

4. IPL your system again.

Restriction: Failure to follow these procedures will cause unpredictable results with
the use of SYS1.UADS and the broadcast data set. This is because the data set is
accessed through the basic direct access method; never copy or move this data
set.

Allocating a New UADS
To allocate a new UADS using ISPF/PDF, enter ISPF/PDF option 3.2, and allocate
a partitioned data set whose name is different from the name of the existing UADS.
To allocate a new UADS using a batch job, include the data set attributes on the
DD statement for the new data set.

Figure 25 on page 205 shows an example of using a batch job to allocate the new
UADS. A logical record length (LRECL) of 172 is recommended but not required.
The block size must be a multiple of the logical record length and greater than or
equal to 256. It is recommended that you optimize the block size to minimize
wasted space by following the instructions for optimization in the introduction to
Chapter 22, ″Working with UADS and the Broadcast Data Set.″

//jobname JOB job statement parameters
// EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//SYSUADS DD DSN=uads-data-set
//SYSLBC DD DSN=broadcast-data-set,DISP=SHR
//SYSTSIN DD *
ACCOUNT
SYNC UADS
ADD new user ID (see ADD subcommand of ACCOUNT for other operands)...
DELETE (IBMUSER)
END
/*

Figure 24. Creating the UADS and the Broadcast Data Set with a Batch Job

Reformatting UADS and Broadcast Data Set

204 z/OS V1R4.0 TSO/E Customization

Using UADSREFM and the SYNC Command or Subcommand of
ACCOUNT

UADSREFM reads an entry from the old UADS, builds a logical copy of that entry,
eliminates any wasted space, and writes the newly-formatted entry into the new
UADS. The process automatically repeats for each entry in the UADS. However,
UADSREFM does not reformat an entry if the user is currently logged on. It writes
messages indicating which entries were not reformatted.

You can also use the UADSREFM program to change the block size of the UADS.

To reformat the UADS and broadcast data sets, execute the TMP in the background
and include the following in the batch job:

1. The UADS reformatting program, UADSREFM.

2. Either the SYNC command or the SYNC subcommand of ACCOUNT.

Use the SYNC command or subcommand with the UADS operand to reformat
the broadcast data set and to synchronize it with SYS1.UADS. If, for security
reasons, you want to delete the IBMUSER user ID after reformatting, use the
DELETE subcommand of ACCOUNT.

Figure 26 is a sample listing showing the reformatting of the UADS and the
broadcast data set. For an explanation of this JCL, see Appendix A, “Executing the
Terminal Monitor Program” on page 749.

Note: With dynamic broadcast support, the SYSLBC DDNAME is no longer
required. If the SYSLBC DDNAME is not specified, the currently active
broadcast data set will be used by the job. If the SYSLBC DDNAME is
specified, the referenced data set will be used by the job.

//jobname JOB job card parameters
// EXEC PGM=IEFBR14
//SYSUT2 DD DSN=new.UADS.name,UNIT=unit,VOL=SER=volser,
// DISP=(NEW,CATLG),SPACE=(TRK,(?,?,?)),
// DCB=(RECFM=FB,LRECL=172,BLKSIZE=1720,DSORG=PO)
/*

Figure 25. Allocating the New UADS as a Batch Job

//jobname JOB job card parameters
// EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//SYSUADN DD DSN=old format uads,DISP=SHR
//SYSUADS DD DSN=reformatted uads,DISP=SHR
//SYSLBC DD DSN=broadcast-data-set,DISP=SHR
//SYSTSIN DD *
UADSREFM
ACCOUNT
SYNC UADS
DELETE (IBMUSER)
END
/*

Figure 26. Reformatting the UADS and the Broadcast Data Set

Reformatting UADS and Broadcast Data Set

Chapter 22. Working with the UADS and Broadcast Data Set 205

The UADSREFM program saves all logon default values except for account number
and procedure name. Therefore, users with full-screen logon panels may see a
change in those fields after you run UADSREFM.

When a program other than UADSREFM or the SYNC command or subcommand
of the ACCOUNT command is used with the UADS data set, unpredictable results
may occur. If the UADS data set is damaged, run UADSREFM. UADSREFM lists
the entries in alphanumeric order. The last entry listed precedes the damaged entry.
You can then delete the damaged entry and add it correctly.

Resetting the UADS Catalog Entry
After the UADS has been reformatted, you must reset the UADS catalog entry. Use
one of the following methods:

v To reset the UADS catalog entry using ISPF/PDF, enter option 3.2 and delete the
old UADS, then rename the new UADS to the name of the old UADS.

v To reset the UADS catalog entry using TSO/E commands, use the DELETE
command to delete the old UADS, then use the RENAME command.

v To reset the UADS catalog entry using access method services, use the IDCAMS
utility. For information on how to use IDCAMS, see z/OS DFSMS Access Method
Services for Catalogs.

v To reset the UADS catalog entry using a batch job, execute IEHPROGM as
shown in Figure 27. The batch job:
1. Deletes the old UADS (SCRATCH)
2. Uncatalogs the old UADS (UNCATLG)
3. Renames the new UADS to the old UADS name (RENAME)
4. Catalogs the new UADS under the old UADS name (CATLG)
5. Uncatalogs the old UADS name (UNCATLG).

After you reset the UADS catalog entry by deleting the old UADS, renaming the
new UADS to the name of the old UADS, you must IPL your system.

Updating the UADS and the Broadcast Data Set
To update the UADS and the broadcast data set from a terminal, ensure that the
UADS to be updated is allocated by the SYSUADS DD statement, either in a
LOGON procedure or by using the ALLOCATE command. Make the updates
(additions, changes, and deletions) using the ACCOUNT command and its
subcommands.

//jobname JOB job card parameters
// EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DD1 DD UNIT=device,VOL=SER=volser,DISP=OLD
//DD2 DD UNIT=device,VOL=SER=volser,DISP=SHR
//SYSIN DD *

SCRATCH DSNAME=old.UADS.name,VOL=device=volser
UNCATLG DSNAME=old.UADS.name
RENAME DSNAME=new.UADS.name,old.UADS.name,

VOL=device=volser
CATLG DSNAME=old.UADS.name,VOL=device=volser
UNCATLG DSNAME=new.UADS.name

/*

Figure 27. Resetting the UADS Catalog Entry with a Batch Job

Reformatting UADS and Broadcast Data Set

206 z/OS V1R4.0 TSO/E Customization

To update the UADS and the broadcast data set with a batch job, you can use the
sample JCL shown in Figure 28. For an explanation of this JCL, see Appendix A,
“Executing the Terminal Monitor Program” on page 749. If you do not include a DD
statement specifying the broadcast data set, the data set must be cataloged.

Note: With dynamic broadcast support, the SYSLBC DDNAME is no longer
required. If the SYSLBC DDNAME is not specified, the currently active
broadcast data set will be used by the job. If the SYSLBC DDNAME is
specified, the referenced data set will be used by the job.

Switching between broadcast data sets
You can switch dynamically between broadcast data sets by using the SET
IKJTSO=xx system command or the TSO/E PARMLIB UPDATE command. An IPL
will not be required. In order to switch broadcast data sets, you must first specify
the name of the broadcast data set to switch to, along with the associated
processing options, in the BROADCAST keyword of the SEND statement of the
IKJTSOxx member of parmlib. The switch will be attempted if either of the following
conditions apply:

v The name of the broadcast data set in the BROADCAST keyword of the SEND
statement in the IKJTSOxx member of parmlib, specified by the command, is
different from the broadcast data set name currently being used.

v The data set names are the same but the volumes they reside on differ.

The operator will have to confirm the switch unless NOPROMPT is specified in the
parmlib member.

For more information, see z/OS MVS Initialization and Tuning Guide.

Switching the broadcast data set using SET IKJTSO=xx or PARMLIB
UPDATE

Use SET IKJTSO=xx or PARMLIB UPDATE to switch from the current broadcast
data set to the broadcast data set named in the IKJTSOxx member of parmlib.

The SET command or PARMLIB UPDATE(xx) command will compare the current
broadcast data set to the broadcast data set name found in the BROADCAST
keyword of the IKJTSOxx member of parmlib. If they are different (or they are the
same, but the volumes they reside on differ) and PROMPT is specified in the
BROADCAST keyword, the operator will be notified of the pending switch of the

//jobname JOB job card parameters
// EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=broadcast-data-set,DISP=SHR,VOL=SER=volser,UNIT=device
//SYSTSIN DD *
ACCOUNT...
(ACCOUNT subcommands for updating)...
END
/*

Figure 28. Updating the UADS with a Batch Job

Updating UADS and Broadcast Data Set

Chapter 22. Working with the UADS and Broadcast Data Set 207

broadcast data set. To make the switch, reply YES to the prompt. Any other
response will cancel processing of the IKJTSOxx member of parmlib.

If the broadcast data set names are different (or they are the same, but the
volumes they reside on differ) and NOPROMPT is specified in the BROADCAST
keyword, the broadcast data set will be switched without operator intervention.

For information about the SET IKJTSO=xx command, see z/OS MVS System
Commands. For information about the PARMLIB UPDATE command, see z/OS
TSO/E System Programming Command Reference.

Changing the Allocation of the Broadcast Data Set
You may want to change the allocation of the broadcast data set, for example, to
change its data set attributes, its size, or its location.

To reinitialize the new broadcast data set, you must synchronize it with an existing
UADS data set, the RACF data base, or both. Use the SYNC command, or the
SYNC subcommand of the ACCOUNT command, with operand BOTH, RACF, or
UADS to do so. This will add the current list of authorized users to the new
broadcast data set.

You can allocate a new broadcast data set, with either a name different from the
current broadcast data set or the same name as the current broadcast data set but
residing on a different volume. To do this, perform the following steps:

1. Note the DCB information from the existing broadcast data set.

2. Delete or uncatalog the existing broadcast data set if it has the same name as
the new broadcast data set.

3. Allocate the new broadcast data set, modifying the DCB information as needed.

4. Reinitialize the data set.

5. Switch to the new broadcast data set.

You can allocate a new broadcast data set, with the same name as the current
broadcast data set, on the same volume. To do this, perform the following steps:

1. Note the DCB information from the existing broadcast data set.

2. Allocate a new broadcast data set with a different name (for example,
SYS1.NEWBROD), modifying the DCB information as needed.

3. Delete the current broadcast data set.

4. Rename the new broadcast data set to the name of the current broadcast data
set.

5. Reinitialize the data set.

Restriction: Failure to follow these procedures will cause unpredictable results with
the use of the broadcast data set. This is because the data set is accessed through
the basic direct access method; never copy or move this data set.

Maintaining Directory Entries in the Broadcast Data Set
You can use the broadcast data set interface routine to add, delete or change a
user ID directory entry in the broadcast data set. You can use this interface routine
instead of the SYNC command or the SYNC subcommand of ACCOUNT to make
minor updates to the broadcast data set. However, this interface routine does not
reformat the broadcast data set.

Switching between broadcast data sets

208 z/OS V1R4.0 TSO/E Customization

To invoke the broadcast data set interface, write a command processor that issues
the IKJIFRIF macro instruction. IKJIFRIF generates the parameter list and linkage
to the broadcast data set interface routine.

To use the IKJIFRIF macro instruction:

v Code either the ADD, DEL, or ALT parameters on the macro invocation to specify
the user ID that is to be added, deleted or changed.

v Specify the addresses of the following control blocks on the macro invocation:
– The user profile table (UPT)
– The protected step control block (PSCB)
– The environment control table (ECT)

The address of each of these control blocks is passed to your command
processor in the command processor parameter list (CPPL).

v Include the CVT mapping macro (CVT) and the TSVT mapping macro (IKJTSVT)
contained in SYS1.MACLIB.

For a description of the syntax of IKJIFRIF, see “IKJIFRIF Macro” on page 732. For
information on how to write a command processor, see z/OS TSO/E Programming
Guide.

Global Resource Serialization
You can place a single version of both SYS1.UADS and the broadcast data set on
a shared DASD and access each one from any system in a multisystem complex
by using global resource serialization. That is, the resources SYS1.UADS and the
broadcast data set may be globally shared. However, to ensure that you can
evaluate the applicability of global resource serialization in your installation’s TSO/E
environment before using it, the major name (SYSDSN) and the minor names
(SYS1.UADS and SYS1.BRODCAST) of both data sets are included in the default
SYSTEMS exclusion resource name list distributed by IBM. That is, the resources
are excluded from global sharing. To ensure proper serialization, if you rename the
broadcast data set or switch to a broadcast data set with a different name, you
must change the minor name to the name of the new broadcast data set. That is,
the resources are excluded from global sharing. In the process of evaluation, plan
in advance to investigate and measure:

v Resource requirements (the effort required to merge multiple versions of the two
data sets into a single version of each and test the new versions)

v Performance implications (one version of each data set accessed by all users
versus n versions of the same data sets, each accessed by a subset of those
users)

Advantages:

v There are only two data sets to maintain, rather than 2n where n is the number
of systems in a complex.

v A user can log on to any system in a complex to allow a better workload balance.

v For foreground-initiated background jobs, a user who specifies NOTIFY always
receives the job-ended message regardless of which system in a complex
processed the job.

Requirements:

1. Merge all existing versions of SYS1.UADS and the broadcast data set into a
single version of each data set.

2. Modify the resource name lists, as distributed by IBM, as follows:

Maintaining Directory Entries in Broadcast Data Set

Chapter 22. Working with the UADS and Broadcast Data Set 209

a. Delete the minor names SYS1.UADS and SYS1.BRODCAST (or, if the
broadcast data set was renamed, the name of the broadcast data set) from
the distributed default SYSTEMS exclusion resource name list.

b. For SYS1.UADS sharing, add the major name SYSIKJUA as a generic entry
in the SYSTEM inclusion resource name list.

c. For broadcast data set sharing, add the major name SYSIKJBC as a generic
entry in the SYSTEM inclusion resource name list.

For information regarding the contents of, and how to modify, the resource name
lists, see z/OS MVS Planning: Global Resource Serialization.

Broadcast data set in a sysplex
If your installation shares the broadcast data set with other systems, you should
customize the IKJTSOxx member of SYS1.PARMLIB to indicate the environment in
which the LISTBC command will execute. If you have configured your system as a
sysplex, and all of the systems in your global resource serialization complex are
also members of the sysplex, you can avoid I/O on the broadcast data set for the
display of system notices by setting the SYSPLEXSHR keyword on the SEND
parmlib statement to ON. When the keyword of the SEND parmlib statement is ON,
the LISTBC command communicates changes to the broadcast data set to the
other systems using sysplex communication facilities.

If your installation shares the broadcast data set with other systems outside the
sysplex, you should set the SYSPLEXSHR keyword of the SEND parmlib statement
to OFF. When the keyword of the SEND parmlib statement is OFF, updates are made
to the broadcast data set and are read from the broadcast data set. This ensures
that all updates are observed by all systems sharing the data set.

Global Resource Serialization

210 z/OS V1R4.0 TSO/E Customization

Chapter 23. Using the RACF Data Base to Maintain TSO/E
Users

Processing of User Information 211
Converting to the RACF Data Base 212

Using the RACONVRT Command 212
Testing the Conversion . 214
Deleting User Information from the UADS 214
Maintaining UADS for recovery mode 214
Synchronizing the RACF Data Base with the Broadcast Data Set 215

If RACF is installed, the information that is required for users to log on to TSO/E
can be stored in the RACF data base. You can convert user information defined in
the UADS to the RACF data base and use the RACF data base to maintain TSO/E
users. You can convert user information for all TSO/E users, or only selected users.
TSO/E retrieves user information from the UADS for any user IDs that are not
converted to the RACF data base.

Using the RACF data base to maintain TSO/E users has several advantages:

v Simplified maintenance of user ID information

You can maintain TSO/E users and allow them to use the RACF security
functions without having to use TSO/E and RACF commands to update the
UADS, and use RACF commands to update the RACF data base. Adding,
changing and deleting user ID information is simpler using the RACF data base
because you use only RACF commands.

Recommendation: For recovery purposes, you should keep a minimal set of user
IDs. For additional information, see “Maintaining UADS for recovery mode” on
page 214.

Processing of User Information
If you convert user information that is defined in the UADS to the RACF data base,
the information is processed as follows:

v Some information is defined as a RACF resource. This gives you the ability to
allow groups of users to access the same user information without having to
define the information for each individual user. The following UADS information is
defined as a RACF resource:

UADS Information RACF Resource Class Name

Account numbers ACCTNUM

Procedure names TSOPROC

Performance groups PERFGRP

TSO/E authority information
– JCL
– OPER
– MOUNT
– ACCT
– RECOVER.

TSOAUTH

v The following user information is stored directly in the RACF data base:

– Maximum region size

© Copyright IBM Corp. 1988, 2002 211

|
|
|

– USERDATA

– RBA (relative block address) of the MAIL directory

– Default SYSOUT destination

– Default job, message, hold and SYSOUT classes

– Default UNIT name

– Console profile settings

– User profile table (UPT)

– Logon default information, which consists of the account number, procedure
name, region size, performance group, mail, notices, OIDCARD, and TSO/E
command

Values for logon default block information are obtained from the parameters that
a user specifies when he logs on to TSO/E. This information is stored in the
RACF data base each time the user logs on.

v The password and UADSADRF field are deleted because they are not needed.

The default UNIT name is carried over to the RACF data base with full-screen
logon only when the logon default information is stored in UADS. The UNIT is not
saved because there is no place on the full-screen panel to specify it. Users who
have never logged on to TSO/E will not have logon default information in UADS. If
RACONVRT is issued after UADSREFM, and users have not have not logged on
and off TSO/E in the meantime, their default account numbers, procedures and
UNITs are lost.

Converting to the RACF Data Base
To convert user information from the UADS to the RACF data base, follow these
steps:
1. Convert user information using the RACONVRT command
2. Test the system using the RACF data base
3. Delete user information from the UADS
4. Synchronize the RACF data base with the broadcast data set

After you convert user information to the RACF data base, you can use RACF
commands to add, delete, and change the information that defines users to TSO/E.
For more information about using RACF commands, see z/OS Security Server
RACF Command Language Reference.

Using the RACONVRT Command
To convert from the UADS to the RACF data base, use the RACONVRT command.
Options provided on the RACONVRT command allow you to convert all or some
user IDs from the UADS to the RACF data base. To convert all user information,
specify the ALL operand. If you do not want to convert all users to the RACF data
base, use the INCLUDE or EXCLUDE operands. Use the INCLUDE operand to
convert specific user IDs; use EXCLUDE to indicate those user IDs that you do not
want converted to the RACF data base.

To convert a very large number of users it is recommended to issue several
RACONVRT commands and to subdivide the users into groups by means of the
INCLUDE/ EXCLUDE operands.

During the conversion process, RACONVRT does not migrate the TSO/E command
that was specified on the previous logon. Therefore, the command field in the logon

Processing of User Information

212 z/OS V1R4.0 TSO/E Customization

panel contains no data the first time the user logs on after the conversion is
complete. If the user specifies a command in the TSO/E command field on the
logon panel, TSO/E saves that command for the next logon, if the logoff is
successful. For information about the syntax of the RACONVRT command, see
z/OS TSO/E System Programming Command Reference.

If a user ID has not logged on and off since changes were made to its SYS1.UADS
entry, RACONVRT will not include an account number or procedure in the
ADDUSER or ALTUSER command for that user ID. When a user ID logs off, the
default account number and procedure are saved in SYS1.UADS. RACONVRT
uses these defaults when creating the ADDUSER or ALTUSER command to add
the user ID to RACF. If the user ID has not logged on and off since changes were
made to SYS1.UADS, then defaults do not exist for the user ID in SYS1.UADS.
This causes RACONVRT to create an ADDUSER or ALTUSER command without
the ACCT or PROC operands.

RACONVRT generates the RACF commands needed to update or create RACF
user profiles, and places these commands into members of a partitioned data set.
This data set, ‘prefix.IKJ.RACONVRT.CLIST’, contains the commands necessary to
convert to the RACF data base.

RACONVRT creates, but does not execute the RACF commands; therefore, you
can edit and change the data set’s members to customize the conversion process
before issuing the RACF commands.

The members of the partitioned data set generated by the RACONVRT command
are described in Table 23.

Table 23. Members Created by RACONVRT

Member Description

ADDUSER Contains commands to:

v Define users to RACF and define a TSO segment within each
newly created profile

v Create a data set generic profile for each new RACF profile to
provide data set security

ALTUSER Contains commands to define a TSO segment within existing RACF
user profiles.

DEFAUTH Contains commands to define each of the TSO/E authorities (OPER
for OPERATOR, ACCT for ACCOUNT, JCL, MOUNT and
RECOVER) as RACF resources and give users authority to access
these resources.

DEFPROC Contains commands to define logon procedures as RACF resources
and give users authority to access these resources.

DEFACCT Contains commands to define account numbers as RACF resources
and give users authority to access these resources.

DEFPERF Contains commands to define performance groups as RACF
resources and give users authority to access these resources.

RUN Contains commands to invoke the other members in the proper
order to complete the conversion to the RACF data base. This
member contains commands to execute only the members created
or updated by the latest execution of RACONVRT.

To issue the RACF commands, do the following:

1. Issue the SETROPTS command with the CLASSACT operand to activate the
new RACF resource classes. The format of the command is as follows:

Converting to the RACF Data Base

Chapter 23. Using the RACF Data Base to Maintain TSO/E Users 213

SETROPTS CLASSACT(TSOPROC ACCTNUM PERFGRP TSOAUTH)

2. Execute the RUN member of the CLIST data set to issue the RACF commands
generated by RACONVRT.

3. Issue the RACF SETROPTS command with the RACLIST operand for the new
TSO/E resource classes. Issuing this command for the resource classes brings
the resource profiles into storage and performs the following functions:

v Having the profiles in storage eliminates the need to perform I/O on the
RACF data base when checking access to resources in the TSO/E classes.

v When the profile for the ACCTNUM class is in storage, TSO/E LOGON
processing can determine whether a user, who is defined to TSO/E in the
RACF data base, is authorized to use account numbers. If a user is not
authorized to use account numbers, the user is allowed to log on without
specifying an account number.

v If you change any user information within the resource classes, issue
SETROPTS RACLIST(classname...) REFRESH to make the changes active.

Note: If this step is not performed, TSO/E will be unable to determine certain
user information such as the default logon procedure and the default
account number during logon. TSO/E may prompt users for this
information.

Testing the Conversion
To test the conversion from the UADS to the RACF data base, the user should log
off TSO/E and log back on TSO/E.

Deleting User Information from the UADS
After you have tested the RACF data base to ensure that the conversion was
successful, you can delete information from the UADS for user IDs converted to the
RACF data base. To delete information from the UADS, use the DELETE
subcommand of ACCOUNT.

Do not delete information from the UADS until each user logs on to TSO/E for the
first time after the conversion. User information stored in the UADS must be
available to obtain a user’s current user profile table (UPT), because the conversion
does not migrate the UPT to the RACF data base.

Maintaining UADS for recovery mode
Attention: Continue to maintain information for at least one user ID in the UADS.
This allows you to log on to TSO/E if RACF is not active or the RACF data base
cannot be accessed.

v If you decide to delete the UADS entries for most users, you must meet the
following conditions:

1. You have tested the RACF data base to ensure that the conversion was
successful.

2. The SYS1.UADS data set is available when each user logs on to TSO/E for
the first time after the conversion. The UADS must be available to obtain a
user’s current user profile table (UPT), because the conversion does not
migrate the UPT to the RACF data base.

v If you decide to delete the SYS1.UADS data set, you must also remove the
reference to it in MSTJCL00 in linklib. The SYSUADS DD statement must either
be removed or commented out, or your system will not IPL. For information on
how to modify MSTJCL00, see z/OS MVS Initialization and Tuning Reference.

Converting to the RACF Data Base

214 z/OS V1R4.0 TSO/E Customization

|
|
|

|

|
|
|
|

Synchronizing the RACF Data Base with the Broadcast Data Set
To synchronize the RACF data base with the broadcast data set use either the
SYNC command or the SYNC subcommand of ACCOUNT.

The SYNC command (or subcommand) must be invoked APF-authorized.
Therefore, you must ensure that SYNC is an authorized command by either
creating an entry in the authorized command table, or by updating the PARMLIB
member IKJTSOxx. For information on updating PARMLIB, see Chapter 10,
“Specifying Authorized Commands/Programs, and Commands Not Supported in the
Background” on page 153.

If you have converted all user information from the UADS to the RACF data base,
specify the RACF operand when you issue the SYNC command. The RACF
operand causes the broadcast data set to be synchronized with the RACF data
base. That is, for every user ID defined to TSO/E in the TSO/E segment of the
RACF data base, a corresponding entry is made in the broadcast data set.

Figure 29 is a sample listing showing how to synchronize the broadcast data set
with the RACF data base. For an explanation of this JCL, see Appendix A,
“Executing the Terminal Monitor Program” on page 749.

Note: With dynamic broadcast support, the SYSLBC DDNAME is no longer
required. If the SYSLBC DDNAME is not specified, the currently active
broadcast data set will be used by the job. If the SYSLBC DDNAME is
specified, the referenced data set will be used by the job.

If you have not converted all user information to the RACF data base, specify the
BOTH operand when you issue the SYNC command. The BOTH operand causes
the broadcast data set to be synchronized with both the UADS and the RACF data
base. That is, for every user ID defined in either the UADS or the TSO/E segment
of the RACF data base, a corresponding entry is made in the broadcast data set.

Figure 30 on page 216 is a sample listing showing how to synchronize the
broadcast data set with the UADS and the RACF data base. For an explanation of
this JCL, see Appendix A, “Executing the Terminal Monitor Program” on page 749.

//jobname JOB job card parameters
// EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//SYSLBC DD DSN=broadcast-data-set,DISP=SHR,VOL=SER=volser,UNIT=device
//SYSTSIN DD *
SYNC RACF
/*

Figure 29. Synchronizing the Broadcast Data Set and RACF Data Base

Converting to the RACF Data Base

Chapter 23. Using the RACF Data Base to Maintain TSO/E Users 215

Note: With dynamic broadcast support, the SYSLBC DDNAME is no longer
required. If the SYSLBC DDNAME is not specified, the currently active
broadcast data set will be used by the job. If the SYSLBC DDNAME is
specified, the referenced data set will be used by the job.

//jobname JOB job card parameters
// EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=A
//SYSUADS DD DSN=SYS1.UADS,DISP=SHR
//SYSLBC DD DSN=broadcast-data-set,DISP=SHR
//SYSTSIN DD *
SYNC BOTH
/*

Figure 30. Synchronizing the Broadcast Data Set, UADS and RACF Data Base

Converting to the RACF Data Base

216 z/OS V1R4.0 TSO/E Customization

Chapter 24. Changing the Amount of Space Reserved for
Notices

The broadcast data set contains messages intended for terminal users. This data
set contains two sections:

1. The mail section contains messages intended for particular users

2. The notices section contains messages intended for all users.

The amount of space you reserve in the broadcast data set for notices depends
upon how frequently your installation uses the SEND subcommand of the
OPERATOR command to send notices. After you reserve a certain amount of space
for notices, the remainder is used for mail. The amount of space required for mail
depends on the following factors:

v Whether you use individual user logs to contain mail. If you use user logs for all
users, you do not have to reserve any space in the broadcast data set for mail.
For information on using individual logs, see Chapter 34, “Customizing How
Users Send and Retrieve Messages” on page 335.

v The number of users defined to TSO/E, and how often users request that
messages be saved when they are sent.

By default, 100 records are reserved in the notices section of the broadcast data
set for messages. You can change the number of records used for notices to suit
your installation’s processing needs. To change this number, submit a System
Modification Program Extended (SMP/E) job that contains the IKJBCAST macro
instruction. On the IKJBCAST macro instruction, specify the BCLMT operand to
indicate the number of records to be reserved in the notices section.

TSO/E provides a sample job in SYS1.SAMPLIB member IKJBSMPE that shows
how to use IKJBCAST. Instructions for using the sample job are included in the
SYS1.SAMPLIB member.

For more information on the IKJBCAST macro instruction, see “IKJBCAST Macro”
on page 727.

As an example, if you want to reserve 250 records in the notices section for
messages, you would code IKJBCAST as follows:
IKJBCAST BCLMT=250

© Copyright IBM Corp. 1988, 2002 217

218 z/OS V1R4.0 TSO/E Customization

Part 5. Customizing TSO/E Commands

TSO/E provides many commands and subcommands that users issue to interact
with TSO/E and the MVS system. Each command and subcommand operates in a
specific way depending on the operands a user specifies. For more information
about using commands, see z/OS TSO/E User’s Guide. For more information about
the syntax of commands, see z/OS TSO/E Command Reference and z/OS TSO/E
System Programming Command Reference.

TSO/E provides different ways in which you can customize the use of certain
commands. This part describes how you can customize these commands to suit
your installation’s data processing requirements.

One way to customize a particular command is by writing an exit routine. TSO/E
provides exits you can use to customize the following commands and
subcommands:
v ALLOCATE
v ALTLIB
v CONSOLE and CONSPROF
v EDIT

– RENUM subcommand
– MOVE subcommand
– COPY subcommand

v EXEC
v FREE
v LOGON and LOGOFF
v LISTBC
v OPERATOR SEND
v OUTDES
v OUPUT, STATUS, and CANCEL
v PARMLIB
v PRINTDS
v SEND
v SUBMIT
v TEST
v TESTAUTH
v TRANSMIT and RECEIVE
v TSOLIB

Using exits, you can customize commands in various ways. At a minimum, you can
use the exits to change the operands a user specifies.

The chapters in this part describe how you can use the individual exits to customize
each of the commands listed above, except LOGON and LOGOFF. For information
about the LOGON and LOGOFF commands, see Chapter 8, “Customizing the
Logon and Logoff Process” on page 87. For general information about writing exits,
see Chapter 2, “Writing Exit Routines” on page 25.

© Copyright IBM Corp. 1988, 2002 219

220 z/OS V1R4.0 TSO/E Customization

Chapter 25. Customizing How Users Allocate and Manage
Data Sets

Specifying a Default Data Set Disposition for the ALLOCATE Command . . . 222
Changing the Defaults for Managing Data Set Space 223
Writing Exits for the ALLOCATE Command 225

Functional Description . 225
TSO/E-Supplied Exits . 226
Entry Specifications. 226
Parameter Descriptions for the Initialization Exit 226
Parameter Descriptions for the Termination Exit 226
Return Specifications . 226
Programming Considerations 227
Possible Uses. 228

Users issue the TSO/E ALLOCATE command to create new data sets, allocate data
sets to a job, and create system output (SYSOUT) data sets. You do not have to
perform any tasks to make the ALLOCATE command available to users. You can,
however, customize how users allocate data sets.

You can use Storage Management Subsystem (SMS) to manage your system’s
data and storage and simplify data set allocation for your users. With SMS, you
define classes such as data class, management class, and storage class that
contain particular allocation, management, and storage attributes for data sets. You
define the classes using automatic class selection (ACS) routines. For information
about the classes and ACS routines, see z/OS DFSMSdfp Storage Administration
Reference.

When users allocate a data set, they do not have to specify different operands for
particular data set attributes. Instead, they can specify the DATACLASS,
MGMTCLAS, and STORCLAS operands on the ALLOCATE command, which
simplify data set allocation. For more information about the ALLOCATE command
and its operands, see z/OS TSO/E Command Reference.

You can use SYS1.PARMLIB member IKJTSOxx to set a default value for the data
set disposition specified on the ALLOCATE command. For more information, see
“Specifying a Default Data Set Disposition for the ALLOCATE Command” on
page 222.

You can use the MVS allocation input validation routine (exit IEFDB401) to change
the information users specify on the ALLOCATE command. If you use Program
Control Facility (PCF), you must not use the MVS allocation input validation routine.
PCF uses the routine to control allocation. For more information about the MVS
allocation input validation routine, see z/OS MVS Installation Exits.

When users issue the ALLOCATE command to allocate SYSOUT data sets, they
specify operands related to the printer and printing options they want. You can use
OUTPUT JCL statements to define output descriptors that associate different
printers and options with a single name, the name of the output descriptor. If you
have JES2 installed, you and your installation’s users can also use the TSO/E
OUTDES command to define output descriptors. When users issue the ALLOCATE
command, they can specify the OUTDES operand with the name of the output
descriptor. They do not need to specify the individual printing options. For more
information about using OUTPUT JCL statements to define output descriptors, see

© Copyright IBM Corp. 1988, 2002 221

“Defining OUTPUT JCL Statements” on page 319. For more information about the
OUTDES command, see z/OS TSO/E Command Reference.

Users can also use the space management service to manage the free space in
data sets. Space management can compress, reallocate, or create a data set.
Space management uses default allocation and protection data set attributes, but
you can change the default values for your own requirements. “Changing the
Defaults for Managing Data Set Space” on page 223 describes the values you can
change.

TSO/E provides initialization and termination exits that you can use to customize
the ALLOCATE command. The initialization exit receives control before the
ALLOCATE command processor invokes the parse service routine, and can change
operands supplied by the user or pass the address of a new command buffer. The
termination exit receives control just before the ALLOCATE command terminates
processing, and can perform clean-up processing, such as releasing storage
obtained by the initialization exit. For more information about the ALLOCATE exits,
see “Writing Exits for the ALLOCATE Command” on page 225.

Specifying a Default Data Set Disposition for the ALLOCATE Command
With TSO/E, you can use SYS1.PARMLIB member IKJTSOxx to set a default value
for the data set disposition specified on the ALLOCATE command.

To specify the default data set disposition for ALLOCATE in IKJTSOxx, do the
following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB to contain the appropriate ALLOCATE default
for your installation.

In IKJTSOxx, you can set the following values on the ALLOCATE DEFAULT
statement:

SHR specifies that the data set already exists and allows more than one person
to use it at the same time.

OLD specifies that the data set already exists and gives the user exclusive use
of the data set.

If a user issues the ALLOCATE command without specifying a data set disposition,
the disposition defaults to the setting in IKJTSOxx. If you do not set an ALLOCATE
DEFAULT value in IKJTSOxx, the default is OLD.

The following example shows how to specify the default data set disposition of SHR
on a line of IKJTSOxx:
ALLOCATE DEFAULT(SHR)

When you set a default data set disposition in IKJTSOxx, you can make it take
effect immediately using the PARMLIB command with the UPDATE operand. You
can also list the current ALLOCATE default using the LIST operand of PARMLIB.
For more information about the PARMLIB command, see z/OS TSO/E System
Programming Command Reference.

222 z/OS V1R4.0 TSO/E Customization

Changing the Defaults for Managing Data Set Space
Space management is an Information Center Facility service that monitors the free
space in a data set and either compresses or reallocates the data set when the
data set is almost full. It can also allocate a data set that does not exist. Several
Information Center Facility services use space management to manage data sets
associated with the services. The names and chart (GDDM/PGF) services use
space management to prevent ABENDs when they try to add data to data sets that
are nearly full.

Users can use space management in CLISTs and programs or directly from the
ISPF command line to manage data sets. They invoke space management using
the CLIST ICQSPC00 and its parameters. Using the parameters, users specify
different space and protection options for a data set. Space management provides
default values for the space and protection options. You can change the defaults to
suit your installation’s processing requirements.

Table 24 lists the space management variables and default settings. To change the
defaults, edit the CLIST ICQSPC00 and change the parameters on the PROC
statement. The ICQSPC00 CLIST is located in the same library in which the
Information Center Facility user CLISTs and REXX execs are installed. This is
usually the ICQ.ICQCCLIB library unless your installation installs the user CLISTs
and REXX execs in a different library.

For more information about using space management and the variables and their
values, see z/OS TSO/E Programming Services.

Table 24. Space Management Parameters and Defaults

Variable Contents or Meaning Default

SPACEFULL The percent of the space allocated to the data set
that must be filled before space management
compresses or reallocates the data set.

80

SPACEINCREASE The percent by which space management increases
the primary space allocation of the data set when it
reallocates the data set. The value you supply must
be an integer.

50

KBYTESFREE The number of kilobytes of free space the data set
must have.

Null

DIRFULL The percent of a PDS directory that must be filled
before space management compresses or reallocates
the PDS.

80

DIRINCREASE The percent by which space management increases
the space for the PDS directory when it reallocates
the PDS. The value you supply must be an integer.

50

DIRBLOCKSFREE The number of free directory blocks the PDS must
have.

Null

RECALL Indicates whether a data set migrated by the Data
Facility Hierarchical Storage Manager (DFHSM)
should be recalled. You can set the parameter to YES
to include RECALL on the LISTDSI command that
retrieves information about the data set, NO to include
NORECALL, or null to omit both RECALL and
NORECALL.

Null

Changing Defaults for Managing Data Set Space

Chapter 25. Customizing How Users Allocate and Manage Data Sets 223

Table 24. Space Management Parameters and Defaults (continued)

Variable Contents or Meaning Default

PROTECTNEW Indicates whether a new data set that space
management creates should be protected by RACF.
You can set PROTECTNEW to YES to have new data
sets protected with the universal access in
RACFUACC, or NO if you do not want new data sets
to be protected by RACF.

NO

RACFUACC The universal access for RACF that space
management uses if space management either:
v Allocated a new data set, and PROTECTNEW is

set to YES
v Enlarged a data set, and a level of RACF earlier

than RACF 1.7 is installed

You can set RACFUACC to NONE, READ, UPDATE,
or ALTER.

NONE

ALLOWPASSWORDS Indicates whether space management should
compress or reallocate data sets that are
password-protected. You can set
ALLOWPASSWORDS to YES or NO.

NO

REALLOCATENEW Indicates whether space management should
reallocate a data set that is running out of space. You
can set REALLOCATENEW to YES to indicate that
space management should reallocate it, or NO to
indicate that space management should not reallocate
it.

YES

ALLOCATENEW Indicates whether space management should allocate
a new data set if the name passed to space
management does not match an existing data set.
You can set ALLOCATENEW to:

v YES, if you want space management to allocate
the data set automatically.

v NO, if you do not want space management to
allocate the data set.

v ASK, if you want space management to display a
panel asking the user whether the data set should
be allocated. The name of the panel is supplied in
the parameter ASKPANEL.

ASK

PRIMSPACE The number of primary space units that space
management should allocate for the new data set.
PRIMSPACE is used only if ALLOCATENEW is set to
ASK or YES.

Null

SECSPACE The number of secondary space units that space
management should allocate for the new data set.
SECSPACE is used only if ALLOCATENEW is set to
ASK or YES.

Null

UNITS The units that space management should use when
allocating the new data set. UNITS is used only if
ALLOCATENEW is set to ASK or YES.

Null

DIRBLOCKS The number of directory blocks that space
management should allocate for the new data set.
DIRBLOCKS is used only if ALLOCATENEW is set to
ASK or YES.

Null

Changing Defaults for Managing Data Set Space

224 z/OS V1R4.0 TSO/E Customization

Table 24. Space Management Parameters and Defaults (continued)

Variable Contents or Meaning Default

BLKSIZE The block size that space management should use
when allocating the new data set. BLKSIZE is used
only if ALLOCATENEW is set to ASK or YES.

Null

LRECL The record length that space management should use
when allocating the new data set. LRECL is used only
if ALLOCATENEW is set to ASK or YES.

Null

RECFM The record format that space management should
use when allocating the new data set. RECFM is
used only if ALLOCATENEW is set to ASK or YES.

Null

LIKE A data set that space management can use as a
model data set when allocating the new data set.
LIKE is used only if ALLOCATENEW is set to ASK or
YES.

Null

INFOPANEL The name of a panel that space management
displays while compressing or reallocating a data set.

ICQSPE00

ASKPANEL The name of the panel that space management
displays to ask users whether they want new data
sets to be allocated when the data set names they
supply do not match existing data sets. ASKPANEL is
used only if ALLOCATENEW is set to ASK.

ICQSPE01

VERIFYPARMS Indicates whether space management should check
the syntax of the input parameters. You can set
VERIFYPARMS to YES or NO. Setting
VERIFYPARMS to NO can improve performance.

YES

Space management invokes IEBCOPY to compress or reallocate a partitioned data
set. It invokes IEBGENER to reallocate a sequential data set. You can change the
way in which space management invokes IEBCOPY and IEBGENER by changing
the settings of the following variables in ICQSIE00:

Variable Invocation

QCCIEBCP 'TSOEXEC CALL ''SYS1.LINKLIB(IEBCOPY)'''
QCCIEBGR 'TSOEXEC CALL ''SYS1.LINKLIB(IEBGENER)'''

Note: You do not need to include TSOEXEC on these invocations, but including
TSOEXEC improves the execution time of the invocation.

Writing Exits for the ALLOCATE Command

Functional Description
TSO/E users issue the ALLOCATE command to create new data sets, allocate
existing data sets for a job, and create system output (SYSOUT) data sets.

TSO/E provides initialization and termination exits that you can use to customize
the ALLOCATE command. These exits receive control during ALLOCATE command
processing, as follows:

v The initialization exit receives control before the ALLOCATE command processor
invokes the parse service routine to syntax check the input parameters.

Changing Defaults for Managing Data Set Space

Chapter 25. Customizing How Users Allocate and Manage Data Sets 225

v The termination exit receives control just before the ALLOCATE command
terminates processing.

The following highlights some ways you can use the initialization and termination
exits. For more information about how you can use the exits, see “Possible Uses”
on page 228.

Some ways you can use the initialization exit are:
v Providing a command buffer address to replace the command syntax specified

by the user
v Changing the default values for operands of the ALLOCATE command
v Specifying an alternative return code

Some ways you can use the termination exit are:
v Performing clean-up processing
v Specifying an alternative return code

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the ALLOCATE command.

Entry Specifications
The contents of the registers on entry for the initialization and termination exits for
the ALLOCATE command are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The initialization exit receives the standard TSO/E exit parameter list. No
exit-dependent data is passed to the initialization exit. For information about the
standard exit parameter list and the parameter entry keys, see “TSO/E Standard
Exit Parameter List” on page 35.

Parameter Descriptions for the Termination Exit
The termination exit receives the standard exit parameter list. For a description of
this parameter list, see “TSO/E Standard Exit Parameter List” on page 35. If you
provide an initialization exit, the termination exit is passed the same parameter
entries for the new command buffer and exit-to-exit communication word that were
passed to the initialization exit.

Return Specifications
The contents of the registers on return from the initialization and termination exits
must be:

Registers 0–14 Same as on entry

Register 15 Return code

Writing Exits for the ALLOCATE Command

226 z/OS V1R4.0 TSO/E Customization

Return Codes for the Initialization and Termination Exits
Table 25 shows the return codes that the initialization and termination exits provide.

Table 25. Return Codes for the ALLOCATE Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. ALLOCATE command processing
continues.

12 The exit requested termination. The exit router issues an error
message to the user and the ALLOCATE command processor
terminates processing with a return code of 12.

16 The exit requested termination. The ALLOCATE command
processor issues a message and terminates processing with a
return code of 12.

Notes:

1. If an exit returns an undefined return code, the ALLOCATE command processor
terminates with a return code of 12 and issues an error message to the user,
with the exit’s reason code included in the message.

2. When requesting that the exit reason code be used as the return code from
ALLOCATE, you must insure that the reason code does not duplicate existing
ALLOCATE return codes.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable.

If the processing done in the initialization exit requires clean-up to be performed,
you must write a termination exit. For example, if the initialization exit obtains
storage to return a new command buffer to the ALLOCATE command processor,
you must provide a termination exit to free this storage.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

If the exits deal with device numbers, for example, on the ALLOCATE UNIT
operand, the extended addressability capabilities, introduced with MVS/ESA SP 5.1,
must be considered. Four-digit device numbers are preceded by a slash (/) to
differentiate them from device types that contain only four-character numerics.
Device numbers with less that four characters may be preceded by a preceding
slash. See also the description on the ALLOCATE UNIT operand in z/OS TSO/E
Command Reference if this needs to be considered.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name the exits as follows:

Initialization IKJEFD47

Termination IKJEFD49

Writing Exits for the ALLOCATE Command

Chapter 25. Customizing How Users Allocate and Manage Data Sets 227

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the ALLOCATE exits are described below:

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the ALLOCATE command. The initialization exit receives the address of the
command buffer. It can change the operands the user specifies on the
ALLOCATE command by using a new command buffer. For example, the
initialization exit can scan the command buffer to:

– Look for conflicts with the operands a user specifies and correct any errors.
For example, the user cannot specify both the COPIES and OLD operands on
the ALLOCATE command.

– Prevent users from specifying certain operands or certain values for operands.

To check the command buffer and change its contents, the initialization exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command the user issued

– Obtain storage for a new command buffer

– Build the new command buffer

– Update the key, length, and data fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the ALLOCATE command
processor.

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to
ALLOCATE.

For more information about the command buffer and the new command buffer,
see “TSO/E Standard Exit Parameter List” on page 35. For information about the
format of the command buffer, see “Command Buffer” on page 38.

You must also write a termination exit to free the storage the initialization exit
obtains for the new command buffer. When the ALLOCATE command processor
invokes the termination exit, it passes the address of the new command buffer to
the termination exit. If the initialization exit returned a new command buffer to the
ALLOCATE command in the new buffer parameter, the ALLOCATE command
replaces the old command buffer address in the command processor parameter
list (CPPL) with the address of the new command buffer. Therefore, when the
termination exit is invoked, the command buffer parameter will point to the new

Writing Exits for the ALLOCATE Command

228 z/OS V1R4.0 TSO/E Customization

command buffer obtained by the initialization exit. For the termination exit, the
new command buffer parameter is not used.

v Provide installation-defined pseudo-operands

If users at your installation print data sets with the same types of characteristics,
you can define pseudo-operands that are equivalent to two or more ALLOCATE
operands. Providing pseudo-operands makes it easier for users to issue the
ALLOCATE command. Users need not remember several ALLOCATE operands.
They can specify the pseudo- operand.

For example, you could associate a pseudo-operand named ALTINV with three
ALLOCATE operands. The initialization exit can scan the command buffer. If the
exit finds the pseudo-operand ALTINV, it can:

– Obtain storage for a new command buffer

– Build a new command buffer and replace the pseudo-operand with the
appropriate ALLOCATE operands in the new command buffer

– Update the “Key”, “Length”, and “Data” fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the ALLOCATE command
processor.

You must also provide a termination exit. The termination exit must free the
storage that the initialization exit obtained for the new command buffer.

v Monitor how long it takes the ALLOCATE command to complete processing.

You can use the initialization and termination exits to monitor the approximate
time it takes the ALLOCATE command processor to complete processing. When
the initialization exit receives control, it can:

– Invoke the TIME macro

– Use the exit-to-exit communication word to return the time to the ALLOCATE
command processor. The exit updates the “Key”, “Length”, and “Data” fields
for the exit-to-exit communication word as follows:

Key X'01'

Length the length of the data (time)

Data the data (time)

– Set a return code of 0 and return to the ALLOCATE command processor.

When the termination exit gets control, it receives the time from the initialization
exit in the exit-to-exit communication word. Before the termination exit returns
control to ALLOCATE, it can invoke the TIME macro. The exit can calculate the
time difference between the time from the initialization exit (in the exit-to-exit
communication word) and the time it receives from issuing the TIME macro. The
result is the approximate time it took the ALLOCATE command to complete its
processing. The termination exit can include the processing time in a data set.
You can then periodically print the data set and review the time calculations.

Writing Exits for the ALLOCATE Command

Chapter 25. Customizing How Users Allocate and Manage Data Sets 229

Writing Exits for the ALLOCATE Command

230 z/OS V1R4.0 TSO/E Customization

Chapter 26. Customizing the ALTLIB Command

Writing Exits for the ALTLIB Command. 231
Functional Description . 231
TSO/E-Supplied Exits . 232
Entry Specifications. 232
Parameter Descriptions for the Initialization Exit 232
Parameter Descriptions for the Termination Exit 232
Return Specifications . 233
Programming Considerations 234
Possible Uses. 234

Writing Exits for the ALTLIB Command

Functional Description
TSO/E users issue the ALTLIB command to define alternative user-level or
application-level libraries containing REXX execs and CLISTs. The defined libraries
are searched before, or instead of, the system-level libraries. Therefore, the user
does not need:

v To allocate application-level REXX execs or CLISTs to the appropriate ddname
before implicitly executing them.

v To include all application-level REXX execs or CLISTs in the user’s logon
procedure.

The following table lists the search order of the user-, application-, and system-level
libraries. Also shown are the ddnames associated with each library level. These
ddnames can be allocated either dynamically by the ALLOCATE command or
included as part of a logon procedure.

Table 26. Library Search Order

Search order Library level Associated ddname

1. User REXX exec SYSEXEC

2. User CLIST SYSUPROC

3. Application REXX exec Define with FILE or DATASET
operand

4. Application CLIST Define with FILE or DATASET
operand

5. System REXX exec SYSEXEC (installation can define
this ddname)

6. System CLIST SYSPROC

With the defaults that TSO/E provides, and before an ALTLIB command is invoked,
TSO/E searches the system EXEC library (default ddname SYSEXEC) first,
followed by the system CLIST library (ddname SYSPROC). Note that your system
programmer can change this by

v Defining an alternate ddname of SYSEXEC

v Indicating that TSO/E is not to search the system-level exec ddname of
SYSEXEC. Then only the system-level CLIST (SYSPROC) is searched.

© Copyright IBM Corp. 1988, 2002 231

You can alter the default library search order by using either the ALTLIB command
or the EXECUTIL command.

Use EXECUTIL to indicate that the system-level exec ddname is to be searched
for the duration of the current REXX language processor environment.
Use ALTLIB to indicate that the system-level exec ddname is to be searched for
the duration of the current application. ALTLIB always overrides EXECUTIL
within an application.

Use ALTLIB DISPLAY to see which libraries are being searched for.

TSO/E provides initialization and termination exits that you can use to customize
the ALTLIB command. These exits receive control during ALTLIB command
processing, as follows:

v The initialization exit receives control before the ALTLIB command processor
invokes the parse service routine to syntax check the input parameters.

v The termination exit receives control just before the ALTLIB command terminates
processing.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the ALTLIB command.

Entry Specifications
The contents of the registers on entry for the initialization and termination exits for
the ALTLIB command are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The initialization exit receives the standard exit parameter list. However, no
exit-dependent data is passed to the initialization exit. For information about the
standard exit parameter list and the parameter entry keys, see “TSO/E Standard
Exit Parameter List” on page 35.

Parameter Descriptions for the Termination Exit
The termination exit receives the standard exit parameter list. For a description of
this parameter list, see “TSO/E Standard Exit Parameter List” on page 35. If you
provide an initialization exit, the termination exit is passed the same parameter
entries for the new command buffer and exit-to-exit communication word that were
passed to the initialization exit. Figure 31 on page 233 shows the exit-dependent
data that the termination exit receives beginning at offset +36 (decimal) in the
parameter list. The parameter entry is described following the figure.

Writing Exits for the ALTLIB Command

232 z/OS V1R4.0 TSO/E Customization

ALTLIB Return Code (Parameter Entry 10)
This parameter entry is the return code from the ALTLIB command processor.
For information on the return codes from the ALTLIB command, see z/OS
TSO/E Command Reference.

Return Specifications
The contents of the registers on return from the initialization and termination exits
must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 27 shows the return codes that the initialization and termination exits support.

Table 27. Return Codes for the ALTLIB Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. ALTLIB processing continues.

12, 16 An error occurred in the exit. The ALTLIB command processor
terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the ALTLIB command processor. For more information, see
the notes following this table and “Exit Reason Code” on page 40.

If your exit sets a return code of either 12 or 16, you should
consider displaying an informational message to the user. You can
use the PUTLINE service routine to issue an informational
message. See z/OS TSO/E Programming Services for more
information.

Notes:

1. If an exit returns an undefined return code, the ALTLIB command processor
terminates without issuing an error message to the user.

2. If an initialization or termination exit sets a reason code that has a key value of
X'03', this reason code is used as the return code from the ALTLIB command.
However, if both exits indicate that the reason code is to be used as the return
code from the ALTLIB command, the reason code from the termination exit
overrides that from the initialization exit.

3. When requesting that the exit reason code be used as the return code from
ALTLIB, you must insure that the reason code does not duplicate existing
ALTLIB return codes.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10 00000001 00000004

Parameter Entry's

Key, Length, and Data

ALTLIB

return code

Figure 31. Exit-Dependent Data for the ALTLIB Command Termination Exit

Writing Exits for the ALTLIB Command

Chapter 26. Customizing the ALTLIB Command 233

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable.

If the processing done in the initialization exit requires clean-up to be performed,
you must write a termination exit. For example, if the initialization exit obtains
storage to return a new command buffer to the ALTLIB command processor, you
must provide a termination exit to free this storage.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name the exits as follows:

Initialization IKJADINI

Termination IKJADTER

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
You can use the initialization exit to change the default values of the ALTLIB
command. For example, you can cause the COND operand to be the default.

You can use the termination exit to perform clean-up processing. For example, you
can free storage that was obtained in the initialization exit.

Writing Exits for the ALTLIB Command

234 z/OS V1R4.0 TSO/E Customization

Chapter 27. Customizing the CONSOLE and CONSPROF
Commands

Defining Installation Defaults for the CONSOLE Command 237
Writing Exits for the CONSOLE Command 237

Functional Description . 237
TSO/E-Supplied Exits . 238
Entry Specifications. 238
Parameter Descriptions for the Pre-Parse Exit 239
Parameter Descriptions for the Activation Exit 239
Parameter Descriptions for the Deactivation Exit 241
Parameter Descriptions for the 80% Message Capacity Exit 243
Parameter Descriptions for the 100% Message Capacity Exit 244
Return Specifications . 246
Programming Considerations 246
Possible Uses. 248

Writing Exits for the CONSPROF Command 249
Functional Description . 249
TSO/E-Supplied Exits . 250
Entry Specifications. 250
Parameter Descriptions for the Initialization Exit 250
Parameter Descriptions for the Pre-Display Exit 251
Parameter Descriptions for the Termination Exit 252
Return Specifications . 253
Programming Considerations 254
Possible Uses. 255

The CONSOLE command allows authorized users to establish an extended MCS
console session with MVS console services. When the session is active, users can
enter MVS system and subsystem commands and obtain responses to those
commands (solicited messages), as well as unsolicited messages.

The CONSPROF command allows authorized users to establish a profile to be
used to tailor system message processing during an extended MCS console
session. The console profile contains settings for controlling:
v The display of solicited messages (command responses) at the terminal
v The display of unsolicited messages at the terminal
v The size of the tables used to store messages that users do not want displayed

Note: Extended MCS console support is provided in line-mode only.

Before users at your installation can use the CONSPROF command, you must add
CONSPROF to the table of authorized commands. Chapter 10, “Specifying
Authorized Commands/Programs, and Commands Not Supported in the
Background” on page 153 describes how to maintain and update the table.

Individual users must be granted CONSOLE command authority to use the
CONSOLE and CONSPROF commands. You can control access to these
commands using one of the following methods:

v Use the RACF RDEFINE command to define CONSOLE as a RACF resource
belonging to the TSOAUTH RACF class. You can then give selected users
access to the CONSOLE resource using the RACF PERMIT command. Users
must be defined in a TSO/E segment of the RACF data base.

© Copyright IBM Corp. 1988, 2002 235

v Use the logon pre-prompt exit routine, IKJEFLD or IKJEFLD1, to grant or deny
CONSOLE command authority. For more information on IKJEFLD and
IKJEFLD1, see Chapter 8, “Customizing the Logon and Logoff Process” on
page 87.

v Use the CONSOLE exit routine IKJCNXAC and CONSPROF exit routine
IKJCNXCI.

Note: These exits only change CONSOLE command authority on a temporary
basis. If you use this method, it is recommended that you use both
IKJCNXAC and IKJCNXCI to grant or deny CONSOLE command
authority.

In addition to controlling access to the CONSOLE and CONSPROF commands, you
can customize the use and processing of these commands by:

v Defining installation defaults for the message tables used to store messages that
users do not want displayed at the terminal.

v Setting up the console profile for a user with the logon pre-prompt exit
IKJEFLD1. You can also use the CONSPROF exits to add information to or
change a user’s console profile. For information about using IKJEFLD1, see
Chapter 8, “Customizing the Logon and Logoff Process” on page 87. The
CONSOLE profile can be found in SYS1.MACLIB, member IKJCNCCB, at label
CONSOLE_PROFILE.

v Specifying console attributes for each user with CONSOLE command authority.
The console attributes control various functions including the types of MVS
commands a user can issue during an extended MCS console session, the
routing of MVS messages and commands, and the display of MVS message
formats. You can use the MVS VARY command to specify the console attributes
for a user.

If you have RACF installed, you can optionally define an OPERPARM segment
with the console attributes in the user’s RACF profile. If an OPERPARM segment
has been defined for a user, the user’s console attributes are saved from session
to session. You can use the RACF ADDUSER and ALTUSER commands to
define OPERPARM segments for users.

If you do not specify console attributes for a user, the system defaults are used.
For information about each of the console attributes and their defaults, see z/OS
MVS Planning: Operations.

You may provide console attribute information for a user via the console
activation exit (IKJCNXAC) in place of using the OPERPARM segment in the
user’s RACF profile. See “Writing Exits for the CONSOLE Command” on
page 237 for more information.

v Writing CONSOLE and CONSPROF exit routines. You can use these exits to:

– Grant or deny a user CONSOLE command authority

– Supply console attributes for a user

– Control the size of the message tables

– Take action if a message table reaches 80% or 100% capacity

– Change the operands a user specifies on the CONSOLE or CONSPROF
command

– Customize the console profile message displayed to the user

– Add information to or change a user’s console profile

– Release the migration ID

236 z/OS V1R4.0 TSO/E Customization

This chapter describes how you can customize the CONSOLE and CONSPROF
commands by:
v Defining installation defaults in SYS1.PARMLIB member IKJTSOxx
v Writing CONSOLE and CONSPROF exits

Defining Installation Defaults for the CONSOLE Command
You can use SYS1.PARMLIB member IKJTSOxx to define message processing
defaults for the CONSOLE command and its services. IKJTSOxx contains a
CONSOLE statement you can use to:

v Specify an initial limit for the number of unsolicited messages to be routed to a
user’s console without being retrieved or displayed

v Specify an initial limit for the number of solicited messages to be routed to a
user’s console without being retrieved or displayed

v Specify the maximum number of unsolicited messages to be routed to a user’s
console without being retrieved or displayed

v Specify the maximum number of solicited messages to be routed to a user’s
console without being retrieved or displayed

TSO/E provides a sample IKJTSO00 member in SYS1.SAMPLIB. To define
installation defaults in IKJTSOxx, do the following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v Create alternative members in SYS1.PARMLIB using the IKJTSOxx naming
convention

v Edit the member in SYS1.PARMLIB and locate the CONSOLE PARMLIB
statement

v Specify the operands for your installation’s requirements

You can make the CONSOLE defaults in IKJTSOxx take effect immediately using
the PARMLIB command. You can also use the PARMLIB command to list the
current CONSOLE defaults and to check the syntax of any IKJTSOxx member. For
more information about using the PARMLIB command, see z/OS TSO/E System
Programming Command Reference.

The operands for the CONSOLE PARMLIB statement are:
v INITUNUM
v INITSNUM
v MAXUNUM
v MAXSNUM

For information about these operands, see z/OS MVS Initialization and Tuning
Reference.

Writing Exits for the CONSOLE Command

Functional Description
TSO/E provides exits you can use to customize the use and processing of the
CONSOLE command. These exits are:

v Pre-parse - control what the user is allowed to specify on the CONSOLE
command and in response to the CONSOLE command prompt

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 237

v Activation - establish a communication area for related exits, change the initial
settings specified by the user, and grant or deny the user CONSOLE command
authority

v Deactivation - perform cleanup after other exits and release the migration ID

v 80% message capacity - control the size of the message tables for the user

v 100% message capacity - control the size of the message tables for the user.

For information about how you can use the exits, see “Possible Uses” on page 248.

Overview of When the CONSOLE Exits Receive Control
The CONSOLE exits receive control when a user issues the CONSOLE command
or responds to a CONSOLE prompt, or when a message table reaches 80% or
100% capacity.

v The pre-parse exit receives control before CONSOLE invokes the parse service
to parse the command. It is also invoked when the user responds to a console
prompt with input. The exit can be invoked several times on each invocation of
the CONSOLE command (if the CONSOLE command enters conversational
mode). The exit is invoked synchronously in the TSO/E user’s address space (for
example, as a result of a user entering the CONSOLE command or a
subcommand to the CONSOLE command).

v The activation exit receives control just before the console session is activated
through MVS console services. It is invoked on the first invocation of the
CONSOLE command when a console session is not active.

v The deactivation exit receives control just after console deactivation occurs. It
cleans up the communication area established by the CONSOLE activation exit.
If the X'80000000' bit of the flags field is on, this exit is invoked asynchronously
in the TSO/E user’s address space.

v The 80% message capacity exit receives control at the first point in which the
message tables reach 80% capacity. Eighty percent capacity is defined as 80%
of the maximum table size defined in the user’s console profile. The exit will not
be invoked again for this type of message table until the situation has been
resolved and has occurred again. The situation is considered to be resolved
when the table decreases to 70% capacity or the resume percentage is updated
by the exit. This exit is invoked asynchronously in the TSO/E user’s address
space.

v The 100% message capacity exit receives control at the first point in which the
message tables reach 100% capacity. One hundred percent capacity is defined
as 100% of the maximum table size defined in the user’s console profile. The exit
will not be invoked again for this type of message table until the situation has
been resolved and has occurred again. The situation is considered to be
resolved when the table decreases to 90% capacity or the resume percentage is
updated by the exit. This exit is invoked asynchronously in the TSO/E user’s
address space.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for any of the CONSOLE exits.

Entry Specifications
For all CONSOLE exits, the contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Writing Exits for the CONSOLE Command

238 z/OS V1R4.0 TSO/E Customization

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter Descriptions for the Pre-Parse Exit
The pre-parse exit receives the standard exit parameter list with the following
exceptions:

v The exit reason code field is not used. Its value in the parameter list is:

Key X'00'

Length X'04'

Data X'00'

v The exit-to-exit communication word is read-only for this exit. All other exits
related to this exit execute in key 1, supervisor state; the exit-to-exit
communication word can be set only by them.

v The exit-to-exit word will be zero on the first invocation of this exit because it
receives control before the activation exit IKJCNXAC.

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 32 shows the exit-dependent data that the pre-parse exit receives beginning
at offset +36 (decimal) in the parameter list.

Flags (Parameter Entry 10)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags are described in Table 28.

Table 28. Flags Passed to the CONSOLE Pre-Parse Exit

Flag Meaning

X'80000000' The command buffer was obtained in conversational mode. If this bit
is off, the user is in command mode. Changing this bit has no effect
on processing.

X'7FFFFFFF' Reserved.

Parameter Descriptions for the Activation Exit
The activation exit receives the standard exit parameter list with the following
exceptions:

v The parameters are in key 1 storage.

v The command buffer, new command buffer, and exit reason code fields are not
used. Their values in the parameter list are:

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000001 00000004 Flags

Parameter Entry's

Key, Length, and Data

Figure 32. Exit-Dependent Data for the CONSOLE Pre-Parse Exit

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 239

Key X'00'

Length X'04'

Data X'00'

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 33 shows the exit-dependent data that the activation exit receives beginning
at offset +36 (decimal) in the parameter list.

Solicited Message Table Initial Size (Parameter Entry 10)
This parameter contains the initial size of the solicited message table. This exit
can change the initial size if it determines that another value is more
appropriate. The value specified by the exit must not be greater than the value
specified in parameter 12.

Unsolicited Message Table Initial Size (Parameter Entry 11)
This parameter contains the initial size of the unsolicited message table. This
exit can change the initial size if it determines that another value is more
appropriate. The value specified by the exit must not be greater than the value
specified in parameter 13.

Solicited Message Table Maximum Size (Parameter Entry 12)
This parameter contains the absolute maximum size of the solicited message
table. This is the value specified in the active IKJTSOxx member of
SYS1.PARMLIB. This parameter is for information only. Any changes to this
parameter have no effect on processing.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

Address of
parameter entry 16

+40

+44

+48

Initial size of solicited
message table

Initial size of unsolicited
message table

Maximum solicited
message table size

Maximum unsolicited
message table size

Flags

Name of console to
activate

Pointer to OPERPARM area
(returned by this area)

00000001 00000004

00000001 00000004

00000001 00000004

00000001 00000004

00000001 00000004

Name
length

00000001

00000000 00000004

+52

+56

+60

Figure 33. Exit-Dependent Data for the CONSOLE Activation Exit

Writing Exits for the CONSOLE Command

240 z/OS V1R4.0 TSO/E Customization

Unsolicited Message Table Maximum Size (Parameter Entry 13)
This parameter contains the absolute maximum size of the unsolicited message
table. This is the value specified in the active IKJTSOxx member of
SYS1.PARMLIB. This parameter is for information only. Any changes to this
parameter have no effect on processing.

Flags (Parameter Entry 14)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags are described in Table 29.

Table 29. Flags Passed to the CONSOLE Activation Exit

Flag Meaning

X'80000000' Solicited messages are to be displayed at the terminal. If this bit is
off, solicited messages are not to be displayed. This value can be
changed by the exit.

X'40000000' Unsolicited messages are to be displayed at the terminal. If this bit is
off, unsolicited messages are not to be displayed. This value can be
changed by the exit.

X'20000000' The console profile provided to the exit is a default profile. If this bit
is off, a profile was obtained from either RACF or the logon exit
IKJEFLD1.

X'10000000' CONSOLE command authority bit. This bit is on if the user has
CONSOLE command authority. If this bit is off and the exit
determines that the user should have CONSOLE command
authority, the exit should turn this bit on. If this bit is on and the exit
determines that the user should not have CONSOLE command
authority, the exit should turn this bit off.

X'0FFFFFFF' Reserved.

Name of Console to Activate (Parameter Entry 15)
This parameter contains the name of the console to be activated. If the exit
changes the console name, the length field should also be updated to reflect
the correct length of the console name.

Pointer to OPERPARM area (Parameter Entry 16)
This parameter allows the installation to return an OPERPARM area (mapped
by IEZVG111) to the CONSOLE command for use during activation. See the
OPERPARM parameter on the MCSOPER macro in z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU for details on how to
supply this information. The exit must issue the GETMAIN macro to obtain
storage for this area and return a pointer to it in this parameter. If the exit
returns a pointer, it must also set the key field to 2 (indirect data returned) and
the length field to the length of the area being returned. This value is passed to
the deactivation exit in parameter 11 of that exit.

Note: You are responsible for issuing the FREEMAIN macro to free this
storage in the deactivation exit unless you choose a task-related
subpool.

Parameter Descriptions for the Deactivation Exit
The deactivation exit receives the standard parameter list with the following
exceptions:

v The parameters are in key 1 storage.

v The command buffer, new command buffer, and exit reason code fields are not
used. Their values in the parameter list are:

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 241

Key X'00'

Length X'04'

Data X'00'

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 34 shows the exit-dependent data that the deactivation exit receives
beginning at offset +36 (decimal) in the parameter list.

Flags (Parameter Entry 10)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags are described in Table 30.

Table 30. Flags Passed to the CONSOLE Deactivation Exit

Flag Meaning

X'80000000' If this bit is on, the exit should not use the TSO/E I/O services (for
example, PUTLINE, GETLINE, PUTGET, and STACK).
Unpredictable results can occur.

X'7FFFFFFF' Reserved.

Pointer to OPERPARM area (Parameter Entry 11)
This parameter contains the pointer to the OPERPARM area provided by the
activation exit in parameter 16. This parameter can be used by the FREEMAIN
macro to free the OPERPARM area obtained by the activation exit.

Note: This parameter may point to storage which has been already freed by
task termination if the subpool, in which the area was obtained with the
GETMAIN macro, is task-related.

Note: This parameter will contain

Key X'00'

Length X'04'

Data X'00'

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Pointer to
OPERPARM area

Migration ID

00000001 00000004 Flags

00000002 Length of area

00000001 00000001

Figure 34. Exit-Dependent Data for the CONSOLE Deactivation Exit

Writing Exits for the CONSOLE Command

242 z/OS V1R4.0 TSO/E Customization

if no OPERPARM area was provided in parameter 16 of the activation
exit.

Migration ID (Parameter Entry 12)
This parameter contains the migration ID assigned to this console if one was
requested. For more information about migration IDs, see z/OS MVS
Programming: Authorized Assembler Services Guide. To release the migration
ID, use the MCSOPER macro with the RELEASE operand.

Parameter Descriptions for the 80% Message Capacity Exit
The 80% message capacity exit receives the standard parameter list with the
following exceptions:

v The parameters are in key 1 storage.

v The command buffer, new command buffer, and exit reason code fields are not
used. Their values in the parameter list are:

Key X'00'

Length X'04'

Data X'00'

Figure 35 shows the exit-dependent data that the 80% message capacity exit
receives beginning at offset +36 (decimal) in the parameter list.

Current Table Size (Parameter Entry 10)
This parameter contains the number of messages in the table. This parameter
is information only and should not be changed. Any changes are ignored.

Current Maximum Table Size (Parameter Entry 11)
This parameter contains the current maximum size of the message table. If the
exit changes the maximum size, the new value must not be greater than the
value contained in parameter 12 (installation maximum). If the new value is
larger than the value contained in parameter 12, parameter 12 is used.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

+40

+44

+48

Current size of table

Current maximum size

Installation maximum

Flags

Resume percentage

00000001 00000004

00000001 00000004

00000001 00000004

00000001 00000004

00000000 00000004

+52

Figure 35. Exit-Dependent Data for the CONSOLE 80% Message Capacity Exit

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 243

Installation Maximum Table Size (Parameter Entry 12)
This parameter contains the absolute maximum size allowed for this type of
message table as defined in the IKJTSOxx member of SYS1.PARMLIB. This
parameter is information only and should not be changed. Any changes are
ignored.

Flags (Parameter Entry 13)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags are described in Table 31.

Table 31. Flags Passed to the CONSOLE 80% Message Capacity Exit

Flag Meaning

X'80000000' The message table is for solicited messages. If this bit is off, the
table is for unsolicited messages. This field should not be changed.

X'40000000' Messages are currently being displayed at the terminal. If this bit is
off, the user is not having messages displayed at the terminal. The
exit can change this bit to indicate that the user should or should not
have messages displayed at the terminal.

X'20000000' Reserved.
X'10000000' The TSO/E message service routine should issue a message to the

user indicating the situation. By default, this bit is off. If a message is
to be issued to the user, the exit must turn this bit on.

X'08000000' Messages are to be displayed at the terminal regardless of the
setting of the X'40000000' flag. At the point in which the message
table reaches the resume percentage, the option of the X'40000000'
bit is reinstated and processing resumes as normal. By default, this
bit is off. If the exit turns this bit on, it must also specify the resume
percentage in the parameter list (parameter entry 14).

X'07FFFFFF' Reserved.

Resume Percentage (Parameter Entry 14)
This parameter contains a value that specifies the percent capacity that the
message table must be reduced to before the normal profile setting for
displaying messages is resumed (X'40000000' flag). If the exit updates this
entry, the key value should be changed to X'01'. This value is used only if the
X'08000000' flag is on.

Parameter Descriptions for the 100% Message Capacity Exit
The 100% message capacity exit receives the standard parameter list with the
following exceptions:

v The parameters are in key 1 storage.

v The command buffer, new command buffer, and exit reason code fields are not
used. Their values in the parameter list are:

Key X'00'

Length X'04'

Data X'00'

Figure 36 on page 245 shows the exit-dependent data that the 100% message
capacity exit receives beginning at offset +36 (decimal) in the parameter list.

Writing Exits for the CONSOLE Command

244 z/OS V1R4.0 TSO/E Customization

Current Table Size (Parameter Entry 10)
This parameter contains the number of messages in the table. This parameter
is information only and should not be changed. Any changes are ignored.

Current Maximum Table Size (Parameter Entry 11)
This parameter contains the current maximum size of the message table. If the
exit changes the maximum size, the new value must not be greater than the
value contained in parameter 12 (installation maximum). If the new value is
larger than the value contained in parameter 12, parameter 12 is used.

Installation Maximum Table Size (Parameter Entry 12)
This parameter contains the absolute maximum size allowed for this type of
message table as defined in the IKJTSOxx member of SYS1.PARMLIB. This
parameter is information only and should not be changed. Any changes are
ignored.

Flags (Parameter Entry 13)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags are described in Table 32.

Table 32. Flags Passed to the CONSOLE 100% Message Capacity Exit

Flag Meaning

X'80000000' The message table is for solicited messages. If this bit is off, the
table is for unsolicited messages. This field should not be changed.

X'40000000' Messages are currently being displayed at the terminal. If this bit is
off, the user is not having messages displayed at the terminal. The
exit can change this bit to indicate that the user should or should not
have messages displayed at the terminal.

X'20000000' Reserved.
X'10000000' The TSO/E message service routine should issue a message to the

user indicating the situation. By default, this bit is off. If a message is
to be issued to the user, the exit must turn this bit on.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

+40

+44

+48

Current size of table

Current maximum size

Installation maximum

Flags

Resume percentage

00000001 00000004

00000001 00000004

00000001 00000004

00000001 00000004

00000000 00000004

+52

Figure 36. Exit-Dependent Data for the CONSOLE 100% Message Capacity Exit

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 245

Table 32. Flags Passed to the CONSOLE 100% Message Capacity Exit (continued)

Flag Meaning

X'08000000' Messages are to be displayed at the terminal regardless of the
setting of the X'40000000' flag. At the point in which the message
table reaches the resume percentage, the option of the X'40000000'
bit is reinstated and processing resumes as normal. By default, this
bit is off. If the exit turns this bit on, it must also specify the resume
percentage in the parameter list (parameter entry 14).

X'07FFFFFF' Reserved.

Resume Percentage (Parameter Entry 14)
This parameter contains a value that specifies the percent capacity that the
message table must be reduced to before the normal profile setting for
displaying messages is resumed (X'40000000' flag). If the exit updates this
entry, the key value should be changed to X'01'. This value is used only if the
X'08000000' flag is on.

Return Specifications
On return from the CONSOLE exits, the contents of the registers must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the CONSOLE Exits
Table 33 shows the standard return codes that all of the CONSOLE exits support.

Table 33. Standard Return Codes that all CONSOLE Exits Support

Return Code
(Decimal)

Description

0 Exit processing was successful. CONSOLE processing continues.

12 Exit processing was unsuccessful. CONSOLE issues an error
message to the user and then terminates processing. The console
session remains active if it was active before the exit received
control.

If the exit uses return code 12, it can also pass back an exit reason
code to the CONSOLE command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. CONSOLE terminates
processing. The console session remains active if it was active
before the exit received control.

The CONSOLE command processor does not display a message to
the user if the exit sets a return code of 16. Before the exit returns
with return code 16, it can display a message to the user; for
example, using PUTLINE.

If any other non-zero return code is received from the exit, it is assumed to be a
return code of 16.

Programming Considerations
The CONSOLE exits must follow standard linkage conventions. They must save the
registers on entry and restore them on return. The exits must be re-entrant,
refreshable, and reusable.

Writing Exits for the CONSOLE Command

246 z/OS V1R4.0 TSO/E Customization

The pre-parse and activation exits and the deactivation exit (when the X'80000000'
bit of the flags field is off) can use any of the TSO/E I/O service routines (for
example, PUTLINE, GETLINE, PUTGET, and STACK). The activation and
deactivation exits must be in key 8 problem program state to invoke the service
routines. After using the service routines, these exits must return to key 1
supervisor state. For a description of the service routines, see z/OS TSO/E
Programming Services.

All dynamic storage obtained for use by the CONSOLE exits, except the pre-parse
exit, should be in a protected key and subpool. Because the exits can be invoked
asynchronously in the TSO/E user’s address space, other tasks can be dispatched
during the execution of the exits. Special care must be taken to ensure the integrity
of the exit data.

The pre-parse exit can change CONSOLE operands using the command buffer.
This exit checks the command buffer it receives and determines whether to change
any operands. To change the operands, the exit must:

v Obtain storage from subpool 1 for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer (parameter
entry 2)

For more information about the format of the command buffer, see “Command
Buffer” on page 38 and “New Command Buffer” on page 39.

The activation exit can establish a communication area for the exits and place the
address in the exit-to-exit communication word parameter. The communication area
should be obtained in a protected key so that unauthorized programs cannot alter
the storage. In addition, it should be obtained in a non-task-related subpool (254),
or the storage should be related to the jobstep task and obtained in an authorized
subpool (230). This requirement is because the exits can be invoked under multiple
tasks in the address space and the task under which this exit runs might end during
the life of the console session.

Note: The pre-parse exit is invoked in key 8 problem program state and cannot
alter the communication area.

The activation exit can be used to grant or deny the user CONSOLE command
authority for the duration of the console session. If you do not use RACF or the
logon pre-prompt exit (IKJEFLD or IKJEFLD1) to control access to the CONSOLE
command, it is recommended that you use both the CONSOLE activation exit and
the CONSPROF initialization exit to give users CONSOLE command authority.

The pre-parse exit can allow installation-specific keywords on the CONSOLE
command. If they are allowed, they should be removed before the exit returns
control to CONSOLE. A serialization routine should be used to provide for exits that
use the same storage area and are called simultaneously.

The 80% and 100% message capacity exits can be invoked once for each type of
message table when the criteria for the exit pertaining to that table is met. After the
first invocation for that type of message table, they are not invoked again for that
type of table until the situation is resolved.

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 247

Environment
Activation, Deactivation, 80% and 100% Message Capacity Exits
v State: Supervisor
v Key: 1
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v Not APF-Authorized

Pre-Parse Exit
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v Not APF-Authorized

Restrictions and Limitations
The following exits are invoked asynchronously in the TSO/E address space and
should not use any TSO/E I/O service routines.
v 80% message capacity
v 100% message capacity
v Deactivation (when the X'80000000' bit of the flags field is on)

If these exits need to issue a message to the user, they should use the TPUT
service.

Installing the Exits
You must name the exits as follows:

Pre-parse IKJCNXPP

Activation IKJCNXAC

Deactivation IKJCNXDE

80% message capacity IKJCNX50

100% message capacity IKJCNX64

Link-edit each exit as a separate load module. The exits must reside in an
authorized library.

Possible Uses
The pre-parse exit can be used to control what the user is allowed to specify on the
CONSOLE command and in response to CONSOLE command prompts. It can also
allow installation-specific keywords on the CONSOLE command. If
installation-specific keywords are allowed, they should be removed before the exit
returns control to the CONSOLE command.

The activation exit can be used to:

v Establish a communication area for the other exits related to it.

v Supply console attributes for a user

v Change the initial settings that were specified by the user for the console
session.

v Enforce the use of console names.

v Grant or deny the user CONSOLE command authority for the duration of the
console session.

Note: If you do not use RACF or the logon pre-prompt exit (IKJEFLD or
IKJEFLD1) to control access to the CONSOLE command, it is

Writing Exits for the CONSOLE Command

248 z/OS V1R4.0 TSO/E Customization

recommended that you use both the CONSOLE activation exit and the
CONSPROF initialization exit to grant users CONSOLE command
authority. The CONSPROF initialization exit can grant or deny CONSOLE
command authority for the duration of the CONSPROF command.

The deactivation exit can be used to clean up after other exits and release the
migration ID.

The 80% and 100% message capacity exits can be used to control the size of the
message tables for the user. When the user’s solicited or unsolicited message table
becomes full, these exits can take the following actions so that messages are not
lost:

v Make the message table larger if the maximum table size specified in the
IKJTSOxx member of SYS1.PARMLIB is greater than the current maximum table
size.

v Indicate that the user should have messages displayed at the terminal. This
should begin to reduce the number of messages in the message table. After the
table decreases to the resume percentage level specified in the parameter list,
the processing of messages resumes as normal.

v Indicate that the console session should be terminated.

v Change the dispatching priorities of the tasks so that messages are retrieved
faster.

Writing Exits for the CONSPROF Command

Functional Description
TSO/E provides exits you can use to customize the use and processing of the
CONSPROF command. These exits are:

v Initialization - control what the user is allowed to specify on the CONSPROF
command and grant or deny the user CONSOLE command authority for the
duration of the CONSPROF command

v Pre-display - add information to message IKJ55351I or issue an
installation-defined message

v Termination - perform cleanup after other exits

For information about how you can use these exits, see “Possible Uses” on
page 255.

Overview of When CONSPROF Exits Receive Control
The CONSPROF exits receive control when a user issues the CONSPROF
command or before CONSPROF issues message IKJ55351I.

v The initialization exit receives control before CONSPROF invokes the parse
service routine to parse the command. The exit can be invoked once per
invocation of the CONSPROF command.

v The pre-display exit receives control before the CONSPROF command issues
message IKJ55351I. The exit is invoked when either the user enters the
CONSPROF command with no keywords or exit IKJCNXCI indicates that
message IKJ55351I is to be issued.

v The termination exit receives control before the CONSPROF command returns
control to its invoker and is invoked once for each invocation of the CONSPROF
command.

Writing Exits for the CONSOLE Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 249

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for any of the CONSPROF exits.

Entry Specifications
For all CONSPROF exits, the contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter Descriptions for the Initialization Exit
The initialization exit receives the standard exit parameter list with the following
exception:

v The exit reason code field is not used

v Its value in the parameter list is:

Key X'00'

Length X'04'

Data X'00'

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 37 shows the exit-dependent data that the initialization exit receives
beginning at offset +36 (decimal) in the parameter list.

Console Profile Address (Parameter Entry 10)
This parameter contains the address of the console profile. At the time this exit
is invoked, the console profile does not reflect changes requested for this
command. The exit can update the profile if it determines that changes are
necessary.

Flags (Parameter Entry 11)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags for this exit’s processing are described
in Table 34 on page 251.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
console profile

Flags

00000002 00000018

00000001 00000004

Figure 37. Exit-Dependent Data for the CONSPROF Initialization Exit

Writing Exits for the CONSPROF Command

250 z/OS V1R4.0 TSO/E Customization

Table 34. Flags Passed to the CONSPROF Initialization Exit

Flag Meaning

X'80000000' CONSOLE command authority bit. If this bit is on, the user has
CONSOLE command authority. If this bit is off, the exit can grant the
authority for the duration of the command by turning the bit on. If this
bit is on, the exit can remove the user’s authority for the duration of
the command by turning the bit off.

X'40000000' The console profile provided to the exit is a default profile. If this bit
is off, a profile was obtained from either RACF or the logon exit
IKJEFLD1. If the exit alters the profile, it must turn this bit on.

X'20000000' Specifies that the exit has done all processing and no further action
is required by the CONSPROF command. The CONSPROF
command ends with return code 0. If the exit sets the X'10000000'
bit, the message is displayed before the command ends. By default,
this bit is off.

X'10000000' Specifies that the CONSPROF command should display message
IKJ55351I. The pre-display exit IKJCNXCD is invoked before the
message is issued. By default, this bit is off.

X'0FFFFFFF' Reserved.

Parameter Descriptions for the Pre-Display Exit
The pre-display exit receives the standard parameter list with the following
exceptions:

v The exit reason code field is not used. Its value in the parameter list is:

Key X'00'

Length X'04'

Data X'00'

v The new command buffer field is irrelevant at this point in processing and is not
used by the CONSPROF command.

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 38 shows the exit-dependent data that the pre-display exit receives
beginning at offset +36 (decimal) in the parameter list.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Address of
console profile

Flags

Message IKJ55351I

00000002 00000018

00000001 00000004

00000001 msg.length

Figure 38. Exit-Dependent Data for the CONSPROF Pre-Display Exit

Writing Exits for the CONSPROF Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 251

Console Profile Address (Parameter Entry 10)
This parameter contains the address of the console profile. At the time this exit
is invoked, the console profile reflects changes requested for this command.

Flags (Parameter Entry 11)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags for this exit’s processing are described
in Table 35.

Table 35. Flags Passed to the CONSPROF Pre-Display Exit

Flag Meaning

X'80000000' Issue message IKJ55351I. If the exit turns this bit off, the
CONSPROF command does not issue message IKJ55351I. This bit
is on at entry to the exit.

X'40000000' The console profile provided to the exit is a default profile. If this bit
is off, a profile was obtained from either RACF or the logon exit
IKJEFLD1. This bit is information only to the exit. Changes made to
this value have no effect on CONSPROF command processing.

X'3FFFFFFF' Reserved.

Message IKJ55351I Text (Parameter Entry 12)
This parameter contains the message text of IKJ55351I. IKJ55351I contains the
console profile information. The exit can update the message by adding
information to the end of the current message text. If the exit updates the
message, the length should also be updated to reflect the new length of the
message. The message text is in key 8 storage. The buffer can hold a
maximum of 253 characters. Should a larger buffer be required, the exit should
issue its own message and indicate that the CONSPROF command should not
issue message IKJ55351I.

Parameter Descriptions for the Termination Exit
The termination exit receives the standard parameter list with the following
exceptions:

v The exit reason code field is not used. Its value in the parameter list is:

Key X'00'

Length X'04'

Data X'00'

v The new command buffer field is irrelevant at this point in processing and is not
used by the CONSPROF command.

For a description of the standard exit parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 39 on page 253 shows the exit-dependent data that the termination exit
receives beginning at offset +36 (decimal) in the parameter list.

Writing Exits for the CONSPROF Command

252 z/OS V1R4.0 TSO/E Customization

Console Profile Address (Parameter Entry 10)
This parameter contains the address of the console profile. At the time this exit
is invoked, the console profile reflects changes requested for this command.

Flags (Parameter Entry 11)
This parameter contains a word consisting of flags, in which the command
passes indicators to the exit. The flags for this exit’s processing are described
in Table 36.

Table 36. Flags Passed to the CONSPROF Termination Exit

Flag Meaning

X'80000000' The console profile provided to the exit is a default profile. If this bit
is off, a profile was obtained from either RACF or the logon exit
IKJEFLD1. This bit is information only to the exit. Changes made to
this value have no effect on CONSPROF command processing.

X'7FFFFFFF' Reserved.

Return Specifications
On return from the termination exit, the contents of the registers must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the CONSPROF Exits
Table 37 shows the standard return codes that all of the CONSPROF initialization
and termination exits support.

Table 37. Standard Return Codes that all CONSPROF Exits Support

Return Code
(Decimal)

Description

0 Exit processing was successful. CONSPROF processing continues.

12 Exit processing was unsuccessful. CONSPROF issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the CONSPROF command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
console profile

Flags

00000002 00000018

00000001 00000004

Figure 39. Exit-Dependent Data for the CONSPROF Termination Exit

Writing Exits for the CONSPROF Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 253

Table 37. Standard Return Codes that all CONSPROF Exits Support (continued)

Return Code
(Decimal)

Description

16 Exit processing was unsuccessful. CONSPROF terminates
processing.

The CONSPROF command processor does not display a message
to the user if the exit sets a return code of 16. Before the exit
returns with return code 16, it can display a message to the user;
for example, using PUTLINE (for IKJCNXAC and IKJCNXPP) or
TPUT (for IKJCNX50, IKJCNX64, and IKJCNXAC).

If a return code of 12 or 16 is received, the CONSPROF command ends. If any
other non-zero return code is received from the exit, it is assumed to be a return
code of 16.

Programming Considerations
The CONSPROF exits must follow standard linkage conventions. They must save
the registers on entry and restore the registers when they return. The exits must be
re-entrant, refreshable, reusable, and APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities.

v How you use the exits to customize CONSPROF processing.

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, if the initialization exit obtains storage to return a
new command buffer to the CONSPROF command processor, you must provide a
termination exit to free the storage.

The initialization exit can change CONSPROF operands using the command buffer.
The exit checks the command buffer it receives and determines whether to change
any operands. To change operands, the exit must:

v Obtain storage for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer (parameter
entry 2)

v Set return code 0 and return control to CONSPROF

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
The CONSPROF exits require the following environment:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v APF-Authorized.

Writing Exits for the CONSPROF Command

254 z/OS V1R4.0 TSO/E Customization

Installing the Exits
You must name the exits as follows:

Initialization IKJCNXCI

Pre-display IKJCNXCD

Termination IKJCNXCT

Link-edit each exit as a separate load module. The exits must reside in an
authorized library.

Possible Uses
The initialization exit can be used to control what the user is allowed to specify on
the CONSPROF command. The exit can allow installation-specific keywords on the
CONSPROF command. If installation-specific keywords are allowed, they should be
removed before the exit returns control to the CONSPROF command.

The initialization exit can be used to grant or deny the user CONSOLE command
authority for the duration of the CONSPROF command. If you do not use RACF or
the logon pre-prompt exit (IKJEFLD or IKJEFLD1) to control access to the
CONSOLE command, it is recommended that you use both the CONSPROF
initialization exit and the CONSOLE activation exit to maintain CONSOLE command
authority. The CONSOLE activation exit can grant or deny the user CONSOLE
command authority for the duration of the console session.

The initialization exit can update the console profile to include an installation
portion. A word is reserved in the profile that can be set by installation exits for
additional customization. This word can be used to point to another block of storage
that can contain additional information necessary for CONSOLE command
processing.

The pre-display exit can add additional information to message IKJ55351I or issue
an installation-defined message. The additional information can be maintained in
the installation portion of the console profile if the exits are maintaining more
information for the user.

The termination exit should be used to clean up after the exits for the CONSPROF
command. This exit can be used to store the additional information kept in the
profile area in a permanent place if one exists.

Writing Exits for the CONSPROF Command

Chapter 27. Customizing the CONSOLE and CONSPROF Commands 255

Writing Exits for the CONSPROF Command

256 z/OS V1R4.0 TSO/E Customization

Chapter 28. Customizing the EDIT Command

Defining Data Set Types and Changing the Default Attributes 259
Writing a Syntax Checker . 260

Record Format and Interface for Syntax Checking 261
Associating the Syntax Checker with a Data Set Type 264

Writing an Exit for Syntax Checkers 265
Functional Description . 265
TSO/E Supplied Exit . 265
Entry Specifications. 265
Parameter Descriptions . 265
Return Specifications . 266
Programming Considerations 266

Writing an Exit for the RENUM, MOVE, and COPY Subcommands 267
Functional Description . 267
TSO/E-Supplied Exit . 267
Entry Specifications. 267
Parameter Descriptions . 268
Return Specifications . 269
Programming Considerations 269
Possible Uses. 271

Adding EDIT Subcommands 272
Writing a Subcommand of EDIT 272
Defining a Subcommand to EDIT. 273

Allocating Space for the Utility Work Data Sets 275
Default Space Allocation . 276
Controlled Space Allocation 277

Users issue the EDIT command to enter data into TSO/E. Much of EDIT processing
and how you customize EDIT is related to the data set type. TSO/E provides
pre-defined data set types with default attributes. Table 38 on page 258 shows the
data set types TSO/E provides and their corresponding default settings.

This chapter describes the different ways you can customize EDIT processing,
which includes:

v Defining data set types and changing the default attributes of data set types. The
data set types that TSO/E provides may not suit your editing needs. You can
define your own data set types for your installation’s requirements. You can also
change the attributes of the data set types that TSO/E provides or change the
attributes of data set types you define.

v Writing syntax checkers. You can write a syntax checker for any data set types
that you define, which checks for syntax errors when a user edits a data set.

v Writing an exit for syntax checkers. You can also write an exit for the syntax
checkers you define.

v Changing line numbering. You can write an exit to change how the RENUM,
MOVE, and COPY subcommands handle the line numbering of records in the
data set.

v Adding subcommands. You can write your own EDIT subcommand processors
for additional editing functions.

v Allocating space for utility work data sets. EDIT uses certain algorithms to
calculate default space allocation for its utility work data sets. You can preallocate
the data sets for your installation.

© Copyright IBM Corp. 1988, 2002 257

Table 38. TSO/E Pre-Defined Data Set Types and Attributes

Data Set Type Default Settings

PLIF BLOCK=400
FORMAT=FXDONLY
FIXED=(80,100)
CONVERT=CAPSONLY
CHECKER=PLIFSCAN
USERSRC=DATASET

FORTE BLOCK=400
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
CHECKER=IPDSNEXC
USERSRC=DATASET

FORTG BLOCK=400
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
CHECKER=IPDSNEXC
USERSRC=DATASET

FORTH BLOCK=400
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
CHECKER=IPDSNEXC
USERSRC=DATASET

TEXT BLOCK=3120
FORMAT=VAR
FIXED=(0,255)
VAR=(255,255)
CONVERT=ASIS
USERSRC=DATASET

DATA BLOCK=3120
FORMAT=FIXED
FIXED=(80,255)
VAR=(0,255)
CONVERT=CAPS
USERSRC=DATASET

CLIST BLOCK=3120
FORMAT=VAR
FIXED=(0,255)
VAR=(255,255)
CONVERT=CAPSONLY
USERSRC=DATASET

CNTL BLOCK=3120
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
USERSRC=DATASET

ASM BLOCK=3120
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
PRMPTR=ASM
USERSRC=DATASET

258 z/OS V1R4.0 TSO/E Customization

Table 38. TSO/E Pre-Defined Data Set Types and Attributes (continued)

Data Set Type Default Settings

COBOL BLOCK=400
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
PRMPTR=COBOL
USERSRC=DATASET

FORTGI BLOCK=400
FORMAT=FXDONLY
FIXED=(80,80)
CONVERT=CAPSONLY
CHECKER=IPDSNEXC
PRMPTR=FORT
USERSRC=DATASET

GOFORT BLOCK=3120
FORMAT=VAR
FIXED=(80,255)
VAR=(255,255)
CONVERT=CAPS
CHECKER=IPDSNEXC
PRMPTR=GOFORT
USERSRC=INCORE

PLI BLOCK=400
FORMAT=VAR
FIXED=(0,100)
VAR=(104,104)
CONVERT=CAPS
PRMPTR=PLIC
USERSRC=DATASET

VSBASIC BLOCK=3120
FORMAT=VAR
FIXED=(0,80)
VAR=(255,255)
CONVERT=CAPSONLY
PRMPTR=VSBASIC
USERSRC=INLIST
DATEXIT=ICDQRNME

Defining Data Set Types and Changing the Default Attributes
If the pre-defined data set types TSO/E provides are not suitable for your
installation, you can define your own data set types with specific attributes. You can
also change the default attributes of the data set types TSO/E provides for your
processing requirements. If you define a data set type, you can change the
attributes you specified.

To define data set types or change the attributes, use the IKJEDIT macro instruction
and submit a System Modification Program Extended (SMP/E) job to perform the
definition or updates. Using IKJEDIT, specify the name of the data set type you are
defining or changing and the specific attributes for the data set type. For information
about the syntax of IKJEDIT, see “IKJEDIT Macro” on page 728.

IKJEDIT generates the following two CSECTs:
v IKJEBEPD, which is link-edited with the IKJEBEPS module in SYS1.CMDLIB
v IKJEBINS, which is link-edited with the EDIT command in SYS1.CMDLIB.

Chapter 28. Customizing the EDIT Command 259

Both CSECTs are required.

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJEDIT.Instructions for using the sample job are included in the
SYS1.SAMPLIB member.

If you change the attributes of a data set type, any attributes that you do not
explicitly specify on IKJEDIT are not changed. If you define a new data set type and
do not explicitly specify a particular attribute, you get the following default values:

Block size: 3120

Record format: Fixed

Default LRECL: Fixed - 80, Variable - 255

Maximum LRECL: Fixed - 255, Variable - 255

Data conversion: CAPS

TSO/E does not provide defaults for the following attributes:
v Checker name
v Prompter name
v Prompter input

If you used the EDIT SYSGEN macro to change the default attributes of
TSO/E-supplied data set types, the defaults TSO/E provides overlay your changes.
After system generation, use IKJEDIT to change the default attributes. By using
IKJEDIT, future SYSGENs or IOGENs do not replace your values.

Writing a Syntax Checker
A syntax checker checks for syntax errors in each statement, according to the data
set type. The syntax checker scans each line a user enters, in input mode, when
the user edits a data set. Before the syntax checker scans a record, the record is
put into the data set. If a syntax error is found, EDIT displays an error message and
switches from input mode to edit mode. The user can then use EDIT subcommands
to correct the error. For information about EDIT and the SCAN operand, see z/OS
TSO/E Command Reference.

Syntax checkers are associated with specific data set types. TSO/E provides the
following syntax checkers for theassociated data set types:

Data Set Type Syntax Checker

FORTH IPDSNEXC

PLI IPDSNEXC

GOFORT IPDSNEXC

PLIF PLIFSCAN

You can write a syntax checker for data set types that you define. You perform the
following steps to provide a syntax checker:

1. Write the syntax checking routine

2. Install the routine on your system before system generation

3. Use the IKJEDIT macro instruction to associate the syntax checker with the
data set type.

Defining Data Set Types and Changing ...

260 z/OS V1R4.0 TSO/E Customization

“Record Format and Interface for Syntax Checking” provides information for writing
the syntax checking routine. This includes:

v The format of the records that are passed to syntax checkers

v The standard interface that TSO/E provides that allows the EDIT modules to
invoke a syntax checker

v The contents of the control blocks to which the parameter list for the syntax
checker points

“Associating the Syntax Checker with a Data Set Type” on page 264 describes how
to use IKJEDIT to associate the syntax checker with a specific data set type.

Record Format and Interface for Syntax Checking
Either fixed-length (numbered) or variable-length (numbered) records can be
passed to syntax checkers. Figure 40 shows the format of the records that are
passed.

TSO/E provides a standard interface that allows the EDIT modules to invoke any
syntax checker. Figure 41 on page 262 shows the EDIT modules that invoke syntax
checkers, the standard interface, and the syntax checkers that TSO/E provides. The
interface consists of a syntax checker parameter list that you use for writing your
syntax checker.

00 00

8 Bytes 8 Bytes

2 22 2 82 2 8

Bytes Bytes Bytes

Record
Length

Line Number

Line NumberData

Data

Data

Data

Fixed-
Length
(Numbered)

Variable-
Length
(Numbered)

Line Number Line Number

Record

Record

Record Length

Figure 40. Format of Records Passed to Syntax Checkers

Writing a Syntax Checker

Chapter 28. Customizing the EDIT Command 261

The parameter list for the syntax checker points to the:
v Buffer control block
v Syntax checker communication area
v Option word

The following three figures show the contents of the buffer control block, syntax
checker communication area, and option word.

Table 39. Contents of the Buffer Control Block

Disp Dec. Disp Hex. Field Name Field Size Contents or Meaning

0 0 C 1 Number of records in buffer (maximum – 127). Bit zero
is set to 1 when the syntax checker has scanned all
records in the buffer.

1 1 Chain 3 Address of next buffer; set to zero if this is the last
buffer in chain.

4 4 Record Variable Line or lines of source input data to be syntax checked.
Can be fixed- or variable-length, numbered or
unnumbered.

Table 40. Contents of the Syntax Checker Communication Area

Disp
Desc.

Disp
Hex.

Field Name Field Size Setting Meaning (Instruction to Syntax Checker)

Bits 0-3 (where n=0 or 1).
0nnn First entry — obtain and initialize work area. If a

buffer chain is supplied, the syntax checker will set
the relative line number counter to zero.

1n 1n Last entry — release the work area and return.
Syntax checking is not performed.

1000 Normal entry — set relative line number to counter
zero. Perform syntax checking.

0 0 None 1 110n Entry after return code 8 (error - buffer checking
incomplete) — continue syntax checking.

Common

Name

PL1

PL1-F

Forth

FORTGI

GOFORT

BASIC

IPL1

user type

Syntax Checker

Parameter List

Reg 1

EDIT Module

Module

Name

Module

Name
Data Set

Type

Standard Interface Syntax Checker

Buffer Control Block

Syntax Checker

Communication Area

Option Word

04

00

08

SCAN

SCAN

CHANGE

CHANGE

INPUT

INSERT

ITF TRANSLATION

Insert/Replace/Delete

RUN

DELETE

- IKJEBELI

- IKJEBERU

- IKJEBEDE

- IKJEBESC

- IKJEBESN

- IKJEBECG

- IKJEBECN

- IKJEBEIM

- IKJEBEIS

- IKJEBEMR

- PL1SCAN

- PL1FSCAN

- IPDSNEXC

- IPDSNEXC

- IPDSNEXC

- IKJNC211

- IKJNC211

- user module

Figure 41. Interface Between the EDIT Program and Syntax Checkers

Writing a Syntax Checker

262 z/OS V1R4.0 TSO/E Customization

Table 40. Contents of the Syntax Checker Communication Area (continued)

Disp
Desc.

Disp
Hex.

Field Name Field Size Setting Meaning (Instruction to Syntax Checker)

1001 Entry after return code 12 (complete statements have
been checked, but last statement in input buffer is
incomplete). If there is no more input (chain address
of last buffer or buffer address is zero), syntax check
the incomplete statement and return. If there is a new
buffer chain, that is, more input, (chain address or
buffer address is not zero), resume syntax checking at
the incomplete statement.

Bits 4-7 Reserved

1 1 None 4 xxxx Address of work area stored by syntax checker on
first entry.

4 4 None 4 xxxx Initial entry — maximum statement size specified
when the EDIT defaults for the data set type were set
(if 0, checker assumes sufficient storage for largest
legal statement is available). Entry after return code 4
(error detected, syntax checking complete,
second-level message present), or 8 (error detected,
syntax checking incomplete) — address of error
message area.

8 8 None 4 xxxx Initial entry — temporary area. Subsequent entries —
address of second error message, if any.

12 C None 4 xxxx Temporary storage area used for GETMAIN.

Table 41. Contents of the Option Word

Disp
Desc.

Disp
Hex.

Field
Name

Field
Size

Setting Meaning Syntax Checker

0 0 None 1 X'00' FORTRAN H level FORTRAN
X'03' GOFORT FORTRAN
X'04' FORTRANG1 FORTRAN

X'00' IPLI level IPLI
X'01' BASIC level BASIC

xxxx Value of left source margin PLIF

1 1 None 1 Bits 0-5 Reserved FORTRAN

Bit 6 = 1 FORTRAN G1/H Code and Go
definition to be loaded on initial entry.

FORTRAN

= 0 FORTRAN G1/H Code and Go
definition not to be loaded on initial
entry.

FORTRAN

Bit 0 = 1 Entry from INPUT, Insert, linenum, *,
CHANGE

IPLI or BASIC

Bit 1 = 1 Entry from DELETE IPLI or BASIC
Bit 2 = 1 Entry from MERGE or RENUM IPLI or BASIC

Writing a Syntax Checker

Chapter 28. Customizing the EDIT Command 263

Table 41. Contents of the Option Word (continued)

Disp
Desc.

Disp
Hex.

Field
Name

Field
Size

Setting Meaning Syntax Checker

Bit 3 = 1 Translation already complete IPLI or BASIC
Bit 4 = 1 Entry from RUN IPLI or BASIC
Bits 5-7 Reserved IPLI or BASIC
xxxx Value of right source margin PLIF

2 2 None 1 xxxx Record length of fixed-length records;
binary zero, if variable-length records.

All

3 3 None 1 Bit 0 = 0 CHAR 60 PLI or IPLI
= 1 CHAR 48 PLI or IPLI

Bit 1 = 0 Line-numbered data set. All
= 1 Data set not line-numbered. All

Bit 2 Reserved All
Bit 3 = 0 Diagnose an incomplete statement. All

= 1 Delayed scan – return with code of 12,
if last statement in input buffer is
incomplete. Immediate scan – possible
incomplete statement in buffer.

All

Bit 4 = 0 Fixed-length records. All
= 1 Variable-length records. All

Bit 5 = 0 Standard form source input. All
= 1 Free form source input. All

Bit 6 = 0
= 1

Bit 7 = 0 SCAN or SCAN ON specified. All
= 1 NOSCAN or SCAN OFF specified. All

The syntax checkers that TSO/E provides determine the attributes of the associated
data set type by referring to information that EDIT initialization sets in the option
word. For your own data set types and syntax checkers, EDIT initialization does not
place attribute information in the option word. You can write an exit routine for your
syntax checker that fills in the option word according to information that the user
provides when editing a data set. “Writing an Exit for Syntax Checkers” on page 265
describes how to write an exit routine.

Associating the Syntax Checker with a Data Set Type
After you write and install your syntax checker, you associate the syntax checker
with a data set type. You can associate a syntax checker with one or several data
set types.

To associate the syntax checker with a data set type, use the IKJEDIT macro
instruction and submit a System Modification Program Extended (SMP/E) job to
perform the association. Using IKJEDIT, specify the name of the data set type and
the name of the syntax checker. As an example, suppose you defined a data set
type named EXTT and a syntax checker named SYN1. You would code IKJEDIT as
follows:
EDIT IKJEDIT DSTYPE=(EXTT),CHECKER=(SYN1)

For information about the syntax of IKJEDIT, see “IKJEDIT Macro” on page 728.

IKJEDIT generates the following two CSECTs:
v IKJEBEPD, which is link-edited with the IKJEBEPS module in SYS1.CMDLIB

Writing a Syntax Checker

264 z/OS V1R4.0 TSO/E Customization

v IKJEBINS, which is link-edited with the EDIT command in SYS1.CMDLIB

Both CSECTs are required.

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJEDIT. Instructions for using the sample job are included in the
SYS1.SAMPLIB member.

Writing an Exit for Syntax Checkers

Functional Description
TSO/E provides syntax checkers for several data set types that it provides. For
these data set types, the associated syntax checker determines the attributes of the
data set type by referring to information that EDIT initialization sets in the option
word. The option word is a fullword in the parameter list of the syntax checker. For
more information about the parameter list and option word, see “Record Format and
Interface for Syntax Checking” on page 261.

You can write your own syntax checkers. However, for installation- written syntax
checkers, EDIT initialization does not place attribute information about the data set
type in the option word. You can, however, write an exit for your syntax checker that
fills in the option word for your syntax checker with information the user specifies on
the EDIT command.

TSO/E Supplied Exit
TSO/E does not supply a default exit routine for installation-written syntax checkers.

Entry Specifications
The contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of a three-word parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The following describes the three-word parameter list.

Word 1
Address of the subfield parameter descriptor element (PDE), which is
created by the parse service routine. For information about the format and
content of the PDE, see the description of the IKJIDENT PDE in z/OS
TSO/E Programming Services.

Word 2
Address of bytes 0 and 1 of the syntax checker option word. The syntax
checker you provide can assign its own meanings for the bit settings.

Word 3
Address of the command processor parameter list (CPPL) that the TMP

Writing a Syntax Checker

Chapter 28. Customizing the EDIT Command 265

passes to the EDIT command processor. For information about the format
and content of the CPPL, see the description of the CPPL in z/OS TSO/E
Programming Services.

Return Specifications
The contents of the registers on return must be:

Registers 0–14
Same as on entry

Register 15 Return code

Return Codes

0 Processing was successful

4 Processing was unsuccessful

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns.

The exit can access the ECT and UPT to invoke the parse service routine or the
TSO/E service routines. For information about the service routines, see z/OS
TSO/E Programming Services.

Use the exit to fill in the option word for your syntax checker according to
information the user enters. When users issue the EDIT command and specify your
installation’s data set type keyword, they can also specify a subfield. This subfield
can contain any valid alphanumeric data defined. The data cannot exceed 256
characters and cannot contain any blanks, tabulation characters, or commas. The
information is passed to the exit, which interprets it and encodes it into bytes 0 and
1 of the option word. For information about the standard interface between EDIT
and syntax checkers and the option word, see “Record Format and Interface for
Syntax Checking” on page 261.

Environment
v State: Problem program
v Key: 8
v AMODE(24), RMODE(24)

Installing the Exit
There are no required naming conventions for the exit. After you write and install
the exit, you must associate the name of the exit with its corresponding syntax
checker and data set type. To associate the exit name with a syntax checker and
data set type, use the IKJEDIT macro instruction and submit a System Modification
Program Extended (SMP/E) job to perform the association. Using IKJEDIT, specify
the names of the data set type, syntax checker, and exit. For more information
about the syntax of the IKJEDIT macro, see “IKJEDIT Macro” on page 728.

As an example, suppose you define your own data set type, associated syntax
checker, and corresponding exit as follows:
v Name of data set type — TYPEX
v Syntax checker name — SYNTAX1
v Exit name for syntax checker — SYN1EXIT

On IKJEDIT, include the following operands:

Writing an Exit for Syntax Checkers

266 z/OS V1R4.0 TSO/E Customization

v DSTYPE(TYPEX)
v CHECKER(SYNTAX1)
v USEREXT(SYN1EXIT)

IKJEDIT generates the following two CSECTs:
v IKJEBEPD, which is link-edited with the IKJEBEPS module in SYS1.CMDLIB
v IKJEBINS, which is link-edited with the EDIT command in SYS1.CMDLIB

Both CSECTs are required.

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJEDIT. Instructions for using the sample job are included in the
SYS1.SAMPLIB member.

Writing an Exit for the RENUM, MOVE, and COPY Subcommands

Functional Description
Whenever a terminal user issues the RENUM, MOVE, or COPY subcommand of
the EDIT command, the line numbering of the records in the data set is affected.

RENUM
Assigns a line number to each record in data sets that do not already have
line numbers. RENUM also renumbers records in data sets that have line
numbers.

MOVE Moves records in a data set from one location to another, and renumbers
the lines as needed.

COPY Copies records in a data set, and renumbers the lines as needed.

For more information about the subcommands and how line numbering is affected,
see z/OS TSO/E Command Reference.

You can use an exit to tailor the way line numbering is done. The exit is common to
all three subcommands, RENUM, MOVE, and COPY. The exit receives control
whenever a terminal user issues RENUM, MOVE, or COPY when editing a data
set.

By default, the exit processes only VSBASIC data sets. To have the exit process
other data set types, use the IKJEDIT macro instruction. For information on
IKJEDIT, see “Installing the Exit” on page 270.

The following highlights some ways you can use the RENUM, MOVE, and COPY
exit. For more information, see “Possible Uses” on page 271.
v Change line references that are imbedded within a statement
v Flag specific statements
v Change default line numbering

TSO/E-Supplied Exit
TSO/E does not provide a default exit routine for the RENUM, MOVE, and COPY
subcommands.

Entry Specifications
The contents of the registers on entry are:

Register 0 Unpredictable

Writing an Exit for Syntax Checkers

Chapter 28. Customizing the EDIT Command 267

Register 1 Address of a parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

The exit receives the data set in storage as input. The data set contains all of the
records in the current EDIT utility data set. The RECFM of the EDIT input data set
indicates the format of the data set. Standard header words (LL/00) give the lengths
of variable records. The data attribute parameters give the length of fixed records.
All records in the data set are contiguous and are contained in a single area of
virtual storage, assigned from subpool 1.

Parameter Descriptions
On entry, register 1 contains the address of the following parameter list:

Offset (Hex) Length Contents or Meaning

0 4 UPT address
4 4 ECT address
8 4 EDIT attention ECB address
C 1 Flags:

Bit 0 0 - Records have standard line numbers
1 - Records do not have standard line numbers

Bit 1 0 - Not RENUM function
1 - RENUM function

Bit 2 0 - Not MOVE function
1 - MOVE function

Bit 3 0 - Not COPY function
1 - COPY function

Bit 4 0 - Normal line range specification
1 - ‘* COUNT’ range notation

Bit 5 0 - Fixed-length records
1 - Variable-length records

D 3 Address of data set
10 4 Address of subcommand interface area. The two formats of the

subcommand interface area are described below.
14 4 Address of data attribute parameters. The data attribute

parameters are described below.

Subcommand Interface Area
The subcommand interface area has two different formats; one for RENUM and one
for MOVE/COPY. The two formats are described below.

Table 42. RENUM Format of Subcommand Interface Area

Offset (Hex) Length Contents or Meaning

0 4 Line number position
4 4 Length of line number
8 4 First line to be renumbered (0 indicates first line of data set)
C 4 Last line to be renumbered (X'7FFFFFFF' requests renumbering

through end of data set)
10 4 Line number to be assigned to the first renumbered line
14 4 Increment to be used

Writing Exit for RENUM, MOVE, and COPY

268 z/OS V1R4.0 TSO/E Customization

Table 42. RENUM Format of Subcommand Interface Area (continued)

Offset (Hex) Length Contents or Meaning

18 4 Address of current line reference (the exit must update this
before it returns control to RENUM)

Table 43. MOVE/COPY Format of Subcommand Interface Area

Offset (Hex) Length Contents or Meaning

0 4 Line number position
4 4 Length of line number
8 4 First line of MOVE/COPY range (0 indicates first line in data set)
C 4 Last line of MOVE/COPY range (Bit 4 of flags = 1)
10 4 Line number of line preceding insertion point
14 4 Increment to be used
18 4 Current line pointer

Data Attribute Parameters
The data attribute parameters consist of a two-word list:

Offset (Hex) Length Contents or Meaning

0 4 Logical record length (in bytes)
4 4 Length of the data set (in bytes)

Return Specifications
The contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes

0 Indicates successful completion or attention interruption

4 Requests RENUM processing as if the exit were unavailable

8 Indicates function not performed; message sent to the terminal user.

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The exit must be reentrant, reusable,
and refreshable.

The exit can use any of the TSO/E service routines. For a description of the service
routines, see z/OS TSO/E Programming Services.

The subcommand processor that calls the exit does not pass a work area.
Therefore, if the exit needs storage, it must obtain the storage from subpool 1.

The exit must check periodically the EDIT command’s attention ECB for an
attention interruption. When an interrupt occurs, the exit must release any resources
that it has obtained, and return control to the subcommand processor with a return
code of zero.

Writing Exit for RENUM, MOVE, and COPY

Chapter 28. Customizing the EDIT Command 269

When the exit returns control to the subcommand processor, it must return the
address of the updated data set and the length of the data set, if applicable. The
exit must also update the current line pointer in the subcommand interface area and
release any resources it obtained.

Environment
v State: Problem program
v Key: 8
v AMODE(24), RMODE(24)

Installing the Exit
There are no required naming conventions for the exit. The exit can reside in a step
library, in the LPA library, or in any data set in LNKLSTxx.

After you write and install the exit, you must specify the data set types that you
want the exit to process. By default, the exit processes only VSBASIC data sets. To
have the exit process other data set types, use the IKJEDIT macro instruction and
submit a System Modification Program Extended (SMP/E) job. Using IKJEDIT,
specify the data set types you want the exit to process. For more information about
the syntax of the IKJEDIT macro, see “IKJEDIT Macro” on page 728.

TSO/E provides a sample job in SYS1.SAMPLIB member IKJTSMPE that shows
how to use IKJEDIT. Instructions for using the sample job are included in the
SYS1.SAMPLIB member.

As an example, suppose the name of your exit is NUMEXT and you want it to
process FORT and COBOL data set types in addition to VSBASIC data sets.
Figure 42 on page 271 shows a sample SMP/E job and how you specify the exit
name and corresponding data set types on IKJEDIT. In the job, you:

v Update the job statement

v Specify the name of the SMP/E procedure on the EXEC statement

v Update SET BDY with your target name

v Optionally, change the USERMOD number on the ++USERMOD, RECEIVE,
APPLY, and ACCEPT control statements

v Supply any DD statements that you need

v Update the DSTYPE and DATEXIT operands of IKJEDIT. Specify the data set
types (FORT and COBOL) on the DSTYPE operand. Specify the name of your
exit on the DATEXIT operand.

You must update IKJEDIT in two places in the job in order for the job to generate
two CSECTs. Both CSECTs, IKJEBEPD and IKJEBINS, are required.

Note: You must place the current FMID for TSO/E in the FMID operand of the
++VER statement and the current RMID of IKJEBEPD in the RMID operand
in the ++VER statement before installing this usermod. To find these values
on your system, you can use SMP/E panels to do a CSI query against the
target zone for SRC IKJEBEPD, or run an SMP/E job to list it using this
SMP/E control statement.

SET BDY(target zone)
LIST SRC IKJEBEPD

Writing Exit for RENUM, MOVE, and COPY

270 z/OS V1R4.0 TSO/E Customization

Possible Uses
v A user may use a line number within a statement to pass control to another part

of the data set. For example, a user may pass control to line number 200 using

//USERMOD JOB MSGLEVEL=(1,1)
//STEP1 EXEC <SMP/E-PROCEDURE-NAME>
//*
//* SMP/E DD STATEMENTS
//*
//*SMPPTS DD DSN=SYS1.SMPPTS,DISP=SHR
//*SMPCSI DD DSN=SMPE.SMPCSI.CSI,DISP=SHR
//*SMPSCDS DD DSN=SYS1.SMPCDS,DISP=SHR
//*
//* DLIB DD STATEMENTS
//*
//*ACMDLIB DD DSN=SYS1.ACMDLIB,DISP=SHR
//*ASAMPLIB DD DSN=SYS1.ASAMPLIB,DISP=SHR
//*
//* LIBRARY DD STATEMENTS
//*
//*LINKLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//*
//SMPCNTL DD *

SET BDY(GLOBAL) . <== CHANGE TO YOUR TARGET NAME ============
RECEIVE S(UM99999) .
APPLY S(TARGET) .
ACCEPT S(DLIB) USERMODS .

/*
//SMPPTFIN DD *
++USERMOD (UM99999) .
++VER (Z038) FMID (Current TSO/E FMID) RMID(RMID of IKJEBEPD) .
++SRC(IKJEBEPD) DISTLIB(ASAMPLIB) DISTOBJ(ACMDLIB) .

IKJEDIT MODULE=IKJEBEPD, X
DSTYPE=(FORT,COBOL), X
BLOCK=, X
FORMAT=, X
FIXED=, X
VAR=, X
CONVERT=, X
CHECKER=, X
PRMPTR=, X
USERSRC=, X
DATEXIT=NUMEXT

END
++SRC(IKJEBINS) DISTLIB(ASAMPLIB) DISTOBJ(ACMDLIB) .

IKJEDIT MODULE=IKJEBINS, X
DSTYPE=(FORT,COBOL), X
BLOCK=, X
FORMAT=, X
FIXED=, X
VAR=, X
CONVERT=, X
CHECKER=, X
PRMPTR=, X
USERSRC=, X
DATEXIT=NUMEXT

END
/*

Figure 42. Example of Specifying the Data Set Types that a RENUM, MOVE, COPY Exit
Processes

Writing Exit for RENUM, MOVE, and COPY

Chapter 28. Customizing the EDIT Command 271

the statement GOTO 200. The RENUM, MOVE, and COPY subcommand
processors do not handle line references that are within a statement; that is, they
do not change the GOTO statement. If the line numbering is changed and line
200 becomes line 250, the GOTO statement will pass control to an incorrect
statement (line 200 instead of line 250). You can write an exit that adjusts the
line references within statements, as needed, whenever a terminal user issues
RENUM, MOVE, or COPY.

v Your exit can flag a statement based on some condition. One way of flagging a
particular statement is to add a comment at the end of the statement.

v RENUM, MOVE, and COPY renumber the line numbers in a data set based on
either a default increment value or a value that the user specifies on the
subcommand. You can use the exit to establish a different numbering scheme.
For a description of how each of the subcommands handles line numbering, see
z/OS TSO/E Command Reference.

Adding EDIT Subcommands
The EDIT command supplies many subcommands for various editing functions. If
you need additional editing functions, you can write your own subcommand
processors. You must first write the subcommand processor itself, and then add the
name of your subcommand to the system.

Writing a Subcommand of EDIT
The steps for writing a subcommand processor are listed in z/OS TSO/E
Programming Guide. The steps for writing an EDIT subcommand are the same as
the steps for writing a subcommand processor, except in the first and last steps:
accessing parameters and passing return codes.

Accessing Parameters
Unlike other commands or subcommands, EDIT subcommands do not directly
access the command processor parameter list (CPPL). Instead, EDIT
subcommands begin by accessing the EDIT command processor communication
area (CA), which is mapped by macro IKJEBECA.

When an EDIT subcommand receives control, register 1 points to the CA. In the
CA, the significant field for EDIT subcommands is the CAPTTMP field, which points
to the CPPL that was passed as input to the EDIT command processor. For more
information about the CA, refer to z/OS TSO/E System Diagnosis: Data Areas.

Return Codes from EDIT Subcommands
An EDIT subcommand can return control to EDIT with one of the following decimal
return codes set in register 15. EDIT will then perform the indicated actions.

Table 44. Return Codes for Edit Subcommands

Return Code
(Decimal)

Description

0 EDIT will process the next subcommand.

4 EDIT will enter input mode.

8 EDIT will clear any waiting or stacked input and then process the
next subcommand.

12 EDIT will terminate.

Writing Exit for RENUM, MOVE, and COPY

272 z/OS V1R4.0 TSO/E Customization

Defining a Subcommand to EDIT
TSO/E stores the names of the EDIT subcommand processors that you write in a
table called IKJEBMA9. IKJEBMA9 is a CSECT within load module IKJEBEMA.
When a user enters an EDIT subcommand, IKJEBMA invokes the appropriate
subcommand processor.

After you write an EDIT subcommand processor, you must add the name to the
IKJEBMA9 table. You use the IKJEBEST macro instruction to add the name. You
must ensure that the name of your subcommand processor is not the same as the
name of any subcommand processor that TSO/E provides. For a list of the
subcommand processors TSO/E provides, see z/OS TSO/E Command Reference.

Using IKJEBEST, specify the following operands:
v Name of the subcommand
v Abbreviation for the subcommand name
v Name of the module that processes the subcommand
v CSECT=USER

The abbreviation for the subcommand name is optional. The three other operands
are required.

You can add one or more subcommand processor names on one invocation of the
IKJEBEST macro. The format of the macro is:
IKJEBEST(subcmd,abbr,mod-name)[,...],CSECT=USER

When you assemble the IKJEBEST macro instruction, the CSECT=USER operand
causes the resulting object module to be named IKJEBMA9. You must link-edit the
IKJEBMA9 module with the IKJEBEMA load module, performing a
CSECT-replacement operation for IKJEBMA9 object module. The EDIT
subcommands that you added are then available for use.

You can obtain the IKJEBEST macro from SYS1.MABLIB. You can also include
IKJEBEST in your macro library using the code shown in Figure 43 on page 274.

The following examples illustrate how to use IKJEBEST.

Example 1

To add the EDIT subcommand processor named SWTCH, code IKJEBEST as
follows:
IKJEBEST (SWTCH,SW,XXXSWTCH),CSECT=USER

The abbreviation for the SWTCH subcommand is SW and the name of the module
that processes the subcommand is XXXSWTCH.

Example 2

To add the following subcommand processor names,

Name Abbreviation Module Name

SWTCH SW XXXSWTCH
SRTRN SRT XXXSRTRN

code IKJEBEST as follows:

Adding EDIT Subcommands

Chapter 28. Customizing the EDIT Command 273

IKJEBEST (SWTCH,SW,XXXSWTCH),(SRTRN,SRT,XXXSRTRN),CSECT=USER

MACRO
IKJEBEST &CSECT=IBM;
LCLA &A,&B,&C,&D,&E
LCLA &F
LCLC &CNAME,&SCNAME,&ABBR,&LDMOD,&LABEL,&LABEL1,&LABEL2,&NMBR;
AIF (’&CSECT’ NE ’IBM’).CONT0

&CNAME, SETC ’IKJEBMA8’ DEFINE CSECT NAME FOR IBM TABLE.
IKJEBMA8 CSECT

ENTRY MA8IP002
ENTRY MA8LI002
AGO .CONT1

.CONT0 ANOP
AIF (’&CSECT’ NE ’USER’).ERROR2

&CNAME SETC ’IKJEBMA9’ DEFINE CSECT NAME FOR USER TABLE.
IKJEBMA9 CSECT
.CONT1 ANOP
&A SETA N’&SYSLIST

AIF (&A EQ 0).END
&B SETA 1
&F SETA 1
.CONT2 ANOP
&C SETA N’&SYSLIST(&B)

AIF (&C LT 2 OR &C GT 3).ERROR1
&E SETA K’&SYSLIST(&B,&C)
&D SETA &E-1

Figure 43. Example of Including IKJEBEST in Your Macro Library (Part 1 of 2)

Adding EDIT Subcommands

274 z/OS V1R4.0 TSO/E Customization

Allocating Space for the Utility Work Data Sets
EDIT uses permanent or temporary utility data sets to record user input and
perform certain other functions. These other functions include, but are not limited to,
the RENUM subcommand and some variations of the MOVE or COPY
subcommands.

EDIT uses temporary data sets if:
v The user’s profile specifies NORECOVER, or
v The user is invoking EDIT in the background

EDIT uses permanent utility work data sets when the user’s profile specifies
RECOVER and the user is not invoking the EDIT command in the background.

You have two options for space allocation for both temporary and permanent utility
work data sets:

1. Default space allocation

.* THE FOLLOWING FLAGGED INSTRUCTIONS WERE ADDED TO PROVIDE UNIQUE

.* LABELS, EVEN IF MODULES HAVE IDENTICAL LAST TWO CHARACTERS IN

.* ENTRY POINT NAMES. THE LABELS FOR MODULES IKJEBELI AND IKJEBEIP

.* ARE UNCHANGED. SINCE THEY ARE REFERENCED WITHIN IKJEBEMA.
AIF (’&CSECT’ NE ’IBM’).CONT10
AIF (’&SYSLIST(&B,&C)’(&D,&E) EQ ’LI’OR X

’&SYSLIST(&B,&C)’(&D,&E) EQ ’IP’).CONT11
.CONT10 ANOP
&LABEL1 SETC ’&CNAME’(6,8).’@’.’&F’
&F SETA &F+1
&LABEL2 SETC ’&CNAME’(6,8).’@’.’&F’
&F SETA &F+1

AGO .CONT12
.CONT11 ANOP
&LABEL1 SETC ’&CNAME’(6,8).’&SYSLIST(&B,&C)’(&D,&E).’001’
&LABEL2 SETC ’&CNAME’(6,8).’&SYSLIST(&B,&C)’(&D,&E).’002’
.CONT12 ANOP
&SCNAME SETC ’&SYSLIST(&B,1)’

SPACE 2
DC AL1(&LABEL1-*-1) LENGTH OF SUBCOMMAND NAME.
DC C’&SCNAME’ SUBCOMMAND NAME.

&LABEL1 EQU *
DC AL1(&LABEL2-*-1) LENGTH OF ABBREVIATION.
AIF (K’&SYSLIST(&B,2) EQ 0).CONT5

&ABBR SETC ’&SYSLIST(&B,2)’
DC C’&ABBR’ ABBREVIATION FOR SUBCOMMAND.

.CONT5 ANOP
&LABEL2 EQU *
&LDMOD SETC ’&SYSLIST(&B,&C)’

DC CL8’&LDMOD’ LOAD MODULE NAME.
AIF (&B EQ &A).END

&B SETA &B+1
AGO .CONT2

.END ANOP
SPACE 2
DC AL1(255) END OF TABLE MARKER.
MEXIT

.ERROR1 MNOTE 12,’INVALID TABLE ENTRY’
MEXIT

.ERROR2 MNOTE 12,’INVALID KEYWORD VALUE’
MEND

Figure 43. Example of Including IKJEBEST in Your Macro Library (Part 2 of 2)

Allocating Space for Utility Work Data Sets

Chapter 28. Customizing the EDIT Command 275

EDIT uses its own algorithms to calculate the default space allocation. “Default
Space Allocation” describes the algorithms.

2. Controlled space allocation

You can preallocate the data sets to control the space allocation and direct
access space for the data sets. “Controlled Space Allocation” on page 277
describes controlled space allocation.

Default Space Allocation
EDIT uses different algorithms to calculate the default space allocation for utility
work data sets. The algorithm used depends on whether the user is editing a new
data set or an existing data set.

Note: Regardless of the physical space allocated, the maximum number of records
that the edit access method can handle depends on the record length. This
maximum applies to both new and existing data sets. For example:

v For 80-byte records, the maximum number of records EDIT can handle is
approximately 390,000.

v For 255-byte records, the maximum number of records EDIT can handle
is approximately 130,000.

Editing a New Data Set
EDIT allocates a utility work data set of four blocks with a default block size of:
v 4096 bytes for primary space (16384 bytes)
v One half that amount for secondary space (8192 bytes).

If the data set being edited contains 80 character records, the utility data set has a
total capacity of approximately 300 records.

Editing an Existing Data Set
A utility work data set is allocated as follows:

v Primary space, in 4K blocks, equals:
2 ((((x + y)b)/4096)+2)

where

x = the number of records in the existing data set

y = the additional number of records to be added to the data set. This
number is variable and depends on the user specifications on a MOVE
or COPY subcommand. The value may be 0.

b = the number of bytes (characters) per record

v Secondary space equals:
Primary space/2

Example of Default Space Allocation
The following illustrates an example of default space allocation. Suppose an
existing data set has the following characteristics:
v Contains 6000 records
v 200 additional records are to be copied into the data set
v Each record contains 120 characters

The primary space calculation (number of 4K blocks) is:
2 ((((6000 + 200) 120)/4096) +2) = 366

The secondary space calculation (number of 4K blocks) is:

Allocating Space for Utility Work Data Sets

276 z/OS V1R4.0 TSO/E Customization

366/2 = 183

The utility work data set has a capacity of approximately 18,600 records.

Controlled Space Allocation
If you want to control the allocation of the utility work data sets and the direct
access space used for the data sets, you can preallocate the data sets. You can
preallocate both temporary and permanent utility data sets.

Note: You may also need to preallocate data sets when using VIO due to the
compounding effect of TSO/E and VIO allocation algorithms.

Temporary Utility Work Data Sets
To preallocate temporary data sets, include two DD statements that define the data
sets &EDIT and &EDIT2 in the user’s logon procedure. For example:
//SYSEDIT DD DSN=&EDIT,UNIT=SYSDA,SPACE=(2048,(20,10))

//SYSEDIT2 DD DSN=&EDIT2,UNIT=SYSDA,SPACE=(6144,(50,20))

SYSEDIT is a sample ddname for the temporary utility work data set &EDIT, which
is used whenever the user edits a data set. SYSEDIT2 is a sample ddname for the
temporary utility work data set &EDIT2, which is used when the user performs
certain functions. These functions include, but are not limited to, the RENUM
subcommand and some variations of the MOVE or COPY subcommands. EDIT
may use one or both of these data sets, depending upon the functions invoked by
the user and the timing of events which affect the user’s edit session.

When the EDIT command is executed in the background, DD statements defining
both temporary work data sets must be included in the job step that calls the EDIT
command.

Permanent Utility Work Data Sets
To preallocate permanent data sets, name the two data sets as:
v DSN=userid.EDITUTL1
v DSN=userid.EDITUTL2

Catalog the data sets prior to the edit session. You do not need DD statements in
the user’s logon procedure because the catalog is searched for their location. The
first edit session, which occurs after you catalog the data sets, will initially use the
data set userid.EDITUTL1. EDIT may also use userid.EDITUTL2 during this initial
session if the user invokes certain subcommands such as RENUM. In later edit
sessions EDIT may use one or both of these data sets, depending upon the
functions invoked by the user and the timing of events which affect the user’s edit
session.

Allocating Space for Utility Work Data Sets

Chapter 28. Customizing the EDIT Command 277

Allocating Space for Utility Work Data Sets

278 z/OS V1R4.0 TSO/E Customization

Chapter 29. Customizing the EXEC Command

Writing Exits for the EXEC Command 279
Functional Description . 279
TSO/E-Supplied Exits . 280
Entry Specifications. 280
Parameter Descriptions for the Initialization Exit 280
Parameter Descriptions for the Termination Exit 280
Return Specifications . 281
Programming Considerations 282
Possible Uses. 283

Writing Exits for the EXEC Command

Functional Description
TSO/E users issue the EXEC command to execute REXX execs or CLISTs. The
EXEC command receives control when the user specifies it in one of the following
forms:

v Explicit form - EXEC or EX is followed by the name of the data set containing
the REXX exec or CLIST.

v Implicit form - The name of a member of a REXX exec or CLIST library is
entered without the command name, EXEC or EX. A library is a partitioned data
set (PDS) that must be allocated to the specific REXX exec or CLIST (SYSEXEC
or SYSPROC) either dynamically by the ALLOCATE command or the ALTLIB
command, or as part of the logon procedure.

v Extended implicit form - A percent sign (%) precedes the name of a member of
a REXX exec or CLIST library.

Processing for a CLIST is done in two steps: phase 1, which is performed by the
EXEC command processor, and phase 2. In phase 1, the EXEC command
processor reads the CLIST records from the input data set and builds an in-storage
command procedure. EXEC then places the command procedure that it built on the
input stack. This stack is maintained by TSO/E to determine the source of input.
Phase 2 processing receives control as each record in the command procedure is
removed from the stack.

TSO/E provides initialization and termination exits that you can use to customize
the EXEC command. These exits receive control during EXEC command
processing, as follows:

v If the explicit form is used to invoke EXEC, the initialization exit receives control
before the EXEC command processor invokes the parse service routine to syntax
check the input parameters.

v If the implicit form is used to invoke EXEC, the initialization exit receives control
before the EXEC command processor invokes the command scan service routine
to syntax check the input parameters.

v The termination exit receives control just before the EXEC command terminates
processing.

TSO/E users can invoke the EXEC command in the TEST or EDIT environment to
perform the same basic functions as the EXEC command. Exits that you write to
customize the EXEC command are also in effect when the EXEC command is
executed in the TEST or EDIT environment.

© Copyright IBM Corp. 1988, 2002 279

The following paragraphs highlight some ways you can use the initialization and
termination exits. For more information about how you can use the exits, see
“Possible Uses” on page 283.

Some ways you can use the initialization exit include:
v Providing default values for symbolic variables that are used in CLISTs
v Changing the default values for operands of the EXEC command
v Invoking alternate interpreters

Some ways you can use the termination exit include:
v Performing clean-up processing
v Changing the default CONTROL options for CLISTs

TSO/E also provides several other exits that you can use to customize CLIST
processing:

v The CLIST built-in function exit allows you to add your own built-in functions to
the CLIST language. This exit is described in “Writing an Exit for
Installation-Written Built-in Functions (IKJCT44B)” on page 493.

v The CLIST statement exit allows you to add your own statements to the CLIST
language. This exit is described in “Writing an Exit for Installation-Written
Statements (IKJCT44S)” on page 497.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the EXEC command.

Entry Specifications
The contents of the registers on entry for the initialization and termination exits for
the EXEC command are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The initialization exit receives the standard exit parameter list. However, no
exit-dependent data is passed to the initialization exit. For information about the
standard exit parameter list and the parameter entry keys, see “TSO/E Standard
Exit Parameter List” on page 35.

Parameter Descriptions for the Termination Exit
The termination exit receives the standard exit parameter list. For a description of
this parameter list, see “TSO/E Standard Exit Parameter List” on page 35. If you
provide an initialization exit, the termination exit is passed the same parameter
entries for the new command buffer and exit-to-exit communication word that were
passed to the initialization exit.

Writing Exits for the EXEC Command

280 z/OS V1R4.0 TSO/E Customization

Figure 44 shows the exit-dependent data that the termination exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

EXEC Return Code (Parameter Entry 10)
This parameter entry is the return code from the EXEC command processor
(either CLIST phase 1 processing or the completion of REXX processing). For
information on the return codes from the EXEC command, see z/OS TSO/E
Command Reference.

EXEC Termination Flags (Parameter Entry 11)
This parameter entry is a fullword indicating whether the EXEC command
processed a CLIST, a REXX exec, or neither. Possible values for the EXEC
termination flags are as follows:

Value (Hex) Description

X'00000000' The EXEC command did not process either a CLIST or a REXX
exec. Possible reasons are:
v EXEC processing encountered an error. For example, the

EXEC command did not find the CLIST or REXX exec to be
executed.

v The EXEC initialization exit indicated that EXEC processing
is to be bypassed.

X'00000001' The EXEC command processed CLIST phase 1.

X'00000002' The EXEC command processed a REXX exec.

Return Specifications
The contents of the registers on return from the initialization and termination exits
must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 45 shows the return codes that the initialization and termination exits support.

Table 45. Return Codes for the EXEC Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. EXEC processing continues.

