
z/OS

UNIX System Services
Parallel Environment:
Operation and Use

SA22-7810-00

���

z/OS

UNIX System Services
Parallel Environment:
Operation and Use

SA22-7810-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix G.
Notices” on page 303

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01), and to all subsequent releases and modifications
until otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM® welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or
you may address your comments to the following address:

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 3248
Schönaicher Str. 220
71032 Böblingen
Germany

FAX (Germany): 07031-16-3456
FAX (Other Countries):

Your International Access Code +49-7031-16-3456

Internet e-mail: s390id@de.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

Permission to copy without fee all or part of MPI: A Message Passing Interface Standard, Version 1.1 by Message
Passing Interface Forum is granted, provided the University of Tennessee copyright notice and the title of the
document appear, and notice is given that copying is by permission of the University of Tennessee. ® 1993, 1995
University of Tennessee, Knoxville, Tennessee.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables vii

Figures ix

About this book xi
Who should use this book xi
How this book is organized xi

Overview of contents xi
Document conventions xii

National Language Support. xiv
z/OS Migration Information. xv

Chapter 1. Introduction 1

Chapter 2. Preparing to use POE 3
Customizing INETD and setting up the Partition
Daemon 3

Configuring the inetd.conf file 3
Configuring the services file 3
Customizing Your Code Page for pmd. 3
WLM Support setup 3

Access 4
Host list file 4
Scheduling environments 5
WLM Multi-system Enclaves 5
Restrictions in security environments 6

Chapter 3. Getting started with POE . . 7
The Parallel Operating Environment 7
Starting the POE 7
Running simple commands 7
Compiling and running a simple parallel application 10
Getting a little more information 11

Most likely needed POE options 13

Chapter 4. Executing parallel programs 15
Executing parallel programs using POE 15

Step 1: Compile the program 15
Step 2: Copy files to individual nodes 16
Step 3: Set up the execution environment . . . 16
Step 4: Start the X-Windows analysis tool . . . 24
Step 5: Invoke the executable 25

Controlling program execution 30
Specifying develop mode 31
Making POE ignore arguments 31
Managing standard input, output, and error . . 32

Chapter 5. Managing POE jobs 41
Stopping a POE job. 41
Cancelling and killing a POE job 41
Detecting remote node failures 41
Asynchronous Interrupts support 41

Using MP_CSS_INTERRUPT 41
Support for Performance Improvements 42

Parallel file copy utilities 44

Chapter 6. Monitoring program
execution 45
Step 1: Call PM Array parallel utility functions . . 46
Step 2: Compile the program 46
Step 3: Set up your X-Windows environment . . . 46
Step 4: Set the number of lights. 47
Step 5: Open the PM Array window 47
Step 6: Invoke the program and monitor its
execution 48

Displaying details of a light 48
Displaying task output 48

Step 7: Close the PM Array window 49

Chapter 7. Techniques for creating
parallel programs 51
Message passing. 51
Data decomposition 52

Functional decomposition 58
Duplication versus redundancy. 61

Chapter 8. Programming
considerations for user applications in
POE 63
Environment overview 63
User authentication 63
Exit status 64
POE job-step function 65
POE additions to the user executable 65

Initialization user exits CEEBXITA and CEEBINT 65
Signal Handlers 65

Limitations in setting the thread stacksize 67
Do not hard code file descriptor numbers 67
POE gets control first and handles process
initialization 67
Termination of a parallel job 67
Your program cannot run as root 67
Forks are limited 68
Shell execution 68
Do not rewind stdin, stdout or stderr. 68
Ensuring that string arguments are passed to your
program correctly 68
Network tuning considerations 68
Standard I/O requires special attention 69

STDIN/STDOUT piping example 69
Program and thread termination 70
Other thread-specific considerations 70

Order requirement for system includes 70
MPI_Init 70
Collective communications 71

Reserved environment variables 71
Message catalog considerations 71
MPI-IO Requires Shared HFS To Be Used Effectively 71

© Copyright IBM Corp. 1997, 2001 iii

Using Shared Memory. 71

Chapter 9. Debugging 73
Messages 73

Message catalog errors. 73
Finding messages 73
Logging POE errors to a file 74
Message format 74

Cannot compile a parallel program 74
Cannot start a parallel job 75
Cannot execute a parallel program 76
The program runs but... 77

Debugging your parallel program 77
No output at all 78
It hangs 78
Let us attach the debugger 81
Other hang-ups 87
Bad output 88

Debugging and Threads 88
Keeping an eye on progress 89

Chapter 10. Using the pdbx debugger 93
pdbx subcommands 93
Starting the pdbx debugger 96

Normal mode 96
Attach mode 99
Attach screen 99

Loading the partition with the load subcommand 101
Displaying tasks and their states 102
Grouping tasks 103
Controlling program execution 110
Examining program data 117
Other key features. 120
Other important notes on pdbx 124
Exiting pdbx 124

Chapter 11. Using the pedb debugger 127
Setting up the debugger environment 127

Setting up your X-Window environment . . . 127
Be aware of storage requirements. 128
Setting up the pedb.ad file 128

Starting the pedb debugger. 128
Normal mode 128
Attach mode 130
Attach window. 131

The pedb main window 134
Loading the partition from the Load Executables
window 135

Program search path 136
The pedb window with a partition loaded. . . 138

Appendix A. Parallel Environment
commands 185
mcp 186
mcpgath 188
mcpscat 192
mpcc/mpCC 195
pdbx 197
pdbx alias subcommand. 202
pdbx assign subcommand 204

pdbx attach subcommand 205
pdbx back subcommand. 206
pdbx case subcommand 207
pdbx catch subcommand 208
pdbx condition subcommand 209
pdbx cont subcommand 210
pdbx dbx subcommand 211
pdbx delete subcommand 212
pdbx detach subcommand 213
pdbx dhelp subcommand 214
pdbx display memory subcommand. 215
pdbx down subcommand 216
pdbx dump subcommand 217
pdbx file subcommand 218
pdbx func subcommand 219
pdbx goto subcommand 220
pdbx gotoi subcommand 221
pdbx group subcommand 222
pdbx halt subcommand 224
pdbx help subcommand 225
pdbx hook subcommand 226
pdbx ignore subcommand 227
pdbx list subcommand 228
pdbx listi subcommand 230
pdbx load subcommand 231
pdbx map subcommand 232
pdbx mutex subcommand 233
pdbx next subcommand 234
pdbx nexti subcommand 235
pdbx on subcommand 236
pdbx print subcommand 238
pdbx quit subcommand 239
pdbx registers subcommand 240
pdbx return subcommand 241
pdbx search subcommand 242
pdbx set subcommand 243
pdbx sh subcommand 244
pdbx skip subcommand 245
pdbx source subcommand 246
pdbx status subcommand 247
pdbx step subcommand 248
pdbx stepi subcommand 249
pdbx stop subcommand 250
pdbx tasks subcommand 252
pdbx thread subcommand 253
pdbx trace subcommand 254
pdbx unalias subcommand 256
pdbx unhook subcommand. 257
pdbx unset subcommand 258
pdbx up subcommand 259
pdbx use subcommand 260
pdbx whatis subcommand 261
pdbx where subcommand 262
pdbx whereis subcommand 263
pdbx which subcommand 264
pedb 265
pmarray 268
poe 270
poekill. 281

iv z/OS UNIX System Services PE: Operation and Use

Appendix B. POE environment
variables and command-line flags . . 283

Appendix C. Command-line flags for
Normal or Attach Mode 291

Appendix D. MPI safety 293
Safe MPI coding practices 293

What is a safe program?. 293
Some general hints and tips 293
Order 293
Progress 294
Fairness 294
Resource limitations 295

Appendix E. Copying Parallel
Environment Executables in a
Security Environment 297

Appendix F. Migration and
Multi-release Compatibility 299
Parallel Environment Compatibility 299
Parallel Environment Releases 299
Principles of Multi-release Compatibility 299

Installing a Back-level Release 300
Installing a Back-level poe 300
Installing a Back-level pmd. 300
Installing a Back-level ppe.dll 301

Running a Back-level Release of Parallel
Environment 301
Multi-release Compatibility for Statically Linked
Programs 302
Servicing Back-level Parallel Environment Releases 302

Appendix G. Notices 303
Trademarks 304
Accessing Licensed Books on the Web 305
LookAt System for Online Message Lookup . . . 305

Bibliography. 307
Related publications 307

Parallel Environment publications 307
Related z/OS publications 307
Related non-IBM publications 307

Glossary of terms and abbreviations 309

Index 315

Contents v

vi z/OS UNIX System Services PE: Operation and Use

Tables

1. Context insensitive pdbx subcommands 94
2. Context sensitive pdbx subcommands. . . . 94
3. Debugger option flags (pdbx) 97
4. Task states 106
5. Debugger option flags (pedb) 130
6. Status codes 143
7. Control buttons 144
8. Removing breakpoints 150
9. Removing tracepoints 155

10. Default color scheme 181
11. POE environment variables and

command-line flags for Partition Manager
control 284

12. POE environment variables and
command-line flags for job specification . . 285

13. POE environment variables and
command-line flags for I/O control 286

14. POE environment variables and
command-line flags for diagnostic
information 287

15. POE environment variables and
command-line flags for Message Passing
Interface (MPI) 289

16. Other POE environment variables and
command-line flags 290

17. Command-line flags for Normal or Attach
Mode 291

18. Relation between OS releases, Parallel
Environment releases and PTF’s 299

© Copyright IBM Corp. 1997, 2001 vii

viii z/OS UNIX System Services PE: Operation and Use

Figures

1. Output from C-program compiled with mpcc 11
2. The Program Marker Array 45
3. Formula for sine function 59
4. Formula for partial term 61
5. Attach Dialog window 82
6. pedb main window 83
7. Getting additional information about a task 84
8. Global Data window 85
9. Program Marker Array. 90

10. pdbx Attach screen 100
11. Relationship between home node (pdbx) and

remote tasks (dbx processes) 106
12. pedb Attach window 132
13. pedb main window before the partition is

loaded 135
14. Load Executables window 136
15. pedb main window after the partition is

loaded 138

16. Add Group window 141
17. Overflow icon 159
18. Variable Viewer icon 159
19. Variable Viewer window 160
20. Threads Viewer window 162
21. Array Subrange window 168
22. Application Message Queues window 170
23. Select Filters window 172
24. Task Message Queue window 173
25. Point to Point Message Details window 175
26. Send/Receive Message Details window 175
27. Collective Communications Details window 176
28. Early Arrival Message Details window 176
29. Message Group Information window 177
30. Find window 180

© Copyright IBM Corp. 1997, 2001 ix

x z/OS UNIX System Services PE: Operation and Use

About this book

This book provides guidance for using the z/OS UNIX System Services Parallel
Environment (PE).

The PE introduces new capabilities to enable developers to write and run parallel
UNIX® applications on z/OS®, enabling new applications such as parallel data
mining. Applications running simultaneously now can communicate with one
another. The z/OS UNIX System Services Parallel Environment supports Workload
Manager and takes advantage of the Parallel Sysplex® workload balancing of
resource-intensive applications such as data mining.

The PE consists of two components:
Message Passing Interface (MPI)

The Message Passing Interface is a standard for application communication
in a parallel environment. In this book, you will find information on basic
parallel programming concepts and on the (MPI) standard. You will also
find information about the application development tools that are provided
by PE such as the Parallel Operating Environment.

Parallel Operating Environment (POE)
The POE provides the user with a single-job view for a set of parallel
application processes including two parallel debuggers pdbx and pedb.

This book shows how to use POE’s facilities to compile, run, and analyze parallel
programs. For information on how to write parallel programs, refer to z/OS UNIX
System Services Parallel Environment: MPI Programming and Subroutine Reference.

Who should use this book
This book is designed primarily for end users and application developers. It is also
intended for those who run parallel programs, and some of the information that is
covered should interest system administrators.

How this book is organized

Overview of contents
This book contains the following information:
v “Chapter 1. Introduction” on page 1 is a quick overview of the PE. It describes

the various PE components, and how you might use each in developing a
parallel application program.

v “Chapter 2. Preparing to use POE” on page 3 contains information on what you
must do before you can use the PE.

v “Chapter 3. Getting started with POE” on page 7 shows you how to start the PE,
how to use simple commands, and how to compile and run a sample parallel
application.

v “Chapter 4. Executing parallel programs” on page 15 describes how to compile
and run parallel programs using the Parallel Operating Environment (POE) in
more detail.

v “Chapter 5. Managing POE jobs” on page 41 describes the tasks involved with
managing POE jobs.

© Copyright IBM Corp. 1997, 2001 xi

v “Chapter 6. Monitoring program execution” on page 45 describes the Program
Marker Array which allows you to monitor program execution online.

v “Chapter 7. Techniques for creating parallel programs” on page 51 covers
parallelization techniques and discusses their advantages and disadvantages.

v “Chapter 8. Programming considerations for user applications in POE” on
page 63 contains various information for user applications that are written to run
under the PE.

v “Chapter 9. Debugging” on page 73 tells you about common problems you
might run into, and what to do about them.

v “Chapter 10. Using the pdbx debugger” on page 93 describes the pdbx debugger.
This debugger extends the dbx debugger’s line-oriented interface and
subcommands.

v “Chapter 11. Using the pedb debugger” on page 127 describes the pedb
debugger, which is designed to debug parallel C applications.

v “Appendix A. Parallel Environment commands” on page 185 contains detailed
descriptions of the PE commands that are discussed throughout this book.

v “Appendix B. POE environment variables and command-line flags” on page 283
describes the environment variables you can set to influence the running of
parallel programs. This appendix also describes the command-line flags that are
associated with each of the environment variables. When starting a parallel
program, you can use these flags to override the value of an environment
variable.

v “Appendix C. Command-line flags for Normal or Attach Mode” on page 291 lists
the poe command-line flags that pdbx and pedb use.

v “Appendix D. MPI safety” on page 293 provides you with some general
guidelines for creating safe parallel MPI programs.

v “Appendix E. Copying Parallel Environment Executables in a Security
Environment” on page 297 describes which actions should be taken after the PE
executables were copied. These actions are only necessary when a security
environment exists.

v “Appendix F. Migration and Multi-release Compatibility” on page 299 provides
information how to simultaneously run older PE releases and the standard
release installed on each system.

Note on terminology
z/OS UNIX System Services Parallel Environment is the official name of the
function. The abbreviation used in this book for the function is PE.

The UNIX System Services were formerly called OpenEdition®.

Document conventions
This manual uses visual cues to help you locate and identify information quickly
and easily. The highlighting conventions used in this book are outlined in the
following table.

xii z/OS UNIX System Services PE: Operation and Use

Typographic Usage

Bold v Bold words or characters represent system elements that you must use literally, such as
commands, flags, and path names.

v Bold words also indicate the first use of a term included in the glossary.

Italic v Italic words or characters represent variable values that you must supply.

v Italics are also used for book titles and for general emphasis in text.

Constant width Examples and information that the system displays appear in constant width typeface.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and syntax descriptions.

| A vertical bar separates items in a list of choices. (In other words, it means “or”.)

< > Angle brackets (’less than’ and ’greater than’) enclose the name of a key on the keyboard. For
example, <Enter> refers to the key on your terminal or workstation that is labeled with the
word Enter.

... An ellipsis indicates that you can repeat the preceding item one or more times.

<EscChar-x> The notation <EscChar-x> indicates a control character sequence. For example, <EscChar-c>
means that you enter the escape character followed by <c>.

Syntax diagrams
This book uses railroad syntax diagrams to illustrate how to use commands. This
is how you read a syntax diagram:

A command or keyword that you must enter (a required command) is displayed
like this:

�� Command ��

An optional keyword is shown below the line, like this:

��
Option

��

A default is shown over the line, like this:

��
Default

��

An item that can be repeated is shown like this:

�� � Repeat ��

About this book xiii

National Language Support
For National Language Support (NLS), PE components display messages that are
located in externalized message catalogs. English versions, as well as Japanese
versions, of the message catalogs are shipped as part of z/OS UNIX System
Services, but users can use their own translated message catalogs. The UNIX
System Services environment variable NLSPATH is used by the various PE
components to find the appropriate message catalog. NLSPATH specifies a list of
directories to search for message catalogs. The directories are searched, in the order
listed, to locate the message catalog. In resolving the path to the message catalog,
NLSPATH is affected by the values of the environment variables LC_MESSAGES
and LANG.

The shipped message catalogs in English, for example, are activated through:
ENTER export NLSPATH=/usr/lib/nls/msg/%L/%N

export LANG=C

The default message catalogs are located in the following directories:
/usr/lib/nls/msg/C (English)
/usr/lib/nls/msg/Ja_JP (Japanese)

The default message catalogs in /usr/lib/nls/msg/C must not be deleted, even if
the user provides customized translated message catalogs. They contain default
messages which are used in case a message cannot be found in the customized
translated message catalogs.

For further information on National Language Support, see “Customizing Your
Code Page for pmd” on page 3.

xiv z/OS UNIX System Services PE: Operation and Use

z/OS Migration Information
This section is intended for customers migrating from PE releases of OS/390
V2R4-V2R8 to z/OS V1R1. It contains specific information on some differences
between earlier releases that you need to consider prior to using z/OS Parallel
Environment.

Existing applications: Applications from previous versions of Parallel Environment
are binary compatible with z/OS Parallel Environment with the following
exceptions:
v In order to run under z/OS Parallel Environment, you must re-link any statically

bound applications that were created with releases of OS/390 V2R4-V2R8.
v User profiling applications which have been compiled with V2R4-V2R6 Parallel

Environment must be recompiled with z/OS PE using the option -p of
mpcc/mpCC.

Multi-release Compatibility: For information on Multi-release Compatibility, see
“Appendix F. Migration and Multi-release Compatibility” on page 299.

Hex floating point: z/OS Parallel Environment supports only programs compiled
for z/OS Hex floating point. IEEE floating point is not supported at the moment.

Further information: Refer to the z/OS UNIX System Services Planning manual for
additional migration information.

About this book xv

xvi z/OS UNIX System Services PE: Operation and Use

Chapter 1. Introduction

PE is a distributed memory message passing system which runs in the UNIX
System Services (also known as OpenEdition) environment of OS/390 V2R9.
Specifically, PE can be used to develop and run parallel programs on:
v A single multi processor system
or
v a parallel sysplex
or
v on network (TCP/IP) connected systems.

The S/390® processors of your system are called processor nodes. A parallel program
executes as a number of individual, but related, parallel tasks on a number of
processor nodes. The group of parallel tasks is called a partition.

PE supports the two basic parallel programming models – SPMD and MPMD. In
the SPMD (Single Program Multiple Data) model, the programs running the parallel
tasks of your partition are identical. The tasks, however, work on different sets of
data. In the MPMD (Multiple Program Multiple Data) model, each node may be
running a different program. A typical example of this is the master/worker
MPMD program. In a master/worker program, one task – the master – coordinates
the execution of all the others – the workers.

The application developer begins by creating a parallel program’s source code. The
application developer might create this program from scratch or could modify an
existing serial program. In either case, the developer places calls to Message
Passing Interface (MPI) routines so that it can run as a number of parallel tasks.
This is known as parallelizing the application.

The message passing calls enable the parallel tasks of your partition to
communicate data and coordinate their execution. The message passing routines in
turn call communication subsystem library routines which handle communication
among the processor nodes. The communication subsystem library is implemented
using the User Datagram Protocol (UDP) or possibly shared memory, if processes
run on the same node.

After writing the parallel program, the application developer then begins a cycle of
modification and testing. The application developer now compiles and runs the
program from the home node using the Parallel Operating Environment (POE).
The home node can be any z/OS system in a parallel sysplex that has the UNIX
System Services configured. POE is an execution environment designed to hide, or
at least smooth, the differences between serial and parallel execution.

In general, with POE, you invoke a parallel program from your home node and
run its parallel tasks on a number of remote nodes. When you invoke a program
on your home node, POE starts your Partition Manager which allocates the nodes
of your partition and initializes the local environment. Depending on your
hardware and configuration, the used nodes can be defined either explicitly with a
host list file or implicitly which means that all available nodes in a Sysplex may
be used. There exist two possible allocation schemes: one uses Round-Robin
scheme and the other is based on actual WLM capacity data.

© Copyright IBM Corp. 1997, 2001 1

For Single Program Multiple Data (SPMD) applications the Partition Manager
executes the same program on all nodes. For Multiple Program Multiple Data
(MPMD) applications, the Partition Manager prompts you for the name of the
program to load on each node. The Partition Manager connects the standard I/O
streams to each remote node so the parallel tasks can communicate with the home
node. Although you are running tasks on remote nodes, POE allows you to
continue using the standard System Services execution techniques. For example,
you can redirect input and output, pipe the output of programs, or use shell tools.
The POE includes:
v A number of parallel compiler scripts. These are shell scripts that call the C or

C++ compilers while also linking in an interface library to enable
communication between your home node and the parallel tasks running on the
remote nodes. You dynamically link in a communication subsystem
implementation when you invoke the executable.

v A number of POE environment variables you can use to set up your execution
environment. These are System Services environment variables you can set to
influence the operation of POE. These environment variables control such things
as how processor nodes are allocated, and how standard I/O between the home
node and the parallel tasks should be handled. Most of the POE environment
variables also have associated command-line flags that enable you to
temporarily override the environment variable value when invoking POE and
your parallel program.

v Two parallel debugging facilities. The first – pdbx – is a line oriented debugger
based on the dbx debugger. The other – pedb – is a Motif based debugger.

v The Program Marker Array. This is a programmable array of small boxes, or
lights, which are associated with parallel tasks. Under program control, these
lights can change color to provide you with immediate visual feedback as your
program executes. See page “Step 5: Open the PM Array window” on page 47
for a description how to use this tool.

2 z/OS UNIX System Services PE: Operation and Use

Chapter 2. Preparing to use POE

This chapter describes what must be done before you can use POE.

Customizing INETD and setting up the Partition Daemon
The system administrator must configure the inetd daemon so it can start the
Partition Manager Daemon (pmd) when requests from a Parallel Environment
home node arrive on a system.

Configuring the inetd.conf file
You must add the following line to the /etc/inetd.conf file on all remote nodes:
pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd

Configuring the services file
You must add the following line to the /etc/services file on the home node, and
on all remote nodes:
pmv2 6125/tcp # POE Partition Manager Daemon

You can select a different port number, but the number must be the same on all
nodes.

Customizing Your Code Page for pmd
National Language support: If your site is using its own translation of message
catalogs, you need to configure inetd with your settings of the LANG and
NLSPATH environment variables. This setting enables pmd to write error
messages and warnings to its log-files in the defined language. If you keep the
default setting, the messages will be English.

For example to set up Japanese error messages for pmd, do the following (you
need super user authority):
v Create a shell script, e.g. in /bin/pmd_Ja_JP:

#!/bin/sh
LANG=Ja_JP NLSPATH=/usr/lib/nls/msg/%L/%N /bin/pmd

v Ensure that the shell script is executable by inetd

v Modify the following entry in /etc/inetd.conf
pmv2 stream tcp nowait OMVSKERN /bin/pmd_Ja_JP pmd_Ja_JP

v Force inetd to read the new setting:
> kill -HUP <inetd pid>

For further information on NLS, see “National Language Support” on page xiv.

WLM Support setup
Refer to the manual z/OS UNIX System Services Planning, GA22-7800.

© Copyright IBM Corp. 1997, 2001 3

Access
Before you can run your job, you must first have access to the compute resources
in your system. Here are some things to think about:
v You must have the same user ID and password on the home node and each

remote node on which you will be running your parallel application.
v POE will not allow you to run your application as root.

Each user must have an account on all nodes where a job runs. The user name, the
user ID, and the password must be the same on all nodes. Also, the user must be a
member of the same named group on the home and the remote nodes. For more
details about how user authentication is handled, see “User authentication” on
page 63.

Host list file
One way to tell POE where to run your program is by using a host list file. The
host list file is generally in your current working directory, but you can move it
anywhere you like by specifying certain parameters. This file can be given any
name, but the default name is host.list. Many people use host.list as the name to
avoid having to specify another parameter (as we will discuss later).

This file contains either Transmission Control Protocol (TCP) host names, Internet
Protocol (IP) addresses, or MVS system names. The specified identifier is used for
communication with the inetd server, that is, it must be resolvable to an IP address
through the TCP/IP Domain Name Servers or the local TCP/IP HOSTS file.

A host list file consists of pin entries and pool entries. Each line in a host list file is
to be considered as one entry. Pin entries are used for specific allocation and
consist of a host name followed by a list of task numbers. It is possible to directly
map task numbers to nodes with specific allocation.

Pool entries are used for automatic allocation. A pool entry consists of a single
node name in the host list file. After specific allocation is done, all pool entries are
used for automatic allocation to allocate nodes for the remaining tasks. There are
two modes for automatic allocation - the Round-Robin mode (RR mode) and the
Workload manager mode (WLM mode). While using the WLM mode in a Sysplex
the automatic allocation is based on actual capacity data.

Here is an example of a host list file that specifies both pin and pool entries:
! Pin entries:
9.164.156.194 0 1
boesys1.sw.boeblingen.ibm.com 4
! Pool entries:
boesys1.sw.boeblingen.ibm.com
boesys2.sw.boeblingen.ibm.com

Using this host list file would execute tasks 0 and 1 on ″9.164.156.194″ and task 4
on ″boesys1.sw.boeblingen.ibm.com″. The remaining tasks would be distributed in
automatic allocation either in WLM mode or RR mode (depending on the setting
of MP_RESD).

When using WLM mode the pool entries in the host list file must serve two
purposes: they must be valid MVS system names, and they must also be known to
TCP/IP as TCP names. You can resolve the name restriction problem by defining

4 z/OS UNIX System Services PE: Operation and Use

your MVS system names as aliases in the Domain Name Servers or the HOSTS file,
respectively. That way, you can then always use the MVS system names.

Here’s an example of a host list file that specifies the MVS names of four systems
in a sysplex:
!pool list
SYS1
SYS2
SYS3
SYS4

The corresponding entries in the local TCP/IP HOSTS file look like this:
9.164.156.191 boesys1.sw.boeblingen.ibm.com SYS1 BOESYS1
9.164.156.192 boesys2.sw.boeblingen.ibm.com SYS2 BOESYS2
9.164.156.193 boesys3.sw.boeblingen.ibm.com SYS3 BOESYS3
9.164.156.194 boesys4.sw.boeblingen.ibm.com SYS4 BOESYS4

If you use automatic allocation without a host list file, all systems in the sysplex
participate in automatic allocation. The host list file allows you to prevent parallel
jobs from running on certain systems, for example, systems running key
production applications.

Scheduling environments
Another method of distributing your work across the nodes is to use WLM
Resource Affinity Scheduling. Resource Affinity Scheduling allows you to define a
set of resources, known as a scheduling environment, that a job needs in order to
execute and to control the state of each resource for each individual system.

For example, a batch job submitted to JES can have a scheduling environment
specified in the JCL. The job is scheduled to run on a system where the scheduling
environment resources are in the correct state.

If you want to use Resource Affinity Scheduling, you must:
v Add new scheduling environment and resource names (done by a system

programmer)
v Set the states of additional resources (done by an MVS operator)
v Give the POE user read access to the BPX.WLMSERVER facility class:

PERMIT BPX.WLMSERVER ACCESS(READ) CLASS(FACILITY) ID(<user>)

WLM Multi-system Enclaves
The WLM Multi-system Enclave support of PE allows a parallel PE job to run
under a single WLM Multi-system Enclave. If all tasks of a POE job are in the
same enclave, WLM recognizes that all tasks are part of the same work request
and therefore make better decisions in making performance adjustments affecting
the POE job. For detailed information on the concept of WLM Multi-system
enclaves and for configuration details, please refer to z/OS MVS Planning: Workload
Management.

If you want to use WLM Multi-system enclaves, you must give the userid,
associated to the PMD (e.g. OMVSKERN) read access to the BPX.WLMSERVER
facility class:
PERMIT BPX.WLMSERVER ACCESS(READ) CLASS(FACILITY) ID(<user>)

Note: The userid associated to the PMD is specified in the /etc/inetd.conf file.

Chapter 2. Preparing to use POE 5

The second prerequisite is that the Coupling Facility structure
SYSWLM_WORKUNIT must be defined. Refer to the manual z/OS MVS Planning:
Workload Management for a detailed description of the definition. The z/OS system
command ″DISPLAY WLM″ can be used to verify that WLM is connected to this
structure.

Note: Do not use UNIX System Services aliases for MVS user Ids when working
with MVS Multi-System enclaves.

Restrictions in security environments
In a security environment where the BPX.DAEMON facility class is defined, every
parallel application that is built with the compile script mpcc or mpCC, for
example
mpcc -o hello hello.c

must run in its own address space.

Therefore, if the application shall be started by its name, for example
hello

the environment variable _BPX_SHAREAS must be unset or set to no.

If _BPX_SHAREAS is set to yes, the owner of the application (or the super user)
must unset the ’share address space’ attribute of the application, for example
extattr -s hello

before the parallel application can be called.

Alternatively, the user can use the poe command to start parallel applications, for
example
poe hello

without setting the ’share address space’ attribute of the application.

If _BPX_SHAREAS is not set or set to no, there are no restrictions for calling the
application program.

The reason for the restriction mentioned above is that each program compiled with
mpcc or mpCC internally executes poe, which is program-controlled.

6 z/OS UNIX System Services PE: Operation and Use

Chapter 3. Getting started with POE

This chapter describes:
v The Parallel Operating Environment (POE)
v Starting the POE
v Running simple commands
v Compiling and running a simple parallel application
v Environment setup and debugging

The Parallel Operating Environment
This chapter describes the Parallel Operating Environment (POE). POE is designed
to ease the transition from serial to parallel application development and
execution.

The purpose of the Parallel Operating Environment (POE) is to allow you to
develop and execute your parallel applications across multiple processors, called
nodes. When using POE, there is a single node (a UNIX System Services system)
called the home node that manages interactions with users. POE transparently
manages the allocation of remote nodes, where your parallel application actually
runs. It also handles the various requests and communication between the home
node and the remote nodes via the underlying network.

Starting the POE
The poe command enables you to load and execute programs on remote nodes.
The syntax is:

�� poe
program options

��

When you call poe from the command line, you are prompted for your password.

When you call poe, it allocates processor nodes for each task and initializes the
local environment. It then loads your program and reproduces your local shell
environment on each processor node. POE also passes the user program arguments
to each remote node.

The exact description of the command is in “Appendix A. Parallel Environment
commands” on page 185.

Running simple commands
Let us try some simple examples. When you try these examples on your system,
use a host list file that contains the node names. These examples also assume at
least a four-node parallel environment. If you have more than four nodes, feel free
to use more. If you have less than four nodes, write the names of the available
systems to the host list file. This example assumes that your file is called host.list,
and is in the directory from which you are submitting the parallel job. If either of

© Copyright IBM Corp. 1997, 2001 7

these conditions are not true, POE will not find the host list file unless you use the
-hostfile option (covered on page “-hostfile or -hfile” on page 14).

The -procs 4 option tells POE to run this command on four nodes. If no other POE
options are set, it will use the first four in the host list file.
$ poe id -procs 4

Enter password:
uid=2715(MOST) gid=3243(DE#03243)
uid=2715(MOST) gid=3243(DE#03243)
uid=2715(MOST) gid=3243(DE#03243)
uid=2715(MOST) gid=3243(DE#03243)

If less than four systems are in the host list file, the available systems will be used
in Round-Robin order.

What you see is the output from the id command run on each of the remote nodes.
POE has taken care of submitting the command to each node, collecting the
standard output and standard error from each remote node, and sending it back to
your workstation. One thing that you do not see is which task is responsible for
each line of output. In a simple example like this, it is not that important but if
you had many lines of output from each node, you’d want to know which task
was responsible for each line of output. To do that, you use the -labelio option:
$ poe id -procs 4 -labelio yes

Enter password:
0:uid=2715(MOST) gid=3243(DE#03243)
1:uid=2715(MOST) gid=3243(DE#03243)
2:uid=2715(MOST) gid=3243(DE#03243)
3:uid=2715(MOST) gid=3243(DE#03243)

This time, notice how each line starts with a number and a colon? Notice also that
the numbering started at 0 (zero). The number is the task id that the line of output
came from (it is also the line number in the host list file that identifies the host
which generated this output). Now we can use this parameter to identify lines
from a command that generates more output.

Try this command:
$ poe cat /etc/inetd.conf -procs 2 -labelio yes

You should see something similar to this:
Enter password:

0:#
0:# /etc/inetd.conf
0:#
0:#
0:# INTERNET SERVER CONFIGURATION DATABASE
0:#
0:#==
0:# ! ! ! ! ! !
0:# service ! socket ! protocol ! wait/ ! user ! server ! server prog.
0:# name ! type ! ! nowait ! ! prog. ! arguments
0:# ! ! ! ! ! !
0:#==
0:#
0:shell stream tcp nowait OMVSKERN /usr/sbin/rshd rshd

8 z/OS UNIX System Services PE: Operation and Use

0:login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
0:exec stream tcp nowait OMVSKERN /usr/sbin/rexecd rexecd
0:otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
1:#
1:# /etc/inetd.conf
1:#
1:#
1:# INTERNET SERVER CONFIGURATION DATABASE
1:#
1:#==
1:# ! ! ! ! ! !
1:# service ! socket ! protocol ! wait/ ! user ! server ! server prog.
1:# name ! type ! ! nowait ! ! prog. ! arguments
1:# ! ! ! ! ! !
1:#==
1:#
1:shell stream tcp nowait OMVSKERN /usr/sbin/rshd rshd
1:login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
1:exec stream tcp nowait OMVSKERN /usr/sbin/rexecd rexecd
1:otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
0:daytime stream tcp nowait OMVSKERN internal
0:time stream tcp nowait OMVSKERN internal
0:# Entry for the POE Partition Manager Daemon
0:pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd
1:daytime stream tcp nowait OMVSKERN internal
1:time stream tcp nowait OMVSKERN internal
1:# Entry for the POE Partition Manager Daemon
1:pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd

The cat command is listing the contents of the file /etc/inetd.conf on each of the
remote nodes. But notice how the output from each of the remote nodes is
intermingled? This is because as soon as a buffer is full on the remote node, POE
sends it back to your home node for display (in case you had any doubts that
these commands were really being executed in parallel). The result is the jumbled
mess that can be difficult to interpret. Fortunately, we can ask POE to clear things
up with the -stdoutmode parameter.

Try this command:
$ poe cat /etc/inetd.conf -procs 2 -labelio yes -stdoutmode ordered

You should see something similar to this:
Enter password:

0:#
0:# /etc/inetd.conf
0:#
0:#
0:# INTERNET SERVER CONFIGURATION DATABASE
0:#
0:#==
0:# ! ! ! ! ! !
0:# service ! socket ! protocol ! wait/ ! user ! server ! server prog.
0:# name ! type ! ! nowait ! ! prog. ! arguments
0:# ! ! ! ! ! !
0:#==
0:#
0:shell stream tcp nowait OMVSKERN /usr/sbin/rshd rshd
0:login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
0:exec stream tcp nowait OMVSKERN /usr/sbin/rexecd rexecd
0:otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
0:daytime stream tcp nowait OMVSKERN internal
0:time stream tcp nowait OMVSKERN internal
0:# Entry for the POE Partition Manager Daemon

Chapter 3. Getting started with POE 9

0:pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd
1:#
1:# /etc/inetd.conf
1:#
1:#
1:# INTERNET SERVER CONFIGURATION DATABASE
1:#
1:#==
1:# ! ! ! ! ! !
1:# service ! socket ! protocol ! wait/ ! user ! server ! server prog.
1:# name ! type ! ! nowait ! ! prog. ! arguments
1:# ! ! ! ! ! !
1:#==
1:#
1:shell stream tcp nowait OMVSKERN /usr/sbin/rshd rshd
1:login stream tcp nowait OMVSKERN /usr/sbin/rlogind rlogind -m
1:exec stream tcp nowait OMVSKERN /usr/sbin/rexecd rexecd
1:otelnet stream tcp nowait OMVSKERN /usr/sbin/otelnetd otelnetd -k -t
1:daytime stream tcp nowait OMVSKERN internal
1:time stream tcp nowait OMVSKERN internal
1:# Entry for the POE Partition Manager Daemon
1:pmv2 stream tcp nowait OMVSKERN /bin/pmd pmd

This time, POE keeps all the output until the jobs either finish or POE itself runs
out of space. If the jobs finish, POE displays the output from each remote node
together. If POE runs out of space, it prints everything, and then starts a new page
of output. You get less of a sense of the parallel nature of your program, but it is
easier to understand. Note that the -stdoutmode option consumes a significant
amount of system resources, which may affect performance.

Compiling and running a simple parallel application
To show you how compiling works, we have selected the Hello World program,
which uses some MPI function calls:
/**
*
* Hello World Example
*
* Basic program to demonstrate compilation
* and execution techniques
*
* To compile:
* mpcc -o hello hello.c
*
**/

#include <mpi.h>
void main()
{

int rank;

MPI_Init(0,0);
MPI_Comm_rank(MPI_COMM_WORLD,&rank;);
printf("Task %i says: Hello, World!\n",rank);
MPI_Finalize();
exit(0);

}

To compile this program, you just invoke the appropriate compiler script:
export MP_VERBOSE=YES
mpcc -o hello hello.c

10 z/OS UNIX System Services PE: Operation and Use

c89 -W c,dll,'LANG(EXTENDED)' -D_THREAD_SAFE -o hello hello.c /usr/lib/pe_CEEBXITA.o \
/usr/lib/pe_CEEBINT.o /usr/lib/ppe.x

mpcc is a POE script that links the parallel libraries which allow your programs to
run in parallel and use MPI calls. The compiler scripts accept all the options that
the non-parallel compilers do, as well as some options specific to POE. For a
complete list of all parallel-specific compilation options, see “Appendix A. Parallel
Environment commands” on page 185.

Running the mpcc script, as we have shown you, creates an executable version of
your source program that takes advantage of POE. However, before POE can run
your program, you need to make sure that it is accessible on each remote node.
You can do this by copying it there.

Getting a little more information
You can control the level of messages you get from POE as your program executes
by using the -infolevel option of POE. The default setting is 1 (normal), which
says that warning and error messages from POE will be written to STDERR.
However, you can use this option to get more information about how your
program executes.

For a description of the various -infolevel settings, see “Appendix B. POE
environment variables and command-line flags” on page 283.

Here is the Hello World program again:
$ poe hello -procs 2 -labelio yes -infolevel 2

You should see output similar to the following:
Enter password:

0:INFO: FOMO0724 Executing program: <hello>
1:INFO: FOMO0724 Executing program: <hello>
0:INFO: FOMO0619 MPCI library was compiled at Thu Oct 7 16:48:11 1999
0:Task 0 says: Hello, World!
1:Task 1 says: Hello, World!
0:INFO: FOMO0306 pm_atexit: pm_exit_value is 0.
1:INFO: FOMO0306 pm_atexit: pm_exit_value is 0.

INFO: FOMO0656 I/O file STDOUT closed by task 0
INFO: FOMO0656 I/O file STDOUT closed by task 1
INFO: FOMO0656 I/O file STDERR closed by task 0
INFO: FOMO0656 I/O file STDERR closed by task 1
INFO: FOMO0251 task 0 exited: rc=0
INFO: FOMO0251 task 1 exited: rc=0
INFO: FOMO0639 Exit status from pm_respond = 0

Here is the output of the C program:

poe hello -procs 4

Enter password:
Task 0 says: Hello, World!
Task 1 says: Hello, World!
Task 2 says: Hello, World!
Task 3 says: Hello, World!

Figure 1. Output from C-program compiled with mpcc

Chapter 3. Getting started with POE 11

With -infolevel set to 2, you see messages from each node that indicate the
executable they’re running and what the return code from the executable is. In the
example above, you can differentiate between the -infolevel messages that come
from POE itself and the messages that come from the remote nodes, because the
remote nodes are prefixed with their task ID. If we didn’t set -infolevel, we would
see only the output of the executable (Hello World!, in the example above),
interspersed with POE output from remote nodes.

With -infolevel set to a higher value (maximum is 6), you get even more
information. In the following example, we use a host list file that contains one pool
entry (BOESYS3), when we invoke POE.

Look at the output, below. In this case, POE tells us that it’s using Round-Robin
allocation mode with a host list (PM_ALLOC_MODE_RR_LIST) and added
BOESYS3 to the pool list. Then we see that POE allocated BOESYS3 (9.164.172.193)
for tasks 0 and 1.
poe hello -procs 2 -labelio yes -infolevel 6

You should see output similar to the following:
Enter password:
INFO: DEBUG_LEVEL changed from 0 to 4
D4<L4>: ALLOC: allocation mode is PM_ALLOC_MODE_RR_LIST
D4<L4>: ALLOC: node BOESYS3 added to pool list
D1<L4>: Requesting service pmv2
D4<L4>: pm_contact: MPL_addr for task 0 is 9.164.172.193
D4<L4>: pm_contact: MPL_addr for task 1 is 9.164.172.193
D1<L4>: Socket file descriptor for task 0 (BOESYS3) is 3
D1<L4>: Socket file descriptor for task 1 (BOESYS3) is 5

.

.

.

D2<L4>: Sending PMD_EXIT to task 0
D2<L4>: Sending PMD_EXIT to task 1
D2<L4>: Elapsed time for pm_remote_shutdown: 5 seconds
D2<L4>: In pm_exit... Calling exit with status = 0 at Tue Oct 19 12:18:30 1999

The -infolevel messages give you more information about what is happening on
the home node, but if you want to see what is happening on the remote nodes,
you need to use the -pmdlog option. If you set -pmdlog to a value of yes, a log is
written to each of the remote nodes that tells you what POE did while running
each task.

If you issue the following command, a file is written in /tmp, of each remote node,
called mplog.pid.taskid.
$ poe hello -procs 4 -pmdlog yes

Note: pid is the process id number of the corresponding pmd (Partition Manager
Daemon). taskid corresponds to the number of the task.

If you don’t know what the process numbers are, it’s probably the most recent log
file (or, if you’re sharing the node with other POE users, one of the most recent log
files).

Here is a part of a sample log file:

12 z/OS UNIX System Services PE: Operation and Use

z/OS USS Parallel Environment pmd version @(#) 97/03/11 11:15:31
The ID of this process is 33554894
The version of this pmd for version checking is 3100
The hostname of this node is BOESYS3
The taskid of this task is 0
HOMENAME: BOESYS3.boeblingen.de.ibm.com
USERID: 2360
USERNAME: HOLZ
GROUPID: 3243
GROUPNAME: DE#03243
PWD: /u/PE390/PUBS_R9/HELLO
PRIORITY: 0
NPROCS: 1
PMDLOG: 1
NEWJOB: 0
PDBX: 0
LIBPATH: /lib:/usr/lib:.:/usr/lib
VERSION (of home node): 3100
WLM_ENCLAVE: 0
ENVC recv'd
envc: 37
envc is 37
env[0] = MAIL=/usr/mail/HOLZ
env[1] = PATH=/bin:/usr/bin:.
env[2] = XENVIRONMENT=/usr/adsm/DSMX
env[3] = EDITOR=emacs
env[4] = SHELL=/bin/sh
env[5] = _C89_SLIB_PREFIX=SYS1
env[6] = _C89_CLIB_PREFIX=SYS1
env[7] = _CXX_PLIB_PREFIX=SYS1
env[8] = PS1=SYS3 $PWD>
env[9] = _CC_PLIB_PREFIX=SYS1
env[10] = _BPX_SPAWN_SCRIPT=YES
env[11] = _=/bin/poe
env[12] = CLASSPATH=.:/local/java/
env[13] = LOGNAME=HOLZ
env[14] = STEPLIB=SYS1.SCLBDLL
env[15] = LANG=C

.

.

.

in pmd signal handler, signal 20
wait status is 00000000
exiting child pid = 33554895
err_data is 0
child exited and all pipes closed
err_data is 0
pmd_exit reached!, exit code is 0

Most likely needed POE options
There are a number of options (command-line flags) that you may want to specify
when invoking POE. These options are covered in full detail in “Appendix A.
Parallel Environment commands” on page 185 but here are the ones you’ll most
likely need to be familiar with at this stage.

-procs
When you set -procs, you are telling POE how many tasks your program will run.
You can also set the MP_PROCS environment variable to do this (-procs can be
used to temporarily override it).

Chapter 3. Getting started with POE 13

-hostfile or -hfile
The default host list file used by POE to allocate nodes is called host.list. You can
specify a file other than host.list by setting the -hostfile or -hfile options when
invoking POE. You can also set the MP_HOSTFILE environment variable to do
this (-hostfile and -hfile can be used to temporarily override it).

-labelio
You can set the -labelio option when invoking POE so that the output from the
parallel tasks of your program is labeled by task id. This becomes especially useful
when you are running a parallel program and your output is unordered. With
labeled output, you can easily determine which task returns which message.

You can also set the MP_LABELIO environment variable to do this (-labelio can
be used to temporarily override it).

-infolevel or -ilevel
You can use the -infolevel or -ilevel options to specify the level of messages you
want from POE. There are different levels of informational, warning, and error
messages, plus several debugging levels. Note that the -infolevel option consumes
a significant amount of system resources. Use it with care. You can also set the
MP_INFOLEVEL environment variable to do this (-infolevel and -ilevel can be
used to temporarily override it).

-pmdlog
The -pmdlog option lets you specify that diagnostic messages should be logged to
a file in /tmp on each of the remote nodes of your partition. These diagnostic logs
are particularly useful for isolating the cause of abnormal termination. You can also
set the MP_PMDLOG environment variable to do this (-pmdlog can be used to
temporarily override it).

-stdoutmode
The -stdoutmode option lets you specify how you want the output data from each
task in your program to be displayed. When you set this option to ordered, the
output data from each parallel task is written to its own buffer, and later, all
buffers are flushed, in task order, to STDOUT. We showed you how this works in
some of the examples in this section. You can also set the MP_STDOUTMODE
environment variable to do this (-stdoutmode can be used to temporarily override
it).

14 z/OS UNIX System Services PE: Operation and Use

Chapter 4. Executing parallel programs

This chapter describes the steps involved in compiling and executing your parallel
C or C++ programs in more detail.

Executing parallel programs using POE
This section discusses how to compile and execute your parallel C or C++
programs. It leaves out the first step in any application’s life cycle which is actually
writing the program. For information on writing parallel programs, refer to
“Chapter 7. Techniques for creating parallel programs” on page 51, and z/OS UNIX
System Services Parallel Environment: MPI Programming and Subroutine Reference.

In order to execute an MPI parallel program, you need to:
1. Compile and link the program using shell scripts or make files which call the C

or C++ compilers while linking in the Partition Manager interface and message
passing subroutines.

2. Copy your executable to the individual nodes in your partition.
3. Set up your execution environment. This includes setting the number of tasks,

and determining the method of node allocation.
4. Start the X-Windows Analysis Tool if you wish to analyze your application.
5. Load and execute the parallel program on the processor nodes of your

partition. You can
v load a copy of the same executable on all nodes of your partition. This is the

normal procedure for SPMD programs.
v individually load the nodes of your partition with separate executables. This

is the normal procedure for MPMD programs.
v load and execute a series of SPMD or MPMD programs, in job-step fashion,

on all nodes of your partition.

Step 1: Compile the program
As with a serial application, you must compile a parallel C or C++ program before
you can run it. Instead of using the c89 or c++ commands, however, you use the
commands mpcc or mpCC. The mpcc and mpCC commands not only compile
your program, but also link in the Partition Manager and Message Passing
Interface. When you later invoke the program, the subroutines in these libraries
enable the home node Partition Manager to communicate with the parallel tasks,
and the tasks with each other.

Note: To enable the MPI-2 C++ bindings mpCC has to be invoked with the ″-cpp″
flag.

These two compiler commands are actually shell scripts which call the appropriate
compiler. You can use any of the c89 or c++ flags on the mpcc and mpCC
commands.

Creating a static executable

Note: We discourage you from creating statically bound executables with POE. If
service is ever applied that affects any of the Parallel Environment libraries,

© Copyright IBM Corp. 1997, 2001 15

you will need to recompile your application to create a new executable that
will work with the new libraries. This could lead to a lot of work and may
expose you to potential problems, which would be avoided if dynamic
libraries are used.

In general, to create a static executable, do the following:
1. Create an object file of your program using c89 or c++ and the compile flags

-D_THREAD_SAFE and -W c,dll,’LANG(EXTENDED)’.
For example:
c89 -D_THREAD_SAFE -W c,dll,'LANG(EXTENDED)' -c myprog.c

Note: Use these compile flags for all modules.
2. Create the executable by linking your program with the POE archive library,

and the POE user initialization exit modules. For statically linking you should
use c++, because the POE archive library includes some C++ modules.
For example:
c++ -o myprog -L/usr/lib myprog.o /usr/lib/pe_CEEBXITA.o /usr/lib/pe_CEEBINT.o -lppe

If you want use c89 for linking you have to modify the environment for the z/OS
C compiler. To do this you have to set the environment variable ’_C89_PSYSLIB’ in
the following way:

export _C89_PSYSLIB="{_PLIB_PREFIX}.SCEEOBJ:{_PLIB_PREFIX}.SCEECPP"

For more information on the ’_C89_PSYSLIB’ environment variable, refer to z/OS
UNIX System Services Command Reference, description of c89 command.

Step 2: Copy files to individual nodes
Once you have generated the executable, you must copy it to all the nodes in the
sysplex. You can do this with the mcp command.

For example, to make a copy of my_program in the /tmp directory to the first six
nodes listed in host.list:

ENTER
mcp my_program /tmp/my_program -procs 6

Note: If you are using a shared filesystem, it is not necessary to copy the
executable.

Step 3: Set up the execution environment
This step contains the following sections:
v “Defining the pin- and pool-list” on page 17
v “Defining the automatic allocation mode” on page 21
v “Defining the partition size” on page 22
v “Examples” on page 22
v “Creating an output host list file” on page 23
v “Setting the MP_WLM_ENCLAVE environment variable” on page 24

16 z/OS UNIX System Services PE: Operation and Use

Note
There are differences to previous releases using the old style node allocation.

In Parallel Environment R9 Process Pinning has been introduced. This
changed the node allocation step in contrast to previous releases. The new
style supersedes and augments the semantics of the old style with the
exception of the following two marginal situations:
v If specifying in the host list file fewer nodes than processes in the parallel

application, an error occurred in the previous releases when using specific
allocation. Now, the Round-Robin scheduling is used, no error occurs.
Therefore it is a valid host list file.

v If MP_HOSTFILE is not defined and no file ″./host.list″ exists, in the
previous releases WLM selection without restrictions was used. Now an
error message will be printed which says that ″./host.list″ could not be
opened.

Before invoking your program, you need to set up your execution environment.
There are a number of POE environment variables discussed throughout this book
and summarized in “Appendix B. POE environment variables and command-line
flags” on page 283. Any of these environment variables can be set at this time to
later influence the execution of parallel programs. This step covers those
environment variables which are most important for successful invocation of a
parallel program. When you invoke a parallel program, your home node Partition
Manager checks these environment variables to determine:
v The way to allocate processor nodes for the parallel tasks:

– Pin- and pool-lists are specified by the MP_HOSTLIST and MP_RMPOOL
environment variables

– The automatic allocation mode is specified by the MP_RESD environment
variable

v The number of tasks in your program as specified by the MP_PROCS
environment variable.

Defining the pin- and pool-list

In a given environment some z/OS systems are available - perhaps in a (parallel)
Sysplex - where poe may run the parallel tasks. Node allocation deals with the
question, on which systems (nodes) poe should run these tasks.

When a parallel job is started, poe numbers the parallel tasks beginning with 0.
Normally it does not matter which task number is mapped to which system, you
only want to parallelize the work and distribute the workload on your systems so
that no system has too much load at a time. In this case you simply define which
systems are available for the parallel program and leave it to poe to do the
mapping of task numbers to systems in a meaningful way. We call this automatic
allocation, because poe automatically performs the mapping between task numbers
and systems. The list where you specify the systems which poe can use for
automatic allocation is called ″pool-list″. In this release poe supports two modes
for automatic allocation. One is the Workload Manager mode (WLM-mode) where
poe allocates systems out of the pool-list according to the actual capacity
information from WLM. The other is called Round-Robin mode (RR mode) where
poe allocates systems from the pool-list in Round-Robin order.

Chapter 4. Executing parallel programs 17

In some cases it is important that special tasks run on specific systems. For
example if the tasks need resources which are not available on all the systems.
Think of local file systems, databases etc. ! So you have to tell poe that a specific
task number has to be mapped to a specific system. This allocation step is called
specific allocation, because you tell poe explicitly where to run some tasks. The list
where the mapping between systems and task numbers is specified is called
″pin-list″.

It is possible to combine both pin- and pool-lists, if only some tasks must run on
specific nodes and it does not matter where exactly the other tasks of the parallel
job run.

To summarize:

POE uses two lists for task allocation:
v The pin-list is used for specific allocation
v The pool-list is used for automatic allocation

Now you know how poe does the mapping of task numbers to systems. In the
following we describe how you define the contents of the pin- and the pool-list.
There exist three possibilities to specify the two lists. These possibilities can be
chosen by the user through specifying MP_HOSTFILE and MP_RMPOOL
environment variables or the ″-hostfile″ and ″-rmpool″ poe commandline flags.

Possibilities to specify pin- and pool-list:

1. “Explicitly specify pin- and pool-list with a host list file”
2. “Use empty pin-list and for the pool-list all systems within a Parallel Sysplex”

on page 20
3. “Use empty pin-list and for the pool-list all systems within a Parallel Sysplex,

where a specific scheduling environment is available” on page 20

Explicitly specify pin- and pool-list with a host list file:
Use the following settings to specify a host list file:
v MP_HOSTFILE: path of the host list file or unset if you use ″./host.list″
v MP_RMPOOL: unset

You have to define the pin- and pool-list in a host list file which contains pin- and
pool entries. It is possible that one of the two lists is empty.

The host list file must contain valid TCP addresses, which must be either symbolic
host names (e.g. ″myhost″) or TCP addresses in dotted decimal format (e.g.
″9.167.5.8″).

Create a host list file by using any editor. To make a comment, start the line with
an exclamation mark or an asterisk. Blank lines and comments are ignored. You
can specify pin- and pool entries in the host list file:

Pin Entries:

The tasks which are started by poe are numbered beginning with 0. A pin entry is
a line in the host list file which consists of a node name and a non-empty list of
task numbers. The tasks specified in the list of task numbers will be executed on
the system defined by the pin entry. If the list of task numbers contains numbers
which exceed the partition size, these task numbers are ignored.

18 z/OS UNIX System Services PE: Operation and Use

A system which is specified in a pin entry is not used for automatic allocation
unless there is an additional pool entry for this system.

It is possible to specify more than one pin entry for a system. For the final pin-list
all pin entries in the host list file are accumulated.

It is erroneous to specify a task number more than once in the host list file.

Pool Entries:

A pool entry only consists of the node name of a system.

If using Round-Robin mode for automatic allocation, the host list file is processed
top down. This means the first task which is not a member of a pin entry will be
executed on the system specified by the first pool entry in the host list. The second
task will be executed on the system of the second pool-list entry etc. In particular
this means that systems for which more than one pool-list entry exist will be
chosen more frequently. If the partition size exceeds the number of pool entries, the
pool entries in the host list file are processed in a Round-Robin manner.

If using WLM mode for automatic allocation, neither the sequence nor the
multiplicity of pool entries influences the allocation of tasks. POE allocates the
tasks on nodes defined in the pool-list under consideration of performance data
provided by WLM.

Example for a simple host list file:
! pin entries:
SYS3 0 2
! pool entries:
SYS1
SYS2

This host list file pins tasks 0 and 2 to System SYS3 (specific node allocation) and
specifies the systems SYS1 and SYS2 for automatic allocation for the remaining
tasks.

The default host list file used by the Partition Manager to allocate nodes is called
host.list and is located in your current directory. You can specify a file other than
host.list by setting the environment variable MP_HOSTFILE to the name of a host
list file, or by using either the -hostfile or -hfile flag when invoking the program.
In either case, you can specify the file using its relative or full path name. For
example, say you want to use the host list file myhosts located in the directory
/u/hinkle. You could:

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER
export MP_HOSTFILE=/u/hinkle/myhosts

ENTER
poe program -hostfile /u/hinkle/myhosts

or

poe program -hfile /u/hinkle/myhosts

Chapter 4. Executing parallel programs 19

Restrictions:

When using automatic allocation in WLM mode (MP_RESD=yes), pool entries
must be valid TCP host names and MVS system names. For further information
see “Host list file” on page 4.

Use empty pin-list and for the pool-list all systems within a Parallel Sysplex:
Use the following setting:
v MP_HOSTFILE: ″NULL″ or ″″ (empty string)
v MP_RMPOOL: unset

With this setting, poe will use WLM to find out which systems are within the
Parallel Sysplex where poe is started. The pin-list will be empty and the pool-list
consists of all systems within this Parallel Sysplex.

If you want to use all systems within the Sysplex for the pool-list, you must set
MP_HOSTFILE to an empty string or to the word “NULL”. Otherwise the
Partition Manager will look for a host list file. You can either:

Set the MP_HOSTFILE environment variable: Use the -hostfile flag when invoking the program:

ENTER
export MP_HOSTFILE=

or

export MP_HOSTFILE=″″

or

export MP_HOSTFILE=NULL

ENTER
poe program -hostfile ″″

or

poe program -hostfile NULL

Restrictions:

For this setting it is necessary that you have a Sysplex which is running in goal
mode and the MVS system names of all nodes in the Sysplex are valid TCP/IP
host names of the respective systems or valid aliases. For further information on
the necessary setup, see “Host list file” on page 4.

Use empty pin-list and for the pool-list all systems within a Parallel Sysplex,
where a specific scheduling environment is available:
Use the following setting:
v MP_HOSTFILE: ″NULL″ or ″″ (empty string)
v MP_RMPOOL: environment_name

MP_RMPOOL specifies the scheduling environment to be used for automatic node
allocation. With the above setting, the pin-list will be empty and the pool-list
consists of all systems within the Parallel Sysplex which currently have the
resources in the correct states for the specified scheduling environment.

20 z/OS UNIX System Services PE: Operation and Use

You can either:

Set the MP_HOSTFILE and MP_RMPOOL
environment variables:

Use the -hostfile and -rmpool flags when invoking the
program:

ENTER
export MP_HOSTFILE=NULL

and

export MP_RMPOOL=environment_name

ENTER
poe program -hostfile NULL -rmpool
environment_name

Restrictions:

For this setting it is necessary that you have a Sysplex which is running in goal
mode and the MVS system names of all nodes in the Sysplex are valid TCP/IP
host names of the respective systems or valid aliases. For information on the
necessary setup, see “Scheduling environments” on page 5.

Defining pin- and pool-list: Summary:

Value of MP_HOSTFILE Value of MP_RMPOOL Used pin- and pool-lists

Path of host list file or unset
(default is ″./host.list″

Setting of MP_RMPOOL is
ignored.

Pin-list and pool-list
specified in the host list file.

″NULL″ or ″″ Unset (default) Pool-list consists of all nodes
within the Sysplex, the
pin-list is empty. Works only
if Sysplex is running in goal
mode.

″NULL″ or ″″ Name of an existing
scheduling environment

Pool-list consists of all nodes
within the Sysplex, where
the scheduling environment
specified with MP_RMPOOL
is defined. The pin-list is
empty. Works only if Sysplex
is running in goal mode.

Defining the automatic allocation mode

Use the following setting:

v MP_RESD: ″yes″, ″no″ or unset

After you specified the pin- and pool-list to poe you have to tell poe what strategy
it should use to choose the systems out of the pool-list for automatic allocation.
There are two modes for automatic allocation - The Workload Manager mode
(WLM mode) and a Round-Robin mode (RR mode). The mode can be controlled
with the MP_RESD option. If MP_RESD is set to ’yes’, the WLM is used to
automatically select the nodes for task execution under consideration of the current
load on the Sysplex. Otherwise if MP_RESD is set to ’no’, a Round-Robin
scheduling for the nodes specified in the pool list is used. The default for
MP_RESD is ’no’.

Example for RR mode:

v pool-list: SYS1,SYS2
v no pin-list defined

Chapter 4. Executing parallel programs 21

task 0 --> SYS1
task 1 --> SYS2
task 2 --> SYS1
task 3 --> SYS2
task 4 --> SYS1
.
.
.

You can either:

Set the MP_RESD environment variable: Use the -resd flag when invoking the program:

ENTER
export MP_RESD=yes

or

ENTER
export MP_RESD=no

ENTER
poe program -resd yes

or

ENTER
poe program -resd no

Restrictions:

Automatic allocation in WLM mode is only possible if WLM is running in goal
mode and the MVS system names of all affected nodes in the Sysplex are valid
TCP/IP host names of the respective systems or valid aliases. For further
information on the necessary setup, see “Host list file” on page 4.

Defining the partition size

Use the following setting:

v MP_PROCS: number of tasks for the parallel poe job

After you decided which pin- and pool-lists and which automatic allocation mode
poe should use, you need to set the partition size by defining the number of
parallel processes to use. To do this, use the MP_PROCS environment variable or
its associated commandline flag -procs. The default value is 1. For example you
want to specify the number of task processes to 6. You could:

Set the MP_PROCS environment variable: Use the -procs flag when invoking the program:

ENTER
export MP_PROCS=6

ENTER
poe program -procs 6

Examples

The following examples show how the settings of MP_HOSTFILE, MP_RMPOOL,
MP_RESD and MP_PROCS can be used in combination.

Example 1:

Use a host list file with both pin- and pool-list: pin tasks 0 and 2 to system SYS3
(specific node allocation) and specify the systems SYS1 and SYS2 for automatic
allocation for the remaining tasks.

22 z/OS UNIX System Services PE: Operation and Use

./host.list:

SYS3 0 2
SYS1
SYS2

Start ″myprog″ with the following options:
> myprog -procs 1 ---> Task 0 is executed on SYS3
> myprog -procs 2 -resd no ---> Task 0 is executed on SYS3,

Task 1 is execuded on SYS1
> myprog -procs 4 -resd no ---> Tasks 0 and 2 are executed on SYS3,

Task 1 is executed on SYS1,
Task 3 on SYS2

> myprog -procs 5 -resd no ---> Tasks 0 and 2 are executed on SYS3,
Task 1 and 4 are executed on SYS1,
Task 3 on SYS2

> myprog -procs 4 -resd yes ---> Tasks 0 and 2 are executed on SYS3,
Task 1 and 3 are executed on SYS1/SYS2
(nodes are selected by WLM)

Example 2:

Use no host list (and therefore no pin-list). Use all systems in the Sysplex for
automatic allocation. Assume that the Sysplex has the following systems:
v SYS1
v SYS2

Start ″myprog″ with the following options:
> myprog -procs 3 -resd no -hostfile NULL --> Task 0 is executed on SYS1

Task 1 is executed on SYS2
Task 2 is executed on SYS1

> myprog -procs 3 -resd yes -hostfile NULL --> Task 0 to 3 are executed on SYS1
and SYS2 (nodes are selected by WLM)

Example 3:

Use no host list (and therefore no pin-list): Use all systems in the Sysplex where
the scheduling environment ″database″ is available for automatic allocation.
Assume that the Sysplex has the following systems:
v SYS1 (″database″ NOT available)
v SYS2 (″database″ available)
v SYS3 (″database″ available)

Start ″myprog″ with the following options:
> myprog -procs 3 -hostfile NULL -rmpool database --> Task 0 is executed on SYS2

Task 1 is executed on SYS3
Task 2 is executed on SYS2

Creating an output host list file

Use the following setting:

v MP_SAVEHOSTFILE: file name or unset

When running parallel programs in the PE environment, you can generate an
output host list file of the nodes allocated by the Partition Manager. When you
have the Partition Manager perform WLM automatic node allocation, this enables

Chapter 4. Executing parallel programs 23

you to learn which systems were allocated. This information is vital if you want to
perform some postmortem analysis or file cleanup on those nodes. You can also
use the generated host list for a rerun of the parallel job where each task runs on
the same system as it did in the first run.

The generated host list will contain the MVS system name assigned to each task,
not the TCP/IP host name. Assuming that the DNS is configured to accept MVS
system names, the generated host list can be used afterwards to rerun the job with
MP_RESD=no.

To generate a host list file, set the MP_SAVEHOSTFILE environment variable to a
file name. You can specify this using a relative or full path name. As with most
POE environment variables, you can temporarily override the value of
MP_SAVEHOSTFILE using its associated command-line flag -savehostfile.

Note that the name of your output host list file can be the same as your input host
list file. If a file of the same name already exists, it is overwritten by the output
host list file.

Setting the MP_WLM_ENCLAVE environment variable

Use the following setting:

v MP_WLM_ENCLAVE: yes, no or unset

This option can be used to tell poe that it should run all tasks of the parallel job
within one WLM multi system enclave. If the option is set, WLM considers the
parallel job as a single work unit and can make better scheduling decisions. It is
also possible to monitor the parallel tasks more easily when using e.g. performance
monitor tools which support multi-system enclaves.

To request usage of WLM multi-system enclaves, you could:

Set the MP_WLM_ENCLAVE environment variable: Use the -wlm_enclave flag when invoking the program:

ENTER
export MP_WLM_ENCLAVE=yes

ENTER
poe program -wlm_enclave yes

MP_WLM_ENCLAVE defaults to no.

Restrictions:

This option can only be used within a (parallel) Sysplex. If nodes outside the
Sysplex are used, these nodes will not be part of the enclave. See chapter 2
″Preparing to use poe, WLM Multi-system Enclaves″ for necessary setup!

Step 4: Start the X-Windows analysis tool
If you wish to use the Program Marker Array to analyze your application, you
should start it before invoking the executable. For more information, see
“Chapter 6. Monitoring program execution” on page 45.

24 z/OS UNIX System Services PE: Operation and Use

Step 5: Invoke the executable
Notes:

In order to perform this step

1. You need to have the same user ID and password on the home node, and each
of the processor nodes that will be running your parallel application.

2. You cannot run your application as root.
3. The executable must be available on each node.

The poe command enables you to load and execute programs on remote nodes.
You can use it to:
v load and execute a program onto all nodes of your partition. For more

information, see “Invoking an SPMD program”.
v individually load the nodes of your partition. This capability is intended for

MPMD programs. For more information, see “Invoking an MPMD program” on
page 26.

v load and execute a series of SPMD or MPMD programs, in individual job steps,
on the same partition. For more information, see “Loading a series of programs
as job steps” on page 28.

v run non-parallel programs on remote nodes. For more information, see
“Invoking a non-parallel program on remote nodes” on page 30.

When you invoke poe, the Partition Manager allocates processor nodes for each
task and initializes the local environment. It then loads your program, and
reproduces your local environment, on each processor node. The Partition Manager
also passes the option list to each remote node.

Since the Partition Manager attempts to reproduce your local environment on each
remote node, your current directory is important. When you invoke poe, the
Partition Manager will, immediately before running your executable, change
directory to your current working directory on each remote node. If you are in a
local directory that does not exist on remote nodes, you will get an error as the
Partition Manager attempts to change to that directory on remote nodes.

Before using the poe command, you can first specify which programming model
you are using by setting the MP_PGMMODEL environment variable to either
spmd or mpmd. As with most POE environment variables, you can temporarily
override the value of MP_PGMMODEL using its associated command-line flag
-pgmmodel. For example, if you want to run an MPMD program, you could:

Set the MP_PGMMODEL environment variable: Use the -pgmmodel flag when invoking the program:

ENTER
export MP_PGMMODEL=mpmd

ENTER
poe program -pgmmodel mpmd

Note: If you do not set the MP_PGMMODEL environment variable or
-pgmmodel flag, the default programming model is SPMD.

Invoking an SPMD program
If you have an SPMD program, you want to load it as a separate task on each
node of your partition. To do this, follow the poe command with the program
name and any options. The options can be program options or any of the POE

Chapter 4. Executing parallel programs 25

command-line flags shown in “Appendix B. POE environment variables and
command-line flags” on page 283. You can also invoke a program by entering the
program name and any options:

ENTER
poe program [options]

or

program [options]

You can also enter poe without a program name:

ENTER
poe [options]

v Once your partition is established, a prompt appears.

ENTER
the name of the program you want to load. You can follow the program
name with any program options or a subset of the POE flags.

Note: For National Language Support, POE displays messages located in an
externalized message catalog. POE checks the LANG and NLSPATH
environment variables, and if either is not set, it will set up the following
defaults:
v LANG=C

v NLSPATH=/usr/lib/nls/msg/%L/%N

For more information about the message catalog, see “National Language
Support” on page xiv.

Invoking an MPMD program

Note: You must set the MP_PGMMODEL environment variable or -pgmmodel
flag to mpmd in order to invoke an MPMD program .

With an SPMD application, the name of the same executable is sent to, and runs
on, each of the processor nodes of your partition. If you are invoking an MPMD
application, you are dealing with more than one program and need to individually
load the nodes of your partition.

For example, say that you have two programs – master and workers – designed to
run together and communicate via calls to message passing subroutines. The
program master is designed to run on one processor node. The workers program is
designed to run as separate tasks on any number of other nodes. The master
program will coordinate and synchronize the execution of all the worker tasks.
Neither program can run without the other, as master only does sends and the
workers tasks only do receives.

You can establish a partition and load each node individually using:
v standard input (from the keyboard or redirected)
v a POE commands file

Loading nodes individually from standard input: To establish a partition and
load each node individually using STDIN:

ENTER
poe [options]

26 z/OS UNIX System Services PE: Operation and Use

v The Partition Manager allocates the processor nodes of your partition.
Once your partition is established, a prompt containing both the logical
node identifier 0 and the actual host name it maps to, appears.

ENTER
the name of the program you want to load on node 0. You can follow the
program name with any program options or a subset of the POE flags.

v A prompt for the next node in the partition displays.

ENTER
the name of the program you want to load on each processor node as you
are prompted.

v When you have specified the program to run on the last node of your
partition, the message “Partition loaded...” displays and execution begins.

For additional illustration, the following shows the command prompts that would
appear, as well as the program names you would enter, to load the example master
and workers programs. This example assumes that the MP_PROCS environment
variable is set to 5.
$ poe -pgmmodel mpmd
0:host1_name> master [options]
1:host2_name> workers [options]
2:host3_name> workers [options]
3:host4_name> workers [options]
4:host5_name> workers [options]

Loading nodes individually using a POE commands file: The MP_CMDFILE
environment variable, and its associated command-line flag -cmdfile, let you
specify the name of a POE commands file. You can use such a file when
individually loading a partition – thus freeing STDIN. The POE commands file
simply lists the individual programs you want to load and run on the nodes of
your partition. The programs are loaded in task order. For example, say you have a
typical master/workers MPMD program that you want to run as 5 tasks. Your
POE commands file would contain:
master [options]
workers [options]
workers [options]
workers [options]
workers [options]

Once you have created a POE commands file, you can specify it using a relative or
full path name on the MP_CMDFILE environment variable or -cmdfile flag. For
example, if your POE commands file is /u/hinkle/mpmdprog, you could:

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER
export MP_CMDFILE=/u/hinkle/mpmdprog

ENTER
poe -cmdfile /u/hinkle/mpmdprog

Once you have set the MP_CMDFILE environment variable to the name of the
POE commands file, you can individually load the nodes of your partition. To do
this:

ENTER
poe [options]

Chapter 4. Executing parallel programs 27

v The Partition Manager allocates the processor nodes of your partition.
The programs listed in your POE commands file are run on the nodes of
your partition.

Loading a series of programs as job steps
By default, the Partition Manager releases your partition when your program
completes its run. However, you can set the environment variable MP_NEWJOB,
or its associated command-line flag -newjob, to specify that the Partition Manager
should maintain your partition for multiple job steps.

For example, say you have three separate SPMD programs. The first one sets up a
particular computation by adding some files to /tmp on each of the processor nodes
on the partition. The second program does the actual computation. The third
program does some postmortem analysis and file cleanup. These three parallel
programs must run as job steps on the same processor nodes in order to work
correctly. While node allocation using a host list file might work, the requested
nodes might not be available when you invoke each program. The better solution
is to instruct the Partition Manager to maintain your partition after execution of
each program completes. You can then read multiple job steps from:
v standard input
v a POE commands file using the MP_CMDFILE environment variable.

In either case, you must first specify that you want the Partition Manager to
maintain your partition for multiple job steps. To do this, you could:

Set the MP_NEWJOB environment variable: Use the -newjob flag on the poe command:

ENTER
export MP_NEWJOB=yes

ENTER
poe -newjob yes

Note:

1. You can only load a series of programs as job steps using the poe
command. You cannot do this with either one of the parallel debugger
commands: pdbx and pedb.

2. poe is its own shell. If a step fails, any remaining steps continue.

Reading job steps from standard input: Say that you want to run three programs
– setup, computation, and cleanup – as job steps on the same partition. Assuming
STDIN is keyboard entry, and MP_NEWJOB is set to yes, you would:

ENTER
poe [poe-options]

v The Partition Manager allocates the processor nodes of your partition,
and prompts you for the program name.

ENTER
setup [program-options]

v The program setup executes on all nodes of your partition. When
execution completes, POE prompts you for the next program name.

ENTER
computation [program-options]

v The program computation executes on all nodes of your partition. When
execution completes, you are prompted again.

28 z/OS UNIX System Services PE: Operation and Use

ENTER
cleanup [program-options]

v The program cleanup executes on all nodes of your partition. When
execution completes, you are prompted again.

ENTER
quit

or

<EscChar-d> 1

vThe Partition Manager releases the nodes of your partition.

Notes:

1. You can also run a series of MPMD programs in job-step fashion from STDIN.
If MP_PGMMODEL is set to mpmd, the Partition Manager will, after each step
completes, prompt you to individually reload the partition as described in
“Loading nodes individually from standard input” on page 26.

2. When MP_NEWJOB is yes, the Partition Manager, by default, looks to STDIN
for job steps. However, if the environment variable MP_CMDFILE is set to the
name of a POE commands file as described in “Reading job steps from a POE
commands file”, the Partition Manger will look to the commands file instead.
To ensure that job steps are read from STDIN, check that the MP_CMDFILE
environment variable is unspecified.

Multi-Step STDIN for newjob mode: POE’s STDIN processing model allows
redirected STDIN to be passed to all steps of a newjob sequence, when the
redirection is from a file. If redirection is from a pipe, POE does not distribute the
input to each step, only to the first step.

Reading job steps from a POE commands file: The MP_CMDFILE environment
variable and its associated command-line flag -cmdfile lets you specify the name
of a POE commands file. If MP_NEWJOB is yes, you can have the Partition
Manager read job steps from a POE commands file. The commands file in this case
simply lists the programs you want to run as job steps. For example, say you want
to run the three SPMD programs setup, computation, and cleanup as job steps on the
same partition. Your POE commands file would contain the following three lines:
setup [program-options]
computation [program-options]
cleanup [program-options]

Program-options represent the actual values you need to specify.

If you are loading a series of MPMD programs, the POE commands file is also
responsible for individually loading the partition. For example, say you had three
master/worker MPMD job steps that you wanted to run as 4 tasks on the same
partition. The following is a representation of what your POE commands file
would contain. Options represent the actual values you need to specify.
master1 [options]
workers1 [options]
workers1 [options]
workers1 [options]
master2 [options]
workers2 [options]

1. The usage of the short keys depends on the used program. For 3270 always use <EscChar-d> to immediately release nodes and
for rlogin use <Ctrl-d>.

Chapter 4. Executing parallel programs 29

workers2 [options]
workers2 [options]
master3 [options]
workers3 [options]
workers3 [options]
workers3 [options]

While you could also redirect STDIN to read job steps from a file, a POE
commands file gives you more flexibility by not tying up STDIN. You can specify a
POE commands file by using its relative or absolute path name. Say that your POE
commands file is called /u/hinkle/jobsteps. To specify that the Partition Manager
should read job steps from this file rather than STDIN, you could:

Set the MP_CMDFILE environment variable: Use the -cmdfile flag on the poe command:

ENTER
export MP_CMDFILE=/u/hinkle/jobsteps

ENTER
poe -cmdfile /u/hinkle/jobsteps

Once MP_NEWJOB is set to yes, and MP_CMDFILE is set to the name of your
POE commands file, you would:

ENTER
poe [poe-options]

v The Partition Manager allocates the processor nodes of your partition,
and reads job steps from your POE commands file. The Partition Manager
does not release your partition until it reaches the end of your commands
file.

Invoking a non-parallel program on remote nodes
You can also use POE to run non-parallel programs on the remote nodes of your
partition. Any executable (binary file, shell script, UNIX utility) is suitable, and it
does not need to have been compiled with mpcc, or mpCC. For example, if you
wanted to check the process status (using the z/OS-command ps) for all remote
nodes in your partition, you would:

ENTER
poe ps -a

The process status for each remote node is written to standard out
(STDOUT) at your home node. How STDOUT from all the remote nodes is
handled at your home node depends on the output mode. See “Managing
standard output (STDOUT)” on page 35 for more information.

Controlling program execution
This section describes a number of additional POE environment variables for
monitoring and controlling program execution. It describes how to use the:
v MP_EUIDEVELOP environment variable to specify that you want to run your

program in message passing develop mode. In this mode, more detailed
checking of your program is performed.

v MP_NOARGLIST and MP_FENCE environment variable to make POE ignore
arguments.

v MP_STDINMODE and MP_HOLD_STDIN environment variables to manage
standard input.

v MP_STDOUTMODE environment variable to manage standard output.

30 z/OS UNIX System Services PE: Operation and Use

v MP_INFOLEVEL environment variable to specify the level of messages you
want reported to standard error.

v MP_PMDLOG environment variable to generate a diagnostic log on remote
nodes.

v MP_LABELIO environment variable to label message output with task
identifiers.

v MP_REMOTEDIR specifies the name of the current directory to be used on the
remote nodes. By default, the current directory is the current directory on the
home node at the time POE is run.

For a complete listing of all POE environment variables, see “Appendix B. POE
environment variables and command-line flags” on page 283.

Specifying develop mode
You can run programs in one of two modes – develop mode or run mode. In develop
mode, intended for developing applications, the Message Passing Interface
performs more detailed checking during execution. Because of the additional
checking it performs, develop mode can significantly slow program performance.
In run mode, intended for completed applications, only minimal checking is done.
While run mode is the default, you can use the MP_EUIDEVELOP environment
variable to specify message passing develop mode. As with most POE environment
variables, MP_EUIDEVELOP has an associated command-line flag -euidevelop. To
specify MPI develop mode, you could:

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER
export MP_EUIDEVELOP=yes

ENTER
poe program -euidevelop yes

To later go back to run mode, set MP_EUIDEVELOP to no.

You can also use MP_EUIDEVELOP for the pedb message queue facility by
specifying the DEB value, for “debug”.

Set the MP_EUIDEVELOP environment variable: Use the -euidevelop flag when invoking the program:

ENTER
export MP_EUIDEVELOP=DEB

ENTER
poe program -euidevelop DEB

To stop parameter checking, set MP_EUIDEVELOP to min, for “minimum”.

Making POE ignore arguments
When you invoke a parallel executable, you can specify an argument list that
consists of a number of program options and POE command-line flags. The
argument list is parsed by POE – the POE command-line flags are removed and
the remainder of the list is passed on to the program. If any of your program
arguments are identical to POE command-line flags, however, this can cause
problems. For example, say you have a program that takes the argument -pulse.
You invoke the program with the -pulse option, but it does not execute correctly.
This is because there is also a POE command-line flag -pulse. POE parses the
argument list and so the -pulse option is never passed on to your program. There
are two ways to correct this sort of problem. You can:

Chapter 4. Executing parallel programs 31

v make POE ignore the entire argument list using the MP_NOARGLIST
environment variable.

v make POE ignore a portion of the argument list using the MP_FENCE
environment variable.

Making POE ignore the entire argument list
When you invoke a parallel executable, POE, by default, parses the argument list
and removes all POE command-line flags before passing the rest of the list on to
the program. Using the environment variable MP_NOARGLIST, you can prevent
POE from parsing the argument list. To do this:

ENTER
export MP_NOARGLIST=yes

When the MP_NOARGLIST environment variable is set to yes, POE does not
examine the argument list at all. It simply passes the entire list on to the program.
For this reason, you can not use any POE command-line flags, but must use the
POE environment variables exclusively. While most POE environment variables
have associated command-line flags, MP_NOARGLIST, for obvious reasons, does
not. To specify that POE should again examine argument lists, either set
MP_NOARGLIST to no, or unset it.

ENTER
export MP_NOARGLIST=no

or

unset MP_NOARGLIST

Making POE ignore a portion of the argument list
When you invoke a parallel executable, POE, by default, parses the entire
argument list and removes all POE command-line flags before passing the rest of
the list on to the program. You can use a fence, however, to prevent POE from
parsing the remainder of the argument list. A fence is simply a character string you
define using the MP_FENCE environment variable. Once defined, you can use the
fence to separate those arguments you want parsed by POE from those you do not.
For example, say that you have a program that takes the argument -pulse. Because
there is also a POE command-line flag -pulse, you need to put this argument after
a fence. To do this, you could:

ENTER
export MP_FENCE=Q

poe program -procs 26 -infolevel 2 Q -pulse RGB

While this example defines Q as the fence, keep in mind that the fence can be any
character string. Any arguments placed after the fence are passed by POE,
unexamined, to the program. While most POE environment variables have
associated command-line flags, MP_FENCE does not.

Managing standard input, output, and error
POE lets you control standard input (STDIN), standard output (STDOUT), and
standard error (STDERR) in several ways. You can continue using the traditional
I/O manipulation techniques such as redirection and piping, and can also:
v determine whether a single task or all parallel tasks should receive data from

STDIN.

32 z/OS UNIX System Services PE: Operation and Use

v determine whether a single task or all parallel tasks should write to STDOUT. If
all tasks are writing to STDOUT, you can further define whether or not the
messages are ordered by task id.

v specify the level of messages that will be reported to STDERR during program
execution.

v specify that messages to STDOUT and STDERR should be labeled by task id.

Managing standard input (STDIN)
STDIN is the primary source of data that goes into a command. Usually, STDIN
refers to keyboard input. If you use redirection or piping, however, STDIN could
refer to a file or the output from another command (see “Using
MP_HOLD_STDIN”). How you manage STDIN for a parallel application depends
on whether or not its parallel tasks require the same input data. Using the
environment variable MP_STDINMODE or the command-line flag -stdinmode,
you can specify that:
v all tasks should receive the same input data from STDIN. This is multiple input

mode.
v STDIN should be sent to a single task of your partition. This is single input mode.
v no task should receive input data from STDIN.

Multiple input mode: Setting MP_STDINMODE to all indicates that all tasks
should receive the same input data from STDIN. The home node Partition
Manager sends STDIN to each task as it is read.

To specify multiple input mode so all tasks receive the same input data from
STDIN, you could:

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER
export MP_STDINMODE=all

ENTER
poe program -stdinmode all

Note: If you do not set the MP_STDINMODE environment variable or use the
-stdinmode command-line flag, multiple input mode is the default.

Single input mode: There are times when you only want a single task to read
from STDIN. To do this, you set MP_STDINMODE to the appropriate task id. For
example, say that you have an MPMD application consisting of two programs –
master and workers. The program master is designed to run as a single task on one
processor node. The workers program is designed to run as separate tasks on any
number of other nodes. The master program handles all I/O, so only its task needs
to read STDIN. If master is running as task 0, you need to specify that only task 0
should receive STDIN. To do this, you could:

Set the MP_STDINMODE environment variable: Use the -stdinmode flag when invoking the program:

ENTER
export MP_STDINMODE=0

ENTER
poe program -stdinmode 0

Using MP_HOLD_STDIN
The environment variable MP_HOLD_STDIN is used to defer sending of STDIN
from the home node to the remote node(s) until the message passing partition has
been established. The variable must be set to “yes” when using POE to invoke a

Chapter 4. Executing parallel programs 33

program which: (1) has been compiled with mpcc or mpCC and (2) will be reading
STDIN from other than the keyboard (redirection or piping). Failing to export this
environment variable when running these programs could likely result in the user
program hanging.

In addition, if a program invoked using POE has not been compiled with mpcc or
mpCC, the environment variable must not be set (or set to “no”) to ensure that
STDIN is delivered to the remote node(s).

To set MP_HOLD_STDIN correctly, you need to know the relative order of your
program’s use of stdin data and initialization of the message passing library.

If MPI_Init() is called before any STDIN data is read, the use of redirected STDIN
is explained below. If, however, all STDIN is read before MPI_Init() is called, then
MP_HOLD_STDIN should be set to ″no″, to allow STDIN data to be sent to the
user’s executable by POE.

Using redirected STDIN

Note: Wherever the following description refers to a POE environment variable
(starting with MP_), the use of the associated command-line option
produces the same effect, with the exception of MP_HOLD_STDIN, which
has no associated command-line option.

A POE process can use its STDIN in two ways. First, if the program name is not
supplied on the command line and no command file (MP_CMDFILE) is specified,
POE uses STDIN to resolve the names of the programs to be run as the remote
tasks. Second, any “remaining” STDIN is then distributed to the remote tasks as
indicated by the MP_STDINMODE and MP_HOLD_STDIN settings. In this dual
STDIN model, redirected STDIN can then pose two problems:
1. If using job steps (MP_NEWJOB=yes), the “remaining” STDIN is always

consumed by the remote tasks during the first job step.
2. If POE attempts program name resolution on the redirected STDIN, program

behavior can vary when using job steps, depending on the type of redirection
used and the size of the redirected STDIN.

The first problem is addressed in POE by performing a rewind of STDIN between
job steps (only if STDIN is redirected from a file, for reasons beyond the scope of
this document). The second problem is addressed by providing an additional
setting for MP_STDINMODE of “none”, which tells POE to only use STDIN for
program name resolution. As far as STDIN is concerned, “none” ever gets
delivered to the remote tasks. This provides an additional method of reliably
specifying the program name to POE, by redirecting STDIN from a file or pipe, or
by using the shell’s here-document syntax in conjunction with the “none” setting.
If MP_STDINMODE is not set to “none” when POE attempts program name
resolution on redirected STDIN, program behavior is undefined.

The following scenarios describe in more detail the effects of using (or not using)
an MP_STDINMODE of “none” when redirecting (or not redirecting) STDIN, as
shown in the example:

Is STDIN Redirected?

Yes No

Yes A B
Is MP_STDINMODE set to "none"?

No C D

34 z/OS UNIX System Services PE: Operation and Use

Scenario A
POE will use the redirected STDIN for program name resolution, only if no
program name is supplied on the command line (MP_CMDFILE is ignored when
MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No
rewind of STDIN is performed when MP_STDINMODE=none. If
MP_HOLD_STDIN is set to “yes”, this is ignored because no STDIN is being
distributed.

Scenario B
POE will use the keyboard STDIN for program name resolution, only if no
program name is supplied on the command line (MP_CMDFILE is ignored when
MP_STDINMODE=none). No STDIN is distributed to the remote tasks. No
rewind of STDIN is performed when MP_STDINMODE=none (also, STDIN is not
from a file). If MP_HOLD_STDIN is set to “yes”, this is ignored because no
STDIN is being distributed.

Scenario C
POE will use the redirected STDIN for program name resolution, if required, and
will distribute “remaining” STDIN to the remote tasks. If STDIN is intended to be
used for program name resolution, program behavior is undefined in this case, since
POE was not informed of this by setting STDINMODE to “none” (see Problem 2
above). If STDIN is redirected from a file, POE will rewind STDIN between each
job step. If MP_HOLD_STDIN is set to “yes”, this feature will behave accordingly.

Scenario D
POE will use the keyboard STDIN for program name resolution, if required. Any
“remaining” STDIN is distributed to the remote tasks. No rewind of STDIN is
performed since STDIN is not from a file. If MP_HOLD_STDIN is set to “yes”, it
is ignored because STDIN is not redirected.

Managing standard output (STDOUT)
STDOUT is where the data coming from the command will eventually go. Usually,
STDOUT refers to the display. If you use redirection or piping, however, STDOUT
could refer to a file or another command. How you manage STDOUT for a parallel
application depends on whether you want output data from one task or all tasks.
If all tasks are writing to STDOUT, you can also specify whether or not output is
ordered by task id. Using the environment variable MP_STDOUTMODE, you can
specify that:
v all tasks should write output data to STDOUT asynchronously. This is unordered

output mode.
v output data from each parallel task should be written to its own buffer, and later

all buffers should be flushed, in task order, to STDOUT. This is ordered output
mode.

v a single task of your partition should write to STDOUT. This is single output
mode.

Unordered output mode: Setting MP_STDOUTMODE to unordered specifies that
all tasks should write output data to STDOUT asynchronously. To specify
unordered output mode, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER: export MP_STDOUTMODE=unordered ENTER: poe program -stdoutmode unordered

Notes:

1. If you do not set the MP_STDOUTMODE environment variable or use the
-stdoutmode command-line flag, unordered output mode is the default.

Chapter 4. Executing parallel programs 35

2. If you are using unordered output mode, you will probably want the messages
labeled by task id. Otherwise it will be difficult to know which task sent which
message. See “Labeling message output” on page 37 for more information.

3. You can also specify unordered output mode from your program by calling the
mpc_stdout_mode Parallel Utility Function. Refer to z/OS UNIX System Services
Parallel Environment: MPI Programming and Subroutine Reference for more
information.

4. Although the above environment variable and Parallel Utility Function are both
described as MP_STDOUTMODE, they are each used independently for their
specific purposes.

Ordered output mode: Setting MP_STDOUTMODE to ordered specifies ordered
output mode. In this mode, each task writes output data to its own buffer. Later,
all the task buffers are flushed, in order of task id, to STDOUT. The buffers are
flushed when:
v any one of the individual task buffers fills
v execution of the program completes.
v all tasks explicitly flush the buffers by calling mpc_flush Parallel Utility

Function.
v tasks change output mode using calls to Parallel Utility Functions. For more

information on Parallel Utility Functions, refer to z/OS UNIX System Services
Parallel Environment: MPI Programming and Subroutine Reference.

Note: When running the parallel application under pdbx with MP_STOUTMODE
set to ordered, there will be a difference in the ordering from when the
application is run directly under poe. The buffer size available for the
application’s STDOUT is smaller because pdbx uses some of the buffer, so
the task buffers fill up more often.

To specify ordered output mode, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER
export MP_STDOUTMODE=ordered

ENTER
poe program -stdoutmode ordered

Note: You can also specify ordered output mode from your program by calling the
mpc_stdout_mode Parallel Utility Function. Refer to z/OS UNIX System
Services Parallel Environment: MPI Programming and Subroutine Reference for
more information.

Single output mode: You can specify that only one task should write its output
data to STDOUT. To do this, you set MP_STDOUTMODE to the appropriate task
id. For example, say that you have an SPMD application in which all the parallel
tasks are sending the exact same output messages. For easier readability, you
would prefer output from only one task – task 0. To specify this, you could:

Set the MP_STDOUTMODE environment variable: Use the -stdoutmode flag when invoking the program:

ENTER
export MP_STDOUTMODE=0

ENTER
poe program -stdoutmode 0

36 z/OS UNIX System Services PE: Operation and Use

Note: You can also specify single output mode from your program by calling the
mpc_stdout_mode Parallel Utility Function. Refer to z/OS UNIX System
Services Parallel Environment: MPI Programming and Subroutine Reference for
more information.

Labeling message output
You can set the environment variable MP_LABELIO, or use the -labelio flag when
invoking a program, so that output from the parallel tasks of your program are
labeled by task id. While not necessary when output is being generated in single
mode, this ability can be useful in ordered and unordered modes. For example, say
that the output mode is unordered. You are executing a program and receiving
asynchronous output messages from all the tasks. This output is not labeled, so
you do not know which task has sent which message. It would be clearer if the
unordered output was labeled. For example:
7: Hello World
0: Hello World
3: Hello World
23: Hello World
14: Hello World
9: Hello World

To have the messages labeled with the appropriate task id, you could:

Set the MP_LABELIO environment variable: Use the -labelio flag when invoking the program:

ENTER
export MP_LABELIO=yes

ENTER
poe program -labelio yes

To no longer have message output labeled, set the MP_LABELIO environment
variable to no.

Setting the message reporting level for standard error (STDERR)
You can set the environment variable MP_INFOLEVEL to specify the level of
messages you want from POE. You can set the value of MP_INFOLEVEL to one of
the integers shown in the following table. The integers 0, 1, and 2 give you
different levels of informational, warning, and error messages. The integers 3
through 6 indicate debug levels that provide additional debugging and diagnostic
information.

Should you require help from the IBM Support Center in resolving a PE-related
problem, you will probably be asked to run with one of the debug levels.

As with most POE environment variables, you can override MP_INFOLEVEL
when you invoke a program. This is done using either the -infolevel or -ilevel flag
followed by the appropriate integer.

This integer:

Indicates this
level of message
reporting: In other words:

0 Error Only error messages from POE are written to STDERR.

1 Normal Warning and error messages from POE are written to STDERR. This level
of message reporting is the default.

2 Verbose Informational, warning, and error messages from POE are written to
STDERR.

Chapter 4. Executing parallel programs 37

This integer:

Indicates this
level of message
reporting: In other words:

3 Debug Level 1 Informational, warning, and error messages from POE are written to
STDERR. Also written is some high-level debugging and diagnostic
information.

4 Debug Level 2 Informational, warning, and error messages from POE are written to
STDERR. Also written is some high- and low-level debugging and
diagnostic information.

5 Debug Level 3 Debug level 2 messages plus some additional loop detail.

6 Debug Level 4 Debug level 3 messages plus other informational error messages for the
greatest amount of diagnostic information.

Let us say you want the POE message level set to verbose. The following table
shows the two ways to do this. You could:

Set the MP_INFOLEVEL environment variable: Use the -infolevel flag when invoking the program:

ENTER
export MP_INFOLEVEL=2

ENTER
poe program -infolevel 2

or

poe program -ilevel 2

As with most POE command-line flags, the -infolevel or -ilevel flag temporarily
override their associated environment variable.

Generating a diagnostic log on remote nodes
Using the MP_PMDLOG environment variable, you can also specify that
diagnostic messages should be logged to a file in /tmp on each of the remote nodes
of your partition. The log file is named mplog.pid.n, where pid is the process id of
the Partition Manager Daemon, and n is the task number. Should you require help
from the IBM Support Center in resolving a PE-related problem, you will probably
be asked to generate these diagnostic logs.

The ability to generate diagnostic logs on each node is particularly useful for
isolating the cause of abnormal termination, especially when the connection
between the remote node and the home node Partition Manager has been broken.
As with most POE environment variables, you can temporarily override the value
of MP_PMDLOG using its associated command-line flag -pmdlog. For example, to
generate a pmd log file, you could:

Set the MP_PMDLOG environment variable: Use the -pmdlog flag when invoking the program:

ENTER
export MP_PMDLOG=yes

ENTER
poe program -pmdlog yes

Note: By default, MP_PMDLOG is set to no. No diagnostic logs are generated. It
is not recommended that you run MP_PMDLOG routinely. Running this
will greatly affect performance and fill up your file system space.

38 z/OS UNIX System Services PE: Operation and Use

Changing current directories on remote nodes
POE allows to change the user’s current directory on the remote nodes. By default,
the current directory of the home node is used by all tasks. Using the
MP_REMOTEDIR environment variable, you can specify the name of the current
directory to be used on the remote nodes. For example, if you set
MP_REMOTEDIR=/tmp, the current directory on the remote nodes becomes /tmp,
regardless of what it is on the home node.

Chapter 4. Executing parallel programs 39

40 z/OS UNIX System Services PE: Operation and Use

Chapter 5. Managing POE jobs

This chapter describes the tasks involved with managing POE jobs:
v Stopping a POE job
v Cancelling and killing a POE job
v Detecting remote node failures
v Using parallel file copy utilities

Stopping a POE job
You can stop (suspend) a POE job by pressing <EscChar-z> or by sending POE a
SIGTSTP signal. POE stops, and sends a SIGSTOP signal to all the remote tasks,
which stops them. To resume the parallel job, issue the fg or bg command to POE.
A SIGCONT signal will be sent to all the remote tasks to resume them.

Cancelling and killing a POE job
You can cancel a POE job by pressing <EscChar-c>. This sends POE a SIGINT
signal. POE terminates all the remote tasks and exits.

If POE is killed or terminated before the remote nodes are shut down, direct
communication with the parallel job will be lost. In this situation, use the poekill
script as a POE command to terminate the partition. poekill kills all instantiations
of the program name on a remote node by sending it a SIGTERM signal. See the
poekill script in /bin, and the description of the poekill command in “Appendix A.
Parallel Environment commands” on page 185.

Note: Do not kill the pmds using the poekill command.

Detecting remote node failures
POE and the Partition Manager use a pulse detection mechanism to periodically
check each remote node to ensure that it is actively communicating with the home
node. You specify the time interval (or pulse interval), of these checks with the
-pulse flag or the MP_PULSE environment variable. When POE runs a job, POE
and the Partition Manager Daemons check at the interval you specify that each
node is running. When a node failure is detected, POE terminates the job on all
remaining nodes and issues an error message.

The default pulse interval is 600 seconds (10 minutes). You can increase or decrease
this value with the -pulse flag or the MP_PULSE environment variable. To
completely disable the pulse function, specify an interval value of 0 (zero).

Asynchronous Interrupts support

Using MP_CSS_INTERRUPT
The MP_CSS_INTERRUPT environment variable may take the value of either yes
or no. By default it is set to no. In certain applications, setting this value to yes
may provide improved performance.

© Copyright IBM Corp. 1997, 2001 41

Applications which have the following characteristics may see performance
improvements from setting the POE environment variable MP_CSS_INTERRUPT
to yes:
v Applications that use nonblocking send or receive operations for communication.
v Applications that have non-synchronized sets of send or receive pairs. In other

words, the send from node0 is issued at a different point in time with respect to
the matching receive in node1.

v Applications that do not issue waits for nonblocking send or receive operations
immediately after the send or receive, but rather do some computation prior to
issuing the waits.

In all of the above cases, the application is taking advantage of the asynchronous
nature of the nonblocking communication subroutines. This essentially means that
the calls to the nonblocking send or receive routines do not actually ensure the
transmission of data from one node to the next, but only post the send or receive
and then return immediately back to the user application for continued processing.
However, since the communication subsystem executes within the user’s process, it
must regain control from the application to complete asynchronous requests for
communication.

The communication subsystem can regain control from the application in any one
of three different methods:
1. Any subsequent calls to the communication subsystem to post send or receive,

or to wait on messages.
2. A timer signal is received periodically to allow the communication subsystem

to do recovery from transmission errors.
3. If the value of MP_CSS_INTERRUPT is set to yes, the communication

subsystem device driver will send a signal to the user application when data is
received or buffer space is available to transmit data.

Method 1 and Method 2 are always enabled. Method 3 is controlled by the POE
environment variable MP_CSS_INTERRUPT, and is enabled when this variable is
set to yes.

For those applications that have the characteristics mentioned above, this implies
that when using asynchronous communication the completion of the
communication must occur through one of the these three methods. In the case
that MP_CSS_INTERRUPT is not enabled, only the first two methods are
available to process communication. Depending upon the amount of time between
the non-synchronized send or receive pairs, or between the nonblocking send or
receive and the corresponding waits, the actual transmission of data may only
complete at the matching wait call. If this is the case, it is possible that an
application may see a performance degradation due to unnecessary processor
stalling waiting for communication.

Finally, it should be noted that there is a cost associated with handling the signals
when MP_CSS_INTERRUPT is set to yes. In some cases, this cost can degrade
application performance. Therefore, MP_CSS_INTERRUPT should only be used
for those applications that require it. MP_CSS_INTERRUPT=yes enables UDP to
send a SIGIO signal when a message packet is received.

Support for Performance Improvements
POE provides interfaces to improve interrupt mode latency.

42 z/OS UNIX System Services PE: Operation and Use

Interrupt Mode Control
When a node receives a packet and an interrupt is generated, the interrupt handler
checks its tables for the process identifier (PID) of the user process and notifies the
process. The process signal handler or service thread polls for at least two times
the interrupt delay, checking to see if more packets will arrive. Waiting for more
packets avoids the cost of incurring an interrupt each time a new packet arrives
(interrupt processing is very expensive). However, the more packets that arrive, the
more delay time is increased. Therefore, with these functions you can either tune
the delay parameter based on your application, and/or dynamically turn interrupts
on or off at selected nodes.

For an application with few nodes exchanging small messages, it will help latency
if you keep the interrupt delay small. For an application with a large number of
nodes, or one which exchanges large messages, keeping the delay parameter large
will help the bandwidth. A large delay allows multiple read transmissions to occur
in a single read cycle. You should experiment with different values and use the
functions described below to achieve desired performance, depending on the
communication pattern.

MP_INTRDELAY is the environment variable which allows you to set the delay
parameter for how long the signal handler or service thread waits for more data.
The delay specified in the environment variable is set during initialization, before
running the program. In this way, user programs can tune the delay parameter
without having to recompile existing applications. If none is specified, the default
value of 35 microseconds is used. The application can tune this parameter based
on the communication pattern it has in different parts of the application.

Five application programming interfaces are provided to help you enable or
disable interrupts on specific tasks, based on the communication patterns of the
tasks. If a task is frequently in the communication library, then the application can
turn interrupts off for that particular task for the duration of the program. The
application can enable interrupts when the task is not going to be in the
communication subsystem often. The enable or disable interfaces override the
setting of the MP_CSS_INTERRUPT environment variable.

The first two functions allow you to query what the current delay parameter is
and to set the delay parameter to a new value.

int mpc_queryintrdelay()
This function returns the current interrupt delay (in microseconds). If none was
set by the user, the default is returned.
int mpc_setintrdelay(int val)
This function sets the delay parameter to the value, in microseconds, specified
by “val”. The function can be called at multiple places within the program to
set the delay parameter to different values during execution.

The following three functions allow you to control dynamically masking interrupts
on individual nodes, and query the state of interrupts. In the current system only
“all” nodes or “none” can be selected to statically enable or disable running in
interrupt mode.

int mpc_queryintr()
This function returns 0 if the node on which it is executed has interrupts turned
off, and it returns 1 otherwise.
int mpc_disableintr()
This function disables interrupts on the node on which it is executed. Return
code = 0, if successful, -1 otherwise.

Chapter 5. Managing POE jobs 43

int mpc_enableintr()
This function enables interrupts on the node on which it is executed. Return
code = 0, if successful, -1 otherwise.

Note: The last two of the above functions override the setting of the environment
variable MP_CSS_INTERRUPT. If they are not used properly they can
deadlock the application. Please use these functions only if you are sure of
what you are doing. These functions are useful in reducing latency if the
application is doing blocking recv/wait and interrupts are otherwise
enabled. Interrupts should be turned off before executing blocking
communication calls and turned on immediately after those calls.

Parallel file copy utilities
During the course of developing and running parallel applications on numerous
nodes, the potential need exists to efficiently copy data and files to and from a
number of places. POE provides three utilities for this reason:
1. mcp - to copy a single file from the home node to a number of remote nodes.

This was discussed briefly in “Step 2: Copy files to individual nodes” on
page 16.

2. mcpscat - to copy a number of files from task 0 and scatter them in sequence to
all tasks, in a Round-Robin order.

3. mcpgath - to copy (or gather) a number of files from all tasks back to task 0.

mcp is for copying the same file to all tasks. The input file must reside on task 0.
You can copy it to a new name on the other tasks, or to a directory. It accepts the
source file name and a destination file name or directory, in addition to any POE
command-line argument, as input parameters.

mcpscat is intended for distributing a number of files in sequence to a series of
tasks, one at a time. It will use a Round-Robin ordering to send the files in a one
to one correspondence to the tasks. If the number of files exceeds the number of
tasks, the remaining files are sent in another round through the tasks.

mcpgath is for when you need to copy a number of files from each of the tasks
back to a single location, task 0. The files must exist on each task. You can
optionally specify to have the task number appended to the file name when it is
copied.