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

Address of

parameter entry 10

Address of

parameter entry 11

00000001 00000004

00000001 00000004

EXEC

return code

EXEC

termination flags

+36

+40

Figure 44. Exit-Dependent Data for the EXEC Command Termination Exit

Writing Exits for the EXEC Command

Chapter 29. Customizing the EXEC Command 281

Table 45. Return Codes for the EXEC Initialization and Termination Exits (continued)

Return Code
(Decimal)

Description

12, 16 An error occurred in the exit. The EXEC command processor
terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the EXEC command processor. For more information, see
the notes following this table and “Exit Reason Code” on page 40.

If your exit sets a return code of either 12 or 16, you should
consider displaying an informational message to the user. You can
use the PUTLINE service routine to issue an informational
message. See z/OS TSO/E Programming Services for more
information.

Notes:

1. If an exit returns an undefined return code, the EXEC command processor
terminates without issuing an error message to the user.

2. If an initialization or termination exit sets a reason code that has a key value of
X'03', this reason code is used as the return code from the EXEC command.
However, if both exits indicate that the reason code is to be used as the return
code from the EXEC command, the reason code from the termination exit
overrides that from the initialization exit.

3. When requesting that the exit reason code be used as the return code from
EXEC, you must insure that the reason code does not duplicate existing EXEC
return codes.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable.

If the processing done in the initialization exit requires clean-up to be performed,
you must write a termination exit. For example, if the initialization exit obtains
storage to return a new command buffer to the EXEC command processor, you
must provide a termination exit to free this storage.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name the exits as follows:

Initialization IKJCT43I

Termination IKJCT43T

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:

Writing Exits for the EXEC Command

282 z/OS V1R4.0 TSO/E Customization

v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some ways you can use the initialization exit include:

v Providing default values for symbolic variables that are used in CLISTs

v Changing the default values for operands of the EXEC command. For example,
you can cause the PROMPT option to be the default for the explicit form of
EXEC and therefore propagate the PROMPT operand to nested EXEC
commands.

v Invoking an alternate interpreter. You can allow TSO/E users to issue the EXEC
command to execute programs written in interpretive languages other than the
CLIST language. To invoke an alternate interpreter, follow these steps:

1. Examine the command buffer to determine the type of interpretive language.

2. Invoke the interpreter.

3. Set an exit return code of 16 to cause the EXEC command processor to
terminate.

Some ways you can use the termination exit include:

v Performing clean-up processing. For example, you can free storage that was
obtained in the initialization exit.

v Changing the default CONTROL options for CLISTs. These options are used on
the CLIST CONTROL statement to define processing options. Follow these steps
to change the default CONTROL options:

1. Check the return code from the EXEC command processor to determine
whether the CLIST has been placed on the stack and is executable. This
return code is passed to the termination exit in the parameter list described in
“Parameter Descriptions for the Termination Exit” on page 280.

2. Use the CLIST variable access routine (IKJCT441) to change the CONTROL
options by setting symbolic variables. Change an option by setting the
corresponding symbolic variable to the string ON or OFF. For example, to
cause CONTROL NOPROMPT to be in effect, set &SYSPROMPT to OFF.
Table 46 shows the CONTROL options and the corresponding variables that
you can set:

Table 46. Symbolic Variables Used to Set CLIST CONTROL Options

CONTROL Option Symbolic Variable

PROMPT/NOPROMPT &SYSPROMPT

SYMLIST/NOSYMLIST &SYSSYMLIST

CONLIST/NOCONLIST &SYSCONLIST

LIST/NOLIST &SYSLIST

CAPS/NOCAPS/ASIS &SYSASIS

MSG/NOMSG &SYSMSG

FLUSH/NOFLUSH &SYSFLUSH

Writing Exits for the EXEC Command

Chapter 29. Customizing the EXEC Command 283

For information about using IKJCT441 to change CLIST variables, see z/OS
TSO/E Programming Services. For more information about CLIST CONTROL
options, see z/OS TSO/E CLISTs.

Writing Exits for the EXEC Command

284 z/OS V1R4.0 TSO/E Customization

Chapter 30. Customizing the FREE Command

Writing Exits for the FREE Command 285
Functional Description . 285
TSO/E-Supplied Exits . 285
Entry Specifications. 285
Parameter Descriptions for the Initialization Exit 286
Parameter Descriptions for the Termination Exit 286
Return Specifications . 286
Programming Considerations 287
Possible Uses. 288

Writing Exits for the FREE Command

Functional Description
Users issue the FREE command to:
v Release (deallocate) previously allocated data sets
v Change the output class of system output (SYSOUT) data sets
v Delete attribute lists
v Delete output descriptors that were defined by the OUTDES command
v Change a data set disposition that was specified with the ALLOCATE command.

For information about using FREE, see z/OS TSO/E User’s Guide. For information
about FREE and its operands, see z/OS TSO/E Command Reference.

TSO/E provides an initialization exit and a termination exit for the FREE command.
You can use the exits to customize FREE processing for your users. The
initialization exit receives control before the FREE command processor invokes the
parse service routine to parse the command. The termination exit receives control
just before the FREE command processor completes processing. If the initialization
exit returns successfully to the FREE command processor and FREE processing
itself abends, the FREE command processor invokes the termination exit before it
terminates.

You can use the initialization exit to change the operands that users specify on the
command or correct user errors when they issue the command. You can use the
termination exit to perform clean-up or special processing prior to FREE completion.
Depending on the processing your initialization exit performs, you may not need a
corresponding termination exit.

The following highlights some ways you can use the FREE exits. For more
information about how you can use the exits, see “Possible Uses” on page 288.
v Correct a user’s errors on the FREE command
v Change the operands a user specifies on the command
v Provide pseudo-operands that are equivalent to two or more FREE operands

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the FREE exits.

Entry Specifications
For the FREE exits, the contents of the registers on entry are:

Register 0 Unpredictable

© Copyright IBM Corp. 1988, 2002 285

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The FREE initialization exit receives the address of the standard exit parameter list.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. The initialization exit does not receive any exit-dependent data.

Parameter Descriptions for the Termination Exit
The FREE termination exit receives the address of the standard exit parameter list.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. The termination exit does not receive any exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the FREE command processor, FREE passes the values of
these parameter entries to the termination exit. For more information about the
parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both FREE exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 47 shows the return codes that the FREE initialization and termination exits
support.

Table 47. Return Codes for the FREE Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. FREE processing continues.

12 Exit processing was unsuccessful. FREE issues an error message
to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the FREE command processor. For more information about
the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. FREE terminates processing.

The FREE command processor does not display a message to the
user if the exit sets a return code of 16. Before the exit returns with
return code 16, it can display a message to the user, for example,
using PUTLINE.

If the exit returns an undefined return code, the FREE command processor
terminates without displaying a message to the user.

Writing Exits for the FREE Command

286 z/OS V1R4.0 TSO/E Customization

The termination exit receives control just before the completion of FREE
processing. Therefore, the FREE command processor may have already
successfully executed regardless of the return code the termination exit returns.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and not APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize FREE processing

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, the initialization exit may obtain storage to return
a new command buffer to the FREE command processor. In this case, you must
provide a termination exit to free the storage for the new command buffer.

The initialization exit can change FREE operands using the command buffer. The
exit checks the command buffer it receives and determines whether to change any
operands. To change the operands, the exit must:

v Obtain storage for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer (parameter
entry 2)

v Set return code 0 and return control to FREE

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name the exits as follows:

Initialization IKJEFD21

Termination IKJEFD22

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Writing Exits for the FREE Command

Chapter 30. Customizing the FREE Command 287

Possible Uses
Some possible uses of the FREE exits are described below:

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the FREE command. The initialization exit receives the address of the command
buffer. It can change the operands the user specifies on the FREE command by
using a new command buffer. For example, the initialization exit can scan the
command buffer and correct any errors on the command.

v Provide installation-defined pseudo-operands

You can provide pseudo-operands for your installation’s users that are equivalent
to two or more FREE operands. Providing pseudo-operands makes it easier for
users to issue the FREE command. Users need not remember several FREE
operands. They can specify the pseudo-operand.

For example, you could associate a pseudo-operand named FREEIT with three
FREE operands. The initialization exit can scan the command buffer. If the exit
finds the pseudo-operand FREEIT, it can replace FREEIT with the actual FREE
operands and return a new command buffer.

To check the command buffer and change its contents, the initialization exit can:

v Scan the command buffer and decide, based on your own criteria, to change the
command the user issued

v Obtain storage for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer as follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

v Set a return code of 0 and return control to the FREE command processor.

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to FREE. For
more information about the command buffer and the new command buffer, see
“TSO/E Standard Exit Parameter List” on page 35. For information about the format
of the command buffer, see “Command Buffer” on page 38.

You must also write a termination exit to free the storage the initialization exit
obtains for the new command buffer. When the FREE command processor invokes
the termination exit, it passes the address of the new command buffer to the
termination exit. The termination exit frees the storage for the new command buffer.

Writing Exits for the FREE Command

288 z/OS V1R4.0 TSO/E Customization

Chapter 31. Customizing the PARMLIB Command

Writing Exits for the PARMLIB Command. 290
Functional Description . 290
TSO/E-Supplied Exits . 290
Entry Specifications. 290
Parameter Descriptions for the Initialization Exit 290
Parameter Descriptions for the Termination Exit 291
Return Specifications . 291
Programming Considerations 292
Possible Uses. 293

The PARMLIB command lets you list and update TSO/E specifications that are in
effect on the system. Those TSO/E specifications include tables of authorized
commands and programs, and default values for some TSO/E commands.

The CHECK function of the PARMLIB command lets you check the syntax of any
IKJTSOxx member of SYS1.PARMLIB, including active members.

Before people at your installation can use the PARMLIB command, you must add
PARMLIB to the table of authorized commands. Chapter 10, “Specifying Authorized
Commands/Programs, and Commands Not Supported in the Background” on
page 153 describes how to maintain and update the table.

You should also limit individual users from using the PARMLIB command. You can
limit users in one of the following ways:

v Using PARMLIB exit routine IKJPRMX1. When a user issues PARMLIB,
IKJPRMX1 can check the user ID and issue a return code to let the user
continue, to cancel the PARMLIB command, or to invoke authority checking
through RACF.

v Using RACF. You can use the RACF RDEFINE command to define PARMLIB as
a RACF resource belonging to the TSOAUTH RACF class. Then give selected
users access to the PARMLIB resource using the RACF PERMIT command.
Users who will use the CHECK or LIST operands will require READ access to
the TSOAUTH-class PARMLIB profile; in order to use the UPDATE operand,
UPDATE access to the profile will be needed. Note that users do NOT require a
TSO segment in order to gain access to the PARMLIB profile in the TSOAUTH
class.

In addition to controlling access to the PARMLIB command, you can customize the
PARMLIB command by writing exits to tailor or monitor its processing.

Writing Exits for the PARMLIB Command

TSO/E provides two exits for the PARMLIB command:
v Initialization (IKJPRMX1)
v Termination (IKJPRMX2)

Using the PARMLIB exits, you can:

v Verify that the user has authority to issue the PARMLIB command.

v Provide a new command buffer to change the operands a user specifies on the
command or restrict the use of certain operands. For example, you can correct a
user’s errors or restrict users from using specific operands.

© Copyright IBM Corp. 1988, 2002 289

Writing Exits for the PARMLIB Command

Functional Description
TSO/E provides an initialization exit and a termination exit for the PARMLIB
command. You can use the exits to customize PARMLIB processing for your users.
The initialization exit receives control before the PARMLIB command processor
invokes the parse service routine to parse the command. The termination exit
receives control just before the PARMLIB command processor completes
processing. If the initialization exit returns successfully to PARMLIB and PARMLIB
processing itself abends, the PARMLIB command processor invokes the termination
exit before it terminates.

You can use the initialization exit to check that users have authority to use the
PARMLIB command, change the operands that users specify on the command, and
change the values of the operands.

You can use the termination exit to perform clean-up or special processing prior to
PARMLIB completion. Depending on the processing your initialization exit performs,
you may not need a corresponding termination exit.

The following highlights some ways you can use the PARMLIB exits. For more
information about how you can use the exits, see “Possible Uses” on page 293.
v Verify that the user is authorized to use the PARMLIB command
v Specify that RACF authority checking is to be performed
v Correct a user’s errors on the PARMLIB command
v Restrict the operands a user specifies on the command
v Determine how long it takes PARMLIB to execute

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the PARMLIB initialization and
termination exits.

Entry Specifications
For the PARMLIB initialization and termination exits, the contents of the registers on
entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The PARMLIB initialization exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35.

Figure 45 on page 291 shows the exit-dependent data that the initialization exit
receives beginning at offset +36 (decimal) in the parameter list.

Writing Exits for PARMLIB Command

290 z/OS V1R4.0 TSO/E Customization

Authority value (Parameter Entry 10)
This parameter (X'0' on entry) lets IKJPRMX1 return a value to indicate the
user’s authority to use the PARMLIB command. On return from IKJPRMX1, the
possible values are:

Value (hex) Meaning

0 Use RACF to verify the user’s authority

4 The user is authorized to use PARMLIB

8 The user is not authorized to use PARMLIB

Parameter Descriptions for the Termination Exit
The PARMLIB termination exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35. The termination exit does not receive any exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the PARMLIB command processor, PARMLIB passes the
values of these parameter entries to the termination exit. For more information
about the parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both PARMLIB exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 48 shows the return codes that the PARMLIB initialization and termination
exits support.

Table 48. Return Codes for the PARMLIB Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. PARMLIB processing continues.

12 Exit processing was unsuccessful. PARMLIB issues an error
message to the user and then terminates processing.

The error message identifies the exit that requested termination and
a reason code. For more information about the exit reason code,
see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. PARMLIB terminates processing
without issuing an error message to the user. Before the exit
returns with return code 16, it can display a message to the user,
for example, using PUTLINE.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Parameter Entry's

Key, Length, and Data

00000001 00000004 00000000

Figure 45. Exit-Dependent Data for the PARMLIB Initialization Exit

Writing Exits for PARMLIB Command

Chapter 31. Customizing the PARMLIB Command 291

If the exit returns an undefined return code, the PARMLIB command processor
terminates without displaying a message to the user.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize PARMLIB processing

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, if the initialization exit obtains storage to return a
new command buffer to the PARMLIB command processor, you must provide a
termination exit to free the storage. If the initialization exit obtains storage, for
example, for a new command buffer, it must obtain the storage from subpool 1.

The initialization exit can change PARMLIB operands using the command buffer.
The exit checks the command buffer it receives and determines whether to change
any operands. To change the operands, the exit must:
v Obtain storage from subpool 1 for a new command buffer
v Build the new command buffer
v Update the key, length, and data fields for the new command buffer (parameter

entry 2)
v Set return code 0 and return control to PARMLIB.

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program, APF-authorized
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)

Restrictions and Limitations
The PARMLIB exits must reside in an APF-authorized library.

Installing the Exits
You must name the exits as follows:

Initialization IKJPRMX1

Termination IKJPRMX2

Link-edit each exit as a separate load module. The exits must reside in an
APF-authorized library. You can link-edit the exits in any authorized load library,
such as a separate load library that is exclusively for TSO/E exits or in an existing
library containing other routines. The exits can reside in:
v The link pack area (LPA)

Writing Exits for PARMLIB Command

292 z/OS V1R4.0 TSO/E Customization

v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the PARMLIB exits are described below:

v Restrict use of the PARMLIB command to certain users

The initialization exit can check the user ID and decide, based on your own
criteria, to continue processing the PARMLIB command or not. The exit can
return a value in parameter entry 10 to indicate that the user is authorized, not
authorized, or that the user’s authority should be verified through RACF. If the
user is not authorized, PARMLIB issues a message, otherwise processing
continues.

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the PARMLIB command. The initialization exit receives the address of the
command buffer. It can change the operands the user specifies on the PARMLIB
command by using a new command buffer. For example, the initialization exit
can scan the command buffer to:

– Look for conflicts with the operands a user specifies and correct any errors.
For example, the user cannot specify both the UPDATE and LIST operands
on the PARMLIB command.

– Prevent users from specifying certain operands or certain values for operands.
For example, you could allow the user to issue the LIST operand but not the
UPDATE operand.

To check the command buffer and change its contents, the initialization exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command the user issued

– Obtain storage for a new command buffer

– Build the new command buffer

– Update the key, length, and data fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the PARMLIB command
processor.

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to PARMLIB.

For more information about the command buffer and the new command buffer,
see “TSO/E Standard Exit Parameter List” on page 35. For information about the
format of the command buffer, see “Command Buffer” on page 38.

v Monitor how long it takes the PARMLIB command to complete processing.

You can use the initialization and termination exits to monitor the approximate
time it takes the PARMLIB command processor to complete processing. When
the initialization exit receives control, it can:

Writing Exits for PARMLIB Command

Chapter 31. Customizing the PARMLIB Command 293

– Invoke the TIME macro

– Use the exit-to-exit communication word to return the time to the PARMLIB
command processor. The exit updates the “Key”, “Length”, and “Data” fields
for the exit-to-exit communication word as follows:

Key X'01'

Length the length of the data (time)

Data the data (time)

– Set a return code of 0 and return to the PARMLIB command processor.

When the termination exit gets control, it receives the time from the initialization
exit in the exit-to-exit communication word. Before the termination exit returns
control to PARMLIB, it can invoke the TIME macro. The exit can calculate the
time difference between the time from the initialization exit (in the exit-to-exit
communication word) and the time it receives from issuing the TIME macro. The
result is the approximate time it took the PARMLIB command to complete its
processing. The termination exit can include the processing time in a data set.
You can then periodically print the data set and review the time calculations.

Writing Exits for PARMLIB Command

294 z/OS V1R4.0 TSO/E Customization

Chapter 32. Customizing the SUBMIT Command and Job
Output Processing

Setting Defaults for Jobs Submitted By TSO/E Users 296
Associating Job Classes with Jobs 296
Specifying the Number of Jobs That Can Be Read Simultaneously (JES2

Only) . 296
Specifying Whether Jobs Are Delayed for Processing 296
Holding Output Data for Processing 297

Customizing How Users Submit Jobs and Process the Output 297
Writing an Exit for the SUBMIT Command 298

Functional Description . 298
TSO/E-Supplied Exit . 299
Entry Specifications. 299
Parameter Descriptions . 299
Return Specifications . 303
Programming Considerations 304
Possible Uses. 305

Writing an Exit for the OUTPUT, STATUS, and CANCEL Commands 308
Functional Description . 308
TSO/E-Supplied Exit . 309
TSO/E Sample Exit . 310
Entry Specifications. 310
Parameter Descriptions . 310
Return Specifications . 312
Programming Considerations 312
Possible Uses. 314

Users can issue the TSO/E SUBMIT command to submit batch jobs for processing
by JES. They can issue the TSO/E OUTPUT command to process the output of
jobs they submit, the TSO/E STATUS command to display the status of any job in
the system, and the TSO/E CANCEL command to stop the processing of jobs they
submit.

By using JES initialization statements, you can change the default processing
performed for jobs submitted by TSO/E users, as well as jobs submitted via other
methods, such as external readers or ISPF/PDF. You may want to review, and if
necessary, change the default processing.

You can also use the TSO/E SUBMIT exit, the TSO/E OUTPUT, STATUS, and
CANCEL exit, JES exits, SMF exits, and RACF resource classes to customize jobs
and their output before and after they have been submitted. For example, you can:
v Override the IBM-provided default job processing characteristics
v Monitor, change, or supplement the JCL users use to submit a job
v Cancel a job
v Tailor the way the TSO/E CANCEL, OUTPUT, and STATUS commands work
v Delete, release, or reroute job output
v Control who can submit and cancel jobs by job name
v Protect against unauthorized spool access of the SYSOUT data sets for the

TSO/E OUTPUT command
v Allow users to submit jobs on behalf of another user (job owner) without knowing

that user’s password

© Copyright IBM Corp. 1988, 2002 295

Setting Defaults for Jobs Submitted By TSO/E Users
You may want to review default processing performed for TSO/E jobs, and, if
necessary, change the processing to accommodate jobs submitted by TSO/E users.
You can create a separate job class for TSO/E jobs, define additional internal
readers (for JES2 only), or specify that TSO/E jobs and their output be held for
processing. Most of the defaults are set by using JES initialization statements.

Associating Job Classes with Jobs
Because TSO/E jobs are submitted randomly, and may cause poorer turnaround for
other batch jobs, you might want to use a separate job class for TSO/E jobs. If you
are using JES2, use the INTRDR initialization statement to specify a job class to be
used for all TSO/E jobs. For JES3, you can use the IATUX28 exit to override the
class users specify in their JCL and direct TSO/E jobs to a separate class.

To specify a job class to be used for jobs submitted by individual users, use either
the ACCOUNT command or the RACF ADDUSER or ALTUSER command
depending on whether the user information is defined in the UADS or RACF data
base. The job class you specify using these commands overrides the class
specified on the JES initialization statement.

For more information about these initialization statements and commands, see the
following books:

v For the JES2 initialization statement, see z/OS JES2 Initialization and Tuning
Reference.

v For the JES3 exit, see z/OS JES3 Customization.

v For the ACCOUNT command, see z/OS TSO/E System Programming Command
Reference.

v For the RACF ADDUSER and ALTUSER commands, see z/OS Security Server
RACF Command Language Reference.

Specifying the Number of Jobs That Can Be Read Simultaneously
(JES2 Only)

You may need to adjust the number of JES2 internal readers dedicated to handling
jobs submitted by TSO/E users. When users issue the TSO/E SUBMIT command to
submit a job for batch processing, a JES internal reader dedicated to TSO/E jobs
reads the job onto the spool. The number of internal readers available determines
how many TSO/E jobs can be simultaneously read onto the spool, and can affect
how quickly jobs are processed. As a starting point, you should define one internal
reader for every five users logged onto TSO/E. To specify the number of internal
readers, use the JES2 INTRDR initialization statement. For more information about
using the JES2 INTRDR initialization statement, see z/OS JES2 Initialization and
Tuning Reference.

Specifying Whether Jobs Are Delayed for Processing
By default, jobs submitted by TSO/E users are not held for later processing by an
operator. You may want to hold TSO/E jobs for the following reasons:

v Usually there is a trade-off between the performance of batch and on-line
processing, so you may want to perform your batch processing off-shift, when it
does not degrade the performance of on-line users

v Some jobs require tapes, so you may want to hold those jobs until the tapes are
available and have been mounted. If you do not hold the jobs, they tie up
resources until the tapes are available.

Setting Defaults for Jobs Submitted By TSO/E Users

296 z/OS V1R4.0 TSO/E Customization

You can use JES2 or JES3 initialization statements to specify that only certain job
classes are held. However, you can specify that all jobs submitted by TSO/E users
are held by using the JES2 INTRDR initialization statement. To specify a held class
used for jobs submitted by individual users if they omit the job class in their JCL,
use either the ACCOUNT command or the RACF ADDUSER or ALTUSER
command depending on whether the user is defined in the UADS or RACF data
base.

Holding Output Data for Processing
After a job has been processed, its JCL and any output data sets the job produces
(called SYSOUT data sets) are placed on the output queue for processing by an
output device. By default, SYSOUT data sets are not held. You can specify that
SYSOUT data sets be held for processing by TSO/E users. Holding data sets for
processing allows TSO/E users to use the TSO/E OUTPUT command to view
output at their terminals. They can then decide whether to print or purge the output.
For more information about the OUTPUT command, see z/OS TSO/E Command
Reference.

If you use JES2, use the OUTCLASS initialization statement to specify which output
job classes are held for processing. If you use JES3, use the SYSOUT initialization
statement. For more information about the initialization statements, see:
v z/OS JES2 Initialization and Tuning Reference
v z/OS JES3 Initialization and Tuning Reference

Customizing How Users Submit Jobs and Process the Output
After you have changed the defaults for how TSO/E jobs are processed, you can
use exits and RACF resource classes to customize the way TSO/E users submit
jobs and process the output. For example, you can customize JCL statements,
cancel jobs or job output, or allow users to process output from jobs other than their
own.

In addition to using the TSO/E SUBMIT and the TSO/E OUTPUT, STATUS and
CANCEL exits to customize the way users submit jobs and process the output, you
can use JES and SMF. With RACF installed, you can also use the RACF resource
classes, JESSPOOL, JESJOBS, and SURROGAT.

In general, you can use JES and SMF exits to perform the same processing as the
TSO/E SUBMIT, and OUTPUT, STATUS, CANCEL exit routines.

With RACF installed, you can use the RACF resource class, JESSPOOL, to protect
against unauthorized spool access of the SYSOUT data sets for the TSO/E
OUTPUT command, and JESJOBS to control who can submit and cancel jobs by
job name. For more information about the RACF resource classes, JESSPOOL and
JESJOBS, see z/OS Security Server RACF Security Administrator’s Guide.

With RACF installed, users can be defined to the RACF SURROGAT class. Jobs
submitted by surrogate users can be cancelled and/or viewed by surrogate users
without knowing the user’s password. For more information about submitting a job
as a surrogate user, see z/OS Security Server RACF General User’s Guide. For
more information about setting up the RACF SURROGAT class, see z/OS Security
Server RACF Security Administrator’s Guide.

This topic will help you decide which type of exit to use and explains how to use the
TSO/E SUBMIT exit (IKJEFF10) and the TSO/E OUTPUT, STATUS, CANCEL exit

Setting Defaults for Jobs Submitted By TSO/E Users

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 297

(IKJEFF53). For information about specific JES and SMF exits you can use, see
Chapter 48, “Overview of Facilities for Customizing TSO/E” on page 715.

The type of exit you use—TSO/E, JES, or SMF—depends on:

v Whether you want to tailor only the jobs TSO/E users submit, or all jobs,
including TSO/E jobs

v The information you must access. For example, to access the job queues, use a
JES exit.

v When in the job processing cycle you want to get control.

To customize only the jobs TSO/E users submit, use either the TSO/E SUBMIT exit
or the TSO/E OUTPUT, STATUS, CANCEL exit. Those exits run in the user’s
address space. It is more convenient to access user-related information, such as
logon information in the RACF data base, from that address space.

To customize the way all jobs and their output are processed, use JES or SMF
exits. For example, you can use JES or SMF exits to tailor the processing the
system does for jobs submitted via ISPF/PDF, external readers, or TSO/E users.

The JES exits run in either the JES2 or JES3 address space, or in the submitted
job’s address space. Use JES exits to access JES information, such as the job
queues. Most SMF exits run in the submitted job’s address space. To access
accounting information, use an SMF exit.

To avoid using more resources than necessary, you should perform a task as early
in the processing cycle as possible. For example, because the TSO/E SUBMIT exit
gets control before any JES or SMF exits, it is more efficient to cancel a job using
the TSO/E SUBMIT exit instead of using a JES or SMF exit. Most of the JES exits
receive control before data sets and devices have been allocated. Most SMF exits
receive control after data sets and devices have been allocated, and just before and
during job execution.

You can use a combination of exit types to perform a task. For example, you can
use the TSO/E SUBMIT exit to access information associated with a user’s address
space and store the information in the job’s JCL as a control statement. You can
then use a JES exit to process the information. You should be careful, however, that
an exit does not nullify the processing another exit performed.

For more information about JES2, JES3, and SMF exits, see:

v z/OS JES2 Installation Exits

v z/OS JES3 Customization

v z/OS MVS Installation Exits

Writing an Exit for the SUBMIT Command

Functional Description
Users issue the SUBMIT command to submit one or more batch jobs for
background processing by JES. On the command, users can specify one or more
data set names or member names that define an input stream consisting of JCL
statements and input data. For information about using the SUBMIT command, see
z/OS TSO/E User’s Guide. For information about the syntax of the SUBMIT
command, see z/OS TSO/E Command Reference.

Customizing How Users Submit Jobs and ...

298 z/OS V1R4.0 TSO/E Customization

The SUBMIT command processor reads the JCL statements and writes the data set
or data sets that the user specifies into an internal reader of the job entry
subsystem. When the SUBMIT command processor reads or generates the first
JOB statement, it invokes the exit. Note that if TSO/E builds the JOB statement, the
PASSWORD and USER parameters are not included on the statement.

By default, only JOB statements and continuations of the JOB statement are
passed to the exit. An embedded comment in the JOB statement is, however,
passed as part of the JOB statement. By setting different control switches, the exit
can indicate to the SUBMIT command processor that it wants to check additional
types of JCL statements as the statements are read from the input data sets. For
example, the exit can also check EXEC and DD statements.

You can use the SUBMIT exit to check the user ID and job name and accept,
reject, or modify the JCL statements that a user submits. The exit can check the
JCL statement and either leave it unchanged, change it, or delete it. The exit can
continue a statement or add new statements. It can also have the SUBMIT
command processor display a message at the user’s terminal, request a response
from the user, or cancel a SUBMIT request.

The following highlights some ways you can use the SUBMIT exit. For more
information, see “Possible Uses” on page 305.
v Cancel a SUBMIT request
v Process statements in addition to the JOB statement
v Delete the current JCL statement
v Add a new statement after the current statement
v Change the current statement
v Supply a password on the JOB statement

TSO/E-Supplied Exit
If you do not write an exit, an exit routine that TSO/E provides receives control. The
default exit routine does not check JCL. It is invoked once for each SUBMIT
command (JOB statement). The exit does not perform any processing other than:
v Turning off all switches that cause it to receive control
v Setting the return code to zero
v Returning to the SUBMIT command processor

Entry Specifications
The contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of a pointer to an eight word parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The following describes the eight word parameter list.

Word 1
The address of the current statement that the SUBMIT command processor
passes to the exit.

Writing an Exit for the SUBMIT Command

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 299

To delete the current statement, the exit must set word 1 to zero.

To process the statement, the exit must pass back the same address. It can
either leave the statement unchanged or change the statement. The exit sets a
return code of 0 or 4 depending on the processing it is performing.

If word 1 is zero when the exit gets control, this indicates that the exit must
supply the next JCL statement, that is, the return code from the previous call of
the exit was 4. The next JCL statement that the exit supplies must be either a
continuation of the previous statement or a new statement.

Word 2
The address of a message to be displayed on the user’s terminal. The exit must
supply the message text when it sets a return code of 8 or 12. The exit must
obtain the message buffer and should free it when it receives control again.

The format of the message is “LLtext”, where LL is a 2-byte field that contains
the length of the message text area (including the LL field). The maximum text
length is 242 bytes. Characters past the maximum length are truncated.

Note: For message IKJ56280A, the maximum length of 242 bytes includes the
‘+’ for a second-level message.

If word 2 is not zero when the exit gets control, this means the return code from
the last call to the exit was either 8 or 12. If word 2 is zero, no message is
present, which either means this is the first call to the exit, or the last return
code was 0 or 4.

Word 3
The address of the response from the user if the exit’s last return code was 12.
The format of the response is “LLtext”, where LL is a 2-byte field that contains
the length of the reply, including the LL field.

The SUBMIT command processor frees the buffer when word 3 is not zero after
it calls the exit.

Word 4
The address of the user ID. The user ID can be up to eight characters long. It is
left-justified and padded with blanks. If the submitter of the job was a TSO/E
batch job, the user ID is blank.

Word 5
The address of the control switches, which are contained in a fullword. The exit
can use byte 0. The SUBMIT command processor uses bytes 1, 2, and 3. The
4 bytes are described below. For more information about how the bytes are
used, see “Summary of Using the Bytes of Word 5” on page 302.

Byte 0
The exit sets these bits to indicate to the SUBMIT command processor the
statements it wants to check in addition to the JOB statement. By default,
the exit receives control for JOB statements only. The exit may change the
bit settings to receive control when SUBMIT reads other statements. For
example, if the exit sets bit 3 on, it receives control when the SUBMIT
command processor finds operator commands or PROC or PEND
statements in the JCL.

Byte 0 contains the following bits:

Bit Description

0 Call exit for JOB statement

Writing an Exit for the SUBMIT Command

300 z/OS V1R4.0 TSO/E Customization

1 Call exit for EXEC statement

2 Call exit for DD statements

3 Call exit for commands

4 Call exit for null statement (// in columns 1 and 2 and blanks in the
remaining columns)

5 Call exit for JES2 control statements -- /*X in columns 1-3 (/* in
columns 1 and 2 and a non-blank character in column 3)

6 Call exit for JES3 control statements or comment statements (//* in
columns 1-3)

7 Call exit for JES3 control statements (//* in columns 1-3 and a
non-blank character in column 4)

Byte 1
If byte 1 is not zero, it contains a hexadecimal value that indicates the
column in which the operand field begins. For example, if the operand field
begins in column 16, byte 1 contains X'10'. The SUBMIT command
processor supplies a value in byte 1 for all statement types.

Byte 2
The SUBMIT command processor sets these bits to identify the current
statement to the exit. Byte 2 contains the following bits:

Bit Description

0 JOB statement

1 EXEC statement

2 DD statement

3 Command

4 Null statement

5 Operand to be continued

6 Statement to be continued

7 Statement is a continuation

Byte 3
The SUBMIT command processor sets these bits to identify the current
statement to the exit. Byte 3 contains the following bits:

Bit Description

0 JES2 control statement -- /*X in columns 1-3 (/* in columns 1 and
2 and a non-blank character in column 3)

1 JES3 control statement or a comment statement -- //* in columns
1-3

2 JES3 control statement -- //* in columns 1-3 and a non- blank
character in column 4

3 SUBMIT-generated job statement. The bit is on for the first
statement and all continuations.

Word 6
Reserved for the exit’s use. The first time the SUBMIT command processor
calls the exit, it initializes word 6 to zero. The exit can use the word for counters

Writing an Exit for the SUBMIT Command

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 301

or switches to keep track of its own processing. The SUBMIT command
processor does not change the value between calls.

Word 7
The address of reconstructed logon job accounting information that the exit
supplies for the user. The SUBMIT command processor inserts this information
into generated JOB statements.

Word 8
The address of a halfword that contains the length of the job accounting
information.

Summary of Using the Bytes of Word 5
The SUBMIT command processor uses byte 1 of word 5 to identify the column in
which the operand field begins. It also uses byte 3 of word 5 to identify:
v JES2 control statements (bit 0)
v JES3 control statements and comment statements (bit 1)
v JES3 control statements (bit 2)
v SUBMIT-generated job statements (bit 3).

The SUBMIT command processor interprets the following statement as a JES2
control statement. It sets bit 0 of byte 3 on and determines that the operand field
begins in column 15. Therefore, it sets byte 1 to X'0F'.
/*JES2CTLSTMT OPERAND

The SUBMIT command processor interprets the following statements as either
JES3 control statements or comment statements.
//* OPERAND
//*COMMENT OPERAND
//*JES3CTLSTMT OPERAND

The command processor sets bit 1 of byte 3 on. Byte 1 contains the following
hexadecimal values. These values indicate the beginning of the operand field for
each of these three statements:
v X'05'
v X'0C'
v X'10'

If the current statement has // in columns 1 and 2, but the SUBMIT command
processor does not recognize the statement as a JOB, EXEC, or DD statement, it
assumes that it is an operator command entered into the input stream. In this case,
the command processor sets bit 3 in byte 2 on.

You can continue any type of statement except the following:
v Comment statements
v JES2 control statements
v JES3 control statements

You can indicate that a statement is to be continued by having:
v A comma as the last character of the operand, or
v A non-blank character in column 72.

If a statement has a comma as the last character of the operand, the SUBMIT
command processor sets bits 5 and 6 of byte 2 on. In this case, the operand itself
in the statement is to be continued.

Writing an Exit for the SUBMIT Command

302 z/OS V1R4.0 TSO/E Customization

If a statement has a non-blank character in column 72, and the last character of the
operand is not a comma, the SUBMIT command processor sets bit 6 of byte 2 on.
In this case, the statement itself is to be continued.

Limitation: Unlike the JCL rules, the SUBMIT exit does not allow for the
continuation of parameter fields enclosed in quotes. If required, split up
the enclosed parameter field into several fields, thereby enclosing each
in quotes. For example:
//NAMN1 OUTPUT JESDS=ALL,
// ADDRESS=(’text that describes a very long delivery address

and does not fit on to a single line’)...

requires to code as follows:
//NAMN1 OUTPUT JESDS=ALL,
// ADDRESS=(’text that describes a very long delivery address’,

’and does not fit on to a single line’)...

The SUBMIT command processor does not pass the exit the preceding JCL
statements if they are in a DD DATA (or DD *, for /*X statements) input data stream.

Return Specifications
The contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes

0 Continue. The SUBMIT command processor processes the current
statement and reads the next one. The exit uses return code 0
when it has finished processing the current statement.

4 Invoke the exit again to obtain another statement. The SUBMIT
command processor processes the current statement that the exit
passes back. It invokes the exit again so the exit can insert a
statement. The inserted statement can be:

v A continuation of the previous statement (the statement that the
exit passed back when it set return code 4), or

v A new JCL statement.

8 The SUBMIT command processor displays message IKJ56283I and
invokes the exit again.

The exit must obtain the message text area and supply the
message text. The exit stores the address of the message in word
2 of the parameter list, sets the return code (8), and returns control.
The SUBMIT command processor displays the message and then
invokes the exit again. After the exit receives control again, it
should free the message text area.

Writing an Exit for the SUBMIT Command

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 303

12 The SUBMIT command processor displays prompting message
IKJ56280A, obtains a response from the user, and invokes the exit
again.

The exit must obtain the message text area and supply the
message text. The exit stores the address of the message in word
2 of the parameter list, sets the return code (12), and returns
control. The SUBMIT command processor displays the message,
obtains the user’s response, and invokes the exit again passing the
user’s response in word 3 of the parameter list.

After the exit receives control again, it should free the message text
area. The SUBMIT command processor obtains and frees the reply
text area.

If the user specifies NOPROMPT on a PROFILE command or uses
a CLIST without the PROMPT keyword, a return code of 12 causes
the SUBMIT command processor to issue a message and end
processing.

16 End processing of the SUBMIT command. If the exit cancels
processing, the SUBMIT command processor does not issue a
message to the user. Therefore, before the exit sets a return code
of 16, it should first use return code 8 to display an appropriate
message to the user.

If the exit sets an undefined return code, the SUBMIT command processor issues
an error message and ends processing.

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The exit must be reusable, reentrant,
and refreshable.

Note: If the exit is in LNKLST rather than LPA, the exit does not need to be
refreshable.

Exit processing is determined by setting various control switches and return codes.
For more information about the control switches and parameter list, see “Entry
Specifications” on page 299. For information about the return codes, see “Return
Specifications” on page 303.

By default, the exit gets control only when the first JOB statement is read or
generated. The exit can process other types of JCL statements by setting the
different control switch bits in byte 0 of word 5 of the parameter list.

The SUBMIT command processor sets control switch bits in bytes 2 and 3 of word
5 to indicate to the exit the type of current statement it is passing. The exit can
check these bits to determine the type of statement and whether the statement is a
continuation of an operand or a continuation of a statement itself.

Word 6 of the parameter list is for the exit’s use. The exit can use the bits in word 6
to keep track of its processing. SUBMIT does not change word 6 between calls to
the exit. The exit can set a bit to indicate a certain condition and then check that bit
when it receives control again. In this way, the exit can determine what processing
it did during the last invocation and what processing it is to perform based on the bit
settings.

Writing an Exit for the SUBMIT Command

304 z/OS V1R4.0 TSO/E Customization

The exit can also use the return codes to determine how statements are processed
and when the exit receives control again. For example, if the exit has finished
processing the current statement, it sets a return code of 0. The SUBMIT command
processor then processes that statement and continues with the next one. If the exit
wants to receive control again to either continue the current statement or add a new
statement, it sets a return code of 4. Use return code 8 to display a message and
return code 12 to display a message and get a response.

To format the parameter list and assign symbolic names to return codes, use the
IKJEFFIE mapping macro instruction. IKJEFFIE creates two assembler DSECTs
named IEDSECTD and IESUBCTD. For the format of each DSECT, see z/OS
TSO/E System Diagnosis: Data Areas.

For the SUBMIT command, issue:
IKJEFFIE IETYPE=SUBMIT

After establishing addressability with each DSECT, you can refer to the DSECT
fields by name.

Environment
v State: Supervisor
v Key: 8
v AMODE(24), RMODE(24)

Restrictions and Limitations
A user may use a revised version of the exit that is in a logon procedure’s
authorized step library. Otherwise, the SUBMIT command processor uses only the
system link list to locate and invoke the exit.

Installing the Exit
You must name the exit IKJEFF10.

You must link-edit the exit in SYS1.LINKLIB as an independent module.

Possible Uses
Some possible uses of the SUBMIT exit are described below. The exit can perform
several different tasks by using different control switches and return codes. For
example, in one invocation, the exit may delete the current statement and also
indicate to the SUBMIT command processor that it wants to add a new statement.

v Cancel a SUBMIT request

For example, if a user provides incorrect information on a JCL statement, you
can cancel the job before it starts to execute. To cancel a job after it starts to
execute, use an SMF exit. For more information about SMF exits you can use,
see z/OS MVS Installation Exits.

The SUBMIT exit can check the user ID, job name, and individual JCL
statements. It can decide, based on your own criteria, to cancel a SUBMIT
request. If the exit cancels processing, the SUBMIT command processor does
not issue a message. Therefore, before the exit cancels a request, it should
display an appropriate message to the user.

To cancel SUBMIT processing, the exit should:

– Obtain storage for a message and supply the message text

– Set word 2 to the address of this message. Set a control bit on in word 6, set
a return code of 8, and return.

Writing an Exit for the SUBMIT Command

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 305

The SUBMIT command processor displays the message and then invokes the
exit again.

– When the exit gets control again, the bit in word 6 is still on. The exit turns off
the bit in word 6, sets a return code of 16, and returns.

v Process statements in addition to the JOB statement

By default, the exit gets control only for a JOB statement. The exit can set
various control switches in word 5 to indicate to the SUBMIT command processor
that it wants to process additional types of statements, such as:
– EXEC statements
– DD statements
– Commands
– JES2 and JES3 control statements.

To process other types of statements, set the appropriate bit(s) of byte 0 in word
5. For example, if you want to process DD statements in addition to the JOB
statement, set bit 2 of byte 0 in word 5.

When the exit gets control, it checks bytes 2 and 3 of word 5 to identify the type
of statement it is getting.

v Delete the current JCL statement

To delete the current JCL statement, the exit:

– Sets word 1 to zero

– Sets a return code based on the type of processing it is doing

– Optionally, sets a bit on in word 6 (by setting this bit, the exit can determine
the processing that occurred when it receives control again)

– Returns to the SUBMIT command processor

v Add a new statement after the current statement

To add a new statement, the exit:

– Sets return code 4, turns on a bit in word 6, and returns.

– When the exit gets control again, word 1 is zero and the bit in word 6 is still
on. The exit supplies the new statement, sets word 1 to the address of the
new statement, turns off the bit in word 6, sets a return code of 0, and
returns.

v Change the current statement

The exit can check the JCL statement and either change or add a parameter.
Some examples of the changes or additions the exit can make on a JOB
statement include:
– Account number and accounting information
– Programmer’s name
– Job class (CLASS=)
– Priority (PRTY=)
– Special job processing such as placing a job on hold (TYPRUN=)

To add or change the account number or accounting information on the JOB
statement, the exit:

– Replaces the information in the current statement

– Sets a return code based on the type of processing it is performing and
returns

Note: Word 7 and word 8 of the parameter list contain the address of the
reconstructed logon job accounting information and the address of a
halfword containing the length of that information, respectively. Those

Writing an Exit for the SUBMIT Command

306 z/OS V1R4.0 TSO/E Customization

addresses are set up by the SUBMIT exit interface routine (IKJEFF09)
and can be used by the SUBMIT exit (IKJEFF10). The information
addressed by word 7 has already been processed, so changing the
contents of the data pointed to by word 7 in the exit will have no effect on
the accounting information on the job statement.

To change parameters or add other parameters on the JOB statement or other
JCL statements, the exit:
– Replaces the information in the current statement
– Sets a return code based on the type of processing it is performing and

returns

v Continue a statement

If the exit adds or changes information on the JCL statement, it may have to
continue the statement. To continue a statement, the exit:

– Changes the current statement to indicate continuation. The exit can add a
comma after the last character of the last operand, or add a non-blank
character in column 72.

– Sets a return code of 4, sets a bit on in word 6, and returns.

– When the exit receives control again, word 1 is zero and the bit in word 6 is
still on. The exit supplies the address of the continuation statement in word 1
and turns off the bit in word 6. The exit sets a return code based on the
processing it is performing and returns.

v Customize the JOB statement

You can either supply job information the user did not supply, or override the
information a user specified. For example, you may want to minimize the
information users must specify on the JOB statement, thus keeping
inexperienced users from having to use JCL. You may want to supply accounting
information or a job class.

You may also want to include a password. Generally, a password is not needed
on the JOB statement. For example, passwords are not required if users submit
jobs to execute at the same node on which they are defined.

The password is required on the JOB statement if:

– Your RACF users are defined with the same user ID and password on more
than one node in a network, and

– They use the JES control statement //*ROUTE XEQ to route jobs to another
node.

The SUBMIT exit can add the password to the JOB statement by retrieving the
password from the terminal status block (TSB). However, by default, the
passwords of users defined to RACF are not stored in the TSB. To have the
logon processor store the passwords in the TSB, use the logon pre-prompt exit
(IKJEFLD or IKJEFLD1). Then, the SUBMIT exit can retrieve the password from
the TSBPSWD field and change the JOB statement when needed.

Using the logon pre-prompt exit, set the “Store password in TSB” bit on (bit 3 of
byte 2 of the control switches) to have the logon processor store the passwords
in the TSB for RACF users. For more information, see “Writing a Logon
Pre-Prompt Exit (IKJEFLD/IKJEFLD1)” on page 93.

v Determine the type of the current statement.

When the exit gets control, word 1 contains the address of the current statement.
The SUBMIT command processor also sets control switches in word 5 to indicate
the type of statement it is passing. The different bits of bytes 2 and 3 (word 5)

Writing an Exit for the SUBMIT Command

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 307

indicate whether the statement is a JOB, EXEC, or DD statement, a command, a
comment statement, or a JES2 or JES3 control statement. Several bits also
indicate whether the statement is:
– Null (bit 4 of byte 2)
– An operand that is to be continued (bit 5 of byte 2)
– A statement that is to be continued (bit 6 of byte 2)
– A statement that is a continuation statement (bit 7 of byte 2)

In general, the exit bases its processing on the type of statement that it gets
when it receives control. For example, bit 7 (of byte 2 in word 5) indicates that
the current statement is a continuation of the previous statement that the exit
processed before it returned control to the SUBMIT command processor.

Writing an Exit for the OUTPUT, STATUS, and CANCEL Commands

Functional Description
Users issue the OUTPUT, STATUS, and CANCEL commands to process batch
jobs.

OUTPUT Using OUTPUT users can process the output of jobs that they have
submitted. A user can:
v Direct the output to the terminal or a data set
v Delete output
v Change output classes
v Route output to a remote workstation
v Release held output for printing

STATUS Users can issue the STATUS command to display the status of any
job in the system.

CANCEL Users can issue the CANCEL command to stop the processing of
jobs that they have submitted.

For information about using the OUTPUT, STATUS, and CANCEL commands, see
z/OS TSO/E User’s Guide. For information about the syntax of the OUTPUT,
STATUS, and CANCEL commands, see z/OS TSO/E Command Reference.

You can write an exit for OUTPUT, STATUS, and CANCEL to tailor the way the
commands operate. For example, you can allow users to cancel other users’ jobs,
process the output from other users’ jobs, or restrict users from obtaining the status
of other users’ jobs. For more information about how you can use the OUTPUT,
STATUS, and CANCEL exit, see “Possible Uses” on page 314.

The exit is common to all three command processors. If you do not write an exit,
the command processors invoke a default exit routine that TSO/E provides. For
more information about the default exit, see “TSO/E-Supplied Exit” on page 309.

If you have RACF installed, and you are using the RACF resource class JESJOBS
and/or JESSPOOL, you may want to review the processing of the IBM supplied
exit, IKJEFF53, with the sample exit in member IKJEFF5X of SYS1.SAMPLIB to
see if your installation requires the checking of jobname restrictions. For more
information, see “TSO/E Sample Exit” on page 310.

The exit can receive control many times during the processing of the OUTPUT,
STATUS, or CANCEL command. When and how many times the exit gets control

Writing an Exit for the SUBMIT Command

308 z/OS V1R4.0 TSO/E Customization

depends on the number of job names that the user specifies on the command and
the return code the exit sets when it returns control to the command processor.

The exit initially receives control whenever a user issues the OUTPUT or CANCEL
command, or the STATUS command with operands. When the exit gets control for
the first time, it processes the first job name that the user specified on the
command and then returns control to the command processor. If the user specified
more than one job name, the exit receives control again for each job name that the
user specified.

The exit may get control again with the same job name depending on the return
code it sets when it returns control to the command processor. For example, the
exit can set return code 8 if it wants the command processor to display a message
to the user. The exit sets the return code and returns control to the command
processor. The command processor displays the message and then invokes the exit
again with the same job name. For more information about the return codes, see
“Return Specifications” on page 312.

If a user issues the STATUS command with no operands, the exit does not receive
control. In this case, the STATUS command processor displays only the status of
jobs whose job names consist of the user’s user ID and one identifying character.
For more information about job names and the JOB statement, see z/OS TSO/E
User’s Guide.

TSO/E-Supplied Exit
If you do not write an exit, a default exit routine that TSO/E provides (IKJEFF53)
receives control. The exit routine is common to all three commands.

If a user issues the STATUS command with no operands, the TSO/E exit routine
does not receive control. In this case, the STATUS command displays the status of
all jobs in the system whose job names consist of the user’s user ID and one
identifying alphanumeric character or the characters #, @, or $. If a user issues the
STATUS command with operands, the exit receives control. The exit lets the user
obtain the status of any job in the system.

The TSO/E exit receives control whenever a user issues the CANCEL or OUTPUT
command. It restricts a user from:
v Using the CANCEL command to cancel any other user’s job
v Using the OUTPUT command to process the output of any other user’s job

The exit checks the user ID and the job name the user entered on the CANCEL or
OUTPUT command. For CANCEL, the job name must be the user ID plus one
character. For OUTPUT, the job name must be the user ID or must start with the
user ID. If a user enters an incorrect job name on the CANCEL or OUTPUT
command, the exit returns an informational message to the command processor.
The command processor displays the message and then invokes the exit again.
The exit then cancels the request for that job name. If the user entered more than
one job name on the command, the exit receives control again to process each job
name in order.

For more information about job names and their correspondence with the user’s
user ID, see z/OS TSO/E User’s Guide.

Writing an Exit for OUTPUT, STATUS, CANCEL

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 309

TSO/E Sample Exit
If you have RACF installed, and your installation plans to use the RACF resource
classes JESJOBS and/or JESSPOOL, a sample exit is supplied in SYS1.SAMPLIB
that you may review. This sample exit allows the JESJOBS and/or JESSPOOL
classes to control the jobname restrictions when these classes are active. If these
classes are inactive, the jobname restrictions are controlled by the exit. The
jobname restrictions for the TSO/E CANCEL command is the user ID plus one
character. The jobname restrictions for the TSO/E OUTPUT command is the user
ID. If you are using an installation-written exit, you may want to look at the exit in
SYS1.SAMPLIB to determine if you need the same checking of the JESJOBS and
JESSPOOL resource classes in your exit.

Notes:

1. JESJOBS and JESSPOOL control TSO/E OUTPUT and CANCEL commands.

2. Entry specifications, parameter descriptions, return specifications, programming
considerations, installation procedures, environment, and restrictions and
limitations are the same for this sample exit.

Entry Specifications
The contents of the registers on entry are:

Register 0 Unpredictable

Register 1 Address of a ten word parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
On entry, register 1 contains the address of the following ten word parameter list:

Word 1
The address of the job name.

Word 2
The address of a halfword that contains the length of the job name.

Word 3
The address of the user ID.

Word 4
The address of one byte that contains the length of the user ID.

Word 5
The address of a message to be displayed on the terminal. The exit must
supply the message when it sets a return code of 4 or 8. The format of the
message is “LLtext”, where LL is a 2-byte field that contains the length of the
entire message (including the LL field). The maximum text length is 127 bytes.
The exit must obtain the message text area and should free it when it receives
control again.

Word 6
The address of a response from the user if the exit’s previous return code was
4. The format of the response is “LLtext”, where LL is a 2-byte field that

Writing an Exit for OUTPUT, STATUS, CANCEL

310 z/OS V1R4.0 TSO/E Customization

contains the length of the entire reply (including the LL field). The command
processor that calls the exit obtains and frees the reply text area.

Word 7
The address of the one byte command code that indicates which command
processor invoked the exit. The command codes are:

0 STATUS command processor

4 CANCEL command processor

8 OUTPUT command processor

Word 8
The address of the jobid if the user specified jobid on the command. If the user
did not specify jobid, this word contains zero.

Word 9
The address of a halfword that contains the jobid length. If the user did not
specify jobid, the length field contains zero.

Word 10
(For the OUTPUT command only)

The address of a list of pointers and bits that reflects the syntax that the user
entered on the OUTPUT command. The total length of this list is five fullwords.
The high-order bit of word 10 must be on to indicate the end of the parameter
list. The five fullwords are as follows. For more information about the parse
descriptor entry (PDE), see z/OS TSO/E Programming Services.

Word 1
Pointer to the first PDE for the CLASS operand on the chain of PDEs. If the
user did not specify CLASS on the OUTPUT command, this word contains
zero.

Word 2
Pointer to the print-data-set-name PDE. If the user did not enter the data
set name, this word contains zero.

Word 3
Pointer to the PDE for the class name on the NEWCLASS operand. If the
user did not specify a new class, this word contains zero.

Word 4
Pointer to the PDE for the remote station ID. If the user did not enter a
destination, this word contains zero.

Word 5
Only the first 12 bits (high-order) are used to reflect the user-entered syntax
as follows:
X'8000' PAUSE (if off, assume NOPAUSE or not applicable)
X'4000' HOLD (if off, assume NOHOLD or not applicable)
X'2000' HERE
X'1000' BEGIN
X'0800' NEXT
X'0400' DELETE
X'0200' PRINT
X'0100' NEWCLASS
X'0080' KEEP (if off, assume NOKEEP or not applicable)
X'0040' DEST
X'0020' Reserved
X'0010' Reserved

Writing an Exit for OUTPUT, STATUS, CANCEL

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 311

Return Specifications
The contents of the registers on return must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes

0 Valid job name, continue processing. If there are more job names to
process, the command processor invokes the exit again with the
next job name.

4 Display prompting message IKJ56208A, obtain a response, and
invoke the exit again with the same job name. The exit supplies the
message text. The exit must obtain the message text area and
should free it when it gets control again. The appropriate command
processor obtains and frees the reply text area.

If the user specifies NOPROMPT on a PROFILE command or uses
a CLIST without the PROMPT keyword, a return code of 4 causes
the appropriate command processor to issue a message and end
processing.

8 Display message IKJ56208I and invoke the exit again with the
same job name. The exit supplies the message text. The exit must
obtain the message text area and should free it when it receives
control again.

12 Incorrect job name. Cancel the request for this job. The appropriate
command processor continues and checks for any other job names
on the command. If another job name is available, the command
processor invokes the exit again with the new job name.

16 Terminate the CANCEL, OUTPUT, or STATUS command.

If the exit uses any other return codes, the command processor issues an error
message and ends processing.

Before you use either return code 12 or 16 to cancel processing, consider
displaying an informational message to the user. The exit can use a TSO/E service,
such as PUTLINE, or use return code 8 to display a message. The exit can also
use return code 4 to display a message and obtain a response.

Programming Considerations
The exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns. The exit must be reusable and
reentrant.

If you use the sample exit (IKJEFF53) in SYS1.SAMPLIB or write an exit that
contains the same checking of the RACF resource classes (JESJOBS and/or
JESSPOOL), the exit will return without doing any jobname checking for the:

v CANCEL command, if the RACF JESJOBS class is active

v OUTPUT command, if the RACF JESSPOOL class is active

Note: If the RACF JESJOBS and JESSPOOL classes are inactive, jobname
checking will be done.

Writing an Exit for OUTPUT, STATUS, CANCEL

312 z/OS V1R4.0 TSO/E Customization

The exit can check the command code in word 7 of the parameter list to determine
which command processor invoked the exit. It can check the user ID, job name,
and jobid to determine whether the command should execute based on your
installation’s processing requirements. Word 10 of the parameter list contains the
address of a list of pointers and bits that reflect the syntax the user entered on the
OUTPUT command. The exit can check word 10 to tailor processing of the
OUTPUT command.

The exit can also return a message to the command processor, which the
command processor displays to the user. The exit can return an informational
message (return code of 8) or a message that requires a response (return code of
4). The exit must obtain the message text area and should free it.

The address of the user response is passed in word 6 of the parameter list. The
command processor that invokes the exit obtains and frees the reply text area for
the user response.

The exit can set different return codes to handle different types of processing.
Before using return code 12, you should consider using return code 8 first to display
a message to the user. You can also use return code 4 to display a message and
prompt the user for a response. When the exit receives control again (with the
same job name), it can then set a return code of 12. The exit itself must keep track
of the processing it is performing and the return codes it sets.

The exit can use any of the TSO/E service routines in its processing. For a
description of the service routines, see z/OS TSO/E Programming Services.

You can use the IKJEFFIE mapping macro instruction to format the parameter list.
For CANCEL or STATUS, IKJEFFIE creates an assembler DSECT named
IEDSECTD. For OUTPUT, IKJEFFIE creates two assembler DSECTs, IEDSECTD
and IEOUTPLD. For the format of each DSECT, see z/OS TSO/E System
Diagnosis: Data Areas.

For the CANCEL or STATUS command, issue:
IKJEFFIE IETYPE=CANST

For the OUTPUT command, or if the exit gets control for all three commands, issue:
IKJEFFIE IETYPE=OUTPUT

After you establish addressability with each DSECT, you can refer to the DSECT
fields by name.

Environment
v State: Supervisor
v Key: 8
v AMODE(24), RMODE(24)
v APF-authorized

Restrictions and Limitations
A user may use a revised version of the exit that is in a logon procedure’s
authorized step library. Otherwise, the OUTPUT, STATUS, and CANCEL command
processors use only the system link list to locate and invoke the exit.

Writing an Exit for OUTPUT, STATUS, CANCEL

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 313

Installing the Exit
You must name the exit IKJEFF53.

You must link-edit the exit into SYS1.LINKLIB as an independent module.

Possible Uses
This topic describes some ways you can use the OUTPUT, STATUS, and CANCEL
exit. The TSO/E-supplied default exit and the sample exit in SYS1.SAMPLIB,
perform many of the tasks listed below. However, if you write your own exit routine,
you may want your exit to perform some of the same tasks that the default and
sample exits perform, such as restricting users from processing other users’ jobs.

v Restrict users from using the STATUS command to obtain the status of other
users’ jobs

You may want to restrict most of your users from displaying the status of other
users’ jobs. You may also want to allow certain users, such as a system
programmer or operator, to obtain the status of any job, or a subset of jobs. To
tailor the use of the STATUS command, the exit could:

– Check word 7 to determine if the command code is 0 (STATUS command)

– Check the user ID, job name, and jobid to determine, based on your own
criteria, whether you want the user to obtain the status of the job

If the user can obtain the job’s status, set a return code of 0, and return.

If the user should not obtain the job’s status, set an appropriate return code
based on the type of processing you want to perform. For example, the exit
could supply a message that prompts the user for a different job name and/or
jobid. The exit obtains storage for the message and supplies the message
text. The exit supplies the address of the message in word 5 of the parameter
list, sets a return code of 4, and returns to the command processor. The
command processor displays the message, obtains the user’s response, and
invokes the exit again passing the user’s response in word 6. The exit can
then perform processing based on the user’s response.

Instead of prompting the user for information, the exit could simply display an
informational message and then cancel the processing for that job. In this
case, the exit obtains storage for the message and supplies the message text.
The exit supplies the address of the message in word 5 of the parameter list,
sets a return code of 8, and returns to the command processor. The
command processor displays the message and invokes the exit again. The
exit can then set a return code of 12 to cancel the processing of that
particular job and return control to the command processor.

v Let certain users cancel other users’ jobs

For example, you may want to allow an operator to cancel any job. The exit
could:

– Check word 7 to determine if the command code is 4 (CANCEL command)

– Check the user ID to determine if the user can cancel the job

If the user can cancel the job, the exit sets a return code of 0, and returns.

If the user cannot cancel the job, the exit can first use return code 8 to display
an informational message to the user. When the exit receives control again, it
can set a return code of 12 to cancel the request for the job.

v Restrict a user from processing the output of another user’s job

You may want users to process only the output of their own jobs that they have
submitted. The exit could:

– Check word 7 to determine if the command code is 8 (OUTPUT command)

Writing an Exit for OUTPUT, STATUS, CANCEL

314 z/OS V1R4.0 TSO/E Customization

– Check the user ID and the job name to determine, based on your own criteria,
whether the user can process the job output.

If the user can process the output, the exit sets a return code of 0 and
returns.

If the user should not process the output, the exit can set an appropriate
return code based on the processing you want to perform. For example, the
exit can supply an informational message and then cancel the processing for
that job.

v Restrict a user from changing a job’s output class.

You may want to prevent certain users from using specific output classes. You
can use the exit to check if a user is changing a job’s output class. The exit can:

– Check word 7 to determine if the command code is 8 (OUTPUT command)

– Check the third word pointed to by word 10 and determine if the user
specified a new class on the OUTPUT command

– Check the user ID and determine, based on your own criteria, whether the
user can use the new class

If the user can use the new class or did not specify a new class, set a return
code of 0, and return.

If the user cannot use that output class, the exit can either cancel processing
for that job or change the output class the user specified. To change the
output class, the exit can first display an informational message to the user.
The exit obtains storage for the message and supplies the message text. The
exit supplies the address of the message in word 5 of the parameter list, sets
a return code of 8, and returns to the command processor. The command
processor displays the message and invokes the exit again with the same job
name. The exit can then update the new class (word 3 that word 10 points to)
and return with a return code of 0.

Writing an Exit for OUTPUT, STATUS, CANCEL

Chapter 32. Customizing the SUBMIT Command and Job Output Processing 315

Writing an Exit for OUTPUT, STATUS, CANCEL

316 z/OS V1R4.0 TSO/E Customization

Chapter 33. Customizing How Users Print Data Sets

Defining OUTPUT JCL Statements 319
Writing Exits for the OUTDES Command 321

Functional Description . 321
TSO/E-Supplied Exits . 322
Entry Specifications. 322
Parameter Descriptions for the Initialization Exit 322
Parameter Descriptions for the Termination Exit 322
Return Specifications . 322
Programming Considerations 323
Possible Uses. 324

Writing Exits for the PRINTDS Command. 325
Functional Description . 325
TSO/E-Supplied Exits . 325
Entry Specifications. 325
Parameter Descriptions for the Initialization Exit 326
Parameter Descriptions for the Termination Exit 328
Return Specifications . 328
Programming Considerations 329
Possible Uses. 331

Users have several options to print data sets. These methods include:

v Issuing the PRINTDS command to print sequential data sets, members of a
partitioned data set (PDS), or an entire PDS. Using PRINTDS, users can also
print data sets that contain Document Composition Facility (DCF) data.

v Issuing the ALLOCATE command to allocate a system output (SYSOUT) data
set.

v Invoking an application that uses the printer support service. After invoking the
application, users can select a printer and printing options.

You do not have to perform any tasks to make the PRINTDS and ALLOCATE
commands available to users. You can, however, customize the PRINTDS and
ALLOCATE commands to tailor how users print data sets.

Using Security Labels on Printed Output

If you have RACF installed, and your installation is using security labels, the
security label of the data may be printed on all pages of the printed output. Users
can override page labeling, if they have the correct RACF access authority to do so,
by using the DPAGELBL and NODPAGELBL keywords of the TSO/E OUTDES
command. For more information about security controls in printed output, see z/OS
Security Server RACF Security Administrator’s Guide.

Defining Output Descriptors for the PRINTDS and ALLOCATE Commands

An output descriptor specifies processing options for a system output (SYSOUT)
data set. You can define output descriptors to eliminate the need for users to
specify output-related operands on the ALLOCATE and PRINTDS commands. If an
output descriptor has been defined, users need to specify only the OUTDES
operand and the name of the output descriptor.

© Copyright IBM Corp. 1988, 2002 317

You can define output descriptors by naming and coding OUTPUT JCL statements.
On the OUTPUT JCL statements, you can specify parameters that define printing
options, such as:
v COPIES
v DEST
v FORMDEF
v FORMS

You must include the OUTPUT JCL statements in the logon procedure. For more
information about using OUTPUT JCL statements to define output descriptors, see
“Defining OUTPUT JCL Statements” on page 319.

You and your installation’s users can optionally use the TSO/E OUTDES command
to create and reuse dynamic output descriptors. TSO/E provides two exits for the
OUTDES command that allow you to customize the use of OUTDES. For more
information about the OUTDES exits, see “Writing Exits for the OUTDES
Command” on page 321. For information about using the OUTDES command and
its operands, see z/OS TSO/E Command Reference.

Writing Exits for the PRINTDS Command

For PRINTDS, TSO/E provides two exits:
v Initialization (IKJEFY60)
v Termination (IKJEFY64)

Using the PRINTDS exits, you can:

v Restrict certain users from using the PRINTDS command

v Change the operands a user specifies on the command. For example, you can
correct a user’s errors or restrict users from using certain operands.

v Change the default values for operands that have a fixed default

v Provide installation-defined pseudo-operands. If users specify the same
PRINTDS operands to print particular data sets, you can define a
pseudo-operand that is equivalent to several PRINTDS operands. Users can then
specify the pseudo-operand instead of each of the corresponding PRINTDS
operands. The PRINTDS initialization exit can replace the pseudo-operand with
the actual PRINTDS operands.

For more information about the PRINTDS exits, see “Writing Exits for the PRINTDS
Command” on page 325.

Writing Exits for the ALLOCATE Command

TSO/E provides initialization and termination exits for the ALLOCATE command. For
information about these exits, see “Writing Exits for the ALLOCATE Command” on
page 225.

Using the Printer Support Service

In addition to the ALLOCATE and PRINTDS commands, you can use the printer
support service to set up printer definitions and then create applications that invoke
printer support CLISTs, which are supplied by TSO/E, to print the data sets. Users
can invoke the application, select a printer and printing options, and print data sets.
Printer support provides a standard interface between your application programs
and printers. You do not have to write an application to access a specific printer.

318 z/OS V1R4.0 TSO/E Customization

To use printer support, you must have the Information Center Facility installed.
Using a set of panels, Information Center Facility administrators define your
installation’s printers and different output characteristics and fonts. When you define
printers, you can define one or more print formats for a particular printer. Each print
format and physical printer combination is called a print definition. The Information
Center Facility provides a default print definition you can copy and modify. You can
define all of your installation’s printers or define only the printers you will use in your
interactive applications. You can also use panels to test a printer before users can
access it from your applications. For more information about the default print
definition and defining print definitions, see z/OS TSO/E Administration.

After you define the print definitions, you can write applications that invoke three
printer support CLISTs that TSO/E provides (ICQCPC00, ICQCPC10, and
ICQCPC15). The application can be a CLIST or program that runs in an ISPF
environment. You can invoke the printer selection CLIST (ICQCPC00) to display a
list of all or a subset of the printers you defined. Users can select a printer and
formatting options. The application can also format data and display the formatted
data to the user for verification. The application can then have the ICQCPC00
CLIST invoke the print CLISTs ICQCPC10 or ICQCPC15, or it can invoke one of
the CLISTs directly to print the data.

By using the printer support service, users do not have to code JCL statements or
issue the PRINTDS or ALLOCATE commands to print data sets. They can simply
invoke the application, and select a printer and printing options.

There are several kinds of applications that you can write using the printer support
service. For example, you may want to use printer support to print mail. Your
application can display a list of printers that print small amounts of data in a short
time. After the user selects a printer, the application sends the data to the selected
printer. You can also provide an application that formats and prints documents. The
application can display a list of printers and fonts. It can format the data and display
the formatted text to the user for verification. After the user verifies the format, the
application can invoke either of the print CLISTs to print the text.

For more information about using the printer support CLISTs in your applications,
see z/OS TSO/E Programming Services.

Defining OUTPUT JCL Statements
You use OUTPUT JCL statements to specify processing and formatting options for
system output (SYSOUT) data sets and to define output descriptors. You can use
OUTPUT JCL statements in different ways to customize how users print data sets.

You can code OUTPUT JCL statements and then refer to these statements in
SYSOUT DD statements to process the output of a SYSOUT data set in different
ways. For example, you can use the following OUTPUT JCL and DD statements to
process the output locally and also to send the SYSOUT data set to a remote
location.
//OUTPUT1 OUTPUT DEST=ROUTE2.SCR
//OUTPUT2 OUTPUT CONTROL=SINGLE
//MYDATA DD SYSOUT=C,OUTPUT=(*.OUTPUT1,*.OUTPUT2)

By placing OUTPUT JCL statements in logon procedures, you can define output
descriptors for your installation’s users. An output descriptor associates printer
locations and printing options with a single name — the name of the output
descriptor. By defining output descriptors, users need not remember or specify

Chapter 33. Customizing How Users Print Data Sets 319

different output-related operands when they issue the ALLOCATE or PRINTDS
command. Instead, they can specify the OUTDES operand and the name of an
output descriptor. For more information about the syntax of the ALLOCATE and
PRINTDS operands, see z/OS TSO/E Command Reference.

Using OUTPUT JCL statements gives you flexibility in defining printer destinations
and formatting options, and controlling the processing. On the OUTPUT JCL
statements, you can specify options such as:

v CONTROL - specifies the data set records begin with carriage control characters
or the output should be single, double, or triple spaced

v FORMDEF - identifies a library member containing statements that the Print
Services Facility (PSF) uses to print on the IBM 3800 Printing Subsystem Model
3

v INDEX - sets the left margin for output on an IBM 3211 printer with the indexing
feature

v PAGEDEF - identifies a library member containing statements that the Print
Services Facility (PSF) uses to print on the IBM 3800 Printing Subsystem Model
3

For more information about the OUTPUT JCL statement, see z/OS MVS JCL
Reference.

Figure 46 shows a sample logon procedure that defines the output descriptor
PRINT1. The figure also shows how users can issue the ALLOCATE command with
the OUTDES operand and specify the PRINT1 output descriptor. The COPIES(2)
operand on the ALLOCATE command overrides the default defined for PRINT1.

Figure 47 on page 321 shows a sample logon procedure that defines the output
descriptor PRINT2. The figure also shows how users can issue the PRINTDS
command and specify the PRINT2 output descriptor. The FCB operand on the
PRINTDS command overrides the default defined for PRINT2.

ALLOC FILE(OUTPUT) OUTDES(PRINT1) COPIES(2)

Sample
LOGON

Procedure

ALLOCATE
Command

Overrides the
default on the
OUTPUT JCL
statement.

//ICQPROC

//

//SYSPROC

.

.

.

//ISPLST2
//

//PRINT1

EXEC PGM=IKJEFT01,REGION=4096K,

DYNAMNBR=40,PARM='%ICQICF'

DD DSN=ICQ.ICQCCLIB.CLIST,DISP=SHR

DD DISP=NEW,UNIT=SYSVIO,SPACE=(CYL,(1,1)),
DCB=(LRECL=121,BLKSIZE=1210,RECFM=FBA,BUFNO=5)

OUTPUT DEST=HMOF2,COPIES=1,WRITER=FORMS,

PAGEDEF=PAGEPRT

Figure 46. Using the Output Descriptor in the ALLOCATE Command

Defining OUTPUT JCL Statements

320 z/OS V1R4.0 TSO/E Customization

Writing Exits for the OUTDES Command

Functional Description
Users can issue the OUTDES command to create or reuse a dynamic output
descriptor. Users can then reference the name of the output descriptor when they
issue the ALLOCATE or PRINTDS commands. By using output descriptors, users
need not specify different output-related operands on the ALLOCATE or PRINTDS
commands. For information about OUTDES and its operands, see z/OS TSO/E
Command Reference.

TSO/E provides an initialization exit and a termination exit for the OUTDES
command. You can use the exits to customize OUTDES processing for your users.
The initialization exit receives control before the OUTDES command processor
invokes the parse service routine to parse the command. The termination exit
receives control just before the OUTDES command processor completes
processing. If the initialization exit returns successfully to the OUTDES command
processor and OUTDES processing itself abends, the OUTDES command
processor invokes the termination exit before it terminates.

You can use the initialization exit to change the operands that users specify on the
command or correct user errors when they issue the command. You can use the
termination exit to perform clean-up or special processing prior to OUTDES
completion. Depending on the processing your initialization exit performs, you may
not need a corresponding termination exit.

The following highlights some ways you can use the OUTDES exits. For more
information about how you can use the exits, see “Possible Uses” on page 324.
v Correct a user’s errors on the OUTDES command
v Change the operands a user specifies on the command
v Provide pseudo-operands that are equivalent to two or more OUTDES operands.

Sample
LOGON

Procedure

Command
PRINTDS

PRINTDS DA(FOIL.TEXT(STATUS)) OUTDES(PRINT2) FCB(AB22)

Overrides the
default on the
OUTPUT JCL
statement.

//USPROC

//

//SYSPROC

//PRINT2

EXEC PGM=IKJEFT01,REGION=4096K,

DYNAMNBR=40

DD DSN=CLIST.PROC.LIB,DISP=SHR

OUTPUT DEST=LOCAL,COPIES=1,CONTROL=DOUBLE,
FORMDEF=MEMPRT,FCB=AB11

Figure 47. Using the Output Descriptor in the PRINTDS Command

Writing Exits for the OUTDES Command

Chapter 33. Customizing How Users Print Data Sets 321

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the OUTDES initialization and
termination exits.

Entry Specifications
For the OUTDES initialization and termination exits, the contents of the registers on
entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The OUTDES initialization exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35. The initialization exit does not receive any exit-dependent data.

Parameter Descriptions for the Termination Exit
The OUTDES termination exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35. The termination exit does not receive any exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the OUTDES command processor, OUTDES passes the
values of these parameter entries to the termination exit. For more information
about the parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both OUTDES exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 49 shows the return codes that the OUTDES initialization and termination
exits support.

Table 49. Return Codes for the OUTDES Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. OUTDES processing continues.

12 Exit processing was unsuccessful. OUTDES issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the OUTDES command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

Writing Exits for the OUTDES Command

322 z/OS V1R4.0 TSO/E Customization

Table 49. Return Codes for the OUTDES Initialization and Termination Exits (continued)

Return Code
(Decimal)

Description

16 Exit processing was unsuccessful. OUTDES terminates processing.

The OUTDES command processor does not display a message to
the user if the exit sets a return code of 16. Before the exit returns
with return code 16, it can display a message to the user, for
example, using PUTLINE.

If the exit returns an undefined return code, the OUTDES command processor
terminates without displaying a message to the user.

The termination exit receives control just before the completion of OUTDES
processing. Therefore, the OUTDES command processor may have already
successfully created or reused the output descriptor regardless of the return code
the termination exit returns.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and not APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize OUTDES processing.

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, the initialization exit may obtain storage to return
a new command buffer to the OUTDES command processor. In this case, you must
provide a termination exit to free the storage for the new command buffer.

The initialization exit can change OUTDES operands using the command buffer.
The exit checks the command buffer it receives and determines whether to change
any operands. To change the operands, the exit must:
v Obtain storage for a new command buffer
v Build the new command buffer
v Update the key, length, and data fields for the new command buffer (parameter

entry 2)
v Set return code 0 and return control to OUTDES.

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)

Writing Exits for the OUTDES Command

Chapter 33. Customizing How Users Print Data Sets 323

Installing the Exits
You must name the exits as follows:

Initialization IKJEFY11

Termination IKJEFY12

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the OUTDES exits are described below:

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the OUTDES command. The initialization exit receives the address of the
command buffer. It can change the operands the user specifies on the OUTDES
command by using a new command buffer. For example, the initialization exit
can scan the command buffer and correct any errors on the command.

v Provide installation-defined pseudo-operands

You can provide pseudo-operands for your installation’s users that are equivalent
to two or more OUTDES operands. Providing pseudo-operands makes it easier
for users to issue the OUTDES command. Users need not remember several
OUTDES operands. They can specify the pseudo-operand.

For example, you could associate a pseudo-operand named OUT1 with four
OUTDES operands. The initialization exit can scan the command buffer. If the
exit finds the pseudo-operand OUT1, it can replace OUT1 with the actual
OUTDES operands and return a new command buffer.

To check the command buffer and change its contents, the initialization exit can:

v Scan the command buffer and decide, based on your own criteria, to change the
command the user issued

v Obtain storage for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer as follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

v Set a return code of 0 and return control to the OUTDES command processor.

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to OUTDES.
For more information about the command buffer and the new command buffer, see
“TSO/E Standard Exit Parameter List” on page 35. For information about the format
of the command buffer, see “Command Buffer” on page 38.

Writing Exits for the OUTDES Command

324 z/OS V1R4.0 TSO/E Customization

You must also write a termination exit to free the storage the initialization exit
obtains for the new command buffer. When the OUTDES command processor
invokes the termination exit, it passes the address of the new command buffer to
the termination exit. The termination exit frees the storage for the new command
buffer.

Writing Exits for the PRINTDS Command

Functional Description
Users issue the PRINTDS command to print sequential data sets, members of a
partitioned data set (PDS), or an entire PDS. They can print data sets that contain
Document Composition Facility (DCF) data. Users can also route the command’s
output to a remote workstation or a user at a specific remote workstation, or to a
data set. Using PRINTDS, users can specify a variety of formatting options. For
more information about using PRINTDS, see z/OS TSO/E User’s Guide. For
information about PRINTDS and its operands, see z/OS TSO/E Command
Reference.

TSO/E provides an initialization exit and a termination exit for the PRINTDS
command. You can use the exits to customize PRINTDS processing for your users.
The initialization exit receives control before the PRINTDS command processor
invokes the parse service routine to parse the command. The termination exit
receives control just before the PRINTDS command processor completes
processing. If the initialization exit returns successfully to PRINTDS and PRINTDS
processing itself abends, the PRINTDS command processor invokes the termination
exit before it terminates.

You can use the initialization exit to restrict certain users from using the PRINTDS
command, change the operands that users specify on the command, and change
the values of PRINTDS operands that have fixed default values. For more
information about the operands the initialization exit can change, see “Programming
Considerations” on page 329.

You can use the termination exit to perform clean-up or special processing prior to
PRINTDS completion. Depending on the processing your initialization exit performs,
you may not need a corresponding termination exit.

The following highlights some ways you can use the PRINTDS exits. For more
information about how you can use the exits, see “Possible Uses” on page 331.
v Restrict certain users from using the PRINTDS command
v Change the default values for operands that have a fixed default
v Correct a user’s errors on the PRINTDS command
v Change the operands a user specifies on the command
v Provide pseudo-operands that are equivalent to two or more PRINTDS operands
v Determine how long it takes PRINTDS to execute

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the PRINTDS initialization and
termination exits.

Entry Specifications
For the PRINTDS initialization and termination exits, the contents of the registers on
entry are:

Writing Exits for the OUTDES Command

Chapter 33. Customizing How Users Print Data Sets 325

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The PRINTDS initialization exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35.

Figure 48 shows the exit-dependent data that the initialization exit receives
beginning at offset +36 (decimal) in the parameter list.

DEPL (Parameter Entry 10)
This parameter entry contains the default exit parameter list (DEPL). Table 50
shows the format of the DEPL.

For more information about the PRINTDS command and its operands, see z/OS
TSO/E Command Reference.

Table 50. Format of the Default Exit Parameter List

Offset
(Decimal)

Length Contents or Meaning

+0 4 Reserved.
+4 4 The length of the default exit parameter list (DEPL). The value is

X'1E'.

The length is the length of the data starting at offset +8 in the
DEPL. The length does not include the first two words:
v Offset +0 - reserved
v Offset +4 - length (X'1E')

However, the length does include the four reserved bytes
beginning at offset +34.

+8 2 The value for the BIND operand in binary. The default is 0. The
possible values are 0 - 255.

+10 2 The value for the TMARGIN operand in binary. The default is 0.
The possible values are 0 - 4094. However:

PAGELEN − TMARGIN − BMARGIN ≥ 6

Key Length Data+0 +4 +8+36

Address of

parameter entry 10 00000001 0000001E DEPL

Parameter Entry's

Key, Length, and Data

Figure 48. Exit-Dependent Data for the PRINTDS Initialization Exit

Writing Exits for the PRINTDS Command

326 z/OS V1R4.0 TSO/E Customization

Table 50. Format of the Default Exit Parameter List (continued)

Offset
(Decimal)

Length Contents or Meaning

+12 2 The value for the BMARGIN operand in binary. The default is 0.
The possible values are 0 - 4094. However:

PAGELEN − TMARGIN − BMARGIN ≥ 6
+14 2 The value for the PAGELEN operand in binary. The default is

60. The possible values are 6 - 4094. However:

PAGELEN − TMARGIN − BMARGIN ≥ 6
+16 1 The value for the CLASS operand in character format. The

default is A. The possible values are A - Z or 0 - 9.
+17 1 Reserved.
+18 2 The value for the BURST/NOBURST operand in binary. The

possible values are:
1 - BURST
2 - NOBURST

The default is 2 (NOBURST).
+20 2 The value for the COPIES operand in binary. The default is 1.

The possible values are 1 - 255.
+22 2 The value for the HOLD/NOHOLD operand in binary. The

possible values are:
1 - HOLD
2 - NOHOLD

The default is 2 (NOHOLD).
+24 2 The value for the MEMBER/DIRECTORY/ALL operand in binary.

The possible values are:
1 - MEMBER
2 - DIRECTORY
3 - ALL

The default is 3 (ALL).
+26 2 The value for the NUM/SNUM/NONUM operand in binary. The

possible values are:
1 - NUM
2 - SNUM
3 - NONUM

The default is 3 (NONUM).
+28 2 The NUM or SNUM column location that specifies the column in

which the line number field begins. If NUM or SNUM is
specified, the value must be 1-32,760 in binary. If NONUM is
specified, the column location is ignored.

+30 2 The NUM or SNUM field length. If NUM or SNUM is specified,
the field length must be 1 - 8 in binary. If NONUM is specified,
the field length is ignored.

+32 2 The value for the TITLE/NOTITLE operand in binary. The
possible values are:
1 - TITLE
2 - NOTITLE

The default is 1 (TITLE).
Note: For more information about the TITLE/NOTITLE values,
see “Restrictions and Limitations” on page 331.

+34 4 Reserved.

Writing Exits for the PRINTDS Command

Chapter 33. Customizing How Users Print Data Sets 327

Parameter Descriptions for the Termination Exit
The PRINTDS termination exit receives the address of the standard exit parameter
list. For a description of this parameter list, see “TSO/E Standard Exit Parameter
List” on page 35. The termination exit does not receive any exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the PRINTDS command processor, PRINTDS passes the
values of these parameter entries to the termination exit. For more information
about the parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both PRINTDS exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 51 shows the return codes that the PRINTDS initialization and termination
exits support.

Table 51. Return Codes for the PRINTDS Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. PRINTDS processing continues.

When the initialization exit returns control, the PRINTDS command
processor checks the values of the operands that the exit returns in
the DEPL. If any of the values are not valid, the PRINTDS
command processor displays an error message to the user. The
error message indicates which operands were not valid. PRINTDS
then terminates processing. For information about the possible
values the exit routine can return in the DEPL, see Table 52 on
page 330.

12 Exit processing was unsuccessful. PRINTDS issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the PRINTDS command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. PRINTDS terminates processing.

The PRINTDS command processor does not display a message to
the user if the exit sets a return code of 16. Before the exit returns
with return code 16, it can display a message to the user, for
example, using PUTLINE.

If the exit returns an undefined return code, the PRINTDS command processor
terminates without displaying a message to the user.

The termination exit receives control just before the completion of PRINTDS
processing. Therefore, the input data set may have already successfully printed
regardless of the return code the termination exit returns.

Writing Exits for the PRINTDS Command

328 z/OS V1R4.0 TSO/E Customization

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and not APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize PRINTDS processing.

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, the initialization exit may obtain storage to return
a new command buffer to the PRINTDS command processor. In this case, you
must provide a termination exit to free the storage for the new command buffer. If
the initialization exit obtains storage, for example, for a new command buffer, it
must obtain the storage from subpool 1.

To monitor how long it takes the PRINTDS command to execute, you need an
initialization and a termination exit. Use the exits to calculate the time difference
between when the initialization exit gets control and when the termination exit gets
control.

The PRINTDS command has three classes of operands:

1. Operands that have a fixed default value if the user does not specify the
operand (for example, BIND and PAGELEN)

2. Operands that PRINTDS sets dynamically based on the data set’s attributes
and other operands the user specifies (for example, DCF/NODCF and
TRC/NOTRC)

3. Operands that do not have a default value (for example, FLASH and CHARS).

For more information about the PRINTDS command and its operands, see z/OS
TSO/E Command Reference.

The initialization exit can change PRINTDS operands using the command buffer.
The exit checks the command buffer it receives and determines whether to change
any operands. To change the operands, the exit must:
v Obtain storage for a new command buffer
v Build the new command buffer
v Update the key, length, and data fields for the new command buffer (parameter

entry 2)
v Set return code 0 and return control to PRINTDS

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

In addition to changing the command buffer, the initialization exit lets you easily
change the first class of PRINTDS operands, which are operands that have a fixed
default value. If the user does not explicitly specify these operands on the
PRINTDS command, PRINTDS uses the fixed default value. The fixed default
values do not change based on the data set’s attributes or other operands the user
specifies.

Writing Exits for the PRINTDS Command

Chapter 33. Customizing How Users Print Data Sets 329

The initialization exit receives the fixed default values as exit-dependent data in the
default exit parameter list (DEPL). To change these values, the initialization exit
updates the value in the DEPL, sets a return code of 0, and returns control to the
PRINTDS command processor.

If the initialization exit returns a value for an operand in the DEPL and that operand
is also specified in the command buffer, PRINTDS uses the value from the
command buffer rather than the value in the DEPL. For example, suppose the user
issues the following PRINTDS command:
PRINTDS DATASET(MY.DATA) CLASS(3)

If the initialization exit sets the CLASS value in the DEPL to ‘Z’, PRINTDS ignores
the value in the DEPL and uses the value for the CLASS operand in the command
buffer, which is ‘3’.

Table 52 shows the PRINTDS operands with a fixed default value that the
initialization exit receives in the DEPL. The table shows the fixed default value and
the possible values for each operand. The default value is the value that PRINTDS
uses if the user does not explicitly specify the operand on the PRINTDS command.
PRINTDS also provides the value of the TITLE/NOTITLE operand in the DEPL even
though PRINTDS will change the value if it conflicts with the data set’s attributes.
For more information about TITLE/NOTITLE, see “Restrictions and Limitations” on
page 331.

For more information about the format of the DEPL, see “Parameter Descriptions
for the Initialization Exit” on page 326.

Table 52. PRINTDS Operands in the Default Exit Parameter List (DEPL)

Operand Fixed Default Value Possible Values

BIND 0 (binary) 0 - 255

TMARGIN 0 (binary) 0 - 4094

BMARGIN 0 (binary) 0 - 4094

PAGELEN 60 (binary) 6 - 4095

CLASS/SYSOUT 1 on
page 331

A (character) A - Z and 0 - 9

BURST/NOBURST 1 on
page 331

NOBURST
2 (binary)

1 - BURST
2 - NOBURST

COPIES 1 on page 331 1 (binary) 1 - 255

HOLD/NOHOLD 1 on
page 331

NOHOLD 2 (binary) 1 - HOLD
2 - NOHOLD

MEMBER/DIRECTORY/ALL ALL
3 (binary)

1 - MEMBER
2 - DIRECTORY
3 - ALL

NUM/SNUM/NONUM NONUM
3 (binary)

1 - NUM
2 - SNUM
3 - NONUM

TITLE/NOTITLE 2 on
page 331

TITLE, if possible 1 (binary)

Otherwise, NOTITLE 2
(binary)

1 - TITLE
2 - NOTITLE

Writing Exits for the PRINTDS Command

330 z/OS V1R4.0 TSO/E Customization

Table 52. PRINTDS Operands in the Default Exit Parameter List (DEPL) (continued)

Operand Fixed Default Value Possible Values

Notes:

1. These operands apply only when users print a SYSOUT data set.

2. For more information about TITLE/NOTITLE values, see “Restrictions and Limitations”.

The PRINTDS command processor invokes Dynamic Allocation to allocate and
de-allocate data sets during its processing. Allocation-attribute operands such as
COPIES, CLASS, and HOLD/NOHOLD are passed as text units to Dynamic
Allocation, which provides the allocation input validation exit routine (IEFDB401)
that you can also use. For more information about IEFDB401, see z/OS MVS
Installation Exits.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Restrictions and Limitations
PRINTDS provides the value of the TITLE/NOTITLE operand to the initialization exit
in the DEPL. However, if the value the initialization exit provides in the DEPL
conflicts with the data set’s attributes, PRINTDS ignores the value.

If TITLE is the default value, PRINTDS prints title lines on each output page, only if
both of the following are true:
v The CCHAR, DCF, or TRC operands are not specified
v The input data set does not contain carriage control characters

Otherwise, PRINTDS uses NOTITLE.

If NOTITLE is the default, PRINTDS does not print title lines for sequential data
sets or members of partitioned data sets. However, PRINTDS always prints the
directory of a PDS with title lines. For more information about the TITLE and
NOTITLE operands, see z/OS TSO/E Command Reference.

Installing the Exits
You must name the exits as follows:

Initialization IKJEFY60

Termination IKJEFY64

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the PRINTDS exits are described below:

v Restrict certain users from using the PRINTDS command

Writing Exits for the PRINTDS Command

Chapter 33. Customizing How Users Print Data Sets 331

The initialization exit can check the user ID and decide, based on your own
criteria, to cancel the PRINTDS command. The exit can first display an
informational message to the user, for example, using PUTLINE. The exit can
then set a return code of 16 and return to the PRINTDS command processor.

v Change the operands that have a fixed default value

The PRINTDS initialization exit receives the default exit parameter list (DEPL).
The DEPL contains the default values of PRINTDS operands that have a fixed
default value. The exit updates the appropriate values in the DEPL, sets a return
code of 0, and returns to the PRINTDS command processor.

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the PRINTDS command. The initialization exit receives the DEPL, which it can
use to change the fixed default values of specific operands.

The initialization exit also receives the address of the command buffer. It can
change the operands the user specifies on the PRINTDS command by using a
new command buffer. For example, the initialization exit can scan the command
buffer to:

– Look for conflicts with the operands a user specifies and correct any errors.
For example, the user cannot specify both the TITLE and CCHAR operands
on the PRINTDS command.

– Prevent users from specifying certain operands or certain values for operands.

To check the command buffer and change its contents, the initialization exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command the user issued

– Obtain storage for a new command buffer

– Build the new command buffer

– Update the key, length, and data fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the PRINTDS command
processor.

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to PRINTDS.
For more information about the command buffer and the new command buffer,
see “TSO/E Standard Exit Parameter List” on page 35. For information about the
format of the command buffer, see “Command Buffer” on page 38.

You must also write a termination exit to free the storage the initialization exit
obtains for the new command buffer. When the PRINTDS command processor
invokes the termination exit, it passes the address of the new command buffer to
the termination exit. The termination exit frees the storage for the new command
buffer.

v Provide installation-defined pseudo-operands

If users at your installation print data sets with the same types of characteristics,
you can define pseudo-operands that are equivalent to two or more PRINTDS

Writing Exits for the PRINTDS Command

332 z/OS V1R4.0 TSO/E Customization

operands. Providing pseudo-operands makes it easier for users to issue the
PRINTDS command. Users need not remember several PRINTDS operands.
They can specify the pseudo-operand.

For example, you could associate a pseudo-operand named PRTINV with three
PRINTDS operands. The initialization exit can scan the command buffer. If the
exit finds the pseudo-operand PRTINV, it can:

– Obtain storage for a new command buffer

– Build a new command buffer and replace the pseudo-operand with the
appropriate PRINTDS operands in the new command buffer

– Update the “Key”, “Length”, and “Data” fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the PRINTDS command
processor.

You must also provide a termination exit. The termination exit must free the
storage that the initialization exit obtained for the new command buffer.

v Monitor how long it takes the PRINTDS command to complete processing.

You can use the initialization and termination exits to monitor the approximate
time it takes the PRINTDS command processor to complete processing. When
the initialization exit receives control, it can:

– Invoke the TIME macro

– Use the exit-to-exit communication word to return the time to the PRINTDS
command processor. The exit updates the “Key”, “Length”, and “Data” fields
for the exit-to-exit communication word as follows:

Key X'01'

Length the length of the data (time)

Data the data (time)

– Set a return code of 0 and return to the PRINTDS command processor.

When the termination exit gets control, it receives the time from the initialization
exit in the exit-to-exit communication word. Before the termination exit returns
control to PRINTDS, it can invoke the TIME macro. The exit can calculate the
time difference between the time from the initialization exit (in the exit-to-exit
communication word) and the time it receives from issuing the TIME macro. The
result is the approximate time it took the PRINTDS command to complete its
processing. The termination exit can include the processing time in a data set.
You can then periodically print the data set and review the time calculations.

Writing Exits for the PRINTDS Command

Chapter 33. Customizing How Users Print Data Sets 333

Writing Exits for the PRINTDS Command

334 z/OS V1R4.0 TSO/E Customization

Chapter 34. Customizing How Users Send and Retrieve
Messages

Defining Installation Defaults for SEND, OPERATOR SEND, and LISTBC 337
BROADCAST keyword for IKJTSOxx 338

Storing SEND Messages . 339
Storing Messages in the Broadcast Data Set Only 340
Storing Messages in Separate User Logs. 340

Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands 343
Functional Description . 343
TSO/E-Supplied Exits . 346
Entry Specifications. 346
Parameter Descriptions - Overview 347
Parameter Descriptions for the SEND Exits 349
Parameter Descriptions for the OPERATOR SEND Exits 352
Parameter Descriptions for the LISTBC Exits 356
Return Specifications . 360
Programming Considerations 362
Possible Uses. 364
Processing Messages Sent to the System Operator 369

Users issue the SEND command to send messages to other users, the master
console operator, or to a specific operator or operator console. Users who are
authorized to use the OPERATOR command can issue the SEND subcommand of
the OPERATOR command to send messages. Users issue the LISTBC command
to retrieve messages that other users have sent.

Before users at your installation can use SEND and LISTBC, you must add the
commands to the table of authorized commands. For more information, see
Chapter 10, “Specifying Authorized Commands/Programs, and Commands Not
Supported in the Background” on page 153.

You give users authorization to use the OPERATOR command when you define
them to either the user attributes data set (UADS) or the RACF data base. For
more information about the UADS and RACF data base, see Part 4, “Maintaining
the UADS, RACF Data Base, and Broadcast Data Set” on page 195.

By default, the SEND command processor and the OPERATOR SEND
subcommand processor may store a message in the mail section of the broadcast
data set depending on the operands the user specifies. For example, a user can
specify that SEND or OPERATOR SEND store the message if a target user is not
logged on. Authorized users of the OPERATOR command can also issue the SEND
subcommand to send notices. Notices are messages that are intended for all users
on the system. The OPERATOR SEND subcommand processor stores notices in
the notices section of the broadcast data set.

By default, when a user issues the LISTBC command to retrieve a stored message,
LISTBC retrieves the message from the mail section of the broadcast data set. For
more information about SEND and LISTBC, see z/OS TSO/E Command Reference.
For more information about the SEND subcommand of OPERATOR, see z/OS
TSO/E System Programming Command Reference.

You can customize how users send, store, and retrieve messages (mail) at your
installation. You can define installation defaults in SYS1.PARMLIB member

© Copyright IBM Corp. 1988, 2002 335

IKJTSOxx to tailor SEND, OPERATOR SEND, and LISTBC processing. Using
IKJTSOxx, you can prevent all users from using the SEND command. You can also
prevent users who are authorized to use the OPERATOR command from using the
SEND subcommand. You can also write exits to restrict certain users from using
SEND, OPERATOR SEND, or LISTBC.

You can define console names for the MCS consoles at your installation using
SYS1.PARMLIB member CONSOLxx. Users can then specify the console name
instead of the console ID when sending messages to an operator console. Console
names are generally easier to remember and use than console IDs. For more
information about defining console names, refer to z/OS MVS Planning: Operations.

Note: The names for extended MCS consoles are dynamically defined during
console activation. Installations do not need to define names for extended
MCS consoles. If you have RACF installed, your installation can control
which users can send messages to other users. To control the use of the
SEND command in this way, use the RACF security resource class
SMESSAGE. For example, a user may send messages to another user only
if permitted to the receiving user’s resource within the SMESSAGE class.
For information about setting up the SMESSAGE resource class, see z/OS
Security Server RACF Security Administrator’s Guide.

Because SEND, OPERATOR SEND, and LISTBC access the broadcast data set to
store and retrieve messages, you may experience contention for the data set.
Instead of storing messages (mail) in the broadcast data set, you can use individual
user logs to store the messages. A user log is a data set that the SEND command
or subcommand processor uses to store messages in rather than storing the
messages in the broadcast data set. Using user logs may reduce possible
contention for the broadcast data set.

Protection of messages from users at different security labels is another reason for
using individual user logs. If you have RACF installed, and your installation is using
security labels, you can customize the TSO/E SEND and LISTBC commands by
setting some of the operand values of the SEND PARMLIB parameter to determine
security checking of the individual user logs. This is explained in the operand
descriptions in this chapter.

If you use user logs, LISTBC retrieves messages from the user log. However,
OPERATOR SEND continues to store notices in the notices section of the
broadcast data set and LISTBC retrieves notices from the broadcast data set.

You can use various SEND, OPERATOR SEND, and LISTBC exits to customize
command processing and the use of user logs. Using the exits, you can:
v Restrict certain users from using the command
v Change the operands users specify on the command
v Encrypt and decrypt messages
v Format messages or add information to messages that are stored
v Allocate user logs instead of having the LISTBC command processor allocate

them

Note: The EDIT and TEST commands have a SEND subcommand that operates
the same as the SEND command. The TEST command also has a LISTBC
subcommand that operates the same as the LISTBC command. The
customization tasks for the SEND and LISTBC commands that this chapter
describes also affect the SEND subcommands of EDIT and TEST and the
LISTBC subcommand of TEST.

336 z/OS V1R4.0 TSO/E Customization

Unless otherwise indicated, when this chapter refers to the SEND command or
SEND messages, the information applies to both SEND and OPERATOR SEND.

This chapter describes the different ways you can customize SEND, OPERATOR
SEND, and LISTBC processing by:

v Defining installation defaults in SYS1.PARMLIB member IKJTSOxx

v Storing SEND messages in individual user logs

v Writing SEND, OPERATOR SEND, and LISTBC exits to tailor how users send
and retrieve messages. Using the exits, you can change the installation defaults
you define in IKJTSOxx and tailor the use of user logs.

Defining Installation Defaults for SEND, OPERATOR SEND, and
LISTBC

You can use SYS1.PARMLIB member IKJTSOxx to define installation defaults for
SEND, OPERATOR SEND, and LISTBC processing. In IKJTSOxx, you can:

v Specify whether users can issue the SEND command at your installation

v Specify whether users who are authorized to use the OPERATOR command can
issue the SEND subcommand to send messages or create notices

v Specify whether SEND can save messages in user logs

v Specify whether SEND stores messages in the broadcast data set or in user
logs, and identify the qualifiers for the user log data set name

v Allow LISTBC to retrieve messages from the user log andthe broadcast data set,
from the broadcast data set only, or from the user log only

v Specify whether SEND stores messages in the broadcast data set, if your
installation is using user logs and the target user does not have a user log

v Specify whether the individual user logs are security protected from the user

v Specify the name of the broadcast data set and associated processing options

TSO/E provides a sample IKJTSO00 member in SYS1.SAMPLIB. To define
installation defaults in IKJTSOxx, do the following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB and locate the SEND PARMLIB parameter.

v Specify the operands for your installation’s requirements

You can make the SEND defaults in IKJTSOxx take effect immediately using the
PARMLIB command. You can also use the PARMLIB command to list the current
SEND defaults and to check the syntax of any IKJTSOxx member. For more
information about using the PARMLIB command, see z/OS TSO/E System
Programming Command Reference.

The operands for the SEND PARMLIB parameter are:
v USERSEND
v OPERSEND
v SAVE
v LOGNAME
v CHKBROD
v USEBROD

Chapter 34. Customizing How Users Send and Retrieve Messages 337

v MSGPROTECT
v SYSPLEXSHR
v OPERSEWAIT
v USERLOGSIZE
v BROADCAST

For more information about these operands, see z/OS MVS Initialization and Tuning
Reference.

When you IPL your system, a SEND PARMLIB control block (IKJEESCB) is
created.The control block contains the SEND and LISTBC installation defaults you
specify in IKJTSOxx. TSO/E uses the control block for SEND and LISTBC
processing.

The SEND, OPERATOR SEND, and LISTBC exits receive the address of a copy of
the SEND PARMLIB control block. Using the exits, you can change the values in
the copy of the control block to tailor SEND and LISTBC processing for individual
users. However, you cannot use the exits to change the installation defaults in
SYS1.PARMLIB member IKJTSOxx. To change the installation defaults, you must:
v Edit member IKJTSOxx in SYS1.PARMLIB
v Change the values of the operands in the SEND PARMLIB parameter
v Use the PARMLIB command with the UPDATE operand to make the changes

take effect immediately.

If you do not define installation defaults in SYS1.PARMLIB member IKJTSOxx, the
SEND, OPERATOR SEND, and LISTBC commands operate as provided by TSO/E.
That is, SEND and OPERATOR SEND store messages in the broadcast data set
and LISTBC retrieves stored messages from the broadcast data set.

If you write exits for the commands or subcommand, the exits receive a copy of a
default control block that has the following values:

USERSEND ON

OPERSEND ON

SAVE ON

LOGNAME * (which means the current broadcast data set)

CHKBROD OFF

USEBROD ON

MSGPROTECT OFF

SYSPLEXSHR OFF

OPERSEWAIT

BROADCAST (see “BROADCAST keyword for IKJTSOxx”)

For more information about using the exits, see “Writing Exits for the SEND,
OPERATOR SEND, and LISTBC Commands” on page 343.

BROADCAST keyword for IKJTSOxx
Use the BROADCAST keyword of the IKJTSOxx member of parmlib to specify the
name of a broadcast data set and associated processing options. You can switch
broadcast data sets dynamically, without an IPL, by using the SET IKJTSO=xx
system command or PARMLIB UPDATE.

Defaults for SEND, OPERATOR SEND, LISTBC

338 z/OS V1R4.0 TSO/E Customization

For more information about specifying the name of a broadcast data set, see z/OS
MVS Initialization and Tuning Reference. For more information about the SET
IKJTSO=xx command, see z/OS MVS System Commands. For more information
about PARMLIB UPDATE, see z/OS TSO/E System Programming Command
Reference.

The default control block contains the following values for the BROADCAST
keyword:

data-set-name SYS1.BRODCAST

volume-name no volume

time-out five seconds

switch-prompt PROMPT

Storing SEND Messages
You can store all SEND messages in the broadcast data set, or you can use
individual user logs to store the messages. If you use individual user logs, you can
use them for some of your users and use the broadcast data set for other users by
writing exits for the SEND, OPERATOR SEND, and LISTBC commands.

User logs provide large processor constraint relief by eliminating possible contention
for the broadcast data set. If your installation has large processors, such as the IBM
3090, the system could experience contention when users store or retrieve large
numbers of messages at one time from the broadcast data set. By using user logs,
you might decrease possible contention for the broadcast data set.

With RACF installed, your installation may be using security labels (SECLABELs).
User logs can be set up to protect messages from being viewed by a user who is
not logged on at the proper security label. The MSGPROTECT operand of the
SEND PARMLIB parameter is used to indicate whether the individual user log data
set is security protected from the user. For more information about the
MSGPROTECT operand see z/OS MVS Initialization and Tuning Reference. For
information about setting up security labels, see z/OS Security Server RACF
Security Administrator’s Guide.

If you use user logs, each user has an individual user log data set. The data set
can be either a sequential data set or a member of a partitioned data set (PDS).
SEND stores messages in the user log data set and LISTBC retrieves messages
from the user log. When SEND stores the messages in the user logs, SEND
truncates the trailing blanks. The command syntax for the SEND and LISTBC
commands and the OPERATOR SEND subcommand is unaffected by user logs.

If you use user logs, OPERATOR SEND stores notices in the broadcast data set
and LISTBC retrieves the notices from the broadcast data set. Notices are
messages that the SEND subcommand of OPERATOR stores for all users on the
system. The use of user logs does not affect the storing and retrieving of notices.

The following topics describe how to store messages in the broadcast data set or in
user logs.

BROADCAST keyword for IKJTSOxx

Chapter 34. Customizing How Users Send and Retrieve Messages 339

Storing Messages in the Broadcast Data Set Only
If you want to store all SEND messages in the broadcast data set, you do not have
to perform any tasks. By default, SEND stores messages in the broadcast data set
and LISTBC retrieves them from the broadcast data set.

Storing Messages in Separate User Logs
Using user logs, each user has an individual user log data set. The user log data
set can be either a sequential data set or a member of a partitioned data set.

To implement user logs, use the LOGNAME operand of the SEND PARMLIB
parameter in IKJTSOxx. For LOGNAME, specify the qualifier(s) for the user log
data set name. You can also specify a member name in parentheses. The other
qualifier of each user log data set is the user’s user ID.

Note: User log data set names should not conflict with system data set names.

The naming convention used for the user log data set depends on the
MSGPROTECT operand setting:

v If the MSGPROTECT operand of the SEND PARMLIB parameter is set to OFF,
the first-level qualifier of each user log data set is the user’s user ID. Therefore,
for each user, the user log has a data set name of userid.LOGNAME, where userid
is the user’s user ID, and LOGNAME is the qualifier you specify on the
LOGNAME operand.

v If the MSGPROTECT operand is set to ON, the user’s user ID is the last qualifier
of each user log data set. Therefore, for each user, the user log has a data set
name of LOGNAME.userid.

If you specify user logs as members of a PDS, make sure the logical record length
(LRECL) of the PDSis adequate to prevent messages from being truncated. This is
particularly important if you use the exits to append information to messages that
are stored. However, the LRECL of the PDS must not exceed 150.

A user log requires a minimum of one track for each user. You can save space by
defining user logs as members of a partitioned data set. However, TSO/E does not
compress a PDS. If SEND needs to store a message, SEND rewrites the member
in the PDS. If your users receive a considerable amount of mail, you may
eventually run out of allocated space in the PDS. In this case, you may want to use
sequential data sets for some of your user’s user logs.

LISTBC allocates user logs using the following data set attributes:

RECFM fixed-blocked

LRECL 150

BLKSIZE 1500

Primary tracks 1

Secondary tracks 2

Note: The above space attributes can be overridden using the USERLOGSIZE
operand under the SEND statement in PARMLIB member IKJTSOxx. For
more information, see z/OS MVS Initialization and Tuning Reference.

For members of a PDS, LISTBC uses a value of 20 for the number of directory
blocks.

Storing SEND Messages

340 z/OS V1R4.0 TSO/E Customization

You can use the LISTBC pre-allocate exit to allocate your own user logs with
attributes that are more suitable for your different users. For more information about
the exits, see “Writing Exits for the SEND, OPERATOR SEND, and LISTBC
Commands” on page 343.

For information about implementing user logs, see “Converting from Using the
Broadcast Data Set to User Logs”.

You can also use individual user logs for some of your users and continue to use
the broadcast data set as the message repository for other users. For more
information, see “Storing Messages in User Logs and the Broadcast Data Set” on
page 343.

Converting from Using the Broadcast Data Set to User Logs
To implement the use of user logs, first copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB, if you have not already done so. You can
create alternative members using the IKJTSOxx naming convention. In IKJTSOxx,
modify the SEND PARMLIB parameter as follows:

LOGNAME user log data set name

CHKBROD ON

Notes:

1. After you convert from using the broadcast data set to user logs, the return
codes from the SEND command are different. For information about these
return codes, see z/OS TSO/E Command Reference.

2. If your installation is implementing the use of user logs with security protection,
see also “Security Protected User Logs” on page 342.

With these values, the following SEND and LISTBC processing occurs:

v If a target user has not yet issued the LISTBC command or logged on and
specified MAIL, and SEND needs to store a message for the user, the user’s
user log has not yet been allocated. Therefore, SEND stores the message in the
broadcast data set.

v When the target user either issues the LISTBC command or logs on and
specifies MAIL, LISTBC determines that the user log has not been allocated. The
LISTBC command processor allocates the user log. The user log data set name
depends on the MSGPROTECT operand setting.

For more information about MSGPROTECT, see z/OS MVS Initialization and
Tuning Reference.

LISTBC allocates both sequential data sets and members of a PDS with the
following data set attributes:

LRECL 150

BLKSIZE 1500

Primary tracks 1

Secondary tracks 2

Note: If MSGPROTECT is set to ON, see the data set attributes shown in
“Security Protected User Logs” on page 342.

For members of a PDS, LISTBC uses a value of 20 for the number of directory
blocks.

Storing SEND Messages

Chapter 34. Customizing How Users Send and Retrieve Messages 341

v LISTBC then checks the broadcast data set for any messages for the user
because it has just created the user log data set.

Note: If you modify the USEBROD operand to OFF, messages are not stored in
the broadcast data set.

v The next time SEND needs to store a message for the target user, the user log
data set exists. SEND stores the message in the user log.

After a period of time, you can decide to no longer check the broadcast data set for
stored messages. At this point, your users’ user logs should have been allocated
and you can set CHKBROD to OFF. If you define new users to your system, have
them either issue the LISTBC command or request MAIL when they first log on, to
ensure a user log is created.

LISTBC allocates the user log with specific attributes. You may decide that the
default attributes are unsuitable for some or all of your installation’s users. You can
use the LISTBC pre-allocate exit to allocate the user log data sets instead of having
the LISTBC command processor allocate them. For more information about the
pre-allocate exit, see “Writing Exits for the SEND, OPERATOR SEND, and LISTBC
Commands” on page 343.

Security Protected User Logs: If RACF is installed, your installation is using
security labels, and the following operands are modified, the security label of the
message is checked to determine if the user is authorized to view the message.
Modify the following in the SEND PARMLIB parameter in addition to the operands
described in “Converting from Using the Broadcast Data Set to User Logs” on
page 341:

USEBROD OFF

MSGPROTECT ON

With these additional values, SEND and LISTBC processing is the same as
described in “Converting from Using the Broadcast Data Set to User Logs” on
page 341 with the following exceptions:

v Messages are stored only in the individual user log, not in the broadcast data
set.

v The sender’s current security label is stored with the message.

v To allocate the user log data set, the target user must issue the LISTBC
command or logon specifying MAIL.

v LISTBC allocates both sequential data sets and members of a PDS with the
following data set attributes:

LRECL 232

BLKSIZE 2320

Primary tracks 1

Secondary tracks 2

v Before allowing the user to view the message, the user’s security label and the
message’s security label are checked. If the user, attempting to view the
message, is not logged on at an appropriate security label, then the user is not
allowed to view the message. The message is placed back into the user log and
can possibly be viewed when the user is logged on at the proper security label. If
the user can never log on at the proper security label (not authorized for the
security label of the message), the message is deleted.

Storing SEND Messages

342 z/OS V1R4.0 TSO/E Customization

For more information about security labels, see z/OS Security Server RACF
Security Administrator’s Guide.

Storing Messages in User Logs and the Broadcast Data Set
You can have SEND store messages for some of your users in individual user logs
and use the broadcast data set as the message repository for other users. First, to
implement the use of user logs, follow the instructions described in “Converting from
Using the Broadcast Data Set to User Logs” on page 341. To use the broadcast
data set for some of your users, write an initialization exit for the SEND,
OPERATOR SEND, and LISTBC commands. The initialization exit can change the
name of the data set that the command (subcommand) processors use to store and
retrieve messages. For more information about the exits, see “Writing Exits for the
SEND, OPERATOR SEND, and LISTBC Commands”.

Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands

Functional Description
TSO/E provides many exits you can use to customize how the SEND and LISTBC
commands and the OPERATOR SEND subcommand handle the sending, storing,
and retrieving of messages. The exits for SEND and OPERATOR SEND are:

v Initialization - set up the environment for later exits

v Pre-display - perform processing before SEND displays the message to the
target user

v Pre-save - perform processing before SEND opens the user log to store a
message

v Failure - perform processing whenever SEND detects an I/O error on the user
log

v Termination - perform clean-up processing prior to SEND completion

The exits for LISTBC are:

v Initialization - set up the environment for later exits

v Pre-list - perform processing before LISTBC associates (allocates) the user log
data set name to a ddname and opens the user log data set

v Pre-allocate - create the user log data set

v Pre-read - perform processing before LISTBC reads a message

v Pre-display - perform processing before LISTBC displays the message to the
user

v Failure - perform processing whenever LISTBC detects an I/O error on the user
log

v Termination - perform clean-up processing prior to LISTBC completion

The SEND and LISTBC commands and the OPERATOR SEND subcommand do
not share exits. For example, there are three initialization exits; one for SEND, one
for LISTBC, and one for OPERATOR SEND.

You can use the different exits to customize SEND and LISTBC processing for your
users. If you use only the broadcast data set to store messages, you can use only
the initialization and termination exits to customize SEND and LISTBC processing.
If you use user logs to store messages, you can use the other exits in addition to
the initialization and termination exits to customize the use of user logs for
individual users.

Storing SEND Messages

Chapter 34. Customizing How Users Send and Retrieve Messages 343

The following highlights some ways you can use the initialization exits:

v Restrict certain users from using a command

v Change the operands a user specifies on the command

v Change installation defaults for SEND and LISTBC processing that you either
specified in IKJTSOxx or that are defaulted by the system if you did not update
IKJTSOxx

v Ensure that users receive notices and mail when they log on to TSO/E

If you are using user logs, you can use the different initialization exits and the other
SEND, OPERATOR SEND, and LISTBC exits to:

v Change the name of the data set SEND uses to store a message

v Perform your own file I/O to store messages in or retrieve messages from the
user log

v Allocate a user log data set instead of having LISTBC allocate the user log

v Add information to a message that SEND stores

v Compress messages that SEND stores and decompress the message before
LISTBC displays the message to the target user

v Format messages that are displayed to support special features of output devices

You can use the termination exits to perform clean-up or special processing prior to
the command processor’s completion. Depending on the processing the other exit
routines perform, you may not need a termination exit for the command or
subcommand. For more information about how you can use the exits, see “Possible
Uses” on page 364.

You use the SEND PARMLIB parameter in IKJTSOxx to specify installation defaults
for SEND and LISTBC processing and to implement the use of user logs on your
system. For more information about defining installation defaults and setting up user
logs, see:
v “Defining Installation Defaults for SEND, OPERATOR SEND, and LISTBC” on

page 337
v “Storing SEND Messages” on page 339

When you IPL your system, a SEND PARMLIB control block (IKJEESCB) is
created. The control block contains the installation defaults you specify in
IKJTSOxx. If you do not define installation defaults in IKJTSOxx, a default control
block is created that contains default values for SEND, OPERATOR SEND, and
LISTBC. Each SEND, OPERATOR SEND, and LISTBC exit receives the address of
a copy of the control block IKJEESCB.

In the control block, the EESCB_LOGNAME field contains the name of the data set
you are using to store SEND messages. The name can be the broadcast data set
or the name of a user log.

Note: The names referenced for the fields in the control block (for example,
EESCB_LOGNAME) are obtained from the IKJEESCB DSECT mapping as
provided in SYS1.AMODGEN.

The initialization and termination exits receive control regardless of the value in the
EESCB_LOGNAME field. However, SEND, LISTBC, and OPERATOR SEND invoke
the other exits only if EESCB_LOGNAME is the name of a user log.

Writing Exits for SEND, ..., LISTBC

344 z/OS V1R4.0 TSO/E Customization

The following topics describe when each SEND, OPERATOR SEND, and LISTBC
exit receives control. For more information about how the exits’ return codes affect
SEND and LISTBC processing, see “Return Specifications” on page 360.

Overview of When the SEND and OPERATOR SEND Exits
Receive Control
If a user issues the SEND command to send a message to only the console or the
operator, SEND invokes only the initialization and termination exits. It does not
invoke the SEND pre-display, pre-save, or failure exits.

v The initialization exit receives control before SEND invokes the parse service
routine to parse the command. The exit gets control if you are using user logs or
the broadcast data set to store messages, that is, the value of
EESCB_LOGNAME is either * (indicating the name of the current broadcast data
set) or a user log name.

If SEND cannot display or store the message after the initialization exit returns
control, SEND invokes the termination exit and then completes processing. If the
initialization exit returns with a return code of 12 or 16, SEND does not display or
store the message. SEND invokes the termination exit and then completes
processing.

v If EESCB_LOGNAME in the copy of the control block is a user log name, the
pre-display exit receives control. The exit receives control for each target user,
unless the SEND command contains the SAVE operand. In this case, SEND
does not invoke the pre-display exit.

The exit receives control for each target user before SEND determines whether it
can display the message to the target user. If the ALL operand is specified on the
SEND subcommand of the OPERATOR command, the pre-display exit gets
control only once. It does not get control for each target user.

v The pre-save exit receives control if both of the following are true:
– EESCB_LOGNAME in the copy of the control block is a user log name
– SEND will store the message for the target user(s).

The exit receives control for each target user before SEND opens the user log to
store the message. If the ALL operand is specified on the SEND subcommand of
the OPERATOR command, the pre-save exit gets control only once. It does not
get control for each target user.

v The failure exit receives control if EESCB_LOGNAME in the copy of the control
block is a user log name. The exit receives control whenever SEND detects an
I/O error on the user log when it is opening or closing the data set, or storing a
message.

v The termination exit receives control just before SEND completes processing.
The exit gets control if you are using user logs or the broadcast data set to store
messages, that is, the value of EESCB_LOGNAME is either * (indicating the
name of the current broadcast data set) or a user log name.

Overview of When the LISTBC Exits Receive Control
The LISTBC exits receive control when users issue the LISTBC command and
when users log on to TSO/E (during logon, LISTBC processes mail and notices).

v The initialization exit receives control before LISTBC invokes the parse service
routine to parse the command. The exit gets control if you are using user logs or
the broadcast data set to store messages, that is, the value of
EESCB_LOGNAME is either * (indicating the name of the current broadcast data
set) or a user log name.

When a user logs on, the initialization exit receives control before LISTBC opens
the broadcast data set or the user log to retrieve messages.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 345

After the initialization exit returns control to LISTBC, LISTBC determines whether
it should process notices. If so, LISTBC retrieves any notices from the broadcast
data set.

LISTBC then determines whether it should process mail. If not, LISTBC invokes
the termination exit and then completes processing. If so, LISTBC determines
whether it retrieves mail from the broadcast data set or the user log. The LISTBC
command processor then continues processing and invokes the appropriate exits
as described below.

v The pre-list exit receives control only if EESCB_LOGNAME in the copy of the
control block is a user log name. The exit receives control before LISTBC
associates (allocates) the user log data set name to a ddname and opens the
user log data set.

v The pre-allocate exit receives control if both of the following are true:
– EESCB_LOGNAME in the copy of the control block is a user log name
– The user’s user log data set does not yet exist

LISTBC tries to associate (allocate) the user log data set name to a ddname. If
the allocation fails because the user log does not exist, LISTBC invokes the
pre-allocate exit. If the allocation is successful, the user log exists and the
pre-allocate exit does not receive control.

v The pre-read exit receives control only if EESCB_LOGNAME in the copy of the
control block is a user log name. The exit receives control:
– After LISTBC opens the user log data set
– Before LISTBC reads a message

The pre-read exit gets control for each message in the user log.

v The pre-display exit receives control only if EESCB_LOGNAME in the copy of
the control block is a user log name. The exit receives control before LISTBC
displays the message to the user.

The pre-display exit gets control for each message in the user log. After LISTBC
reads and displays all of the messages, it closes the data set.

v The failure exit receives control only if EESCB_LOGNAME in the copy of the
control block is a user log name. The exit receives control whenever LISTBC
detects an I/O error on the user log when it is opening or closing the data set, or
retrieving a message.

v The termination exit receives control just before LISTBC completes processing.
The exit gets control if you are using user logs or the broadcast data set to store
messages, that is, the value of EESCB_LOGNAME is either * (indicating the
name of the current broadcast data set) or a user log name.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for any of the SEND, OPERATOR
SEND, and LISTBC exits.

Entry Specifications
The contents of the registers on entry for all of the SEND, OPERATOR SEND, and
LISTBC exits are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Writing Exits for SEND, ..., LISTBC

346 z/OS V1R4.0 TSO/E Customization

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions - Overview
The following topics describe the parameters that each SEND, OPERATOR SEND,
and LISTBC exit receives on entry. For more information about the standard exit
parameter list and the parameter entries, see “TSO/E Standard Exit Parameter List”
on page 35.

Each exit receives the address of a copy of the SEND PARMLIB control block
(IKJEESCB) as exit-dependent data. The copy of the control block contains the
installation values you defined in SYS1.PARMLIB member IKJTSOxx or default
values if you did not update IKJTSOxx. The exits can change the values in the copy
of the control block to customize command processing for individual users. For
more information about defining or changing installation defaults on a system-wide
basis, see “Defining Installation Defaults for SEND, OPERATOR SEND, and
LISTBC” on page 337.

Table 53 shows the format of the SEND PARMLIBcontrol block (IKJEESCB). You
can use the IKJEESCB mapping macro, which is provided inSYS1.AMODGEN, to
map the SEND PARMLIB control block. This macro has the following syntax:
[label] IKJEESCB [DSECT{=YES}]

[{ NO }]

Table 53. SEND PARMLIB Control Block Format

Offset
Dec(Hex)

Number of
Bytes

Field Name Contents or Meaning

0(0) 8 EESCB_IDENTIFIER The control block identifier,
C‘IKJEESCB’

8(8) 1 EESCB_VERSION The control block version
number

9(9) 3 EESCB_RESERVED1 Reserved
12(C) 4 EESCB_FLAGS_1 The high-order byte of this

field contains flags. For the
meanings of these flags, see
Table 54 on page 348.

16(10) 44 EESCB_DATASET User log data set name
(LOGNAME)

60(3C) 8 EESCB_MEMBER Data set member name
68(44) 36 EESCB_RESERVED2 Reserved

All character data in the control block is left-justified and padded with blanks. Fields
containing flags and data set name information relate directly to the operands you
specify on the SEND PARMLIB parameter in IKJTSOxx.

Table 54 on page 348 describes the bit settings for EESCB_FLAGS_1.
EESCB_CHKBROD, EESCB_USEBROD, and EESCB_MSGPROTECT are used
only if you use user logs to store messages. They do not apply if you use only the
broadcast data set to store messages.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 347

Table 54. Meaning of Bit Settings in SEND PARMLIB Control Block

Name Bit Setting Meaning

EESCB_OPERSEND x...
0 Authorized users of OPERATOR

cannot use the SEND
subcommand.

1 Authorized users of OPERATOR
can use the SEND subcommand.

EESCB_USERSEND .x..
0 Users cannot use the SEND

command.

1 Users can use the SEND
command.

EESCB_SAVE ..x.
0 SEND cannot store messages in

user logs.

1 SEND can store messages in user
logs.

EESCB_CHKBROD ...x
0 LISTBC checks only the user log for

messages.

1 LISTBC checks the broadcast data
set and the user log for messages.

EESCB_USEBROD x...
0 Mail is not stored in the broadcast

data set, if the user does not have
an individual user log. The user
does not receive the message.

1 Mail is stored in the broadcast data
set, if the user does not have an
individual user log.

EESCB_MSGPROTECTx..
0 User logs are not protected from

the user and all mail can be viewed
by the user. User log data set
naming convention is
‘userid.logname’.

1 User logs are protected from the
user and mail can be viewed only if
the user is logged on at the proper
security label. User log data set
naming convention is
‘logname.userid’.

EESCB_SYSPLEXSHRx.
0 The broadcast data set is not

shared exclusively between
systems in the sysplex.

1 The broadcast data set is shared
exclusively between systems in the
sysplex.

Writing Exits for SEND, ..., LISTBC

348 z/OS V1R4.0 TSO/E Customization

Table 54. Meaning of Bit Settings in SEND PARMLIB Control Block (continued)

Name Bit Setting Meaning

EESCB_SYSPLEXSHR_XCF.... ...x
0 EESCB_SYSPLEXSHR was

updated as a result of a PARMLIB
UPDATE on this system.

1 EESCB_SYSPLEXSHR was
updated as a result of a PARMLIB
UPDATE on another system.

Note: The following is the start of a new word.

EESCB_OPERSEWAIT x...
0 OPERATOR SEND without

WAIT/NOWAIT specified on the
command will be issued with
NOWAIT.

1 OPERATOR SEND without
WAIT/NOWAIT specified on the
command will be issued with WAIT.

Parameter Descriptions for the SEND Exits
All of the SEND exits receive the address of the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. The following topics describe the exit-dependent data that each SEND exit
receives.

Initialization Exit
Figure 49 shows the exit-dependent data that the initialization exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Pre-Display Exit
Figure 50 on page 350 shows the exit-dependent data that the pre-display exit
receives beginning at offset +36 (decimal) in the parameter list. Each parameter
entry is described following the figure.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 49. Exit-Dependent Data for the SEND Initialization Exit

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 349

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

New SEND Message (Parameter Entry 12)
Use this parameter entry to return a new SEND message to the SEND
command processor.

User ID (Parameter Entry 13)
This parameter entry contains the user ID of the target user.

Pre-Save Exit
Figure 51 on page 351 shows the exit-dependent data that the pre-save exit
receives beginning at offset +36 (decimal) in the parameter list. Each parameter
entry is described following the figure.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

00000002 00000068

00000002

00000001

Address of

control block

Address of

message
Length of

message

Length of

User ID User ID

00000000 00000004 00000000

+40

+44

+48

Parameter Entry's

Key, Length, and Data

Figure 50. Exit-Dependent Data for the SEND Pre-Display Exit

Writing Exits for SEND, ..., LISTBC

350 z/OS V1R4.0 TSO/E Customization

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

New SEND Message (Parameter Entry 12)
Use this parameter entry to return a new SEND message to the SEND
command processor.

User ID (Parameter Entry 13)
This parameter entry contains the user ID of the target user.

Failure Exit
Figure 52 shows the exit-dependent data that the failure exit receives beginning at
offset +36 (decimal) in the parameter list. Each parameter entry is described
following the figure.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

00000002 00000068

00000002

00000001

Address of

control block

Address of

message
Length of

message

Length of

User ID User ID

00000000 00000004 00000000

+40

+44

+48

Parameter Entry's

Key, Length, and Data

Figure 51. Exit-Dependent Data for the SEND Pre-Save Exit

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

00000002 00000068

00000002

Address of

control block

Address of

message

Length of

message

+40

+44

00000001
Length of

User ID
User ID

Parameter Entry's

Key, Length, and Data

Figure 52. Exit-Dependent Data for the SEND Failure Exit

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 351

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

User ID (Parameter Entry 12)
This parameter entry contains the user ID of the target user.

Termination Exit
Figure 53 shows the exit-dependent data that the termination exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Parameter Descriptions for the OPERATOR SEND Exits
All of the OPERATOR SEND exits receive the address of the standard exit
parameter list. For a description of this parameter list, see “TSO/E Standard Exit
Parameter List” on page 35. However, no data is passed for the following parameter
entries:
v Parameter entry 3 - user profile table (UPT)
v Parameter entry 4 - environmental control table (ECT)
v Parameter entry 5 - protected step control block (PSCB)

For these three parameter entries, the key, length, and data fields are:

Key X'00'

Length X'04'

Data X'00'

Parameter entry 1 contains the address of the command buffer. Figure 2 on
page 38 shows the format of the command buffer, however, the command buffer for
the SEND subcommand of the OPERATOR command is different. As Figure 2
illustrates, the command buffer contains a four-byte header field followed by a text
field that contains the command and operands the user specified. The command
buffer for the SEND subcommand of the OPERATOR commanddoes not contain
the four-byte header field. It contains only the text field. In addition, the text field
contains only the operands the user specified on the OPERATOR SEND
subcommand. It does not contain the subcommand.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 53. Exit-Dependent Data for the SEND Termination Exit

Writing Exits for SEND, ..., LISTBC

352 z/OS V1R4.0 TSO/E Customization

The following topics describe the exit-dependent data that each OPERATOR SEND
exit receives.

Initialization Exit
Figure 54 shows the exit-dependent data that the initialization exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

CSCB (Parameter Entry 11)
This parameter entry contains the address of the command scheduling control
block (CSCB) to allow installations to identify the origin console.

Pre-Display Exit
Figure 55 shows the exit-dependent data that the pre-display exit receives
beginning at offset +36 (decimal) in the parameter list. Each parameter entry is
described following the figure.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
control block

Address of
CSCB

00000002 00000068

00000002 000000F0

Figure 54. Exit-Dependent Data for the OPERATOR SEND Initialization Exit

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

+40

+44

+48

Address of
Control block

Address of
message

Length of
message

Length of
User ID

User ID

Address of
CSCB

00000002 00000068

00000000 00000004 00000000

00000002

00000001

00000002 000000F0

+52

Figure 55. Exit-Dependent Data for the OPERATOR SEND Pre-Display Exit

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 353

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

New SEND Message (Parameter Entry 12)
Use this parameter entry to return a new SEND message to the SEND
subcommand processor.

User ID (Parameter Entry 13)
This parameter entry contains the user ID of the target user. If the sending user
specified the ALL operand on the SEND subcommand, this parameter entry
contains blanks.

CSCB (Parameter Entry 14)
This parameter entry contains the address of the command scheduling control
block (CSCB) to allow installations to identify the origin console.

Pre-Save Exit
Figure 56 shows the exit-dependent data that the pre-save exit receives beginning
at offset +36 (decimal) in the parameter list. Each parameter entry is described
following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

New SEND Message (Parameter Entry 12)
Use this parameter entry to return a new SEND message to the SEND
subcommand processor.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

+40

+44

+48

Address of
Control block

Address of
message

Length of
message

Length of
User ID

User ID

Address of
CSCB

00000002 00000068

00000000 00000004 00000000

00000002

00000001

00000002 000000F0

+52

Figure 56. Exit-Dependent Data for the OPERATOR SEND Pre-Save Exit

Writing Exits for SEND, ..., LISTBC

354 z/OS V1R4.0 TSO/E Customization

User ID (Parameter Entry 13)
This parameter entry contains the user ID of the target user. If the sending user
specified the ALL operand on the SEND subcommand, this parameter entry
contains blanks.

CSCB (Parameter Entry 14)
This parameter entry contains the address of the command scheduling control
block (CSCB) to allow installations to identify the origin console.

Failure Exit
Figure 57 shows the exit-dependent data that the failure exit receives beginning at
offset +36 (decimal) in the parameter list. Each parameter entry is described
following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

SEND Message (Parameter Entry 11)
This parameter entry contains the address of the message that the user is
sending.

User ID (Parameter Entry 12)
This parameter entry contains the user ID of the target user. If the sending user
specified the ALL operand on the SEND subcommand, this parameter entry
contains blanks.

CSCB (Parameter Entry 13)
This parameter entry contains the address of the command scheduling control
block (CSCB) to allow installations to identify the origin console.

Termination Exit
Figure 58 on page 356 shows the exit-dependent data that the termination exit
receives beginning at offset +36 (decimal) in the parameter list. Each parameter
entry is described following the figure.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

+40

+44

+48

Address of
Control block

Address of
message

Length of
message

00000002 00000068

00000002

Length of
User ID

User ID

Address of
CSCB

00000001

00000002 000000F0

Figure 57. Exit-Dependent Data for the OPERATOR SEND Failure Exit

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 355

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

CSCB (Parameter Entry 11)
This parameter entry contains the address of the command scheduling control
block (CSCB) to allow installations to identify the origin console.

Parameter Descriptions for the LISTBC Exits
All of the LISTBC exits receive the address of the standard exit parameter list. For
a description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. The following topics describe the exit-dependent data that each LISTBC
exit receives.

Initialization Exit
The LISTBC initialization exit receives different parameters depending on whether
the exit receives control during logon processing or when a user issues the LISTBC
command.

Parameters When Initialization Exit Receives Control During Logon
Processing: When users log on, they can specify MAIL, NOTICES, or both, but
they do not issue the LISTBC command. Therefore, when LISTBC invokes the
initialization exit, there is no command buffer. Figure 59 shows the key, length, and
data values for the command buffer (parameter entry 1) when the LISTBC
initialization exit receives control during logon processing. The key of X'00' indicates
that no data is passed in the parameter entry.

Figure 60 on page 357 shows the exit-dependent data that the LISTBC initialization
exit receives when it gets control during logon processing. The exit-dependent data
begins at offset +36 (decimal) in the parameter list. Each parameter entry is
described following the figure.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
control block

Address of
CSCB

00000002 00000068

00000002 000000F0

Figure 58. Exit-Dependent Data for the OPERATOR SEND Termination Exit

Key Length Data+0 +4 +8

00000000 00000004 00000000
Address of

parameter entry 1

Figure 59. Command Buffer Parameter Entry When LISTBC Initialization Exit Gets Control
During Logon

Writing Exits for SEND, ..., LISTBC

356 z/OS V1R4.0 TSO/E Customization

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Flags (Parameter Entry 11)
When users log on to TSO/E, they can specify MAIL or NOMAIL and NOTICES
or NONOTICES. This parameter entry contains LISTBC indicator flags. The
flags indicate whether the user specified MAIL/NOMAIL and
NOTICES/NONOTICES.

Although there is no command buffer you can use to modify processing, you
can change the indicator flag bits to control and customize processing. For
example, you can use the bits to ensure that users receive mail and notices
when they log on. Table 55 shows the format of the LISTBC indicator flags,
which consist of 32 bits.

Table 55. Format of the LISTBC Indicator Flags

Bit Description

1 Indicates whether the user specified MAIL or NOMAIL.

v 0 - the user specified NOMAIL

v 1 - the user specified MAIL
2 Indicates whether the user specified NOTICES or NONOTICES.

v 0 - the user specified NONOTICES

v 1 - the user specified NOTICES
3-32 Reserved

Parameters When Initialization Exit Receives Control After User Issues
LISTBC: Figure 61 shows the exit-dependent data that the initialization exit
receives beginning at offset +36 (decimal) in the parameter list. The parameter
entry is described following the figure.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
Control block

Flags

00000002 00000068

00000001 00000004

Figure 60. Exit-Dependent Data for the LISTBC Initialization Exit During Logon Processing

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 61. Exit-Dependent Data for the LISTBC Initialization Exit When User Issues LISTBC
Command

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 357

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Pre-List Exit
Figure 62 shows the exit-dependent data that the pre-list exit receives beginning at
offset +36 (decimal) in the parameter list. The parameter entry is described
following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

User ID (Parameter Entry 11)
Use this parameter entry to specify a user ID to be used as the high-level
qualifier for the user log data set name.

Pre-Allocate Exit
Figure 63 shows the exit-dependent data that the pre-allocate exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Pre-Read Exit
Figure 64 on page 359 shows the exit-dependent data that the pre-read exit
receives beginning at offset +36 (decimal) in the parameter list. Each parameter
entry is described following the figure.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

+40

Address of
Control block

User IDLength of
User ID

00000002 00000068

00000001

Figure 62. Exit-Dependent Data for the LISTBC Pre-List Exit

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 63. Exit-Dependent Data for the LISTBC Pre-Allocate Exit

Writing Exits for SEND, ..., LISTBC

358 z/OS V1R4.0 TSO/E Customization

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

LISTBC Message Buffer (Parameter Entry 11)
Use this parameter entry with a return code of 4 to return a message to the
LISTBC command processor. A return code of 4 indicates to LISTBC that it
should not perform any file I/O and should use the message returned in the
message buffer.

Pre-Display Exit
Figure 65 shows the exit-dependent data that the pre-display exit receives
beginning at offset +36 (decimal) in the parameter list. Each parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

LISTBC Message (Parameter Entry 11)
This parameter entry contains the address of the message that the LISTBC
command processor retrieved from the user log.