Both mcpscat and mcpgath accept the source file names and a destination
directory, in addition to any POE command-line argument, as input parameters.
You can specify multiple file names, a directory name (where all files in that
directory, not including subdirectories, are copied), or use wildcards to expand into
a list of files as the source. Wildcards should be enclosed in double quotes,
otherwise they will be expanded locally, which may not produce the intended file
name resolution.

These utilities are actually message passing applications provided with POE. Their
syntax is described in “Appendix A. Parallel Environment commands” on page 185.

44 z/OS UNIX System Services PE: Operation and Use

Chapter 6. Monitoring program execution

The Program Marker Array (shown in Figure 2) is an X-Windows run-time
monitoring tool. This window consists of a number of small squares - called lights -
that change color under program control. Each task in a parallel program has its
own row of lights, and Parallel Utility Function calls from those tasks can change
light colors. The calls can also send strings to the PM Array.

The ability to color lights on, and send strings to, the PM Array window enables a
parallel program to provide you with immediate visual feedback as it executes. A
program could begin by coloring lights red and then slowly move through the
spectrum towards blue as it executes. If a program takes a long time to run, this
would give you an indication that it was indeed progressing. Should the program
not be progressing, the PM Array would indicate that as well. For example, lights
“stuck” on a particular color could indicate that the program is stuck as well. The
strings displayed could provide additional information on the program’s progress.
In addition, the Program Marker Array is distributed as source code, so you can
customize the program as you see fit. The source code is located in the directory
/samples/pe/marker.

In order to use the PM Array to monitor program execution, you need to:
1. In your C, or C++ program, insert subroutine calls to color lights on, and send

strings to, the PM Array. This is described in “Step 1: Call PM Array parallel
utility functions” on page 46.

2. Compile and link the program using the mpcc, or mpCC command as
described in “Step 1: Compile the program” on page 15.These commands call
the C, or C++ compilers while linking in the Partition Manager interface and
Parallel Utility subroutines.

3. Make sure that your X-Windows environment is set up properly. This is
described in “Step 3: Set up your X-Windows environment” on page 46.

4. Set the environment variable MP_PMLIGHTS equal to the number of lights
you would like displayed per program task. Alternatively, you can set the

Figure 2. The Program Marker Array

© Copyright IBM Corp. 1997, 2001 45

number of lights using a command-line flag when invoking your parallel
program. See “Step 4: Set the number of lights” on page 47.

5. Issue the pmarray command to start the PM Array program as described in
“Step 5: Open the PM Array window” on page 47.

6. Invoke your parallel program and monitor its execution using the PM Array.
This is described in “Step 6: Invoke the program and monitor its execution” on
page 48.

Step 1: Call PM Array parallel utility functions
In order for the PM Array to display meaningful information at run time, you need
to place calls to Parallel Utility Functions within your program. At run time, your
program can then:
v color lights on, or send output strings to, the PM Array Window. This is done by

calling the mpc_marker Parallel Utility Function.
v determine the number of lights that are displayed per task row. This is done by

calling the mpc_nlights Parallel Utility Function. Since the number of lights
displayed for each task on the PM Array can vary from run to run, this
capability is important. It enables your program to learn exactly how many
lights are available to be set. It returns an integer value that can then be used by
the program to resolve some conditional expression.

The syntax of these Parallel Utility Functions is shown in z/OS UNIX System
Services Parallel Environment: MPI Programming and Subroutine Reference.

Step 2: Compile the program
Once you have inserted calls to the mpc_marker and mpc_nlights functions into
your program, you can compile it. Since this is the same procedure you follow
when regularly compiling a parallel program with POE, see page 15 for more
information.

Step 3: Set up your X-Windows environment
If you are already running X-Windows applications, you can probably skip this
step. However, you might check that the PM Array X defaults file has been
changed by your System Administrator. For details, refer to z/OS UNIX System
Services Planning.

First you must make sure that an X-server is running on the workstation on which
you want to display the PM Array Window. On UNIX workstations the X-server is
usually started by default at start time. On Personal Computers you may have to
start it yourself (for example, for OS/2 there is an X-server called PMX Server).
Next, you must give permission to the z/OS system (the X-client machine) to
display something on the screen of the workstation. This is typically done on
OS/2® with the xhost command on the workstation:

ENTER
xhost z/OS-machine-name

The z/OS-machine-name can be either a host name or an IP address.

To complete the X-Windows setup you must tell pmarray (the X-client) where to
display its window. This is done using the DISPLAY environment variable:

46 z/OS UNIX System Services PE: Operation and Use

ENTER
export DISPLAY workstation-name:0

The workstation-name can be either a host name or an IP address.

Step 4: Set the number of lights
When you open the PM Array window in the next step, the number of rows in the
PM Array are set to the number of program tasks – the current setting of
MP_PROCS. You can also specify the number of lights you want displayed per
task row. To do this, set the environment variable MP_PMLIGHTS or specify the
-pmlights command-line flag in “Step 6: Invoke the program and monitor its
execution” on page 48.

For example, say that you want five lights displayed per task in the PM Array. You
could:

Set the MP_PMLIGHTS environment variable: Use the -pmlights flag when invoking your executable:

ENTER
export MP_PMLIGHTS=5

ENTER
poe program -pmlights 5

As with most POE command-line flags, the -pmlights flag temporarily overrides
its associated environment variable.

Notes:

1. Setting the MP_PMLIGHTS environment variable, or the -pmlights flag, to 0
indicates that you do not want your program to communicate with the PM
Array tool.

2. If you reset the MP_PMLIGHTS environment variable, or the -pmlights flag,
after the Program Marker Array tool is started, it will usually reset to the new
number of lights. The only time it will not, however, is when the new value of
MP_PMLIGHTS is 0.

Step 5: Open the PM Array window
The pmarray command starts the PM Array program. You will probably want to
use the & operator so the program runs in the background and does not tie up the
shell.

ENTER
pmarray &

v The PM Array window opens. The number of task rows displayed in the
PM Array is equal to the current setting of MP_PROCS. The number of
lights per task row is determined by the current setting of
MP_PMLIGHTS. When you invoke your program in Step 6: Invoke the
program and monitor its execution, you can override either of the
environment variables using its associated command-line flag. Then the
PM Array redisplays with the new number of rows or lights.

Note: The PM Array connects to the Partition Manager by using a socket that is
assigned, by default, to port 9999. If you get an error message indicating

Chapter 6. Monitoring program execution 47

that the port is in use, specify a different port by setting the MP_USRPORT
environment variable before entering the pmarray command. For example,
to specify port 9998:

ENTER
export MP_USRPORT=9998

Step 6: Invoke the program and monitor its execution
Finally, you invoke your program. As the program runs, the Parallel Utility
Function calls that are placed within it change the color of lights on the PM Array.
With appropriate mouse clicks on this window, you can:
v display details of a light
v display output strings from a task
v close the window and discontinue monitoring

Displaying details of a light
Each light on the PM Array is associated with a particular task, has a particular
light number, and has a particular color value. You can display these details for
each of the lights on the PM Array.

For example, say you have coded the PM Array subroutines into your program so
that the lights slowly move during execution through the spectrum over color
values 0 to 99. As the program runs, the lights start off black, and then turn brown,
green, blue, and so on. By watching the lights as they change color, you get a
general idea of the program’s progress. For a more precise indication of the
program’s progress, you could display the actual color value number for a light. In
this example, the closer this light’s value is to 99, the closer execution is to being
complete.

To display details of a light:

PLACE
the cursor over any light on the PM Array.

PRESS
the left mouse button.

The following information displays in the text area at the bottom of the
PM Array window:
v the task identifier number
v the light number
v the color value number

This information is not updated until you select another light.

Displaying task output
You can display output strings sent by the tasks of your program in the output
display area of the PM Array window. This is the area to the right of the PM
Array, and the strings displayed there are the ones you specified on the
mpc_marker subroutine calls. Only one task’s strings are displayed in this area at a
time. By default, output from task 0 is displayed. You can select the task and
display its output instead by pressing its task push button. Each task has a push
button. It is just to the right of the task’s row on the PM Array, and is labeled with
the task identifier. To select, for example, task 3:

48 z/OS UNIX System Services PE: Operation and Use

PRESS
the task push button labeled 3.

v Output strings from task 3 are displayed in the output display area. Only
one string is displayed at a time.

Note: If a task not currently selected has sent new output to the PM Array
window, its task push button will appear yellow.

Step 7: Close the PM Array window
The PM Array window remains open after your parallel program completes
executing. You could then repeat Step 6: Invoke the program and monitor its
execution to monitor the same, or a different program’s execution. To close the PM
Array window when you are done monitoring:

SELECT
Action → Quit

Chapter 6. Monitoring program execution 49

50 z/OS UNIX System Services PE: Operation and Use

Chapter 7. Techniques for creating parallel programs

This chapter discusses some of the techniques for creating a parallel program,
using message passing, as well as the various advantages and pitfalls associated
with each.

This chapter is not intended to be an in-depth tutorial on writing parallel
programs. Instead, it’s more of an introduction to basic message passing parallel
concepts; it provides just enough information to help you understand the material
covered in this book. If you want more information about parallel programming
concepts, you may find some of the books listed in “Related non-IBM
publications” on page 307 helpful.

You should start with a working sequential program. Complex sequential programs
are difficult enough to get working correctly, without also having to worry about
the additional complexity introduced by parallelism and message passing. The
bottom line is that it’s easier to convert a working serial program to parallel, than
it is to create a parallel program from scratch. As you become proficient at creating
parallel programs, you’ll develop an awareness of which sequential techniques
translate better into parallel implementations, and you can then make a point of
using these techniques in your sequential programs. In this chapter, you’ll find
information on some of the fundamentals of creating parallel programs.

There are two common techniques for turning a sequential program into a parallel
program; data decomposition and functional decomposition. Data decomposition has to
do with distributing the data that the program is processing among the parallel
tasks. Each task does roughly the same thing but on a different set of data. With
functional decomposition, the function that the application is performing is
distributed among the tasks. Each task operates on the same data, but does
something different. Most parallel programs don’t use data decomposition or
functional decomposition exclusively, but rather a mixture of the two, weighted
more toward one type or the other. One way to implement either form of
decomposition is through the use of message passing.

Message passing
The message passing model of communication is typically used in distributed
memory systems, where each processor node owns private memory, and is linked
by an interconnection network. With message passing, each task operates
exclusively in a private environment, but must cooperate with other tasks in order
to interact. In this situation, tasks must exchange messages in order to interact with
one another.

The challenge of the message passing model is in reducing message traffic over the
interconnection network while ensuring that the correct and updated values of the
passed data are promptly available to the tasks when required. Optimizing
message traffic is one way of boosting performance.

Synchronization is the act of forcing events to occur at the same time or in a certain
order, while taking into account the logical dependence and the order of
precedence among the tasks. The message passing model can be described as
self-synchronizing because the mechanism of sending and receiving messages

© Copyright IBM Corp. 1997, 2001 51

involves implicit synchronization points. To put it another way, a message cannot
be received if it has not already been sent.

Data decomposition
A good technique for parallelizing a sequential application is to look for loops
where each iteration does not depend on any prior iteration (this is also a
prerequisite for either unrolling or eliminating loops). An example of a loop that
has dependencies on prior iterations is the loop for computing the Factorial series.
The value calculated by each iteration depends on the value that results from the
previous pass. If each iteration of a loop does not depend on a previous iteration,
the data being processed can be processed in parallel, with two or more iterations
being performed simultaneously.

The C program example below includes a loop with independent iterations. This
example does not include the routines for computing the coefficient and
determinant because they are not part of the parallelization at this point.
/***
*
* Matrix Inversion Program - serial version
*
* To compile:
* c89 -o inverse_serial inverse_serial.c
*
***/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>

float determinant(float **matrix, int size, int * used_rows, int * used_cols, int depth);
float coefficient(float **matrix,int size, int row, int col);
void print_matrix(FILE * fptr,float ** mat,int rows, int cols);
float test_data[8][8] = {

{4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},
{4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },
{3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},
{3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },
{2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },
{2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },
{1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,
{1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};
#define ROWS 8

int main(int argc, char **argv)
{

float **matrix;
float **inverse;
int rows,i,j;
float determ;
int * used_rows, * used_cols;

rows = ROWS;

/* Allocate markers to record rows and columns to be skipped */
/* during determinant calculation */
used_rows = (int *) malloc(rows*sizeof(*used_rows));
used_cols = (int *) malloc(rows*sizeof(*used_cols));

/* Allocate working copy of matrix and initialize it from static copy */
matrix = (float **) malloc(rows*sizeof(*matrix));

52 z/OS UNIX System Services PE: Operation and Use

inverse = (float **) malloc(rows*sizeof(*inverse));
for(i=0;i<rows;i++)
{

matrix[i] = (float *) malloc(rows*sizeof(**matrix));
inverse[i] = (float *) malloc(rows*sizeof(**inverse));
for(j=0;j<rows;j++)

matrix[i] [j] = test_data[i] [j];
}
/* Compute and print determinant */
printf("The determinant of\n\n");
print_matrix(stdout,matrix,rows,rows);
determ=determinant(matrix,rows,used_rows,used_cols,0);
printf("\nis %f\n",determ);
fflush(stdout);
assert(determ!=0);

for(i=0;i<rows;i++)
{

for(j=0;j<rows;j++)
inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

}

printf("The inverse is\n\n");
print_matrix(stdout,inverse,rows,rows);

return 0;
}

Before we talk about parallelizing the algorithm, let us look at what is necessary to
create the program with the PE. The example below shows the same program, but
it is now aware of PE. You do this by using three calls in the beginning of the
routine, and one at the end.

The first of these calls (MPI_Init) initializes the MPI environment and the last call
(MPI_Finalize) closes the environment. MPI_Comm_size sets the variable tasks to
the total number of parallel tasks running this application, and MPI_Comm_rank
sets me to the task ID of the particular instance of the parallel code that invoked it.

MPI_Comm_size actually gets the size of the communicator you pass in and
MPI_COMM_WORLD is a pre-defined communicator that includes everybody.
For more information about these calls, z/OS UNIX System Services Parallel
Environment: MPI Programming and Subroutine Reference or other MPI publications
may be of some help. See “Related non-IBM publications” on page 307.
/***
*
* Matrix Inversion Program - serial version enabled for parallel environment
*
* To compile:
* mpcc -o inverse_parallel_enabled inverse_parallel_enabled.c
*
***/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>

float determinant(float **matrix, int size, int * used_rows, int * used_cols, int depth);
float coefficient(float **matrix,int size, int row, int col);
void print_matrix(FILE * fptr,float ** mat,int rows, int cols);
float test_data[8][8] = {

{4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},

Chapter 7. Techniques for creating parallel programs 53

{4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },
{3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},
{3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },
{2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },
{2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },
{1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,
{1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};
#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)
{

float **matrix;
float **inverse;
int rows,i,j;
float determ;
int * used_rows, * used_cols;

MPI_Status status[ROWS]; /* Status of messages */
MPI_Request req[ROWS]; /* Message IDs */

MPI_Init(&argc,&argv); /* Initialize MPI */
MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

rows = ROWS;

/* Allocate markers to record rows and columns to be skipped */
/* during determinant calculation */
used_rows = (int *) malloc(rows*sizeof(*used_rows));
used_cols = (int *) malloc(rows*sizeof(*used_cols));

/* Allocate working copy of matrix and initialize it from static copy */
matrix = (float **) malloc(rows*sizeof(*matrix));
inverse = (float **) malloc(rows*sizeof(*inverse));
for(i=0;i<rows;i++)
{

matrix[i] = (float *) malloc(rows*sizeof(**matrix));
inverse[i] = (float *) malloc(rows*sizeof(**inverse));
for(j=0;j<rows;j++)
matrix[i] [j] = test_data[i] [j];

}
/* Compute and print determinant */
printf("The determinant of\n\n");
print_matrix(stdout,matrix,rows,rows);
determ=determinant(matrix,rows,used_rows,used_cols,0);
printf("\nis %f\n",determ);
fflush(stdout);
assert(determ!=0);

for(i=0;i<rows;i++)
{

for(j=0;j<rows;j++)
inverse[j][i] = coefficient(matrix,rows,i,j)/determ;

}

printf("The inverse is\n\n");
print_matrix(stdout,inverse,rows,rows);

/* Wait for all parallel tasks to get here, then quit */
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

return 0;
}

54 z/OS UNIX System Services PE: Operation and Use

float determinant(float **matrix,int size, int * used_rows, int * used_cols, int depth)
{

int coll, col2, rowl, row2;
int j,k;
float total=0;
int sign = 1;

/* Find the first unused row */
for(rowl=0;rowl<size;rowl++)
{

for(k=0;k<depth;k++)
{

if(rowl==used_rows[k])
break;

}
if(k>=depth) /* this row is not used */

break;
}
assert(rowl<size);

if(depth==(size-2))
{

/* There are only 2 unused rows/columns left */
/* Find the second unused row */
for(row2=rowl+1;row2<size;row2++)
{

for(k=0;k<depth;k++)
{

if(row2==used_rows[k])
break;

}
if(k>=depth) /* this row is not used */

break;
}

assert(row2<size);

/* Find the first unused column */
for(coll=0;coll<size;coll++)
{

for(k=0;k<depth;k++)
{

if(coll==used_cols[k])
break;

}
if(k>=depth) /* this column is not used */

break;
}
assert(coll<size);

/* Find the second unused column */
for(col2=coll+1;col2<size;col2++)
{

for(k=0;k<depth;k++)
{

if(col2==used_cols[k])
break;

}
if(k>=depth) /* this column is not used */

break;
}
assert(col2<size);

/* Determinant = mll*m22-m12*m21 */
return matrix[rowl][coll]*matrix[row2][col2]-matrix[row2][coll]*matrix[rowl] [col2];

}
/*There are more than 2 rows/columns in the matrix being processed */

Chapter 7. Techniques for creating parallel programs 55

/* */
/* Compute the determinant as the sum of the product of each element*/
/* in the first row and the determinant of the matrix with is */
/* and column removed */
total = 0;

used_rows[depth] = rowl;
for(coll=0;coll<size;coll++)
{

for(k=0;k<depth;k++)
{

if(coll==used_cols[k])
break;

}
if(k<depth) /* This column is used */

continue;
used_cols[depth] = coll;
total += sign*matrix[rowl][coll]*determinant(matrix,size,used_rows,used_cols,depth+1);
sign=(sign==1)?-1:1;

}
return total;

}

void print_matrix(FILE * fptr,float ** mat,int rows, int cols)
{

int i,j;
for(i=0;i<rows;i++)
{

for(j=0;j<cols;j++)
fprintf(fptr,"%10.4f ",mat[i][j]);

fprintf(fptr,"\n");
}
fflush(fptr);

}

float coefficient(float **matrix,int size, int row, int col)
{

float coef;
int * ur, *uc;

ur = malloc(size*sizeof(matrix));
uc = malloc(size*sizeof(matrix));
ur[0]=row;
uc[0]=col;
coef = (((row+col)%2)?-1:1)*determinant(matrix,size,ur,uc,1);
return coef;

}

This particular example is pretty ridiculous because each parallel task is going to
determine the entire inverse matrix, and they’re all going to print it out. As we
saw in the previous section, the output of all the tasks will be intermixed, so it will
be difficult to figure out what the answer really is.

A better approach is to figure out a way to distribute the work among several
parallel tasks and collect the results when they are done. In this example, the loop
that computes the elements of the inverse matrix simply goes through the elements
of the inverse matrix, computes the coefficient, and divides it by the determinant
of the matrix. Since there is no relationship between elements of the inverse matrix,
they can all be computed in parallel. Keep in mind that every communication call
has an associated cost, so you need to balance the benefit of parallelism with the
cost of communication. If we were to totally parallelize the inverse matrix element
computation, each element would be derived by a separate task. The cost of
collecting those individual values back into the inverse matrix would be
significant, and might outweigh the benefit of having reduced the computation

56 z/OS UNIX System Services PE: Operation and Use

cost and time by running the job in parallel. So, instead, we are going to compute
the elements of each row in parallel, and send the values back, one row at a time.
This way we spread some of the communication overhead over several data
values. In our case, we will execute loop 1 in parallel in this next example.
/***
*
* Matrix Inversion Program - First parallel implementation
*
* To compile:
* mpcc -o inverse_parallel inverse_parallel.c
*
***/

#include<stdlib.h>
#include<stdio.h>
#include<assert.h>
#include<errno.h>
#include<mpi.h>

float determinant(float **matrix, int size, int * used_rows, int * used_cols, int depth);
float coefficient(float **matrix,int size, int row, int col);
void print_matrix(FILE * fptr,float ** mat,int rows, int cols);
float test_data[8][8] = {

{4.0, 2.0, 4.0, 5.0, 4.0, -2.0, 4.0, 5.0},
{4.0, 2.0, 4.0, 5.0, 3.0, 9.0, 12.0, 1.0 },
{3.0, 9.0, -13.0, 15.0, 3.0, 9.0, 12.0, 15.0},
{3.0, 9.0, 12.0, 15.0, 4.0, 2.0, 7.0, 5.0 },
{2.0, 4.0, -11.0, 10.0, 2.0, 4.0, 11.0, 10.0 },
{2.0, 4.0, 11.0, 10.0, 3.0, -5.0, 12.0, 15.0 },
{1.0, -2.0, 4.0, 10.0, 3.0, 9.0, -12.0, 15.0 } ,
{1.0, 2.0, 4.0, 10.0, 2.0, -4.0, -11.0, 10.0 } ,

};
#define ROWS 8

int me, tasks, tag=0;

int main(int argc, char **argv)
{

float **matrix;
float **inverse;
int rows,i,j;
float determ;
int * used_rows, * used_cols;

MPI_Status status[ROWS]; /* Status of messages */
MPI_Request req[ROWS]; /* Message IDs */

MPI_Init(&argc,&argv); /* Initialize MPI */
MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

rows = ROWS;

/* We need exactly one task for each row of the matrix plus one task */
/* to act as coordinator. If we don't have this, the last task */
/* reports the error (so everybody doesn't put out the same message */
if(tasks!=rows+1)
{

if(me==tasks-1)
fprintf(stderr,"%d tasks required for this demo"

"(one more than the number of rows in matrix)\n",rows+1);
exit(-1);

}

/* Allocate markers to record rows and columns to be skipped */
/* during determinant calculation */

Chapter 7. Techniques for creating parallel programs 57

used_rows = (int *) malloc(rows*sizeof(*used_rows));
used_cols = (int *) malloc(rows*sizeof(*used_cols));

/* Allocate working copy of matrix and initialize it from static copy */
matrix = (float **) malloc(rows*sizeof(*matrix));
for(i=0;i<rows;i++)
{

matrix[i] = (float *) malloc(rows*sizeof(**matrix));
for(j=0;j<rows;j++)
matrix [i] [j] = test_data [i] [j] ;

}

/* Everyone computes the determinant (to avoid message transmission) */
determ=determinant(matrix,rows,used_rows,used_cols,0);

if(me==tasks-1)
{ /* The last task acts as coordinator */

inverse = (float**) malloc(rows*sizeof(*inverse));
for(i=0;i<rows;i++)
{

inverse[i] = (float *) malloc(rows*sizeof(**inverse));
}
/* Print the determinant */
printf("The determinant of\n\n");
print_matrix(stdout,matrix,rows,rows);
printf("\nis %f\n",determ);
/* Collect the rows of the inverse matrix from the other tasks */
/* First, post a receive from each task into the appropriate row */
for(i=0;i<rows;i++)
{

MPI_Irecv(inverse[i],rows,MPI_REAL,i,tag,MPI_COMM_WORLD,&(req[i]));
}
/* Then wait for all the receives to complete */
MPI_Waitall(rows,req,status);
printf("The inverse is\n\n");
print_matrix(stdout,inverse,rows,rows);

}
else
{ /* All the other tasks compute a row of the inverse matrix */

int dest = tasks-1;
float *one_row;
int size = rows*sizeof(*one_row);
one_row = (float*) malloc(size);
for(j=0;j<rows;j++)
{

one_row[j] = coefficient(matrix,rows,j,me)/determ;
}
/* Send the row back to the coordinator */
MPI_Send(one_row,rows,MPI_REAL,dest,tag,MPI_COMM_WORLD);

}
/* Wait for all parallel tasks to get here, then quit */
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
return(0);

}

Functional decomposition
Parallel servers and data mining applications are examples of functional
decomposition. With functional decomposition, the function that the application is
performing is distributed among the tasks. Each task operates on the same data,
but does something different. The sine series algorithm is also an example of
functional decomposition. With this algorithm, the work being done by each task is
trivial. The cost of distributing data to the parallel tasks could outweigh the value
of running the program in parallel, and parallelism would increase total time.
Another approach to parallelism is to invoke different functions, each of which

58 z/OS UNIX System Services PE: Operation and Use

processes all of the data simultaneously. This is possible as long as the final or
intermediate results of any function are not required by another function. For
example, searching a matrix for the largest and smallest values as well as a specific
value could be done in parallel.

This is a simple example, but suppose the elements of the matrix were arrays of
polynomial coefficients, and the search involved actually evaluating different
polynomial equations using the same coefficients. In this case, it would make sense
to evaluate each equation separately.

On a simpler scale, let us look at the series for the sine function:

The serial approach to solving this problem is to loop through the number of terms
desired, accumulating the factorial value and the sine value. When the appropriate
number of terms has been computed, the loop exits. The following example does
exactly this. In this example, we have an array of values for which we want the
sine, and an outer loop would repeat this process for each element of the array.
Since we don’t want to recompute the factorial each time, we need to allocate an
array to hold the factorial values and compute them outside the main loop.
/**
*
* Series Evaluation - serial version
*
* To compile:
* c89 -o series_serial series_serial.c
*
**/

#include<stdlib.h>
#include<stdio.h>
#include<math.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,
0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

#define TERMS 4

int main(int argc, char **argv)
{

double divisor[TERMS], sine;
int a, t, angles = sizeof(angle)/sizeof(angle[0]);

/* Initialize denominators of series terms */
divisor[0] = 1;
for(t=1;t<TERMS;t++)

divisor[t] = -2*t*(2*t+1)*divisor[t-1];

/* Compute sine of each angle */
for(a=0;a<angles;a++)
{

sine = 0;
/* Sum the terms of the series */
for(t=0;t<TERMS;t++)

Figure 3. Formula for sine function

Chapter 7. Techniques for creating parallel programs 59

sine += pow(angle[a],(2*t+1))/divisor[t];
printf("sin(%lf) + %lf\n",angle[a],sine);

}
}

In a parallel environment, we could assign each term to one task and just
accumulate the results on a separate node. In fact, that is what the following
example does.
/**
*
* Series Evaluation - parallel version
*
* To compile:
* mpcc -o series_parallel serial_parallel.c
*
**/

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <mpi.h>

double angle[] = { 0.0, 0.1*M_PI, 0.2*M_PI, 0.3*M_PI, 0.4*M_PI,
0.5*M_PI, 0.6*M_PI, 0.7*M_PI, 0.8*M_PI, 0.9*M_PI, M_PI };

#define TERMS 8

int main(int argc, char **argv)
{

double data, divisor, partial, sine;
int a, t, angles = sizeof(angle)/sizeof(angle[0]);
int me, tasks, term;

MPI_Init(&argc,&argv); /* Initialize MPI */
MPI_Comm_size(MPI_COMM_WORLD,&tasks); /* How many parallel tasks are there?*/
MPI_Comm_rank(MPI_COMM_WORLD,&me); /* Who am I? */

term = 2*me+1; /* Each task computes a term */
/* Scan the factorial terms through the group members */
/* Each member will effectively multiply the product of */
/* the result of all previous members by its factorial */
/* term, resulting in the factorial up to that point */
if(me==0)

data = 1.0;
else

data = -(term-1)*term;
MPI_Scan(&data,&divisor,1,MPI_DOUBLE,MPI_PROD,MPI_COMM_WORLD);

/* Compute sine of each angle */
for(a=0;a<angles;a++)
{

partial = pow(angle[a],term)/divisor;
/* Pass all the partials back to task 0 and */
/* accumulate them with the MPI_SUM operation */
MPI_Reduce(&partial,&sine,1,MPI_DOUBLE,MPI_SUM,0,MPI_COMM_WORLD);
/* The first task has the total value */
if(me==0)

printf("sin(%lf) + %lf\n",angle[a],sine);
}
MPI_Finalize();
return(0);

}

With this approach, each task i uses its position in the MPI_COMM_WORLD
communicator group to compute the value of one term. It first computes its

60 z/OS UNIX System Services PE: Operation and Use

working value as 2i+1 and calculates the factorial of this value. Since (2i+1)! is
(2i-1)! x 2i x (2i+1), if each task could get the factorial value computed by the
previous task, all it would have to do is multiply it by 2i x (2i+1). Fortunately, MPI
provides the capability to do this with the MPI_Scan function. When MPI_Scan is
invoked on the first task in a communication group, the result is the input data to
MPI_Scan. When MPI_Scan is invoked on subsequent members of the group, the
result is obtained by invoking a function on the result of the previous member of
the group and its input data.

Note that the MPI standard, as documented in MPI: A Message-Passing Interface
Standard, Version 1.1 available from the University of Tennessee, does not specify
how the scan function is to be implemented, so a particular implementation does
not have to obtain the result from one task and pass it on to the next for
processing. This is, however, a convenient way of visualizing the scan function,
and the remainder of our discussion will assume this is happening.

In our example, the function invoked is the built-in multiplication function,
MPI_PROD. Task 0 (which is computing 1!) sets its result to 1. Task 2 is
computing 3! which it obtains by multiplying 2 x 3 by 1! (the result of Task 0).
Task 3 multiplies 3! (the result of Task 2) by 4 x 5 to get 5!. This continues until all
the tasks have computed their factorial values. The input data to the MPI_Scan
calls is made negative so the signs of the divisors will alternate between plus and
minus.

Once the divisor for a term has been computed, the loop through all the angles (θ)
can be done. The partial term is computed as:

Then, MPI_Reduce is called which is similar to MPI_Scan except that instead of
calling a function on each task, the tasks send their raw data to Task 0, which
invokes the function on all data values. The function being invoked in the example
is MPI_SUM which just adds the data values from all of the tasks. Then, Task 0
prints out the result.

Duplication versus redundancy
In the “Matrix Inversion Program” on page 57, each task goes through the process
of allocating the matrix and copying the initialization data into it. So why does not
one task do this and send the result to all the other tasks? This example has a
trivial initialization process, but in a situation where initialization requires complex
time-consuming calculations, this question is even more important.

In order to understand the answer to this question and, more importantly, be able
to apply the understanding to answering the question for other applications, you
need to stop and consider the application as a whole. If one task of a parallel
application takes on the role of initializer, two things happen. First, all of the other
tasks must wait for the initializer to complete (assuming that no work can be done
until initialization is completed). Second, some sort of communication must occur
in order to get the results of initialization distributed to all the other tasks. This not
only means that there’s nothing for the other tasks to do while one task is doing
the initializing, there’s also a cost associated with sending the results out. Although

Figure 4. Formula for partial term

Chapter 7. Techniques for creating parallel programs 61

replicating the initialization process on each of the parallel tasks seems like
unnecessary duplication, it allows the tasks to start processing more quickly
because they don’t have to wait to receive the data.

So, should all initialization be done in parallel? Not necessarily. You have to keep
the big picture in mind when deciding. If the initialization is just computation and
setup based on input parameters, each parallel task can initialize independently.
Although this seems counter-intuitive at first, because the effort is redundant, for
the reasons given above, it is the right answer. Eventually you will get used to it.
However, if initialization requires access to system resources that are shared by all
the parallel tasks (such as file systems and networks), having each task attempt to
obtain the resources will create contention in the system and hinder the
initialization process. In this case, it makes sense for one task to access the system
resources on behalf of the entire application. In fact, if multiple system resources
are required, you could have multiple tasks access each of the resources in parallel.
Once the data has been obtained from the resource, you need to decide whether to
share the raw data among the tasks and have each task process it, or have one task
perform the initialization processing and distribute the results to all the other tasks.
You can base this decision whether the amount of data increases or decreases
during the initialization processing. Of course, you want to transmit the smaller
amount.

So, the bottom line is that duplicating the same work on all the remote tasks
(which is not the same as redundancy, which implies something can be eliminated)
is not bad if:
v The work is inherently serial
v The work is parallel, but the cost of computation is less than the cost of

communication
v The work must be completed before tasks can proceed
v Communication can be avoided by having each task perform the same work

62 z/OS UNIX System Services PE: Operation and Use

Chapter 8. Programming considerations for user applications
in POE

This chapter documents various limitations, restrictions, and programming
considerations for user applications written under the Parallel Environment (PE).

Environment overview
As the end user, you are encouraged to think of the Parallel Operating
Environment (POE) (also referred to as the poe command) as an ordinary (serial)
command. It accepts redirected I/O, can be run under the nice and time
commands, interprets command flags, and can be invoked in shell scripts.

An n-task parallel job running in the POE actually consists of the n user tasks, an
equal number (n) of instances of the Parallel Environment pmd daemon (which is
the parent process of the user’s task), and the POE ″home node″ process in which
the poe command runs. A pmd daemon is started by the POE home node on each
machine on which each user task runs, and serves as the point of contact between
the home node and the user’s tasks.

The POE home node routes standard input, standard output and standard error
streams between the home node and the user’s tasks via the pmd daemon, using
TCP/IP sockets for this purpose. The sockets are created when the POE home node
starts the pmd daemon for each task of a parallel job. The POE home node and
pmd also use the sockets to exchange control messages to provide task
synchronization, exit status and signaling. These capabilities do not depend on the
message passing library and are available to control any parallel program run by
the poe command.

User authentication

PE requires that the Partition Manager Daemon (PMD) on each remote node
authenticate users before beginning any PE processing. The poe command that
initiates remote processing therefore must obtain the user’s password and
distribute the password using the TCP connections to each PMD for authentication.

The poe command will use the getpass() service to prompt interactively for a
password. When poe is called by a program, the calling program must present the
password to POE by using an unnamed pipe. Programs must call poe as illustrated
in the following example in order to successfully send the user’s password to POE.

© Copyright IBM Corp. 1997, 2001 63

Exit status
Exit status is a value between 0 and 255 inclusive. It is returned from POE on the
home node reflecting the composite exit status of your parallel application, as
follows:
v If MPI_Abort(comm,nn>0) is called, the exit status is nn (mod 256).
v If all tasks terminate via exit(MM>=0) and MM is not equal to 1 and is <128 for

all nodes, then POE provides a synchronization barrier at the exit. The exit
status is the largest value of MM from any parallel job (mod 256).

v If any task terminates by exit(MM =1), then POE will immediately terminate the
parallel job, as if MPI_Abort(MPI_COMM_WORLD,1) had been called.

v If any task terminates via a signal (for example, a segment violation), the exit
status is 128+signal and the entire job is immediately terminated.

v If POE terminates before the start of the user’s application, the exit status is 1.
v If the user’s application cannot be loaded or fails during MPI initialization

(before the user’s main() is called), the exit status is 255.

/* Example program demonstrating how programs must call the PE poe command in order
* to pass the user's password for authentication by PMD on the target execution nodes.
*
* The parent process uses fork/exec to execute the poe program. The parent process will
* establish an unnamed (kernel) pipe.
*
* The child process will dup the pipe's fd0 to its stdin. Then the child process exec's
* the poe program. Now poe can read the password from the pipe.
*/

#define _XOPEN_SOURCE_EXTENDED 1
#include <unistd.h>
#include <stdio.h>
#include <sys/types.h>
#include <errno.h>

#define read 0
#define write 1
#define STDIN 0
#define STDOUT 1

int main() {
char *pw = "testpw1"; /* Password */
char *parms[] = {"parm1", "parm2"}; /* Sample parameters */
int PWpipe[2]; /* Kernel pipe for parent to write to child */
int pid; /* Process id */
int status; /* Child process status */
if (pipe(PWpipe) < 0) { /* Open the pipe for passing the password. */

fprintf(stderr, "bad pipe: %s\n", strerror(errno));
exit(1);

}
pid = fork(); /* Fork the child process. */
if (pid) { /* Parent process */

close(PWpipe[read]); /* Close read descriptor in parent process. */
dup2(PWpipe[write], STDOUT); /* Dup the pipe's write descriptor to stdout*/
puts(pw); /* and write the password to the pipe. */
wait(&status); /* Wait for the child process to complete. */

}
else { /* child process */

close(PWpipe[write]); /* Close write descriptor in child process. */
dup2(PWpipe[read], STDIN); /* Dup the pipe's read descriptor to stdin */
execvp("poe", parms); /* and execvp poe. */

}
}

64 z/OS UNIX System Services PE: Operation and Use

v You should explicitly call exit(MM) to set the desired exit code. A program
exiting without an explicit exit value returns unpredictable status, and may
result in causing premature termination of the parallel application.

POE job-step function
The POE job-step function is intended for the execution of a sequence of separate
yet inter-related dependent programs. Therefore, it provides you with a job control
mechanism that allows both job-step progression and job-step termination. The job
control mechanism is the program’s exit code.
v Job-step progression:

POE continues the job-step sequence if the task exit code is 0 or in the range of 2
- 127.

v Job-step termination:
POE terminates the parallel job, and does not execute any remaining user
programs in the job-step list if the task exit code is 1 or greater than 127.

v Default termination:
Any POE infrastructure detected failure (such as failure to open pipes to the
child process or an exec failure to start the user’s executable) terminates the
parallel job, and does not execute any remaining user programs in the job-step
queue.

POE additions to the user executable
POE adds the following routines when your executable is compiled with mpcc or
mpCC.

Initialization user exits CEEBXITA and CEEBINT
POE provides user exits (CEEBXITA, CEEBINT) which are statically bound with
the application executable. They trigger the POE initialization before invoking the
application program main(). Therefore, the user should not code his/her own
CEEBXITA/CEEBINT initialization/termination exit.

POE sets up its environment before the user main() program gains control. As a
result, any program compiled with the POE compiler scripts must be run under
the control of POE and is not suitable as a serial program.

If POE initialization fails, the parallel task is terminated with the exit code that is
described above.

Signal Handlers
POE installs signal handlers for most signals that cause program termination in
order to notify the other tasks of termination. POE then causes the program to exit
normally with a code of (128 + signal).

You can install your own signal handlers by using the sigaction() system call. If
you use sigaction(), you can use either the sa_handler member or the sa_sigaction
member in the sigaction structure to define the signal-handling function. If you
use the sa_sigaction member, the SA_SIGINFO flag must be set.

Note: In the text that follows, handlers that use sa_handler (SA_SIGINFO is off)
are referred to as type-1 handlers. Handlers that use sa_sigaction
(SA_SIGINFO is on) are referred to as type-2 handlers.

Chapter 8. Programming considerations for user applications in POE 65

POE handles three sets of signals:
1. Asynchronous signals handled by a special POE thread

v SIGHUP
v SIGINT
v SIGQUIT
v SIGTERM

The POE run-time environment creates a thread to handle these signals using
sigwait. User can install their own signal handlers, which are called by the
thread as function(signo) for type-1 handlers and as
function(signo,NULL,NULL) for type-2 handlers.

If the user program decides to terminate, the user signal handler should call
pm_child_sig_handler(signo,NULL,NULL);. This allows POE to terminate the
program in a defined way with exit code (128 + signo). The prototype for
pm_child_sig_handler is defined in pm_util.h .

2. Signals for which POE sets up signal handlers
For the following signals, POE installs type-2 signal handlers.
v SIGABRT
v SIGBUS
v SIGFPE
v SIGILL
v SIGSEGV
v SIGSYS

Users can install their own signal handlers, but they should save the address of
the POE signal handler. If the user program decides to terminate, it should call
the POE signal handler as function(signo,NULL,NULL). If the user program
decides not to terminate, it should just return to the interrupted code.

3. SIGIO
POE blocks SIGIO before calling your program. If you have registered a signal
handler for SIGIO before MPI_Init() is called, the function is added to the
interrupt service thread and is executed as function(SIGIO) for type-1 handlers
and as function(SIGIO,NULL,NULL) for type-2 handlers each time the service
thread is dispatched. Although it is registered as a signal handler, the function
is not required to be “signal safe” because it is executed on a thread. You can
use pthread calls to communicate with other threads. MPI functions cannot be
called in this handler.
After MPI_Finalize() is called, your signal handler is restored, but you need to
unblock SIGIO in order to receive subsequent SIGIO signals.
If you register or change the SIGIO signal handler after calling MPI_Init(), your
changes are ignored by the MPI library, but they are not undone by
MPI_Finalize().

Note: Do not issue message-passing calls from signal handlers. Also, many library
calls are not “signal safe”, and should not be issued from signal handlers.
See function sigaction() in the z/OS C/C++ Run-Time Library Reference for a
list of functions that signal handlers can call.

66 z/OS UNIX System Services PE: Operation and Use

Limitations in setting the thread stacksize
The main thread stacksize is the same as the stacksize used for non-threaded
applications. If you write your own MPI reduce functions to use with nonblocking
collective communications or a SIGIO handler that will be executed on one of the
library service threads, you are limited to a stacksize of 64KB by default. To
increase your thread stacksize, use the environment variable
MP_THREAD_STACKSIZE.

Do not hard code file descriptor numbers
Do not use hard coded file descriptor numbers beyond those specified by STDIN,
STDOUT and STDERR.

POE opens several files and uses file descriptors as message passing handles.
These are allocated before the user gets control, so the first file descriptor allocated
to a user is unpredictable.

POE gets control first and handles process initialization
POE sets up its environment via the entry point mp_main(). mp_main() sets up
signal handlers and an atexit routine before calling your main program.

Users must not implement their own initialization exits to replace the
pe_CEEBINT.o and pe_CEEBXITA.o modules provided by POE.

Termination of a parallel job
POE provides for orderly termination of a parallel job, so that all tasks terminate at
the same time. This is accomplished in the atexit routine registered at program
initialization. For normal exits (codes 0, 2-127), the atexit routine sends a control
message to the POE home node, and waits for a positive response. For abnormal
exits and those which don’t go through the atexit routine, the pmd daemon catches
the exit code and sends a control message to the POE home node.

For normal exits, when POE gets a control message for every task, it responds to
each node, allowing that node to exit normally with its individual exit code. The
pmd daemon monitors the exit code and passes it back to the POE home node for
presentation to the user.

For abnormal exits and those detected by pmd, POE sends a message to each pmd
asking that it send a SIGTERM signal to its task, thereby terminating the task.
When the task finally exits, pmd sends its exit code back to the POE home node
and exits itself.

User-initiated termination of the POE home node via SIGINT (EscChar-c) causes a
message to be sent to pmd asking that the appropriate signal be sent to the parallel
task. Again, pmd waits for the task to die then terminates itself.

Your program cannot run as root
To prevent uncontrolled root access to the entire parallel job computation resource,
POE checks to see that the user is not root as part of its authentication.

Chapter 8. Programming considerations for user applications in POE 67

Forks are limited
If a task forks, only the thread that forked exists in the child task. Therefore, the
message passing library will not operate properly. Also, if the forked child does
not exec another program, it should be aware that an atexit routine has been
registered for the parent which is also inherited by the child. In most cases, the
atexit routine requests that POE terminate the task (parent). A forked child should
terminate with an _exit(0) system call to prevent the atexit routine from being
called. Also, if the forked parent terminates before the child, the child task will not
be cleaned up by POE.

A forked child must not call the message passing library (the MPI subroutines).

Shell execution
You can have POE run a shell script which is loaded and run on the remote nodes
as if it were a binary file.

The program executed by POE on the parallel nodes does not run under a shell on
those nodes. Redirection and piping of STDIO applies to the POE home node (poe
binary), and not the user’s code. If shell processing of a command line is desired
on the remote nodes, invoke a shell script on the remote nodes to provide the
desired preprocessing before the user’s application is executed.

Do not rewind stdin, stdout or stderr
The Partition Manager Daemon uses pipes to direct stdin, stdout and stderr to the
user’s program, therefore, do not rewind these files.

Ensuring that string arguments are passed to your program correctly
Quotation marks, either single or double, used as argument delimiters are stripped
away by the shell and are never ″seen″ by poe. Therefore, the quotation marks
must be escaped to allow the quoted string to be passed correctly to the remote
task(s) as one argument. For example, if you want to pass the following string to
the user program (including the imbedded blank)

a b

then you need to enter the following:
poe user_program \"a b\"

user_program is passed the following argument as one token:
a b

Without the backslashes, the string would have been treated as two arguments (a
and b).

Network tuning considerations
Programs generating large volumes of STDOUT or STDERR may overload the
home node. As described previously, standard output and standard error files
generated by a user’s program are piped to pmd, then forwarded to the poe binary
via a TCP/IP socket. It is possible to generate so much data that the IP message

68 z/OS UNIX System Services PE: Operation and Use

buffers on the home node are exhausted, the poe binary hangs and possibly the
entire node may hang). Note that the option -stdoutmode (environment variable
MP_STDOUTMODE) controls which output stream is displayed by the poe
binary, but does not limit the standard output traffic received from the remote
nodes, even if set to display the output of just one node.

The POE environment variable MP_SNDBUF can be used to override the default
network settings for the size of the TCP buffers used.

If you have large volumes of standard I/O, work with your network administrator
to establish appropriate TCP/IP tuning parameters. You may also want to examine
if using named pipes is appropriate for your application.

Standard I/O requires special attention
When your program runs on the remote nodes, it has no controlling terminal.
STDIN, STDOUT, and STDERR are always piped.

If your MPI program processes STDIN from a large file on the home node, you
must do one of the following:
v Invoke MPI_Init() before performing any STDIN processing, or
v Ensure that all STDIN has been processed (EOF) before invoking MPI_Init().

This also includes programs which may not explicitly use MPI

If STDIN is piped (or redirected) to the poe binary (via ordinary pipes), then
handle STDIN in the following way:
v If all STDIN is read by your program before MPI_Init() is called, set the

environment variable MP_HOLD_STDIN=NO.
v If none of STDIN is read before MPI_Init() is called, set the environment

variable MP_HOLD_STDIN=YES.
v If none of the above applies, it may not be possible to run your program

correctly, you will have to devise some other mechanism for providing data to
your program.

STDIN/STDOUT piping example
The following two scripts show how STDIN and STDOUT can be piped directly
between prior and post processing steps, bypassing the POE home node process.
This example assumes that parallel task 0 is known or forced to be on the same
node as the POE home node.

The script compute_home runs on the home node; the script compute_parallel runs
on the parallel nodes (those running tasks 0 through n-1).

Note that the flag —promptpw yes is set. This causes poe to prompt for the
password. Leaving the command flag out causes poe to expect the password to be
piped.
compute_home:
#! /bin/ksh
Example script compute home runs three processes:
data generator creates/gets data and writes to stdout
data processor is a parallel program that reads data
from stdin, processes it in parallel, and writes
the results to stdout.
data_consumer reads data from stdin and summarizes it
#

Chapter 8. Programming considerations for user applications in POE 69

set -o verbose
mkfifo poe_in_$$
mkfifo poe_out_$$
export MP_STDOUTMODE=0
export MP_STDINMODE=0
data_generator >poe_in_$$ | \
poe compute_parallel -promptpw yes poe_in_$$ poe_out_$$ data_processor | \

data_consumer <poe_out_$$
rc=$?
rm poe_in_$$
rm poe_out_$$
exit rc

compute_parallel:
#! /bin/ksh
Example script compute_parallel is a Shell script that
takes the following arguments:
1) name of input named pipe (stdin)
2) name of output named pipe (stdout)
3) name of program to be run (and arguments)
#
poe_in=$1
poe_out=$2
shift 2
$* <$poe_in >$poe_out

Program and thread termination
MPI_Finalize terminates the MPI service threads, but does not affect user-created
threads. Use pthread_exit to terminate any user-created threads, and exit(m) to
terminate the main program (initial thread). The value of m is used to set POE’s
exit status as explained on “Exit status” on page 64.

Other thread-specific considerations

Order requirement for system includes
For threaded programs, z/OS requires that the system include <pthread.h> must
be first with <stdio.h> or other system includes following it. <pthread.h> defines
some conditional compile variables that modify the code generation of subsequent
includes, particularly <stdio.h>. Please note that <pthread.h> is not required unless
your file uses thread-related calls or data.

MPI_Init
Call MPI_Init once per task not once per thread. MPI_Init does not have to be
called on the main thread, but MPI_Init and MPI_Finalize must be called on the
same thread.

MPI calls on other threads must adhere to the MPI standard in regard to the
following:
v A thread cannot make MPI calls until MPI_Init has been called.
v A thread cannot make MPI calls after MPI_Finalize has been called.
v Unless there is a specific thread protocol programmed, you cannot rely on any

specific order or speed of thread processing.

PE MPI does not include the MPI_Init_thread subroutine at this time. A call to
MPI_Init with environment variable MP_SINGLE_THREAD set to yes is equivalent
to a call to MPI_Init_thread specifying MPI_THREAD_FUNNELED. A call with
MP_SINGLE_THREAD set to no is equivalent to using MPI_THREAD_MULTIPLE.

70 z/OS UNIX System Services PE: Operation and Use

The default setting of MP_SINGLE_THREAD is no, so the default behavior of the
library is MPI_THREAD_MULTIPLE. MPI-IO and MPI 1-sided communication will
not operate if MP_SINGLE_THREAD is set to yes.

Collective communications
Collective communications must meet the MPI standard requirement that all
participating tasks execute collective communications on any given communicator
in the same order. If collective communications calls are made on multiple threads,
it is your responsibility to ensure the proper sequencing or to use distinct
communicators.

Reserved environment variables
Environment variables starting with MP_ are intended for use by POE and should
be set only as instructed in the documentation. POE also uses a handful of MP_...
environment variables for internal purposes, which should not be interfered with.

Message catalog considerations
POE assumes that NLSPATH contains the appropriate POE message catalogs, even
if LANG is set to ″C″ or is unset.

MPI-IO Requires Shared HFS To Be Used Effectively
The implementation of MPI-IO depends on all tasks running on a single file
system. IBM Shared HFS for z/OS is able to present a single file system to all
nodes of a S/390 Parallel Sysplex. Other shared file systems, as NFS for example,
do not have the same rigorous management of file consistency when updates occur
from more than one node.

MPI-IO can be used with most file systems as long as all tasks are on a single
node. This single node approach may be useful in learning to use MPI-IO, but is
not likely to be worthwhile in any production context.

Any production use of MPI-IO must be based on Shared HFS or another file
system with equivalent functionality and consistency.

Note: It is possible to define the set of tasks which are participating in I/O with
use of MP_IONODEFILE.

Using Shared Memory
MPI programs with more than one task on the same computing node may benefit
from using shared memory to send messages between intranode tasks.

This support includes the MP_SHARED_MEMORY environment variable. The
default setting is no. Setting this variable to yes directs MPI to use a
shared-memory protocol whenever two or more tasks of a job are executing on the
same node.

For programs on which all tasks are on the same node, shared memory is used
exclusively for all MPI communication (if MP_SHARED_MEMORY=YES).

The user may want to consider setting MP_WAIT_MODE=poll when using the
MPI library with shared memory support enabled.

Chapter 8. Programming considerations for user applications in POE 71

Programs that fail due to a signaled z/OS condition (such as a segmentation
violation or user interrupt) may exit without releasing the shared memory segment
on the node or nodes on which the tasks were running. Eventually the
unreclaimed shared memory space will prevent jobs from being run, so the shared
memory space must be reclaimed periodically by the user or by the system
administrator. Message FOMO249 is issued if the job exit status is greater than 128
and the shared memory option is enabled:
FOMO0249 Job job_id completed with exit status status.

Use the ipcrm command to reclaim shared memory if necessary.

The job_id is the key of the shared memory segment, which allows the shared
memory segment to be located in the output of the ipcs command, and the
corresponding segment ID removed by the ipcrm command. The following script
shows one way this can be done. This script is intended to be run by the user who
ran the POE job. The argument is the job_id as reported by message FOMO0249.
#! /bin/sh
Clean up the shared memory left by a failed POE job
This command should be run on each node where the job had run
Syntax: cleanup_shm < job_id >
#
If called with no arguments, list segments owned by user and show syntax:
if [$# -eq 0]
then

echo "The following shared memory segments are owned by" $LOGNAME
/bin/ipcs -m | head -3
/bin/ipcs -m | /bin/grep $LOGNAME
echo "Syntax: cleanup_shm < shared_memory_key >"
exit 1

else
User supplies memory key = POE Job ID
MEM_KEY=$1
set -- v/bin/ipcs | /bin/grep $MEM_KEYv
if [-z $2]
then

echo "Shared memory key" $MEM_KEY "not in use"
exit 0

fi
MEM_ID=$2
echo "Shared Memory Key =" $3
echo "Removing ID" $MEM_ID
/bin/ipcrm -m $MEM_ID
exit 0
fi

72 z/OS UNIX System Services PE: Operation and Use

Chapter 9. Debugging

Before continuing, let us stop and think about the basic process of creating a
parallel program. Here are the steps, (which have been greatly abbreviated):
1. Create and compile program
2. Start PE
3. Execute the program
4. Verify the output
5. Optimize the performance.

As with any process, problems can arise in any one of these steps, and different
tools are required to identify, analyze and correct the problem. Knowing the right
tool to use is the first step in fixing the problem. The remainder of this chapter
tells you about some of the common problems you might run into, and what to do
when they occur. The sections in this chapter are labeled according to the symptom
you might be experiencing.

Messages

Message catalog errors
Messages are an important part of diagnosing problems, so it’s essential that you
not only have access to them, but that they are at the correct level. In some cases,
you may get message catalog errors. This usually means that the message catalog
could not be located or loaded. Check that your NLSPATH environment variable
includes the path where the message catalog is located. Generally, the message
catalog will be in /usr/lib/nls/msg/C (English version). The message catalogs in the
Japanese version are located in: /usr/lib/nls/msg/Ja_JP. For further information on
NLS matters, see “National Language Support” on page xiv.

If the message catalogs are not in the proper place, or your environment variables
are not set properly, your system administrator can probably help you. There is
really no point in going on until you can read the real error messages!

The following are the Parallel Environment message catalogs :
v mpci_err.cat
v pepdbx.cat
v pepedb.cat (English version only)
v pempl.cat
v pepoe.cat

Note: No pepedb.cat message catalog exists for the Japanese version.

Finding messages
There are a number of places that you can find messages:
v They are displayed on the home node when it is running POE (STDERR and

STDOUT).
v If you set either the MP_PMDLOG environment variable or the -pmdlog

command-line option to yes, they are collected in the pmd log file of each task,
in /tmp (STDERR and STDOUT).

© Copyright IBM Corp. 1997, 2001 73

Logging POE errors to a file
You can also specify that diagnostic messages be logged to a file in /tmp on each of
the remote nodes of your partition by using the MP_PMDLOG environment
variable. The log file is called /tmp/mplog.pid.n, where pid is the process id of the
Partition Manager Daemon (pmd) that was started in response to the poe
command, and n is the task number. This file contains additional diagnostic
information about why the user connection was not made. If the file is not there,
then pmd did not start. Check the /etc/inetd.conf and /etc/services entries and the
executability of pmd for the root user ID again.

For more information about the MP_PMDLOG environment variable, see
“Appendix B. POE environment variables and command-line flags” on page 283.
Should you require help from the IBM support Center in resolving a PE problem,
you will probably be asked to generate these diagnostic logs.

The ability to generate diagnostic logs on each node is particularly useful for
isolating the cause for abnormal termination, especially when the connection
between the remote node and the home node Partition Manager is broken.

As with most PE environment variables, you can override MP_PMDLOG with the
corresponding command-line flag -pmdlog.

Message format
Knowing which component a message is associated with can be helpful, especially
when trying to resolve a problem. As a result, PE messages include prefixes that
identify the related component. The message identifiers for the PE components are
as follows.

FOMOnnnn
Parallel Operating Environment

FOMMnnnn
Message Passing Interface

FOMOGnnnn
pedb debugger

FOMOHnnnn
pdbx debugger

where:
v The first letters (FOMM, FOMO, FOMOG, FOMOH) identify the component that

issued the message.
v nnnn identifies the sequence of the message in the group.

For more information about PE messages, see z/OS UNIX System Services Messages
and Codes.

Cannot compile a parallel program
Programs for the Parallel Environment must be compiled with the current release
of mpcc. If the command you’re trying to use cannot be found, make sure the
installation was successful and that your PATH environment variable contains the
path to the compiler scripts. This command calls the C compiler, so you also need
to make sure that the underlying compiler is installed and accessible. Your System
Administrator should be able to assist you in verifying these things.

74 z/OS UNIX System Services PE: Operation and Use

Cannot start a parallel job
Once your program has been successfully compiled, you either invoke it directly or
start the Parallel Operating Environment (POE) and then submit the program to it.
In both cases, POE is started to establish communication with the parallel nodes.
Problems that can occur at this point include:
v POE does not start

or
v POE cannot connect to the remote nodes.

These problems can be caused by problems:
v on the home node (where you are trying to submit the job)
v on the remote parallel nodes
v or in the communication subsystem that connects them

You need to make sure that all the things POE expects to be set up really are. Here
is what you do:
1. Make sure that you can execute POE. Type:

$ poe

If the result is poe: FSUM7351 not found, you do not have POE in your path. It
might mean that POE is not installed, or that your path does not point to it.
Check that the file /bin/poe exists and is executable, and that your PATH
includes /bin.

2. Type:
$ env | grep MP_

Look at the settings of the environment variables beginning with MP_, (the
POE environment variables). Check their values against what you expect,
particularly MP_HOSTFILE (where the list of remote host names is to be
found), MP_RESD (whether the Workload Manager is to be used to allocate
remote hosts) and MP_RMPOOL (the pool from which Workload Manager is
to allocate remote hosts) values. If they are all unset, make sure that you have a
file named host.list in your current directory. This file must include the names
of all the remote parallel hosts that can be used. There must be at least as many
hosts available as the number of parallel processes you specified with the
MP_PROCS environment variable.

3. Type:
$ poe -procs 1

You should get the prompt message FOMO0503.

If you do, POE has successfully loaded, established communication with the
first remote host in your host list file, validated your use of that remote host,
and is ready to go to work. If you type any command, for example, date, ls, or
env, you should get a response when the command executes on the remote
host.

If you get some other set of messages, then the message text should give you
some idea of where to look. Some common situations include:
v Cannot connect with the remote host

Chapter 9. Debugging 75

The path to the remote host is unavailable. Check to make sure that you are
trying to connect to the host you think you are. If you are using the
Workload Manager to allocate nodes from a pool, you may want to allocate
nodes from a known list instead.
Check the /etc/services file on your home node, to make sure that the
Parallel Environment service is defined. Check the /etc/services and
/etc/inetd.conf files on the remote host to make sure that the PE service is
defined, and that the Partition Manager Daemon (pmd) program invoked by
inetd on the remote node is executable.

v User not authorized on remote host
You need an ID on the remote host and your ID and password must be
identical on the home node and all remote nodes.

v Other strangeness
On the home node, you can set or increase the MP_INFOLEVEL
environment variable (or use the -infolevel command-line option) to get
more information out of POE while it is running. Although this won’t give
you any more information about the error, it will give you an idea of where
POE was, and what it was trying to do when the error occurred. A value of 6
will give you more information than you could ever want.

Cannot execute a parallel program
Once POE can be started, you’ll need to consider the problems that can arise in
running a parallel program, specifically initializing the message passing subsystem.
The way to eliminate this initialization as the source of POE start-up problems is to
run a program that does not use message passing. As discussed in “Running
simple commands” on page 7, you can use POE to invoke any command or serial
program on remote nodes. If you can get a command or simple program, like
Hello, World!, to run under POE, but a parallel program does not, you can be pretty
sure the problem is in the message passing subsystem. The message passing
subsystem is the underlying implementation of the message passing calls used by
a parallel program (in other words, an MPI_Send). POE code that is linked into
your executable by the mpcc or mpCC command initializes the message passing
subsystem.

Use specific remote hosts in your host list file and do not use the Workload
Manager (set MP_RESD=no). If you do not have a small parallel program around,
recompile hello.c as follows:
$ mpcc -o hello_p hello.c

and make sure that the executable is loadable on the remote host that you are
using.

Type the following command, and then look at the messages on the console:
$ poe hello_p -procs 1 -infolevel 4

If the last message that you see looks like this:
Calling mpci_connect

and there are no further messages, there is an error in opening an UDP socket on
the remote host. Check to make sure that the IP address of the remote host is
correct, as reported in the informational messages printed out by POE, and
perform any other IP diagnostic procedures that you know of.

76 z/OS UNIX System Services PE: Operation and Use

If you get
Hello, World!

then the communication subsystem has been successfully initialized on the one
node, and things ought to be looking good.

The program runs but...
Once you have gotten the parallel application running, it would be nice if you
were guaranteed that it would run correctly. Unfortunately, this is not the case. In
some cases, you may get no output at all, and your challenge is to figure out why
not. In other cases, you may get output that is just not correct and, again, you
must figure out why it is not.

Debugging your parallel program
An important tool in analyzing your parallel program is the PE parallel debugger
(pedb or pdbx). In some situations, using the parallel debugger is no different than
using a debugger for a serial program. In others, however, the parallel nature of
the problem introduces some subtle and not-so-subtle differences which you
should understand in order to use the debugger efficiently. While debugging a
serial application, you can focus your attention on the single problem area. In a
parallel application, not only must you shift your attention between the various
parallel tasks, you must also consider how the interaction among the tasks may be
affecting the problem.

The simplest problem
The simplest parallel program to debug is one where all the problems exist in a
single task. In this case, you can unhook all the other tasks from the debugger’s
control and use the parallel debugger as if it were a serial debugger. However, in
addition to being the simplest case, it is also very rare.

The next simplest problem
The next simplest case is one where all the tasks are doing the same thing and
they all experience the problem that is being investigated. In this case, you can
apply the same debug commands to all the tasks, advance them in lockstep and
interrogate the state of each task before proceeding. In this situation, you need to
be sure to avoid debugging-introduced deadlocks. These are situations where the
debugger is trying to single-step a task past a blocking communication call, but the
debugger has not stepped the sender of the message past the point where the
message is sent. In these cases, control will not be returned to the debugger until
the message is received, but the message will not be sent until control returns to
the debugger. Get the picture?

OK, the worst problem
The most difficult situation to debug and also the most common is where not all
the tasks are doing the same thing and the problem spans two or more tasks. In
these situations, you have to be aware of the state of each task, and the
interrelations among tasks. You must ensure that blocking communication events
either have been or will be satisfied before stepping or continuing through them.
This means that the debugger has already executed the send for blocking receives,
or the send will occur at the same time (as observed by the debugger) as the
receive. Frequently, you may find that tracing back from an error state leads to a
message from a task that you were not paying attention to. In these situations,
your only choice may be to re-run the application and focus on the events leading
up to the send.

Chapter 9. Debugging 77

No output at all

Should there be output?
If you’re getting no output from your program and you think you ought to be, the
first thing you should do is make sure you have enabled the program to send data
back to you. If the MP_STDOUTMODE environment variable is set to a number,
it is the number of the only task for which standard output will be displayed. If
that task does not generate standard output, you will not see any.

There should be output
If MP_STDOUTMODE is set appropriately, the next step is to verify that the
program is actually doing something. Start by observing how the program
terminates (or fails to). It will do one of the following things:
v Terminate without generating output other than POE messages.
v Fail to terminate after a really long time, still without generating output.

In the first case, you should examine any messages you receive (since your
program is not generating any output, all of the messages will be coming from
POE).

In the second case, you will have to stop the program yourself (<EscChar-c>
should work).

One possible reason for lack of output could be that your program is terminating
abnormally before it can generate any. POE will report abnormal termination
conditions such as being killed, as well as non-zero return codes. Sometimes these
messages are obscured in the blur of other errata, so it is important to check the
messages carefully.

Figuring out return codes: It is important to understand POE’s interpretation of
return codes. If the exit code for a task is zero (0) or in the range of 2 to 127, then
POE will make that task wait until all tasks have exited. If the exit code is 1 or
greater than 127 (or less than 0), then POE will terminate the entire parallel job
abruptly (with a SIGTERM signal to each task). In normal program execution, one
would expect to have each program go through exit(0) or STOP, and exit with an
exit code of 0.

However, if a task encounters an error condition (for example, a full file system),
then it may exit unexpectedly. In these cases, the exit code is usually set to -1, but
if you have written error handlers which produce exit codes other than 1 or -1,
then POE’s termination algorithm may cause your program to hang because one
task has terminated abnormally, while the other tasks continue processing
(expecting the terminated task to participate).

If the POE messages indicate the job was killed (either because of some external
situation like low page space or because of POE’s interpretation of the return
codes), it may be enough information to fix the problem. Otherwise, more analysis
is required.

It hangs
If you’ve gotten this far and the POE messages and the additional checking by the
message passing routines have been unable to shed any light on why your
program is not generating output, the next step is to figure out whether your
program is doing anything at all (besides not giving you output).

78 z/OS UNIX System Services PE: Operation and Use

Let us look at the following example...it has got a bug in it.
/**
*
* Ray trace program with bug
*
* To compile:
* mpcc -o rtrace_bug rtrace_bug.c
*
*
* Description:
* This is a sample program that partitions N tasks into
* two groups, a collect node and N - 1 compute nodes.
* The responsibility of the collect node is to collect the data
* generated by the compute nodes. The compute nodes send the
* results of their work to the collect node for collection.
*
* There is a bug in this code. Please do not fix it in this file!
*
**/

#include <mpi.h>

#define PIXEL_WIDTH 50
#define PIXEL_HEIGHT 50

int First_Line = 0;
int Last_Line = 0;

int main(int argc, char *argv[])
{

int numtask;
int taskid;

/* Find out number of tasks/nodes. */
MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &numtask);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

/* Task 0 is the coordinator and collects the processed pixels */
/* All the other tasks process the pixels */
if (taskid == 0)

collect_pixels(taskid, numtask);
else

compute_pixels(taskid, numtask);

printf("Task %d waiting to complete.\n", taskid);
/* Wait for everybody to complete */
MPI_Barrier(MPI_COMM_WORLD);
printf("Task %d complete.\n",taskid);
MPI_Finalize();
exit(0);

}

/* In a real implementation, this routine would process the pixel */
/* in some manner and send back the processed pixel along with its*/
/* location. Since we're not processing the pixel, all we do is */
/* send back the location */
compute_pixels(int taskid, int numtask)
{

int section;
int row, col;
int pixel_data[2];
MPI_Status stat;
printf("Compute #%d: checking in\n", taskid);

section = PIXEL_HEIGHT / (numtask -1);

Chapter 9. Debugging 79

First_Line = (taskid - 1) * section;
Last_Line = taskid * section;

for (row = First_Line; row < Last_Line; row ++)
for (col = 0; col < PIXEL_WIDTH; col ++)
{

pixel_data[0] = row;
pixel_data[1] = col;
MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

}
printf("Compute #%d: done sending. ", taskid);
return;

}

/* This routine collects the pixels. In a real implementation, */
/* after receiving the pixel data, the routine would look at the*/
/* location information that came back with the pixel and move */
/* the pixel into the appropriate place in the working buffer */
/* Since we aren't doing anything with the pixel data, we don't */
/* bother and each message overwrites the previous one */
collect_pixels(int taskid, int numtask)
{

int pixel_data [2] ;
MPI_Status stat;
int mx = PIXEL_HEIGHT * PIXEL_WIDTH;

printf("Control #%d: No. of nodes used is %d\n", taskid,numtask);
printf("Control: expect to receive %d messages\n", mx);

while (mx > 0)
{

MPI_Recv(pixel_data, 2, MPI_INT, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &stat);

mx--;
}
printf("Control node #%d: done receiving. ",taskid);
return;

}

This example was taken from a ray tracing program that distributed a display
buffer out to server nodes. The intent is that each task, other than Task 0, takes an
equal number of full rows of the display buffer, processes the pixels in those rows,
and then sends the updated pixel values back to the client. In the real application,
the task would compute the new pixel value and send it as well, but in this
example, we’re just sending the row and column of the pixel. Because the client is
getting the row and column location of each pixel in the message, it doesn’t care
which server each pixel comes from. The client is Task 0 and the servers are all the
other tasks in the parallel job.

This example has a functional bug in it. With a little bit of analysis, the bug is
probably easy to spot and you may be tempted to fix it right away. Please do not !

When you run this program, you get the output shown below. Notice that we are
using the -g option when we compile the example. We are cheating a little bit,
because we know that there is going to be a problem, so we are compiling with
debug information turned on right away.
$ mpcc -g -o rtrace_bug rtrace_bug.c
$ rtrace_bug -procs 4 -labelio yes
1:Compute #1: checking in
0:Control #0: No. of nodes used is 4
1:Compute #1: done sending. Task 1 waiting to complete.
2:Compute #2: checking in
3:Compute #3: checking in

80 z/OS UNIX System Services PE: Operation and Use

0:Control: expect to receive 2500 messages
2:Compute #2: done sending. Task 2 waiting to complete.
3:Compute #3: done sending. Task 3 waiting to complete.
|C
ERROR: FOMO0250 task 1: Interrupt
ERROR: FOMO0250 task 2: Interrupt
ERROR: FOMO0250 task 3: Interrupt
ERROR: FOMO0250 task 0: Interrupt

No matter how long you wait, the program will not terminate until you press
<EscChar-c>.

So, we suspect that the program is hanging somewhere. We know that it starts
executing because we get some messages from it. It could be a logical hang or it
could be a communication hang.

Let us attach the debugger
Let us use the debugger to find out why the program is hanging. The best way to
diagnose this problem is to attach the debugger directly to our POE job.

Set z/OS run-time option TEST, start POE and run rtrace_bug:
$ export _CEE_RUNOPTS='test(all)'
$ rtrace_bug -procs 4 -labelio yes

To attach the debugger, we first need to get the process id (pid) of the POE job.
You can do this with the z/OS ps command:
$ ps -ef | grep poe

smith 24152 20728 0 08:25:22 pts/0 0:00 poe

Next, we will need to start the debugger in attach mode. Before starting the
debugger we have to set the environment variable _BPX_PTRACE_ATTACH. Note
that we can use either the pdbx or the pedb debugger. In this next example, we
will use pedb, which we will start in attach mode by using the -a flag and the
process identifier (pid) of the POE job:
$ export _BPX_PTRACE_ATTACH=yes
$ pedb -a 24152

After starting the debugger in attach mode, the pedb Attach dialog window
appears:

Chapter 9. Debugging 81

The Attach Dialog window contains a list of task numbers and other information
that describes the POE application. It provides information for each task in the
following fields:

Task The task number

IP The IP address of the node on which the task or application is running

Node The name, if available, of the node on which the task or application is
running

PID The process identifier of the selected task

Program
The name of the application and arguments, if any. These may be different
if your program is MPMD.

At the bottom of the window there are two buttons (other than Quit and Help):

Attach Causes the debugger to attach to the tasks that you selected. This button
remains grayed out until you make a selection.

Attach All
Causes the debugger to attach to all the tasks listed in the window. You do
not have to select any specific tasks.

Next, select the tasks to which you want to attach. You can either select all the
tasks by pressing the Attach All button, or you can select individual tasks, by
pressing the Attach button. In our example, since we don’t know which task or set
of tasks is causing the problem, we’ll attach to all the tasks by pressing the Attach
All button.

Figure 5. Attach Dialog window

82 z/OS UNIX System Services PE: Operation and Use

PLACE
the mouse cursor on the Attach All button.

PRESS
the left mouse button.

v The Attach Dialog window closes and the debugger main window
appears:

Since our code is hung in low level routines, the initial main window only
provides stack traces. To get additional information for a particular task, double
click on the highest line in the stack trace that has a line number and a file name
associated with it. This indicates that the source code is available.

For task 0, in our example, this line in the stack trace is:
collect_pixels(), line 101 in rtrace_bug.c

Clicking on this line causes the local data to appear in the Local Data area and the
source file (the collect_pixels function) to appear in the Source File area. In the
source for collect_pixels, line 101 is highlighted. Note that the function name and
line number within the function your program last executed appears here. (in this
case, it was function MPI_Recv() on line 101).

Figure 6. pedb main window

Chapter 9. Debugging 83

PLACE
the mouse cursor on the Task 0 label (not the box) in the Global Data area.

PRESS
the right mouse button.

v a pop-up menu appears.

SELECT
the Show All option.

v All the global variables for this are tracked and displayed in the window
below the task button.

Figure 7. Getting additional information about a task

84 z/OS UNIX System Services PE: Operation and Use

Repeat the steps above for each task.

Now you can see that task 0 is stopped on an MPI_Recv() call. When we look at
the Local Data values, we find that mx is still set to 100, so task 0 thinks it’s still
going to receive 100 messages. Now, let us look at what the other tasks are doing.

To get information on task 1, go to its stack window and double click on the
highest entry that includes a line number. In our example, this line is:
main(argc = 1, argv = 0x2ff22a74), line 43, in rtrace_bug.c

Task 1 has reached an MPI_Barrier() call. If we quickly check the other tasks, we
see that they have all reached this point as well. So.... the problem is solved. Tasks
1 through 3 have completed sending messages, but task 0 is still expecting to
receive more. Task 0 was expecting 2500 messages, but only got 2400, so it is still
waiting for 100 messages. Let us see how many messages each of the other tasks
are sending. To do this, we will look at the global variables First_Line and
Last_Line. We can get the values of First_Line and Last_Line for each task by
selecting them in the Global Data area.

PLACE
the mouse cursor over the desired task number label (not the box) in the
Global Data area.

PRESS
the right mouse button.

v a pop-up menu appears.

SELECT
the Show All option.

v The First_Line and Last_Line variables are tracked and displayed in the
window below the task button.

Repeat the steps above for each task.

As you can see...
v Task 1 is processing lines 0 through 16
v Task 2 is processing lines 16 through 32
v Task 3 is processing lines 32 through 48.

So what happened to lines 48 and 49? Since each row is 50 pixels wide, and we are
missing 2 rows, that explains the 100 missing messages. As you’ve probably
already figured out, the division of the total number of lines by the number of
tasks is not integral, so we lose part of the result when it’s converted back to an
integer. Where each task is supposed to be processing 16 and two-thirds lines, it is
only handling 16.

Figure 8. Global Data window

Chapter 9. Debugging 85

Fix the problem
So how do we fix this problem permanently? As we mentioned above, there are
many ways:
v We could have the last task always go to the last row as we did in the debugger.
v We could have the program refuse to run unless the number of tasks are evenly

divisible by the number of pixels (a rather harsh solution).
v We could have tasks process the complete row when they have responsibility for

half or more of a row.

In our case, since Task 1 was responsible for 16 and two thirds rows, it would
process rows 0 through 16. Task 2 would process 17-33 and Task 3 would process
34-49. The way we are going to solve it is by creating blocks, with as many rows
as there are servers. Each server is responsible for one row in each block (the offset
of the row in the block is determined by the server’s task number). The fixed code
is shown in the following example. Note that this is only part of the program.
/***
*
* Ray trace program with bug corrected
*
* To compile:
* mpcc -o rtrace_good rtrace_good.c
*
*
* Description:
* This is part of a sample program that partitions N tasks into
* two groups, a collect node and N - 1 compute nodes.
* The responsibility of the collect node is to collect the data
* generated by the compute nodes. The compute nodes send the
* results of their work to the collect node for collection.
*
* The bug in the original code was due to the fact that each processing
* task determined the rows to cover by dividing the total number of
* rows by the number of processing tasks. If that division was not
* integral, the number of pixels processed was less than the number of
* pixels expected by the collection task and that task waited
* indefinitely for more input.
*
* The solution is to allocate the pixels among the processing tasks
* in such a manner as to ensure that all pixels are processed.
*
**/

compute_pixels(int taskid, int numtask)
{

int offset;
int row, col;
int pixel_data[2];
MPI_Status stat;

printf("Compute #%d: checking in\n", taskid);

First_Line = (taskid - 1); /* First n-1 rows are assigned */
/* to processing tasks */
offset = numtask - 1; /* Each task skips over rows */
/* processed by other tasks */

/* Go through entire pixel buffer, jumping ahead by numtask-1 each time */
for (row = First_Line; row < PIXEL_HEIGHT; row += offset)

for (col = 0; col < PIXEL_WIDTH; col ++)
{

pixel_data[0] = row;
pixel_data[1] = col;
MPI_Send(pixel_data, 2, MPI_INT, 0, 0, MPI_COMM_WORLD);

86 z/OS UNIX System Services PE: Operation and Use

}
printf("Compute #%d: done sending. ", taskid);
return;

}

This program is the same as the original one except for the loop in
compute_pixels. Now, each task starts at a row determined by its task number and
jumps to the next block on each iteration of the loop. The loop is terminated when
the task jumps past the last row (which will be at different points when the
number of rows is not evenly divisible by the number of servers.)

What is the hang-up?
The symptom of the problem in the rtrace_bug program was a hang. Hangs can
occur for the same reasons they occur in serial programs (in other words, loops
without exit conditions). They may also occur because of message passing
deadlocks or because of some subtle differences between the parallel and
sequential environments.

However, sometimes analysis under the debugger indicates that the source of a
hang is a message that was never received, even though it’s a valid one, and even
though it appears to have been sent. In these situations, the problem is probably
due to lost messages in the communication subsystem. This is especially true if the
lost message is intermittent or varies from run to run. This is either the program’s
fault or the environment’s fault. Before investigating the environment, you should
analyze the program’s safety with respect to MPI. A safe MPI program is one that
does not depend on a particular implementation of MPI.

Although MPI specifies many details about the interface and behavior of
communication calls, it also leaves many implementation details unspecified (and
it doesn’t just omit them, it specifies that they are unspecified.) This means that
certain uses of MPI may work correctly in one implementation and fail in another,
particularly in the area of how messages are buffered. An application may even
work with one set of data and fail with another in the same implementation of
MPI. This is because, when the program works, it has stayed within the limits of
the implementation. When it fails, it has exceeded the limits. Because the limits are
unspecified by MPI, both implementations are valid. MPI safety is discussed further
in “Appendix D. MPI safety” on page 293.

Once you have verified that the application is MPI-safe, your only recourse is to
blame lost messages on the environment. Use the standard network analysis tools
to diagnose the problem.

Message passing between lots of remote hosts can tax the underlying IP system.
Make sure that you look at all the remote nodes, not just the home node.

Other hang-ups
One final cause for no output is a problem on the home node (POE is hung).
Normally, a hang is associated with the remote hosts waiting for each other, or for
a termination signal. POE running on the home node is alive and well, waiting
patiently for some action on the remote hosts. If you type <EscChar-c> on the POE
console, you will be able to successfully interrupt and terminate the set of remote
hosts. See “Appendix A. Parallel Environment commands” on page 185 for
information on the poekill command.

Chapter 9. Debugging 87

There are situations where POE itself can hang. Usually these are associated with
large volumes of input or output. Remember that POE normally gets standard
output from each node; if each task writes a large amount of data to standard
output, it may chew up the IP buffers on the machine running POE, causing it
(and all the other processes on that machine) to block and hang. The only way to
know that this is the problem is by seeing that the rest of the home node has hung.
If you think that POE is hung on the home node, your only solution may be to kill
POE there. Press <EscChar-c> several times, or use the command kill -9.

Bad output
Bad output includes unexpected error messages. After all, who expects error
messages or bad results (results that are not correct).

Error messages
The causes of error messages are tracked down and corrected in parallel programs
using techniques similar to those used for serial programs. One difference,
however, is that you need to identify which task is producing the message, if it is
not coming from all tasks. You can do this by setting the MP_LABELIO
environment variable to yes, or using the -labelio yes command-line parameter.
Generally, the message will give you enough information to identify the location of
the problem.

You may also want to generate more error and warning messages by setting the
MP_EUIDEVELOP environment variable to yes. when you first start running a
new parallel application. This will give you more information about the things that
the message passing library considers errors or unsafe practices.

Bad results
Bad results are tracked down and corrected in a parallel program in a fashion
similar to that used for serial programs. The process, as we saw in the previous
debugging exercise, can be more complicated because the processing and control
flow on one task may be affected by other tasks. In a serial program, you can
follow the exact sequence of instructions that were executed and observe the
values of all variables that affect the control flow. However, in a parallel program,
both the control flow and the data processing on a task may be affected by
messages that are sent from other tasks. For one thing, you may not have been
watching those other tasks. For another, the messages could have been sent a long
time ago, so it’s very difficult to correlate a message that you receive with a
particular series of events.

Debugging and Threads
So far, we’ve talked about debugging normal old serial or parallel programs, but
you may want to debug a threaded program (or a program that uses threaded
libraries). If this is the case, there are a few things you should consider.

Before you do anything else, you first need to understand the environment you’re
working in. You have the potential to create a multi-threaded application, using a
multi-threaded library, that consists of multiple distributed tasks. As a result,
finding and diagnosing bugs in this environment may require a different set of
debugging techniques that you’re not used to using. Here are some things to
remember.

When you attach to a running program, all the tasks you selected in your program
will be stopped at their current points of execution. Typically, you want to see the
current point of execution of your task. This stop point is the position of the

88 z/OS UNIX System Services PE: Operation and Use

program counter, and may be in any one of the many threads that your program
may create OR any one of the threads that the MPI library creates. With
non-threaded programs it was adequate to just travel up the program stack until
you reached your application code (assuming you compiled your program with
the -g option). But with threaded programs, you now need to traverse across other
threads to get to your thread(s) and then up the program stack to view the current
point of execution of your code.

The MPI library itself will create a set of threads to process message requests.
When you attach to a program that uses the MPI library, all of the threads
associated with the POE job are stopped, including the ones created and used by
MPI.

It’s important to note that to effectively debug your application, you must be
aware of how threads are dispatched. When a task is stopped, all threads are also
stopped. Each time you issue an execution command such as step over, step into,
step return, or continue, all the threads are released for execution until the next
stop (at which time they are stopped, even if they haven’t completed their work).
This stop may be at a breakpoint you set or the result of a step. A single step over
an MPI routine may prevent the MPI library threads from completely processing
the message that is being exchanged.

For example, if you wanted to debug the transfer of a message from a send node
to a receiver node, you would step over an MPI_SEND() in your program on task
1, switch to task 2, then step over the MPI_RECV() on task 2. Unless the MPI
threads on task 1 and 2 have the opportunity to process the message transfer, it
will appear that the message was lost. Remember... the window of opportunity for
the MPI threads to process the message is brief, and is only open during the step
over. Otherwise, the threads will be stopped. Longer-running execution requests,
of both the sending and receiving nodes, allow the message to be processed and,
eventually, received.

For more information on debugging threaded and non-threaded MPI programs
with the PE debugging tools, (pdbx and pedb), see “Chapter 10. Using the pdbx
debugger” on page 93 and “Chapter 11. Using the pedb debugger” on page 127.

For more information on MPI library, see z/OS UNIX System Services Parallel
Environment: MPI Programming and Subroutine Reference.

Keeping an eye on progress
Often, once a program is running correctly, you would like to monitor its progress.
Frequently, in a sequential program, this is done by printing to standard output.
However, if you remember from Chapter 3, standard output from all the tasks is
interleaved, and it is difficult to follow the progress of just one task. If you set the
MP_STDOUTMODE environment variable to ordered, you can not see how the
progress of one task relates to another. In addition, normal output is not a blocking
operation. This means that a task that writes a message will continue processing so
that by the time you see the message, the task is well beyond that point. This
makes it difficult to understand the true state of the parallel application, and it is
especially difficult to correlate the states of two tasks from their progress messages.
One way to synchronize the state of a parallel task with its output messages is to
use the Program Marker Array (pmarray).

Chapter 9. Debugging 89

The Program Marker Array consists of two components: the display function,
pmarray, and the instrumentation call, mpc_marker. When pmarray is running, it
shows a display that looks like Figure 9, below.

Each row of colored squares is associated with one task, which can change the
color of any of the lights in its row with the mpc_marker call. The declaration
looks like this:
void mpc_marker(int light, int color, char *str)

This call accepts two integer values and a character string. The first parameter,
light, controls which light in the pmarray is being modified. You can have up to
100 lights for each task. The second parameter, color, specifies the color to which
you are setting the light. There are 100 colors available. The third parameter is a
string of up to 80 characters that is a message shown in the text area of the
pmarray display.

Before you start the parallel application, you need to tell pmarray how many lights
to use, as well as how many tasks there will be. You do this with the
MP_PMLIGHTS and the MP_PROCS environment variables.
$ export MP_PROCS=4
$ export MP_PMLIGHTS=16

If the parallel application is started from an X-Windows environment where
pmarray is running, the output square of pmarray, for the task that made the call
in the position specified by the light parameter, changes to the color specified by
the color parameter. The character string is displayed in a text output region for
the task. In addition to providing a quick graphical representation of the progress
of the application, the output to pmarray is synchronized with the task that
generates it. The task will not proceed until it has been informed that the data has
been sent to pmarray. This gives you a much more current view of the state of
each task.

The example below shows how pmarray can be used to track the progress of an
application. This program does not do anything useful, but there is an inner loop
that is executed 16 times, and an outer loop that is executed based on an input
parameter. On each pass through the inner loop, the mpc_marker call is made to
color each square in the task’s pmarray row according to the color of the index for
the outer loop. On the first pass through the inner loop, each of the 16 squares will
be colored with color 0. On the second pass, they will be colored with color 1. On
each pass through the outer loop, the task will be delayed by the number of
seconds equal to its task number. Thus, task 0 will quickly finish, but task 4 will
take a while to finish. The color of the squares for a task indicates how far they are

Figure 9. Program Marker Array

90 z/OS UNIX System Services PE: Operation and Use

through the outer loop. The square that is actually changing color is the position in
the inner loop. In addition, a text message is updated on each pass through the
outer loop.
/**
*
* Demonstration of use of pmarray
*
* To compile:
* mpcc -g -o use_pmarray use_pmarray.c
*
**/

#include<stdlib.h>
#include<stdio.h>
#include<mpi.h>
#include<time.h>

int main(int argc, char **argv)
{
int i, j;
int inner_loops = 16, outer_loops = 0;
int me;
char buffer[256];
time_t start, now;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&me);;

if(argc>1) outer_loops = atoi(argv[1]);
if(outer_loops<1) outer_loops = 16;

for(i=0;i<outer_loops;i++)
{
/* Create message that will be shown in pmarray text area */
sprintf(buffer,"Task %d performing loop %d of %d",me,i+1,outer_loops);
printf("%s\n",buffer);
for(j=0;j<inner_loops;j++)
{
/* pmarray light shows which outer loop we are in */
/* color of light shows which inner loop we are in */
/* text in buffer is created in outer loop */
mpc_marker(i,5*j,buffer);
}

/* Pause for a number of seconds determined by which */
/* task this is. sleep(me) cannot be used because */
/* underlying communication mechanism uses a regular */
/* timer interrupt that interrupts the sleep call */
/* Instead, we'll look at the time we start waiting */
/* and then loop until the difference between the */
/* time we started and the current time is equal to */
/* the task id */
time(&start);
time(&now);
while(difftime(now,start)<(double)me)
{
time(&now);
}
}
MPI_Finalize();
return 0;
}

Before running this example, you need to start pmarray, telling it how many lights
to use. You do this with the MP_PMLIGHTS environment variable.

Chapter 9. Debugging 91

In our example, if we wanted to run the program with eight outer loops, we
would set MP_PMLIGHTS to 8 before running the program.

Although it is not as freeform as print statements, or as extensible, pmarray allows
you to send three pieces of information (the light number, the color, and the text
string) back to the home node for presentation. It also ensures that the presentation
is synchronized as closely to the task state as possible. We recommend that if you
use pmarray for debugging, you define a consistent strategy for its use in your
application. For example, you may want to use color to indicate state (initializing,
active, disabled, terminated), and light number to indicate module or subsystem.
You can configure pmarray with as many lights as will fit on the display.

92 z/OS UNIX System Services PE: Operation and Use

Chapter 10. Using the pdbx debugger

This chapter describes the pdbx debugger. This debugger extends the dbx
debugger’s line-oriented interface and subcommands. Some of these
subcommands, however, have been modified for use on parallel programs. The
pdbx debugger is a POE application with some modifications on the home node to
provide a user interface.

Before invoking a parallel program using pdbx for interactive debugging, you first
need to compile the program and set up the execution environment. See this
manual for more information on the following:
v Compiling the program. Be sure to specify the -g flag when compiling the

program. This produces an object file with symbol table references needed for
symbolic debugging.

v Copying files to individual nodes. Like poe, pdbx requires that your application
program be available to run on each node in your partition. To support source
level debugging, pdbx requires the source files to be available as well. You will
generally use the same mechanism to make the source files accessible as you
used for the application program.

v Setting up the execution environment.

As you read these steps, keep in mind that pdbx accepts almost all the option flags
that poe accepts, and responds to the same environment variables.

Also, throughout this book, keep in mind the following information.

The S/390 processors of your system are called processor nodes. A parallel program
executes as a number of individual, but related, parallel tasks on a number of your
system’s processor nodes. The group of parallel tasks is called a partition. The
processor nodes are connected on the same network, so the parallel tasks of your
partition can communicate to exchange data or synchronize execution.

pdbx subcommands
Table 1 on page 94 and Table 2 on page 94 outlines the pdbx subcommands that
are described in this chapter. Complete syntax information for all these
subcommands is also provided under the entry for the pdbx command in
“Appendix A. Parallel Environment commands” on page 185.

The debugger supports most of the familiar dbx subcommands, as well as some
additional pdbx subcommands. In pdbx, command context refers to a setting that
controls which task(s) receive the subcommands that are entered at the pdbx
command prompt.

pdbx subcommands can either be context sensitive or context insensitive. The
debugger directs context sensitive subcommands to just the tasks in the current
command context. Command context has no bearing on context insensitive
commands, which control overall debugger behavior, and are generally processed
on the home node only. These include subcommands for setting help and other
information, and ending a pdbx session.

© Copyright IBM Corp. 1997, 2001 93

For a description of the pdbx subcommands, see “Appendix A. Parallel
Environment commands” on page 185.

While working with PE, you can display the online information by using the man
command. For example enter
man pdbxalias

for information on the pdbx alias subcommand. For information on other pdbx
subcommands, enter man and the name of the subcommand prefixed by pdbx.

You can set the command context on a single task or a group of tasks as described
in “Setting command context” on page 106.

Table 1. Context insensitive pdbx subcommands

Context insensitive pdbx subcommands

This subcommand: Is used to: For more information see:

alias [alias_name
string]

Set or display aliases. “Creating, removing, and listing
command aliases” on page 121

attach <[all |
task_list]>

Attach the debugger to some or all the tasks of a given
poe job.

“Attach mode” on page 99

detach Detach pdbx from all tasks that were attached. This
subcommand causes the debugger to exit but leaves
the poe application running.

“Exiting pdbx” on page 124

dhelp [dbx_command] Display a brief list of dbx commands or help
information about them.

“Accessing help for dbx
subcommands” on page 120

group <action>
[group_name]
[task_list]

Manipulate groups. The actions are add, change,
delete, and list. To indicate a range of tasks, enter the
first and last task numbers, separated by a colon or
dash. To indicate individual tasks, enter the numbers,
separated by a space or comma.

“Grouping tasks” on page 103

help [subject] Display a list of pdbx commands and topics or help
information about them.

“Accessing help for pdbx
subcommands” on page 120

on <[group | task]>
[command]

Set the command context used to direct subsequent
commands to a specific task or group of tasks. This
subcommand can also be used to deviate from the
command context for a single command without
changing the current command context.

“Setting the current command
context” on page 106

quit End a pdbx session. “Exiting pdbx” on page 124

source <cmd_file> Execute pdbx subcommands from a specified file.
Note: The file may contain context sensitive
commands.

“Reading subcommands from a
command file” on page 122

tasks [long] Display information about all the tasks in the partition. “Displaying tasks and their
states” on page 102

unalias alias_name Remove a command alias specified by the alias
subcommand.

“Creating, removing, and listing
command aliases” on page 121

Table 2. Context sensitive pdbx subcommands

Context sensitive pdbx subcommands

This subcommand: Is used to: For more information see:

94 z/OS UNIX System Services PE: Operation and Use

Table 2. Context sensitive pdbx subcommands (continued)

Context sensitive pdbx subcommands

delete <[event_list | * |
all]>

Remove breakpoints and tracepoints set by the stop
and trace subcommands. To indicate a range of events,
enter the first and last event numbers, separated by a
colon or a dash. To indicate individual events, enter the
number(s), separated by a space or comma.

“Deleting pdbx events” on
page 114

dbx <dbx_command> Issue a dbx subcommand directly to the dbx sessions
running on the remote nodes. This subcommand is not
intended for casual use. It must be used with caution,
because it circumvents the pdbx server which normally
manages communication between the user and the
remote dbx sessions. It enables experienced dbx users
to communicate directly with remote dbx sessions, but
can cause problems as pdbx will have no knowledge of
the communication that transpired.
Note: In addition to the pdbx subcommands shown in
this table, you can use most of the dbx subcommands.
The dbx subcommands are all context sensitive. The
only dbx subcommands that you cannot use are clear,
detach, edit, multproc, prompt, run, rerun, screen, and
the sh subcommand with no arguments.

the online PE manual page for
pdbx. This manual page also
appears in “Appendix A. Parallel
Environment commands” on
page 185.

hook Regain control over an unhooked task. “Unhooking and hooking tasks”
on page 116

list [line_number |
line_number,
line_number |
procedure]

Display lines of the current source file, or of a
procedure.

“Displaying source” on page 119

load <program>
[program_arguments]

Load a program on each node in the current context.
This can only be issued once per task per pdbx session.
pdbx will look for the program in the current directory
unless a relative or absolute path name is specified.

“Loading the partition with the
load subcommand” on page 101

print <[expression]> Print the value of an expression. “Viewing program variables” on
page 117

status [all] Display a list of breakpoints and tracepoints set by the
stop and trace subcommands in the current context. If
“all” is specified, all events, regardless of context are
shown.

“Checking event status” on
page 115

stop Set a breakpoint for tasks in the current context.
Breakpoints are stopping places in your program that
halt execution.

“Setting breakpoints” on page 111

trace Set a tracepoint for tasks in the current context.
Tracepoints are places in your program that, when
reached during execution, cause the debugger to print
information about the state of the program.

“Setting tracepoints” on page 112

unhook Unhook a task or group of tasks. Unhooking allows the
task(s) to run without intervention from the debugger.

“Unhooking and hooking tasks”
on page 116

where Display a list of active procedures and functions. “Viewing program call stacks” on
page 117

<EscChar-c> Regain debugger control when some tasks in the
current context are running. This causes a pdbx subset
prompt to be displayed, which allows a subset of the
pdbx function to be performed.

“Context switch when blocked”
on page 108

Chapter 10. Using the pdbx debugger 95

Starting the pdbx debugger
You can start the pdbx debugger in either normal mode or attach mode. In normal
mode your program runs under the control of the debugger. In attach mode you
attach to a program that is already running. Certain options and functions are only
available in one of the two modes. Since pdbx is a source code debugger, some
files need to be compiled with the -g option so that the compiler provides debug
symbols, source line numbers, and data type information.

When the application is started using pdbx in normal mode, debugger control of
the application is given to the user by default at the first executable source line
within the main routine. If the file containing the main routine is not compiled
with -g the debugger will exit. The environment variable
MP_DEBUG_INITIAL_STOP can be set before starting the debugger to manually
set an alternate file name and source line where the user initially receives debugger
control of the application. On POE environment variables and command-line flags
refer to “Appendix B. POE environment variables and command-line flags” on
page 283.

Normal mode
The way you start the debugger in normal mode depends on whether the
program(s) you are debugging follow the SPMD (Single Program Multiple Data) or
MPMD (Multiple Program Multiple Data) model of parallel programming. In the
SPMD model, the same program runs on each of the nodes in your partition. In
the MPMD model, different programs can run on the nodes of your partition.

If you are debugging an SPMD program, you can enter its name on the pdbx
command line. It will be loaded on all the nodes of your partition automatically. If
you are debugging an MPMD program, you will load the tasks of your partition
after the debugger is started. pdbx will look for the program in the current
directory unless a relative or absolute path name is specified.

ENTER

pdbx

�� pdbx
program

program_options
poe options

�

�
-c command_file -d nesting_depth

�

� �

-I directory -F
��

v This starts pdbx. If you specified a program, it is loaded on each node of
your partition and you see the message:
FOMO0504 Partition loaded ...

You will then see the pdbx prompt:
pdbx(all)

96 z/OS UNIX System Services PE: Operation and Use

The prompt shows the command context all. For more information see
“Setting command context” on page 106.

ENTER

pdbx

�� pdbx -a poe process id
limited poe options

�

�
-c command_file -d nesting_depth

�

� �

-I directory -F
��

v This starts pdbx in attach mode. See “Attach mode” on page 99 for more
information.

ENTER

�� pdbx -h ��

v This writes the pdbx usage to STDERR. It includes pdbx command-line
syntax and a description of pdbx options.

The options you specify with the pdbx command can be program options, POE
options, or pdbx options listed in Table 3. Program options are those that your
application program will understand.

You can use the same command-line flags on the pdbx command as you use when
invoking a parallel program by using the poe command. For example, you can
override the MP_PROCS variable by specifying the number of processes with the
-procs flag. Or you could use the -hostfile flag to specify the name of a host list
file. For more information on the POE command-line flags, see “Appendix B. POE
environment variables and command-line flags” on page 283.

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

After pdbx initializes, the pdbx command prompt displays to indicate that pdbx is
ready for a command.

Table 3. Debugger option flags (pdbx)

Use this flag: To: For example:

-a Attach to a running poe job by specifying its process id.
This must be executed from the node where the poe job
was initiated. When using the debugger in attach mode
there are some debugger command-line arguments that
should not be used. In general, any arguments that control
how the partition is set up or specify application names
and arguments should not be used.

To attach the pdbx debugger to an
already running poe job.

ENTER
pdbx -a <poe_process_id>

Chapter 10. Using the pdbx debugger 97

Table 3. Debugger option flags (pdbx) (continued)

Use this flag: To: For example:

-c Read pdbx startup commands from the specified
commands_file. The commands stored in the specified file are
executed before command input is accepted from the
keyboard.

If the -c flag is not used, the pdbx debug program attempts
to read startup commands from the file ·pdbxinit. To find
this file, it first looks in the current directory, and then in
the user’s home directory.

In a pdbx session, you can also read commands from a file
using the source subcommand. “Reading subcommands
from a command file” on page 122 describes how to use
this subcommand in pdbx.

To start the pdbx debugger and
read startup commands from a file
called start.cmd:

ENTER
pdbx -c start.cmd

-d Set the limit for the nesting of program blocks. The default
nesting depth limit is 1000. This flag is passed to dbx
unmodified.

To specify a nesting depth limit:

ENTER
pdbx -d nesting depth

-F This flag can be used to turn off lazy reading mode. Turning
lazy reading mode off forces the remote dbx sessions to
read all symbol table information at startup time. By
default, lazy reading mode is on.

Lazy reading mode is useful when debugging large
executable files, or when paging space is low. With lazy
reading mode on, only the required symbol table
information is read upon initialization of the remote dbx
sessions. Because all symbol table information is not read at
dbx startup time when in lazy reading mode, local variable
and related type information will not be initially available
for functions defined in other files. The effect of this can be
seen with the whereis command, where instances of the
specified local variable may not be found until the other
files containing these instances are somehow referenced.

To start the pdbx debugger and
read all symbol table information:

ENTER
pdbx -F

-h Write the pdbx usage to STDERR then exit. This includes
pdbx command-line syntax and a description of pdbx
options.

ENTER
pdbx -h

-I

(upper case i)

Specify a directory to be searched for an executable’s source
files. This flag must be specified multiple times to set
multiple paths. (Once pdbx is running, this list can be
overridden on a group or single node basis with the use
command.)

To add directory1 to the list of
directories to be searched when
starting the pdbx debugger:

ENTER
pdbx -I dir1

You can add as many directories as
you like to the directory list in this
way. For example, to add two
directories:

ENTER
pdbx -I dir1 -I dir2

98 z/OS UNIX System Services PE: Operation and Use

These pdbx flags are closely tied to the flags supported by dbx. For more
information on the option flags described in this table, refer to their use with dbx
as described in z/OS UNIX System Services Command Reference and z/OS UNIX
System Services Programming Tools.

Attach mode
The pdbx debugger provides an attach feature, which allows you to attach the
debugger to a parallel application that is currently executing. This feature is
typically used to debug large, long running, or apparently “hung” applications.
The debugger attaches to any subset of tasks without restarting the executing
parallel program.

Parallel applications run on the partition that is managed by poe. For attach mode,
you must specify the appropriate process identifier (PID) of the poe job, so the
debugger can attach to the correct application processes contained in that
particular job. To get the PID of the poe job, enter the following command on the
node where poe was started:
$ ps -ef | grep poe

You initiate attach mode by invoking pdbx with the -a flag and the PID of the
appropriate poe process:
$ pdbx -a <poe PID>

For example, if the process id of the poe process is 12345, then the command
would be:
$ pdbx -a 12345

Note: When using the attach feature, some environment variables must be set
before. See “Let us attach the debugger” on page 81 for a detailed
description.

After you invoke the debugger in attach mode, it displays a list of tasks you can
choose. The paging tool used to display the menu will default to pg -e unless
another pager is specified by the PAGER environment variable.

pdbx starts by showing a list of task numbers that comprise the parallel job. The
debugger obtains this information by reading a configuration file that is created by
poe when it begins a job step. At this point you must choose a subset of that list to
attach the debugger. Once you make a selection and the attach debug session
starts, you cannot make additions or deletions to the set of tasks attached to. It is
possible to attach a different set of tasks by detaching the debugger and attaching
again, then selecting a different set of tasks.

The debugger attaches to the specified tasks. The selected executables are stopped
wherever their program counters happen to be, and are then under the control of
the debugger. The other tasks in the original poe application continue to run. pdbx
displays information about the attached tasks by using the task numbering of the
original poe application partition.

Attach screen
Figure 10 shows a sample pdbx Attach screen.

Chapter 10. Using the pdbx debugger 99

The pdbx Attach screen contains a list of tasks and, for each task, the following
information:
v Task - the task number
v IP - the IP address of the node on which the task/application is running
v Node - the name of the node on which the task/application is running, if

available
v PID - the process identifier of the task/application
v Program - the name of the application and arguments, if any.

After initiating attach mode, you can select a set of tasks to attach to. At the
command prompt:

ENTER
attach all

OR

ENTER
attach followed by the task_list (see “Syntax for task_list” on page 103 for
the correct syntax).

It is also possible to use the quit or help command at this prompt. Any other
command will produce an error message. The quit command will not kill the
application at this point, since the debugger has not been attached as of yet.

Note: When debugging in attach mode, the load subcommand is not available. An
error message is displayed if an attempt is made to use it.

Other compiling options
pdbx provides substantial information when debugging an executable that is
compiled with the -g option. However, you may find it useful to attach to an
application not compiled with -g. pdbx allows you to attach to an application that
is not compiled with -g; however, the information provided is limited to a stack
trace.

ATTENTION: FOMOH9049 The following environment variables have been
ignored since they are not valid when starting the debugger
in attach mode -

'MP_PROCS'.

To begin debugging in attach mode, select a task or tasks to attach.

Task IP Addr Node PID Program
0 9.117.8.62 pe02.kgn.ibm.com 23870 ftoc
1 9.117.8.63 pe03.kgn.ibm.com 14908 ftoc
2 9.117.8.64 pe04.kgn.ibm.com 14400 ftoc
3 9.117.8.65 pe05.kgn.ibm.com 13114 ftoc
4 9.117.8.66 pe06.kgn.ibm.com 11330 ftoc
5 9.117.8.67 pe07.kgn.ibm.com 19784 ftoc
6 9.117.8.68 pe08.kgn.ibm.com 19524 ftoc
7 9.117.8.69 pe09.kgn.ibm.com 22086 ftoc

At the pdbx prompt enter the "attach" command followed by a
list of tasks or "all". (ex. "attach 2 4 5-7" or "attach all")
You may also type "help" for more information or "quit" to exit
the debugger without attaching.

pdbx(none)

Figure 10. pdbx Attach screen

100 z/OS UNIX System Services PE: Operation and Use

You can also attach pdbx to an application that is compiled with both the -g and
optimization flags. However, the optimized code can cause some confusion when
debugging. For example, when stepping through code, you may notice that the
line marker points to different source lines than you would expect. The
optimization causes this re-mapping of instructions to line numbers.