New LISTBC Message (Parameter Entry 12)
Use this parameter entry to return a new message to the LISTBC command
processor.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Address of

parameter entry 11

00000002 00000068
Address of

control block
+40

00000000 00000004 00000000

Parameter Entry's

Key, Length, and Data

Figure 64. Exit-Dependent Data for the LISTBC Pre-Read Exit

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12 00000000 00000004 00000000

00000002 00000068

00000002

Address of
control block

Address of
message

Length of
message

+40

+44

Parameter Entry's
Key, Length, and Data

Figure 65. Exit-Dependent Data for the LISTBC Pre-Display Exit

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 359

Failure Exit
Figure 66 shows the exit-dependent data that the failure exit receives beginning at
offset +36 (decimal) in the parameter list. The parameter entry is described
following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Termination Exit
Figure 67 shows the exit-dependent data that the termination exit receives
beginning at offset +36 (decimal) in the parameter list. The parameter entry is
described following the figure.

Control Block (Parameter Entry 10)
This parameter entry contains the address of the copy of the SEND PARMLIB
control block. For a description of the control block, see Table 53 on page 347.

Return Specifications
The contents of the registers on return for all of the SEND, OPERATOR SEND, and
LISTBC exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the SEND Exits
Table 56 shows the standard return codes that all of the SEND exits support.

Table 56. Standard Return Codes That All SEND Exits Support

Return Code
(Decimal)

Description

0 Exit processing was successful. SEND processing continues.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 66. Exit-Dependent Data for the LISTBC Failure Exit

Key Length Data+0 +4 +8+36

Address of

parameter entry 10
00000002 00000068

Address of

control block

Parameter Entry's

Key, Length, and Data

Figure 67. Exit-Dependent Data for the LISTBC Termination Exit

Writing Exits for SEND, ..., LISTBC

360 z/OS V1R4.0 TSO/E Customization

Table 56. Standard Return Codes That All SEND Exits Support (continued)

Return Code
(Decimal)

Description

12 Exit processing was unsuccessful. SEND issues an error message
to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the SEND command processor. For more information about
the reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. SEND terminates processing.

The SEND command processor does not display a message to the
user if the exit sets a return code of 16. Before the exit returns with
return code 16, it can display an informational message to the user,
for example, using PUTLINE.

In addition to the standard return codes, several SEND exits support additional
return codes. Table 57 lists these exits and return codes.

Table 57. Additional Return Codes for SEND Exits

Exit Return Code
(Decimal)

Description

Pre-display 4 Do not display the SEND message.

Pre-save 4 Do not store the SEND message.

If your SEND exits return an unsupported return code, the SEND command
processor terminates without displaying a message to the user.

Return Codes for the OPERATOR SEND Exits
Table 58 shows the standard return codes that all of the OPERATOR SEND exits
support.

Table 58. Standard Return Codes That All OPERATOR SEND Exits Support

Return Code
(Decimal)

Description

0 Exit processing was successful. OPERATOR SEND processing
continues.

12 Exit processing was unsuccessful. OPERATOR SEND issues an
error message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the OPERATOR SEND subcommand processor. For more
information about the reason code, see “Exit Reason Code” on
page 40.

16 Exit processing was unsuccessful. OPERATOR SEND terminates
processing without displaying a message to the user.

In addition to the standard return codes, several OPERATOR SEND exits support
additional return codes. Table 59 on page 362 lists these exits and return codes.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 361

Table 59. Additional Return Codes for OPERATOR SEND Exits

Exit Return Code
(Decimal)

Description

Pre-display 4 Do not display the SEND message.

Pre-save 4 Do not store the SEND message.

If your OPERATOR SEND exits return an unsupported return code, the SEND
subcommand processor terminates without displaying a message to the user.

Return Codes for the LISTBC Exits
Table 60 shows the standard return codes that all of the LISTBC exits support.

Table 60. Standard Return Codes That All LISTBC Exits Support

Return Code
(Decimal)

Description

0 Exit processing was successful. LISTBC processing continues.

12 Exit processing was unsuccessful. LISTBC issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the LISTBC command processor. For more information
about the reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. LISTBC terminates processing.

The LISTBC command processor does not display a message to
the user if the exit sets a return code of 16. Before the exit returns
with return code 16, it can display an informational message to the
user, for example, using PUTLINE.

In addition to the standard return codes, several LISTBC exits support additional
return codes. Table 61 lists these exits and return codes.

Table 61. Additional Return Codes for LISTBC Exits

Exit Return Code
(Decimal)

Description

Pre-allocate 4 Do not allocate the user log data set.

Pre-read 4

8

Do not perform any file I/O. The exit returns
the message to the LISTBC command
processor in the message buffer.

The end-of-file (EOF) has been reached.

Pre-display 4 Do not display the message that LISTBC
retrieved.

If your LISTBC exits return an unsupported return code, the LISTBC command
processor terminates without displaying a message to the user.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return.

Writing Exits for SEND, ..., LISTBC

362 z/OS V1R4.0 TSO/E Customization

The SEND, OPERATOR SEND, and LISTBC exits must be reentrant, refreshable,
and reusable. The SEND and LISTBC exits are APF-authorized. The OPERATOR
SEND exits are not APF-authorized, however, they execute in supervisor state with
a key of 0.

The user SEND and the LISTBC exits can use any of the TSO/E service routines.
For a description of the service routines, see z/OS TSO/E Programming Services.

The need to write a termination exit depends on:

v Whether the processing that the other exits perform require a termination exit to
perform clean-up activities

v How you use the other exits to customize SEND, OPERATOR SEND, and
LISTBC processing

If one of the exits obtains a system resource, you must write a termination exit to
free the resource before the command or subcommand processor completes its
processing.

Environment
OPERATOR SEND Exits

v State: Supervisor
v Key: 0
v AMODE(31), RMODE(ANY)
v Not APF-authorized

SEND and LISTBC Exits
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)
v APF-authorized

Restrictions and Limitations
You can use the different initialization and termination exits whether or not you use
user logs to store messages. However, the other exits are specifically designed to
be used only if your installation uses user logs. For more information about when
the exits receive control, see “Overview of When the SEND and OPERATOR SEND
Exits Receive Control” on page 345 and “Overview of When the LISTBC Exits
Receive Control” on page 345.

Installing the Exits
You must name the exits as follows:

SEND Exits
Initialization IKJEESX0
Pre-display IKJEESX1
Pre-save IKJEESX2
Failure IKJEESX3
Termination IKJEESX4

OPERATOR SEND Exits
Initialization IEEVSNX0
Pre-display IEEVSNX1
Pre-save IEEVSNX2
Failure IEEVSNX3
Termination IEEVSNX4

LISTBC Exits
Initialization IKJEESX5

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 363

Pre-display IKJEESX6
Pre-list IKJEESX7
Pre-read IKJEESX8
Pre-allocate IKJEESX9
Failure IKJEESXA
Termination IKJEESXB

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The SEND and LISTBC exits can reside in:
v The link pack area (LPA)
v LNKLST

The OPERATOR SEND exits can reside in:
v The link pack area (LPA)
v LNKLST

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
The SEND, OPERATOR SEND, and LISTBC exits give you flexibility in customizing
how your users send, store, and retrieve messages. You can use the various
initialization and termination exits even if you store messages in and retrieve
messages from the broadcast data set. If you use separate user logs, all of the
exits are useful for customizing the use of these logs.

The following topics provide an overview of how you can use each of the exits and
give some examples of using the exits to perform specific tasks.

Overview of Using Each Exit
The different kinds of processing you can perform in each exit are described below.

SEND, OPERATOR SEND, and LISTBC Initialization Exits: You can use the
various initialization exits even if you do not use user logs. If you use user logs, you
use the initialization exits to initialize the environment for the other SEND,
OPERATOR SEND, and LISTBC exits.

You can use an initialization exit to:
v Restrict certain users from using a command
v Change the operands a user specifies on the command
v Restrict certain users from storing messages
v Restrict users from sending messages to certain users
v Ensure that users receive NOTICES and MAIL when they log on to TSO/E
v Prevent users from receiving NOTICES, MAIL, or both when they log on to

TSO/E
v Change the installation defaults to customize SEND, OPERATOR SEND, and

LISTBC processing for individual users

You can use the initialization exits to change the installation defaults in the copy of
the SEND PARMLIB control block. By doing this, you can customize the use of user
logs and the broadcast data set to store messages.

SEND and OPERATOR SEND Pre-Display Exits: The pre-display exit receives
control before SEND displays the message to the target user. You can use a
pre-display exit to format the message. For example, the exit can:

Writing Exits for SEND, ..., LISTBC

364 z/OS V1R4.0 TSO/E Customization

v Add diagnostic information to the message, such as the name of an ISPF panel

v Reformat the message to provide support for special features of certain output
devices, such as graphics and recording attachments

The exit must not change the SEND message it receives (parameter entry 11).
However, the exit can return a new SEND message to the SEND command
(subcommand) processor. To return a new SEND message, the exit can:

v Obtain storage for a new SEND message

v Build the new SEND message

v Update the key, length, and data fields for the new SEND message (parameter
entry 12) as follows:

Key X'02'

Length the length of the new SEND message

Data the address of the new SEND message

v Set a return code of 0 and return to the SEND command (subcommand)
processor.

The exit can display the message itself and set a return code of 4, which prevents
the SEND command processor from displaying the message. It can also change the
target user IDs so that SEND displays messages only for certain users.

Note: This exit does not change the target user IDs from one user to ALL users or
from ALL users to one user. To change the target user IDs from ALL users
or to ALL users, see the SEND subcommand of OPERATOR in z/OS TSO/E
System Programming Command Reference.

SEND and OPERATOR SEND Pre-Save Exits: The pre-save exit receives control
before SEND stores the message in the user log. You can use the exit to change
the name of the data set in which SEND stores the message by changing the
EESCB_LOGNAME in the copy of the control block.

You can prevent SEND from storing the message by setting a return code of 4. For
example, you may not want certain users to store messages. You may also want to
perform your own file I/O. The exit can open the user log, store the message, close
the user log, and then return control to SEND with a return code of 4.

You can use the SEND pre-save exits with the LISTBC pre-read exit to process the
message. The SEND pre-save exit can change the message or add information to it
and then the LISTBC pre-read exit can decode the added information. For example,
the SEND pre-save exit can add sequence numbers to messages that SEND
stores. The LISTBC pre-read exit can then sort the messages sequentially for
retrieval. The SEND pre-save exit can compress the message before SEND stores
it. The LISTBC pre-read exit can decompress the message before the message is
displayed to the user.

You can also use the pre-save exit to:

v Change the target user IDs so that SEND stores messages only for certain users

v Return a different message to the SEND command (subcommand) processor
using the “new SEND message” parameter entry (parameter entry 12)

LISTBC Pre-List Exit: The pre-list exit receives control before LISTBC associates
(allocates) the user log data set name to a ddname and opens the user log. You
can use the LISTBC pre-list exit to change the name of the user log.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 365

You can also use the pre-list exit with the LISTBC pre-read exit to perform your own
file I/O. The pre-list exit can open the log data set.

LISTBC Pre-Allocate Exit: Use the pre-allocate exit to allocate the user log data
set instead of having LISTBC perform the allocation. If LISTBC allocates the user
log, it uses the following data set attributes for both sequential data sets and
members of a PDS:

RECFM fixed-blocked

LRECL 150

BLKSIZE 1500

Primary tracks 1

Secondary tracks 2

If the MSGPROTECT operand is set to ON, the following data set attributes are
used:

LRECL 232

BLKSIZE 2320

Primary tracks 1

Secondary tracks 2

For members of a PDS, LISTBC uses a value of 20 for the number of directory
blocks.

If you require different allocation values for the user log, use the pre-allocate exit to
allocate the data set. SEND and LISTBC require that the record format specify
fixed-length records. Note that the maximum LRECL you can define is 150.
However, with MSGPROTECT set to ON the maximum LRECL you can define is
232.

LISTBC Pre-Read Exit: The pre-read exit receives control after LISTBC opens the
user log and before LISTBC reads the first message. You can use the exit to
provide your own file I/O. The pre-read exit receives control for each message that
exists in the data set for the user. When the exit receives control, it can:

v Read the message

v Return the message to LISTBC in the LISTBC message buffer (parameter entry
11). The exit updates the key, length, and data fields for the LISTBC message
buffer as follows:

Key X'02'

Length the length of the message

Data the address of the message

v Set a return code of 4 and return control to the LISTBC command processor

When the exit finishes reading all of the messages for the user, it can set a return
code of 8 (EOF) and return control to LISTBC. The exit can also process a special
departmental-type data set and then set a return code of 0 to allow LISTBC to
continue processing the user log.

Writing Exits for SEND, ..., LISTBC

366 z/OS V1R4.0 TSO/E Customization

You can also use the LISTBC pre-read exit with the SEND and OPERATOR SEND
pre-save exits to process the message. The SEND or OPERATOR SEND pre-save
exit can change the message before SEND stores it. For example, the pre-save exit
can:
v Add sequence numbers to the message
v Compress the message

The LISTBC pre-read exit can then:
v Sort the messages sequentially for retrieval
v Decompress the message before it is displayed to the user

LISTBC Pre-Display Exit: The pre-display exit receives control before LISTBC
displays the message to the user. You can use the exit to format the message
before LISTBC displays it. For example, the exit can:

v Add information to the message

v Reformat the message to provide support for special features of certain output
devices, such as graphics and recording attachments

The exit must not change the LISTBC message it receives (parameter entry 11).
However, the exit can return a new message to the LISTBC command processor.
To return a new message, the exit can:

v Obtain storage for a new message

v Build the new message

v Update the key, length, and data fields for the new LISTBC message (parameter
entry 12) as follows:

Key X'02'

Length the length of the new LISTBC message

Data the address of the new LISTBC message

v Set a return code of 0 and return to the LISTBC command processor

The pre-display exit can prevent LISTBC from displaying the message by using a
return code of 4. The exit can also display the message itself and then set a return
code of 4 so that LISTBC does not display the message.

SEND, OPERATOR SEND, and LISTBC Failure Exits: The failure exits receive
control whenever the command (subcommand) processor detects an I/O error on
the user log data set when:
v Opening or closing the user log
v Reading a message from the user log
v Storing a message in the user log

You can use the failure exits to recover from an I/O error.

SEND, OPERATOR SEND, and LISTBC Termination Exits: The termination exits
receive control just before the command (subcommand) completes processing. You
can use the termination exits to perform any clean-up activities or special
processing before command processing ends. If any of the other SEND,
OPERATOR SEND, or LISTBC exits obtain storage for a system resource, you
must provide a corresponding termination exit to free the storage.

You can also use a termination exit with the initialization exit to calculate the
approximate amount of time it takes the command to complete its processing.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 367

Examples of How to Customize SEND, OPERATOR SEND, and
LISTBC Processing
The following describes some ways you can use the SEND, OPERATOR SEND,
and LISTBC exits to customize command processing.

v Restrict certain users from using the SEND or LISTBC commands or the
OPERATOR SEND subcommand

The initialization exit can check the user ID and decide, based on your own
criteria, to cancel the command. The exit can set a return code of 16 and return
to the command or subcommand processor. It can also set the appropriate bit in
the copy of the SEND PARMLIB control block to prevent an individual user from
issuing the command. For example, you can use the USERSEND or
OPERSEND bits in the control block to inactivate the SEND command or the
OPERATOR SEND subcommand for that user.

v Change the operands the user specified on the command

For various reasons, you may want to change the operands a user specified. For
example, you may want to restrict certain users from using the SEND command
to:
– Send messages to certain users
– Store messages

For the OPERATOR SEND subcommand, you may want only certain users to
list, delete, or store notices in the broadcast data set.

To change the operands a user specified on the command, use the initialization
exit. The exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command the user issued

– Obtain storage for a new command buffer

– Build the new command buffer

– Update the key, length, and data fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the command or subcommand
processor

The exit must not change the command buffer it receives. It must build a new
command buffer and return the address of the new command buffer to the
invoking command. For more information about the command buffer, see
“Command Buffer” on page 38.

Note: The format of the command buffer for the SEND subcommand of the
OPERATOR command is different from the command buffer for other
command processors. For more information, see “Parameter Descriptions
for the OPERATOR SEND Exits” on page 352.

You must also write a termination exit to free the storage the initialization exit
obtains for the new command buffer.

v Ensure that users receive your installation’s notices and their messages (mail)
when they log on to TSO/E

Writing Exits for SEND, ..., LISTBC

368 z/OS V1R4.0 TSO/E Customization

When users log on to TSO/E, LISTBC invokes the initialization exit. The exit
receives LISTBC indicator flags that indicate whether the user specified
NOTICES, NONOTICES, MAIL, or NOMAIL. The initialization exit can check the
bit settings of the flags and change them so that LISTBC displays any notices
and mail. For more information about the LISTBC indicator flags, see Table 55 on
page 357.

v Allocate a user log data set

If you are using user logs and a user either issues the LISTBC command or logs
on and specifies MAIL, LISTBC determines whether the user’s user log has been
allocated. If the log data set has not been allocated, the LISTBC command
processor allocates it. LISTBC allocates both sequential data sets and members
of a PDS with the following data set attributes:

LRECL 150

BLKSIZE 1500

Primary tracks 1

Secondary tracks 2

If the MSGPROTECT operand is set to ON, the following data set attributes are
used:

LRECL 232

BLKSIZE 2320

Primary tracks 1

Secondary tracks 2

For members of a PDS, LISTBC uses a value of 20 for the number of directory
blocks.

If the default attributes that LISTBC uses are unsuitable for some or all of your
installation’s users, use the LISTBC pre-allocate exit to allocate the user log data
set. The pre-allocate exit can allocate the user log, set a return code of 4, and
return to the LISTBC command processor. The return code of 4 indicates to
LISTBC that it should not allocate the user log.

If you allocate a user log as a member of a PDS, consider the LRECL you use
for the PDS. You must ensure that the LRECL is adequate to prevent messages
from being truncated. This is particularly important if you use the exits to append
information to messages that are stored. However, the LRECL of the PDS must
not exceed 150. If the MSGPROTECT operand is ON, the LRECL of the PDS
must not exceed 232.

Processing Messages Sent to the System Operator
Your TSO/E execs and CLISTs can send messages to the system operator by
issuing the SEND command.If you specify a message identifier at the beginning of
the message text, you can use SYS1.PARMLIB(MPFLSTxx) to process these
messages. To process a message sent by the SEND command, a plus sign (+)
must be placed before the message identifier when you specify it in MPFLSTxx (for
example, “+MSG001I”). For more information on controlling message processing
through MPFLSTxx, see z/OS MVS Initialization and Tuning Guide and z/OS MVS
Initialization and Tuning Reference.

Writing Exits for SEND, ..., LISTBC

Chapter 34. Customizing How Users Send and Retrieve Messages 369

Writing Exits for SEND, ..., LISTBC

370 z/OS V1R4.0 TSO/E Customization

Chapter 35. Customizing the TEST Command

Adding TEST Subcommands and Command Processors 372
Writing a Subcommand of TEST 372
Defining a Command or Subcommand to TEST 372

Writing Exits for the TEST Command 374
Functional Description . 374
TSO/E-Supplied Exits . 374
Entry Specifications. 375
Parameter Descriptions for the Initialization Exit 375
Parameter Descriptions for the Termination Exit 375
Return Specifications . 375
Programming Considerations 376
Possible Uses. 377

Writing Exits for Subcommands of the TEST Command 377
Functional Description . 377
TSO/E-Supplied Exits . 378
Entry Specifications. 378
Parameter Descriptions for the Initialization Exit 378
Parameter Descriptions for the Termination Exit 379
Return Specifications . 380
Programming Considerations 381
Possible Uses. 382

Users can invoke the TEST command to test unauthorized assembler programs.
This includes testing APPC/MVS transaction programs written in assembler
language. This chapter describes how you can customize TEST command
processing for your users. For information about how to customize the testing of
authorized assembler programs, see Chapter 36, “Customizing the TESTAUTH
Command” on page 383.

You can customize the TEST command in several ways:

v You can supply unauthorized installation-written subcommands of the TEST
command, and unauthorized installation-written command processors to be
invoked under TEST. You must define those subcommands and command
processors to TEST, using CSECT IKJEGSCU or member IKJTSOxx in
SYS1.PARMLIB.

v You can write exit routines to tailor the processing of the TEST command and its
subcommands.

Writing Exits for the TEST Command
TSO/E provides the following exits for the TEST command and TEST
subcommands:
v IKJEGMIE -- Initialization exit for the TEST command
v IKJEGMTE -- Termination exit for the TEST command
v IKJEGCIE -- Initialization exit for TEST subcommands
v IKJEGCTE -- Termination exit for TEST subcommands

Using the TEST exits, you can:

v Restrict certain users from using the TEST command or TEST
subcommands.

v Change the operands a user specifies on the command or
subcommands. For example, you can correct a user’s errors or restrict
users from using certain operands.

© Copyright IBM Corp. 1988, 2002 371

For more information about the TEST command exits, see “Writing Exits for
the TEST Command” on page 374. For more information about the TEST
subcommand exits, see “Writing Exits for Subcommands of the TEST
Command” on page 377.

Adding TEST Subcommands and Command Processors
TSO/E supplies many subcommands for the TEST command, and many commands
that can be invoked under TEST. If you need additional testing functions, you can
write your own command processors or subcommand processors for use with
TEST. You must first write the command or subcommand processor itself, and then
define it to the TEST command.

z/OS TSO/E Programming Guide describes how to write a command processor or
subcommand processor. To write a command processor to be invoked under TEST,
follow the general procedures in that document; there are no special procedures. To
write a subcommand of TEST, however, you must follow the special procedures
described below in Writing a Subcommand of TEST.

Writing a Subcommand of TEST
The steps for writing a subcommand processor are listed in z/OS TSO/E
Programming Guide. The steps for writing a TEST subcommand differ only in the
first and last steps: accessing parameters and passing return codes.

Accessing Parameters
Unlike other commands or subcommands, TEST subcommands do not access the
command processor parameter list (CPPL). Instead, TEST subcommands begin by
accessing the TEST communication table (TCOMTAB).

When a TEST subcommand receives control, register 9 points to the TCOMTAB. In
the TCOMTAB, significant fields for TEST subcommands are:

v The INBUF field at decimal offset 120, which points to a subcommand buffer
passed from TEST

v The TSTUPT field at decimal offset 92, which points to the UPT

v The TSTECT field at decimal offset 96, which points to the ECT

v The TPLPTR field at decimal offset 80, which points to the TEST parameter list
(TPL). The TPL contains pointers to other information, including the PSCB.

Those fields of the TCOMTAB point to the same information that other
subcommands would obtain from the CPPL.

Return Codes from TEST Subcommands
TEST subcommands must return control to the TEST command with register 15 set
to a return code of zero. Any other return codes cause unpredictable results.

Defining a Command or Subcommand to TEST
After you have written a command processor to be invoked under TEST, or a
subcommand of TEST, you must define it as such to the TEST command.

To define installation-written subcommands and command processors to TEST, you
can use the CSECT IKJEGSCU or member IKJTSOxx of SYS1.PARMLIB. With
IKJTSOxx, you avoid having to update, reassemble and link-edit the CSECT, and
you can update or list the subcommands and command processors dynamically
using the PARMLIB command.

372 z/OS V1R4.0 TSO/E Customization

The following topics describe how to use IKJTSOxx or CSECT IKJEGSCU.

Using SYS1.PARMLIB Member IKJTSOxx
To define the TEST subcommands or command processors in IKJTSOxx, do the
following:

v If you have not already done so, copy sample member IKJTSO00 from
SYS1.SAMPLIB to SYS1.PARMLIB. You may have already copied IKJTSO00 to
define other installation defaults.

v You can create alternative members in SYS1.PARMLIB using the IKJTSOxx
naming convention.

v Edit the member in SYS1.PARMLIB to contain the appropriate TEST
subcommands and command processors for your installation.

In IKJTSOxx, include the TEST statement with the following keyword parameters
and their subfields:

TSOCMD specifies installation-written command processors that can be
invoked under TEST at your installation. IBM-supplied command
processors need not be included.

SUBCMD specifies installation-written TEST subcommands, with each
subcommand represented by its name and entry point, separated
by commas and enclosed in parentheses.

The following example shows how you can specify the TEST command information
in SYS1.PARMLIB member IKJTSOxx:
TEST TSOCMD(COMMAND1, /* Installation command 1 */ +

COMMAND2, /* Installation command 2 */ +
COMMAND3) /* Installation command 3 */ +

+
SUBCMD((SCM1,LOAD1), /* Installation subcommand 1 */ +

(SCM2,LOAD2), /* Installation subcommand 2 */ +
(SCM3,LOAD3)) /* Installation subcommand 3 */

The sample member IKJTSO00 in SYS1.SAMPLIB contains no TEST command
information, because that information is unique for each installation. Use the
example above as a guide for specifying TEST information for your installation.

You can use the PARMLIB command to dynamically list or update the
installation-written subcommands and command processors defined to TEST. For
information about using the PARMLIB command, see z/OS TSO/E System
Programming Command Reference.

Using CSECT IKJEGSCU
If you choose not to use IKJTSOxx, you can use CSECT IKJEGSCU to define
installation-written subcommands of TEST and command processors that can be
invoked under TEST. To use IKJEGSCU, you must not have SYS1.PARMLIB
member IKJTSOxx nor use the PARMLIB command. If you update IKJEGSCU, you
must assemble it, link-edit it into load module TEST, and refresh the LLA before the
updates take effect.

Figure 68 shows the format of an entry in IKJEGSCU. IKJEGSCU allows one entry
for each TEST subcommand and command processor that can be invoked under
TEST. The entries must include:
v Length of the command or subcommand’s name
v Name of the command or subcommand
v Length of an abbreviation for the name
v Abbreviation for the name

Adding TEST Subcommands and Command Processors

Chapter 35. Customizing the TEST Command 373

v Name of the load module
v ID

The format of an entry is shown below.

The abbreviation for the subcommand name is optional. The other entries are
required. Subcommands must have unique IDs in the range 34-127. Command
processors must have unique IDs in the range 145-255. Entries in the CSECT can
be in any order, regardless of ID number.

Writing Exits for the TEST Command

Functional Description
Users issue the TEST command to test assembler programs in an unauthorized
state. The TEST command lets the user trace a program’s execution and diagnose
possible errors. Users can issue the TEST command to debug active programs, or
they can execute programs under the TEST command to test the programs before
putting them into production. For more information about using TEST, see z/OS
TSO/E Programming Guide. For information about TEST and its operands, see
z/OS TSO/E Command Reference.

TSO/E provides an initialization exit and a termination exit for the TEST command.
You can use the exits to customize TEST processing for your users. The
initialization exit receives control before the TEST command invokes the parse
service routine to parse the command. The termination exit receives control just
before the TEST command processor completes processing.

If the initialization exit returns successfully to the TEST command processor and
TEST processing itself abends, the TEST command processor invokes the
termination exit before it terminates.

You can use the initialization exit to change the operands that users specify on the
command or correct user errors when they issue the command. You can use the
termination exit to perform clean-up or special processing prior to TEST command
completion. Depending on the processing your initialization exit performs, you may
not need a corresponding termination exit.

The following highlights some ways you can use the TEST exits. For more
information about how you can use the exits, see “Possible Uses” on page 377.
v Restrict certain users from using the TEST command
v Correct a user’s errors on the TEST command
v Change the operands a user specifies on the command

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the TEST initialization and
termination exits.

1 Byte M Bytes 1 Byte N Bytes 8 Bytes 1 Byte

LL
M

LL
NName ABBR Load Name ID

0 1 M+1 M+2 M+N+2 M+N+10

Figure 68. Format of Entries in IKJEGSCU

Adding TEST Subcommands and Command Processors

374 z/OS V1R4.0 TSO/E Customization

Entry Specifications
For the TEST initialization and termination exits, the contents of the registers on
entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The TEST initialization exit receives the address of the standard exit parameter list.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. The initialization exit does not receive any exit-dependent data.

Parameter Descriptions for the Termination Exit
The TEST termination exit receives the address of the standard exit parameter list.
For a description of this parameter list, see “TSO/E Standard Exit Parameter List”
on page 35. The termination exit does not receive any exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the TEST command processor, TEST passes the values of
these parameter entries to the termination exit. For more information about the
parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both TEST exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 62 shows the return codes that the TEST initialization and termination exits
support.

Table 62. Return Codes for the TEST Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. TEST processing continues.

12 Exit processing was unsuccessful. TEST issues an error message
to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TEST command processor. For more information about
the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. TEST terminates processing.

The TEST command processor does not display a message to the
user if the exit sets a return code of 16. Before the exit returns with
return code 16, it can display a message to the user, for example,
using PUTLINE.

Writing Exits for the TEST Command

Chapter 35. Customizing the TEST Command 375

If the exit returns an undefined return code, the TEST command processor
terminates without displaying a message to the user.

The termination exit receives control just before the completion of TEST processing.
Therefore, the TEST command processor may have already successfully tested the
unauthorized assembler program regardless of the return code the termination exit
returns.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable. The exits are not APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize TEST processing

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, if the initialization exit obtains storage to return a
new command buffer to the TEST command processor, you must provide a
termination exit to free the storage.

The initialization exit can change TEST operands using the command buffer. The
exit checks the command buffer it receives and determines whether to change any
operands. To change the operands, the exit must:
v Obtain storage for a new command buffer
v Build the new command buffer
v Update the key, length, and data fields for the new command buffer (parameter

entry 2)
v Set return code 0 and return control to TEST

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v Not APF-authorized

Installing the Exits
You must name the exits as follows:

Initialization IKJEGMIE

Termination IKJEGMTE

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST

Writing Exits for the TEST Command

376 z/OS V1R4.0 TSO/E Customization

v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the TEST exits are described below:

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the TEST command. The initialization exit receives the address of the command
buffer. It can change the operands the user specifies on the TEST command by
using a new command buffer. For example, the initialization exit can scan the
command buffer and correct any errors on the command.

To check the command buffer and change its contents, the initialization exit can:

v Scan the command buffer and decide, based on your own criteria, to change the
command the user issued

v Obtain storage for a new command buffer

v Build the new command buffer

v Update the key, length, and data fields for the new command buffer as follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

v Set a return code of 0 and return control to the TEST command processor

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to TEST.

For more information about the command buffer and the new command buffer, see
“TSO/E Standard Exit Parameter List” on page 35. For information about the format
of the command buffer, see “Command Buffer” on page 38.

Writing Exits for Subcommands of the TEST Command

Functional Description
The TEST command includes a number of subcommands that users can issue
while the TEST command is executing. For example, under the TEST command,
users can issue the LIST subcommand to display the contents of a virtual storage
area or registers, or the DELETE subcommand to delete a load module from virtual
storage. For more information about using TEST with subcommands, see z/OS
TSO/E Programming Guide. For information about TEST and its subcommands, see
z/OS TSO/E Command Reference.

TSO/E provides an initialization exit and a termination exit for the subcommands of
the TEST command. You can use the exits to customize TEST subcommand
processing for your users. The initialization exit receives control before the TEST
command invokes the subcommand. The termination exit receives control just
before the TEST subcommand completes processing.

If the initialization exit returns successfully to the TEST subcommand and the TEST
command processor itself abends, the TEST command processor invokes the
subcommand termination exit before ending.

Writing Exits for the TEST Command

Chapter 35. Customizing the TEST Command 377

You can use the subcommand initialization exit to change the operands that users
specify on the subcommand or correct user errors when they issue the
subcommand. You can use the termination exit to perform clean-up or special
processing prior to subcommand completion. Depending on the processing your
subcommand initialization exit performs, you may not need a corresponding
subcommand termination exit.

The following highlights some ways you can use the TEST subcommand exits. For
more information about how you can use the exits, see “Possible Uses” on
page 382.
v Restrict certain users from using one or more TEST subcommands
v Correct a user’s errors on a TEST subcommand
v Change the operands a user specifies on a subcommand
v Provide pseudo-operands that are equivalent to two or more operands of a TEST

subcommand

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the TEST subcommand
initialization and termination exits.

Entry Specifications
For the TEST subcommand initialization and termination exits, the contents of the
registers on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The TEST subcommand initialization exit receives the address of the standard exit
parameter list. For a description of this parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 69 on page 379 shows the exit-dependent data that the TEST subcommand
initialization exit receives beginning at offset +36 (decimal) in the parameter list.

Writing Exits for Subcommands of TEST Command

378 z/OS V1R4.0 TSO/E Customization

Subcommand Buffer Address (Parameter Entry 10)
This parameter entry contains the address of the buffer containing the text of
the entered subcommand and its keywords.

Alternate Buffer Address (Parameter Entry 11)
This parameter entry lets the exit return the address of an alternate buffer
containing a substitute subcommand.

Subcommand Exit Word (Parameter Entry 12)
This parameter entry lets the subcommand initialization exit return a word of
information (address or data) that is passed to the subcommand termination
exit.

Parameter Descriptions for the Termination Exit
The TEST subcommand termination exit receives the address of the standard exit
parameter list. For a description of this parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 70 shows the exit-dependent data that the TEST subcommand termination
exit receives beginning at offset +36 (decimal) in the parameter list.

Subcommand Buffer Address (Parameter Entry 10)
This parameter entry contains the address of the buffer containing the text of
the entered subcommand and its keywords.

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Parameter Entry's
Key, Length, and Data

00000002

00000000 00000004 00000000

00000000 00000004 00000000

Length of
buffer

Subcommand
buffer address

Figure 69. Exit-Dependent Data for the TEST Subcommand Initialization Exit

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Parameter Entry's
Key, Length, and Data

00000002
Length of
buffer

Subcommand
buffer address

00000000 00000004

00000000 00000004
Alternate
buffer address

Subcommand
exit word

Figure 70. Exit-Dependent Data for the TEST Subcommand Termination Exit

Writing Exits for Subcommands of TEST Command

Chapter 35. Customizing the TEST Command 379

Alternate Buffer Address (Parameter Entry 11)
This parameter entry contains the possible address of an alternate buffer set by
the subcommand initialization exit.

Subcommand Exit Word (Parameter Entry 12)
This parameter entry contains a possible word of information (address or data)
passed from the subcommand initialization exit.

Return Specifications
The contents of the registers on return for both TEST subcommand exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Subcommand Initialization Exit
Table 63 shows the return codes that the TEST subcommand initialization exit
supports.

Table 63. Return Codes for the TEST Subcommand Initialization Exit

Return Code
(Decimal)

Description

0 Exit processing was successful. TEST processing continues.

4 Exit processing was unsuccessful. The subcommand terminates
and a message with a reason code is issued.

8 Exit processing was unsuccessful. The subcommand terminates
without a message.

12 Exit processing was unsuccessful. TEST issues an error message
to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TEST command processor. For more information about
the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. TEST terminates processing.

The TEST command processor does not display a message to the
user if the exit sets a return code of 16. Before the exit returns with
return code 16, it can display a message to the user, for example,
using PUTLINE.

If the exit returns an undefined return code, the TEST command processor
terminates without displaying a message to the user.

Return Codes for the Subcommand Termination Exit
Table 64 shows the return codes that the TEST subcommand termination exit
supports.

Table 64. Return Codes for the TEST Subcommand Termination Exit

Return Code
(Decimal)

Description

0 Exit processing was successful. TEST processing continues.

Writing Exits for Subcommands of TEST Command

380 z/OS V1R4.0 TSO/E Customization

Table 64. Return Codes for the TEST Subcommand Termination Exit (continued)

Return Code
(Decimal)

Description

12 Exit processing was unsuccessful. TEST issues an error message
to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TEST command processor. For more information about
the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. TEST terminates processing.

The TEST command processor does not display a message to the
user if the exit sets a return code of 16. Before the exit returns with
return code 16, it can display a message to the user, for example,
using PUTLINE.

If the exit returns an undefined return code, the TEST command processor
terminates without displaying a message to the user.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable. The exits are not APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the subcommand initialization exit performs requires
a termination exit to perform clean-up activities

v How you use the exits to customize TEST subcommand processing

If the subcommand initialization exit obtains a system resource, you must write a
subcommand termination exit to free the resource. For example, if the initialization
exit obtains storage to return a new subcommand buffer to the TEST command
processor, you must provide a subcommand termination exit to free the storage.

The initialization exit can change subcommand operands using the subcommand
buffer. The exit checks the subcommand buffer it receives and determines whether
to change any operands. To change the operands, the exit must:
v Obtain storage for a new subcommand buffer
v Build the new subcommand buffer
v Update the key, length, and data fields for the new subcommand buffer

(parameter entry 11)
v Set return code 0 and return control to TEST

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)

Writing Exits for Subcommands of TEST Command

Chapter 35. Customizing the TEST Command 381

v Not APF-authorized

Installing the Exits
You must name the TEST subcommand exits as follows:

Initialization IKJEGCIE

Termination IKJEGCTE

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the TEST subcommand exits are described below:

v Change the operands that the user specifies on the subcommand

You can use the initialization exit to change the operands that users specify on
the TEST subcommand. The initialization exit receives the address of the
subcommand buffer. It can change the operands the user specifies on the TEST
subcommand by using a new subcommand buffer. For example, the initialization
exit can scan the subcommand buffer and correct any errors on the
subcommand.

To check the subcommand buffer and change its contents, the initialization exit
can:

– Scan the subcommand buffer and decide, based on your own criteria, to
change the command the user issued

– Obtain storage for a new subcommand buffer

– Build the new subcommand buffer

– Update the key, length, and data fields for the new subcommand buffer as
follows:

Key X'02'

Length the length of the new subcommand buffer

Data the address of the new subcommand buffer

– Set a return code of 0 and return control to the TEST command processor.

The exit must not change the subcommand buffer it receives. It must create a
new subcommand buffer and return the address of the new subcommand buffer
to TEST.

For more information about the subcommand buffer and the new subcommand
buffer, see “TSO/E Standard Exit Parameter List” on page 35. For information
about the format of the subcommand buffer, see “Command Buffer” on page 38.

Writing Exits for Subcommands of TEST Command

382 z/OS V1R4.0 TSO/E Customization

Chapter 36. Customizing the TESTAUTH Command

Adding TESTAUTH Subcommands and Command Processors 384
Writing Exits for the TESTAUTH Command 384

Functional Description . 384
TSO/E-Supplied Exits . 385
Entry Specifications. 385
Parameter Descriptions for the Initialization Exit 385
Parameter Descriptions for the Termination Exit 386
Return Specifications . 386
Programming Considerations 387
Possible Uses. 388

Writing Exits for Subcommands of the TESTAUTH Command 389
Functional Description . 389
TSO/E-Supplied Exits . 389
Entry Specifications. 389
Parameter Descriptions for the Initialization Exit 390
Parameter Descriptions for the Termination Exit 390
Return Specifications . 391
Programming Considerations 392
Possible Uses. 393

Users can invoke the TESTAUTH command to test authorized assembler programs.
This includes testing APPC/MVS transaction programs written in assembler
language. This chapter describes how you can customize TESTAUTH command
processing for your users. For information about how to customize the testing of
unauthorized programs, see Chapter 35, “Customizing the TEST Command” on
page 371.

Before people at your installation can use the TESTAUTH command, you must add
TESTAUTH to the table of authorized commands. Chapter 10, “Specifying
Authorized Commands/Programs, and Commands Not Supported in the
Background” on page 153 describes how to maintain and update the table.

You should also limit individual users from using the TESTAUTH command. You can
limit users in one of the following ways:

v Using TESTAUTH initialization exit routine IKJEGAUI. When a user issues
TESTAUTH, IKJEGAUI can check the user-ID and issue a return code to let the
user continue, to cancel the TESTAUTH command, or to invoke authority
checking with RACF.

v Using RACF. You can use the RACF RDEFINE command to define TESTAUTH
as a RACF resource belonging to the TSOAUTH RACF class. Then give selected
users access to the TESTAUTH resource using the RACF PERMIT command.
Note that users do NOT require a TSO segment in order to gain access to the
TESTAUTH profile in the TESTAUTH class.

In addition to controlling access to the TESTAUTH command, you can customize
the TESTAUTH command in several ways:

v You can write exits to tailor or monitor the processing of the TESTAUTH
command or that of its subcommands.

v You can supply installation-written subcommands of the TESTAUTH command,
and installation-written command processors to be invoked under TESTAUTH.

© Copyright IBM Corp. 1988, 2002 383

You must define those subcommands and command processors to TESTAUTH,
using member IKJTSOxx in SYS1.PARMLIB.

Writing Exits for the TESTAUTH Command
TSO/E provides the following exits for the TESTAUTH command and
TESTAUTH subcommands:
v IKJEGAUI -- Initialization exit for the TESTAUTH command
v IKJEGAUT -- Termination exit for the TESTAUTH command
v IKJEGASI -- Initialization exit for TESTAUTH subcommands
v IKJEGAST -- Termination exit for TESTAUTH subcommands

Using the TESTAUTH exits, you can:

v Restrict certain users from using the TESTAUTH command or
TESTAUTH subcommands.

v Change the operands a user specifies on the command or
subcommands. For example, you can correct a user’s errors or restrict
users from using certain operands.

For more information about the TESTAUTH command exits, see “Writing
Exits for the TESTAUTH Command”. For more information about the
TESTAUTH subcommand exits, see “Writing Exits for Subcommands of the
TESTAUTH Command” on page 389.

Adding TESTAUTH Subcommands and Command Processors
TSO/E supplies many subcommands for the TESTAUTH command, and many
commands that can be invoked under TESTAUTH. If you need additional testing
functions, you can write your own command processors or subcommand processors
for use with TESTAUTH. You must first write the command or subcommand
processor itself, and then define it to the TESTAUTH command. To do so, follow the
same procedures described in “Adding TEST Subcommands and Command
Processors” on page 372. When you define a command or subcommand to TEST in
SYS1.PARMLIB member IKJTSOxx or in CSECT IKJEGSCU, the subcommand or
command is available to both TEST and TESTAUTH.

If you want to restrict a subcommand to TEST or TESTAUTH, you can use the
subcommand’s initialization exit to check its environment and cancel the
subcommand if invoked under the wrong command.

Writing Exits for the TESTAUTH Command

Functional Description
Users issue the TESTAUTH command to test assembler programs that run in an
authorized state. The TESTAUTH command lets the user trace a program’s
execution and diagnose possible errors. Users can execute programs under the
TESTAUTH command to test the programs before putting them into production. For
more information about using TESTAUTH, see z/OS TSO/E Programming Guide.
For information about TESTAUTH and its operands, see z/OS TSO/E System
Programming Command Reference.

TSO/E provides an initialization exit and a termination exit for the TESTAUTH
command. You can use the exits to customize TESTAUTH processing for your
users. The initialization exit receives control before the TESTAUTH command

384 z/OS V1R4.0 TSO/E Customization

invokes the parse service routine to parse the command. The termination exit
receives control just before the TESTAUTH command processor completes
processing.

If the initialization exit returns successfully to the TESTAUTH command processor
and TESTAUTH processing itself abends, the TESTAUTH command processor
invokes the termination exit before it terminates.

You can use the initialization exit to change the operands that users specify on the
command or correct user errors when they issue the command. You can use the
termination exit to perform clean-up or special processing prior to TESTAUTH
command completion. Depending on the processing your initialization exit performs,
you may not need a corresponding termination exit.

The following highlights some ways you can use the TESTAUTH exits. For more
information about how you can use the exits, see “Possible Uses” on page 388.
v Restrict certain users from using the TESTAUTH command
v Correct a user’s errors on the TESTAUTH command
v Change the operands a user specifies on the command
v Provide pseudo-operands that are equivalent to two or more TESTAUTH

operands

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the TESTAUTH initialization and
termination exits.

Entry Specifications
For the TESTAUTH initialization and termination exits, the contents of the registers
on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The TESTAUTH initialization exit receives the address of the standard exit
parameter list. For a description of this parameter list, see “TSO/E Standard Exit
Parameter List” on page 35.

Figure 71 on page 386 shows the exit-dependent data that the initialization exit
receives beginning at offset +36 (decimal) in the parameter list.

Writing Exits for the TESTAUTH Command

Chapter 36. Customizing the TESTAUTH Command 385

Authority Value (Parameter Entry 10)
This parameter (X'00' on entry) lets the exit return a value to indicate the user’s
authority to use the TESTAUTH command. On return from the exit, the possible
values are:

Value (hex) Meaning

0 Use RACF to verify the user’s authority

4 The user is authorized to use TESTAUTH

8 The user is not authorized to use TESTAUTH

Parameter Descriptions for the Termination Exit
The TESTAUTH termination exit receives the address of the standard exit
parameter list. For a description of this parameter list, see “TSO/E Standard Exit
Parameter List” on page 35. The termination exit does not receive any
exit-dependent data.

If the initialization exit returns a new command buffer or an exit-to-exit
communication word to the TESTAUTH command processor, TESTAUTH passes
the values of these parameter entries to the termination exit. For more information
about the parameter entries, see “TSO/E Standard Exit Parameter List” on page 35.

Return Specifications
The contents of the registers on return for both TESTAUTH exits must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 65 shows the return codes that the TESTAUTH initialization and termination
exits support.

Table 65. Return Codes for the TESTAUTH Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. TESTAUTH processing continues.

12 Exit processing was unsuccessful. TESTAUTH issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TESTAUTH command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Parameter Entry's

Key, Length, and Data

00000001 00000004 00000000

Figure 71. Exit-Dependent Data for the TESTAUTH Initialization Exit

Writing Exits for the TESTAUTH Command

386 z/OS V1R4.0 TSO/E Customization

Table 65. Return Codes for the TESTAUTH Initialization and Termination Exits (continued)

Return Code
(Decimal)

Description

16 Exit processing was unsuccessful. TESTAUTH terminates
processing.

The TESTAUTH command processor does not display a message
to the user if the exit sets a return code of 16. Before the exit
returns with return code 16, it can display a message to the user,
for example, using PUTLINE.

If the exit returns an undefined return code, the TESTAUTH command processor
terminates without displaying a message to the user.

The termination exit receives control just before the completion of TESTAUTH
processing. Therefore, the TESTAUTH command processor may have already
successfully tested the authorized assembler program regardless of the return code
the termination exit returns.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the initialization exit performs requires a termination
exit to perform clean-up activities

v How you use the exits to customize TESTAUTH processing

If the initialization exit obtains a system resource, you must write a termination exit
to free the resource. For example, if the initialization exit obtains storage to return a
new command buffer to the TESTAUTH command processor, you must provide a
termination exit to free the storage.

The initialization exit can change TESTAUTH operands using the command buffer.
The exit checks the command buffer it receives and determines whether to change
any operands. To change the operands, the exit must:
v Obtain storage for a new command buffer
v Build the new command buffer
v Update the key, length, and data fields for the new command buffer (parameter

entry 2)
v Set return code 0 and return control to TESTAUTH

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the command
buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v APF-authorized

Writing Exits for the TESTAUTH Command

Chapter 36. Customizing the TESTAUTH Command 387

Restrictions and Limitations
The TESTAUTH exits must reside in an APF-authorized library.

Installing the Exits
You must name the exits as follows:

Initialization IKJEGAUI

Termination IKJEGAUT

Link-edit each exit as a separate load module. The exits must reside in an
APF-authorized library. You can link-edit the exits in a separate load library that is
exclusively for TSO/E exits or in an existing library containing other routines. The
exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the TESTAUTH exits are described below.

v Restrict use of the TESTAUTH command to certain users

The initialization exit can check the user ID and decide, based on your own
criteria, to continue processing the TESTAUTH command or not. The exit can
return a value in parameter entry 10 in the parameter list (see Figure 71 on
page 386) to indicate that the user is authorized or not authorized to use the
command, or that the user’s RACF authority should be verified. If the user is not
authorized, TESTAUTH issues a message; otherwise processing continues.

v Change the operands that the user specifies on the command

You can use the initialization exit to change the operands that users specify on
the TESTAUTH command. The initialization exit receives the address of the
command buffer. It can change the operands the user specifies on the
TESTAUTH command by using a new command buffer. For example, the
initialization exit can scan the command buffer and correct any errors on the
command.

To check the command buffer and change its contents, the initialization exit can:

– Scan the command buffer and decide, based on your own criteria, to change
the command the user issued

– Obtain storage for a new command buffer

– Build the new command buffer

– Update the key, length, and data fields for the new command buffer as
follows:

Key X'02'

Length the length of the new command buffer

Data the address of the new command buffer

– Set a return code of 0 and return control to the TESTAUTH command
processor

The exit must not change the command buffer it receives. It must create a new
command buffer and return the address of the new command buffer to
TESTAUTH.

Writing Exits for the TESTAUTH Command

388 z/OS V1R4.0 TSO/E Customization

For more information about the command buffer and the new command buffer,
see “TSO/E Standard Exit Parameter List” on page 35. For information about the
format of the command buffer, see “Command Buffer” on page 38.

Writing Exits for Subcommands of the TESTAUTH Command

Functional Description
The TESTAUTH command includes a number of subcommands that users can
issue while the TESTAUTH command is executing. For example, under the
TESTAUTH command, users can issue the LIST subcommand to display the
contents of a virtual storage area or registers, or the DELETE subcommand to
delete a load module from virtual storage. For more information about using
TESTAUTH with subcommands, see z/OS TSO/E Programming Guide. For
information about TESTAUTH and its subcommands, see z/OS TSO/E System
Programming Command Reference.

TSO/E provides an initialization exit and a termination exit for the subcommands of
the TESTAUTH command. You can use the exits to customize TESTAUTH
subcommand processing for your users. The initialization exit receives control
before the TESTAUTH command invokes the subcommand. The termination exit
receives control just after the TESTAUTH subcommand completes processing.

If the initialization exit returns successfully to the TESTAUTH subcommand and the
TESTAUTH command processor itself abends, the TESTAUTH command processor
invokes the subcommand termination exit before ending.

You can use the subcommand initialization exit to change the operands that users
specify on the subcommand or correct user errors when they issue the
subcommand. You can use the termination exit to perform clean-up or special
processing prior to subcommand completion. Depending on the processing your
subcommand initialization exit performs, you may not need a corresponding
subcommand termination exit.

The following highlights some ways you can use the TESTAUTH subcommand
exits. For more information about how you can use the exits, see “Possible Uses”
on page 393.
v Restrict certain users from using the TESTAUTH subcommand
v Correct a user’s errors on the TESTAUTH subcommand
v Change the operands a user specifies on the subcommand
v Provide pseudo-operands that are equivalent to two or more operands of a

TESTAUTH subcommand

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the TESTAUTH subcommand
initialization and termination exits.

Entry Specifications
For the TESTAUTH subcommand initialization and termination exits, the contents of
the registers on entry are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Writing Exits for the TESTAUTH Command

Chapter 36. Customizing the TESTAUTH Command 389

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The TESTAUTH subcommand initialization exit receives the address of the standard
exit parameter list. For a description of this parameter list, see “TSO/E Standard
Exit Parameter List” on page 35.

Figure 72 shows the exit-dependent data that the TESTAUTH subcommand
initialization exit receives beginning at offset +36 (decimal) in the parameter list.

Subcommand Buffer Address (Parameter Entry 10)
This parameter entry contains the address of the buffer containing the text of
the entered subcommand and its keywords.

Alternate Buffer (Parameter Entry 11)
This parameter entry lets the exit return the address of an alternate buffer
containing a substitute subcommand.

Subcommand Exit Word (Parameter Entry 12)
This parameter entry lets the subcommand initialization exit return a word of
information (address or data) that is passed to the subcommand termination
exit.

Parameter Descriptions for the Termination Exit
The TESTAUTH subcommand termination exit receives the address of the standard
exit parameter list. For a description of this parameter list, see “TSO/E Standard
Exit Parameter List” on page 35.

Figure 73 on page 391 shows the exit-dependent data that the TESTAUTH
subcommand termination exit receives beginning at offset +36 (decimal) in the
parameter list.

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Parameter Entry's
Key, Length, and Data

00000002

00000000 00000004 00000000

00000000 00000004 00000000

Length of
buffer

Subcommand
buffer address

Figure 72. Exit-Dependent Data for the TESTAUTH Subcommand Initialization Exit

Writing Exits for Subcommands of TESTAUTH Command

390 z/OS V1R4.0 TSO/E Customization

Subcommand Buffer Address (Parameter Entry 10)
This parameter entry contains the address of the buffer containing the text of
the entered subcommand and its keywords.

Alternate Buffer (Parameter Entry 11)
This parameter entry contains the possible address of an alternate buffer set by
the subcommand initialization exit.

Subcommand Exit Word (Parameter Entry 12)
This parameter entry contains a possible word of information (address or data)
passed from the subcommand initialization exit.

Return Specifications
The contents of the registers on return for both TESTAUTH subcommand exits must
be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Subcommand Initialization Exit
Table 66 shows the return codes that the TESTAUTH subcommand initialization exit
supports.

Table 66. Return Codes for the TESTAUTH Subcommand Initialization Exit

Return Code
(Decimal)

Description

0 Exit processing was successful. TESTAUTH processing continues.

4 Exit processing was unsuccessful. The subcommand terminates
and a message with a reason code is issued.

8 Exit processing was unsuccessful. The subcommand terminates
without a message.

12 Exit processing was unsuccessful. TESTAUTH issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TESTAUTH command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

Key Length Data+0 +4 +8+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

+40

+44

Parameter Entry's
Key, Length, and Data

00000002
Length of
buffer

Subcommand
buffer address

00000000 00000004

00000000 00000004
Alternate
buffer address

Subcommand
exit word

Figure 73. Exit-Dependent Data for the TESTAUTH Subcommand Termination Exit

Writing Exits for Subcommands of TESTAUTH Command

Chapter 36. Customizing the TESTAUTH Command 391

Table 66. Return Codes for the TESTAUTH Subcommand Initialization Exit (continued)

Return Code
(Decimal)

Description

16 Exit processing was unsuccessful. TESTAUTH terminates
processing.

The TESTAUTH command processor does not display a message
to the user if the exit sets a return code of 16. Before the exit
returns with return code 16, it can display a message to the user,
for example, using PUTLINE.

If the exit returns an undefined return code, the TESTAUTH command processor
terminates without displaying a message to the user.

Return Codes for the Subcommand Termination Exit
Table 67 shows the return codes that the TESTAUTH subcommand termination exit
supports.

Table 67. Return Codes for the TESTAUTH Subcommand Termination Exit

Return Code
(Decimal)

Description

0 Exit processing was successful. TESTAUTH processing continues.

12 Exit processing was unsuccessful. TESTAUTH issues an error
message to the user and then terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TESTAUTH command processor. For more information
about the exit reason code, see “Exit Reason Code” on page 40.

16 Exit processing was unsuccessful. TESTAUTH terminates
processing.

The TESTAUTH command processor does not display a message
to the user if the exit sets a return code of 16. Before the exit
returns with return code 16, it can display a message to the user,
for example, using PUTLINE.

If the exit returns an undefined return code, the TESTAUTH command processor
terminates without displaying a message to the user.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, reusable, and APF-authorized.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

In some cases, you may not need to write a termination exit. This depends on:

v Whether the processing that the subcommand initialization exit performs requires
a termination exit to perform clean-up activities

v How you use the exits to customize TESTAUTH subcommand processing

If the subcommand initialization exit obtains a system resource, you must write a
subcommand termination exit to free the resource. For example, if the initialization

Writing Exits for Subcommands of TESTAUTH Command

392 z/OS V1R4.0 TSO/E Customization

exit obtains storage to return a new subcommand buffer to the TESTAUTH
command processor, you must provide a subcommand termination exit to free the
storage.

The initialization exit can change subcommand operands using the subcommand
buffer. The exit checks the subcommand buffer it receives and determines whether
to change any operands. To change the operands, the exit must:
v Obtain storage for a new subcommand buffer
v Build the new subcommand buffer
v Update the key, length, and data fields for the address of the new subcommand

buffer (parameter entry 11)
v Set return code 0 and return control to TESTAUTH

For more information about the parameter entries, see “TSO/E Standard Exit
Parameter List” on page 35. For more information about the format of the
subcommand buffer, see “Command Buffer” on page 38.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY), ASCMODE(PRIMARY)
v APF-authorized

Restrictions and Limitations
The TESTAUTH subcommand exits must reside in an APF-authorized library.

Installing the Exits
You must name the TESTAUTH subcommand exits as follows:

Initialization IKJEGASI

Termination IKJEGAST

Link-edit each exit as a separate load module. The exits must reside in an
APF-authorized library. You can link-edit the exits in a separate load library that is
exclusively for TSO/E exits or in an existing library containing other routines. The
exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
Some possible uses of the TESTAUTH subcommand exits are described below:

v Change the operands that the user specifies on the subcommand

You can use the initialization exit to change the operands that users specify on
the TESTAUTH subcommand. The initialization exit receives the address of the
subcommand buffer. It can change the operands the user specifies on the
TESTAUTH subcommand by using a new command buffer. For example, the
initialization exit can scan the subcommand buffer and correct any errors on the
subcommand.

To check the subcommand buffer and change its contents, the initialization exit
can:

– Scan the subcommand buffer and decide, based on your own criteria, to
change the subcommand the user issued

Writing Exits for Subcommands of TESTAUTH Command

Chapter 36. Customizing the TESTAUTH Command 393

– Obtain storage for a new subcommand buffer

– Build the new subcommand buffer

– Update the key, length, and data fields for the new subcommand buffer as
follows:

Key X'02'

Length the length of the new subcommand buffer

Data the address of the new subcommand buffer

– Set a return code of 0 and return control to the TESTAUTH command
processor.

The exit must not change the subcommand buffer it receives. It must create a
new subcommand buffer and return the address of the new subcommand buffer
to TESTAUTH. For more information about the subcommand buffer and the new
subcommand buffer, see “TSO/E Standard Exit Parameter List” on page 35. For
information about the format of the subcommand buffer, see “Command Buffer”
on page 38.

v Provide installation-defined pseudo-operands

You can provide pseudo-operands for your installation’s users that are equivalent
to two or more TESTAUTH subcommand operands. Providing pseudo-operands
makes it easier for users to issue the TESTAUTH subcommand. Users need not
remember several TESTAUTH subcommand operands. They can specify the
pseudo-operand. For example, you could associate a pseudo-operand named
SUB1 with four TESTAUTH subcommand operands. The initialization exit can
scan the subcommand buffer. If the exit finds the pseudo-operand SUB1, it can
replace SUB1 with the actual TESTAUTH subcommand operands and return a
new subcommand buffer.

Writing Exits for Subcommands of TESTAUTH Command

394 z/OS V1R4.0 TSO/E Customization

Chapter 37. Customizing TRANSMIT and RECEIVE

Writing Exits for the TRANSMIT and RECEIVE Commands 396
Functional Description . 397
TSO/E-Supplied Exits . 400
Entry Specifications. 400
Parameter Descriptions . 400
Return Specifications . 401
Programming Considerations 402

TRANSMIT and RECEIVE NAMES Data Set Pre-allocation Exit — INMCZ21R 404
Functional Description . 404
Parameter Descriptions for INMCZ21R 404

TRANSMIT Startup Exit — INMXZ01R or INMXZ01 407
Functional Description . 407
Parameter Descriptions for INMXZ01R. 407
Parameter Descriptions for INMXZ01 414

TRANSMIT Termination Exit — INMXZ02R or INMXZ02 416
Functional Description . 416
Parameter Descriptions for INMXZ02R. 416
Parameter Descriptions for INMXZ02 418

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03 419
Functional Description . 419
Parameter Descriptions for INMXZ03R. 419
Parameter Descriptions for INMXZ03 422

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R 425
Functional Description . 425
Parameter Descriptions for INMXZ21R. 425

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R. 428
Functional Description . 428
Parameter Descriptions for INMRZ01R 428
Parameter Descriptions for INMRZ01 431

RECEIVE Termination Exit — INMRZ02 or INMRZ02R. 432
Functional Description . 432
Parameter Descriptions for INMRZ02R 432
Parameter Descriptions for INMRZ02 434

RECEIVE Notification Exit — INMRZ04 or INMRZ04R 435
Functional Description . 435
Parameter Descriptions for INMRZ04R 435
Parameter Descriptions for INMRZ04 438

RECEIVE Acknowledgment Notification Exit — INMRZ05R 440
Functional Description . 440
Parameter Descriptions for INMRZ05R 440

RECEIVE Pre-acknowledgment Notification Exit — INMRZ06R. 443
Functional Description . 443
Parameter Descriptions for INMRZ06R 444

RECEIVE Data Set Pre-Processing Exit — INMRZ11 or INMRZ11R 448
Functional Description . 448
Parameter Descriptions for INMRZ11R. 448
Parameter Descriptions for INMRZ11 452

RECEIVE Data Set Post-Processing Exit — INMRZ12 or INMRZ12R 456
Functional Description . 456
Parameter Descriptions for INMRZ12R 456
Parameter Descriptions for INMRZ12 459

RECEIVE Data Set Decryption Exit — INMRZ13 or INMRZ13R 461
Functional Description . 461

© Copyright IBM Corp. 1988, 2002 395

Parameter Descriptions for INMRZ13R 461
Parameter Descriptions for INMRZ13 464

RECEIVE Post-Prompt Exit — INMRZ15R 467
Functional Description . 467
Parameter Descriptions for INMRZ15R 467

RECEIVE Log Data Set Pre-Allocation Exit — INMRZ21R 471
Functional Description . 471
Parameter Descriptions for INMRZ21R 472

Text Units and Text Unit Pointer Lists 474
Types of Text Units . 475

Format of Transmitted Data . 481
Control Record Formats . 482

Users use the TRANSMIT command to send information (a message) or a copy of
information (a data set), or both, to another user. Users use the RECEIVE
command to retrieve the data. For information about setting up the TRANSMIT and
RECEIVE environment, see Chapter 12, “Setting Up the TRANSMIT and RECEIVE
Environment” on page 163.

If RACF is installed, and if your installation has activated security label checking,
data sets and messages have security labels (SECLABELs) associated with them.
The security label of the transmitted information is checked with the security label of
the receiving user’s current logon session. The result of that check determines if the
receiving user is authorized to receive the data set or message. If the check
determines the receiving user is authorized for the proper security label, but is not
currently logged on at the proper security label, the data set or message will not be
deleted. If the check determines the receiving user is not authorized for the proper
security label, then the data set or message may be deleted. However, your
installation can set up a JES exit to hold or reroute data sets that would otherwise
be deleted.

For more information about setting up security labels, see z/OS Security Server
RACF Security Administrator’s Guide.

Several TSO/E exits enable your installation to modify the way TRANSMIT and
RECEIVE operations are performed, or to monitor or restrict transmission activity.
The TSO/E exits are described in this chapter.

Writing Exits for the TRANSMIT and RECEIVE Commands
The following exits can be used to modify the way TRANSMIT and RECEIVE
operations are performed:
v TRANSMIT/RECEIVE NAMES data set pre-allocation exit (INMCZ21R)
v TRANSMIT startup exit (INMXZ01 or INMXZ01R)
v TRANSMIT termination exit (INMXZ02 or INMXZ02R)
v TRANSMIT encryption exit (INMXZ03 or INMXZ03R)
v TRANSMIT log data set pre-allocation exit (INMXZ21R)
v RECEIVE initialization exit (INMRZ01 or INMRZ01R)
v RECEIVE termination exit (INMRZ02 or INMRZ02R)
v RECEIVE notification exit (INMRZ04 or INMRZ04R)
v RECEIVE acknowledgment notification exit (INMRZ05R)
v RECEIVE pre-acknowledgment notification exit (INMRZ06R)
v RECEIVE data set pre-processing exit (INMRZ11 or INMRZ11R)
v RECEIVE data set post-processing exit (INMRZ12 or INMRZ12R)
v RECEIVE data set decryption exit (INMRZ13 or INMRZ13R)
v RECEIVE post-prompt exit (INMRZ15R)

396 z/OS V1R4.0 TSO/E Customization

v RECEIVE log data set pre-allocation exit (INMRZ21R)
v JES2 TSO Interactive Data Transmission Facility screening and notification exit

(exit 13 - MAILXIT)
v JES2 TSO RECEIVE authorization exit (exit 38)
v JES3 TSO Interactive Data Transmission Facility screening and notification exit

(IATUX42)
v JES3 Data Set Headers exit (IATUX60)

Notice that most TRANSMIT and RECEIVE exits can have one of two program
names: INMxxxx or INMxxxxR (for example, INMXZ01 or INMXZ01R). Both forms
of the exits have access to the same information and can perform the same
functions. Their differences are strictly programming-related, and are described in
“Parameter Descriptions” on page 400 and “Programming Considerations” on
page 402. If TSO/E finds a standard-format exit (INMxxxxR) it will use it and ignore
the “non-standard” format exit, even if present. If it does not find a standard-format
exit it will use the “non-standard” format exit.

This chapter gives a brief overview of default TRANSMIT and RECEIVE processing,
and describes ways you can use exits to modify it. It also provides information
required to write TRANSMIT and RECEIVE exits. For information on how to write
the JES exits, see either z/OS JES3 Customization or z/OS JES2 Installation Exits.

Functional Description
By default, after a user issues a TRANSMIT command:

v TRANSMIT reads the data set to be transmitted, converts the records to a format
suitable for transmission, and adds header information. It then routes the data to
a punch output class B file that is directed to the receiving node and user ID.
There the data is queued on the JES spool.

v The user to whom the data was sent issues a RECEIVE command, and sees a
message that identifies the data set to be received. RECEIVE then prompts the
user for information to use in restoring the data set.

v RECEIVE restores the data to its original format, and writes it to the data set
indicated by the user. If an acknowledgment is requested, RECEIVE sends an
acknowledgment to the person who issued the TRANSMIT command. If the
security checker is active and the security labels of the sender and receiver are
different, the installation can specify whether the acknowledgment is returned at
the sender’s or receiver’s security label through the RECEIVE
pre-acknowledgment notification exit INMRZ06R. The default is to use the
sender’s security label.

TRANSMIT, RECEIVE, and JES exits are given control at various points in the
processing. You can use them to:

v Control who can use the TRANSMIT and RECEIVE commands

v Modify acknowledgment processing

v Enable users to transmit and receive data types other than those that TRANSMIT
and RECEIVE support

v Control encryption and decryption processing

v Allocate NAMES and log data sets

v Reply to RECEIVE prompts

v Modify users’ responses to RECEIVE prompts

v Record network use

Writing Exits for TRANSMIT and RECEIVE Commands

Chapter 37. Customizing TRANSMIT and RECEIVE 397

Controlling Who Uses TRANSMIT and RECEIVE
If you add TRANSMIT and RECEIVE to the table of authorized commands, by
default, all TSO/E users can use them. You can use exits to:

v Limit the use of TRANSMIT and RECEIVE to specific users. Use the TRANSMIT
startup exit or the RECEIVE initialization exit.

v Restrict the nodes to which a user can send transmitted data. Use the
TRANSMIT startup exit, the RECEIVE data set pre-processing exit, or the
RECEIVE post-prompt exit.

v Suppress receipt of a data set. Use the RECEIVE data set pre- processing exit
or the RECEIVE post-prompt exit.

v Give users authority to receive data addressed to user IDs other than their own.
Use the RECEIVE initialization exit.

The JES2 and JES3 exits (exit 13 and IATUX42, respectively) provide similar
capability. Both can screen incoming files sent using the TRANSMIT command, and
can delete them, reroute them, or allow them to be sent to the targeted user.

Modifying Acknowledgment Processing
By default, TSO/E users are not notified when they have a transmission to receive.
You can use exits to provide that information. Specifically, you can:

v Notify the sender of the original transmission that an acknowledgment is
available to be received. Use the RECEIVE acknowledgment notification exit, or
the RECEIVE termination exit, exit 13 in JES2, or IATUX42 in JES3.

v Notify the receiver that a file has arrived. Use exit 13, IATUX42, or the
TRANSMIT termination exit.

v Prevent or force acknowledgment, using the TRANSMIT startup exit.

v Associate an acknowledgment with a specific transmission. The TRANSMIT
startup exit can specify a notification string that gets passed with the
transmission. If an acknowledgment is sent, the notification string is included in
the acknowledgment transmission. The RECEIVE notification exit, which gets
control each time an acknowledgment is received, can use the notification string
to tie the transmission to the acknowledgment. The string is also passed to the
RECEIVE acknowledgment notification exit.

Transmitting Unsupported Data Types
You can use TRANSMIT to send sequential or partitioned data sets with record
formats of F, FS, FB, FBS, V, VB, VBS, and U. Data sets with machine and ASA
print-control characters are also supported. Data sets with keys or labels, and ISAM
and VSAM data sets are not. RECEIVE can process data from TRANSMIT and
PROFS.

To transmit data types that TRANSMIT and RECEIVE do not support, you can use
three exits and two installation-selected utilities that convert the data to a form that
TRANSMIT and RECEIVE recognize. The three exits are:
v TRANSMIT startup exit
v RECEIVE pre-processing exit or RECEIVE post-prompt exit
v RECEIVE post-processing exit.

You can use the TRANSMIT start-up exit to detect that a special data set type is
being processed and to invoke your utility to copy the data into a temporary,
pre-allocated, sequential data set. The exit passes the ddname of the temporary
data set back to TRANSMIT and the data is transmitted. The exit can also pass up
to ten local control records, which are transmitted with the data.

Writing Exits for TRANSMIT and RECEIVE Commands

398 z/OS V1R4.0 TSO/E Customization

When the transmission reaches the RECEIVE data set pre-processing exit or the
RECEIVE post-prompt exit, that exit is passed information about the transmission.
The exit instructs RECEIVE to ignore the target dsname entered by the sender, and
writes the received data into a pre-allocated temporary data set. That data set is
passed to the RECEIVE data set post-processing exit, which invokes your utility to
restore the data to its original format, and write it into the receiving user’s target
data set.

Controlling Encryption and Decryption Processing
TRANSMIT and RECEIVE provide encryption and decryption options. By setting an
installation default in the INMXPARM CSECT, you can require that all transmitted
data be encrypted, give users the option of encrypting data, or prohibit encryption.
Chapter 12, “Setting Up the TRANSMIT and RECEIVE Environment” on page 163
describes how to specify defaults in INMXPARM.

If you allow encryption, and have MVS Programmed Cryptographic Unit Support
Program installed, TRANSMIT and RECEIVE use the Access Methods Services
REPRO function to encipher and decipher the data. Before invoking the service,
TRANSMIT or RECEIVE gives control to either the TRANSMIT encryption or the
RECEIVE decryption exit. Those exits can:
v Modify the ENCIPHER or DECIPHER options that the user specified
v Invoke encryption or decryption processing themselves
v Prevent the data set from being encrypted or decrypted

Allocating NAMES and Log Data Sets
TRANSMIT and RECEIVE use a NAMES data set to control TRANSMIT and
RECEIVE processing and a log data set to keep records of TRANSMIT and
RECEIVE activity. By default, TRANSMIT and RECEIVE obtain the NAMES and log
data sets from operands specified on the TRANSMIT or RECEIVE command, or
else use a NAMES or log data set defined by the user. You can also use exits to
allocate the data sets or modify their names for the TRANSMIT and RECEIVE
commands.

Specifically, the exits let you:

v Allocate the NAMES data set or modify its name on the TRANSMIT or RECEIVE
command, using exit INMCZ21R.

v Allocate the log data set or modify its name on the TRANSMIT command, using
exit INMXZ21R.

v Allocate the log data set or modify its name on the RECEIVE command, using
exit INMRZ21R.

If RACF is installed and if your installation is using security labels, the
installation-defined NAMES data sets must be allocated with a SECLABEL of
SYSLOW. This allows TRANSMIT and RECEIVE to access the data set from any
security label. For more information about setting up security labels, see z/OS
Security Server RACF Security Administrator’s Guide.

Replying to RECEIVE Prompts
RECEIVE prompts users for information to control data restoration. You can use the
RECEIVE data set pre-processing exit to specify the same parameters for which
RECEIVE would otherwise prompt users, and bypass user prompting. The exit is
particularly useful to installations that allow users to issue RECEIVE in the
background.

Writing Exits for TRANSMIT and RECEIVE Commands

Chapter 37. Customizing TRANSMIT and RECEIVE 399

Modifying Users’ Responses to RECEIVE Prompts
The users’ responses to RECEIVE prompts can be modified using the RECEIVE
post-prompt exit INMRZ15R. You can use this exit to:

v Override or add to the information provided by the user in response to the
RECEIVE prompt

v Determine which users can use a particular network path

v Receive data set types not supported by the Interactive Data Transmission
Facility, in conjunction with the RECEIVE post-processing exit INMRZI2R

v Suppress the reception of data sets

Record Network Use
Both the TRANSMIT termination and the RECEIVE data set post-processing exits
are passed the information required to determine the volume and direction of
network traffic. You can use those exits to collect and report statistics. The exits can
use SMFWTM or SMFEWTM macros to write SMF records.

TSO/E-Supplied Exits
TSO/E supplies the following default exits. Each sets register 15 to zero and returns
to the caller.

INMXZ01 INMRZ01 INMRZ11
INMXZ02 INMRZ02 INMRZ12
INMXZ03 INMRZ04 INMRZ13

TSO/E provides no default exits for the standard-format exits (INMxxxxR).

Entry Specifications
The contents of the registers on entry to all TRANSMIT and RECEIVE exits are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The two forms of the TRANSMIT and RECEIVE exits (INMxxxxR and INMxxxx)
receive essentially the same information, but in parameter lists that have different
structures.

INMxxxxR Parameter Lists
At entry to the standard-format exits (those whose names end in R), register 1
points to the standard exit parameter list. For more information about the parameter
list, see “TSO/E Standard Exit Parameter List” on page 35. Note that the
TRANSMIT and RECEIVE exits do not use the new command buffer field in the
parameter entry pointed to at offset +4.

The parameter entries pointed to from offset +36 (decimal) to the end of the
parameter list, contain exit-dependent data. The exit-dependent data is described
separately for each exit, beginning with “Parameter Descriptions for INMXZ01R” on
page 407.

Writing Exits for TRANSMIT and RECEIVE Commands

400 z/OS V1R4.0 TSO/E Customization

INMxxxx Parameter Lists
At entry to the exits whose names do not end in R, register 1 also points to a
parameter list. Those parameters lists are also described separately for each exit,
beginning with “Parameter Descriptions for INMXZ01” on page 412.

Installation-Defined Parameters
In addition to pre-defined status and action flags for communicating with the
command processors, TRANSMIT and RECEIVE exits can use several other
parameters to communicate between themselves, the issuers of TRANSMIT and
RECEIVE, and the command processors. Those parameters include the:

v Exit-to-exit communication word. The TRANSMIT and RECEIVE command
processors pass to each exit an exit-to-exit communication word. The exits can
use that word to communicate among themselves by passing information in the
storage to which the word points. The startup or initialization exit needs to obtain
the block of storage and store its address in the exit-to-exit communication word.
TRANSMIT and RECEIVE initially set the word to zero, and thereafter do not
modify it or the contents of the storage to which it points.

v PARM keyword on the TRANSMIT and RECEIVE commands. TRANSMIT and
RECEIVE both have PARM keywords on which the issuer can specify a string of
up to 247 bytes. All exits receive the string in their parameter lists, and can act
differently for different PARM values. The installation needs to tell intended users
what PARM values to specify.

v PARM tag in NAMES.TEXT data set entries. Some TRANSMIT and RECEIVE
exits can also access a copy of the user string specified on the :PARM tag in the
addressee’s nickname entry in the sender’s NAMES.TEXT data set. The string
can be up to 30 bytes long. The PARM tag provides a way for users to request,
and exits to provide, different processing for different users. The installation
needs to tell intended users what PARM values to specify.

v A notification string that the TRANSMIT initialization exit passes to the
RECEIVE notification and the RECEIVE acknowledgment notification exits. If the
sender requested acknowledgment, the string is also returned to the sender after
RECEIVE processing completes. It provides a means of tracking the receipt of
specific transmissions, or triggering specific exit actions. The string can be up to
64 bytes long.

v A user string that the TRANSMIT initialization exit passes to the RECEIVE
pre-processing, post-prompt, post-processing, and decryption exits. The string
can be up to 247 bytes long.

Text Units and Text Unit Pointer Lists
Many of the TRANSMIT and RECEIVE exits are passed addresses of text unit
pointer lists. Each entry in the list points to a text unit that contains information used
to control the transmission (for example, the data set organization). The exit can
read, but not change the information in the text unit.

“Text Units and Text Unit Pointer Lists” on page 474 shows the format of text units
and the text unit pointer list, and describes the contents of each text unit.

Return Specifications
On return from all TRANSMIT and RECEIVE exits, the contents of the registers
must be:

Registers 0–14 Same as on entry

Register 15 Return code

Writing Exits for TRANSMIT and RECEIVE Commands

Chapter 37. Customizing TRANSMIT and RECEIVE 401

Return Codes for INMxxxxR Exits
INMxxxxR exits are expected to pass back in register 15 one of the following return
codes.

Table 68. Standard Return Codes That All INMxxxxR Exits Support

Return Code
(Decimal) Description

0 The exit successfully completed. TRANSMIT or RECEIVE
processing continues.

12 The exit failed. TRANSMIT or RECEIVE processing ends.
RECEIVE issues message IKJ79154I with the reason code in the
parameter entry pointed to at offset +24 in the parameter list.

If the exit sets a return code of 12, it also needs to provide the
reason code, and might want to set an appropriate action flag in the
parameter entry pointed to at offset +40.

16 The exit failed. TRANSMIT or RECEIVE processing ends, and
either an exit-provided message or a standard error message is
issued.

To have an exit-provided message issued (either message
INMX151I for TRANSMIT exits, or INMR151I for RECEIVE exits),
the exit must provide the message text in the parameter entry
pointed to at offset +44. It must also set the appropriate action flag
in the parameter entry at offset +40.

Return Codes for INMxxxx Exits
The INMxxxx exits are expected to pass back in register 15 one of the following
return codes:

Table 69. Return Codes That All INMxxxx Exits Support

Return Code
(Decimal) Description

0 The exit successfully completed. TRANSMIT or RECEIVE
processing continues.

4 The exit failed. TRANSMIT or RECEIVE processing ends, and
either an exit-provided message or a standard error message is
issued.

To have an exit-provided message issued (either message
INMX151I for TRANSMIT exits, or INMR151I for RECEIVE exits),
the exit must provide the message text in the parameter entry at
offset +16 in the parameter list. It must also set the appropriate
action flag in the parameter at offset +8.

Programming Considerations
All TRANSMIT and RECEIVE exits must follow standard linkage conventions. They
must save registers on entry, and restore all registers, except register 15, on return.
The exits must be reentrant, refreshable, reusable, and APF-authorized.
APF-authorization enables the exit to use restricted authorization checking functions
(for example, RACHECK).

Environment
TRANSMIT and RECEIVE exits must have the following attributes:
v State: Problem program

Writing Exits for TRANSMIT and RECEIVE Commands

402 z/OS V1R4.0 TSO/E Customization

v Key: 8
v For INMxxxxR exits: AMODE(31), RMODE(ANY)
v For INMxxxx exits: AMODE(24), RMODE(24)
v APF-authorized

Restrictions and Limitations
v Although INMxxxxR exits can execute in 31-bit addressing mode, the addresses

the exits return to TRANSMIT or RECEIVE must point to virtual storage below 16
MB. TRANSMIT and RECEIVE both execute in 24-bit addressing mode.

v Because the TRANSMIT and RECEIVE exits are APF-authorized, use modesets
carefully to ensure that integrity is maintained.

Installing the Exits
Give the exits the following names, depending on whether they receive a standard
exit parameter list:

Exit Description

Uses
Standard Exit
List

Does Not Use
Standard Exit
List

TRANSMIT startup exit INMXZ01R INMXZ01
TRANSMIT termination exit INMXZ02R INMXZ02
TRANSMIT encryption exit INMXZ03R INMXZ03
RECEIVE initialization exit INMRZ01R INMRZ01
RECEIVE data set pre-processing exit INMRZ11R INMRZ11
RECEIVE post-prompt exit INMRZ15R
RECEIVE data set decryption exit INMRZ13R INMRZ13
RECEIVE notification exit INMRZ04R INMRZ04
RECEIVE acknowledgment notification exit INMRZ05R
TRANSMIT/RECEIVE NAMES data set pre-allocation exit INMCZ21R
TRANSMIT log data set pre-allocation exit INMXZ21R
RECEIVE log data set pre-allocation exit INMRZ21R
RECEIVE pre-acknowledgment notification exit INMRZ06R
RECEIVE data set post-processing exit INMRZ12R INMRZ12
RECEIVE termination exit INMRZ02R INMRZ02

Link-edit INMxxxxR exits as separate load modules, either in a separate load library
that is exclusively for TSO/E exits, or in an existing library containing other routines.
The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB, provided it is authorized

For more information about choosing between those locations, see “Installing the
Standard-Format Exits” on page 42.

Link-edit INMxxxx exits with the TRANSMIT or RECEIVE command processor in
SYS1.LINKLIB, and replace the TSO/E-supplied exits with the ones you write.

Writing Exits for TRANSMIT and RECEIVE Commands

Chapter 37. Customizing TRANSMIT and RECEIVE 403

TRANSMIT and RECEIVE NAMES Data Set Pre-allocation Exit —
INMCZ21R

Functional Description
Each time a NAMES data set is to be allocated, the TRANSMIT and RECEIVE
pre-allocation exit, INMCZ21R, receives control. This exit may be invoked multiple
times for each TRANSMIT and RECEIVE operation. This exit can allocate the
NAMES data set, modify the NAMES data set name, or take no action. If the exit
chooses to allocate the data set, the exit must pass the file name back to the
TRANSMIT or RECEIVE command. If the exit modifies the data set name,
TRANSMIT or RECEIVE command processing then allocates the data set for the
exit if the exit has not already done so.

Under normal operations, the TRANSMIT and RECEIVE commands free the
NAMES data sets automatically. Therefore, even if the exit allocated the NAMES
data set, the data set is freed when the command processor terminates normally.

For TRANSMIT processing, INMCZ21R receives control just after the command
buffer is parsed. Changes made to the command buffer do not affect TRANSMIT
processing. During TRANSMIT processing, the allocation of the NAMES data set
occurs before the TRANSMIT command initialization exit, INMXZ01(R) receives
control. Therefore, exit INMCZ21R receives control before the initialization exit
receives control. Exit INMCZ21R can use the exit-to-exit communication word. This
communication word is passed to the TRANSMIT initialization exit, INMXZ01(R).

For RECEIVE processing, INMCZ21R receives control during the read operation of
the incoming file.

Parameter Descriptions for INMCZ21R
When INMCZ21R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMCZ21R receives beginning at offset
+36 (decimal) in the parameter list.

TRANSMIT and RECEIVE NAMES Data Set ...

404 z/OS V1R4.0 TSO/E Customization

Following are descriptions of the information in the data fields of each parameter
entry:

Address of the Command PARM String (Parameter Entry 10)
If the user entered a character string on the PARM keyword of the command,
this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the command PARM keyword,
see “Installation-Defined Parameters” on page 401.

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
TRANSMIT and RECEIVE processing after it returns. The flags in byte 0 are
defined as follows. Bytes 1, 2, and 3 are reserved.

Bit Action

1... TRANSMIT or RECEIVE is to issue message INMC151I, using
the text contained in the parameter entry pointed to at offset
+44.

.1.. If the return code from the exit is non-zero (end processing),
the command is not to issue the normal error message. The
exit either: already sent an appropriate message to the user;

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000

or

00000002

4 or

string length

Address of

RECEIVE

PARM string

00000001

00000000

00000001

000000F3

00000008

Action flags

Message text

Status flags

00000001

+40

+44

+48

+52

+56

00000004

00000004

length of

data set name

00000000

Data set

name

DDname

(blanks)

Figure 74. Exit-Dependent Data on Entry to INMCZ21R

TRANSMIT and RECEIVE NAMES Data Set ...

Chapter 37. Customizing TRANSMIT and RECEIVE 405

set return code 12, which causes message IKJ79154I to be
issued; or requested that the command issue message
INMC151I, using the text contained in the parameter entry
pointed to at offset +44.

..11 Reserved

.... 1... The exit has allocated the NAMES data set. The ddname
representing the data set is contained in the parameter entry
pointed to by offset +56.

.... .1.. The exit has modified the NAMES data set name that was
passed in the parameter entry pointed to by offset +52.

.... ..1. The exit tried to allocate the NAMES data set, but the allocation
failed.

.... ...1 Reserved.

Message Text (Parameter Entry 12)
Exits can put in this data field the message text that the command is to issue
with message ID INMC151I. The field initially contains blanks. If the exit inserts
text in the data field, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the message text. The maximum length is 243.

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which the command passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... TRANSMIT or RECEIVE is not interfacing with JES. A data set
keyword (INDSNAME, INDATASET, OUTDSNAME,
OUTDATASET) or a file keyword (INFILE, INDDNAME,
OUTFILE, OUTDDNAME) was specified.

.111 Reserved

.... 1... Exit is operating under TRANSMIT

.... 0... Exit is operating under RECEIVE

.... .111 Reserved

Data Set Name (Parameter Entry 14)
On entry the data field contains the name of the NAMES data set to be
allocated by either the command invoking the exit or the exit itself.

If the exit modifies the NAMES data set name it must also update the length
and key fields accordingly; and it must set the X'04' action flag to indicate that
modifications were made to the NAMES data set name.

On return this information is used by the TRANSMIT or RECEIVE command to
decide which NAMES data set to allocate and free (provided the allocate is not
done by the exit itself, see parameter entry 15).

If the content of the length field is incorrect, the parameter is ignored and
processing continues as it would have if the exit did not modify the NAMES
data set name.

Note that if you want the exit to modify the NAMES data set name and to
allocate the NAMES data set you must specify parameter entries 14 and 15.

TRANSMIT and RECEIVE NAMES Data Set ...

406 z/OS V1R4.0 TSO/E Customization

DDNAME (Parameter Entry 15)
If the exit is to allocate the NAMES data set to a file, the file name should be
placed in this parameter entry. Update the key and the length field accordingly.
The length field must reflect the length of the file name. The X'08' action flag
should be set to indicate that the data set has been allocated from within the
exit.

Upon return from the exit the invoking TRANSMIT or RECEIVE command uses
this information to free the allocated NAMES data set.

If the content of the length field is incorrect, the parameter is ignored and
processing continues as it would have if the exit did not modify this parameter
entry.

Note that if you want the exit to modify the NAMES data set name and to
allocate the NAMES data set you must specify parameter entries 14 and 15.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

Functional Description
The TRANSMIT startup exit (INMXZ01R or INMXZ01) receives control after the
TRANSMIT command processor has parsed the command and built the addressee
list, but before it has done any transmission-related allocations. Its primary uses are
to:

v Control to which nodes and user IDs transmissions are sent. The exit has
access to and can change the information in the addressee list, which specifies
the target node and user ID of each addressee. If the TRANSMIT command
specified a nickname, the addressee list also includes the nickname and :NAME
and :PARM tag information from the NAMES.TEXT data set. The exit can also
identify the sender, and thus restrict network use differently for different users.

v Prevent or force an acknowledgment to be sent to the issuer of TRANSMIT
when the transmission is received. The exit can prevent or force
acknowledgment individually for each entry in the addressee list.

v Perform initialization tasks You can use the exit to obtain storage for the
exit-to-exit communication word, allocate data sets, open files, or do other set-up
processing for the other TRANSMIT exits.

v Enable users to transmit data types other than those supported by
TRANSMIT. The exit can detect when an unsupported data type is being
processed. It can then allocate a temporary data set, and invoke an
installation-specified utility to convert the data to a format that TRANSMIT
recognizes, and copy it into the data set. The exit passes the name of the data
set to TRANSMIT for processing. The exit can also pass up to ten local control
records, which are sent with the transmission. You must also write either the
RECEIVE data set pre-processing exit (INMRZ11R or INMRZ11) or the RECEIVE
post-prompt exit (INMRZ15R) and the RECEIVE data set post-processing exit
(INMRZ12R or INMRZ12) to process the unsupported data. See “Functional
Description” on page 397 for more information about the data types TRANSMIT
and RECEIVE do not support, and how to use exits to process that data.

Parameter Descriptions for INMXZ01R
When INMXZ01R receives control, register 1 points to a standard exit parameter
list. For more information about that parameter list, see “TSO/E Standard Exit
Parameter List” on page 35. Note that the TRANSMIT and RECEIVE exits do not
use the new command buffer field in the parameter entry pointed to at offset +4.

TRANSMIT and RECEIVE NAMES Data Set ...

Chapter 37. Customizing TRANSMIT and RECEIVE 407

Following is a description of the exit-dependent data that INMXZ01R receives
beginning at offset +36 (decimal) in the parameter list.

Following are descriptions of the information in the data fields of each parameter
entry:

Address of the TRANSMIT PARM String (Parameter Entry 10)
If the user entered a character string on the PARM keyword of the TRANSMIT
command, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000
or

00000002

4 or

string length

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of

parameter entry 16

Address of

parameter entry 17

Address of

parameter entry 18

Address of

parameter entry 19

+60

+64

+68

+72

00000002

00000002

00000001

00000001

00000000

00000000

Length of

TUPL

Length of

TUPL

00000008

00000004

00000004

Address of
text unit
pointer list

Address of
text unit
pointer list

DDNAME
of file to be
transmitted

Address of
string for RE-
CEIVE exits

Address of
notification
string

Address of
addressee
chain

Address of
TRANSMIT
PARM string

00000004

Length of
addressee
chain

00000004

Figure 75. Exit-Dependent Data on Entry to INMXZ01R

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

408 z/OS V1R4.0 TSO/E Customization

For more information about how you can use the TRANSMIT PARM keyword,
see “Installation-Defined Parameters” on page 401.

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
TRANSMIT processing after it returns. The flags in byte 0 are defined as
follows. Bytes 1, 2, and 3 are reserved.

Bit Action

1... TRANSMIT is to issue message INMX151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
TRANSMIT is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that TRANSMIT issue message INMX151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... TRANSMIT is to send the data set that the exit specifies,
instead of the data set indicated by the user. If the exit sets this
bit to one, it also needs to return in the parameter entry at
offset +64 the ddname of the data set to be sent.

.... .111 Reserved

Message Text (Parameter Entry 12)
Exits can put in this data field the message text that TRANSMIT is to issue with
message ID INMX151I. The field initially contains blanks. If the exit inserts text
in the data field, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the message text. The maximum length is 243.

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which TRANSMIT passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The output target for TRANSMIT is not JES. The bit is on when
the user specified either OUTDATASET, OUTDSNAME,
OUTDDNAME, or OUTFILE on the TRANSMIT command.

.111 1111 Reserved

Address of a Text Unit Pointer List (Parameter Entry 14)
The data field contains the address of a text unit pointer list. The text units it
points to identify the sender’s node and user ID (INMFNODE and INMFUID).
For more information about those text units or the text unit pointer list, see “Text
Units and Text Unit Pointer Lists” on page 474.

Note that the exit receives only copies of the actual text units; altering them has
no effect on subsequent processing.

Address of a Text Unit Pointer List (Parameter Entry 15)
The data field contains the address of a text unit pointer list. The text unit it
points to identifies the source of the data being transmitted -- either the data set

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

Chapter 37. Customizing TRANSMIT and RECEIVE 409

name, the ddname, or an indication that the data was entered at the terminal
(text units INMDSNAM, INDDNAM, or INMTERM, respectively). For more
information about those text units or the text unit pointer list, see “Text Units
and Text Unit Pointer Lists” on page 474.

Note that the exit receives only copies of the actual text units; altering them has
no effect on subsequent processing.

Address of the Addressee Chain (Parameter Entry 16)
The data field points to a chain of addresses to which the transmission is to be
sent. By adding to, deleting, or changing information in the chain, the exit can
control to whom the transmission is sent, and whether the sender receives an
acknowledgment. Each entry in the chain has the following format:

Offset Length Value

+0 4 Pointer to the next entry in the chain, or zero to
indicate the last entry.

+4 2 The length of the target node name or number
specified either on the TRANSMIT command, or, if the
issuer specified a nickname, in the associated entry in
the NAMES.TEXT data set. Node numbers are valid
for only JES2 nodes.

+6 8 Node name or number. The node name or number is
left justified and padded with blanks. Node numbers
are valid for only JES2 nodes.

+14 2 The length of the addressee’s user ID.
+16 8 User ID. The user ID is left justified and padded with

blanks.
+24 2 The length of the addressee’s nickname. If no

nickname is associated with the addressee, the value
is zero.

+26 8 Nickname. The nickname is left justified and padded
with blanks. If no nickname is associated with the
addressee, the field is blank.

+34 2 The length of the addressee’s name, taken from the
:NAME tag in the NAMES.TEXT data set. If no name
is found, or no nickname is associated with the
addressee, the value is zero.

+36 30 Addressee’s name. The name is left justified and
padded with blanks. If no name is found, or no
nickname is associated with the addressee, the field
is blank.

+66 1 Flag byte:

1... Request acknowledgment from this
addressee

.1.. Reserved

..1. Transmission successfully
completed

...1 1111 Reserved
+67 1 Reserved
+68 2 The length of the parameter string taken from the

:PARM tag in the NAMES.TEXT data set. If no :PARM
tag is found or no nickname is associated with the
addressee, the value is zero.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

410 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+70 30 User parameter string on the :PARM tag in the
NAMES.TEXT data set. The parameter string is left
justified and padded with blanks. If no :PARM tag is
found or no nickname is associated with the
addressee, the field is blank.

+100 2 Halfword field that contains the length of the user ID
specified at offset +102 in this entry. If the exit
changes the length of that user ID, it needs to put the
new length value in this length field.

+102 8 The sender’s user ID. The field is left justified and
padded with blanks. TRANSMIT places this user ID in
the INMFUID text unit of the INMR01 header record
of the transmission. Any changes the exit makes are
reflected in INMR01. If the exit changes the length of
the user ID, it also needs to put the new length value
in the length field at offset +100.

+110 2 Halfword field that contains the length of the node
name or number specified at the offset +112 in this
entry. If the exit changes the length of that node name
or number, it needs to put the new length value in this
length field.

+112 8 The sender’s node name or number. The field is left
justified and padded with blanks. TRANSMIT places
this node name or number in the INMFNODE text unit
of the INMR01 header record of the transmission. Any
changes the exit makes are reflected in INMR01. If
the exit changes the length of the node name or
number, it also needs to put the new length value in
the length field at offset +110.

Ddname of the File to be Transmitted (Parameter Entry 17)
The exit can specify in this data field the ddname of a file to be transmitted in
place of the data set, file, or terminal input specified by the user. If the exit puts
a ddname in this field, it also needs to set action bit X'08' to one to request that
TRANSMIT send the associated file.

Address of the User String for RECEIVE Exits (Parameter Entry 18)
The data field points to an area in which the exit can put a string to be passed
to the RECEIVE data set exits (INMRZ11R, INMRZ12R, and INMRZ13R, or
INMRZ11, INMRZ12, and INMRZ13) and the RECEIVE post-prompt exit
(INMRZ15R).

If the exit specifies a string, it must also set the key and length fields to:

KEY: X'00000002'

LEN: Length of string. The maximum length is 247 bytes.

Address of a Notification String (Parameter Entry 19)
The data field points to an area in which the exit can put a notification string to
be sent as part of the transmission. The notification string is passed to the
RECEIVE notification exit (INMRZ04R or INMRZ04) and the RECEIVE
acknowledgment notification exit (INMRZ05R). It is returned to the sender after
RECEIVE processing completes. For more information about how you can use
the notification string, see “Installation-Defined Parameters” on page 401.

If the exit specifies a string, it must also set the key and length fields to:

KEY: X'00000002'

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

Chapter 37. Customizing TRANSMIT and RECEIVE 411

LEN: Length of string. The maximum length is 64 bytes.

Parameter Descriptions for INMXZ01
When INMXZ01 receives control, register 1 points to the following parameter list:

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
TRANSMIT exits can use this word to communicate
among themselves by passing information in the
storage to which it points. INMXZ01 can obtain the
block of storage, and make it available to all exits by
storing the address in the exit-to-exit communication
word. TRANSMIT initially sets the value of the word to
zero, and thereafter, does not modify it or the
contents of the storage to which it points.

+4 4 Address of the character string that the user entered
on the PARM keyword of the TRANSMIT command.
For more information about how you can use the
TRANSMIT PARM keyword, see “Installation-Defined
Parameters” on page 401.

The address points to an area consisting of a
halfword length field followed by the character string.
The length field specifies the length of the character
string. If no string was specified, the value in the
length field is zero.

+8 4 Address of a byte of action flags, which the exit can
set to control TRANSMIT processing after it returns.

Bit Action

1... TRANSMIT is to issue message
INMX151I, using the text contained
in the parameter pointed to at offset
+16.

.1.. If the return code from the exit is
non-zero (end processing),
TRANSMIT is not to issue the
normal error message. The exit
either sent an appropriate message
to the user, or requested that
TRANSMIT issue message
INMX151I, using the text contained
in the parameter pointed to at offset
+16.

..11 Reserved

.... 1... TRANSMIT is to send the data set
that the exit specifies, instead of the
data set indicated by the user. If the
exit sets this bit to one, it also
needs to return in the parameter at
offset +36 the ddname of the data
set to be sent.

.... .111 Reserved

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

412 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+12 4 Address of the TSO/E command processor parameter
list (the CPPL). The exit can use the parameter list to
examine the initial TRANSMIT command, or to build
an IOPL for invoking the TSO/E I/O service routines.

+16 4 Address of the message text that TRANSMIT is to
issue with message ID INMX151I. When the exit is
invoked, the address points to an area consisting of a
halfword length field, followed by an area in which the
exit can insert message text. The length value at
entry is zero.

Exits that pass back message text must put the length
of text into the length field. (Do not include the
halfword of the length field in the length specification.)
The maximum length is 243 bytes.

+20 4 Address of a status flag byte. TRANSMIT uses this
byte to pass indicators to the exit.

1... The output target for TRANSMIT is
not JES. The bit is on when the
user specified either OUTDATASET,
OUTDSNAME, OUTDDNAME, or
OUTFILE on the TRANSMIT
command.

.111 1111 Reserved
+24 4 Address of a text unit pointer list. The text units it

points to identify the sender’s node and user ID
(INMFNODE and INMFUID). For more information
about those text units or the text unit pointer list, see
“Text Units and Text Unit Pointer Lists” on page 474.

Note that the exit receives only copies of the actual
text units; altering them has no effect on subsequent
processing.

+28 4 Address of a text unit pointer list. The text unit it
points to identifies the source of the data being
transmitted -- either the data set name, the ddname,
or an indication that the data was entered at the
terminal (text units INMDSNAM, INDDNAM, or
INMTERM, respectively). For more information about
those text units or the text unit pointer list, see “Text
Units and Text Unit Pointer Lists” on page 474.

Note that the exit receives only copies of the actual
text units; altering them has no effect on subsequent
processing.

+32 4 Address of a chain of addresses to which the
transmission is to be sent. By adding to, deleting, or
changing the information specified in the chain, the
exit can control to whom the transmission is sent, and
whether the sender receives an acknowledgment.

See 414 for the address chain format.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

Chapter 37. Customizing TRANSMIT and RECEIVE 413

Offset Length Value

+36 4 Address of an 8-byte area in which the exit can return
a ddname that represents an allocated data set.
TRANSMIT is to send that data set instead of the
data set, file, or terminal input specified by the user. If
the exit puts a ddname in this field, it also needs to
set action bit X'08' to one to request that TRANSMIT
send the associated file.

+40 4 Address of an area in which the exit can put a string
to be passed to RECEIVE data set exits (INMRZ11,
INMRZ12, and INMRZ13, or INMRZ11R, INMRZ12R,
or INMRZ13R) and the RECEIVE post-prompt exit
(INMRZ15R).

The area consists of a halfword length field, followed
by a 247-byte data field. If the exit puts a string in the
data field, it also needs to update the length field to
reflect the actual length of the data inserted. The
value of the length field is initially zero. If the length
field is a negative value, RECEIVE ignores the
parameter. If length of the data inserted is greater
than 247 bytes, TRANSMIT uses only the first 247
bytes, and sets the length to 247.

+44 4 Address of an area in which the exit can put a
notification string to be sent as part of the
transmission. The notification string is passed to the
RECEIVE notification exit (INMRZ04 or INMRZ04R)
and the RECEIVE acknowledgment notification exit
(INMRZ05R). It is returned to the sender after
RECEIVE processing completes. For more
information about how you can use the notification
string, see “Installation-Defined Parameters” on
page 401.

The format of the area is a halfword length field,
followed by a 64-byte data field. If the exit puts a
string in the data field, it needs to update the length
field to reflect the actual length of the data inserted.
The value of the length field is initially zero. If the
length field is a negative value, RECEIVE ignores the
parameter. If length of the data inserted is greater
than 64 bytes, TRANSMIT uses only the first 64
bytes, and sets the length to 64.

Each entry in the address chain has the following format:

Offset Length Value

+0 4 Pointer to the next entry in the chain, or zero to
indicate the last entry.

+4 2 The length of the target node name or number
specified either on the TRANSMIT command, or, if the
issuer specified a nickname, in the associated entry in
the NAMES.TEXT data set. Node numbers are valid
for only JES2 nodes.

+6 8 Node name or number. The node name or number is
left justified and padded with blanks. Node numbers
are valid for only JES2 nodes.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

414 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+14 2 The length of the addressee’s user ID.
+16 8 User ID. The user ID is left justified and padded with

blanks.
+24 2 The length of the addressee’s nickname. If no

nickname is associated with the addressee, the value
is zero.

+26 8 Nickname. The nickname is left justified and padded
with blanks. If no nickname is associated with the
addressee, the field is blank.

+34 2 The length of the addressee’s name, taken from the
:NAME tag in the NAMES.TEXT data set. If no name
is found, or no nickname is associated with the
addressee, the value is zero.

+36 30 Addressee’s name. The name is left justified and
padded with blanks. If no name is found, or no
nickname is associated with the addressee, the field
is blank.

+66 1 Flag byte:

1... Request acknowledgment from this
addressee

.1.. Reserved

..1. Transmission successfully
completed

...1 1111 Reserved
+67 1 Reserved
+68 2 The length of the parameter string taken from the

:PARM tag in the NAMES.TEXT data set. If no :PARM
tag is found or no nickname is associated with the
addressee, the value is zero.

+70 30 User parameter string on the :PARM tag in the
NAMES.TEXT data set. The parameter string is left
justified and padded with blanks. If no :PARM tag is
found or no nickname is associated with the
addressee, the field is blank.

+100 2 Halfword field that contains the length of the user ID
specified at offset +102 in this entry. If the exit
changes the length of that user ID, it needs to put the
new length value in this length field.

+102 8 The sender’s user ID. The field is left justified and
padded with blanks. TRANSMIT places this user ID in
the INMFUID text unit of the INMR01 header record
of the transmission. Any changes the exit makes are
reflected in INMR01. If the exit changes the length of
the user ID, it also needs to put the new length value
in the length field at offset +100.

+110 2 Halfword field that contains the length of the node
name or number specified at the offset +112 in this
entry. If the exit changes the length of that node name
or number, it needs to put the new length value in this
length field.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

Chapter 37. Customizing TRANSMIT and RECEIVE 415

Offset Length Value

+112 8 The sender’s node name or number. The field is left
justified and padded with blanks. TRANSMIT places
this node name or number in the INMFNODE text unit
of the INMR01 header record of the transmission. Any
changes the exit makes are reflected in INMR01. If
the exit changes the length of the node name or
number, it also needs to put the new length value in
the length field at offset +110.

TRANSMIT Termination Exit — INMXZ02R or INMXZ02

Functional Description
The TRANSMIT termination exit (INMXZ02R or INMXZ02) receives control after
TRANSMIT command processing is complete -- either the data has been
transmitted or some error preventing transmission has occurred -- or when the
TRANSMIT command ends abnormally or terminates because of an attention
interrupt. The termination exit’s primary uses are to:

v Record network use. The exit can access the information required to determine
the volume and direction of network traffic. You can use SMFWTM or SMFEWTM
macros to write SMF records from the exit.

v Notify recipients on the same node that the transmission has been sent.
The exit can issue a SEND command to users on the same node to inform them
they have data to receive. The exit can examine the TRANSMIT return code to
see whether data was transmitted.

v Clean up. The exit needs to perform clean-up tasks, such as freeing storage
obtained for the exit-to-exit communication word, closing any files that other
TRANSMIT exits opened, and freeing any data sets that they allocated.

Parameter Descriptions for INMXZ02R
When INMXZ02R receives control, register 1 points to the standard exit parameter
list. For more information about that parameter list, see “TSO/E Standard Exit
Parameter List” on page 35. Note that the TRANSMIT and RECEIVE exits do not
use the new command buffer field in the parameter entry pointed to at offset +4.
Following is a description of the exit-dependent data that INMXZ02R receives
beginning at offset +36 (decimal) in the parameter list.

TRANSMIT Startup Exit — INMXZ01R or INMXZ01

416 z/OS V1R4.0 TSO/E Customization

Note that many of the parameter entries are the same as those that INMXZ01R
receives. Their descriptions are not repeated here. See “Parameter Descriptions for
INMXZ01R” on page 407 for more information about them. Following are
descriptions of only those parameter entries that are different, or that INMXZ02R
must use differently:

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
TRANSMIT processing after it returns. The flags in byte 0 are defined as
follows. Bytes 1, 2, and 3 are reserved.

Bit Action

1... TRANSMIT is to issue message INMX151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
TRANSMIT is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that TRANSMIT issue message INMX151I, using
the text contained in the parameter entry pointed to at offset
+44.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

+60

+64

+68

00000002

00000002

Length of
TUPL

Length of
TUPL

Address of
text unit
pointer list

Address of
text unit
pointer list

Address of
addressee
chain

00000001

00000001

00000004

00000004

Number of
JES output
records

TRANSMIT
command
return code

Address of
TRANSMIT
PARM string

00000004

00000004

00000002
Length of
addressee
chain

Figure 76. Exit-Dependent Data on Entry to INMXZ02R

TRANSMIT Termination Exit — INMXZ02R or INMXZ02

Chapter 37. Customizing TRANSMIT and RECEIVE 417

..11 1111 Reserved

Address of Addressee Chain (Parameter Entry 16)
This parameter entry is the same as parameter entry 16 that INMXZ01R
receives. However, unlike INMXZ01R, this exit cannot affect subsequent
processing by changing the information in the chain. It receives control after the
transmission occurs.

Number of JES Output Records (Parameter Entry 17)
The data field contains the number of JES output records in the transmission
sent to the last user in the addressee list. The number of records transmitted to
others in the list might vary by one or two, because of variations in the length of
the information identifying the addressee.

TRANSMIT Return Code (Parameter Entry 18)
The data field contains the return code that TRANSMIT sets.

Parameter Descriptions for INMXZ02
When INMXZ02 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMXZ01 receives.
Their descriptions are not repeated here. See “Parameter Descriptions for
INMXZ01” on page 412 for more information about them.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered

on the PARM keyword of the TRANSMIT command.
+8 4 Address of a byte of action flags, which the exit can

set to control TRANSMIT processing after it returns.

Bit Action

1... TRANSMIT is to issue message
INMX151I, using the text contained
in the parameter pointed to at offset
+16.

.1.. If the return code from the exit is
non-zero (end processing),
TRANSMIT is not to issue the
normal error message. The exit
either sent an appropriate message
to the user, or requested that
TRANSMIT issue message
INMX151I, using the text contained
in the parameter pointed to at offset
+16.

..11 1111 Reserved
+12 4 Address of the TSO/E command processor parameter

list (the CPPL).
+16 4 Address of the message text that TRANSMIT is to

issue with message ID INMX151I.

TRANSMIT Termination Exit — INMXZ02R or INMXZ02

418 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+20 4 Address of a status flag byte. TRANSMIT uses this
byte to pass indicators to the exit.

1... The output target for TRANSMIT is
not JES. The bit is on when the
user specified either OUTDATASET,
OUTDSNAME, OUTDDNAME, or
OUTFILE on the TRANSMIT
command.

.111 1111 Reserved.
+24 4 Address of a text unit pointer list. The text units it

points to identify the sender’s node and user ID
(INMFNODE and INMFUID).

+28 4 Address of a text unit pointer list. The text unit it
points to identifies the source of the data being
transmitted -- either the data set name, the ddname,
or an indication that the data was entered at the
terminal (text units INMDSNAM, INDDNAM, or
INMTERM, respectively).

+32 4 Address of a chain of addresses to which the
transmission is to be sent. Unlike INMXZ01, this exit
cannot affect subsequent processing by changing the
information specified in the chain. The exit receives
control after the transmission has occurred.

+36 4 Address of a fullword that contains the number of JES
output records in the transmission sent to the last
user in the addressee list. The number of records
transmitted to others in the list might vary by one or
two, because of variations in the length of the
information identifying the addressee.

+40 4 Address of a fullword that contains the TRANSMIT
command return code.

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

Functional Description
The TRANSMIT encryption exit (INMXZ03R or INMXZ03) receives control
immediately after TRANSMIT prompts the user for REPRO command options for
enciphering the data to be transmitted. (It is invoked only once, regardless of the
number of people to whom the data is being sent.)

Note: If RACF is installed, and if your installation is using security labels, this exit
receives control after INMXZ21R. The encryption exit can:

v Examine and, if appropriate, change the ENCIPHER options the user specifies. If
TRANSMIT is to do the enciphering, it builds the REPRO command after the exit
returns, using the changes the exit makes.

v Invoke encryption processing itself. The exit receives all the control and ddnames
that TRANSMIT uses for encryption processing.

v Decide that encryption is not necessary, and prevent TRANSMIT from doing it.

Parameter Descriptions for INMXZ03R
When INMXZ03R receives control, register 1 points to the standard exit parameter
list. For more information about the parameter list, see “TSO/E Standard Exit

TRANSMIT Termination Exit — INMXZ02R or INMXZ02

Chapter 37. Customizing TRANSMIT and RECEIVE 419

Parameter List” on page 35. Note that the TRANSMIT and RECEIVE exits do not
use the new command buffer field in the parameter entry pointed to at offset +4.
Following is a description of the exit-dependent data that INMXZ03R receives
beginning at offset +36 (decimal).

Note that many of the parameter entries are the same as those that INMXZ01R
receives. Their descriptions are not repeated here. See “Parameter Descriptions for
INMXZ01R” on page 407 for more information about them. Following are
descriptions of only those parameter entries that are different.

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
TRANSMIT processing after it returns. The flags in byte 0 are defined as
follows. Bytes 1, 2, and 3 are reserved.

Bit Action

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

Address of
parameter entry 19

+60

+64

+68

+72

00000002

00000002

00000001

Length of
TUPL

Length of
TUPL

Address of
text unit
pointer list

Address of
text unit
pointer list

Address of
addressee
chain

Address of
parameter entry 20

+76

00000002

00000001

00000001

00000008

00000008

DDNAME
of plain
text file

DDNAME
of file for
encrypted text

Length of
REPRO
options

Address of
REPRO
options

00000000 00000004
Address of
user string

Address of
TRANSMIT
PARM string

00000004

00000004

Length of
addressee
chain

Figure 77. Exit-Dependent Data on Entry to INMXZ03R

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

420 z/OS V1R4.0 TSO/E Customization

1... TRANSMIT is to issue message INMX151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
TRANSMIT is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that TRANSMIT issue message INMX151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... TRANSMIT is not to issue the REPRO command. Either the
exit did the encryption, or none is required.

If terminal input is to be encrypted, it is sent as a data set with
the name ‘prefix.DDNAME.TERMIN’. If the exit sets this bit to
one and encrypts the input, the data set name remains
‘prefix.DDNAME.TERMIN’.

Setting this bit to one does not prevent TRANSMIT from
prompting the user for encryption options. TRANSMIT prompts
for those options before invoking this exit.

.... .1.. The encrypted data is now in the sequential file identified by the
ddname in the parameter entry pointed to at offset +72.

If the exit sets this bit to one, it also needs to set bit X'08' to
one. If this bit is one and bit X'08' is zero, TRANSMIT invokes
the REPRO services, and specifies the file pointed to at offset
+68 as the input file and the file pointed to at offset +72 as the
output file. The file pointed to at offset +72 is overwritten. If both
bits are one, TRANSMIT builds an INMR02 control record for
the encryption process which results in exit INMRZ13 or
INMRZ13R gaining control during RECEIVE to decrypt the data
set.

.... ..11 Reserved

Address of the Addressee Chain (Parameter Entry 16)
This parameter entry is the same as the parameter entry 16 that INMXZ01R
receives. Like INMXZ01R, this exit can alter subsequent processing by
changing the information in the chain.

Address of REPRO Options (Parameter Entry 17)
The data field points to an area that contains the options the user specified on
the ENCIPHER keyword of the REPRO command. TRANSMIT uses that
information to build a REPRO control statement that looks like:
REPRO INFILE(infile) OUTFILE(outfile) ENCIPHER(options
specified by user and INMRZ03R)

The exit can modify the ENCIPHER options. The modified information is used in
encryption processing.

If the exit changes the length of the options string, it must also change the
value in the length field accordingly. The maximum length allowed is 253 bytes.
If length of the data inserted is greater than 253 bytes, TRANSMIT uses only
the first 253 bytes, and sets the length to 253.

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

Chapter 37. Customizing TRANSMIT and RECEIVE 421

Ddname of Plain Text File (Parameter Entry 18)
The data field contains the ddname of the file that contains the data to be
encrypted.

Ddname of File for Encrypted Data (Parameter Entry 19)
The data field contains the ddname of the file to which the encrypted data is to
be written.

Address of a String for INMRZ13R (Parameter Entry 20)
This exit can pass a user string to the RECEIVE data set decryption exit
(INMRZ13R or INMRZ13). If the exit passes a string, it must also put the
following values in the key and length fields:

KEY: X'00000002'

LEN: Length of the string. The maximum length is 253 bytes.

Parameter Descriptions for INMXZ03
When INMXZ03 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMXZ01 receives.
Their descriptions are not repeated here. See “Parameter Descriptions for
INMXZ01” on page 412 for more information about them.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered on the

PARM keyword of the TRANSMIT command.

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

422 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+8 4 Address of a byte of action flags, which the exit can set to
control TRANSMIT processing after it returns.

Bit Action

1... TRANSMIT is to issue message INMX151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), TRANSMIT is not to issue
the normal error message. The exit either sent
an appropriate message to the user, or
requested that TRANSMIT issue message
INMX151I, using the text contained in the
parameter pointed to at offset +16.

..11 Reserved

.... 1... TRANSMIT is not to issue the REPRO
command. Either the exit did the encryption, or
none is required.

If terminal input is to be encrypted, it is sent as
a data set with the name
‘prefix.DDNAME.TERMIN’. If the exit sets this
bit to one and encrypts the input, the data set
name remains ‘prefix.DDNAME.TERMIN’.

Setting this bit to one does not prevent
TRANSMIT from prompting the user for
encryption options. TRANSMIT prompts for
those options before invoking this exit.

.... .1.. The encrypted data is now in the sequential
file identified by the ddname in the parameter
entry pointed to at offset +44.

If the exit sets this bit to one, it also needs to
set bit X'08' to one. If this bit is one and bit
X'08' is zero, TRANSMIT invokes the REPRO
services, and specifies the file pointed to at
offset +40 as the input file and the file pointed
to at offset +44 as the output file. The file
pointed to at offset +44 is overwritten. If both
bits are one, TRANSMIT builds an INMR02
control record for the encryption process which
results in exit INMRZ13 gaining control during
RECEIVE to decrypt the data set.

.... ..11 Reserved
+12 4 Address of the TSO/E command processor parameter list (the

CPPL).
+16 4 Address of the message text that TRANSMIT is to issue with

message ID INMX151I.

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

Chapter 37. Customizing TRANSMIT and RECEIVE 423

Offset Length Value

+20 4 Address of a status flag byte. TRANSMIT uses this byte to pass
indicators to the exit.

1... The output target for TRANSMIT is not JES.
The bit is on when the user specified either
OUTDATASET, OUTDSNAME, OUTDDNAME,
or OUTFILE on the TRANSMIT command.

.111 1111 Reserved.
+24 4 Address of a text unit pointer list. The text units it points to

identify the sender’s node and user ID (INMFNODE and
INMFUID).

+28 4 Address of a text unit pointer list. The text unit it points to
identifies the source of the data being transmitted -- either the
data set name, the ddname, or an indication that the data was
entered at the terminal (text units INMDSNAM, INDDNAM, or
INMTERM, respectively).

+32 4 Address of a chain of addresses to which the transmission is to
be sent. Like INMXZ01, this exit can affect subsequent
processing by changing the information specified in the chain.

+36 4 An area that contains the options the user specified on the
ENCIPHER keyword of the REPRO command. TRANSMIT uses
that information to build a REPRO control statement that looks
like:

REPRO INFILE(infile) OUTFILE(outfile) ENCIPHER
(options specified by user and INMRZ03R)

The exit can modify the ENCIPHER options. The modified
information is used in encryption processing.

The address points to an area that consists of a halfword length
field, followed by a character string that contains the options.
The length field specifies the length of the character string. If no
string is specified, the value of the length field is zero.

If the exit changes the length of the options string, it needs to
put the new length value in the length field. The maximum length
allowed is 253 bytes. If the length of the data inserted is greater
than 253 bytes, TRANSMIT uses only the first 253 bytes, and
sets the length to 253.

+40 4 Address of an eight-character field containing the ddname of the
file that holds the data to be encrypted.

+44 4 Address of an eight-character field containing the ddname of the
file to which the encrypted data is to be written.

+48 4 Address of an area in which the exit can put a string to be
passed to the RECEIVE data set decryption exit (INMRZ13 or
INMRZ13R). The format of the area is a halfword length field,
followed by a 247-byte data field. If the exit puts a string in the
data field, it also needs to update the length field to reflect the
actual length of the data inserted. The value of the length field is
initially zero. If the length field is a negative value, RECEIVE
ignores the parameter. If length of the data inserted is greater
than 247 bytes, TRANSMIT uses only the first 247 bytes, and
sets the length to 247.

TRANSMIT Encryption Exit — INMXZ03R or INMXZ03

424 z/OS V1R4.0 TSO/E Customization

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R

Functional Description
Each time a log data set is to be allocated, the TRANSMIT pre-allocation exit,
INMXZ21R, receives control. This exit may be invoked multiple times for each
TRANSMIT operation. This exit can allocate the log data set, modify the data set
name, or take no action. If the exit chooses to allocate the data set, the exit must
pass the file name back to the TRANSMIT command. If the exit modifies the data
set name, the TRANSMIT command will then allocate the data set for the exit if the
exit has not already done so.

Under normal operations, the TRANSMIT command frees the log data sets
automatically. Therefore, even if the exit allocated the log data set, the data set is
freed when the command processor terminates normally.

During TRANSMIT processing, the allocation of the log data set occurs after the
TRANSMIT command has freed the output file. This is after exit INMXZ03(R) would
receive control.

If RACF is installed, and if you are using security labels, exit INMXZ03 receives
control after INMXZ21R.

If the exit is to allocate the log data set, consider the following:

v TRANSMIT allocates the data set as NEW if it does not exist. This frees users
from having to allocate the data set themselves.

v TRANSMIT allocates the data set with a disposition of NEW or MOD. The exit
should also allocate the data set with a disposition of NEW or MOD.

v If the exit allocates the data set as NEW, the data set must have the
characteristics of a log data set. The characteristics of a log data set are:

– Record Format (RECFM) of VB

– Logical Record Length (LRECL) of 255

– Blocksize (BLKSIZE) of 3120

Errors during log processing do not normally terminate command processing.
Instead, the command sets a return code of 4, indicating that failure occurred but
the transmission was successful. If the exit gives a non-zero return code,
TRANSMIT does not terminate processing, but sets a return code of 4, indicating
that the logging function encountered an error.

Note: If RACF is installed, and if your installation is using security labels, the
TRANSMIT command first opens all log data sets before transmitting the
data. If any log data set cannot be opened, TRANSMIT processing will
terminate.

Parameter Descriptions for INMXZ21R
When INMXZ21R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMXZ21R receives beginning at offset
+36 (decimal) in the parameter list.

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R

Chapter 37. Customizing TRANSMIT and RECEIVE 425

Following are descriptions of the information in the data fields of each parameter
entry:

Address of the TRANSMIT PARM String (Parameter Entry 10)
If the user entered a character string on the PARM keyword of the TRANSMIT
command, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the TRANSMIT PARM keyword,
see “Installation-Defined Parameters” on page 401.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

+60

+64

+68

00000002

00000002

Length of
TUPL

Length of
TUPL

Address of
text unit
pointer list

Address of
text unit
pointer list

Address of
addressee
chain

00000001

00000001

Address of
TRANSMIT
PARM string

00000004

00000004

00000002
Length of
addressee
chain

Length of
data set name

00000008

Data set
name

DDname
(blanks)

Figure 78. Exit-Dependent Data on Entry to INMXZ21R

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R

426 z/OS V1R4.0 TSO/E Customization

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
TRANSMIT processing after it returns. The flags in byte 0 are defined as
follows. Bytes 1, 2, and 3 are reserved.

Bit Action

1... TRANSMIT is to issue message INMX151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
the command is not to issue the normal error message. The
exit either: already sent an appropriate message to the user;
set return code 12, which causes message IKJ79154I to be
issued; or requested that the command issue message
INMX151I, using the text contained in the parameter entry
pointed to at offset +44.

..11 Reserved

.... 1... The exit has allocated the log data set. The ddname
representing the data set is contained in the parameter entry
pointed to by offset +64.

.... .1.. The exit has modified the log data set name that was passed in
the parameter entry pointed to by offset +68.

.... ..11 Reserved

Message Text (Parameter Entry 12)
Exits can put in this data field the message text that the command is to issue
with message ID INMX151I. The field initially contains blanks. If the exit inserts
text in the data field, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the message text. The maximum length is 243.

Status Flags (Parameter Entry 13)
The data field contains a byte of status flags in which the command passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... TRANSMIT is not interfacing with JES. A data set keyword
(OUTDSNAME, OUTDATASET) or a file keyword (OUTFILE,
OUTDDNAME) was specified.

.111 1111 Reserved

Address of a Text Unit Pointer List (Parameter Entry 14)
The data field contains the address of a text unit pointer list. The text units it
points to identify the sender’s node and user ID (INMFNODE and INMFUID).
For more information about those text units or the text unit pointer list, see
“TSO/E Standard Exit Parameter List” on page 35.

Note that the exit receives only copies of the actual text units; altering them has
no effect on subsequent processing.

Address of a Text Unit Pointer List (Parameter Entry 15)
The data field contains the address of a text unit pointer list. The text unit it
points to identifies the source of the data being transmitted -- either the data set
name, the ddname, or an indication that the data was entered at the terminal

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R

Chapter 37. Customizing TRANSMIT and RECEIVE 427

(text units INMDSNAM, INMDDNAM or INMTERM). For more information about
those text units or the text unit pointer list, see “Text Units and Text Unit Pointer
Lists” on page 474.

Note that the exit receives only copies of the actual text units; altering them has
no effect on subsequent processing.

Address of the Addressee Chain (Parameter Entry 16)
This parameter entry is the same as the parameter entry 16 that INMXZ01R
receives. Like INMXZ01R, this exit can alter subsequent processing by
changing the information in the chain. See “Parameter Descriptions for
INMXZ01R” on page 407 for a description of this parameter entry.

Data Set Name (Parameter Entry 17)
The data field contains the name of the log data set that will be allocated by the
command. If the exit chooses to modify the data set name, the length field
should be updated to reflect the correct length of the data set name. In addition,
if the exit modifies the data set name, the X'04' action flag should be set to
indicate that modifications were made.

If the exit updates this parameter entry, update the length and key fields
accordingly. If the length fields are incorrect, the parameter is ignored and
processing continues as it would have if the exit did not modify this parameter.

DDNAME (Parameter Entry 18)
If the exit allocates the log data set to a file, the file name should be placed in
this parameter entry. The length should be updated to reflect the length of the
file name. If the exit allocates the data set, the X'08' action flag should be set to
indicate that the data set has been allocated. If the exit allocates the data set,
the command will free the data set through normal processing.

If the exit updates this parameter entry, update the length and key fields
accordingly. If the length fields are incorrect, the parameter is ignored and
processing continues as it would have if the exit did not modify this parameter.

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R

Functional Description
The RECEIVE initialization exit (INMRZ01 or INMRZ01R) receives control after the
RECEIVE command processor parses the command input line, but before it takes
any other action. It receives control once per RECEIVE invocation. You can use the
exit to:

v Perform initialization tasks, such as obtaining storage for the exit-to-exit
communication word, and opening files.

v Determine if issuers of RECEIVE are allowed to use the command in any form.

v Determine if issuers of RECEIVE who do not have OPERATOR authority are
allowed to read files not addressed to their user IDs.

Parameter Descriptions for INMRZ01R
When INMRZ01R receives control, register 1 points to the standard exit parameter
list. For more information about the parameter list, see “TSO/E Standard Exit
Parameter List” on page 35. Note that the TRANSMIT and RECEIVE exits do not
use the new command buffer field in the parameter entry pointed to at offset +4.
Following is a description of the exit-dependent data that INMRZ01R receives
beginning at offset +36 (decimal).

TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R

428 z/OS V1R4.0 TSO/E Customization

Following are descriptions of the information in the data fields of each parameter
entry:

Address of RECEIVE PARM String (Parameter Entry 10)
If the user entered a character string on the PARM keyword of the RECEIVE
command, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the RECEIVE PARM keyword,
see “Installation-Defined Parameters” on page 401.

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000
or

00000002

4 or

string length
Address of
RECEIVE
PARM string

00000001

00000000

00000001

00000001

000000F3

00000008

Action flags

Message text

Status flags

User ID of
RECEIVE
issuer

00000001 00000008

+40

+44

+48

+52

+56

User ID

for receive

00000004

00000004

Figure 79. Exit-Dependent Data on Entry to INMRZ01R

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R

Chapter 37. Customizing TRANSMIT and RECEIVE 429

or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is to bypass normal authorization checking and
continue processing. The exit has validated the user ID in the
parameter entry pointed to at offset +56.

.... .1.. The exit has determined that the user is not authorized to
receive files for the user ID requested. RECEIVE processing
ends.

.... ..11 Reserved

Message Text (Parameter Entry 12)
Exits can put in this data field the message text that RECEIVE is to issue with
message ID INMR151I. The field initially contains blanks. If the exit inserts text
in the data field, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the message text. The maximum length is 243.

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 Reserved

.... 1... The user ID in the parameter entry pointed to by offset +56 is
the user ID specified on the USERID parameter of the
RECEIVE command.

.... .111 Reserved

User ID of RECEIVE Issuer (Parameter Entry 14)
The data field contains the user ID of the person who issued RECEIVE. The
user ID is taken from the PSCBUSER field of the protected step control block
(PSCB).

User ID Receiving For (Parameter Entry 15)
If the person who issued RECEIVE specified the USERID parameter, this data
field contains the user ID specified. If USERID was not specified, this data field
contains the user ID of the person who issued RECEIVE (the same user ID as
in the parameter entry pointed to at offset +52).

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R

430 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions for INMRZ01
When INMRZ01 receives control, register 1 points to the following parameter list.

Offset Length Value

+0 4 Address of an exit-to-exit communication word. RECEIVE exits
can use this word to communicate among themselves by
passing information in the storage to which the it points.
INMRZ01 can obtain the block of storage, and make it available
to all exits by storing the address in the exit-to-exit
communication word. RECEIVE initially sets the value of the
word to zero, and thereafter, does not modify it or the contents
of the storage to which it points.

+4 4 Address of the character string that the user entered on the
PARM keyword of the RECEIVE command. The address points
to an area consisting of a halfword length field followed by the
character string. The length field specifies the length of the
character string. If no string was specified, the value in the
length field is zero.

For more information about how you can use the RECEIVE
PARM keyword, see “Installation-Defined Parameters” on
page 401.

+8 4 Address of a byte of action flags, which the exit can set to
control RECEIVE processing after it returns.

Bit Action

1... RECEIVE is to issue message INMR151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), RECEIVE is not to issue the
normal error message. The exit either sends
an appropriate message to the user, or
requests that RECEIVE issue message
INMR151I, using the text contained in the
parameter pointed to at offset +16.

..11 Reserved

.... 1... RECEIVE is to bypass normal authorization
checking and continue processing. The exit
has validated the user ID at offset +28.

.... .1.. The exit has determined that the user is not
authorized to receive files for the user ID
requested. RECEIVE processing terminates.

.... ..11 Reserved
+12 4 Address of the TSO/E command processor parameter list (the

CPPL). The exit can use the parameter list to examine the initial
RECEIVE command, or to build an IOPL for invoking the TSO/E
I/O service routines.

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R

Chapter 37. Customizing TRANSMIT and RECEIVE 431

Offset Length Value

+16 4 Address of the message text that RECEIVE is to issue with
message ID INMR151I. When the exit is invoked, the address
points to an area consisting of a halfword length field, followed
by an area in which the exit can insert message text. The length
value at entry is zero.

Exits that pass back message text must put the length of text
into the length field. (Do not include the halfword of the length
field in the length specification.) The maximum length is 243
bytes.

+20 4 Address of a status flag byte. RECEIVE uses this byte to pass
indicators to the exit.

1... The input source for RECEIVE is not JES. The
bit is on when the user specified either
INDATASET, INDSNAME, INDDNAME, or
INFILE on the RECEIVE command.

.111 Reserved

.... 1... The user ID pointed to at offset +28 is the user
ID specified on the USERID parameter of the
RECEIVE command.

.... .111 Reserved
+24 4 Address of an 8-character user ID field that contains the user ID

of the person who issued RECEIVE. The user ID is taken from
the PSCBUSER field of the protected step control block (PSCB).

+28 4 Address of an 8-character user ID field. The field contains either
the user ID specified on the USERID parameter of RECEIVE, or,
if the USERID parameter was not specified, the user ID of the
person who issued RECEIVE (the same user ID pointed to at
offset +24).

RECEIVE Termination Exit — INMRZ02 or INMRZ02R

Functional Description
The RECEIVE termination exit (INMRZ02 or INMRZ02R) receives control after all
RECEIVE command processing is complete, or when the RECEIVE command ends
abnormally or terminates because of an attention interrupt. The termination exit is
invoked once per RECEIVE invocation. You can use the exit to perform clean-up
processing, such as freeing storage obtained for the exit-to-exit communication
word, closing any files that other RECEIVE exits opened, and freeing any data sets
that they allocated.

Parameter Descriptions for INMRZ02R
When INMRZ02R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ02R receives beginning at offset
+36 (decimal).

RECEIVE Initialization Exit — INMRZ01 or INMRZ01R

432 z/OS V1R4.0 TSO/E Customization

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428. Following are descriptions of the other parameter entries:

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 1111 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000
or

00000002

4 or

string length
Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of

parameter entry 16

+60

RECEIVE
command
return code

00000001 00000004

Number of

files received

Number of
records
received

00000001

00000004

00000004

00000001

00000004

00000004

Figure 80. Exit-Dependent Data on Entry to INMRZ02R

RECEIVE Termination Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 433

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 1111 Reserved

Number of Files Received (Parameter Entry 14)
The data field contains the number of files received during this invocation of
RECEIVE.

Number of Records Received (Parameter Entry 15)
The data field contains the number of records received during this invocation of
RECEIVE.

RECEIVE Command Return Code (Parameter Entry 16)
The data field contains the RECEIVE command return code.

Parameter Descriptions for INMRZ02
When INMRZ02 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMRZ01 receives.
Explanations of those parameters are not repeated here. For more information
about them, see “Parameter Descriptions for INMRZ01” on page 431.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered on the

PARM keyword of the RECEIVE command.
+8 4 Address of a byte of action flags, which the exit can set to

control TRANSMIT processing after it returns.

Bit Action

1... RECEIVE is to issue message INMR151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), RECEIVE is not to issue the
normal error message. The exit either sends
an appropriate message to the user, or
requests that RECEIVE issue message
INMR151I, using the text contained in the
parameter pointed to at offset +16.

..11 1111 Reserved
+12 4 Address of the TSO/E command processor parameter list (the

CPPL).
+16 4 Address of the message text that RECEIVE is to issue with

message ID INMR151I.
+20 4 Address of a status flag byte. RECEIVE uses this byte to pass

indicators to the exit.

1... The input source for RECEIVE is not JES. The
bit is on when the user specified either
INDATASET, INDSNAME, INDDNAME, or
INFILE on the RECEIVE command.

.111 1111 Reserved
+24 4 Address of a fullword that contains the number of files received

during this invocation of the RECEIVE command.

RECEIVE Termination Exit

434 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+28 4 Address of a fullword that contains the number of records
received during this invocation of RECEIVE.

+32 4 Address of a fullword that contains the RECEIVE command
return code.

RECEIVE Notification Exit — INMRZ04 or INMRZ04R

Functional Description
The RECEIVE notification exit (INMRZ04 or INMRZ04R) receives control each time
an acknowledgment is received. If the person who issued RECEIVE has several
acknowledgments to receive, the exit is invoked multiple times during RECEIVE
processing -- once per acknowledgment.

Installations can use this exit to process acknowledgment information. The
TRANSMIT startup exit (INMXZ01 or INMXZ01R) can pass a notification string in
the transmission. This exit and the RECEIVE acknowledgment notification exit
receive the string. When RECEIVE transmits an acknowledgment to the originator
of the transmission, the notification string is also included. This exit can use that
notification string to tie transmissions to acknowledgments.

Parameter Descriptions for INMRZ04R
When INMRZ04R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ04R receives beginning at offset
+36 (decimal).

RECEIVE Termination Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 435

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428. Following are descriptions of the other parameter entries INMRZ04R
receives:

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

+60

+64

Address of
parameter entry 17

Address of
parameter entry 18

00000000
or

00000002

00000001

00000002

00000000
or

00000002

00000000
or

00000002

4 or
string length

0000002C

4 or
string length

4 or error
code length

Transmitted
data set name

Address of
text unit
pointer list

Address of
PARM tag
string+68

Length of
TUPL

Address of
notification
string

Address of
completion
code

00000004

00000004

Figure 81. Exit-Dependent Data on Entry to INMRZ04R

RECEIVE Notification Exit

436 z/OS V1R4.0 TSO/E Customization

..11 1111 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 1111 Reserved

Address of User Notification String (Parameter Entry 14)
If the TRANSMIT initialization exit (INMRZ01R or INMRZ01) passes a
notification string, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the notification string, see
“Installation-Defined Parameters” on page 401.

Transmitted Data Set Name (Parameter Entry 15)
The name of the data set that was transmitted. If the data was transmitted as a
message, the field contains the string, ‘**MESSAGE**’.

Address of Text Unit Pointer List (Parameter Entry 16)
The data field contains the address of a text unit pointer list. The list points to
copies of text units that are sent with the transmission. They identify the
originator of the transmission, and can include:
INMFACK INMFNODE INMFTIME INMFUID INMFVERS INMLRECL
INMNUMF INMUSERP

For more information about those text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of PARM Tag String (Parameter Entry 17)
The data field might contain the address of a string taken from the :PARM tag
in the addressee’s nickname entry in the sender’s NAMES.TEXT data set. The
string is present if the TRANSMIT command specified a nickname directly or via
a distribution list, and the entry for that nickname in the sender’s NAMES.TEXT
data set contains the :PARM tag.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

RECEIVE Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 437

KEY: X'00000000'

LEN: X'00000004'

Address of RECEIVE Completion Code (Parameter Entry 18)
The data field points to an area that can contain a RECEIVE completion code --
either an error code, or a string (‘DELETED’) indicating the receiver deleted the
file.

If a completion code is set:

KEY: X'00000002'

LEN: Length of completion code

If no completion code is set:

KEY: X'00000000'

LEN: X'00000004'

Parameter Descriptions for INMRZ04
When INMRZ04 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMRZ01 receives.
Explanations of those parameters are not repeated here. For more information
about them, see “Parameter Descriptions for INMRZ01” on page 431.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered

on the PARM keyword of the RECEIVE command.
+8 4 Address of a byte of action flags, which the exit can

set to control RECEIVE processing after the exit
returns.

Bit Action

1... RECEIVE is to issue message
INMR151I, using the text contained
in the parameter pointed to at offset
+16.

.1.. If the return code from the exit is
non-zero (end processing),
RECEIVE is not to issue the normal
error message. The exit either
sends an appropriate message to
the user, or requests that RECEIVE
issue message INMR151I, using the
text contained in the parameter
pointed to at offset +16.

..11 1111 Reserved
+12 4 Address of the TSO/E command processor parameter

list (the CPPL).
+16 4 Address of the message text that RECEIVE is to

issue with message ID INMR151I.

RECEIVE Notification Exit

438 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+20 4 Address of a status flag byte. RECEIVE uses this
byte to pass indicators to the exit.

1... The input source for RECEIVE is
not JES. The bit is on when the
user specified either INDATASET,
INDSNAME, INDDNAME, or INFILE
on the RECEIVE command.

.111 1111 Reserved
+24 4 If the TRANSMIT initialization exit (INMRZ01R or

INMRZ01) passes a notification string, this field
contains the address of that string. The address
points to an area that consists of a halfword length
field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the value in the length field is zero.

+28 4 Address of a 44-character field that contains the
name of the data set that was transmitted. If the data
was transmitted as a message, the field contains the
string, ‘***MESSAGE***’.

+32 4 Address of a text unit pointer list. The list points to
copies of text units that are sent with the
transmission. They identify the originator of the
transmission, and can include:

INMFACK INMFNODE INMFTIME INMFUID
INMFVERS INMLRECL INMNUMF INMUSERP

For more information about those text units or text
unit pointer lists, see “Text Units and Text Unit Pointer
Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit
receives copies of the actual text units for information
only.

+36 4 Address of the string taken from the :PARM tag in the
addressee’s nickname entry in the sender’s
NAMES.TEXT data set. The string is present if the
TRANSMIT command specified a nickname directly or
via a distribution list, and the entry for that nickname
in the sender’s NAMES.TEXT data set contains the
:PARM tag.

The address points to an area that consists of a
halfword length field followed by the character string.
The length value is the length of the character string
only. If no string is specified, the value in the length
field is zero.

+40 4 Address of an area that contains the RECEIVE
completion code -- either an error code, or a string
(‘DELETED’) the receiver deleted the file.

The area consists of a halfword length field followed
by the completion code. The length value is the length
of the code only, and does not include the halfword
length field. If the RECEIVE command was
successful, the value in the length field is zero.

RECEIVE Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 439

RECEIVE Acknowledgment Notification Exit — INMRZ05R

Functional Description
If the sender of data requested acknowledgment, the RECEIVE acknowledgment
notification exit (INMRZ05R) receives control after the acknowledgment has been
sent. However, this exit does not receive control if exit INMRZ06R has suppressed
the acknowledgment. If RECEIVE is processing several files, each with a request
for acknowledgment, this exit is invoked multiple times during RECEIVE processing.
The exit enables installations to notify the sender that an acknowledgment is waiting
to be received by the sender. The sender can then receive the acknowledgment
and free spool space.

Note: If RACF is installed, your installation can activate security label checking. If
your installation has activated security label checking, and the result of that
check indicates the receiver is at a different security label than the sender is
logged on with, exit INMRZ05R is invoked. However, the sender may not get
the acknowledgment.

Parameter Descriptions for INMRZ05R
When INMRZ05R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ05R receives beginning at offset
+36 (decimal).

RECEIVE Acknowledgment Notification Exit

440 z/OS V1R4.0 TSO/E Customization

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428. Following are descriptions of the other parameter entries:

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

+60

+64

Address of
parameter entry 17

Address of
parameter entry 18

00000000
or

00000002

00000001

00000002

00000000
or

00000002

4 or
string length

0000002C

4 or
string length

Transmitted
data set name

Address of
text unit
pointer list

Address of
PARM tag
string+68

Address of
parameter entry 19

Address of
parameter entry 20

Address of
parameter entry 21

Address of
parameter entry 22

Address of
parameter entry 23

+72

+76

+80

+84

+88

00000001 00000008
User ID
ack sent to

Node to
which
ack sent

User ID
from which
ack sent

Node from
which
ack sent

Time of
original
transmission

Number of
JES ack
records

00000001

00000001

00000001

00000001

00000001

00000008

00000008

00000008

0000000E

00000004

Length of
TUPL

Address of
notification
string

00000004

00000004

Figure 82. Exit-Dependent Data on Entry to INMRZ05R

RECEIVE Acknowledgment Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 441

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 1111 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 1111 Reserved

Address of User Notification String (Parameter Entry 14)
If the TRANSMIT initialization exit (INMRZ01R or INMRZ01) passes a
notification string in the transmission, this data field contains the address of that
string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the notification string, see
“Installation-Defined Parameters” on page 401.

Transmitted Data Set Name (Parameter Entry 15)
The name of the data set that was transmitted. If the data was transmitted as a
message, the field contains the string, ‘***MESSAGE*** ’.

Address of Text Unit Pointer List (Parameter Entry 16)
The data field contains the address of a text unit pointer list. The list points to
copies of text units that are sent with the transmission. They identify the
originator of the transmission, and can include:
INMFACK INMFNODE INMFTIME INMFUID INMFVERS INMLRECL
INMNUMF INMUSERP

RECEIVE Acknowledgment Notification Exit

442 z/OS V1R4.0 TSO/E Customization

For more information about those text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of PARM Tag String (Parameter Entry 17)
The data field might contain the address of a string taken from the :PARM tag
in the addressee’s nickname entry in the sender’s NAMES.TEXT data set. The
string is present if the TRANSMIT command specified a nickname directly or via
a distribution list, and the entry for that nickname in the sender’s NAMES.TEXT
data set contains the :PARM tag.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

User ID to Which Acknowledgment is Sent (Parameter Entry 18)
The data field contains the user ID to which the acknowledgment is to be sent.
Because the acknowledgment is sent before this exit gets control, RECEIVE
ignores any changes the exit makes to this data field.

Node to Which Acknowledgment is Sent (Parameter Entry 19)
The data field contains the node to which the acknowledgment is to be sent.
Because the acknowledgment is sent before this exit gets control, RECEIVE
ignores any changes the exit makes to this data field.

User ID from Which Acknowledgment is Sent (Parameter Entry 20)
The data field contains the user ID from which the acknowledgment is to be
sent. RECEIVE ignores any changes the exit makes to this field.

Node from Which Acknowledgment is Sent (Parameter Entry 21)
The data field contains the node from which the acknowledgment is to be sent.
RECEIVE ignores any changes the exit makes to this field.

Time of Original Transmission (Parameter Entry 22)
The data field contains the timestamp of when the original transmission
occurred. The time is in standard GMT format. RECEIVE ignores any changes
the exit makes to this field.

Number of JES OUTPUT Records (Parameter Entry 23)
The data field contains the number of JES output records transmitted in the
acknowledgment. RECEIVE ignores any changes the exit makes to this field.

RECEIVE Pre-acknowledgment Notification Exit — INMRZ06R

Functional Description
If the sender of data requested acknowledgment, the RECEIVE
pre-acknowledgment notification exit (INMRZ06R) receives control before the
acknowledgment is sent. The exit enables installations to suppress
acknowledgments and alter sending and receiving userid/node pairs. If the
SECLABELs of the sender and receiver are different, the installation can specify
which SECLABEL to use to send the acknowledgment.

RECEIVE Acknowledgment Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 443

If RECEIVE is processing several files, each with an acknowledgment, this exit is
invoked multiple times during RECEIVE processing.

Parameter Descriptions for INMRZ06R
When INMRZ06R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ06R receives beginning at offset
+36 (decimal).

RECEIVE Pre-acknowledgment Notification Exit

444 z/OS V1R4.0 TSO/E Customization

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428. Following are descriptions of the other parameter entries:

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

+40

+44

+48

Address of
parameter entry 16

Address of
parameter entry 17

Address of
parameter entry 18

Address of
parameter entry 19

Address of
parameter entry 20

Address of
parameter entry 21

Address of
parameter entry 22

Address of
parameter entry 23

Address of RECEIVE
PARM string

Action flags

Message text

Status flags

Address of
notification string

Transmitted
data set name

Address of text unit
pointer list

Length of
TUPL

Address of
PARM tag string

User ID
ack sent to

Node to which
ack sent

Time of
original transmission

Number of
JES ack records

00000000
or
00000002

4 or
string length

00000000
or
00000002

4 or
string length

00000000
or
00000002

4 or
string length

00000001 00000004

00000000 000000F3

00000001 00000004

00000001 0000002C

00000002

00000001 00000008

00000001 00000008

00000001 00000008

00000001 00000008

00000001 0000000E

00000001 00000004

User ID from which
ack sent

Node from which
ack sent

Address of
parameter entry 24 00000002

Address of the
senders security token

Length of
security token

+52

+56

+60

+64

+68

+72

+76

+80

+84

+88

+92

Figure 83. Exit-Dependent Data on Entry to INMRZ06R

RECEIVE Pre-acknowledgment Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 445

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is to suppress acknowledgment processing. No
acknowledgment is to be sent to the requesting user, and exit
INMRZ05R should not be invoked. The exit has performed
acknowledgment processing itself or determined that an
acknowledgment was not necessary.

.... .1.. RECEIVE is to use the receiver’s SECLABEL for the
acknowledgment message when this bit is on; otherwise, the
sender’s SECLABEL will be used for the acknowledgment
message.

.... ..11 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 1111 Reserved

Address of User Notification String (Parameter Entry 14)
If the TRANSMIT initialization exit (INMRZ01R or INMRZ01) passes a
notification string in the transmission, this data field contains the address of that
string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

RECEIVE Pre-acknowledgment Notification Exit

446 z/OS V1R4.0 TSO/E Customization

For more information about how you can use the notification string, see
“Installation-Defined Parameters” on page 401.

Transmitted Data Set Name (Parameter Entry 15)
The name of the data set that was transmitted. If the data was transmitted as a
message, the field contains the string, ‘***MESSAGE*** ’.

Address of Text Unit Pointer List (Parameter Entry 16)
The data field contains the address of a text unit pointer list. The list points to
copies of text units that are sent with the transmission. They identify the
originator of the transmission, and can include:
INMFACK INMFNODE INMFTIME INMFUID INMFVERS INMLRECL
INMNUMF INMUSERP

For more information about those text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of PARM Tag String (Parameter Entry 17)
The data field might contain the address of a string taken from the :PARM tag
in the addressee’s nickname entry in the sender’s NAMES.TEXT data set. The
string is present if the TRANSMIT command specified a nickname directly or via
a distribution list, and the entry for that nickname in the sender’s NAMES.TEXT
data set contains the :PARM tag.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

User ID to Which Acknowledgment is Sent (Parameter Entry 18)
The data field contains the user ID to which the acknowledgment is to be sent.
This parameter may be modified by the exit. Any modification made to this
parameter affects the current acknowledgment only. Changes are passed along
in the acknowledgment transmission, and are also passed to exit INMRZ05R.

Node to Which Acknowledgment is Sent (Parameter Entry 19)
The data field contains the node to which the acknowledgment is to be sent.
This parameter may be modified by the exit. Any modification made to this
parameter affects the current acknowledgment only. Changes are passed along
in the acknowledgment transmission, and are also passed to exit INMRZ05R.

User ID from Which Acknowledgment is Sent (Parameter Entry 20)
The data field contains the user ID from which the acknowledgment is to be
sent. This parameter may be modified by the exit. Any modification made to this
parameter affects the current acknowledgment only. Changes are passed along
in the acknowledgment transmission, and are also passed to exit INMRZ05R.

Node from Which Acknowledgment is Sent (Parameter Entry 21)
The data field contains the node from which the acknowledgment is to be sent.
This parameter may be modified by the exit. Any modification made to this
parameter affects the current acknowledgment only. Changes are passed along
in the acknowledgment transmission, and are also passed to exit INMRZ05R.

RECEIVE Pre-acknowledgment Notification Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 447

Time of Original Transmission (Parameter Entry 22)
The data field contains the timestamp of when the original transmission
occurred. The time is in standard GMT format. RECEIVE ignores any changes
the exit makes to this field.

Number of JES OUTPUT Records (Parameter Entry 23)
The data field contains the number of JES output records transmitted in the
acknowledgment. The exit can update the data field to reflect the number of
records transmitted if the exit performed acknowledgment processing.

Address of the Sender’s Security Token (Parameter Entry 24)
The data field contains the address of the sender’s encrypted security token.
The exit can decrypt the security token using the RACF TOKENMAP macro.
For complete information about using the TOKENMAP macro, see z/OS
Security Server RACF Macros and Interfaces.

RECEIVE Data Set Pre-Processing Exit — INMRZ11 or INMRZ11R

Functional Description
The RECEIVE data set pre-processing exit (INMRZ11 or INMRZ11R) receives
control just before the RECEIVE command processor prompts the user for actions
to be taken with the transmitted data set. You can use the exit to:

v Replace user interaction required in determining what to do with the arriving
transmission. The exit receives information about the incoming data set and can
specify the same parameters for which RECEIVE would otherwise prompt the
user.

v Determine which users can use a particular network path. The exit can check the
source of a message before delivering it to the user.

v In conjunction with the RECEIVE data set post-processing exit (INMRZ12R or
INMRZ12), receive data set types not supported by TRANSMIT and RECEIVE.
This exit instructs RECEIVE to ignore the target dsname that the sender
specified, and to write the received data into a temporary data set that
INMXZ01R or another exit allocated.

v Suppress reception of data sets by setting the action flag that tells RECEIVE all
processing on the current file is complete.

Parameter Descriptions for INMRZ11R
When INMRZ11R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ11R receives beginning at offset
+36 (decimal).

RECEIVE Pre-acknowledgment Notification Exit

448 z/OS V1R4.0 TSO/E Customization

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428.

Following are descriptions of the other parameter entries:

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000
or

00000002

4 or

string length
Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of

parameter entry 16

+60

+64

Address of

parameter entry 17

Address of

parameter entry 18

00000000
or

00000002

00000002

00000000
or

00000002

00000000
or

00000002

4 or

string length

4 or

string length

Address of
text unit
pointer list

Address of
PARM tag
string+68

Address of

parameter entry 19

Address of

parameter entry 20

+72

+76

00000002
Length of

TUPL

Address of
text unit
pointer list

4 or

string length

00000002
Length of

DCB

Address of
reply to
RECEIVE

Address of

input DCB

Address of
PARM string
from prompt

Length of

TUPL

Address of
string from
INMXZ01R

00000004

00000004

00000002 00000103

Figure 84. Exit-Dependent Data on Entry to INMRZ11R

RECEIVE Data Set Pre-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 449

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is not to prompt the user. Instead, it is to use the
reply the exit specifies in the parameter entry pointed to at
offset +72. If bit X'01' is specified, RECEIVE ignores it.

.... .1.. RECEIVE is to restore the incoming data to a temporary data
set. The RECEIVE data set post-processing exit (INMRZ12R or
INMRZ12) should complete processing the data.

Setting this bit to one does not prevent RECEIVE from
prompting the user for allocation parameters to use in restoring
the data; it only causes RECEIVE to ignore the user’s reply.
Thus, if you set this bit to one, you should also set bit X'08' to
one, to prevent RECEIVE from prompting the user.

.... ..1. All processing on the current file is complete. If the return code
from the exit is zero, no more processing is done on the file.
RECEIVE can delete the file from the JES spool and process
the next file, if one exists.

If the return code is non-zero, RECEIVE ignores this bit.

.... ...1 RECEIVE is to prompt the user for allocation parameters, and
not take the action that RESTORE requests unless the user
requests it. (RESTORE is the usual default action when
processing data sets.) If action bit X'08' is one, RECEIVE
ignores this bit.

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.1.. RECEIVE does not recognize the input data. Either an error
occurred in the transmission, or the data was sent by a
program other than TRANSMIT or PROFS.

If the exit is to process the data, it can get the address of the
input DCB from the parameter entry pointed to at offset +76.
The exit can also get the ddname of the file via the text unit
pointer list in the parameter entry pointed to at offset +56.
Before processing the data, the exit must close then reopen the
data set to ensure that it starts reading at the beginning. (When
the exit receives control, RECEIVE has already read past any
control records, and has read at least the first record of the
data set.)

RECEIVE Data Set Pre-Processing Exit

450 z/OS V1R4.0 TSO/E Customization

..11 Reserved

.... 1... RECEIVE is to restore the data to its original format and write it
to the appropriate log, which is the action that RESTORE(LOG)
requests, and the default when receiving messages.

.... .111 Reserved

Address of PARM String from user—entered PARM keyword (Parameter Entry
14)

If the user entered a character string on the PARM keyword on the RECEIVE
command, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Address of Text Unit Pointer List (Parameter Entry 15)
The data field contains the address of a text unit pointer list. The list points to
copies of text units that are sent with the transmission. They describe the
incoming data, and can include:
INMBLKSZ INMCREAT INMDDNAM INMDIR INMDSNAM INMDSORG
INMEXPDT INMFM INMLCHG INMLRECL INMLREF INMMEMBR
INMRECFM INMSERP INMSIZE INMTERM INMUTILN

For more information about those text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of Text Unit Pointer List (Parameter Entry 16)
The data field contains the address of another text unit pointer list. The list
points to copies of text units that are sent with the transmission. They identify
the originator of the transmission, and can include:
INMFACK INMFNODE INMFTIME INMFUID INMFVERS INMLRECL
INMNUMF INMUSERP

For more information about those text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of PARM Tag String (Parameter Entry 17)
The data field might contain the address of a string taken from the :PARM tag
in the addressee’s nickname entry in the sender’s NAMES.TEXT data set. The
string is present if the TRANSMIT command specified a nickname directly or via
a distribution list, and the entry for that nickname in the sender’s NAMES.TEXT
data set contains the :PARM tag.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

RECEIVE Data Set Pre-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 451

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Address of a String from INMXZ01R (Parameter Entry 18)
The TRANSMIT initialization exit (INMXZ01R or INMXZ01) can pass a user
string to the RECEIVE data set exits, including INMRZ11R. If it does, this data
field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Address of Reply to RECEIVE (Parameter Entry 19)
The data field contains the address of an area in which the exit can build a
reply to the RECEIVE command prompt. The address points to an area that
contains: a halfword length, followed by a halfword of zeros, followed by 255
bytes (X'FF') where the exit can supply the prompt data. At entry, the length
field contains 259 bytes (X'0103'). This value denotes the maximum length of
the buffer. To supply a receive prompt, the exit must do the following:

1. Set bit X'08' in the action flags (parameter entry 11) on to indicate that
RECEIVE is not to prompt the user.

2. Supply the data for the RECEIVE reply in the 255-byte (X'FF') area.

3. Set the halfword length field in the header to the length of the reply that was
supplied, plus a 4-byte header.

If the exit builds a reply, it also needs to put the following values in the key and
length fields:

KEY: X'00000002'

LEN: Length of the replay plus a 4-byte header

Address of the Input DCB (Parameter Entry 20)
The data field contains the address of the input DCB that identifies the data set
being received. Before reading the data, the exit must close then reopen the
data set to ensure that it starts reading at the beginning. (When the exit
receives control, RECEIVE has already read past any control records, and has
read at least the first record of the data set.)

Parameter Descriptions for INMRZ11
When INMRZ11 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMRZ01 receives.
Explanations of those parameters are not repeated here. For more information
about them, see “Parameter Descriptions for INMRZ01” on page 431.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered on the

PARM keyword of the RECEIVE command.

RECEIVE Data Set Pre-Processing Exit

452 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+8 4 Address of a byte of action flags, which the exit can set to
control RECEIVE processing after it returns.

Bit Action

1... RECEIVE is to issue message INMR151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), RECEIVE is not to issue
the normal error message. The exit either
sends an appropriate message to the user,
or requests that RECEIVE issue message
INMR151I, using the text contained in the
parameter pointed to at offset +16.

..11 Reserved

.... 1... RECEIVE is not to prompt the user. Instead,
it is to use the reply the exit specifies in the
area pointed to at offset +44. If bit X'01' is
set to one, RECEIVE ignores it.

.... .1.. RECEIVE is to restore the incoming data to
a temporary data set. The RECEIVE data
set post-processing exit (INMRZ12R or
INMRZ12) should complete processing the
data.

Setting this bit to one does not prevent
RECEIVE from prompting the user for
allocation parameters to use in restoring the
data; it only causes RECEIVE to ignore the
user’s reply. Thus, if you set this bit to one,
you should also set bit X'08' to one, to
prevent RECEIVE from prompting the user.

.... ..1. All processing on the current file is
complete. If the return code from the exit is
zero, no more processing is done on the file.
RECEIVE can delete the file from the JES
spool and process the next file, if one exists.

If the return code is non-zero, RECEIVE
ignores this bit.

.... ...1 RECEIVE is to prompt the user for allocation
parameters, and not take the action that
RESTORE requests unless the user
requests it. (RESTORE is the usual default
action when processing data sets.) If action
bit X'08' is one, RECEIVE ignores this bit.

+12 4 Address of the TSO/E command processor parameter list (the
CPPL).

+16 4 Address of the message text that RECEIVE is to issue with
message ID INMR151I.

RECEIVE Data Set Pre-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 453

Offset Length Value

+20 4 Address of a status flag byte. RECEIVE uses this byte to pass
indicators to the exit.

1... The input source for RECEIVE is not JES.
The bit is on when the user specified either
INDATASET, INDSNAME, INDDNAME, or
INFILE on the RECEIVE command.

.1.. RECEIVE does not recognize the input data.
Either an error occurred in the transmission,
or the data was sent by a program other
than TRANSMIT or PROFS.

If the exit is to process the data, it can get
the address of the input DCB from offset
+48. The exit can also get the ddname of
the file via the text unit pointer list at offset
+28.

Before processing the data, the exit must
close then reopen the data set to ensure
that it starts reading at the beginning. (When
the exit receives control, RECEIVE has
already read past any control records, and
has read at least the first record of the data
set.)

..11 Reserved

.... 1... RECEIVE is to restore the data to its original
format and write it to the appropriate log,
which is the action that RESTORE(LOG)
requests, and the default when receiving
messages.

.... .111 Reserved
+24 4 If the user entered a character string on the PARM keyword in

response to the RECEIVE prompt, this parameter contains the
address of that string.

The address points to an area that consists of a halfword
length field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the length value is zero.

+28 4 Address of a text unit pointer list. The list points to copies of
text units that are sent with the transmission. They describe
the incoming data, and can include:

INMBLKSZ INMCREAT INMDDNAM INMDIR INMDSNAM
INMDSORG INMFM INMEXPDT INMLCHG INMLRECL
INMLREF INMMEMBR INMRECFM INMSIZE INMTERM
INMSERP INMUTILN

For more information about those text units or text unit pointer
lists, see “Text Units and Text Unit Pointer Lists” on page 474.
Note that altering the text units has no effect on subsequent
processing. The exit receives copies of the actual text units for
information only.

RECEIVE Data Set Pre-Processing Exit

454 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+32 4 Address of another text unit pointer list. The list points to
copies of text units that are sent with the transmission. They
identify the originator of the transmission, and can include:

INMFACK INMFNODE INMFTIME INMFUID INMFVERS
INMLRECL INMNUMF INMUSERP

For more information about those text units or text unit pointer
lists, see “Text Units and Text Unit Pointer Lists” on page 474.
Note that altering the text units has no effect on subsequent
processing. The exit receives copies of the actual text units for
information only.

+36 4 Address of a string taken from the :PARM tag in the
addressee’s nickname entry in the sender’s NAMES.TEXT
data set. The string is present if the TRANSMIT command
specified a nickname directly or via a distribution list, and the
entry for that nickname in the sender’s NAMES.TEXT data set
contains the :PARM tag.

The address points to an area that consists of a halfword
length field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the value in the length field is zero.

+40 4 The TRANSMIT initialization exit (INMXZ01R or INMXZ01)
can pass a user string to the RECEIVE data set exits,
including INMRZ11. If it does, this data field contains the
address of that string.

The address points to an area that consists of a halfword
length field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the value in the length field is zero.

+44 4 The address of an area in which the exit can build a reply to
the RECEIVE command prompt. The address points to an
area that consists of a halfword length field followed by a
halfword of zeros, followed by 255-bytes (X'FF') where the exit
can supply the prompt data. At entry the length field contains
259 bytes (X'0103'). This value denotes the maximum length
of the buffer. To supply a receive prompt, the exit must do the
following:

1. Set bit X'08' in the action flags (parameter entry 11) on to
indicate that RECEIVE is not to prompt the user.

2. Supply the data for the RECEIVE reply in the 255-byte
(X'FF') area.

3. Set the halfword length field in the header to the length of
the reply that was supplied, plus a 4-byte header.

+48 4 Address of the input DCB that identifies the data set being
received. Before reading the data, the exit must close then
reopen the data set to ensure that it starts reading at the
beginning. (When the exit receives control, RECEIVE has
already read past any control records, and has read at least
the first record of the data set.)

RECEIVE Data Set Pre-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 455

RECEIVE Data Set Post-Processing Exit — INMRZ12 or INMRZ12R

Functional Description
The RECEIVE data set post-processing exit (INMRZ12 or INMRZ12R) receives
control after all RECEIVE processing for a data set is completed except for deleting
the input file. You can use the exit:

v In conjunction with either the RECEIVE data set pre-processing exit (INMRZ11R
or INMRZ11) or the RECEIVE post-prompt exit (INMRZ15R) to receive data set
types not supported by TRANSMIT and RECEIVE. The exit invokes the utility you
specify to restore the data to its original format and write it into the receiving
user’s target data set.

v Record network use. The exit, as well as exits INMXZ02R and INMXZ02, has
access to the information required to determine the volume and direction of
network traffic. You can use SMFWTM or SMFEWTM macros to write SMF
records from the exit.

Parameter Descriptions for INMRZ12R
When INMRZ12R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ11R receives beginning at offset
+36 (decimal).

RECEIVE Data Set Post-Processing Exit

456 z/OS V1R4.0 TSO/E Customization

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428.

Following are descriptions of the other parameter entries:

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

+60

+64

Address of
parameter entry 17

Address of
parameter entry 18

00000000
or

00000002

00000002

00000000
or

00000002

00000000
or

00000002

4 or
string length

4 or
string length

Address of
text unit
pointer list

Address of
PARM tag
string+68

Address of
parameter entry 19

Address of
parameter entry 20

+72

+76

00000002
Length of
TUPL

Address of
text unit
pointer list

4 or
string length

Address of
parameter entry 21

Address of
parameter entry 22

Address of
parameter entry 23

+80

+84

+88

00000001 00000004
RECEIVE
command
return codes

00000001

00000001

00000001

00000001

00000008

00000004

00000008

00000008

DDNAME
of RECEIVE
output file

Node to
which
ack sent

User ID
to which
ack sent

Length of
TUPL

Address of
PARM string
from prompt

Address of
string from
INMXZ01R

Number of
records read

00000004

00000004

Figure 85. Exit-Dependent Data on Entry to INMRZ12R

RECEIVE Data Set Post-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 457

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is to keep (not delete) the input file being received,
even though no error has occurred.

.... .1.. RECEIVE is to delete the input file being received, even though
errors are indicated.

.... ..11 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.1.. RECEIVE does not recognize the input data. Either an error
occurred in the transmission, or the data was sent by a
program other than TRANSMIT or PROFS.

..11 Reserved

.... 1... RECEIVE is to end processing. Either the user replied ‘END’ to
a prompt, or an error occurred while prompting.

.... .1.. The user entered ‘DELETE’ in response to a prompt.

.... ..11 Reserved

RECEIVE Return Code (Parameter Entry 19)
The data field contains the RECEIVE return code.

Ddname of RECEIVE Output File (Parameter Entry 20)
If the RECEIVE pre-processing exit (INMRZ11R or INMRZ11) or the RECEIVE
post-prompt exit (INMRZ15R) requested that the output be written to a
temporary data set, this data field contains the ddname of that output file. If that
request was not made, the field is blank.

Number of Records Read from the Input File (Parameter Entry 21)
The data field contains the number of records read from the input file during this
receive operation.

RECEIVE Data Set Post-Processing Exit

458 z/OS V1R4.0 TSO/E Customization

Node to Which an Acknowledgment is to be Sent (Parameter Entry 22)
The data field contains either the node name or the node number to which the
acknowledgment is sent. The exit can change that information.

User ID to Which an Acknowledgment is to be Sent (Parameter Entry 23)
The data field contains the user ID to which the acknowledgment is to be sent.
The exit can change that information.

Parameter Descriptions for INMRZ12
When INMRZ12 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMRZ01 and
INMRZ11 receive. Explanations of those parameters are not repeated here. For
more information about them, see “Parameter Descriptions for INMRZ01” on
page 431 or “Parameter Descriptions for INMRZ11” on page 452.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered on the

PARM keyword of the RECEIVE command.
+8 4 Address of a byte of action flags, which the exit can set to

control RECEIVE processing after it returns.

Bit Action

1... RECEIVE is to issue message INMR151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), RECEIVE is not to issue the
normal error message. The exit either sends
an appropriate message to the user, or
requests that RECEIVE issue message
INMR151I, using the text contained in the
parameter pointed to at offset +16.

..11 Reserved

.... 1... RECEIVE is to keep (not delete) the input file
being received, even though no error has
occurred.

.... .1.. RECEIVE is to delete the input file being
received, even though errors are indicated.

.... ..11 Reserved
+12 4 Address of the TSO/E command processor parameter list (the

CPPL).
+16 4 Address of the message text that RECEIVE is to issue with

message ID INMR151I.

RECEIVE Data Set Post-Processing Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 459

Offset Length Value

+20 4 Address of a status flag byte. RECEIVE uses this byte to pass
indicators to the exit.

1... The input source for RECEIVE is not JES. The
bit is on when the user specified either
INDATASET, INDSNAME, INDDNAME, or
INFILE on the RECEIVE command.

.1.. RECEIVE does not recognize the input data.
Either an error occurred in the transmission, or
the data was sent by a program other than
TRANSMIT or PROFS.

..11 Reserved

.... 1... RECEIVE is to end processing. Either the user
replied ‘END’ to a prompt, or an error occurred
while prompting.

.... .1.. The user entered ‘DELETE’ in response to a
prompt.

.... ..11 Reserved
+24 4 If the user entered a character string on the PARM keyword in

response to the RECEIVE prompt, this parameter contains the
address of that string.

The address points to an area that consists of a halfword length
field followed by the character string. The length value is the
length of the character string only. If no string is specified, the
length value is zero.

+28 4 Address of a text unit pointer list. The list points to copies of text
units that describe the incoming data.

+32 4 Address of another text unit pointer list. The list points to copies
of text units that identify the originator of the transmission.

+36 4 Address of a string taken from the :PARM tag in the addressee’s
nickname entry in the sender’s NAMES.TEXT data set.

+40 4 The TRANSMIT initialization exit (INMXZ01R or INMXZ01) can
pass a user string to the RECEIVE data set exits, including this
exit. If it does, this data field contains the address of that string.

+44 4 Address of a fullword that contains the RECEIVE command
return code.

+48 4 If the RECEIVE pre-processing exit (INMRZ11R or INMRZ11) or
the RECEIVE post-prompt exit (INMRZ15R) requested that the
output be written to a temporary data set, this field contains the
ddname of that output file. If that request was not made, the field
is blank.

+52 4 Address of a fullword that contains the number of records read
from the input file during this invocation of RECEIVE.

+56 4 Address of an 8-byte field that contains the node name or node
number to which an acknowledgment is to be sent. The exit can
modify this field.

+60 4 Address of an 8-byte field that contains the user ID to which an
acknowledgment is to be sent. The exit can modify this field.

RECEIVE Data Set Post-Processing Exit

460 z/OS V1R4.0 TSO/E Customization

RECEIVE Data Set Decryption Exit — INMRZ13 or INMRZ13R

Functional Description
The RECEIVE data set decryption exit (INMRZ13 or INMRZ13R) receives control
immediately after RECEIVE prompts the user for REPRO command options for
deciphering an incoming file, and immediately before RECEIVE calls the Access
Method Services REPRO function to decipher the file. The exit can:

v Examine and, if appropriate, change the options the user specifies. If RECEIVE
is to do the deciphering, it builds the REPRO command after the exit returns,
using any changes the exit makes.

v Invoke decryption processing itself. The exit is passed all the controls and
ddnames that RECEIVE uses for decryption processing.

v Decide that decryption is not necessary, and prevent RECEIVE from doing it.

Parameter Descriptions for INMRZ13R
When INMRZ13R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ13R receives beginning at offset
+36 (decimal).

RECEIVE Data Set Decryption Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 461

Many of the parameters are the same as those that INMRZ01R and INMRZ11R
receive. Explanations of those parameters are not repeated here. For more
information about them, see “Parameter Descriptions for INMRZ01R” on page 428
or “Parameter Descriptions for INMRZ11R” on page 448.

Following are descriptions of only those parameters that are different.

Key Length Data+0 +4 +8

Parameter Entry's
Key, Length, and Data

+36

Address of
parameter entry 10

Address of
parameter entry 11

Address of
parameter entry 12

Address of
parameter entry 13

Address of
parameter entry 14

Address of
parameter entry 15

00000000
or

00000002

4 or
string length

Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of
parameter entry 16

+60

+64

Address of
parameter entry 17

Address of
parameter entry 18

00000000
or

00000002

00000002

00000000
or

00000002

00000000
or

00000002

4 or
string length

4 or
string length

Address of
text unit
pointer list

Address of
PARM tag
string+68

Address of
parameter entry 19

Address of
parameter entry 20

+72

+76

00000002
Length of
TUPL

Address of
text unit
pointer list

4 or
string length

Address of
parameter entry 21

Address of
parameter entry 22

+80

+84

00000002
Length of
REPRO
options

DDNAME
of encrypted
data file

00000001 00000008

00000001 00000008

00000000
or

00000002

4 or
string length

Length of
TUPL

Address of
PARM string
from prompt

DDNAME
for decrypted
data

Address of
REPRO
options

Address of
string from
INMXZ01R

Address of
string from
INMRX03R

00000004

00000004

Figure 86. Exit-Dependent Data on Entry to INMRZ13R

RECEIVE Data Set Decryption Exit

462 z/OS V1R4.0 TSO/E Customization

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after the exit returns. The flags in byte 0 are defined as
follows. Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is not to issue the REPRO command. Either the exit
deciphered the data, or no deciphering is required.

If the exit deciphered the data, RECEIVE assumes that the exit
copied the data from the file identified by the enciphered data
ddname to the file identified by the plain text data ddname.
Those ddnames are contained in the parameter entries pointed
to at offsets +76 and +80, respectively.

.... .1.. Reserved

.... ..1. All processing on the current file is complete. If the return code
from the exit is zero, no more processing is done on the file.
RECEIVE can delete the file from the JES spool and process
the next file, if one exists.

If the return code is non-zero, RECEIVE ignores this bit.

.... ...1 Reserved

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2 and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specified either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.111 1111 Reserved

Address of REPRO Options (Parameter Entry 19)
The data field points to an area that contains the options the user specified on
the DECIPHER keyword of the REPRO command. RECEIVE uses that
information to build a REPRO control statement that looks like:
REPRO INFILE(infile) OUTFILE(outfile) DECIPHER(options specified by
user and INMRZ13R)

The exit can modify the DECIPHER options. The modified information is used in
decryption processing.

RECEIVE Data Set Decryption Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 463

If the exit changes the length of the options string, it must also change the
value in the length field accordingly. The maximum length allowed is 253 bytes.
If the length of the data inserted is greater than 253 bytes, RECEIVE uses only
the first 253 bytes, and sets the length to 253.

Ddname of Encrypted Data File (Parameter Entry 20)
The data field contains the ddname of the file that contains the encrypted data.
The data set that corresponds to the ddname is a temporary data set that
RECEIVE allocated. Do not modify this field.

Ddname of File for Decrypted Data (Parameter Entry 21)
The data field contains the ddname of the file to which the deciphered data is to
be written. The file might or might not be the final output of RECEIVE
processing. (For example, if partitioned data sets are being transmitted, the file
contains them in their unloaded form.) Do not modify this field.

Address of a String from INMRX03R (Parameter Entry 22)
The TRANSMIT data set encryption exit (INMXZ03R or INMXZ03) can pass a
user string to this exit. If it is does, this data field contains the address of that
string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Parameter Descriptions for INMRZ13
When INMRZ13 receives control, register 1 points to the following parameter list.
Note that many of the parameters are the same as those that INMRZ01 and
INMRZ11 receive. Explanations of those parameters are not repeated here. For
more information about them, see “Parameter Descriptions for INMRZ01” on
page 431 or “Parameter Descriptions for INMRZ11” on page 452.

Offset Length Value

+0 4 Address of an exit-to-exit communication word.
+4 4 Address of the character string that the user entered on the

PARM keyword of the RECEIVE command.

RECEIVE Data Set Decryption Exit

464 z/OS V1R4.0 TSO/E Customization

Offset Length Value

+8 4 Address of a byte of action flags, which the exit can set to
control RECEIVE processing after the exit returns.

Bit Action

1... RECEIVE is to issue message INMR151I,
using the text contained in the parameter
pointed to at offset +16.

.1.. If the return code from the exit is non-zero
(end processing), RECEIVE is not to issue
the normal error message. The exit either
sends an appropriate message to the user,
or requests that RECEIVE issue message
INMR151I, using the text contained in the
parameter pointed to at offset +16.

..11 Reserved

.... 1... RECEIVE is not to issue the REPRO
command. Either the exit deciphered the
data, or no deciphering is required.

If the exit deciphered the data, RECEIVE
assumes that the exit copied the data from
the file identified by the enciphered data
ddname to the file identified by the plain
text data ddname. Those ddnames are
contained in the parameter entries pointed
to at offsets +48 and +52, respectively.

.... .1.. Reserved

.... ..1. All processing on the current file is
complete. If the return code from the exit is
zero, no more processing is done on the
file. RECEIVE can delete the file from the
JES spool and process the next file, if one
exists.

If the return code is non-zero, RECEIVE
ignores this bit.

.... ...1 Reserved
+12 4 Address of the TSO/E command processor parameter list

(the CPPL).
+16 4 Address of the message text that RECEIVE is to issue with

message ID INMR151I.
+20 4 Address of a status flag byte. RECEIVE uses this byte to

pass indicators to the exit.

1... The input source for RECEIVE is not JES.
The bit is on when the user specified either
INDATASET, INDSNAME, INDDNAME, or
INFILE on the RECEIVE command.

.111 1111 Reserved

RECEIVE Data Set Decryption Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 465

Offset Length Value

+24 4 If the user entered a character string on the PARM keyword
in response to the RECEIVE prompt, this parameter contains
the address of that string.

The address points to an area that consists of a halfword
length field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the length value is zero.

+28 4 Address of a text unit pointer list. The list points to copies of
text units that describe the incoming data.

+32 4 Address of another text unit pointer list. The list points to
copies of text units that identify the originator of the
transmission.

+36 4 Address of a string taken from the :PARM tag in the
addressee’s nickname entry in the sender’s NAMES.TEXT
data set.

+40 4 The TRANSMIT initialization exit (INMXZ01R or INMXZ01)
can pass a user string to the RECEIVE data set exits,
including INMRZ12. If it does, this data field contains the
address of that string.

+44 4 Address of an area that contains the options the user
specified on the DECIPHER keyword of the REPRO
command. RECEIVE uses that information to build a REPRO
control statement that looks like:

REPRO INFILE(infile) OUTFILE(outfile) DECIPHER
(options specified by user and INMRZ13R)

The exit can modify the DECIPHER options. The modified
information is used in decryption processing.

If the exit changes the length of the string, it must put the
new length value in the length field. The maximum length
allowed is 253 bytes. If the length of the data inserted is
greater than 253 bytes, RECEIVE uses only the first 253
bytes, and sets the length to 253.

+48 4 Address of an 8-byte field that contains the ddname of the
file that contains the encrypted data. The data set that
corresponds to the ddname is a temporary data set that
RECEIVE allocated. Do not modify this field.

+52 4 Address of an 8-byte field that contains the ddname of the
file to which the deciphered data is to be written. The file
might or might not be the final output of RECEIVE
processing. (For example, if partitioned data sets are being
transmitted, the file contains them in their unloaded form.) Do
not modify this field.

+56 4 The TRANSMIT data set encryption exit (INMXZ03R or
INMXZ03) can pass a user string to this exit. If it is does, this
data field contains the address of that string.

The address points to an area that consists of a halfword
length field followed by the character string. The length value
is the length of the character string only. If no string is
specified, the length value is zero.

RECEIVE Data Set Decryption Exit

466 z/OS V1R4.0 TSO/E Customization

RECEIVE Post-Prompt Exit — INMRZ15R

Functional Description
The RECEIVE post-prompt exit INMRZ15R receives control after the RECEIVE
command processor prompts the user for actions to be taken with the transmitted
data set, and just before the output data set is to be allocated. You can use the exit
to:

v Determine what action to take with the arriving transmission after the user has
responded to it. Exit INMRZ15R can be used to override and/or complement the
user interaction required with the transmitted data set. The exit receives
information about the incoming data set and the user’s response to the RECEIVE
prompt. It can specify the same parameters, or include additional parameters, for
which RECEIVE already prompted the user.

v Determine which users can use a particular network path. The exit can check the
source of a message before delivering it to the user.

v Receive data set types not supported by TRANSMIT and RECEIVE in
conjunction with the RECEIVE data set post-processing exit (INMRZ12R or
INMRZ12). This exit instructs RECEIVE to ignore the target dsname that the
sender specified, and to write the received data into a temporary data set that
INMXZ01R or another exit allocated.

v Suppress reception of data sets by setting the action flag that tells RECEIVE all
processing on the current file is complete.

Note: INMRZ15R does not receive control if exit INMRZ11R requests that the user
is not to be prompted for restore parameters.

Parameter Descriptions for INMRZ15R
When INMRZ15R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ15R receives beginning at offset
+36 (decimal) in the parameter list.

RECEIVE Post-Prompt Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 467

Parameter entries 10 and 12 (RECEIVE PARM string and message text for
message ID INMR151I, respectively) are the same for all RECEIVE exits. For a
description of those parameter entries, see “Parameter Descriptions for INMRZ01R”
on page 428.

Following are descriptions of the other parameter entries:

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000
or

00000002

4 or

string length
Address of
RECEIVE
PARM string

00000001

00000000

00000001

000000F3

Action flags

Message text

Status flags

+40

+44

+48

+52

+56

Address of

parameter entry 16

+60

+64

Address of

parameter entry 17

Address of

parameter entry 18

00000000
or

00000002

00000002

00000000
or

00000002

00000000
or

00000002

4 or

string length

4 or

string length

Address of
text unit
pointer list

Address of
PARM tag
string+68

Address of

parameter entry 19

Address of

parameter entry 20

+72

+76

00000002
Length of

TUPL

Address of
text unit
pointer list

4 or

string length

00000002
Length of

DCB

Address of
reply to
RECEIVE

Address of

input DCB

Address of
PARM string
from prompt

Length of

TUPL

Address of
string from
INMXZ01R

00000004

00000004

00000002 00000103

Figure 87. Exit-Dependent Data on Entry to INMRZ15R

RECEIVE Post-Prompt Exit

468 z/OS V1R4.0 TSO/E Customization

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... RECEIVE is to use the reply the exit specifies in the parameter
entry pointed to at offset +72.

.... .1.. RECEIVE is to restore the incoming data to a temporary data
set. The RECEIVE data set post-processing exit (INMRZ12R or
INMRZ12) should complete processing the data.

.... ..1. All processing on the current file is complete. If the return code
from the exit is zero, no more processing is done on the file.
RECEIVE can delete the file from the JES spool and process
the next file, if one exists.

If the return code is non-zero, RECEIVE ignores this bit.

.... ...1 RECEIVE is to issue message INMR045I when the output data
set to be used for restoring the arriving transmission already
exists.

Status Flags (Parameter Entry 13)
The data field contains a word of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2, and
3 are reserved.

Bit Meaning

1... The input source for RECEIVE is not JES. The bit is on when
the user specifies either INDATASET, INDSNAME, INDDNAME,
or INFILE on the RECEIVE command.

.1.. RECEIVE does not recognize the input data. Either an error
occurred in the transmission or the data was sent by a program
other than TRANSMIT or PROFS.

If the exit is to process the data, it can get the address of the
input DCB from the parameter entry pointed to at offset +76.
The exit can also get the ddname of the file through the text
unit pointer list in the parameter entry pointed to at offset +56.
Before processing the data, the exit must close then reopen the
data set to ensure that it starts reading at the beginning. (When
the exit receives control, RECEIVE has already read past any
control records, and has read at least the first record of the
data set.)

..11 Reserved

.... 1... RECEIVE is to restore the data to its original format and write it
to the appropriate log, which is the action that RESTORE(LOG)
requests as well as the default when receiving messages.

.... .1.. The user has supplied a response to the RECEIVE prompt. The
user’s response is found in the parameter entry pointed to at
offset +72.

RECEIVE Post-Prompt Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 469

.... ..11 Reserved

Address of PARM String from User Prompt (Parameter Entry 14)
If the user entered a character string on the PARM keyword in response to the
RECEIVE prompt, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Address of Text Unit Pointer List (Parameter Entry 15)
The data field contains the address of a text unit pointer list. The list points to
copies of text units that are sent with the transmission. They describe the
incoming data, and can include:
INMBLKSZ INMCREAT INMDDNAM INMDIR INMDSNAM INMDSORG
INMEXPDT INMFM INMLCHG INMLRECL INMLREF INMMEMBR
INMRECFM INMSERP INMSIZE INMTERM INMUTILN

For more information about these text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of Text Unit Pointer List (Parameter Entry 16)
The data field contains the address of another text unit pointer list. The list
points to copies of text units that are sent with the transmission. They identify
the originator of the transmission, and can include:
INMFACK INMFNODE INMFTIME INMFUID
INMFVERS INMLRECL INMNUMF INMUSERP

For more information about these text units or text unit pointer lists, see “Text
Units and Text Unit Pointer Lists” on page 474. Note that altering the text units
has no effect on subsequent processing. The exit receives copies of the actual
text units for information only.

Address of PARM Tag String (Parameter Entry 17)
The data field can contain the address of a string taken from the :PARM tag in
the addressee’s nickname entry in the sender’s NAMES.TEXT data set. The
string is present if the TRANSMIT command specified a nickname directly or
through a distribution list, and the entry for that nickname in the sender’s
NAMES.TEXT data set contains the :PARM tag.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

RECEIVE Post-Prompt Exit

470 z/OS V1R4.0 TSO/E Customization

Address of a String from INMXZ01R (Parameter Entry 18)
The TRANSMIT initialization exit (INMXZ01R or INMXZ01) can pass a user
string to the RECEIVE data set exits, including INMRZ15R. If it does, this data
field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

Address of Reply to RECEIVE (Parameter Entry 19)
The data field contains the address of the area in which the exit can find the
user’s response to the RECEIVE prompt. The exit can also use this area to
build an overriding or complementary reply to the RECEIVE prompt. If the exit
builds a reply, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the reply plus a 4-byte header

The first two bytes (bytes 0 and 1) in the 4-byte header contain the length of
the reply buffer. The second two bytes (bytes 2 and 3) contain the length of the
user’s reply to the RECEIVE prompt.

Note: Bytes 2 and 3 are 0 if the user does not supply a response.

Changing the value of bytes 2 and 3 in the header has no effect on processing.
The exit can modify bytes 0 and 1, in effect changing the length of the reply
buffer.

Address of the Input DCB (Parameter Entry 20)
The data field contains the address of the input DCB that identifies the data set
being received. Before reading the data, the exit must close then reopen the
data set to ensure that it starts reading at the beginning. (When the exit
receives control, RECEIVE has already read past any control records, and has
read at least the first record of the data set.)

RECEIVE Log Data Set Pre-Allocation Exit — INMRZ21R

Functional Description
Each time a log data set is to be allocated, the RECEIVE pre-allocation exit,
INMRZ21R, receives control. This exit may be invoked multiple times for each
RECEIVE operation. This exit can allocate the log data set, modify the data set
name, or take no action. If the exit chooses to allocate the data set, the exit must
pass the file name back to the RECEIVE command. If the exit modifies the data set
name, the RECEIVE command will then allocate the data set for the exit if the exit
has not already done so.

Under normal operations, the RECEIVE command frees the log data sets
automatically. Therefore, even if the exit allocated the log data set, the data set is
freed when the command processor terminates normally.

RECEIVE Post-Prompt Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 471

During RECEIVE processing, the allocation of the log data set occurs after the
RECEIVE command has begun reading the input file.

If the exit is to allocate the log data set, consider the following:

v RECEIVE allocates the data set as NEW if it does not exist. This frees users
from having to allocate the data set themselves.

v RECEIVE allocates the data set with a disposition of NEW or MOD. The exit
should also allocate the data set with a disposition of NEW or MOD.

v If the exit allocates the data set as NEW, the data set must have the
characteristics of a log data set. The characteristics of a log data set are:

– Record Format (RECFM) of VB

– Logical Record Length (LRECL) of 255

– Blocksize (BLKSIZE) of 3120

Errors during log processing do not normally terminate command processing.
Instead, the command sets a return code of 4, indicating that an error occurred but
the transmission was successful. If the exit gives a non-zero return code, RECEIVE
does not terminate processing, but sets a return code of 4, indicating that the
logging function encountered an error.

Parameter Descriptions for INMRZ21R
When INMRZ21R receives control, register 1 points to the standard exit parameter
list. The parameter list is described in “TSO/E Standard Exit Parameter List” on
page 35. Note that the TRANSMIT and RECEIVE exits do not use the new
command buffer field in the parameter entry pointed to at offset +4. Following is a
description of the exit-dependent data that INMRZ21R receives beginning at offset
+36 (decimal) in the parameter list.

Key Length Data+0 +4 +8

Parameter Entry's

Key, Length, and Data

+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

Address of

parameter entry 14

Address of

parameter entry 15

00000000

or

00000002

4 or

string length

Address of

RECEIVE

PARM string

00000001

00000000

00000001

000000F3

00000008

Action flags

Message text

Status flags

00000001

+40

+44

+48

+52

+56

00000004

00000004

length of

data set name

00000000

Data set

name

DDname

(blanks)

Figure 88. Exit-Dependent Data on Entry to INMRZ21R

RECEIVE Log Data Set Pre-Allocation Exit

472 z/OS V1R4.0 TSO/E Customization

Following are descriptions of the information in the data fields of each parameter
entry:

Address of the RECEIVE PARM String (Parameter Entry 10)
If the user entered a character string on the PARM keyword of the RECEIVE
command, this data field contains the address of that string.

If a string was specified:

KEY: X'00000002'

LEN: Length of the string

If no string was specified:

KEY: X'00000000'

LEN: X'00000004'

For more information about how you can use the RECEIVE PARM keyword,
see “Installation-Defined Parameters” on page 401.

Action Flags (Parameter Entry 11)
The data field contains a word of action flags, which the exit can set to control
RECEIVE processing after it returns. The flags in byte 0 are defined as follows.
Bytes 1, 2, and 3 are reserved.

Bit Action

1... RECEIVE is to issue message INMR151I, using the text
contained in the parameter entry pointed to at offset +44.

.1.. If the return code from the exit is non-zero (end processing),
RECEIVE is not to issue the normal error message. The exit
either: already sent an appropriate message to the user; set
return code 12, which causes message IKJ79154I to be issued;
or requested that RECEIVE issue message INMR151I, using
the text contained in the parameter entry pointed to at offset
+44.

..11 Reserved

.... 1... The exit has allocated the log data set. The ddname
representing the data set is contained in the parameter entry
pointed to by offset +56.

.... .1.. The exit has modified the log data set name that was passed in
the parameter entry pointed to by offset +52.

.... ..11 Reserved

Message Text (Parameter Entry 12)
Exits can put in this data field the message text that the command is to issue
with message ID INMR151I. The field initially contains blanks. If the exit inserts
text in the data field, it must also set the key and length values to:

KEY: X'00000001'

LEN: Length of the message text. The maximum length is 243.

Status Flags (Parameter Entry 13)
The data field contains a byte of status flags in which RECEIVE passes
indicators to the exit. The flags in byte 0 are defined as follows. Bytes 1, 2, and
3 are reserved.

RECEIVE Log Data Set Pre-Allocation Exit

Chapter 37. Customizing TRANSMIT and RECEIVE 473

Bit Meaning

1... RECEIVE is not interfacing with JES. A file keyword (INFILE,
INDDNAME) was specified.

.111 1111 Reserved

Data Set Name (Parameter Entry 14)
The data field contains the name of the log data set that will be allocated by the
command. If the exit chooses to modify the data set name, the length field
should be updated to reflect the correct length of the data set name. In addition,
if the exit modifies the data set name, the X'04' action flag should be set to
indicate that modifications were made. If the exit updates this parameter entry,
update the length and key fields accordingly. If the length fields are incorrect,
the parameter is ignored and processing continues as it would have if the exit
did not modify this parameter.

DDNAME (Parameter Entry 15)
If the exit allocates the log data set to a file, the file name should be placed in
this parameter entry. The length should be updated to reflect the length of the
file name. If the exit allocates the data set, the X'08' action flag should be set to
indicate that the data set has been allocated. If the exit allocates the data set,
the command will free the data set through normal processing.

If the exit updates this parameter entry, update the length and key fields
accordingly. If the length fields are incorrect, the parameter is ignored and
processing continues as it would have if the exit did not modify this parameter.

Text Units and Text Unit Pointer Lists
Many of the TRANSMIT and RECEIVE exits are passed the addresses of text unit
pointer lists. Each entry in the text unit pointer list points to a copy of a text unit that
contains information used to control the transmission -- information such as the
record format, or the origin node name or user ID. Because the exits receive
read-only copies of the text units, they cannot affect subsequent processing by
changing the information in them.

Text units are sent in control records as part of the transmission. It is possible that a
text unit could be split among two or more control records. For more information
about the format of control records, see “Format of Transmitted Data” on page 481.

The following figure shows the format of text unit pointer lists and text units. Note
that the last entry in the text unit pointer list has the high-order bit is set to one.

RECEIVE Log Data Set Pre-Allocation Exit

474 z/OS V1R4.0 TSO/E Customization

Offset Length Description

+0 2 Text unit key. The key identifies the type of
information contained in the text unit. Possible key
values are given in “Types of Text Units”.

+2 2 Number. The number field contains the number of
length-data pairs that follow. Most of the text units
have only one length and one data field.

+4 2 Length. The first of perhaps many length fields. The
length value includes only the length of the data field
immediately following it, and not its own two-byte
length.

+6 n Data. The first of perhaps many data fields. The data
field contains the parameter information being passed,
for example, the target node name. The descriptions
of the individual text units, which follow, describe the
content of each.

+(8+n) Second length-data entry if the number field indicates
more than one entry is present.

Types of Text Units
Following is a list of the text units that are currently defined. (Text unit key names
are defined by macro INMTEXTU):

Text Unit Key
(hex)

Mnemonic Data

0030 INMBLKSZ Block size
1022 INMCREAT Creation date
0001 INMDDNAM DDNAME for the file
000C INMDIR Number of directory blocks
0002 INMDSNAM Name of the file
003C INMDSORG File organization
1027 INMERRCD RECEIVE command error code
0022 INMEXPDT Expiration date

text
unit
key

number of
length-data
pairs

length data length data length data. . .
Address of
text unit

Address of
text unit

Address of
text unit

+0

+4

+8

+0 +2 +4 +6 +n

length-data
pair

.

.

.

1
Address of
text unit

high order bit on

+x

Figure 89. Format of Text Unit Pointer Lists and Text Units

Text Units and Text Unit Pointer Lists

Chapter 37. Customizing TRANSMIT and RECEIVE 475

Text Unit Key
(hex)

Mnemonic Data

1026 INMFACK Originator requested notification
102D INMFFM Filemode number
1011 INMFNODE Origin node name or node number
1024 INMFTIME Origin timestamp
1012 INMFUID Origin user ID
1023 INMFVERS Origin version number of the data format
1021 INMLCHG Date last changed
0042 INMLRECL Logical record length
1020 INMLREF Date last referenced
0003 INMMEMBR Member name list
102F INMNUMF Number of files transmitted
102A INMRECCT Transmitted record count
0049 INMRECFM Record format
000B INMSECND Secondary space quantity
102C INMSIZE File size in bytes
0028 INMTERM Data transmitted as a message
1001 INMTNODE Target node name or node number
1025 INMTTIME Destination timestamp
1002 INMTUID Target user ID
8012 INMTYPE Data set type
1029 INMUSERP User parameter string
1028 INMUTILN Name of utility program

Table 70 describes each text unit in more detail and gives an example of each.

Dates and Times
All dates and times specified in text units are expressed in GMT using the standard
format: EBCDIC characters for the year(4), month(2), day(2), hour(2), minute(2),
second(2), and fraction of seconds(n). Only the information that is known is
specified. For example, if only the year is known, the value is yyyy. If microseconds
are known, the value is yyyymmddhhmmssffffff.

Numeric Values
All numeric values in text units are specified with a length of 1 to 8 bytes. If the field
is longer than 8 bytes, only the low-order 4 bytes are used.

Table 70. Text Unit Descriptions and Format

Mnemonic Key (hex) Number Length Data

INMBLKSZ 0030 1 1 to 8 bytes Blocksize of the file

Example: Specification of blocksize 32768.

KEY NUM LEN DATA
0030 0001 0004 00008000

INMCREAT 1022 1 4 or more
bytes

Creation date of the file, in standard format.

Example: Specification of September 25, 1987.

KEY NUM LEN DATA
1022 0001 0008 F1F9F8F7F0F9F2F5

Text Units and Text Unit Pointer Lists

476 z/OS V1R4.0 TSO/E Customization

Table 70. Text Unit Descriptions and Format (continued)

Mnemonic Key (hex) Number Length Data

INMDDNAM 0001 1 Length of
name

DDNAME associated with the file.

Example: Specification of DDNAME DD1.

KEY NUM LEN DATA
0001 0001 0003 C4C4F1

INMDIR 000C 1 1 to 8 bytes Number of directory blocks in the file.

Example: Specification of 15 directory blocks.

KEY NUM LEN DATA
000C 0001 0003 00000F

INMDSNAM 0002 Number of
fields in file
name

Length of file
name field

Name of the file.

File names are divided into fields. In MVS, the name
contains a maximum of 22 fields, each having at most 8
characters. The fields are separated by periods:
AA.BB.CC.DD is an example. The total length, including
the periods, must not exceed 44 characters.

In CMS, file names have three fields: filename, filetype,
and filemode, with a maximum length of 8, 8, and 2
characters, respectively. The fields are separated by
blanks: REPORT SCRIPT A1 is an example.

When transmitting a CMS file, the filemode character
(but not the number) is specified in this text unit. The
filemode number is specified in the INMFFM text unit.
The filemode character is the first field of the file name.

Note that TSO/E data set names are transmitted
differently in control records than in the text units
available to installation exits through text unit pointer
lists (as shown in the examples that follow). In the text
units pointed to from text unit pointer lists, the name is
sent as a single length-data pair. In control records,
each part of the name and its length is a separate
length-data pair.

Example: Specification of TSO/E data set A.B in text
units available through pointer lists.

KEY NUM LEN DATA
0002 0001 0003 C14BC2

Example: Specification of TSO/E data set A.B in
INMR02 control records.

KEY NUM LEN1 DATA1 LEN2 DATA2
0002 0002 0001 C1 0001 C2

INMDSORG 003C 1 2 bytes The file organization, either:
X'0008' for VSAM
X'0200' for partitioned organization
X'4000' for physical sequential

Example: Specification of a physical sequential file.

KEY NUM LEN DATA
003C 0001 0002 4000

Text Units and Text Unit Pointer Lists

Chapter 37. Customizing TRANSMIT and RECEIVE 477

Table 70. Text Unit Descriptions and Format (continued)

Mnemonic Key (hex) Number Length Data

INMERRCD 1027 1 1 or more
bytes

A string indicating the result of the RECEIVE
operation.

Example: Specification that the transmitted file was
″RECEIVED″.

KEY NUM LEN DATA
1027 0001 0008 D9C5C3C5C9E5C5C4

INMEXPDT 0022 1 4 or more
bytes

Expiration date of the file, in standard format.

Example: Specification of January 1, 1988.

KEY NUM LEN DATA
0022 0001 0008 F1F9F8F8F0F1F0F1

INMFACK 1026 1 1 to 64 bytes Blanks or a notification string that the issuer of
TRANSMIT specified.

This text unit exists only if the sender (or installation
exit) requested acknowledgment that the transmitted file
was received. If the sender also specified a notification
string to identify the transmission, that string is in the
text unit data field. If no string was specified, the length
and data fields are blank.

Example: Specification of notification with string FRED.

KEY NUM LEN DATA
1026 0001 0004 C6D9C5C4

Example: Specification of notification without a string.

KEY NUM LEN DATA
1026 0001

INMFFM 102D 1 1 byte Filemode number of a CMS file.

Example: Specification of filemode number 0.

KEY NUM LEN DATA
102D 0001 0001 F0

INMFNODE 1011 1 Length of
node name or
number

Name or number of the origin node.

Example: Specification of node VENICE.

KEY NUM LEN DATA
1011 0001 0006 E5C5D5C9C3C5

INMFTIME 1024 1 4 or more
bytes

The time the transmission was created, in standard
format.

Example: Specification of July 19, 1987 at 3:20 PM.

KEY NUM LEN DATA
1024 0001 000C F1F9F8F7F0F7F1F9F5F2F0

INMFUID 1012 1 Length of
user ID

User ID of the originator of the transmission.

If the transmission is a file, the originator is the issuer of
TRANSMIT. If the transmission is an acknowledgment,
the originator is the issuer of the acknowledgment.

Example: Specification of user ID IMBUSER.

KEY NUM LEN DATA
1012 0001 0007 C9C2D4E4E2C5D9

Text Units and Text Unit Pointer Lists

478 z/OS V1R4.0 TSO/E Customization

Table 70. Text Unit Descriptions and Format (continued)

Mnemonic Key (hex) Number Length Data

INMFVERS 1023 1 1 to 8 bytes The version number of the data format used for the
transmission.

Example: Specification of version 1.

KEY NUM LEN DATA
1023 0001 0004 00000001

INMLCHG 1021 1 4 or more
bytes

Date the file was last changed, in standard format.

Example: Specification of April 1, 1987 at 8:12 PM.

KEY NUM LEN DATA
1021 0001 000E F1F9F8F7F0F4F0F1F2F0F1F2

INMLRECL 0042 1 1 to 8 bytes The actual or maximum number of bytes in the
logical record in the file.

Example: Specification of 80-byte records.

KEY NUM LEN DATA
0042 0001 0001 50

INMLREF 1020 1 4 or more
bytes

Date the file was last referenced, in standard format.

Example: Specification of February 14, 1988.

KEY NUM LEN DATA
1020 0001 0008 F1F9F8F7F0F2F1F4

INMMEMBR 0003 1 or more Length of
member
name

List of member names.

If more than one member is being transmitted, there are
multiple length-data field pairs, one for each member.

Example: Specification of members IEASYS00 and A.

KEY NUM FLGS LEN1 DATA1
0003 0002 xxxx 0008 C9C5C1E8E2F0F0
LEN2 DATA2
0001 C1

INMNUMF 102F 1 1 to 8 bytes Number of files that make up the transmission.

If any files are being transmitted, this text unit must be
in the INMR01 control record. If the text unit is missing,
the number of files is assumed to be zero, which is true
only when the transmission is an acknowledgment.

Example: Specification of two files in the transmission.

KEY NUM LEN DATA
102F 0001 0004 00000002

INMRECCT 102A 1 1 to 8 bytes Number of records transmitted.

Example: Specification of 129 records.

KEY NUM LEN DATA
102A 0001 0001 81

Text Units and Text Unit Pointer Lists

Chapter 37. Customizing TRANSMIT and RECEIVE 479

Table 70. Text Unit Descriptions and Format (continued)

Mnemonic Key (hex) Number Length Data

INMRECFM 0049 1 2 bytes The record format of the file.

The value is the result of “logically ORing” one or more
of the following values together:
X'0001' Shortened VBS format used for

transmission records
X'xx02' Varying length records without the

4-byte header
X'0200' Data includes machine code printer

control characters
X'0400' Data contains ASA printer control

characters
X'0800' Standard fixed records or spanned

variable records
X'1000' Blocked records
X'2000' Track overflow or variable ASCII

records
X'4000' Variable-length records
X'8000' Fixed-length records
X'C000' Undefined records

Example: Specification of fixed block records.

KEY NUM LEN DATA
0049 0001 0002 9000

INMSECND 000B 1 3 bytes Secondary space quantity.

Example: Specification of 10 blocks.

KEY NUM LEN DATA
000B 0001 0003 00000A

INMSIZE 102C 1 1 to 8 bytes Size of the file in bytes.

Note that the value in text units for partitioned data sets
specifies the size of the PDS, not the size of a member.

Example: Specification of a one-megabyte file.

KEY NUM LEN DATA
102C 0001 0004 000F4240

INMTERM 0028 0 Omitted Omitted. This text unit indicates that the data was
transmitted as a message.

Example: Specification of transmitted data.

KEY NUM LEN DATA
0028 0000

INMTNODE 1001 1 Length of
node name

Node name to which the transmission is being sent

Example: Specification of node ROME.

KEY NUM LEN DATA
1001 0001 0004 D9D6D4C5

INMTTIME 1025 1 4 or more
bytes

The time the transmission was received, in standard
format.

Example: Specification of March 14, 1987 at 8:30 AM.

KEY NUM LEN DATA
1025 0001 000E F1F9F8F7F0F3F1F4F0F8F3F0

Text Units and Text Unit Pointer Lists

480 z/OS V1R4.0 TSO/E Customization

Table 70. Text Unit Descriptions and Format (continued)

Mnemonic Key (hex) Number Length Data

INMTUID 1002 1 Length of
user ID

User ID to which the transmission is being sent.

Example: Specification of user ID IBMUSER.

KEY NUM LEN DATA
1002 0001 0007 C9C2D4E4E2C5C9

INMTYPE 8012 1 1 byte Data set type.
X'80' Data library
X'40' Program library
X'00' Assume no library

Example: Specification of data library.

KEY NUM LEN DATA
8012 0001 0001 80

INMUSERP 1029 1 1 to 251
bytes

The character string specified on the PARM
keyword of the TRANSMIT or RECEIVE command.

Example: Specification of user string ‘PARM1’.

KEY NUM LEN DATA
1029 0001 0005 D7C1D9D4F1

INMUTILN 1028 1 Length of
name

Name of the utility program that is used in restoring
the transmitted data to its original format.

Currently defined names are:

INMCOPY Invokes an internal utility to convert
from the transmission format to a
sequential file.

IEBCOPY Invokes the IEBCOPY utility to reload
a partitioned file.

AMSCIPHR Invokes the Access Method Services
REPRO command to decrypt a file.

Example: Specification of utility program INMCOPY.

KEY NUM LEN DATA
1028 0001 0007 C9D5D4C3D6D7E8

Format of Transmitted Data
Files sent using the TRANSMIT command contain: control records, data records,
and a trailer record (a special type of control record). Several control records begin
the file. They are followed by data records, and finally a trailer record. An
acknowledgment file is composed of only control records.

Data is actually transmitted in card image format (80-byte records). However, the
record descriptions that follow are those of ‘logical records’; card boundaries are
ignored. Each control record begins in the byte immediately following the end of the
previous record. The first data record begins in the byte immediately following the
end of the last control record. The trailer control record begins in the byte
immediately following the last data record.

Control records and data records have the same format. The records of the file to
be transmitted are broken into segments whose format is shown in the next figure.
A segment has a maximum length of 255 bytes, including the 2-byte header. If the

Text Units and Text Unit Pointer Lists

Chapter 37. Customizing TRANSMIT and RECEIVE 481

length of a record in the file is greater than 253 bytes, the record is sent as multiple
segments.

Byte Length Contents or Meaning

0 1 Length of segment, including 2-byte header (length
equals 2 to 255)

1 1 Segment descriptor flags:
X'80' First segment of original record.
X'40' Last segment of original record.
X'20' This is (part of) a control record.
X'10' This is record number of next

record.
X'0F' Reserved

2 n User data segment (n = 0 to 253). Control records
have a control record identifier (for example, INMR01)
in bytes 2-7. Text units generally begin in byte 8.

Control Record Formats

INMR01 -- Header Record
The INMR01 record is always the first record of a transmission. The identifier of the
record is ‘INMR01’ in bytes 2-7. The remainder of the record (beginning with byte 8)
is composed of text units. The text unit keys always present are:
INMFNODE Origin node name
INMFTIME Origin timestamp
INMFUID Origin user ID
INMLRECL Length of physical control record segments
INMTNODE Target node name
INMTUID Target user ID

Text units that can be present are:
INMFACK Receipt notification requested
INMFVERS Origin version number
INMNUMF Number of files in this transmission
INMUSERP User parameter string

INMR02 -- File Utility Control Record
Each INMR02 record controls a data restoration step. In a given transmission, one
or more processes represented by a corresponding number of INMR02 records are
required. Utility operations currently supported are: INMCOPY, which converts
sequential files to and from the TRANSMIT/RECEIVE format; IEBCOPY, which
converts partitioned files to and from sequential files (called unloaded files); and
AMSCIPHR, which invokes the Access Method Services REPRO command to
encrypt and decrypt files.

If more than one INMR02 record is present, they appear in inverse order. The first
record in the data stream represents the last utility operation performed by

Length User data segment (0-253 bytes)

of

segment

Segment

descriptor

flags

+0 +1 +2 +n

Figure 90. Format of Control Records and Data Records

Format of Transmitted Data

482 z/OS V1R4.0 TSO/E Customization

RECEIVE. The INMCOPY utility is always the last (or only) utility invoked during a
TRANSMIT operation, and thus appears first in the file.

The text units that are in the INMR02 record describe the output of the utility
operation. The input with which it must work is described by the previous
INMR02-directed operation or by the INMR03 data description record.

If the transmission contains more than one file, one or more INMR02 records are
required for each file in the transmission. The groups of INMR02 records are in the
same order as the files in the transmission. The file number field identifies which of
the multiple files in the transmission the control record applies.

The identifier for this record is ‘INMR02’ in bytes 2-7. Bytes 8-11 contain the
number of the file in this transmission to which the control record applies. Multiple
files in a single transmission are numbered sequentially starting at one. The text
units begin in byte 12. Text units always present are:
INMDSORG File organization
INMLRECL Logical record length
INMRECFM Record format
INMSIZE Approximate size of file in bytes
INMUTILN Utility program name

Text units that can be present are:
INMBLKSZ File block size
INMCREAT Creation date
INMDIR Number of directory blocks
INMDSNAM File name
INMEXPDT Expiration date
INMFM Filemode number
INMLCHG Last change date
INMLREF Last reference date
INMMEMBR Member name list
INMTERM Mail file
INMUSERP User parameter string

INMR03 -- Data Control Record
The INMR03 record immediately precedes the transmitted data and identifies its
format.

The identifier for this record is ‘INMR03’ in bytes 2-7; text units begin in byte 8. Text
units always present are:
INMDSORG File organization
INMLRECL Logical record length
INMRECFM Record format
INMSIZE Size of file in bytes

INMR04 -- User Control Record
The INMR04 record may appear anywhere among the control records. It contains
user data to be passed to all installation exits during the RECEIVE operation.

The identifier for this record is ‘INMR04’ in bytes 2-7; text units begin in byte 8. The
text unit always present is:
INMUSERP User parameter string

INMR06 -- Trailer Control Record
The INMR06 record is always the last record in a transmission. This record is used
to verify that the transmission is complete.

Format of Transmitted Data

Chapter 37. Customizing TRANSMIT and RECEIVE 483

The identifier for this record is ‘INMR06’ in bytes 2-7. No text units are presently
defined for this record.

INMR07 -- Notification Control Record
The INMR07 record indicates notification of a previous transmission. When it
appears, the transmission consists of only the INMR01, INMR07, and INMR06
records.

The identifier for this record is ‘INMR07’ in bytes 2-7; text units begin in byte 8.
INMFTIME,and either INMDSNAM or INMTERM, but not both, are always present.
INMFTIME Origin timestamp
INMDSNAM File name
INMTERM Data transmitted as a message

Text units that might be present are:
INMERRCD Error indication for the receive operation
INMFACK Notification ID
INMFFM Filemode number
INMUSERP User parameter string

Format of Transmitted Data

484 z/OS V1R4.0 TSO/E Customization

Chapter 38. Customizing the TSOLIB Command

Writing Exits for the TSOLIB Command 485
Functional Description . 485
TSO/E-Supplied Exits . 485
Entry Specifications. 485
Parameter Descriptions for the Initialization Exit 485
Parameter Descriptions for the Termination Exit 486
Return Specifications . 486
Programming Considerations 487
Possible Uses. 487

Writing Exits for the TSOLIB Command

Functional Description
TSO/E users issue the TSOLIB command to dynamically link to different versions of
load module libraries while in their TSO/E session. TSO/E searches these libraries
before those specified in the user’s logon procedure. Therefore, the users’ logon
procedures can be kept simpler. Also, system and application programmers do not
need to maintain different user IDs just to switch to different versions of load
modules.

TSO/E provides initialization and termination exits that you can use to customize
the TSOLIB command. These exits receive control during TSOLIB command
processing, as follows:

v The initialization exit receives control before the TSOLIB command processor
invokes the parse service routine to syntax check the input parameters.

v The termination exit receives control just before the TSOLIB command
terminates processing.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for the TSOLIB command.

Entry Specifications
The contents of the registers on entry for the initialization and termination exits for
the TSOLIB command are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions for the Initialization Exit
The initialization exit receives the standard exit parameter list. However, no
exit-dependent data is passed to the initialization exit. For information about the
standard exit parameter list and the parameter entry keys, see “TSO/E Standard
Exit Parameter List” on page 35.

© Copyright IBM Corp. 1988, 2002 485

Parameter Descriptions for the Termination Exit
The termination exit receives the standard exit parameter list. For a description of
this parameter list, see “TSO/E Standard Exit Parameter List” on page 35. If you
provide an initialization exit, the termination exit is passed the same parameter
entries for the new command buffer and exit-to-exit communication word that were
passed to the initialization exit. Figure 91 shows the exit-dependent data that the
termination exit receives beginning at offset +36 (decimal) in the parameter list. The
parameter entry is described following the figure.

TSOLIB Return Code (Parameter Entry 10)
This parameter entry is the return code from the TSOLIB command processor.
For information on the return codes from the TSOLIB command, see z/OS
TSO/E Command Reference.

Return Specifications
The contents of the registers on return from the initialization and termination exits
must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the Initialization and Termination Exits
Table 71 shows the return codes that the initialization and termination exits support.

Table 71. Return Codes for the TSOLIB Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. TSOLIB processing continues.

12, 16 An error occurred in the exit. The TSOLIB command processor
terminates processing.

If the exit uses return code 12, it can also pass back an exit reason
code to the TSOLIB command processor. For more information, see
the notes following this table and “Exit Reason Code” on page 40.

If your exit sets a return code of either 12 or 16, you should
consider displaying an informational message to the user. You can
use the PUTLINE service routine to issue an informational
message. See z/OS TSO/E Programming Services for more
information.

Notes:

1. If an exit returns an undefined return code, the TSOLIB command processor
terminates without issuing an error message to the user.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10 00000001 00000004

Parameter Entry's

Key, Length, and Data

TSOLIB

return code

Figure 91. Exit-Dependent Data for the TSOLIB Command Termination Exit

Writing Exits for the TSOLIB Command

486 z/OS V1R4.0 TSO/E Customization

2. If an initialization or termination exit sets a reason code that has a key value of
X'03', this reason code is used as the return code from the TSOLIB command.
However, if both exits indicate that the reason code is to be used as the return
code from the TSOLIB command, the reason code from the termination exit
overrides that from the initialization exit.

3. When requesting that the exit reason code be used as the return code from
TSOLIB, you must insure that the reason code does not duplicate existing
TSOLIB return codes.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return. The exits must be reentrant,
refreshable, and reusable.

If the processing done in the initialization exit requires clean-up to be performed,
you must write a termination exit. For example, if the initialization exit obtains
storage to return a new command buffer to the TSOLIB command processor, you
must provide a termination exit to free this storage.

The exits can use any of the TSO/E service routines. For a description of the
service routines, see z/OS TSO/E Programming Services.

Environment
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name the exits as follows:

Initialization IDYTSINI

Termination IDYTSTER

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
You can use the initialization exit to change the default values of the TSOLIB
command. For example, you can cause the COND operand to be the default.

You can use the termination exit to perform clean-up processing. For example, you
can free storage that was obtained in the initialization exit.

Writing Exits for the TSOLIB Command

Chapter 38. Customizing the TSOLIB Command 487

Writing Exits for the TSOLIB Command

488 z/OS V1R4.0 TSO/E Customization

Part 6. Customizing CLIST and REXX Processing

This part describes how you can customize REXX and CLIST processing. You can
customize CLIST processing using exits. You can customize REXX processing
using exits and replaceable routines. You can also optimize the performance of
REXX execs and CLISTs by storing them in the virtual lookaside facility (VLF).

v CLIST Exits

The CLIST language provides a wide range of programming functions. TSO/E
provides the following exits that you can use to customize the CLIST language:

– CLIST built-in function exit:

The CLIST language provides built-in functions that can be performed on
variables, expressions, and character strings. In addition to these built-in
functions, TSO/E provides an exit that you can use to add your own CLIST
built-in functions. For more information, see “Writing an Exit for
Installation-Written Built-in Functions (IKJCT44B)” on page 493.

– CLIST statement exit:

The CLIST language provides statements that let you structure your
programs, perform I/O, define and modify variables, and monitor the
conditions under which CLISTs execute. In addition to the statements provided
by the CLIST language, TSO/E provides an exit that you can use to add your
own CLIST statements. For more information, see “Writing an Exit for
Installation-Written Statements (IKJCT44S)” on page 497.

v REXX Replaceable Routines and Exits

The REXX language provides a wide range of programming functions. REXX has
many characteristics similar to CLIST. However, a significant difference between
REXX and CLIST is that you can execute CLISTs only in a TSO/E address
space. You can execute REXX execs in any MVS address space. TSO/E REXX
supports the use of replaceable routines and exit routines to customize REXX
processing in different environments.

– Replaceable Routines

Replaceable routines allow you to customize REXX processing to call the
appropriate system-supplied routines for a language processor environment.
TSO/E provides the following types of replaceable routines for REXX
processing:

Exec load
Input/Output
Data stack
Storage management
User ID
Message identifier
Host command environment

– REXX Exits

You can also customize TSO/E REXX using exit routines, which receive
control from exit points in TSO/E REXX routines, perform special processing,
and return control to the REXX routine. TSO/E provides the following types of
exits for REXX processing:

- TSO/E-Supplied Exits:

v Pre-environment initialization exit (IRXINITX)

IRXINITX performs processing before a new language processor
environment is initialized.

v Post-environment initialization exit (IRXITTS or IRXITMV)

© Copyright IBM Corp. 1988, 2002 489

IRXITTS performs processing after the new language processor
environment is initialized for an environment integrated with TSO/E.

IRXITMV performs processing after the new language processor is
initialized for an environment not integrated with TSO/E.

v Environment termination exit (IRXTERMX)

IRXTERMX performs processing before a language processor
environment is terminated.

- User-Supplied Exits:

v Exec processing exit

Use this exit to prevent the execution of a REXX exec or perform special
processing before a REXX exec is executed.

v Exec initialization exit

Use this exit to access and update REXX variables.

v Exec termination exit

Use this exit to access and update REXX variables.

v Attention handling exit

Use this exit to perform special attention processing. It can only be used
for an environment integrated with TSO/E.

v Storing CLISTs and REXX Execs in VLF

You can improve performance of CLISTs and REXX execs that the EXEC
command finds at the system-level CLIST (SYSPROC) and application-level
CLIST (defined using the TSO/E ALTLIB command), by using the virtual
lookaside facility (VLF). To improve performance of these CLISTs and REXX
execs, define the IKJEXEC class name in the facility VLF PARMLIB member,
COFVLFxx. For example,
...
CLASS NAME (IKJEXEC)

EDSN(data set name) /* (your partitioned data set name) */
EDSN(data set name) /* (your partitioned data set name) */...

Each eligible data set name (EDSN) entry in that member identifies a data set.
The order of the entries is not significant.

To optimize VLF for CLISTs, you should:

– Maintain frequently-used CLISTs in separate data set(s).

– Where possible, place VLF-managed data sets at the front of
non-VLF-managed data sets in the SYSPROC concatenation.

– For non-VLF-managed data sets that occur ahead of VLF-managed data sets
in the concatenation, minimize copies of CLISTs with the same name as
CLISTs in VLF-managed data sets.

– Avoid frequent updates to VLF-managed CLISTs.

– Minimize dynamic changes to CLIST data concatenations.

When setting up the PARMLIB member, your installation should define a data set
name in only one VLF class. For more information about COFVLFxx and about
using VLF, see z/OS MVS Initialization and Tuning Reference. For more
information about the TSO/E ALTLIB command, see z/OS TSO/E Command
Reference.

490 z/OS V1R4.0 TSO/E Customization

If a library is properly defined in a COFVLFxx member and only one system is
involved, VLF change notification is automatic. If several systems share the data,
VLF change notification might also be automatic. For information about when
VLF change notification is automatic, see z/OS MVS Programming: Authorized
Assembler Services Guide. For more information about the VLFNOTE command,
see z/OS TSO/E Command Reference.

The system searches VLF for REXX execs invoked implicitly or explicitly by the
EXEC command. However, VLF is not searched for REXX execs invoked as
functions or subroutines.

For example, suppose you have two REXX execs, A and B, both managed by
VLF. REXX exec A is invoked via the EXEC command. REXX exec B is invoked
via an external function from REXX exec A. If both REXX execs are changed on
one system, the changes to REXX exec A are not seen on the other systems
unless VLFNOTE is issued.

Part 6. Customizing CLIST and REXX Processing 491

492 z/OS V1R4.0 TSO/E Customization

Chapter 39. Customizing CLIST Processing

Writing an Exit for Installation-Written Built-in Functions (IKJCT44B) 493
Functional Description . 493
TSO/E-Supplied Exit . 494
Entry Specifications. 494
Parameter Descriptions . 494
Return Specifications . 496
Programming Considerations 497

Writing an Exit for Installation-Written Statements (IKJCT44S) 497
Functional Description . 497
TSO/E-Supplied Exit . 498
Entry Specifications. 498
Parameter Descriptions . 498
Return Specifications . 499
Programming Considerations 499

This chapter discusses the two exits you can use to customize CLIST processing:
v CLIST built-in function exit (IKJCT44B)
v CLIST statement exit (IKJCT44S).

Writing an Exit for Installation-Written Built-in Functions (IKJCT44B)
This section describes the exit you can use to add your own CLIST built-in
functions.

Functional Description
The CLIST language provides built-in functions that can be performed on variables,
expressions, and character strings. CLIST processing evaluates the variable or
expression, if necessary, and then performs the requested function.

To use a CLIST built-in function, specify its name, followed by the variable,
expression or character string in parentheses. The variable, expression or character
string is called the argument of the built-in function.

z/OS TSO/E CLISTs, describes the CLIST built-in functions that are supplied by
TSO/E. In addition to these built-in functions, TSO/E provides a built-in function exit
that you can use to add your own CLIST built-in functions.

Processing for a CLIST is done in two steps: phase 1, which is performed by the
EXEC command processor, and phase 2. In phase 1, the EXEC command
processor reads the CLIST records from the input data set and builds an in-storage
command procedure. EXEC then places the command procedure that it built on the
input stack. This stack is maintained by TSO/E to determine the source of input.
Phase 2 processing receives control as each record is removed from the stack. The
CLIST built-in function exit receives control during phase 2 processing. When the
exit receives control, all symbolic substitution has been performed on the argument
of the built-in function.

Names of installation-written built-in functions must begin with the prefix &SYSX
and have from 1 to 248 additional characters. Built-in function names must follow
the rules for naming symbolic variables described in z/OS TSO/E CLISTs.

© Copyright IBM Corp. 1988, 2002 493

When CLIST processing encounters a variable with the &SYSX prefix that has not
been defined, it passes control to the CLIST built-in function exit, if one exists.
Then, if the exit successfully evaluates the built-in function, CLIST processing
replaces the built-in function (name and argument) with the result of the evaluation.

Some ways you can use the CLIST built-in function exit include:

v Performing text manipulation, such as determining the prefix or suffix of a string,
or reversing the order of the characters in a string

v Performing arithmetic calculations, such as determining the mean of a series of
numbers

v Defining built-in variables to return a value. A built-in variable is similar to a
built-in function, except that it is not followed by an argument. For example, you
can use the CLIST built-in function exit to define a built-in variable, &SYSXMVS,
that returns the level of MVS installed on your system.

Note: The built-in function exit cannot distinguish between built-in functions and
built-in variables. Therefore, do not specify an argument after a built-in
variable because errors can result.

TSO/E also provides several other exits that you can use to customize CLIST
processing:

v Initialization and termination exits allow you to customize the EXEC command.
These exits are described in Chapter 29, “Customizing the EXEC Command” on
page 279.

v The CLIST statement exit allows you to add your own statements to the CLIST
language. This exit is described in “Writing an Exit for Installation-Written
Statements (IKJCT44S)” on page 497.

TSO/E-Supplied Exit
TSO/E does not provide a default exit routine for installation-written CLIST built-in
functions.

Entry Specifications
The contents of the registers on entry for the CLIST built-in function exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The CLIST built-in function exit receives the standard exit parameter list. However,
no data is passed for the command buffer (parameter entry 1). That is, the key field
has a value of X'00', the length field has a value of X'04', and the data field has a
value of X'00'. For a description of the standard exit parameter list, see “TSO/E
Standard Exit Parameter List” on page 35.

Writing an Exit for IKJCT44B

494 z/OS V1R4.0 TSO/E Customization

Figure 92 shows the exit-dependent data that the exit receives beginning at offset
+36 in the parameter list. Each parameter entry is described following the figure.

Name (Parameter Entry 10)
This parameter entry describes the name of the installation-written built-in
function.

Argument (Parameter Entry 11)
This parameter entry describes the argument of the built-in function. The
argument can be a variable, expression, or character string.

Result (Parameter Entry 12)
This parameter describes a 256-byte answer area that is passed to the exit. If
your exit successfully evaluates a built-in function, you must place the result
into this answer area and update the length field to reflect the length of the
result. When the exit returns control, CLIST processing replaces the built-in
function with the result.

However, if the result is longer than 256 bytes, your exit must use an alternate
buffer to return the result.

Alternate Buffer Length (Parameter Entry 13)
This parameter entry describes the length of an alternate buffer used to return
the result of evaluating a built-in function. When the result is longer than 256
bytes, and cannot be returned to CLIST processing in the 256-byte answer
area, your exit must create an alternate buffer. To pass the result to CLIST
processing using an alternate buffer, follow these steps:

1. Obtain the storage for the alternate buffer in subpool 0

2. Place the result into the alternate buffer

3. Update parameter entry 12 as follows:

v Update the length field to be the actual length of the result that is being
passed to CLIST processing

v Set the data field to the address of the alternate buffer

4. Update parameter entry 13 as follows:

v Set the key field to X'01' to indicate that the data field contains the actual
data for the parameter entry

Key Length Data+0 +4 +8+36

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Address of

parameter entry 13

00000002

+40

+44

+48

00000002
Length of

name

Address of

name

Address of

argument
Length of

argument

00000002 00000100
Address of

result

00000000 00000004 00000000

Parameter Entry's

Key, Length, and Data

Figure 92. Exit-Dependent Data for the CLIST Built-in Function Exit

Writing an Exit for IKJCT44B

Chapter 39. Customizing CLIST Processing 495

v Set the data field to the number of bytes of storage obtained for the
alternate buffer

5. Set an exit return code of 4 to indicate to CLIST processing that your exit
obtained storage for an alternate buffer. CLIST processing frees the storage
obtained for the buffer after it has processed the answer returned by the
exit.

Return Specifications
The contents of the registers on return from the CLIST built-in function exit must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the CLIST Built-in Function Exit
Table 72 shows the return codes that the CLIST built-in function exit supports.

Table 72. Return Codes for the CLIST Built-in Function Exit

Return Code
(Decimal)

Description

0 The exit has successfully evaluated the built-in function and has
returned the result in the 256-byte answer area provided. CLIST
processing continues.

4 The exit has successfully evaluated the built-in function. The exit
has obtained an alternate buffer to return the result of evaluating
the built-in function. CLIST processing continues, and frees the
storage obtained for the buffer.

8 Exit processing was unsuccessful. The variable was not an
installation-written built-in function and could not be evaluated.
CLIST processing continues, and initializes the variable to a null
value.

12 Exit processing was unsuccessful. The built-in function could not be
evaluated. The following action is taken:

v CLIST processing issues an error message to the terminal user

v Control is passed to the ERROR exit, if one was specified, or
CLIST processing terminates

v The CLIST return code is set to 604

v The variable &SYSREASON is set to the exit’s return code

16 Exit processing was unsuccessful. The built-in function could not be
evaluated. The following action is taken:

v Control is passed to the ERROR exit, if one was specified, or
CLIST processing terminates. However, CLIST processing does
not issue a message.

v The CLIST return code is set to 604

v The variable &SYSREASON is set to the exit’s return code

If your exit sets a return code of 16, you should consider displaying
an informational message to the user. You can use the PUTLINE
service routine to issue an informational message. See z/OS TSO/E
Programming Services for more information.

Note: If the exit returns an undefined return code, CLIST processing terminates
without issuing an error message to the user.

Writing an Exit for IKJCT44B

496 z/OS V1R4.0 TSO/E Customization

Programming Considerations
The CLIST built-in function exit must follow standard linkage conventions. It must
save the registers on entry and restore the registers when it returns. The exit must
be reentrant, refreshable, and reusable.

This exit can use the variable access routine (IKJCT441) to update, create, and
retrieve the values of REXX and CLIST variables. For more information about how
to use IKJCT441, see z/OS TSO/E Programming Services.

Environment
The attributes for the CLIST built-in function exit are:
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exit
You must name the CLIST built-in function exit IKJCT44B.

Link-edit the exit as a separate load module. You can link-edit the exit in a separate
load library that is exclusively for TSO/E exits or in an existing library containing
other routines. The exit can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Writing an Exit for Installation-Written Statements (IKJCT44S)

Functional Description
This section describes the exit you can use to add your own CLIST statements.

The CLIST language provides statements that let you structure your programs,
perform I/O, define and modify variables, and monitor the conditions under which
CLISTs execute. z/OS TSO/E CLISTs, describes the CLIST statements that are
supplied by TSO/E. In addition to these statements, TSO/E provides an exit that
you can use to add your own CLIST statements.

Processing for a CLIST is done in two steps: phase 1, which is performed by the
EXEC command processor, and phase 2. In phase 1, the EXEC command
processor reads the CLIST records from the input data set and builds an in-storage
command procedure. EXEC then places the command procedure that it built on the
input stack. This stack is maintained by TSO/E to determine the source of input.
Phase 2 processing receives control as each record is removed from the stack. The
CLIST statement exit receives control during phase 2 processing.

When CLIST processing encounters a statement that is not one of the CLIST
statements supplied by IBM, it passes control to the CLIST statement exit, if one
exists. When the exit receives control:

v The statement can be either an installation-written CLIST statement or a TSO/E
command

v All symbolic substitution has been performed on the statement

Writing an Exit for IKJCT44B

Chapter 39. Customizing CLIST Processing 497

You can use the CLIST statement exit as a fast path for executing TSO/E
commands from a CLIST. To avoid the overhead that normally occurs when TSO/E
commands are executed from a CLIST, your exit can treat TSO/E commands as
installation-written statements. Your exit can directly invoke a TSO/E command
processor, using the ATTACH or LINK macro instruction. Depending upon whether
the TSO/E command completed successfully, your exit must set the appropriate
return code to indicate that an installation-written CLIST statement was processed.

TSO/E also provides several other exits that you can use to customize CLIST
processing:

v Initialization and termination exits allow you to customize the EXEC command.
These exits are described in Chapter 29, “Customizing the EXEC Command” on
page 279.

v The CLIST built-in function exit allows you to add your own built-in functions. This
exit is described in “Writing an Exit for Installation-Written Built-in Functions
(IKJCT44B)” on page 493.

TSO/E-Supplied Exit
TSO/E does not provide a default exit routine for installation-written CLIST
statements.

Entry Specifications
The contents of the registers on entry for the CLIST statement exit are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Parameter Descriptions
The CLIST statement exit receives the standard exit parameter list. However, no
data is passed for the command buffer (parameter entry 1). That is, the key field
has a value of X'00', the length field has a value of X'04', and the data field has a
value of X'00'. For a description of the standard exit parameter list, see “TSO/E
Standard Exit Parameter List” on page 35.

Figure 93 shows the exit-dependent data that the exit receives beginning at offset
+36 in the parameter list. The parameter entry is described following the figure.

Key Length Data+0 +4 +8+36

Address of

parameter entry 10 00000002
Length of

statement

Address of

statement

Parameter Entry's

Key, Length, and Data

Figure 93. Exit-Dependent Data for the CLIST Statement Exit

Writing an Exit for ... IKJCT44S

498 z/OS V1R4.0 TSO/E Customization

Statement (Parameter Entry 10)
This parameter entry describes the statement. The statement can be either an
installation-written statement or a TSO/E command.

Return Specifications
The contents of the registers on return from the CLIST statement exit must be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes for the CLIST Statement Exit
Table 73 shows the return codes that the CLIST statement exit supports.

Table 73. Return Codes for the CLIST Statement Exit

Return Code
(Decimal)

Description

0 The exit has determined that the statement is not an
installation-written CLIST statement. CLIST processing treats the
statement as a TSO/E command.

4 The exit has successfully processed the installation-written CLIST
statement.

12 Exit processing for the installation-written CLIST statement was
unsuccessful. The following action is taken:

v CLIST processing issues an error message to the terminal user

v Control is passed to the ERROR routine in the CLIST, if one was
specified, or CLIST processing terminates

v The CLIST return code is set to 608

v The variable &SYSREASON is set to the exit’s return code.

16 Exit processing for the installation-written CLIST statement was
unsuccessful. The following action is taken:

v Control is passed to the ERROR routine in the CLIST, if one was
specified, or CLIST processing terminates. However, CLIST
processing does not issue a message.

v The CLIST return code is set to 608.

v The variable &SYSREASON is set to the exit’s return code.

If your exit sets a return code of 16, you should consider displaying
an informational message to the user. You can use the PUTLINE
service routine to issue an informational message. See z/OS TSO/E
Programming Services for more information.

Note: If the exit returns an undefined return code, CLIST processing terminates
without issuing an error message to the user.

Programming Considerations
The CLIST statement exit must follow standard linkage conventions. It must save
the registers on entry and restore the registers when it returns. The exit must be
reentrant, refreshable and reusable.

The exit must determine whether the statement should be treated as an
installation-written CLIST statement or as a TSO/E command. If the statement is

Writing an Exit for ... IKJCT44S

Chapter 39. Customizing CLIST Processing 499

defined by the installation, the exit must perform the necessary processing.
Otherwise, the installation must indicate that the statement is a TSO/E command,
by setting a return code of 0.

The exit can use the variable access routine (IKJCT441) to update, create and
retrieve the value of REXX and CLIST variables. For information on how to use
IKJCT441, see z/OS TSO/E Programming Services.

Environment
The attributes for the CLIST statement exit are:
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exit
You must name the CLIST statement exit IKJCT44S.

Link-edit the exit as a separate load module. You can link-edit the exit in a separate
load library that is exclusively for TSO/E exits or in an existing library containing
other routines. The exit can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Writing an Exit for ... IKJCT44S

500 z/OS V1R4.0 TSO/E Customization

Chapter 40. Customizing REXX Processing

Overview of Customizing REXX Processing 501
Language Processor Environments 501

TSO/E Address Space . 502
Non-TSO/E Address Spaces 502
Changing the Maximum Number of Language Processor Environments 502

Initializing and Terminating a Language Processor Environment 502
Characteristics for a Language Processor Environment 503
Replaceable Routines . 511
TSO/E REXX Exits . 512

Functional Description . 512
TSO/E-Supplied Exits . 512
Installation-Supplied Exits 513
Entry Specifications. 513
Parameter Descriptions . 515
Attention Handling Control Block 515
Parameters for the IRXINITX Exit 516
Parameters for the Exec Processing Exit for the IRXEXEC Routine 518
Return Specifications . 520
Programming Considerations 521
Possible Uses. 522

This chapter describes the REXX exits you can use to customize REXX processing.
REXX exits are not standard-format exits. Some receive non-standard exit
parameter lists and some receive no parameter list. Generally, you use TSO/E exits
to customize a function or command on a system-wide basis. You use the REXX
exits to customize REXX processing on a language processor environment basis.

Before you use the REXX exits, review z/OS TSO/E REXX Reference to help you
understand REXX processing and specifically, language processor environments.
This chapter frequently refers to z/OS TSO/E REXX Reference.

Overview of Customizing REXX Processing
REstructured eXtended eXecutor language (REXX) is a high-level interpretive
language that enables you to write programs in a clear and structured way. You can
write programs in the REXX language, called execs, to perform given tasks or
groups of tasks. You can execute REXX execs in TSO/E, ISPF, and in any
non-TSO/E address space. REXX execs cannot be invoked authorized in the
foreground or the background.

In addition to REXX exits, TSO/E supplies replaceable routines you can use to
customize REXX processing and specifically, system services. The following topics
give you an overview of the language processor environments and the replaceable
routines. For complete information about the language processor environments and
the replaceable routines, see z/OS TSO/E REXX Reference.

Language Processor Environments
Before the language processor can process an exec, a language processor
environment must exist. A language processor environment is the environment in
which a REXX exec executes. This environment defines how the exec is processed
and how the language processor accesses system services. A language processor

© Copyright IBM Corp. 1988, 2002 501

environment allows the language processor to process (“interpret”) a REXX exec
independently of how a specific address space accesses and uses system services.

TSO/E Address Space
In the TSO/E address space, a default language processor environment is
automatically initialized when a user logs on and starts a TSO/E session. The
IRXINIT initialization routine initializes language processor environments. When a
user invokes ISPF, another language processor environment is initialized. The
language processor environment initialized for ISPF is a separate environment from
the one that is initialized when the TSO/E session is started. Similarly, if you enter
split screen mode in ISPF, another language processor environment is initialized for
the second ISPF screen. Therefore, at this point, three separate language
processor environments exist. If the user invokes an exec from the second ISPF
screen, the exec executes within the language processor environment that was
initialized for that second screen. If the user invokes an exec from TSO/E READY
mode, the exec executes within the environment that was initialized when the user
first logged on.

When the user returns to a single ISPF screen, the language processor
environment associated with the second ISPF screen terminates automatically. The
IRXTERM termination routine terminates the language processor environment.
Similarly, when the user exits from ISPF and returns to TSO/E READY mode, the
environment associated with the ISPF screen is terminated. When the user logs off
from TSO/E, that language processor environment is then terminated.

Non-TSO/E Address Spaces
TSO/E provides two programming routines that you can use to run REXX execs,
IRXJCL and IRXEXEC.

You can execute a REXX exec in MVS batch by specifying IRXJCL as the program
(PGM=) on the JCL EXEC statement.

You can call either IRXJCL or IRXEXEC from a program to execute a REXX exec.
You can use the IRXJCL and IRXEXEC routines in any address space. z/OS TSO/E
REXX Reference describes IRXEXEC and IRXJCL.

Changing the Maximum Number of Language Processor Environments
The maximum number of environments that the system can initialize in an address
space is defined in an environment table called IRXANCHR. To change the number
of environment table entries, you must create a new IRXANCHR load module.
TSO/E provides a SYS1.SAMPLIB member called IRXTSMPE, which is an SMP/E
user modification (USERMOD) to change the maximum number of language
processor environments in an address space. Instructions for using IRXTSMPE are
included in the prolog of the IRXTSMPE member in SYS1.SAMPLIB.

Initializing and Terminating a Language Processor Environment
The initialization and termination routines (IRXINIT and IRXTERM) are programming
routines that you can call to initialize and terminate language processor
environments. Although they are primarily intended for use in the non-TSO/E
address spaces, you can also use them in TSO/E.

IRXINIT gives you the flexibility to define your own environment, and therefore,
customize how execs run within the environment. When you call IRXINIT, you

Language Processor Environments

502 z/OS V1R4.0 TSO/E Customization

specify all the characteristics you want defined for the language processor
environment. However, because a language processor environment is always
automatically initialized in any address space, you may have no need to use
IRXINIT to initialize an environment. If you use IRXINIT to initialize a language
processor environment, use IRXTERM to terminate the environment. z/OS TSO/E
REXX Reference describes IRXINIT and IRXTERM.

Characteristics for a Language Processor Environment
When IRXINIT is called to automatically initialize an environment (such as logon
and ISPF screen initialization), it uses default values. TSO/E provides three default
parameters modules that are load modules containing the default values for
initializing language processor environments for TSO/E (READY mode), ISPF, and
non-TSO/E address spaces. The parameters modules are:
v IRXTSPRM (for TSO/E)
v IRXISPRM (for ISPF)
v IRXPARMS (for MVS)

You can change the values TSO/E uses to define language processor environments
by providing your own load modules. See z/OS TSO/E REXX Reference on how to
change the default values.

The parameters modules consist of the parameter block (PARMBLOCK), the
module name table, the function package table, and the host command
environment table. The PARMBLOCK is a control block that is created when an
environment is initialized. It contains the values used to define the environment and
the addresses of the module name table, the function package table, and the host
command environment table.

The following briefly describes the fields in the PARMBLOCK that define the
characteristics for a language processor environment.

Table 76 on page 508 shows the default values that TSO/E provides in each of the
three default parameters modules.

ID An 8-byte character field that is used only to identify the parameter block that
IRXINIT creates. The field name is ID. The value must be IRXPARMS.

Version
A 4-byte character field that identifies the version of the parameter block for a
particular release and level of TSO/E. The field name is VERSION. The value
must be 0200.

Language Code
A 3-byte character field that contains a language code. The field name is
LANGUAGE. The language code identifies the language in which REXX
messages are displayed. The valid language codes are listed in Table 74.

Table 74. Language Codes and Their Meanings

Language Code Language

CHS Simplified Chinese

CHT Traditional Chinese

DAN Danish

DEU German

ENP U.S. English – all uppercase

ENU U.S. English – mixed case (uppercase and lowercase)

Initializing and Terminating a Language Processor Environment

Chapter 40. Customizing REXX Processing 503

Table 74. Language Codes and Their Meanings (continued)

Language Code Language

ESP Spanish

FRA French

JPN Japanese (Kanji)

KOR Korean

PTB Brazilian Portuguese

Note: To display REXX messages in languages other than U.S. English, you
must have the appropriate national language feature of TSO/E installed.

Reserved
A 1-byte field that is reserved.

Module Name Table
A 4-byte field that contains the address of the modulename table. The field
name is MODNAMET.

The table contains the names of DDs for reading and writing data and from
which to load execs, the names of several replaceable routines, and the names
of the following exit routines:
v Exec processing exit (exit for the IRXEXEC routine)
v Exec initialization exit
v Exec termination exit
v Attention handling exit

Table 80 on page 511 shows a summary of the replaceable routines. z/OS
TSO/E REXX Reference contains the format of the module name table.

Host Command Environment Table
A 4-byte field that contains the address of the host command environment table.
The field name is SUBCOMTB.

The table contains the names of valid host command environments that execs
running in the language processor environment can use. It also contains the
names of the routines that handle commands within each host command
environment.

Function Package Table
A 4-byte field that contains the address of the function package table for
function packages. The field name is PACKTB.

The table consists of three parts for user packages, local packages, and system
packages. Each part of the table contains a directory of the module names that
represent the external functions to be searched.

Token for PARSE SOURCE
An 8-byte character string that contains the value of a token to be used by the
PARSE SOURCE instruction. The field name is PARSETOK. The default is
blank.

This token is the last token of the string that PARSE SOURCE returns. The
token you specify is returned in every PARSE SOURCE instruction that is used
in the environment.

Flags
A fullword of bits used as flags. The field name is FLAGS.

Characteristics for a Language Processor Environment

504 z/OS V1R4.0 TSO/E Customization

The flags define certain characteristics for the new language processor
environment and how the environment and execs executing in the environment
operate.

In addition to the flags field, the parameter following the flags is a mask field
that works together with the flags. The mask field is a string that has the same
length as the flags field. Each bit position in the mask field corresponds to a bit
position in the flags field. IRXINIT uses the mask field to determine whether the
corresponding flag bit should be used or ignored.

Table 75 summarizes each flag. z/OS TSO/E REXX Reference describes each
of the flags and the bit settings for each flag.

Table 75. Summary of Each Flag Bit

Flag Name Description

TSOFL Indicates whether the new environment is to be integrated into
TSO/E.

0 - The environment is not integrated into TSO/E.

1 - The environment is integrated into TSO/E.

Reserved This bit is reserved.

CMDSOFL Specifies the search order used to locate a command that is issued
from an exec.

0 - Search for modules first, followed by execs, followed by CLISTs
(TSO/E address space only). The ddname used to search for execs
is specified in the LOADDD field in the module name table.

1 - Search for execs, followed by modules, followed by CLISTs
(TSO/E address space only). The ddname used to search for execs
is specified in the LOADDD field in the module name table.

FUNCSOFL Specifies the search order used to locate functions and subroutines
that are called from an exec.

0 - Search the load libraries first. If the function or subroutine is not
found, search the exec libraries for an exec.

1 - Search the exec libraries first for an exec. If the exec is not
found, search the load libraries.

NOSTKFL Prevents execs running in the environment from using any data
stack functions.

0 - The exec can use any data stack functions.

1 - Requests for data stack functions are processed as though the
data stack is empty.

NOREADFL Prevents execs running in the environment from reading any input
file.

0 - Reads from any input file are permitted.

1 - Reads from any input file are not permitted.

NOWRTFL Prevents execs running in the environment from writing to any output
file.

0 - Writes to the output file are permitted.

1 - Writes to the output file are not permitted.

Characteristics for a Language Processor Environment

Chapter 40. Customizing REXX Processing 505

Table 75. Summary of Each Flag Bit (continued)

Flag Name Description

NEWSTKFL Indicates whether a new data stack is initialized for the new
environment.

0 - Do not create a new data stack.

1 - Create a new data stack during the initialization of the new
language processor environment.

USERPKFL Indicates whether the user function packages that are defined for the
previous language processor environment are also available to the
new environment.

0 - Add the user function packages from the previous environment to
the user function packages for the new environment.

1 - Do not add the user function packages from the previous
environment to the user function packages for the new environment.

LOCPKFL Indicates whether the local function packages that are defined for
the previous language processor environment are also available to
the new environment.

0 - Add the local function packages from the previous environment to
the local function packages for the new environment.

1 - Do not add the local function packages from the previous
environment to the local function packages for the new environment.

SYSPKFL Indicates whether the system function packages that are defined for
the previous language processor environment are also available to
the new environment.

0 - Add the system function packages from the previous environment
to the system function packages for the new environment.

1 - Do not add the system function packages from the previous
environment to the system function packages for the new
environment.

NEWSCFL Indicates whether the host command environments that are defined
for the previous language processor environment (in the host
command environment table) are also available to the new
environment.

0 - Add the host command environments from the previous
environment to the host command environment table for the new
environment.

1 - Do not add the host command environments from the previous
environment to the host command environment table for the new
environment.

CLOSEXFL Indicates whether the data set as specified in the LOADDD field in
the module name table is closed after the exec completes
processing or remains open.

0 - The data set is opened once and remains open.

1 - The data set is opened for each load and then closed.

Characteristics for a Language Processor Environment

506 z/OS V1R4.0 TSO/E Customization

Table 75. Summary of Each Flag Bit (continued)

Flag Name Description

NOESTAE Indicates whether a recovery ESTAE is established under the new
environment.

0 - A recovery ESTAE is established.

1 - A recovery ESTAE is not established.

RENTRANT Indicates whether the new environment is initialized as reentrant or
non-reentrant.

0 - A non-reentrant language processor environment is initialized.

1 - A reentrant language processor environment is initialized.

NOPMSGS Indicates whether primary messages are printed.

0 - Primary messages are printed.

1 - Primary messages are not printed.

ALTMSGS Indicates whether alternate messages are printed.

0 - Alternate messages are not printed.

1 - Alternate messages are printed.

SPSHARE Indicates whether the subpool specified in SUBPOOL field is shared
across MVS tasks.

0 - The subpool is not shared.

1 - The subpool is shared.

STORFL Indicates whether execs running in the environment can use the
TSO/E STORAGE function.

0 - The STORAGE function can be used.

1 - The STORAGE function cannot be used.

NOLOADDD Indicates whether the data set specified in the LOADDD field in the
module name table is to be searched.

0 - Search the ddname, such as SYSEXEC, specified in the
LOADDD field. If the exec is not found, search SYSPROC.

1 - Search SYSPROC only.
Note: SYSPROC is searched only if the language processor
environment is integrated into TSO/E.

The user can either use the EXECUTIL command to indicate
whether to search the exec ddnames or use the ALTLIB command to
explicitly activate them. z/OS TSO/E REXX Reference describes the
EXECUTIL command. z/OS TSO/E Command Reference describes
the ALTLIB command.

NOMSGWTO Indicates whether to route REXX messages to a file in an MVS
environment. SYSTSPRT is the default file name.

0 - Messages are processed.

1 - Messages are routed to the SYSTSPRT file.

Characteristics for a Language Processor Environment

Chapter 40. Customizing REXX Processing 507

Table 75. Summary of Each Flag Bit (continued)

Flag Name Description

NOMSGIO Indicates whether to route REXX messages to a JCL listing.

0 - Messages are processed.

1 - Messages are routed to the JCL listing.

Reserved The remaining bits are reserved.

Mask
A fullword of bits used as a mask for the setting of the flag bits. The field name
is MASKS. The mask field is a string that has the same length as the flags field.
Each bit position in the mask field corresponds to a bit in the same position in
the flags field. IRXINIT uses the mask field to determine whether the
corresponding flag bit is used or ignored.

Subpool Number
A fullword of binary numbers that specifies the number of the subpool in which
storage is allocated for the entire language processor environment. The field
name is SUBPOOL. If the environment is integrated into TSO/E, this value must
be decimal 78.

Address Space Name
An 8-byte character field that specifies the name of the address space. The
field name is ADDRSPN. The defaults are MVS (for IRXPARMS), TSO/E (for
IRXTSPRM), and ISPF (for IRXISPRM).

X'FFFFFFFFFFFFFFFF'
The end of the parameter block (PARMBLOCK) must be indicated by
X'FFFFFFFFFFFFFFFF'.

The following four tables show the default values that TSO/E provides in each of
the default parameters modules. In Table 76, the LANGUAGE field contains the
language code ENU for U.S. English in mixed case (uppercase and lowercase).
The default parameters modules may contain a different language code depending
on whether one of the language features has been installed. See Table 74 on
page 503 for information about the different language codes.

Note: The LANGUAGE field in the parameters module IRXISPRM (for ISPF)
contains nulls. For ISPF, the system uses the language default from the
parameters module IRXTSPRM (for TSO/E).

Table 76. Values TSO/E Provides in the Default Parameters Modules
Field Name IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

ID IRXPARMS IRXPARMS IRXPARMS
VERSION 0200 0200 0200
LANGUAGE ENU ENU
PARSETOK
FLAGS

TSOFL 0 1 1
CMDSOFL 0 0 0
FUNCSOFL 0 0 0
NOSTKFL 0 0 0
NOREADFL 0 0 0
NOWRTFL 0 0 0
NEWSTKFL 0 0 1
USERPKFL 0 0 0

Characteristics for a Language Processor Environment

508 z/OS V1R4.0 TSO/E Customization

Table 76. Values TSO/E Provides in the Default Parameters Modules (continued)
Field Name IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

LOCPKFL 0 0 0
SYSPKFL 0 0 0
NEWSCFL 0 0 0
CLOSEXFL 0 0 0
NOESTAE 0 0 0
RENTRANT 0 0 0
NOPMSGS 0 0 0
ALTMSGS 1 1 0
SPSHARE 0 1 1
STOREFL 0 0 0
NOLOADDD 0 0 0
NOMSGWTO 0 0 0
NOMSGIO 0 0 0

MASKS
TSOFL_MASK 1 1 1
CMDSOFL_MASK 1 1 0
FUNCSOFL_MASK 1 1 0
NOSTKFL_MASK 1 1 0
NOREADFL_MASK 1 1 0
NOWRTFL_MASK 1 1 0
NEWSTKFL_MASK 1 1 1
USERPKFL_MASK 1 1 0
LOCPKFL_MASK 1 1 0
SYSPKFL_MASK 1 1 0
NEWSCFL_MASK 1 1 0
CLOSEXFL_MASK 1 1 0
NOESTAE_MASK 1 1 0
RENTRANT_MASK 1 1 0
NOPMSGS_MASK 1 1 0
ALTMSGS_MASK 1 1 0
SPSHARE_MASK 1 1 1
STOREFL_MASK 1 1 0
NOLOADDD_MASK 1 1 0
NOMSGWTO_MASK 1 1 0
NOMSGIO_MASK 1 1 0

SUBPOOL 0 78 78
ADDRSPN MVS TSO/E ISPF

--- FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

Table 77. Values TSO/E Provides in the Field Name in the Module Name Table
Field Name in Module Name
Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

INDD SYSTSIN SYSTSIN
OUTDD SYSTSPRT SYSTSPRT
LOADDD SYSEXEC SYSEXEC
IOROUT
EXROUT
GETFREER
EXECINIT
ATTNROUT
STACKRT
IRXEXECX
IDROUT
MSGIDRT
EXECTERM

--- FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

Characteristics for a Language Processor Environment

Chapter 40. Customizing REXX Processing 509

Table 78. Values TSO/E Provides in the Field Name in the Host Command Environment Table
Field Name in Host Command
Environment Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

TOTAL 9 11 13

USED 9 11 13

LENGTH 32 32 32

INITIAL MVS TSO TSO

--- FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF

Entry 1

NAME MVS MVS MVS

ROUTINE IRXSTAM IRXSTAM IRXSTAM

TOKEN

Entry 2

NAME LINK TSO TSO

ROUTINE IRXSTAM IRXSTAM IRXSTAM

TOKEN

Entry 3

NAME ATTACH LINK LINK

ROUTINE IRXSTAM IRXSTAM IRXSTAM

TOKEN

Entry 4

NAME CPICOMM ATTACH ATTACH

ROUTINE IRXSTAM IRXSTAM IRXSTAM

TOKEN

Entry 5

NAME LU62 CONSOLE ISPEXEC

ROUTINE IRXSTAM IRXSTAM IRXSTAM

TOKEN

Entry 6

NAME LINKMVS CPICOMM ISREDIT

ROUTINE IRXSTAMP IRXAPPC IRXSTAM

TOKEN

Entry 7

NAME LINKPGM LU62 CONSOLE

ROUTINE IRXSTAMP IRXAPPC IRXSTAM

TOKEN

Entry 8

NAME ATTCHMVS LINKMVS CPICOMM

ROUTINE IRXSTAMP IRXSTAMP IRXAPPC

TOKEN

Entry 9

NAME ATTCHPGM LINKPGM LU62

ROUTINE IRXSTAMP IRXSTAMP IRXAPPC

TOKEN

Entry 10

NAME ATTCHMVS LINKMVS

ROUTINE IRXSTAMP IRXSTAMP

TOKEN

Entry 11

NAME ATTCHPGM LINKPGM

ROUTINE IRXSTAMP IRXSTAMP

Entry 12

NAME ATTCHMVS

ROUTINE IRXSTAMP

TOKEN

Entry 13

NAME ATTCHPGM

ROUTINE IRXSTAMP

TOKEN

Characteristics for a Language Processor Environment

510 z/OS V1R4.0 TSO/E Customization

Table 79. Values TSO/E Provides in the Field Name in the Function Package Table
Field Name in Function
Package Table

IRXPARMS (MVS) IRXTSPRM (TSO/E) IRXISPRM (ISPF)

USER_TOTAL
USER_USED 1 1 1
LOCAL_TOTAL 1 1 1
LOCAL_USED 1 1 1
SYSTEM_TOTAL 1 2 2
SYSTEM_USED 1 2 2
LENGTH 8 8 8

--- FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF
Entry 1

NAME IRXEFMVS IRXEFMVS IRXEFMVS
Entry 2

NAME IRXFLOC IRXEFPCK IRXEFPCK
Entry 3

NAME IRXFUSER IRXFLOC IRXFLOC
Entry 4

NAME IRXFUSER IRXFUSER

Replaceable Routines
In addition to the REXX exits, TSO/E supplies replaceable routines you can use to
customize REXX processing. For exec processing, various system services are
used for loading and freeing execs, performing I/O, obtaining and freeing storage,
and handling data stack requests. TSO/E provides routines that handle these types
of system services, which you can replace. The names of the routines are defined
in the module name table for each particular language processor environment. In
non-TSO/E address spaces, you can provide your own replaceable routines. In the
TSO/E address space, you can provide your own replaceable routines only if you
initialize a language processor environment that is not integrated into TSO/E, that
is, the TSOFL flag is off.

Your routine can check the request for a system service, change the request if
needed, and then call the system-supplied routine to actually perform the service.
Your routine can perform the request itself and not call the system-supplied routine.
It can also terminate the request for a system service. You can specify the routine
name either by:

v Providing your own parameters module(s)

v Calling the IRXINIT routine and passing the name of the routine on the call

Table 80 provides a brief description of the replaceable routines. They are described
in detail in z/OS TSO/E REXX Reference.

Table 80. Summary of Replaceable Routines

Replaceable Routine Description

Exec load This routine is called to load an exec into storage and to free the
exec when it is no longer needed.

Input/Output (I/O) This routine is called to read a record from or write a record to a
specified ddname. For example, this routine is called for the SAY
instruction, the PULL instruction (when the data stack is empty), and
for the EXECIO command. The routine is also called to open and
close a data set.

Characteristics for a Language Processor Environment

Chapter 40. Customizing REXX Processing 511

Table 80. Summary of Replaceable Routines (continued)

Replaceable Routine Description

Data stack This routine is called to handle any requests for data stack services.
For example, it is called for the PULL, PUSH, and QUEUE
instructions and for the MAKEBUF and DROPBUF commands.

Storage management This routine is called to obtain and free storage.

User ID This routine is called to obtain the user ID or terminal ID. The result
it obtains is returned by the USERID built-in function.

Message identifier This routine determines if the message identifier (message ID) is
displayed with a REXX error message.

Host command
environment

This routine is called to handle the execution of host commands for
a specific host command environment.

TSO/E REXX Exits
This section describes the TSO/E REXX exits.

Functional Description
TSO/E provides the following types of exits for REXX processing:
v TSO/E-supplied exits
v Installation-supplied exits

The TSO/E-supplied exits are default exits. The names of these exits are fixed and
cannot be changed. You can either use the default exits or provide your own exits
to suit your installation’s needs.

For the installation-supplied exits, specify names you have chosen for the exits in
the appropriate fields of the module name table.

TSO/E-Supplied Exits
The following section describes how you can use the TSO/E-supplied exits. It also
describes the default processing of the exits if you do not provide your own exits.

v Pre-environment initialization exit (IRXINITX)

This exit is called by the IRXINIT routine. IRXINITX performs exit processing
before a new language processor environment is initialized. It is invoked before
an environment is initialized and before parameters are evaluated. Use IRXINITX
to prevent the initialization of a language processor environment, change
parameters used for initializing a language processor environment, or perform
special pre-environment initialization processing.

Default: IRXINITX does not prevent the initialization of a language processor
environment, does not alter the parameters used for initializing a language
processor environment, and does not perform special pre-environment
initialization processing. It sets a return code of 0 and returns.

v Post-environment initialization exit (IRXITTS or IRXITMV)

IRXITTS is called by the IRXINIT routine and performs exit processing after the
language processor environment is initialized for an environment integrated into
TSO/E. It is invoked after the environment is initialized and after the control
blocks, such as the environment block, are set up. Use IRXITTS to perform
special processing for a newly-initialized language processor environment.

Replaceable Routines

512 z/OS V1R4.0 TSO/E Customization

Default: IRXITTS does not prevent the initialization of a language processor
environment and does not perform any special initialization processing. It sets a
return code of 0 and returns.

IRXITMV is called by the IRXINIT routine and performs exit processing after a
language processor environment is initialized for an environment not integrated
into TSO/E. It is invoked after the environment is initialized and after the control
blocks, such as the environment block, are set up. Use IRXITMV to perform
special processing for a newly-initialized language processor environment.

Default: IRXITMV does not prevent the initialization of a language processor
environment and does not perform any special initialization processing. It sets a
return code of 0 and returns.

v Environment termination exit (IRXTERMX)

IRXTERMX is called by the IRXTERM routine and performs exit processing
before a language processor environment is terminated. It is invoked before each
language processor environment is terminated. Use IRXTERMX to prevent the
termination of a language processor environment or perform any special
termination processing for a language processor environment.

Default: IRXTERMX does not prevent the termination of a language processor
environment and does not perform any special termination processing. It sets a
return code of 0 and returns.

Installation-Supplied Exits
You provide the following exits by specifying names you have chosen in the
appropriate fields of the module name table:

v Exec processing exit

This exit is called by the IRXEXEC routine. It is invoked before the exec is
loaded, if the exec was not pre-loaded, and before IRXEXEC evaluates any
parameters on the call. Use the exit to prevent the execution of a REXX exec or
perform special processing before a REXX exec is executed. Specify the exit’s
name in the IRXEXECX field in the module name table.

v Exec initialization exit

This exit is called by the IRXEXEC routine or a compiler runtime processor. Use
the exit to update and access REXX variables. The exit gets control after the
REXX variable pool has been initialized for an exec, but before the first clause in
the exec is processed. Specify the exit’s name in the EXECINIT field in the
module name table.

v Exec termination exit

This exit is called by the IRXEXEC routine or a compiler runtime processor. Use
the exit to update and access REXX variables. The exit gets control after the last
clause in the exec is processed, but before the REXX variable pool is terminated.
Specify the exit’s name in the EXECTERM field in the module name table.

v Attention handling exit

This exit can only be used for an environment integrated into TSO/E. It is called
if an exec is executing and an attention interruption occurs. Use the exit to
perform special attention processing. Specify the exit’s name in the ATTNROUT
field in the module name table.

Entry Specifications
The contents of the registers on entry for the IRXINITX exit and the exec
processing exit (the exit that is invoked by IRXEXEC) are:

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 513

Register 0 Same as on entry to the IRXINIT initialization
routine (IRXINITX)

Address of the current environment block
(IRXEXEC exit)

Register 1 For the pre-environment initialization exit
(IRXINITX), address of the parameter list passed to
the IRXINIT routine

For the exec processing exit for IRXEXEC, address
of the parameter list passed to the IRXEXEC
routine

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

The contents of the registers on entry for the IRXITTS exit (integrated into TSO/E)
and the IRXITMV exit (not integrated into TSO/E) are:

Register 0 Address of the new environment block

Registers 1–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

The contents of the registers on entry for the IRXTERMX exit are:

Register 0 Address of the terminating environment block

Registers 1–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

The contents of the registers on entry for the exec initialization exit, exec
termination exit, and the attention handling exit are:

Register 0 Address of the current environment block

Registers 1–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

When an environment is initialized, the system creates the environment block
(ENVBLOCK) that contains pointers to several other control blocks. Together, these
control blocks define all the characteristics of the environment. The address of the
environment block is passed in register 0 in all calls to REXX exits and routines,
and in all calls to the REXX compiler runtime processor and compiler interface
routines. Note that you can only read information from the environment block or the

TSO/E REXX Exits

514 z/OS V1R4.0 TSO/E Customization

control blocks to which the environment block points. If you change the values,
results are unpredictable. z/OS TSO/E REXX Reference contains the format of the
various control blocks.

Parameter Descriptions
The following REXX exits do not receive parameter lists:

v For IRXITTS (TSO/E) and IRXITMV (non-TSO/E):

Register 0 contains the address of the new environment block. Register 1 does
not point to a parameter list.

v For IRXTERMX:

Register 0 contains the address of the terminating environment block. Register 1
does not point to a parameter list.

v For exec initialization and exec termination:

Register 0 contains the address of the current environment block. Register 1
does not point to a parameter list.

v For attention handling:

Register 0 contains the address of the current environment block. Register 1
does not point to a parameter list.

The environment block pointed to by register 0 contains a field
(ENVBLOCK_ATTNROUT_PARMPTR) that contains the address of an attention
handling routine control block. The attention handling exit can use this control
block to communicate with REXX attention processing. For more information on
the format of the attention handling routine control block, see Table 81 on
page 516.

The IRXINITX pre-environment initialization exit and the exec processing exit (exit
for IRXEXEC) receive non-standard parameter lists. They are described in the
following sections.

Attention Handling Control Block
The attention handling exit is invoked when a REXX exec is running and the user
presses the attention interruption key (usually the PA1 key). The exit receives
control before REXX attention processing issues a prompting message (IRX0920I),
which instructs the user to either enter a null line to continue running the exec or
enter one of the immediate commands.

When the exit receives control, register 0 contains the address of the language
processor environment control block, which is mapped by the IRXENVB mapping
macro. The ENVBLOCK_ATTNROUT_PARMPTR field contains the address of a
control block, which the exit may optionally use to communicate with REXX
attention processing.

Table 81 on page 516 shows the format of the attention handling routine control
block.

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 515

Table 81. Format of the Attention Handling Routine Control Block

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 2 LEN Length of this control block

2 2 VERS Version number

4 1 FLAG1 Flag word:
X'80' — May be set by an exit to tell the
REXX attention processor to suppress
the REXX attention prompting message.
X'40' — May be set by an exit to tell the
REXX attention processor that the HE
(halt execution) immediate command
should not be allowed. When this flag is
set, HE is treated as an incorrect
response to the REXX attention prompt
message.

5 3 ----- Reserved

8 4 EXITRC Exit return code field

Table 82 lists the valid return codes that may be returned from the attention
handling exit using the EXITRC field.

Table 82. Valid Return Codes for the Attention Handling Exit Routine

Return Code
(Decimal)

Description

0 Exit processing was successful. No attention handling requests
have been specified by the exit. REXX attention processing should
continue with normal attention processing.

4 Exit processing was successful. The attention handling exit has set
special request flags for REXX attention processing.

8 Exit processing was successful. REXX should continue processing
without performing any additional attention processing.

Parameters for the IRXINITX Exit
The parameter list for IRXINITX is the same as the parameter list for the IRXINIT
initialization routine. TSO/E REXX passes the address of an environment block in
register 0. In register 1, TSO/E REXX passes the address of a parameter list, which
consists of a list of addresses. Each address in the parameter list points to a
parameter.

TSO/E REXX passes the addresses of at least the first seven parameters. The
addresses that point to parameter 8 and parameter 9 are optional. The high-order
bit of the last address in the parameter list is set to 1 to indicate the end of the
parameter list.

TSO/E REXX Exits

516 z/OS V1R4.0 TSO/E Customization

Table 83 describes the parameter list that IRXINITX receives.

Table 83. Parameters for the IRXINITX Exit

Parameter Number of Bytes Description

Parameter 1 8 This parameter specifies the function to be performed:

v INITENVB -- to initialize a new environment.

v FINDENVB -- to obtain the address of the
environment block for the current non-reentrant
environment. FINDENVB returns the address of the
environment block in register 0 and in parameter 6.
It does not initialize a new environment.

Parameter 2 8 The name of the parameters module, which contains
the values for initializing the new environment.

On the call to the IRXINIT initialization routine, the
caller may have passed a blank in this field.
Therefore, IRXINIT assumes that all the fields in the
parameters module are null. The parameters module
is described in “Characteristics for a Language
Processor Environment” on page 503.

IRXINIT provides two ways in which you can pass
parameter values; the parameters module and the
address of an in-storage parameter list, which is
parameter 3.

Parameter 3 4 The address of an in-storage parameter list, which is
an area in storage containing parameters that are
equivalent to the parameters in the parameters
module. The format of the in-storage list is identical to
the format of the parameters module.

This parameter may be 0. If the address is 0, IRXINIT
assumes that all fields in the in-storage parameter list
are null.

Parameter 4 4 The address of a user field. IRXINIT does not use or
check this pointer or the field. You can use this field
for your own processing.

Parameter 5 4 A 4-byte field that is reserved.

Parameter 6 4 This parameter is only used for output by IRXINIT and
should not be altered by this exit. It contains the
address of the environment block. If you use the
FINDENVB parameter to locate an environment, this
parameter contains the address of the environment
block for the current non-reentrant environment. If you
use INITENVB to initialize a new environment,
IRXINIT returns the address of the environment block
for the newly created environment in this parameter.

For either FINDENVB or INITENVB, IRXINIT also
returns the address of the environment block in
register 0. This parameter lets higher-level languages
obtain the environment block address to examine
information in the environment block.

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 517

Table 83. Parameters for the IRXINITX Exit (continued)

Parameter Number of Bytes Description

Parameter 7 4 This parameter is only used for output by IRXINIT and
should not be altered by this exit. IRXINIT returns a
reason code in this field, which indicates why the
requested function did not complete successfully.
z/OS TSO/E REXX Reference describes the reason
codes that may be returned.

Parameter 8 4 Parameter 8 is an optional parameter that lets you
specify how REXX obtains storage in the language
processor environment. Specify 0 if you want the
system to reserve a default amount of storage
workarea.

If you want to pass a storage workarea to IRXINIT,
specify the address of an extended parameter list.
The extended parameter list consists of the address
(a fullword) of the storage workarea and the length (a
fullword) of the workarea, followed by
X'FFFFFFFFFFFFFFFF'. For more information on
how REXX obtains workarea storage, see z/OS
TSO/E REXX Reference.

Parameter 9 4 This parameter is only used for output by IRXINIT and
should not be altered by this exit. It is a 4-byte field
that IRXINIT uses to return the return code.

Parameters for the Exec Processing Exit for the IRXEXEC Routine
When the exec processing exit for the IRXEXEC routine gets control, register 1
points to a parameter list. This parameter list consists of a list of addresses. Each
address in the parameter list points to a parameter. Table 84 describes the
parameter list that the exec processing exit receives.

Table 84. Parameters for the Exec Processing Exit

Parameter Number of Bytes Description

Parameter 1 4 The address of the exec block (EXECBLK). The exec
block is a control block that describes the exec to be
loaded. It contains information needed to process the
exec, such as the DD from which the exec is to be
loaded and the name of the initial host command
environment when the exec starts executing.

This parameter can be 0 if the exec is pre-loaded and
the address of the pre-loaded exec is passed in
parameter 4. If this parameter and parameter 4 are
both specified, the value in parameter 4 is used and
this parameter is ignored.

Parameter 2 4 The address of the arguments for the exec. The
arguments are arranged as a vector of address/length
pairs followed by X'FFFFFFFFFFFFFFFF'. There is
no limit to the number of arguments passed to the
exec.

TSO/E REXX Exits

518 z/OS V1R4.0 TSO/E Customization

Table 84. Parameters for the Exec Processing Exit (continued)

Parameter Number of Bytes Description

Parameter 3 4 A fullword of bits that are used as flags. Only bits 0,
1, and 2 are used. The remaining bits are reserved.
Bits 0, 1, and 2 are mutually exclusive.

v Bit 0 - If the bit is set on, the exec was invoked as
a “command”, that is, it was not invoked from
another exec as an external function or subroutine.

v Bit 1 - If the bit is set on, the exec was invoked as
an external function (a function call).

v Bit 2 - If the bit is set on, the exec was invoked as
a subroutine.

v Bit 3 - Set this bit on if you want IRXEXEC to
return extended return codes in the range
20001–20099.

If a syntax error occurs, IRXEXEC returns a value
in the range 20001–20099 in the evaluation block,
regardless of the setting of bit 3. If bit 3 is on and a
syntax error occurs, IRXEXEC returns with a return
code in the range 20001–20099 that matches the
value returned in the evaluation block. If bit 3 is off
and a syntax error occurs, IRXEXEC returns with
return code 0. For more information about how
REXX returns information about syntax errors, see
z/OS TSO/E REXX Reference.

Parameter 4 4 The address of the in-storage control block
(INSTBLK). The in-storage control block defines the
structure of a pre-loaded exec in storage. It contains
pointers to each record in the exec and the length of
each record.

This parameter is specified if the caller of the
IRXEXEC routine has pre-loaded the exec. Otherwise,
this parameter is 0.

Parameter 5 4 A 4-byte field that contains the address of the CPPL,
if IRXEXEC was called from the TSO/E address
space. If the caller of IRXEXEC does not pass the
address of the CPPL, TSO/E builds the CPPL without
a command buffer. The CPPL address is required in
the TSO/E address space.

If IRXEXEC is called from a non-TSO/E address
space, this parameter is 0.

Parameter 6 4 The address of an evaluation block (EVALBLOCK).
IRXEXEC uses the evaluation block to return the
result from the exec that was specified on either the
RETURN or EXIT instruction.

The value may be 0, if the exec does not return a
result or the caller of IRXEXEC plans to use the
IRXRLT (get result) routine to get the result or the
result is to be ignored. z/OS TSO/E REXX Reference
describes IRXRLT.

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 519

Table 84. Parameters for the Exec Processing Exit (continued)

Parameter Number of Bytes Description

Parameter 7 4 The address of an 8-byte field that defines a work
area. In the 8-byte field, the:
v First four bytes contain the address of the work

area
v Second four bytes contain the length of the work

area

The work area is passed to the language processor to
use for executing the exec. If the work area is too
small, IRXEXEC returns with a return code of 20 and
a message indicates an error. The minimum length
required for the work area is X'1800' bytes.

If you do not want to pass a work area, specify an
address of 0. IRXEXEC will obtain storage for its work
area or will call the replaceable storage routine
specified in the GETFREER field (in the module name
table) for the environment, if you provided a storage
routine.

Parameter 8 4 The address of a user field. IRXEXEC does not use
or check this pointer or the user field. You can use
this field for your own processing.

If you do not want to use a user field, specify an
address of 0.

Return Specifications
The contents of the registers on return from all the REXX exits must be:

Registers 0 Same as on entry, except for IRXINITX. See
description below.

Registers 1–14 Same as on entry

Register 15 Return code

For the IRXINITX exit, register 0 contains the same values passed to the IRXINIT
initialization routine. IRXINIT uses register 0 to locate the previous environment
block, reentrant or non-reentrant. Therefore, altering register 0 controls how IRXINIT
locates the previous environment block. If you change register 0 and do not restore
it, TSO/E uses the new value to locate the previous environment block.

Return Codes for the REXX Exits
Table 85 shows the return codes that the IRXINITX, IRXITTS, IRXITMV,
IRXTERMX, and the exec processing exit support.

Table 85. Return Codes for the REXX Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. REXX processing continues.

Non-zero Exit processing was unsuccessful. REXX processing terminates and
sets register 15 to 20.

TSO/E REXX Exits

520 z/OS V1R4.0 TSO/E Customization

Table 86 shows the return codes the exec initialization and exec termination exits
support.

Table 86. Return Codes for the Exec Initialization and Termination Exits

Return Code
(Decimal)

Description

0 Exit processing was successful. REXX processing continues.

Non-zero Exit processing was unsuccessful. The exec is not executed. REXX
issues a message that indicates a failure in a system service.

Note that the attention handling exit does not support any return codes in register
15. It does support a return code placed in the attention handling routine control
block. See “Attention Handling Control Block” on page 515 for more information on
the attention handling control block.

Programming Considerations
The REXX exits must follow standard linkage conventions. They must have
attributes of AMODE(31) and RMODE(ANY). They must save the registers on entry
and restore the registers when they return. They must not be APF-authorized. They
must be reentrant and refreshable.