Command-line arguments
You should not use certain command-line arguments when debugging in attach
mode. If you do, the debugger will not start, and you will receive a message
saying that the debugger will not start. In general, do not use any arguments that
control how the debugger partition is set up or that specify application names and
arguments. You do not need information about the application, since it is already
running and the debugger uses the PID of the poe process to attach. Other
information the debugger needs to set up its own partition, such as node names
and PIDs, comes from the configuration file and the set of tasks you select. See
“Appendix C. Command-line flags for Normal or Attach Mode” on page 291 for a
list of command-line flags showing which ones are valid in normal and in attach
debugging mode.

The information in the appendix is also true for the corresponding environment
variables, however pdbx ignores the incorrect setting. The debugger displays a
message containing a list of the variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode
it ignores the setting. It displays a message saying that it ignored MP_PROCS, and
continues initializing the debug session.

Loading the partition with the load subcommand
Before you can debug a parallel program with the pdbx debugger, you need to
load your partition. If you specified a program name on the pdbx command, it is
already loaded on each task of your partition. If not, you need to load your
partition using the load subcommand. pdbx will look for the program in the
current directory unless a relative or absolute path name is specified. The Partition
Manager allocates the tasks of your partition when you enter the pdbx command.
It does this either by connecting to the Resource Manager or by looking to your
host list file. The number of tasks in the partition depends on the value of the
MP_PROCS environment variable (or the value specified on the -procs flag) when
you enter the pdbx command.

The following pdbx commands are available before the program is loaded on all
tasks:
v alias
v group
v help
v load
v on
v quit
v source
v tasks
v unalias

Chapter 10. Using the pdbx debugger 101

To load the same executable on all tasks of the
partition: To load separate executables on the partition:

CHECK
the pdbx command prompt to make sure the
command context is on all tasks. The context all
is the default when you start the pdbx
debugger, so the prompt should read:

pdbx(all)
If the command context is not set on all tasks, reset it. To
do this:

ENTER
on all

Once the command context is on all tasks:

ENTER
load program [program_options]

v The specified program is loaded onto all tasks
in the partition, and the message “Partition
loaded...” displays. The parallel program runs
up to the first executable statement and stops.

Note: The example above has the same effect as putting
the program name and options on the command line.

SET the command context before loading each
program. For example, say your partition
consists of five tasks numbered 0 through 4. To
load a program named program1 on task 0 and a
program named program2 on tasks 1 through 4,
you would:

ENTER
on 0

v The debugger sets the command context on
task 0

ENTER
load program1 [program_options]

The debugger loads program1 on task 0.

ENTER
group add groupa 1-4

v The debugger creates a task group named
groupa consisting of tasks 1 through 4.

ENTER
on groupa

The debugger sets the command context on
tasks 1 through 4.

ENTER
load program2 [program_options]

v The debugger loads program2 onto tasks 1
through 4, and the message “Partition loaded...”
displays. The parallel program runs up to the
first executable statement and stops.

Displaying tasks and their states
With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed (see Table 4 on page 106 for
information on task states). If you specify “long” after the command, it also
displays the name, IP address, and job manager number that are associated with
the task.

Following is an example of output produced by the tasks and tasks long
command.
pdbx(others) tasks

0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long
0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7:Running augustus.kgn.ibm.com 9.117.7.77 -1

102 z/OS UNIX System Services PE: Operation and Use

Grouping tasks
You can set the context on a group of tasks by first using the context insensitive
group subcommand to collect a number of tasks under a group name you choose.
None of these tasks need to have been loaded for you to include them in a group.
Later, you can set the context on all the tasks in the group by specifying its group
name with the on subcommand.

For example, you could use the group subcommand to collect a number of tasks
(tasks 0, 1, and 2) as a group named groupa. Then, to set the context on tasks 0, 1,
and 2, you would:

ENTER
on groupa

v The debugger sets the command context on tasks 0, 1, and 2.

Another use of the group subcommand is to give a name to a task. For example,
assume that you have a typical master/worker program. Task 0 is the master task,
controlling a number of worker tasks. You could create a group named master that
consists of just task 0. Then, to set the context on the master task you would:

ENTER
on master

v The debugger sets the command context on task 0. Entering on master,
therefore, is the same as entering on 0, but would be more meaningful and
easier to remember.

The group subcommand has a number of actions. You can use it to:
v Create a task group, or add tasks to an existing task group
v Delete a task group, or delete tasks from an existing task group
v Change the name of an existing task group
v List the existing task groups, or list the members of a particular task group.

Syntax for group_name
Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

Syntax for task_list
To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma.

Note: Group names “all”, “none”, and “attached” are reserved group names. They
are used by the debugger and cannot be used in the group add or group
delete commands. However, the group “all” or “attached” can be renamed
using the group change command, if it currently exists in the debugging
session.

Adding a task to a task group
To add a task to a new or already existing task group, use the add action of the
group subcommand. The syntax is:

�� group add group_name task_list ��

Chapter 10. Using the pdbx debugger 103

If the specified group_name already exists, then the debugger adds the tasks in
task_list to that group. If the specified group_name does not yet exist, the debugger
creates it.

The variable task_list can be:

For example, to
add the following
task(s) to groupa: You would ENTER: v The following message displays:

a single task task 6 group add groupa 6 1 task was added to group
"groupa".

a collection of tasks tasks 6, 8, and 10 group add groupa 6 8 10 3 tasks were added to group
"groupa".

a range of tasks tasks 6 through 10 group add groupa 6:10 5 tasks were added to group
"groupa".

a range of tasks tasks 6 through 10 group add groupa 6-10 5 tasks were added to group
"groupa".

Deleting tasks from a task group
To delete tasks from a task group, use the delete action of the group subcommand.
The syntax is:

�� group delete group_name
task_list

��

The variable task_list can be:

For example, to
delete the
following from
groupa: You would ENTER: v The following message displays:

a single task task 6 group delete groupa 6 Task: 6 was successfully
deleted from group "groupa".

a collection of tasks task 6, 8, and 10 group delete groupa 6 8
10

Task: 6 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".
Task: 10 was successfully
deleted from group "groupa".

a range of tasks tasks 6 through 10 group delete groupa 6:10 Task: 6 was successfully
deleted from group "groupa".
Task: 7 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".
Task: 9 was successfully
deleted from group "groupa".
Task: 10 was successfully
deleted from group "groupa".

a range of tasks tasks 6 through 8 group delete groupa 6-8 Task: 6 was successfully
deleted from group "groupa".
Task: 7 was successfully
deleted from group "groupa".
Task: 8 was successfully
deleted from group "groupa".

104 z/OS UNIX System Services PE: Operation and Use

You can also use the delete action of the group subcommand to delete an entire
task group. For example, to delete the task group groupa, you would:

ENTER
group delete groupa

v The debugger deletes the task group.

Note: The pre-defined task group all cannot be deleted.

Changing the name of a task group
To change the name of an existing task group, use the change action of the group
subcommand. The syntax is:

�� group change old_group_name new_group_name ��

For example, say that you want to change the name of task group group1 to groupa.
At the pdbx command prompt, you would:

ENTER
group change group1 groupa

v The following message displays:
Group "group1" has been renamed to "groupa".

Listing task groups
To list task groups, their members, and task states use the list action of the group
subcommand. The syntax is:

�� group list
group_name

��

You can use
the list action
to:

For example, if
you ENTER: v The following message displays:

list all the task
groups.

group list The debugger displays a list of all existing task groups and their members. An
example of such a list is shown below.

pdbx(0) group list
allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

7:D 8:D 9:D 10:D 11:D
evenTasks 0:R 2:D 4:U 6:D 8:D 10:R
oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

list all the
members of a
single task
group

group list
oddTasks

The debugger displays a list of all the members of task group oddTasks.

1:D 3:U 5:D 7:D 9:D 11:R

When you list tasks, a single letter will follow each task number. The following
table represents the state of affairs on the remote tasks. Common states are “debug
ready”, where pdbx commands can be issued, and running, where the application
has control and is executing.

Chapter 10. Using the pdbx debugger 105

Table 4. Task states

This letter displayed
after a task number: Represents: And indicates that:

N Not loaded the remote task has not yet been loaded with an executable.

S Starting the remote task is being loaded with an executable.

D Debug ready the remote task is stopped and debug commands can be issued.

R Running the remote task is in control and executing the program.

X Exited the remote task has completed execution.

U Unhooked the remote task is executing without debugger intervention.

E Error the remote task is in an unknown state.

Figure 11 on page 106 illustrates the relationship between the pdbx debugger,
which runs on the home task, and the various dbx processes that run on the
remote tasks. When thinking about “task states”, consider the perspective of the
remote tasks which are each running a copy of dbx. pdbx attempts to coordinate
activities in multiple dbx sessions. There are times when this is not possible,
typically when one or more tasks have not yet stopped. In this case, from a remote
task’s dbx perspective, a dbx prompt has not yet been displayed, and your
application is still running. Similarly, pdbx will not display a pdbx prompt until all
the remote dbx sessions are “debug ready”.

Setting command context
You can set the current command context on a specific task or group of tasks so
that the debugger directs subsequent context sensitive subcommands to just that
task or group. This section also shows how you can temporarily deviate from the
current command context you set.

Setting the current command context: When you begin a pdbx session, the
default command context is set on all tasks. The pdbx command prompt always
indicates the current command context setting, so it initially reads:
pdbx(all)

pdbx

dbx dbx dbx

program program program

Home Node

Remote Tasks

Task

. . .

. . .

. . .

Figure 11. Relationship between home node (pdbx) and remote tasks (dbx processes)

106 z/OS UNIX System Services PE: Operation and Use

You can use the on subcommand to set the current command context on one task
or a group of tasks. The debugger then directs context sensitive subcommands to
just the task(s) specified by group or task name.

You can use the on subcommand to set the current command context before you
load your partition. The debugger will only direct context sensitive subcommands
to the tasks in the current context. The syntax of the on subcommand is:

�� on group_name
task_id

��

For example, assume that you have a parallel program that is divided into tasks
numbered 0 through 4. To set the current command context on just task 1:

ENTER
on 1

v The pdbx command prompt indicates the new setting of the current
command context.
pdbx(1)

You can also use the on subcommand to set the current command context on all
the tasks in a specified task group. The task group all – consisting of all tasks – is
automatically defined for you and cannot be deleted. To set the command context
back on all tasks, you would:

ENTER
on all

v The pdbx command prompt shows that the current command context has
changed, and that the debugger will now direct context sensitive
subcommands to all tasks in the partition.
pdbx(all)

When you switch context using on context_name, and the new context has at least
one task in the “running” state, a message is displayed stating that at least one
task is in the “running” state. No pdbx prompt is displayed until all tasks in this
context are in the “debug ready” state.

When you switch to a context where all tasks are in the “debug ready” state, the
pdbx prompt is displayed immediately, indicating pdbx is ready for a command.

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating
the reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in “running” state. See “Context switch when blocked”
on page 108 for more information.

Temporarily deviating from the current command context: There are times when
it is convenient to deviate from the current command context for a single
command. You can temporarily deviate from the command context by entering the
on subcommand with, on the same line, a context sensitive subcommand. The
pdbx prompt will be presented after all of the tasks in the temporary context have
completed the command specified. It is possible, using <EscChar-c> followed by
the back or the on command, to issue further pdbx commands in the original
context. The syntax is:

Chapter 10. Using the pdbx debugger 107

�� on group_name
task_id subcommand

��

For example, assume that a task group named groupa contains tasks 3 through 5.
The current command context is on this group. You want to set a breakpoint at line
99 of task 3 only, and then continue directing commands to all three members of
groupa. One way to do this is to enter the three subcommands that are shown in
the following example. This example shows the pdbx command prompt for
additional illustration.

pdbx(groupa) on 3
pdbx(3) stop at 99
pdbx(3) on groupa
pdbx(groupa)

It is easier, however, to temporarily deviate from the current command context.

pdbx(groupa) on 3 stop at 99
pdbx(groupa)

The context sensitive stop subcommand is directed to task 3 only, but the current
command context is unchanged. The next command entered at the pdbx command
prompt is directed to all the tasks in the groupa task group.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Context switch when blocked
When a task is blocked (there is no pdbx prompt), you can press <EscChar-c> to
acquire control. This displays the pdbx subset prompt pdbx-subset([group |
task]), and provides a subset of pdbx functionality including:
v Changing the current context
v Displaying information about groups/tasks
v Interrupting the application
v Showing breakpoint/tracepoint status
v Getting help
v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

When a pdbx subset prompt is encountered, all input you type at the command
line is intercepted by pdbx. All commands are interpreted and operated on by the
home node. No data is passed to the remote nodes and standard input (STDIN) is
not given to the application. Most commands in the pdbx subset produce
information about the application and display the pdbx subset prompt. The
exceptions are the halt, back, on, and quit commands. The halt, back, and on
commands cause the pdbx prompt to be displayed when all of the tasks in the
current context are in “debug ready” state.

108 z/OS UNIX System Services PE: Operation and Use

The following example shows how the function works. A user is trying to
understand the behavior of a program when tasks in the current context hang. This
is a four task job with two groups defined called low and high. Low has tasks 0 and
1 while high has tasks 2 and 3. A breakpoint is set after a blocking read in task 2,
and somewhere else in task 3. Group high is allowed to continue, and task 2 has a
blocking read that will be satisfied by a write from task 0. Since task 0 is not
executing, the job is effectively deadlocked and the pdbx prompt will not be
displayed. The “effective deadlock” happens because the debugger controls some
of the tasks that would otherwise be running. This could be called a
debugger-induced deadlock.

Using <EscChar-c> allows the debugger to switch to task 0, then step past the
write that satisfies the blocking read in task 2. A subsequent switch to group high
shows task 2.

pdbx subset commands: The following table shows some commands that are
uniquely available at the pdbx subset prompt, plus other pdbx commands that can
be used. Certain commands are not allowed. The available commands keep the
same command syntax as the pdbx subcommands (see “pdbx subcommands” on
page 93).

This subset
command: Is used to: For more information see:

alias [alias_name
string]

Set or display aliases. “Creating, removing, and listing
command aliases” on page 121

back Return to a pdbx prompt. “Returning to a pdbx prompt” on
page 110

group <action>
[group_name]
[task_list]

Manipulate groups. The actions are add, change, delete,
and list. To indicate a range of tasks, enter the first and
last task numbers, separated by a colon or dash. To
indicate individual tasks, enter the numbers, separated
by a space or comma.

“Grouping tasks” on page 103

halt [all] Interrupt all tasks in the current context that are
running. If “all” is specified, all tasks, regardless of
state, are interrupted. This command always returns to a
pdbx prompt.

“Interrupting tasks” on page 112

help [subject] Display a list of pdbx commands and topics or help
information about them.

“Accessing help for pdbx
subcommands” on page 120

on <[group | task]> Set the current context for later subcommands. This
command always returns to a pdbx prompt.

“Setting command context” on
page 106

source <cmd_file> Execute subcommands stored in a file.
Note: The file may contain context sensitive commands.

“Reading subcommands from a
command file” on page 122

status [all] Display the trace and stop events within the current
context. If “all” is specified, all events, regardless of
context, are displayed.

“Checking event status” on
page 115

tasks [long] Display processes (tasks) and their states. “Displaying tasks and their
states” on page 102

quit Exit the pdbx program and kill the application. “Exiting pdbx” on page 124

unalias alias_name Remove a previously defined alias. “Creating, removing, and listing
command aliases” on page 121

Chapter 10. Using the pdbx debugger 109

This subset
command: Is used to: For more information see:

<EscChar-c> Has no effect, except to display the following message:

Typing EscChar-c from the pdbx subset prompt
has no effect.
Use the halt command to interrupt
the application.
Use the quit command to quit pdbx.
Type help then enter to view brief help of
the commands available.

“Context switch when blocked”
on page 108

Returning to a pdbx prompt: The back command causes the pdbx prompt to be
displayed, when all the tasks in the current context are in “debug ready” state. You
can use the back command if you want the application to continue as it was before
<EscChar-c> was issued. Also, you can use it if during subset mode all of the
nodes are checked into “debug ready” state, and you want to do normal pdbx
processing. The back command is only valid in pdbx subset mode.

It is also possible to return to the pdbx prompt using the on and the halt
commands.

Controlling program execution
Like the dbx debugger, pdbx lets you set breakpoints and tracepoints to control
and monitor program execution. Breakpoints are stopping places in your program.
They halt execution, enabling you to then examine the state of the program.
Tracepoints are places in the program that, when reached during execution, cause
the debugger to print information about the state of the program. An occurrence of
either a breakpoint or a tracepoint is called an event.

If you are already familiar with breakpoints and tracepoints as they are used in
dbx, be aware that they work somewhat differently in pdbx. The subcommands for
setting, checking, and deleting them are similar to their counterparts in dbx, but
have been modified for use on parallel programs. These differences stem from the
fact that they can now be directed to any number of parallel tasks.

This section describes how to:
v Set a breakpoint for tasks in the current context by using the stop subcommand.
v Use the halt subcommand to interrupt tasks in the current context.
v Set a tracepoint for tasks in the current context using the trace subcommand.
v Use the delete subcommand to remove events for tasks in the current context.
v Use the status subcommand to display events that are set for tasks in the current

context.

If you are already familiar with the dbx subcommands stop, trace, status, and
delete, read the following as a discussion of how these subcommands are changed
for pdbx.

The next few pages should act as an introduction to breakpoints and tracepoints if
you are unfamiliar with dbx.

Refer to z/OS UNIX System Services Command Reference and z/OS UNIX System
Services Programming Tools for more information on dbx subcommands.

110 z/OS UNIX System Services PE: Operation and Use

Setting breakpoints
The stop subcommand sets breakpoints for all tasks in the current context. When
all tasks reach some breakpoint, execution stops and you can then examine the
state of the program using other pdbx or dbx subcommands. These breakpoints
can be different on each task.

The syntax of this context sensitive subcommand is:

�� stop if <condition>
at <source_line_number>

if <condition>
in <procedure>

if <condition>
<variable>

at <source_line_number> if <condition>
in <procedure>

��

Specifying stop at <source_line_number> causes the breakpoint to be triggered each
time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time the
program counter reaches the first executable source line in the procedure (function,
subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints
with a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 122.

For example, to set a breakpoint at line 19 for all tasks in the current context, you
would:

ENTER
stop at 19

v The debugger displays a message reporting the event it has built. The
message includes the current context, the event ID that is associated with
your breakpoint, and an interpretation of your command. For example:
all:[0] stop at "ftoc.c":19

The message reports that a breakpoint was set for the tasks in the task
group all, and that the event ID associated with the breakpoint is 0. Notice
that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a breakpoint at a line number in a group
context if the group members have different current source files. Instead, the
following error message will be displayed.
ERROR: FOMOH2081 Cannot set breakpoint or tracepoint event in

different source files.

If this happens, you can either:

Chapter 10. Using the pdbx debugger 111

v change the current context so that the stop subcommand will be directed to
tasks with identical source files.

v set the same source file for all members of the group by using the file
subcommand.

2. When specifying a variable name on the stop subcommand in pdbx, it is
important to use fully-qualified names as arguments. See “Specifying variables
on the trace and stop subcommands” on page 113 for more information.

3. For further details on the stop subcommand, refer to its use on the dbx
command as described in z/OS UNIX System Services Command Reference and
z/OS UNIX System Services Programming Tools.

Interrupting tasks
By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever
point the running tasks happen to be in the application. To a dbx user, this is the
same as using <EscChar-c>. This command works at the pdbx prompt and at the
pdbx subset prompt. If you specify “all” with the halt command, all running tasks,
regardless of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the
tasks in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Setting tracepoints
The trace subcommand sets tracepoints for all tasks in the current context. When
any task reaches a tracepoint, it causes the debugger to print information about the
state of the program for that task.

The syntax of this context sensitive subcommand is:

�� trace
in <procedure> if <condition>

<source_line_number>
if <condition>

<procedure>
in <procedure> if <condition>

<variable>
in <procedure> if <condition>

<expression> at <source_line_number>
if <condition>

��

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

112 z/OS UNIX System Services PE: Operation and Use

Specifying trace <source_line_number> causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line_number or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 122.

The trace subcommand prints tracing information for a specified procedure, function,
sourceline, expression, variable, or condition. For example, to set a tracepoint for the
variable foo at line 21 for all tasks in the current context, you would:

ENTER
trace foo at 21

v The debugger displays a message reporting the event it has built. The
message includes the current context, the event ID associated with your
tracepoint, and an interpretation of your command. For example:
all:[1] trace foo at "bar.c":21

This message reports that the tracepoint was set for the tasks in the task
group all, and that the event ID associated with the tracepoint is 1. Notice
that the syntax of the interpretation is not exactly the same as the
command entered.

Notes:

1. The pdbx debugger will not set a tracepoint at a line number in a group
context if the group members have different current source files. Instead, the
following error message will be displayed.
ERROR: FOMOH2081 Cannot set breakpoint or tracepoint event in

different source files.

If this happens, you can either:
v change the current context so that the trace subcommand will be directed to

tasks with identical source files.
v set the same source file for all members of the group using the file

subcommand.
2. When specifying a variable name on the trace subcommand in pdbx, it is

important to use fully-qualified names as arguments. See “Specifying variables
on the trace and stop subcommands” for more information.

3. For further detail on the trace subcommand, refer to its use on the dbx
command as described in z/OS UNIX System Services Command Reference.

Specifying variables on the trace and stop subcommands
When specifying a variable name as an argument on either the stop or trace
subcommand, you should use fully-qualified names. This is because, when the
stop or trace subcommand is issued, the tasks of your program could be in
different functions, and the variable name may resolve differently depending on a
task’s position.

Chapter 10. Using the pdbx debugger 113

For example, consider the following SPMD code segment in myfile.c. It is running
as two parallel tasks – task 0 and task 1. Task 0 is in func1 at line 4, while task 1 is
in func2 at line 9.
1 int i;
2 func1()
3 {
4 i++;
5 }
6 func2()
7 {
8 int i;
9 i++;
10 }

To display the full qualification of a given variable, you use the which
subcommand. For example, to display the full qualification of the variable i if the
current context is all:

ENTER
which i

v The pdbx debugger displays the full qualification of the variable
specified.

0:@myfile.i (from line 1 of previous example)
1:@myfile.func2.i (from line 8 of previous example)

Because the tasks are at different lines, issuing the following stop command would
set a different breakpoint for each task:

stop if (i == 5)

The debugger would display a message reporting the event it has built.
all:[0] stop if (i == 5)

The i for task 0, however, would represent the global variable (@myfile.i) while the i
for task 1 would represent the local variable i declared within func2
(@myfile.func2.i). To specify the global variable i without ambiguity on the stop
subcommand, you would:

ENTER
stop if (@myfile.i == 5)

v The debugger reports the event it has built.
all:[0] stop if (@myfile.i == 5)

Deleting pdbx events
The delete subcommand removes events (breakpoints and tracepoints) of the
specified pdbx event numbers. To indicate a range of events, enter the first and last
event numbers, separated by a colon or dash. To indicate individual events, enter
the numbers, separated by a space or comma. You can specify “ * ”, which deletes
all events that were created in the current context. You can also specify “all”,
which deletes all events regardless of context. The syntax of this context sensitive
subcommand is:

114 z/OS UNIX System Services PE: Operation and Use

�� delete event_list
*
all

��

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand. The output of
the status command shows the creating context as the first token on the left before
the colon.

Event numbers are unique to the context in which they were set, but not globally
unique. Keep in mind that, in order to remove an event, the context must be on
the appropriate task or task group, except when using the “all” keyword. For
example, say the current context is on task 1 and the output of the status
subcommand is:
1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:

ENTER
on 1

delete 0

on all

delete 0,1

OR

ENTER
on 1

delete 0

on all

delete *

OR

ENTER
delete all

Checking event status
A list of pdbx events can be displayed using the status subcommand. You can
specify “all” after this command to list all events (breakpoints and tracepoints) that
have been set in all groups and tasks. This is valid at the pdbx prompt and the
pdbx subset prompt.

The following shows examples of status, status all, and incorrect syntax with
different breakpoints set on three different groups and two tasks.
pdbx(all) status
all:[0] stop at "test/vtsample.c":60

pdbx(all) status all
1:[0] stop in main
2:[0] stop in mpl_ring
all:[0] stop at "test/vtsample.c":60

Chapter 10. Using the pdbx debugger 115

evenTasks:[0] stop at "test/vtsample.c":58
oddTasks:[0] stop at "test/vtsample.c":56

pdbx(all) status woops
FOMOH2062 The correct syntax is either 'status' or 'status all'.

Because the status command (without “all” specified) is context sensitive, it will
not display status for events outside the context.

Unhooking and hooking tasks
The unhook subcommand lets you unhook a task so that it executes without
intervention from the debugger. This subcommand is context sensitive and similar
to the detach subcommand in dbx. The important difference is that you can regain
control over a task that has been unhooked, while you cannot regain control over
one that has been detached. To regain control over an unhooked task, use the hook
subcommand. Detach is not supported in pdbx.

To better understand the hook and unhook subcommands, consider the following
example. You are debugging a typical master/worker program containing many
blocking sends and receives. You have created two task groups. One – named
workers – contains all the worker tasks, and the other – named master – contains the
master task. You would like to manipulate the master task and let the worker tasks
process without debugger interaction. This would save you the bother of switching
the command context back and forth between the two task groups.

Since the unhook subcommand is context sensitive, you must first set the context
on the workers task group using the on subcommand. At the pdbx command
prompt:

ENTER
on workers

v The debugger sets the command context on the task group workers.

ENTER
unhook

v The debugger unhooks the tasks in the task group workers.

The worker tasks are still indirectly affected by the debugger since they might, for
example, have to wait on a blocking receive for a message from the master task.
However, they do execute without any direct interaction from the debugger. If you
later wish to reestablish control over the tasks in the workers task group, you
would, assuming the context is on the workers task group:

ENTER
hook

v The debugger hooks any unhooked task in the current command context.

Note: The hook subcommand is actually an interrupt. When you interrupt a
blocking receive, you cause the request to fail. If the program does not deal
with an interrupted receive, then data loss may occur.

116 z/OS UNIX System Services PE: Operation and Use

Examining program data
The following section explains the where, print, and list subcommands for
displaying and verifying data.

Viewing program call stacks
The where subcommand displays a list of active procedures and functions.

The syntax of this context sensitive subcommand is:

�� where ��

To view the stack trace, issue the where command. The following stack trace was
encountered after halting task 1. You can see that the main routine at line 144 has
issued an mpi_recv() call.
pdbx(1) where
read(??, ??, ??) at 0xd07b5ce0
readsocket() at 0xd07542f4
kickpipes() at 0xd0750e14
mpci_recv() at 0xd076032c
_mpi_recv() at 0xd0700e2c
MPI__Recv() at 0xd06ffab8
main(), line 144 in "send1.c"

Viewing program variables
The print subcommand prints the value of a list of expressions, specified by the
expression parameters.

The syntax of this context sensitive subcommand is:

�� print expression ��

See “Specifying expressions” on page 122 for a description of valid expressions.

Following are some examples of printing portions of a two dimensional array of
floats in a c program which is running on two nodes.

To display the type of array ff, enter:
pdbx(all) whatis ff

0:float ff[10][10];
1:float ff[10][10];

We can see the differences in the array values across the two nodes.

To show elements 4 through 7 of rows 2 and 3, enter:
pdbx(all) print ff[2..3][4..7]

0:[2][4] = 30.0000076
0:[2][5] = 42.0
0:[2][6] = 0.0
0:[2][7] = -3.52516241e+30
0:[3][4] = -3.54361545e+30
0:[3][5] = -3.60971468e+30
0:[3][6] = 2.68063283e-09
0:[3][7] = 4.65661287e-10

Chapter 10. Using the pdbx debugger 117

0:
1:[2][4] = -1.60068157e+10
1:[2][5] = 0.0
1:[2][6] = 0.0
1:[2][7] = -3.52516241e+30
1:[3][4] = -3.54361545e+30
1:[3][5] = -3.60971468e+30
1:[3][6] = 2.63675126e-09
1:[3][7] = 1.1920929e-07
1:

The same results as above could be achieved by entering:
print ff(2..3,4..7)

The array ff is being processed within a loop with loop counters i and j. The
following demonstrates printing multiple variables and using program variables to
specify the array elements.
pdbx(all) print "i is:", i, "\tj is:", j, "\n", ff[i][j..j+1]

1:i is: 0 j is: 1
1: [0][1] = -3.54331806e+30
1:[0][2] = 4.40487202e-10
1:
0:i is: 2 j is: 6
0: [2][6] = 0.0
0:[2][7] = -3.52516241e+30
0:

Following are some examples which display the elements of an array of structs:

The command whatis here is used to show that the type of the variable tree is an
array size 4 of wood_attr_t’s.
pdbx(0) whatis tree

0:wood_attr_t tree[4];

Here the whatis command shows that wood_attr_t is a typedef for the listed
structure.
pdbx(0) whatis wood_attr_t

0:typedef struct {
0: int max_age;
0: int max_size;
0: int is_hard_wood;
0:} wood_attr_t;

This whatis command shows that this_tree is a wood_attr_t ptr.
pdbx(0) whatis this_tree

0:wood_attr_t *this_tree;

To display the elements of the first three entries in the tree array, enter:
pdbx(0) print tree[0..2]

0:[0] = (max_age = 150, max_size = 120, is_hard_wood = 0)
0:[1] = (max_age = 250, max_size = 150, is_hard_wood = 1)
0:[2] = (max_age = 200, max_size = 125, is_hard_wood = 0)
0:

118 z/OS UNIX System Services PE: Operation and Use

To display the element max_size of entry 1 of the tree array, enter:
pdbx(0) p tree[1].max_size

0:150

To display the entry that this_tree is pointing to, enter:
pdbx(0) p *this_tree

0:(max_age = 200, max_size = 125, is_hard_wood = 0)

To display just the max_size of the entry that this_tree is pointing to, enter:
pdbx(0) p this_tree->max_size

0:125

Refer to z/OS UNIX System Services Programming Tools for more information on
expression handling.

Displaying source
The list subcommand displays a specified number of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip: Use on <task> list, or specify the ordered standard output option.
v By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the
sourceline-expression parameter.
The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or − (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line
number. A sourceline of @ (at sign) can be used to denote the next line number to
be listed.
All lines from the first line number specified to the second line number
specified, inclusive, are then displayed, provided these lines fit in the list
window.
If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.
If the list subcommand is used without parameters, the default number of lines
is printed, beginning with the current source line. The default is 10.
To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

The syntax of this context sensitive subcommand is:

�� list
procedure
sourceline-expression

, sourceline-expression

��

Chapter 10. Using the pdbx debugger 119

Other key features
Some other features offered by pdbx include the following subcommands:
v help

v dhelp

v alias

v source

Also, this section includes information about how to specify expressions for the
print, stop, and trace commands.

Accessing help for pdbx subcommands
The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type help with one of the help commands or topics as the argument,
information will be displayed about that subject.

The syntax of this context insensitive command is:

�� help
subcommand
topic

��

Another command to get help for the pdbx subcommands, is the man command.
Type
man pdbxalias

to view help for the pdbx alias subcommand. Generally, help for the pdbx
subcommands can be displayed with the man command and the subcommand
name prefixed by pdbx.

Accessing help for dbx subcommands

The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type dhelp with an argument, information will be displayed about that
command.

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command. After the program has finished
execution, the dhelp command is no longer available.

The syntax of this context insensitive command is:

�� dhelp
<dbx_subcommand>

��

120 z/OS UNIX System Services PE: Operation and Use

Creating, removing, and listing command aliases
The alias subcommand specifies a command alias. You could use it to reduce the
amount of typing needed, or to create a name more easily remembered. The syntax
of this context insensitive subcommand is:

�� alias
alias_name

alias_string

��

For example, assume that you have organized all tasks into two convenient groups
– master and workers. During the execution of a program, you need to switch the
command context back and forth between these two groups. You could save
yourself some typing by creating one alias for on workers and one for on master. At
the pdbx command prompt, you would:
ENTER

alias mas on master
alias wor on workers

Now to set the command context on the task group master, all you have to do is:

ENTER
mas

Likewise, you can now enter wor instead of on workers.

In addition to any aliases you create, there are a number of aliases supplied by
pdbx when the partition is loaded. To display the list of all existing aliases, use the
alias subcommand with no parameters. At the pdbx command prompt:

ENTER
alias

v The debugger displays a list of existing aliases. The example listing below
shows all the default aliases provided by pdbx, as well as the two aliases –
mas and wor – created in the previous example.
t where
j status
st stop
s step
x registers
q quit
p print
n next
m map
l list
h help
d delete
c cont
mas on master
wor on workers
th thread
mu mutex
cv condition
active tasks
threads thread

Any aliases you create are not saved between pdbx sessions. You can also remove
command aliases by using the unalias subcommand. The syntax of this context
insensitive subcommand is:

Chapter 10. Using the pdbx debugger 121

�� unalias alias_name ��

For example, to remove the alias mas defined above, you would:

ENTER
unalias mas

Note: You can create, remove, and list command aliases as soon as you start the
debugger. The partition does not need to be loaded.

Reading subcommands from a command file
The source subcommand enables you to read a series of subcommands from a
specified command file. The syntax of this context-insensitive subcommand is:

�� source commands_file ��

The command_file should reside on the home node, and can contain any of the
subcommands that are valid on the pdbx command line. For example, say that you
have a commands file named myalias which contains a number of command alias
settings. To read its commands:

ENTER
source myalias

v The debugger reads the commands listed in myalias as if they had each
been entered at the command line.

Notes:

1. You can also read commands from a file when starting the debugger. This is
done using the -c flag on the pdbx command, or via a .pdbxinit file, as
described in Table 3 on page 97. The .pdbxinit file would be a great way to
automatically create your common aliases. When using a .pdbxinit file or the -c
flag, you need to keep in mind that only a limited set of commands are
supported until the partition is loaded.

2. STDIN cannot be included in a command file.

Specifying expressions
Expressions are commonly used in the print command, and when specifying
conditions for the stop or trace command.

You can specify conditions with a subset of C syntax. The following operators are
valid:

Arithmetic operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division

div Integer division

mod Modulo

122 z/OS UNIX System Services PE: Operation and Use

exp Exponentiation

Relational and logical operators

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

= Equal to

!= Not equal to

< > Not equal to

|| Logical OR

or Logical OR

&& Logical AND

and Logical AND

Bitwise operators

bitand Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR

˜ Bitwise complement

<< Left shift

>> Right shift

Data access and size operators

[] Array element

() Array element

* Indirection or pointer dereferencing

& Address of a variable

. Member selection for structures and unions

. Member selection for pointers to structures and unions

-> Member selection for pointers to structures and unions

sizeof Size in bytes of a variable

Miscellaneous operators

() Operator grouping

(Type)Expression
Type cast

Type(Expression)
Type cast

Chapter 10. Using the pdbx debugger 123

Expression\Type
Type cast

Other important notes on pdbx

Initial breakpoint
The initial automatic breakpoint, which is set by default at function main, for pdbx
can be redefined by the environment variable MP_DEBUG_INITIAL_STOP. See
the manual page for the pdbx command in “Appendix A. Parallel Environment
commands” on page 185 for more information.

Overloaded symbols
While pdbx recognizes function names, it is the combination of a function’s name
and its parameters, or the function name and the shared object it resides in, that
uniquely identify it to pdbx. When encountering ambiguous functions, pdbx issues
the Select menu, which lets the user choose the desired instance of the function.

The Select menu looks like this:
pdbx(all) stop in f1
1.ambig.f1(double)
2.ambig.f1(float)
3.ambig.f1(char)
4.ambig.f1(int)
Select one or more of [1 - 4]:

The whatis subcommand can be used to determine whether or not a function is
ambiguous. If whatis returns more than one function definition for a given symbol,
pdbx will consider it ambiguous.

There are a few restrictions for the pdbx select menu:
v All tasks in the context must have an identical view of the ambiguous function

because pdbx will only present one menu to the user that covers all tasks. As a
result, you my need to create additional groups. The view of the ambiguous
function is determined by the result of the whatis subcommand. In the example
above, whatis f1 should have returned the same result on all tasks, in order to
proceed.

v The hook subcommand will not restore the set of events generated by the Select
menu.

v The trace and print subcommands do not support ambiguous functions within
complex expressions. For example, simple expressions are always allowed:
trace myfunc

print myfunc(parm1, parm2)

but complex expressions are not allowed when a function (myfunc) is
ambiguous:
trace myvar-myfunc(parm1, parm2)

print myvar*myfunc(parm1)

Exiting pdbx

It is possible to end the debug session at any time using either the quit
subcommand, or the detach subcommand if debugging in attach mode.

To end a debug session in normal mode:

124 z/OS UNIX System Services PE: Operation and Use

ENTER
quit

v This returns you to the shell prompt.

To end a debug session in attach mode, you can choose either quit or detach.
Quitting causes the debugger and all the members of the original poe application
partition to exit. Detaching causes only the debugger to exit and leaves all the
tasks running.

ENTER
quit

v The debugger session ends, along with the poe application partition
tasks.

OR

ENTER
detach

v The debugger session ends. All tasks have been detached, but stay
running.

Note: You can enter the quit and detach subcommands from either the pdbx
prompt or pdbx subset prompt.

Choosing detach causes pdbx to exit, and allows the program to which you had
attached to continue execution if it hasn’t already finished. If this program has
finished execution, and is part of a series of job steps, then detaching allows the
next job step to be executed.

If instead you want to exit the debugger and end the program, choose quit as
described above.

Chapter 10. Using the pdbx debugger 125

126 z/OS UNIX System Services PE: Operation and Use

Chapter 11. Using the pedb debugger

This chapter describes the pedb debugger. The pedb debugger provides a
simplified, Motif graphical point-and-click interface. pedb is designed to debug
parallel applications. The pedb debugger is a poe application with some
modifications on the home node to provide a user interface. This means that most of
the setup for the debugger is identical to the setup for poe.

pedb can be used to debug an application either by starting the application under
the control of the debugger, or by attaching to an already running poe application.

If starting the application under the control of the debugger, it is first necessary to
compile the program and set the execution environment. See this manual for more
information on the following:
v Compiling the program. Be sure to specify the -g flag when compiling the

program. This produces an object file with symbol table references needed for
symbolic debugging.

v Copying files to individual nodes. Like poe, pedb requires that your application
program be available to run on each node in your partition. To support source
level debugging, pedb requires the source files to be available too, but they are
only required on the home node.

v Setting up the execution environment.

If using pedb to attach to an application, much of the setup described above is not
necessary since the application is already running. However, it is still highly
desirable, but not absolutely necessary, to have the application compiled with the
-g option. When pedb attaches to an application that is not compiled with -g, the
debug information is limited to a stack trace.

As you read these steps, keep in mind that pedb accepts almost all the option flags
that poe accepts, and responds to almost all of the same environment variables.

This release of pedb does not support the debugging of applications that were
compiled with previous releases of poe.

Setting up the debugger environment

Setting up your X-Window environment
If you are already running X-Windows applications, you can probably skip this
step. However, you might check that the pedb X defaults file has been changed by
your System Administrator. For details, refer to z/OS UNIX System Services
Planning.

First you must make sure that an X-server is running on the workstation on which
you want to display the pedb Window. On UNIX machines the X-server is usually
started by default at boot time. On Personal Computers you may have to start it
yourself (for example, for OS/2 there is an X-server called ’PMX Server’). Next,
you must give permission to the z/OS system (the X-client machine) to display
something on the screen of the workstation. This is typically done with the xhost
command on a OS/2 workstation:

© Copyright IBM Corp. 1997, 2001 127

ENTER
xhost z/OS-machine-name

The z/OS-machine-name can be either a host name or an IP address.

To complete the X-Windows setup you must tell pedb (the X-client) where to
display its window. This is done using the DISPLAY environment variable:

ENTER
export DISPLAY workstation-name:0

The workstation-name can be either a host name or an IP address.

Be aware of storage requirements
pedb is a rather large application which requires sufficient storage available. When
using the OMVS shell, a minimum TSO logon region size 50MB is recommended.

In case you run out of space while being logged in to the UNIX shell via rlogin or
telnet, you may ask your System Administrator to increase the value of
MAXASIZE defined in SYS1.PARMLIB (BPXPRMxx).

Setting up the pedb.ad file
It is necessary to set up the pedb.ad file. See “Customizing pedb resources” on
page 183 for information on this matter.

Starting the pedb debugger
You can start the pedb debugger in either normal mode or attach mode. In normal
mode your program runs under the control of the debugger. In attach mode you
attach to a program that is already running. Certain options and functions are only
available in one of the two modes. Since pedb is a source code debugger, some
files need to be compiled with the -g option so that the compiler provides debug
symbols, source line numbers, and data type information. When the application is
started using pedb, debugger control of the application is given to the user by
default at the first executable source line within the main routine.

If the file containing the main routine is not compiled with -g the debugger will
exit. The environment variable MP_DEBUG_INITIAL_STOP can be set before
starting the debugger to manually set an alternate file name and source line where
the user initially receives debugger control of the application. On POE environment
variables and command-line flags refer to “Appendix B. POE environment
variables and command-line flags” on page 283.

Normal mode
The way you start the debugger in normal mode depends on whether the
program(s) you are debugging follow the SPMD or MPMD model of parallel
programming. In the SPMD model, the same program runs on each of the nodes in
your partition. In the MPMD model, different programs can run on the nodes of
your partition.

If you are debugging an SPMD program, you can enter its name on the pedb
command line. It will be loaded on all the nodes of your partition automatically. If
you are debugging an MPMD program, you will load the tasks of your partition
after the debugger is started.

128 z/OS UNIX System Services PE: Operation and Use

ENTER

pedb

�� pedb
program poe options

program_options

�

�
X options

�

-I source directory
�

�
-d nesting depth

��

v This starts pedb. You will see the pedb main window open. If you
specified a program, it is loaded on each node of your partition and you see
the message:
FOMOG0101 Your program has been loaded.

ENTER

pedb

�� pedb -a poe process id
limited poe options

�

�
X options

�

-I source directory
�

�
-d nesting depth

��

v This starts pedb in attach mode. See “Attach mode” on page 130 for
more information.

ENTER

�� pedb -h ��

v This writes the pedb usage to STDERR. It includes pedb command-line
syntax and a description of pedb options.

The options you specify with the pedb command can be program options, POE
options, or pedb options listed in Table 5 on page 130. Program options are those
that your application program will understand. You can also specify certain
X-Windows options with the pedb command.

Chapter 11. Using the pedb debugger 129

For the most part, you can use the same command-line flags on the pedb
command as you use when invoking a parallel program using the poe command.
For example, you can override the MP_PROCS variable by specifying the number
of processes with the -procs flag. Or you could use the -hostfile flag to specify the
name of a host list file. For more information on the POE command-line flags, see
“Appendix B. POE environment variables and command-line flags” on page 283.

Table 5. Debugger option flags (pedb)

Use this flag: To: For example:

-a Attach to a running poe job by specifying its process id.
This must be executed from the node where the poe job
was initiated. When using the debugger in attach mode
there are some debugger command-line arguments that
should not be used. In general, any arguments that control
how the partition is set up or specify application names
and arguments should not be used.

To start pedb in attach mode:

ENTER
pedb -a <poe PID>

-d Set the limit for the nesting of program blocks. The default
nesting depth limit is 25.

To specify a nesting depth limit:

ENTER
pedb -d nesting.depth

-h Write the pedb usage to STDERR then exit. This includes
pedb command-line syntax and a description of pedb flags.

To write the pedb usage to
STDERR:

ENTER
pedb -h

-I

(upper case i)

Specify a directory to be searched for an executable’s source
files. This flag must be specified multiple times to set
multiple paths. (Once pedb is running, this list can also be
updated using the Update Source Path window.)

To add directory1 to the list of
directories to be searched when
starting the pedb debugger:

ENTER
pedb -I dir1

You can add as many directories as
you like to the directory list in this
way. For example, to add two
directories:

ENTER
pedb -I dir1 -I dir2

Attach mode
The pedb debugger provides an attach feature, which allows you to attach the
debugger to a parallel application that is currently executing. This feature is
typically used to debug large, long running, or apparently “hung” applications.
The debugger attaches to any subset of tasks without restarting the executing
parallel program.

Parallel applications run on the partition managed by poe. For attach mode, you
must specify the appropriate process identifier (PID) of the poe job, so the
debugger can attach to the correct application processes contained in that
particular job. To get the PID of the poe job, enter the following command on the
node where poe was started:
$ ps -ef | grep poe

130 z/OS UNIX System Services PE: Operation and Use

You initiate attach mode by invoking pedb with the -a flag and the PID of the
appropriate poe process:
$ pedb -a <poe PID>

For example, if the process id of the poe is 12345 then the command would be:
$ pedb -a 12345

Note: When using the attach feature, some environment variables must be set
before. See “Let us attach the debugger” on page 81 for a detailed
description.

pedb starts by showing a list of task numbers that comprise the parallel job. The
debugger obtains this information by reading a configuration file created by poe
when it begins a job step. At this point you must choose a subset of that list to
attach the debugger. Once you make a selection and the attach debug session
starts, you cannot make additions or deletions to the set of tasks attached to. It is
possible to attach a different set of tasks by detaching the debugger and attaching
again, then selecting a different set of tasks.

Note: The debugger supports up to 24 nodes. When attaching to jobs larger than
24 nodes, it is suggested you select a subset of tasks less than or equal to 24.

The debugger attaches to the specified tasks. The executable is stopped wherever
its program counter happens to be, and is then under the control of the debugger.
The other tasks in the original poe application continue to run. pedb displays
information about the attached tasks using the task numbering of the original poe
application partition.

Attach window
Figure 12 shows the pedb Attach window.

Chapter 11. Using the pedb debugger 131

The pedb Attach window contains a list of tasks and, for each task, the following
information:
v Task - the task number
v IP - the IP address of the node on which the task/application is running
v Node - the name of the node on which the task/application is running, if

available
v PID - the process identifier of the task/application
v Program - the name of the application and arguments, if any.

At the bottom of the window there are four buttons:
v Attach - causes the debugger to attach to the tasks you select. It remains grayed

out until you make a selection.
v Attach All - causes the debugger to attach to all tasks listed in the window. You

do not need to make any specific selections.
v Quit - closes the Attach window and exits the debugger, leaving the poe job

running.
v Help - accesses help information about the Attach window.

At this point you can select a set of tasks to which the debugger attaches:

PRESS
Attach All to select all tasks

OR

SELECT
individual tasks by holding down the Ctrl key and clicking with the left
mouse button.

Figure 12. pedb Attach window

132 z/OS UNIX System Services PE: Operation and Use

PRESS
Attach

ENTER
password on the shell where pedb has been started

v The window closes and the pedb Main window appears.

Task buttons appear for each task selected for debugging. Once the debugger
attaches to the selected tasks, the buttons change from a label of “UA”
(unattached) to “D” (debug state), and from the default color of “wheat” to
“green”.

The default group button is labelled “Attached” and consists of all the tasks
chosen for attach.

When starting the debugger in attach mode, the default context is “Attached”, as
indicated at the top of the main window:
pedb: View - 1, Context - Group Attached

Other compiling options
pedb provides substantial information when debugging an executable compiled
with the -g option. However, you may find it useful to attach to an application not
compiled with -g. pedb allows you to attach to an application not compiled with
-g, however, the information provided is limited to a stack trace.

You can also attach pedb to an application compiled with both the -g and
optimization flags. However, the optimized code can cause some confusion when
debugging. For example, when stepping through code, you may notice that the
line marker points to different source lines than you would expect. The
optimization causes this re-mapping of instructions to line numbers.

Command-line arguments
You should not use certain command-line arguments when debugging in attach
mode. If you do the debugger will not start, and you will receive a message saying
that the debugger will not start. In general, do not use any arguments that control
how the debugger partition is set up or that specify application names and
arguments. You do not need information about the application, since it is already
running and the debugger uses the PID of the poe process to attach. Other
information the debugger needs to set up its own partition, such as node names
and PIDs, comes from the configuration file and the set of tasks you select. See
“Appendix C. Command-line flags for Normal or Attach Mode” on page 291 for a
list of command-line flags showing which ones are valid in normal and in attach
debugging mode.

The information in the appendix is also true for the corresponding environment
variables, however pedb ignores the invalid setting. The debugger displays a
message containing a list of the variables it ignores, and continues.

For example, if you had MP_PROCS set, when the debugger starts in attach mode
it ignores the setting. It displays a message saying that it ignored MP_PROCS, and
continues initializing the debug session.

Chapter 11. Using the pedb debugger 133

The pedb main window
As mentioned previously, you have the option of specifying the name of your
application when you invoke pedb which causes it to be loaded on all the tasks
automatically. This method is generally used to debug SPMD codes. If you need to
load an MPMD code, or prefer to use the file selection window to load your
partition you should not specify your application name on the pedb command
line.

The initial pedb window you see will have blank areas as illustrated in Figure 13
on page 135. If you specified an application name on the command line, the

debugger will continue, by loading your application for each task which will fill in
the main window as illustrated in Figure 15 on page 138.

Following is a brief overview of the pedb main window layout.
v Across the top is a menu bar, which contains the functions you will need for

debugging.

SELECT
File → Load Executables ... to choose a program to debug.

SELECT
Find → Find in Source Window to position source by search strings.

v The left half of the screen contains the source code window and the pedb
control buttons.
– Double click on a source line to set a breakpoint.
– Control execution of your application with the buttons below the source code.

v Application data by task is shown in the windows on the right side of the
display.
– Global variable on request.
– Variables local to the current block (or stack frame).
– Calling stack listing.
– Threads listing.
– Event data (Break and Trace points).

v Context selection buttons at the lower right
v At the bottom, a message window.

134 z/OS UNIX System Services PE: Operation and Use

If you did not do an SPMD load from the pedb command line, the initial screen
opens with many options unavailable. For example, the View option and control
buttons are inactive. These options will become available after all the tasks have
been loaded.

During this initial loading phase, you can:
v create or delete groups
v load programs, tasks, or groups
v set a different context
v get help
v select hide/show options
v update the source path
v change context to group or task
v quit pedb

Loading the partition from the Load Executables window
If you did not specify a program to load on the pedb command line, you will use
the Load Executables window. In this case, a partition has been created to support
the number of tasks that were defined for the application. In general, the term task
refers to an individual program that is part of a parallel application. The number
of tasks was determined by the value of the MP_PROCS environment variable, or
the value specified by the -procs flag, if entered on the command line when
invoking pedb.

A partition may be thought of as a system of one or more physical processor
nodes, along with the infrastructure necessary to execute a parallel application.
When you load a partition, you provide programs for the infrastructure to run.

Figure 13. pedb main window before the partition is loaded

Chapter 11. Using the pedb debugger 135

When you specify a program to run by invoking pedb with a program name on
the command line, it assumes an SPMD model and automatically loads all tasks
with this program. With the Load Executables window however, you also have the
ability to load different executables on different tasks or groups of tasks (as in the
case of an MPMD application), or to load the same executable on all tasks in the
instance when the file is not located in a shared file system or in the same
directory on all tasks. You can load programs one task at a time by selecting a
different button in the Tasks area before opening the Load Executables window.
You can also load a subset of all the tasks at one time by first creating the desired
task group(s), and then selecting the corresponding group button in the Task
Groups area before using the Load Executables window.

Program search path
Like POE, pedb uses the normal shell search path that is established by the
environment variable PATH if you do not explicitly give a path. pedb checks this
path and loads the first occurrence of the program you specify (scanning from left
to right) for each task. The mechanism for finding source files is different from
this. See “Source code search path” on page 179 for information on the source code
search path.

Figure 14. Load Executables window

136 z/OS UNIX System Services PE: Operation and Use

To load the same executable for all tasks (SPMD): To load different executables (MPMD):

CHECK
the title bar of the pedb window to make sure
the context is set to all tasks.
This is the default when you start the pedb
debugger. If the context is not on the task group
ALL, reset it.

To set the context on all tasks:

PRESS the task group button labeled ALL in the Task
Groups Area.

Once the context is set on all tasks:

SELECT
File → Load Executables ...
v The Load Executables window opens. This
window allows you to choose the appropriate
directory and select the corresponding
executable file.

TYPE IN
any command-line arguments to the executable
selected for loading.

SELECT
the directory and executable file you want to
load by clicking on each name. Double clicking
on the file name automatically loads the
program.

PRESS OK
v The Load Executables window closes, and the
specified program is loaded for all tasks. Each
task stops at the first executable source line.
MP_DEBUG_INITIAL_STOP can be set to
override the default of the first executable
source line in main(). Set
MP_DEBUG_INITIAL_STOP to the file:
linenumber.

DISPLAYS MESSAGE
FOMOG0101 Your program has been loaded.

Set the context before loading each program. For
example, suppose there will be five tasks numbered 0
through 4. To load a program for task 0 and a program
for tasks 1 through 4, you would:

PRESS the task button labeled 0 in the Task Area.

SELECT
File → Load Executables ...
v The Load Executables window opens. This
window allows you to choose the appropriate
directory and select the corresponding
executable file.

SELECT
the directory and executable file you want to
load by clicking on each name. Double clicking
on the file name automatically loads the
program.

TYPE IN
the command-line arguments to the executable
selected for loading.

PRESS OK
v The Load Executables window closes and the
debugger loads the program for task 0.

Create a group, say group1, containing tasks 1 through 4.

PRESS the task group button labeled group1 to set the
context.

SELECT
File → Load Executables ...
v The Load Executables window opens.

SELECT
the directory and executable file you want to
load by clicking on each name. Double clicking
on the file name automatically loads the
program.

TYPE IN
any command-line arguments to the executable
selected for loading.

PRESS OK
v The Load Executables window closes and the
debugger loads the program for tasks 1 through
4. Each tasks stops at the first executable
statement. MP_DEBUG_INITIAL_STOP can be
set to override the default of the first executable
source line in main(). Set
MP_DEBUG_INITIAL_STOP to the file:
linenumber.

DISPLAYS MESSAGE
FOMOG0101 Your program has been loaded.

Chapter 11. Using the pedb debugger 137

The pedb window with a partition loaded
Once the partition is loaded, the pedb window will make all of its options
available.

This window consists of:
v The Title Bar. The Title Bar is located at the top most part of the window. It

identifies the view and context of the program.
v A menu bar with the following options:

– File
– View
– Group
– Find
– Options
– Tools
– Help

v The Source File Label. This label displays the name of the source file you are
currently debugging and the task number with which the source file is
associated.

v The Source Area. This area displays the source code of the parallel program you
are debugging. This area has both horizontal and vertical scroll bars for reading
text displayed outside it.

v The Message Area. This area displays informational and status messages about
events and actions that occur. Messages about errors, warnings, and other severe
conditions may not appear here; instead, they may appear in a message pop-up
window. The contents of this message area window is controlled by a fixed-size

Figure 15. pedb main window after the partition is loaded

138 z/OS UNIX System Services PE: Operation and Use

buffer. When the buffer fills, earlier messages may no longer be accessible from
the message area window. However, all error messages are duplicated in the
window from which pedb was started.

v The Global Data Area. The global variable viewer displays the variables that are
defined globally within the executing task(s). Global variables are only relevant
when debugging C programs. For more information on global data, see
“Examining program data” on page 156. The Global Data Area has both
horizontal and vertical scroll bars for reading text displayed outside it.

v The Local Data Area. This area displays the values of the current routine’s local
variables. The Data Area has both horizontal and vertical scroll bars for reading
text displayed outside it.

v The Stack Area. This area displays the call stack for the current procedure or
function. The Stack Area has both horizontal and vertical scroll bars for reading
text displayed outside it. See “Displaying local variables within the program
stack” on page 157 for more information.

v The Threads Area. This area displays the threads contained in the task. The
Threads Area has both horizontal and vertical scroll bars for reading text
displayed outside it. See “Displaying threads information” on page 161 for more
information.

v The Break/Trace Area. This area displays the active Break/Trace points for the
tasks in the current context. The Break/Trace Area has both horizontal and
vertical scroll bars for reading text displayed outside it. See “Locating breakpoint
in source” on page 156 for more information.

v The pedb Execution Controls. These controls are directly below the Source Area
and allow you to control the execution of the application you are debugging.
These controls are similar to those you might find on a VCR or CD player, and
are described in “Controlling program execution” on page 144.

v A Task Area. This area contains a number of task and task group push buttons that
you can use to select tasks, or task groups, when you are defining current
context. See “Setting the context” and “Creating task groups” on page 140 for
more information.

Setting the context
In pedb, context is defined as a task or group of tasks to which the debugger
directs certain actions or requests. The context sensitive controls, directly below the
Source Area (lower-left), only affect those tasks in the current context. The context
also determines which task’s variables and stack traces will be displayed.

When you start a pedb session, the context is initially set to all tasks. As illustrated
in Figure 13 on page 135, the title bar of the pedb window reads

pedb: View - 1, Context - Group ALL.

If you want the current context to be something other than all tasks, you can use
the push buttons in the Task and Task Groups areas to change it. Press the button
that corresponds to the task or group of tasks you wish to include in the current
context. Note that you can select only one task or task group at a time.

For example, assume that you have a parallel program that is divided into five
tasks. The tasks are numbered 0 through 4, and each has a task push button in the
Task area. To set the context to just task 1:

PRESS
the task push button labeled 1 in the Task Area.

Chapter 11. Using the pedb debugger 139

v The pedb debugger sets the context to task 1. To illustrate this, the
debugger highlights the task’s push button and updates the title bar of the
pedb window to read pedb: View - 1, Context - 1.

You can also define the current context by specifying groups of tasks. When you
start a pedb session, a task group is automatically defined that consists of all tasks.
This task group is named ALL. See “Creating task groups” for information on how
to create task groups.

To set the command context back to the task group ALL:

PRESS
the task group push button labeled ALL in the Task Area.

v The pedb debugger sets the context to all tasks. To illustrate this, the
debugger highlights the ALL task group push button, as well as the other
task push buttons, and updates the title bar of the pedb window to read
pedb: View - 1, Context - ALL.

You can change the context at any time during the debugging session.

Creating and deleting task groups: In general, the term task refers to an
individual program that is part of a parallel application.

You can collect a number of tasks under a common group name. When you do
this, the debugger creates a push button for the task group in the Task Groups
area. You can then set the context to include the tasks in the group by pressing its
push button.

To understand why you would want to define your own task groups, consider the
following example. You are debugging a master/worker program containing many
blocking sends and receives. The program has ten tasks. Task 0 is the master task,
and tasks 1 through 9 are the workers. During debugging you might start off by
running the master until a blocking receive operation cannot complete. Then you
could set the context on all the workers and run them past the matching send. This
will allow the master task to proceed. Then set the context back on the master and
run it some more.

Since you plan to keep switching the context back and forth between the master
and workers, you might find it helpful to group tasks 1 through 9 into a task
group named workers. Then you would be able to press a task group button to set
the context on the workers only.

You could also create a group named master containing just task 0. Although the
“group” in this case has only one task, the name master is more meaningful than a
task number and is therefore easier to remember.

Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

Creating task groups: You can create a group at any time during the debugging
session using the Add Group window.

To create a task group:

SELECT
Group → Add Group

140 z/OS UNIX System Services PE: Operation and Use

v The Add Group window opens.

FOCUS
on the Enter Group Name entry field.

TYPE IN
the name of the group to be added.

FOCUS
on the Select Task(s) area.

SELECT
a task by placing the cursor over a task number and pressing the left
mouse button.

or

a range of tasks by pressing the left mouse button over the first task, and
dragging it over the range of tasks to be included in the group.

or

a set of nonconsecutive tasks by selecting the first task, and while holding
down the control key, selecting the next task(s). Note that selecting a
previously selected variable will deselect it.

PRESS
Apply

Figure 16. Add Group window

Chapter 11. Using the pedb debugger 141

or

OK

v Apply creates the task group. A button containing the name of the group
appears in the Task Groups area of the main window. The Add Group
window remains open for further selections. OK creates the group, as
above, and closes the Add Group window.

Clear removes all task selections and clears the text in the group name
field.

Cancel closes the Add Group window.

The Select By Range feature is useful when you need to select a large range of
tasks. To indicate the tasks using the Select By Range button:

SELECT
the Select By Range button.

v The Select By Range window opens.

FOCUS
on the Enter range of tasks to select: field.

TYPE IN
the task list. To indicate a range of tasks, enter the first and last task
numbers, separated by a colon or dash. To indicate individual tasks, enter
the numbers, separated by a space or a comma.

For example:

To add: Type in:

tasks 6 and 8 6,8

tasks 6 and 8 6 8

6 through 8, and 75 6:8 75

6 through 8, and 75 6-8 75

v Apply adds the selected tasks to the Add Group window and leaves the
Select By Range window open for other selections.

OK adds the tasks to the Add Group window and closes the Select By
Range window.

Cancel closes the Select By Range window.

Deleting task groups: If a particular task group no longer seems necessary, you can
delete it using the Delete Group window. You may delete a group (except “all” or
“attached”) at any time during the debugging session.

142 z/OS UNIX System Services PE: Operation and Use

To delete a task group:

SELECT
Group → Delete Group

v The Delete Group window opens.

PLACE
the cursor over the name of the group.

PRESS
the left mouse button.

v The group name highlights to show that you have selected it.

PRESS
Apply

or

OK

v Apply deletes the group and removes the group button from the Task
Groups area. The Delete Group window remains open. OK deletes the
group, as above, and closes the Delete Group window.

Cancel closes the Delete Group window.

Task status information: The task buttons used to change pedb context also
display information about the status of each task. During your debug session, the
color and the code letter change during different activities. For example, during the
load process, the color will change from red to yellow to green and the status code
letter will change from N to L to D.

Note: These are the default colors, but you can configure them by updating your
.Xdefaults file.

Since each task runs independently of pedb, the debugger maintains status
information for each task in the partition. The following table shows the status
codes that are displayed in each task button and describes their meanings.

Table 6. Status codes

Code Default Color Status Description

N Red Not loaded The task has not yet been
loaded with an executable.

L Yellow Loaded The task has been loaded
with an executable.

D Green Debug Ready The task is stopped and can
be debugged using pedb.

R White Running The task is in control and
running.

P MediumSeaGreen Playing The Play button has been
pressed. The task is

switching between Playing
and Running, with some

limited function.

Chapter 11. Using the pedb debugger 143

Table 6. Status codes (continued)

Code Default Color Status Description

x Khaki Exit Requested The task in the parallel
application has issued exit

or returned from main, and
is thus waiting in the POE

specific exit code for its
peer tasks to indicate that

they too are waiting to exit.

X Goldenrod Exited The task has reached the
hidden_exit breakpoint that

was set by libdbx.

E Orange Error The task is in an unknown
state.

U LightSteelBlue Unhooked The task has been
unhooked.

UA Wheat Unattached The task has not yet been
attached.

Controlling program execution
The pedb debugger lets you control execution by setting breakpoints in, or else by
stepping through, the source code. This section describes how to perform these
familiar debugging tasks using the pedb debugger. It also describes some
additional functions pedb provides such as unhooking tasks so they can run
without intervention from the debugger.

The simplest method of controlling program execution with pedb is by
manipulating the control buttons located directly below the Source Area on the
pedb window. From left to right, the control buttons are Step Over, Step Into,
Step Return, Continue, Halt, Play, and Stop.

Table 7. Control buttons

In order to: Press this control button:

Manually step the execution of tasks in the current context,
by a line of source code, stepping over subroutines and
functions.

Step Over

Manually step the execution of tasks in the current context,
by a line of source code, stepping into subroutines and
functions.

Step Into

Return from the current function to the function which
called it. This typically reduces the call stack by one
function.

Step Return

Continue executing the tasks in the current context up to
the next breakpoint or to the program’s completion.

Continue

Interrupt execution of running tasks. The Halt button is
used for situations in which a process is in a running state,
such as blocked, and must be interrupted.

Halt

Have the debugger repeatedly execute the tasks. Available
Play choices are Step Over, Step Into, and Continue.

Play

Break out of Play mode (as tasks finish, they will stop) Stop

Note: To modify the function of the Play button, refer to “Customizing the Play control
button” on page 152.

144 z/OS UNIX System Services PE: Operation and Use

Every time execution of a task in the current context stops, the debugger updates
the pedb window to display the current information. In the Source Area, the
debugger uses a line marker to identify the line of code at which execution has
stopped. The debugger draws a line marker as an arrow pointing at the line of
code. For example, when you first load a parallel program onto the partition, it
runs up to the first executable statement and stops. This is the first executable
source line defined by the user, so the debugger draws a line marker there. Since
you can set the context on a subset of tasks and run them independently of the
others, you can have a number of line markers displayed. When more than one
task is at the same line of code, the line marker appears as a button.

If you are unsure of the task(s) associated with a particular line marker:

PLACE
the mouse cursor over the line marker.

PRESS
the left mouse button.

v A label appears identifying the tasks and threads at that line of code. For
threaded programs, each task number is followed by the displayed thread
number, which is the thread whose source file, local variables, and stack
are displayed. The label is visible only while you hold the mouse button
down.

Line markers may be thought of as ad hoc groups which can be used to
manipulate the parallel application. This manipulation is independent of the
current context. For example, say that you are debugging a parallel program with
three tasks numbered 0, 1, and 2. Tasks 0 and 1 are at line 22, while task two is at
line 24. You want to step tasks 0 and 1 to the same line as task two. To step tasks 0
and 1 as if they were in a group:

PLACE
the mouse cursor over the line marker at line 22.

PRESS
the right mouse button.

v A menu appears containing four items – Step Over, Step Into, Step
Return, and Continue. These menu items correspond to the Step Over,
Step Into, Step Return, and Continue pedb control buttons.

SELECT
Step Over

The debugger runs tasks 0 and 1 one line and stops them at line 23.

REPEAT
these steps so that tasks 0, 1, and 2 are all at line 24.

The line marker, as used above, allows you to perform simple operations on single
or multiple tasks that are not in a predefined task group. If tasks 0 and 1
comprised a group, you could change the context to that group, and then use the
control buttons as above, then restore the original context.

Note: For more information on stepping, see “Stepping execution” on page 150.

Threaded programs: Each task can contain multiple threads. The threads for the
tasks are listed in the threads pane on the right hand side of the pedb main
window just below the stack pane. The list of threads for a single task can also be
displayed in a separate window known as the Threads Viewer window.

Chapter 11. Using the pedb debugger 145

When a task is in “debug ready” state, the interrupted thread is defined as the
thread that stopped due to encountering a breakpoint or a signal. When this thread
stopped, it in turn stopped all of the other threads in the process. The interrupted
thread is treated specially by single step execution control. Subsequent step
execution control that is issued will have the effect of stepping the interrupted
thread while letting all other threads continue. It is not possible to change the
interrupted thread to another thread. The interrupted thread is denoted by an
asterisk at the start of the threads row.

Initially, when a task reaches “debug ready” state, the displayed thread is the same
as the interrupted thread. The displayed thread for a task is alterable by the user.
When changed to another thread, the stack, local variables, source line arrow, and
the source file will be updated to reflect those for the new displayed thread. The
displayed thread is denoted by a “greater than” (>) operator at the start of the
threads row.

Setting breakpoints: The pedb debugger lets you set stopping places, called
breakpoints, in your program. You mark which lines are to be breakpoints for the
tasks in the current context and then run the program using the Continue button.
When the tasks reach a breakpoint, execution stops and you can then examine the
state of the program.

In threaded programs, setting a breakpoint on a task, sets the breakpoint for all
threads in the task. When any thread in a task hits a breakpoint, all other threads
in the task are also stopped.

Note: The Play button will not stop execution at breakpoints, so it is suggested
that you use the Continue button.

To set a breakpoint:

PLACE
the mouse cursor over an executable source line in the Source Area.

PRESS
the left mouse button.

v The line highlights to show that you have selected it.

PRESS
the right mouse button.

v A selection menu appears.

SELECT
Breakpoint

v The debugger sets, for each task in the current context, a breakpoint at
the marked line of code.

Note: You can also set a breakpoint by double clicking the left mouse
button after placing the cursor over an executable source line.

In the Source Area, the debugger places a stop marker (drawn to look like
a stop sign containing an exclamation point) next to the line with the
breakpoint.

146 z/OS UNIX System Services PE: Operation and Use

In addition to the stop marker, the debugger displays a breakpoint event
message (one for each of the tasks in the current context) in the
Break/Trace area. The message includes an interpretation of the
breakpoint. For example:
[1] stop at "ptst4.c":22

Note: The debugger sets a separate breakpoint for each task in the context.

You can also specify a condition when setting a breakpoint. The task then stops
executing at the breakpoint only if the condition evaluates to true.

Specifying conditions for breakpoints and tracepoints: You can specify conditions with
a subset of C syntax. The following operators are valid:

Arithmetic operators

+ Addition

- Subtraction

- Negation

* Multiplication

/ Floating point division

div Integer division

mod Modulo

exp Exponentiation

Relational and logical operators

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

= Equal to

!= Not equal to

< > Not equal to

|| Logical OR

or Logical OR

&& Logical AND

and Logical AND

Bitwise operators

bitand Bitwise AND

| Bitwise OR

xor Bitwise exclusive OR

˜ Bitwise complement

Chapter 11. Using the pedb debugger 147

<< Left shift

>> Right shift

Data access and size operators

[] Array element

() Array element

* Indirection or pointer dereferencing

& Address of a variable

. Member selection for structures and unions

. Member selection for pointers to structures and unions

-> Member selection for pointers to structures and unions

sizeof Size in bytes of a variable

Miscellaneous operators

() Operator grouping

(Type)Expression
Type cast

Type(Expression)
Type cast

Expression\Type
Type cast

To set a conditional breakpoint:

PLACE
the mouse cursor over an executable source line.

PRESS
the left mouse button.

v The line highlights to show that you have selected it.

PRESS
the right mouse button.

v A selection menu appears.

SELECT
Conditional Breakpoint

v The debugger displays the Conditional Breakpoint window.

FOCUS
on the text entry field of the Conditional Breakpoint window.

TYPE IN
the condition that must evaluate to true for the execution to stop at the
breakpoint. For example, to stop execution at the breakpoint only if the
variable x is greater than 19, you would type in x > 19.

PRESS
OK

v The debugger closes the Conditional Breakpoint window and sets a
breakpoint for the tasks in the current context.

148 z/OS UNIX System Services PE: Operation and Use

As with regular breakpoints, the debugger places a stop marker next to the
line with the breakpoint in the Source Area. In the Break/Trace area, it
adds a message reporting the conditional breakpoint the debugger has
built for each of the tasks in the current context. For example:
[1] if x > 19 { stop } at "ptst4.c":22

Specifying thread specific breakpoints and tracepoints: Thread specific conditions can
be added to breakpoints and tracepoints using the conditional breakpoint and
conditional tracepoint windows. You set the conditions using the variable $current.
This variable represents the thread that encountered the breakpoint first. This
thread (the interrupted thread) will cause all of the other threads to stop. For
example, adding the condition $current = $t1 after selecting line 234 in your
source would result in the program stopping when the thread labeled $t1
encountered line 234. To state this another way, the breakpoint is triggered only
when thread 1 encounters the breakpoint. Refer to z/OS UNIX System Services
Programming Tools for more details.

Identifying the tasks associated with a breakpoint

When you set a breakpoint by following the previous instructions, remember that a
separate breakpoint is set for each of the tasks in the current context. If you wish
to see a list of the task(s) associated with a particular stop marker in the Source
Area:

PLACE
the mouse cursor over the stop marker.

PRESS
the left mouse button.

v A label appears identifying the tasks with a breakpoint at that line of
code. The label is visible only while you hold the mouse button down.

When multiple breakpoints are set for a given task, the breakpoint will
appear multiple times in the Break/Trace area. The corresponding
breakpoint events will also be highlighted in the Break/Trace Area. This
graphically shows the breakpoints that would be deleted if you used the
procedure for removing all breakpoints at the same line of code, described in
Table 8 on page 150.

Removing breakpoints

Any number of the active tasks may have one or more breakpoints at that same
line of code. You can remove:
v a breakpoint for a single task

or
v all the breakpoints at that line of code for all tasks in the current context.

The following table shows how to remove breakpoints.

Chapter 11. Using the pedb debugger 149

Table 8. Removing breakpoints

To remove the breakpoint for a single task: To remove all breakpoints at the same line of code:

PLACE the mouse cursor over the breakpoint’s event
message for that task in the Break/Trace Area.
Note: The task must be in the current context
for the event message to be displayed.

PRESS the left mouse button

v The breakpoint’s event message highlights to
show that you have selected the breakpoint.

PRESS the right mouse button.

v A selection menu appears.

SELECT
Delete

v The breakpoint’s event message disappears to
show that the debugger has removed the
breakpoint for the task.

PLACE the mouse cursor over the stop marker at that
line of code.

PRESS the right mouse button.

v A selection menu appears.

SELECT
Delete

v The debugger removes all breakpoints set at
the line of code for the tasks in the current
context. The stop marker disappears as well as
the event strings highlighted in the Break/Trace
Area.

Stepping execution: The pedb debugger lets you single-step execution of your
program. In other words, you can run the tasks in the current context one source
code line at a time. For threaded programs, single step execution has the effect of
single stepping the interrupted thread, while letting all other non-held threads in
the task continue freely without stopping at any breakpoints. All threads will again
be stopped when the stepping thread reaches the appropriate source line. You can
manually control each step, or have the debugger repeatedly step through the tasks
in the current context at a selected interval. There are three methods of stepping
the execution of your program. You can use the Step Over button to step over the
subroutines and functions of your program. The Step Into button lets you step into
the subroutines and functions of your program. Also, the Step Return button lets
you return to the calling function.

To step execution, stepping over subroutines and functions:

PRESS
the Step Over control button.

v The debugger runs one line of the source code for the tasks in the current
context and stops.

The function of the Step Over control button is to:
v step one line of source code
v step over functions, keeping the scope within the current function.

To step execution, stepping into subroutines and functions:

PRESS
the Step Into control button.

v The debugger runs one line of the source code for the tasks in the current
context and stops.

The function of the Step Into control button is to:
v step one line of source code
v step into functions, following execution into called functions with

debugging information.

150 z/OS UNIX System Services PE: Operation and Use

The debugger changes the source code displayed in the Source Area to that of the
called function, and adds the function call to the Stack Area.

To step execution, returning to the calling function:

PRESS
the Step Return control button.

v The debugger returns to the calling function and stops.

The function of the Step Return control button is to:
v execute the remainder of the current function
v stop in the calling function.

To automatically repeat execution:

PRESS
the Play control button.

v The debugger repeatedly steps execution of the tasks in the current
context.

When using the Play control button, execution continues for the tasks in the
current context until you press the Stop control button. The Play function allows
you to execute multiple iterations of Step Over, Step Into or Continue (see
“Customizing the Play control button” on page 152 for more information). It
updates the pedb window for each play cycle executed.

The Continue function of the Play control button can be particularly valuable
when looking at loop processing. A break point may be set within a loop and the
application data will be updated for each loop iteration.

Since the debugger has to keep updating the pedb window when in play mode,
this is a slower form of execution than using the Continue control button. The
advantage is that it provides you with more intermediate information.

For example, say you are debugging a master/worker program containing many
blocking sends and receives. The context is on the worker tasks. You set a
breakpoint and then press the Continue control button to continue execution of the
worker tasks. Before reaching the breakpoint, however, the tasks hit a blocking
receive intended to synchronize execution between the workers and the master
task. Because the master is not in the current context, the receive operation cannot
complete and so the workers cannot reach the breakpoint. Since the debugger
cannot refresh the pedb window until the pending Continue function completes,
the problem is not immediately observable. However, if you were repeatedly
stepping the tasks using the Play function, you would see the line marker and
other application information in effect just prior to the pending Step. You would
see the task buttons holding in the running state and have a clear indication of
where the program is hung.

To stop execution (stop playing):

PRESS
the Stop control button.

v The debugger stops executing the program’s tasks.

To interrupt execution (interrupt a waiting process):

Chapter 11. Using the pedb debugger 151

PRESS
the Halt control button.

v The debugger interrupts execution and returns control to the user.

Customizing the Play control button: When you press the Play control button, by
default it repeatedly executes Step Into(s), with one-second between each Step
Into. However, you can customize the Play control button to:
v select which command to repeatedly execute
v specify the delay between the command iterations in tenths of a second.

You can set these options from the main menu, using the Options pulldown.

To specify the command:

SELECT
Options → Change Play Command

v Another menu appears with the command choices.

SELECT
the command you want the debugger to execute repeatedly when you
press the Play control button.

v The menu closes, and the Play control button is set to execute the
command you specified.

To specify the delay between command iterations:

SELECT
Options → Change Play Delay

v The Change Play Delay window opens.

FOCUS
on the text entry field in this window.

TYPE IN
The new delay time in tenths of seconds.

PRESS
OK

v The Change Play Delay window closes, and the Play control button is set
to execute its command with the new delay you specified.

152 z/OS UNIX System Services PE: Operation and Use

You can also set these options from the pop-up menu on the Play control button:

To specify the command: To specify the delay between command iterations:

PLACE the cursor over the Play control button.

PRESS the right mouse button.

v The Play menu appears.

SELECT
Change Play Command

v Another menu appears with the command
choices.

SELECT
the command you want the debugger to execute
repeatedly when you press the Play control
button.

v The menu closes, and the Play control button
is set to execute the command you specified.

PLACE the cursor over the Play control button.

PRESS the right mouse button.

v The Play menu appears.

SELECT
Change Play Delay

v The Change Play Delay window opens.

FOCUS
on the text entry field in this window.

TYPE IN
The new delay time in tenths of seconds.

PRESS OK

v The Change Play Delay window closes, and
the Play control button is set to execute its
command with the new delay you specified.

Tracing program execution: The pedb debugger lets you set tracepoints in your
program. When tasks reach a tracepoint during execution, the debugger writes
information regarding the state of the program to the window from which pedb
was invoked.

For threaded programs, tracepoints are set for all threads in the task by default.
Each time a thread in the task encounters the tracepoint, a trace record is written.

Tracepoints can be set at any executable line of code within the program.

To set a tracepoint:

PLACE
the mouse cursor over an executable source line.

PRESS
the left mouse button.

v The line highlights to show that it is selected.

PRESS
the right mouse button.

v The Break/Trace menu appears.

SELECT
Tracepoint

v The debugger sets a tracepoint at the selected line for the tasks in the
current context.

In the Source Area, the debugger places a blue trace marker next to the
line with the tracepoint. The trace marker is drawn as two eyes looking at
the line of code.

In addition to the trace marker, the debugger displays a tracepoint event
message (one for each of the tasks in the current context) in the

Chapter 11. Using the pedb debugger 153

Break/Trace area. The message includes an interpretation of the tracepoint
preceded by the event ID associated with it. For example:
[6] trace at "mikia.c":15

Note: The debugger sets a separate tracepoint for each task in the context.

You can also specify a condition when setting a tracepoint. The tasks then write
trace information only if the condition evaluates to true. See “Specifying conditions
for breakpoints and tracepoints” on page 147 for more information.

Thread specific tracepoints can be set in a similar fashion to thread specific
breakpoints. See “Specifying thread specific breakpoints and tracepoints” on page
149 for more information.

To set a conditional tracepoint:

PLACE
the mouse cursor over a source line.

PRESS
the left mouse button.

v The line highlights to show that you have selected it.

PRESS
the right mouse button.

v A selection menu appears.

SELECT
Conditional Tracepoint

v The debugger displays the Conditional Tracepoint window.

FOCUS
on the text entry field of the Conditional Tracepoint window.

TYPE IN
the condition that must evaluate to true for trace information to be written.
For example, x > 19.

PRESS
OK

v The debugger closes the Conditional Tracepoint window and sets a
tracepoint for the tasks in the current context.

As with regular tracepoints, the debugger places a trace marker next to the
line with the tracepoint in the Source Area. In the Break/Trace area, it adds
a message reporting the conditional tracepoint for each of the tasks in the
current context. For example:
[7] trace at "blist.c":23 if x > 19

Identifying the tasks associated with a tracepoint: If you wish to see a list of the
task(s) associated with a particular trace marker in the Source Area:

PLACE
the mouse cursor over the trace marker.

PRESS
the left mouse button.

154 z/OS UNIX System Services PE: Operation and Use

v A label appears identifying the tasks with a tracepoint at that line of
code. The label is visible only while you hold the mouse button down.

When multiple tracepoints are set for a given task, the tracepoint will
appear multiple times in the Break/Trace area. The corresponding
breakpoint events will also be highlighted in the Break/Trace Area. This
graphically shows the tracepoints that would be deleted if you used the
procedure for removing all tracepoints at the same line of code, described
in Table 9.

Removing tracepoints: Any number of the active tasks may have a tracepoint at that
same line of code. You can remove:
v a tracepoint for a single task

or
v all tracepoints at that line of code for all tasks in the current context.

The following table shows how to remove tracepoints.

Table 9. Removing tracepoints

To remove the tracepoint for a single task: To remove all tracepoints at the same line of code:

PLACE the mouse cursor over the tracepoint’s event
message for that task in the Break/Trace Area.
Note: The task must be in the current context
for the event message to be displayed.

PRESS the left mouse button

v The tracepoint’s event message highlights to
show that you have selected the tracepoint.

PRESS the right mouse button.

v A selection menu appears.

SELECT
Delete

v The tracepoint’s event message disappears to
show that the debugger has removed the
tracepoint for the task.

PLACE the mouse cursor over the trace marker at that
line of code.

PRESS the right mouse button.

v The Break/Trace menu appears.

SELECT
Delete

v The debugger removes all tracepoints for the
tasks in the current context. The trace marker
disappears as well as the event strings
highlighted in the Break/Trace Area.

Unhooking tasks: A task or group of tasks may be unhooked so that they execute
without intervention from the debugger.

To unhook a task or group of tasks:

PLACE
the mouse over a task or group button in the task area of the pedb
window.

PRESS
the right mouse button.

SELECT
the Unhook option.

v The debugger unhooks the selected task or group of tasks. The task
buttons are set to the appropriate color (the default is blue) to indicate that
they have been unhooked. Note that you can change the default colors
used by pedb by updating the X defaults file.

Chapter 11. Using the pedb debugger 155

Examining program data: This section describes how to use the Data Area of the
pedb Window to examine your program’s data. This area shows the names and
values of variables in the current routine.

Each time execution of the program stops, the debugger automatically updates the
information displayed.

Data, stack, threads, and break/trace information: In the pedb window, the Local Data,
Global Data, Stack, Threads, and Break/Trace areas present information for each
task in the current context. There are times when you want to stop displaying
information for a particular task or task group in one or more of these areas. This
allows you to conserve space in the area and improve the readability of
information still displayed there.

For example, say that you are debugging a master/worker program. The program
has 15 identical worker tasks and you are stepping execution through them. Since
the information displayed for each task is essentially the same, you might want to
hide all but one. The information will then be easier to read and the information
refreshes will be faster.

To hide a task’s data, stack, threads, and break/trace information:

PLACE
the mouse cursor over a task button or a task group button in the task area
of the pedb window.

PRESS
the right mouse button.

v A selection menu appears.

SELECT
either Hide Local Data, Hide Global Data, Hide Stack, Hide Threads,
Hide Break/Trace, or Hide All

v The debugger no longer displays information for the task in the specified
window. If you selected Hide All, the debugger hides the tasks
information in all four areas. When you hide a window, the Hide option
on the selection menu toggles to Show. You can then repeat these steps to
again display the task’s information in the specified window.

Locating breakpoint in source: You can select a Break/Trace event and show the
source line associated with it.

DOUBLE CLICK
on an item in one of the Break/Trace window lists.

v The source window centers at the source line that is associated with the
selected breakpoint and highlights that line.

OR

PLACE
the mouse cursor on an item in one of the Break/Trace window lists.

PRESS
the left mouse button to highlight your selection.

PRESS
the right mouse button

156 z/OS UNIX System Services PE: Operation and Use

v A menu pops up with two choices: Delete and Goto Source. Selecting
Goto Source has the same effect as the double click described above.

Displaying local variables within the program stack: pedb displays the variables that
are in scope within the local program block. The Stack Area lets you display, for
any of the functions or subroutines listed, the local variables that are outside the
local execution block (not on the top of the stack). To display these variables:

PLACE
the mouse button on a line in the Stack Area.

DOUBLE-CLICK
the left mouse button.

v The line highlights to show that it is selected, and the local variables
associated with the function, subroutine, or unnamed block are displayed
within the Local Data. All the data variable menu options are available.

Note: Local variables for the associated tasks that are outside the local execution
block (not on the top of the stack), are displayed only until you issue
another Stack Area selection or execution function within pedb.

Displaying local variables and program stack within a thread: The pedb debugger will
display program states about one thread of each task at a time. The source code,
local variables, and stack trace for a task will be those of the displayed thread for
the task. To select the displayed thread:

DOUBLE-CLICK
on the thread.

OR

SELECT
the thread from the pull-down available from each thread entry.

To select a stack entry:

PLACE
the mouse button on a line in the Stack Area.

DOUBLE-CLICK
the left mouse button.

v The line highlights to show that it is selected, and the local variables
associated with the function, subroutine, or unnamed block are displayed
within the Local Data. All the data variable menu options are available.

Understanding data types: In pedb, you can view program data through either the
Global Variable Viewer or the Local Variable Viewer. These windows display a
specific type of data (global or local), and the way you use them depends on the
programming language.

Local variables
The Local Variable Viewer displays the variables, that are currently visible
within your local execution block.
Stepping in and out of functions and subroutines during the debugging
session will alter the list of local variables that the Local Variable Viewer
displays. The Local Variable Viewer displays the set of variables for the
function or subroutine that is at the top of the execution stack for a
particular task.

Chapter 11. Using the pedb debugger 157

Global variables
The Global Variable Viewer displays the variables that are defined globally
within the executing task. Global variables are only relevant when
debugging C programs. Unless you specifically modify it, the list of global
variables displayed in the Global Variable Viewer remains constant
throughout the debugging session. Initially no global variables are
displayed.

Note: The compiler may have optimized out variables that are not
referenced within a program. As a result, these variables may not be
available in the Global or Local Data areas.

Data display policies: The following table shows how variables are initially
displayed in the Data Area.

In the Data Area, this type
of variable: Will initially be displayed: For example:

scalar with its value formatted
according to its default
type.

x = 300
a = -.0001
b = 331.789978
char_val = ’W’

structure with its type indicated. struc_1 = <struct MyStruct_t>

array with its type indicated. a = <array 8192 of int>
x = <array 5 struct foo>
z = <array 10 * of int>

pointer with its type indicated Character pointer examples:
x = (nil); (unreferenced)
x = → 0x4a567 (ptr to address)
x = →→4; (dereferenced)

Structure pointer examples:
structx = (nil); (unreferenced)
structx = → <struct foo> (dereferenced)

union with its type indicated MyOwnUnion_T = <union MyOwnUnion_T>

enum with its value formatted
according to its default
type.

x = foo

Viewing variables with the variable viewer

Both the local and global variable windows are physically limited by the number
and size of the variable information to be shown in the display. Therefore,
conditions can exist where the user is unable to view all the data contained within
the variable viewer due to geometry restriction on the pedb main window; or that
the amount of data to be displayed exceeds the limitations of the window. In either
of these cases, all of the variable list can be viewed using the Variable Viewer,
which is an expanded form of the data window.

Initially, the variable list (local and global) is displayed in a list form, or in an
iconic form. Note that when the condition of overflow occurs the variable list is
replaced by the overflow icon.

158 z/OS UNIX System Services PE: Operation and Use

To view the variable list in its own window,

PLACE
the cursor over the task number label of the task, in the data area, of the
variable you want to view.

PRESS
the right mouse button.

v A pop-up menu appears with an option Variable Viewer....

Note: The pop-up menu that appears for the local and global variable
viewer will present a different set of options.

SELECT
the Variable Viewer Option

v A separate window appears displaying the list of variables that was
previously displayed in the local or global data area. The list (or icon) in
the data areas on the main window of pedb should be replaced with the
Variable Viewer icon.

Using the Variable Viewer window

The Variable Viewer window displays a list of global or local variables for a
specified task. The task and type of data being displayed is identified by the title
of the window. Figure 19 on page 160 shows the Variable Viewer window
displaying local variables for the specified task. Note that all of the variable
pop-up menus options that are described in 160 are also available in this window.

Figure 17. Overflow icon

Figure 18. Variable Viewer icon

Chapter 11. Using the pedb debugger 159

To close the variable window and return the variable list back to the main
window:

PLACE
the mouse cursor over the Action pull-down on the menu bar.

PRESS
the left mouse button.

v A pop-up menu should appear with a Close option.

SELECT
the close option with the left mouse button.

v The window will close and return the contents back to the main window
data area.

Note: Variables displayed in a task that is not in the current context will
not be refreshed.

Policies for local variables

The Local Variable subwindow for each task displays all the variables within the
local execution block.

Policies for global variables

The Global Variable subwindow requires you to explicitly select the global
variables you want to view. You can do this with the Variable Selection window.

To display a global variable:

PLACE
the cursor over the task number label of the task, in the Global Data area,
for which you wish to choose global variables.

PRESS
the right mouse button.

Figure 19. Variable Viewer window

160 z/OS UNIX System Services PE: Operation and Use

v a pop-up menu appears with the following options:
v Variable Selection, which provides a list from which you can select

variables
v Show All, which shows all global variables for the task
v Hide All, which hides all global variables for the task
v Variable Viewer, which moves the display for the variables of this task to

a separate window.

SELECT
the Variable Selection... option.

v The Variable Selection window appears.

Note: The Variable Selection window shows only the global variables in your
program that have accessible source files. If the source code of a particular
program is not accessible, you may wish to use the -I flag, or the Source
Path Window.

SELECT

a single variable by placing the cursor over it and pressing the left mouse
button.

or

multiple, contiguous variables by pressing the left mouse button and
dragging it over the range of variables.

or

multiple, non-contiguous variables by selecting the first variable and, while
holding down the control key, selecting the next variable(s). Note that
selecting a previously selected variable will deselect it.

PRESS
Apply

or

OK

v Apply selects the variable(s) and leaves the Variable Selection window
open. The variable(s) appear under the corresponding task label in the
Global Data area.

OK selects the variable(s), as above, and closes the window.

Cancel discards your selection and closes the window.

Displaying threads information: In pedb, you can display threads data for tasks in
the current context. You can view a list of threads and some detailed information
about the condition variables, attributes, and mutual exclusion locks pertaining to
each task.

The Threads area of the pedb main window displays a list of threads for each task.
Any one of the threads is available to select. Initially, the interrupted thread is the
displayed thread. You are free to change the displayed thread for any task.

Like the local and global variable viewers, when a window representing a task in
the threads area reaches a threshold, the overflow icon is displayed. See
“Understanding data types” on page 157 for information on the local and global

Chapter 11. Using the pedb debugger 161

data viewer. At this time, you can open a Threads Viewer window, which contains
the same information in the same format as in the Threads area for that task.

The interrupted and displayed thread are denoted by “*” and “>” respectively. The
“>” may move as you select different threads to display. The “*” does not change
unless the program is executed and then stops again. The interrupted thread is
important because it has an effect on further single stepping execution control. The
displayed thread identifier is important because it denotes the thread that is
represented in the stack, local variables, and source code windows.

Selecting a thread to display

To display a thread, go to the Threads area of the pedb main window:

SELECT
a thread by pressing the left mouse button to highlight it.

PRESS
the right button.

v The Thread menu appears.

Holding a thread from further execution

You can hold a thread from execution, and then release it again for execution. To
do this, enable the Thread menu as in above, then:

SELECT
the Hold thread option.

v This option controls whether the thread is dispatchable or not, and will
affect subsequent execution control of the program. Held threads will not
execute when single stepping or allowing the program to continue. Note
that it is possible to induce hangs on other threads by holding a thread.
When you select this option, the Thread menu disappears. The next time
you enable the menu, the option will read “Release thread”. The held field

Figure 20. Threads Viewer window

162 z/OS UNIX System Services PE: Operation and Use

in the Threads area (of the pedb main window) for this thread will update
appropriately when you select either of these options.

Displaying thread details

You can display the details of threads by opening the Threads Display menu.
From the pedb main window:

PRESS
any of the task buttons in the Threads area.

v The Threads Display menu appears.

CHOOSE
Select Display Details...

or

Open Threads Viewer...

v The Select Display Details... option opens the Threads Details Selections
window. From here you can choose what thread details to view. This
option is available only when the task is in “debug ready” state; otherwise
it is disabled. The Open Threads Viewer... option opens a separate
window to display threads information for the task.

The threads details selections window

This window contains three toggle buttons that specify the additional thread
information to be displayed in the Threads area or the Threads Viewer. You can
choose any or all of:
v Display Conditions
v Display Mutexes

After using this window to change the level of thread detail displayed, these
changes you made for this task will persist across further execution control.

The threads viewer

The Threads Viewer is another way to view threads data. It is similar to the local
and global data viewer concept. One Threads Viewer is available for each task. It
exists for two reasons. First, it overcomes the limitation in the display areas on the
right side of the pedb main window when displaying large amounts of data.
Second, it provides you with a separate and larger area for displaying threads data
that interests you. You can iconify the Threads Viewer window separately.

The same actions are available in the Threads Viewer as in the Thread menu. Refer
to on page 162 and on page 162 for this information. There is also a find selection
in the Threads Viewer window main menu bar to allow finding strings within the
displayed threads data.

The Threads Viewer window menu bar has three options available: Action, Find,
and Help.

SELECT
Action

CHOOSE
Select Display Details...

Chapter 11. Using the pedb debugger 163

or

Close Viewer

v The Select Display Details... option opens the Threads Details Selections
window, as shown in on page 163. This option is only available when the
task is in debug state, otherwise it is disabled. The Close Viewer option
closes the Threads Viewer window, and either redisplays the contents of
the window in the threads area (if there is enough room), or displays the
overflow icon.

For a description of the Find option, see “Source file, variable viewer, and threads
viewer find” on page 180.

Note: The debugger will display the existence and status of internal PE threads
even though you may not have explicitly coded threads.

Data display techniques: This section describes how, with appropriate mouse clicks
in the Data Area, you can bring up menus and windows to:
v Select and display a variable
v Display a variable in more or less detail
v Change a variable’s value
v Change a variable’s format
v Display the variable’s declaration
v Select the subrange of an array.

Displaying more or less detail for a variable: The More Detail and Less Detail
variable options on the variable options menu operate differently depending on the
data type of the selected variable. The following describes these differences.
v Simple types

Scalers, logicals, and enumerated types have one level of detail. The name of the
variable and its value are displayed by default. The More Detail and Less
Detail options are not available on the Variable Options menu for these
variables.

v Complex types
Structures and unions have two levels of detail. They have their type displayed
by default. To show more detail:

PLACE
the mouse cursor over the variable name, equal sign, or variable type.

PRESS
the left mouse button.

v The selection is highlighted.

PRESS
the right mouse button.

v The Variable Options menu appears.

SELECT
the More Detail option.

v This option shows the structure or union expanded with all members
having their respective default levels of more or less.

After selecting More Detail, the Less Detail option then becomes available.
When selected, Less Detail also shows the type of the structure or union. To
show less detail:

164 z/OS UNIX System Services PE: Operation and Use

PLACE
the mouse cursor over the variable name or equal sign, and follow the
same procedure as above for showing more detail.

v Arrays
An array has three levels of detail. The first level (the default) is its type, the
second displays the array elements horizontally, and the third displays the
elements vertically. When displaying the second level (horizontal), rows of more
than 1000 characters are broken into multiple lines.
At the first level of detail, the More Detail option is available and when
selected, shows the array elements horizontally. At the second level of detail,
both the More Detail and Less Detail options are available. The Less Detail
option will revert to the default of displaying the array type. The More Detail
option, when selected, will then display the array elements vertically. At the
third level of detail, the Less Detail option is available, and when selected, again
shows the array elements horizontally.
Note that the default is to display one element of an array. To display more
array elements, the Select Subrange option of the Variable Options menu must
be selected to bring up the Array Subrange window (see “Viewing the contents
of an array” on page 167 for more information). This window allows selecting
ranges, slices, and strides within the selected array. There is a limitation of
displaying 1000 elements per array at one time.

v Pointers
Pointers to any other type have two levels of detail. By default, the second level
of detail is displayed, any dereferencing is done, and the value of the native
type is displayed. To show less detail:

PLACE
the mouse cursor over anywhere from the “-” portion of the arrow and
to its left.

PRESS
the left mouse button.

v The Variable Options menu appears.

SELECT
the Less Detail option.

v This option shows the value of the pointer in ‘hex’ format, or the string
at the pointer location in the case where the native type is ‘char’.

Pointers with multiple levels of indirection, which point to other than ‘char’
types, have a level of detail for the native type and another level of detail for
each level of indirection. By default, all pointer dereferencing is done and the
value of the native type is shown. To show less detail on any level of indirection:

PLACE
the mouse cursor over anywhere from the “-” portion of the arrow and
to its left, and follow the same procedure as above for showing less
detail.

After any Less Detail option has been selected on any of the arrow pointers,
subsequent selections anywhere on this variable to the right of any remaining
arrows will result in bringing up a menu with the More Detail option available.
If there are no remaining arrows, then selections anywhere on this variable will

Chapter 11. Using the pedb debugger 165

result in bringing up a menu with the More Detail option available. The More
Detail option will always bring the variable back to the default of displaying the
value of the native type.

Changing a variable’s value: You can select a variable in the Data Area and modify
its value.

To select a variable and change its value:

PLACE
the mouse cursor over a variable in the Data Area.

PRESS
the left mouse button.

v The selection position is highlighted.

PRESS
the right mouse button.

v A selection menu appears.

SELECT
Change Value

v The debugger displays a Change Value window that corresponds to the
type of variable you selected.

FOCUS
on the text entry field of the Change Value window.

TYPE IN
the value you want to set the selected variable to.

PRESS
OK

v The debugger closes the Change Value window, and sets the variable to
the value you specified.

Cancel closes the Change Value window and discards any changes.

Note: When changing floating points values, always use a ″.″ (dot). For example
type ″10.0″ instead of ″10″.

Changing a variable’s format: You can select a variable in the Data Area and change
its displayed format. You could modify the format of a variable to:
v default
v decimal
v hex
v octal
v scientific
v char
v string
v declaration

Note: Some options may be inactive, depending on the type of variable selected.

To select a variable and change its format:

PLACE
the mouse cursor over a variable in the Data Area.

166 z/OS UNIX System Services PE: Operation and Use

PRESS
the left mouse button.

PRESS
the right mouse button.

v A selection menu appears. This menu is type-sensitive, so the only
options it makes available to you are those that correspond to the type of
variable you have chosen.

SELECT
Change Format

v A selection menu appears listing the possible display formats.

SELECT
the format you want.

v The debugger formats the selected variable accordingly.

Display declaration of a variable: After selecting a variable in the Local Variable
Viewer, Global Variable Viewer, or Variable Viewer for text, you can press the right
mouse button to view the Variable Selection menu. From here you can select:

Change Format → Declaration

When selected, the declaration of the variable which was previously selected is
displayed after the equal sign. This is only available for scalar types.
Default display:

a = 5
Display after declaration format is chosen:

a = int a;
or

a = integer*4 a

Viewing the contents of an array: The Array Subrange window allows you to view
the elements of an array. By defining the range of elements, you can control the
portion of the array that you see. To open the Array Subrange window:

PLACE
the mouse cursor over the array you want to select.

PRESS
the left mouse button to highlight your selection.

PRESS
the right mouse button

v the Variable Options menu appears.

SELECT
Array Subrange

v The Array Subrange window opens, shown in Figure 21.

Chapter 11. Using the pedb debugger 167

Specifying the array subrange: The Specify Subrange for Array area of the Array
Subrange window allows you to specify the set of array cells that you want to
display (per dimension). Each array dimension is presented in the form of a slider,
which is labelled with a scale that represents the actual range for that dimension of
the array. The slider has two markers; one marks the minimum value of the
subrange and the other marks the maximum value. These values are reflected in
the Minimum and Maximum fields below the slider. To define a subrange for
display, you choose the minimum and maximum values of the subrange
individually for each dimension.

You can define a subrange in one of two ways:

PRESS
the left mouse button to move the sliders horizontally left or right to mark
the minimum and maximum values. These values appear in the Minimum
and Maximum fields below the scale.

OR

CLICK ON
the Minimum or Maximum field and clear the current value.

TYPE IN
a value to define the new subrange.

The Stride field accepts non-zero integer values. This value allows you to skip
elements for each range. The default is 1, which selects every element within the

Figure 21. Array Subrange window

168 z/OS UNIX System Services PE: Operation and Use

subrange for that dimension. A stride of 2 specifies every other element, and so
forth. Specifying a negative stride value reverses the order of elements from which
the subrange is selected. After doing this, the order goes from Maximum to
Minimum, instead of Minimum to Maximum.

Note: The maximum number of array elements that can be displayed is 1000.

After you define the subrange with the appropriate values:

PRESS
the OK button.

v The contents of the array elements that you specified are displayed, and
the Array Subrange window closes. All subrange and stride specifications
are retained for the next time the Array Subrange window is opened for
this array on this task.

Cancel and Help buttons:

PRESS
the Cancel button.

v The Array Subrange window closes, and all changes are discarded. All
subrange and stride specifications when the window was opened are
retained for the next time it is opened for this array on this task.

PRESS
the Help button.

v Help information is displayed for the Array Subrange window.

Viewing MPI Request Queues
This section describes the pedb debugger’s message queue facility. Part of the pedb
debugger interface, the message queue viewing feature is designed to help you
debug Message Passing Interface (MPI) applications by showing internal message
request queue information. This feature allows you to view:
v A summary of the number of active messages for each task in the application.

You can select criteria for the summary information based on message type and
source, destination, and tag filters.

v Message queue information for a specific task.
v Detailed information concerning a specific message.

Initial Error and Warning Messages: It is possible that there could be problems
when pedb does it’s initial checking. For example:
v The version of MPI being used may not be supported by the version of the

debugger.

If this problem is discovered, an error message will appear, and the message queue
debugging window will not appear, or will close.

When you start the message queue facility, it is possible that MPI has not
initialized yet. If this is true, the initial message queue window will indicate that
there is no data. The following describes this case in more detail.

During the initial checking, the debugger also determines the mode in which the
MPI application is running. If it is not running in “debug” mode, the data will not
include information on blocking messages. Debug mode is achieved by setting the
MP_EUIDEVELOP environment variable to DEB. For more information on

Chapter 11. Using the pedb debugger 169

MP_EUIDEVELOP, refer to 279. If the application is not running in debug mode, a
warning message will be displayed along with the initial message queue
debugging window.

Requesting information for any of the message queue windows causes the cursor
to change to a “stopwatch” Further requests are disabled until the current request
has finished. While the stopwatch is showing, the pedb main window is disabled.
If a problem occurs, or a request is taking too much time, the message queue
windows can be cancelled by pressing the Cancel button on the Application
Message Queues window. This closes all message queue windows and enables the
pedb main window. Pressing the Cancel button on the Application Message
Queues window will always have the effect of closing all the message queue
debugging windows.

Note: You can customize the colors used in any of the message queue windows.
You can define these resources in the pedb X defaults file
/usr/lpp/tcpip/X11R6/lib/X11/app-defaults/Pedb. For further information see
“Customizing pedb resources” on page 183.

Application Message Queues Window: To start the message queue facility, from
the pedbmain menu area:

SELECT
Tools → Message Queues

v The Application Message Queues window opens.

The Application Message Queues window displays message queue summary
information and provides a starting point for additional message queue debugging
features.

Figure 22. Application Message Queues window

170 z/OS UNIX System Services PE: Operation and Use

The center of the Application Message Queues window contains a set of buttons
representing all the tasks defined for the MPI application. The color of each button
indicates the approximate size of the queue. The interpretation of the colors is
given in the Queue Size scale on the right side of the window.

To further assist in interpreting these buttons, there is a message area at the bottom
of the window containing the task identifier and the actual queue size. These
values are filled in automatically when you move the cursor over one of the task
buttons. On the right side of this area, informational messages appear at
appropriate times.