The exits can use any of the TSO/E service routines if they are integrated into
TSO/E. In non-TSO/E address spaces, the exits cannot use the TSO/E service
routines, such as PARSE, SCAN, GETLINE, and PUTLINE. For a description of the
TSO/E service routines, see z/OS TSO/E Programming Services.

Any of the TSO/E REXX service routines, such as IRXIC, IRXSUBCM, and
IRXEXCOM, are available in non-TSO/E and TSO/E address spaces. For a
description of the REXX service routines, see z/OS TSO/E REXX Reference.

Environment
The attributes for all the REXX exits are:
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC Mode: Primary
v Task Mode
v Reentrant, refreshable

Installing the Exits
TSO/E supplies default exit routines as described in “TSO/E-Supplied Exits” on
page 512. The names of these default exit routines are fixed and cannot be
changed:

Pre-environment initialization exit
IRXINITX

Post-environment initialization exits
IRXITTS (for TSO/E), IRXITMV (for non-TSO/E)

Environment termination exit
IRXTERMX

For the following exits, specify the name you have chosen for them in the module
name table:

v IRXEXECX field for the exec processing exit for the IRXEXEC routine

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 521

v ATTNROUT field for the attention handling exit

v EXECINIT field for the exec initialization exit

v EXECTERM field for the exec termination exit

The IRXINITX, IRXITTS, IRXITMV, and IRXTERMX exits must be link-edited with
the IRXINIT initialization routine.

Link-edit the exit for IRXEXEC, the attention handling exit, and the exec initialization
and exec termination exits as separate load modules or as aliases of other load
modules. You can link-edit the exits in a separate load library that is exclusively for
TSO/E exits or in an existing library containing other routines. All the exits can
reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

If you define any of the TSO/E-supplied REXX exits or the installation-defined exits,
and if these exits are intended for use with the TSO REXX environment created by
the TSO TMP (that is, they are defined in the REXX default parameters module
IRXTSPRM), then these exits must be placed in an APF-authorized library.
However, note that they should not be link-edited APF-authorized, and they do not
receive control APF-authorized.

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Possible Uses
The following describes how you can use the REXX exits.

IRXINITX
v Use this exit to prevent language processor environments from being initialized.

For example, if you want to prevent more than n number of environments from
being initialized, use IRXINITX. When the number reaches n, IRXINITX can
return a non-zero return code to prevent the initialization.

v You can also use IRXINITX to alter the parameters used for initializing a
language processor environment. For example, if you want to prevent REXX
execs from using the STORAGE function, use IRXINITX to set a flag to indicate
that the STORAGE function is not allowed under the language processor
environment.

IRXITTS
v Use this exit to perform special initialization processing for a language processor

environment that is integrated into TSO/E. For example, if you want to keep track
of the number of REXX execs that have been executed under the language
processor environment, use IRXITTS to initialize the count to zero.

IRXITMV
v Use this exit to perform special initialization processing for a language processor

that is not integrated into TSO/E. For example, if you want to use a control block
to communicate between host commands, use IRXITMV to initialize the control
block and point to it from the user field in the environment block.

TSO/E REXX Exits

522 z/OS V1R4.0 TSO/E Customization

IRXTERMX
v Use this exit to perform special termination processing before a language

processor environment is terminated. If you use a control block to communicate
between host commands, use IRXTERMX to free the storage for the control
block.

Exec processing (IRXEXEC exit)
v Use this exit to perform special processing before the IRXEXEC routine executes

the REXX exec. For example, if you want to prevent certain REXX execs from
writing output, use the exit to set a flag indicating that no output is allowed.

Exec initialization
v Use this exit to access and update REXX variables. For example, you can use it

to initialize variables.

Exec termination
v Use this exit to access and update REXX variables. For example, you can use it

to obtain the values of certain variables upon the completion of a REXX exec.

Attention handling
Use this exit to perform special attention processing. For example, you can use this
exit to:

v Log off the user immediately after an attention interruption occurs.

v Invoke the EXECUTIL HI command or the HI function of IRXIC to halt the
interpretation of the exec

v Request that REXX attention processing not display the attention prompting
message

v Disable the use of the HE immediate command during REXX attention
processing.

TSO/E REXX Exits

Chapter 40. Customizing REXX Processing 523

TSO/E REXX Exits

524 z/OS V1R4.0 TSO/E Customization

Part 7. Support for a REXX Compiler

This part describes the support that TSO/E provides for the installation and
execution of a REXX compiler.

v Routines and Interfaces to Support a REXX Compiler

TSO/E provides a defined interface to support the installation and execution of a
REXX compiler runtime processor. This support consists of routines and
interfaces that TSO/E REXX uses during the execution of compiled execs under
a compiler runtime processor.

Central to TSO/E REXX compiler support is the compiler programming table.
TSO/E REXX uses the compiler runtime processor name stored in the compiled
REXX exec to locate the entry for the compiler runtime processor in the compiler
programming table. The compiler programming table entry contains the name of
the compiler runtime processor and the names of up to four optional compiler
interface routines. TSO/E REXX uses the compiler runtime processor to run
compiled execs. During the execution of a compiled exec, TSO/E REXX invokes
compiler interface routines (if installed) to perform specialized processing.

v Programming Routines for a REXX Compiler Runtime Processor

TSO/E provides various programming routines that support a REXX compiler
runtime processor. These routines are:

– IRXERS - a REXX compiler programming routine that searches for and runs
an external routine. For more information on the search order for external
routines, refer to z/OS TSO/E REXX Reference.

– IRXHST - a REXX compiler programming routine that searches for and runs a
host command. For more information on locating host commands, refer to
z/OS TSO/E REXX Reference.

– IRXRTE - a REXX compiler programming routine that searches for and
invokes a REXX exit routine. For more information on REXX exit routines,
refer to z/OS TSO/E REXX Reference.

In addition, you can use the GETEVAL function of the IRXRLT programming
service to obtain the evaluation block for an external function or subroutine.
These routines and the GETEVAL function of IRXRLT are intended for use only
by a compiler runtime processor. For more information on the IRXRLT
programming service, see z/OS TSO/E REXX Reference.

© Copyright IBM Corp. 1988, 2002 525

526 z/OS V1R4.0 TSO/E Customization

Chapter 41. Routines and Interfaces to Support a REXX
Compiler

Overview of Routines and Interfaces to Support a REXX Compiler 527
How REXX Identifies a Compiled Exec 528
The Compiler Programming Table 528
The Compiler Runtime Processor 530

Entry Specifications. 532
Parameters for the Compiler Runtime Processor 532
Return Specifications . 533
Programming Considerations 534
Environment . 534

Compiler Interface Routines. 534
Compiler Interface Initialization Routine 534

Entry Specifications. 534
Parameter List for the Compiler Interface Initialization Routine 535
Return Specifications . 535
Programming Considerations 536
Environment . 536

Compiler Interface Termination Routine 536
Entry Specifications. 536
Parameter List for the Compiler Interface Termination Routine 536
Return Specifications . 537
Programming Considerations 537
Environment . 537

Compiler Interface Load Routine 537
Entry Specifications. 538
Parameter List for the Compiler Interface Load Routine 538
Return Specifications . 540
Programming Considerations 540
Environment . 540

Compiler Interface Variable Handling Routine 540
Entry Specifications. 540
Parameter List for the Compiler Interface Variable Handling Routine 541
Return Specifications . 542
Programming Considerations 543
Environment . 543

This chapter discusses the characteristics of a compiled REXX exec and the
routines and interfaces that TSO/E provides to support a REXX compiler, including:
v The compiler programming table
v The compiler runtime processor
v The four compiler interface routines:

– Compiler interface initialization routine
– Compiler interface termination routine
– Compiler interface load routine
– Compiler interface variable handling routine

Overview of Routines and Interfaces to Support a REXX Compiler
TSO/E REXX defines a format for compiled REXX execs so that TSO/E REXX can
distinguish between compiled and interpreted execs. TSO/E REXX also provides a
defined interface for an installation to install a REXX compiler runtime processor.

© Copyright IBM Corp. 1988, 2002 527

Compiled execs are executed by a compiler runtime processor. To initiate run-time
processing of a compiled REXX exec, TSO/E uses a compiler programming table to
identify the run-time processor and up to four interface routines. You can modify the
compiler programming table to identify routines for a compiler runtime processor, if
a compiler runtime processor is installed. Each of the four compiler interface
routines are optional and, if installed, can provide special processing for the
initialization and termination of the compiler runtime processor, loading of compiled
REXX execs, and accessing REXX variables.

How REXX Identifies a Compiled Exec
During REXX exec processing, TSO/E REXX determines whether an exec
iscompiled or interpreted. TSO/E REXX will recognize an exec as compiled if the
exec meets the following three criteria:
v The length of the first record must be at least 20 bytes
v The string ’EXECPROC’ is in columns 5–12 of first record
v The first non-blank in columns 1–4 of the first record is not a comment delimiter

If an exec meets these criteria, TSO/E REXX determines the name of a compiler
runtime processor from columns 13–20 of the first record.

You might find that some CLISTs and interpreted execs meet these criteria and are,
therefore, incorrectly executed as compiled execs. There are several ways to
correct this problem, including:

v Shift everything in the first record one column to the right. This leaves the string
’EXECPROC’ in the first record, but not in the expected position (columns 5–12)
for a compiled exec.

v Add a comment as the first record of the REXX exec or CLIST. The record that
contains ’EXECPROC’ remains intact as the second record.

Note: Interpreted execs that are stored in data sets allocated to SYSPROC must
contain the REXX exec identifier in the first record. For more information
on the REXX exec identifier, see z/OS TSO/E REXX Reference.

The Compiler Programming Table
The compiler programming table is a control block that TSO/E REXX uses to obtain
information about a compiler runtime processor, including the names of up to four
optional compiler interface routines. Before TSO/E REXX runs the first compiled
exec in the first language processor environment in the address space, TSO/E
REXX loads module IRXCMPTM as the compiler programming table. After the
compiler programming table is loaded, it is used for all compiled execs in the
current and any subsequent language processor environments.

The IRXCMPTM module that TSO/E provides in LINKLIB contains no entries, which
indicates to TSO/E that a compiler runtime processor is not installed. TSO/E
provides source for a sample compiler programming table in SYS1.SAMPLIB
member IRXREXX4. IRXREXX4 is not intended to be used as shipped in
SYS1.SAMPLIB. Refer to your compiler’s installation documentation for the
requirements for the IRXCMPTM module. If you wish to install a REXX compiler,
you can create your own compiler programming table using IRXREXX4 as a
model.After you create the source for the compiler programming table, assemble
and link-edit the table as load module IRXCMPTM. You can place IRXCMPTM in
any library that is accessible by the MVS LOAD system service.

Overview of Routines ... to Support a REXX Compiler

528 z/OS V1R4.0 TSO/E Customization

TSO/E provides a mapping macro, IRXCMPTB, for the compiler programming table
in SYS1.MACLIB. Table 87 and Table 88 present the format of the compiler
programming table.

Table 87. Compiler Programming Table Header Information

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 4 FIRST Address of the first entry

4 4 TOTAL Total number of entries

8 4 USED Number of entries used

12 4 LENGTH Length of each entry

16 8 — Reserved

24 8 COMPGMTB_FFFF X'FFFFFFFFFFFFFFFF'

Table 88. Compiler Programming Table Entry Information

Offset
(Decimal)

Number of
Bytes

Field Name Description

0 8 RTPROC Name of the Compiler
Runtime Processor

8 8 COMPINIT Name of the Compiler
Interface Initialization Routine

16 8 COMPTERM Name of the Compiler
Interface Termination Routine

24 8 COMPLOAD Name of the Compiler
Interface Load Routine

32 8 COMPVAR Name of the Compiler
Interface Variable Handling
Routine

40 16 STORAGE Four words of storage that
can be used by a REXX
compiler runtime processor.
For example, a REXX
compiler runtime processor
might use these storage
words as anchors for its
control block structure.

Figure 94 on page 530 shows the sample compiler programming table shipped in
SYS1.SAMPLIB member IRXREXX4.EAGRTPRC is the name of the compiler
runtime processor, EAGRTXLD is the name of the compiler interface load routine,
and EAGRTXVH is the name of the compiler interface variable handling routine.
The field names for the compiler interface initialization routine and compiler
interface termination routine are blank, which indicates that the routines are not
installed and are not to be invoked by TSO/E REXX.

The Compiler Programming Table

Chapter 41. Routines and Interfaces to Support a REXX Compiler 529

The Compiler Runtime Processor
When TSO/E REXX encounters a compiled REXX exec, TSO/E REXX
passescontrol to the appropriate compiler runtime processor to run the exec. Prior
to the first invocation of a compiled REXX exec in the first language processor
environment in the address space, TSO/REXX loads the appropriate compiler
runtime processor, saves the location of thecompiler runtime processor, then
invokes the compiler runtime processor. On subsequent invocations of compiled
REXX execs, and in subsequent language processor environments, TSO/E REXX
uses the saved location of the loaded compiler runtime processor to pass control to
the compiler runtime processor.

A compiler runtime processor receives control in the same recovery environmentas
the REXX interpreter; TSO/E REXX establishes ESTAE recovery and attention
handling routines based on the characteristics of the language processor
environment. The compiler runtime processor must issue all messages relating to
language processing. For more information on REXX recovery and attention
processing, see z/OS TSO/E REXX Reference.

When the compiler runtime processor receives control, it must pass control to the
exec initialization routine (EXECINIT) and exec termination routine (EXECTERM) at
the appropriate times. The programming routine IRXRTE must be used to pass
control to these routines.

Table 89 on page 531 describes the results required from a compiler runtime
processor.The results vary according to how the compiled exec was invoked under
thecompiler runtime processor.

IRXCMPTM CSECT ,
IRXCMPTM AMODE 31
IRXCMPTM RMODE ANY
IRXCMPTB_HEADER DS 0CL32
IRXCMPTB_FIRST DC AL4(FIRST_ENTRY)
IRXCMPTB_TOTAL DC F’1’
IRXCMPTB_USED DC F’1’
IRXCMPTB_LENGTH DC F’56’

DC X’0000000000000000’
IRXCMPTB_FFFF DC X’FFFFFFFFFFFFFFFF’
FIRST_ENTRY DS 0CL56
FIRST_ENTRY_RTPROC DC C’XXXRTPRC’
FIRST_ENTRY_COMPINIT DC C’XXXRTXIN’
FIRST_ENTRY_COMPTERM DC C’XXXRTXTR’
FIRST_ENTRY_COMPLOAD DC C’XXXRTXLD’
FIRST_ENTRY_COMPVAR DC C’XXXRTXVH’
FIRST_ENTRY_STORAGE DC 4F’0’

END IRXCMPTM

Figure 94. Sample Compiler Programming Table

The Compiler Runtime Processor

530 z/OS V1R4.0 TSO/E Customization

Table 89. Compiler Runtime Processor Expected Results

Method of
Invocation
(Compiled
Exec)

Returned Results (Compiled Exec)

EXIT/RETURN Without
Expression

EXIT/RETURN With
Expression

Language Error Processing Error

Subroutine Set return code to 0.
The compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Set return code to 0.
The compiler runtime
processor must use the
GETEVAL function of
IRXRLT to obtain an
EVALBLOK. The
compiler runtime
processor must then
use the results from the
execution of the
compiled exec to
complete the
EVALBLOK.

Set return code to
200nn, where nn is
greater than or equal to
1 and less than or
equal to 99. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Set return code to 20,
100, or 104; set abend
and reason codes as
appropriate. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Function For a RETURN without
expression, set the
return code to 20045.
Return code 20045 is a
special case of return
code 200nn.

For an EXIT without
expression, set the
return code to 0.

Set return code to 0.
The compiler runtime
processor must use the
GETEVAL function of
IRXRLT to obtain an
EVALBLOK. The
compiler runtime
processor must then
use the results from the
execution of the
compiled exec to
complete the
EVALBLOK.

Set return code to
200nn, where nn is
greater than or equal to
1 and less than or
equal to 99. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Set return code to 20,
100, or 104; set abend
and reason codes as
appropriate. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Command Set return code to 0.
The compiler runtime
processor must use the
GETEVAL function of
IRXRLT to obtain an
EVALBLOK. The
compiler runtime
processor must then
complete the
EVALBLOK with a
result of 0.

Set return code to 0.
The compiler runtime
processor must
represent the results
from the compiled exec
execution as a number
in string format. If the
result string will fit in a
fullword, the compiler
runtime processor must
use the GETEVAL
function of IRXRLT to
obtain an EVALBLOK.
The compiler runtime
processor must then
complete the
EVALBLOK with the
result string. If the
result string will not fit
in a fullword, then the
compiler runtime
processor must set the
return code to 20026
and must not obtain or
modify an EVALBLOK.

Set return code to
200nn, where nn is
greater than or equal to
1 and less than or
equal to 99. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

Set return code to 20,
100, or 104; set abend
and reason codes as
appropriate. The
compiler runtime
processor must not
obtain or complete an
EVALBLOK.

The Compiler Runtime Processor

Chapter 41. Routines and Interfaces to Support a REXX Compiler 531

Entry Specifications
The contents of the registers on entry to the compiler runtime processor are:

Register 0 Address of an environment block

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameters for the Compiler Runtime Processor
In register 1, TSO/E REXX passes the address of a parameterlist, which consists of
a list of addresses. Each address in the parameter list points to a parameter. TSO/E
REXX passes all parameters on the call. The high-order bit of the last address in
the parameter list is set to 1. Table 90 lists the parameters for the compiler runtime
processor.

Table 90. Parameters for a Compiler Runtime Processor

Parameter Number of Bytes Description

Parameter 1 4 EXECBLK address. On entry to the compiler runtime
processor, this parameter contains the address of the
REXX exec block (EXECBLK) that is used by
IRXLOAD. The exec block is a control block that
describes the exec to be loaded. For more information
on the exec block parameter for IRXLOAD, see z/OS
TSO/E REXX Reference.

Parameter 2 4 Exec arguments. On entry to the compiler runtime
processor, this parameter contains the address of a
series of address/length pairs, which describe the
arguments for the exec. A double word of
X'FFFFFFFFFFFFFFFF' delineates the end of the
pairs. For more information on REXX exec
arguments, see z/OS TSO/E REXX Reference.

Parameter 3 4 A fullword of flag bits. For more information on flag
bits, see the IRXEXEC parameters in z/OS TSO/E
REXX Reference.

Parameter 4 4 In-storage control block address. The in-storage
control block contains a series of address/length
pairs, which REXX uses to describe the structure of a
loaded exec in storage. The in-storage control block is
initialized by IRXLOAD or the compiler interface load
routine (if installed) before a compiler runtime
processor receives control. For more information on
the in-storage control block, see z/OS TSO/E REXX
Reference.

Parameter 5 4 CPPL address. Specifies the address of the command
processor parameter list (CPPL). The CPPL contains
addresses of control blocks that TSO/E uses in
various programming services. For more information
on CPPL’s, see z/OS TSO/E Programming Services.

The Compiler Runtime Processor

532 z/OS V1R4.0 TSO/E Customization

Table 90. Parameters for a Compiler Runtime Processor (continued)

Parameter Number of Bytes Description

Parameter 6 4 Address of a user field. When a program calls
IRXEXEC to invoke a compiled REXX exec, the
program can pass the address of a user field.
IRXEXEC passes the user field address to the
compiler runtime processor in this parameter. For
more information on the user field, see z/OS TSO/E
REXX Reference.

Parameter 7 4 Environment block address. On entry, this parameter
contains the address of the REXX environment block
with which the compiler programming table is
associated. This parameter is identical to the address
in register 0. For more information on the REXX
environment block, see z/OS TSO/E REXX
Reference.

Parameter 8 4 Compiler runtime processor entry address. Specifies
the address of the entry in the compiler programming
table for the compiler runtime processor.

Parameter 9 4 Compiler runtime processor return code. On exit, the
compiler runtime processor must set this parameter to
a return code that indicates the completion status of
the compiler runtime processor. Table 91 lists the
return codes for the compiler runtime processor.

Parameter 10 4 Compiler runtime processor abend and reason codes.
On exit, if a return code of 100 or 104 is provided, the
compiler runtime processor must set this parameter to
the appropriate abend and reason codes that provide
specific information about processing that was not
successful. The abend and reason codes are the
same as those returned by IRXEXEC. For more
information on abend and reason codes for IRXEXEC,
see z/OS TSO/E REXX Reference.

Return Specifications
On return from the compiler runtime processor, the contents of registers 0–14 must
be the same as on entry.

Return Codes
Table 91 lists the return codes issued by the compiler runtime processor.

Table 91. Return Codes from a REXX Compiler Runtime Processor

Return Code
(Decimal)

Description

0 Processing was successful. Table 89 on page 531 shows the
expected results from the compiler runtime processor.

20 Processing was not successful. The compiler runtime processor
issued an error message that describes the error.

100 Processing was not successful. A system abend occurred during
the execution of the compiler runtime processor. Parameter 10 must
contain the abend code and the reason code describing the error.

104 Processing was not successful. A user abend occurred during the
execution of the compiler runtime processor. Parameter 10 must
contain the abend code and the reason code describing the error.

The Compiler Runtime Processor

Chapter 41. Routines and Interfaces to Support a REXX Compiler 533

Table 91. Return Codes from a REXX Compiler Runtime Processor (continued)

Return Code
(Decimal)

Description

20001 - 20099 Processing was successful. However, the compiler runtime
processor detected a syntax error in the compiled exec. The return
code value is 20000 plus the value of the REXX error number.
REXX error numbers are described in z/OS TSO/E REXX
Reference.

Programming Considerations
The compiler runtime processor must follow standard linkage conventions.It must
save the registers on entry and restore the registers when it returns. The compiler
runtime processor must be reentrant.

Environment
The attributes for the compiler runtime processor are:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task Mode
v Reentrant

Compiler Interface Routines
During various stages of processing a compiled REXX exec, TSO/E REXXinvokes a
compiler interface routine, if installed, to perform special processing. The compiler
runtime processor is not required to use the compiler interface routines. However,
you must install those compiler interface routines that the compiler runtime
processor requires. You indicate to TSO/E REXX that a compiler interface routine is
not required by specifying a module name of eight blanks in the appropriate field of
the compiler programming table entry. The four compiler interface routines are:

v Compiler interface initialization routine — Initializes a compiler runtime processor

v Compiler interface termination routine — Terminates a compiler runtime
processor

v Compiler interface load routine — Performs specialized processing to service a
request to load or free a compiled exec

v Compiler interface variable handling routine — Performs specialized processing
to service a request to access REXX variables

Compiler Interface Initialization Routine
This routine, if installed, receives control to initialize a compiler runtime processor
before the compiler runtime processor is invoked for the first time. TSO/E REXX
invokes a compiler interface initialization routine once for each compiler runtime
processor that runs in a REXX language processor environment.

Entry Specifications
The contents of the registers on entry to the compiler interface initialization routine
are:

Register 0 Address of an environment block

The Compiler Runtime Processor

534 z/OS V1R4.0 TSO/E Customization

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter List for the Compiler Interface Initialization Routine
In register 1, TSO/E REXX passes the address of a parameter list,which consists of
a list of addresses. Each address in the parameter list points to a parameter. TSO/E
REXX passes all parameters on the call. The high-order bit of the last address in
the parameter list is set to 1. Table 92 lists the parameters for the compiler interface
initialization routine.

Table 92. Parameter List for the Compiler Interface Initialization Routine

Parameter Number of Bytes Description

Parameter 1 4 Environment block address. On entry, this parameter
contains the address of the REXX environment block
with which the compiler programming table is
associated. This parameter is identical to the address
in register 0. For more information on the REXX
environment block, see z/OS TSO/E REXX
Reference.

Parameter 2 4 Compiler runtime processor entry address. Specifies
the address of the entry in the compiler programming
table for the compiler runtime processor.

Parameter 3 4 Compiler interface initialization routine return code.
On exit, the compiler interface initialization routine
must set this parameter to a return code that indicates
the completion status of the compiler interface
initialization routine. Table 93 lists the return codes for
the compiler interface initialization routine.

Return Specifications
On return from the compiler interface initialization routine, the contents of registers
0–14 must be the same as on entry.

Return Codes
Table 93 lists the return codes issued by the compiler interface initialization routine.

Table 93. Return Codes from the Compiler Interface Initialization Routine

Return Code
(Decimal)

Description

0 Processing was successful. TSO/E REXX can now pass control to
the compiler runtime processor.

20 Processing was not successful. TSO/E REXX will not give control to
the associated compiler runtime processor. TSO/E REXX will not
execute any compiled REXX exec that uses the associated
compiler runtime processor.

Compiler Interface Initialization Routine

Chapter 41. Routines and Interfaces to Support a REXX Compiler 535

Programming Considerations
The compiler interface initialization routine must follow standard linkage
conventions.It must save the registers on entry and restore the registers when it
returns. The compiler interface initialization routine must be reentrant.

Environment
The attributes for the compiler interface initialization routine are:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task Mode
v Reentrant

Compiler Interface Termination Routine
This routine, if installed, receives control at the termination of a REXX language
processor environment.

Entry Specifications
The contents of the registers on entry to the compiler interface termination routine
are:

Register 0 Address of an environment block

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter List for the Compiler Interface Termination Routine
In register 1, TSO/E REXX passes the address of a parameter list, whichconsists of
a list of addresses. Each address in the parameter list points to a parameter. TSO/E
REXX passes all parameters on the call. The high-order bit of the last address in
the parameter list is set to 1. Table 94 lists the parameters for the compiler interface
termination routine.

Table 94. Parameter List for the Compiler Interface Termination Routine

Parameter Number of Bytes Description

Parameter 1 4 Environment block address. On entry, this parameter
contains the address of the REXX environment block
with which the compiler programming table
associated. This parameter is identical to the address
in register 0. For more information on the REXX
environment block, see z/OS TSO/E REXX
Reference.

Parameter 2 4 Compiler runtime processor entry address. Specifies
the address of the entry in the compiler programming
table for the compiler runtime processor.

Compiler Interface Initialization Routine

536 z/OS V1R4.0 TSO/E Customization

Table 94. Parameter List for the Compiler Interface Termination Routine (continued)

Parameter Number of Bytes Description

Parameter 3 4 Compiler interface termination routine return code.
This parameter is reserved for future use. TSO/E
REXX initializes this parameter to zero and does not
inspect the parameter on return from the compiler
interface termination routine.

Return Specifications
On return from the compiler interface termination routine, the contents of registers
0–14 must be the same as on entry.

Return Codes
The return code parameter in the compiler interface termination routine is reserved
for future use.The compiler interface termination routine must not modify the return
code parameter; TSO/E REXX does not inspect the return code parameter.

Programming Considerations
The compiler interface termination routine must follow standard linkage
conventions.It must save the registers on entry and restore the registers when it
returns. The compiler interface termination routine must be reentrant.

Environment
The attributes for the compiler interface termination routine are:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task Mode
v Reentrant

Compiler Interface Load Routine
IRXLOAD will pass control to the compiler interface load routine in either of two
cases:

v After the REXX language processor reads a compiled REXX exec into storage.

v When the REXX language processor makes a request to free the in-storage
control block that was created by an earlier request to the compiler interface load
routine.

Note: This section discusses the interaction between the compiler interface load
routine and the IBM-supplied IRXLOAD routine.

For compiled execs, IRXLOAD will call the compiler interface load routine, if
installed, before IRXLOAD builds the in-storage control block and after IRXLOAD
has obtained all information required by the compiler interface load routine.

One of the inputs (parameter 5) to the compiler interface load routine is a group of
blocks containing the compiled REXX exec. The compiler interface load routine
must create and initialize an in-storage control block from the group of blocks,
preferably above 16 MB in virtual storage. For more information about the
in-storage control block, see z/OS TSO/E REXX Reference.

Compiler Interface Termination Routine

Chapter 41. Routines and Interfaces to Support a REXX Compiler 537

Entry Specifications
The contents of the registers on entry to the compiler interface load routine are:

Register 0 Address of an environment block

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameter List for the Compiler Interface Load Routine
In register 1, the calling program (IRXLOAD) will pass the address of aparameter
list, which consists of a list of addresses. Each address in the parameter list points
to a parameter. IRXLOAD will pass all parameters on the call. The high-order bit of
the last address in the parameter list is set to 1. Table 95 lists the parameters for
the compiler interface load routine.

Table 95. Parameter List for the Compiler Interface Load Routine

Parameter Number of Bytes Description

Parameter 1 8 Function requested. On entry, this parameter contains
the function requested of the compiler interface load
routine The function specification must be in
uppercase, left-justified, and padded on the right with
blanks. Acceptable values are:

“LOAD ” Specifies that the compiler interface
load routine is to load an exec into
storage.

“FREE ” Specifies that the compiler interface
load routine is to free the exec
represented by the in-storage
control block specified in parameter
8.

For more information on the LOAD and FREE
functions, see the descriptions for the LOAD and
FREE functions of IRXLOAD in z/OS TSO/E REXX
Reference.

Parameter 2 4 EXECBLK address. On entry to the compiler interface
load routine, this parameter contains the address of
the REXX exec block (EXECBLK) that is used by
IRXLOAD. The exec block is a control block that
describes the exec to be loaded. For more information
on the exec block parameter for IRXLOAD, see z/OS
TSO/E REXX Reference.

Parameter 3 4 Record format. On entry, this parameter specifies the
format of records in the blocks passed to this routine
in parameter 5. Possible values for this parameter are
’F ’ for fixed-length records and ’V ’ for
variable-length records. Variable-length records will
not span across blocks.

Compiler Interface Load Routine

538 z/OS V1R4.0 TSO/E Customization

Table 95. Parameter List for the Compiler Interface Load Routine (continued)

Parameter Number of Bytes Description

Parameter 4 4 Record length. On entry, this parameter specifies the
length of each record for fixed-length records, or the
maximum record length for variable-length records.
Each variable-length record contains a record
descriptor word (RDW). The first two bytes of the
RDW indicate the actual length of the record,
including the RDW.

Parameter 5 4 Address of a vector of address/length pairs. Each
address/length pair contains the address and length
of a block of data that contains the statements of the
exec. A double word of X'FFFFFFFFFFFFFFFF'
delineates the end of the pairs.

Parameter 6 4 Environment block address. On entry, this parameter
contains the address of the REXX environment block
with which the compiler programming table is
associated. This parameter is identical to the address
in register 0. For more information on the REXX
environment block, see z/OS TSO/E REXX
Reference.

Parameter 7 4 Compiler runtime processor entry address. Specifies
the address of the entry in the compiler programming
table for the compiler runtime processor.

Parameter 8 4 In-storage control block address. The in-storage
control block contains a series of address/length
pairs, which REXX uses to describe the structure of a
loaded exec in storage. For more information on the
in-storage control block, see z/OS TSO/E REXX
Reference.

When IRXLOAD invokes the compiler interface load
routine to load a compiled exec, the compiler interface
load routine should create an in-storage control block
and place the control block address in this parameter.
IRXLOAD will consider this parameter to be valid only
when the return code from the compiler interface load
routine is zero.

When IRXLOAD invokes the compiler interface load
routine to free storage for the REXX exec, this
parameter contains the address of the in-storage
control block that the compiler interface load routine
previously created, and is to free.

For complete details on in-storage control blocks, see
z/OS TSO/E REXX Reference.

Parameter 9 4 Compiler interface load routine return code. On exit,
the compiler interface load routine must set this
parameter to a return code that indicates the
completion status of the compiler interface load
routine. Table 96 on page 540 lists the return codes
issued by the compiler interface load routine.

Compiler Interface Load Routine

Chapter 41. Routines and Interfaces to Support a REXX Compiler 539

Return Specifications
On return from the compiler interface load routine, the contents of registers 0–14
must be the same as on entry.

Return Codes
Table 96 lists the return codes issued by the compiler interface load routine.

Table 96. Return Codes from the Compiler Interface Load Routine

Return Code
(Decimal)

Description

0 Processing was successful. If the requested function was LOAD,
parameter 8 contains the address of the created in-storage control
block.

If the requested function was FREE, the in-storage control block
specified in parameter 8 has been freed.

4 Processing was successful. However, the compiler interface load
routine did not create an in-storage control block. IRXLOAD will
create an in-storage control block.

20 Processing was not successful. A severe error has occurred. The
compiler interface load routine should issue a message to
accompany this return code. IRXLOAD will propagate a return code
of 20 to the caller of IRXLOAD.

Programming Considerations
The compiler interface load routine must follow standard linkage conventions.It must
save the registers on entry and restore the registers when it returns. The compiler
interface load routine must be reentrant.

Environment
The attributes for the compiler interface load routine are:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task Mode
v Reentrant

Compiler Interface Variable Handling Routine
The compiler interface variable handling routine, if installed, receives control
whenever an external routine or host command requests access to REXX variables
using IKJCT441 or IRXEXCOM.

Entry Specifications
The contents of the registers on entry to the compiler interface variable handling
routine are:

Register 0 Address of an environment block

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Compiler Interface Load Routine

540 z/OS V1R4.0 TSO/E Customization

Register 14 Return address

Register 15 Entry point address

Parameter List for the Compiler Interface Variable Handling Routine
In register 1, the calling program passes the address of aparameter list, which
consists of a list of addresses. Each address in the parameter list points to a
parameter. The high-order bit of the last address in the parameter list is set to 1.
Table 97 lists the parameters for the compiler interface variable handling routine.

Table 97. Parameter List for the Compiler Interface Variable Handling Routine

Parameter Number of Bytes Description

Parameter 1 1 Variable handling function request. On entry to the
compiler interface variable handling routine, this
parameter contains a one-character field
corresponding to the shared variable request code
(SHVCODE) used by IRXEXCOM. For more
information on shared variable request codes, see
z/OS TSO/E REXX Reference.

In addition, this routine must support the function ’n’,
Fetch Next With Mask. TSO/E uses the Fetch Next
With Mask function to search through all variables
known to the language processor. These variables
include stem variables that have been assigned a
value. The output from this function is expected to be
the next variable that begins with the specified mask.

Parameter 2 4 The address of the variable name to be manipulated.
This is an input parameter for the following functions:

Function SHVCODE
Set Variable ’S’,’s’
Fetch Variable ’F’,’f’
Drop Variable ’D’,’d’
Fetch Private ’P’

For the Fetch Next (’N’) and Fetch Next With Mask
(’n’) functions, this parameter must be set on output to
the address of the next variable name.

Parameter 3 4 Length of variable name. Specifies the length of the
string pointed to by the address in parameter 2.

Parameter 4 4 Address of the value for the variable. This is an input
parameter for the Set Variable function (’S’,’s’) and an
output parameter for the following functions:

Function SHVCODE
Fetch Variable ’F’,’f’
Fetch Next With Mask ’n’
Fetch Private ’P’
Fetch Next ’N’

This parameter is not used for the Drop Variable
(’D’,’d’) function.

Parameter 5 4 Length of the value for the variable. Specifies the
length of the value pointed to by the address in
parameter 4.

Compiler Interface Variable Handling Routine

Chapter 41. Routines and Interfaces to Support a REXX Compiler 541

Table 97. Parameter List for the Compiler Interface Variable Handling Routine (continued)

Parameter Number of Bytes Description

Parameter 6 4 Work block extension address. On entry, this
parameter contains the address of the work block
extension. The work block extension contains the
WORKEXT_RTPROC field, which can be used by the
compiler runtime processor as an anchor for
resources that are specific to a particular compiled
exec.

Parameter 7 4 Compiler runtime processor entry address. Specifies
the address of the entry in the compiler programming
table for the compiler runtime processor.

Parameter 8 4 Environment block address. On entry, this parameter
contains the address of the REXX environment block
with which the compiler programming table is
associated. This parameter is identical to the address
in register 0. For more information on the REXX
environment block, see z/OS TSO/E REXX
Reference.

Parameter 9 1 Shared variable function return code (SHVRET). On
output, the compiler interface variable handling routine
must set this parameter to the appropriate value for
the SHVRET field. The values returned in this
parameter for the Fetch Next With Mask function must
be identical to those returned for the Fetch Next
function. For a list of appropriate values for the
SHVRET field, see z/OS TSO/E REXX Reference.

Parameter 10 4 Compiler interface variable handling routine return
code. On exit, the compiler interface variable handling
routine must set this parameter to a return code that
indicates the completion status of the compiler
interface variable handling routine. Table 98 on
page 543 lists the return codes for the compiler
interface variable handling routine.

Parameter 11 4 Fetch next mask. This parameter is optional, and is
used only with the Fetch Next With Mask function
(’n’). If this parameter is provided, it specifies an
address of a mask to be used to search for the next
variable or stem. The mask can be a character string
that meets the naming conventions for simple
variables or variable stems. The mask cannot identify
a compound variable. The compiler interface variable
handling routine must return a variable whose name
begins with the mask provided. A parameter value of
zero indicates that no mask is provided.

Parameter 12 4 Fetch next mask length. This parameter is optional,
and may be used only in conjunction with parameter
11. If the parameter is specified, the value represents
the length of the mask provided in parameter 11. This
parameter should be ignored if the value in parameter
11 is zero.

Return Specifications
On return from the compiler interface variable handling routine, the contents of
registers 0–14 must be the same as on entry.

Compiler Interface Variable Handling Routine

542 z/OS V1R4.0 TSO/E Customization

Return Codes
Table 98 lists the return codes issued by the compiler interface variable handling
routine.

Table 98. Return Codes from the Compiler Interface Variable Handling Routine

Return Code
(Decimal)

Description

0 Processing was successful.

4 Processing was not successful. Insufficient storage was available.

8 Processing was not successful. The name that was passed in
parameter 2, or created by a symbolic substitution on parameter 2,
is too long.

12 Processing was not successful. The name that was passed in
parameter 2, or created by a symbolic substitution on parameter 2,
is incorrect because it begins with a character that is not valid.

20 Processing was not successful.

Programming Considerations
The compiler interface variable handling routine must follow standard linkage
conventions.It must save the registers on entry and restore the registers when it
returns. The compiler interface variable handling routine must be reentrant.

Environment
The attributes for the compiler interface variable handling routine are:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task Mode
v Reentrant

Compiler Interface Variable Handling Routine

Chapter 41. Routines and Interfaces to Support a REXX Compiler 543

Compiler Interface Variable Handling Routine

544 z/OS V1R4.0 TSO/E Customization

Chapter 42. Programming Routines for a REXX Compiler
Runtime Processor

Overview of Programming Routines for a REXX Compiler Runtime Processor 545
Environment for the Programming Routines 545

External Routine Search Routine (IRXERS) 545
Entry Specifications. 546
Parameters for IRXERS . 546
Return Specifications . 548

Host Command Search Routine (IRXHST) 549
Entry Specifications. 549
Parameters for IRXHST . 550
Return Specifications . 551

Exit Routing Routine (IRXRTE) 552
Entry Specifications. 552
Parameters for IRXRTE . 553
Return Specifications . 553

This chapter discusses the programming routines that TSO/E Release 3.1
introduced to support a compiler runtime processor. These programming routines
include:
v The external routine search routine
v The host command search routine
v The exit routing routine

These routines are intended for use only by a REXX compiler runtime processor.

Overview of Programming Routines for a REXX Compiler Runtime
Processor

TSO/E provides programming routines that support a compiler runtime processor.
These routines enable a compiler runtime processor to search for and run an
external routine, host command, or exit routine.

Environment for the Programming Routines
The programming routines must run in an environment with the following
characteristics:
v State: Problem Program
v Key: 8
v AMODE(31), RMODE(ANY)
v ASC mode: Primary
v Task mode

External Routine Search Routine (IRXERS)
IRXERS is a programming routine that searches for and runs an external routine.
IRXERS allows a compiler runtime processor to pass control to an external routine
by a direct interface. A compiler runtime processor that uses IRXERS leaves the
implementation of the external routine search and invocation to TSO/E REXX. For
more information on the search order for REXX external routines, refer to z/OS
TSO/E REXX Reference.

© Copyright IBM Corp. 1988, 2002 545

Entry Specifications
The contents of the registers on entry to IRXERS are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Parameters for IRXERS
You can pass the address of an environment block in register 0. In register 1, the
compiler runtime processor must pass the address of a parameter list, which
consists of a list of addresses. Each address in the parameter list points to a
parameter.

The first five parameters are required. The addresses that point to parameter 6 and
parameter 7 are optional. If IRXERS does not find the high-order bit set on in either
the address for parameter 5, or in the addresses for parameters 6 or 7, which are
optional parameters, IRXERS does not invoke the specified routine and returns with
a return code of 32 in register 15. See Table 100 on page 548 for more information
on return codes. The high-order bit of the last address in the parameter list must be
set to 1. Table 99 on page 547 lists the parameters for the external routine search
routine.

External Routine Search Routine (IRXERS)

546 z/OS V1R4.0 TSO/E Customization

Table 99. Parameters for the External Routine Search Routine

Parameter Number of Bytes Description

Parameter 1 8 Function requested. On entry to IRXERS, this
parameter contains the function requested of the
external routine search routine. The function
specification must be in uppercase, left-justified, and
padded on the right with blanks. Acceptable values
are:

″EXTSUB ″ Specifies that the external routine
that is being requested is a
subroutine. The subroutine is not
required to return an EVALBLOK.
For a successfully run subroutine
that does not return an EVALBLOK,
the EVALBLOK address is set to 0
and the return code is set to 0.

″EXTBRSUB″ Specifies that the external routine
that is being requested is a
subroutine and will be given control
through a branch instruction. The
external routine will be invoked
using standard register linkage
conventions as described for
external function parameter lists in
z/OS TSO/E REXX Reference.

″EXTFCT ″ Specifies that the external routine
that is being requested is a function.
The function is required to return an
EVALBLOK. For a successfully run
function that does not return an
EVALBLOK, the EVALBLOK
address is set to 0 and the return
code is set to 4.

″EXTBRFCT″ Specifies that the external routine
that is being requested is a function
and will be given control through a
branch instruction. The external
routine will be invoked using
standard register linkage
conventions as described for
external function parameter lists in
z/OS TSO/E REXX Reference.

Parameter 2 4 Address of the external routine name.

For the ″EXTFCT ″ and ″EXTSUB ″ functions, this
parameter specifies the address of the external
routine name for the requested external routine. The
name must not include the opening left parenthesis
that identifies the routine as a function, if that is the
type of routine being invoked.

For the ″EXTBRFCT″ and ″EXTBRSUB″ functions,
this parameter specifies the address of the external
routine that is to be given control. IRXERS will branch
to this address after building the parameter list for the
specified routine.

External Routine Search Routine (IRXERS)

Chapter 42. Programming Routines for a REXX Compiler Runtime Processor 547

Table 99. Parameters for the External Routine Search Routine (continued)

Parameter Number of Bytes Description

Parameter 3 4 Length of the external routine name. Specifies the
length of the external routine name pointed to by
parameter 2. IRXERS ignores this parameter if
″EXTBRFCT″ or ″EXTBRSUB″ is specified in
parameter 1.

Parameter 4 4 Address of the arguments for the external routine.
Specifies the address of a set of address/length pairs,
which hold the arguments for the external routine.
These arguments must be in the format expected by
an external routine. See the mapping macro
IRXARGTB in z/OS TSO/E REXX Reference, for a
description of the argument list format.

Parameter 5 4 Address of an EVALBLOK. On return from IRXERS,
this parameter contains the address of an EVALBLOK
(if any) that IRXERS returned after an external routine
successfully completed. An address of zero indicates
that IRXERS did not receive an EVALBLOK.

Parameter 6 4 Address of a REXX environment block. Specifies the
address of the REXX environment block under which
the request is to be performed. If the compiler runtime
processor supplies a non-zero parameter, IRXERS
considers this parameter to be a valid environment
block address. If this parameter is zero or omitted,
IRXERS obtains the environment block address from
register 0 as described in z/OS TSO/E REXX
Reference. This parameter is optional.

Parameter 7 4 Return code. The return code parameter is optional.
On return from IRXERS, this parameter (if supplied)
contains the return code for IRXERS. Register 15 will
contain the same value as this parameter, if this
parameter is provided.

Return Specifications
On return from the external routine search routine, the contents of the registers will
be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 100 lists the return codes issued by the external routine search routine.

Table 100. Return Codes from the External Routine Search Routine

Return Code
(Decimal)

Description

0 Processing was successful. IRXERS located the external routine,
and the external routine returned control with a return code of 0 in
register 15. If EXTFCT or EXTBRFCT was specified, the address of
the EVALBLOK is available in parameter 5.

4 Processing was successful. IRXERS located the external routine,
and the external routine returned control with a return code of 0 in
register 15. However, EXTFCT or EXTBRFCT was specified, and
no EVALBLOK was returned by the external routine.

External Routine Search Routine (IRXERS)

548 z/OS V1R4.0 TSO/E Customization

Table 100. Return Codes from the External Routine Search Routine (continued)

Return Code
(Decimal)

Description

8 Processing was successful. IRXERS located the external routine,
and the external routine returned with a non-zero return code in
register 15.

12 Processing was not successful. IRXERS attempted to create an
EVALBLOK, but insufficient virtual storage was available.

16 Processing was not successful. IRXERS could not locate the
specified routine.

20 Processing was not successful. An error message may accompany
this return code.

28 Processing was not successful. IRXERS was unable to locate a
language processor environment. Verify that you passed a valid
environment block address.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or
the high-order bit of the last address in the list is not set to 1 to
indicate the end of the parameter list.

100 Processing was not successful. IRXERS located and passed control
to the external routine. However, an abend occurred in the external
routine.

Host Command Search Routine (IRXHST)
IRXHST is a programming routine that searches for and runs a host command.
IRXHST allows a compiler runtime processor to pass control to a host command
through a direct interface. A compiler runtime processor that uses IRXHST leaves
the implementation of the host command search and invocation to TSO/E REXX.
For more information on the search order for host commands, refer to z/OS TSO/E
REXX Reference.

IRXHST also allows a compiler runtime processor to set and clear the ETMODE
flag, based on the OPTIONS ETMODE or OPTIONS NOETMODE instructions. The
ETMODE function of IRXHST sets the ETMODE flag, and the NOETMODE function
of IRXHST clears the ETMODE flag. For more information about OPTIONS
ETMODE and OPTIONS NOETMODE, see z/OS TSO/E REXX Reference.

Entry Specifications
The contents of the registers on entry to IRXHST are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

External Routine Search Routine (IRXERS)

Chapter 42. Programming Routines for a REXX Compiler Runtime Processor 549

Parameters for IRXHST
In register 1, the compiler runtime processor must pass the address of a parameter
list, which consists of a list of addresses. Each address in the parameter list points
to a parameter. The first six parameters are required. The addresses that point to
parameter 7 and parameter 8 are optional. If IRXHST does not find the high-order
bit set on in either the address for parameter 6, or in the addresses for parameters
7 or 8, which are optional parameters, IRXHST does not invoke the specified
routine and returns with a return code of 32 in register 15. See Table 102 on
page 552 for more information on return codes. The high-order bit of the last
address in the parameter list must be set to 1. Table 101 lists the parameters for
the host command search routine.

Table 101. Parameters for the Host Command Search Routine

Parameter Number of Bytes Description

Parameter 1 8 Function requested. On entry to IRXHST, this
parameter contains the function requested of the host
command search routine. The function name must be
in uppercase, left-justified, and padded on the right
with blanks. Acceptable values are:

″HOSTCMD ″ Specifies that IRXHST will search
for and invoke a host command.

ETMODE Specifies that IRXHST sets the
ETMODE flag.

NOETMODE Specifies that IRXHST clears the
ETMODE flag.

Parameter 2 8 Host command environment name. Specifies the
name of the host command environment that is in
effect for the compiled REXX exec that is running.
The name must be in uppercase, left-justified, and
padded on the right with blanks. The host command
environment name should correspond to an entry in
the host command environment table.

This parameter is only used for the HOSTCMD
function. It is ignored for the ETMODE and
NOETMODE functions.

Parameter 3 4 Address of host command string. Specifies the
address of a string to be run by the host command
environment. IRXHST passes the string as is to the
host command environment routine that corresponds
to the host command environment specified in
parameter 2. Storage for the command buffer must be
managed (allocated and freed) by the program that
calls IRXHST.

This parameter is only used for the HOSTCMD
function. It is ignored for the ETMODE and
NOETMODE functions.

Parameter 4 4 Host command string length. Specifies the length of
the command string that is pointed to by the address
in parameter 3.

This parameter is only used for the HOSTCMD
function. It is ignored for the ETMODE and
NOETMODE functions.

Host Command Search Routine (IRXHST)

550 z/OS V1R4.0 TSO/E Customization

Table 101. Parameters for the Host Command Search Routine (continued)

Parameter Number of Bytes Description

Parameter 5 4 Command output buffer address. Specifies the
address of an area to hold the result of the command.
This result will be a character representation of the
binary return code issued by the host command. It is
recommended that this area be 20 bytes. If parameter
2 is not defined in the host command environment
table, IRXHST returns the character representation of
-3.

The compiler runtime processor that calls IRXHST
should properly set the REXX special variable RC.

This parameter is only used for the HOSTCMD
function. It is ignored for the ETMODE and
NOETMODE functions.

Parameter 6 4 Output area length. Specifies the length of the output
area that is pointed to by the address in parameter 5.

This parameter is only used for the HOSTCMD
function. It is ignored for the ETMODE and
NOETMODE functions.

Parameter 7 4 Address of a REXX environment block. Specifies the
address of the REXX environment block under which
the request is to be performed. If the compiler runtime
processor supplies a non-zero parameter, IRXHST
considers this parameter to be a valid environment
block address. If this parameter is zero or omitted,
IRXHST obtains the environment block address from
register 0 as described in z/OS TSO/E REXX
Reference. This parameter is optional.

Parameter 8 4 Requested function return code. The return code
parameter is optional. On return from IRXHST, this
parameter (if supplied) contains the return code for
IRXHST. See Table 102 on page 552 for information
on return codes issued by the host command search
routine. Register 15 will contain the same value as
this parameter, if this parameter is provided.

Return Specifications
On return from the host command search routine, the contents of the registers will
be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 102 on page 552 lists the return codes issued by the host command search
routine.

Host Command Search Routine (IRXHST)

Chapter 42. Programming Routines for a REXX Compiler Runtime Processor 551

Table 102. Return Codes from the Host Command Search Routine

Return Code
(Decimal)

Description

0 Processing was successful. For the HOSTCMD function, IRXHST
located the host command and the host command returned a return
code of 0 in register 15. For the ETMODE and NOETMODE
functions, IRXHST set or cleared the ETMODE flag successfully.

20 Processing was not successful. For the HOSTCMD function,
IRXHST could not locate the specified host command. IRXHST
returns -3 in the command output buffer. The command string
specified in parameters 3 and 4 may be incorrect, the requested
command could not be located in the search order, or the host
command environment routine is not defined in the host command
environment table. This return code could also indicate a not valid
function (parameter 1) passed to IRXHST. Valid functions are
HOSTCMD, ETMODE and NOETMODE.

28 Processing was not successful. IRXHST could not locate a
language processor environment. The command output area is not
modified. Verify that you passed a valid environment block address.

32 Processing was not successful. The parameter list is not valid. The
parameter list contains either too few or too many parameters, or
the high-order bit of the last address in the list is not set to 1 to
indicate the end of the parameter list. The command output buffer is
not modified.

100 Processing was not successful. An abend occurred in the specified
host command. IRXHST returns the abend code in the command
output buffer. The compiler runtime processor should set the REXX
special variable RC to this abend code.

nn Processing was successful. The specified host command
environment routine returned a non-zero return code. nn is the
return code from the host command environment routine.

Exit Routing Routine (IRXRTE)
IRXRTE is a programming routine that locates and invokes a REXX exit. IRXRTE
provides a way for a compiler runtime processor to invoke REXX exit routines. A
compiler runtime processor that uses IRXRTE leaves the implementation of exit
routing to TSO/E REXX. For information about REXX exit routines, see z/OS TSO/E
REXX Reference.

Entry Specifications
The contents of the registers on entry to IRXRTE are:

Register 0 Address of an environment block (optional)

Register 1 Address of the parameter list passed by the caller

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Entry point address

Host Command Search Routine (IRXHST)

552 z/OS V1R4.0 TSO/E Customization

Parameters for IRXRTE
In register 1, the compiler runtime processor must pass the address of a parameter
list, which consists of a list of addresses. Each address in the parameter list points
to a parameter. The first three parameters are required. The addresses that point to
parameter 4 and parameter 5 are optional. If IRXRTE does not find the high-order
bit set on in either the address for parameter 3, or in the addresses for parameters
4 or 5, which are optional parameters, IRXRTE does not invoke the specified
routine and returns with a return code of 32 in register 15. See Table 104 on
page 554 for more information on return codes. The high-order bit of the last
address in the parameter list must be set to 1. Table 103 lists the parameters for
the exit routing routine.

Table 103. Parameters for the Exit Routing Routine

Parameter Number of Bytes Description

Parameter 1 8 Function requested. On entry to IRXRTE, this
parameter contains the function requested of the exit
routing routine. The function name must be in
uppercase, left-justified, and padded on the right with
blanks. Acceptable values are:

″EXECINIT″ Specifies that the EXECINIT exit
routine is to be run. For more
information on the EXECINIT exit,
see z/OS TSO/E REXX Reference.

″EXECTERM″ Specifies that the EXECTERM exit
routine is to be run. For more
information on the EXECTERM exit,
see z/OS TSO/E REXX Reference.

Parameter 2 8 Exit routine parameter list address. Specifies the
address of the parameter list for the requested exit
routine. If the exit does not require parameters, the
address in this parameter must be set to zero. For a
discussion of the parameters for the specified exit,
see z/OS TSO/E REXX Reference.

Parameter 3 4 Exit routine return code. On return from IRXRTE, this
parameter contains the return code value from the
requested exit. This value only has meaning if the
return code from IRXRTE is zero.

Parameter 4 4 Address of a REXX environment block. Specifies the
address of the REXX environment block under which
the request is to be performed. If the compiler runtime
processor supplies a non-zero parameter, IRXRTE
considers this parameter to be a valid environment
block address. If this parameter is zero or omitted,
IRXRTE obtains the environment block address from
register 0 as described in z/OS TSO/E REXX
Reference. This parameter is optional.

Parameter 5 4 Return code. The return code parameter is optional.
On return from IRXRTE, this parameter (if supplied)
contains the return code for IRXRTE. Register 15 will
contain the same value as this parameter, if this
parameter is provided.

Return Specifications
On return from the exit routing routine, the contents of the registers will be:

Exit Routing Routine (IRXRTE)

Chapter 42. Programming Routines for a REXX Compiler Runtime Processor 553

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 104 lists the return codes issued by the exit routing routine.

Table 104. Return Codes from the Exit Routing Routine

Return Code
(Decimal)

Description

0 Processing was successful. IRXRTE located the exit, passed
control to the exit, and the exit ran to completion. The return code
from the exit is available in parameter 3.

4 Processing was not successful. The module name table for the
current environment did not have an entry for the exit requested.
Verify that the environment block address specified in parameter 4
is correct and the module name table contains the name of the exit
you specified.

20 Processing was not successful. The error may have occurred
because:
v A compiled exec is not executing
v The requested function is not supported.

28 Processing was not successful. A language processor environment
could not be located. Verify that the environment block address
specified in parameter 4 is correct.

32 Processing was not successful. The parameter list contained too
few or too many parameters, or the high-order bit of the last
parameter was not set to 1 to indicate the end of the parameter list.

Exit Routing Routine (IRXRTE)

554 z/OS V1R4.0 TSO/E Customization

Part 8. Session Manager

Before Session Manager can be used in an installation, you may have to:

v Modify a SYS1.PARMLIB member, either TSOKEY00 or IKJPRM00

v Modify or create logon procedures tailored for Session Manager

v Modify the TSO message handler (MH) and the message control program (MCP)
if TSO/E is running under control of TCAM.

Chapter 43, “Setting Up a Session Manager Environment” on page 557 presents the
modifications necessary to support a Session Manager environment and discusses
system considerations for using Session Manager.

Chapter 44, “Customizing Session Manager” on page 563 describes the format of
the IBM-supplied default environment module, ADFMDFLT, and its stream
definitions. The chapter discusses modifying a default environment using a CLIST
or the AMASPZAP service aid and presents ways of providing multiple default
environments using different logon procedures for groups of users.

This chapter also describes the three Session Manager exits: initialization, stream
monitoring, and termination. You can use these exits to:
v Monitor and intercept commands
v Retain a log of a user’s TSO/E session
v Determine how long it takes a command to execute
v Determine at what time certain operations were performed

A functional description of the three exits and their specifications is followed by
programming considerations, including installing the exits, their environment, and
possible uses. “Possible Uses” on page 580 provides information about changing
the stream monitoring exit dynamically and shows an example initialization exit.

© Copyright IBM Corp. 1988, 2002 555

556 z/OS V1R4.0 TSO/E Customization

Chapter 43. Setting Up a Session Manager Environment

SYS1.PARMLIB Changes . 557
VTAM . 557
TCAM. 557

Logon Procedure Changes . 558
Message Handler and Message Control Program Changes (TCAM Only) 559

Stage 1 Modifications . 559
Stage 2 Modifications . 559
Stage 2 Assembly . 560

Session Manager Environment Considerations 560
Avoiding a System Interlock Condition 560
Converting Session Manager CLISTs 560
Deleting SYS1.SMLIB . 561

Before you can use the Session Manager at your installation, you may have to:
v Modify a SYS1.PARMLIB member, either TSOKEY00 or IKJPRM00
v Modify or create logon procedures tailored for Session Manager
v Modify the TSO message handler (MH) and the message control program (MCP)

if TSO/E is running under the control of TCAM

This chapter presents the modifications necessary to support a Session Manager
environment.

SYS1.PARMLIB Changes
To support a Session Manager environment, you may have to modify the following
SYS1.PARMLIB members (or any installation-specified alternate members) to use
specific types of terminals and improve performance:
v For VTAM - TSOKEY00
v For TCAM - IKJPRM00

VTAM
Two defaults in member TSOKEY00 are:
v SCRSIZE - 480
v BUFRSIZE - 132

Recommendations:

1. Increase SCRSIZE to correspond to the type of terminals installed. For
example, specify 3440 for a 3278 Model 4

2. Increase BUFRSIZE to 1000 or greater. Although the buffer size is not critical, a
larger size should improve performance.

TCAM
Defaults in member IKJPRM00 are:
BUFSIZE 64
BUFFERS 6 * USERMAX
INLOCKHI 4
INLOCKLO 1
OWAITHI 20
OWAITLO 4
RESVBUF (6 * USERMAX) / 10

© Copyright IBM Corp. 1988, 2002 557

Recommendations:
1. Set BUFSIZE = 2 (UNITSZ) but not greater than 252
2. Set OWAITHI = (1.2 * M) / BUFSIZE
3. Set Buffers = 1.2 (t * OWAITHI)
4. Set RESVBUF = BUFFERS / 7
5. Set OWAITLO = OWAITHI / 4
6. Set INLOCKHI = OWAITHI
7. Set INLOCKLO = OWAITLO

In the preceding algorithms:

v UNITSZ is an operand on the INTRO macro. (Refer to ACF/TCAM Version 2
Installation Reference)

v M is the maximum value specified on any BUFSIZE parameter in a DCB or
TERMINAL macro used for TSO/E

v t is the total number of TERMINAL macros used for TSO/E

v When a computation results in a remainder, round up

Note: Ensure that the value of OWAITHI is large enough to allow a full-screen write
before swap out. To prevent any performance degradation, the value of
OWAITHI times the value of BUFSIZE should not be less than SCRSIZE.

Logon Procedure Changes
When initialized, Session Manager loads the default environment module specified
in the PARM field on the EXEC statement of the logon procedure. Session Manager
loads a default environment module, (ADFMDFLT) if a module name is not
specified in the PARM field. The default environment module contains the tables
and data necessary for building a user’s Session Manager screen layout, PFK
definitions, and so on.

If you want to use a single default environment for all TSO/E users, you can modify
the IBM-supplied default environment module to set up the installation-dependent
environment. If a single environment is not satisfactory for all users, you can create
multiple logon procedures, each one specifying a different default environment
module.

To enable the use of Session Manager, you may have to create new logon
procedures or modify the EXEC statement in existing procedures. The EXEC
statement can have the following format:
//[stepname] EXEC PGM=ADFMDF03[,
// PARM= ’SM (tmpname , Y , default-module-name)[,] tso-cmd]’

IKJEFT01 N ADFMDFLT

Explanation:

v PGM=ADFMDF03 - attach the Session Manager initialization task, ADFMDF03,
instead of the TMP. After initialization is complete, attach the TMP.

v tmpname - the name of the terminal monitor program (TMP)

v IKJEFT01 - the name of the TMP that TSO/E provides

v Y - the TMP is attached APF-authorized

v N - the TMP is attached non-APF-authorized

v default-module-name - the name of an installation-written default environment
module

v ADFMDFLT - the name of the default environment module TSO/E provides

v tso-cmd - a TSO/E command with any associated operands and parameters

SYS1

558 z/OS V1R4.0 TSO/E Customization

A sample logon procedure for Session Manager is:
//SMPROC EXEC PGM=ADFMDF03,DYNAMNBR=30,
// PARM=’SM(IKJEFT01,Y),EXEC ’’SYS1.PRD.CLIST(SMLOGON)’’’
//SYSPROC DD DSN=SYS1.TSO.CLIST,DISP=SHR...
/*

Note: The data set SYS1.PRD.CLIST is an installation-defined CLIST data set.

Message Handler and Message Control Program Changes (TCAM Only)
You may have to make modifications to the Message Handler (MH) and Message
Control Program (MCP) to support a Session Manager environment. If either of the
following conditions exist, the modifications are unnecessary:

v Session Manager runs under control of TSO/VTAM

v EXPFLS=YES was specified on the FULLSCR macro for some other full-screen
application, for example, ISPF or IPCS.

Creating the MH normally requires two assemblies (stage 1 and stage 2), where the
output from the first assembly is the input to the second. Refer to ACF/TCAM
Version 2 Base Installation Guide.

Stage 1 Modifications
If the full-screen (FULLSCR=YES) operand was not originally specified during MCP
generation, make the following change and reassemble stage 1. (Alternatively, step
2 under “Stage 2 Modifications” may be used.)

v Add the FULLSCR=YES operand to the LINEGRP and/or LISTTA macros that
describe the terminals being used and reassemble the MCP generation deck.
The output is an MCP source deck with:

– The generation of the OPTION macro for IEDQFSCR

– The allocation and initialization to zero of IEDQFSCR in the appropriate
TERMINAL macros using the OPDATA operand

– The generation of the FULLSCR macro in the message handler, immediately
preceding the SIMATTN macro

Stage 2 Modifications
1. If the FULLSCR=YES operand was originally specified in stage 1, make the

following two modifications to the stage 1 output:

v Add the EXPFLS=YES operand to the FULLSCR macro in the MH

v Insert the changed FULLSCR macro in the output side of the MH between
the macros OUTBUF and CODE.

2. If the FULLSCR=YES operand was not originally specified during stage 1, make
the following modifications to the stage 1 output:

v Insert the macro FULLSCR EXPFLS=YES in the MH immediately preceding
the SIMATTN macro

v Insert the macro FULLSCR EXPFLS=YES in the output side of the MH
between the macros OUTBUF and CODE

v Insert the following OPTION statement at an appropriate place in the option
table:
IEDQFSCR OPTION XL1

Logon Procedure Changes

Chapter 43. Setting Up a Session Manager Environment 559

v Ensure that every TERMINAL macro representing terminals to be used with
Session Manager has an OPDATA operand with a subfield of zero
corresponding to the IEDQFSCR option

Note: The subfields of the OPDATA operand are ‘positional’ in that their
order corresponds to the order of the OPTION macros that make up
the option table.

v Ensure that every other TERMINAL macro with an OPDATA operand also has
a null subfield corresponding to the IEDQFSCR option

Stage 2 Assembly
Before proceeding with the stage 2 assembly, examine the current operand values
for BUFSIZE, CUTOFF, and LNUNITS.

v Ensure that the value of the BUFSIZE operand is at least 2100 on both the
TERMINAL and DCB macros for all terminals to be used with Session Manager.
BUFSIZE must be an even multiple of the UNITSZ operand value on the INTRO
macro.

v Ensure that the operand value of the CUTOFF macro is at least 2048.

v Ensure that the value of the LNUNITS operand of the INTRO macro is large
enough. The value should at least equal (for all TCAM DCBs):
B * T

U

where:
B is the BUFSIZE value for a DCB macro
T is the number of TERMINAL macros for that DCB
U is the UNITSZ value on the INTRO macro

After making the modifications, reassemble stage 2.

Session Manager Environment Considerations
The following topics describe system considerations for using Session Manager.

Avoiding a System Interlock Condition
In a Session Manager environment with Session Manager active (not running in a
full-screen environment, for example, ISPF not active) a system interlock occurs if a
task running above the Session Manager task sets the Session Manager task
nondispatchable and issues TGETs or TPUTs.

For example, the SMF time limit installation exit, IEFUTL, should not issue TGETs
or TPUTs because the Session Manager task is set nondispatchable prior to the
exit getting control.

Converting Session Manager CLISTs
TSO/E installs the following Session Manager CLISTs into SYS1.ADFMAC1:
v ADFSPLT
v ADFSETUP
v ADFVSPLT

Recommendation: Copy the CLISTs into the installation-defined production CLIST
data set. If your production CLIST has a RECFM of VB, run CLIST ICQSMC00.

Message Handler and Message ...

560 z/OS V1R4.0 TSO/E Customization

ICQSMC00, located in ICQ.ICQSAMP, converts the CLIST data set members
shipped to you from a RECFM of FB to a RECFM of VB.

Deleting SYS1.SMLIB
SYS1.SMLIB is no longer required. Session Manager is link-edited into
SYS1.LINKLIB.

Recommendation: Delete SYS1.SMLIB and remove all linklist library and similar
references to it.

Session Manager Environment Considerations

Chapter 43. Setting Up a Session Manager Environment 561

Session Manager Environment Considerations

562 z/OS V1R4.0 TSO/E Customization

Chapter 44. Customizing Session Manager

Stream Definitions . 563
Stream Definition Descriptions 564

Modifying a Default Environment 566
Using a CLIST to Modify a Default Environment 566
Using AMASPZAP to Modify the Defaults Module. 566
Changing Stream Definitions 567

Providing Multiple Default Environments 568
Formatting a Default Environment Module 568

Writing Session Manager Exits 572
Functional Description . 573
TSO/E-Supplied Exits . 573
Entry Specifications. 573
Parameter Descriptions for Initialization Exit 574
Parameter Descriptions for Stream Monitoring Exit 575
Parameter Descriptions for Termination Exit 576
Return Specifications . 576
Programming Considerations 577
Possible Uses. 580
Example Initialization Exit 582

The Session Manager module contains the tables and data needed for building the
TSO/E user’s Session Manager screen layout, PF key definitions, and other items.
A copy of the assembler source of ADFMDFLT is in SYS1.SAMPLIB(ADFDFLTX).
You can either modify it, reassemble it, and create a new load module for another
default environment; or, if you choose, code your own default environment module.

If you want to use one default environment for all your TSO/E users, you can
modify ADFMDFLT to refine the environment for your installation’s particular
requirements. If you find that one environment does not satisfy the requirements of
all users, you can create multiple logon procedures, each one specifying a different
installation-supplied default environment module.

This chapter describes the streams that comprise the default environment module,
how to modify a default environment, and how to provide multiple default
environments. For information about using the Session Manager streams, see z/OS
TSO/E User’s Guide.

Stream Definitions
The parameters that define the streams are located at approximately X'1808' in
ADFMDFLT. The label on the stream definitions is ADFIDSTR. The data at that
location is a fullword initialized to X'00000009', indicating nine streams are defined
for Session Manager. Table 105 shows the default stream definitions.

Table 105. Default Stream Definitions

Stream
Name

Stream Size
(in bytes)

Maximum
Lines

Lines per
IDB

Stream Type Header
Length

Stream
Header

Stream
Flags

TSOIN 8192 300 5 1 32 *** THIS IS
THE TSOIN
STREAM ***

0000 0000

© Copyright IBM Corp. 1988, 2002 563

Table 105. Default Stream Definitions (continued)

Stream
Name

Stream Size
(in bytes)

Maximum
Lines

Lines per
IDB

Stream Type Header
Length

Stream
Header

Stream
Flags

TSOUT 147456 4000 5 2 26 *** TSO
SESSION
OUTPUT ***

0000 0000

SMIN 8192 300 5 1 32 *** THIS IS
THE SMIN
STREAM ***

0000 0000

SMOUT 4096 150 5 2 33 *** THIS IS
THE SMOUT
STREAM ***

0000 0000

HEADER 1024 50 5 0 33 *** THIS IS
THE
HEADER
STREAM ***

8000 0000

MESSAGE 1024 50 5 2 34 *** THIS IS
THE
MESSAGE
STREAM ***

4000 0000

EXTRA1 32768 400 5 2 33 *** THIS IS
THE
EXTRA1
STREAM ***

0000 0000

EXTRA2 1024 100 5 0 33 *** THIS IS
THE
EXTRA2
STREAM ***

0000 0000

EXTRA3 1024 100 5 0 33 *** THIS IS
THE
EXTRA3
STREAM ***

0000 0000

Stream Definition Descriptions
Each stream is defined by eight fullwords that follow the stream number. The
fullwords contain:
v Stream name pointer
v Stream size
v Maximum lines
v Lines per IDB
v Stream type
v Stream header length
v Stream header pointer
v Stream flags

Stream Name Pointer
This fullword points to an 8-byte field containing the name of the stream. The name
is left-justified and padded with blanks.

Stream Size
This fullword contains the length of the stream (in hexadecimal). It is the total
number of bytes available in the stream for text. A stream wraps if the maximum

Stream Definitions

564 z/OS V1R4.0 TSO/E Customization

number of bytes has been reached and the stream is defined as one that can wrap.
The bit setting for the stream flags in byte eight determines the ability of a stream to
wrap.

Stream management overhead can be determined by using the following formula:

number of lines per index descriptor block + 1
maximum number of lines in the stream

Index Descriptor Blocks (IDBs) are part of an indexing mechanism Session
Manager uses for referencing stream data.

For example, you can determine the number of bytes of stream management
overhead for the SMOUT stream as follows. This stream is defined as 4096 bytes
long, 150 lines maximum, and 5 lines per IDB. Using the above formula results in
the following:

150 + 1 = 30 + 1 = 31 IDBs
5

The 31 IDBs can actually index 155 lines of data. Using the QUERY.STREAMS
command with the IBM-supplied defaults would show this.

Because IDBs are eight bytes long, the overhead is:

31 IDBs x 8 bytes per IDB = 248 bytes overhead

Thus, 248 bytes of stream management overhead are obtained in addition to the
text portion size. The two physical storage requirements really define one logical
stream consisting of an overhead area and a text area.

For a discussion of IDBs and performance considerations, see “Changing the
Number of Lines Per IDB” on page 568.

Maximum Lines
This fullword contains the total number of lines, in hexadecimal, that can be entered
into the stream. If the total number of lines in the stream exceeds the stream’s
value for the maximum number of lines, the stream wraps (overlays) the previous
stream entries. Note that a stream wraps if the maximum number of lines is
reached, even if the byte capacity of that stream is not exceeded.

Lines Per IDB
This fullword contains the number (in hexadecimal) of logical lines for which an
index descriptor block (IDB) is responsible. Each IDB is 8 bytes long.

Stream Type
This fullword is initialized to one of the following values to define the type of stream:

0 Defines an EXTRA stream type. IBM supplies the HEADER, EXTRA2, and
EXTRA3 streams for this type by default.

Session Manager does not actively use the EXTRA2 and EXTRA3 streams.
Optionally, the user can direct data to an EXTRA stream using Session
Manager commands.

1 Defines an INPUT stream type. IBM supplies the TSOIN and SMIN streams
for this type by default.

Stream Definitions

Chapter 44. Customizing Session Manager 565

Session Manager uses the INPUT streams for TSO/E command input
(TSOIN) and Session Manager input (SMIN).

2 Defines an OUTPUT stream type. IBM supplies the TSOOUT, SMOUT,
MESSAGE, and EXTRA1 streams for this type by default.

Session Manager uses the OUTPUT streams for any output generated by:
v TSO/E commands (TSOOUT)
v Session Manager commands (SMOUT)
v SNAPSHOT commands (EXTRA1).

Session Manager does not actively use the MESSAGE stream. The user
can direct output to the MESSAGE stream using Session Manager
commands.

Header Length
This fullword is initialized to the length of the stream header (in hexadecimal).

Stream Header Pointer
This fullword contains a pointer to the stream header. The stream header is a string
of 26 to 34 characters that becomes the first record in the stream. When scrolling
through a stream, the header identifies the name of the stream, making it easier to
identify.

Stream Flags
This fullword is defined as a flag field. Only two bits are defined. Bit 0 indicates if
the stream wraps. Bit 1 indicates if the alarm sounds when data is entered into the
stream. The remaining 30 bits are reserved.

Modifying a Default Environment
To modify a default environment, you can use:
v A CLIST
v The AMASPZAP service aid

Using a CLIST to Modify a Default Environment
If you want to make several modifications to the screen layout and PF key
definitions, you can supply the TSO/E EXEC command as a TMP parameter on the
EXEC statement of the logon procedure. This command could execute an
installation CLIST that issues Session Manager commands to modify the defaults.
This CLIST could also execute another CLIST, the name of which is prefixed by the
person’s TSO/E user ID (using the &SYSUID built-in function) to allow the user to
further modify the Session Manager environment.

While using a CLIST is the easiest way to modify the defaults, there are two
important considerations:

v The only changes that you can make are those done by Session Manager
commands. You cannot modify stream sizes using this method.

v If the user issues the Session Manager RESET command, then the default
environment is set up without executing the CLIST again.

Using AMASPZAP to Modify the Defaults Module
For simplicity, assume that the name of the IBM-supplied default environment
module you are using is ADFMDFLT. If you want to modify some of the streams to

Stream Definitions

566 z/OS V1R4.0 TSO/E Customization

make them larger or smaller, use AMASPZAP to modify ADFMDFLT. While you can
modify the streams using this method, be sure you do not change the logical data
structure of the module.

Simply altering ADFMDFLT limits the extent to which you can modify the Session
Manager default environment:

v You cannot provide different environments for different users this way. Any
change you make affects all TSO/E users whose logon procedures load
ADFMDFLT.

v There is little you can change without changing the data structure of the module.
The screen layout and PF key definitions would be difficult to modify.

The following topic describes the changes you can make to the stream definitions
using the AMASPZAP service aid.

Changing Stream Definitions
When altering streams using the AMASPZAP service aid, keep the following
information in mind:

v Session Manager has nine streams, indicated by the fullword at label ADFIDSTR
in module ADFMDFLT. It is initialized to X'00000009'. Do not change this value. If
it is changed, unpredictable results occur.

v The following stream names are required:
– TSOIN
– TSOOUT
– SMIN
– SMOUT
– EXTRA1
– EXTRA3
– HEADER

You can change the maximum number of lines, lines per IDB, stream size, and
stream header, but you cannot change the stream names, stream type, or stream
flags.

v The remaining two streams, MSG and EXTRA2, are not required. You may
change any definitions for these two streams except their stream names.

v The stream headers must remain the same length as currently defined.

Changing Stream Size
Changing the stream size causes the particular stream to reside in more or less
storage than the original. If the size is increased, more data is entered into a
stream; if the size is decreased, less is entered. If you do not change the size of
the default TSOIN stream, it will probably wrap. Increasing the size to hold all
TSO/E commands and data a user enters during a session obviously has a
disadvantage: more storage is required. However, decreasing the size causes the
stream to wrap sooner, so some stream data is lost by overlaying or wrapping.

Changing the Maximum Number of Lines
Changing the maximum number of lines in a stream also has an effect on the
frequency of wrapping. If the maximum number of lines is changed to a high
number, a stream could wrap because the number of bytes entered exceeded the
stream capacity but wasn’t close to the maximum number of lines. If the maximum
number of lines is set quite low, the stream could wrap with a large amount of
stream capacity unused.

Modifying a Default Environment

Chapter 44. Customizing Session Manager 567

Changing the Number of Lines Per IDB
The number of lines per index descriptor block (IDB), as defined in the default, is
set to five for all streams. You can decrease the number of IDBs created by
increasing the number of lines per IDB. The net result is a decrease in the amount
of overhead (less storage for IDBs), but an increase in search time when scrolling
through a stream. Decreasing the number of lines per IDB increases the total
number of IDBs and the storage required for them. But the efficiency of stream
accessing improves when there are fewer lines per IDB.

For a discussion about calculating the number of IDBs, see “Stream Size” on
page 564.

Providing Multiple Default Environments
If you want to provide multiple default environments for your installation’s TSO/E
users, you can provide a logon procedure that specifies a different default
environment module for each environment you want.

IBM supplies a copy of the assembler source of ADFMDFLT in
SYS1.SAMPLIB(ADFDFLTX). You can either modify it, reassemble it, and create a
new load module for another default environment, or, if you choose, code your own
default environment module.

Formatting a Default Environment Module
The header data of the default environment is the module entry point. The module
also includes three tables and, conditionally, three exit routines. For more
information about the Session Manager exit routines, see “Writing Session Manager
Exits” on page 572.

The module attribute type must be refreshable and reentrant.

The default environment module contains four basic areas:
v Header area
v Stream definitions table
v Function definitions table
v Session Manager commands table

The tables contain addresses of data that can be placed anywhere in the default
environment module except in the header area or in the tables, themselves.

Figure 95 on page 569 shows one possible configuration for a default environment
module that places the data pointed to by the tables at the end of the module.

Modifying a Default Environment

568 z/OS V1R4.0 TSO/E Customization

1. The 116-byte header area must be pointed to by the entry point name for the
environment because it contains required data and addresses at fixed offsets
into the module.

The first 8 bytes must be the characters ‘ADFMDFLT’ to ensure that the default
CSECT is the entry point in the load module. If any other CSECT is the entry
point, the user receives an error message and enters TSO/E without the
Session Manager.

The second 8 bytes can be a time stamp or zeros.

The next 76 bytes are not used. (In the IBM-supplied ADFMDFLT, this area is
used for the copyright statement.)

The addresses of the installation management exit routines you can link-edit
into this module start at 92 bytes, (offset X'5C'). If no exits are present, these
twelve bytes must be zero.

The addresses of the three tables in the default CSECT start at 104 bytes,
(offset X'68').

Figure 96 on page 570 shows the storage declarations for the 116-byte header
area, followed by a pictorial representation.

Header area (116 bytes)
(Specified as EP for the module)

COMMAND TABLE:
Number of command strings (4 bytes)
Total number of bytes for
all command strings (4 bytes)
Command string entry (8 bytes)
Command string entry (8 bytes)

.

.

.

STREAM TABLE:
Number of stream entries (4 bytes)
Stream entry (32 bytes)
Stream entry (32 bytes)

.

.

.

FUNCTION TABLE:
Number of functions (4 bytes)
Function entry (32 bytes)
Function entry (32 bytes)

.

.

.

Stream header
Stream name
Stream name
Command string
Command string
Function name
Function name

Figure 95. Default Environment Module Structure

Providing Multiple Default Environments

Chapter 44. Customizing Session Manager 569

2. The stream definitions table begins with a fullword containing the number of
streams. The remainder of the table contains contiguous 32-byte entries, one
entry for each stream. Each entry contains the following information:
v Pointer to the stream name
v Number of bytes in the stream
v Maximum number of lines in the stream
v Number of lines per IDB
v Stream type
v Length of stream header line
v Pointer to the stream header line
v Flags for stream attributes

LABEL

ADFIDSTR DC A(# streams)

stream DC AL4(stream-name-addr)
entry#1 DC A(# bytes)

DC A(# lines)
DC A(# lines/IDB)
DC A(stream-type) 0=extra

1=input
2=output

DC A(header-length)
DC A(header-addr)
DC BL4(’xx0...0’) 1x...=non-wrappable

x1...=alarm is on

You must provide entries in this table for TSOIN, TSOOUT, SMIN, and SMOUT,
because some Session Manager commands have operands that default to
these particular stream names. Furthermore, if you intend to use the
IBM-supplied defaults for the screen layout and PF key definitions, you must
also have table entries for EXTRA1, EXTRA3, and HEADER. Optionally, you
can add other stream definitions.

See “Stream Definition Descriptions” on page 564 for considerations in defining
the number of bytes, number of lines, and number of lines per IDB.

OFFSET LABEL

ADFMDFLT CSECT
0 DC CL8’ADFMDFLT’
8 DC CL8’&SYSDATE’
10 DS CL76
5C DC V(inst-exit-1)
60 DC V(inst-exit-2)
64 DC V(inst-exit-3)
68 DC AL4(ADFIDCMD)
6C DC AL4(ADFIDSTR)
70 DC AL4(ADFIDFUN)

ADFMDFLT &SYSDATE . . .

0 8 10 5C 60 64 68 6C 70 74

8 8 76 4 4 4 4 4 4

@EXIT1 @EXIT2 @EXIT3 @TBL1 @TBL2 @TBL3

offset

bytes

Figure 96. Default Environment Header

Providing Multiple Default Environments

570 z/OS V1R4.0 TSO/E Customization

You can place the actual stream names and stream header to which this table
points anywhere in the default environment module, provided they are not within
the header or any of the three tables.

3. The function definitions table begins with a fullword containing the number of
functions. The remainder of the table contains contiguous 28-byte entries, one
entry for each function. Each entry contains the following information:

v Pointer to the function name

v Pointer to the input stream name for this function

v Pointer to the output stream name for this function

v Intensity of output lines

v Pointer to the copy stream name for this function

v Intensity of copied lines

v Flags for function attributes
LABEL

ADFIDFUN DC A(# functions)

function DC AL4(function-name-addr)
entry#1 DC AL4(input-stream-name-addr)

DC AL4(output-stream-name-addr)
DC A(output-intensity) 0=non-display

1=normal
2=high

DC AL4(copy-stream-name-addr)
DC AL4(copy-intensity) 0=non-display

1=normal
2=high

DC BL4(’xx0...0’) 1x...=alarm on output
x1...=alarm on input

Session Manager supports three functions and the entries must be in the order:
TSO, SM, MSG. You must provide entries in this table for each. Optionally, you
can add other function definitions, but Session Manager supports them only with
the CHANGE.FUNCTION and QUERY.FUNCTION commands.

You can place the actual function names and stream names to which this table
points anywhere in the default environment module, provided they are not within
the header or any of the three tables.

4. The Session Manager commands table has the commands stacked in the SM
input stream. These commands initialize the screen layout and PF key
definitions. The table begins with a fullword containing the number of command
strings, followed by a fullword containing the total number of bytes taken up by
all of the command strings. (This number does not include the first two fullwords
of the table). The remainder of the table contains contiguous eight-byte entries,
one entry for each command string. Each entry contains the length of the
command string (four bytes), followed by the four-byte command string address.

Figure 97 on page 572 shows the storage declarations for the Session Manager
commands table, followed by a pictorial representation.

Providing Multiple Default Environments

Chapter 44. Customizing Session Manager 571

Session Manager picks up each of these command strings and stacks them in
the SM function’s input stream during initialization. After Session Manager is
initialized, these commands are executed.

You can put an entry in this table for any Session Manager command that
defines the screen layout, PF keys, the definitions of streams, functions,
terminal characteristics, and so on.

Note: You must place entries in the Session Manager commands table,
otherwise there will be no screen layout in which users can enter
commands or see output. The only available alternative for users would
be using the CLEAR key, which allows them to enter Session Manager
commands separated by commas or blanks.

You can place the actual command strings to which this table points anywhere
in the default environment module, provided they are not within the header or
any of the three tables.

Writing Session Manager Exits
You can use three Session Manager exits to monitor users’ interaction with the
system while they are using Session Manager:
v Initialization exit
v Stream monitoring exit
v Termination exit

You can use these exits to:
v Monitor and intercept certain commands

LABEL

ADFIDCMD DC F’#entries’
DC F’#bytes’

command1 DC F’#bytes’
entry #1 DC AL4(command-string-addr)

command2 DC F’#bytes’
entry #2 DC AL4(command-string-addr)

command 1 address

command 2 length

command 2 address

total # of entries

total # of bytes

command 1 length

Session Manager command

Session Manager command

(2 shown)

16 (X'10')

.

.

.

Figure 97. Session Manager Commands Table

Providing Multiple Default Environments

572 z/OS V1R4.0 TSO/E Customization

v Retain a log of a user’s TSO/E session
v Determine how long it takes a command to execute
v Determine at what time certain operations were performed
v Provide multiple default environments

For detailed information, see “Possible Uses” on page 580.

Functional Description
Following is a description of the three exits.

Initialization exit
Use the initialization exit to indicate to Session Manager which streams you
want to monitor. You also indicate whether Session Manager should log
line-mode output while users are executing full-screen programs. The
initialization exit receives control from the Session Manager initialization
program, ADFMDF0A. This exit does not hold any locks.

Stream monitoring exit
Use the stream monitoring exit to monitor the different Session Manager
streams and perform required processing. The stream monitoring exit receives
control, holding the local lock, from either of the following Session Manager
programs:
v ADFIMPUT, which puts a line into a stream
v ADFIMGET, which gets a line of input from a stream

For information about locks and serialization, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Before ADFIMPUT puts a line into a stream (excluding the TSO/E input stream),
it determines if the stream is being monitored. If it is, ADFIMPUT invokes the
stream monitoring exit routine, then puts the line into the stream.

Whenever ADFIMGET retrieves the next line of input from a stream, it
determines if that stream is being monitored. If it is, ADFIMGET invokes the
stream monitoring exit routine. By waiting to invoke the exit after the line is
retrieved from the input stream instead of invoking the exit when the line was
put into the stream, the exit routine receives the command that will now
execute, not an input line that is being stacked into the input stream.

Termination exit
Use the termination exit to perform required processing before Session
Manager ends. The termination exit receives control from the Session Manager
initialization program (ADFMDF0A) holding the local lock. The exit gets control
whenever the user enters either the following:
v Session Manager END command
v TSO/E LOGOFF command

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for any of the three Session Manager
exits.

Entry Specifications
For the Session Manager initialization, stream monitoring, and termination exits, the
contents of the registers on entry are:

Register 0 Unpredictable

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 573

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

See the following topics for a description of the parameter lists for each exit.

Parameter Descriptions for Initialization Exit
On entry, register 1 contains the address of the following parameter list:

Offset Length Value

+0 4 Pointer to the user ID. The user ID is left-justified and
padded with blanks.

+4 4 Pointer to installation data. The installation data is one
fullword of zeros. It is reserved for the exit’s use.
Session Manager saves its contents across all calls to
the stream monitoring exit.

+8 4 Pointer to a bit mapping. The bit mapping is one byte
in length and is initially set to zero. The bits represent
the different streams that you can monitor. The
initialization exit sets the bits to indicate which
streams are to be monitored and if line mode output
is to be logged while in a full-screen program. The
individual bits are defined as follows:

1... TSO/E input stream

.1.. TSO/E output stream

..1. Session Manager input stream

...1 Session Manager output stream

.... 1... MSG output stream

.... .1.. Log line mode output when in a
full-screen program

.... ..11 Reserved

The particular stream names themselves are not
monitored, but the input/output streams of particular
functions are monitored. For example, if the
initialization exit sets the “TSO/E input stream” bit, the
TSO/E function’s input stream will be monitored. This
is not necessarily the TSOIN stream because the user
can issue the CHANGE.FUNCTION command to
make the TSO/E input stream something else.

Note: You need to save the address of the bit mapping in the installation data
fullword if you want to change the stream monitoring selections dynamically.
For an example of changing the exits dynamically to monitor and intercept
certain commands, see “Possible Uses” on page 580.

Writing Session Manager Exits

574 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions for Stream Monitoring Exit
On entry, register 1 contains the address of the following parameter list:

Offset Length Value

+0 4 Pointer to the user ID. The user ID is left-justified and
padded with blanks.

+4 4 Pointer to installation data. The installation data is one
fullword and is reserved for the installation’s use. This
fullword contains one of the following:
v Zeros
v The data that the initialization exit put there
v The data that the last call to the stream monitoring

exit put there

Session Manager saves the installation data across
calls to the exits.

+8 4 Pointer to a bit mapping. The bit mapping is one byte
in length. It indicates an output stream to which
stream the line is being written or an input stream
from which a line is being read.
Note: Although the entire bit mapping is initialized,
only one stream bit is set when a command is
processed to indicate the current function being
performed.

1... TSO/E input stream

.1.. TSO/E output stream

..1. Session Manager input stream

...1 Session Manager output stream

.... 1... MSG output stream

.... .1.. Log line mode output when in a
full-screen program

.... ..11 Reserved

The bits do not represent particular stream names.
They represent only the input or output stream of a
particular function. For example, if the first bit is set,
the TSO/E function’s input stream is monitored. This
is not necessarily the TSOIN stream because the user
can issue the CHANGE.FUNCTION command to
make the TSO/E input stream something else.

+12 4 Pointer to a time stamp. The time stamp is the two
fullwords returned by a STORE CLOCK instruction
that ADFIMPUT executes prior to calling the exit. The
31st bit of the first word represents 1.048576
seconds.

+16 4 Pointer to the length of control data. The length is a
2-byte field that represents the number of Session
Manager control characters in the line being written to
the stream. The length may be zero.

+20 4 Pointer to the length of the data. The length is a
2-byte field that represents the number of text
characters being written to the stream.

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 575

Offset Length Value

+24 4 Pointer to the control data. The control data indicates
special characteristics of the line that must be
handled when the line is viewed by a window on the
screen. The control data bits are defined as follows:

1... The line is displayed with high
intensity.

.1.. The line is non-display.

..11 111. Reserved

.... ...1 The line is to be treated as TPUT
ASIS.

The first two bits cause the line to be displayed at
either high intensity or non-display.

If the last bit is on, Session Manager performs only
minimal editing on the line before it displays the line
(the same editing as TPUT ASIS). Normally, Session
Manager performs the same editing as TPUT EDIT.
For more information about editing, see z/OS TSO/E
Programming Services.

+28 4 Pointer to the text of the line being written to the
stream.

If you change the text of the line itself (change it to
blanks or different characters), you must not change
the length of the line.

For a discussion of performance considerations associated with writing a stream
monitoring exit record, see “Possible Uses” on page 580.

Parameter Descriptions for Termination Exit
On entry, register 1 contains the address of the following parameter list:

Offset Length Value

+0 4 Pointer to the user ID. The user ID is left-justified and
padded with blanks.

+4 4 Pointer to installation data. The installation data is one
fullword and is reserved for the installation’s use.
Session Manager saves its contents across calls to all
three exits.

+8 4 Pointer to a time stamp. The time stamp is the two
fullwords returned by a STORE CLOCK instruction
that ADFIMPUT executes prior to calling the
termination exit. The 31st bit of the first word
represents 1.048576 seconds.

For a description of using the time stamp, see “Possible Uses” on page 580.

Return Specifications
The contents of the registers upon return must be the same as on entry. Register
15 is not checked for a return code.

Writing Session Manager Exits

576 z/OS V1R4.0 TSO/E Customization

Programming Considerations
This topic describes general considerations for writing the exits. For general exit
use considerations, see “Possible Uses” on page 580.

Each exit must follow standard linkage conventions. It must save the registers on
entry and restore the registers when it returns.

In the initialization exit, specify the streams you want to monitor. The initialization
exit gets control holding no locks. It can run holding a lock, but it must return control
holding no locks. To use the stream monitoring exit, you must have an initialization
exit.

The stream monitoring exit holds the local lock and receives control from either
ADFIMPUT or ADFIMGET. The stream monitoring exit must not release the local
lock because Session Manager uses it for serialization. If the exit releases the lock,
the results are unpredictable.

The length fields, control data, and text that the stream monitoring exit receives
constitute the actual line that either ADFIMPUT or ADFIMGET is processing. The
stream monitoring exit must not change the length fields or the results are
unpredictable. The exit can change the control data or the text as long as the
lengths remain the same. Neither ADFIMPUT or ADFIMGET checks the validity of
these parameters when the exit returns control.

The termination exit gets control holding the local lock. The termination exit must
not release the local lock because Session Manager uses it for serialization. If the
exit releases the lock, the results are unpredictable.

In the three exits’ parameter lists, one fullword (installation data) is reserved for the
exit routines’ use. Session Manager saves the information in this fullword across all
calls to all three exits. You can use this fullword to pass information between the
exits.

ADFIMPUT is called each time a line is put into any stream. This is a mainline path,
but there is a negligible increase in the number of instructions in ADFIMPUT to
determine if it should invoke the stream monitoring exit and then invoke the exit.
You should consider the following:

v Depending upon the streams you are monitoring, ADFIMPUT could call the
stream monitoring exit every time it puts a line into a stream. If this happens, and
the exit has a considerable amount of function, performance could be degraded.

v To reduce the number of unnecessary invocations of the stream monitoring exit,
the exit can dynamically change the mapping that defines the streams being
monitored.

v If you monitor one group of users differently from other groups, the overhead of
monitoring one group does not have to affect others. You can supply different
sets of exits in the groups’ default environment modules.

If a user defines the same stream as the input or output stream of two or three
functions, the following can occur:

v ADFIMPUT calls the stream monitoring exit for every line that is going into a
monitored stream, even if the line is being put into the stream as a result of
another function. For example, suppose you are monitoring MSG output and the
user has TSOOUT as both the TSO/E and MSG output stream. The stream

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 577

monitoring exit gets control for all TSO/E output because all of the lines have a
target stream equal to the MSG output stream.

v The bit mapping that the stream monitoring exit receives indicates only the
stream for which a match was found between the target stream and the
function’s stream. (In the example described above, the bit mapping always
indicates MSG output, even though many of the lines are TSO/E output lines.)

Environment
v State: Supervisor
v Key: 1
v AMODE and RMODE considerations

The three Session Manager exits can run in either 24-bit or 31-bit addressing
mode and can reside above or below 16 MB in virtual storage. Modules residing
below 16 MB in virtual storage (RMODE=24) can have an AMODE of 24, 31, or
ANY. Exits that reside in the same load module must have the same addressing
mode.

If you link-edit exits with AMODE(24) into either the default environment module
or the ADFMDF0A load module, you must include the following statement on the
SYSLIN DD statement of the link-edit step. This ensures that the AMODE of the
load module is 24.
MODE AMODE(24),RMODE(24)

If you link-edit exits with AMODE(31) into either the default environment module
or the ADFMDF0A load module, you do not have to add a MODE statement on
the link-edit step.

For information about 31-bit addressing, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Installing the Exits
Naming requirements for the exits depend on how you link-edit the exits. You can
link-edit any or all of the exits into the ADFMDF01 load module. If you link-edit the
exits into ADFMDF01, you must name the exits as follows:

Initialization exit ADFEXIT1

Stream monitoring exit ADFEXIT2

Termination exit ADFEXIT3

You can link-edit any or all of the exits into any default environment module. The
default environment module that TSO/E provides is named ADFMDFLT.

Your installation may create different default environment modules for different
users. You can also link-edit the exits into any of these modules. For information
about creating your own environment modules, see “Providing Multiple Default
Environments” on page 568.

If you link-edit the exits into a default environment module, there is no restriction on
the names of the exits or on the name of the default environment module. However,
offsets into the default CSECT must contain the addresses of the exits as follows:
v Offset X'5C' must contain the address of the initialization exit
v Offset X'60' must contain the address of the stream monitoring exit
v Offset X'64' must contain the address of the termination exit

Writing Session Manager Exits

578 z/OS V1R4.0 TSO/E Customization

Any initialization, stream monitoring, or termination exit you provide within the
default environment module overrides the corresponding exit named ADFEXIT1,
ADFEXIT2, or ADFEXIT3 in the ADFMDF01 load module.

Note: To have a stream monitoring exit, you must have an initialization exit. A
termination exit is not required.

You can place the exits in the same or different load modules, however, all exits in
the same load module must have the same AMODE. No other restrictions pertain to
where you can place the exits. You can provide ADFEXIT1, ADFEXIT2, and
ADFEXIT3 in ADFMDF01, then, for some default environments, you can override
any or all of these exits with different exits to customize the monitoring of certain
classes of users. For an example of monitoring certain classes of users differently,
see “Possible Uses” on page 580.

Figure 98 on page 580 shows how Session Manager locates the addresses of the
exits during initialization.

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 579

Possible Uses
The Session Manager exits provide you with a wide range of monitoring
capabilities. You can monitor all users in the same way, monitor each class of users
differently, or group various classes of users together and monitor the groups
differently. Use the Session Manager exits to:
v Monitor all of the users with the same logon procedure in the same way
v Monitor and intercept certain commands
v Retain a log of a user’s session
v Determine how long it takes a command to run or determine at what time certain

operations were performed

START

Use
ADFEXIT1.

Use
ADFEXIT2.

Use
ADFEXIT3.

END

Y N

Y N

Y N

Y N

Y N

N Y

Use this
exit.

Use this
exit.

Use this
exit.

Does
offset X'5C'

in ADFMDFLT
point to an

exit?

Does
offset X'64'

in ADFMDFLT
point to an

exit?

Does
offset X'60'

in ADFMDFLT
point to an

exit?

Does
ADFEXIT1

exist in
ADFMDF01?

Does
ADFEXIT2

exist in
ADFMDF01?

Does
ADFEXIT3

exist in
ADFMDF01?

Figure 98. Overview of How Session Manager Determines Which Exit to Use

Writing Session Manager Exits

580 z/OS V1R4.0 TSO/E Customization

The following describes these four possible uses and provides an example
initialization exit.

v Monitor all of the users with the same logon procedure in the same way

You can use multiple exits with logon procedures to provide different default
environments for certain classes of users and to monitor groups of users in the
same way.

For example, suppose your installation has two logon procedures for Session
Manager:
– LOG1 - specifies the default environment module ENV1
– LOG2 - specifies the default environment module ENV2

If you had three Session Manager exits (EX1, EX2, and EX3), you could link-edit
them into the ENV1 and ENV2 modules. All Session Manager users would be
monitored by the exits regardless of whether they log on with the LOG1 or LOG2
procedure.

To monitor users who use the LOG2 procedure differently, you could write a
second stream monitoring exit (NEWEX2). Link-edit NEWEX2 into the ENV2
default environment module or incorporate NEWEX2 directly into the ENV2
module and reassemble ENV2. Then, users who log on with the LOG1 procedure
are monitored by the EX1, EX2, and EX3 exits; users who use the LOG2
procedure are monitored by the EX1, NEWEX2, and EX3 exits.

v Monitor and intercept certain commands

You can monitor the various streams to intercept particular commands and
perform some action based on the user and the command. You can monitor and
intercept:
– TSO/E commands and output
– Program input and output
– Session Manager commands and output
– Messages that users receive

For example, you can monitor TSO/E input and restrict specific users or groups
of users from using certain commands. When the exit intercepts the command, it
can change it to blanks or some other characters. If you eliminate commands in
this way, you must not change the length of the line.

If you monitor an input stream, you should be aware that the command may not
be ready to execute because other commands may be stacked ahead of it. At
this point, the input line is being placed into the input stream. If you want the exit
to perform an action on that specific command, detect the command as it is
copied to the output stream. At that point, Session Manager is returning the
command to TSO/E in order for it to execute.

If you want the exit to intercept a specific command as it is copied to the output
stream, you do not have to monitor every line of output. Monitor only the input
until the exit detects the command. The exit can then start monitoring the output
until the command is copied to the output stream. The exit can perform the
required action and then go back to monitoring input only.

To dynamically change which streams are being monitored, use the initialization
and stream monitoring exits. The initialization exit can save the address of the
stream mapping in the “installation data” fullword. The stream monitoring exit can
change the stream mapping that defines which streams are being monitored. For
example, if you are monitoring TSO/E input and detect a particular command,

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 581

you can start monitoring the TSO/E output stream. When the next command is
retrieved for TSO/E input, you can then go back to monitoring only TSO/E input.

v Retain a log of a user’s session

To monitor the input, output, and message streams and write each line to a data
set, use the stream monitoring exit. To create a hard copy of the data set, use
the termination exit.

The stream monitoring exit must not do any I/O operations. To prevent
performance degradation, the initialization exit can attach another task during
initialization to handle I/O requests from the stream monitoring exit. Whenever
the stream monitoring exit is ready to write a record, it can post the I/O task and
pass it a buffer with the record. The stream monitoring exit can then return to
ADFIMPUT, which lets Session Manager continue while the I/O task is
asynchronously writing the record.

The task that the initialization exit attaches runs without holding the local lock;
therefore, the stream monitoring exit must not release the local lock. If the stream
monitoring exit releases the local lock, unpredictable serialization problems within
Session Manager can occur.

v Determine how long it takes a command to run or determine at what time certain
operations were performed.

The stream monitoring exit receives a time stamp with each line that it receives.
You can use the time stamp to:

– Monitor the length of time it takes for particular commands to run

The stream monitoring exit can monitor the input. When it intercepts a specific
command, it can save the time stamp and begin monitoring the output. When
it detects the READY mode message, it can determine how long the
command took to execute by calculating the difference between the saved
time stamp and the time stamp provided with the READY mode message line.

– Provide a time stamp on lines that you save for subsequent hard copy listings.

If you save a TSO/E session for subsequent hard copy, you can convert the
time stamp that the stream monitoring exit receives for each line to a time
stamp that can be printed. You can then include this with each line. When you
review the session in hard copy, you can see the time at which certain
operations were performed.

Example Initialization Exit
Figure 99 on page 583 shows an example initialization exit. The exit indicates to
Session Manager that line mode output should be logged while in a full-screen
program.

Writing Session Manager Exits

582 z/OS V1R4.0 TSO/E Customization

* *
* MODULE NAME = ADFEXIT1 *
* *
* DESCRIPTIVE NAME = INSTALLATION MANAGEMENT INITIALIZATION EXIT *
* *
* FUNCTION = EXAMPLE EXIT OF HOW TO INDICATE TO SESSION MANAGER *
* TO LOG LINE MODE OUTPUT WHILE IN FULL-SCREEN PROGRAMS *
* *
* INPUT = *
* REG 1 - POINTER TO A LIST OF ADDRESSES OF THE FOLLOWING *
* PARAMETERS: *
* 1) USERID *
* 2) INSTALLATION DATA *
* 3) STREAM AND OUTPUT AND LOGGING INDICATOR BIT: *
* BIT 0 - MONITOR TSO/E INPUT STREAM *
* BIT 1 - MONITOR TSO/E OUTPUT STREAM *
* BIT 2 - MONITOR SESSION MANAGER INPUT STREAM *
* BIT 3 - MONITOR SESSION MANAGER OUTPUT STREAM *
* BIT 4 - MONITOR MSG OUTPUT STREAM *
* BIT 5 - TURN ON LOGGING OF LINE MODE OUTPUT *
* WHILE IN FULL-SCREEN PROGRAMS *
* REG 14 - RETURN ADDRESS TO SESSION MANAGER MAINLINE *
* REG 15 - ENTRY POINT ADDRESS *
* *
* PROCESSING = *
* 1) RETRIEVE ADDRESS OF THIRD PARAMETER *
* 2) TURN ON BIT 5 TO INDICATE TO TURN ON LOGGING OF OUTPUT *
* 3) RETURN TO SESSION MANAGER MAINLINE *
* *

ADFEXIT1 CSECT INSTALLATION INITIALIZATION EXIT

USING *,15
STM 14,12,12(13)
L 1,8(1) 3RD PARM IS PTR TO INDICATOR BITS
OI 0(1),B’00000100’ BIT 5 INDICATES TO LOG ISPF OUTPUT
LM 14,12,12(13)
BR 14 RETURN TO SESSION MANAGER MAINLINE
END

Figure 99. Initialization Exit to Log Line Mode Output While in Full-Screen Programs

Writing Session Manager Exits

Chapter 44. Customizing Session Manager 583

Writing Session Manager Exits

584 z/OS V1R4.0 TSO/E Customization

Part 9. Information Center Facility

The TSO/E Information Center Facility enables you to implement an MVS-based
information center at your installation. The Information Center Facility contains two
conversational, panel-driven interfaces. One enables users to access products and
services and the other enables administrators to maintain the facility. You, the
system programmer, can customize the Information Center Facility in many ways to
suit the specific needs of your installation.

This part describes the tasks that you do to prepare the Information Center Facility
for use, customize it, and diagnose problems you may cause when you make
changes. To help you understand how to perform these tasks, this part includes
background information about the structure of the Information Center Facility and
lists the products and services that users can access through it. This part also
includes reference information that shows the relationships among the elements
that form the Information Center Facility.

For an overview of the products and services available through the Information
Center Facility, see z/OS TSO/E General Information. That document also shows
the primary panels for the users and the administrators of the Information Center
Facility.

© Copyright IBM Corp. 1988, 2002 585

586 z/OS V1R4.0 TSO/E Customization

Chapter 45. Preparing the Information Center Facility for Use

Information Center Facility Structure 588
Information Center Facility Libraries 590
Changing the Location of Program Libraries. 590
Identifying CLISTs and REXX Execs to VLF 591
Making Products Available . 591

Products Supported by the Information Center Facility 591
General Consideration for all Products 592
Considerations for Specific Products 592

Creating and Tailoring Application Definitions 593
Changing Information Center Facility Defaults 594

Changing the System Default ISPF Profile 594
Changing the Date Format 595
Changing Variables for Names 595
Changing Variables for the APPC/MVS Administration Dialog 597
Changing Variables for the Interface to GDDM/PGF 599
Changing Variables for Education Services 601
Changing Variables for Enrollment 603
Changing Variables for VS APL, APL2, APLDI-II, and ADRS-II 603
Changing Variables for Application Manager 611

Making Installation Changes Available 614
Deciding the Data Set to Use for Changes 614
Concatenating Installation-Developed Products or Services 615

Defining Printers to the Information Center Facility 615
Making Performance Decisions for Names Service 615
Estimating Space Requirements 616

Storage Required by Names Service 616
Storage Required by Application Manager 617

After you have installed TSO/E and done any conversion that might be required,
you can prepare the Information Center Facility for use at your installation. This
chapter describes the tasks that you may want to do before making the Information
Center Facility available to your users. As background information, this chapter
describes the structure of the Information Center Facility and lists the products that
users can access through it.

The tasks that you may want to do before making the Information Center Facility
available for use are:

v Changing the location of program libraries

v Identifying CLISTs and REXX execs to VLF

v Making products available
– Products supported by the Information Center Facility
– General consideration for all products
– Considerations for specific products.

v Creating or tailoring application definitions for users and user groups

v Changing Information Center Facility defaults

v Defining printers to Information Center Facility

v Making installation changes available

v Making performance decisions for the Information Center Facility names service

v Estimating space requirements

v Setting the APPC/MVS administration dialog defaults

© Copyright IBM Corp. 1988, 2002 587

Information Center Facility Structure
The Information Center Facility consists of the following elements that you can
change to suit your installation’s needs:

v Panels

The Information Center Facility panels are written using Interactive System
Productivity Facility (ISPF) panel definition. Panel definitions are programmed
descriptions that define the content and format of the panels. During
customization, you are primarily concerned with the following types of panels:
menu, non-display, tutorial, and HELP panels. The IBM-supplied panels are
members of the partitioned data set named ICQ.ICQPLIB. The Application
Manager panels, ICQAMED1, ICQAMED4 and ICQAMED5, reside in that data
set as model panels. The models do not contain all of the information that users
see on panels. Application Manager dynamically generates menu panels and the
panels for the DESCRIBE option by taking information from the Application
Manager tables in data set ICQ.ICQCMTAB and displaying it on the model
panels.

v CLISTs and REXX Execs

The Information Center Facility is written in the TSO/E CLIST and REXX
languages. The CLISTs and REXX execs reside in the partitioned data set
ICQ.ICQCCLIB.

v Messages

The Information Center Facility displays messages on its panels. The messages
use the ISPF format for message definition. The messages are located in the
partitioned data set ICQ.ICQMLIB. Each member of ICQ.ICQMLIB contains up to
ten messages.

v Tables

The Information Center Facility stores information in two-dimensional arrays
called tables and accesses the information using the ISPF table services. The
Information Center Facility generates the names of the tables. Each table is
stored as a member of a partitioned data set. The members have the same
names as the tables they contain. The following partitioned data sets contain
tables and are created during the installation of TSO/E:
– ICQ.ICQTLIB
– ICQ.ICQAATAB
– ICQ.ICQABTAB
– ICQ.ICQANTAB
– ICQ.ICQAPTAB
– ICQ.ICQGCTAB
– ICQ.ICQAMTAB
– ICQ.ICQCMTAB

Application Manager dynamically creates two table data sets for each defined
group level of application definitions and one data set for each defined private
level of application definitions. See “Naming Conventions: Application Definition
Tables and Installation Files” on page 658.

v Applications

When you are using Application Manager to define products or services to the
Information Center Facility, you need to describe the products or services in
terms of three types of applications: panel, function, and environment. The first
Application Manager panel lists the applications included in the Information
Center Facility. You use the different types of applications for the following
purposes:

Information Center Facility Structure

588 z/OS V1R4.0 TSO/E Customization

Panel To define the external interface that users see. Panels enable
users to link to other panels, invoke functions, and display HELP
text.

ICQADMIN (TSO/E - Administration) is an example of a panel
application. ICQADMIN specifies the information to be displayed
on the administrator’s primary panel and defines the linkage to
the services listed on that panel.

Function To provide the method for invoking the product or service, such
as a CLIST, command, program, or menu (excluding the menu
panels that Application Manager generates). A function can also
contain the support information that environments contain.
However, if the support information applies to more than one
function, you may want to describe the information in an
environment.

ICQNEWSA (TSO/E News - Maintenance) is an example of a
function application. ICQNEWSA contains the following
invocation command used to invoke the news service:
CMD(%ICQANC00)

ICQNEWSA does not define any variables itself, but refers to the
ICQENVIRON environment, which defines several variables.

Environment To provide support information, such as:
– Commands for setup, invocation, and termination
– Data set allocations for associated panels, messages, tables,

and load modules
– ISPF shared variables.

ICQENVIRON (TSO/E Information Center Facility environment) is
an example of an environment application. ICQENVIRON defines
the date and language variables that are used by products and
services in the Information Center Facility.

v Installation files

These files are sequential data sets or members of partitioned data sets that
contain the information that Application Manager needs to define an application
to the Information Center Facility. The information in installation files corresponds
to the input fields on the Application Manager panels used to define applications.
Using Application Manager, installations have a choice of defining applications by
providing information on the Application Manager panels or by providing
installation files. For examples of installation files, see “Example Using
Installation Files when Adding a Service” on page 635.

v Skeletons

Skeleton are models containing some type of data that is used repeatedly. Each
skeleton is stored as a member of a partitioned data set. The Information Center
Facility contains only one skeleton and that is stored in the partitioned data set,
ICQ.ICQSLIB. Education services use the skeleton to create Interactive
Instructional Presentation System (IIPS) registration requests. You will probably
not use skeletons to customize the Information Center Facility.

Information Center Facility Structure

Chapter 45. Preparing the Information Center Facility for Use 589

Information Center Facility Libraries
The following table summarizes information about the Information Center Facility
libraries that contain the elements you may want to change.

Table 106. Information Center Facility Libraries

IBM-Supplied
Data Set Name

Ddname Description RECFM LRECL

ICQ.ICQPLIB ISPPLIB Panel library FB 80

ICQ.ICQMLIB ISPMLIB Message library FB 80

ICQ.ICQSLIB ISPSLIB Skeleton library FB 80

ICQ.ICQTLIB ISPTLIB
ICQTABL

General table
library

FB 80

ICQ.ICQAATAB ICQAATAB Names table
library

FB 80

ICQ.ICQABTAB ICQABTAB Administrator
courses table
library

FB 80

ICQ.ICQANTAB ICQANTAB Administrator
news table and
text library

FB 80

ICQ.ICQAPTAB ICQAPTAB Printer support
table library

FB 80

ICQ.ICQAMTAB ICQAMTAB Administrator
Application
Manager table
library

FB 80

ICQ.ICQCMTAB ICQCMTAB User Application
Manager table
library

FB 80

ICQ.ICQGCTAB ICQGCTAB IIPS/IIAS
Registration table
library

FB 80

ICQ.ICQCCLIB SYSPROC User and
administrator
CLIST and
REXX exec
library

FB 80

For information about the block size for these libraries, see the appropriate
installation manual.

Changing the Location of Program Libraries
The Information Center Facility contains several dialog functions that are coded as
programs. The load modules for these programs (ICQAMLD0, ICQAMLF0,
ICQAMLI0, ICQGCL00, ICQGCL10, ICQCALN1, and ICQCAL00) are link-edited into
SYS1.CMDLIB when TSO/E is installed. You can concatenate the load modules to
the ISPF link library (ddname=ISPLLIB, RECFM=U) or move them into:

v The link pack area (LPA), which makes them available to all of your users. When
you install the modules, you must re-IPL your system to make them available to
users.

Information Center Facility Libraries

590 z/OS V1R4.0 TSO/E Customization

v A system link library such as SYS1.LINKLIB, which makes them available to all
of your users.

v A logon STEPLIB, which is helpful for limited use and for testing. However, the
use of a STEPLIB is not recommended for all of your users because of the extra
search time required to locate and invoke the modules.

For more information about LPA, SYS1.LINKLIB, and STEPLIB, see z/OS MVS
Initialization and Tuning Reference.

Identifying CLISTs and REXX Execs to VLF
The Information Center Facility contains several dialogs that are coded as CLISTs
or REXX execs. You can improve the performance of the CLISTs/REXX execs the
EXEC command finds at the system-level library (SYSPROC) and application-level
library (defined using the TSO/E ALTLIB command), by using the virtual lookaside
facility (VLF). To improve performance, define the IKJEXEC class name in the VLF
PARMLIB member, COFVLFxx.
...
CLASS NAME (IKJEXEC)

EDSN(ICQ.ICQCCLIB) /* (IBM-supplied) */...

Each eligible data set name (EDSN) entry in that member identifies a data set. The
order of the entries is not significant. For more information about COFVLFxx, see
z/OS MVS Initialization and Tuning Reference.

Making Products Available
The Information Center Facility enables users to access a variety of products and
services. The Information Center Facility does not actually contain any licensed
products. To use licensed products, you must order them separately.

This topic lists the products you can access through the Information Center Facility
and describes the general and product-specific tasks that you must do to make
products available to users.

Products Supported by the Information Center Facility
As shipped by IBM, the Information Center Facility supports the following IBM
licensed programs with menu panels, HELP panels, tutorials, and dialogs:

APL and APL-based associated products:

– APL2 (5668-899): A Programming Language 2

– VS/APL (5748-AP1): Virtual Storage/A Programming Language

– APLDI-II (5796-PNJ): APL Data Interface II

– ADRS-II (5796-PLN): A Departmental Reporting System II with Business
Graphics (ADRS-II/BG)

– Info Center/1 (5668-897): Information Center/1

– FPS (5798-CXP): Financial Planning System - TSO

When using the Information Center Facility, you can access the FPS routines
only through ADRS-II or Info Center/1. Note that IBM no longer provides
service for FPS. Consult the following publications for information about
installing the FPS routines or ADRS with the BG feature and the FPS
routines under ADRS-II:
- A Departmental Reporting System User’s Guide
- A Departmental Reporting System Systems Guide

Changing the Location of Program Libraries

Chapter 45. Preparing the Information Center Facility for Use 591

- A Departmental Reporting System II Business Guide
- The Financial Planning System - TSO Systems Guide

Other associated products:

– AS (5767-001): Application System

– GDDM/PGF

– IBM BASIC/MVS (5665-948)

– IIPS/IIAS: Interactive Instructional Presentation System (5668-012)/Interactive
Instructional Authoring System (5668-011)

– PS/TSO (5665-346): Personal Services/TSO

– QMF (5668-972): Query Management Facility

– TIF (5665-339): The Information Facility

For a description of the products and services that users can access through the
Information Center Facility as shipped by IBM, see z/OS TSO/E General
Information.

General Consideration for all Products
As shipped by IBM, the status of all products and services displayed on Information
Center Facility menu panels is unavailable to users. If a product or service is to be
used at an installation, the status of the applications that define it, must be changed
to available. An Information Center Facility administrator can use Application
Manager panels to change the status of applications to available. For a description
of how to use Application Manager panels to make an application available, see
z/OS TSO/E Administration.

Considerations for Specific Products
APL2, VS/APL, GDDM/PGF, IIPS, and APLDI-II have additional set-up tasks that
you may want to do before making them available to users.

Making APL2 Available
For APL2 to be available, the status indicator must be set to available and the
variable QCLAPL2 must be set to yes. For APL2 to be unavailable, only the status
indicator needs to be set to unavailable. When shipped by IBM, QCLAPL2 is set to
yes by the Application Manager function ICQAPL2. IBM recommends that you do
not change the value of the variable QCLAPL2. If you do change the value to no,
administrators will not be able to make APL2 available by only setting the status
indicator to available.

Making VS/APL Available
For VS/APL to be available, the status indicator must be set to available and the
variable QCLVSAPL must be set to yes. For VS/APL to be unavailable, only the
status indicator needs to be set to unavailable. When shipped by IBM, QCLVSAPL
is set to yes by the Application Manager function ICQVSAPL. IBM recommends that
you do not change the value of the variable QCLVSAPL. If you do change the value
to no, administrators will not be able to make VS/APL available by only setting the
status indicator to available.

Naming GDDM/PGF Libraries
Set the following variables in the non-display panel ICQSIECG to the appropriate
library names:

Making Products Available

592 z/OS V1R4.0 TSO/E Customization

Table 107. Variables for GDDM/PGF Libraries

Set: To:

&QCGICU Library name containing the ICU load module
&QCGISE Library name containing the ISE load module
&QCGVSE Library name containing the VSE load module
&QCGSYMBL Library name containing the default symbols.

Changing the Names of IIPS Data Sets
The Information Center Facility uses a default high-level qualifier of IIPS for IIPS
data sets. If your installation specifies a different qualifier when installing IIPS,
change the Information Center Facility default. To change the default:

1. Select the COURSES option on the primary selection panel for Information
Center Facility administrators.

2. Select the DEFAULTS option on the next panel you see (the INFORMATION
CENTER COURSES panel).

3. When the COURSES-MODIFY ADMINISTRATION DEFAULTS panel is
displayed, enter the high-level qualifier your installation uses.

The Information Center Facility uses the IISBATCH program to process registration
requests. The BCONFIG member of the IIPS.OS.CTLCARD data set contains
control statements for IISBATCH. (Your installation might use a qualifier other than
IIPS in the data set name.) Before you can register students in a course using the
Information Center Facility, BCONFIG must contain the statement DISKnn=YES,
where nn corresponds to the number of the data set in which the course resides.
The DISKnn statement identifies the course data set to IISBATCH. If the statement
is omitted, registration fails. Therefore, your installation needs to ensure that
BCONFIG contains a DISKnn=YES statement for each data set that might contain a
course in which students can request registration using the Information Center
Facility.

Simplifying END PF Key Use in APLDI-II
On a system-wide basis, you can modify APL Data Interface II (APLDI-II) to alter
the way users leave APLDI and return to an invoking program, such as the
Information Center Facility.

The unmodified version of APLDI requires the user to press the END PF key twice
when responding to an APLDI prompt. Pressing the END PF key the first time (or
entering a null line) terminates the APLDI “SELECTION:” prompt. Pressing the END
PF key again saves the user’s work in a CONTINUE workspace, terminates APL,
and returns to the invoking program. After you install this modification, users can
press the END PF key only once to leave APLDI, save the workspace, terminate
APL, and return to the invoking program.

To make the modification, enter APL and change line 2 of the GF function in APLDI
as described in the function ICQINP of workspace ICQUPDTS.

Creating and Tailoring Application Definitions
Information Center Facility administrators and users can define and invoke up to
three levels of application definitions. A system-wide level is supported for
applications that are defined for an entire system. A group level is supported for
user groups to create their own application definitions and to override system
applications with definitions tailored to a particular group. A user (or private) level is

Making Products Available

Chapter 45. Preparing the Information Center Facility for Use 593

supported for individual users to create their own application definitions and to
override group and system application definitions. All levels can be implemented in
the Application Manager definition dialogs and all levels can be active at invocation
time. See z/OS TSO/E Administration.

Changing Information Center Facility Defaults
You can change the default values for particular variables in the Information Center
Facility. The default values for Information Center Facility products and services are
specified in non-display panels and in the ICQENVIRON environment. To change
the default value for a variable defined in a non-display panel, you:
v Edit the non-display panel
v Find the first occurrence of the variable
v Change the value of the variable.

To change the default value for a variable defined in the ICQENVIRON
environment, use Application Manager. For information about how to use Application
Manager to change a default value for a variable, see z/OS TSO/E Administration.

This section describes how to change the system defaults that are used when
setting up a user profile in the Information Center Facility and how to change the
date format, which is used by several services and products in the Information
Center Facility. It also describes the default variables that you can change for
specific Information Center Facility products and services. It does not include all of
the variables that are initially set in each non-display panel, but only those that you
might want to change. The variables apply to the following products and services:
v Names
v Interface to GDDM/PGF

– Libraries that contain program load modules
– Interactive Chart Utility (ICU)
– Image Symbol Editor (ISE)
– Vector Symbol Editor (VSE)

v Education services
– Names of the interactive and batch execution programs
– Starting point for searching education services data sets

v Enrollment
v VS APL, APL2, APLDI-II, and ADRS-II
v Application Manager

Changing the System Default ISPF Profile
The Information Center Facility uses the system default ISPF profile supplied by
ISPF/PDF. ISPF/PDF maintains a set of modifiable values on behalf of each user.
Each ISPF/PDF user can modify these defaults by selecting the PDF profile option
(normally option 0). The enroll process of the Information Center Facility creates
this default set of values on behalf of the user being enrolled. The administrator,
during the enroll process, can modify the defaults for the user being enrolled. The
administrator can also modify the initial set of defaults supplied by ISPF/PDF using
the SYSDEF option on the administration main menu panel. When the administrator
modifies the initial defaults supplied by ISPF/PDF, a local copy of the profile is
maintained by the Information Center Facility. The defaults supplied by ISPF/PDF
are then no longer used.

See z/OS TSO/E Administration.

Creating and Tailoring Application Definitions

594 z/OS V1R4.0 TSO/E Customization

Changing the Date Format
Variables QCCDFMTX and QCCDFMT, defined in the ICQENVIRON environment
application, contain the date format used in date processing for the names and
news services, Application Manager, and APLDI-II. Using Application Manager
panels, you can set QCCDFMT to the date format that you want users to see.
QCCDFMT can contain special language characters. Also using Application
Manager panels, you must set QCCDFMTX to the equivalent date format using
English characters (“mm” for month, “dd” for day, and “yy” for year). The Information
Center Facility issues an error message if the first two characters of the date format
in QCCDFMTX are not English characters.

Changing Variables for Names
The variables for changing the Information Center Facility names function are
located in the non-display panel ICQSIECA. Table 108 shows the variables you can
change and their default values.

Table 108. Variables for Names

Variable Contents Default Value

QCANTXT The name of the user’s nickname data set.

The TRANSMIT and RECEIVE commands
search this data set for nicknames. The
names function adds :ALTCTL. tags for the
other nickname data sets to this data set
so that TRANSMIT and RECEIVE search
the other data sets, if needed. If you
change the USRCTL parameter of the
Interactive Data Transmission Facility, you
must change the value of the QCANTXT
variable. The USRCTL parameter changes
the name of the user’s nickname data set.
Note: The name you supply for QCANTXT
must not be a fully-qualified data set name.
The names function automatically prefixes
the user ID to the name of the data set.

NAMES.TEXT

QCAPNTXT The name of the nickname data set for the
private directory.
Note: The name you supply for
QCAPNTXT must not be a fully-qualified
data set name. The names function
automatically prefixes the user ID to the
name of the data set.

ICQNAMES.TEXT

QCAPPRI The primary space allocation of the
nickname data set for the private directory.

5

QCAPSEC The secondary space allocation of the
nickname data set for the private directory.

1

QCAPUNIT The allocation units for the nickname data
set for the private directory.

TRACKS

QCAPRECL The logical record length of the nickname
data set for the private directory.

255

QCAPBKSZ The block size of the nickname data set for
the private directory.

2550

QCAPRCFM The record format of the nickname data set
for the private directory.

F B

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 595

Table 108. Variables for Names (continued)

Variable Contents Default Value

QCAPINCR The percentage by which space
management increases the space allocated
to the nickname data set for the private
directory when it is running out of space.
For more information on space
management, see “Changing the Defaults
for Managing Data Set Space” on
page 223.

50

QCAMNTXT The name of the nickname data set for the
master directory. If you specify a data set
name, it must be a fully-qualified name
without quotes.

ICQ.MASTER.NAMES.TEXT

QCAMPRI The primary space allocation of the
nickname data set for the master directory.

20

QCAMSEC The secondary space allocation of the
nickname data set for the master directory.

2

QCAMUNIT The allocation units for the nickname data
set for the master directory.

TRACKS

QCAMRECL The logical record length of the nickname
data set for the master directory.

255

QCAMBKSZ The block size of the nickname data set for
the master directory.

2550

QCAMRCFM The record format of the nickname data set
for the master directory.

F B

QCAMINCR The percentage by which space
management increases the space allocated
to the nickname data set for the master
directory when it is running out of space.
For more information on space
management, see “Changing the Defaults
for Managing Data Set Space” on
page 223.

50

QCAALTC The name of another nickname data set
that is to be searched if a name is not
found in the user, private, or master
nickname data sets.

null

QCACATAB The name of the private table library. ICQNAMES.DIR

QCAPRI The primary space allocation of the private
table library.

10

QCASEC The secondary space allocation of the
private table library.

5

QCADIR The number of directory blocks for the
private table library.

2

QCAUNIT The allocation units for the private table
library.

TRACKS

QCALRECL The logical record length of the private
table library.

80

QCABLKSZ The block size of the private table library. 3120

QCARECFM The record format of the private table
library.

F B

Changing Information Center Facility Defaults

596 z/OS V1R4.0 TSO/E Customization

Table 108. Variables for Names (continued)

Variable Contents Default Value

QCASTAT Use this variable to indicate whether the
names directory tables should:

v Remain open after they are initially
opened (OPEN).

v Be closed after each use and reopened
when they are needed again (CLOSE).

For more information about the
considerations for leaving the tables open,
see “Making Performance Decisions for
Names Service” on page 615.

CLOSE

Changing Variables for the APPC/MVS Administration Dialog
The Information Center Facility provides an interface to the APPC/MVS
administration dialog. You can customize the APPC/MVS administration dialog by
changing certain variables contained in the non-display panel ICQASE00. Table 109
shows the variables you can change and their default values.

Table 109. Variables for APPC/MVS Administration Dialog

Variable Contents Default Value

QASSDIN Allocation attributes for the data set used as
input to APPC/MVS administration

BLKSIZE(3100)
SPACE(50,10)

QASSDOUT Allocation attributes for the data set used for
SYSOUT output from APPC/MVS
administration

BLKSIZE(3100)
SPACE(50,10)

QASSDPRT Allocation attributes for the data set used for
SYSPRINT output from APPC/MVS
administration

BLKSIZE(3100)
SPACE(50,10)

QASSDATA Allocation attributes for the data set used to
contain the JCL for an ASCH transaction
program profile or to contain the scheduler
information for a non-ASCH profile.

BLKSIZE(3100)
SPACE(50,10)

QASTSPE A map of transaction scheduler exits. The
value on the left is the value used in the
transaction scheduler field name. The value
on the right is the program/module name of
the transaction scheduler exit that is called
by APPC/MVS administration to check the
syntax of the scheduler data. For example, if
the scheduler name is XYZ and the exit to
check the syntax is XYZEX01, specify
‘XYZ,XYZEX01’.

You can have more than one transaction
scheduler, but ASCH,ASCH is required. To
specify more than one transaction scheduler,
separate them with a + as in the following
example:

ASCH,ASCH +
ABC,ABCEXIT +
XYZ,XYZEX01

ASCH,ASCH

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 597

Table 109. Variables for APPC/MVS Administration Dialog (continued)

Variable Contents Default Value

QASCLASS The available classes for an
ASCH-scheduled transaction program profile.
These classes are defined in one or more
ASCHPMxx parmlib members. A list of these
classes appears when a user enters an *
next to the SCHEDULER CLASS keyword.
For more information about the ASCHPMxx
parmlib members, see z/OS MVS Planning:
APPC/MVS Management.

none

QASMODDF The data set name that contains JCL
models. As an aid to the person adding
transaction program profiles scheduled by
ASCH, sample models can be created and
placed in the data set named here.

ICQ.*.*

QASTPDEF The name of the default VSAM KSDS that
contains transaction program profiles.

SYS1.APPCTP

QASSIDEF The name of the default VSAM KSDS that
contains side information.

SYS1.APPCSI

QASDBDEF The name of the default VSAM KSDS that
retrieves or updates data base tokens.

SYS1.APPCTP

Temporary Storage Data Files
When you enter the APPC/MVS administration dialog utility, four temporary files are
created. When you exit the utility, these files are erased. These four temporary files
are:

<user prefix>.TEMP.SYSSDIN
<user prefix>.TEMP.SYSSDOUT
<user prefix>.TEMP.SYSSDPRT
<user prefix>.TEMP.SYSSDATA

Setting the CANCEL PF key
When you enter the APPC/MVS administration dialog utility, your PF12 key is set to
CANCEL, if a PF key has not been previously set to CANCEL. When you exit the
APPC/MVS administration dialog, the PF12 key, if it was set to CANCEL, returns to
its original value.

REQAPPC Command
In MVS/ESA SP Version 4 Release 1, you can set the REQAPPC variable on or off.
You can set the REQAPPC variable by entering REQAPPC ON or REQAPPC OFF from
the command line of any APPC/MVS administration panel.

When REQAPPC is set on, the APPC/MVS administration panel will not allow you
to add, modify, or copy ASCH transaction program profiles. APPC/MVS needs to be
present to successfully process ASCH transaction program profiles.

When REQAPPC is set off, the administrator can add, modify, or copy ASCH
transaction program profiles. If you add, modify, or copy ASCH transaction program
profiles, the JCL syntax will not be checked. Because JCL syntax will not be
checked, it is recommended that you set the Activation Status to inactive when you
are adding, modifying, or copying ASCH transaction program profiles. When you
migrate to MVS/ESA SP Version 4 Release 2, you can set the Activation Status to
active and JCL syntax checking will occur.

Changing Information Center Facility Defaults

598 z/OS V1R4.0 TSO/E Customization

In MVS/ESA SP Version 4 Release 2 or later, the REQAPPC command will have no
effect on adding, modifying, or copying transaction program profiles. The transaction
program profile JCL syntax checking will always occur.

Changing Variables for the Interface to GDDM/PGF
The Information Center Facility provides an interface to the Graphic Data Display
Manager (GDDM/PGF). Certain variables for the interface are located in the
non-display panel ICQSIECG. You can change the settings of variables for the:
v Libraries that contain program load modules
v Interactive Chart Utility (ICU)
v Image Symbol Editor (ISE)
v Vector Symbol Editor (VSE)

Changing Variables for Libraries that Contain Program Load
Modules
Table 110 shows the variables you can change and their default values.

Table 110. Variables for Libraries That Contain Program Load Modules for GDDM/PGF

Variable Contents Default Value

QCGICU The name of the library that contains the
ICU load module.

SYS1.GDDMLOAD

QCGISE The name of the library that contains the ISE
load module.

SYS1.GDDMLOAD

QCGVSE The name of the library that contains the
VSE load module.

SYS1.GDDMLOAD

QCGSYMBL The name of the library that contains the
default symbol set.

SYS1.GDDMSYM

Changing Variables for the Interactive Chart Utility
The Interactive Chart Utility uses the following files:
v Data file
v Format file
v Graphic data format (GDF) file

To customize the allocation of the files that the Interactive Chart Utility uses, change
the default settings for the variables shown in Table 111.

Table 111. Variables for the Interactive Chart Utility

Variable Contents Default Value

QCGPRI1 The primary space allocated to the data file. 5

QCGSEC1 The secondary space allocated to the data
file.

5

QCGDIR1 The number of directory blocks for the data
file.

10

QCGUNIT1 The allocation units for the data file. TRACKS

QCGRECL1 The logical record length of the data file. 400

QCGBKSZ1 The block size of the data file. 400

QCGRCFM1 The record format of the data file. F

QCGPRI2 The primary space allocated to the format
file.

5

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 599

Table 111. Variables for the Interactive Chart Utility (continued)

Variable Contents Default Value

QCGSEC2 The secondary space allocated to the format
file.

5

QCGDIR2 The number of directory blocks for the
format file.

10

QCGUNIT2 The allocation units for the format file. TRACKS

QCGRECL2 The logical record length of the format file. 400

QCGBKSZ2 The block size of the format file. 400

QCGRCFM2 The record format of the format file. F

QCGPRI6 The primary space allocated to the GDF file. 5

QCGSEC6 The secondary space allocated to the GDF
file.

5

QCGDIR6 The number of directory blocks for the GDF
file.

10

QCGUNIT6 The allocation units for the GDF file. TRACKS

QCGRECL6 The logical record length of the GDF file. 400

QCGBKSZ6 The block size of the GDF file. 400

QCGRCFM6 The record format of the GDF file. F

Changing Variables for the Image Symbol Editor
The Image Symbol Editor uses the following files:
v Image file
v Object file

To customize the allocation of the files that the Image Symbol Editor uses, change
the default settings for the variables shown in Table 112.

Table 112. Variables for the Image Symbol Editor

Variable Contents Default Value

QCGPRI3 The primary space allocated to the image
file.

5

QCGSEC3 The secondary space allocated to the image
file.

5

QCGDIR3 The number of directory blocks for the image
file.

10

QCGUNIT3 The allocation units for the image file. TRACKS

QCGRECL3 The logical record length of the image file. 400

QCGBKSZ3 The block size of the image file. 400

QCGRCFM3 The record format of the image file. F

QCGPRI4 The primary space allocated to the object
file.

5

QCGSEC4 The secondary space allocated to the object
file.

5

QCGDIR4 The number of directory blocks for the object
file.

10

QCGUNIT4 The allocation units for the object file. TRACKS

Changing Information Center Facility Defaults

600 z/OS V1R4.0 TSO/E Customization

Table 112. Variables for the Image Symbol Editor (continued)

Variable Contents Default Value

QCGRECL4 The logical record length of the object file. 400

QCGBKSZ4 The block size of the object file. 400

QCGRCFM4 The record format of the object file. F

Changing Variables for the Vector Symbol Editor
To customize the allocation of the vector file, change the default settings for the
variables shown in Table 113.

Table 113. Variables for the Vector Symbol Editor

Variable Contents Default Value

QCGPRI5 The primary space allocated to the vector
file.

5

QCGSEC5 The secondary space allocated to the vector
file.

5

QCGDIR5 The number of directory blocks for the vector
file.

10

QCGUNIT5 The allocation units for the vector file. TRACKS

QCGRECL5 The logical record length of the vector file. 400

QCGBKSZ5 The block size of the vector file. 400

QCGRCFM5 The record format of the vector file. F

Changing Variables for Education Services
Variables for the customization of education services are located in the non-display
panel ICQSIECB. You can change the settings of variables for the:
v Names of the interactive and batch execution programs
v Starting point for searching education services data sets

Changing the Names of the Interactive and Batch Execution
Programs
The following variables for the names of the IIPS interactive and batch execution
programs are set in the non-display panel ICQSIECB.

v Variable PGM is set to the default value for the name of the interactive program,
IIS.

v Variable PROGM is set to the default value for the name of the batch program,
IISBATCH.

If the programs are named using the default, you do not have to make any
changes. However, if the programs are not installed with these names, you must
change the settings of PGM and PROGM in panel ICQSIECB.

Changing the Starting Point for Searching Education Services
Data Sets
If you allocate a new data set for a course, you must change the starting point that
education services uses when searching the education services data sets. When
searching for a course, education services searches through the education data
sets sequentially in ascending order, based on the low-level qualifier. The low-level
qualifier for education services data sets is DISKnn, where nn is a number lower

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 601

than 69. The variable DISKNO on panel ICQSIECB contains the lowest number (the
nn part of the low-level qualifier) currently in use in an education services data set
name.