This window also contains a list of Queue Display Options on the left side, and a
Select Filters... button on the right, under the Queue Size scale. The criteria for
selecting summary information can be modified by selecting these options and
filters. Once you set option and filter information, it remains set for future updates
until you change it.

Note: You should use caution when leaving criteria set, since this can incur
considerable overhead, especially in the case of filters.

See “Selecting Options” on page 171, and “Select Filters Window” on page 171 for
more information.

When you first open this window, it contains summary information that includes
all types of messages, including early arrivals. Early arrivals refer to messages that
have arrived at a task, but have no posted receives to accept them.

A button with a tan colored (default color) background and labeled with an “n”
indicates there is currently no data available for that task. There could be many
reasons for no available data. Basically, there is no data unless a task is in “debug”
state, as indicated by the task buttons at the bottom of the pedb main window.
Also, no data is available unless a task is in the current debugger context. The
reason for a task not having any data is displayed in the right side of the message
area when you move the cursor over the task button.

Pressing the Cancel button on this window causes all message queue windows to
close.

Selecting Options: On the left side of the window there is a series of toggle buttons
representing different categories of messages. When you first open the window, all
the toggles are selected indicating the summary information is being collected for
all categories. You can select or deselect any combination of these options for
future summary information. Once you make the selections, you can retrieve the
summary information by pressing the Update button at the bottom of the window.

Select Filters Window: Another way to set the criteria for gathering summary
information is by using the Select Filters window. To open this window:

PRESS
Select Filters...

v The Select Filters window opens.

Chapter 11. Using the pedb debugger 171

The Select Filters window is used to set source, destination, and tag values as
selection criteria for message queue summary information.

This window consists of three categories of filters you can set:
v Show messages from: (source area)
v Show messages to: (destination area)
v Show messages with tag:

Both the source and destination areas contain a set of buttons representing tasks
defined for the application. The corresponding task numbers are displayed in the
bottom left hand side of the window when you move the cursor over the buttons.
You can select one task by pressing the task button. You can select multiple
contiguous tasks by pressing and holding the left mouse button and moving the
pointer across the desired tasks. Also, you can select multiple non-contiguous tasks
by holding down the Ctrl key and selecting individual or contiguous tasks.

The “Show messages with tag:” list on the right side of the window is created by
extracting all the unique tags from the message records of the available tasks. The
way you select tags is similar to the way you select the other filters, except lines of
the tag list are selected instead of task buttons.

You can select one or more values from each category. If you do not want a
specific setting, press the default button to select all possible values. Any value
found in a message is acceptable and meets the criteria. You should select at least
one value for each category. In other words, a message record satisfies the filter
criteria if it has one source value, one destination value, and one tag value. The
window opens displaying the current settings.

Note: Once the filters are set, you need to go back to the Application Message
Queues window to request an update.

Scale Range Setting Window: The default queue size ranges on the Application
Message Queues window may not be appropriate for all MPI applications. You can
adjust the top three ranges to more reasonable sizes. To modify the range for a
particular button:

Figure 23. Select Filters window

172 z/OS UNIX System Services PE: Operation and Use

SELECT
the button with the mouse to open a Scale Range Setting window.

The color of the small square in this window corresponds to the color of
the range button, to help you keep track of which button is being changed.
To change the minimum value:

ENTER
the new value.

PRESS
OK

v The minimum value of this range and the maximum value of the
previous lower range is adjusted. If you attempt to set the minimum value
lower than the previous range minimum value plus one, you will get an
error message. You are responsible for not defining overlapping maximum
ranges.

Task Message Queue Window: You can also get further information on a
particular task’s message queue by opening the Task Message Queue window. On
the Application Message Queues window:

SELECT
the task button for the desired task with the mouse.

v The Task Message Queue window opens. The number of the task the
cursor is on and the actual queue size is displayed in the lower left side of
the Application Message Queues window.

The Task Message Queue window gives a list of the message request records and
early arrival records for the task. This window displays the queue of currently
active messages for this task. The information is separated into four categories:
v Sends
v Receives
v Early Arrivals
v Collective Communications.

Figure 24. Task Message Queue window

Chapter 11. Using the pedb debugger 173

Each entry represents a unique message. Entries in the first three categories
provide the tag, communicator, and source or destination of the message. The
source and destination is given in terms of task id. Entries in the Collective
Communications column contain an arbitrary message index and the
communicator. Blocking message entries are printed in red and nonblocking
messages are printed in blue.

The early arrival messages are unique in that they represent messages sent by a
task that have arrived before a receive has been posted to accept them.

From this window you can get additional message details or message
communicator and group data. To view this data:

SELECT
a particular entry with the left mouse button.

HOLD DOWN
the right mouse button.

v The Message Data menu opens.

SELECT
Message Details

or

Group Info

Message Details Window: To open the Message Details window:

SELECT
Tools → Message Queues from the pedb main window to get the
Application Message Queues window.

SELECT
the desired task button to get the Task Message Queue window.

SELECT
the desired message entry.

HOLD
the right mouse button to get the Message Data menu.

SELECT
Message Details from the Message Data menu.

This window displays details for a specific message. There are four basic formats
to this window corresponding to point to point, send/receive, collective
communication, and early arrival messages. The following figures show examples
of each window.

174 z/OS UNIX System Services PE: Operation and Use

Figure 25. Point to Point Message Details window

Figure 26. Send/Receive Message Details window

Chapter 11. Using the pedb debugger 175

Message Group Information Window: To open the Message Group Information
window:

SELECT
Tools → Message Queues from the pedb main window to get the
Application Message Queues window.

SELECT
the desired task button to get the Task Message Queue window.

Figure 27. Collective Communications Details window

Figure 28. Early Arrival Message Details window

176 z/OS UNIX System Services PE: Operation and Use

SELECT
the desired message entry.

HOLD
the right mouse button to get the Message Data menu.

SELECT
Group Info from the Message Data menu.

This window displays information about the selected message followed by the task
id, rank, and local communicator of the group members. The format of the
window varies based on whether the communicator is an inter-communicator or
an intra-communicator. If it is an intra-communicator, the window displays
information about both the local and remote groups.

Updating Message Queue Information: Message queue information is retrieved
from the task (executable) when it has been stopped by the debugger and is in
pedb “debug” state. The task buttons at the bottom of the pedb main window
indicate “debug” state. When the task is executed by the debugger, by stepping,
etc., the message queue could potentially change. Therefore, it is necessary to
update the message queue information when the task returns to “debug” state.

Figure 29. Message Group Information window

Chapter 11. Using the pedb debugger 177

If the message queue debugging features are currently being used, the debugger
automatically updates the message queue windows when the task returns to
“debug” state after being executed. The procedure for updating is as follows:
v The Application Message Queues window is updated using the current option

and filter settings.
v The tags in the Select Filters window are updated to list the current set of tags

in use.
v Any Task Message Queue windows that are open for tasks in the current

debugger context are updated with the current list of messages for the task. This
is assuming the tasks are in “debug” state.

v Any Task Message Queue windows for tasks not in the current context, or not
available, are not updated and are closed.

v Any Message Details or Message Group Information windows are closed. This is
because there is no absolute way to determine if the message is still on the
queue.

Source code control
During a pedb session, the source code file displayed in the Source Area may
change many times. Each time execution of the tasks in a context stops, the
debugger updates the pedb window and checks that the source code displayed
matches the program counter. For example, if execution has stopped in a procedure
located in a different file, the debugger automatically updates the Source Area to
display the current source.

When tasks have stopped in different source files, the lowest numbered task in
debugged state in the group determines the source file displayed. This excludes
tasks which are unhooked, exit requested, or exited.

To display the source from a different task, you can either change the context or
open a view with a different context. You can also change the current source code
displayed by opening a source code file using the Source File(s) window, selecting
a line in the stack window, or double clicking on a thread in the Threads window.

Opening a source code file: You can open a source code file and display it in the
Source Area using the Source File(s) window. To do this:

SELECT
File → Get Source File ...

v The Source File(s) window opens.

This window contains a list of accessible source files associated with your program
that have been compiled with the -g flag. The source path is used to find the files.

PRESS
the left mouse button to select a file in the list.

PRESS
OK

OR

DOUBLE-CLICK
on the desired file in the list.

v The File Selection window closes, and the source code of the selected file
appears in the Source Area.

178 z/OS UNIX System Services PE: Operation and Use

Source code search path: The first default path searched is “ .” (the current
directory). If you do not explicitly specify a path when choosing a file to load,
pedb uses the path established by the PATH environment variable to locate the
file. The path in which the program is located, whether explicitly specified or not,
is added to the end of the list of directories searched for source files.

You may explicitly set the source code search path on the command line when
invoking pedb using -I flags. The effective search path is set to the -I paths
specified, in the order they appear on the command line. If you do not explicitly
set it, the source code search path is based on the program(s) you load for
debugging in the partition, as described above.

Note: In addition to having access to your program on each remote node, pedb
requires source files on the home node to do source level debugging. See
this manual for more information.

Source path window: During your pedb session, the search path used to locate
source files may be modified. You may edit it, adding new paths or deleting or
changing existing ones. This is helpful when source is distributed in multiple
directories and you step into a source file which is located in a directory you
missed at start-up.

SELECT
File → Update Source Path ...

v The Update Source Path window opens.

FOCUS
on the edit field.

TYPE IN
the new source search path, or modify the existing one.

PRESS
OK

v The Update Source Path window closes. Subsequent source files will be
accessed using the new path.

Cancel closes the Update Source Path window without changing the
current source path.

Edit current source file: You can edit the source file which is shown in the source
area by selecting the Edit Source File menu from the File pull-down menu on the
main window.

PRESS
File → Edit Source File

v You open an edit session in an aixterm window.

Notes:

1. The editor used is determined by the $EDITOR environment variable.
2. If the source file in the Source Area is modified using the Edit Source File

option, the program counter icon (→) may then be out of synch. This is because
the line number information is based on the compiled version of the source. If
you wish to continue debugging after editing your source file, consider saving
it under a different name or directory instead of overwriting the copy that the
debugger is referring to.

Chapter 11. Using the pedb debugger 179

Source file, variable viewer, and threads viewer find: Use the Find option to
locate text in the source code, Variable Viewer, or Threads Viewer. You first open
the Find window and specify the text to find. Once you have entered text, the find
options are enabled. The find options are available from the menu bar pull-down
and from buttons in the Find window. Accelerators <EscChar-f>, <EscChar-n>,
<EscChar-p>, and <EscChar-l> are available for First, Next, Previous, and Last
respectively. Search results are displayed differently for the source code window
and the Variable or Threads Viewer.

To find text in the source code window, Variable Viewer, or Threads Viewer, go to
the menu bar.

PRESS
Find

v You see a pull-down menu with the following options:
v Open Find Dialog ... - This option opens the Find window where you

will enter the text to find.
v First - Finds the first occurrence of the text.
v Next - From the current line, finds the next occurrence of the text.
v Previous - From the current line, finds the previous occurrence of the

text.
v Last - Finds the last occurrence of the text.

Using the Find window: To open the Find window, go to the menu bar in the
Main window or Variable Viewer.

From the Main window:

SELECT
Find → Find Text in the Source Window ...

From the Variable Viewer:

SELECT
Find → Find ...

v The Find window opens as shown in Figure 30. The Find window title
will indicate if you are using Find from the source code window or the
Variable Viewer.

Enter the text to find in the text field. Entering text automatically enables the find
option buttons in the window and the menu bar. Pressing Enter in the text field is
the same as pressing the Next button. Use the Case sensitive toggle button to
ignore the case of the text when searching. At the bottom of the Find window are
the following buttons:

Figure 30. Find window

180 z/OS UNIX System Services PE: Operation and Use

v Find options - These buttons (First, Next, Previous, and Last) and their
corresponding buttons on the menu bar pull-down initiate a search for the text
you typed.

v Done - closes the Find window.
v Clear - clears the text field. Note that the find options are desensitized (grayed

out) when there is no text in the text field.
v Help - displays online help information for using Find.

If the search fails, a message is displayed in the information area indicating the
search direction and the actual string that are used in the search. You may want to
broaden the search by specifying fewer characters or using the Case sensitive
toggle button to ignore case.

When text is found in the source window or Threads Viewer, the entire line
containing the text is highlighted. This becomes the current line, and the reference
point for locating the next and previous occurrences.

When text is found in the Variable Viewer, the text that was matched is
highlighted. The first character of the text is the reference point for the Variable
Options pop-up menu as described in “Data display techniques” on page 164.

Source emphasis: pedb provides source code emphasis when displaying code in
the source area of the main window. For example, the language symbols, variable
and function names, and comments are all displayed in different colors. See
Table 10 below for details.

The debugger scans the current source file to identify elements of the language.
Each element is then drawn with a different foreground and background color to
emphasize that element. This may help you to quickly identify points of interest in
your source code. It is particularly useful when you are not familiar with the code
being debugged. Instead of scrutinizing the code to identify variables and
comment blocks, their color will automatically alert you to their function.

To turn this feature off, set Pedb*SourceEmphasis: False in your .Xdefaults file, or
use the toggle button on the menu bar:

File → Source Emphasis

The following table lists the default color scheme for each language element
identified. Each resource can be given a unique color, but be aware that each
unique color used will increase the total number of colors required for pedb.
Resource values are any valid color specification for your system.

Table 10. Default color scheme

Resource Language element

Pedb*AlphaForeground:
Pedb*AlphaBackground:

Alphanumerics - variable and functions names.

Pedb*CommentForeground:
Pedb*CommentBackground:

Comments

Pedb*MessageForeground:
Pedb*MessageBackground:

Message passing routines - MPL and MPI.

Chapter 11. Using the pedb debugger 181

Table 10. Default color scheme (continued)

Resource Language element

Pedb*KeywordForeground:
Pedb*KeywordBackground:

Language specific keywords. For example

int
class
subroutine

Pedb*LiteralForeground:
Pedb*LiteralBackground:

Literal (quoted) strings.

Pedb*LinenumForeground:
Pedb*LinenumBackground:

Line numbers. See note 2 below.

Pedb*NumberForeground:
Pedb*NumberBackground:

Numbers.

Pedb*PreprocForeground:
Pedb*PreprocBackground:

Preprocessor directives, for example

#ifdef
#include
#pragma

Pedb*SymbolForeground:
Pedb*SymbolBackground:

Language symbols (punctuation).

Notes:

1. This feature may not properly identify all elements of your source code in all
instances. pedb can only scan the current source file. It is not aware of other
aspects of the compilation used to produce the executable. For example, a
section of code may be bracketed by the directive
#ifdef DEBUG
#endif

pedb will identify the directives and the elements within the block, but cannot
determine if DEBUG was set at compile time.

2. This feature may also be used to turn off the display of line numbers in the
source code area. By setting the Pedb*LinenumForeground: resource to the same
value as Pedb*LinenumBackground:.

Other key features
Some other features offered by pedb include the capabilities of displaying multiple
views, and linking to online help.

Debugging programs using multiple views: You can think of pedb as a window
into the debug space. The window you have is just one way of looking into the
debug space, and depends on the current context, the source code displayed in the
Source Area, the variables, and the stack trace. You can open multiple pedb
windows and have multiple views into the same debug space.

For example, you have two tasks – tasks 0 and 1 – involved in message passing.
You could open two pedb windows to follow send and receive pairs between the
two tasks. In one window, you would set the context on task 0. In the other, you
would set the context on task 1. You could then step execution past the send in
one window, and then step execution past the receive in the other.

When dealing with multiple views into the same debug space, keep in mind that
actions made on one pedb window may be reflected on the others. For example,
say you have two views into the same debug space. The context of one is set on
just task 0, while the context of the other is set on all the tasks including task 0. If
you step all the tasks in the second window, the first window also reflects the step.

182 z/OS UNIX System Services PE: Operation and Use

To open another pedb window to provide an additional view into the debug
space:

SELECT
View → Open new view

v Another pedb window opens.

To close a pedb window:

SELECT
View → Close this view

Getting help: There are help buttons on most windows and help options on
many menus. Selecting these help buttons or options provide built-in online help
for the particular window or menu from which the help was selected.

The pedb main window includes a Help button to access online help in a variety
of ways by selecting one of the following options:

Help on main window: Displays built-in online help information about the pedb
main window. There are main window left and right button presses that may not
be obvious. Here you will find a list of the actions available using the buttons on
the main window.

Help on main window menu bar: Displays built-in online help for the main window
menu bar pop-up menus: File, View, Group, Find, and Options.

Index of online help topics: Displays a list of the built-in online help items that are
available on the various windows and menus throughout the pedb debugger. Any
of the listed items can be selected, which results in a window displaying that help
section.

Notes:

1. The main window menu bar pull downs (File, View, Group, Find) do not have
help options. You can get help about options by pressing the Help button in
the upper right corner of the main window, then selecting the Help on Main
Menu Bar option.

2. The menu bar pull downs in the Local or Global Variable windows do not have
help options. You can get help about these options by pressing the Help button
in the upper right hand corner of the Local or Global Variable windows.

Customizing pedb resources: Customizable resources for pedb are defined in
/usr/lib/X11/app-defaults/Pedb (the pedb X defaults file). In this file is a set of X
resources for defining graphical user interfaces based on the following criteria:
v Window geometry
v Push button and label text
v Pixmaps.

Note: If the pedb X defaults file is not defined, ask your System Administrator to
install it. You find samples in /samples/pe/pedb/Pedb.ad. For details, see
z/OS UNIX System Services Planning.

Leaving pedb: It is possible to end the debug session at any time using either the
Quit option, or the Detach option if debugging in attach mode.

To end a debug session in normal mode:

Chapter 11. Using the pedb debugger 183

SELECT
File → Quit from the pedb Main Window.

v The Quit Confirmation window appears.

PLACE
the mouse cursor over OK.

PRESS
the left mouse button.

v The pedb window closes and you return to the window from which you
started pedb.

To end a debug session in attach mode, you can choose either Quit or Detach.
Quitting causes the debugger and all the members of the original poe application
partition to exit. Detaching causes only the debugger to exit and leaves all the
tasks running.

SELECT
File → Quit from the pedb Main Window.

v The Quit Confirmation window appears.

PLACE
the mouse cursor over OK.

PRESS
the left mouse button.

v The debugger session ends, along with the poe application partition
tasks.

OR

SELECT
File → Detach from the pedb Main Window.

v The Detach Confirmation window appears.

PLACE
the mouse cursor over Detach.

PRESS
the left mouse button.

v The debugger session ends. All tasks have exited, but stay running.

Clicking on this button causes pedb to exit, and allows the program to which you
had attached to continue execution if it has not already finished. If this program
has finished execution, and is part of a series of job steps, then detaching allows
the next job step to be executed.

If instead you want to exit the debugger and end the program, cancel the Detach
Confirmation window and use the Quit option as described above.

184 z/OS UNIX System Services PE: Operation and Use

Appendix A. Parallel Environment commands

This appendix contains the manual pages for the PE commands discussed
throughout this book. Each manual page is organized into the sections listed
below. The sections always appear in the same order, but some appear in all
manual pages while others are optional.

Purpose
Provides the name of the command described in the manual page, and a
brief description of its purpose.

Format
Includes a diagram that summarizes the command syntax, and provides a
brief synopsis of its use and function. If you are unfamiliar with the
typographic conventions used in the syntax diagrams, see “Document
conventions” on page xii.

Flags Lists and describes any required and optional flags for the command.

Usage Describes the command more fully than the Purpose and Format sections.

Environment Variables
Lists and describes any applicable environment variables.

Examples
Provides examples of ways in which the command is typically used.

Files Lists and describes any files related to the command.

Related Information
Lists commands, functions, file formats, and special files that are employed
by the command, that have a purpose related to the command, or that are
otherwise of interest within the context of the command.

© Copyright IBM Corp. 1997, 2001 185

mcp

Purpose
mcp – Allows you to propagate a copy of a file to multiple nodes in an S/390
cluster (sysplex).

Format

mcp

�� mcp infile
outfile poe options

��

In the command synopsis above, the infile is the name of the file to be copied. You
can copy to a new name by specifying an outfile. If you do not provide the outfile
name, the file will be placed in its current directory on each node. The outfile can
be either an explicit output file name or a directory name. When a directory is
specified, the file is copied with the same name to that directory.

Usage
The mcp command allows you to propagate a copy of a file to multiple nodes in
an S/390 cluster (sysplex). The file must initially reside on at least one node.

mcp is a POE program and, therefore, all POE options are available. You can set
POE options with either command-line flags or environment variables. The
number of nodes to copy the file to (-procs) and the host list file specifying the
target systems (-hostfile) are the POE options of most interest. The input file must
be readable from the node assigned to task 0.

See “Chapter 4. Executing parallel programs” on page 15 for information on POE
options.

Return codes are:

129
incorrect usage

130
error opening input file

131
error opening to file on originating node

132
error writing data to to file on originating node

133
no room on remote node’s file system

134
error opening file on remote node

135
error writing data on remote node

mcp

186 z/OS UNIX System Services PE: Operation and Use

136
error renaming temp file to file name

137
input file is empty

138
invalid block size

139
error allocation storage

System Environment
MP_BLKSIZE

Specifies the data block size (in bytes) used to copy the data. Valid values
are between 1 and 8,000,000 bytes. The default is 100,000 bytes.

Examples
To copy a file from your current directory to the current directory on the first 8
systems specified in the myHosts.list file, enter:
mcp filename -procs 8 -hostfile myHosts.list

To copy a file from your current directory to the /tmp directory on the first 8
systems specified in the myHosts.list file, enter:
mcp filename /tmp -procs 8 -hostfile myHosts.list

To copy a file from your current directory to a different file name on the first 8
systems specified in the myHosts.list file, enter:
mcp filename /tmp/newfilename -procs 8 -hostfile myHosts.list

mcp

Appendix A. Parallel Environment commands 187

mcpgath

Purpose
mcpgath – Takes files from each task of tasks 0 through task N and copies them
back in sequence to task 0.

Format

mcpgath

�� mcpgath
-a -i

� source destination
poe options

��

Source is one of the following:
v one or more existing file names - files will be copied with the same names to the

destination directory on task 0. Each file name specified must exist on all tasks
involved in the copy.

v a directory name - all files in that directory on each task are copied with the
same names to the destination directory on task 0.

v an expansion of file names, using wildcards - files are copied with the same
names to the destination directory. All wildcarded input strings must be
enclosed in double quotes.

Destination is an existing destination directory name to where the data will be
copied. The destination directory must be the last item specified before any POE
flags.

Flags
-a An optional flag that appends the task number to the end of the file name

when it is copied to task 0. This is for task identification purposes, to know
where the data came from. The -a and -i flags can be combined to check for
existing files appended with the task number.

-i An optional flag that checks for duplicate or existing files of the same name,
and does not replace any existing file found. Instead, issues an error message
and continues with the remaining files to be copied. The -a and -i flags can be
combined to check for existing files appended with the task number.

See “Chapter 4. Executing parallel programs” on page 15 for information on POE
options.

Usage
The mcpgath function determines the list of files to be gathered on each task. This
function also resolves the source file, destination directory, and path names with
any meta-characters, wildcard expansions, etc. to come up with valid file names.
Wildcards should be enclosed in double quotes, otherwise they will be expanded
locally on the task from where the command is issued, which may not produce the
intended file name resolution.

mcpgath

188 z/OS UNIX System Services PE: Operation and Use

mcpgath is a POE program and, therefore, all POE options are available. You can
set POE options with either command-line flags or environment variables. The
number of nodes to copy the file from (-procs) is the POE option of most interest.

Return codes are:

129
invalid number of arguments specified

130
invalid option flag specified

131
unable to resolve input file name(s)

132
could not open input file for read

133
no room on destination node’s file system

134
error opening file output file

135
error creating output file

136
error writing to output file

137
MPI_Send of data failed

138
final MPI_Send failed

139
MPI_Recv failed

140
invalid block size

141
error allocating storage

142
total number of tasks must be greater than one

System Environment
MP_BLKSIZE

Specifies the data block size (in bytes) used to copy the data. Valid values
are between 1 and 8,000,000 bytes. The default is 100,000 bytes.

Examples
1. You can copy a single file from all tasks into the destination directory. For

example, enter:
mcpgath -a hello_world /tmp -procs 4

This will copy the file hello_world (assuming it is a file and not a directory)
from tasks 0 through 3 as to task 0:

mcpgath

Appendix A. Parallel Environment commands 189

From task 0: /tmp/hello_world.0
From task 1: /tmp/hello_world.1
From task 2: /tmp/hello_world.2
From task 3: /tmp/hello_world.3

2. You can specify any number of files as source files. The destination directory
must be the last item specified before any POE flags. For example:
mcpgath -a file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory on each task and copy
them back to task 0. All files specified must exist on all tasks involved. The file
distribution will be as follows:
From Task 0: /tmp/file1.a.0
From Task 1: /tmp/file1.a.1
From Task 2: /tmp/file1.a.2
From Task 3: /tmp/file1.a.3
From Task 0: /tmp/file2.a.0
From Task 1: /tmp/file2.a.1
From Task 2: /tmp/file2.a.2
From Task 3: /tmp/file2.a.3
From Task 0: /tmp/file3.a.0
From Task 1: /tmp/file3.a.1
From Task 2: /tmp/file3.a.2
From Task 3: /tmp/file3.a.3
From Task 0: /tmp/file4.a.0
From Task 1: /tmp/file4.a.1
From Task 2: /tmp/file4.a.2
From Task 3: /tmp/file4.a.3
From Task 0: /tmp/file5.a.0
From Task 1: /tmp/file5.a.1
From Task 2: /tmp/file5.a.2
From Task 3: /tmp/file5.a.3

3. You can specify wildcard values to expand into a list of files to be gathered. For
this example, assume the following distribution of files before calling mcpgath:
Task 0 contains file1.a and file2.a
Task 1 contains file1.a only
Task 2 contains file1.a, file2.a, and file3.a
Task 3 contains file4.a, file5.a, and file6.a

Enter:
mcpgath -a "file*.a" /tmp -procs 4

This will pass the wildcard expansion to each task, which will resolve into the
list of locally existing files to be copied. This will result in the following
distribution of files on task 0:
From Task 0: /tmp/file1.a.0
From Task 0: /tmp/file2.a.0
From Task 1: /tmp/file1.a.1
From Task 2: /tmp/file1.a.2
From Task 2: /tmp/file2.a.2
From Task 2: /tmp/file3.a.2
From Task 3: /tmp/file4.a.3
From Task 3: /tmp/file5.a.3
From Task 3: /tmp/file6.a.3

4. You can specify a directory name as the source, from which the files to be
gathered are found. For this example, assume the following distribution of files
before calling mcpgath:
Task 0 /test contains file1.a and file2.a
Task 1 /test contains file1.a only
Task 2 /test contains file1.a and file3.a
Task 3 /test contains file2.a, file4.a, and file5.a

mcpgath

190 z/OS UNIX System Services PE: Operation and Use

Enter:
mcpgath -a /test /tmp -procs 4

This results in the following file distribution:
From Task 0: /tmp/file1.a.0
From Task 0: /tmp/file2.a.0
From Task 1: /tmp/file1.a.1
From Task 2: /tmp/file1.a.2
From Task 2: /tmp/file3.a.2
From Task 3: /tmp/file2.a.3
From Task 3: /tmp/file4.a.3
From Task 3: /tmp/file5.a.3

mcpgath

Appendix A. Parallel Environment commands 191

mcpscat

Purpose
mcpscat – Takes a number of files from task 0 and scatters them in sequence to all
tasks, in a round robin order.

Format

mcpscat

�� mcpscat
-f -i

� source destination
poe options

��

Source can be one of the following:
v a single file name - file is copied to all tasks
v a single file that contains a list of file names (-f option)
v two of more file names - files will be distributed in a round robin order to the

tasks
v an expansion of file names, using wildcards - files will be distributed in a round

robin order to the tasks
v a directory name - all files in that directory are copied in a round robin order to

the tasks.

Destination is an existing destination directory name to where the data will be
copied.

Flags
-f Is an optional flag that says the first file contains the names of the source files

that are to be scattered. Each file name, in the file, must be specified on a
separate line. No wildcards are supported when this option is used. Directory
names are not supported in the file either. When this option is used, the
mcpscat parameters should consist of a single source file name (for the list of
files) and a destination directory. The files will then be scattered just as if they
had all been specified on the command line in the same order as they are
listed in the file.

-i Checks for duplicate or existing files of the same name, and does not replace
any existing file found. Instead, issues an error message and continues with the
remaining files to be copied. Without this flag, the default action is to replace
any existing files with the source file.

See “Chapter 4. Executing parallel programs” on page 15 for information on POE
options.

Usage
The mcpscat function determines the order in which to distribute the files, using a
round robin method, according to the list of nodes and number of tasks. Files are
sent in a one-to-one correspondence to the nodes in the list of tasks. If the number
of files specified is greater than the number of nodes, the remaining files are sent
in another round through the list of nodes. Wildcards should be enclosed in double

mcpscat

192 z/OS UNIX System Services PE: Operation and Use

quotes, otherwise they will be expanded locally on the task from where the
command is issued, which may not produce the intended file name resolution.

mcpscat is a POE program and, therefore, all POE options are available. You can
set POE options with either command-line flags or environment variables. The
number of nodes to copy the file to (-procs) is the POE option of most interest.

Return codes are:

129 invalid number of arguments specified

130 invalid option flag specified

131 unable to resolve input file name(s)

132 could not open input file for read

133 no room on destination node’s file system

134 error opening file output file

135 error creating output file

136 MPI_Send of data failed

137 final MPI_Send failed

138 MPI_Recv failed

139 failed opening temporary file

140 failed writing temporary file

141 error renaming temp file to filename

142 input file is empty (zero byte file size)

143 invalid blocksize

144 error allocating storage

145 number of tasks and files do not match

146 not enough memory for list of file names

System Environment
MP_BLKSIZE

Specifies the data block size (in bytes) used to copy the data. Valid values
are between 1 and 8,000,000 bytes. The default is 100,000 bytes.

Examples
1. You can copy a single file to all tasks into the destination directory. For

example, enter:
mcpscat filename /tmp -procs 4

This will take the file and distribute it to tasks 0 through 3 as /tmp/filename.
2. You can specify any number of files as source files. The destination directory

must be the last item specified before any POE flags. For example:
mcpscat file1.a file2.a file3.a file4.a file5.a /tmp -procs 4

will take file1.a through file5.a from the local directory and copy them in a
round robin order to tasks 0 through 3 into /tmp. The file distribution will be as
follows:

mcpscat

Appendix A. Parallel Environment commands 193

Task 0: /tmp/file1.a
Task 1: /tmp/file2.a
Task 2: /tmp/file3.a
Task 3: /tmp/file4.a
Task 0: /tmp/file5.a

3. You can specify the source files to copy in a file. For example:
mcpscat -f file.list /tmp -procs 4

will produce the same results as the previous example if as file.list contains five
lines with the file names file1.a through file5.a in it.

4. You can specify wildcard values to expand into a list of files to be scattered.
Enter:
mcpscat "file*.a" /tmp -procs 4

Assuming Task 0 contains file1.a, file2.a, file3.a, file4.a, and file5.a in its home
directory, this will result in a similar distribution as in the previous example.

5. You can specify a directory name as the source, from which the files to be
scattered are found. Assuming /test contains myfile.a, myfile.b, myfile.c, myfile.d,
myfile.f, and myfile.g on Task 0, enter:
mcpscat /test /tmp -procs 4

This results in the following file distribution:
Task 0: /tmp/myfile.a
Task 1: /tmp/myfile.b
Task 2: /tmp/myfile.c
Task 3: /tmp/myfile.d
Task 0: /tmp/myfile.f
Task 1: /tmp/myfile.g

mcpscat

194 z/OS UNIX System Services PE: Operation and Use

mpcc/mpCC

Purpose
mpcc – Invokes a shell script to compile C programs.

mpCC – Invokes a shell script to compile C++ programs.

Format

mpcc

�� �mpcc program.c
-p cc_flags

��

mpCC

�� �mpCC program.C
-p -cpp cc_flags

��

The mpcc shell script compiles C programs and the mpCC compiles C++
programs. During compilation both are linking in the Partition Manager and the
Message Passing Interface (MPI). By default mpcc and mpCC link to the MPI
C-bindings.

-p Enables MPI nameshift profiling. Specify -p if your program profiles MPI
functions using the name-shifted MPI interface (PMPI_xxx).

-cpp
sets the compile flag _MPI_CPP_BINDINGS. This must be set in order to force
the linkage of the MPI-2 C++-bindings. Option -cpp is only valid for command
mpCC.

Flags
Any of the compiler flags normally accepted by the c89 command can also be used
on mpcc as well as any c++ flags can be used on mpCC. For a complete listing of
these flag options, refer to the z/OS UNIX System Services Command Reference.
Typical options to mpcc and mpCC include:

-v causes a pseudo-JCL to be written to stdout.

-g produces an object file with information in symbolic form. This information is
used by symbolic debuggers like dbx, pdbx, and pedb (C-only).

-o names the executable.

-I (upper-case i)
names directories searched for additional include files.

mpcc/mpCC

Appendix A. Parallel Environment commands 195

Usage
The mpcc shell script calls the z/OS c89 and mpCC calls the z/OS c++ compiler.
In addition, the Partition Manager and Message Passing Interface are automatically
linked in. The script creates an executable that dynamically binds with the message
passing libraries.

Compiler flags are passed by mpcc (mpCC) to the c89 (c++) command, so any of
the c89 (c++) options can be used on the mpcc (mpCC) shell script. The POE and
MPI library implementation is dynamically linked when you invoke the executable.

System Environment
MP_PREFIX

sets an alternate path to the scripts library. If not set or NULL, the
standard path /usr is used. If this environment variable is set, then all
libraries are prefixed by $MP_PREFIX. For example, if MP_PREFIX is set
to /myPath, the directory /myPath/include is searched for header files, and
/myPath/lib for libraries.

MP_VERBOSE
causes mpcc and mpCC to echo the compile command if set to YES.

Examples
To compile the C program xyz.c, and produce an executable xyz, enter:
mpcc -o xyz xyz.c

To compile a C++ program xyz, enter:
mpCC -o xyz xyz.C

Files
When you compile a program using mpcc or mpCC, the following files are
automatically selected:

/usr/lib/ppe.x (definition side deck for the Parallel Environment for z/OS)
/usr/lib/pe_CEEBXITA.o (assembler initialization user exit)
/usr/lib/pe_CEEBINT.o (HLL initialization user exit)

Related Information
commands c89, c++, dbx

mpcc/mpCC

196 z/OS UNIX System Services PE: Operation and Use

pdbx

Purpose
pdbx – Invokes the pdbx debugger, which is the command line debugger built on
dbx.

Format

pdbx

�� pdbx
program

program_options poe options
-a poe process id

limited poe options

�

�
-c command_file -d nesting_depth

�

-I directory
�

�
-F

��

�� pdbx -h ��

The pdbx command invokes the pdbx debugger. This tool is based on the dbx
debugger, but adds function specific to parallel programming.

Flags
Because pdbx runs in the Parallel Operating Environment, it accepts all the flags
supported by the poe command.

Note: poe uses the PATH environment variable to find the program, while pdbx
does not.

Additional pdbx flags are:

-a Attaches to a running poe job by specifying its process id. This must be
executed from the node where the poe job was initiated. When using the
debugger in attach mode there are some debugger command-line arguments
that should not be used. In general, any arguments that control how the
partition is set up or specify application names and arguments should not be
used.

-c Reads startup commands from the specified command_file.

-d Sets the limit for the nesting of program blocks. The default nesting depth limit
is 1000.

-F This flag can be used to turn off lazy reading mode. Turning lazy reading mode

pdbx

Appendix A. Parallel Environment commands 197

off forces the remote dbx sessions to read all symbol table information at
startup time. By default, lazy reading mode is on.

Lazy reading mode is useful when debugging large executable files, or when
paging space is low. With lazy reading mode on, only the required symbol
table information is read upon initialization of the remote dbx sessions.
Because all symbol table information is not read at dbx startup time when in
lazy reading mode, local variable and related type information will not be
initially available for functions defined in other files. The effect of this can be
seen with the whereis command, where instances of the specified local
variable may not be found until the other files containing these instances are
somehow referenced.

-h Writes the pdbx usage to STDERR then exits. This includes pdbx
command-line syntax and a description of pdbx options.

-I (upper-case i)
Specifies a directory to be searched for an executable’s source files. This flag
must be specified multiple times to set multiple paths. (Once pdbx is running,
this list can be overridden on a group or single node basis with the use
subcommand.)

-tmpdir
This POE option specifies the directory to which the individual startup files
(.pdbxinit.process_id.task_id) are written for each dbx task. For more information
on .pdbxinit see Table 3 on page 97 and “Reading subcommands from a
command file” on page 122. If not set, and if its associated environment
variable MP_TMPDIR is not set, the default location is /tmp.

Usage
pdbx is the Parallel Environment’s command line debugger for parallel programs.
It is based, and built, on the debugging tool dbx.

pdbx supports most of the familiar dbx subcommands, as well as additional pdbx
subcommands.For online help for the subcommands type man pdbxsubcommand,
e.g. man pdbxalias for help on the pdbx alias subcommand.

To use pdbx for interactive debugging you first need to compile the program and
set up the execution environment as you would to invoke a parallel program with
the poe command. Your program should be compiled with the -g flag in order to
produce an object file with symbol table references. For more information on the -g
option, refer to z/OS UNIX System Services Command Reference.

pdbx maintains dbx’s command line interface and subcommands. When you
invoke pdbx, the pdbx command prompt displays to mark the start of a pdbx
session.

When using pdbx, you should keep in mind that pdbx subcommands can either be
context sensitive or context insensitive. In pdbx, context refers to a setting that
controls which task(s) receive the subcommands entered at the pdbx command
prompt. A default command context is provided which contains all tasks in your
partition. You can, however, set the command context on a single task or a group
of tasks you define. Context sensitive subcommands, when entered, only affect
those tasks in the current command context. Context insensitive subcommands are
not affected by the command context setting.

pdbx

198 z/OS UNIX System Services PE: Operation and Use

If you are already familiar with dbx, you should be aware that some dbx
subcommands behave somewhat differently in pdbx. Be aware that:
v all the dbx subcommands are context sensitive in pdbx. If you use the stop

subcommand, for example, it will only set breakpoints for the tasks in the
current context. Tasks outside the current context are not affected.

v redirection from dbx subcommands is not supported.
v you cannot use the subcommands clear, edit, multproc, prompt, run, rerun, and

the sh subcommand with no arguments.
v since pdbx runs in the Parallel Operating Environment, output from the parallel

tasks may not be ordered. You can force task ordering, however, by setting the
output mode to ordered using the MP_STDOUTMODE environment variable or
the -stdoutmode flag when invoking your program with pdbx.

When a task hangs (there is no pdbx prompt) you can press <EscChar-c> to
acquire control. This displays the pdbx subset prompt pdbx-subset([group |
task]), and provides a subset of pdbx functionality:
v Changing the current context
v Displaying information about groups/tasks
v Interrupting the application
v Showing breakpoint/tracepoint status
v Getting help
v Exiting the debugger.

You can change the subset of tasks to which context sensitive commands are
directed. Also, you can understand more about the current state of the application,
and gain control of your application at any time, not just at user-defined
breakpoints.

At the pdbx subset prompt, all input you type at the command line is intercepted
by pdbx. All commands are interpreted and operated on by the home node. No
data is passed to the remote nodes and STDIN is not given to the application.
Most commands at the pdbx subset prompt produce information about the
application and then produce another pdbx subset prompt. The exceptions are the
halt, back, on, and quit commands. For more information, see “Context switch
when blocked” on page 108.

System Environment
Because the pdbx command runs in the Parallel Operating Environment, it
interacts with the same environment variables associated with the poe command.
See the poe command for a description of these environment variables. As
indicated by the syntax statements, you are also able to specify poe command-line
options when invoking pdbx. Using these options will override the setting of the
corresponding environment variable, as is the case when invoking a parallel
program with the poe command. Variables specific to pdbx are:

HOME
During pdbx initialization, pdbx uses this environment variable to search
for two special initialization files. First, pdbx searches for .pdbxinit in the
user’s current directory. If the file is not found, pdbx checks the file
$HOME/.pdbxinit.

MP_DBXPROMPTMOD
The dbx prompt \n(dbx) is used by pdbx as an indicator denoting that a
dbx subcommand has completed. This environment variable can be used

pdbx

Appendix A. Parallel Environment commands 199

to modify the prompt. Any value assigned to MP_DBXPROMPTMOD
will have a “.” prepended and then be inserted in the \n(dbx) prompt
between the “x” and the “)”. This environment variable is needed in rare
situations when the string \n(dbx) is present in the output of the
application being debugged. For example, if MP_DBXPROMPTMOD is
set to unique157, the prompt would be \n(dbx.unique157).

MP_TMPDIR
This environment variable specifies the directory to which the individual
startup files (.pdbxinit.process_id.task_id) are written for each dbx task. This
is frequently local, but may be a shared directory. If not set, and if its
associated command-line flag tmpdir is not used, the default location is
/tmp.

MP_DEBUG_INITIAL_STOP
This environment variable redefines the initial stop point in pdbx
(overriding the stop in main). It can be set to sourcefile:linenumber, where
sourcefile is a file containing source code of the program to be executed.
Typically, the source file name ends with the .c or .C suffix. Linenumber is a
line number in this file. This line must contain executable code, not data
declarations. It cannot be a comment, blank, or continuation line.

If no linenumber is specified (and the colon is omitted), the sourcefile field is
taken to be a function or subroutine name, and a “stop in” is performed on
entry to the function.

If MP_DEBUG_INITIAL_STOP is undefined, the default stop location will
be the first executable line in the function main.

Examples
To start pdbx, first set up the execution environment as you would for the poe
command, and then enter:
pdbx

After initialization, you should see the prompt:
pdbx(all)

Files
.pdbxinit (Initial commands for pdbx in ./ or $HOME)

.pdbxinit.process_id.task_id (Initial commands for the individual dbx tasks)

For more information on .pdbxinit see Table 3 on page 97 and “Reading
subcommands from a command file” on page 122.

Note: The following temporary files are created during the execution of pdbx in
attach mode:
v /tmp/.pdbx.<poe-pid>.host.list - a temporary host list file containing

information needed to attach to tasks on remote nodes.
v /tmp/.pdbx.<pdbx-pid>.menu - a temporary file to hold the attach task

menu. Both of these files are removed before the debugger exits.

Related Information
commands mpcc, mpCC and dbx For information on dbx , see z/OS UNIX System
Services Command Reference.

pdbx

200 z/OS UNIX System Services PE: Operation and Use

Note: In order to display the description of a pdbx subcommand you must prefix
the subcommand with pdbx. For example, to view the description of the
pdbx alias subcommand, you must enter: man pdbxalias.

pdbx

Appendix A. Parallel Environment commands 201

pdbx alias subcommand

Format

�� alias
alias_name

alias_string

��

The alias subcommand creates aliases for pdbx subcommands. The alias_name
parameter is the alias being created. The alias_string is the pdbx subcommand for
which you wish you define an alias, and is a single pdbx subcommand. If used
without parameters, the alias subcommand displays all current aliases. If only
alias_name is specified, it lists the alias name and the alias string that is assigned to
it. This subcommand is context insensitive.

A number of default aliases are provided by pdbx. They are:

t where
j status
st stop
s step
x registers
q quit
p print
n next
m map
l list
h help
d delete
c cont
th thread
mu mutex
cv condition
active tasks
threads

thread

Apart from these, aliases are only known during the current pdbx session. They
are not saved between pdbx sessions, and are lost upon exiting pdbx.

Note: One method for reusing aliases is to define them in .pdbxinit to allow them
to be created for each pdbx execution. The default aliases are available after
the partition has been loaded.

Aliases can also be removed using the unalias subcommand for the pdbx
command.
1. If you have two task groups defined in your pdbx session called “master” and

“workers”, and you wish to define aliases to easily qualify each, enter:
alias mas on master
alias w on workers

pdbx

202 z/OS UNIX System Services PE: Operation and Use

This will allow you to switch the command context between the master and
workers groups by typing:
mas

to switch context to the “master” group, or:
w

to switch context to the “workers” group.
2. To display the string that has been defined for the alias “p”, enter:

alias p

3. To list all aliases currently defined, enter:
alias

Related to this subcommand is the pdbx unalias subcommand.

pdbx

Appendix A. Parallel Environment commands 203

pdbx assign subcommand

Format

�� assign <variable> = <expression> ��

The assign subcommand assigns the value of an expression to a variable.
1. To assign a value of 5 to the x variable:

pdbx(all) assign x = 5

2. To assign the value of the y variable to the x variable:
pdbx(all) assign x = y

3. To assign the character value ‘z’ to the z variable:
pdbx(all) assign z = 'z'

4. To assign the “Hello World” string to a character pointer Y:
pdbx(all) assign Y = "Hello World"

5. To disable type checking, activate the set variable $unsafeassign:
pdbx(all) set $unsafeassign

pdbx

204 z/OS UNIX System Services PE: Operation and Use

pdbx attach subcommand

Format

�� attach all
<task_list>

��

The attach subcommand is used to attach the debugger to some or all the tasks of
a given poe job.

Individual tasks are separated by spaces. A range of tasks may be separated by a
dash or a colon. For example, the command attach 2 4 5-7 would mean to attach to
tasks 2,4,5,6, and 7.

pdbx

Appendix A. Parallel Environment commands 205

pdbx back subcommand

Format

�� back ��

The back command returns you to a pdbx prompt when you were already at a
pdbx subset prompt. You can use the command if you want the application to
continue as it was before <EscChar-c> was issued. Also, you can use it at the pdbx
subset prompt if all of the nodes are checked into “debug ready” state, and you
want to do full pdbx processing.

The back command is only valid at the pdbx subset prompt.

pdbx

206 z/OS UNIX System Services PE: Operation and Use

pdbx case subcommand

Format

�� case default
mixed
lower
upper

��

The case subcommand changes how pdbx interprets symbols. Use this command if
a symbol needs to be interpreted in a way not consistent with the current
language.

Entering the case subcommand with no parameters displays the current case
mode. The parameters include:

default
Varies with the current language.

mixed Causes symbols to be interpreted as they actually appear.

lower Causes symbols to be interpreted as lowercase.

upper Causes symbols to be interpreted as uppercase.

pdbx

Appendix A. Parallel Environment commands 207

pdbx catch subcommand

Format

�� catch
<signal_number>
<signal_name>

��

The catch subcommand with no arguments prints all signals currently being
caught. If a signal is specified, pdbx will trap the signal before it is sent to the
program. This is useful when the program being debugged has signal handlers.

When the program encounters a signal that is being caught to the debugger, a
message stating which signal was detected is shown, and the pdbx prompt is
displayed. To have the program continue and process the signal, issue the cont
subcommand with the signal option. Other execution control commands and the
cont subcommand without the signal option will cause the program to behave as
if it had never encountered the signal.

A signal may be specified by number or name. Signal names are by default case
insensitive and the “SIG” prefix is optional.

By default all signals are caught except SIGHUP, SIGKILL, SIGALRM, SIGCHLD,
SIGDUMP and SIGIO.

Related to this subcommand are the ignore and cont subcommands.

pdbx

208 z/OS UNIX System Services PE: Operation and Use

pdbx condition subcommand

Format

�� condition

� <condition_number>
wait
nowait

��

The condition subcommand displays the current state of all known conditions in
the process. Condition variables to be listed can be specified through the
<condition_number> parameters, or all condition variables will be listed. Users can
also choose to display only condition variables with or without waiters by using
the wait or nowait options.

The information listed for each condition is as follows:

cv Indicates the symbolic name of the condition variable, in the form
$ccondition_number.

obj_addr
Indicates the memory address of the condition variable.

num_wait
Indicates the number of threads waiting on the condition variable.

waiters
Lists the user threads which are waiting on the condition variable.

Related to this subcommand is the thread subcommand.

pdbx

Appendix A. Parallel Environment commands 209

pdbx cont subcommand

Format

�� cont
<signal_number>
<signal_name>

��

The cont subcommand allows execution to continue from where the program last
stopped, until either the program finishes or another breakpoint is reached. If a
signal is specified, it is given to the program, and the process continues as though
it received the signal. If a signal is not specified, the process continues as though it
had not been stopped and did not get the signal.

Related to this subcommand are the catch, ignore, step, stepi, next, and nexti
subcommands.

pdbx

210 z/OS UNIX System Services PE: Operation and Use

pdbx dbx subcommand

Format

�� dbx dbx_subcommand ��

The dbx subcommand is context sensitive and will pass the specified
dbx_subcommand directly to the dbx running on each task in the current context
with no pdbx intervention. The specified dbx_subcommand can be any valid dbx
subcommand.

Note: The pdbx command uses dbx to access tasks on individual nodes. In many
cases, pdbx saves and requires its own state information about the tasks.
Some dbx commands will circumvent the ability of pdbx to maintain
accurate state information about the tasks being debugged. Therefore, use
the dbx subcommand with caution. In general, dbx subcommands used to
display information will have no adverse side effects. The dbx
subcommands clear, edit, multproc, prompt, run, rerun, and the sh
subcommand with no arguments are currently unsupported under pdbx and
should not be used.

To display the events that the dbx running as task 1 recognizes, enter:
on 1 dbx status

Related to this subcommand is the dbx command.

pdbx

Appendix A. Parallel Environment commands 211

pdbx delete subcommand

Format

�� delete event_list
*
all

��

The delete subcommand removes events (breakpoints and tracepoints) of the
specified event numbers. An event list can be specified in the following manner. To
indicate a range of events, enter the first and last event numbers, separated by a
colon or dash. To indicate individual events, enter the numbers, separated by a
space or comma. You can specify “ * ”, which deletes all events that were created
in the current context. You can also specify “all”, which deletes all events,
regardless of context.

The event number is the one associated with the breakpoint or tracepoint. This
number is displayed by the stop and trace subcommands when an event is built.
Event numbers can also be displayed using the status subcommand.

The output of the status command shows the context from which the event was
created. Event numbers are unique to the context in which they were set. Keep in
mind that, in order to remove an event, the context must be on the appropriate
task or task group.

Assume the command context is set on task 1 and the output of the status
subcommand is:
1:[0] stop in celsius
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

To delete all these events, you would do one of the following:
on 1
delete 0
on all
delete 0,1

OR

on 1
delete 0
on all
delete *

OR

delete all

Related to this subcommand are the pdbx status, stop, and trace subcommands.

pdbx

212 z/OS UNIX System Services PE: Operation and Use

pdbx detach subcommand

Format

�� detach ��

The detach subcommand detaches pdbx from all tasks that were attached. This
subcommand causes the debugger to exit but leaves the poe application running.

pdbx

Appendix A. Parallel Environment commands 213

pdbx dhelp subcommand

Format

�� dhelp
<dbx_subcommand>

��

The dhelp command with no arguments displays a list of dbx commands about
which detailed information is available.

If you type dhelp with an argument, information will be displayed about that
command.

Note: The partition must be loaded before you can use this command, because it
invokes the dbx help command. It is also required that a task be in “debug
ready” state to process this command.

Related to this subcommand is the pdbx help subcommand.

pdbx

214 z/OS UNIX System Services PE: Operation and Use

pdbx display memory subcommand

Format

�� <address> , <address> /
<mode>

/
<count> <mode>

��

The display memory subcommand, which does not have a keyword to initiate the
command, displays a portion of memory controlled by the address(es), count(s)
and mode(s) specified.

If an address is specified, the display contents of memory at that address is
printed. If more than one address or count locations are specified, display contents
of memory starting at the first <address> up to the second <address> or until
<count> items are printed. If the address is “.”, the address following the one most
recently printed is used. The mode specifies how memory is to be printed. If it is
omitted the previous mode specified is used. The initial mode is “X”.

The following modes are supported:

i print the machine instruction

d print a short word in decimal

D print a long word in decimal

o print a short word in octal

O print a long word in octal

x print a short word in hexadecimal

X print a long word in hexadecimal

b print a byte in octal

c print a byte as a character

h print a byte in hexadecimal

s print a string (terminated by a null byte)

f print a single precision float number

g print a double precision float number

q print a quad precision float number

pdbx

Appendix A. Parallel Environment commands 215

pdbx down subcommand

Format

�� down
count

��

The down subcommand moves the current function down the stack the number of
levels specified by count. The current function is used for resolving names. The
default for the count parameter is one.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the up, print, dump, func, file, and where
commands.

pdbx

216 z/OS UNIX System Services PE: Operation and Use

pdbx dump subcommand

Format

�� dump
<procedure>
.
<module name>

��

The dump subcommand prints the names and values of variables in a given
procedure, or the current one if nothing is specified. If the procedure given is “.”,
then all active variables are printed. If a module name is given, all variables in the
module are printed.