When you allocate a new education services data set, set the number in the
low-level qualifier to one less than the lowest number currently in use. After you
allocate the data set, change the value of DISKNO to the number of the low-level
qualifier for the new data set.

Figure 100 shows an example of adding a new education services data set.
Assuming that the lowest number in a low-level qualifier for an existing education
services data set is 67, the name of the new data set is ICQ.CBT.DISK66. You must
set DISKNO to 66, so that education services starts searching for a course in the
new data set.

Changing Variables for Enrollment
The non-display panel ICQSIE00 initializes the following:
v Application ID
v Name of the ISPF profile data set
v Volume for the ISPF profile data set
v Data set name for the UADS
v Generic profile for the user

ICQ, the default value of the application ID, is set in variable QAEAPPL. If you
change the value of QAEAPPL, also change the variable NEWAPPL on the PROC
statement of CLIST ICQICF.

ISPF.PROFILE, the default value of the ISPF profile data set name, is set in
variable QAEPROF. If you change QAEPROF, also change the variable PROFILE
on the PROC statement of CLIST ICQICF.

The variable QAEVOL contains the number of the volume on which the ISPF profile
data set is to be allocated. The default value is blank, which permits the data set to
be allocated on any volume. If you want the ISPF profile data set allocated on a
particular volume, set QAEVOL to the volume number.

The variable QAEUADSD contains the data set name for the UADS. The default is
SYS1.UADS. You must specify a fully-qualified data set name. The data set is
created when you install TSO/E and must exist to enroll users in the UADS.

Use the variable QAEGENER to specify whether you want a generic profile created
for the users you enroll. Specify Y (yes) or N (no). The default is N. If you set
QAEGENER to Y, the defaults for the RACF ADDSD command are:

Existing data sets:

IIPS.CBT.DISK69
IIPS.CBT.DISK68
IIPS.CBT.DISK67

New data set:

IIPS.CBT.DISK66

DISKNO = 66

Figure 100. Example of Adding a New Education Services Data Set

Changing Information Center Facility Defaults

602 z/OS V1R4.0 TSO/E Customization

Field Variable Default
UACC QAEUACC None
OWNER QAEOWNER If blank, it is the user ID of

the person you are enrolling.
AUDIT QAEAUDIT FAILURES
AUDIT-ACCESS-LEVEL QAEAUDLV READ
LEVEL QAELEVEL 0

If you want additional keywords on the RACF ADDSD command, you must change
the ADDSD command in the CLIST ICQAEC00.

Changing Variables for VS APL, APL2, APLDI-II, and ADRS-II
The non-display panel ICQSIECR contains variables for VS APL, APL2, APLDI-II,
and ADRS-II. You can change the values of the variables to provide defaults that
match your own requirements. If you have both VS APL and APL2 installed,
consider using the same defaults for the equivalent VS APL and APL2 variables.
Using the same defaults, simplifies maintenance and provides similar results for the
two products.

If you change any defaults on panel ICQSIECR, also reset the values for the
variables TESTDATE and TESTTIME in ICQSIECR. When a user enters VS APL,
APL2, ADRS, or APLDI, ICQSIECR is invoked.

Note: Do not code &SYSDATE and &SYSTIME to reset TESTDATE and
TESTTIME. &SYSDATE and &SYSTIME provide the current date and time
and using them would ensure that TESTDATE and TESTTIME never
matched the saved values.

Changing the Default Values for VS APL
For VS APL, you can change the default values for the variables shown in
Table 114.

Table 114. Variables for VS APL

Variable Contents Default Value

QCLAPV The APL product variable. APL

QCLAPT The product name that appears on interface
panels.

VS APL

QCLAPSM The default for the SESSION MGR
parameter. You can set the variable to ON or
OFF. If you set the variable to ON, the VS
APL Session Manager is used. If you set it
to OFF, the VS APL Session Manager is not
used.

OFF

QCLAPQ The default for the QUIET parameter. You
can set the variable to null or QUIET. If you
set the variable to null, normal terminal
output is displayed on invocation. If you set
the variable to QUIET, terminal output is
suppressed until the first time input is
needed from the terminal.

null

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 603

Table 114. Variables for VS APL (continued)

Variable Contents Default Value

QCLAPHL The default for the HILIGHT parameter. You
can set the variable to the following values:
v ON to highlight all lines
v OFF to turn off all highlighting
v INPUT to highlight only input lines
v OUTPUT to highlight only output lines

OFF

QCLAPAS The default for the AISIZE parameter. The
value is the amount of storage, in kilobytes,
to be reserved for input lines stacked by the
alternate input auxiliary processor. You can
specify a value from 1 to 9999.

1

QCLAPFS The default for the FREESIZE parameter.
The value is the amount of virtual storage, in
kilobytes, to be reserved for MVS/TSO
functions that the auxiliary processor uses.
You can specify a value from 64 to 9999.

64

QCLAPSR The default for the SHRSIZE parameter. The
value is the amount of storage, in kilobytes,
to be reserved for the shared variable
processor. You can specify a value from 4 to
9999.

4

QCLAPWS The default for the WSSIZE parameter. The
value is the amount of contiguous virtual
storage, in kilobytes, to be reserved for the
user’s active workspace. You can specify a
value from 32 to 9999.

1024

QCLAPDG The default for the DEBUG parameter. You
can set the variable to null to use the normal
error recovery for VS APL, or to the sum of
any combination of the values representing
the following operands:

v MSG -- use to receive debugging
messages that identify work areas in main
storage as well as all secondary
messages. To use MSG, add 1 to the
value in QCLAPDG.

v ECHO -- use to display all data passed to
the alternate input auxiliary processor. To
use ECHO, add 2 to the value in
QCLAPDG.

v ABEND -- use to avoid VS APL’s recovery
routines. To use ABEND, add 64 to the
value in QCLAPDG.

v MICRO -- use to cancel the test for VS
APL microcode on your central processor.
To use MICRO, add 128 to the value in
QCLAPDG.

Note: ABEND and MICRO are for the use
of system programmers only.

null

QCLAPB1 The default for the first LOADLIB. Each
LOADLIB is a private load library from which
auxiliary processors (supplied with
APNAMES) can be loaded.

null

Changing Information Center Facility Defaults

604 z/OS V1R4.0 TSO/E Customization

Table 114. Variables for VS APL (continued)

Variable Contents Default Value

QCLAPB2 The default for the second LOADLIB. null

QCLAPB3 The default for the third LOADLIB. null

QCLAPB4 The default for the fourth LOADLIB. null

QCLAPB5 The default for the fifth LOADLIB. null

QCLAPA1 The default for the first APNAMES. Each
APNAMES is an auxiliary processor to be
loaded from the private load libraries
(supplied with LOADLIB).

null

QCLAPA2 The default for the second APNAMES. null

QCLAPA3 The default for the third APNAMES. null

QCLAPA4 The default for the fourth APNAMES. null

QCLAPA5 The default for the fifth APNAMES. null

QCLAPA6 The default for the sixth APNAMES. null

QCLAPA7 The default for the seventh APNAMES. null

QCLAPA8 The default for the eighth APNAMES. null

Changing the Default Values for APL2
For APL2, you can change the default values for the variables shown in Table 115.

Table 115. Variables for APL2

Variable Contents Default Value

QCLA2V The APL product variable. APL2

QCLA2T The product name that appears on interface
panels.

APL2

QCLA2SM The default for the SESSION MGR
parameter. You can set the variable to ON or
OFF. If you set the variable to ON, the APL2
Session Manager is used. If you set it to
OFF, the Session Manager is not used.

OFF

QCLA2Q The default for the QUIET parameter. You
can set the variable to null or QUIET. If you
set the variable to null, normal terminal
output is displayed on invocation. If you set
the variable to QUIET, terminal output is
suppressed until the first time input is
needed from the terminal.

null

QCLA2HL The default for the HILIGHT parameter. You
can set the variable to one of the following
values:
v ON to highlight all lines
v OFF to turn off all highlighting
v INPUT to highlight only input lines
v OUTPUT to highlight only output lines

OFF

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 605

Table 115. Variables for APL2 (continued)

Variable Contents Default Value

QCLA2DT The default for the DATEFORM parameter.
The value is the format in which dates are
printed. You can set the variable to one of
the following values:

v ISO (International Standards Organization)
-- uses the format yyyy-mm-dd hh.mm.ss.

v US (United States convention) -- uses the
format mm/dd/yyyy hh.mm.ss.

v EU (European convention) -- uses the
format dd.mm.yyyy hh.mm.ss.

US

QCLA2AS The default for the AISIZE parameter. The
value is the amount of storage, in kilobytes,
to be reserved for input lines stacked by the
alternate input auxiliary processor. You can
specify a value from 1 to 9999.

1

QCLA2FS The default for the FREESIZE parameter.
The value is the amount of virtual storage, in
kilobytes, to be reserved for MVS/TSO
functions that the auxiliary processor uses.
You can specify a value from 64 to 9999.

64

QCLA2SR The default for the SHRSIZE parameter. The
value is the amount of storage, in kilobytes,
to be reserved for the shared variable
processor. You can specify a value from 4 to
9999.

4

QCLA2WS The default for the WSSIZE parameter. The
value is the amount of contiguous virtual
storage, in kilobytes, to be reserved for the
user’s active workspace. You can specify a
value from 32 to 9999.

1024

QCLA2SV The default for the SVMAX parameter. The
value is the maximum number of shared
variables that you can share at the same
time. You can specify a value from 4 to
32,767.

4

Changing Information Center Facility Defaults

606 z/OS V1R4.0 TSO/E Customization

Table 115. Variables for APL2 (continued)

Variable Contents Default Value

QCLA2DG The default for the DEBUG parameter. You
can set the variable to null to use the normal
error recovery for APL2, or to the sum of any
combination of the values representing the
following operands:

v MSG -- use to receive debugging
messages identifying work areas in main
storage as well as all secondary
messages. To use MSG, add 1 to the
value in QCLA2DG.

v ECHO -- use to display all data passed to
the alternate input auxiliary processor. To
use ECHO, add 2 to the value in
QCLA2DG.

v XDUMP -- use to receive a more
extensive dump. The dump may be 200 to
500 pages long, depending on the size of
your workspace. To use XDUMP, add 4 to
the value in QCLA2DG.

v MSGID -- use to display message IDs with
any error messages you receive. To use
MSGID, add 32 to the value in QCLA2DG.

null

QCLA2B1 The default for the first LOADLIB. Each
LOADLIB is a private load library from which
auxiliary processors (supplied with
APNAMES) can be loaded.

null

QCLA2B2 The default for the second LOADLIB. null

QCLA2B3 The default for the third LOADLIB. null

QCLA2B4 The default for the fourth LOADLIB. null

QCLA2B5 The default for the fifth LOADLIB. null

QCLA2A1 The default for the first APNAMES. Each
APNAMES is an auxiliary processor to be
loaded from the private load libraries
(supplied with LOADLIB).

null

QCLA2A2 The default for the second APNAMES. null

QCLA2A3 The default for the third APNAMES. null

QCLA2A4 The default for the fourth APNAMES. null

QCLA2A5 The default for the fifth APNAMES. null

QCLA2A6 The default for the sixth APNAMES. null

QCLA2A7 The default for the seventh APNAMES. null

QCLA2A8 The default for the eighth APNAMES. null

QCLA2E1 The default for the first EXCLUDE. Each
EXCLUDE is an auxiliary processor that is
normally available, but that you do not want
loaded at the start of your session.

null

QCLA2E2 The default for the second EXCLUDE. null

QCLA2E3 The default for the third EXCLUDE. null

QCLA2E4 The default for the fourth EXCLUDE. null

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 607

Table 115. Variables for APL2 (continued)

Variable Contents Default Value

QCLA2E5 The default for the fifth EXCLUDE. null

QCLA2E6 The default for the sixth EXCLUDE. null

QCLA2E7 The default for the seventh EXCLUDE. null

QCLA2E8 The default for the eighth EXCLUDE. null

QCI2PUBQ The default high-level qualifier for a public
workspace. Change the value of this variable
if you installed APL2 with changes to
APLYUOPT.

V

QCI2MIDQ The default mid-level qualifier for
workspaces. Change the value of this
variable if you installed APL2 with changes
to APLYUOPT.

APL2

QCI2LIBQ The high-level qualifier for the catalog
containing the library number and owner for
project libraries. Change the value of this
variable if you installed APL2 with changes
to APLYUOPT.

APL2

Changing the Default Values for APLDI-II
For APLDI-II, you can change the default values for the following variables:

v Variables which define the OS data set names for each of the files for APLDI,
and the names APL uses to load them using)LOAD. Table 116 shows these
variables.

Table 116. APLDI-II Variables for Defining OS Data Set Names

Variable Default Contents

QCIWS The APLDI workspace name for)LOAD. The initial value is 5 APLDI.
QCIDSN The OS data set containing the APLDI workspace. The initial value

is @PL.@W000005.APLDI.
QCIUWS The DIUPDATE workspace name for)LOAD. The initial value is 5

DIUPDATE.
QCIUDSN The OS data set containing the DIUPDATE workspace. The initial

value is @PL.@W000005.DIUPDATE.
QCILOAD The load library containing DICREATE, DIUNLOAD, DISIZE, and

DIUTIL. The initial value is @PL.DI2UTIL.LOADLIB.
QCITITLE The product title. The initial value is APLDI-II.
QCIQTYPE The default file type. The initial value is DIFILE.

Note: The default file type must be DIFILE unless you change
DICREATE.

v Variables which contain the input string APLDI execute when the user selects the
QUERY and UPDATE options on panel ICQCIM00. The input strings contain a
copy command, the name of the function that passes control to the requested
APLDI function, and the name of the query file APL is to use. Table 117 shows
these variables.

Table 117. APLDI-II Variables Containing the Input String

Variable Default Contents

QCI1IN ‘)COPY 51 ICQUPDTS ICFDI1’ ‘ICFINQ0’ ‘&QDSN’
QCI2IN ‘)COPY 51 ICQUPDTS ICFDI2’ ‘ICFUPD0’ ‘&QDSN’

Changing Information Center Facility Defaults

608 z/OS V1R4.0 TSO/E Customization

The workspace 51 ICQUPDTS contains several functions to simplify the
invocation of APLDI. The functions include:
– A termination function to support the PF keys
– The function ICFINQ to pass control to the APLDI function ICQ
– The function ICFUPDATE to simplify updating functions of the workspace 5

DIUPDATE

To reduce the overhead of copying these functions each time APLDI is loaded,
you can copy the functions into a copy of the distributed workspaces. If you copy
the functions, remove the COPY command in each variable.

v The variable which identifies the workspace and the group that provides support
for terminals that do not have APL keyboards. Table 118 shows the variable.

Table 118. APLDI-II Variable Identifying the Workspace and Group for non-APL Keyboards

Variable Default Contents

QCINODAF ‘)COPY 5 DIAUX NODAFGRP’

v Variables which identify the APLDI character set. If you change the default
alphabet, you must change the alphabet specified in the query workspace. The
DIUNLOAD program requires the alphabet to create a sequential file. Table 119
shows the variables.

Table 119. APLDI-II Variables Identifying the Character Set

Variable Default Contents

QCIALPH The APLDI character set. The initial value is
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789/.*-.

QCINALP The length of QCIALPH. The initial value is 40.
QCIALPX Y or N to indicate whether the alphabet has been changed. The

initial value is N.

v Variables used for DICREATE in ICQCIC30. Table 120 shows these variables.

Table 120. APLDI-II Variables for DICREATE

Variable Default Contents

QCIBAD The value used to replace invalid numbers. The initial value is
-32,767.

QCIINDX Y or N to indicate whether to build an index. The initial value is N.
QCIMAXE The maximum number of errors allowed in input records. The initial

value is 100.
QCIREJ Y or N to indicate whether a reject routine is installed. The initial

value is N.
QCINPRT The number of lines after which to print a message. The initial value

is 100.
QCIVOL The volume for query files. The initial value is null.
QCIBLKSZ The default block size. The initial value is 13030.
QCIBLKMN The minimum block size. The initial value is 1600.
QCIBLKMX The maximum block size. The initial value is 13030. If you change

the value of QCIBLKMX, make sure the value you use is divisible by
4.

QCINREC The number of input records to be read at a time. The initial value is
3250.

Changing the Default Values for ADRS-II
For ADRS-II, you can change the default values for the following variables:

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 609

v Variables which define the name and location of the ADRS load module.
Table 121 shows these variables.

Table 121. ADRS-II Variables Defining the Name and Location of the Load Module

Variable Default Contents

QCRWS The ADRS workspace name for)LOAD. The initial value is 51
ADRS2.

QCRDSN The OS data set containing the workspace. The initial value is
@PL.@W000051.ADRS2.

QCRTITLE The product title. The initial value is ADRS-II.

v Variables which contain the input strings that ADRS executes when the user
selects the NEW, OLD, and COPY options on panel ICQCRM00. The input
strings contain a copy command, the name of the function that passes control to
the requested ADRS function, and the name of the query file APL is to use.
Table 122 shows these variables.

Table 122. ADRS-II Variables Containing Input Strings

Variable Default Contents

QCR1IN ‘)COPY 51 ICQUPDTS ICFADRS’ ‘ICFADRSMSG’
QCR2IN ‘)COPY 51 ICQUPDTS ICFADRS’ ‘ICFADRSMSG’
QCR3IN ‘)COPY 51 ICQUPDTS ICFADRS’ ‘)COPY &TLNAME1 DIM DIN

DIW’ ‘ICFADRSMSG’

The workspace 51 ICQUPDTS contains several functions used to simplify the
invocation of ADRS. The functions include:
– A termination function to support the PF keys
– The function ICFADRSMSG

To reduce the overhead of copying these functions each time ADRS is loaded,
you can copy the functions into a copy of the distributed workspaces. If you do
so, remove the COPY command in each variable.

Changing the Default Values for General APL Variables
You can change the default values for the following variables used by more than
one APL program product:

v Variables which control whether users can access workspaces in other user’s
catalogs. If you do not change the default, the Information Center Facility allows
users to copy, create, and save workspaces in other users’ catalogs, as well as
in their own. VS APL, APL2, APLDI, and ADRS normally allow users to copy,
create, and save workspaces only in their own catalogs. To prevent users from
accessing catalogs other than their own while using the Information Center
Facility, change the values of the variables shown in Table 123 to N. The default
value for each variable is Y.

Table 123. Variables Controlling User Access to Other User’s Catalogs

Variable Default Contents

QCICOPYD Y or N to control whether people can copy data from other user’s
catalogs into their own.

QCICOPYW Y or N to control whether people can copy a private workspace from
another user’s catalog into their own.

QCICRE8W Y or N to control whether people can create or save workspaces in
other users’ catalogs.

Changing Information Center Facility Defaults

610 z/OS V1R4.0 TSO/E Customization

v Variables which control the catalog or qualifier that is used in naming
workspaces.

Note: These variables are for VS APL, APLDI, and ADRS only.

If you installed APL with changes to APLYUOPT, make the corresponding
changes to the variables shown in Table 124.

Table 124. Variables Controlling the Catalog or Qualifier for Naming Workspaces

Variable Default Contents

QCIAPUBQ The high-level qualifier for public workspaces. The initial value is
@PL.

QCIAMIDQ The middle-level qualifier for workspaces.
QCIALIBQ The high-level qualifier for the catalog containing the library number

and owner for project libraries.

v The variable which contains the command and parameters that the Information
Center Facility uses to invoke APL. Table 125 describes the variable.

Table 125. Variable Containing the Command and Parameters Used to Invoke APL

Variable Default Contents

QCIAAPL VSAPL AI(10) FR(400) SH(64) SM(OFF) QUIET

If you installed APL with the APL Session Manager and you want the APL
Session Manager to be active, you should:
– Change the parameters in the variable QCIAAPL, and
– Include an APL Session Manager profile data set.

In the variable QCIAAPL, specify SM(ON) and the name of the profile data set,
PR(ICQ). In the profile data set, specify DISPLAY OFF and set PF keys 3 and 15
to issue the command APL IMMEDIATE)CONTINUE HOLD.

Changing Variables for Application Manager
The non-display panel ICQSIEAM contains the variables for customizing Application
Manager functions. You can change the variables to:

v Customize the interaction between system, group, and private levels of
administration

v Specify the high-level qualifier for group table data set names

v Specify the allocation characteristics for group and private table data sets

v Specify the low-level qualifier of the data set used for hierarchy displays

v Control the report width for hierarchy displays

Table 126 on page 612 describes the variables that you can change and lists their
default values.

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 611

Table 126. Variables for Customizing Application Manager Functions

Variable Contents Default Value

QAMINVOK Specifies whether the application invocation
processing is to search any higher-level libraries for
an available version of an application that is marked
unavailable at the current level. Values may be
’YES’ or ’NO’. If an application is unavailable or
unverified, and the value of QAMINVOK is ’NO’,
processing stops and a message is returned
indicating the application is unavailable. The
QAMINVOK variable affects searches for
environments and requests for hierarchy display in
the same manner.

If QAMINVOK is set to ’YES’, unavailable
applications appearing within the hierarchy listing
are marked as unavailable. If QAMINVOK is set to
’NO’, only the first available application is shown.

’NO’

QAMUNACE Specifies whether you can copy or export
unavailable applications from higher levels of
administration. Values may be ’YES’ or ’NO’.

If an attempt is made to copy or export an
unavailable application from a higher level, the
variable QAMUNACE is interrogated. If the value of
QAMUNACE is ’NO’, the action is not allowed and
an error message is displayed.

’NO’

QAMUNVCE Specifies whether you can copy or export unverified
applications from higher levels of administration.
Values may be ’YES’ or ’NO’.

If an attempt is made to copy or export an
unverified application from a higher level, the
variable QAMUNVCE is interrogated. If the value of
QAMUNVCE is ’NO’, the action is not allowed and
an error message is displayed.

’NO’

QAMUNVVW Specifies whether you can view unavailable or
unverified applications from higher levels of
administration. Values may be ’YES’ or ’NO’.

If an attempt is made to view an unavailable or
unverified application from a higher level, the
variable QAMUNVVW is interrogated. If the value of
QAMUNVVW is ’NO’, the action is not allowed and
an error message is displayed.

’NO’

Changing Information Center Facility Defaults

612 z/OS V1R4.0 TSO/E Customization

Table 126. Variables for Customizing Application Manager Functions (continued)

Variable Contents Default Value

QAMRECOV Specifies whether a particular library allocation is to
be saved across several nested or split-screen
sessions for a user. It applies only to data sets
allocated via the Application Manager LIBRARIES
option. Values may be ’YES’ or ’NO’.

Specifying ’YES’ increments the library allocation
count for a single user by one. The count is saved
in table ICQAMUSE. If an error occurs in one
nested or split-screen session the count is
decremented by one. An attempt is made to save
the allocation if the count is not down to zero.

For example, if an error occurs and QAMRECOV is
set to YES, ICQAMUSE is checked. If ICQAMUSE
is greater than one (an allocation is being used by
more than one application), an attempt is made to
save the allocation.

Specifying ’NO’ does not maintain the library
allocation count and does not save ICQAMUSE
after each update. If an error occurs, no attempt is
made to save the allocation, and the allocation may
be lost.

’YES’

The following variables are used to customize the hierarchy display function.

QAMHIER Low-level qualifier of generated report data set for
hierarchy list.

’HIERARCH.LST’

QAMHRECL Width of the hierarchy display. The default value of
80 supports the ability to display 17 levels of
indentation or hierarchy. Eighty is also the maximum
length field that can be fully viewed on most
terminals.

80

The following variable defines the first portion of the group tables data set names.

QAMGPREF High-level qualifier of data sets that contains group
level tables for administrators and users.

’ICQGROUP’

The following customizable values are used in the allocation of new group and private level
table data sets. The strings that are used must be valid specifications to the ALLOCATE
command and must conform to ISPF requirements for its table data sets.

QAMALPVT Allocation characteristics of private application
libraries.

’NEW DSORG(PO)
RECFM(F B)
LRECL(80)
BLKSIZE(3120)
DIR(10)
SPACE(60,15)’

QAMALGRP Allocation characteristics of group application
libraries.

’NEW DSORG(PO)
RECFM(F B)
LRECL(80)
BLKSIZE(3120)
DIR(20)
SPACE(30,10)’

Changing Information Center Facility Defaults

Chapter 45. Preparing the Information Center Facility for Use 613

Making Installation Changes Available
When you are making changes, you must decide in what data set to put the
changes. If you put the changes in installation data sets instead of IBM-supplied
data sets or if you add installation services or products, you must decide how to
concatenate those files with the IBM files.

Deciding the Data Set to Use for Changes
You customize the Information Center Facility by changing the elements described
in “Information Center Facility Structure” on page 588. You can make those changes
available by putting them in either the IBM-supplied data sets or in
installation-supplied data sets. Be aware that if you place your changes in the
IBM-supplied data sets, customizing future releases becomes more difficult.
Customization then entails extracting your changes from the original data sets and
adding them to the new data sets.

If you want your changed elements to reside in any data sets already allocated in
the LOGON procedure or start-up CLIST/REXX exec, you do not have to change
the concatenation in any installation LOGON procedures or start-up CLISTs/REXX
execs. However, we recommend that you name these elements using a different
naming convention to distinguish the installation-supplied members from
IBM-supplied members. For information about the IBM-naming conventions for
Information Center Facility elements, see “Using the ICF Naming Conventions” on
page 655.

If you want your changes to reside in data sets that are not already in the data set
concatenation in the installation LOGON procedure or start-up CLIST/REXX exec,
you have to change the concatenation so users can access the changes you make.
Again, you might want to use different member names, but if you decide not to, you
must concatenate installation-supplied data sets ahead of the IBM-supplied data
sets. If you use different names for the installation-supplied members, you must
concatenate the installation-supplied data sets to the IBM-supplied data sets, but
the order is unimportant.

When concatenating data sets, check that they all have the same record format.

IBM distributes the CLIST and REXX library, ICQ.ICQCCLIB, with a RECFM of FB
and an LRECL of 80. Only CLIST and REXX libraries with the same characteristics
should be concatenated. If your production CLIST/REXX data set(s) has a RECFM
of VB, run the CLIST ICQSMC00, a member of SYS1.SAMPLIB, against the
CLIST/REXX libraries during installation to convert the libraries to a RECFM of VB.

Concatenating Installation-Developed Products or Services
There are two ways to control access to libraries required by applications. If you
define the libraries using the library function of Application Manager, the libraries
required by an application will be dynamically allocated when a user selects that
application. Application Manager accesses the libraries using the ISPF LIBDEF
service or the TSO/E ALTLIB command, or by dynamic allocation. See z/OS TSO/E
Administration for more information about using the Application Manager library
function.

If you want to permanently allocate the libraries required by an application, you can
use either LOGON procedures, or start-up CLISTs/REXX execs. The following table
lists the advantages and disadvantages of the different ways you can concatenate
the libraries in LOGON procedures or start-up CLISTs/REXX execs.

Making Installation Changes Available

614 z/OS V1R4.0 TSO/E Customization

Concatenation Sequence Advantages Disadvantages

1. IBM-supplied products or
services

2. Installation-developed
products or services
(system-wide, group, and
user)

v SMP keeps track of all
modifications to IBM
libraries

v Only one copy of each IBM
panel exists

v Control over the primary
option menu is maintained.

v Must be familiar with SMP

v Modifying IBM-supplied
libraries makes the next
installation a little more
time-consuming.

1. Installation-developed
products or services
(system-wide)

2. IBM-supplied products or
services

3. Installation-developed
products or services
(group and user)

v Need not be familiar with
SMP

v No modifications to
IBM-supplied libraries

v Control over the primary
option menu is maintained.

v Difficult to implement more
than one set of user
models.

1. Installation-developed
products or services
(system-wide and group)

2. IBM-supplied products or
services

3. Installation-developed
products or services
(user)

v Need not be familiar with
SMP.

v No modifications to
IBM-supplied libraries.

v Control over the primary
option menu is not
maintained.

v System-wide modules can
be overridden inadvertently.

1. Installation-developed
product or services
(system-wide, group, and
user)

2. IBM-supplied products or
services

v Need not be familiar with
SMP.

v Total user freedom.

v Lack of consistency
throughout the installation.

Defining Printers to the Information Center Facility
Before Information Center Facility users can print news items, course abstracts, or
use the hard copy selection on the Information Center Facility Utilities panel,
printers must be defined to the Information Center Facility support function. See
z/OS TSO/E Administration for information about defining printers to the Information
Center Facility.

Making Performance Decisions for Names Service
You, the system programmer, can change the QCASTAT variable for the names
service to indicate whether the names directory tables are to remain open after they
are initially opened or are closed after each use and reopened when needed again.
For information about how to change QCASTAT, see Table 108 on page 595.
Information Center Facility users can make the same choice on a panel in the
names services. By default, the names directories are open and kept in virtual
storage only until users are finished accessing them.

Specifying that the directories remain open:

v Reduces the I/O overhead of opening and closing the directories each time a
user accesses them.

Making Installation Changes Available

Chapter 45. Preparing the Information Center Facility for Use 615

v Simplifies directory processing by applications that use the names service
because the applications do not have to open and close the tables each time
they access them.

However leaving the directories open:

v Requires additional user storage above 16 MB in virtual storage. To estimate the
amount of storage needed for the names service, see “Storage Required by
Names Service”.

v Prevents users from always obtaining the directory they want:

– Users may not obtain the latest changes the administrator makes to the
master directory. To obtain the latest changes, users must close and open the
directory.

– When users request just the private directory, they receive both the private
and the merged directory.

– When users request the master directory, they may receive the merged
directory, and vice versa.

Note: If your system is storage-constrained, do not specify that the names tables
are to remain open because leaving them open could degrade performance.

Estimating Space Requirements
If your installation has a storage-constraint problem, you may want to estimate
some of the storage requirements for the Information Center Facility. The following
topics give information that will help you estimate your storage requirements for the
names service and for Application Manager.

Note: Applications containing large numbers of panels may cause CLIST storage
problems.

Storage Required by Names Service
The Information Center Facility names service maintains a system names directory
and users’ private names directories. These names directories help users locate
other users, and assist them in transmitting messages through the system.

The names service keeps directory information in ISPF tables. There are two types
of table entries: single user entries, and group entries that apply to more than one
user. The size and type of an entry can vary, along with the total number of
directory entries. As a result, the total size of the personal and master directories
can vary. The maximum size for a single user entry is 715 bytes, with the average
size being 350-400 bytes. Group entries consist of 300 bytes per group, plus an
additional 15 bytes per group member. A copy of the user’s personal directory table
and a copy of the concatenated personal and master directory tables reside in
private area virtual storage. In addition to the storage for individual and group
entries, each copy requires 1K bytes of additional virtual storage.

When users update the master directory, the names service requires an additional
table to hold the updates. Each update requires a maximum of 800 bytes, with the
average size being 400-450 bytes. A single table holds the updates for all users and
empties as the administrator processes the updates. The total size of the additional
table depends on the rate at which users update the master directory and the rate
at which the administrator processes those updates. A copy of the table resides in
private area virtual storage, requiring 1K bytes of virtual storage, in addition to the
storage for individual and group entries.

Performance Decisions for Names Service

616 z/OS V1R4.0 TSO/E Customization

The names table and all ISPF tables are loaded above 16 MB in virtual storage.

Storage Required by Application Manager
The Information Center Facility Application Manager stores data in tables that it
reads into the extended private area above 16 MB in virtual storage. The average
amount of storage required to invoke an application and store the corresponding
tables follows:

Application Average Amount of Storage

Panel 21 K bytes

Function 60 K bytes

Environment 5 K bytes

If group and/or private levels of application definitions are active at invocation time,
increased storage is required for those Application Manager tables.

Estimating Space Requirements

Chapter 45. Preparing the Information Center Facility for Use 617

Estimating Space Requirements

618 z/OS V1R4.0 TSO/E Customization

Chapter 46. Customizing the Information Center Facility

Adding a Product or Service 620
General Considerations for Creating Installation Files 621
Contents of a Panel Installation File. 622
Contents of a Function Installation File. 625
Contents of an Environment Installation File. 631
Example Using Installation Files when Adding a Service 635
Upgrading Installation Files 639
Mass Installation File Processing 639

Deleting a Product or Service 640
Changing a Product or Service 641
Creating or Tailoring Application Definitions 641
Invoking an Application . 641

Multiple Level Applications 642
Hierarchy Display . 644

Modifying ICF Start-up and Termination Processing 644
Modifying Start-Up Processing. 645
Modifying Termination Processing 646

Adding Commands to the Command Table 646
Resynchronizing the Enrollment Default Profiles 647
Writing an Exit for ADRS . 647

Functional Description . 647
TSO/E-Supplied Exit . 647
Return Specifications . 647
Programming Considerations 647

Writing an Exit for the ICF Names Service 647
Functional Description . 647
TSO/E-Supplied Exit . 648
Programming Considerations 648
Variable Descriptions . 648

Writing Exits for Application Manager 650
Functional Description . 650
TSO/E-Supplied Exits . 650
Entry Specifications. 650
Parameter Descriptions . 651
Return Specifications . 654
Programming Considerations 654

Using the ICF Naming Conventions 655
Naming Conventions: Applications, Panels, CLISTs, REXX Execs,

Skeletons, Tables, and Load Modules 657
Naming Conventions: Application Definition Tables and Installation Files 658
Naming Conventions: Tutorial Panels 659
Naming Conventions: Help for Data Entry Panels and Menus 661
Naming Conventions: Messages 662
Naming Conventions: Help for Messages. 663

Application, Panel, CLIST, and REXX Exec Hierarchy 663
Menu, Data Entry Panel, and Help Panel Associations 702

This chapter describes the following ways that you can customize the Information
Center Facility to suit the needs of your installation:
v Adding, deleting, and changing a product or service
v Creating or tailoring application definitions
v Invoking an application

© Copyright IBM Corp. 1988, 2002 619

v Modifying Information Center Facility start-up and termination processing
v Adding commands to the command table
v Resynchronizing the enrollment default profiles
v Writing exits for ADRS, names service, and Application Manager

To help you know where to make your changes, the following reference information
is included at the end of this chapter:
v Naming conventions for Information Center Facility elements
v Application, panel, and CLIST/REXX hierarchy
v Functional and help panel association

If you are unfamiliar with the Information Center Facility, you may want to read the
reference information first to get an overview of the organization of the Information
Center Facility. If you are familiar with the Information Center Facility, you may want
to glance at the reference information from time to time as you read the other
topics. The reference information starts with “Using the ICF Naming Conventions”
on page 655.

Adding a Product or Service
You can add any product or service to the Information Center Facility provided it
can run under the ISPF dialog manager and TSO/E. For information about writing
programs that run under ISPF and TSO/E, see z/OS ISPF Services Guide. To use
Application Manager to add products or services to the Information Center Facility,
you must describe the product or service in terms of its applications. For a
description of the applications that you can use, see “Information Center Facility
Structure” on page 588.

Through Application Manager panels, the Information Center Facility administrator,
or more simply the administrator, can use one of the following methods to add a
product or service:

1. Provide information on several Application Manager panels to define the
environments, functions, and panels associated with the product or service

2. Load installation files that contain the information necessary to define the
environments, functions, and panels associated with the product or service.

From the Information Center Facility administrator’s point of view, the second
method, specifying an installation file, is simpler than the first because it involves
the use of fewer panels. However, if an installation file does not exist, the system
programmer must create it using the required format. For information about creating
installation files, see “General Considerations for Creating Installation Files” on
page 621.

An administrator can optionally use the mass installation file processing function to
add products and services. This function allows you to install multiple installation
files at one time using a batch method.As each installation file is successfully
processed, the installed application is automatically verified and marked as
available in the Application Manager tables.

TSO/E also provides an upgrade function that lets administrators distribute updates
to application definitions that are used across several locations and that may have
local modifications. Instead of sending a complete installation file, administrators
can send an upgrade file containing only the changes. Using an upgrade file
minimizes the possibility of the changes conflicting with any local modifications.

620 z/OS V1R4.0 TSO/E Customization

When adding a product or service, the system programmer may have to assist the
administrator as follows:

v If installation files do not exist, the system programmer may need to supply the
information that the administrator must enter on the Application Manager panels.
z/OS TSO/E Administration, contains sample blank information sheets that
administrators can photocopy and give to system programmers for that purpose.

The system programmer can use the on-line help and tutorial panels for
Application Manager to learn about the Application Manager. In addition, the
fields on the Application Manager panels correspond directly to the entries in the
installation files. For a description of the entries in the installation files, refer to
“Contents of a Panel Installation File” on page 622, “Contents of a Function
Installation File” on page 625, and “Contents of an Environment Installation File”
on page 631.

v If installation files do exist, the system programmer must give their names to the
administrator.

The next topics provide the following information about creating installation files:
v General considerations for creating installation files
v Format of a panel installation file
v Format of a function installation file
v Format of an environment installation file
v Example using installation files when adding a service

General Considerations for Creating Installation Files
You can create installation files as sequential data sets or members of a partitioned
data set. The records can be fixed or variable format. Application Manager loads up
to 71 columns of data per record and ignores any columns that contain line
numbers. Start each entry in an installation file with an asterisk (*), followed by the
name of the entry and its value. Separate the name of the entry and its value with
one or more blanks. Depending on the entry, the value appears in the same record
or the next record. If you continue the value of an entry in the next record, column 1
must be blank.

The first three entries in an installation file are requiredand must appear in the
following order:
*Application Manager INSTALLATION FILE
*SYSTEM MVS TSO/E
*PANEL or *FUNCTION or *ENVIRONMENT

Subsequent entries can appear in any order in an installation file and are optional in
the installation file. However, Application Manager requires some of the subsequent
entries and prompts the administrator for those entries when the administrator loads
and verifies the file.

Comments can appear anywhere in an installation file. They start with /* in
columns 1 and 2.

Panel and function installation files allow an INVOKING_PANEL entry, which
integratesthe application with existing panels. The INVOKING_PANEL entry allows
you to specify the panel on which the application will be an option, the character(s)
used to select the option, and the location on the panel where the option should
appear.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 621

When the installation file is loaded, each INVOKING_PANEL entry and its
accompanying AFTER or POSITION entry is verified against existing table
information as follows:

v The specified invoking panel must exist on the same administrative level as the
administrator performing the installation. The panel does not have to be marked
as available.

v The specified selection character(s) must be unique among the existing option
selection characters on the invoking panel.

v If you use the AFTER entry to place the option on the invoking panel, the
application name specified must represent an existing option on the invoking
panel. See “Contents of a Panel Installation File” for a description of the
installation file entry INVOKING_PANEL.

If the INVOKING_PANEL entry verification fails, the entry is not processed and the
appropriate error message is displayed on the screen. Processing continues.

After the installation file has been loaded, the VERIFY option must be selected
beforethe new application can be made available to users.

Contents of a Panel Installation File
The following figure shows the contents of a panel installation file.

*Application Manager INSTALLATION FILE
*SYSTEM system name
*PANEL
*PANEL_NAME panel name
*LANGUAGE language
*KEYWORD keyword
*PANEL_TITLE panel title
*PRIMARY_PANEL Y/N
*MODEL_ISPF_PANEL panel ID
*INVOKING_PANEL panel-name
panel-appl-language
selection-id
**
*********** Only one of the following two entries can be used.
**
*AFTER application-name
appl-language

OR

*POSITION number
*----------
*ADMIN_DESC administrator description
*USER_DESC_1 first line of user description
*USER_DESC_2 second line of user description
*STARTUP_FUNCTION start-up function name
*TERM_FUNCTION termination function name
*OPTION option ID
option-name
language
*HELP_TEXT
first line of help text...
last line of help text

Figure 101. Format of a Panel Installation File

Adding a Product or Service

622 z/OS V1R4.0 TSO/E Customization

A description of each panel-installation-file entry follows:

*Application Manager INSTALLATION FILE
identifies the file as an installation file. Application Manager does not load the
installation file unless the first entry is *Application Manager INSTALLATION
FILE.

*SYSTEM system name
identifies the system on which the installation file is to be loaded and run.
system name contains the characters MVS TSO/E. Application Manager does
not load the installation file unless the second entry is *SYSTEM MVS TSO/E.

*PANEL
identifies the type of installation file, in this case panel. Application Manager
does not load the installation file unless the third entry is *PANEL, *FUNCTION,
or *ENVIRONMENT.

*PANEL_NAME panel name
identifies the panel installation file. panel name consists of 1-12 characters, the
first of which must be alphabetic (A-Z) or one of the special characters ($,#,@).
The remaining characters can be any combination of alphabetic, numeric (0-9),
or one of the special characters ($,#,@). Application Manager requires a panel
name when defining a panel.

*LANGUAGE language
specifies the language used on the panel. language can be up to 8 characters
in length. The QAMLANGL variable defined in the ICQENVIRON application
contains alist of the languages that are valid in ISPF. The non-English versions
of the Information Center Facility are available after the English version and
must be ordered separately. Therefore, non-English versions of the Information
Center Facility may not be available at your installation.

Your installation can define a default value for LANGUAGE using the ISPF
ZLANG variable.If the installation file does not contain an entry for LANGUAGE,
Application Manager uses the value in ZLANG. For information about ZLANG,
see z/OS ISPF Planning and Customizing.

*KEYWORD keyword
provides a short descriptive name for a selectable panel. The keyword is
displayed on menus and users can type it on the Option line to select the
associated panel. keyword consists of 1-11 characters, the first of which must
be alphabetic (A-Z). The remaining characters can be any combination of
alphabetic, numeric (0-9), or one of the special characters ($,#,@). Application
Manager requires a keyword when defining a panel.

*PANEL_TITLE panel title
specifies the title that appears at the top of the panel. panel title can be up to
50 characters in length. Application Manager requires panel title when defining
a panel.

*PRIMARY_PANEL Y/N
indicates whether the panel is a primary panel.A primary panel is the starting
point for selecting options and the panel to which you return after issuing the
ISPF RETURN command. ISPF uses the primary panel as the base for the
jump function.The jump function enables you to go to any option on the most
recently displayed primary panel by typing its option ID preceded by an equal
sign in any field on a subsequent panel.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 623

Set PRIMARY_PANEL to Y to indicate that the panel is a primary panel or N to
indicate that it is not a primary panel. If the installation file does not contain
*PRIMARY_PANEL, Application Manager assumes that the panel is not a
primary panel.

*MODEL_ISPF_PANEL panel ID
specifies the panel ID of an existing ISPF panel to use as a model for a
menu.The ISPF panel acts as a framework upon which to place the directions,
options, keywords, and descriptions. If the installation file does not contain
*MODEL_ISPF_PANEL, Application Manager assumes that the model panel is
ICQAMED1.

*INVOKING_PANEL panel name
panel-appl-language
selection-id

specifies that the application is to automatically become an option on an
existing panel.

panel name follows INVOKING_PANEL in the first record of an entry and
specifies the name of an existing panel on which to install the application.

panel-appl-language appears in the next record, and specifies the language of
the existing panel. The language of the panel must be specified because an
installation can have two panels with the same name, but in different
languages.

selection-id appears on the invoking panel for the installed application in the
next record of the entry. selection-id specifies the selection character(s) that is
to appear on the invoking panel for the installed application.

The INVOKING_PANEL entry can appear as many times as desired in an
installation file, causing the installed application to become an option on several
panels. Each INVOKING_PANEL entry must be accompanied by either an
AFTER entry or a POSITION entry.

*AFTER application name
appl-language

specifies that the panel is to be placed as an option after an existing option on
the invoking panel.

application name follows AFTER in the first record of an entry and specifies the
name of an existing application.

appl-language appears in the next record and specifies the language of the
existing application. This entry is valid only if it is immediately preceded by an
INVOKING_PANEL entry.

*POSITION number
specifies the numeric position, among the existing options, in which to place the
panel being installed.

A specified POSITION argument causes existing options equal to and greater
than the number specified to be advanced (moved down) one position. If the
POSITION argument is greater than the number of existing options, the panel
being installed is placed last on the invoking panel. This entry is valid only if
immediately preceded by an INVOKING_PANEL entry.

*ADMIN_DESC administrator description
provides a short description of the application that administrators see when
applications are listed. administrator description can be up to 38 characters in
length. Application Manager requires the administrator description when defining
a panel.

Adding a Product or Service

624 z/OS V1R4.0 TSO/E Customization

*USER_DESC_1 first line of user description
*USER_DESC_2 second line of user description

provides the first and, if needed, the second line of the description of an
application that appears after the keyword on a menu that the users see. Each
line can be up to 59 characters in length. Application Manager requires the first
line of user description when defining a panel.

*STARTUP_FUNCTION startup function name
provides the name of a function to be invoked before the panel is displayed.
startup function name can be up to 12 characters in length.

*TERM_FUNCTION termination function name
provides the name of a function to be invoked when the user presses the END
PF key after the panel is displayed. termination function name can be up to 12
characters in length.

*OPTION option ID
option name
language

identifies each option that users can select from the panel being added.

option ID, which follows OPTION in the first record of an entry, is displayed on
the menu being defined. Users can type option ID on the Option line of the
panel to select the associated function or panel. option ID contains 1-3
characters and can be any combination of alphabetic (A-Z), numeric (0-9), or
one of the special characters ($,#,@).

option name, which appears in the next record, specifies the function or panel
to be invoked when a user selects this option. option name can be up to 12
characters long.

language, which appears in the next record of the entry, specifies the language
of the function or panel. language can be up to 8 characters long.

*HELP_TEXT
first line of help text...

last line of help text
provides a short description of the panel being added. The text is part of the
help information that users see when they choose the DESCRIBE option for a
panel that contains this panel as an option. Each line of the help text can be up
to 58 characters in length.

Contents of a Function Installation File
The following figure shows the contents of a function installation file.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 625

*Application Manager INSTALLATION FILE
*SYSTEM system-name
*FUNCTION
*FUNCTION_NAME function-name
*LANGUAGE language
*KEYWORD keyword
*ENVIRONMENT_NAME environment-name
*ISPF_APPL_ID ISPF-application-id
*INVOKING_PANEL panel-name
panel-appl-language
selection-id
**
*********** Only one of the following two entries can be used.
**
*AFTER application-name
appl-language

OR

*POSITION number
*----------
*ADMIN_DESC administrator description
*USER_DESC_1 first line of user description
*USER_DESC_2 second line of user description
*VARIABLE variable-name
description
value line 1...
value line n
*LIBRARY ddname type
data set 1...
data set n
*INIT_COMMAND
initialization command line 1...
initialization command line n
*INVOCATION_COMMAND
invocation command line 1...
invocation command line n

Figure 102. Format of a Function Installation File (Part 1 of 2)

*TERM_COMMAND
termination command line 1...
termination command line n
*ISPTUTOR_PANEL tutorial-panel ID
*TUTORIAL_COMMAND
tutorial command line 1
tutorial command line 2
*HELP_TEXT
first line of help text
second line of help text...
last line of help text

Figure 102. Format of a Function Installation File (Part 2 of 2)

Adding a Product or Service

626 z/OS V1R4.0 TSO/E Customization

A description of each function-installation-file entry follows:

*Application Manager INSTALLATION FILE
identifies the file as an installation file. Application Manager does not load the
installation file unless the first entry is *Application Manager INSTALLATION
FILE.

*SYSTEM system name
identifies the system on which the installation file is to be loaded and run.
system name contains the characters MVS TSO/E. Application Manager does
not load the installation file unless the second entry is *SYSTEM MVS TSO/E.

*FUNCTION
identifies the type of installation file, in this case function. Application Manager
does not load the installation file unless the third entry is *PANEL, *FUNCTION,
or *ENVIRONMENT.

*FUNCTION_NAME function name
identifies the function installation file. function name consists of 1-12 characters,
the first of which must be alphabetic (A-Z) or one of the special characters
($,#,@). The remaining characters can be any combination of alphabetic,
numeric (0-9), or special characters. Application Manager requires a function
name when defining a function.

*LANGUAGE language
specifies the language used in the function. language can be up to 8 characters
in length. The QAMLANGL variable defined in the ICQENVIRON application
contains alist of the languages that are valid in ISPF. The non-English versions
of the Information Center Facility are available after the English version and
must be ordered separately. Therefore, non-English versions of the Information
Center Facility may be unavailable at your installation.

Your installation can define a default value for LANGUAGE using the ISPF
ZLANG variable.If the installation file does not contain an entry for LANGUAGE,
Application Manager uses the value in ZLANG. For information about ZLANG,
see z/OS ISPF Planning and Customizing.

*KEYWORD keyword
provides a short descriptive name for a selectable function. The keyword is
displayed on menus and users can type it on the Option line to select the
associated function. keyword consists of 1-11 characters, the first of which must
be alphabetic (A-Z). The remaining characters can be any combination of
alphabetic, numeric (0-9) or one of the special characters ($,#,@). Application
Manager requires keyword when defining a function.

*ENVIRONMENT_NAME environment name
specifies the name of an existing environment that supports this function.
environment name can be up to 12 characters in length.

*ISPF_APPL_ID ISPF application ID
specifies the prefix identifier that ISPF is to use for the user profile, edit profile,
and commands associated with this function. ISPF application ID consists of 1-4
characters, the first of which must be alphabetic. The remaining characters can
by any combination of alphabetic (A-Z), numeric (0-9), or one of the special
characters ($,#,@).

*INVOKING_PANEL panel name
panel-appl-language
selection-id

specifies that the function is to automatically become an option on an existing
panel.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 627

panel name follows INVOKING_PANEL in the first record of an entry and
specifies the name of an existing panel on which to install the function.

panel-appl-language appears in the next record, and specifies the language of
the existing panel. The language of the panel must be specified because an
installation can have two panels with the same name, but in different
languages.

selection-id appears on the invoking panel for the installed application in the
next record of the entry. selection-id specifies the selection character(s) that is
to appear on the invoking panel for the installed application.

The INVOKING_PANEL entry can appear as many times as desired in an
installation file, causing the installed function to become an option on several
panels. Each INVOKING_PANEL entry must be accompanied by either an
AFTER entry or a POSITION entry.

*AFTER application name
appl-language

specifies that the function is to be placed as an option after an existing option
on the invoking panel.

application name follows AFTER in the first record of an entry and specifies the
name of an existing application.

appl-language appears in the next record and specifies the language of the
existing application. This entry is valid only if it is immediately preceded by an
INVOKING_PANEL entry.

*POSITION number
specifies the numeric position, among the existing options, in which to place the
function being installed.

A specified POSITION argument causes existing options equal to and greater
than the number specified to be advanced (moved down) one position. If the
POSITION argument is greater than the number of existing options, the function
being installed is placed last on the invoking panel. This entry is valid only if
immediately preceded by an INVOKING_PANEL entry.

*ADMIN_DESC administrator description
provides a short description of the application that administrators see when
applications are listed. administrator description can be up to 38 characters in
length. Application Manager requires the administrator description when defining
a function.

*USER_DESC_1 first line of user description
*USER_DESC_2 second line of user description

provides the first and, if needed, the second line of the description of an
application that appears after the keyword on a menu that the user sees. Each
line can be up to 59 characters in length. Application Manager requires the first
line of user description when defining a function.

*VARIABLE variable name
description
value line 1...

value line n
identifies variables that the function requires. Any variable that the function
requires must be defined in the function application or the environment
application for the function.

Adding a Product or Service

628 z/OS V1R4.0 TSO/E Customization

The variable name identifies the variable and can be up to 8 characters in
length.

The variable description provides a short description of the variable and can be
up to 64 characters in length.

value line 1 through value line n specify the value of the variable. Application
Manager appends the information from data columns 2 through 72 (fixed
format) of each line to form the value, which can be up to 923 characters in
length. If the records that contain the data have line numbers, they are ignored.
You cannot define variables in terms of other variables.

Considerations for DBCS Data: Because double-byte character set (DBCS)
data takes up from 2 to 4 bytes for every character, the installation may need to
add place holder bytes at the end of the variable value line. Application
Manager recognizes X'00' as the place holder value.

For example, to change a blank to X'00', enter on the COMMAND line:
c ’ ’ x’00’

Place the cursor on the character you want to change (usually between
columns 2 and 72) and press the Enter key.

*LIBRARY ddname type
data set 1...

data set n
identifies the data set(s) that is to be allocated under the specified ddname. The
order in which you specify the data set names in the subsequent records
determines the concatenation order.

ddname specifies the ddname under which the data sets are to be
concatenated. ddname can be up to 8 characters in length.

type specifies the library type. Valid values are:

ISPF ISPF files

CLIST CLIST files

EXEC REXX files

INPUT Any other type of input file

During the process of allocation, if an INPUT type library has no
current allocations, its ddname and list of data sets will be
allocated. The allocation will specify SHR, which allows shared
access to the library and data sets.If another application is
invoked using the same INPUT library, the allocation is
performed only when the list of data sets for both applications
match.

When the library type is INPUT, and the data set information
does not match, the second application is not invoked. An error
message appears stating that the requested function cannot be
invoked because the required files are in use.

OUTPUT Any other type of output file

Only one data set can be specified for the OUTPUT type
library.The allocation will specify OLD, which allows exclusive
access to the library and data set. If an OUTPUT type library is

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 629

currently allocated, the function cannot be invoked because the
required files are in use. If OUTPUT is entered and more than
one data set is specified, an error message appears.

data set 1 through data set n specify the data sets in the library. Each can be
up to 46 characters in length. If you specify the high-level qualifier as part of the
data set name, enclose the data set name in single quotes. If you do not
enclose the data set name in quotes, the user’s TSO/E prefix is used as the
high-level qualifier.

*INIT_COMMAND
initialization command line 1...

initialization command line n
identifies the panels, commands, or programs that execute before the function
is invoked. The INIT_COMMAND uses the ISPF SELECT service to invoke one
of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

initialization command line 1 through initialization command line n (where n is 1,
2, or 3) form the INIT_COMMAND. Application Manager appends data from
columns 2 through 72 (fixed format) or from columns 10 through 80 (variable
format) of each line to form the command, which can be up to 213 characters in
length. For information about the SELECT service, see z/OS ISPF Services
Guide.

Note: Do not use variables in command text because nulls will be substituted
for these variables.

*INVOCATION_COMMAND
invocation command line 1...

invocation command line n
identifies the panels, commands, or programs that invoke the function. If a
function does not have an INVOCATION_COMMAND, its environment must
have one. The INVOCATION_COMMAND uses the ISPF SELECT service to
invoke one of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

invocation command line 1 through invocation command line n (where n is 1, 2,
or 3) form the INVOCATION_COMMAND. Application Manager appends data
from columns 2 through 72 (fixed format) or from columns 10 through 80
(variable format) to form the command, which can be up to 213 characters in
length. For information about the SELECT service, see z/OS ISPF Services
Guide.

Note: Do not use variables in command text because nulls will be substituted
for these variables.

*TERM_COMMAND
termination command line 1

Adding a Product or Service

630 z/OS V1R4.0 TSO/E Customization

...

termination command line n
identifies the panels, commands, or programs that execute after the function
terminates. The TERM_COMMAND uses the ISPF SELECT service to invoke
one of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

termination command line 1 through termination command line n (where n is 1,
2, or 3) form the TERM_COMMAND. Application Manager appends data from
columns 2 through 72 (fixed format) or from columns 10 through 80 (variable
format) to form the command, which can be up to 213 characters in length. For
information about the SELECT service, see z/OS ISPF Planning and
Customizing.

Note: Do not use variables in command text because nulls will be substituted
for these variables.

*ISPTUTOR_PANEL tutorial panel ID
*TUTORIAL_COMMAND

tutorial command line 1
tutorial command line 2

identify the way that the tutorial is to be invoked. ISPTUTOR_PANEL and
TUTORIAL_COMMAND are mutually exclusive. If you specify both, Application
Manager uses the first.

tutorial panel ID, which identifies the first tutorial panel, can be up to 8
characters in length.

tutorial command line 1 and tutorial command line 2 form the tutorial command
used to invoke the tutorial. Application Manager appends the data from columns
2 through 72 (fixed format) or from columns 10 through 80 (variable format) to
form the command, which can be up to 142 characters in length.

*HELP_TEXT
first line of help text...

last line of help text
provides a short description of this function that is being added. The text is part
of the help information that users see when they choose the DESCRIBE option
for a panel that contains this function as an option. Each line of the help text
can be up to 58 characters in length.

Contents of an Environment Installation File
The following figure shows the contents of an environment installation file.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 631

A description of each environment-installation-file entry follows:

*Application Manager INSTALLATION FILE
identifies the file as an installation file. Application Manager does not load the
installation file unless the first entry is *Application Manager INSTALLATION
FILE.

*SYSTEM system name
identifies the system on which the installation file is to be loaded and run.
system name contains the characters MVS TSO/E. Application Manager does
not load the installation file unless the second entry is *SYSTEM MVS TSO/E.

*ENVIRONMENT
identifies the type of installation file, in this case environment. Application
Manager does not load the installation file unless the third entry is *PANEL,
*FUNCTION, or *ENVIRONMENT.

*ENVIRONMENT_NAME environment name
identifies the environment installation file. environment name consists of 1-12
characters, the first of which must be alphabetic (A-Z) or one of the special
characters ($,#,@). The remaining characters can be any combination of
alphabetic, numeric (0-9), or one of the special characters ($,#,@). Application
Manager requires an environment name when defining an environment.

*LANGUAGE language
specifies the language used in the environment. language can be up to 8
characters in length. The QAMLANGL variable defined in the ICQENVIRON
application contains alist of the languages that are valid in ISPF. The
non-English versions of the Information Center Facility are available after the

*Application Manager INSTALLATION FILE
*SYSTEM system-name
*ENVIRONMENT
*ENVIRONMENT_NAME environment-name
*LANGUAGE language
*ENVIRONMENT_DESC environment-description
*ISPF_APPL_ID ISPF-application-id
*VARIABLE variable-name
description
value line 1...
value line n
*LIBRARY ddname type
data set 1...
data set n
*INIT_COMMAND
initialization command line 1...
initialization command line n
*INVOCATION_COMMAND
invocation command line 1...
invocation command line n
*TERM_COMMAND
termination command line 1...
termination command line n

Figure 103. Format of an Environment Installation File

Adding a Product or Service

632 z/OS V1R4.0 TSO/E Customization

English version and must be ordered separately. Therefore, non-English
versions of the Information Center Facility may not be available at your
installation.

Your installation can define a default value for LANGUAGE using the ISPF
ZLANG variable.If the installation file does not contain an entry for LANGUAGE,
Application Manager uses the value in ZLANG. For information about ZLANG,
see z/OS ISPF Planning and Customizing.

*ENVIRONMENT_DESC environment description
provides a short description of the application that administrators see when
applications are listed. environment description can be up to 38 characters in
length. Application Manager requires environment description when defining an
environment.

ISPF_APPL_ID ISPF application ID
specifies the prefix identifier that ISPF is to use for this environment. ISPF
application ID consists of 1-4 characters, the first of which must be alphabetic.
The remaining characters can by any combination of alphabetic (A-Z), numeric
(0-9), or one of the special characters ($,#,@).

*VARIABLE variable name
description
value line 1...

value line n
identifies variables that one or more functions require.

The variable name identifies the variable and can be up to 8 characters in
length.

The variable description provides a short description of the variable and can be
up to 64 characters in length.

value line 1 through value line n specify the value of the variable. Application
Manager appends the information from data columns 2 through 72 (fixed
format) of each line to form the value, which can be up to 923 characters in
length. If the records that contain the data have line numbers, they are ignored.
You cannot define variables in terms of other variables.

Considerations for DBCS Data: Because double-byte character set (DBCS)
data takes up from 2 to 4 bytes for every character, the installation may need to
add place holder bytes at the end of the variable value line. Application
Manager recognizes X'00' as the place holder value.

For example, to change a blank to X'00', enter on the COMMAND line:
c ’ ’ x’00’

Place the cursor on the character you want to change (usually between
columns 2 and 72) and press the Enter key.

*LIBRARY ddname type
data set 1...

data set n
identifies the data set(s) that is to be allocated under the specified ddname. The
order in which you specify the data set names in the subsequent records
determines the concatenation order.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 633

ddname specifies the ddname under which the data sets of the library are
concatenated. ddname can be up to 8 characters in length.

type specifies the library type. Valid values are:

ISPF ISPF files

CLIST CLIST files

EXEC REXX files

INPUT Any other type of input file

During the process of allocation, if an INPUT type library has no
current allocations, its ddname and list of data sets will be
allocated. The allocation will specify SHR, which allows shared
access to the library and data sets.If another application is
invoked using the same INPUT library, the allocation is
performed only when the list of data sets for both applications
match.

When the library type is INPUT, and the data set information
does not match, the second application is not invoked. An error
message appears stating that the requested function cannot be
invoked because the required files are in use.

OUTPUT Any other type of output file

Only one data set can be specified for the OUTPUT type library.
The allocation will specify OLD, which allowsexclusive access
to the library and data set. If an OUTPUT type library is
currently allocated, the function cannot be invoked because the
required files are in use. If OUTPUT is entered and more than
one data set is specified, an error message appears.

data set 1 through data set n specify the data sets in the library. Each can be
up to 46 characters in length. If you specify the high-level qualifier as part of the
data set name, enclose the data set name in single quotes. If you do not
enclose the data set name in quotes, the user’s TSO/E prefix is used as the
high-level qualifier.

*INIT_COMMAND
initialization command line 1...

initialization command line n
identifies the panels, commands, or programs that execute before the
associated function is invoked. The INIT_COMMAND uses the ISPF SELECT
service to invoke one of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

initialization command line 1 through initialization command line n (where n=1,
2, or 3) form the INIT_COMMAND. Application Manager appends data from
columns 2 through 72 (fixed format) or from columns 10 through 80 (variable
format) to form the command, which can be up to 213 characters in length. For
information about the SELECT service, see z/OS ISPF Planning and
Customizing.

*INVOCATION_COMMAND
invocation command line 1

Adding a Product or Service

634 z/OS V1R4.0 TSO/E Customization

...

invocation command line n
identifies the panels, commands, or programs that invoke the associated
function. If a function does not have an INVOCATION_COMMAND, its
environment must have one. The INVOCATION_COMMAND uses the ISPF
SELECT service to invoke one of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

invocation command line 1 through invocation command line n (where n=1, 2,
or 3) form the INVOCATION_COMMAND. Application Manager appends the
data from columns 2 through 72 (fixed format) or from columns 10 through 80
(variable format) of each line to form the command, which can be up to 213
characters in length. For information about the SELECT service, see z/OS ISPF
Services Guide.

*TERM_COMMAND
termination command line 1...

termination command line n
identifies the panels, commands, or programs that execute after the associated
function terminates. The TERM_COMMAND uses the ISPF SELECT service to
invoke one of the following:

PANEL(panel name) OPT(option)
CMD(command)
PGM(program name) PARM(parameter(s))

termination command line 1 through termination command line n (where n=1, 2,
or 3) form the TERM_COMMAND. Application Manager appends the data from
columns 2 through 72 (fixed format) or from columns 10 through 80 (variable
format) to form the command, which can be up to 213 characters in length. For
information about the SELECT service, see z/OS ISPF Services Guide.

Example Using Installation Files when Adding a Service
Assume that you want to create installation files to add a hypothetical office service
to the Information Center Facility. The service prompts you for the name of a person
in your company and then finds the room and floor number for the person. You
want the service to have the following characteristics:

v Users can select it as option 2, on the panel, Information Center Facility - Office
Services.

v All applications for the service are in English.

v Users see the following description on the menu where they select the service:
Find a person’s room and floor number.

v Administrators see the following description on the list of applications:
Locate service

v The help text that users see when they select the DESCRIBE option on panel,
Information Center Facility - Office Services, is:

Select this option to find a person’s room and floor number.
The service prompts you for the person’s last name followed
by the first name or initial.

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 635

v The service is defined by the function application, ABCLOC, and invoked by the
command %LOCATE.

v The tutorial for the service starts with panel ABCLOC00.

v The service has only one shared variable, FRMTOFF, associated with it. The
description of the variable is:
Room and floor number format used by office services

The value of the variable is room/fl. This variable will be used by other office
services that you plan to write in the future.

Required Installation Files
You decide to create the following installation files to install this service:

v Panel installation file to define the Information Center Facility - Office Services
panel and include an option for your service.

v Function installation file to define your service and provide the data associated
with it, except for the shared variable.

v Environment installation file to define the shared variable for your service.

Create the Panel Installation File
To create the panel installation file, you need the following information about the
Information Center Facility - Office Services panel:
v Application name
v Application type
v Application language
v Application keyword
v Panel title
v Indication of whether it is a primary panel
v Model ISPF panel that it uses
v Description that the administrator sees
v Description that user sees
v Option ID, name, and language for each option
v Help text

To obtain that information, access Application Manager and do the following:

v On the first Application Manager panel, Application Manager - List of Applications,
locate the TSO/E - Office Services application to find the application name
(ICQOFICE), type (panel), and language (English).

v Type an M to the left of the application and you see the panel, Application
Manager - Define a Panel. Select the following three options on the panel to
obtain the specified information:

– GENERAL INFORMATION to find the keyword (OFFICE), panel title
(Information Center Facility - Office Services), indication of whether it is a
primary panel (no), model ISPF panel that it uses (ICQAMED1), and the
descriptions for the administrator (TSO/E - Office Services) and user (Use
mail/document/other office services).

– OPTIONS to find the option ID, keyword, and option name for each option on
the panel. They are:

Option ID Option Name Language

0 ICQDESCRIBE English

1 ICQPSTSO English

T ICQTUTOR English

– HELPTEXT to find the help text for the panel. It is:

Adding a Product or Service

636 z/OS V1R4.0 TSO/E Customization

Select this option to use office services through Personal
Services/TSO, if provided.
With this service you can exchange messages and data with other
users on the same computer system or any other system in a network.

For a complete description of how to use Application Manager, see z/OS TSO/E
Administration.

Combining the information about your service with the information you found about
the Information Center Facility - Office Services panel, you create the following
panel installation file. The information related to your service is highlighted.

Create the Function Installation File
Using information about your service, you create the following function installation
file.

*Application Manager INSTALLATION FILE
*SYSTEM MVS TSO/E
*PANEL
*PANEL_NAME ICQOFFICE
*LANGUAGE ENGLISH
*KEYWORD OFFICE
*PANEL_TITLE Information Center Facility - Office
Services
*PRIMARY_PANEL N
*MODEL_ISPF_PANEL ICQAMED1
*ADMIN_DESC TSO/E - Office Services
*USER_DESC_1 Use mail/document/other office services
*OPTION 0
ICQDESCRIBE
ENGLISH
*OPTION 1
ICQPSTSO
ENGLISH
*OPTION 2
ABCLOC
ENGLISH
*OPTION T
ICQTUTOR
ENGLISH
*HELP_TEXT
Select this option to use office services through
Personal Services/TSO, if provided.
With this service
you can exchange messages and data with other users on
the same computer system or any other system in a
network.

Figure 104. Sample Panel Installation File

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 637

Create the Environment Installation File
Using information about your service, you create the following environment
installation file.

For information about loading and using application files, see z/OS TSO/E
Administration.

Using Invoking Panel Entries
You can use the INVOKING_PANEL entry to add an option to the Offices Services
panel ICQOFFICE. The following sample shows an installation file for a function.
This installation file automatically adds the new function PHONE as an option on
the Office Services panel after the option for ABCLOC.

*Application Manager INSTALLATION FILE
*SYSTEM MVS TSO/E
*FUNCTION
*FUNCTION_NAME ABCLOC
*LANGUAGE ENGLISH
*KEYWORD LOCATE
*ENVIRONMENT_NAME LOCENV
*ADMIN_DESC Locate service
*USER_DESC_1 Find a person’s room and floor number
*INVOCATION_COMMAND
CMD(%LOCATE)
*ISPTUTOR_PANEL ABCLOC00
*HELP_TEXT
Select this option to find a person’s room and floor number.
The service prompts you for the person’s last name followed
by the first name or initial.

Figure 105. Sample Function Installation File

*Application Manager INSTALLATION FILE
*SYSTEM MVS TSO/E
*ENVIRONMENT
*ENVIRONMENT_NAME LOCENV
*LANGUAGE ENGLISH
*ENVIRONMENT_DESC Office environment
*VARIABLE FRMTOFF
Room and floor number format used by office services
room/fl

Figure 106. Sample Environment Installation File

Adding a Product or Service

638 z/OS V1R4.0 TSO/E Customization

Upgrading Installation Files
You can use the Application Manager upgrade function to install new versions of
existing applications while preserving any customization that may have been done.
The upgrade function allows you to upgrade an existing installation file with the
contents of an upgrade file.

The installation file to be upgraded is usually an export of an application that may
have been customized.The export function of the Application Manager copies the
application definition information from an application table, formats the information
into entries corresponding to an installation file, and saves these entries in a
user-specified data set.

An upgrade file may be delivered with a new version of an existing application and
contain entries for adding, deleting, and replacing portions of the existing installation
file. The Application Manager upgrade edit macro reads this file, interprets the
entries, and applies them to the installation file to be upgraded. When upgrade files
are used to distribute changes to application definitions, there is less chance of
having conflicts with local modifications because only the changes have to be
processed against the application definitions.

If you use upgrade files, the time required to install subsequent new versions of a
service will be reduced. See z/OS TSO/E Administration for more information.

Mass Installation File Processing
Mass installation file processing allows Information Center Facility administrators to
process multiple installation files at one time using a batch method. This service
provides two separate functions:
v Mass upgrade and install
v Mass export

*Application Manager INSTALLATION FILE
*SYSTEM MVS TSO/E
*FUNCTION
*FUNCTION_NAME PHONE
*LANGUAGE ENGLISH
*KEYWORD PHONE
*ENVIRONMENT_NAME LOCENV
*INVOKING_PANEL ICQOFFICE
ENGLISH
PHO
*AFTER ABCLOC
ENGLISH
*ADMIN_DESC Phone service
*USER_DESC_1 Find a person’s phone number
*INVOCATION_COMMAND
CMD(%PHONE)
*ISPTUTOR_PANEL PHONE00
*HELP_TEXT
Select this option to find a person’s phone number.
The service prompts you for the person’s last name followed
by the first name or initial.

Figure 107. Sample Function Installation File Using INVOKING_PANEL Entry

Adding a Product or Service

Chapter 46. Customizing the Information Center Facility 639

Using the mass upgrade and install function, applications can be upgraded,
installed, verified, and made available.

The ability to process multiple installation files simplifies the installation of ISPF/PDF
dialog applications in the Information Center Facility Application Manager
environment. For detailed information about multiple installation and export file
processing, see z/OS TSO/E Administration.

Deleting a Product or Service
Except for Application Manager, you can delete any of the products or services in
the Information Center Facility, but do so with caution. You cannot delete Application
Manager because all products and services in the Information Center Facility
depend on it. Several services and one product have dependencies on other
services. For example:
v COURSES depends on NEWS.
v COURSES, ENROLL, and PS/TSO depend on NAMES. Before users can use

the mail facility in PS/TSO, the Information Center Facility administrator must
create the master names directory.

v ENROLL depends on USERTYPES and ISPF defaults.

Therefore, removing NEWS, NAMES, or USERTYPES could cause unpredictable
results.

Possible ways to delete a product or service are:

v Use Application Manager panels to delete all applications associated with the
product or service and update any menu panels that contain an option for the
product or service.

One advantage of using this method is that Application Manager dynamically
updates the tutorial menus associated with the functional menus that you
change.

v Replace the first panel of the product or service by a dummy panel that you
create. You can put the panel in the data set supplied by IBM or in an
installation-supplied data set. Use any of the dummy panels supplied by IBM (for
example, the PROBLEM option panel, ICQGCM07) as a model.

A disadvantage of this method is that the tutorial remains unchanged.

Instead of deleting a product or service, you can limit its availability to selected
users or groups of users. For example, if an accounting department requires certain
products that general users do not need, you can define the applications for these
products at the group level for that group. You can also copy down system level
applications to the group or private level and then make the applications unavailable
at the system level.

Note: You can make group and private Application Manager unavailable at the
system level. To do this, copy down the applications for group and private
Application Manager to the group level. Do not make the system level
Application Manager unavailable. If you do, you will have difficulty
maintaining your applications.

For information about how to use Application Manager to delete applications,
change menu panels, and make applications unavailable, see z/OS TSO/E
Administration or the on-line tutorial and help panels for Application Manager.

Adding a Product or Service

640 z/OS V1R4.0 TSO/E Customization

Changing a Product or Service
You can use Application Manager to make changes to a product or service by
changing the applications that define the product or service. For a description of
how to change applications, see z/OS TSO/E Administration or the on-line tutorial
and help panels for Application Manager.

You can also change a product or service by changing its associated panels. Use
Application Manager to change the dynamic menu panels in the Information Center
Facility. Follow the ISPF rules for modifying panels when changing any other
panels. For example, when you change a help or tutorial panel or a panel within a
product or service, and the panel is not generated using Application Manager,
ensure that it has no more than 24 lines in the)BODY section. If you try to display
more than the maximum number of lines that the terminal can display, ISPF issues
an error message. For information about defining the various types of panels, see
z/OS ISPF Services Guide.

You can also change a product or service by replacing it. One way to replace a
product or service is to delete the current product or service and then add the one
with which you are replacing it. However, do not delete a product or service if
another product or service depends on it. For information about dependencies, see
“Deleting a Product or Service” on page 640.

When you change or replace a product or service, add applicable help and tutorial
information to support it. Table 128 on page 702 shows a list of all menu and data
entry panels and their associated help panels.

Creating or Tailoring Application Definitions
Application Manager supports three levels of application definitions:
v System
v Group
v Private

This support allows departments or user groups, and individual end-users to create
or tailor panels, functions, and environments for their own use. See z/OS TSO/E
Administration for more information.

The table libraries ICQAMTAB and ICQCMTAB containthe system (highest) -level
application definitions. You can create group level application definitions for different
groups of users. Also, users can create a private (lowest) level of application
definitions. Unique applications can be defined at the lower levels or existing
applications can be copied down from higher levels and then customized.

You can limit access to selected applicationsto specific group(s) or private users. To
control access, copy down the selected applications to specific group or private
levels and then delete the options from the system-level User Services panel.

Invoking an Application
If you define an application using Application Manager, you should also use
Application Manager to invoke the application. Then at invocation, Application
Manager allocates the libraries that the application requires.

Using Application Manager to define and invoke an application eliminates the
requirement that all libraries must be included in the LOGON procedure. Decreasing

Changing a Product or Service

Chapter 46. Customizing the Information Center Facility 641

the number of libraries allocated in the LOGON procedure decreases the time
required for LOGON. Allocating libraries as an application requires them, enables
an installation to make different versions of an application available.

If you use Application Manager to define an application, but do not use Application
Manager to invoke the application, the libraries the application requires may not be
available. Specifically, if the invocation you use establishes a new ISPF
environment, the libraries that were allocated before the invocation will not be
available. Examples of how a new ISPF environment can be established are:
v You use ISPF SELECT with the NEWAPPL parameter.
v You split the screen and cause an application to run on a different logical screen.

If you define an application using Application Manager, but cannot invoke it through
Application Manager, and if the application establishes a new ISPF environment,
then you must allocate the required libraries in the LOGON procedure or before
starting ISPF.

Multiple Level Applications
Up to three levels of application definition libraries can be active during application
invocation, as follows:
v The system level library is always active.
v The group level library can be active.
v The private level library can be active.

The order from private to system is termed lower to higher, respectively. If the
application definitions have the same name and language, lower-level applications
supersede higher level applications. See “Modifying ICF Start-up and Termination
Processing” on page 644.

System application definitions are allocated to the files ICQAMTAB and ICQCMTAB.

A single group’s application definitions are stored in two data sets as follows:
<group prefix>.<group name>.ICQAGTAB (administrator)
<group prefix>.<group name>.ICQRGTAB (user)

where:

<group prefix> Is a customizable constant set in the non-display
panel ICQSIEAM.

<group name> Is the name that you entered on the Group
Specification panel.

Group library allocation depends on whether you used the Group Specification
panel to select a particular group to be used during application invocation. If you
specified a group name, it is retrieved from the user’s ISPF.PROFILE member
ICQGROUPand combined to form the group data set name:
<group identifier>.ICQRGTAB

where:

<group identifier> Contains the system group prefix (which you can
customize in the non-display panel ICQSIEAM) that
has been concatenated with the group name
specified on the Group Specification panel.

Invoking an Application

642 z/OS V1R4.0 TSO/E Customization

The string ICQRGTAB identifies the group user data set. If the above data set does
not exist or cannot be allocated, an informational message appears on the screen
indicating that no allocation can take place. However, application invocation will
continue. If the group data set exists, it is allocated to the file ICQRGTAB and used
during application invocation. Any previous allocation for the file ICQRGTAB is
freed. See z/OS TSO/E Administration for additional information.

A single user’s private application definitions are stored in a single data set as
follows:
<TSO/E prefix>.ICQRPTAB

where:

<TSO/E prefix> Defaults to the USERID or it can be set by the user.

The string ICQRPTAB identifies the private user data set. If the data set does not
exist or cannot be allocated, an informational message appears on the screen
indicating that no allocation can take place. However, application invocation will
continue. If the private data set exists, it is allocated to the file ICQRPTAB and used
during application invocation. Any previous allocation for the file ICQRPTAB is
freed. See z/OS TSO/E Administration for additional information.

Application Search Order
When an application is invoked using the application name (keyword APPLNAME),
the system first searches each active library for matching names or keywords using
the application name and session language. The order of searching is always from
private to system. If the application is not found, the system then searches each
active library using the application name and default language. If the application is
still not found, the system searches each active library using only the application
name. When the application is found, it is invoked. Finding the application with the
desired language takes precedence over finding the application at the lowest level.

When an application is invoked by table name (keyword TABLE), the application
table is invoked regardless of level. The fourth character of the table name indicates
the library level.

When an option is selected on an Application Manager panel, the search order for
finding the application is the same as when you use the APPLNAME keyword. In
some circumstances the TABLE keyword parameter is used internally to increase
performance, but it appears to the user as if the lowest-level application name
(respective to language) has been invoked. When an application is invoked by
keyword (keyword KEYWORD), the processing is similar to using APPLNAME. The
system searches for a match to the keyword from the lowest to the highest level. If
more than one application matches the keyword, the Applications Matching
Keyword Panel (ICQAME71) is displayed. This panel displays one row for each
unique application name and language, with lower-level applications superseding
higher-level applications with the same name, language, and keyword.

A switch to alter the search process is available in ICQSIEAM. See “Changing
Variables for Application Manager” on page 611.

Performance Impact
The best performance occurs when you use only system level libraries. Application
selection time increases if you use group and private libraries. However, application
selection time is impacted the most when invocation crosses from one application
level to another.

Invoking an Application

Chapter 46. Customizing the Information Center Facility 643

To minimize the performance impact, lower-level administrators should copy clusters
of applications down to their level. For example, if you copy two or more
applications, which are attached to one higher panel, down to a lower level, you
should also copy that panel down to a lower level. If you copy several functions that
use the same higher-level environment down to a lower level, you should also copy
down the environment.

Hierarchy Display
You can display the hierarchy of applications that can be reached from a selected
panel application. The Hierarchy Display option (H) is available on the List of
Applications panel and the Where Used panel. The hierarchy is presented in list
form, and represents the applications as they are invoked at run-time. To display a
hierarchy, the panel selected must have options and must be verified. For a
higher-level panel to be listed in a hierarchy, it must be available.

Modifying ICF Start-up and Termination Processing
You can modify the CLISTs and applications that perform start-up and termination
processing to include the initial or final processing that your installation requires.
The CLISTs supplied by IBM, ICQICF and ICQGCC10,perform start-up processing,
and the CLIST supplied by IBM, ICQGCC11,performs termination processing.

Figure 108 shows the invocation syntax of the ICQICF CLIST.

A description of each of the parameters follows.

OLDAPPL(old_application_ID)
specifies the application ID previously used for ISPF. The default is ISR.

NEWAPPL(new_application_ID)
specifies the application ID to be used for the Information Center Facility.
new_application_ID consists of 1-4 characters, the first of which must be
alphabetic (A-Z) and the remaining characters are any combination of
alphabetic (A-Z), numeric (0-9), or one of the special characters ($,#,@). The
default is ICQ. If you do not use ICQ, you must change the variable QAEAPPL
in the ENROLL CLIST, ICQAEC00.

If you change the application ID to a value that has not been used before, you
must define new Information Center Facility system defaults or the ISPF base
profile will be used during enrollment.

APPLNAME(application name)
specifies the name of the first application that is to be invoked. The default is
ICQUSER, (TSO/E - User’s Services). Use ICQADMIN to invoke the first
application for the administrator.

%ICQICF OLDAPPL(old_application_ID) +
NEWAPPL(new_application_ID) +
APPLNAME(application_name) +
PROFILE(profile_name) +
PRIVATE(Y/N) +
EXITPROC(Y/N) +
DEBUG(Y/N) +
INIT(“command_string”)

Figure 108. ICQICF Invocation Syntax

Invoking an Application

644 z/OS V1R4.0 TSO/E Customization

PROFILE(profile_name)
specifies the name of the ISPF profile data set. The default is ISPF.PROFILE. If
you do not use ISPF.PROFILE, you must change variable QAEPROF in the
ENROLL CLIST, ICQAEC00.

PRIVATE(Y/N)
specifies whether the private Application Manager library is to be used. N
indicates that the private Application Manager library (file ICQRPTAB) will not
be allocated. Y indicates ICQICF will attempt to find and allocate the private
library of the form:
<TSO/E prefix>.ICQRPTAB

The default is Y. The suffix ICQRPTAB indicates the private table library.

EXITPROC(Y/N)
indicates whether ICQGCC11, the termination CLIST, is to be invoked when
ISPF terminates. Y indicates that ICQGCC11 is invoked when ISPF terminates;
N indicates that it is not. The default is N.

DEBUG(Y/N)
indicates whether tracing is to be done. Y indicates that tracing for ICQICF
equivalent to TRACE3 is to be done. For information about TRACE3, see
“TRACE3 Command — Level 3” on page 711. N indicates that tracing is not to
be done. The default is N.

INIT(“command_string”)
specifies the command string used to initialize the first application invoked. If
the first application specifies a start-up function, the command specified by INIT
is processed before that start-up function. INIT is useful for specifying
initialization that you require only once per ISPF session. command_string must
start and end with two single quotes and contain a maximum of 256 characters.
It uses the format of ISPEXEC SELECT. For information about ISPEXEC
SELECT, see z/OS ISPF Services Guide. If the command string uses the
command interface (as is the case for a CLIST), it requires an additional set of
quotes. Therefore, a CLIST requires three sets of single quotes.

The default is CLIST ICQGCC10.

Modifying Start-Up Processing
CLIST ICQICF starts ISPF and invokes the first application for the user. As shipped
by IBM, ICQICF invokes ICQUSER, the TSO/E - Use Services application. Before
displaying the primary user menu, ICQICF invokes ICQGCC10, which theninvokes
the news service, CLIST ICQCNC10, to display any ″new″ news.

You can modify start-up processing by specifying a command string using the
ICQICF INIT parameter.

Another way to modify start-up processing is by providing a start-up function in the
first application that ICQICF invokes. That start-up function is performed before the
processing is done for the application. You can use Application Manager panels to
add start-up functions to applications. For information about how to use Application
Manager, see z/OS TSO/E Administration.

You can also add calls to other CLISTs, programs, or ISPF dialogs to ICQGCC10,
to include other processing that your installation needs for start-up. If you add calls
to other routines, return all message IDs to ICQGCC10, and process the messages
in ICQGCC10 to display a combined message or show all the messages on one
panel.

Modifying ICF Start-up and Termination Processing

Chapter 46. Customizing the Information Center Facility 645

Modifying Termination Processing
As shipped by IBM, the termination CLIST, ICQGCC11, contains no trace
processing. If your installation requires termination processing, add the necessary
code to ICQGCC11. Then you can either:

v Change the parameter EXITPROC(N) on the PROC statement of CLIST ICQICF
to EXITPROC(Y).

v Add the parameter EXITPROC(Y) on the EXEC statement in the LOGON
procedures for the users and administrators, as shown in the following examples:

For administrators:
//ICQAPROC EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=40,
// PARM=’ICQICF APPLNAME(ICQADMIN)
EXITPROC(Y)’

For users:
//ICQPROC EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=40,
// PARM=’ICQICF APPLNAME(ICQUSER) EXITPROC(Y)’

ICQGCC11 is invoked after both the Information Center Facility session and the
ISPF session have ended.

Adding Commands to the Command Table
To extend the function of the Information Center Facility, you can add your own
commands to the command table, ICQCMDS. For example, you can add
commands to enter dialogs, to act as aliases of other commands, or to execute
CLISTs. After you have added the new commands, you can enter them on the
COMMAND or OPTION line of any panel in the Information Center Facility.

Each entry in ICQCMDS consists of four fields: the command, the truncation
permitted, the action the command performs, and a description of the
command.IBM ships the following commands in ICQCMDS:

Command Purpose

ADMIN To display the primary administrator menu panel.

IC To display the primary user menu panel.

GO To go to a specific option, type GO followed by the keyword for the
option.

If ICQCMDS is not in use, you can add commands to it using option 3.9 in
ISPF/PDF. If ICQCMDS is in use, you cannot use option 3.9, but must copy
ICQCMDS to a data set with a different name, modify the copy, and replace the
original. For more information about adding commands to a command table, see
z/OS ISPF Services Guide.

Note: Before modifying the command table, consider that commands execute
before keywords. If, for example, you defined a command NEWS to display
reminders, you would not be able to enter the news function by typing
NEWS.

Modifying ICF Start-up and Termination Processing

646 z/OS V1R4.0 TSO/E Customization

Resynchronizing the Enrollment Default Profiles
To automatically pick up the latest level of the ISPF/PDF profile tables, delete the
members ISPFSPROF and ICQZPROF from the data set ″ICQ.ICQTLIB″. This data
set is defined in the Application Manager function ICQISPFDEF. In addition, if you
have customized the Information Center Facility system defaults, you should use
the SYSDEF option to re-customize the default profile for enrolled users.

Writing an Exit for ADRS

Functional Description
If you install ADRS, users can access it from the Information Center Facility panel,
DATA ANALYSIS/REPORT CREATION SERVICES. Whenever a user selects the
ADRS option, the system invokes VS APL, which loads ADRS.

You can provide an exit for ADRS to perform various functions. The exit receives
control before the system invokes VS APL.The exit can:
v Display your own panels
v Allocate data sets. For example, the exit can pre-allocate the report data set.

TSO/E-Supplied Exit
TSO/E does not provide a default exit routine for ADRS.

Return Specifications
The exit returns one of the following return codes:

Return Code
(Decimal)

Description

0 The Information Center Facility invokes VS APL, which loads the
ADRS workspace. The system then displays the ADRS-II panel.

4 The Information Center Facility does not invoke the ADRS option. It
redisplays the DATA ANALYSIS/REPORT CREATION SERVICES
panel.

Programming Considerations
The exit can return a return code of either 0 or 4. For information about the return
codes, see “Return Specifications”.

Installing the Exit
There are no required naming conventions for the exit. To supply the ADRS exit,
edit the non-display panel ICQSIECR and locate the variable QCREXIT. By default,
the variable is set to null. Set variable QCREXIT to the name of your exit.

Writing an Exit for the ICF Names Service

Functional Description
You can write an exit for the names service to keep track of changes that users or
Information Center Facility administrators make in the private or master directories.
The exit receives control whenever a user or Information Center Facility

Resynchronizing the Enrollment Default Profiles

Chapter 46. Customizing the Information Center Facility 647

administrator adds, modifies, or deletes a name or group in a private directory or in
the master directory. The exit receives control after the names service has
successfully updated the directory.

You can use the names service exit to:

v Maintain a parallel data base that contains names such as a SCRIPT/VS names
macro library. When changes are made to the Information Center Facility names
directories, the exit can update your parallel names data base.

v Keep records of the changes that are made to the master names directory. The
exit can record these changes in a separate data set. You can then periodically
print the data set.

TSO/E-Supplied Exit
TSO/E does not provide a default exit routine for the Information Center Facility
names service.

Programming Considerations
The exit can access information that the names service places in a temporary table.
To retrieve the name of the table and the information in it, include the following
statements in the exit:
ISPEXEC VGET (QCAEXITT) SHARED
ISPEXEC TBGET &QCAEXITT SAVENAME(varname)

After the two statements execute, varname contains one of the following:

v Nulls if the information in the table is for an individual name

v Contains a list of extension variables if the information in the table is for a group.
The extension variables are the IDs for the group entries.

After the exit retrieves the name of the table and the information in the table, it can
use different variables in its processing. For a list of the variables and their
contents, see “Variable Descriptions”.

Installing the Exit
There are no required naming conventions for the exit. To supply the names service
exit, edit the non-display panel ICQSIECA and locate the variable QCAUEXIT. By
default, the variable is blank. Set variable QCAUEXIT to the invocation string for the
exit.

Variable Descriptions
After the exit retrieves the name of the table and the information in the table, it can
use the following variables. The variables that are marked with an asterisk (*) can
be used to determine what type of processing to perform. They contain information
about the update just performed, rather than information about the entry itself that
was changed.

Variable Contains:

QAAADDR The first line of the internal address.
QAAADDR2 The second line of the internal address.
QAAADMIN* v “YES” if the exit is invoked from the administrator dialog

v “NO” if the exit is invoked from the user dialog.
QAADISP The display form of the name, which is in the form lastname,

firstname m..
QAADNAME The department name.

Writing an Exit for ICF Names Service

648 z/OS V1R4.0 TSO/E Customization

Variable Contains:

QAADNUM The department number.
QAAFRST The first name.
QAAID A string identifier that the user supplies. It can be up to seven

characters long. The identifier must be unique in the directory that
contains the entry.

QAAIND v “#” if the entry is either a master directory entry or a private
directory entry that is a modified version of a master directory
entry

v “@” if the entry is a private directory entry that is not a modified
version of a master directory entry.

QAALAST The last name or group name.
QAALIB* The name of the library (the ddname) that contains the table that

was just updated.
QAAMIDLE The middle name.
QAANICK The nickname.
QAANODE The system node.
QAANODE2 A second system node.
QAANSEL v The selection character the user entered to select the entry, if the

user selected this entry from a list

v A blank, if the user did not use a list to select this entry.
QAANTITL The name title, for example, Mr., Mrs., or Ms.
QAAPHONE The phone number.
QAAPRIV v “>” if the entry is for or from a private directory

v A blank if the entry is for or from the master directory.
QAARTYPE* The type of update that was performed (add, delete, or modify).
QAASDNAM The search form of QAADNAME (department name). All of the

letters are capitalized.
QAASDNUM The search form of QAADNUM (department number). All of the

letters are capitalized.
QAASFLAG A search flag. The flag is on if the user entered partial information to

see a subset of the directory. This entry was a member of the subset
that was displayed.

QAASFRST The search form of QAAFRST (first name). All of the letters are
capitalized.

QAASLAST The search form of QAALAST (last name or group name). All of the
letters are capitalized.

QAASNICK The search form of QAANICK (nickname). All of the letters are
capitalized.

QAASTITL The search form of QAATITLE (job title). All of the letters are
capitalized.

QAASUFIX The name suffix, for example, Jr., Sr., or IV.
QAASUTYP The search form of QAAUTYPE (user type). All of the letters are

capitalized.
QAATITLE The job title.
QAATABLE* The name of the table that was just updated.
QAATYPE* The type of entry (name or group).
QAAUSER The system user ID.
QAAUSER2 A second system user ID.
QAAUTYPE The user type.
QAAXADR1 The first line of the external address.
QAAXADR2 The second line of the external address.
QAAXADR3 The third line of the external address.
QAAXADR4 The fourth line of the external address.

Writing an Exit for ICF Names Service

Chapter 46. Customizing the Information Center Facility 649

Writing Exits for Application Manager

Functional Description
TSO/E provides several exits you can use to customize functions and panels that
are invoked by the Application Manager.The exits for Application Manager are:

v Function pre-initialization

The function pre-initialization exit receives control before the initialization
command for the function, if one is specified, is invoked. This exit receives
control regardless of whether an initialization command is specified.

v Function post-termination

The function post-termination exit receives control after the termination command
for the function, if one is specified, is invoked. This exit receives control
regardless of whether a termination command is specified.

v Panel pre-display

The panel pre-display exit receives control before a panel is displayed to the
terminal user.

v Panel post-display

The panel post-display exit receives control after a panel is displayed and the
terminal user presses the Enter key.

Some ways you can use the function pre-initialization and post-termination exits
include:

v Checking that the user is authorized to use an application in the function
pre-initialization exit

v Allocating data sets needed by an application in the function pre-initialization exit,
and freeing those data sets in the function post-termination exit

v Accumulating accounting information associated with the user in the
pre-initialization exit, and then summarizing this information in the
post-termination exit.

You can use the panel pre-display exit to provide default values for the panel that is
to be displayed. You can use the panel post-display exit to verify that data the user
entered on the panel is correct.

TSO/E-Supplied Exits
TSO/E does not provide default exit routines for any of the Application Manager
exits.

Entry Specifications
The contents of the registers on entry for all of the Application Manager exits are:

Register 0 Unpredictable

Register 1 Address of the parameter list

Registers 2–12 Unpredictable

Register 13 Address of a register save area

Register 14 Return address

Register 15 Exit entry point address

Writing Exits for Application Manager

650 z/OS V1R4.0 TSO/E Customization

Parameter Descriptions
Information about the parameters that each Application Manager exit receives is
described in the following topics. For information about the standard exit parameter
list and the parameter entry keys, see “TSO/E Standard Exit Parameter List” on
page 35.

The same exit-to-exit communication word is passed to both the function
pre-initialization exit and the function post-termination exit. Similarly, the same
exit-to-exit communication word is passed to both the panel pre-display exit and the
panel post-display exit.

Function Pre-Initialization Exit
The function pre-initialization exit receives the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. Figure 109 shows the exit-dependent data that the exit receives beginning
at offset +36 in the parameter list. Each parameter entry is described following the
figure.

Application Name (Parameter Entry 10)
indicates the name of the application that is to be displayed.

Application Language (Parameter Entry 11)
indicates the language used in the application.

Application Type (Parameter Entry 12)
indicates the type of application. This parameter contains the value
“FUNCTION”.

Tutorial Indicator (Parameter Entry 13)
indicates whether the tutorial for the application is to be invoked. This
parameter contains either the value “Y” or “N”.

Function Post-Termination Exit
The function post-termination exit receives the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. Figure 110 on page 652 shows the exit-dependent data that the exit

Key Length Data+0 +4 +8+36

+40

+44

+48

00000001 00000014

00000001 00000008

00000001 00000014

00000001 00000001

Parameter Entry's

Key, Length, and Data

Application

name

Application

language

Application

type

Tutorial

indicator
Address of

parameter entry 13

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Figure 109. Exit-Dependent Data for the Application Manager Function Pre-Initialization Exit

Writing Exits for Application Manager

Chapter 46. Customizing the Information Center Facility 651

receives beginning at offset +36 in the parameter list. Each parameter entry is
described following the figure.

Application Name (Parameter Entry 10)
indicates the name of the application that has been displayed.

Application Language (Parameter Entry 11)
indicates the language used in the application.

Application Type (Parameter Entry 12)
indicates the type of application. This parameter contains the value
“FUNCTION”.

Tutorial Indicator (Parameter Entry 13)
indicates whether the tutorial for the application has been invoked. This
parameter contains either the value “Y” or “N”.

Panel Pre-Display Exit
The panel pre-display exit receives the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. Figure 111 on page 653 shows the exit-dependent data that the exit
receives beginning at offset +36 in the parameter list. Each parameter entry is
described following the figure.

Key Length Data+0 +4 +8+36

+40

+44

+48

00000001 00000014

00000001 00000008

00000001 00000014

00000001 00000001

Parameter Entry's

Key, Length, and Data

Application

name

Application

language

Application

type

Tutorial

indicator
Address of

parameter entry 13

Address of

parameter entry 10

Address of

parameter entry 11

Address of

parameter entry 12

Figure 110. Exit-Dependent Data for the Application Manager Function Post-Termination Exit

Writing Exits for Application Manager

652 z/OS V1R4.0 TSO/E Customization

Application Name (Parameter Entry 10)
indicates the name of the application currently being displayed.

Application Language (Parameter Entry 11)
indicates the language used in the application.

Panel Name (Parameter Entry 12)
indicates the name of the panel that is to be displayed.

Panel Post-Display Exit
The panel post-display exit receives the standard exit parameter list. For a
description of this parameter list, see “TSO/E Standard Exit Parameter List” on
page 35. Figure 112 shows the exit-dependent data that the exit receives beginning
at offset +36 in the parameter list. Each parameter entry is described following the
figure.

Application Name (Parameter Entry 10)
indicates the name of the application currently being displayed.

Application Language (Parameter Entry 11)
indicates the language used in the application.

Panel Name (Parameter Entry 12)
indicates the name of the panel that has been displayed.

Key Length Data+0 +4 +8+36

+40

+44

00000001 00000014

00000001 00000008

00000001 00000008

Parameter Entry's

Key, Length, and Data

Address of

parameter entry 10

Address of

parameter entry 11

Application

name

Application

language

Panel

name

Address of

parameter entry 12

Figure 111. Exit-Dependent Data for the Application Manager Panel Pre-Display Exit

Key Length Data+0 +4 +8+36

+40

+44

00000001 00000014

00000001 00000008

00000001 00000008

Parameter Entry's

Key, Length, and Data

Address of

parameter entry 10

Address of

parameter entry 11

Application

name

Application

language

Panel

name

Address of

parameter entry 12

Figure 112. Exit-Dependent Data for the Application Manager Post-Display Exit

Writing Exits for Application Manager

Chapter 46. Customizing the Information Center Facility 653

Return Specifications
The contents of the registers on return for all of the Application Manager exits must
be:

Registers 0–14 Same as on entry

Register 15 Return code

Return Codes
Table 127 shows the return codes that all of the Application Manager exits support.

Table 127. Return Codes that All Application Manager Exits Support

Return Code
(Decimal)

Description

0 Successful completion. The Application Manager continues
processing the current application.

12 Error occurred in the exit. Application Manager terminates the
current application. Application Manager issues an error message if
when the application was selected from a panel. Otherwise, the
caller of the Application Manager is responsible for analyzing the
return code and taking the appropriate action.

If a failing exit sets a reason code with a key value of X'03', this
reason code is used as the return code from the Application
Manager. (See the note.) Otherwise,

v For failing pre-initialization and pre-display exits, Application
Manager sets a return code of 6

v For failing post-termination and post-display exits, the Application
Manager sets a return code of zero, or whatever is appropriate.

16 Error occurred in the exit. Application Manager terminates the
current application without issuing an error message.

If a failing exit sets a reason code with a key value of X'03', this
reason code is used as the return code from the Application
Manager. (See the note.)

If your exit sets a return code of 16, you should consider displaying
an informational message to the user. You can use the PUTLINE
service routine to issue an informational message. See z/OS TSO/E
Programming Services for more information.

Note: For return codes 12 and 16, the Application Manager uses the exit’s reason
code as the return code from Application Manager only if the code is not the
same as one of Application Manager’s return codes. Therefore, Application
Manager exits should set unique reason codes. Return codes from the
Application Manager are described in the chapter about invoking an
Information Center Facility application in z/OS TSO/E Programming Services.

Programming Considerations
The exits must follow standard linkage conventions. They must save the registers
on entry and restore the registers when they return.

The exits must obtain any storage that they need and should free it when it is no
longer needed. If an exit returns an undefined return code, Application Manager
terminates the current application without issuing an error message to the user.

Writing Exits for Application Manager

654 z/OS V1R4.0 TSO/E Customization

Do not use the Application Manager exits to set up a new command buffer, because
Application Manager ignores the new command buffer.

Environment
The attributes for each of the Application Manager exits are:
v State: Problem program
v Key: 8
v AMODE(31), RMODE(ANY)

Installing the Exits
You must name each of the exits as follows:

Function pre-initialization ICQAMFX1

Function post-termination ICQAMFX2

Panel pre-display ICQAMPX1

Panel post-display ICQAMPX2

Link-edit each exit as a separate load module. You can link-edit the exits in a
separate load library that is exclusively for TSO/E exits or in an existing library
containing other routines. The exits can reside in:
v The link pack area (LPA)
v LNKLST
v A private STEPLIB

For more information about using the LPA, LNKLST, or STEPLIB, see “Installing the
Standard-Format Exits” on page 42.

Using the ICF Naming Conventions
The Information Center Facility CLIST, REXX exec, panel, message, table, and
skeleton names follow specific conventions. A name following these conventions not
only identifies one particular element, but also the type of element (for example, a
panel, message, CLIST, or REXX exec) and the part of the Information Center
Facility to which the element belongs.

You can use these naming conventions to:

v Help identify elements of the Information Center Facility to simplify customization.

v Name installation-written panels to make naming more consistent at your
installation.

To use the naming conventions to identify the elements in the Information Center
Facility that belong to a particular function, or to use the naming conventions to
name elements you add to the Information Center Facility consistently, refer directly
to the sections describing the naming conventions.

To use the naming conventions to identify a particular element, first see Figure 113
to find what type of element it is. Then see the section describing the naming
convention for that type of element.

Figure 113 shows a simple way to identify which naming convention to use to
identify an element. Check the characters in the name of the element as shown,
from the top of the figure to the bottom. The first match indicates the type of
element to which the name belongs. For example, an element with the name
ICQ001AB is a help panel for a message, not a message.

Writing Exits for Application Manager

Chapter 46. Customizing the Information Center Facility 655

Is the sixth
character a
number?

Is the fourth
character a
number?

Is the fourth
character
B, D, or H?

Element is a
help panel.

Element is a
help panel for
a message.

Element is a
message.

Element is a data entry panel,
a menu, a CLIST, a REXX exec,
a skeleton, a table, or a load
module.

Is the fourth
character
U, W, T, or X?

Is the fourth
character an
F?

Element is a
tutorial panel.

Element is an
installation file.

Figure 113. Identifying Types of Elements in the Information Center Facility

Using the ICF Naming Conventions

656 z/OS V1R4.0 TSO/E Customization

Naming Conventions: Applications, Panels, CLISTs, REXX Execs,
Skeletons, Tables, and Load Modules

In the Information Center Facility, data entry panels, menus, CLISTs, REXX execs,
skeletons, tables, and load modules are all named as follows:

v The first three characters of the name are the letters ICQ.

v The fourth and fifth characters identify the component to which the element
belongs:

Characters Component

AA Administrator names

AB Administrator courses

AD User types

AE Enrollment

AI ISPF defaults

AM Application Manager

AN Administrator news

AP Administrator printer support

AS APPC/MVS administration dialog

CA User names

CB User courses

CG Chart creation

CI An interface for ALPDI II

CL Interfaces for VS APL and APL2

CN User news

CP User printer support

CR An interface for ADRS

GA General administrator panels

GC General user services, including:

– Placeholder panels for products and services

– Panels, CLISTs, and REXX execs that are common to two or
more user functions (for example, CLISTs common to both
ADRS and APLDI).

SI Non-display panels, used to set variables common to two or
more CLISTs

SP Space management

v The sixth character distinguishes between CLISTs, REXX execs, data entry
panels, menus, skeletons, and tables. The characters are:

Character Type

C CLIST

E Data entry panel

J Skeleton

Using the ICF Naming Conventions

Chapter 46. Customizing the Information Center Facility 657

L Load module

M Menu

R REXX exec

T Table

v The seventh, and eighth characters uniquely identify the CLIST, REXX exec,
panel, skeleton, or table.

Naming Conventions: Application Definition Tables and Installation
Files

In the Information Center Facility, application definition tables and installation files
are all named as follows:

v The first three characters of the name are the letters ICQ.

v For application definition tables:

– The fourth character defines the level of the table and the fifth character
identifies the type of application:

Character Component

ME A table containing data for an environment defined using
system level Application Manager

MF A table containing data for a function defined using system
level Application Manager

MP A table containing data for a menu panel defined using
system level Application Manager

GE A table containing data for an environment defined using
group level Application Manager

GF A table containing data for a function defined using group
level Application Manager

GP A table containing data for a menu panel defined using group
level Application Manager

PE A table containing data for an environment defined using
private level Application Manager

PF A table containing data for a function defined using private
level Application Manager

PP A table containing data for a menu panel defined using private
level Application Manager

– The sixth, seventh, and eighth characters uniquely identify the application
definition table.

v For installation files:

– The fourth character is F.

– The fifth character identifies the type of installation file:

Character Type

E Environment

F Function

P Panel

– The sixth, seventh, and eighth characters uniquely identify the installation file.

Using the ICF Naming Conventions

658 z/OS V1R4.0 TSO/E Customization

Naming Conventions: Tutorial Panels
The Information Center Facility tutorial panels are named as follows:

v The first three characters in the name are the letters ICQ.

v The fourth character can be one of four letters: T, X, U, or W. This letter indicates
whether the panel is a member of a tutorial for administrators or users, and
whether the tutorial describes a function of the Information Center Facility. The
letters are used as follows:

Letter Used for:

T Administrator tutorial panel in a tutorial for a function (for
example, ICQTN for administrator News)

X Administrator tutorial panel in a tutorial not describing a function
(for example, ICQX90 for the problem option)

U User tutorial panel in a tutorial for a function (for example,
ICQUB for user Courses)

W User tutorial panel in a tutorial not describing a function (for
example, ICQW0 for the user introduction to the tutorial)

All Information Center Facility tutorial panel names are at least four characters
long. Additional characters are added to indicate in what tutorial the panel is
used, and where in the tutorial it is displayed.

Figure 114 demonstrates the naming conventions for administrator tutorial panels in
tutorials that do not describe a function.

Figure 115 demonstrates the naming conventions for user tutorial panels in tutorials
that do not describe a function.

ICQT Table of contents for the administrator tutorial

ICQX0 Selection panel for introduction to administrator tutorial
Option 0

ICQX010
Option 1

0 is the option number users enter on ICQT to reach ICQX0.

X is used for administrator tutorial panels that do not

describe a function of the Information Center Facility.

1 is the option number administrators enter

on ICQX0 to reach ICQX010.

The last character is for panel numbering.

Figure 114. Naming Conventions: Administrator Tutorial Panels Not Describing a Function

Using the ICF Naming Conventions

Chapter 46. Customizing the Information Center Facility 659

If a tutorial is for a function of the Information Center Facility, the fourth and fifth,
and in some cases the sixth, characters of the names of the panels in the tutorial
indicate the function the tutorial describes:

Characters Function

TA Administrator names

TB Administrator courses

TD User types

TE Enrollment

TI ISPF defaults

TM Application Manager

TN Administrator news

TP Administrator printer support, user hard copy support

UA User names

UB User courses

UG Chart creation

UI An interface for ALPDI II

ULV An interface for VS APL

ULA An interface for APL2

UN User news

ICQU Table of contents for the user tutorial

Option 0 ICQW0 Selection panel for introduction to user tutorial

0 is the option number users enter on ICQU to reach ICQW0.

W is used for user tutorial panels that do not
describe a function of the Information Center Facility.

Option 1

Option 2

ICQW010-ICQW014

1 is the option number administrators enter

on ICQTN to reach ICQTN10.

The last character is for panel numbering.

ICQW02
2 is the option number users enter on
ICQW0 to reach ICQW02.

Because this panel is a selection panel,
there is no character for incrementing.

Option 1 ICQW0210-ICQW0213
The last character is for
panel numbering.

1 is the option number users
enter on ICQW02 to reach
ICQW0210.

.

.

.

.

.

.

.

.

.

Figure 115. Naming Conventions: User Tutorial Panels Not Describing a Function

Using the ICF Naming Conventions

660 z/OS V1R4.0 TSO/E Customization

UR An interface for ADRS

Figure 116 demonstrates the naming conventions for administrator tutorial panels in
tutorials that describe functions.

Figure 117 demonstrates the naming conventions for user tutorial panels in tutorials
that describe functions.

Naming Conventions: Help for Data Entry Panels and Menus
The name of a panel providing help for a functional panel is based on the name of
the functional panel it explains. Figure 118 shows how help panels for menus and
data entry panels are named.

.
.
.

Option 1

.

.

.

ICQT

ICQTN

Table of contents for administrator tutorial

TN indicates that the panel is in the

administrator News tutorial.

Selection panel for administrator News

ICQTN10
Option 1

1 is the option number administrators enter

on ICQTN to reach ICQTN10.

ICQTN20-ICQTN29
Option 2

2 is the option number administrators enter
on ICQTN to reach ICQTN20.

.

.

.

The last character is for panel numbering.

The last character is for panel numbering.

Figure 116. Naming Conventions: Administrator Tutorial Panels Describing a Function

ICQU

ICQUN0-ICQUN5 User News tutorial panels

.

.

.

Option 1

.

.

.

Table of contents for administrator tutorial

The last character is for panel numbering.

UN indicates that the panel is in the

user News tutorial.

Figure 117. Naming Conventions: User Tutorial Panels Describing a Function

Using the ICF Naming Conventions

Chapter 46. Customizing the Information Center Facility 661

The fourth character of the help panel name is one greater than the fourth character
of the data entry panel or menu name, so that, for example, G becomes H and C
becomes D. The sixth character in the name of the menu or data entry panel is not
used. An eighth character is added to the help panel name for incrementing.

Naming Conventions: Messages
Messages are named by function:

v The first three characters are ICQ

v The fourth and fifth characters indicate the function to which the message
belongs:

Characters Component

AB Administrator courses

AD User types

AE Enrollment

AI ISPF defaults

AM Application Manager

AN Administrator news

AP Administrator printer support

AS APPC/MVS administration dialog

CA Names6

CB User courses

CG Chart creation

CI An interface for ALPDI-II

CL Interfaces for VS APL and APL2

CN User news

CP User printer support

CR An interface for ADRS

GA General administrator messages

GC General user messages

SP Space management

v The last three characters uniquely identify the message

6. All names messages use CA, not only user names messages.

ICQABE10

ICQBB100

Data entry panel

Help panel

X
+1

Figure 118. Naming Conventions: Help Panels for Data Entry Panels and Menus

Using the ICF Naming Conventions

662 z/OS V1R4.0 TSO/E Customization

Naming Conventions: Help for Messages
The name of a panel providing help for a message is based on the name of the
message it explains. Figure 119 shows how help panels for messages are named.
The two characters in the name of the message that indicate the function to which

the message belongs become the last two characters in the name of the message
help panel. The last three characters in the message name become the fourth, fifth,
and sixth characters in the name of the message help panel.

On occasion, the help for a message can require two or three panels. The name of
the second help panel is based on the name of the first help panel and the name of
the third help panel is based on the name of the second help panel, as shown in
Figure 120.

The sixth and seventh characters in the name of the first help panel are reversed in
the name of the second help panel.

The fifth and sixth characters in the name of the second help panel are reversed in
the name of the third help panel.

Application, Panel, CLIST, and REXX Exec Hierarchy
Figures 121 through 139 show the Information Center Facility hierarchy of
applications, panels, CLISTs, and REXX execs. You can use the figures as a
reference when you customize the Information Center Facility.

For example, if you change CLIST ICQCAC30, check each CLIST and panel that
ICQCAC30 invokes. ICQCAC30 invokes:
v ICQAAE30
v ICQCAE14
v ICQAAE15
v ICQCAE25

ICQCA235

ICQ235CA

Message

Help for the message

Figure 119. Naming Conventions: Help Panels for Messages

ICQ235CA

ICQ23C5A

ICQ2C35A

First help panel

Second help panel

Third help panel

Figure 120. Naming Conventions: Help Panels for Messages, Second and Third Panels

Using the ICF Naming Conventions

Chapter 46. Customizing the Information Center Facility 663

Figures 121 through 139 show only panel and function applications. In addition to
panel and function applications, the Information Center Facility uses one
environment application, ICQENVIRON. The function applications that use
ICQENVIRONare:
v ICQADRS
v ICQAPLDI
v ICQAPL2
v ICQAPPLMGR
v ICQCOURSEA
v ICQCOURSES
v ICQENROLL
v ICQGRPSPEC
v ICQGRPAMGR
v ICQICU
v ICQIMAGE
v ICQNAMES
v ICQNAMESA
v ICQNEWS
v ICQNEWSA
v ICQPRINTER
v ICQPVTAMGR
v ICQUSERTYPE
v ICQVECTOR
v ICQVSAPL

To recognize applications, data entry panels, menu panels, help panels, tutorial
panels, messages, CLISTs, and REXX execs, see “Using the ICF Naming
Conventions” on page 655.

Application, Panel, CLIST, and REXX ...

664 z/OS V1R4.0 TSO/E Customization

ICQADMIN TSO/E - Administration application
│
├─ICQDESCRIBE Describe application
│
├─ICQNEWSA TSO/E - News Maintenance application
│ │
│ ├─ICQANC00 Administrator NEWS CLIST (See Figure 122)
│
├─ICQNAMESA TSO/E - Names Administration application
│ │
│ ├─ICQCAC00 Administrator NAMES CLIST (See Figure 123)
│
├─ICQENROLL TSO/E - Enroll application
│ │
│ ├─ICQCAC00 ENROLL CLIST (See Figure 124)
│
├─ICQUSERTYPE TSO/E - User Types
│ │
│ ├─ICQADC00 USER TYPES CLIST (See Figure 125)
│
├─ICQSYSDEF TSO/E - System Defaults application
│ │
│ ├─ICQDESCRIBE Describe application
│ │
│ ├─ICQISPFDEF Set ISPF Defaults application
│ │ │
│ │ ├─ICQAIR00 REXX exec to process the system defaults profile
│ │
│ ├─ICQPRINTER Set Printer Defaults for System application
│ │ │
│ │ ├─ICQAPC00 Printer CLIST (See Figure 126)
│ │
│ ├─ICQAPPLMGR TSO/E System Application Manager
│ │ │
│ │ ├─ICQAMCM0 Application Manager CLIST (See Figure 127)
│ │
│ ├─ICQTUTOR Tutorial
│
├─ICQUSER TSO/E - User Services (See Figure 129)
│
├─ICQCOURSEA TSO/E - Maintain Courses application
│ │
│ ├─ICQABM00 Administrator COURSES menu (See Figure 128)
│
├─ICQPDF ISPF/PDF Services application
│
├─ICQPROBLEMA TSO/E - Problem Reporting Services application
│ │
│ ├─ICQGAM01 Administration PROBLEM (place holder panel)
│
├─ICQINTROA Learn to Use application
│
├─ICQTUTOR Tutorial application
│
└─ICQEXIT Exit application

Figure 121. Administration Services Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 665

ICQANC00 The main administrator NEWS CLIST.
│
├─ICQANE00 A data entry panel on which you specify an action you want to take and
│ the type of news item you want to display. You can add a new item,
│ access the tutorial, or request to see a list of news items.
│
├─ICQANE10 A list panel that displays available news items.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST that prints news items/course abstracts.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
├─ICQANE60 A data entry panel on which you describe the news item you are adding or copying.
│
├─ICQANC01 A CLIST that adds or copies a news item.
│ │
│ ├─ICQANC05 A CLIST that adds or copies a news item you requested.
│ │
│ ├─ICQANE90 A data entry panel on which you type the text of a news item you are copying
│ or adding.
│
├─ICQANE40 A data entry panel on which you modify the description of a news item.
│
├─ICQANC02 A CLIST that modifies a news item.
│ │
│ ├─ICQANC05 A CLIST that modifies a news item you requested.
│ │
│ ├─ICQANE90 A data entry panel on which you type the text of a news item you are modifying.
│
├─ICQANC03 A CLIST that deletes a news item.
│ │
│ ├─ICQANE20 A confirmation panel on which you confirm the deletion of a news item.
│ You can also view the news item before it is deleted.
│
├─ICQCNC01 A CLIST that accesses and displays the text of a news item you requested to view.
│ │
│ ├─ICQCNE20 A view panel that displays the text of a news item you requested to view.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
└─ICQTN Tutorial for administrator NEWS.

Figure 122. Administrator NEWS Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

666 z/OS V1R4.0 TSO/E Customization

ICQCAC00 The main CLIST for administrator and user NAMES and for ENROLL.
│
├─ICQAAM00 A menu panel that lists the options you can choose to use and maintain
│ the names directory.
│
├─ICQCAC10 A CLIST that processes names in the directory.
│ │
│ ├─ICQAAE10 A data entry panel on which you identify the name(s) in the directory you want
│ │ to see. You can also add a new name to the directory.
│ │
│ ├─ICQAAE11 A list panel that displays the names you requested to see. You can view, modify,
│ │ or delete a particular name. You can also add a new name to the directory.
│ │
│ ├─ICQCAE12 A data entry panel on which you specify information about a name you are
│ │ adding or modifying.
│ │
│ ├─ICQAAE13 A data entry panel on which you specify information about a name you are
│ │ adding or modifying.
│ │
│ ├─ICQAEE50 A list panel that displays the user types you requested to see.
│ │ You select the user type for the name you are adding or modifying.
│ │
│ ├─ICQCAE14 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQAAE15 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE16 A confirmation panel on which you confirm the deletion of a name.
│
├─ICQCAC20 A CLIST that processes groups in the directory.
│ │
│ ├─ICQAAE20 A data entry panel on which you identify the group(s) in the directory you want
│ │ to see. You can also add a new group to the directory.
│ │
│ ├─ICQAAE21 A list panel that displays the groups you requested to see.
│ │ You can view, modify, or delete a particular group.
│ │ You can also add a new group to the directory.
│ │
│ ├─ICQAAE22 A list panel that displays the group name, description, and entries.
│ │ You can modify the name and description, view or delete a particular entry,
│ │ or add a new group entry.
│ │
│ ├─ICQCAE23 A list panel on which you add entries to a group you are modifying. You can view
│ │ or delete a particular entry. You can request a list of entries in the directory
│ │ and select names you want to add to the group. You can also view or delete an
│ │ entry in the group.
│ │
│ ├─ICQAAE27 A list panel on which you describe a group you are adding and the group entries.
│ │ You can also request a list of names and select the group entries from the list.
│ │
│ ├─ICQCAE24 A list panel that displays the names you requested to see to include in a group.
│ │ You can view a particular name or select the names you want in the group.
│ │
│ ├─ICQCAE41 A list panel that displays the name, description, and entries of a group
│ │ you requested to view.
│ │

Figure 123. Administrator NAMES Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 2)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 667

│ │
│ ├─ICQCAE14 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE15 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQAAE15 A view panel that displays information about a particular name
│ │ you requested to view.
│ │
│ │
│ ├─ICQCAE25 A list panel that displays the name, description, and entries of a group you
│ │ requested to view. You can view a particular entry within the group.
│ │
│ ├─ICQCAE26 A confirmation panel on which you confirm the deletion of a group.
│
├─ICQCAC30 A CLIST that processes requests from users to update the master directory.
│ │
│ ├─ICQAAE30 A list panel that displays user requests to update the master directory.
│ │ You can view, accept, or reject a particular request.
│ │
│ ├─ICQCAE14 A view panel that displays directory information about a particular entry you
│ │ wanted to view.
│ │
│ ├─ICQAAE15 A view panel that displays directory information about a particular entry
│ │ you wanted to view.
│ │
│ ├─ICQCAE25 A list panel that displays the name, description, and entries of a group
│ request you wanted to view.
│ You can view a particular entry within the group.
│
├─ICQCACN1 A CLIST that updates the master NAMES.TEXT data set for TRANSMIT/RECEIVE
│ with changes that you made to the master directory.
│
└─ICQTA Tutorial for administrator NAMES.

Figure 123. Administrator NAMES Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 2)

Application, Panel, CLIST, and REXX ...

668 z/OS V1R4.0 TSO/E Customization

ICQCAC00 The main CLIST for administrator and user NAMES and for ENROLL.
│
├─ICQCAC10 A CLIST that processes names and enrollment.

│
├─ICQAEE10 A data entry panel on which you specify an action you want to take (find, modify,
│ or enroll). You can "request a list of user(s)", as defined in the names
│ directory, or enroll a person who is not defined in the names directory. You can
│ also access the tutorial.
│
├─ICQAEE11 A list panel that displays the entries in the names directory you requested to see.
│ You can enroll, view, or modify a name or enroll a user who is not defined
│ in the directory.
│
├─ICQCAE12 A data entry panel on which you specify information about a name you are adding
│ or modifying.
│
├─ICQAAE13 A data entry panel on which you specify information about a name you are adding
│ or modifying.
│
├─ICQAEE50 A list panel that displays the user types you requested to see.
│ You select the user type for the name you are adding or modifying.
│
├─ICQCAE14 A view panel that displays information about a name you requested to view.
│
├─ICQAAE15 A view panel that displays information about a name you requested to view.
│
├─ICQAEC00 A CLIST that enrolls the person in the Information Center Facility.
│ │
│ │ ┌─ICQAEE40 A data entry panel on which you identify the person you are enrolling to TSO/E,
│ │ │ RACF, or the master catalog.
│ ├─│
│ │ └─ICQAEE41 A data entry panel on which you identify the person you are enrolling to TSO/E
│ │ and/or RACF.
│ │
│ ├─ICQAIR00 A CLIST that updates the ISPF defaults for a user.
│
└─ICQTE Tutorial for ENROLL.

Figure 124. Administrator Enrollment Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 669

ICQADC00 The main CLIST for administration USER TYPES.
│
├─ICQADE00 A data entry panel on which you specify an action you want to take
│ (add, delete, modify or view) and information about the user type.
│ You can also access the tutorial.
│
├─ICQADE01 A data entry panel that is displayed if you add a user type which already exists.
│ You can delete, view, modify, or replace the user type or add another one with a
│ different name or description.
│
├─ICQADE02 A list panel that displays the user types you requested to see. You can delete,
│ view, or modify a particular user type.
│
├─ICQADE03 A data entry panel that is displayed if you and another user are adding a user type
│ with the same name. You can specify either a different user type or user
│ description.
│
├─ICQADE14 A confirmation panel on which you confirm the deletion of a user type.
│
├─ICQADM16 A menu panel that lists options that define a user type.
│ │
│ ├─ICQADC01 A CLIST that accesses and displays the TSO/E user ID information.
│ │ │
│ │ ├─ICQADE04 A view panel that displays TSO/E user ID information for the user type you
│ │ │ requested.
│ │ │
│ │ ├─ICQADE05 A view panel that displays the authorization information for the user type you
│ │ │ requested.
│ │ │
│ │ ├─ICQADE06 A data entry panel on which you specify user ID information for the user type
│ │ │ you are adding or replacing.
│ │ │
│ │ ├─ICQADE07 A data entry panel on which you specify authorization information for the
│ │ user type you are adding or replacing.
│ │
│ ├─ICQADC02 A CLIST that accesses and displays RACF security information.
│ │ │
│ │ ├─ICQADE08 A view panel that displays RACF security information for the user type you
│ │ │ requested.
│ │ │
│ │ ├─ICQADE09 A view panel that displays optional RACF information for the user type you
│ │ │ requested.
│ │ │
│ │ ├─ICQADE10 A data entry panel on which you specify RACF security information for the user
│ │ │ tape you are adding or replacing.
│ │ │
│ │ ├─ICQADE11 A data entry panel on which you specify optional RACF information for the user type
│ │ you are adding or replacing.
│ │
│ ├─ICQADC03 A CLIST that accesses and displays the DEFINE ALIAS parameters.
│ │
│ ├─ICQADE12 A view panel that displays DEFINE ALIAS parameters for the user type you requested.
│ │
│ ├─ICQADE13 A data entry panel on which you specify DEFINE ALIAS parameters for the user type
│ you are adding or replacing.
│

Figure 125. Administrator User Types Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 2)

Application, Panel, CLIST, and REXX ...

670 z/OS V1R4.0 TSO/E Customization

│
├─ICQADM17 A menu panel on which you select which part of the user type you want to modify.
│ │
│ ├─ICQADC01 A CLIST that accesses and displays user ID information.
│ │ │
│ │ ├─ICQADE06 A data entry panel on which you specify user ID information for the user type
│ │ │ you are modifying.
│ │ │
│ │ ├─ICQADE07 A data entry panel on which you specify authorization information for the user
│ │ type you are modifying.
│ │
│ ├─ICQADC02 A CLIST that accesses and displays RACF security information.
│ │ │
│ │ ├─ICQADE10 A data entry panel on which you specify RACF security information for the user
│ │ │ type you are modifying.
│ │ │
│ │ ├─ICQADE11 A data entry panel on which you specify optional RACF information for the user
│ │ type you are modifying.
│ │
│ ├─ICQADC03 A CLIST that accesses and displays the DEFINE ALIAS parameters.
│ │ │
│ │ ├─ICQADE13 A data entry panel on which you specify DEFINE ALIAS parameters for the user
│ │ type you are modifying.
│ │
│ ├─ICQADC04 A CLIST that accesses the name and description of a user type.
│ │
│ ├─ICQADE15 A data entry panel on which you specify the name and description for a user type
│ you are modifying.
│
└─ICQTD Tutorial for USER TYPES.

Figure 125. Administrator User Types Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 2)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 671

│
├─ICQAPC00 A CLIST that updates printer defaults for the system.
│ │
│ ├─ICQAPE00 A list panel that displays the printers. You can modify, delete, or copy
│ │ a particular printer. You can also add a new printer or access the tutorial.
│ │
│ ├─ICQAPE10 A confirmation panel on which you confirm the deletion of a selected printer.
│
├─ICQAPM20 A menu panel on which you can add or modify a printer’s characteristics.
│ │ You can view or modify the name and location, specify functional or installation
│ │ characteristics, define characters sets or output functions, and test the
│ │ printer function.
│ │
│ ├─ICQAPE30 A data entry panel on which you specify printer characteristics such as location,
│ │ │ format, and type for a printer you are adding or modifying.
│ │ │
│ │ ├─ICQAPE40 A list panel that displays the printer types. You select a type from the list.
│ │ │
│ │ ├─ICQAPE41 A list panel that displays the printer formats. You select a format
│ │ │ from the list.
│ │ │
│ │ ├─ICQAPE42 A list panel that displays the printer locations. You select a location
│ │ from the list.
│ │
│ ├─ICQAPE80 A data entry panel on which you define a print function and parameters.
│ │
│ ├─ICQAPE50 A data entry panel on which you specify general printer characteristics
│ │ such as sysout class, program, form, and UCS and FCB names.
│ │
│ ├─ICQAPE51 A data entry panel on which you specify general printer characteristics
│ │ such as module name, translate code, flash name, and count.
│ │
│ ├─ICQAPE52 A data entry panel on which you specify general printer characteristics
│ │ for the number of copies parameter.
│ │
│ ├─ICQAPE53 A data entry panel on which you can specify options of the PRINTDS command such as
│ │ output descriptors, sysout forms, whether to print PDS members or directories,
│ │ and the data set to which the output goes.
│ │
│ ├─ICQAPE54 A data entry panel on which you can specify options of the PRINTDS command such as
│ │ sysout class, page length, title, margins, and line spacing.
│ │
│ ├─ICQAPE55 A data entry panel on which you can specify a range of lines to be printed.
│ │
│ ├─ICQAPE56 A data entry panel on which you can specify columns of data to be printed.
│ │
│ ├─ICQAPE57 A data entry panel on which you can specify options of the PRINTDS command such as
│ │ sysout writer, UCS and FCB names, flash, burst, and number of copies to print.

Figure 126. Administrator Printer Defaults Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 2)

Application, Panel, CLIST, and REXX ...

672 z/OS V1R4.0 TSO/E Customization

│ │
│ ├─ICQAPE60 A data entry panel on which you specify characteristics which are specific
│ │ to the printer.
│ │
│ ├─ICQAPE90 A data entry panel on which you specify the data set you want to print to test the
│ │ print function.
│ │
│ ├─ICQCPC20 A CLIST that accesses the fonts which are available on the system.
│ │ │
│ │ ├─ICQAPE70 A data entry panel on which you specify and maintain a list of the fonts
│ │ for the printer.
│ │
│ └─ICQTP Tutorial for maintaining the printer list.
│
└─ICQX5 Tutorial for maintaining the system defaults.

Figure 126. Administrator Printer Defaults Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 2)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 673

│
├─ICQAMCM0 The main CLIST for system, group, and private Application Manager. It establishes

│ control for the administrator, opens tables, and if necessary, calls the update
│ recovery routine.
│
├─ICQSIEAM A non-display panel that contains the variables for customizing Application
│ Manager.
│
├─ICQAMEA2 A list panel that you use to identify the group you want to administer.
│
├─ICQAMRG1 A REXX exec which displays a selection list of Application Manager groups
│ │ and returns the selected group’s information.
│ │
│ ├─ICQGCL00 A program that creates the list of groups to be displayed.
│ │
│ ├─ICQAMEA3 A panel that displays a list of groups.
│
├─ICQAME10 A list panel that displays a list of applications. You can add, upgrade, view,
│ copy, delete, modify, export applications, and find out where the applications are
│ used. You can also display a hierarchy of applications and create an installation
│ file from an existing application.
│
├─ICQAMCS0 A CLIST that generates and controls the hierarchy display.
│ │
│ ├─ICQAMCS2 A CLIST that extracts the information and creates the hierarchy display.
│ │
│ ├─ICQAME19 A list panel that displays the hierarchy listing in browse mode.
│
├─ICQAMRY0 A REXX exec that controls upgrade processing.
│ │
│ ├─ICQAMRY2 A REXX exec that processes the upgrade file against the installation file.
│ │
│ ├─ICQAMRY3 A REXX exec that identifies errors in the upgrade file.
│ │
│ ├─ICQGCC00 A CLIST that performs a general search for files specified with an * (asterisk)
│ │ suffix.
│ │
│ ├─ICQAME88 A data entry panel on which you can specify an installation file to upgrade
│ │ and the upgrade file.
│ │
│ ├─ICQAME8A A list panel that displays a list of installation members that can be selected or
│ │ edited.
│ │
│ ├─ICQAME8B A list panel that displays a list of upgrade members that can be selected or
│ │ edited.
│ │
│ ├─ICQGCE17 A list panel that displays a list of data sets that can be selected or edited.
│
├─ICQAME13 A menu panel on which you can select the type of application you want to add.
│ │ You can also choose to add an application using an installation file.
│ │
│ ├─ICQAMCP0 A CLIST that creates, copies, or modifies a panel definition.
│ │ (See "Define a Panel" in Part 3 of this figure.)
│ │
│ ├─ICQAMCF0 A CLIST that creates, copies, or modifies a function or an environment definition.
│ │ (See "Define a Function or Environment" in Part 4 of this figure.)
│ │
│ ├─ICQAMCI0 A CLIST that obtains the name of the sequential data set or partitioned
│ data set and the member that contains the installation file that is to be loaded or
│ edited. (See "Load an Installation File" in Part 5 of this figure.)
│
├─ICQAME16 A confirmation panel that confirms your request to delete an application.

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 7)

Application, Panel, CLIST, and REXX ...

674 z/OS V1R4.0 TSO/E Customization

│
├─ICQAME17 A list panel that displays a list of applications that use a specified application.
│ │ You can delete, modify, view, and find out where applications on the list are used.
│ │ You can also display a hierarchy listing of applications.
│ │
│ ├─ICQAMCS0 A CLIST that generates and controls the hierarchy display.
│ │
│ ├─ICQAMCS2 A CLIST that extracts the information and creates the hierarchy display.
│ │
│ ├─ICQAME19 A list panel that displays the hierarchy listing in browse mode.
│
├─ICQAMCP0 A CLIST that creates, copies, or modifies a panel definition.
│ (See "Define a Panel" in Part 3 of this figure.)
│
├─ICQAMCF0 A CLIST that creates, copies, or modifies a function or an environment definition.
│ (See "Define a Function or Environment" in Part 4 of this figure.)
│
├─ICQAMCX0 A CLIST that obtains the name of the sequential data set or the partitioned
│ data set member into which the application is to be placed or "exported".
│ (See "Export an Application" in Part 6 of this figure.)
│
├─ICQAMCV0 A CLIST used to view Application Manager applications.
│ (See "View an Application" in Part 7 of this figure.)
│
├─ICQAMCU0 A CLIST that updates administrator and user Application Manager tables and help

│ tables.
│
├─ICQAME60 An information panel that notifies you that an interrupt occurred and the specified
│ administrator’s updates are not complete. You cannot
│ access Application Manager until update recovery finishes.
│
├─ICQAMCU1 A CLIST that updates help tables when selections are moved on a panel.
│

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 7)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 675

Define a Panel

ICQAMCP0 A CLIST that creates, copies, or modifies a panel definition.
│
├─ICQAME20 A menu panel on which you can select options for defining a panel. You can also
│ indicate whether to make the panel available to users.
│
├─ICQAME21 A data entry panel on which you provide the general information for defining a
│ panel. You can also specify whether to replace an existing panel.
│
├─ICQAME24 A menu panel on which you can copy a panel and create a new one. You can also
│ specify whether to make the panel available to users.
│
├─ICQAME26 A list panel on which you can choose applications to include as options on a panel
│ and specify their order.
│
├─ICQAMCL0 A CLIST that displays a list of applications that match a specific search criteria.
│ │
│ ├─ICQAME41 A list panel on which you can select an existing start-up function.
│ │
│ ├─ICQAME42 A list panel on which you can select an existing termination function.
│
├─ICQAMCH0 A CLIST that modifies the Application Manager help tables.
│ │
│ ├─ICQAMCH1 A CLIST that provides 20 blank lines for help text and permits mixed case.
│ │
│ ├─ICQAME50 An edit panel on which you can create or edit the help text that briefly describes
│ │ a particular panel. Users see this description when they select the DESCRIBE
│ │ option on the menu panel that contains that panel as an option.
│ │
│ │ ┌─ICQAMCH2 An edit macro which ensures no text exists beyond column 58 when text is saved
│ │ | using END.
│ ├─│
│ │ └─ICQAMCH3 An edit macro which ensures no text exists beyond column 58 when text is saved
│ │ using SAVE.
│ │
│ ├─ICQAME84 A non-display panel that left-justifies data and changes it to uppercase
│ when necessary.
│
├─ICQAMCU0 A CLIST that updates administrator and user Application Manager tables and help

│ tables.
│
│
├─ICQAME60 An information panel that notifies you that an interrupt occurred and the specified
│ administrator’s updates are not complete. You cannot access Application Manager
│ until update recovery finishes.
│
├─ICQAMCU1 A CLIST that updates help tables when selections are moved on a panel.
│

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 3 of 7)

Application, Panel, CLIST, and REXX ...

676 z/OS V1R4.0 TSO/E Customization

Define a Function or Environment

ICQAMCF0 A CLIST that creates, copies, or modifies a function or environment
│ definition.
│
├─ICQAME30 A selection panel containing options for defining a function.
│ You can also indicate whether or not to make the function available to users.
│
├─ICQAME31 A data entry panel on which you provide the general information needed
│ for defining a function. You can also specify whether to replace an
│ existing function.
│
├─ICQAME32 A data entry panel on which you define the variables associated with an
│ application.
│
├─ICQAME33 A list panel on which you can insert, delete, or repeat the name of a library
│ required by a function or environment.
│
├─ICQAME34 A data entry panel on which you edit the initialization, invocation, and
│ termination commands associated with a function or environment.
│
├─ICQAME35 A menu panel from which you can select the options for defining an environment.
│ You can also indicate whether to make the environment available to users.
│
├─ICQAME36 A menu panel on which you can define a new environment by copying from
│ an existing one. You can also indicate whether to make the environment
│ available to users.
│
├─ICQAME37 A data entry panel on which you can modify the variables associated
│ with an application.
│
├─ICQAME38 A menu panel from which you can select the options for defining a function
│ by copying from an existing one. You can also indicate whether to make the
│ function available to users.
│
├─ICQAME39 A data entry panel on which you provide the general information for defining
│ an environment. You can also specify whether to replace an existing
│ environment.
│
├─ICQAMCL0 A CLIST that displays a list that matches a specific search criteria.
│ │
│ ├─ICQAME40 A list panel on which you can select an existing environment.
│
├─ICQAMCH0 A CLIST that modifies the Application Manager help tables.
│ │
│ ├─ICQAMCH1 A CLIST that provides 20 blank lines for help text and permits mixed case.
│ │
│ ├─ICQAME51 A data entry panel that contains help text for a function.
│ │
│ │ ┌─ICQAMCH2 An edit macro which ensures no text exists beyond column 58 when text is saved
│ │ | using END.
│ ├─│
│ │ └─ICQAMCH3 An edit macro which ensures no text exists beyond column 58 when text is saved
│ │ using SAVE.
│ │
│ ├─ICQAME84 A non-display panel that left-justifies data and changes it to uppercase
│ when necessary.

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 4 of 7)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 677

│
├─ICQAMCU0 A CLIST that updates administrator and user Application Manager tables

│ and help tables.
│
├─ICQAME60 An information panel that notifies you that an interrupt occurred and
│ the specified administrator’s updates are not complete. You cannot
│ access Application Manager until update recovery finishes.
│
├─ICQAMCU1 A CLIST that updates help tables when selections are moved on a panel.
│

Load an Installation File

ICQAMCI0 A CLIST that obtains the name of the sequential data set or the partitioned data
│ set and member that contains an installation file that is to be loaded or edited.
│
├─ICQAME80 A data entry panel on which you supply the name of a data set that contains an
│ installation file for an application. The panel gives
│ you the choice of editing the file before installing it.
│
├─ICQGCC00 A CLIST that performs a general search for files specified with an * (asterisk)
│ suffix.
│
├─ICQAME82 A list panel that appears when you identify an installation file by
│ entering the name of a partitioned data set without a member name.
│ You can select the member that contains the installation file to be loaded.
│
├─ICQAMCI2 A CLIST that loads an installation file from a specified data set into a table

│ and calls the appropriate verification routine.
│
├─ICQAME84 A non-display panel that left justifies data and changes it to uppercase
│ when necessary.
│
├─ICQGIECP A non-display panel that flips fields to upper case and validates date formats.
│
├─ICQAMCP0 A CLIST that creates, copies, or modifies a panel definition.
│
├─ICQAMCF0 A CLIST that creates, copies, or modifies a function or environment definition.
│

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 5 of 7)

Application, Panel, CLIST, and REXX ...

678 z/OS V1R4.0 TSO/E Customization

Export an Application

ICQAMCX0 A CLIST that obtains the name of the sequential data set or the partitioned
│ data set member into which the application is to be exported.
│
├─ICQAME85 A data entry panel on which you supply the name of a sequential data set
│ or partitioned data set member into which the application is to be exported.
│
├─ICQGCC00 A CLIST that performs a general search for files specified with an * (asterisk)
│ suffix.
│
├─ICQSPC00 A CLIST that manages available space in the sequential or partitioned data set.
│ │
│ ├─ICQAME86 An informational panel informing the user that space manager is either
│ │ compressing or expanding the specified data set.
│ │
│ ├─ICQAME87 A data entry panel on which you can specify whether to create the data
│ set when it does not exist.
│
├─ICQAME89 A list panel that appears when you supply the name of a partitioned data set.
│ You can select from the list the member that is to contain the application to
│ be exported.
│
├─ICQAMCX2 A CLIST that exports the application from the application table to the

│ current edit session.
│
├─ICQAME84 A non-display panel that left justifies data and changes it to uppercase

when necessary.

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 6 of 7)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 679

View an Application

ICQAMCV0 A CLIST that processes view requests for panels, functions, and environments.
│
├─ICQAME95 A display panel for viewing an environment.
│ │
│ ├─ICQAME99 A display panel for viewing general information for an environment.
│ │
│ ├─ICQAME92 A display panel for viewing environment variable definitions.
│ │ │
│ │ ├─ICQAME9C A display panel for viewing long environment variable information.
│ │
│ ├─ICQAME93 A display panel for viewing environment application libraries.
│ │
│ ├─ICQAME94 A display panel for viewing environment application commands.
│
├─ICQAME97 A display panel for viewing a panel.
│ │
│ ├─ICQAME98 A display panel for viewing general information for a panel.
│ │
│ ├─ICQAME96 A display panel for viewing panel options.
│ │
│ ├─ICQAMCH0 A CLIST that displays help text.
│ │
│ ├─ICQAME9A A display panel for viewing help text for a panel.
│
├─ICQAME90 A display panel for viewing a function.
│ │
│ ├─ICQAME91 A display panel for viewing general information for a function.
│ │
│ ├─ICQAME92 A display panel for viewing function variable definitions.
│ │ │
│ │ ├─ICQAME9C A display panel for viewing long function variable information.
│ │
│ ├─ICQAME93 A display panel for viewing function application libraries.
│ │
│ ├─ICQAME94 A display panel for viewing function application commands.
│ │
│ ├─ICQAMCH0 A CLIST that displays help text.
│ │
│ ├─ICQAME9B A display panel for viewing help text for a function.

Figure 127. Application Manager Application, Panel, CLIST, and REXX Exec Hierarchy (Part 7 of 7)

Application, Panel, CLIST, and REXX ...

680 z/OS V1R4.0 TSO/E Customization

ICQABM00 The menu panel for administrator courses (Information Center Facility)
│
├─ICQABC00 A CLIST that adds, deletes, views, modifies, and prints course abstracts.
│ │
│ ├─ICQABE10(20) A list panel that displays the course abstracts. You can view, modify, print, and
│ │ delete a particular abstract, or add a new course abstract.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │ │
│ │ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ │ and format.
│ │ │
│ │ ├─ICQCPC00 A CLIST for printer support.
│ │ │
│ │ ├─ICQCPE00 A list panel for printer selection.
│ │
│ ├─ICQABM30 A menu panel on which you select the type of course you want to add (IIPS,
│ │ classroom, or computer).
│ │
│ ├─ICQABEQ0 A data entry panel on which you specify information about an IIPS course you
│ │ are adding.
│ │
│ ├─ICQABER0 A data entry panel on which you specify information about a classroom course you
│ │ are adding.
│ │
│ ├─ICQABES0 A data entry panel on which you specify information about a computer course you
│ │ are adding.
│ │
│ ├─ICQANC01 A CLIST that processes course abstracts when you add an abstract.
│ │ │
│ │ ├─ICQANC05 A CLIST that processes course abstracts when you add an abstract.
│ │ │
│ │ ├─ICQABE40 A data entry panel on which you specify the text of the course abstract you are
│ │ adding.
│ │
│ ├─ICQABE50 A data entry panel on which you modify the characteristics of an IIPS course.
│ │
│ ├─ICQABET0 A data entry panel on which you modify the characteristics of a classroom course.
│ │
│ ├─ICQABEU0 A data entry panel on which you modify the characteristics of a computer course.
│ │
│ ├─ICQANC02 A CLIST that modifies a course description.
│ │ │
│ │ ├─ICQANC05 A CLIST that processes course abstracts when you modify an abstract.
│ │ │
│ │ ├─ICQABE40 A data entry panel on which you specify the text of the course abstract you are
│ │ modifying.
│ │
│ ├─ICQANC03 A CLIST that deletes a course.
│ │ │
│ │ ├─ICQABE70 A confirmation panel on which you confirm the deletion of an IIPS or classroom
│ │ │ course. You can view the course abstract before the course is deleted.
│ │ │
│ │ ├─ICQABEV0 A confirmation panel on which you confirm the deletion of a computer course. You
│ │ view the course abstract before the course is deleted.

Figure 128. Administrator COURSES Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 2)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 681

│ │
│ ├─ICQCNC01 A CLIST that accesses a course abstract and displays information about the course.
│ │
│ ├─ICQCBE20 A view panel that displays the course abstract you requested to view.
│ │
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
├─ICQABC20 A CLIST that processes registration requests.
│ │
│ ├─ICQABE90(A0) A list panel that displays the registration requests for courses. You can register
│ │ a student or delete the student’s request.
│ │
│ ├─ICQABEW0 A data entry panel that is displayed if the course in which you are registering
│ │ someone is full. You can either register the student or cancel the registration
│ │ request.
│ │
│ ├─ICQABEB0 A data entry panel on which you specify your IIPS administrator ID and password.
│ │ This is needed if you register a student who is not defined in the names directory.
│ │
│ ├─ICQABEC0 A data entry panel on which you specify information about a student you are
│ │ registering, but who is not defined in the names directory.
│ │
│ ├─ICQABED0 A data entry panel on which you specify your IIPS administrator ID.
│ │
│ ├─ICQABEM0 A data entry panel on which you specify your IIPS password.
│
├─ICQABC50 A CLIST that maintains course registration lists.
│ │
│ ├─ICQABEE0(F0) A list panel that displays the IIPS and classroom courses. You select the course
│ │ you want to maintain.
│ │
│ ├─ICQABEG0(H0) A list panel that displays the course and names of the registered students. You
│ │ can delete a student name or register a new student for the course.
│ │
│ ├─ICQABEI0 A data entry panel on which you specify the user ID of the student you are adding
│ │ to (registering in) a course.
│ │
│ ├─ICQABEK0 A confirmation panel on which you confirm the deletion of a student’s registration
│ in a course.
│
├─ICQABC30 A CLIST that invokes IIPS for an IIPS administrator.
│ │
│ ├─ICQABED0 A data entry panel on which you specify your IIPS administrator ID.
│ │
│ ├─IIPS
│
├─ICQABC40 A CLIST that modifies the administration defaults.
│ │
│ ├─ICQABEJ0 A data entry panel on which you modify the administration defaults.
│
└─ICQTB Tutorial for Administrator COURSES.

Figure 128. Administrator COURSES Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 2)

Application, Panel, CLIST, and REXX ...

682 z/OS V1R4.0 TSO/E Customization

ICQUSER TSO/E - User Services application
│
├─ICQDESCRIBE Describe application
│
├─ICQNEWS Information Center Facility - News application
│ │
│ ├─ICQCNC00 User NEWS (See Figure 131)
│
├─ICQNAMES Information Center Facility - Name application
│ │
│ ├─ICQCAC00 User NAMES (See Figure 132)
│
├─ICQOFFICE TSO/E - Office Services application
│ │
│ ├─ICQDESCRIBE Describe application
│ │
│ ├─ICQPSTSO PS/TSO application
│ │
│ ├─ICQTUTOR Tutorial application
│
├─ICQPROGRAM TSO/E - Programmer Services
│ │
│ ├─ICQDESCRIBE Describe application
│ │
│ ├─ICQBASIC IBM BASIC/MVS application
│ │
│ ├─ICQAPL2 APL-II application
│ │ │
│ │ ├─ICQCLC00 APL-II (See Figure 138)
│ │
│ ├─ICQVSAPL VS/APL application
│ │ │
│ │ ├─ICQCLC00 VS/APL (See Figure 138)
│ │
│ ├─ICQTIF The Information Facility application
│ │
│ ├─ICQAS Application System application
│ │
│ ├─ICQGRPSPEC Group specification application
│ │ │
│ │ ├─ICQAMRGO A REXX exec that processes group specification.
│ │ │
│ │ ├─ICQAMEA1 Group specification panel
│ │ │
│ │ ├─ICQAMRG1 A REXX exec which displays a selection list of Application Manager
│ │ │ │ groups and returns the selected group’s information.
│ │ │ │
│ │ │ ├─ICQGCC00 A CLIST that performs a general search for files
│ │ │ specified with an * (asterisk) suffix.
│ │ │
│ │ ├─ICQAMEA3 A list panel that displays groups.

Figure 129. User Services Application, Panel, CLIST, and REXX Exec Hierarchy (Part 1 of 3)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 683

│ │
│ │
│ ├─ICQGROUP Group Application Manager
│ │ │
│ │ ├─ICQAMCM0 Application Manager CLIST (See Figure 127)
│ │
│ ├─ICQPRIVATE Private Application Manager
│ │ │
│ │ ├─ICQAMCM0 Application Manager CLIST (See Figure 127)
│ │
│ ├─ICQTUTOR Tutorial application
│
├─ICQANALYSIS Analysis/Report Creation Services application
│ │
│ ├─ICQDESCRIBE Describe application
│ │
│ ├─ICQAPLDI APLDI-II application
│ │ │
│ │ ├─ICQCIC00 APLDI II (See Figure 133)
│ │
│ ├─ICQADRS A Departmental Reporting System application
│ │ │
│ │ ├─ICQCRC00 ADRS (See Figure 135)
│
│ ├─ICQCHART Chart/Graph Creation Services application (See Figure 136)
│ │
│ ├─ICQQMF Query Management Facility application
│ │
│ ├─ICQTIF The Information Facility application
│ │
│ ├─ICQIC1 Info Center/1 application
│ │
│ ├─ICQAS Application System application
│ │
│ ├─ICQTUTOR Tutorial application
│
├─ICQCHART Chart/Graph Creation Services application (See Figure 136)
│ │
│ ├─ICQDESCRIBE Describe application
│ │
│ ├─ICQICU Interactive Chart Utility application
│ │ │
│ │ ├─ICQCGC00 A CLIST for using the Interactive Chart Utility
│ │
│ ├─ICQIMAGE Image Symbol Set Editor application
│ │ │
│ │ ├─ICQCGC01 A CLIST for using the Image Symbol Set editor
│ │
│ ├─ICQVECTOR Vector Symbol Set Editor application
│ │ │
│ │ ├─ICQCGC02 A CLIST for using the Vector Symbol Set editor
│ │
│ ├─ICQTUTOR Tutorial application

Figure 129. User Services Application, Panel, CLIST, and REXX Exec Hierarchy (Part 2 of 3)

Application, Panel, CLIST, and REXX ...

684 z/OS V1R4.0 TSO/E Customization

│
├─ICQCOURSES TSO/E- Education Services application
│ │
│ ├─ICQCBC00 User COURSES (See Figure 137)
│
├─ICQPDF ISPF/PDF Services application
│
├─ICQPROBLEM TSO/E - Report Problems application
│ │
│ ├─ICQGAM01 User PROBLEM (place holder panel)
│
├─ICQUTILITY TSO/E - Utility application
│ │
│ ├─ICQAMED1 Utility Services (See Figure 130)
│
├─ICQINTRO Learn to Use Information Center Facility application
│
├─ICQTUTOR Tutorial application
│
└─ICQEXIT Exit application

Figure 129. User Services Application, Panel, CLIST, and REXX Exec Hierarchy (Part 3 of 3)

│
├─ICQAMED1 A menu panel that lists the utilities you can select.

│
├─ICQGCR70 A REXX exec that processes print requests.

│
├─ICQGCE35 A data entry panel on which you can specify a print request.
│
├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
├─ICQGCC00 A CLIST that performs a general search for files specified with
│ an * (asterisk) suffix.
│
├─ICQGCE50 A list panel for member selection.

Figure 130. User Services—Print Utility Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 685

ICQCNC00 The main CLIST for user NEWS.
│
├─ICQCNE00 A data entry panel on which you specify the type of news item you want to display.
│ You can also access the tutorial.
│
├─ICQCNE10 A list panel that displays the news items you requested. You can select a
│ │ particular item to view or print.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
├─ICQCNC01 A CLIST that accesses the text of a news item when you request to view the item.
│ │
│ ├─ICQCNE20 A view panel that displays the text of a news item and allows you to
│ │ print a news item.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
└─ICQUN0 Tutorial for user NEWS.

Figure 131. User NEWS Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

686 z/OS V1R4.0 TSO/E Customization

ICQCAC00 The main CLIST for administrator and user NAMES and for ENROLL.
│
├─ICQCAM00 The menu panel for user NAMES. You select either names, groups, close (close the
│ directories), change (change the private directory prefix), or the tutorial.
│
├─ICQCAC10 A CLIST that creates and maintains names in the names directory.
│ │
│ ├─ICQCAE10 A data entry panel on which you identify the name(s) you want to display in the
│ │ names directory. You can also add a new name to the directory.
│ │
│ ├─ICQCAE11 A list panel that displays the names you requested to see. You can view,
│ │ modify, or delete a particular name. You can also add a new name to the directory.
│ │
│ ├─ICQCAE12 A data entry panel on which you specify information about a name you are adding or
│ │ modifying.
│ │
│ ├─ICQCAE13 A data entry panel on which you specify information about a name you are
│ │ adding or modifying.
│ │
│ ├─ICQCAE14 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE15 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE16 A confirmation panel on which you confirm the deletion of a name.
│
├─ICQCAC20 A CLIST that creates and maintains groups in the names directory.
│ │
│ ├─ICQCAE20 A data entry panel on which you identify the group(s) you want to display in the
│ │ names directory. You can also add a new group to the directory.
│ │
│ ├─ICQCAE21 A list panel that displays the groups you requested to see. You can view, modify,
│ │ or delete a particular group. You can also add a new group to the directory.
│ │
│ ├─ICQCAE22 A list panel that displays the group name, description, and entries. You can
│ │ modify the name and description, view or delete a particular entry, or
│ │ add a new group entry.
│ │
│ ├─ICQCAE23 A list panel on which you add entries to a group you are modifying. You can view
│ │ or delete a particular entry. You can request a list of entries in the directory
│ │ and select the names you want to add to the group. You can also view or delete
│ │ an entry in the group.
│ │
│ ├─ICQCAE27 A list panel on which you describe a group you are adding and the group entries.
│ │ You can also request a list of names and select the group entries from the list.
│ │
│ ├─ICQCAE24 A list panel that displays the names you requested to see to include in a group.
│ │ You select the names you want in the group.
│ │
│ ├─ICQCAE14 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE15 A view panel that displays information about a particular name you requested
│ │ to view.
│ │
│ ├─ICQCAE25 A view panel that displays the name, description, and entries in the group you
│ │ requested to view.
│ │
│ ├─ICQCAE26 A confirmation panel on which you confirm the deletion of a group.
│
└─ICQUA Tutorial for user NAMES.

Figure 132. User NAMES Application, Panel, and CLIST Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 687

ICQCIC00 The main CLIST for using the APLDI-II program product to extract data stored in
│ files.
|
├─ICQCIM00 A menu panel that lists the options you can select to use APLDI-II.

│
├─ICQCIC10 A CLIST that accesses the online query files when you query or update a file.
│ │
│ ├─ICQCIE10 A data entry panel on which you specify information about the file and
│ │ workspace when you query a file.
│ │
│ ├─ICQCIE20 A data entry panel on which you specify information about the query
│ │ file and workspace when you update a file.
│ │
│ ├─ICQGCC30 See Figure 134 for the continuation of the panel and
│ │ CLIST hierarchy for ICQGCC30.
│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │ │
│ │ ├─ICQGCE40 A data entry panel on which you specify whether you want to save the current work-
│ │ │ space. If you save the workspace, you must specify a project and workspace name.
│ │ │
│ │ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and
│ │ you specified a workspace name that already exists. You can specify
│ │ that you do not want to save the workspace, type in a different name,
│ │ or replace the old workspace.
│ │
│ ├─ICQGCE01 A CLIST that handles the display of messages when APLDI II is being loaded,
│ │ if you have an APL keyboard.
│ │
│ ├─ICQGCE02 A CLIST that handles the display of messages when APLDI II is being loaded,
│ if you have an non-APL keyboard.
│
├─ICQCIC30 A CLIST that creates query files.
│ │
│ ├─ICQCIE30 A data entry panel on which you specify information about the data and
│ │ definition files.
│ │
│ ├─ICQCIE32 A data entry panel on which you specify information about the query file.
│ │
│ ├─ICQCIE33 A data entry panel that is displayed if you specified a query file which
│ │ already exists. You can specify a new file or replace the existing file.
│ │
│ ├─ICQCIE34 A data entry panel on which you can modify the options used in creating
│ │ the query file.
│ │
│ ├─ICQCIC40 A CLIST that calculates the amount of space you need to create a query file.
│ │
│ ├─ICQCIC35 A CLIST that accesses the definition file for editing.
│ │ │
│ │ ├─ICQCIE35 A data entry panel on which you specify information about the definition file.
│ │
│ ├─ICQGCC30 See Figure 134 for the continuation of the panel and
│ │ CLIST hierarchy for ICQGCC30.

Figure 133. APLDI II Application, Panel, and CLIST Hierarchy (Part 1 of 3)

Application, Panel, CLIST, and REXX ...

688 z/OS V1R4.0 TSO/E Customization

│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │
│ ├─ICQGCE40 A data entry panel on which you specify whether or not you want to
│ │ save the current workspace. If you save the workspace, you must
│ │ specify a project and workspace name.
│ │
│ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace
│ and you specified a workspace name that already exists. You can
│ specify that you do not want to save the workspace, type in a
│ different name, or replace the old workspace.
│
├─ICQCIC40 A CLIST that calculates the amount of space you need to create a query file.
│ │
│ ├─ICQCIE40 A data entry panel on which you specify information about the definition,
│ │ query, and data files.
│ │
│ ├─ICQGCC30 See Figure 134 for the continuation of the panel and
│ │ CLIST hierarchy for ICQGCC30.
│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │
│ ├─ICQGCE40 A data entry panel on which you specify whether or not you want to save
│ │ the current workspace. If you save the workspace, you must specify a project and
│ │ workspace name.
│ │
│ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ specified a workspace name that already exists. You can specify that you do not
│ want to save the workspace, type in a different name, or replace the old workspace.
│
├─ICQCIC50 A CLIST that modifies or merges query files.
│ │
│ ├─ICQCIE50 A data entry panel on which you specify the name(s) of the query file(s)
│ │ you want to modify or merge.
│ │
│ ├─ICQCIE51 A data entry panel on which you specify the name and characteristics
│ │ of a new query file.
│ │
│ ├─ICQCIE52 A data entry panel that is displayed if you specified the name of a query file
│ │ which already exists. You can specify a different name or replace the existing
│ │ file.
│ │
│ ├─ICQCIE53 A data entry panel on which you specify the name of the DICNTL file.
│ │
│ ├─ICQGCC30 See Figure 134 for the continuation of the panel and
│ │ CLIST hierarchy for ICQGCC30.
│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │
│ ├─ICQGCE40 A data entry panel on which you specify whether you want to save the current
│ │ workspace. If you save the workspace, you must specify a project and workspace
│ │ name.
│ │
│ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ specified a workspace name that already exists. You can specify that you do not
│ want to save the workspace, type in a different name, or replace the old workspace.
│

Figure 133. APLDI II Application, Panel, and CLIST Hierarchy (Part 2 of 3)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 689

|
├─ICQCIC60 A CLIST that creates sequential files from a query file.
│ │
│ ├─ICQCIE60 A data entry panel on which you specify information about the query file
│ │ and, optionally, the DICNTL (control) file.
│ │
│ ├─ICQCIE61 A data entry panel on which you specify the name and characteristics of
│ │ the sequential file that you are creating.
│ │
│ ├─ICQCIE62 A data entry panel that is displayed if you specified the name of a
│ │ sequential file which already exists. You can specify a different name
│ │ or replace the existing file.
│ │
│ ├─ICQGCC30 See Figure 134 for the continuation of the panel and
│ │ CLIST hierarchy for ICQGCC30.
│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │
│ ├─ICQGCE40 A data entry panel on which you specify whether you want to save the current
│ │ workspace. If you save the workspace, you must specify a project and workspace
│ │ name.
│ │
│ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ specified a workspace name that already exists. You can specify that you do not
│ want to save the workspace, type in a different name, or replace the old workspace.
│
└─ICQUI Tutorial for APLDI-II.

Figure 133. APLDI II Application, Panel, and CLIST Hierarchy (Part 3 of 3)

│
├─ICQGCC30 This CLIST is a continuation of the hierarchy for APLDI-II from Figure 133.

│ The CLIST accesses the workspaces within a particular project.
│
├─ICQGCC00 A CLIST that accesses the data sets within a particular project.

│
├─ICQGCE13 A list panel that displays the files you requested for workspace. You can
│ select a file from the list or delete a particular file.
│
├─ICQGCE15 A list panel that displays the files you requested for workspace. You can
│ select a file from the list or delete a particular file.
│
├─ICQGCE17 A list panel that displays the files you requested for a query file. You can
│ select a file from the list or delete a particular file.
│
├─ICQGCE19 A confirmation panel on which you confirm the deletion of a data set.
│
├─ICQGCL00 A command to search the catalog to obtain a list of data sets.

Figure 134. APLDI II Hierarchy for the CLIST That Accesses Requested Files (ICQGCC30)

Application, Panel, CLIST, and REXX ...

690 z/OS V1R4.0 TSO/E Customization

ICQCRC00 The main CLIST for using the ADRS-II program product to design and print
│ reports, collect data, and calculate results.
│
├─ICQCRMOO A menu panel on which you select one of three options to use ADRS-II. You can
│ │ also select the tutorial.
│ │
│ ├─ICQCRC10 A CLIST that creates a new ADRS workspace.
│ │ │
│ │ ├─ICQCRE10 A data entry panel on which you specify the name of a new workspace.
│ │ │
│ │ ├─ICQCRE11 A data entry panel that is displayed if the name of the workspace you specified
│ │ │ already exists. You can specify another name or replace the existing workspace.
│ │ │
│ │ ├─ICQGCE01 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ │ you have an APL keyboard.
│ │ │
│ │ ├─ICQGCE02 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ │ you have a non-APL keyboard.
│ │ │
│ │ ├─ICQGCC30 A CLIST that accesses the workspaces within a particular project.
│ │ │ │
│ │ │ ├─ICQGCC00 A CLIST that accesses the data sets within a particular project.
│ │ │ │
│ │ │ ├─ICQGCE13 A list panel that displays the files you requested for workspace. You can
│ │ │ │ select a file from the list or delete a particular file.
│ │ │ │
│ │ │ ├─ICQGCE15 A list panel that displays the files you requested for workspace. You can
│ │ │ │ select a file from the list or delete a particular file.
│ │ │ │
│ │ │ ├─ICQGCE19 A confirmation panel on which you confirm the deletion of a data set.
│ │ │
│ │ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │ │
│ │ ├─ICQGCE40 A data entry panel on which you specify whether or not you want to save the
│ │ │ current workspace. If you save the workspace, you must specify a project and
│ │ │ workspace name.
│ │ │
│ │ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ │ specified a workspace name that already exists. You can specify that you do not
│ │ want to save the workspace, type in a different name, or replace the old
│ │ workspace.
│ │
│ ├─ICQCRC20 A CLIST that accesses an existing ADRS workspace.
│ │ │
│ │ ├─ICQCRE20 A data entry panel on which you specify the name of an existing ADRS workspace.
│ │ │
│ │ ├─ICQGCE01 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ │ you have an APL keyboard.
│ │ │
│ │ ├─ICQGCE02 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ │ you have a non-APL keyboard.
│ │ │
│ │ ├─ICQGCC30 A CLIST that accesses the workspaces within a particular project.
│ │ │ │
│ │ │ ├─ICQGCC00 A CLIST that accesses the data sets within a particular project.
│ │ │ │
│ │ │ ├─ICQGCE13 A list panel that displays the files you requested for workspace. You can
│ │ │ │ select a file from the list or delete a particular file.
│ │ │ │
│ │ │ ├─ICQGCE15 A list panel that displays the files you requested for workspace. You can
│ │ │ │ select a file from the list or delete a particular file.
│ │ │ │
│ │ │ ├─ICQGCE19 A confirmation panel on which you confirm the deletion of a data set.

Figure 135. ADRS II Application, Panel, and CLIST Hierarchy (Part 1 of 2)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 691

│ │ │
│ │ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │ │
│ │ ├─ICQGCE40 A data entry panel on which you specify whether or not you want to save the
│ │ │ current workspace. If you save the workspace, you must specify a project and
│ │ │ workspace name.
│ │ │
│ │ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ │ specified a workspace name that already exists. You can specify that you do not
│ │ want to save the workspace, type in a different name, or replace the old
│ │ workspace.
│ │
│ ├─ICQCRC30 A CLIST that copies data which was previously prepared for ADRS. It copies
│ │ data from one workspace into another workspace.
│ │
│ ├─ICQCRE30 A data entry panel on which you specify the data set you are copying from and
│ │ the data set you want to copy to.
│ │
│ ├─ICQGCE01 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ you have an APL keyboard.
│ │
│ ├─ICQGCE02 A CLIST that handles the display of messages when ADRS is being loaded, if
│ │ you have a non-APL keyboard.
│ │
│ ├─ICQGCC30 A CLIST that accesses the workspaces within a particular project.
│ │ │
│ │ ├─ICQGCC00 A CLIST that accesses the data sets within a particular project.
│ │ │
│ │ ├─ICQGCE13 A list panel that displays the files you requested for workspace. You can
│ │ │ select a file from the list or delete a particular
│ │ │
│ │ ├─ICQGCE15 A list panel that displays the files you requested for workspace. You can
│ │ │ select a file from the list or delete a particular file.
│ │ │
│ │ ├─ICQGCE19 A confirmation panel on which you confirm the deletion of a data set.
│ │
│ ├─ICQGCC40 A CLIST that saves the current workspace.
│ │
│ ├─ICQGCE40 A data entry panel on which you specify whether or not you want to save the
│ │ current workspace. If you save the workspace, you must specify a project and
│ │ workspace name.
│ │
│ ├─ICQGCE41 A data entry panel that is displayed if you are saving a workspace and you
│ specified a workspace name that already exists. You can specify that you do not
│ want to save the workspace, type in a different name, or replace the old
│ workspace.
│
└─ICQUR Tutorial for ADRS II.

Figure 135. ADRS II Application, Panel, and CLIST Hierarchy (Part 2 of 2)

Application, Panel, CLIST, and REXX ...

692 z/OS V1R4.0 TSO/E Customization

ICQGCM02 A menu panel on which you can select three services to create charts, graphs,
│ or symbols. You can also access the tutorial.
│
├─ICQCGC00 A CLIST for using the Interactive Chart Utility.
│ │
│ ├─ICQCGE00 A data entry panel on which you identify files in which to store your charts.
│ │
│ ├─ICQCGE03 A data entry panel on which you specify up to three alternate
│ │ symbol libraries to use in the Interactive Chart Utility.
│ │
│ ├─ICQGCC00 A CLIST that accesses and displays a list of the files you can select.
│ │ │
│ │ ├─ICQGCE17 A list panel that displays the files you requested to see. You select the file
│ │ │ you want to use from the list. You can also delete a particular file.
│ │ │
│ │ ├─ICQGC319 A confirmation panel on which you confirm the deletion of a file.
│ │
│ ├─Interactive Chart Utility
│
├─ICQCGC01 A CLIST for using the image symbol set editor.
│ │
│ ├─ICQCGE01 A data entry panel on which you identify the image and object files for your
│ │ image symbol sets.
│ │
│ ├─ICQGCC00 A CLIST that accesses and displays a list of the files you can select.
│ │ │
│ │ ├─ICQGCE17 A list panel that displays the files you requested to see. You select the file
│ │ │ you want to use from the list. You can also delete a particular file.
│ │ │
│ │ ├─ICQGCE19 A confirmation panel on which you confirm the deletion of a file.
│ │
│ ├─Image Symbol Editor
│
├─ICQCGC02 A CLIST for using the vector symbol set editor.
│ │
│ ├─ICQCGEO2 A data entry panel on which you identify the vector file.
│ │
│ ├─ICQGCC00 A CLIST that accesses and displays a list of the files you can select.
│ │ │
│ │ ├─ICQGCE17 A list panel that displays the files you requested to see. You select the file
│ │ │ you want to use from the list. You can also delete a particular file.
│ │ │
│ │ ├─ICQGCE19 A confirmation panel on which you confirm the deletion of a file.
│ │
│ ├─Vector Symbol Editor
│
└─ICQUG Tutorial for Chart Creation Services.

Figure 136. Chart Creation Services Application, Panel, and CLIST Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 693

ICQCBC00 The main CLIST for user COURSES.
│
├─ICQCBE00(10) A list panel that displays the courses. You can audit, register for, take, view,
│ │ or produce (write) a particular course and you can access the tutorial.
│ │ You can also print a course abstract.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
├─ICQCBE30 A confirmation panel on which you confirm that you want to audit the IIPS course
│ you selected.
│
├─ICQCBE40 A data entry panel on which you specify your IIPS student number in order to take
│ the IIPS course you selected.
│
├─ICQCBE50 A data entry panel on which you specify your IIPS author number, and optionally,
│ the course segment number, in order to write an IIPS course.
│
├─ICQCBE60 A confirmation panel on which you confirm that you want to audit the computer
│ course you selected.
│
├─ICQCBE70 A confirmation panel on which you confirm that you want to take the computer course
│ you selected.
│
├─ICQCNC01 A CLIST that accesses the course abstracts.
│ │
│ ├─ICQCBE20 A view panel that displays the course abstract you requested and gives you the
│ │ option to print.
│ │
│ ├─ICQCNR20 A REXX exec for printing news/course abstracts.
│ │
│ ├─ICQCNE30 A data entry panel on which you can specify the printer type, location,
│ │ and format.
│ │
│ ├─ICQCPC00 A CLIST for printer support.
│ │
│ ├─ICQCPE00 A list panel for printer selection.
│
└─ICQUB Tutorial for User Courses.

Figure 137. User Courses Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

694 z/OS V1R4.0 TSO/E Customization

ICQCLC00 The main CLIST for programming in either the APL2 or VS APL environment.
│
├─ICQCLM00 A menu panel that lists the programmer services you can use for APL2 or VS APL.
│
├─APL2 program product
│
├─ICQCLC10 A CLIST that modifies APL2 or VS APL invocation parameters.
│ │
│ ├─ICQCLE10 A data entry panel on which you specify the VS APL interactive control
│ │ parameters.
│ │
│ ├─ICQCLE11 A data entry panel on which you specify the VS APL library parameters.
│ │
│ ├─ICQCLE20 A data entry panel on which you specify the APL2 interactive control parameters.
│ │
│ ├─ICQCLE21 A data entry panel on which you specify the storage parameters for APL2.
│ │
│ ├─ICQCLE22 A data entry panel on which you specify the library parameters for APL2.
│ │
│ ├─ICQCLE23 A data entry panel on which you specify the options for the debug parameter
│ for APL2.
│
├─ICQCLC20 The CLIST for reusing an existing workspace for either APL2 or VS APL programming.

│
├─ICQCRE20 A data entry panel on which you specify the project and name of an existing
│ workspace.
│
├─ICQGCC30 A CLIST that accesses the existing workspaces within a particular project.

│
├─ICQGCC00 A CLIST that accesses the existing data sets within a particular project.

│
├─ICQGCE15 A list panel that displays the files (workspaces) you requested to see.
│ You can either select or delete a workspace from the list.
│
├─ICQGCE19 A confirmation panel on which you confirm the deletion of a data set (workspace).

Figure 138. APL2 and VS APL Program Environment Application, Panel, and CLIST Hierarchy

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 695

ICQAMRMI A REXX exec that controls the mass installation file process.
│
├─ICQAMRME A REXX exec that controls the mass export of applications.
│ │
│ ├─ICQAMRM1 A REXX exec that controls a single export of an application.
│ │
│ ├─ICQAMCX2 A CLIST that exports the application table into an installation file.
│
├─ICQAMRML A REXX exec that controls the mass upgrade and load of applications.
│ │
│ ├─ICQAMRM1 A REXX exec that controls a single export of an application.
│ │ │
│ │ ├─ICQAMCX2 A CLIST that exports the application table into an installation file.
│ │
│ ├─ICQAMRY2 A REXX exec that processes the upgrade file against the installation
│ │ file.
│ │
│ ├─ICQAMCI2 A CLIST that loads an installation file into a table and calls the
│ │ appropriate verification routine.
│ │
│ ├─ICQAMCF0 A CLIST that defines function and environment applications.
│ │
│ ├─ICQAMCP0 A CLIST that defines panel applications.

Figure 139. Mass Installation File Processing Application, Panel, CLIST, and REXX Exec Hierarchy

Application, Panel, CLIST, and REXX ...

696 z/OS V1R4.0 TSO/E Customization

ICQASRMO The REXX exec that processes the main menu and associated requests, presents
│ and processes the data base token panel, and performs file allocation.
│
└─ICQASE02 A menu panel that lets you select the system file you wish to administer.

│ You can also name the current transaction program profile, side
│ information, or data base token system files.
│
├─ICQASE22 A menu that lets you select the model data set using the criteria entered
│ in panel ICQASE02.
│
├─ICQASE98 A data entry panel on which you can name a new data base token.
│ │
│ └─ICQASRR0 The REXX exec that processes your requests for changing data base tokens.
│ (See Figure 141)
│
├─ICQASRS0 The REXX exec that processes your request for side information and
│ │ processes file allocation.
│ │
│ └─ICQASRP1 The REXX exec that displays the side information list panel.
│ │
│ └─ICQASE72 A data entry panel that lets you specify actions you wish to take on side
│ │ information in the current system file. You may change the current system
│ │ file name. You may select to edit, browse, copy, delete, and add side
│ │ information.
│ │
│ ├─ICQASE22 A menu that lets you select the model data set using the criteria entered
│ │ in panel ICQASE72.
│ │
│ └─ICQASRP2 The REXX exec that displays side information.
│ │
│ ├─ICQASE74 A data entry panel that allows you to add side information. You can
│ │ │ specify the symbolic destination name, transaction program name, mode name,
│ │ │ and partner LU name.
│ │ │
│ │ └─ICQASRRO The REXX exec that processes your requests for adding side information.
│ │ (See Figure 141)
│ │
│ ├─ICQASE76 A data entry panel that allows you to copy side information from one system
│ │ │ file to another. Symbolic destination name, transaction program name, the
│ │ │ mode name, and the partner LU name can be changed. You can change the "to"
│ │ │ system file.
│ │ │
│ │ └─ICQASRRO The REXX exec that processes your requests for copying side information.
│ │ (See Figure 141)
│ │
│ ├─ICQASE80 A data entry panel that allows you to edit side information. You can edit
│ │ │ the transaction program name, mode name, and partner LU name.
│ │ │
│ │ └─ICQASRRO The REXX exec that processes your requests for editing side information.
│ │ (See Figure 141)
│ │
│ ├─ICQASE84 A panel that displays the side information that you selected to browse.
│ │
│ └─ICQASE84 A panel that displays the side information that you selected to delete.
│ │
│ └─ICQASRR0 The REXX exec that processes your requests for deleting side information.
│ (See Figure 141)

Figure 140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy (Part 1 of 5)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 697

│
└─ICQASRT0 The REXX exec that processes your request for transaction program profile

│ and processes file allocation.
│
└─ICQASRP1 The REXX exec that displays the transaction program profile list panel.

│
└─ICQASE04 A menu panel that allows you to select the type of administration to be

│ performed on a transaction program profile for the current system file.
│ You can also change the current system file.
│
├─ICQASE22 A menu that lets you select the model data set using the criteria
│ entered in panel ICQASE04.
│
└─ICQASRP2 The data entry panel that displays transaction program profile information.

│
├─ICQASE08 A data entry panel that lets you add a transaction program profile. You can
│ │ also change the current system file. If you choose to add a transaction
│ │ program profile that uses a non-ASCH scheduler, an ISPF session is entered
│ │ following this panel. For a transaction program profile that uses an ASCH
│ │ transaction scheduler, the following panels are displayed.
│ │
│ ├─ICQASRRO The REXX exec that processes your requests for adding non-ASCH transaction
│ │ program profile information. (See Figure 141)
│ │
│ └─ICQASE10 A data entry panel that lets you select the sysout and account tailor
│ │ options, the scheduler class, the transaction program schedule type, and
│ │ select the generic user ID of an ASCH transaction scheduler. You can
│ │ also change the current system file.
│ │
│ ├─ICQASE96 A menu panel that presents a list and lets you select a scheduler class
│ │ for an ASCH transaction scheduler.
│ │
│ └─ICQASE12 A data entry panel that lets you select attributes for the message log of
│ │ an ASCH transaction scheduler. You can select the save parameter, the
│ │ message data set name, and the message data set status. If the message
│ │ data set is SMS managed, you can select its storage, management, and data
│ │ classes. You can also change the current system file.
│ │
│ └─ICQASE16 A menu that lets you select whether you want to enter an ISPF edit
│ │ session for the ASCH transaction scheduler JCL using a model or
│ │ not using a model when adding JCL for the ASCH transaction scheduler.
│ │
│ ├─ICQASRRO The REXX exec that processes your requests for adding transaction
│ │ │ program profile information. (See Figure 141)
│ │ │
│ │ └─ICQASE60 This panel displays the JCL associated with the transaction
│ │ scheduler.
│ │
│ └─ICQASE20 A data entry panel that lets you select the model for the JCL
│ │ for the ASCH transaction scheduler if you chose to use a
│ │ model in panel ICQASE16.

Figure 140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy (Part 2 of 5)

Application, Panel, CLIST, and REXX ...

698 z/OS V1R4.0 TSO/E Customization

│ │
│ ├─ICQASE90 A data entry panel that only appears if a unique JCL delimiter
│ │ is needed.
│ │
│ ├─ICQASE94 A data entry panel that only appears if a unique scheduler
│ │ delimiter is needed.
│ │
│ ├─ICQASRRO The REXX exec that processes your requests for adding
│ │ transaction program profile information. (See Figure 141)
│ │
│ └─ICQASE24 A menu that lets you select the model data set member using the
│ │ criteria entered in panel ICQASE20.
│ │
│ ├─ICQASE90 A data entry panel that only appears if a unique JCL
│ │ delimiter is needed.
│ │
│ ├─ICQASE94 A data entry panel that only appears if a unique scheduler
│ │ delimiter is needed.
│ │
│ └─ICQASRRO The REXX exec that processes your requests for adding
│ │ transaction program profile information. (See Figure 141)
│ │
│ └─ICQASE60 This panel displays the JCL associated with the trans-
│ action scheduler.
│
├─ICQASE28 A data entry panel that lets you copy a transaction program profile to
│ │ another transaction scheduler profile. It also lets you specify the
│ │ transaction program name, the level of the transaction program, the ID,
│ │ and the activation status. If you choose to copy a transaction program
│ │ profile which uses a non-ASCH scheduler, an ISPF edit session is
│ │ entered following this panel.
│ │
│ ├─ICQASRRO The REXX exec that processes your requests for copying non-ASCH transaction
│ │ program profile information. (See Figure 141)
│ │
│ └─ICQASE30 A data entry panel that lets you select the sysout and account tailor
│ │ options, the scheduler class, the transaction program schedule type,
│ │ and select the generic user ID of an ASCH transaction scheduler. You
│ │ can also change the current system file.
│ │
│ ├─ICQASE96 A menu panel that presents a list and lets you select a scheduler class
│ │ for an ASCH transaction scheduler.
│ │
│ └─ICQASE32 A data entry panel that lets you select attributes for the message log
│ │ of an ASCH transaction scheduler. You can select the save parameter, the
│ │ message data set name, and the message data set status. If the message
│ │ data set is SMS managed, you can select its storage, management, and data
│ │ classes. You can change the "to" system file. You can also choose to
│ │ edit the copied JCL.
│ │
│ ├─ICQASE90 A data entry panel that only appears if a unique JCL delimiter is
│ │ needed.
│ │
│ ├─ICQASE94 A data entry panel that only appears if a unique scheduler delimiter
│ │ is needed.

Figure 140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy (Part 3 of 5)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 699

│ └─ICQASRRO The REXX exec that processes your requests for copying transaction
│ │ program profile information. (See Figure 141)
│ │
│ └─ICQASE60 This panel displays the JCL associated with the transaction
│ scheduler.
│
├─ICQASE36 A menu that allows you to edit a transaction program profile. If you
│ │ choose to copy a transaction program profile which uses a non-ASCH
│ │ scheduler, an ISPF edit session is entered following this panel. You can
│ │ only change the activation status.
│ │
│ ├─ICQASRRO The REXX exec that processes your requests for editing non-ASCH transaction
│ │ program profile information. (See Figure 141)
│ │
│ └─ICQASE38 A data entry panel that lets you select the sysout and account tailor
│ │ options, the scheduler class, the transaction scheduler type, and select
│ │ the generic user ID of the ASCH transaction scheduler. This menu is dis-
│ │ played after panel ICQASE36 and only if the transaction scheduler is ASCH.
│ │
│ ├─ICQASE96 A menu panel that presents a list and lets you select a scheduler class
│ │ for an ASCH transaction scheduler.
│ │
│ └─ICQASE40 A data entry panel that lets you select attributes for the message
│ │ log of the ASCH transaction scheduler. This panel is presented when
│ │ work on panel ICQASE38 is complete. You can select the save parameter,
│ │ the message data set name, and the message data set status. If the
│ │ message data set is SMS managed, you can select its storage, management,
│ │ and data classes. You can also choose to enter into an ISPF edit session
│ │ from this panel.
│ │
│ ├─ICQASE90 A data entry panel that only appears if a unique JCL delimiter is
│ │ needed.
│ │
│ ├─ICQASE94 A data entry panel that only appears if a unique scheduler delimiter
│ │ is needed.
│ │
│ └─ICQASRRO The REXX exec that processes your requests for editing transaction
│ │ program profile information. (See Figure 141)
│ │
│ └─ICQASE60 This panel displays the JCL associated with the transaction
│ scheduler.
│
├─ICQASE44 A data entry panel that displays a selected transaction program profile
│ │ to browse. You can select to view transaction scheduler data associated
│ │ with the transaction program profile.
│ │
│ └─ICQASE46 A panel that displays the sysout or account tailor options, scheduler
│ │ class, transaction program schedule type, and generic user ID of an
│ │ ASCH transaction scheduler.
│ │
│ └─ICQASE48 A panel that displays attributes for the message log of an ASCH trans-
│ action scheduler. You can select the save parameter, the message data
│ set name and the message data set status. If the message data set is SMS
│ managed, the storage, management, and data classes are displayed. You
│ can also select to browse the JCL associated with the transaction program
│ profile.

Figure 140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy (Part 4 of 5)

Application, Panel, CLIST, and REXX ...

700 z/OS V1R4.0 TSO/E Customization

│
├─ICQASE52 A menu that displays a transaction program profile to delete. You can
│ │ also select to delete all transaction program profile aliases associated
│ │ with this transaction program profile. You can also select to see trans-
│ │ action scheduler data prior to deleting a transaction program profile.
│ │
│ ├─ICQASE54 A panel that displays the sysout or account tailor options, scheduler
│ │ │ class, transaction program schedule type, and generic user ID of an
│ │ │ ASCH transaction scheduler.
│ │ │
│ │ └─ICQASE56 A panel that displays attributes for the message log of an ASCH trans-
│ │ action scheduler. You can select the save parameter, message data
│ │ set name, and message data set status. If the message data set is SMS
│ │ managed, the storage, management, and data classes are displayed.
│ │ You can also select to browse the JCL associated with the transaction
│ │ program profile.
│ │
│ └─ICQASRR0 The REXX exec that processes your requests for deleting transaction
│ program profile information. (See Figure 141)
│
├─ICQASE64 A data entry panel that displays a selected transaction program profile
│ │ alias. You can select to view transaction scheduler data associated with
│ │ the transaction program profile.
│ │
│ └─ICQASE44 A data entry panel that displays a selected transaction program profile
│ │ to browse. You can select to view transaction scheduler data associated
│ │ with he transaction program profile.
│ │
│ └─ICQASE46 A panel that displays the sysout or account tailor options, scheduler
│ │ class, transaction program schedule type, and generic user ID of an
│ │ ASCH transaction scheduler.
│ │
│ └─ICQASE48 A panel that displays attributes for the message log of an ASCH
│ transaction scheduler. You can select the save parameter, message
│ data set name and message data set status. If the message data set is
│ SMS managed the storage, management, and data classes are displayed.
│ You can also select to browse the JCL associated with the transaction
│ program profile.
│
├─ICQASE66 This data entry display allows you to delete an alias for a transaction
│ │ program profile.
│ │
│ └─ICQASRR0 The REXX exec that processes your requests to delete an alias for a
│ transaction program profile. (See Figure 141)
│
├─ICQASE68 This data entry display allows you to add an alias for a transaction
│ │ program profile.
│ │
│ └─ICQASRR0 The REXX exec that processes your request to add an alias for a
│ transaction program profile. (See Figure 141)
│
└─ICQASE70 A panel that allows you to display or change the activation status.

│
└─ICQASRR0 The REXX exec that processes your request to change the activation

status. (See Figure 141)

Figure 140. APPC/MVS Administration Dialog Panel and REXX Exec Hierarchy (Part 5 of 5)

Application, Panel, CLIST, and REXX ...

Chapter 46. Customizing the Information Center Facility 701

Menu, Data Entry Panel, and Help Panel Associations
Table 128 shows the relationship between each data entry panel or menu and its
associated help panel(s). If you customize a particular panel or menu, refer to the
figure to find which help panels are affected. Read the help panels to see whether
the changes you made to the functional panels require corresponding changes to
the help panels.

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference

Function Data Entry
Panel or
Menu

Help Panels

Administrator NEWS ICQANE00
ICQANE10
ICQANE20
ICQANE40
ICQANE60
ICQANE90
ICQCNE20
ICQCNE30

ICQBN000 – ICQBN002
ICQBN100 – ICQBN101
ICQBN200
ICQBN400 – ICQBN402
ICQBN600 – ICQBN601
ICQBN900 – ICQBN905
ICQDN200
ICQDN300

Administrator NAMES ICQAAM00
ICQAAE10
ICQAAE11
ICQAAE13
ICQAAE15
ICQAAE20
ICQAAE21
ICQAAE22
ICQAAE27
ICQAAE30
ICQAEE50
ICQCAE12
ICQCAE14
ICQCAE15
ICQCAE16
ICQCAE23
ICQCAE24
ICQCAE25
ICQCAE26
ICQCAE41

ICQBA000 – ICQBA001
ICQBA100 – ICQBA102
ICQBA110 – ICQBA111
ICQBA130 – ICQBA131
ICQBA150
ICQDA200 – ICQDA201
ICQBA210 – ICQBA211
ICQBA220 – ICQBA221
ICQBA270 – ICQBA272
ICQBA300 – ICQBA302
ICQBE500
ICQDA120
ICQDA140
ICQDA150
ICQDA160
ICQDA230
ICQDA240
ICQDA250
ICQDA260
ICQDA410 – ICQDA411

ICQASRR0 The REXX exec that processes an APPC/MVS administration utility request.
│
│
├── ICQASRF0 The REXX exec that calls ICQASLIO in an authorized state.
│
├── ICQASLC0 The module that calls the APPC/MVS administration utility in an authorized state.
│ │
│ └── ICQASLI0 The module that displays and processes the APPC/MVS administration utility
│ request through an authorized invocation of the APPC/MVS administration utility.
│
└── ICQASRE0 The REXX exec that displays and processes results of APPC/MVS administration utility

extracts.

Figure 141. APPC/MVS Administration Utility Request Application and REXX Exec Hierarchy

Menu, Data Entry Panel, and Help Panel Associations

702 z/OS V1R4.0 TSO/E Customization

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

ENROLL ICQAAE13
ICQAAE15
ICQAEE10
ICQAEE11
ICQAEE40
ICQAEE41
ICQAEE50
ICQAEMC0
ICQCAE12
ICQCAE14

ICQBA130
ICQBA150
ICQBE100 – ICQBE101
ICQBE110
ICQBE400 – ICQBE407, ICQBE409
ICQBE401 – ICQBE410
ICQBE500
ICQBEC00 – ICQBEC01
ICQDA120
ICQDA140

User Types ICQADE00
ICQADE01
ICQADE02
ICQADE03
ICQADE04

ICQADE05
ICQADE06

ICQADE07
ICQADE08

ICQADE09
ICQADE10

ICQADE11
ICQADE12
ICQADE13
ICQADE14
ICQADE15
ICQADM16
ICQADM17

ICQBD000 – ICQBD002
ICQBD010
ICQBD020
ICQBD030
ICQBD040 – ICQBD049,
ICQBD04A, ICQBD04B
ICQBD050 – ICQBD052
ICQBD060 – ICQBD069,
ICQBD06A, ICQBD06B
ICQBD070 – ICQBD072
ICQBD080 – ICQBD089,
ICQBD08A, ICQBD08B,
ICQBD08C, ICQBD08D
ICQBD090 – ICQBD091
ICQBD100 – ICQBD109,
ICQBD10A, ICQBD10B,
ICQBD10C, ICQBD10D
ICQBD110 – ICQBD111
ICQBD120
ICQBD130
ICQBD140
ICQBD150
ICQBD160 – ICQBD161
ICQBD170 – ICQBD171

Menu, Data Entry Panel, and Help Panel Associations

Chapter 46. Customizing the Information Center Facility 703

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

System Defaults
Application Manager

ICQAMED1
ICQAMED4
ICQAMED5
ICQAME10
ICQAME13
ICQAME16
ICQAME17
ICQAME19
ICQAME20
ICQAME21
ICQAME24
ICQAME26
ICQAME30
ICQAME31
ICQAME32
ICQAME33
ICQAME34
ICQAME35
ICQAME36
ICQAME37
ICQAME38
ICQAME39
ICQAME40
ICQAME41
ICQAME42
ICQAME50
ICQAME51
ICQAME60
ICQAME61
ICQAME70
ICQAME71
ICQAME80
ICQAME82
ICQAME85
ICQAME87
ICQAME88
ICQAME89
ICQAME8A
ICQAME8B
ICQAME9B
ICQAME9C
ICQAME90
ICQAME91
ICQAME92
ICQAME93
ICQAME94
ICQAME95
ICQAME96
ICQAME97
ICQAME98
ICQAME99
ICQAMEA1
ICQAMEA2
ICQAMEA3

ICQBMD10
ICQBMD40
ICQBMD50
ICQBM100 – ICQBM103
ICQBM130 – ICQBM131
ICQBM160
ICQBM170 – ICQBM171
ICQBM190 – ICQBM191
ICQBM200 – ICQBM202
ICQBM210 – ICQBM213
ICQBM240 – ICQBM241
ICQBM260 – ICQBM263
ICQBM300 – ICQBM302
ICQBM310 – ICQBM312
ICQBM320 – ICQBM323
ICQBM330 – ICQBM334
ICQBM340 – ICQBM341
ICQBM350 – ICQBM352
ICQBM360 – ICQBM361
ICQBM370
ICQBM380 – ICQBM381
ICQBM390 – ICQBM391
ICQBM400 – ICQBM401
ICQBM410 – ICQBM411
ICQBM420 – ICQBM421
ICQBM500 – ICQBM502
ICQBM510 – ICQBM513
ICQBM600
ICQBM610
ICQBM700
ICQBM710 – ICQBM711
ICQBM800 – ICQBM803
ICQBM820 – ICQBM821
ICQBM850 – ICQBM853
ICQBM870
ICQBM880 – ICQBM833
ICQBM890
ICQBM8A0 – ICQBM8A1
ICQBM8B0 – ICQBM8B1
ICQBM9B0
ICQBM9C0
ICQBM900 – ICQBM901
ICQBM910
ICQBM920
ICQBM930
ICQBM940
ICQBM950 – ICQBM951
ICQBM960
ICQBM970 – ICQBM971
ICQBM980
ICQBM990
ICQBMA10
ICQBMA20
ICQBMA30

Menu, Data Entry Panel, and Help Panel Associations

704 z/OS V1R4.0 TSO/E Customization

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

System DefaultsPrinter DefaultsICQAPE00
ICQAPE10
ICQAPE30
ICQAPE40
ICQAPE41
ICQAPE42
ICQAPE50
ICQAPE51
ICQAPE52
ICQAPE53
ICQAPE54
ICQAPE55
ICQAPE56
ICQAPE57
ICQAPE60
ICQAPE70
ICQAPE80
ICQAPE90
ICQAPM20

ICQBP000
ICQBP100
ICQBP300 – ICQBP305
ICQBP400
ICQBP410
ICQBP420
ICQBP500 – ICQBP50A
ICQBP510 – ICQBP516
ICQBP520 – ICQBP527
ICQBP530 – ICQBP536
ICQBP540 – ICQBP549
ICQBP550 – ICQBP551
ICQBP560 – ICQBP561
ICQBP570 – ICQBP57B
ICQBP600
ICQBP700 – ICQBP705
ICQBP800 – ICQBP830
ICQBP900 – ICQBP902
ICQBP200 – ICQBP201

Administrator Courses
(Computer-based training)

ICQABE10
ICQABE20
ICQABE40
ICQABE50
ICQABE70
ICQABE90
ICQABEA0
ICQABEB0
ICQABEC0
ICQABED0
ICQABEE0
ICQABEF0
ICQABEG0
ICQABEH0
ICQABEI0
ICQABEJ0
ICQABEK0
ICQABEM0
ICQABEQ0
ICQABER0
ICQABES0
ICQABET0
ICQABEU0
ICQABEV0
ICQABEW0
ICQABM00
ICQABM30
ICQCBE20
ICQCNE30

ICQBB100 – ICQBB107
ICQBB200 – ICQBB206
ICQBB400 – ICQBB405
ICQBB500 – ICQBB506
ICQBB700 – ICQBB701
ICQBB900 – ICQBB901
ICQBBA00 – ICQBBA01
ICQBBB00
ICQBBC00 – ICQBBC04
ICQBBD00
ICQBBE00 – ICQBBE06
ICQBBF00 – ICQBBF06
ICQBBG00 – ICQBBG01
ICQBBH00 – ICQBBH02
ICQBBI00 – ICQBBI01
ICQBBJ00 – ICQBBJ04
ICQBBK00
ICQBBM00
ICQBBQ00 – ICQBBQ03
ICQBBR00 – ICQBBR01
ICQBBS00 – ICQBBS02
ICQBBT00 – ICQBBT04
ICQBBU00 – ICQBBU05
ICQBBV00 – ICQBBV01
ICQBBW00
ICQBB000 – ICQBB003
ICQBB300 – ICQBB301
ICQDB200
ICQDN300

Administrator problem
reporting services

ICQGAM01 ICQHA010

User NEWS ICQCNE00
ICQCNE10
ICQCNE20
ICQCNE30

ICQDN000 – ICQDN001
ICQDN100 – ICQDN101
ICQDN200
ICQDN300

Menu, Data Entry Panel, and Help Panel Associations

Chapter 46. Customizing the Information Center Facility 705

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

User NAMES ICQCAE10
ICQCAE11
ICQCAE12
ICQCAE13
ICQCAE14
ICQCAE15
ICQCAE16
ICQCAE17
ICQCAE20
ICQCAE21
ICQCAE22
ICQCAE23
ICQCAE24
ICQCAE25
ICQCAE26
ICQCAE27
ICQCAM00

ICQDA100 – ICQDA101
ICQDA110 – ICQDA112
ICQDA120
ICQDA130
ICQDA140
ICQDA150
ICQDA160
ICQDA170 – ICQDA171
ICQDA200 – ICQDA201
ICQDA210 – ICQDA213
ICQDA220 – ICQDA221
ICQDA230
ICQDA240
ICQDA250
ICQDA260
ICQDA270 – ICQDA272
ICQDA000

Printing Services ICQGCM04 ICQHC040

APLDI-II ICQCIE10
ICQCIE20
ICQCIE30
ICQCIE32
ICQCIE33
ICQCIE34
ICQCIE35
ICQCIE40
ICQCIE50
ICQCIE51
ICQCIE52
ICQCIE53
ICQCIE60
ICQCIE61
ICQCIE62
ICQCIM00
ICQGCE13
ICQGCE15
ICQGCE17
ICQGCE19
ICQGCE40
ICQGCE41

ICQDI100 – ICQDI104
ICQDI200 – ICQDI203
ICQDI300 – ICQDI304
ICQDI320 – ICQDI322
ICQDI330 – ICQDI332
ICQDI340 – ICQDI343
ICQDI350 – ICQDI353
ICQDI400 – ICQDI404
ICQDI500 – ICQDI504
ICQDI510 – ICQDI514
ICQDI520 – ICQDI524
ICQDI530 – ICQDI531
ICQDI600 – ICQDI606
ICQDI610 – ICQDI612
ICQDI620 – ICQDI622
ICQDI000 – ICQDI004
ICQHC130
ICQHC130
ICQHC130
ICQHC190
ICQHC400 – ICQHC401
ICQHC410 – ICQHC411

ADRS ICQCRE10
ICQCRE11
ICQCRE20
ICQCRE30
ICQCRM00
ICQGCE13
ICQGCE15
ICQGCE19
ICQGCE40
ICQGCE41

ICQDR100 – ICQDR101
ICQDR110 – ICQDR111
ICQDR200 – ICQDR201
ICQDR300 – ICQDR303
ICQDR000 – ICQDR001
ICQHC130
ICQHC130
ICQHC190
ICQHC400 – ICQHC401
ICQHC410 – ICQHC411

Menu, Data Entry Panel, and Help Panel Associations

706 z/OS V1R4.0 TSO/E Customization

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

Chart creation services ICQCGE00
ICQCGE01
ICQCGE02
ICQCGE03
ICQGCE17
ICQGCE19

ICQDG000 – ICQDG005
ICQDG010 – ICQDG013
ICQDG020 – ICQDG023
ICQDG030 – ICQDG034
ICQHC130
ICQHC190

User COURSES(Computer-
based training)

ICQCBE00
ICQCBE10
ICQCBE20
ICQCBE30
ICQCBE40
ICQCBE50
ICQCBE60
ICQCBE70
ICQCNE30

ICQDB000 – ICQDB005
ICQDB100 – ICQDB107
ICQDB200
ICQDB300 – ICQDB301
ICQDB400 – ICQDB401
ICQDB500 – ICQDB501
ICQDB600
ICQDB700
ICQDN300

Programmer services ICQCLM00

ICQCLE10

ICQCLE11
ICQCLE20

ICQCLE21
ICQCLE22
ICQCLE23
ICQCRE20
ICQGCE15
ICQGCE19

ICQDL000 – ICQDL001 (VS APL)
and
ICQDL00A – ICQDL00B (APL2)
ICQDL100 – ICQDL103,
ICQDL105, ICQDL107, ICQDL109,
ICQDL10B, ICQDL10D, ICQDL10F,
ICQDL10H, ICQDL10J, ICQDL10L
ICQDL110 – ICQDL113
ICQDL200 – ICQDL203,
ICQDL205, ICQDL207, ICQDL209,
ICQDL20B, ICQDL20D, ICQDL20F,
ICQDL20H, ICQDL20I, ICQDL20J
ICQDL210 – ICQDL212
ICQDL220 – ICQDL221
ICQDL230 – ICQDL234
ICQDR200 – ICQDR201
ICQHC130
ICQHC190

User report problems ICQGCM07 ICQHC070

Utility services ICQGCM06
ICQGCE35
ICQGCE50

ICQHC060
ICQHC350 – ICQHC353
ICQHC500

Menu, Data Entry Panel, and Help Panel Associations

Chapter 46. Customizing the Information Center Facility 707

Table 128. Menu, Data Entry Panel, and Help Panel Cross Reference (continued)

Function Data Entry
Panel or
Menu

Help Panels

APPC/MVS administration ICQASE02
ICQASE04
ICQASE08
ICQASE10
ICQASE12
ICQASE16
ICQASE20
ICQASE22
ICQASE24
ICQASE28
ICQASE30
ICQASE32
ICQASE36
ICQASE38
ICQASE40
ICQASE44
ICQASE46
ICQASE48
ICQASE52
ICQASE54
ICQASE56
ICQASE60
ICQASE64
ICQASE66
ICQASE68
ICQASE70
ICQASE72
ICQASE74
ICQASE76
ICQASE80
ICQASE84
ICQASE90
ICQASE94
ICQASE96
ICQASE98

ICQBS020
ICQBS040 – ICQBS041 – ICQBS012
ICQBS080 – ICQBS081 – ICQBS010
ICQBS100 – ICQBS101
ICQBS120 – ICQBS121
ICQBS160
ICQBS200 – ICQBS201
ICQBS220
ICQBS240
ICQBS280 – ICQBS281 – ICQBS010
ICQBS300 – ICQBS301
ICQBS320 – ICQBS321 – ICQBS322
ICQBS360
ICQBS380
ICQBS400 – ICQBS401
ICQBS440
ICQBS460
ICQBS480
ICQBS520
ICQBS540
ICQBS560
ICQBS600
ICQBS640
ICQBS660
ICQBS680 – ICQBS010
ICQBS700
ICQBS720 – ICQBS721
ICQBS740 – ICQBS741 – ICQBS010
ICQBS760 – ICQBS761 – ICQBS010
ICQBS800 – ICQBS010
ICQBS840
ICQBS900
ICQBS940
ICQBS960
ICQBS980 – ICQBS981

Menu, Data Entry Panel, and Help Panel Associations

708 z/OS V1R4.0 TSO/E Customization

Chapter 47. Diagnosing Problems with the Information Center
Facility

Displaying the Panel ID . 709
Activating and Using Trace . 709

TRACE1 Command — Level 1 710
TRACE2 Command — Level 2 710
TRACE3 Command — Level 3 711

Deactivating Trace . 711

This chapter describes the following techniques that you can use to diagnose
problems in the Information Center Facility:
v Displaying the panel ID
v Using the Information Center Facility trace commands:

– Activating and using the three levels of trace
– Deactivating trace

You can find charts of the Information Center Facility CLISTs, REXX execs, and
panels in “Application, Panel, CLIST, and REXX Exec Hierarchy” on page 663. For
additional information about error messages, see the on-line message help or z/OS
TSO/E Messages. For information about CLISTs, see z/OS TSO/E CLISTs. For
information about REXX execs, see z/OS TSO/E REXX Reference. For information
about ISPF dialog and table services, see z/OS ISPF Services Guide.

Displaying the Panel ID
If you have a problem with a panel in the Information Center Facility, you can
display the ID of the panel by entering the command “PANELID” or “PANELID ON”
on the Command or Option line of the panel. After you enter this command, all the
panels displayed show the panel identifier in the upper left corner of the screen.
You can suppress the display of the panel ID by entering “PANELID OFF”.

Activating and Using Trace
The Information Center Facility is written in the TSO/E CLIST and REXX languages.
You can use the trace commands provided with the Information Center Facility to
diagnose problems in the facility’s CLISTs and REXX execs. The commands
provide three levels of tracing:

Level 1 - activated by the TRACE1 command
Level 2 - activated by the TRACE2 command
Level 3 - activated by the TRACE3 command

You can turn Information Center Facility tracing off using the TRACEOFF command.

When a CLIST is invoked for execution and Information Center Facility tracing is
active, the CLIST writes its name to the screen using a CLIST WRITE statement.
The information appears as follows:

** CLIST=clistname ***

When a REXX exec is invoked for execution and Information Center Facility tracing
is active, the exec writes its name to the screen using a REXX SAY instruction. The
information appears as follows:

© Copyright IBM Corp. 1988, 2002 709

** REXX exec=execname ***

The ISPF dialog service LOG is issued at the beginning and termination of a
CLIST/REXX exec. The following message is written to the ISPF log when a
CLIST/REXX exec begins execution:
CLIST or REXX exec membername beginning execution. ICQGA000

At the termination of a CLIST/REXX exec, the following message is written:
CLIST/REXX exec membername exiting; final condition code n. ICQGA001

The executing CLIST/REXX exec determines the final condition code.

Note: You can enter the TRACE commands on the Option line of any Information
Center Facility menu panel except the following:

ICQABM30
ICQCLM00

TRACE1 Command — Level 1
Level 1 traces the control flow between (or among) nested CLISTs/REXX execs and
shows the order of CLIST/REXX exec invocation and execution. As each
CLIST/REXX exec is invoked, it writes its name to the screen as described
previously.

To activate level 1 tracing, enter TRACE1 on the Option line of an Information
Center Facility menu panel. The menu panel is redisplayed with the command still
on the Option line, and the following message is displayed:

CLIST or REXX exec tracing will be at level 1. ICQGA006

TRACE2 Command — Level 2
Level 2 provides the same information as level 1. In addition, it displays, for all the
nested CLISTs, each CLIST statement and TSO/E command and subcommand
before execution. For all the nested REXX execs, it displays each clause before
execution.

Each CLIST executes with the following options in effect:
CONTROL SYMLIST CONLIST LIST MSG

SYMLIST Display each executable statement before it is scanned for symbolic
substitution. Executable statements include CLIST statements, and
TSO/E commands and subcommands.

CONLIST Display CLIST statements after symbolic substitution, but before
execution.

LIST Display TSO/E commands and subcommands after symbolic
substitution, but before execution.

MSG Display informational messages from the CLIST.

Each REXX exec executes with the following option in effect:
TRACE INTERMEDIATES

INTERMEDIATES Display all clauses before execution and display
intermediate results during evaluation of

Activating and Using Trace

710 z/OS V1R4.0 TSO/E Customization

expressions and substituted names. Clauses
include null clauses, labels, assignments, keyword
instructions, and commands.

To activate level 2 tracing, enter TRACE2 on the Option line of an Information
Center Facility menu panel. The menu panel is redisplayed with the command still
on the Option line, and the following message is displayed:

CLIST or REXX exec tracing will be at level 2. ICQGC006

TRACE3 Command — Level 3
For all CLISTs/REXX execs, level 3 tracing provides the same trace as level 1. In
addition, for a single explicitly-named CLIST/REXX exec, level 3 tracing provides
the same trace as level 2. The explicitly-named CLIST/REXX exec executes with
the options described for the level 2 trace.

To activate level 3 tracing, enter TRACE3.membername on the Option line of an
Information Center Facility menu panel, where membername is the name of a
nested CLIST/REXX exec. The menu panel is redisplayed with the command still
on the Option line, and the following message is displayed:

CLIST/REXX exec member membername will be traced on the screen. ICQGA005

Entering the TRACE3 command without specifying membername turns off all
tracing. The following message is displayed:

CLIST or REXX exec member name required. TRACEOFF is set. ICQGA004

Deactivating Trace
To deactivate trace, enter TRACEOFF on the Option line of an Information Center
Facility menu panel. The menu panel is redisplayed with the command still on the
Option line, and the following message is displayed:

CLIST or REXX exec trace is turned off. ICQGA003

If you enter TRACEOFF when trace is not active, the following message is
displayed:

CLIST or REXX exec trace is not active. ICQGA002

Activating and Using Trace

Chapter 47. Diagnosing Problems with the Information Center Facility 711

Deactivating Trace

712 z/OS V1R4.0 TSO/E Customization

Part 10. Reference

This part contains the following reference information:

v Chapter 48, “Overview of Facilities for Customizing TSO/E” contains a summary
of the facilities you can use to customize TSO/E. It includes TSO/E macros, exits,
initialization statements, data sets, and SYS1.PARMLIB members for: ISPF/PDF,
JES2, JES3, SMF, MVS, and VTAM. The TSO/E exits are not included in this
section. For an overview of the TSO/E exits, see Chapter 2, “Writing Exit
Routines” on page 25.

v Chapter 49, “Macro Syntax” provides the syntax of the following TSO/E macros:
– IKJBCAST
– IKJEDIT
– IKJIFRIF
– IKJTSO
– INMEND
– INMNODE
– INMXP

© Copyright IBM Corp. 1988, 2002 713

714 z/OS V1R4.0 TSO/E Customization

Chapter 48. Overview of Facilities for Customizing TSO/E

ISPF/PDF Macro Statements and Exits 715
JES2 Exits and Initialization Statements 715
JES3 Exits and Initialization Statements 717
MVS Data Sets . 718
SMF Exits . 720
SYS1.PARMLIB Members . 720
TSO/E Macro Statements . 721
VTAM Exits. 722
VTAM Statements . 723

The following tables summarize the facilities you can use to customize TSO/E.
Each table contains the name of the facility, a brief description of why you might
want to use it, and a reference to additional information. The tables, which are
presented in alphabetical order, summarize the following:
v ISPF/PDF macro statements and exits
v JES2 exits and initialization statements
v JES3 exits and initialization statements
v MVS data sets that contain TSO/E information
v SMF exits
v SYS1.PARMLIB members
v TSO/E macro statements
v VTAM exits and statements

ISPF/PDF Macro Statements and Exits
Table 129 is a summary of ISPF/PDF macro statements and exits you can use to
customize the use of TSO/E from ISPF/PDF.

Table 129. ISPF/PDF Macro Statements and Exits

ISPF/PDF Macro or Exit Description Reference

ISPMTCM macro statement Use to specify which TSO/E
commands users will be able
to use from ISPF/PDF panels.

z/OS ISPF Planning and
Customizing

Command start and stop exits Use to monitor TSO/E
commands users issue from
ISPF/PDF panels, and to
restrict individuals from using
certain commands.

z/OS ISPF Planning and
Customizing

JES2 Exits and Initialization Statements
Table 130 and Table 131 on page 716 summarize some of the JES2 exits and
initialization statements you can use to customize TSO/E jobs.

Table 130. JES2 Exits

JES2 Exit Description Reference

Exit 2 (Job statement scan) Use to tailor JOB JCL
statements, supply additional
JOB statement parameters,
and modify job-related control
blocks.

z/OS JES2 Installation Exits

© Copyright IBM Corp. 1988, 2002 715

Table 130. JES2 Exits (continued)

JES2 Exit Description Reference

Exit 3 (Job statement
accounting field scan)

Use to tailor JOB JCL
accounting information,
supply additional accounting
field information, and modify
job-related control blocks.
(Although you can use Exit 2
to tailor accounting
information, you can more
easily access the information
from Exit 3.)

z/OS JES2 Installation Exits

Exit 13 (IDTF screening and
notification)

Use to screen incoming files
as they arrive at the
receiver’s network node. The
exit can delete the file, route
it to another user, or allow it
to be sent to the target
addressee.

z/OS JES2 Installation Exits

Exit 20 (End of job input) Use to cancel a job before it
starts processing.

z/OS JES2 Installation Exits

Exit 22 (Cancel/Status) Use to tailor the way the
TSO/E STATUS and CANCEL
commands work.

z/OS JES2 Installation Exits

Exit 38 (TSO/E RECEIVE
Authorization)

Use during data set selection
to determine whether the user
has authority to receive the
data.

z/OS JES2 Installation Exits

Table 131. JES2 Initialization Statements

JES2
Initialization
Statement

Description Reference

INTRDR Use to specify the characteristics to be used
for jobs submitted through JES2 internal
readers. You can specify defaults for
processing jobs submitted by TSO/E users.

z/OS JES2 Initialization
and Tuning Reference

OUTCLASS Use to specify the default characteristics that
are to be used for processing SYSOUT data
sets. You can specify:

v Whether data sets are to be held for
processing by the TSO/E OUTPUT
command.

v That the output class is to be punched (a
requirement when using the TSO/E
TRANSMIT and RECEIVE commands).

z/OS JES2 Initialization
and Tuning Reference

STCCLASS Use to specify the default characteristics to
be associated with all started tasks. If your
installation uses the TSO/E TRANSMIT and
RECEIVE commands, you need to specify
that SYSOUT data is to be written for jobs
executed in time sharing classes.

z/OS JES2 Initialization
and Tuning Reference

JES2 Exits and Initialization Statements

716 z/OS V1R4.0 TSO/E Customization

Table 131. JES2 Initialization Statements (continued)

JES2
Initialization
Statement

Description Reference

TSUCLASS Use to specify default job processing
characteristics that will be used for a user’s
TSO/E session. You can:

v Specify the default message class that will
be used for TSO/E session logs.

v Identify the library that contains TSO/E
logon procedures.

v Specify that SYSOUT data is to be written
for jobs executed in time sharing classes
(a requirement when using the TSO/E
TRANSMIT and RECEIVE commands).

z/OS JES2 Initialization
and Tuning Reference

JES3 Exits and Initialization Statements
Table 132 and Table 133 on page 718 summarize some of the JES3 exits and
initialization statements you can use to customize TSO/E jobs.

Table 132. JES3 Exits

JES3 Exit Description Reference

IATUX28 Use to tailor JOB JCL statements, supply
additional JOB statement parameters, and
modify job-related control blocks.

z/OS JES3 Customization

IATUX30 Use to tailor the use of the TSO/E OUTPUT,
STATUS, and CANCEL commands.

z/OS JES3 Customization

IATUX33 Use to tailor JCL EXEC statements, JCL
comment statements, and JES3 control
statements. You can supply additional
statements, and modify related control
blocks.

z/OS JES3 Customization

IATUX34 Use to tailor JCL DD statements, and JCL
comment statements. You can supply
additional statements, and modify related
control blocks.

z/OS JES3 Customization

IATUX38 Use to change the SYSOUT class for local
SYSOUT data sets.

z/OS JES3 Customization

IATUX42 Use to accept or reject data sent via the
TSO/E TRANSMIT command.

z/OS JES3 Customization

IATUX44 Use to tailor JCL statements other than JOB,
EXEC, or DD statements.

z/OS JES3 Customization

IATUX60 Use to determine whether a data set that
was to be received by a TSO/E user should
be deleted or kept, if the TSO/E user can
never log on to TSO/E with the proper
security label to ever receive the data set.

z/OS JES3 Customization

JES2 Exits and Initialization Statements

Chapter 48. Overview of Facilities for Customizing TSO/E 717

Table 133. JES3 Initialization Statements

JES3
Initialization
Statement

Description Reference

SYSOUT Use to specify SYSOUT class
characteristics. If using the TSO/E
TRANSMIT and RECEIVE commands, the
output class must be punched.

z/OS JES3 Initialization
and Tuning Reference

CIPARMS Use to specify a converter/interpreter options
list, which defines defaults for JCL keywords,
such as whether users must specify a
programmer name or account number in
JOB statements.

z/OS JES3 Initialization
and Tuning Reference

STANDARDS Use to associate job processing
characteristics with users’ TSO/E sessions,
and jobs submitted by users. You can
specify:

v A set of defaults (a converter/ interpreter
options list) that will be used for users’
TSO/E sessions, and for jobs submitted
by TSO/E users.

v The library containing the TSO/E logon
procedures.

z/OS JES3 Initialization
and Tuning Reference

MVS Data Sets
Table 134 is a summary of MVS data sets that contain TSO/E information.

Table 134. MVS Data Sets

MVS Data Sets Description Reference

Broadcast data set Contains notices (messages
sent to all users of a system),
and mail (messages sent to
individual users). You can
change the amount of space
reserved in the broadcast
data set for notices using the
IKJBCAST macro statement.

z/OS MVS System Data Set
Definition

Part 4, “Maintaining the
UADS, RACF Data Base, and
Broadcast Data Set” on
page 195

SYS1.CMDLIB Contains service routines,
utility programs, and TSO/E
command processors. You
may want to move TSO/E
commands to SYS1.LPALIB,
possibly improving the
performance of TSO/E.

z/OS MVS System Data Set
Definition

SYS1.HELP Contains help information
about TSO/E commands and
messages.

z/OS MVS System Data Set
Definition

z/OS TSO/E Programming
Guide

SYS1.LNKLIB Contains RACF commands,
the data set initialization
program, report writer, and
utilities.

z/OS MVS System Data Set
Definition

JES3 Exits and Initialization Statements

718 z/OS V1R4.0 TSO/E Customization

Table 134. MVS Data Sets (continued)

MVS Data Sets Description Reference

SYS1.LPALIB Contains some TSO/E
commands, such as
MVSSERV. It also contains
RACF-related information and
installation-written exit
routines.

z/OS MVS System Data Set
Definition

SYS1.MACLIB Contains the macro
definitions for supervisor and
data management macro
instructions. It also contains
RACF and TSO/E macros,
such as IKJBCAST.

z/OS MVS System Data Set
Definition

SYS1.PARMLIB Contains IBM-supplied and
installation-created lists of
system parameter values. It
contains parameters you can
use to tailor the logon
process, and the way TSO/E
works with VTAM.

z/OS MVS System Data Set
Definition

SYS1.PROCLIB Contains the cataloged
procedures used to perform
system functions. By default,
it contains all TSO/E logon
procedures. You may want to
use your own procedure
library. For more information,
see “Writing a Logon
Procedure” on page 82.

z/OS MVS System Data Set
Definition

RACF data base Contains profiles for every
entity—users, data sets, and
groups—defined to RACF.
The profiles describe the
attributes and the authorities
of each of the entities. If you
use RACF to add users,
logon information is stored in
the user’s profile.

z/OS Security Server RACF
Security Administrator’s Guide

Part 4, “Maintaining the
UADS, RACF Data Base, and
Broadcast Data Set” on
page 195

SYS1.UADS If you use the TSO/E
ACCOUNT command to add
and maintain users,
SYS1.UADS contains a list of
TSO/E users and information
about them, such as account
numbers, logon procedures,
and commands they can use.

z/OS TSO/E Administration

Part 4, “Maintaining the
UADS, RACF Data Base, and
Broadcast Data Set” on
page 195

MVS Data Sets

Chapter 48. Overview of Facilities for Customizing TSO/E 719

SMF Exits
Table 135 is a summary of the SMF exits you can use to customize TSO/E jobs.

Table 135. SMF Exits

SMF Exits Description Reference

IEFUJV Use to validate or tailor JCL statements, and
to cancel jobs before they start processing.

z/OS MVS Installation
Exits

IEFUSO Use to either cancel a job when the number
of records written to a SYSOUT data set
exceeds the limit, or extend the limit and
allow the job to continue processing.

z/OS MVS Installation
Exits

IEFUTL Use to either cancel or extend a job after a
time limit, such as the continuous wait time
limit, has expired.

z/OS MVS Installation
Exits

SYS1.PARMLIB Members
Table 136 is a summary of SYS1.PARMLIB members you can use to customize
TSO/E.

Table 136. SYS1.PARMLIB Members

Member Name Description Reference

IEAICSxx Use to associate:

v Users with control performance groups

v Users and commands with reporting
performance groups.

z/OS MVS Initialization
and Tuning Reference

IEAIPSxx Use to tailor the way SRM manages work,
such as TSO/E transactions, at your
installation.

z/OS MVS Initialization
and Tuning Reference

IEASYSxx Use to tune your system and, for example,
specify the total number of address spaces
in your system.

z/OS MVS Initialization
and Tuning Reference

SMFPRMxx Use to tailor the way SMF records data. You
can specify whether data will be recorded for
TSO/E commands, and the maximum
amount of time a session can remain idle
before being canceled.

z/OS MVS Initialization
and Tuning Reference

IKJTSOxx Use to specify:

v The authorized commands that will be
used at your installation

v The commands and programs to run on
the command/program invocation platform

v The commands not supported in the
background

v The name of the broadcast data set and
associated processing options

v The defaults for SEND, OPERATOR
SEND, LISTBC, TRANSMIT, RECEIVE,
ALLOCATE, CONSOLE, HELP, and TEST
processing.

z/OS MVS Initialization
and Tuning Reference

SMF Exits

720 z/OS V1R4.0 TSO/E Customization

Table 136. SYS1.PARMLIB Members (continued)

Member Name Description Reference

CONSOLxx Use to define the characteristics of each
MCS console in your system configuration,
such as the console name, MVS command
authority, and routing codes assignment.

z/OS MVS Initialization
and Tuning Reference

TSOKEYxx Use to tailor the values VTAM uses to
initialize users’ address spaces. You can
specify the number of users who can be
logged on to TSO/E, and the amount of time
address spaces that will remain available
after users have been disconnected.

z/OS MVS Initialization
and Tuning Reference

TSO/E Macro Statements
Table 137 is a summary of TSO/E macro statements you can use to customize
TSO/E.

Table 137. TSO/E Macro Statements

TSO/E Macro
Statement

Description Reference

IKJBCAST Use to change the amount of space
reserved in the broadcast data set for
notices.

“IKJBCAST Macro” on
page 727

IKJEDIT Use to tailor default characteristics that are
used for data sets created via the EDIT
command.

“IKJEDIT Macro” on
page 728

IKJIFRIF Use to add, change, or delete information
about users in the broadcast data set.

“IKJIFRIF Macro” on
page 732

IKJTSO Use to tailor:

v How often the ‘Logon Proceeding’
message is issued.

v The number of unsuccessful attempts
users can make to enter information in
response to logon prompts.

“IKJTSO Macro” on
page 740

INMEND Use to mark the end of a list of INMNODE
macros.

“INMEND Macro” on
page 740

INMNODE In setting up the TRANSMIT and RECEIVE
environment, use INMNODE to associate
system identifiers with network node names.

“INMNODE Macro” on
page 740

INMXP In setting up the TRANSMIT and RECEIVE
environment, use INMXP to specify the
installation controls, and the defaults for
certain parameters on the TSO/E TRANSMIT
and RECEIVE commands. For example,
INMXP can specify the default output class
for transmitted data, and the default log data
set name.

“INMXP Macro” on
page 741

SYS1

Chapter 48. Overview of Facilities for Customizing TSO/E 721

VTAM Exits
Table 138 is a summary of VTAM exits you can use to customize TSO/E.

Table 138. VTAM Exits

VTAM Exits Description Reference

IKTGETXT Use to edit input data. z/OS Communications
Server: SNA Resource
Definition Reference

IKTIDSX1 Use to replace or supplement IBM-supplied
output editing for 3270 terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTIDSX2 Use to supplement IBM-supplied input
editing for 3270 terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTIDSX3 Use to replace IBM-supplied attention
handling for 3270 (LU0) terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTIDSX4 Use to replace or supplement IBM-supplied
input editing for 3270 terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTINX2 Use to initialize installation-written I/O
managers.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTRTX1 Use to replace or supplement IBM-supplied
output editing for 3767/3770 and 2741
terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTRTX2 Use to supplement IBM-supplied input
editing for 3767/3770, 2741, WTTY or TWX
terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTRTX3 Use to replace IBM-supplied attention
handling for 3767/3770 (LU1) terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTRTX4 Use to replace or supplement IBM-supplied
input editing for 3767/3770 (LU1) terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

IKTWTX1 Use to replace or supplement IBM-supplied
output editing for TWX and WTTY terminals.

z/OS Communications
Server: SNA Resource
Definition Reference

VTAM Exits

722 z/OS V1R4.0 TSO/E Customization

VTAM Statements
Table 139 is a summary of the VTAM statements you can use to define TSO/E to
VTAM.

Table 139. VTAM Statements

VTAM Statements Description Reference

LOGCHAR macro statement Use to define the LOGON
command you want to use at
your installation.

z/OS Communications Server:
SNA Customization

APPL definition statement Use to define TCAS and
TSO/E address spaces to
VTAM.

z/OS Communications Server:
SNA Resource Definition
Reference

VTAM Statements

Chapter 48. Overview of Facilities for Customizing TSO/E 723

VTAM Statements

724 z/OS V1R4.0 TSO/E Customization

Chapter 49. Macro Syntax

Coding the Macro Instructions 725
IKJBCAST Macro . 727

Example . 727
IKJEDIT Macro . 728

Example . 731
IKJIFRIF Macro . 732

Input Requirements . 732
Register Conventions . 733
Output . 733
IKJIFRIF (List Form) . 733
IKJIFRIF (Execute Form). 733
The IKJIFRIF Parameter List 735
Return Codes from IKJIFRIF 737
Example 1 . 738
Example 2 . 738
Example 3 . 739

IKJTSO Macro . 740
Example . 740

INMEND Macro . 740
INMNODE Macro . 740
INMXP Macro . 741

Example . 745

This chapter describes the syntax of the following macros:
v IKJBCAST
v IKJEDIT
v IKJIFRIF
v IKJTSO
v INMEND
v INMNODE
v INMXP

Use the IKJBCAST macro to specify the maximum number of messages that TSO/E
can store in the notices section of the broadcast data set.

Use the IKJEDIT macro to specify the characteristics of EDIT data set types.

Use the IKJIFRIF macro to add, delete, or change user IDs in the broadcast data
set.

Use the IKJTSO macro to specify certain limits related to LOGON processing.

Use the INMEND, INMNODE, and INMXP macros to code the installation options
CSECT (INMXPARM) for the TSO/E TRANSMIT and RECEIVE commands. Code
the INMXP macro first, followed by INMNODE, then INMEND. Terminate the
assembly with an END statement.

Coding the Macro Instructions
The following paragraphs describe the notation used to define the macro syntax in
this publication.

© Copyright IBM Corp. 1988, 2002 725

1. The set of symbols listed below are used to define macro instructions, but
should never be written in the actual macro instruction:

hyphen - (except where required in the IKJEDIT macro)

underscore _

braces { }

brackets []

ellipsis . . .

blank �

The special uses of these symbols are explained in paragraphs 4-8.

2. Uppercase letters and words, numbers, and the set of symbols listed below
should be written in macro instructions exactly as shown in the definition:

apostrophe ’

asterisk *

comma ,

equal sign =

parentheses ()

period .

3. Lowercase letters, words, and symbols appearing in a macro instruction
definition represent variables for which specific information should be substituted
in the actual macro instruction.

Example: If name appears in a macro instruction definition, a specific value (for
example, ALPHA) should be substituted for the variable in the actual macro
instruction.

4. Hyphens join lowercase letters, words, and symbols to form a single variable.

Example: If member-name appears in a macro instruction definition, a specific
value (for example, BETA) should be substituted for the variable in the actual
macro instruction. Exception: Hyphens are required where noted in the IKJEDIT
macro.

5. An underscore indicates a default option. If an underscored alternative is
selected, it need not be written in the actual macro instruction.

Example: The representation
A {A}
B or {B}
C {C}

indicates that either A or B or C should be selected; however, if B is selected, it
need not be written because it is the default option.

6. Braces group related items, such as alternatives.

Example: The representation
{A}

ALPHA=({B},D)
{C}

indicates that a choice should be made among the items enclosed within the
braces. If A is selected, the result is ALPHA=(A,D). If B is selected, the result
can be either ALPHA=(,D) or ALPHA=(B,D).

Coding the Macro Instructions

726 z/OS V1R4.0 TSO/E Customization

7. Brackets also group related items; however, everything within the brackets is
optional and may be omitted.

Example: The representation
[A]

ALPHA=([B],D)
[C]

indicates that a choice can be made among the items enclosed within the
brackets or that the items within the brackets can be omitted. If B is selected,
the result is: ALPHA=(B,D). If no choice is made, the result is: ALPHA=(,D).

8. An ellipsis indicates that the preceding item or group of items can be repeated
more than once in succession.

Example: The representation
ALPHA[,BETA]...

indicates that ALPHA can appear alone or can be followed by ,BETA any
number of times in succession.

Note: To designate register 0 and register 1 on a macro invocation, use (0) and
(1), respectively. You cannot use a symbolic variable to designate these
registers.

IKJBCAST Macro
Use the IKJBCAST macro to specify how many 129-byte records TSO/E is to
reserve in the notices section of the broadcast data set for messages.

The syntax of the IKJBCAST macro is:

name
Symbolic identifier for the macro

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

Begin name in column 1.

BCLMT
Reserve space for messages in the notices section of the broadcast data set

number
The maximum number of 129-byte records

value: an integer in the range 1-1000

Example
To reserve space for 350 129-byte records in the broadcast data set, code
IKJBCAST BCLMT=350

[name] IKJBCAST {BCLMT={number|100}}

Coding the Macro Instructions

Chapter 49. Macro Syntax 727

IKJEDIT Macro
Use the IKJEDIT macro to specify default physical characteristics and processing
attributes of data sets to be processed using the EDIT command.

The syntax of the IKJEDIT macro is:

1 If you explicitly specify parameters on the DSTYPE operand, ensure that a
one-to-one positional correspondence exists with parameters you specify
(explicitly or implicitly) on all other operands. Indicate missing corresponding
parameters by a comma.

2 Refer to Figure 142 for the default data set types (implicit specification).
3 Refer to Figure 142 for the default block size (implicit specification) for

particular data set types.
4 Refer to Figure 142 for the data set types for which IPDSNEXC is the

default syntax checker (implicit specification).

{ {tso-defined2}{,tso-defined2 } }
{ DSTYPE1=({ }{ }...) }
{ {user-defined}{,user-defined } }

{ { n }{,n } }{ { name }{ ,name } }
{ ,BLOCK=({ }{ }...)}{,CHECKER=({ }{ }...)}
{ {nn3}{,nn3} }{ {IPDSNEXC4}{,IPDSNEXC4} }

{ { ASIS }{ ,ASIS } }
{ ,CONVERT5=({ CAPS }{ ,CAPS }...)}
{ {CAPSONLY}{,CAPSONLY} }

{ { name }{ ,name } }
{ ,DATEXIT=({ }{ }...) }
{ {ICDQRNME6}{ICDQRNME6} }

{,FIXED7=(d-m{,d-m}...)}
[name] IKJEDIT

{ { FIXED }{ ,FIXED} }
{,FORMAT8=({FXDONLY}{,FXONLY}...) }
{ { VAR }{ ,VAR } }

{,PRMPTR9=(name{,name}...)}

[,USEREXT=(name[,name]...)]]

{ {DATASET}{,DATASET} }
{,USERSRC10=({ INCORE}{ ,INCORE}...) }
{ {INLIST }{,INLIST } }

{,VAR11=(d-m{,d-m}...)}

IKJEDIT Macro

728 z/OS V1R4.0 TSO/E Customization

5 Refer to Figure 142 for the default data conversion attributes (implicit
specification) for particular data set types.

6 ICDQRNME is the default name of the IBM-supplied exit routine invoked for
the EDIT RENUM subcommand for VSBASIC data set types. ICDQRNME
is the only default.

7 Refer to Figure 142 for the default and maximum LRECL (implicit
specification) for particular data set types.

8 Refer to Figure 142 for the default record format (implicit specification) for
particular data set types.

9 Refer to Figure 142 for the default compiler names (implicit specification).
10 Refer to Figure 142 for the default type of input (implicit specification)

acceptable to the compiler/processing routine specified in PRMPTR.
11 Refer to Figure 142 for the default and maximum LRECL (implicit

specification) for particular data set types.

v Separate each specified operand by a comma.

v In the FIXED and VAR parameters, code the hyphen between d and m exactly
as shown.

DSTYPE
Explicit default data set type for use with the EDIT command

tso-defined
Predefined data set type

value: as noted in Figure 142 on page 732 (The maximum number
of data set types you can specify is 12.)

user-defined
A data set type that you define

value: 1-8 alphanumeric characters, beginning with an alphabetic
character. (The maximum number of data set types you can
specify is 10.)

BLOCK
Explicit default block size for a data set created using the EDIT command

n Block size, in bytes

value: an integer in the range 8-32,760. (See the explanations
under FIXED and VAR for additional information concerning
the specification of n.)

CHECKER
Check lines in a data set for proper syntax in a syntax-checking routine

name
The name of your syntax-checking routine. Only applicable for a
DSTYPE=user-defined. (Install the routine prior to system generation.)

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

CONVERT
Explicit default style of the input data passed to the EDIT command processor

ASIS Allow input data to remain as entered by the user

CAPS Convert input data to uppercase

IKJEDIT Macro

Chapter 49. Macro Syntax 729

CAPSONLY Always convert input data to uppercase (restrict the user to the
specification of the CAPS operand on the EDIT command)

DATEXIT
Process the data set in an exit routine when the user issues the COPY, MOVE,
or RENUM subcommand of EDIT

name
The name of your exit routine

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

FIXED
Explicit default and maximum length of logical fixed-length records in data sets
created using the EDIT command

d Default logical record length in bytes

value: an integer in the range 1-255

If you specify a corresponding n value in the BLOCK parameter, ensure that it
is a multiple of d.

If variable-length record format is the default for the corresponding data set
type, code a value of 0 for d, when you define the maximum length of a
fixed-length record.

m Maximum logical record length in bytes

value: an integer in the range 1-255

Specify a value for m that is a multiple of, or equal to, the value of d.

If you specify a corresponding n value in the BLOCK parameter, ensure that it
is a multiple of m.

FORMAT
Explicit default record format for a data set created using the EDIT command

FIXED Allow fixed-length record format

FXDONLY Only allow fixed-length record format

VAR Allow variable-length record format

PRMPTR
Process the source program in a routine when the user issues the RUN
subcommand of EDIT

name
The name of your routine

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

USEREXT
Interpret the information from the subfield of the data-set-type parameter on the
EDIT command in an exit routine and encode it into bytes 0 and 1 of the option
word in the syntax checker parameter list

name
The name of your exit routine. Only applicable for a DSTYPE=user-defined.

IKJEDIT Macro

730 z/OS V1R4.0 TSO/E Customization

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

USERSRC
Input to the processing routine you specified in the PRMPTR parameter

DATASET The only valid input is a sequential data set

INCORE The EDIT command processor may pass as input via the input
stack

v an in-storage data set - if the size of the data set does not
exceed 4096 bytes

v a sequential data set

INLIST The EDIT command processor may pass as input via the
INLIST operand on the invocation of the processing routine

v an in-storage data set - if the size of the data set does not
exceed 4096 bytes

v a sequential data set

VAR
Explicit default and maximum length of logical variable-length records in data
sets created using the EDIT command

d Default logical record length in bytes

value: an integer in the range 5-255

Specify a value for d that is less than, or equal to, n-4 of the corresponding n
value you specified in the BLOCK parameter.

m Maximum logical record length in bytes

value: an integer in the range 5-255

Specify a value for m that is greater than, or equal to, the value of d.

Specify a value for m that is less than, or equal to, n-4 of the corresponding n
value you specified in the BLOCK parameter.

Example
To specify:

1. a user-defined data set type - USER01
v with an explicit default record format of variable-length records
v and implicit defaults for all other attributes

2. a tso-defined data set type - DATA
v with an explicit default block size of 2400
v and implicit defaults for all other attributes

3. and implicit defaults for all other tso-defined data set types

Code
EDIT IKJEDIT DSTYPE=(USER01,DATA),BLOCK=(,2400),FORMAT=(FIXED)

IKJEDIT Macro

Chapter 49. Macro Syntax 731

IKJIFRIF Macro
Use the IKJIFRIF macro to add, delete, or change directory entries in the broadcast
data set. For more details on using the IKJIFRIF macro instruction, see “Maintaining
Directory Entries in the Broadcast Data Set” on page 208.

IKJIFRIF generates the parameter list and linkage to the broadcast data set
interface routine that adds, deletes, or changes directory entries.

IKJIFRIF references the broadcast data set.

Note: With dynamic broadcast support, the SYSLBC DDNAME is no longer
required. If the SYSLBC DDNAME is not specified, the currently active
broadcast data set will be used by the macro. If the SYSLBC DDNAME is
specified, the referenced data set will be used by the macro.

IKJIFRIF has two forms:

1. The list form defines storage (12 fullwords) for the parameter list that is passed
to the broadcast data set interface routine.

2. The execute form sets up the parameter list and invokes the broadcast data set
interface routine.

Input Requirements
In your program that invokes IKJIFRIF:

v The data definitions must include the mapping macros for the CVT and the TSVT
(IKJTSVT) in the module.

v The execution portion must have register 13 point to an 18-word save area.

Data Default Maximum
Set Block Record LRECL LRECL Data Checker Prompter Prompter
Type Size Format F V F V Conversion Name Name Input

IBM-Defined Data Set Types

FORTE 400 FXDONLY 80 0 80 0 CAPSONLY -------- -------- DATASET
FORTG 400 FXDONLY 80 0 80 0 CAPSONLY -------- -------- DATASET
FORTH 400 FXDONLY 80 0 80 0 CAPSONLY IPDSNEXC -------- DATASET
ASM 3120 FXDONLY 80 0 80 0 CAPSONLY -------- ASM DATASET
TEXT 3120 VAR 0 255 255 255 ASIS -------- -------- DATASET
DATA 3120 FIXED 80 0 255 255 CAPS -------- -------- DATASET
CLIST 3120 VAR 0 255 255 255 CAPSONLY -------- -------- DATASET
CNTL 3120 FXDONLY 80 0 80 0 CAPSONLY -------- -------- DATASET
COBOL 400 FXDONLY 80 0 80 0 CAPSONLY -------- COBOL DATASET
PLI 400 VAR 0 104 100 104 CAPS IPDSNEXC PLIC DATASET
FORTGI 400 FXDONLY 80 0 80 --- CAPSONLY -------- FORT DATASET
VSBASIC 3120 VAR 0 255 80 255 CAPSONLY -------- VSBASIC INLIST
GOFORT 3120 VAR 0 255 255 255 CAPS IPDSNEXC GOFORT INCORE
PLIF 400 FXDONLY 80 0 100 0 CAPSONLY PLIFSCAN -------- DATASET

Any User-Defined Data Set Types

---- 3120 FIXED 80 255 255 255 CAPS -------- -------- --------

---- Null Value

Figure 142. Attribute Defaults for Parameters Not Explicitly Specified on the IKJEDIT Macro

IKJIFRIF Macro

732 z/OS V1R4.0 TSO/E Customization

Your program that invokes IKJIFRIF can execute in either 24- or 31-bit addressing
mode. The broadcast data set interface routine accepts input above or below 16
MB in virtual storage. However, if executing in 24-bit addressing mode, the
parameters you pass must reside below 16 MB in virtual storage.

The parameters must be in the primary address space.

Register Conventions
v The execute form of IKJIFRIF alters registers 0, 1, 14, and 15.

Output
v IKJIFRIF returns a return code in register 15 or in the variable retcode. See the

syntax of the execute form of the macro for information on retcode.

IKJIFRIF (List Form)
Use the list form of the macro to define storage for the parameter list that is passed
to the broadcast data set interface routine.

The syntax of the list form of the IKJIFRIF macro is:

label
The symbolic identifier of the macro.

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

MF
Macro form

L List form

IKJIFRIF (Execute Form)
Use the execute form of the macro to set up the parameter list and invoke the
broadcast data set interface routine.

The syntax of the execute form of the IKJIFRIF macro is:

v All parameters are keyword parameters.
v An address may be either a 24-bit or a 31-bit address.
v When using register notation, enclose the specified register in parentheses.

A description of the parameters follows:

label
The symbolic identifier of the macro

label IKJIFRIF MF=L

ECT=ectadr,PSCB=pscbadr,UPT=uptadr,

[label] IKJIFRIF {ADD=addadr|DEL=deladdr|ALT=altadr},

[RETCODE=retcode,] MF=(E,parmlist-name)

IKJIFRIF Macro

Chapter 49. Macro Syntax 733

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

ECT
Environment control table

ectadr
Address of the ECT

value:
1. RX-type address
2. a register, 2–12, containing the address.

PSCB
Protected step control block

pscbadr
Address of the PSCB

value:
1. RX-type address
2. a register, 2–12, containing the address.

UPT
User profile table

uptadr
Address of the UPT

value:
1. RX-type address
2. a register, 2–12, containing the address.

ADD
Add either a) a directory entry for one user ID, or b) a list of directory entries for
a number of user IDs, to the broadcast data set.

addadr
A storage area containing the only user ID or the first user ID in a chain of
user IDs

value:
1. RX-type address
2. a register, 2–12, containing the address.

DEL
Delete either a) a directory entry for the user ID, or b) a chain of directory
entries for a number of user IDs, from the broadcast data set.

deladr
A storage area containing the only user ID or the first user ID in a chain of
user IDs

value:
1. RX-type address
2. a register, 2–12, containing the address.

ALT
Change either a) a directory entry for one user ID to a new user ID, or b) a
chain of directory entries for a number of user IDs to corresponding new user
IDs, in the broadcast data set.

IKJIFRIF Macro

734 z/OS V1R4.0 TSO/E Customization

altadr
A storage area containing the only user ID or the first user ID in a chain of
user IDs

value:
1. RX-type address
2. a register, 2–12, containing the address.

RETCODE
Return code

retcode
A fullword that will contain the return code from IKJIFR00

value: RX-type address

MF
Macro form

E Execute form

parmlist-name
Name or address of the storage area for the parameter list

value:
1. the label specified on the list form of the macro
2. a register, 2–12, containing the address

The IKJIFRIF Parameter List
The execute form of IKJIFRIF sets up a parameter list where register 1 points to the
parameter list shown in Figure 143 on page 736.

Upon return from the execute form of IKJIFRIF the parameter list may contain error
indicators. Error indicators include:

v Register 15 and optionally the RETCODE parameter you specified

v Abend code field in the parameter list

v Reason code field in the parameter list

v Service return code field in the parameter list

v Service reason code field in the parameter list

IKJIFRIF Macro

Chapter 49. Macro Syntax 735

Figure 143 shows, right to the parameter list, the organization of the storage area
for a single directory entry. Multiple directory entries can be added, deleted, or
changed in the broadcast data set with a single invocation of the IKJIFRIF macro
instruction. Figure 144 on page 737 shows the organization of the storage area for
three directory entries.

Note that the address at offset X'C' in the parameter list (the address of a user ID
or the first user ID in a chain of user IDs) needs to start on a fullword boundary in
order for the IKJIFRIF macro to evaluate this structure. See the following examples.

Offset (Hex) Number of Bytes Contents or Meaning

0 4 For a single directory entry this must be X'00000000'.

For a chain of user IDs this is a pointer to the next
entry. Note that the last entry must be set to
X'00000000'.

4 8 User ID n to be added, deleted, or changed.
C 8 New user ID n, if the ALT function of the IKJIFRIF

macro is invoked.

┌───────────┐
│Register 1 ├───┐
└───────────┘ │

i
Parameter List

+ 0 ┌────────────────────┐
│ Address of UPT │

+ 4 ├────────────────────┤
│ Address of PSCB │

+ 8 ├────────────────────┤ ADD - DEL - ALT Structure
│ Address of ECT │

+ C ├────────────────────┤
│ Address of userid │ + 0 ┌───────────────┐
│ or first userid in ├──────P │ X’00000000’ │
│ a chain of userids │ + 4 ├───────────────┴───────────────┐

+ 10 ├────────────────────┤ │ User ID │
│ Requested function │ + C ├───────────────────────────────┤
│ (ADD, DEL, or ALT) │ │ New user ID (only for ALT) │

+ 14 ├────────────────────┤ └───────────────────────────────┘
│ Abend code │

+ 18 ├────────────────────┤
│ Reason code │

+ 1C ├────────────────────┤
│ Service return code│

+ 20 ├────────────────────┤
│ Service reason code│
└────────────────────┘

Figure 143. Parameter List Structure for IKJIFRIF (Single User ID)

IKJIFRIF Macro

736 z/OS V1R4.0 TSO/E Customization

Return Codes from IKJIFRIF
Upon return from the execute form of IKJIFRIF register 15, and optionally the
RETCODE parameter you specified, contains a return code. The possible return
codes and their explanations are as follows:

Return Code Explanation

0 Processing completed successfully

4 Processing unsuccessful - recovery environment could not be
established

8 Processing unsuccessful - caller is in 24-bit addressing mode, but
the argument address(es) were not valid 24-bit address(es)

12 Processing unsuccessful - incorrect interface function specified

16 Processing unsuccessful - user parameters were incorrect

20 Processing unsuccessful - An internal error occurred. The service
return code field of the macro-generated parameter list contains
further diagnostic information.

: :
: :

+ 8 ├────────────────────┤ ADD - DEL - ALT Structure
│ Address of ECT │

+ C ├────────────────────┤
│ Address of userid │ + 0 ┌───────────────┐
│ or first userid in ├──────P │ Next argument ├─────────────────┐
│ a chain of userids │ + 4 ├───────────────┴───────────────┐ │

+ 10 ├────────────────────┤ │ User ID 1 │ │
│ Requested function │ + C ├───────────────────────────────┤ │
│ (ADD, DEL, or ALT) │ │ New user ID 1 (ALT only) │ │

+ 14 ├────────────────────┤ └───────────────────────────────┘ │
│ Abend code │ │

+ 18 ├────────────────────┤ ┌───────────────────────────────────────┘
│ Reason code │ │

+ 1C ├────────────────────┤ │ + 0 ┌───────────────┐
│ Service return code│ └───P │ Next argument ├─────────────────┐

+ 20 ├────────────────────┤ + 4 ├───────────────┴───────────────┐ │
│ Service reason code│ │ User ID 2 │ │
└────────────────────┘ + C ├───────────────────────────────┤ │

│ New user ID 2 (ALT only) │ │
└───────────────────────────────┘ │

│
┌───────────────────────────────────────┘
│
│ + 0 ┌───────────────┐
└───P │ X’00000000’ │
+ 4 ├───────────────┴───────────────┐

│ User ID 3 │
+ C ├───────────────────────────────┤

│ New user ID 3 (ALT only) │
└───────────────────────────────┘

Figure 144. Parameter List Structure for IKJIFRIF (Multiple Directory Entries)

IKJIFRIF Macro

Chapter 49. Macro Syntax 737

Return Code Explanation

24 Processing unsuccessful - an abend occurred. The abend code
field of the macro-generated parameter list contains further
diagnostic information.

28 Processing incomplete. Deallocation failed. Check the broadcast
data set to see if the function was successfully performed to the
directory entry or entries. Also check the service return code field
and the service reason code field for return codes from the dynamic
allocation routine.

32 Processing unsuccessful - TSO/E Release 4 or higher is not
installed.

36 Processing unsuccessful - too many arguments in the chain of user
IDs for the requested function were passed to the broadcast data
set interface routine and caused the amount of storage requested
by the GETMAIN macro to become a negative amount.

Example 1
Operation: Add a directory entry to SYS1.BRODCAST.

ADDADR is described as follows:
1. Pointer to next entry, or zero for last entry
2. New directory entry

Example 2
Operation: Change a directory entry in SYS1.BRODCAST.

* Initialization and set up code for the module *
* Include a pointer to the CVT *

.

.

.
CVTMAP CVT DSECT=YES * map the CVT *
TSVTMAP IKJTSVT * map the TSVT *
PARMLIST IKJIFRIF MF=L * define storage for the parameter list *

* Issue IKJIFRIF to set up and initialize the parameter list *

ADDID IKJIFRIF UPT=UPTADR,PSCB=PSCBADR,ECT=ECTADR, X
ADD=ADDADR,MF=(E,PARMLIST)

* Include code to handle error conditions *
* Define storage for the userid(s) *

ALIGN DS 0F * Alignment to word boundary *
ADDADR DS 0CL12 * Name field as specified below *
NEXT DS F * Zero, if only one directory entry to be added *
USERID DS CL8 * New directory entry *

IKJIFRIF Macro

738 z/OS V1R4.0 TSO/E Customization

ADDADR is described as follows:
1. Pointer to next entry, or zero for last entry
2. Existing directory entry
3. New directory entry

Example 3
Operation: Delete a directory entry from SYS1.BRODCAST.

ADDADR is described as follows:
1. Pointer to next entry, or zero for last entry
2. Directory entry to be deleted

* Initialization and set up code for the module *
* Include a pointer to the CVT *

.

.

.
CVTMAP CVT DSECT=YES * map the CVT *
TSVTMAP IKJTSVT * map the TSVT *
PARMLIST IKJIFRIF MF=L * define storage for the parameter list *

* Issue IKJIFRIF to set up and initialize the parameter list *

ALTID IKJIFRIF UPT=UPTADR,PSCB=PSCBADR,ECT=ECTADR, X
ALT=ALTADR,MF=(E,PARMLIST)

* Include code to handle error conditions *
* Define storage for the user IDs *

ALIGN DS 0F * Alignment to word boundary *
ALTADR DS 0CL20 * Name field as specified below *
NEXT DS F * Zero, if only one directory entry to be changed*
OLDID DS CL8 * Existing directory entry *
NEWID DS CL8 * New directory entry *

* Initialization and set up code for the module *
* Include a pointer to the CVT *

.

.

.
CVTMAP CVT DSECT=YES * map the CVT *
TSVTMAP IKJTSVT * map the TSVT *
PARMLIST IKJIFRIF MF=L * define storage for the parameter list *

* Issue IKJIFRIF to set up and initialize the parameter list *

DELID IKJIFRIF UPT=UPTADR,PSCB=PSCBADR,ECT=ECTADR, X
DEL=DELADR,MF=(E,PARMLIST)

* Include code to handle error conditions *
* Define storage for the user ID(s) *

ALIGN DS 0F * Alignment to word boundary *
DELADR DS 0CL12 * Name field as specified below *
NEXT DS F * Zero, if only one directory entry to be deleted*
USERID DS CL8 * Directory entry to be deleted *

IKJIFRIF Macro

Chapter 49. Macro Syntax 739

IKJTSO Macro
Use the IKJTSO macro to specify

v the total number of times a terminal user may be prompted for operands at logon
before TSO/E automatically cancels the logon attempt

v how much time the terminal user may wait without a terminal response during a
logon attempt

The syntax of the IKJTSO macro is:

name
Symbolic identifier for the macro

value: 1-8 alphanumeric characters, beginning with an alphabetic
character

Begin name in column 1.

LOGLINE
Set logon input-line limit

lines
The maximum number of input lines; that is, the total number of times a
terminal user can be prompted for operands

value: an integer in the range 1-16777215

LOGTIME
Set logon wait-time response limit

sec
The maximum number of seconds

value: an integer in the range 1-16777215

Example
To set a 10 minute wait-time response limit and a 5 input-line logon limit, code
LIMITS IKJTSO LOGTIME=600,LOGLINE=5

INMEND Macro
The INMEND macro terminates the list of INMNODE macros.

The syntax of the INMEND macro is:

INMNODE Macro
The INMNODE macro builds a table that establishes correspondencebetween
system identifiers and network node names.

[name] IKJTSO {LOGLINE={lines|10}}{,LOGTIME={sec|300}}

� INMEND

IKJTSO Macro

740 z/OS V1R4.0 TSO/E Customization

v For each system on which the TRANSMIT and RECEIVE commands will be
executed, code the macro once.

v For loosely-coupled JES3 complexes and JES2 multi-access spool complexes,
code the macro two or more times specifying the same node-name but different
smf-ids.

v For a multiprocessor, code the macro once.

v You only have to code the INMNODE macro for the host node (the node, into
which, you will link-edit this copy of INMXPARM). You do not have to code an
INMNODE macro for every node in the network.

If you code an INMNODE macro for nodes other than the host, and one of the
other nodes has the same smf-id as the host node, assemble the INMNODE
macro for the host ahead of the INMNODE macro for the node with the duplicate
smf-id.

The syntax of the INMNODE macro is:

node-name
The name of a network node

value: must be one of the following:

v The same as a node name you specified on the NJERMT
JES3 initialization statement or on the NODE(nnnn) JES2
initialization statement, or

v If you do not define a node name to JES, the default node
name NODE0001 (or N001).

smf-id
The system identifier for a particular processor or a multiprocessor

value: must be the same as a system identifier you specified in the
SID parameter of the SMFPRMxx PARMLIB member

Note: If you omit the smf-id for the host node, TSO/E uses a value of eight
question marks (????????) for the node-name associated with the
transmitted data.

INMXP Macro
The INMXP macro defines installation controls and defaults for certain parameters
on the TRANSMIT and RECEIVE commands, such as the unit for allocating
temporary space, transmission size limits, and data set names. The syntax of the
INMXP macro is:

� INMNODE node-name,smf-id

INMNODE Macro

Chapter 49. Macro Syntax 741

CIPHER
Data encryption control

ALWAYS The user must encrypt every transmission. (The specification of
ALWAYS is equivalent to forcing every user to specify the
ENCIPHER operand on the TRANSMIT command or for you to
provide encryption using the TRANSMIT encryption exit,
INMXZ03 or INMXZ03R.)

YES Data encryption is a user option

NO Do not allow the user to encrypt any transmission. (The
specification of NO overrides the specification of the
ENCIPHER operand on the TRANSMIT command and does not
allow you to provide encryption with the TRANSMIT encryption
exit, INMXZ03 or INMXZ03R.)

OUTWARN
Warn a user who is transmitting a large file

n1 Give the user the first warning after the transmission of the designated
number of records

value: a decimal integer

n2 Give the user the second and subsequent warnings each time after the
transmission of the designated number of records

value: a decimal integer

OUTLIM
Terminate a transmission

n3 If a user attempts to transmit n3 records, the system terminates the
transmission

If n3 is less than or equal to 16,777,215, the system passes the value to
JES as the OUTLIM value.

If n3 exceeds 16,777,215, the system does not pass the value to JES;
however, n3 still serves as the limit for the TRANSMIT command.

{ {ALWAYS}}{ { n1,n2 } }{ { n3 }}
{CIPHER= {YES }}{,OUTWARN=({ })}{,OUTLIM={ }}
{ {NO }}{ {10000,5000} }{ {30000 }}

{ {logselector}}{ {logname-suffix}}
{,LOGSEL= { }}{,LOGNAME={ }}
{ { LOG1 }}{ { MISC1 }}

� INMXP { { name }}{ {sysout-class}}
{,USRCTL= { }}{,SYSOUT= { }}
{ {NAMES.TEXT1}}{ { *1 }}

{ {unit-name}} { { }}
{,VIO= { }}[,SYSCTL=dsname] {,SPOOLCL={class}}
{ { 2 }} { { B }}

1 See the explanation under each parameter as to when TSO/E uses the indicated default.
2 See the explanation under the VIO parameter as to the default TSO/E uses.

Separate each specified parameter by a comma.

INMXP Macro

742 z/OS V1R4.0 TSO/E Customization

value: a decimal integer

For additional information on output limits, refer to

v z/OS MVS JCL Reference - the OUTLIM DD statement

v z/OS MVS Programming: Authorized Assembler Services
Guide - SVC 99 SYSOUT output limit specification
DALOUTLM (key=X'001B')

LOGSEL
The default middle qualifier(s) for the log data set name. (The name in the
:LOGSEL tag in the control section of the NAMES data set takes precedence.)

logselector
The name(s) of the middle qualifier(s)

value: 1-8 alphanumeric characters with the first character being
alphabetic or one of the special characters (#, @, $) for
each name. Separate the names by periods. (See Note
following LOGNAME for maximum length restrictions.)

LOGNAME
The default suffix qualifier(s) for the log data set name. (The name in the
LOGNAME operand of the TRANSMIT command, the :LOGNAME tag in the
control section of the NAMES data set, or the :LOGNAME tag in a nickname
definition takes precedence.)

logname-suffix
The name(s) of the suffix qualifier(s)

value: 1-8 alphanumeric characters with the first character being
alphabetic or one of the special characters ($, #, or @) for
each name. Separate the names by periods. (See the
following note for maximum length restrictions.)

Note: TSO/E prefixes the name of the log data set with the user-specified
dsname-prefix from the PROFILE command, such that the name is
equivalent to prefix.logselector.logname-suffix. The maximum length of
the name is 44 characters including the periods and the prefix.

In the absence of any explicit specification, the default log data set name is
userid.LOG.MISC.

USRCTL
A name for the NAMES data set

name
The name of the data set

value: 1-8 alphanumeric characters with the first character being
alphabetic or one of the special characters ($, #, @) for
each name. Separate the names by periods.

Note: TSO/E prefixes the name of the NAMES data set with the user-specified
dsname-prefix from the PROFILE command. The maximum length of the
name is 44 characters including the periods and the prefix.

In the absence of any explicit specification, the default NAMES data set name
is userid.NAMES.TEXT.

INMXP Macro

Chapter 49. Macro Syntax 743

SYSOUT
Default SYSOUT class for messages written by utility programs (for example,
IEBCOPY)

sysout-class
The designated SYSOUT class

value: A-Z, 0-9, or *

Note: In the absence of any explicit specification, the system writes the
messages to the terminal (SYSOUT=*).

VIO
A device type on which the system can allocate temporary space for use by the
TRANSMIT and RECEIVE commands

v If you do not specify VIO, the value defaults to the UNIT specification for a
user in the UADS.

v If no UNIT specification exists, the value defaults to an installation-defined
default or, if none exists, to the system default (SYSALLDA).

In each of the three cases, IEBCOPY may fail.

unit-name
The name of the device type

value:
1. an esoteric name (for example, SYSDA)
2. a specific DASD device (for example, 3350)

Note: It is recommended that unit-name be a device type that you designated
as VIO at system generation. The use of VIO ensures the integrity of
sensitive data.

SYSCTL
The name for an alternate NAMES data set. (You can use this parameter in
conjunction with a routine you write to provide a global standard set of
‘nicknames’ within the installation. For example, the routine could manipulate
the entries in an internal directory and store the resulting output - ‘nicknames’ -
in the SYSCTL data set. End users could then use the standard set without
having to be concerned about defining theirs on an individual basis.)

dsname
The name of the data set. (The name must conform to MVS data set
naming conventions. TSO/E does not prefix the data set name.)

value: 1-8 alphanumeric characters with the first character being
alphabetic or national for each name. Separate the names
by periods. The maximum length of the name is 44
characters including the periods.

SPOOLCL
Specify the output class default. Use the SPOOLCL operand class to specify
your installation’s output class default. If you do not specify a different
SPOOLCL operand, then a default of ‘B’ is used.

class
The name of the SPOOLCL class

value: A-Z, 0-9, or *

Note: * is a literal character. It is valid only if * is specified as a valid class.

INMXP Macro

744 z/OS V1R4.0 TSO/E Customization

Example
INMXP CIPHER=NO,OUTWARN(5000,2000),OUTLIM=15000,VIO=3350
INMNODE BOST,168A CPU #1 in a JES2 complex
INMNODE BOST,168B CPU #2 in a JES2 complex
INMNODE POK,303C
INMNODE NYC,303A
INMNODE SJRLVS1,3081
INMEND
END

INMXP Macro

Chapter 49. Macro Syntax 745

INMXP Macro

746 z/OS V1R4.0 TSO/E Customization

Part 11. Appendixes

© Copyright IBM Corp. 1988, 2002 747

748 z/OS V1R4.0 TSO/E Customization

Appendix A. Executing the Terminal Monitor Program

Writing JCL for Command Execution 749
Considerations for Executing Commands in the Background. 754
Considerations for Programs That Invoke the TMP 755

The terminal monitor program (TMP) provides an interface between the user,
command processors, and the TSO/E control program. It obtains commands, gives
control to command processors, and monitors their execution. The TMP is attached
as APF-authorized and executes in either supervisor state or problem program
mode. The TMP entry points (IKJEFT01, IKJEFT1A, and IKJEFT1B) can only be
invoked in one of the following ways:
v Using the EXEC statement in the logon procedure for foreground execution
v Using the EXEC statement in the input stream for background execution
v Using the EXEC statement in the JCL portion of a transaction program (TP)

profile for a standard TP scheduled by the APPC/MVS transaction scheduler.
v Using the EXEC statement in the logon procedure for foreground execution to

execute Session Manager, instructing Session Manager to invoke the TMP that
TSO/E provides

v Using a program that passes control to the TMP

When you log on to TSO/E, the TMP is invoked from your logon procedure. You
can also execute the TMP in the background by submitting JCL. Executing the TMP
in the background allows you to execute TSO/E commands independent of the
terminal, which is convenient if a job takes a long period of time to execute. It is
also a useful way to perform certain customization tasks, such as maintaining the
UADS and broadcast data sets.

This appendix describes the JCL statements that are required to execute the TMP
in the background. As an alternative to writing JCL statements, you can use the
SUBMIT command to generate the JCL needed to execute commands in the
background. See z/OS TSO/E User’s Guide for more information.

Writing JCL for Command Execution
Figure 145 on page 750 illustrates the JCL statements needed to execute the TMP
in the background.

© Copyright IBM Corp. 1988, 2002 749

The JCL required to execute the TMP as a batch job includes the following:

1. A JOB statement, including a jobname and operands that specify the processing
options.

2. An EXEC statement that specifies IKJEFT01 (the TMP) as the program to be
executed. The format is:
//stepname EXEC PGM=IKJEFT01,DYNAMNBR=nn,PARM=’command’

Note: The TMP must not run as a V=R. Running the TMP as V=R can cause
unpredictable results.

If you are executing commands that dynamically allocate data sets, specify the
DYNAMNBR parameter.

You may use the PARM parameter to specify the first command to be executed.
The command that is executed is taken from the first line of input indicated by
the SYSTSIN DD statement.

If a command or program ABENDs, the TMP will place a return code of 12
(X'C') in register 15 and terminate the job step normally. No further commands
or subcommands will be executed after the command that ABENDed.

If a command or program returns a non-zero return code to the TMP, the TMP
will not save this return code and continue processing the next command or
subcommand.

There are two alternative entry points available for background execution that
provide additional return code and ABEND support. They can be used by
substituting PGM=IKJEFT01 on the EXEC statement with one of the following:

v PGM=IKJEFT1A

– If a command or program being processed by IKJEFT1A ends with a
system abend, IKJEFT1A causes the job step to terminate with a X'04C'
system completion code. IKJEFT1A also returns the completion code from
the command or program in register 15.

//JOB

//EXEC

//SYSTSPRT

//SYSTSIN

data

comments
subcommands
commands

/*

Figure 145. JCL Needed to Process Commands in the Background

Writing JCL for Command Execution

750 z/OS V1R4.0 TSO/E Customization

– If a command or program being processed by IKJEFT1A ends with a user
abend, IKJEFT1A saves this completion code in register 15 and then
terminates.

– If a command, program or REXX exec being processed by IKJEFT1A
returns a non-zero return code to IKJEFT1A, IKJEFT1A saves this return
code in register 15 and then terminates. Non-zero return codes to
IKJEFT1A from CLISTs will not affect the contents of register 15 and the
TMP will continue processing.

– For a non-zero return code or an abend from a command or program that
was not given control directly by IKJEFT1A, no return code is saved in
register 15 and IKJEFT1A does not terminate.

v PGM=IKJEFT1B

– If a command or program being processed by IKJEFT1B ends with a
system or user abend, IKJEFT1B causes the job step to terminate with a
X'04C' system completion code. IKJEFT1B also returns the completion
code from the command or program in register 15.

– If a command, program or REXX exec being processed by IKJEFT1B
returns a non-zero return code to IKJEFT1B, IKJEFT1B saves this return
code in register 15 and then terminates. Non-zero return codes to
IKJEFT1B from CLISTs will not affect the contents of register 15 and the
TMP will continue processing.

– For a non-zero return code or abend completion code from a program or
command that was not given control by IKJEFT1B, no return code is
saved in register 15 and IKJEFT1B does not terminate.

v For PGM=IKJEFT1A and PGM=IKJEFT1B, if the job step is terminated with a
X'04C' system completion code, the conditional disposition for each data set
that is still allocated at step termination will be honored:

– A DD statement can be freed prior to step termination either by using the
DYNALLOC macro (SVC 99) in a program or by executing the TSO/E
FREE command. If a DD statement that has a conditional disposition
specified has been freed prior to step termination, this DD statement will
not have the conditional disposition honored because no data set
allocation exists for standard deallocation processing in the initiator to
process.

– The conditional disposition for a data set can only be specified by coding it
in the JCL statement for the DD or by using the DYNALLOC macro (SVC
99) and specifying the DALCDISP text unit in the list of text units specified
in the SVC 99 request block. The conditional disposition for a data set
cannot be specified by using the TSO/E ALLOCATE command.

If the data set is allocated using the DYNALLOC macro (SVC 99) in a
command or program, all of the following requirements must occur in order
for the conditional disposition to be honored:

– The TMP must have been started using alternate entry point IKJEFT1A or
IKJEFT1B.

– The command or program must be invoked directly by the TMP.

– The command or program must issue the DYNALLOC macro (SVC 99)
specifying the DALCDISP text unit in the list of text units specified in the
SVC 99 request block.

– If the IKJEFT1A alternate entry point was used, the command or program
must abend with a system abend.

– If the IKJEFT1B alternate entry point was used, the command or program
must abend with either a system or a user abend.

Writing JCL for Command Execution

Appendix A. Executing the Terminal Monitor Program 751

If the command or program that issued the DYNALLOC macro (SVC 99)
does not abend, but a subsequent command or program does abend, the
conditional disposition specified in the DYNALLOC macro will not be honored.
This is because the TMP treats each command or program as a logical
’’step’’ and performs all clean up processing (including, but not limited to,
data set disposition) at the termination of each command or program invoked
directly by the TMP.

Example 1 - Conditional Disposition honored:
//jobcard
//TSO EXEC PGM=IKJEFT1A
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
command_processor_a parameters
command_processor_b parameters

where

– command_processor_a issues a DYNALLOC macro (SVC 99) specifying the
DALCDISP text unit and then abends with a system abend at some point
after the DYNALLOC is successful

Because the command or program that issued the DYNALLOC macro (SVC
99) was invoked directly by the TMP and abended before control was
returned to the TMP, the conditional disposition specified in the DALCDISP
text unit pointed to by the SVC 99 request block will be honored.

Example 2 - Conditional Disposition not honored:
//jobcard
//TSO EXEC PGM=IKJEFT1A
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
command_processor_a parameters
command_processor_b parameters

where

– command_processor_a issues a DYNALLOC macro (SVC 99) specifying the
DALCDISP text unit and then terminates normally

– command_processor_b then abends with a system abend

Because command_processor_a (which issued the DYNALLOC macro (SVC
99)) did not abend, the TMP frees all data sets allocated by
command_processor_a. Since this is a normal completion, the conditional
disposition of the data sets is not honored.

Example 3 - Conditional Disposition honored:
//jobcard
//TSO EXEC PGM=IKJEFT1A
//CONDDISP DD DSN=data.set.name,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSALLDA,SPACE=(TRK,(1,1))
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
command_processor_a parameters
command_processor_b parameters

where

– command_processor_a runs normally

– command_processor_b then abends with a system abend

Writing JCL for Command Execution

752 z/OS V1R4.0 TSO/E Customization

Because the data set was allocated by the JCL DD statement, and was not
freed, it is still allocated at the termination of the job step. Since the job step
will terminate with a system abend code X'04C' (because
command_processor_b abended with a system abend), the conditional
disposition for all data sets in the step will be honored.

Example 4 - Conditional Disposition not honored:
//jobcard
//TSO EXEC PGM=IKJEFT1A
//CONDDISP DD DSN=data.set.name,DISP=(NEW,CATLG,DELETE),
// UNIT=SYSALLDA,SPACE=(TRK,(1,1))
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
command_processor_a parameters
FREE FILE(CONDDISP)
command_processor_b parameters

where

– command_processor_a runs normally

– command_processor_b then abends with a system abend

Because the data set allocated by the JCL DD statement was freed, the
normal disposition (CATLG) for the data set will be honored. The data set will
no longer be allocated when the job step ends (with system abend code
X'04C' because command_processor_b abended with a system abend). Even
though the job step will end with a system abend code, the data set has
already been freed and therefore the initiator has no data set allocated for
which to perform disposition processing.

For more information about the DYNALLOC macro and the SVC 99 Request
Block, see z/OS MVS Programming: Authorized Assembler Services Guide.

For more information about the TSO/E ALLOCATE and FREE commands,
see z/OS TSO/E Command Reference.

3. A SYSTSPRT DD statement that controls output from your job. This DD
statement can refer to a system printer or to a sequential or partitioned data set.
If the data set is partitioned, you must specify the member name on the DD
statement as DSN=pdsname(membername).

Messages issued by programs using the TSO/E I/O service routines are written
to the data set indicated by the SYSTSPRT DD statement.

4. A SYSTSIN DD statement that controls input to your job. Use this statement to
indicate which commands and subcommands are to be executed.

You can specify the input data directly following the SYSTSIN DD statement, or
you can refer to a sequential or partitioned data set. If the data set is
partitioned, you must specify the member name on the DD statement as
DSN=pdsname(membername). You cannot refer to concatenated data sets on
the SYSTSIN DD statement. Each command or subcommand must begin on a
separate statement.

It is recommended that the SYSTSIN DD be defined as a fixed block format
data set, with an LRECL of 80.

If SYSTSIN is a fixed length data set (FB), the last 8 bytes of the record will be
treated as a sequence number and ignored.

If SYSTSIN is a fixed length data set with ASA control characters (FBA), the first
byte of the record will be treated as a carriage control character and ignored.

Writing JCL for Command Execution

Appendix A. Executing the Terminal Monitor Program 753

If SYSTSIN is a variable length data set (VB), the first 8 bytes of the record will
be treated as a sequence number and ignored.

If SYSTSIN is a variable length data set with ASA control characters (VBA), the
first 9 bytes of the record will be treated as a sequence number, followed by a
carriage control character and ignored.

Programs that use the TSO/E I/O service routines to obtain input receive their
input from the data set indicated by the SYSTSIN DD statement. The records
can be up to 72 bytes in length.

Use the SYSPROC DD statement to execute CLISTs implicitly. If a CLIST is a
member of a partitioned data set, you can execute the CLIST implicitly by simply
specifying the member name. For more information on executing CLISTs, see z/OS
TSO/E CLISTs.

Considerations for Executing Commands in the Background
v When the TMP executes in the background, some TSO/E commands are

processed differently than when they execute in the foreground. For example, a
job that invokes the TMP in the background is authorized to execute the
ACCOUNT command, if the “USER=” field is not specified. Therefore, for security
reasons, you should either:
– RACF-protect or password-protect the UADS
– Write a JCL exit to limit access to the background TMP.

For more information about the differences in command processing in the
background, see z/OS TSO/E User’s Guide.

v An unqualified data set name will not be prefixed with a user ID, because “no
prefixing” of data set names is the default in the background. If you want a user
ID prefixed to the data set names, and are not defined to RACF, include the
following command at the beginning of the SYSTSIN stream:
profile prefix(userid)

If you are defined to RACF, you do not have to include the profile
prefix(userid) command in the SYSTSIN stream. Instead, specify USER=userid
on the JOB card, and the user ID you specify is used as the prefix.

Read also the following item about the requirement that a user must have logged
on and off at least once.

v If your batch job uses commands or subcommands in the SYSTSIN stream that
use user IDs not defined as TSO/E users (for example, SEND or RECEIVE),
consider the following requirement:

The TMP requires user logon information found in either the user attribute data
set SYS1.UADS, or the TSO/E segment of the RACF data base. This information
is built through the LOGON and LOGOFF command. Therefore, it is required that
each referenced user is defined to either UADS or to RACF, and has performed
a LOGON and LOGOFF command at least once.

Considerations for Programs That Invoke the TMP
The TMP must be given control by attaching it as a job step task in a state similar
to that provided when JCL is used to cause the system to invoke it. Note that the
TMP should be attached as the one and only JOBSTEP TCB.
v APF-authorized
v Primary addressing mode
v AMODE(31)

Writing JCL for Command Execution

754 z/OS V1R4.0 TSO/E Customization

v Swappable
v Key 8 PSW and application subpools
v Registers:

Register Contents
1 Address of primary mode parameter list, specifying the first

command to be executed.
13 Address of a caller-provided key 8 save area.
14 Return address.
15 Address of entry point into the TMP.

See “Linkage Conventions” in z/OS MVS Programming: Assembler Services
Guide for details.

Dynamic allocation can be used to satisfy the requirements for DD statements prior
to passing control to the TMP.

Only one invocation of the TMP is supported during a step of a job, and only one
instance of the TMP can be concurrently active within an address space.

Use of system services by the caller of the TMP during the TMP session can impact
the timing and delivery of session services, and the TMP and the commands that it
invokes can impact the timing and operation of the caller.

The TMP can alter execution status and the resources owned by the job during its
operation. For example,
v APF-authority can be relinquished.
v Data set allocation can be changed.
v Commands given control during the session can change any key 8 storage....

Some of these changes may remain in effect when control is returned to the caller
of the TMP. When control is returned to the caller, all registers except for register 15
will contain the same values passed to the TMP on entry. Register 15 will contain a
return code. See Figure 145 on page 750 for more information regarding that return
code.

Considerations for Programs That Invoke the TMP

Appendix A. Executing the Terminal Monitor Program 755

Considerations for Programs That Invoke the TMP

756 z/OS V1R4.0 TSO/E Customization

Appendix B. Example Logon Pre-Prompt Exit IKJEFLD

Figure 146 shows a sample unauthorized logon pre-prompt exit.

IKJEFLD TITLE ’TSO/E LOGON PRE-PROMPT INSTALLATION EXIT EXAMPLE’
IKJEFLD CSECT
TITLE ’TSO/E LOGON PRE-PROMPT INSTALLATION EXIT EXAMPLE PROLOGUE’

* *
* MODULE NAME - IKJEFLD *
* *
* CSECT NAME - IKJEFLD *
* *
* DESCRIPTIVE NAME - TSO/E INSTALLATION EXIT EXAMPLE *
* *
* FUNCTION - EXAMPLE FOR TSO/E LOGON PRE-PROMPT EXIT *
* *
* OPERATION - IKJEFLD PERFORMS THE FOLLOWING FUNCTION: *
* *
* 1 - SAVES CALLER’S REGISTERS IN CALLER’S SAVE AREA *
* 2 - ESTABLISHES ADDRESSABILITY TO MODULE IKJEFLD *
* 3 - SAVES PARAMETER POINTER (R1) *
* 4 - DOES A GETMAIN FOR PROGRAM’S SAVE AREA *
* 5 - CHAINS THE CALLER’S SAVE AREA AND THIS SAVE AREA *
* 6 - DOES A GETMAIN FOR PROGRAM’S WORK AREA *
* 7 - ESTABLISHES ADDRESSABILITY TO IKJEFLD’S WORK AREA *
* 8 - PROCESSES THE EXIT JCL STATEMENTS *
* 9 - DOES A FREEMAIN OF DYNAMIC WORK AREA *
* 10 - DOES A FREEMAIN OF DYNAMIC SAVE AREA *
* 11 - LOADS REGISTER 14 WITH RETURN ADDRESS *
* 12 - SETS THE RETURN CODE IN REGISTER 15 TO ZERO *
* 13 - LOADS REGISTERS R0 - R12 WITH CALLER’S ENTRY CONTENTS *
* FROM CALLER’S REGISTER SAVE AREA *
* 14 - RETURNS TO CALLER *
* *
* RECOVERY OPERATION - *
* *
* YOU MUST PROVIDE EXIT RECOVERY *
* *
* DEPENDENCIES - NONE *
* *
* *
TITLE ’IKJEFLD MODULE ATTRIBUTES’
* MODULE ATTRIBUTES - REENTRANT, *
* REFRESHABLE, *
* REUSABLE *
* *

Figure 146. Example Logon Pre-Prompt Exit (Part 1 of 7)

© Copyright IBM Corp. 1988, 2002 757

TITLE ’REGISTER EQUATES’

* REGISTER EQUATES FOLLOW *

* REGISTER EQUATES AND USAGE *
* *

SPACE 3
R0 EQU 0 UNPREDICTABLE
R1 EQU 1 ON ENTRY R1 POINTS TO THE
* PARAMETER LIST. AT OTHER TIMES
* THE VALUE OF R1 IS UNPREDICTABLE
R2 EQU 2 UNPREDICTABLE
R3 EQU 3 UNPREDICTABLE
R4 EQU 4 UNPREDICTABLE
R5 EQU 5 UNPREDICTABLE
R6 EQU 6 UNPREDICTABLE
R7 EQU 7 UNPREDICTABLE
R8 EQU 8 UNPREDICTABLE
R9 EQU 9 UNPREDICTABLE
R10 EQU 10 OUTPUT BUFFER
R11 EQU 11 DATA AREA BASE REGISTER
R12 EQU 12 CODE AREA BASE REGISTER
R13 EQU 13 SAVE AREA BASE REGISTER
R14 EQU 14 RETURN ADDRESS
R15 EQU 15 RETURN CODE
TITLE ’ENTRY CODE’

* IKJEFLD ENTRY CODE *
* *
* DESCRIPTIVE NAME - STANDARD ENTRY LINKAGE CODE ROUTINE *
* *
* FUNCTION - ESTABLISHES STANDARD LINKAGE BETWEEN PROGRAMS *
* *
* OPERATION - *
* *
* 1). PERFORMS STANDARD LINKAGE BETWEEN INVOKER OF EXIT AND *
* EXIT *
* 2). OBTAINS A DYNAMIC SAVE AREA FOR THE EXIT AND *
* ESTABLISHES THIS AS THE SAVE AREA FOR THE EXIT *
* 3). OBTAINS EXIT’S DYNAMIC WORK AREA STORAGE AND *
* ESTABLISHES THIS AS THE WORK AREA FOR THE EXIT *
* *

IKJEFLD CSECT

ENTRY IKJEFLD
STM R14,R12,12(R13) SAVE CALLER’S REGISTERS

*
LR R12,R15

* LOAD R12 TO CONTAIN THE
* ENTRY POINT ADDRESS OF IKJEFLD
*

Figure 146. Example Logon Pre-Prompt Exit (Part 2 of 7)

Example Logon Pre-Prompt Exit

758 z/OS V1R4.0 TSO/E Customization

USING IKJEFLD,R12
* ESTABLISH R12 TO BE THE
* PROGRAM’S BASE CODE REGISTER
*

LR R2,R1
* SAVE THE ADDRESS OF THE PARAMETER
* LIST
*

GETMAIN RU,LV=LSAVEA
* OBTAIN A DYNAMIC SAVE AREA
* FOR IKJEFLD.
*

ST R13,4(,R1)
* SAVE THE ADDRESS OF THE INVOKER’S
* SAVE AREA INTO IKJEFLD’S DYNAMIC
* SAVE AREA
*

ST R1,8(,R13)
* SAVE THE ADDRESS OF IKJEFLD’S
* SAVE AREA INTO THE INVOKER’S
* SAVE AREA
*

LR R13,R1
* LOAD THE ADDRESS OF IKJEFLD’S
* DYNAMIC SAVE AREA INTO R13
* FOR POSSIBLE NEXT CALLER’S USE
*

USING SAVEA,R13
* ESTABLISH ADDRESSABILITY TO
* IKJEFLD’S SAVE AREA SO THAT THE
* LABELS WITHIN THE SAVE AREA
* CAN BE USED IF NEEDED
*

GETMAIN RU,LV=LWORKA
* OBTAIN THE DYNAMIC WORK AREA
* FOR IKJEFLD.
*

LR R11,R1
* LOAD THE ADDRESS OF THE DYNAMIC
* WORK AREA INTO R11 FOR IKJEFLD’S
* USE
*

USING WORKA,R11
* AND ESTABLISH ADDRESSABILITY
* TO THE DYNAMIC WORK AREA SO THAT
* THE LABELS WITHIN THE WORK AREA
* CAN BE ADDRESSED
*

ST R1,GMPTR
* SAVE THE ADDRESS OF IKJEFLD’S
* DYNAMIC SAVE AREA FOR LATER USE
*

Figure 146. Example Logon Pre-Prompt Exit (Part 3 of 7)

Example Logon Pre-Prompt Exit

Appendix B. Example Logon Pre-Prompt Exit IKJEFLD 759

ST R2,PLSTPTR
* SAVE THE ADDRESS OF THE PARAMETER
* LIST THAT THE INVOKER OF IKJEFLD
* PASSED IN FOR LATER USE
*

MVC WAID,WAIDC
* PUT INTO THE FIRST 8 POSITIONS OF
* THE IKJEFLD’S DYNAMIC WORK AREA
* THE CHARACTERS "WORKAREA" SO THAT
* IT CAN BE EASILY FOUND IN A DUMP
*
TITLE ’INITIALIZATION CODE’

* *
* INITIALIZATION ROUTINE *
* *
* DESCRIPTIVE NAME - INITIALIZATION CODE *
* *
* FUNCTION - INITIALIZES THE DYNAMIC STORAGE AREA *
* *
* OPERATION - *
* *
* *
* 1). ENSURES THE RETURN CODE FROM THE EXIT WILL BE ZERO *
* 2). LOADS R1 WITH THE ADDRESS OF THE ORIGINAL *
* PARAMETER LIST *
* *

SPACE 3
XC RETCODE,RETCODE

* INITIALIZE THE RETURN CODE.
* IKJEFLD WILL ALWAYS RETURN
* A RETURN CODE OF ZERO TO THE
* INVOKER.
*

LR R1,R2
* RESTORE THE ADDRESS OF THE
* ENTRY PARAMETER LIST
*
TITLE ’MAIN LINE CODE ’

SPACE 3
PROCESS DS 0H

L R7,28(R1) INITIALIZE REG SEVEN TO
L R6,0(R7) POINT TO JCL DATA AREA
MVC 0(80,R6),OURJCL MOVE JOB CARD
MVC 80(80,R6),OUREXEC MOVE EXEC CARD
MVC 6(2,R7),OURCNT UPDATE CURRENT LENGTH
L R5,0(R1) INITIALIZE REG FIVE TO
L R5,0(R5) POINT TO CONTROL SWITCHES
OI 0(R5),X’02’ TURN ON JCL SWITCH

Figure 146. Example Logon Pre-Prompt Exit (Part 4 of 7)

Example Logon Pre-Prompt Exit

760 z/OS V1R4.0 TSO/E Customization

TITLE ’TERMINATION CODE’

* *
* TERMINATION CODE *
* *
* DESCRIPTIVE NAME - CLEANUP AND TERMINATION CODE *
* *
* FUNCTION - RELEASES DYNAMIC STORAGE TO SYSTEM AND RETURNS TO *
* CALLER *
* *
* OPERATION - *
* *
* *
* 1). LOADS UP REGISTER 5 WITH THE RETURN CODE *
* 2). FREES THE DYNAMIC STORAGE WORK AREA *
* 3). RELOADS THE ADDRESS OF THE CALLER’S SAVE AREA *
* 4). FREES THE DYNAMIC STORAGE SAVE AREA *
* 5). RELOADS REGISTER 14 WITH THE RETURN ADDRESS *
* 6). RELOADS REGISTER 15 WITH THE RETURN CODE *
* 7). RELOADS REGISTERS 0 - 12 WITH ORIGINAL CONTENTS *
* 8). RETURNS TO CALLER VIA BSM *
* *

SPACE 3
L R5,RETCODE

* LOAD R5 TO CONTAIN THE RETURN
* CODE THAT IKJEFLD WILL RETURN
* TO THE INVOKER. THE RETURN
* CODE WILL ALWAYS BE ZERO
*

L R1,GMPTR
* LOAD R1 TO CONTAIN THE ADDRESS
* OF IKJEFLD’S DYNAMIC WORK AREA
*

FREEMAIN RU,LV=LWORKA,A=(1)
* ISSUE FREEMAIN TO RELEASE
* IKJEFLD’S DYNAMIC WORK AREA
* STORAGE BACK TO THE SYSTEM
*
RETURN DS 0H
*

LR R1,R13
* LOAD R1 TO CONTAIN THE ADDRESS
* OF IKJEFLD’S DYNAMIC SAVE AREA
*

L R13,4(,R13)
* LOAD R13 TO CONTAIN THE ADDRESS
* OF THE INVOKER’S SAVE AREA THAT
* WAS PASSED TO IKJEFLD ON ENTRY
*

FREEMAIN RU,LV=LSAVEA,A=(1)
* ISSUE FREEMAIN TO RELEASE
* IKJEFLD’S DYNAMIC SAVE AREA
* STORAGE BACK TO THE SYSTEM

Figure 146. Example Logon Pre-Prompt Exit (Part 5 of 7)

Example Logon Pre-Prompt Exit

Appendix B. Example Logon Pre-Prompt Exit IKJEFLD 761

*
L R14,12(,R13)

* LOAD R14 WITH THE ADDRESS OF THE
* NEXT INSTRUCTION THAT THE INVOKER
* WOULD HAVE EXECUTED IF IKJEFLD
* HAD NOT BEEN INVOKED
*

LR R15,R5
* LOAD R15 TO CONTAIN THE RETURN
* CODE IKJEFLD WILL PRESENT BACK
* TO THE INVOKER. THE RETURN CODE
* WILL ALWAYS BE ZERO
*

LM R0,R12,20(R13)
* RESTORE THE INVOKER’S REGISTERS
* BEFORE IKJEFLD RETURNS TO
* THE INVOKER
*

BSM 0,14
* RETURN TO THE INVOKER OF IKJEFLD
* AND RESET THE CALLER’S EXECUTION
* AND ADDRESSING MODE AS INVOKER
* CONTROL IS RESTORED
*
TITLE ’STATIC VARIABLES’
*

* DECLARES OF ALL CONSTANTS USED BY THIS MODULE FOLLOW *

*

SPACE 3
WAIDC DC C’WORKAREA’
OURJCL DC C’//IBMUSER JOB (D72598,9,OPR),IBM,MSGLEVEL=1,’

DC C’MSGCLASS=M,TIME=1439 ’
OUREXEC DC C’//ST1 EXEC IKJACCNT ’

DC C’ ’
OURCNT DC H’160’ UPDATED CURRENT LENGTH
TITLE ’DYNAMIC SAVE AREA’

* IKJEFLD’S DYNAMIC SAVE AREA *

*

SPACE 3
SAVEAREA DSECT
SAVEA DS 0CL72 STANDARD SAVE AREA

DS F UNUSED
BPTR DS F BACKWARD SAVE AREA POINTER
FPTR DS F FORWARD SAVE AREA POINTER

Figure 146. Example Logon Pre-Prompt Exit (Part 6 of 7)

Example Logon Pre-Prompt Exit

762 z/OS V1R4.0 TSO/E Customization

REG14 DS F CONTENTS OF REGISTER 14
REG15 DS F CONTENTS OF REGISTER 15
REG0 DS F CONTENTS OF REGISTER 0
REG1 DS F CONTENTS OF REGISTER 1
REG2 DS F CONTENTS OF REGISTER 2
REG3 DS F CONTENTS OF REGISTER 3
REG4 DS F CONTENTS OF REGISTER 4
REG5 DS F CONTENTS OF REGISTER 5
REG6 DS F CONTENTS OF REGISTER 6
REG7 DS F CONTENTS OF REGISTER 7
REG8 DS F CONTENTS OF REGISTER 8
REG9 DS F CONTENTS OF REGISTER 9
REG10 DS F CONTENTS OF REGISTER 10
REG11 DS F CONTENTS OF REGISTER 11
REG12 DS F CONTENTS OF REGISTER 12
LSAVEA EQU *-SAVEAREA
TITLE ’DYNAMIC WORK AREA’

* DECLARES OF ALL DYNAMIC VARIABLES USED BY THIS MODULE FOLLOW *

*

SPACE 3
WORKA DSECT
WAID DS CL8 WORKAREA ID
GMPTR DS F ADDRESS OF GETMAIN
PLSTPTR DS F ADDRESS OF THE PARAMETER LIST
* THAT WAS PASSED INTO IKJEFLD
RETCODE DS F THE RETURN CODE HOLDER
LWORKA EQU *-WORKA LENGTH OF THIS WORK AREA

END IKJEFLD

Figure 146. Example Logon Pre-Prompt Exit (Part 7 of 7)

Appendix B. Example Logon Pre-Prompt Exit IKJEFLD 763

764 z/OS V1R4.0 TSO/E Customization

Appendix C. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:

v Use assistive technologies such as screen-readers and screen magnifier
software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies
Assistive technology products, such as screen-readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using it to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Volume I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

© Copyright IBM Corp. 1988, 2002 765

766 z/OS V1R4.0 TSO/E Customization

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2002 767

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

768 z/OS V1R4.0 TSO/E Customization

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This document describes intended Programming Interfaces that help the customer
to maintain and customize an z/OS system. It contains information about the
facilities that customers can use to tailor TSO/E functions.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v APL2
v DFSMSdfp
v GDDM
v IBM
v IBMLink
v MVS
v MVS/DFP
v MVS/ESA
v OS/390
v Print Services Facility
v PROFS
v QMF
v RACF
v Resource Link
v RMF
v SecureWay
v SP
v S/390
v System/370
v VTAM
v z/Architecture
v z/OS
v z/OS.e
v zSeries
v 3090

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Notices 769

770 z/OS V1R4.0 TSO/E Customization

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v z/OS TSO/E Administration, SA22-7780

v z/OS TSO/E CLISTs, SA22-7781

v z/OS TSO/E Command Reference, SA22-7782

v z/OS TSO/E Customization, SA22-7783

v z/OS TSO/E General Information, SA22-7784

v z/OS TSO/E Guide to SRPI, SA22-7785

v z/OS TSO/E Messages, SA22-7786

v z/OS TSO/E Primer, SA22-7787

v z/OS TSO/E Programming Guide, SA22-7788

v z/OS TSO/E Programming Services, SA22-7789

v z/OS TSO/E REXX Reference, SA22-7790

v z/OS TSO/E REXX User’s Guide, SA22-7791

v z/OS TSO/E System Programming Command Reference, SA22-7793

v z/OS TSO/E System Diagnosis: Data Areas, GA22-7792

v z/OS TSO/E User’s Guide, SA22-7794

Related Publications
z/OS MVS Publications

v z/OS MVS Planning: APPC/MVS Management, SA22-7599

v z/OS MVS Programming: Writing Transaction Programs for APPC/MVS,
SA22-7621

v z/OS MVS Initialization and Tuning Reference, SA22-7592

v z/OS MVS Programming: Authorized Assembler Services Guide, SA22-7608

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN,
SA22-7609

v z/OS MVS System Messages, Vol 1 (ABA-AOM), SA22-7631

v z/OS MVS System Messages, Vol 2 (ARC-ASA), SA22-7632

v z/OS MVS System Messages, Vol 3 (ASB-BPX), SA22-7633

v z/OS MVS System Messages, Vol 4 (CBD-DMO), SA22-7634

v z/OS MVS System Messages, Vol 5 (EDG-GFS), SA22-7635

v z/OS MVS System Messages, Vol 6 (GOS-IEA), SA22-7636

v z/OS MVS System Messages, Vol 7 (IEB-IEE), SA22-7637

v z/OS MVS System Messages, Vol 8 (IEF-IGD), SA22-7638

v z/OS MVS System Messages, Vol 9 (IGF-IWM), SA22-7639

v z/OS MVS System Messages, Vol 10 (IXC-IZP), SA22-7640

v z/OS MVS System Codes, SA22-7626

v z/OS MVS Data Areas, Vol 1 (ABEP-DALT), GA22-7581

v z/OS MVS Data Areas, Vol 2 (DCCB-ITZYRETC), GA22-7582

© Copyright IBM Corp. 1988, 2002 771

v z/OS MVS Data Areas, Vol 3 (IVT-RCWK), GA22-7583

v z/OS MVS Data Areas, Vol 4 (RD-SRRA), GA22-7584

v z/OS MVS Data Areas, Vol 5 (SSAG-XTLST), GA22-7585

ISPF Publications

v z/OS ISPF Services Guide, SC34-4819

v z/OS ISPF Dialog Developer’s Guide and Reference, SC34-4821

Bibliography

772 z/OS V1R4.0 TSO/E Customization

Index

A
A Departmental Reporting System II (ADRS-II) 591
A Departmental Reporting System II with Business

Graphics (ADRS-II/BG) 591
access method driver

using to customize host-to-PC communications 169
access methods

overview 4
TCAM

steps for defining 76
writing an MCP procedure to start 77

VTAM
defining character translation 73
defining the LOGON command to 73
defining TSO/E address spaces to 72
procedure for starting time sharing 72
steps for defining 71
tailoring VTAM session protocols 73

Access Methods Services REPRO function 399
accessibility 765
ACCOUNT command

ADD subcommand 202
creating entries in the UADS and broadcast data

set 202
DELETE subcommand 202, 214
limiting in the background 178
limiting in the foreground 178
SYNC subcommand 202, 215

acknowledgments, processing 398
ACS (automatic class selection) 221
activating the functions of TSO/E

adding subcommands of the TEST command 62
defining users to TSO/E 61
Enhanced Connectivity Facility 65
IKJEFF53 exit 63
Information Center Facility 65
reinstalling exits 62
session manager 65
starting VTAM and TCAM 61
TRANSMIT and RECEIVE 64
Version 2.4 61

activating the TIOC using the MODIFY command 77
adding subcommands to the TEST command 372
adding subcommands to the TESTAUTH

command 384
additional editing functions, supplying 273
additional TEST functions, supplying 372
additional TESTAUTH functions, supplying 384
address space

non-TSO/E 502
TSO/E 502

address spaces, TSO/E
defining to VTAM 72
limiting the number of 79
limiting the size of 80

ADFMDFLT (default environment module for Session
Manager) 558

ADMIN 646
administrator Application Manager table library

(ICQ.ICQAMTAB) 590
administrator courses table library

(ICQ.ICQABTAB) 590
administrator news table and text library

(ICQ.ICQANTAB) 590
ADRS-II (A Departmental Reporting System II)

customizing variables
containing input strings 610
defining the name and location of the load

module 610
overview 603

exit
installing 647
possible uses 647
programming considerations 647
return codes 647
return specifications 647
writing 647

ADRS-II/BG (A Departmental Reporting System II with
Business Graphics) 591

advantages of different concatenation sequences
in the Information Center Facility 614

ALLOCATE command
advantages of using to define data sets 83
changing operands users specify 221
default data set disposition, setting 222
defining output descriptors 221, 319
initialization exit (IKJEFD47) 225

entry specifications 226
environment 227
installing 227
parameter descriptions 226
possible uses 228
programming considerations 227
return codes 227
return specifications 226
TSO/E-supplied exit 226

OUTDES operand 221, 320
Storage Management Subsystem 221
termination exit (IKJEFD49) 225

entry specifications 226
environment 227
installing 227
parameter descriptions 226
possible uses 228
programming considerations 227
return codes 227
return specifications 226
TSO/E-supplied exit 226

allocating
data sets in logon procedures 81
new user attributes data set (UADS) 204
space for EDIT utility work data sets 275
system output (SYSOUT) data sets 221
user logs 340, 341

© Copyright IBM Corp. 1988, 2002 773

allocation
overview of customizing 14
Storage Management Subsystem 14

allocation input validation routine (IEFDB401) 221, 331
ALTLIB command

customization overview 15
initialization exit (IKJADINI) 231

entry specifications 232
environment 234
installing 234
parameter descriptions 232
possible uses 234
programming considerations 234
return codes 233
return specifications 233
TSO/E-supplied exit 232

termination exit (IKJADTER) 231
entry specifications 232
environment 234
installing 234
parameter descriptions 232
possible uses 234
programming considerations 234
return codes 233
return specifications 233
TSO/E-supplied exit 232

APFCTABL 156
APFPTABL 156
APFTTABL 156
APL

customizing variables
containing the command and parameters used to

invoke APL 611
controlling the catalog or qualifier for naming

workspaces 611
controlling user access to other user’s

catalogs 610
APL and APL-based associated products 591
APL2 (A Programming Language 2)

customizing variables 603, 605
installation considerations 592

APLDI-II (APL Data Interface II)
customizing 593
customizing variables

containing the input string 608
for defining OS data set names 608
for DICREATE 609
identifying the character set 609
identifying the workspace and group for non-APL

keyboards 609
overview 603

ICQINP function 593
ICQUPDTS workspace 593
simplifying use of END PF key 593

APPC/MVS administration dialog
customizing 597
customizing variables 597
files allocated when executing 598
panel and REXX hierarchy 697
REQAPPC command 598
setting CANCEL PF key 598

application
See also hierarchy
access control 641
customizing access to applications 7
environment 631
function 625
invoking 641, 643
multiple level

description 642
hierarchy display 644
invoking 643
minimize performance impact 643
performance impact 643
search order 643

panel 622
types 588
unavailable

copying 612
exporting 612
view 612, 613

unverified
copying 612
exporting 612
view 612, 613

using printer support service 318
application definitions

administration levels
customizing interaction between 611
group 593, 641, 642
private 593, 641, 642
system 593, 641, 642

creating and tailoring 593, 611, 641
location

ICQAGTAB (group) 642
ICQAMTAB (system) 642
ICQCMTAB (system) 642
ICQRGTAB (group) 642
ICQRPTAB (private) 642

application libraries
administration levels

customizing interaction between 611, 612
group 611, 642
private 611, 642
system 611, 642

characteristics
group 613
private 613

Application Manager
adding a product to the Information Center

Facility 620
adding a service to the Information Center

Facility 620
administrator’s responsibilities 620
customizing a product 641
customizing a service 641
customizing variables

ICQSIEAM 611
export function 639
function post-termination exit (ICQAMFX2)

description 650
entry specifications 650

774 z/OS V1R4.0 TSO/E Customization

Application Manager (continued)
function post-termination exit (ICQAMFX2)

(continued)
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

function pre-initialization exit (ICQAMFX1)
description 650
entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

on-line help and tutorial 621
panel post-display exit (ICQAMPX2)

description 650
entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

panel pre-display exit (ICQAMPX1)
description 650
entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

system programmer’s responsibilities 621
Application System (AS) 592
AS (Application System) 592
ASXBUSER field of the ASXB 163
attention handling exit 512
ATTNROUT field 513
authorized commands and programs

specifying 153
automatic class selection (ACS) 221
available logons

controlling the number of 79

B
background

executing terminal monitor program 749
specifying commands not supported in 153

batch execution program
customizing variables 601

batch job
associating with job classes 296
customizing how users process 295, 308
customizing how users submit 298
executing terminal monitor program 749

batch method to install products 639
batch method to install products and services 620
BCSTSAMP (sample SMP4 job for IKJBCAST) 217
block size of UADS

changing 205
broadcast data set

changing allocation 208
changing number of records reserved for

notices 217
changing the broadcast limit 217
contents of 195, 200
converting to security protected user logs 342
converting to user logs 341
creating

from a terminal 202
with a batch job 203

customization overview 4
global resource serialization 209
interface routine (IKJIFRIF) 208
mail section 217, 335
notices section 217
reduce contention for 336, 339
reducing I/O when sharing 210
reformatting 204
storing messages in 335, 340
switching 207
updating 206

BROADCAST keyword for IKJTSOxx
defaults 338

C
CANCEL command

exit
entry specifications 310
environment 313
functional description 308
installing 314
parameter descriptions 310
possible uses 314
programming considerations 312
restrictions 313
return codes 312
return specifications 312
TSO/E sample 310
TSO/E-supplied 309

limiting the use of 178
catalog entry for the UADS, resetting 206
changes

made available
in the Information Center Facility 614

selecting data sets for 614
character translation for TSO/VTAM users 73
CIPARMS JES3 initialization statement 718
CLASS JES3 initialization statement 296
CLIST

See also hierarchy
built-in function exit (IKJCT44B) 493

entry specifications 494
environment 497
installing 497

Index 775

CLIST (continued)
built-in function exit (IKJCT44B) 493 (continued)

parameter descriptions 494
programming considerations 497
return codes 496
return specifications 496
TSO/E-supplied exit 494

customization overview 20
ICQCPC00 319
ICQCPC10 319
ICQCPC15 319
ICQSPC00 223
IKJEXEC class name 490, 591
Information Center Facility 588
location 588
printer selection 319
printer support service 318
Session Manager

converting to RECFM VB 560
space management 222, 223
specifying name of in logon procedure 81
statement exit (IKJCT44S)

description 497
entry specifications 498
environment 500
installing 500
parameter descriptions 498
programming considerations 499
return codes 499
return specifications 499
TSO/E-supplied exit 498

VLF PARMLIB member 490, 591
VLF, optimizing for CLISTs 490
VLF, storing CLISTs in 490

command buffer
changing 39
description 38
exception for OPERATOR SEND exits 39, 352

command start and stop exits (ISPF/PDF) 715
command table (ICQCMDS)

adding commands 646
commands 646
format of entries 646
purpose 646

command/program invocation platform
authorized commands, list of eligible 159
overview 10
platform support statements

example 161
PLATCMD statement 159
PLATPGM statement 159
using 160

programs, eligible 160
specifying eligible commands and programs 159
TSO/E service facility, using 159
unauthorized commands, list of eligible 159
using, considerations 160

commands
See also individual commands
ACCOUNT 195
ALLOCATE 83, 221, 225

commands (continued)
ALTLIB 231
authorized, specifying 153
availability, customizing 9
CANCEL 295, 308
CONSOLE

customizing 235
description 15
limiting the use 179

CONSPROF
customizing 235
description 15
limiting the use 179

customization overview 13
EDIT 257
EXEC 279
HELP information 167
limiting 177
LISTBC 335
MODIFY 77
monitoring 171
MVSSERV 169
not supported in the background, specifying 153
OPERATOR SEND 335
OUTPUT 295, 308
PARMLIB 289
PRINTDS 317
RACONVRT 212
RECEIVE 163, 396
SEND 200, 335
specifying authorized 153
START 72, 77
STATUS 295, 308
STOP 72
SUBMIT 295, 298
TEST 371
TESTAUTH 383
TRANSMIT 163, 396
TSOLIB 485

commands invoked under TEST, adding 372
commands to be invoked under TESTAUTH,

adding 384
compiler 55
compiler interface routines

initialization
description 534
entry specifications 534
environment 536
parameter descriptions 535
programming considerations 536
return codes 535
return specifications 535

load
description 537
entry specifications 538
environment 540
parameter descriptions 538
programming considerations 540
return codes 540
return specifications 540

overview 534

776 z/OS V1R4.0 TSO/E Customization

compiler interface routines (continued)
termination

description 536
entry specifications 536
environment 537
parameter descriptions 536
programming considerations 537
return codes 537
return specifications 537

variable handling
description 540
entry specifications 540
environment 543
parameter descriptions 541
programming considerations 543
return codes 543
return specifications 542

compiler programming routines
overview 545

compiler programming table (IRXCMPTB)
creating the source 528
format 529
mapping macro 529

compiler programming table module (IRXCMPTM)
description 528
example 529

compiler runtime processor
description 530
entry specifications 532
environment 534
interface routine

initialization 534
load 537
termination 536
variable handling 540

parameter descriptions 532
programming considerations 534
programming routine

exit routing routine (IRXRTE) 552
external routine search (IRXERS) 545
host command search (IRXHST) 549

receiving control 530
results expected from compiled exec 530
return codes 533
return specifications 533

compiler support, REXX
description 527
identifying a compiled exec 528

concatenating products or services
in the Information Center Facility 614

CONSOLE command
100% message capacity exit (IKJCNX64)

entry specifications 238
environment 248
functional description 237
installing 248
parameter descriptions 244
possible uses 248
programming considerations 246
restrictions and limitations 248
return codes 246

CONSOLE command (continued)
100% message capacity exit (IKJCNX64)

(continued)
return specifications 246
TSO/E-supplied exits 238
when exit receives control 238

80% message capacity exit (IKJCNX50)
entry specifications 238
environment 248
functional description 237
installing 248
parameter descriptions 243
possible uses 248
programming considerations 246
restrictions and limitations 248
return codes 246
return specifications 246
TSO/E-supplied exits 238
when exit receives control 238

activation exit (IKJCNXAC)
entry specifications 238
environment 248
functional description 237
installing 248
parameter descriptions 239
possible uses 248
programming considerations 246
restrictions and limitations 248
return codes 246
return specifications 246
TSO/E-supplied exits 238
when exit receives control 238

customizing the command 235
deactivation exit (IKJCNXDE)

entry specifications 238
environment 248
functional description 237
installing 248
parameter descriptions 241
possible uses 248
programming considerations 246
restrictions and limitations 248
return codes 246
return specifications 246
TSO/E-supplied exits 238
when exit receives control 238

defining installation defaults 237
limiting the use 179
pre-parse exit (IKJCNXPP)

entry specifications 238
environment 248
functional description 237
installing 248
parameter descriptions 239
possible uses 248
programming considerations 246
restrictions and limitations 248
return codes 246
return specifications 246
TSO/E-supplied exits 238
when exit receives control 238

Index 777

CONSPROF command
customizing the command 235
initialization exit (IKJCNXCI)

entry specifications 250
environment 254
functional description 249
installing 255
parameter descriptions 250
possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250
when exit receives control 249

limiting the use 179
pre-display (IKJCNXCD)

entry specifications 250
environment 254
functional description 249
installing 255
parameter descriptions 251
possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250
when exit receives control 249

termination exit (IKJCNXCT)
entry specifications 250
environment 254
functional description 249
installing 255
parameter descriptions 252
possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250
when exit receives control 249

contention
reduce for broadcast data set 336, 339

contents of
broadcast data set 200
user attributes data set (UADS) 197

CONTROL parameter of OUTPUT JCL 320
control records

formats 482
in transmitted data 481

controlling access to the system 79
conversion, from UADS to the RACF data base 195
converting

from UADS to the RACF data base 211
Session Manager CLISTs to RECFM VB 560
to security protected user logs 342
to user logs to store messages 341

customization overview
access methods 4
ALTLIB command 15
applications, user access to 7
broadcast data set 13
CLIST processing 20

customization overview (continued)
command availability 9
command/program invocation platform 10
commands, overview 13
data sets, printing 20
EDIT command 16
elements that interact with TSO/E 3
EXEC command 17
FREE command 17
host services 11
Information Center Facility 22
ISPF/PDF 9
job submission 19
LISTBC command 17
load modules (default) 21
logon help panels 8
logon panels 8
logon procedure 5
logon process 7
logons, concurrent 6
OPERATOR SEND subcommand 17
optional customization 5
output processing 19
parameter modules (default) 21
PARMLIB command 18
performance objectives 11
program availability 9
RACF data base 4
RECEIVE command 10, 18
region size 7
replaceable routines 22
required customization 4
resource monitoring 11
resource protection 11
REXX processing 20
SEND command 17
Session Manager 22
space management service 14
Storage Management Subsystem 14
SYS1.BRODCAST 13
SYS1.UADS 4, 13
TCAM 4, 6
TEST command 18
TESTAUTH command 18
TRANSMIT command 10, 18
TSO/E environment 5
TSOLIB command 19
UADS 4, 13
user definitions 4
VTAM 4, 6

customizing
CONSOLE command

defining installation defaults 237
overview 238
programming considerations 246
return codes 246
writing exits 237

CONSPROF command
overview 249
programming considerations 254
return codes 253

778 z/OS V1R4.0 TSO/E Customization

customizing (continued)
CONSPROF command (continued)

writing exits 249
data set allocation 221
EDIT command 257
how users allocate data sets 221
how users print data sets 317
how users send and retrieve messages 335, 343
how users test unauthorized programs 371
Information Center Facility 619
LISTBC command 335
logoff process 88
logon process 88
OPERATOR SEND subcommand 335
output descriptors 319
OUTPUT, STATUS, and CANCEL commands 308
RECEIVE command 396
RENUM, MOVE, and COPY subcommands of

EDIT 267
SEND command 335
space management defaults 222, 223
SUBMIT command 298
TCAM 76
the PARMLIB command 289
the TESTAUTH command 383
the use of user logs 339, 343
TRANSMIT command 396
TSO/E for different languages 187
VTAM 71

customizing start-up processing 645
customizing termination processing 646

D
data

decryption 399
encryption 399
format when transmitted 481
transmitting and receiving 396

data control record (INMR03) 483
Data Facility Product

automatic class selection (ACS) 221
constructs 221

data field for parameter entries 37
data records

in transmitted data 481
data set

allocating 221
allocating in logon procedure 81
broadcast 718
changing EDIT defaults for line numbering 267
customizing how users edit 257
holding for processing by TSO/E users 297
managing 221
managing free space 222, 223
overview of customizing how users print 20
pre-defined types 257, 258, 259
printing 317
RACF data base 718
supplying in a logon procedure 83
SYS1.CMDLIB 718

data set (continued)
SYS1.HELP 718
SYS1.LNKLIB 718
SYS1.LPALIB 718
SYS1.MACLIB 718
SYS1.PARMLIB 718
SYS1.PROCLIB 718
transmitting and receiving 396
UADS 718
user log 336

date format
in the Information Center Facility 595

DBCS data 629, 633
DCF (Document Composition Facility) data 317, 325
DD statement

STEPLIB 84
SYSEXEC 84
SYSPROC 84

DDNAME (see DD statements) 84
decryption of data 399
default environment module for Session Manager

(ADFMDFLT) 558
default environments, changing 503
default exit parameter list (DEPL) for PRINTDS 326
defaults for parameters modules 503
defining line addresses using LINEGRP 78
defining printers to the Information Center Facility 615
DEPL (default exit parameter list) for PRINTDS 326
device number

considerations for writing exits 227
four-digit device support 227

diagnosing problems with the Information Center
Facility 709

disability 765
disadvantages of different concatenation sequences

in the Information Center Facility 614
distributed libraries for the Information Center

Facility 590
Document Composition Facility (DCF) data 317, 325
Dynamic Allocation 83
Dynamic Allocation exit (IEFDB401) 221, 331
DYNAMNBR 82

E
EDIT command

allocating space for utility work data sets 275
customization overview 16
customizing 257
data set types

changing default attributes 259
defining 259
description 257

exit for RENUM, MOVE, and COPY subcommands
entry specifications 267
environment 270
installing 270
parameter descriptions 268
possible uses 271
programming considerations 269
return specifications 269

Index 779

EDIT command (continued)
exit for RENUM, MOVE, and COPY subcommands

(continued)
writing 267

exit for syntax checkers 265
pre-defined data set types 258, 259
utility work data sets 275
writing a subcommand 272
writing a syntax checker 260

edit processing 257
EDITSAMP (sample SMP4 job for IKJEDIT) 260, 270
education services

customizing variables 601
elements of the Information Center Facility 588
encryption of data 399
END PF key

simplifying use by APLDI-II 593
ending time sharing connections with the MODIFY

command 77
Enhanced Connectivity Facility (ECF)

activating after installing TSO/E 65
providing host services to PC users with 169

enrollment
customizing variables 594, 602
re-customizing default profiles 647
resynchronizing default profiles

ISPF/PDF profile tables 647
ENVBLOCK 514
environment 501

installation file 631
IRXISPRM (ISPF) 503
IRXPARMS (MVS) 503
IRXTSPRM (TSO/E) 503
search for 612

environment block 514
environment module for Session Manager

(ADFMDFLT) 558
environment termination exit (IRXTERMX) 513
environmental control table (ECT) 40
evaluation block (EVALBLOK)

used by compiler runtime processor 530
example

for standard-format exits 35, 43
IKJEXIT (for standard-format exits) 35, 43
of environment installation file 638
of function installation file 637
of installation file using INVOKING_PANEL

entry 638
of panel installation file 636
of using installation files 635

EXEC command
customization overview 17
initialization exit (IKJCT43I) 279

entry specifications 280
environment 282
installing 282
overview 279
parameter descriptions 280
possible uses 283
programming considerations 282
return codes 281

EXEC command (continued)
initialization exit (IKJCT43I) (continued)

return specifications 281
TSO/E-supplied exit 280

limiting the use of 180
termination exit (IKJCT43T) 279

entry specifications 280
environment 282
installing 282
overview 279
parameter descriptions 280
possible uses 283
programming considerations 282
return codes 281
return specifications 281
TSO/E-supplied exit 280

exec initialization exit 512
EXEC parameters for logon procedures 82
exec processing exit (IRXEXECX) 513
exec termination exit (IRXECTERM) 513
exec, definition of 501
exit

logon pre-prompt (IKJEFLD1) 54
exit 13 (MAILXIT) 396, 398
exit reason code 40
exit routines

ADRS-II 647
ALLOCATE command

IKJEFD47 (ALLOCATE command
initialization) 225

IKJEFD49 (ALLOCATE command
termination) 225

ALTLIB command
IKJADINI (ALTLIB command initialization) 231
IKJADTER (ALTLIB command termination) 231

Application Manager
ICQAMFX1 (Application Manager function

pre-initialization) 650
ICQAMFX2 (Application Manager function

post-termination) 650
ICQAMPX1 (Application Manager panel

pre-display) 650
ICQAMPX2 (Application Manager panel

post-display) 650
attention handling exit 512
CLIST 489
CLIST built-in function (IKJCT44B) 493
CLIST statement (IKJCT44S) 497
considerations for four-digit device numbers 227
CONSOLE command

IKJCNX50 (80% message capacity) 238, 243
IKJCNX64 (100% message capacity) 238, 244
IKJCNXAC (activation) 238, 239
IKJCNXDE (deactivation) 238, 241
IKJCNXPP (pre-parse) 238, 239

CONSPROF command
IKJCNXCD (pre-display) 249, 251
IKJCNXCI (initialization) 249, 250
IKJCNXCT (termination) 249, 252

contents of registers 33
Dynamic Allocation (IEFDB401 exit) 221, 331

780 z/OS V1R4.0 TSO/E Customization

exit routines (continued)
environment termination exit (IRXTERMX) 512
example for standard-format exits 35, 43
EXEC command

IKJCT43I (EXEC command initialization) 279
IKJCT43T (EXEC command termination) 279

exec initialization exit 512
exec processing exit 512
exec termination exit 512
FREE (IKJEFD21 and IKJEFD22) 285
general programming considerations 33
IEFDB401 exit (Dynamic Allocation) 221, 331
IKJCT44B (CLIST built-in function) 493
IKJCT44S (CLIST statement) 497
IKJEFD21 and IKJEFD22 (FREE) 285
IKJEFF10 (SUBMIT) 298
IKJEFF53 (OUTPUT, STATUS, and CANCEL) 308
IKJEFLD2 (logoff) 143
IKJEFY11 and IKJEFY12 (OUTDES) 321
IKJEFY60 and IKJEFY64 (PRINTDS) 325
IKJEGASI and IKJEGAST (TESTAUTH

subcommands) 389
IKJEGAUI and IKJEGAUT (TESTAUTH) 384
IKJEGCIE and IKJEGCTE (TEST

subcommands) 377
IKJEGMIE and IKJEGMTE (TEST) 374
IKJPRMX1 and IKJPRMX2 (PARMLIB) 290
initialization, overview 34
installation-written syntax checkers 265
JES2 exit 13 (MAILXIT) 396, 398
JES3 IATUX42 396, 398
list of 26
LISTBC command 336, 343
logoff pre-prompt (IKJEFLD2) 143
LOGON command

IKJEFLD3 (post-prompt) 140
IKJEFLN1 (pre-display) 118
IKJEFLN2 (post-display) 129

names service 647
OPERATOR SEND subcommand 336, 343
OUTDES (IKJEFY11 and IKJEFY12) 321
OUTPUT, STATUS, and CANCEL (IKJEFF53) 308
overview 25
parameter entry

data 37
keys 37
length 37

PARMLIB (IKJPRMX1 and IKJPRMX2) 290
post-environment initialization exit (IRXITTS or

IRXITMV) 512
pre-environment initialization exit (IRXINITX) 512
PRINTDS (IKJEFY60 and IKJEFY64) 325
RECEIVE

acknowledgment notification exit
(INMRZ05R) 396, 440

data set post-processing (INMRZ12 or
INMRZ12R) 396, 456

data set pre-processing (INMRZ11 or
INMRZ11R) 396, 448

decryption exit (INMRZ13 or INMRZ13R) 396,
461

exit routines (continued)
RECEIVE (continued)

initialization exit (INMRZ01 or INMRZ01R) 396,
428

log data set pre-allocation exit (INMRZ21R) 396
notification exit (INMRZ04 or INMRZ04R) 396,

435
post-prompt exit (INMRZ15R) 467
pre-acknowledgment notification exit

(INMRZ06R) 396, 443
termination exit (INMRZ02 or INMRZ02R) 396,

432
RENUM, MOVE, and COPY subcommands of

EDIT 267
REXX 489
SEND command 336, 343
Session Manager 572
standard exit parameter list

definition 26
description 35
exit-dependent data 35
keys 37
parameter entry 35, 37

standard format
definition 26
exit-dependent data 35
installing 42
overview 34
standard return codes 42

SUBMIT command (IKJEFF10) 298
termination, overview 34
TEST (IKJEGMIE and IKJEGMTE) 374
TEST subcommands (IKJEGCIE and

IKJEGCTE) 377
TESTAUTH (IKJEGAUI and IKJEGAUT) 384
TESTAUTH subcommands (IKJEGASI and

IKJEGAST) 389
TRANSMIT

encryption exit (INMXZ03 or INMXZ03R) 396,
419

log data set pre-allocation exit (INMXZ21R) 396
startup exit (INMXZ01 or INMXZ01R) 396, 407
termination exit (INMXZ02 or INMXZ02R) 396,

416
TRANSMIT/RECEIVE common

NAMES data set pre-allocation exit
(INMCZ21R) 396, 404

TSOLIB command
IKJADINI (TSOLIB command initialization) 485
IKJADTER (TSOLIB command termination) 485

exit routing routine (IRXRTE)
entry specifications 552
environment 545
parameter descriptions 553
return codes 554
return specifications 554

exit-dependent data 35, 41
exit-to-exit communication word 40
export

function of Application Manager 639
mass processing 639

Index 781

external routine search (IRXERS)
entry specifications 546
environment 545
parameter descriptions 546
return codes 548
return specifications 548

F
file utility control record (INMR02) 482
files

format when transmitted 481
transmitting and receiving 396

Financial Planning System - TSO (FPS) 591
flag fields for IRXPARMS 503
format of

command buffer 38
control records 482
DEPL (default exit parameter list) for PRINTDS 326
exit descriptions in this document 44
records passed to syntax checkers 261
SEND PARMLIB control block 347
standard exit parameter list 36
text unit pointer lists 474
text units 474
transmitted data 481

FORMDEF parameter of OUTPUT JCL 320
four-digit device number

See device number
FPS (Financial Planning System - TSO) 591
FREE command

customization overview 17
initialization exit (IKJEFD21) 285

entry specifications 285
environment 287
installing 287
parameter descriptions 286
possible uses 288
programming considerations 287
return codes 286
return specifications 286

termination exit (IKJEFD22) 285
entry specifications 285
environment 287
installing 287
parameter descriptions 286
possible uses 288
programming considerations 287
return codes 286
return specifications 286

full-screen logon panel, installation-defined 94

G
GDDM/PGF

customizing variables 599
installation considerations 592

general table library (ICQ.ICQTLIB) 590
GETLINE processing

customizing using IKJEFXG1 183

GETLINE service routine
description 183

global resource serialization for the UADS and
broadcast data set 209

GO 646

H
header control record (INMR01) 482
HELP data set

customization overview 10
include control character 167
prompt mode function 167
updating 167

HIERARCH.LST 613
hierarchy

administrator courses 681
administrator NAMES 667
administrator NEWS 666
administrator services 665
ADRS II 691
APL2 695
APLDI II 688, 690
APPC/MVS administration dialog 697
Application Manager 674
chart creation 693
define a function 677
define a panel 676
define an environment 677
display 612, 613, 644
enrollment 669
export an application 679
load an installation file 678
mass installation file process 696
printer defaults 672
user courses 694
user NAMES 687
user NEWS 686
user services 683, 685
user types 670
view an application 680
VS APL 695

host command search (IRXHST)
entry specifications 549
environment 545
return codes 551
return specifications 551

host services
making available to PC users 169
overview 11

I
IATUX28 (JES3 exit) 717
IATUX30 (JES3 exit) 717
IATUX33 (JES3 exit) 717
IATUX34 (JES3 exit) 717
IATUX38 (JES3 exit) 717
IATUX42 (JES3 exit) 396, 398, 717
IATUX44 (JES3 exit) 717
IATUX60 (JES3 exit) 717

782 z/OS V1R4.0 TSO/E Customization

IBM BASIC/MVS 592
IC 646
ICQ.ICQAATAB 588, 590
ICQ.ICQABTAB 588, 590
ICQ.ICQAMTAB 588
ICQ.ICQANTAB 588, 590
ICQ.ICQAPTAB 588, 590
ICQ.ICQCCLIB 588, 614
ICQ.ICQCMTAB 588, 590
ICQ.ICQGCTAB 588, 590
ICQ.ICQMLIB 588, 590
ICQ.ICQPLIB 590
ICQ.ICQSAMP(ICQAPROC) 646
ICQ.ICQSAMP(ICQPROC) 646
ICQ.ICQSLIB 590
ICQ.ICQTLIB 588, 590, 647
ICQAGTAB 642
ICQAMED1 588
ICQAMED4 588
ICQAMED5 588
ICQAMFX1 (Application Manager function

pre-initialization exit) 650
entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

ICQAMFX2 (Application Manager function
post-termination exit) 650

entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

ICQAMPX1 (Application Manager panel pre-display
exit) 650

entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

ICQAMPX2 (Application Manager panel post-display
exit) 650

entry specifications 650
environment 655
installing 655
parameter descriptions 651
programming considerations 654
return codes 654
return specifications 654

ICQAMTAB 641, 642
ICQAPROC LOGON procedure 646
ICQASE00, customizing APPC/MVS administration

dialog 597
ICQCMDS 646

ICQCMTAB 641, 642
ICQCNC10, invoked to display ″new″ news 645
ICQCPC00 319
ICQCPC10 319
ICQCPC15 319
ICQENVIRON

changing date format 595
functions using 664

ICQGCC10, start-up processing 644
ICQGCC11

customizing 644, 646
termination processing 644

ICQGROUP 613, 642
ICQICF

description of parameters 644
invocation syntax 644
start-up processing 644

ICQINP function 593
ICQISPFDEF 647
ICQPROC LOGON procedure 646
ICQRGTAB 642
ICQRPTAB 643
ICQSIEAM

customizing Application Manager functions 611
variables 612, 613

ICQSIECA 595
ICQSIECB 601
ICQSIECR 603
ICQSLIB 589
ICQSPC00 223
ICQUPDTS workspace 593
ICQZPROF 647
IDYTSINI (TSOLIB command initialization exit)

entry specification 485
environment 487
functional description 485
installing 487
parameter description 485
possible uses 487
programming considerations 487
return codes 486
return specification 486
TSO/E-supplied exit 485

IDYTSTER (TSOLIB command termination exit)
entry specification 485
environment 487
functional description 485
installing 487
parameter description 485
possible uses 487
programming considerations 487
return codes 486
return specification 486
TSO/E-supplied exit 485

IEAICSxx SYS1.PARMLIB member 720
IEAIPSxx SYS1.PARMLIB member 720
IEASYSxx SYS1.PARMLIB member 79, 720
IEDQTCAM 77
IEEVSNX0 (OPERATOR SEND initialization exit)

entry specifications 346
parameter descriptions 352

Index 783

IEEVSNX0 (OPERATOR SEND initialization exit)
(continued)

possible uses 364
programming considerations 362
return specifications 360

IEEVSNX1 (OPERATOR SEND pre-display exit)
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

IEEVSNX2 (OPERATOR SEND pre-save exit)
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

IEEVSNX3 (OPERATOR SEND failure exit)
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

IEEVSNX4 (OPERATOR SEND termination exit)
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

IEFDB401 (Dynamic Allocation exit) 221, 331
IEFUJV (SMF exit) 720
IEFUSO (SMF exit) 720
IEFUTL (SMF exit) 720
IIPS data sets, modification in Information Center

Facility 593
IIPS/IIAS (Interactive Instructional Presentation

System/Interactive Instructional Authoring
System) 592

IIPS/IIAS registration table library
(ICQ.ICQGCTAB) 590

IISBATCH program 593
IKJACCNT

description 81
using to modify the UADS or RACF data base 202

IKJADINI (ALTLIB command initialization exit)
entry specification 232
environment 234
functional description 231
installing 234
parameter description 232
possible uses 234
programming considerations 234
return codes 233
return specification 233
TSO/E-supplied exit 232

IKJADTER (ALTLIB command termination exit)
entry specification 232
environment 234
functional description 231
installing 234
parameter description 232

IKJADTER (ALTLIB command termination exit)
(continued)

possible uses 234
programming considerations 234
return codes 233
return specification 233
TSO/E-supplied exit 232

IKJBCAST macro 217, 721, 727
IKJBSMPE (sample SMP/E job for IKJBCAST) 217
IKJCNX50 (CONSOLE command 80% message

capacity exit)
description 238
entry specifications 238
environment 248
installing 248
parameter descriptions 243
possible uses 248
programming considerations 246
return codes 246
return specifications 246
TSO/E-supplied exits 238

IKJCNX64 (CONSOLE command 100% message
capacity exit)

description 238
entry specifications 238
environment 248
installing 248
parameter descriptions 244
possible uses 248
programming considerations 246
return codes 246
return specifications 246
TSO/E-supplied exits 238

IKJCNXAC (CONSOLE command activation exit)
description 238
entry specifications 238
environment 248
installing 248
parameter descriptions 239
possible uses 248
programming considerations 246
return codes 246
return specifications 246
TSO/E-supplied exits 238

IKJCNXCD (CONSPROF command pre-display exit)
description 249
entry specifications 250
environment 254
installing 255
parameter descriptions 251
possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250

IKJCNXCI (CONSPROF command initialization exit)
description 249
entry specifications 250
environment 254
installing 255
parameter descriptions 250

784 z/OS V1R4.0 TSO/E Customization

IKJCNXCI (CONSPROF command initialization exit)
(continued)

possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250

IKJCNXCT (CONSPROF command termination exit)
description 249
entry specifications 250
environment 254
installing 255
parameter descriptions 252
possible uses 255
programming considerations 254
return codes 253
return specifications 253
TSO/E-supplied exits 250

IKJCNXDE (CONSOLE command deactivation exit)
description 238
entry specifications 238
environment 248
installing 248
parameter descriptions 241
possible uses 248
programming considerations 246
return codes 246
return specifications 246
TSO/E-supplied exits 238

IKJCNXPP (CONSOLE command pre-parse exit)
description 238
entry specifications 238
environment 248
installing 248
parameter descriptions 239
possible uses 248
programming considerations 246
return codes 246
return specifications 246
TSO/E-supplied exits 238

IKJCT43I (EXEC command initialization exit) 279
entry specifications 280
environment 282
installing 282
parameter descriptions 280
possible uses 283
programming considerations 282
return codes 281
return specifications 281
TSO/E-supplied exit 280

IKJCT43T (EXEC command termination exit) 279
entry specifications 280
environment 282
installing 282
parameter descriptions 280
possible uses 283
programming considerations 282
return codes 281
return specifications 281
TSO/E-supplied exit 280

IKJCT441 variable access routine 497, 500

IKJCT44B (CLIST built-in function exit) 493
entry specifications 494
environment 497
installing 497
parameter descriptions 494
programming considerations 497
return codes 496
return specifications 496
TSO/E-supplied exit 494

IKJCT44S (CLIST statement exit) 497
entry specifications 498
environment 500
installing 500
parameter descriptions 498
programming considerations 499
return codes 499
return specifications 499
TSO/E-supplied exit 498

IKJEBEMA load module 273
IKJEBEST macro instruction 273
IKJEBMA9 table 273
IKJEDIT macro

associating exit with syntax checkers 266
associating syntax checkers with data set

types 264
data set types

changing default attributes 259
defining 259

description 721
syntax 728

IKJEESCB (mapping macro to map SEND PARMLIB
control block) 347

IKJEESCB (SEND PARMLIB control block) 338
IKJEESX0 (SEND initialization exit)

description 345
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

IKJEESX1 (SEND pre-display exit)
description 345
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

IKJEESX2 (SEND pre-save exit)
description 345
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

IKJEESX3 (SEND failure exit)
description 345
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

Index 785

IKJEESX4 (SEND termination exit)
description 345
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

IKJEESX5 (LISTBC initialization exit)
description 345
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESX6 (LISTBC pre-display exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESX7 (LISTBC pre-list exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESX8 (LISTBC pre-read exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESX9 (LISTBC pre-allocate exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESXA (LISTBC failure exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEESXB (LISTBC termination exit)
description 346
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

IKJEFD21 (FREE initialization exit) 285
entry specifications 285
environment 287
installing 287
parameter descriptions 286

IKJEFD21 (FREE initialization exit) (continued)
possible uses 288
programming considerations 287
return codes 286
return specifications 286

IKJEFD22 (FREE termination exit) 285
entry specifications 285
environment 287
installing 287
parameter descriptions 286
possible uses 288
programming considerations 287
return codes 286
return specifications 286

IKJEFD47 (ALLOCATE command initialization
exit) 225

entry specifications 226
environment 227
parameter descriptions 226
possible uses 228
programming considerations 227
return codes 227
return specifications 226
TSO/E-supplied exit 226

IKJEFD49 (ALLOCATE command termination exit) 225
entry specifications 226
environment 227
parameter descriptions 226
possible uses 228
programming considerations 227
return codes 227
return specifications 226
TSO/E-supplied exit 226

IKJEFF10 (SUBMIT exit)
description 298
entry specifications 299
environment 305
installing 305
parameter descriptions 299
possible uses 305
programming considerations 304
restrictions 305
return codes 303
return specifications 303
TSO/E-supplied 299

IKJEFF53 (OUTPUT, STATUS, and CANCEL exit) 308
entry specifications 310
environment 313
installing 314
parameter descriptions 310
possible uses 314
programming considerations 312
restrictions 313
return codes 312
return specifications 312

IKJEFFIE mapping macro
for OUTPUT, STATUS, and CANCEL exit 313
for SUBMIT exit 305

IKJEFLD (logon pre-prompt exit)
entry specifications 95
environment 113

786 z/OS V1R4.0 TSO/E Customization

IKJEFLD (logon pre-prompt exit) (continued)
installing 113
parameter descriptions 101
parameter list 98, 100
possible uses 114
programming considerations 112
restrictions 113
return specifications 112

IKJEFLD1 (LOGON exit)
return codes 112

IKJEFLD1 (logon pre-prompt exit)
installing 113
parameter descriptions 101
parameter list 97
possible uses 116
programming considerations 112
restrictions 113
return specifications 112

IKJEFLD1, logon pre-prompt exit 54
IKJEFLD2 (logoff exit)

description 143
entry specifications 143
environment 144
installing 145
parameter descriptions 143
parameter list 144
possible uses 145
programming considerations 144
return specifications 144
TSO/E-supplied exit 143

IKJEFLD2 (LOGOFF exit)
return codes 144

IKJEFLD3 (LOGON command post-prompt exit)
entry specifications 140
parameter descriptions 140
programming considerations 142
return codes 142
return specifications 142
supplied exits 140

IKJEFLN1 (LOGON command pre-display exit)
entry specifications 118
parameter descriptions 121
parameter list 118
programming considerations 128
return codes 127
return specifications 127
supplied exits 118

IKJEFLN2 (LOGON command post-display exit)
entry specifications 129
parameter descriptions 132
parameter list 130
programming considerations 139
return codes 139
return specifications 138
supplied exits 129

IKJEFT01
See terminal monitor program (TMP), distributed with

TSO/E (IKJEFT01)
IKJEFTAP CSECT

specifying authorized programs in 157

IKJEFTE2 CSECT
specifying authorized commands in 156

IKJEFTE8 CSECT
specifying authorized programs in 156

IKJEFTNS CSECT
specifying commands not supported in the

background 157
IKJEFXG1

entry specifications 183
environment 185
installing the exit 185
parameter descriptions 183
programming considerations 185
return codes 185
return specifications 185
TSO/E-supplied exits 183

IKJEFY11 (OUTDES initialization exit)
description 321
entry specifications 322
environment 323
installing 324
parameter descriptions 322
possible uses 324
programming considerations 323
restrictions 324
return codes 322
return specifications 322

IKJEFY12 (OUTDES termination exit)
description 321
entry specifications 322
environment 323
installing 324
parameter descriptions 322
possible uses 324
programming considerations 323
restrictions 324
return codes 322
return specifications 322

IKJEFY60 (PRINTDS initialization exit)
description 325
entry specifications 325
environment 331
installing 331
parameter descriptions 326
possible uses 331
programming considerations 329
restrictions 331
return codes 328
return specifications 328

IKJEFY64 (PRINTDS termination exit)
description 325
entry specifications 325
environment 331
installing 331
parameter descriptions 328
possible uses 331
programming considerations 329
restrictions 331
return codes 328
return specifications 328

Index 787

IKJEGASI (TESTAUTH subcommand initialization exit)
description 389
entry specifications 389
environment 393
installing 393
parameter descriptions 390
possible uses 393
programming considerations 392
restrictions 393
return codes 391
return specifications 391

IKJEGAST (TESTAUTH subcommand termination exit)
description 389
entry specifications 389
environment 393
installing 393
parameter descriptions 390
possible uses 393
programming considerations 392
restrictions 393
return codes 392
return specifications 391

IKJEGAUI (TESTAUTH initialization exit)
description 384
entry specifications 385
environment 387
installing 388
parameter descriptions 385
possible uses 388
programming considerations 387
restrictions 388
return codes 386
return specifications 386

IKJEGAUT (TESTAUTH termination exit)
description 384
entry specifications 385
environment 387
installing 388
parameter descriptions 386
possible uses 388
programming considerations 387
restrictions 388
return codes 386
return specifications 386

IKJEGCIE (TEST subcommand initialization exit)
description 377
entry specifications 378
environment 381
installing 382
parameter descriptions 378
possible uses 382
programming considerations 381
return codes 380
return specifications 380

IKJEGCTE (TEST subcommand termination exit)
description 377
entry specifications 378
environment 381
installing 382
parameter descriptions 379
possible uses 382

IKJEGCTE (TEST subcommand termination exit)
(continued)

programming considerations 381
return codes 380
return specifications 380

IKJEGMIE (TEST initialization exit)
description 374
entry specifications 375
environment 376
installing 376
parameter descriptions 375
possible uses 377
programming considerations 376
return codes 375
return specifications 375

IKJEGMTE (TEST termination exit)
description 374
entry specifications 375
environment 376
installing 376
parameter descriptions 375
possible uses 377
programming considerations 376
return codes 375
return specifications 375

IKJEGSCU
specifying command processors available under

TEST in 373
specifying TEST subcommands in 373

IKJEXEC class name 490, 591
IKJEXIT (example for standard-format exits) 35, 43
IKJIFRIF macro 208, 721
IKJPRM00 member of SYS1.PARMLIB

changing the Session Manager environment 557
starting TSO/TCAM 76

IKJPRMX1 (PARMLIB initialization exit)
description 290
entry specifications 290
environment 292
installing 292
parameter descriptions 290
possible uses 293
programming considerations 292
restrictions 292
return codes 291
return specifications 291

IKJPRMX2 (PARMLIB termination exit)
description 290
entry specifications 290
environment 292
installing 292
parameter descriptions 291
possible uses 293
programming considerations 292
restrictions 292
return codes 291
return specifications 291

IKJTSMPE (sample SMP/E job for IKJEDIT) 260, 265,
270

IKJTSMPE (sample SMP/E job for IKJTSO) 89, 90
IKJTSO macro 721, 740

788 z/OS V1R4.0 TSO/E Customization

IKJTSO macro, changing logon limits 89, 90
IKJTSO00 member of SYS1.PARMLIB

installation defaults for SEND, OPERATOR SEND,
and LISTBC 335, 337

SEND PARMLIB parameter 337
specifying ALLOCATE defaults 222
specifying authorized commands and programs 154
specifying command processors to be invoked under

TEST 372
specifying commands not supported in the

background 154
specifying TEST subcommands 372
specifying TRANSMIT and RECEIVE defaults 164

IKTCAS00 73
Image Symbol Editor

customizing variables 600
INDEX parameter of OUTPUT JCL 320
Info Center/1 591
Information Center Facility

See also individual topics
adding

a product or service 620
commands to the command table 646

allocating data sets 587
applications, making available 622
association of functional and help panels 702
changes 614

concatenating data sets 614
selecting data sets for 614
to a product or service 641
to the location of program libraries 590

converting 587
customization overview 22
customizing 619, 620, 640, 641
defaults

ADRS-II 603, 609
APL2 603
APLDI-II 603, 608
APPC/MVS administration dialog 597
changing 594
date format 595
education services 601
enrollment 602
GDDM/PGF 599
Image Symbol Editor 600
Interactive Chart Utility 599
names service 595
Vector Symbol Editor 601
VS APL 603

deleting a product or service 640
diagnosing problems in 709
elements 588
exits

See individual exit
hierarchy

display 644
for applications, panels, CLISTs, and REXX

execs 663
invoking an application 641, 643
libraries 590
LOGON procedures 587

Information Center Facility (continued)
making available 614
migration considerations 51
naming conventions 655
panel association 702
performance considerations 615, 643
preparing for use 587
printer support service 318
products

making available 591, 592
supported by 591

relation between functional and help panels 702
space management service 222, 223
space requirements

estimating 616
for Application Manager 617
for names service 616

start-up 644
structure 588
termination 644
TRACE function 709
VLF, identifying CLISTs to 591

Information Facility, The (TIF) 592
initialization exits

overview 34
initializing TCAM time sharing 76
initializing the language processor environment 502
initializing VTAM time sharing 71
INMCZ21R (NAMES data set pre-allocation exit) 396

entry specifications 400
INMCZ21R (TRANSMIT/RECEIVE NAMES data set

pre-allocation exit)
functional description 399, 404

INMEND macro 164, 721, 740
INMINOPT member of SYS1.SAMPLIB 164
INMNODE macro 164, 721, 740
INMR01 (header control record) 482
INMR02 (file utility control record) 482
INMR03 (data control record) 483
INMR04 (user control record) 483
INMR06 (trailer control record) 483
INMR07 (notification control record) 484
INMRZ01 (RECEIVE initialization exit) 396

entry specifications 400
environment 402
functional description 397, 428
installing 403
parameter descriptions 401, 431
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMRZ01R (RECEIVE initialization exit) 396
entry specifications 400
environment 402
functional description 397, 428
installing 403
parameter descriptions 400, 428
programming considerations 402
restrictions and limitations 403

Index 789

INMRZ01R (RECEIVE initialization exit) (continued)
return codes 402
return specifications 401

INMRZ02 (RECEIVE termination exit) 396
entry specifications 400
environment 402
functional description 432
installing 403
parameter descriptions 401
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMRZ02R (RECEIVE termination exit) 396
entry specifications 400
environment 402
functional description 432
installing 403
parameter descriptions 400, 432
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ04 (RECEIVE notification exit) 396
entry specifications 400
environment 402
functional description 398, 435
installing 403
parameter descriptions 401, 438
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMRZ04R (RECEIVE notification exit) 396
entry specifications 400
environment 402
functional description 398, 435
installing 403
parameter descriptions 400, 435
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ05R (RECEIVE acknowledgment notification
exit) 396

entry specifications 400
environment 402
functional description 398, 440
installing 403
parameter descriptions 400, 440
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ05R (RECEIVE pre-acknowledgment notification
exit)

parameter descriptions 444
INMRZ06R (RECEIVE acknowledgment notification exit)

installing 403

INMRZ06R (RECEIVE pre-acknowledgment notification
exit) 396

environment 402
functional description 443
restrictions and limitations 403

INMRZ11 (RECEIVE data set pre-processing exit) 396
entry specifications 400
environment 402
functional description 397, 398, 448
installing 403
parameter descriptions 401, 452
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMRZ11R (RECEIVE data set pre-processing
exit) 396

entry specifications 400
environment 402
functional description 397, 398, 448
installing 403
parameter descriptions 400, 448
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ12 (RECEIVE data set post-processing
exit) 396

entry specifications 400
environment 402
functional description 398, 400, 456
installing 403
parameter descriptions 401, 456, 459
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMRZ12R (RECEIVE data set post-processing
exit) 396

entry specifications 400
environment 402
functional description 398, 400, 456
installing 403
parameter descriptions 400, 456
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ13 (RECEIVE data set decryption exit) 396
entry specifications 400
environment 402
functional description 399, 461
installing 403
parameter descriptions 401, 464
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

790 z/OS V1R4.0 TSO/E Customization

INMRZ13R (RECEIVE data set decryption exit) 396
entry specifications 400
environment 402
functional description 399, 461
installing 403
parameter descriptions 400, 461
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRZ15R (RECEIVE post-prompt exit)
functional description 467

INMRZ15R (RECEIVE Post-Prompt exit)
parameter descriptions 467

INMRZ21R (log data set pre-allocation exit) 396
entry specifications 400

INMRZ21R (RECEIVE log data set pre-allocation exit)
functional description 399

INMTEXTU macro 475
INMXP macro 164, 721, 741
INMXPARM CSECT

in setting up TRANSMIT and RECEIVE
environments 163

installing 164
specifying 164
versus TRANSREC statement of IKJTSOxx 164

INMxxxx form of TRANSMIT and RECEIVE exits
description 397
parameter list for 401
return codes 402

INMxxxxR form of TRANSMIT and RECEIVE exits
description 397
parameter list for 400
return codes 402

INMXZ01 (TRANSMIT startup exit) 396
entry specifications 400
environment 402
functional description 397, 398, 407
installing 403
parameter descriptions 401, 412
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
startup exit (INMXZ01 or INMXZ01R)

functional description 398
TSO/E-supplied 400

INMXZ01R (TRANSMIT startup exit) 396
entry specifications 400
environment 402
functional description 397, 398, 407
installing 403
parameter descriptions 400, 407
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMXZ02 (TRANSMIT termination exit) 396
entry specifications 400
environment 402
functional description 398, 400, 416

INMXZ02 (TRANSMIT termination exit) (continued)
installing 403
parameter descriptions 401, 416, 418
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMXZ02R (TRANSMIT termination exit) 396
entry specifications 400
environment 402
functional description 398, 400, 416
installing 403
parameter descriptions 400, 416
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMXZ03 (TRANSMIT encryption exit) 396
entry specifications 400
environment 402
functional description 399, 419
installing 403
parameter descriptions 401, 422
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
TSO/E-supplied 400

INMXZ03R (TRANSMIT encryption exit) 396
entry specifications 400
environment 402
functional description 399, 419
installing 403
parameter descriptions 400, 419
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMXZ21R (log data set pre-allocation exit) 396
entry specifications 400

INMXZ21R (TRANSMIT log data set pre-allocation exit)
functional description 399

install requirements
new users of TSO/E 55

installation considerations
APL2 (A Programming Language 2) 592
APPC/MVS Administration Dialog 49
deleted exit routines and CSECTs 50
full-screen logon panel 54
GDDM/PGF 592
Information Center Facility 51
LOGON 53
logon pre-prompt exit, IKJEFLD1 54
names service 616
national language support versions of TSO/E 52
renaming the User Attributes Data Set

(SYS1.UADS) 50
security labels 54
standard-format exits 42
TSO/E commands 52

Index 791

installation considerations (continued)
user logs 54
Virtual Storage/A Programming Language

(VS/APL) 592
installation defaults for SEND, OPERATOR SEND, and

LISTBC, defining 337
installation file

content of environment 631
content of function 625
content of panel 622
creating 621
DBCS data 629, 633
definition 589
environment 631
example

adding a service 635
environment 638
function 637
panel 636
using INVOKING_PANEL entry 638

function 625
general considerations for creating 621
panel 622
required information 621
upgrading, using Application Manager 639
use of batch method to install products 639
use of mass installation file processing 639
use of VERIFY option 622

installation modifications 592
Interactive Chart Utility

customizing variables 599
Interactive Data Transmission Facility

See also RECEIVE command
See TRANSMIT command

interactive execution program
customizing variables 601

Interactive Instructional Presentation System/Interactive
Instructional Authoring System (IIPS/IIAS) 592

INTRDR JES2 initialization statement 296, 716
IRXCMPTB (compiler programming table)

creating the source 528
format 529
mapping macro 529

IRXCMPTM (compiler programming table module)
description 528
example 529

IRXECTERM (exec termination exit) 513
IRXERS (external routine search)

entry specifications 546
environment 545
parameter descriptions 546
return codes 548
return specifications 548

IRXEXEC routine 513
IRXEXECX (exec processing exit) 513
IRXHST (host command search)

entry specifications 549
environment 545
return codes 551
return specifications 551

IRXINIT initialization routine 502

IRXINITX (pre-environment initialization exit) 512
IRXITMV (post-environment initialization exit) 512
IRXITTS (post-environment initialization exit) 512
IRXRTE (exit routing routine)

entry specifications 552
environment 545
parameter descriptions 553
return codes 554
return specifications 554

IRXTERM termination routine 502
IRXTERMX (environment termination exit) 513
ISPF/PDF

command start and stop exits 715
concurrent with Session Manager 9
customization overview 9
default profile

using to update or customize a user’s profile 594
using to update or customize Information Center

Facility default profile 594
exit routine

ISPSC93 9
ISPSC94 9

ISPMTCM macro statement 715
using Session Manager from 152
using TSO/E commands from 151
writing a logon procedure 151

ISPF/PDF profile tables 647
ISPF.PROFILE 642
ISPFSPROF 647
ISPMTCM macro statement 151, 715

J
JCL (job control language)

for a logon procedure 82
for allocating a new user attributes data set

(UADS) 205
for creating the UADS and broadcast data set from a

terminal 202
for creating the UADS and broadcast data set with a

batch job 204
for logon procedure for Session Manager 559
for reformatting the UADS and broadcast data set

with UADSREFM 205
for resetting the catalog entry for the UADS 206
for starting TSO/VTAM time sharing 72
for updating the UADS and broadcast data set with a

batch job 207
provide for logon processing 115

JES2
associating job with job class 296
delaying jobs for processing 296
exit 13 (MAILXIT) 396, 398, 715
exit 2 (RXITJBCD and RXITJBCC) 715
exit 20 (REXITA) 715
exit 22 (ZTCSEXIT and YTCSEXIT) 715
exit 3 (RXITACC) 715
exit 38 (TSO RECEIVE Authorization) 715
holding output data for processing 297
initialization statements

affecting TRANSMIT/RECEIVE 163

792 z/OS V1R4.0 TSO/E Customization

JES2 (continued)
initialization statements (continued)

modifying 164
INTRDR initialization statement 296, 716
limitations 85
OUTCLASS initialization statement 297, 716
specifying the number of jobs that can be read

simultaneously 296
STCCLASS initialization statement 716
TSUCLASS initialization statement 716

JES3
associating job with job class 296
CIPARMS initialization statement 718
CLASS initialization statement 296
delaying jobs for processing 296
exit IATUX28 717
exit IATUX30 717
exit IATUX33 717
exit IATUX34 717
exit IATUX38 717
exit IATUX42 396, 398, 717
exit IATUX44 717
exit IATUX60 717
holding output data for processing 297
initialization statements

affecting TRANSMIT/RECEIVE 163
modifying 165

limitations 85
STANDARDS initialization statement 718
SYSOUT initialization statement 297, 718

JESJOBS
RACF resource class 297

JESSPOOL
RACF resource class 297

job
associating with job classes 296
customizing how users process 295, 308
customizing how users submit 298
customizing job submission 19
delaying for processing 296
specifying the number that can be read

simultaneously 296
job output

customizing how users process 295, 308
holding for processing 297

job step timing 83
jump function

definition 623

K
keyboard 765
keys for parameter entries 37

L
language

PLANGUAGE (PROFILE command keyword) 13,
107, 111

SLANGUAGE (PROFILE command keyword) 13,
107, 111

language (continued)
support 12

Language Enablement
activating after installing TSO/E 63

language processor environment
definition of 501
initializing 502
terminating 502

languages
default for ISPF 623, 627, 633
QAMLANGL 623, 627, 632
setting up 189
valid in ISPF 623, 627, 632
ZLANG 623, 627, 633

length field for parameter entries 37
libraries

customizing application-level 231, 485
customizing user-level 231, 485
customizing variables for 599
distributed for the Information Center Facility 590
required to use the Information Center Facility 590
search order for 231, 485

library
access

exclusive 629, 634
OLD 629, 634
shared 629, 634
SHR 629, 634

type
CLIST 629, 634
EXEC 629, 634
INPUT 629, 634
ISPF 629, 634
OUTPUT 629, 634

limitations
JES 85

limiting
the number of users 79
the use of TSO/E commands 177, 181

line addresses, defining using LINEGRP 78
line numbering

changing EDIT defaults 267
LINEGRP macro instruction 78
list of exits that TSO/E provides 26
LISTBC command 63

customization overview 17
customizing 335
exits 336, 343
failure exit (IKJEESXA)

description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

initialization exit (IKJEESX5)
description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362

Index 793

LISTBC command (continued)
initialization exit (IKJEESX5) (continued)

return specifications 360
installation defaults 335, 337
limiting the use of 180
pre-allocate exit (IKJEESX9)

description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

pre-display exit (IKJEESX6)
description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

pre-list exit (IKJEESX7)
description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

pre-read exit (IKJEESX8)
description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

restrict users from using 337
retrieving messages 339
termination exit (IKJEESXB)

description 343
entry specifications 346
parameter descriptions 356
possible uses 364
programming considerations 362
return specifications 360

log data set for TRANSMIT/RECEIVE
allocation by exit 399

LOGOFF command
exit IKJEFLD2

return codes 144
logoff exit (IKJEFLD2) 143

entry specifications 143
environment 144
installing 145
parameter descriptions 143
parameter list 144
possible uses 145
programming considerations 144
return specifications 144

logoff process
customizing 88

LOGON command
post-display exit (IKJEFLN2)

entry specifications 129

LOGON command (continued)
post-display exit (IKJEFLN2) (continued)

parameter descriptions 132
parameter list 130
programming considerations 139
return codes 139
return specifications 138
supplied exits 129

post-prompt exit (IKJEFLD3)
entry specifications 140
parameter descriptions 140
programming considerations 142
return codes 142
return specifications 142
supplied exits 140

pre-display exit (IKJEFLN1)
entry specifications 118
parameter descriptions 121
parameter list 118
programming considerations 128
return codes 127
return specifications 127
supplied exits 118

pre-prompt exit (IKJEFLD/IKJEFLD1)
return codes 112

logon help panel module
customizing 146
displaying help for fields 150
invoking 150
programming considerations 150
source 149

logon limits, changing 89, 90
logon panel module

body instructions 148
customizing 146
customizing for a language 147
functions activated by 146, 149
header 147
programming considerations 150
source 146
start information 147

logon panel, full-screen 54
logon post-display exit (IKJEFLD3)

entry specifications 140
parameter descriptions 140
programming considerations 142
return codes 142
return specifications 142
supplied exits 140

logon pre-display exit (IKJEFLN1)
entry specifications 118
parameter descriptions 121
parameter list 118
programming considerations 128
return codes 127
return specifications 127
supplied exits 118

logon pre-display exit (IKJEFLN2)
entry specifications 129
parameter descriptions 132
parameter list 130

794 z/OS V1R4.0 TSO/E Customization

logon pre-display exit (IKJEFLN2) (continued)
programming considerations 139
return codes 139
return specifications 138
supplied exits 129

logon pre-prompt authorized exit IKJEFLD1
installing 113
parameter descriptions 101
parameter list 97
possible uses 116
programming considerations 112
restrictions 113
return specifications 112

logon pre-prompt exit, IKJEFLD1 54
logon pre-prompt unauthorized exit IKJEFLD

entry specifications 95
environment 113
installing 113
parameter descriptions 101
parameter list 98, 100
possible uses 114
programming considerations 112
restrictions 113
return specifications 112

logon procedure
changes for Session Manager 558
TSO/E selection criteria for a user 85
using IKJACCNT to create the UADS and broadcast

data set 202
logon processing

controlling the number of users 79
customization overview 7
customizing logon messages 89
customizing the reconnect option 90
defining to VTAM 73
limiting the number of attempts at entering a

password 90
logon procedure

changes for ISPF/PDF 151
defining data sets 84
defining output descriptors 319
EXEC parameters for 82
giving users access to 85
IKJACCNT 81
OUTPUT JCL statements 319
sample 82
storing 84
supplying optional data sets 83
writing 81, 82

logon procedures
simplify with TSOLIB command 82

overview 5
password re-prompt feature 147
performance considerations 91
processing SYSOUT data generated from 91
setting up 79

logons, concurrent
overview 6

M
macro notation 725
macro syntax 725
macros

for TSO/E, reference 721
IKJBCAST 217, 727
IKJEBEST 273
IKJEDIT 728
IKJEESCB 347
IKJEFFIE

for OUTPUT, STATUS, and CANCEL exit 313
for SUBMIT exit 305

IKJIFRIF 208
IKJTSO 89, 90, 740
INMEND 164, 740
INMNODE 164, 740
INMTEXTU 475
INMXP 164, 741
LINEGRP 78
syntax of 725
when to use 725

mail section of broadcast data set 217
MAILXIT (JES2 exit) 396, 398
mass

export 639
install 639
upgrade 639

mass installation file processing
description 639
using to add a product 620
using to add a service 620
using to upgrade a product 620
using to upgrade a service 620

MCP
See message control program (MCP)

message control program (MCP)
changes for Session Manager 559
procedure 77

message handler (MH)
changes for Session Manager 559

message library (ICQ.ICQMLIB) 590
messages

solicited and unsolicited (table sizes) 240
storing 339
storing in broadcast data set 337, 340
storing in broadcast data set and user logs 343
storing in user logs 336, 337, 340

messages in the Information Center Facility 588
MH (message handler) 559
migrating 57
migration considerations

APPC/MVS Administration Dialog 49
deleted exit routines and CSECTs 50
full-screen logon panel 54
Information Center Facility 51
LOGON 53
logon pre-prompt exit, IKJEFLD1 54
national language support versions of TSO/E 52
renaming the User Attributes Data Set

(SYS1.UADS) 50
security labels 54

Index 795

migration considerations (continued)
TSO/E commands 52
user logs 54

model panel
definition 624

modifications for installation 592
MODIFY command 77
module name table

ATTNROUT field 513
IRXEXECX field 513

monitor
performance of TSO/E users 171
TSO/E commands 171

MVS address space
REXX processing 489

MVS allocation input validation routine
(IEFDB401) 221, 331

MVS message service
initializing and activating 187
providing translated messages 187
setting up languages 189
specifying HELP data sets 188

MVSSERV
activating after installing TSO/E 65

MVSSERV command
using with the Enhanced Connectivity Facility

(ECF) 169

N
NAMES data set for TRANSMIT/RECEIVE

allocation by exit 399
names service

customizing variables 595
exit

functional description 647
installing 648
programming considerations 648
variable descriptions 648

storage considerations 616
names table library (ICQ.ICQAATAB) 590
naming conventions for Information Center Facility

description 655
for application definition tables 658
for applications 657
for CLISTs 657
for data entry panels 657
for help for data entry panels and menus 661
for help for messages 663
for installation files 658
for load modules 657
for menus 657
for messages 662
for REXX execs 657
for skeletons 657
for tables 657
for tutorial panels 659

for a function 661
not for a function 659, 660

national language support
migration considerations 52

national language support (NLS)
customizing logon panels 8

network paths
controlling who uses 398
recording the use of 400

new command buffer 39
NOLOADDD field 507
non-TSO/E address space 502
notation for defining macro instructions 725
Notices 767
notices section of broadcast data set 217
notification control record (INMR07) 484
NSCPTABL 156

O
OPERATOR command, limiting the use of 178
OPERATOR SEND exits

command buffer 39
OPERATOR SEND subcommand

customization overview 17
customizing 335
exits 336, 343
failure exit (IEEVSNX3)

description 343
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

initialization exit (IEEVSNX0)
description 343
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

installation defaults 335, 337
pre-display exit (IEEVSNX1)

description 343
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

pre-save exit (IEEVSNX2)
description 343
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

restrict users from using 337
storing messages 339
termination exit (IEEVSNX4)

description 343
entry specifications 346
parameter descriptions 352
possible uses 364
programming considerations 362
return specifications 360

796 z/OS V1R4.0 TSO/E Customization

option word for syntax checkers 263
optional customization

overview 5
optional data sets

supplying with a logon procedure 83
OUTCLASS JES2 initialization statement 297, 716
OUTDES command

initialization exit (IKJEFY11)
description 321
entry specifications 322
environment 323
installing 324
parameter descriptions 322
possible uses 324
programming considerations 323
restrictions 324
return codes 322
return specifications 322

termination exit (IKJEFY12)
description 321
entry specifications 322
environment 323
installing 324
parameter descriptions 322
possible uses 324
programming considerations 323
restrictions 324
return codes 322
return specifications 322

OUTPUT command
exit

entry specifications 310
environment 313
functional description 308
installing 314
parameter descriptions 310
possible uses 314
programming considerations 312
restrictions 313
return codes 312
return specifications 312
TSO/E sample 310
TSO/E-supplied 309

limiting the use of 178
output descriptors

defining 319
description 221
sample for ALLOCATE command 320
sample for PRINTDS command 320
with PRINTDS command 317

OUTPUT JCL statements
defining 319
description 221
parameters

CONTROL 320
FORMDEF 320
INDEX 320
PAGEDEF 320

with PRINTDS command 317
output processing

overview 19

OUTPUT, STATUS, and CANCEL exit (IKJEFF53)
entry specifications 310
environment 313
functional description 308
installing 314
parameter descriptions 310
possible uses 314
programming considerations 312
restrictions 313
return codes 312
return specifications 312

P
PAGEDEF parameter of OUTPUT JCL 320
panel

See also hierarchy
Application Manager 588
data entry 702
full-screen logon

providing installation-defined 94
help 702
installation file 622
integration

INVOKING_PANEL entry 621
interaction 702
location 588
menu 702
types 588

panel library (ICQ.ICQPLIB) 590
PANELID command 709
panels

administrator courses 705
administrator NAMES 702
administrator NEWS 702
administrator problem reporting 705
ADRS 706
APLDI-II 706
chart creation services 707
ENROLL 703
in Information Center Facility 588
model 624
primary 623
printing services 706
programmer services 707
system defaults

Application Manager 704
printer defaults 705

user courses 707
user NEWS 706
user report problems 707
user types 703
utility services 707

parameter entry
command buffer 38
data 37
definition 35, 37
environmental control table (ECT) 40
exit reason code 40
exit-dependent data 35, 41
exit-to-exit communication word 40

Index 797

parameter entry (continued)
keys 37
length 37
new command buffer 39
protected step control block (PSCB) 40
reserved 41
user profile table (UPT) 40

parameter lists
ALLOCATE command initialization exit 226
ALTLIB command initialization exit 232
Application Manager exits 651
CLIST built-in function exit 494
CLIST statement exit 498
CONSOLE command exits 238
CONSPROF command exits 249
EXEC command initialization exit 280
for RECEIVE exits 400
for TRANSMIT exits 400
FREE initialization exit 286
FREE termination exit 286
OUTDES initialization exit 322
OUTDES termination exit 322
OUTPUT, STATUS, and CANCEL exit 310
PARMLIB initialization exit 290, 291
PRINTDS initialization exit 326, 328
REXX exits 515
SEND command exits 349
standard exit 35, 36
SUBMIT exit 299
TEST initialization exit 375
TEST subcommand initialization exit 378
TEST subcommand termination exit 379
TEST termination exit 375
TESTAUTH initialization exit 385
TESTAUTH subcommand initialization exit 390
TESTAUTH subcommand termination exit 390
TESTAUTH termination exit 386
TSOLIB command initialization exit 485

parameter modules (default)
customization overview 21

parameters for VTAM terminal I/O coordinator (VTIOC),
setting 71

parameters module 503
PARMLIB command

customization overview 18
exits 289
initialization exit (IKJPRMX1)

description 290
entry specifications 290
environment 292
installing 292
parameter descriptions 290
possible uses 293
programming considerations 292
restrictions 292
return codes 291
return specifications 291

limiting the use of 179
termination exit (IKJPRMX2)

description 290
entry specifications 290

PARMLIB command (continued)
termination exit (IKJPRMX2) (continued)

environment 292
installing 292
parameter descriptions 291
possible uses 293
programming considerations 292
restrictions 292
return codes 291
return specifications 291

pass information between exits 40
performance considerations

deciding the priority of TSO/E work 173
deciding the response time of TSO/E

commands 173
defining installation objectives 173
for Information Center Facility 615
logon process 91
monitoring users in batch 172
monitoring users on-line 171
objectives, overview 11
TSO/E’s relationship to other work 173

performance objectives
overview 11

Personal Services/TSO
See PS/TSO

Personal Services/TSO (PS/TSO) 592
planning considerations for TSO/E

APPC/MVS Administration Dialog 49
deleted exit routines and CSECTs 50
full-screen logon panel 54
Information Center Facility 51
LOGON 53
national language support versions of TSO/E 52
renaming the User Attributes Data Set

(SYS1.UADS) 50
security labels 54
TSO/E commands 52
user logs 54

PLATCMD statement
command/program invocation platform 159
example 161

PLATPGM statement
command/program invocation platform 159
example 161

post-environment initialization exit (IRXITMV or
IRXITTS) 512

post-environment initialization exit (IRXITTS or
IRXITMV) 512

post-installation activities 61
post-installation activities for TSO/E

adding subcommands of the TEST command 62
defining users to TSO/E 61
reinstalling exits 62
starting VTAM and TCAM 61

PPT (program properties table) 77
pre-defined data set types 258, 259
pre-environment initialization exit (IRXINITX) 512
primary panel

definition 623
Print Services Facility (PSF) 320

798 z/OS V1R4.0 TSO/E Customization

PRINTDS command
classes of operands 329
defining output descriptors 317, 319
defining pseudo-operands 318
exits 318
initialization exit (IKJEFY60)

default exit parameter list (DEPL) 326, 330
description 325
entry specifications 325
environment 331
installing 331
parameter descriptions 326
possible uses 331
programming considerations 329
restrictions 331
return codes 328
return specifications 328

limiting the use of 180
operands with fixed default values 325, 329, 330
OUTDES operand 320
termination exit (IKJEFY64)

description 325
entry specifications 325
environment 331
installing 331
parameter descriptions 328
possible uses 331
programming considerations 329
restrictions 331
return codes 328
return specifications 328

printer selection CLIST 319
printer support service

table library (ICQ.ICQAPTAB) 590
use of 318

printers, defining to the Information Center Facility 615
printing data sets 20
problems in the Information Center Facility,

diagnosing 709
procedure

for message control program (MCP) 77
for starting VTAM time sharing 72

products
adding to the Information Center Facility

description 620
using Application Manager 620
using mass installation file processing 620

available under the Information Center Facility 592
supported by the Information Center Facility 591
upgrading

using mass installation file processing 620
program availability 9
program libraries

changing the location of 590
program properties table (PPT) 77
programs

specifying authorized 153
prompt mode HELP function

customization overview 10
use of 167

protected step control block (PSCB) 40

PS/TSO
relation to names directory 640

PS/TSO (Personal Services/TSO) 592
pseudo-operands 318
PSF (Print Services Facility) 320
PUTGET processing

customizing using IKJEFXG1 183
PUTGET service routine

description 183

Q
QAMALGRP 613
QAMALPVT 613
QAMGPREF 613
QAMHIER 613
QAMHRECL 613
QAMINVOK 612
QAMLANGL 623, 627, 632
QAMRECOV 613
QAMUNACE 612
QAMUNVCE 612
QAMUNVVW 612
QCCDFMT 595
QCCDFMTX 595
QCLAPL2 592
QMF (Query Management Facility) 592
Query Management Facility (QMF) 592

R
RACF

customization overview 4
overview of converting from UADS 13
RACONVRT command 212

RACF data base
converting from the UADS to the RACF data

base 195, 211
maintaining TSO/E users 195, 211
RACONVRT command 212
synchronizing with the broadcast data set 215

RACF, security labels 54
RACONVRT command

converting UADS to RACF data base 212
testing the conversion 214

RECEIVE command 398
activating after installing TSO/E 64
adding to authorized command table 163
customization overview 18
defaults 164
exits for modifying 396
limiting the use of 180
overview of making it available 10
required set-up 163

RECEIVE exits
acknowledgment notification exit (INMRZ05R or

INMRZ06R)
installing 403

acknowledgment notification exit (INMRZ05R) 396
entry specifications 400
environment 402

Index 799

RECEIVE exits (continued)
acknowledgment notification exit (INMRZ05R)

(continued)
functional description 398, 440
parameter descriptions 400, 401, 440
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

data set decryption exit (INMRZ13 or
INMRZ13R) 396

entry specifications 400
environment 402
functional description 399, 461
installing 403
parameter descriptions 400, 401, 461, 464
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

data set post-processing exit (INMRZ12 or
INMRZ12R) 396

entry specifications 400
environment 402
functional description 398, 400, 456
installing 403
parameter descriptions 400, 401, 456, 459
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

data set pre-processing exit (INMRZ11 or
INMRZ11R) 396

entry specifications 400
environment 402
functional description 397, 398, 448
installing 403
parameter descriptions 400, 401, 448, 452
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

encryption/decryption processing 399
entry specifications 400
environment 402
format of transmitted data 481
functional description 397
initialization exit (INMRZ01 or INMRZ01R) 396

entry specifications 400
environment 402
functional description 397, 428
installing 403
parameter descriptions 400, 401, 428, 431
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

INMRxxxR and INMRxxxx forms of
description 397
parameter list 400

RECEIVE exits (continued)
INMxxxR and INMRxxxx forms of

return codes 402
installing 403
log data set pre-allocation exit (INMRZ21R) 396

entry specifications 400
functional description 399

notification exit (INMRZ04 or INMRZ04R) 396
entry specifications 400
environment 402
functional description 398, 435
installing 403
parameter descriptions 400, 401, 435, 438
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

overview of 396
parameter descriptions 400
post-prompt exit (INMRZ15R)

functional description 467
Post-Prompt exit (INMRZ15R)

parameter descriptions 467
pre-acknowledgment notification exit

(INMRZ06R) 396
environment 402
functional description 443
parameter descriptions 444

programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401
termination exit (INMRZ02 or INMRZ02R) 396

entry specifications 400
environment 402
functional description 432
installing 403
parameter descriptions 400, 401, 432
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

TSO/E-supplied 400
reconnect option, customizing 90
reformatting the UADS and broadcast data set

procedures for 204
using UADSREFM 205

reformatting the UADS with UADSREFM 205
region size

exec statement operand 82
overriding 81
overview 7

reload utility 398
RENUM, MOVE, and COPY subcommands exit

description 267
entry specifications 267
environment 270
installing 270
parameter descriptions 268
possible uses 271
programming considerations 269

800 z/OS V1R4.0 TSO/E Customization

RENUM, MOVE, and COPY subcommands exit
(continued)

return specifications 269
replaceable routines

customization overview 22
description 511

REPRO command of Access Methods Services 399
REQAPPC command 598
requester 169
required customization 4
required libraries for the Information Center

Facility 590
resetting the catalog entry for the UADS 206
resource monitoring 11
resource protection

TSO/E overview 11
return codes

EDIT subcommand 272
exit routines, overview 33
for standard-format exits 42

REXITA (JES2 exit 20) 715
REXX 55, 501

attributes 521
customization overview 20
entry specifications 513
installation-supplied exits 512
installing 521
location 588
parameter descriptions 515
programming considerations 521
replaceable routines 511
return codes 520
return specifications 520
TSO/E-supplied exits 512
VLF PARMLIB member 490
VLF, identifying REXX execs to 490

REXX compiler
considerations for installing 55

REXX compiler support
description 527
identifying a compiled exec 528

REXX exec
default search order 231, 485
hierarchy in the Information Center Facility 663

RMF 171
RXITACC (JES2 exit 3) 715
RXITJBCD and RXITJBCC (JES2 exit 2) 715

S
samples

allocating a new user attributes data set
(UADS) 205

BCSTSAMP 217
creating the UADS and broadcast data set from a

terminal 202
creating the UADS and broadcast data set with a

batch job 204
EDITSAMP 270
IKJBSMPE 217
IKJTSMPE 270

samples (continued)
IKJTSO00 member in SYS1.SAMPLIB 337
logon procedure 82
logon procedure for Session Manager 559
reformatting the UADS and broadcast data set with

UADSREFM 205
resetting the catalog entry for the UADS 206
starting TSO/VTAM time sharing 72
updating the UADS and broadcast data set with a

batch job 207
SECLABEL operand 54
security

ACCOUNT command, limiting 178
CANCEL command, limiting 178
commands, limiting in background mode 181
considerations 193
foreground initiated background commands,

limiting 178
monitoring TSO/E commands for 171
OPERATOR command, limiting 178
OUTPUT command, limiting 178
SECLABEL on the logon process 92
Session Manager, limiting the commands that can be

used from 180
SMESSAGE 336
STATUS command, limiting 178
SUBMIT command, limiting 178
SYNC command, limiting 178

security labels 54
SEND command 63

customization overview 17
customizing 335
exits 336, 343
failure exit (IKJEESX3)

description 343
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

initialization exit (IKJEESX0)
description 343
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

installation defaults 335, 337
limiting the use of 180
pre-display exit (IKJEESX1)

description 343
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

pre-save exit (IKJEESX2)
description 343
entry specifications 346
parameter descriptions 349
possible uses 364

Index 801

SEND command (continued)
pre-save exit (IKJEESX2) (continued)

programming considerations 362
return specifications 360

restrict users from using 337
sending messages 369
storing messages 339
termination exit (IKJEESX4)

description 343
entry specifications 346
parameter descriptions 349
possible uses 364
programming considerations 362
return specifications 360

SEND PARMLIB control block (IKJEESCB)
description 338
format of 347

SEND PARMLIB parameter 54
operands

SYSPLEXSHR 210, 348
server 169
service

adding to the Information Center Facility
description 620
using Application Manager 620
using mass installation file processing 620

upgrading
using mass installation file processing 620

session manager
activating after installing TSO/E 65

Session Manager
changes to ISPF/PDF for 152
changes to logon procedure for 558
changes to SYS1.PARMLIB for 557
changing stream definitions 567
converting CLISTs to RECFM VB 560
customization overview 22
default environment module (ADFMDFLT) 558
default environment module format 568
example initialization exit 582
exit processing 579
exits

description 572
entry specifications 573
environment 578
installing 578
possible uses 580
programming considerations 577
return specifications 576

initialization exit
entry specifications 573
environment 578
installing 578
parameter descriptions 574
possible uses 580
programming considerations 577
return specifications 576

limiting commands from 180
modifying a default environment

using AMASPZAP 566
using CLISTs 566

Session Manager (continued)
monitor streams 572
monitor user’s interaction 572
providing multiple default environments 568
stream definitions 563, 564
stream monitoring exit

entry specifications 573
environment 578
installing 578
parameter descriptions 575
possible uses 580
programming considerations 577
return specifications 576

system interlock 560
termination exit

entry specifications 573
environment 578
installing 578
parameter descriptions 576
possible uses 580
programming considerations 577
return specifications 576

session protocols
defining for VTAM 73

setting terminal I/O coordinator (TIOC) parameters 76
setting VTAM terminal I/O coordinator (VTIOC)

parameters 71
shortcut keys 765
skeleton library (ICQ.ICQSLIB) 590
skeletons 589
SMF (System Management Facilities)

exit IEFUJV 720
exit IEFUSO 720
exit IEFUTL 720
recording network use 400
SMFPRMxx member 720

SMP/E
See System Modification Program

SMP4
See System Modification Program

space for utility work data sets used by EDIT,
allocating 275

space management service
changing default values 223
default values 223
description 222
overview 14

standard exit parameter list
command buffer 38
definition 26
definition of keys 37
description 35
environmental control table (ECT) 40
exit reason code 40
exit-dependent data 35, 41
exit-to-exit communication word 40
format of 36
keys 37
new command buffer 39
overview 34
parameter entry 35, 37

802 z/OS V1R4.0 TSO/E Customization

standard exit parameter list (continued)
protected step control block (PSCB) 40
reserved parameter entries 41
user profile table (UPT) 40

standard return codes 42
standard-format exits

definition 26
example 35, 43
installing 42
list of 26
overview 34
standard return codes 42

STANDARDS JES3 initialization statement 718
START command

starting TCAM 77
starting VTAM 72

start-up processing for the Information Center Facility
customizing 645

starting point for searching education services data sets
customizing variables 601

starting TCAM with the START command 77
starting VTAM with the START command 72
STATUS command

exit
entry specifications 310
environment 313
functional description 308
installing 314
parameter descriptions 310
possible uses 314
programming considerations 312
restrictions 313
return codes 312
return specifications 312
TSO/E sample 310
TSO/E-supplied 309

limiting the use of 178
STCCLASS JES2 initialization statement 716
STOP command 72
Storage Management Subsystem 14, 221
stream definitions for Session Manager 563
structure of the UADS 198
subcommands of EDIT

defining 273
writing 272

subcommands of TEST
adding 372

subcommands of TESTAUTH
adding 384

SUBMIT command
customizing 298
exit 298

SUBMIT exit (IKJEFF10)
description 298
entry specifications 299
environment 305
installing 305
parameter descriptions 299
possible uses 305
programming considerations 304
restrictions 305

SUBMIT exit (IKJEFF10) (continued)
return codes 303
return specifications 303
TSO/E-supplied 299

SURROGAT
RACF resource class 297

SVCOUTX (JES2 exit 9) 715
switching broadcast data sets

PARMLIB UPDATE(xx) 207
SET IKJTSO=xx 207

syntax
notation for defining macro instructions 725

syntax checkers 263
associating with data set type 264
buffer control block 262
communication area 262
control blocks 261
exit

associating exit with syntax checkers 266
description 265
entry specifications 265
environment 266
installing 266
parameter descriptions 265
programming considerations 266
return specifications 266

interface between EDIT 261, 262
option word 262, 265
record format 261
TSO/E-supplied 260
writing 260
writing an exit for 265

syntax of macros 725
SYS1.AMODGEN

IKJEESCB member 344
SYS1.LPALIB

logon help panel module 146
logon panel module 146

SYS1.PARMLIB
changes to support Session Manager

environment 557
IEAICSxx member 720
IEAIPSxx member 720
IEASYSxx member 720
IKJPRM00 member 76
IKJTSO00 member

description 720
installation defaults for SEND, OPERATOR

SEND, and LISTBC 335, 337
IKJTSOxx member 720
processing messages sent to the system

operator 369
SMFPRMxx member 720
TSOKEYxx member 720

SYS1.SAMPLIB
default logon panel source 146
example for standard-format exits (IKJEXIT) 35, 43
IKJEXIT (example for standard-format exits) 35, 43
INMINOPT member 164
logon help panel source 146

SYSEXEC 84, 507

Index 803

SYSIKJBC 210
SYSIKJUA 210
SYSOUT class, changing for the logon job 91
SYSOUT data sets

See also system output data sets
generated by the logon process 91

SYSOUT JES3 initialization statement 297, 718
sysplex configuration

considerations for broadcast data set 210
SYSPLEXSHR, operand of SEND PARMLIB 210, 348
SYSPROC 84, 507
system access

controlling 79
system interlock in Session Manager environment 560
System Modification Program

associating exit with syntax checkers 266
associating syntax checkers with data set

types 264
changing attributes of data set types 259
changing number of records for notices in broadcast

data set 217
defining data set types 259
EDITSAMP (sample SMP/E job for IKJEDIT) 265
EDITSAMP (sample SMP4 job for IKJEDIT) 259,

265, 267
IKJTSMPE (sample SMP/E job for IKJEDIT) 259,

267
installing standard-format exits 43

System Modification Program Extended
See System Modification Program

system output data sets
allocating 221
defining output descriptors 221, 319
defining processing options 319
holding for processing by TSO/E users 297
OUTPUT JCL statements 319

SYSTSIN
executing TMP in batch 753

SYSTSPRT
executing TMP in batch 753

T
tables in the Information Center Facility 588
tasks

switching between broadcast data sets
PARMLIB UPDATE(xx) 207
SET IKJTSO=xx 207

TCAM
activating the TIOC 77
defining TSO/E to 71, 76
initializing time sharing 76
optional customization, overview 6
required customization, overview 4
starting 77

TCAM parameters for terminal I/O coordinator (TIOC),
setting 76

TCAS (terminal control address space)
defining to VTAM 72

Terminal Control Address Space (TCAS)
See TCAS (terminal control address space)

terminal I/O coordinator (TIOC)
activating as a subtask of TCAM 77
setting parameters for 76

terminal monitor program (TMP)
alternative entry points (IKJEFT1A and

IKJEFT1B) 749
distributed with TSO/E (IKJEFT01) 82
executing 749
using installation-written 82

terminating the language processor environment 502
terminating time sharing connections with the MODIFY

command 77
termination exits

overview 34
termination processing for the Information Center

Facility
customizing 646

TEST command
adding commands to be invoked under TEST 372
adding subcommands 372
customization overview 18
description 374
exits 371
initialization exit (IKJEGMIE) 374

entry specifications 375
environment 376
installing 376
parameter descriptions 375
possible uses 377
programming considerations 376
return codes 375
return specifications 375

installation-written command processors to be
invoked under TEST, specifying 372

installation-written subcommands of, specifying 372
termination exit (IKJEGMTE) 374

entry specifications 375
environment 376
installing 376
parameter descriptions 375
possible uses 377
programming considerations 376
return codes 375
return specifications 375

TEST subcommand
description 377
initialization exit (IKJEGCIE) 377

entry specifications 378
environment 381
installing 382
parameter descriptions 378
possible uses 382
programming considerations 381
return codes 380
return specifications 380

termination exit (IKJEGCTE) 377
entry specifications 378
environment 381
installing 382

804 z/OS V1R4.0 TSO/E Customization

TEST subcommand (continued)
termination exit (IKJEGCTE) (continued)

parameter descriptions 379
possible uses 382
programming considerations 381
return codes 380
return specifications 380

TEST subcommand name table (IKJEGSCU) 373
TESTAUTH command

adding commands to be invoked under
TESTAUTH 384

adding subcommands 384
customization overview 18
description 384
exits 384
initialization exit (IKJEGAUI) 384

entry specifications 385
environment 387
installing 388
parameter descriptions 385
possible uses 388
programming considerations 387
restrictions 388
return codes 386
return specifications 386

limiting the use of 180
termination exit (IKJEGAUT) 384

entry specifications 385
environment 387
installing 388
parameter descriptions 386
possible uses 388
programming considerations 387
restrictions 388
return codes 386
return specifications 386

TESTAUTH subcommand
description 389
initialization exit (IKJEGASI) 389

entry specifications 389
environment 393
installing 393
parameter descriptions 390
possible uses 393
programming considerations 392
restrictions 393
return codes 391
return specifications 391

termination exit (IKJEGAST) 389
entry specifications 389
environment 393
installing 393
parameter descriptions 390
possible uses 393
programming considerations 392
restrictions 393
return codes 392
return specifications 391

text unit pointer lists
description 401
format 474

text units
description 401
format 474
keys 475
types 475

TIF (The Information Facility) 592
time sharing

initializing for TCAM 76
initializing for VTAM 71
starting for VTAM 72
terminating connections with the MODIFY

command 77
TIOC

See terminal I/O coordinator (TIOC)
TMP

See terminal monitor program (TMP)
trace

activating 709
deactivating 711

trace commands 709
TRACE function of Information Center Facility 709
TRACE1 command 710
TRACE2 command 710
TRACE3 command 711
TRACEOFF command 711
trailer control record (INMR06) 483
translation tables, building for TSO/VTAM users 73
TRANSMIT command 398

activating after installing TSO/E 64
adding to authorized command table 163
customization overview 18
defaults 164
exits for modifying 396
limiting the use of 180
overview of making it available 10
required set-up 163

TRANSMIT exits
encryption exit (INMXZ03 or INMXZ03R) 396

entry specifications 400
environment 402
functional description 419
installing 403
parameter descriptions 400, 401, 419, 422
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

encryption/decryption processing 399
entry specifications 400
environment 402
format of transmitted data 481
functional description 397, 407, 416, 419
INMXxxxR and INMXxxxx forms of

description 397
parameter list 400
return codes 402

installing 403
log data set pre-allocation exit (INMXZ21R) 396

allocating NAMES and log data sets 399
entry specifications 400

overview of 396

Index 805

TRANSMIT exits (continued)
parameter descriptions 400, 401, 418
programming considerations 402
record network use 400
restrictions and limitations 403
return codes 402
return specifications 401
startup exit (INMXZ01 or INMXZ01R) 396

entry specifications 400
environment 402
functional description 407
installing 403
parameter descriptions 400, 401, 407, 412
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

termination exit (INMXZ02 or INMXZ02R) 396
entry specifications 400
environment 402
functional description 416
installing 403
parameter descriptions 400, 401, 416, 418
programming considerations 402
restrictions and limitations 403
return codes 402
return specifications 401

TSO/E-supplied 400
TRANSMIT/RECEIVE common exits

entry specifications 400
INMCxxxR forms of

description 397
NAMES data set pre-allocation exit

(INMCZ21R) 396, 400
functional description 399, 404

transmitted data format 481
TRANSREC statement

versus INMXPARM CSECT 164
TSO RECEIVE Authorization (JES2 exit 38) 715
TSO/E address space 502
TSO/E commands

LISTBC 63
migration considerations 52
SEND 63

TSO/E service facility
command/program invocation platform 159

TSO/E-supplied exit
entry specifications 232, 485
environment 234, 487
IKJEFLD2 (logoff exit) 143
installing 234, 487
parameter descriptions 232, 485, 486
possible uses 234, 487
programming considerations 234, 487
return codes 233, 486
return specifications 233, 486
TSO/E-supplied exit 232, 485

TSO/TCAM
See TCAM

TSO/VTAM
See VTAM

TSOKEY00 member of SYS1.PARMLIB
changing for Session Manager environment 557
tailoring parameters in 72

TSOKEYxx SYS1.PARMLIB member 79, 720
TSOLIB command

customization overview 19
initialization exit (IKJADINI) 485

entry specifications 485
environment 487
installing 487
parameter descriptions 485
possible uses 487
programming considerations 487
return codes 486
return specifications 486
TSO/E-supplied exit 485

simplify logon procedures 82
termination exit (IKJADTER) 485

entry specifications 485
environment 487
installing 487
parameter descriptions 486
possible uses 487
programming considerations 487
return codes 486
return specifications 486
TSO/E-supplied exit 485

TSOSAMP (sample SMP4 job for IKJTSO) 89, 90
TSUCLASS JES2 initialization statement 716

U
UADS

allocating 204
bypass logon verification 94
changing block size 205
contents of 197
converting to the RACF data base 195, 211
creating

from a terminal 202
with a batch job 203

customization overview 4
global resource serialization 209
maintaining for recovery mode 214
maintaining TSO/E users 195
maintenance overview 13
overview of conversion to RACF 13
reformatting

procedures 204
using UADSREFM 205

resetting the catalog entry 206
structure of 198
updating 206

UADSREFM, reformatting the UADS 205
unload utility 398
updating the UADS and broadcast data set 206
upgrade file 620, 639

806 z/OS V1R4.0 TSO/E Customization

upgrading installation files 639
user Application Manager table library

(ICQ.ICQCMTAB) 590
user CLIST and REXX exec library

(ICQ.ICQCCLIB) 590
user CLIST library (ICQ.ICQCCLIB) 590
user control record (INMR04) 483
user definitions 4
user logs 54

allocating your own data sets 341
allocation considerations 340
converting from broadcast data set to 341
converting from broadcast data set to security

protected user logs 342
customizing the use of 339, 343
default data set attributes 340
defining as members of a PDS 340
defining as sequential data sets 340
description 336
storing messages in 340
writing exits to customize 343

user profile table (UPT) 40
users, controlling the number of 79
using UADSREFM to reformat the UADS 205
utilities

reloading data sets 398
unloading data sets 398
used in data transmission 482

utility work data sets used by EDIT, allocating space
for 275

V
variable access routine 497, 500
variables

customizing 594
ADRS-II 603, 609
APL 610
APL2 603, 605
APLDI-II 603, 608
APPC/MVS administration dialog 597
batch execution program 601
education services 601
enrollment 602
for Information Center Facility products 594
for Information Center Facility services 594
GDDM/PGF 599
Image Symbol Editor 600
Interactive Chart Utility 599
interactive execution program 601
libraries that contain program load modules 599
names service 595
starting point for searching education services

data sets 601
Vector Symbol Editor 601
VS APL 603

Vector Symbol Editor
customizing variables 601

virtual lookaside facility (VLF)
optimizing usage with CLISTs 490
PARMLIB member 490, 591

Virtual Storage/A Programming Language (VS/APL)
installation considerations 592

VLFNOTE command
adding to the authorized command table 153
synchronizing shared data 491

VS APL
customizing variables 603

VTAM
APPL definition statement 80, 720
customizing 71
defining TCAS to 72
defining the LOGON command to 73
defining TSO/E to 71
defining TSO/E user address spaces to 72
initializing time sharing 71
LOGCHAR macro statement 720
logon mode table 73
optional customization, overview 6
procedure for starting time sharing 72
required customization, overview 4
session protocols 73
setting terminal I/O coordinator (VTIOC)

parameters 71
starting 72
translation tables 73

VTIOC
See terminal I/O coordinator (TIOC)

X
XMIT alias, adding to authorized command table 163

Z
ZLANG 623, 627, 633
ZTCSEXIT and YTCSEXIT (JES2 exit 22) 715

Index 807

808 z/OS V1R4.0 TSO/E Customization

Readers’ Comments — We’d Like to Hear from You

z/OS
TSO/E Customization

Publication No. SA22-7783-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7783-03

SA22-7783-03

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corparation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01 and 5655-G52

Printed in U.S.A.

SA22-7783-03

	Contents
	Figures
	Tables
	About this document
	Who should use this document
	How this document is organized
	How to use this document
	Where to find more information
	Accessing licensed books on the Web
	Using LookAt to look up message explanations

	Summary of changes
	Part 1. Introduction
	Chapter 1. Customization Overview
	Required Customization
	Access Methods - VTAM and TCAM
	User Definitions
	TSO/E Logon Procedure

	Optional Customization
	TSO/E Environment
	UADS and Broadcast Data Set Maintenance
	UADS to RACF Conversion
	Commands
	CLIST and REXX Processing
	Session Manager
	Information Center Facility

	Chapter 2. Writing Exit Routines
	Overview of Exits that TSO/E Provides
	Exits for TRANSMIT and RECEIVE Commands
	Exits for Logon and Logoff Processing
	Exit for OUTPUT, STATUS, and CANCEL Commands
	Exit for SUBMIT Command
	Exit for EDIT Command
	Exits for Session Manager
	Exits for Information Center Facility
	Exits for ALLOCATE Command
	Exits for Application Manager
	Exits for CLIST Processing
	Exits for REXX Processing
	Exits for EXEC Command
	Exits for ALTLIB Command
	Exits for PARMLIB Command
	Exits for TEST Command
	Exits for TESTAUTH Command
	Exits for FREE Command
	Exits for LISTBC Command
	Exits for OUTDES Command
	Exits for PRINTDS Command
	Exits for SEND Command and OPERATOR SEND Subcommand
	Exits for CONSOLE Command
	Exits for CONSPROF Command
	Exit for PUTGET and GETLINE Processing
	Exits for TSOLIB Command

	General Programming Considerations
	TSO/E Standard-Format Exits
	TSO/E Standard Exit Parameter List
	Parameter Entries
	Standard Return Codes
	Installing the Standard-Format Exits
	Example Installation Exit

	Format of the Exit Descriptions

	Part 2. Considerations for Installing, Migrating and Activating the Functions of TSO/E
	Chapter 3. Considerations for Installing TSO/E
	REXX Parameter Modules
	Using the LINKPGM, ATTCHPGM, LINKMVS, and ATTCHMVS Host Command Environments
	Installing the APPC/MVS Administration Dialog
	Allocating the User Attributes Data Set (SYS1.UADS)
	Migrating Customized Parts
	Deleted Exit Routines and CSECTs
	Changed Exit Routines
	New Information Center Facility Tables

	Using SYS1.PARMLIB Member IKJTSOxx
	New TRANSREC NODESMF Parameter

	Migrating TSO/E Commands
	National Language Considerations
	LOGON Considerations
	Naming Conventions for the Load Modules and CSECTs

	Considerations for Katakana Devices
	Using Security Labels
	TSO/E Full-Screen Logon Panel
	TSO/E Logon Pre-Prompt Exit

	Reviewing Macro Libraries for TSO/E
	Installing a REXX Compiler
	Installing TSO/E for the First Time
	Installing the Information Center Facility for the First Time

	Chapter 4. Considerations for Migrating TSO/E
	Migrating from One TSO/E Release to Another
	Preparing Application Manager Tables for TSO/E
	Migrating Application Manager Tables From Previous Releases of the Information Center Facility

	Chapter 5. Activating the Functions of TSO/E
	Using TSO/E
	Using Specific Functions of TSO/E
	Activating Base TSO/E Functions
	Activating the Information Center Facility

	Part 3. Setting Up and Customizing the TSO/E Environment
	Chapter 6. Defining and Customizing TSO/VTAM and TSO/TCAM Time Sharing
	Defining and Customizing TSO/VTAM Time Sharing
	Defining TSO/E Address Spaces to VTAM
	Writing the Procedure That Starts TSO/VTAM Time Sharing
	Tailoring VTAM Session Protocols
	Defining the LOGON Command to VTAM
	Building Translation Tables for TSO/VTAM Users

	Defining and Customizing TSO/TCAM Time Sharing
	Writing an MCP Procedure to Start TSO/TCAM

	Chapter 7. Setting up Logon Processing
	Controlling Logons
	Controlling the Total Number of Users Who Can Log On
	Controlling Logons Within Groups of Users

	Limiting the Size of Each User's Address Space
	Writing and Giving Users Access to Logon Procedures
	Deciding the Number of Logon Procedures You Will Make Available
	Writing a Logon Procedure
	Defining Data Sets in a Logon Procedure
	Storing Logon Procedures
	Giving Users Access to Logon Procedures
	Giving Users Access to SECLABELs

	Chapter 8. Customizing the Logon and Logoff Process
	Customizing Logon Messages
	Limiting the Number of Logon Attempts
	Customizing the Reconnect Option of the LOGON Command
	Suppressing the SYSOUT Data Set Generated from the Logon Job
	Improving the Performance of the Logon Process
	Using SECLABEL on the Logon Process
	Overview of Logon Exit Processing
	Logon Pre-Prompt Exit IKJEFLD/IKJEFLD1
	Logon Pre-Display Exit IKJEFLN1
	Logon Post-Display Exit IKJEFLN2
	Logon Post-Prompt Exit IKJEFLD3

	Writing a Logon Pre-Prompt Exit (IKJEFLD/IKJEFLD1)
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter List for IKJEFLD1
	Parameter List for IKJEFLD
	Parameter Descriptions for IKJEFLD and IKJEFLD1
	Parameters for IKJEFLD1 Only
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing a Logon Pre-Display Exit (IKJEFLN1)
	TSO/E Supplied Exits
	Entry Specifications
	Parameter List for IKJEFLN1
	Parameter Descriptions
	Return Specifications for IKJEFLN1
	Programming Considerations
	Possible Uses

	Writing a Logon Post-Display Exit (IKJEFLN2)
	TSO/E Supplied Exits
	Entry Specifications
	Parameter List for IKJEFLN2
	Parameter Descriptions
	Return Specifications for IKJEFLN2
	Programming Considerations
	Possible Uses

	Writing a Logon Post-Prompt Exit (IKJEFLD3)
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter List for IKJEFLD3
	Parameter Descriptions
	Return Specifications
	Installing the Exit
	Possible Uses

	Writing a Logoff Exit (IKJEFLD2)
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations
	Possible Uses

	Customizing Logon Panels and Logon Help Panels
	Functions Activated by the Presence of Logon Load Modules
	Logon Panel
	Logon Help Panel
	Invoking the Help Panel
	Programming Considerations for Logon and Logon Help Panel Csects

	Chapter 9. Defining TSO/E to ISPF and ISPF/PDF
	Customizing the Logon Procedure for ISPF and ISPF/PDF
	Specifying the TSO/E Commands Users Can Issue from ISPF/PDF
	Defining the TSO/E Session Manager to ISPF/PDF

	Chapter 10. Specifying Authorized Commands/Programs, and Commands Not Supported in the Background
	Using SYS1.PARMLIB Member IKJTSOxx
	Using CSECTs IKJEFTE2, IKJEFTE8, IKJEFTAP, and IKJEFTNS
	Specifying Authorized Commands and Programs
	Specifying Commands not Supported in the Background

	Chapter 11. Specifying Commands and Programs for the Command/Program Invocation Platform
	Considerations for Specifying Commands and Programs
	Using the PLATCMD and PLATPGM Statements

	Chapter 12. Setting Up the TRANSMIT and RECEIVE Environment
	Specifying Installation Defaults for TRANSMIT and RECEIVE
	Setting TRANSMIT and RECEIVE Defaults in IKJTSOxx
	Writing and Installing the INMXPARM CSECT

	Modifying JES Initialization Statements

	Chapter 13. Customizing the HELP Data Set
	Updating the HELP Data Set
	Using the Prompt Mode Function
	Using the Include Control Character

	Chapter 14. Making Host Services Available to PC Users
	Initializing MVSSERV for the TSO/E Enhanced Connectivity Facility

	Chapter 15. Monitoring TSO/E Resources
	Monitoring TSO/E Commands
	Monitoring the Performance of TSO/E Users
	Monitoring the Performance of TSO/E Users On-line
	Collecting Statistics about Transactions in Batch

	Chapter 16. Defining Performance Objectives for TSO/E
	Deciding What Kind of Response Time TSO/E Users Will Have
	Deciding About Better Performance for Certain Users and Commands
	Making TSO/E Response Time More Consistent

	Chapter 17. Protecting the Resources TSO/E Users Can Access
	Limiting the Use of TSO/E Commands
	Limiting the TSO/E Commands Users Can Use from READY Mode
	Limiting the Commands Users Can Use from Session Manager
	Limiting the Commands Users Can Use in the Background
	Limiting the Commands Users Can Issue from ISPF/PDF Panels

	Limiting Access to Data Sets

	Chapter 18. Customizing PUTGET and GETLINE Processing
	Customizing PUTGET and GETLINE
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for IKJEFXG1
	Return Specifications
	Programming Considerations

	Chapter 19. Customizing TSO/E for Different Languages
	Providing Translated Messages
	Initializing and Activating the MVS Message Service

	Specifying Help Data Sets
	Setting Up Languages for Users
	Considerations for Setting Up Languages

	Chapter 20. Security Considerations for Customizing TSO/E
	TSO/E User Identification
	Security Label (SECLABEL) at Logon
	Protecting User's Messages
	Accesses to Spool Data Sets
	TSO/E TRANSMIT and RECEIVE Commands

	Part 4. Maintaining the UADS, RACF Data Base, and Broadcast Data Set
	Chapter 21. Content and Structure of the UADS and Broadcast Data Set
	Content and Structure of the UADS
	Content of the Broadcast Data Set

	Chapter 22. Working with the UADS and Broadcast Data Set
	Creating the UADS and the Broadcast Data Set
	Creating from a Terminal
	Creating with a Batch Job

	Reformatting the UADS and the Broadcast Data Set
	Allocating a New UADS
	Using UADSREFM and the SYNC Command or Subcommand of ACCOUNT
	Resetting the UADS Catalog Entry

	Updating the UADS and the Broadcast Data Set
	Switching between broadcast data sets
	Switching the broadcast data set using SET IKJTSO=xx or PARMLIB UPDATE

	Changing the Allocation of the Broadcast Data Set
	Maintaining Directory Entries in the Broadcast Data Set
	Global Resource Serialization
	Broadcast data set in a sysplex

	Chapter 23. Using the RACF Data Base to Maintain TSO/E Users
	Processing of User Information
	Converting to the RACF Data Base
	Using the RACONVRT Command
	Testing the Conversion
	Deleting User Information from the UADS
	Maintaining UADS for recovery mode
	Synchronizing the RACF Data Base with the Broadcast Data Set

	Chapter 24. Changing the Amount of Space Reserved for Notices
	Part 5. Customizing TSO/E Commands
	Chapter 25. Customizing How Users Allocate and Manage Data Sets
	Specifying a Default Data Set Disposition for the ALLOCATE Command
	Changing the Defaults for Managing Data Set Space
	Writing Exits for the ALLOCATE Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 26. Customizing the ALTLIB Command
	Writing Exits for the ALTLIB Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 27. Customizing the CONSOLE and CONSPROF Commands
	Defining Installation Defaults for the CONSOLE Command
	Writing Exits for the CONSOLE Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Pre-Parse Exit
	Parameter Descriptions for the Activation Exit
	Parameter Descriptions for the Deactivation Exit
	Parameter Descriptions for the 80% Message Capacity Exit
	Parameter Descriptions for the 100% Message Capacity Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing Exits for the CONSPROF Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Pre-Display Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 28. Customizing the EDIT Command
	Defining Data Set Types and Changing the Default Attributes
	Writing a Syntax Checker
	Record Format and Interface for Syntax Checking
	Associating the Syntax Checker with a Data Set Type

	Writing an Exit for Syntax Checkers
	Functional Description
	TSO/E Supplied Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations

	Writing an Exit for the RENUM, MOVE, and COPY Subcommands
	Functional Description
	TSO/E-Supplied Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations
	Possible Uses

	Adding EDIT Subcommands
	Writing a Subcommand of EDIT
	Defining a Subcommand to EDIT

	Allocating Space for the Utility Work Data Sets
	Default Space Allocation
	Controlled Space Allocation

	Chapter 29. Customizing the EXEC Command
	Writing Exits for the EXEC Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 30. Customizing the FREE Command
	Writing Exits for the FREE Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 31. Customizing the PARMLIB Command
	Writing Exits for the PARMLIB Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 32. Customizing the SUBMIT Command and Job Output Processing
	Setting Defaults for Jobs Submitted By TSO/E Users
	Associating Job Classes with Jobs
	Specifying the Number of Jobs That Can Be Read Simultaneously (JES2 Only)
	Specifying Whether Jobs Are Delayed for Processing
	Holding Output Data for Processing

	Customizing How Users Submit Jobs and Process the Output
	Writing an Exit for the SUBMIT Command
	Functional Description
	TSO/E-Supplied Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing an Exit for the OUTPUT, STATUS, and CANCEL Commands
	Functional Description
	TSO/E-Supplied Exit
	TSO/E Sample Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 33. Customizing How Users Print Data Sets
	Defining OUTPUT JCL Statements
	Writing Exits for the OUTDES Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing Exits for the PRINTDS Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 34. Customizing How Users Send and Retrieve Messages
	Defining Installation Defaults for SEND, OPERATOR SEND, and LISTBC
	BROADCAST keyword for IKJTSOxx

	Storing SEND Messages
	Storing Messages in the Broadcast Data Set Only
	Storing Messages in Separate User Logs

	Writing Exits for the SEND, OPERATOR SEND, and LISTBC Commands
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions - Overview
	Parameter Descriptions for the SEND Exits
	Parameter Descriptions for the OPERATOR SEND Exits
	Parameter Descriptions for the LISTBC Exits
	Return Specifications
	Programming Considerations
	Possible Uses
	Processing Messages Sent to the System Operator

	Chapter 35. Customizing the TEST Command
	Adding TEST Subcommands and Command Processors
	Writing a Subcommand of TEST
	Defining a Command or Subcommand to TEST

	Writing Exits for the TEST Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing Exits for Subcommands of the TEST Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 36. Customizing the TESTAUTH Command
	Adding TESTAUTH Subcommands and Command Processors
	Writing Exits for the TESTAUTH Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Writing Exits for Subcommands of the TESTAUTH Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Chapter 37. Customizing TRANSMIT and RECEIVE
	Writing Exits for the TRANSMIT and RECEIVE Commands
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations

	TRANSMIT and RECEIVE NAMES Data Set Pre-allocation Exit — INMCZ21R
	Functional Description
	Parameter Descriptions for INMCZ21R

	TRANSMIT Startup Exit — INMXZ01R or INMXZ01
	Functional Description
	Parameter Descriptions for INMXZ01R
	Parameter Descriptions for INMXZ01

	TRANSMIT Termination Exit — INMXZ02R or INMXZ02
	Functional Description
	Parameter Descriptions for INMXZ02R
	Parameter Descriptions for INMXZ02

	TRANSMIT Encryption Exit — INMXZ03R or INMXZ03
	Functional Description
	Parameter Descriptions for INMXZ03R
	Parameter Descriptions for INMXZ03

	TRANSMIT Log Data Set Pre-Allocation Exit — INMXZ21R
	Functional Description
	Parameter Descriptions for INMXZ21R

	RECEIVE Initialization Exit — INMRZ01 or INMRZ01R
	Functional Description
	Parameter Descriptions for INMRZ01R
	Parameter Descriptions for INMRZ01

	RECEIVE Termination Exit — INMRZ02 or INMRZ02R
	Functional Description
	Parameter Descriptions for INMRZ02R
	Parameter Descriptions for INMRZ02

	RECEIVE Notification Exit — INMRZ04 or INMRZ04R
	Functional Description
	Parameter Descriptions for INMRZ04R
	Parameter Descriptions for INMRZ04

	RECEIVE Acknowledgment Notification Exit — INMRZ05R
	Functional Description
	Parameter Descriptions for INMRZ05R

	RECEIVE Pre-acknowledgment Notification Exit — INMRZ06R
	Functional Description
	Parameter Descriptions for INMRZ06R

	RECEIVE Data Set Pre-Processing Exit — INMRZ11 or INMRZ11R
	Functional Description
	Parameter Descriptions for INMRZ11R
	Parameter Descriptions for INMRZ11

	RECEIVE Data Set Post-Processing Exit — INMRZ12 or INMRZ12R
	Functional Description
	Parameter Descriptions for INMRZ12R
	Parameter Descriptions for INMRZ12

	RECEIVE Data Set Decryption Exit — INMRZ13 or INMRZ13R
	Functional Description
	Parameter Descriptions for INMRZ13R
	Parameter Descriptions for INMRZ13

	RECEIVE Post-Prompt Exit — INMRZ15R
	Functional Description
	Parameter Descriptions for INMRZ15R

	RECEIVE Log Data Set Pre-Allocation Exit — INMRZ21R
	Functional Description
	Parameter Descriptions for INMRZ21R

	Text Units and Text Unit Pointer Lists
	Types of Text Units

	Format of Transmitted Data
	Control Record Formats

	Chapter 38. Customizing the TSOLIB Command
	Writing Exits for the TSOLIB Command
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for the Initialization Exit
	Parameter Descriptions for the Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses

	Part 6. Customizing CLIST and REXX Processing
	Chapter 39. Customizing CLIST Processing
	Writing an Exit for Installation-Written Built-in Functions (IKJCT44B)
	Functional Description
	TSO/E-Supplied Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations

	Writing an Exit for Installation-Written Statements (IKJCT44S)
	Functional Description
	TSO/E-Supplied Exit
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations

	Chapter 40. Customizing REXX Processing
	Overview of Customizing REXX Processing
	Language Processor Environments
	TSO/E Address Space
	Non-TSO/E Address Spaces
	Changing the Maximum Number of Language Processor Environments

	Initializing and Terminating a Language Processor Environment
	Characteristics for a Language Processor Environment
	Replaceable Routines
	TSO/E REXX Exits
	Functional Description
	TSO/E-Supplied Exits
	Installation-Supplied Exits
	Entry Specifications
	Parameter Descriptions
	Attention Handling Control Block
	Parameters for the IRXINITX Exit
	Parameters for the Exec Processing Exit for the IRXEXEC Routine
	Return Specifications
	Programming Considerations
	Possible Uses

	Part 7. Support for a REXX Compiler
	Chapter 41. Routines and Interfaces to Support a REXX Compiler
	Overview of Routines and Interfaces to Support a REXX Compiler
	How REXX Identifies a Compiled Exec
	The Compiler Programming Table
	The Compiler Runtime Processor
	Entry Specifications
	Parameters for the Compiler Runtime Processor
	Return Specifications
	Programming Considerations
	Environment

	Compiler Interface Routines
	Compiler Interface Initialization Routine
	Entry Specifications
	Parameter List for the Compiler Interface Initialization Routine
	Return Specifications
	Programming Considerations
	Environment

	Compiler Interface Termination Routine
	Entry Specifications
	Parameter List for the Compiler Interface Termination Routine
	Return Specifications
	Programming Considerations
	Environment

	Compiler Interface Load Routine
	Entry Specifications
	Parameter List for the Compiler Interface Load Routine
	Return Specifications
	Programming Considerations
	Environment

	Compiler Interface Variable Handling Routine
	Entry Specifications
	Parameter List for the Compiler Interface Variable Handling Routine
	Return Specifications
	Programming Considerations
	Environment

	Chapter 42. Programming Routines for a REXX Compiler Runtime Processor
	Overview of Programming Routines for a REXX Compiler Runtime Processor
	Environment for the Programming Routines

	External Routine Search Routine (IRXERS)
	Entry Specifications
	Parameters for IRXERS
	Return Specifications

	Host Command Search Routine (IRXHST)
	Entry Specifications
	Parameters for IRXHST
	Return Specifications

	Exit Routing Routine (IRXRTE)
	Entry Specifications
	Parameters for IRXRTE
	Return Specifications

	Part 8. Session Manager
	Chapter 43. Setting Up a Session Manager Environment
	SYS1.PARMLIB Changes
	VTAM
	TCAM

	Logon Procedure Changes
	Message Handler and Message Control Program Changes (TCAM Only)
	Stage 1 Modifications
	Stage 2 Modifications
	Stage 2 Assembly

	Session Manager Environment Considerations
	Avoiding a System Interlock Condition
	Converting Session Manager CLISTs
	Deleting SYS1.SMLIB

	Chapter 44. Customizing Session Manager
	Stream Definitions
	Stream Definition Descriptions

	Modifying a Default Environment
	Using a CLIST to Modify a Default Environment
	Using AMASPZAP to Modify the Defaults Module
	Changing Stream Definitions

	Providing Multiple Default Environments
	Formatting a Default Environment Module

	Writing Session Manager Exits
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions for Initialization Exit
	Parameter Descriptions for Stream Monitoring Exit
	Parameter Descriptions for Termination Exit
	Return Specifications
	Programming Considerations
	Possible Uses
	Example Initialization Exit

	Part 9. Information Center Facility
	Chapter 45. Preparing the Information Center Facility for Use
	Information Center Facility Structure
	Information Center Facility Libraries
	Changing the Location of Program Libraries
	Identifying CLISTs and REXX Execs to VLF
	Making Products Available
	Products Supported by the Information Center Facility
	General Consideration for all Products
	Considerations for Specific Products

	Creating and Tailoring Application Definitions
	Changing Information Center Facility Defaults
	Changing the System Default ISPF Profile
	Changing the Date Format
	Changing Variables for Names
	Changing Variables for the APPC/MVS Administration Dialog
	Changing Variables for the Interface to GDDM/PGF
	Changing Variables for Education Services
	Changing Variables for Enrollment
	Changing Variables for VS APL, APL2, APLDI-II, and ADRS-II
	Changing Variables for Application Manager

	Making Installation Changes Available
	Deciding the Data Set to Use for Changes
	Concatenating Installation-Developed Products or Services

	Defining Printers to the Information Center Facility
	Making Performance Decisions for Names Service
	Estimating Space Requirements
	Storage Required by Names Service
	Storage Required by Application Manager

	Chapter 46. Customizing the Information Center Facility
	Adding a Product or Service
	General Considerations for Creating Installation Files
	Contents of a Panel Installation File
	Contents of a Function Installation File
	Contents of an Environment Installation File
	Example Using Installation Files when Adding a Service
	Upgrading Installation Files
	Mass Installation File Processing

	Deleting a Product or Service
	Changing a Product or Service
	Creating or Tailoring Application Definitions
	Invoking an Application
	Multiple Level Applications
	Hierarchy Display

	Modifying ICF Start-up and Termination Processing
	Modifying Start-Up Processing
	Modifying Termination Processing

	Adding Commands to the Command Table
	Resynchronizing the Enrollment Default Profiles
	Writing an Exit for ADRS
	Functional Description
	TSO/E-Supplied Exit
	Return Specifications
	Programming Considerations

	Writing an Exit for the ICF Names Service
	Functional Description
	TSO/E-Supplied Exit
	Programming Considerations
	Variable Descriptions

	Writing Exits for Application Manager
	Functional Description
	TSO/E-Supplied Exits
	Entry Specifications
	Parameter Descriptions
	Return Specifications
	Programming Considerations

	Using the ICF Naming Conventions
	Naming Conventions: Applications, Panels, CLISTs, REXX Execs, Skeletons, Tables, and Load Modules
	Naming Conventions: Application Definition Tables and Installation Files
	Naming Conventions: Tutorial Panels
	Naming Conventions: Help for Data Entry Panels and Menus
	Naming Conventions: Messages
	Naming Conventions: Help for Messages

	Application, Panel, CLIST, and REXX Exec Hierarchy
	Menu, Data Entry Panel, and Help Panel Associations

	Chapter 47. Diagnosing Problems with the Information Center Facility
	Displaying the Panel ID
	Activating and Using Trace
	TRACE1 Command — Level 1
	TRACE2 Command — Level 2
	TRACE3 Command — Level 3

	Deactivating Trace

	Part 10. Reference
	Chapter 48. Overview of Facilities for Customizing TSO/E
	ISPF/PDF Macro Statements and Exits
	JES2 Exits and Initialization Statements
	JES3 Exits and Initialization Statements
	MVS Data Sets
	SMF Exits
	SYS1.PARMLIB Members
	TSO/E Macro Statements
	VTAM Exits
	VTAM Statements

	Chapter 49. Macro Syntax
	Coding the Macro Instructions
	IKJBCAST Macro
	Example

	IKJEDIT Macro
	Example

	IKJIFRIF Macro
	Input Requirements
	Register Conventions
	Output
	IKJIFRIF (List Form)
	IKJIFRIF (Execute Form)
	The IKJIFRIF Parameter List
	Return Codes from IKJIFRIF
	Example 1
	Example 2
	Example 3

	IKJTSO Macro
	Example

	INMEND Macro
	INMNODE Macro
	INMXP Macro
	Example

	Part 11. Appendixes
	Appendix A. Executing the Terminal Monitor Program
	Writing JCL for Command Execution
	Considerations for Executing Commands in the Background
	Considerations for Programs That Invoke the TMP

	Appendix B. Example Logon Pre-Prompt Exit IKJEFLD
	Appendix C. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