Related to this subcommand are the up, down, print, and where subcommands.

pdbx

Appendix A. Parallel Environment commands 217

pdbx file subcommand

Format

�� file
file

��

The file subcommand changes the current source file to the file specified by the file
parameter. It does not write to that file. The file parameter can specify a full path
name to the file. If the parameter does not specify a path, the pdbx program tries
to find the file by searching the use path. If the parameter is not specified, the file
subcommand displays the name of the current source file. The file subcommand
also displays the full or relative path name of the file if the path is known.

Related to this subcommand is the func subcommand.

pdbx

218 z/OS UNIX System Services PE: Operation and Use

pdbx func subcommand

Format

�� func
procedure

��

The func command changes the current function to the procedure or function
specified by the procedure parameter. If the procedure parameter is not specified, the
default current function is displayed. Changing the current function implicitly
changes the current source file to the file containing the new function. The current
scope used for name resolution is also changed.

Related to this subcommand is the file subcommand.

pdbx

Appendix A. Parallel Environment commands 219

pdbx goto subcommand

Format

�� goto
“<file name>” :

<line_number> ��

The goto subcommand causes the specified source line to be run next. Normally,
the source line must be in the same function as the current source line. To override
this restriction, use the set subcommand with the $unsafegoto flag.

pdbx

220 z/OS UNIX System Services PE: Operation and Use

pdbx gotoi subcommand

Format

�� gotoi address ��

The gotoi subcommand changes the program counter address to the address
specified by the address parameter.

pdbx

Appendix A. Parallel Environment commands 221

pdbx group subcommand

Format

�� group add group_name task_list
delete group_name

task_list
change old_group_name new_group_name
list

group_name

��

The group subcommand groups individual tasks under a common name for easier
setting of command context. It can add or delete a group, add or delete tasks from
a group, change the name of a group, list the tasks in a group, or list all groups.
This subcommand is context insensitive.

Provide a group name that is no longer than 32 characters which starts with an
alphabetic character, and is followed by any alphanumeric character combination.

To indicate a range of tasks, enter the first and last task numbers, separated by a
colon or dash. To indicate individual tasks, enter the numbers, separated by a
space or comma. Individual task identifiers and ranges can also be combined in
creating the desired task_list.

Note: Group names ″all″, ″none″, and ″attached″ are reserved group names. They
are used by the debugger and cannot be used in the group add or group
delete commands. However, the group “all” or “attached” can be renamed
using the group change command, if it currently exists in the debugging
session.

The add action adds one or more tasks to a new or existing task group. The
task_list specified is a list of task identifiers to be included in the new or existing
group.

The delete action deletes an existing task group, or deletes one or more tasks from
an existing task group. The task_list, if specified, is a list of task identifiers to be
deleted from the new or existing group.

The change action changes the name of a task group from old_group_name to
new_group_name.

The list action displays the task members for the group_name specified, or for all
task groups. The task identifiers will be followed by a one-letter status indicator.

N Not loaded the remote task has not yet been loaded with an
executable.

S Starting the remote task is being loaded with an executable.
D Debug ready the remote task is stopped and debug commands can

be issued.
R Running the remote task is in control and executing the

program.
X Exited the remote task has completed execution.
U Unhooked the remote task is executing without debugger

intervention.

pdbx

222 z/OS UNIX System Services PE: Operation and Use

E Error the remote task is in an unknown state.

Consider an application running as five tasks numbered 0 through 4.
1. To create a task group “first” containing task 0, enter:

group add first 0

The pdbx debugger responds with:
1 task was added to group "first".

2. To create a task group “rest” containing tasks 1 through 4, enter:
group add rest 1:4

The pdbx debugger responds with:
4 tasks were added to group "rest".

3. To change the name of the default group “all” to “johnny”, enter:
group change all johnny

The pdbx debugger responds with:
Group "all" has been renamed to "johnny"

4. To list all of the groups and the tasks they contain, enter:
group list

The pdbx debugger responds with:
johnny 0:D 1:D 2:D 3:D 4:D
first 0:D
rest 1:D 2:D 3:D 4:D

5. To delete the group “first”, enter:
group delete first

To delete members 1, 2 and 3 from group “rest”, enter:
group delete rest 1 2 3

or
group delete rest 1-3

The pdbx debugger responds with:
Task: 1 was successfully deleted from group "rest".
Task: 2 was successfully deleted from group "rest".
Task: 3 was successfully deleted from group "rest".

6. To list all of the groups and the tasks they contain, enter:
group list

The pdbx debugger responds with:
allTasks 0:R 1:D 2:D 3:U 4:U 5:D 6:D

7:D 8:D 9:D 10:D 11:D
evenTasks 0:R 2:D 4:U 6:D 8:D 10:R
oddTasks 1:D 3:U 5:D 7:D 9:D 11:R
master 0:R
workers 1:D 2:D 3:U 4:U 5:D 6:D 7:D

8:D 9:D 10:R 11:R

Related to this subcommand is the pdbx on subcommand.

pdbx

Appendix A. Parallel Environment commands 223

pdbx halt subcommand

Format

�� halt
all

��

By using the halt command, you interrupt all tasks in the current context that are
running. This allows the debugger to gain control of the application at whatever
point the running tasks happen to be in the application. To a dbx user, this is the
same as using <EscChar-c>. This command works at the pdbx prompt and pdbx
subset prompt. If you specify “all” with the command, all running tasks, regardless
of context, are interrupted.

Note: At a pdbx prompt, the halt command never has any effect without “all”
specified. This is because by definition, at a pdbx prompt, none of the tasks
in the current context are in “running” state.

The halt all command at the pdbx prompt affects tasks outside of the current
context. Messages at the prompt show the task numbers that are and are not
interrupted, but the pdbx prompt returns immediately because the state of the
tasks in the current context is unchanged.

When using halt at the pdbx subset prompt, the pdbx prompt occurs when all
tasks in the current context have returned to “debug ready” state. If some of the
tasks in the current context are running, a message is presented.

Related to this subcommand are the pdbx tasks and group list subcommands.

pdbx

224 z/OS UNIX System Services PE: Operation and Use

pdbx help subcommand

Format

�� help
subcommand topic

��

The help command with no arguments displays a list of pdbx commands and
topics about which detailed information is available.

If you type help with one of the help commands or topics as the argument,
information will be displayed about that subject.

Related to this subcommand is the pdbx dhelp subcommand

pdbx

Appendix A. Parallel Environment commands 225

pdbx hook subcommand

Format

�� hook ��

The hook subcommand allows you to reestablish control over all tasks in the
current command context that have been unhooked using the unhook
subcommand. This subcommand is context sensitive.
1. To reestablish control over task 2 if it has been unhooked, enter:

on 2 hook

or
on 2
hook

2. To reestablish control over all unhooked tasks in the task group “rest”, enter:
on rest hook

or
on rest
hook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked and which are
unhooked. Enter:
group list all

The pdbx debugger will display a list similar to the following:
0:D 1:U 2:D 3:D

Tasks marked with the letter D next to them are “debug ready”, hooked tasks. In
this case, tasks 0, 2, and 3 are “debug ready”. Tasks marked with the letter U are
unhooked. In this case, task 1 is unhooked.

Related to this subcommand are the dbx detach subcommand and the pdbx
unhook subcommand.

pdbx

226 z/OS UNIX System Services PE: Operation and Use

pdbx ignore subcommand

Format

�� ignore
<signal_number>
<signal_name>

��

The ignore subcommand with no arguments prints all signals currently being
ignored. If a signal is specified, pdbx stops trapping the signal before it is sent to
the program.

A signal may be specified by number or name. Signal names are by default case
insensitive and the “SIG” prefix is optional.

All signals except SIGHUP, SIGKILL, SIGALRM, SIGCHLD, and SIGIO are trapped
by default.

The pdbx debugger cannot ignore the SIGTRAP signal if it comes from a process
outside of the program being debugged.

Related to this subcommand is the catch subcommand.

pdbx

Appendix A. Parallel Environment commands 227

pdbx list subcommand

Format

�� list
procedure
sourceline-expression

, sourceline-expression

��

The list subcommand displays a specified number of lines of the source file. The
number of lines displayed is specified in one of two ways:

Tip: Use on <task> list, or specify the ordered standard output option.
v By specifying a procedure using the procedure parameter.

In this case, the list subcommand displays lines starting a few lines before the
beginning of the specified procedure and until the list window is filled.

v By specifying a starting and ending source line number using the
sourceline-expression parameter.
The sourceline-expression parameter should consist of a valid line number
followed by an optional + (plus sign), or − (minus sign), and an integer. In
addition, a sourceline of $ (dollar sign) can be used to denote the current line
number. A sourceline of @ (at sign) can be used to denote the next line number to
be listed.
All lines from the first line number specified to the second line number
specified, inclusive, are then displayed, provided these lines fit in the list
window.
If the second source line is omitted, 10 lines are printed, beginning with the line
number specified in the sourceline parameter.
If the list subcommand is used without parameters, the default number of lines
is printed, beginning with the current source line. The default is 10.
To change the number of lines to list by default, set the special debug program
variable, $listwindow, to the number of lines you want. Initially, $listwindow is set
to 10.

To list the lines 1 through 10 in the current file, enter:
list 1,10

To list 10, or $listwindow, lines around the main procedure, enter:
list main

To list 11 lines around the current line, enter:
list $-5,$+5

To list the next source line to be executed, issue:
pdbx(all) list $

0: 4 char johnny = 'h';
1: 4 char johnny = 'h';

To just show 1 task, since both are at the same source line:
pdbx(all) on 0 list $

0: 4 char johnny = 'h';

pdbx

228 z/OS UNIX System Services PE: Operation and Use

To create an alias to list just task 0:
pdbx(all) alias l0 on 0 list

To list line 5:
pdbx(all) l0 5

0: 5 char jessie = 'd';

To list lines around the procedure sub:
pdbx(all) l0 sub

0: 21
0: 22 /* return ptr to sum of parms, calc and sub1 */
0: 23 int *sub(char *s, int a, int k)
0: 24 {
0: 25 int *tmp;
0: 26 int it = 0;
0: 27 int i, j;
0: 28
0: 29 /* test calc */
0: 30 i = 1;
0: 31 j = i*2;

To change the next line to be listed to line 25:
pdbx(all) move 25

To list the next line to be listed minus two:
pdbx(all) l0 @-2

0: 23 int *sub(char *s, int a, int k)

Related to this subcommand is the dbx list subcommand.

pdbx

Appendix A. Parallel Environment commands 229

pdbx listi subcommand

Format

�� listi
procedure
at SourceLine
address

, address

��

The listi subcommand displays a specified set of instructions from the current
program counter, depending on whether you specify procedure, source line, or
address.

The listi subcommand with the procedure parameter lists instructions from the
beginning of the specified procedure until the list window is filled.

Using the at SourceLine flag with the listi subcommand displays instructions
beginning at the specified source line and continuing until the list window is
filled. The SourceLine variable can be specified as an integer, or as a file name
string followed by a : (colon) and an integer.

Specifying a beginning and ending address with the listi subcommand, using the
address parameters, displays all instructions between the two addresses.

If the listi subcommand is used without flags or parameters, the next $listwindow
instructions are displayed. To change the current size of the list window, use the
set $listwindow=Value command.

pdbx

230 z/OS UNIX System Services PE: Operation and Use

pdbx load subcommand

Format

�� load program
program_options

��

The load subcommand loads the specified application program to be debugged on
the task(s) in the current context. You can optionally specify program_options to be
passed to the application program. pdbx will look for the program in the current
directory unless a relative or absolute path name is specified. The load
subcommand is context sensitive. All tasks in the partition must have an
application program loaded before other context sensitive subcommands can be
issued. This subcommand enables you to individually or selectively load programs.
If you wish to load the same program on all tasks in the partition, the name of the
program can be passed as an argument to the pdbx command at startup.

To load the program “mpprob1” on all tasks in the current context, enter:
load mpprob1

pdbx

Appendix A. Parallel Environment commands 231

pdbx map subcommand

Format

�� map ��

The map subcommand displays characteristics for each loaded portion of the
application. This information includes the name, text origin, text length, data
origin, and data length for each loaded module.

pdbx

232 z/OS UNIX System Services PE: Operation and Use

pdbx mutex subcommand

Format

�� mutex

� <number>
lock
unlock

��

The mutex subcommand displays the current status of all known mutual exclusion
locks in the process. Mutexes to be listed can be specified through the <number>
parameter, or all mutexes will be listed. Users can also choose to display only
locked or unlocked mutexes by using the lock or unlock options.

The information listed for each mutex is as follows:

mutex Indicates the symbolic name of the mutex, in the form $mmutex_number.

type Indicates the type of the mutex: non-rec (non recursive), recursi (recursive)
or fast.

obj_addr
Indicates the memory address of the mutex.

lock Indicates the lock state of the mutex: yes if the mutex is locked, no if not.

owner If the mutex is locked, indicates the symbolic name of the user thread
which holds the mutex.

Related to this subcommand is the thread subcommand.

pdbx

Appendix A. Parallel Environment commands 233

pdbx next subcommand

Format

�� next
number

��

The next subcommand runs the application program up to the next source line.
The number parameter specifies the number of times the subcommand runs. If the
number parameter is not specified, next runs once only.

The difference between this and the step subcommand is that if the line contains a
call to a procedure or function, step will stop at the beginning of that block, while
next will not.

If you use the next subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until
the running thread reaches the specified source line. By default, breakpoints for all
threads are ignored during the next command. This behavior can be changed using
the $catchbp set variable. If you wish to step the running thread only, use the set
command to set the variable $hold_next. Setting this variable may result in
deadlock, since the running thread may wait for a lock held by one of the blocked
threads.

Related to this subcommand are the nexti, step, stepi, return, cont, and set
subcommands.

pdbx

234 z/OS UNIX System Services PE: Operation and Use

pdbx nexti subcommand

Format

�� nexti
number

��

The nexti subcommand runs the application program up to the next instruction.
The number parameter specifies the number of times the subcommand will run. If
the number parameter is not specified, nexti runs once only.

The difference between this and the stepi subcommand is that if the line contains a
call to a procedure or function, stepi will stop at the beginning of that block, while
nexti will not.

If you use the nexti subcommand in a multi-threaded application program, all the
user threads run during the operation, but the program continues execution until
the running thread reaches the specified machine instruction. If you wish to step
the running thread only, use the set command to set the variable $hold_next. Setting
this variable may result in deadlock since the running thread may wait for a lock
held by one of the blocked threads.

Related to this subcommand are the next, step, stepi, return, cont, and set
subcommands.

pdbx

Appendix A. Parallel Environment commands 235

pdbx on subcommand

Format

�� on group_name
task_id subcommand

��

The on subcommand sets the current command context used to direct subsequent
subcommands at a specific task or group of tasks. The context can be set on a task
group (by specifying a group_name) or on a single task (by specifying a task_id).

When a context sensitive subcommand is specified, it is directed to the given context
without changing the current command context. Thus, specifying the optional
subcommand enables you to temporarily deviate from the command context.

Note: The pdbx prompt will be presented after all of the tasks in the temporary
context have completed the specified command. It is possible using
<EscChar-c> followed by the back or the on command to issue further pdbx
commands in the original context.

By using the on and group subcommands, the number of subcommands issued
and the amount of debug data displayed can be tailored to manageable amounts.

When you switch context using on context_name, and the new context has at least
one task in the running state, a message is displayed stating that at least one task is
in the running state. Thus, no pdbx prompt is displayed until all tasks in this
context are in the debug ready state.

When you switch to a context where all states are in the debug ready state, the pdbx
prompt is displayed immediately.

At the pdbx subset prompt, on context_name causes one of the following to
happen: either a pdbx prompt is displayed; or a message is displayed indicating
the reason why the pdbx prompt will be displayed at a later time. This is generally
because one of the tasks is in running state. See “Context switch when blocked” on
page 108 for more information on the pdbx subset prompt.

At a pdbx prompt, you cannot use on context_name pdbx_command if any of the
tasks in the specified context are running.

Assume you have an application running as 15 tasks, and the output of the group
list subcommand lists the existing task groups as:
all 0:D 1:U 2:D 3:D 4:D 5:D 6:U 7:D

8:D 9:D 10:R 11:R 12:R 13:U 14:U
johnny 0:D
jessica 2:D 3:D 8:D
un 1:U 6:U 13:U 14:U
run 10:R 11:R 12:R
deb 2:D 3:D 4:D 5:D 8:D 9:D

1. To add a breakpoint for task 0, enter:
on johnny stop at 31

The pdbx debugger responds with:

pdbx

236 z/OS UNIX System Services PE: Operation and Use

johnny:[0] stop at "ring.c":31

2. To add breakpoints for all of the tasks in the task group “jessica”, enter:
on jessica stop in ring

The pdbx debugger responds with:
jessica:[0] stop in ring

3. To switch the current context to the task group “johnny”, enter:
on johnny

The pdbx debugger responds with the prompt:
pdbx(johnny)

4. To add a conditional breakpoint for all tasks in the current context, enter:
stop at 48 if len < 1

The pdbx debugger responds with:
johnny:[1] stop at "ring.c":48 if len < 1

5. To view the events that have been set on the task group “jessica”, enter:
on jessica status

The pdbx debugger responds with:
jessica:[0] stop in ring

6. To add a tracepoint for task 2, enter:
on 2

The pdbx debugger responds with the prompt:
pdbx(2)

Then, enter:
trace 57

The pdbx debugger responds with:
2:[0] trace "ring.c":57

7. To view all of the events that have been set, enter:
status all

The pdbx debugger responds with:
2:[0] trace "ring.c":57
johnny:[0] stop at "ring.c":48
johnny:[1] stop at "ring.c":56 if len < 1
jessica:[0] stop in ring

Related to this subcommand is the pdbx group subcommand.

pdbx

Appendix A. Parallel Environment commands 237

pdbx print subcommand

Format

�� print expression ��

The print subcommand prints the value of a list of expressions, specified by the
expression parameters.

To display the value of x and the value of y shifted left two bits, enter:
print x, y << 2

Related to this subcommand are the dbx assign and the pdbx set subcommands.

pdbx

238 z/OS UNIX System Services PE: Operation and Use

pdbx quit subcommand

Format

�� quit ��

The quit subcommand terminates all program tasks, and ends the pdbx debugging
session. The quit subcommand is context insensitive and has no parameters.

Quitting a debug session in attach mode causes the debugger and all the members
of the original poe application partition to exit.

To exit the pdbx debug program, enter:
quit

pdbx

Appendix A. Parallel Environment commands 239

pdbx registers subcommand

Format

�� registers ��

The registers subcommand displays the values of general purpose registers, system
control registers, floating-point registers, and the current instruction register, such
as the program status word (PSW) for z/OS.

Registers can be displayed or assigned to individually by using the following
predefined register names:

$r0 through $r31
for the general purpose registers.

$fr0 through $fr31
for the floating point registers.

By default, the floating-point registers are not displayed. To display the
floating-point registers, use the unset $noflregs command.

Notes:

1. The register value may be set to the 0xdeadbeef hexadecimal value. The
0xdeadbeef hexadecimal value is an initialization value assigned to general
purpose registers at process initialization.

2. The registers command cannot display registers if the current thread is in
kernel mode.

pdbx

240 z/OS UNIX System Services PE: Operation and Use

pdbx return subcommand

Format

�� return
procedure

��

The return subcommand causes the program to execute until a return to the
procedure, specified by the procedure parameter, is reached. If the procedure
parameter is not specified, execution ceases when the current procedure returns.

pdbx

Appendix A. Parallel Environment commands 241

pdbx search subcommand

Format

�� / <regular_expression>
/

? <regular_expression>
?

��

The search forward (/) or search backward (?) subcommands allow you to search
in the current source file for the given <regular_expression>. Both forms of search
wrap around. The previous regular expression is used if no regular expression is
given to the current command.

pdbx

242 z/OS UNIX System Services PE: Operation and Use

pdbx set subcommand

Format

�� set
variable
variable=expression

��

The set subcommand defines a value for the set variable. The value is specified by
the expression parameter. The set variable is specified by the variable parameter. The
name of the variable should not conflict with names in the program being
debugged. A variable is expanded to the corresponding expression within other
commands. If the set subcommand is used without arguments, the currently set
variables are displayed.

Related to this subcommand is the unset subcommand.

pdbx

Appendix A. Parallel Environment commands 243

pdbx sh subcommand

Format

�� sh <command> ��

The sh subcommand passes the command specified by the command parameter to
the shell on the remote task(s) for execution. The SHELL environment variable
determines which shell is used. The default is the omvs shell (sh).

Note: The sh subcommand with no arguments is not supported.

To run the ls command on all tasks in the current context, enter:
sh ls

To display contents of the foo.dat data file on task 1, enter:
on 1 cat foo.dat

pdbx

244 z/OS UNIX System Services PE: Operation and Use

pdbx skip subcommand

Format

�� skip
number

��

The skip subcommand continues execution of the program from the current
stopping point, ignoring the next breakpoint. If a number variable is supplied, skip
ignores that next amount of breakpoints.

Related to this subcommand is the cont subcommand.

pdbx

Appendix A. Parallel Environment commands 245

pdbx source subcommand

Format

�� source commands_file ��

The source subcommand reads pdbx subcommands from the specified
commands_file. The commands_file should reside on the node where pdbx was issued
and can contain any commands that are valid on the pdbx command line. The
source subcommand is context insensitive.

To read pdbx subcommands from a file named “jessica”, enter:
source jessica

Related to this subcommand is the dbx source subcommand.

pdbx

246 z/OS UNIX System Services PE: Operation and Use

pdbx status subcommand

Format

�� status
all

��

A list of pdbx events (breakpoints and tracepoints) can be displayed by using the
status subcommand. You can specify “all” after this command to list all events
(breakpoints and tracepoints) that have been set in all groups and tasks. This is
valid at the pdbx prompt and the pdbx subset prompt.

Because the status command without “all” specified is context sensitive, it will not
display status for events outside the context.

Assume the following commands have been issued, setting various breakpoints
and tracepoints.
on all
stop at 19
trace 21
on 0
trace foo at 21
on 1
stop in func

To display a list of breakpoints and tracepoints for tasks in the current “task 1”
context, enter:
status

The pdbx debugger responds with lines of status like:
1:[0] stop in func
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Notice that the status from the “task 0” context does not get displayed since the
context is on “task 1”. Also notice that event 0 is unique for the “task 1” context
and the “group all” context.

To see an example of status all, enter:
status all

The pdbx debugger responds with:
0:[0] trace foo at "foo.c":21
1:[0] stop in func
all:[0] stop at "foo.c":19
all:[1] trace "foo.c":21

Related to this subcommand are the pdbx stop, trace, and delete subcommands.

pdbx

Appendix A. Parallel Environment commands 247

pdbx step subcommand

Format

�� step
number

��

The step subcommand runs source lines of the program. You specify the number
of lines to be executed with the number parameter. If this parameter is omitted, the
default is a value of 1.

The difference between this and the next subcommand is that if the line contains a
call to a procedure or function, step will enter that procedure or function, while
next will not.

If you use the step subcommand on a multi-threaded program, all the user threads
run during the operation, but the program continues execution until the
interrupted thread reaches the specified source line. By default, breakpoints for all
threads are ignored during the step command. This behavior can be changed using
the $catchbp set variable.

If you wish to step the interrupted thread only, use the set subcommand to set the
variable $hold_next. Setting this variable may result in debugger induced deadlock,
since the interrupted thread may wait for a lock held by one of the threads blocked
by $hold_next.

Note: Use the $stepignore variable of the set subcommand to control the behavior
of the step subcommand. The $stepignore variable enables step to step over
large routines for which no debugging information is available.

Related to this subcommand are the stepi, next, nexti, return, cont, and set
commands.

pdbx

248 z/OS UNIX System Services PE: Operation and Use

pdbx stepi subcommand

Format

�� stepi
number

��

The stepi subcommand runs instructions of the program. You specify the number
of instructions to be executed with the number parameter. If the parameter is
omitted, the default is 1.

If used on a multi-threaded program, the stepi subcommand steps the interrupted
thread only. All other user threads remain stopped.

Related to this subcommand are the step, next, nexti, return, cont, and set
subcommands.

pdbx

Appendix A. Parallel Environment commands 249

pdbx stop subcommand

Format

�� stop if <condition>
at <source_line_number>

if <condition>
in <procedure>

if <condition>
<variable>

at <source_line_number> if <condition>
in <procedure>

��

The stop subcommand sets stopping places called “breakpoints” for tasks in the
current context. Use it to mark these stopping places, and then run the program.
When the tasks reach a breakpoint, execution stops and the state of the program
can then be examined. The stop subcommand is context sensitive.

Use the status subcommand to display a list of breakpoints that have been set for
tasks in the current context. Use the delete subcommand to remove breakpoints.

Specifying stop at <source_line_number> causes the breakpoint to be triggered each
time that source line is reached.

Specifying stop in <procedure> causes the breakpoint to be triggered each time the
program counter reaches the first executable source line in the procedure (function,
subroutine).

Using the <variable> argument to stop causes the breakpoint to be triggered when
the contents of the variable changes. This form of breakpoint can be very time
consuming. For better results, when possible, further qualify these breakpoints
with a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 122.

Notes:

1. The pdbx debugger will not attempt to set a breakpoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the stop subcommand, fully
qualified names should be used. This should be done because, when a stop
subcommand is issued, a parallel application could be in a different function on
each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a breakpoint at line 19 of a program, enter:
stop at 19

The pdbx debugger responds with a message like:
all:[0] stop at "foo.c":19

pdbx

250 z/OS UNIX System Services PE: Operation and Use

Related to this subcommand are the dbx stop and which subcommands, and the
pdbx trace, status, and delete subcommands.

pdbx

Appendix A. Parallel Environment commands 251

pdbx tasks subcommand

Format

�� tasks
long

��

With the tasks subcommand, you display information about all the tasks in the
partition. Task state information is always displayed. If you specify “long” after the
command, it also displays the name, IP address, and job manager number
associated with the task.

Following is an example of output produced by the tasks and tasks long
command.
pdbx(others) tasks

0:D 1:D 2:U 3:U 4:R 5:D 6:D 7:R

pdbx(others) tasks long
0:Debug ready pe04.kgn.ibm.com 9.117.8.68 -1
1:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
2:Unhooked pe02.kgn.ibm.com 9.117.11.56 -1
3:Unhooked augustus.kgn.ibm.com 9.117.7.77 -1
4:Running pe04.kgn.ibm.com 9.117.8.68 -1
5:Debug ready pe03.kgn.ibm.com 9.117.8.39 -1
6:Debug ready pe02.kgn.ibm.com 9.117.11.56 -1
7:Running augustus.kgn.ibm.com 9.117.7.77 -1

Related to this subcommand is the pdbx group subcommand.

pdbx

252 z/OS UNIX System Services PE: Operation and Use

pdbx thread subcommand

Format

�� thread �

�

<number>
activ
async
dead
pcanc

current
hold <number>
info
unhold

��

The thread subcommand displays a list of active threads for the application
program. All active threads are listed unless you use the number parameter to
specify the threads you want listed. You can also select threads by their states
using the activ, async, dead, or pcanc options.

You can use the info option to display full information about a thread, and threads
can be held or unheld with the hold and unhold options. The focus thread is
defaulted to the running thread: dbx uses it as the context for normal dbx
subcommands such as register. You can use the current option to switch the dbx
focus thread.

The displayed thread (“>”) is the thread that is used by other pdbx commands that
are thread specific such as:

down
dump
file
func
list
listi
print
registers
up
where

Related to this subcommand is mutex subcommand.

pdbx

Appendix A. Parallel Environment commands 253

pdbx trace subcommand

Format

�� trace
in <procedure> if <condition>

<source_line_number>
if <condition>

<procedure>
in <procedure> if <condition>

<variable>
in <procedure> if <condition>

<expression> at <source_line_number>
if <condition>

��

The trace subcommand sets tracepoints for tasks in the current context. These
tracepoints will cause tracing information for the specified procedure, function,
sourceline, expression or variable to be displayed when the program runs. The trace
subcommand is context sensitive.

Use the status subcommand to display a list of tracepoints that have been set in
the current context. Use the delete subcommand to remove tracepoints.

Specifying trace with no arguments causes trace information to be displayed for
every source line in your program.

Specifying trace <source_line_number> causes the tracepoint to be triggered each
time that source line is reached.

Specifying trace [in <procedure>] causes the tracepoint to be triggered each time
your program executes a source line within the procedure (function, subroutine).

Using the <variable> argument to trace causes the tracepoint to be triggered when
the contents of the variable changes. This form of tracepoint can be very time
consuming. For better results, when possible, further qualify these tracepoints with
a source_line or procedure argument.

Specify the <condition> argument using the syntax described by “Specifying
expressions” on page 122.

Notes:

1. The pdbx debugger will not attempt to set a tracepoint at a line number when
in a group context if the group members (tasks) have different current source
files.

2. When specifying variable names as arguments to the trace subcommand, fully
qualified names should be used. This should be done because, when a trace
subcommand is issued, a parallel application could be in a different function on
each node. This may result in ambiguity in variable name resolution. Use the
which subcommand to get the fully qualified name for a variable.

To set a tracepoint for the variable ″foo″ at line 21 of a program, enter:
trace foo at 21

The pdbx debugger responds with a message like:

pdbx

254 z/OS UNIX System Services PE: Operation and Use

all:[1] trace foo at "bar.c":21

Related to this subcommand are the dbx trace and which subcommands, and the
pdbx stop, status, and delete subcommands.

pdbx

Appendix A. Parallel Environment commands 255

pdbx unalias subcommand

Format

�� unalias alias_name ��

The unalias subcommand removes pdbx command aliases. The alias_name
specified is any valid alias that has been defined within your current pdbx session.
The unalias subcommand is context insensitive.

To remove the alias “p”, enter:
unalias p

Related to this subcommand is the pdbx alias subcommand.

pdbx

256 z/OS UNIX System Services PE: Operation and Use

pdbx unhook subcommand

Format

�� unhook ��

The unhook subcommand enables you to unhook tasks. Unhooking allows tasks to
run without intervention from the pdbx debugger. You can later reestablish control
over unhooked tasks using the hook subcommand. The unhook subcommand is
similar to the detach subcommand in dbx. It is context sensitive and has no
parameters.
1. To unhook task 2, enter:

on 2 unhook

or
on 2
unhook

2. To unhook all the tasks in the task group “rest”, enter:
on rest unhook

or
on rest
unhook

Listing the members of the task group “all” using the list action of the group
subcommand will allow you to check which tasks are hooked, and which are
unhooked. Enter:
group list all

The pdbx debugger will display a list similar to the following:
0:D 1:U 2:D 3:D

Tasks marked with the letter U next to them are unhooked tasks. In this case, task
1 is unhooked. Tasks marked with the letter D are “debug ready”, hooked tasks. In
this case, tasks 0, 2, and 3 are hooked.

Related to this subcommand is the dbx detach subcommand and the pdbx hook
subcommand.

pdbx

Appendix A. Parallel Environment commands 257

pdbx unset subcommand

Format

�� unset name ��

The unset subcommand removes the set variable associated with the specified
name.

Related to this subcommand is the set subcommand.

pdbx

258 z/OS UNIX System Services PE: Operation and Use

pdbx up subcommand

Format

�� up
count

��

The up subcommand moves the current function up the stack the number of levels
you specify with the count parameter. The current function is used for resolving
names. The default for the count parameter is 1.

The up and down subcommands can be used to navigate through the call stack.
Using these subcommands to change the current function also causes the current
file and local variables to be updated to the chosen stack level.

Related to this subcommand are the down, print, dump, func, file, and where
subcommands.

pdbx

Appendix A. Parallel Environment commands 259

pdbx use subcommand

Format

�� use �

directory
��

The use subcommand sets the list of directories to be searched when the pdbx
debugger looks for source files. If the subcommand is specified without arguments,
the current list of directories to be searched is displayed.

The @ (at sign) is a special symbol that directs pdbx to look at the absolute path
name information in the object file, if it exists. If you have a relative directory
called @ to search, you should use ./@ in the search path.

The use subcommand uses the + (plus sign) to add more directories to the list of
directories to be searched. If you have a directory named +, specify the absolute
path name for the directory (for example, ./+ or /tmp/+).

Related to this subcommand are the file and list subcommands.

pdbx

260 z/OS UNIX System Services PE: Operation and Use

pdbx whatis subcommand

Format

�� whatis <name> ��

The whatis subcommand displays the declaration of what you specify as the name
parameter. The name parameter can designate a variable, procedure, or function
name, optionally qualified with a block name.

Related to this subcommand are the whereis and which subcommands.

pdbx

Appendix A. Parallel Environment commands 261

pdbx where subcommand

Format

�� where ��

The where subcommand displays a list of active procedures and functions. For
example:
pdbx(all) where
init_trees(), line 23 in "funcs5.c"
colors(depth = 30, str = "This is it"), line 61 in "funcs5.c"
newmain(), line 59 in "funcs2.c"
f6(), line 25 in "funcs2.c"
main(argc = 1, argv = 0x2ff21c58), line 125 in "funcs.c"

Related to this subcommand are the dbx up and down subcommands.

pdbx

262 z/OS UNIX System Services PE: Operation and Use

pdbx whereis subcommand

Format

�� whereis identifier ��

The whereis subcommand displays the full qualifications of all the symbols whose
names match the specified identifier. The order in which the symbols print is not
significant.

Related to this subcommand are the whatis and which commands.

pdbx

Appendix A. Parallel Environment commands 263

pdbx which subcommand

Format

�� which identifier ��

The which subcommand displays the full qualification of the given identifier. The
full qualification consists of a list of the outer blocks with which the identifier is
associated.

Related to this subcommand are the whatis and whereis subcommands.

pdbx

264 z/OS UNIX System Services PE: Operation and Use

pedb

Purpose
pedb – Invokes the pedb debugger, which is the X-Windows interface of the PE
debugging facility.

Format

pedb

�� pedb
program_options

program poe options
-a poe process id

limited poe options
poe options

X options
�

� �

-I source directory -d nesting depth
��

�� pedb -h ��

The pedb command invokes the pedb debugger, which is the X-Windows interface
of the PE debugging facility.

Flags
The pedb command accepts standard X-Windows flags. Because the pedb
command runs in the Parallel Operating Environment, it also accepts the flags that
are supported by the poe command. See the poe manual page for a description of
these POE options. Additional pedb flags are:

-a Attaches to a running poe job by specifying its process id. This must be
executed from the node where the poe job was initiated. When using the
debugger in attach mode there are some debugger command-line arguments
that should not be used. In general, any arguments that control how the
partition is set up or specify application names and arguments should not be
used.

-d Sets the limit for the nesting of program blocks. The default nesting depth limit
is 25.

-h Writes the pedb usage to STDERR. This includes pedb command-line syntax
and a description of pedb flags.

-I (upper-case i)
Specifies a directory to be searched for an executable’s source files. This flag
must be specified multiple times to set multiple paths. (Once pedb is running,
this list can also be updated using the Update Source Path window.)

pedb

Appendix A. Parallel Environment commands 265

Usage
The pedb command invokes the X-Windows interface of the PE debugging facility.
It runs in the Parallel Operating Environment.

To use pedb for interactive debugging, you first need to compile the program and
set up the execution environment as you would to invoke a parallel program with
the poe command. Your program should be compiled with the -g flag in order to
produce an object file with symbol table references. For more information on the -g
option, refer to z/OS UNIX System Services Command Reference.

System Environment
Because the pedb command runs in the Parallel Operating Environment, it
interacts with most of the same environment variables that are associated with the
poe command. As indicated by the syntax statements, you are also able to specify
poe command-line options when invoking pedb. Using these options will override
the setting of the corresponding environment variable, as is the case when
invoking a parallel program with the poe command.

MP_DEBUG_INITIAL_STOP
Determines the initial breakpoint in the application where pdbx or pedb
get control. MP_DEBUG_INITIAL_STOP should be specified as
file_name:line_number. The line_number is the number of the line within the
source file file_name where file_name has been compiled with -g. The line
number has to be one that defines executable code, i.e. a line which the
debugger accepts as breakpoint. Another valid string for
MP_DEBUG_INITIAL_STOP would be the function_name of the desired
initial stopping point in the debugger. The default is to stop at the first
executable source line in the main code. This environment variable has no
associated command-line flag.

MP_DEBUG_LOG
Determines the level of diagnostic messages that are written to
$MP_TMPDIR/debug_log.pid.taskid. Typically, this environment variable
is used only under the direction of the IBM Support Center in resolving a
PE-related problem. This environment variable has no associated
command-line flag.

MP_TMPDIR
The temporary directory to which the debug log file is written if
MP_DEBUG_LOG is set. pedb also uses this as the location for some
work files. The default value is /tmp. The value of this environment
variable can be overridden using the -tmpdir flag.

The command pedb uses the debugging engine of dbx. Therefore environment
settings for dbx are inherited by pedb.

Examples
To start the pedb debugger, enter:
pedb weather temperate asia -procs 8 -labelio yes

In attach mode the following environment variables must be set:
_CEE_RUNOPTS="test(all)"
_BPX_PTRACE_ATTACH=yes

pedb

266 z/OS UNIX System Services PE: Operation and Use

This will invoke pedb running the weather application on a partition containing 8
nodes with all program output labeled by task id.

The pedb window automatically opens to mark the start of the debug session.

Files
host.list (Default host list file)

/usr/lib/X11/app-defaults/Pedb (Xdefaults file)

/samples/pe/pedb/Pedb.ad (sample Xdefaults file)

Related Information
command dbx, poe

pedb

Appendix A. Parallel Environment commands 267

pmarray

Purpose
pmarray – Starts the Program Marker Array, which is an X-Windows tool for
monitoring a parallel executable’s run.

Format

pmarray

�� pmarray ��

The pmarray command starts the Program Marker Array X-Windows tool prior to
invoking poe. This tool is used for run-time monitoring.

Flags
None.

Usage
The pmarray command starts the Program Marker Array. This X-Windows
run-time monitoring tool consists of a number of small squares, or lights. Each task
in a parallel program has its own row of lights. Using calls to the Parallel Utility
Functions enables a parallel program to control the appearance of the Program
Marker Array Window. Calls to mpc_marker enable a program to color lights on,
and/or send output strings to the Window. Calls to mpc_nlights enable a program
to determine the number of lights displayed per task row.

System Environment
This command responds to the following environment variables:

MP_PMLIGHTS
Indicates the number of lights displayed per row on the Array. When you
invoke poe, you may override MP_PMLIGHTS using the -pmlights flag.
The array will then redisplay, showing the new number of lights per row.

MP_PROCS
Indicates the number of program tasks. The pmarray command sets the
number of task rows displayed in the Array equal to the value of
MP_PROCS. When you invoke poe, you may override MP_PROCS using
the -procs flag. The Array will then redisplay showing the new number of
rows.

MP_USRPORT
Indicates the port id used by the Partition Manager to connect to the Array.
By default, the Partition Manager connects to the Array using a socket
assigned to port 9999. If you get an error message indicating that the port
is in use, specify a different port. Standard TCP/IP practice suggests using
ports greater than 5000 and less than 10000.

Examples
To start the Program Marker Array program as a background process, and open its
window, enter:

pmarray

268 z/OS UNIX System Services PE: Operation and Use

pmarray &

Files
/usr/lib/x11/app-defaults/PMarray (Xdefaults file)

/samples/pe/marker/PMarray.ad (sample Xdefaults file)

Related Information
Subroutines: mpc_marker, mpc_nlights.

pmarray

Appendix A. Parallel Environment commands 269

poe

Purpose
poe – Invokes the Parallel Operating Environment (POE) for loading and executing
programs on remote processor nodes.

Format

poe

�� poe
program program_options

flags ��

flags:

-euilibpath path_specifier -hostfile name
-hfile

�

�
-procs size -pulse interval -resd no

yes

�

�
-rmpool env -savehostfile name -wlm_enclave no

yes

�

�
-cmdfile file -newjob no

yes
-pgmmodel spmd

mpmd

�

�
-labelio no

yes
-stdinmode all

none
task ID

�

�
-stdoutmode unordered

ordered
task ID

-infolevel depth
-ilevel

�

�
-pmdlog no

yes
-buffer_mem size -css_interrupt no

yes

�

�
-eager_limit size -intrdelay delay_parameter

�

poe

270 z/OS UNIX System Services PE: Operation and Use

�
-ionodefile io_node_file_name -max_typedepth mdepth

�

�
-polling_interval interval size -shared_memory no

yes

�

�
-single_thread no

yes
-thread_stacksize size

�

�
-use_flow_control yes

no
-wait_mode sleep

poll
yield

�

�
-euidevelop no

yes
deb
min
nor

-pmlights number of lights
�

�
-promptpw no

yes
-tmpdir directory name -usrport port ID

�

�
fence string additional options

-h

The poe command invokes the Parallel Operating Environment for loading and
executing programs on remote processor nodes. The operation of POE is influenced
by a number of POE environment variables. The flag options on this command are
each used to temporarily override one of these environment variables. User
program_options can be freely interspersed with the flag options. If no program is
specified, POE will either prompt you for programs to load, or, if the
MP_CMDFILE environment variable is set, will load the partition using the
specified commands file.

The poe command requires a password. When you run poe interactively as a
command, you are prompted for a password.

When poe is called from a program, the program must present the password to
poe using an unnamed pipe. See “STDIN/STDOUT piping example” on page 69
for an example. You can use the command flag -promptpw to override the default
password retrieval mechanism.

Flags
The flags you can specify on this command are used to temporarily override POE
environment variables. For more information on valid values, and on what a

poe

Appendix A. Parallel Environment commands 271

particular flag sets, refer to the description of its associated environment variable
in the Environment variables section. The following flags are grouped by function.

The following Partition Manager control flags override the associated environment
variables.
-euilibpath

MP_EUILIBPATH
-hostfile or -hfile

MP_HOSTFILE
-procs

MP_PROCS
-pulse

MP_PULSE
-resd

MP_RESD
-rmpool

MP_RMPOOL
-savehostfile

MP_SAVEHOSTFILE
-wlm_enclave

MP_WLM_ENCLAVE

The following Job Specification flags override the associated environment variables.
-cmdfile

MP_CMDFILE
-newjob

MP_NEWJOB
-pgmmodel

MP_PGMMODEL

The following I/O control flags override the associated environment variables.
-labelio

MP_LABELIO
-stdinmode

MP_STDINMODE
-stdoutmode

MP_STDOUTMODE

The following generation of diagnostic information flags override the associated
environment variables.
-infolevel or -ilevel

MP_INFOLEVEL
-pmdlog

MP_PMDLOG

The following Message Passing flags override the associated environment
variables.
-buffer_mem

MP_BUFFER_MEM
-css_interrupt

MP_CSS_INTERRUPT
-eager_limit

MP_EAGER_LIMIT
-intrdelay

MP_INTRDELAY

poe

272 z/OS UNIX System Services PE: Operation and Use

-ionodefile
MP_IONODEFILE

-max_typedepth
MP_MAX_TYPEDEPTH

-polling_interval
MP_POLLING_INTERVAL

-shared_memory
MP_SHARED_MEMORY

-single_thread
MP_SINGLE_THREAD

-thread_stacksize
MP_THREAD_STACKSIZE

-use_flow_control
MP_USE_FLOW_CONTROL

-wait_mode
MP_WAIT_MODE

The following miscellaneous flags override the associated environment variables:
-euidevelop

MP_EUIDEVELOP
-pmlights

MP_PMLIGHTS
-tmpdir

MP_TMPDIR
-usrport

MP_USRPORT

The command line flag:

-promptpw
overrides the default password retrieval mechanism. If you specify yes, poe
prompts for the password. If you specify no, poe reads the password from
STDIN, regardless of whether poe is invoked interactively or through a
program.

-h If you specify the flag -h, the manual page for poe is displayed.

Usage
The poe command invokes the Parallel Operating Environment for loading and
executing programs on remote nodes. You can enter it at your home node to:
v load and execute an SPMD program on all nodes of your partition.
v individually load the nodes of your partition with an MPMD job.
v load and execute a series of SPMD and MPMD programs, in individual job

steps, on the same partition.
v run non-parallel programs on remote nodes.

The operation of POE is influenced by a number of POE environment variables.
The flag options on this command are each used to temporarily override one of
these environment variables. User program_options can be freely interspersed with
the flag options, and additional options not to be parsed by POE can be placed after
a fence string defined by the MP_FENCE environment variable. If no program is
specified, POE will either prompt you for programs to load, or, if the
MP_CMDFILE environment variable is set, will load the partition using the
specified commands file.

poe

Appendix A. Parallel Environment commands 273

The environment variables and flags that influence the operation of this command
fall into distinct categories of function. They are:
v Partition Manager control. The environment variables and flags in this category

determine the method of node allocation, message passing mechanism, and the
PULSE monitor function.

v Job specification. The environment variables and flags in this category
determine whether or not the Partition Manager should maintain the partition
for multiple job steps, whether commands should be read from a file or STDIN,
and how the partition should be loaded.

v I/O control. The environment variables and flags in this category determine how
I/O from the parallel tasks should be handled. These environment variables and
flags set the input and output modes, and determine whether or not output is
labeled by task id.

v Generation of diagnostic information. The environment variables and flags in
this category enable you to generate diagnostic information that may be required
by the IBM Support Center in resolving PE-related problems.

v Message Passing Interface. The environment variables and flags in this category
enable you to specify values for tuning message passing applications.

v Miscellaneous. The additional environment variables and flags in this category
enable additional error checking.

System Environment
The environment variable descriptions in this section are grouped by function.

The following environment variables are associated with Partition Manager control.

MP_EUILIBPATH
Determines the path to the message passing and communication subsytem
libraries. This only needs to be set if the libraries are moved. Valid values
are any path specifier. The value of this environment variable can be
overridden using the -euilibpath flag.

MP_HOSTFILE
Determines the name of a host list file for node allocation. Valid values are
any file specifier or ″NULL″ or ″″. If not set, the default is ./host.list in your
current directory. The value of this environment variable can be overridden
using the -hostfile or -hfile flags.

Task allocation is controlled via the pool list and pin list. The pool list
contains all systems to which non-pinned tasks may be automatically
allocated. The pin list contains systems with associated (″pinned″) tasks
which should be explicitely allocated to the respective systems.

If MP_HOSTFILE is set to ″NULL″ or ″″ the pool list contains all systems
in the sysplex (possibly constrained by MP_RMPOOL) and the pin list is
empty. Otherwise the host list file specifies both the pin list and the pool
list.

Host list files entries are lines containing a system name possibly followed
by a list of task numbers separated by blanks. The systems in a host list
file not followed by task numbers make up the pool list. The systems in
the host list file followed by at least one task number make up the pin list.
The system names used in the host list file are either TCP host names or
MVS system names. If MP_RESD is set to yes, MVS host names must be
used.

poe

274 z/OS UNIX System Services PE: Operation and Use

MP_PROCS
Determines the number of program tasks. Valid values are any number
from 1 to 512. If not set, the default is 1. The value of this environment
variable can be overridden using the -procs flag.

MP_PULSE
The interval (in seconds) at which POE checks the remote nodes to ensure
that they are communicating with the home node. The default interval is
600 seconds (10 minutes). To disable the pulse function, specify an interval
of 0 (zero) seconds. The pulse function is automatically disabled when
running the pdbx and pedb debuggers (see “Chapter 10. Using the pdbx
debugger” on page 93 and “Chapter 11. Using the pedb debugger” on
page 127). You can override the value of this environment variable with the
-pulse flag.

MP_REMOTEDIR
Specifies the name of the current directory to be used on the remote nodes.
By default, the current directory is the directory on the home node at the
time POE is run.

MP_RESD
Determines the automated node selection scheme that maps task numbers
to systems in the pool list. The content of the pool list can be controlled
with MP_HOSTFILE. Valid values for MP_RESD are either yes or no. If
MP_RESD is set to no , a round robin allocation scheme is used.
MP_RESD defaults to no. The value of this environment variable can be
overridden using the -resd flag.

MP_RMPOOL
You can set this to the name of a WLM scheduling environment. This
causes POE to automatically allocate those nodes from the systems in the
sysplex, which have the resources in the correct state for that environment.
This option is not needed if you want POE to automatically allocate from
all systems in the sysplex, or from the set of systems in the host list file.
MP_RMPOOL is used only if MP_HOSTFILE is explicitly set to an empty
string or ″NULL″. It is ignored otherwise, and there is no default value.
The value of this environment variable can be overridden using the
-rmpool flag.

MP_SAVEHOSTFILE
The name of an output host list file to be generated by the Partition
Manager. Valid values are any relative or absolute path name. The value of
this environment variable can be overridden using the -savehostfile flag.

MP_TIMEOUT
Controls the length of time POE waits before abandoning an attempt to
connect to the remote nodes. The default is 150 seconds. MP_TIMEOUT
also changes the length of time the communication subsystem will wait for
a connection to be established during message passing initialization.

MP_WLM_ENCLAVE
Determines whether a Workload Manager (WLM) Multi-System enclave
will be used. Valid values are yes and no. If MP_WLM_ENCLAVE is set to
yes all tasks of the parallel program belong to the same WLM
multi-system enclave. This option can only be used on a Parallel Sysplex. If
not set, the default is no. The environment variable can be overridden
using the -wlm_enclave flag.

The following environment variables are associated with Job Specification.

poe

Appendix A. Parallel Environment commands 275

MP_CMDFILE
Determines the name of a POE commands file that is used to load the
nodes of your partition. If set, POE will read the commands file rather than
STDIN. Valid values are any file specifier. The value of this environment
variable can be overridden using the -cmdfile flag.

MP_NEWJOB
Determines whether or not the Partition Manager maintains your partition
for multiple job steps. Valid values are yes or no. If not set, the default is
no. The value of this environment variable can be overridden using the
-newjob flag.

MP_PGMMODEL
Determines the programming model you are using. Valid values are spmd
or mpmd. If not set, the default is spmd. The value of this environment
variable can be overridden using the -pgmmodel flag.

The following environment variables are associated with I/O Control.

MP_LABELIO
Determines whether or not output from the parallel tasks is labeled by task
id. Valid values are yes or no. If not set, the default is no. The value of this
environment variable can be overridden using the -labelio flag.

MP_STDINMODE
Determines the input mode – how STDIN is managed for the parallel
tasks. Valid values are:

all all tasks receive the same input data from STDIN.

none no tasks receive input data from STDIN; STDIN will be used by
the home node only.

n STDIN is only sent to the task identified (n).

If not set, the default is all. The value of this environment variable can be
overridden using the -stdinmode flag.

MP_HOLD_STDIN
Determines whether or not sending of STDIN from the home node to the
remote nodes is deferred until the message passing partition has been
established. Valid values are yes or no. If not set, the default is no.

MP_STDOUTMODE
Determines the output mode – how STDOUT is handled by the parallel
tasks. Valid values are:

unordered
all tasks write output data to STDOUT asynchronously.

ordered
output data from each parallel task is written to its own buffer.
Later, all buffers are flushed, in task order, to STDOUT.

a task id
only the task indicated writes output data to STDOUT.

If not set, the default is unordered. The value of this environment variable
can be overridden using the -stdoutmode flag.

The following environment variables are associated with the generation of
diagnostic information.

poe

276 z/OS UNIX System Services PE: Operation and Use

MP_INFOLEVEL
Determines the level of message reporting. Valid values are:

0 error

1 warning and error

2 informational, warning, and error

3 informational, warning, and error. Also reports diagnostic messages
for use by the IBM Support Center.

4, 5, 6 Informational, warning, and error. Also reports high- and low-level
diagnostic messages for use by the IBM Support Center.

If not set, the default is 1 (warning and error). The value of this
environment variable can be overridden using the -infolevel or -ilevel
flags.

MP_PMDLOG
Determines whether or not diagnostic messages should be logged to a file
in /tmp on each of the remote nodes. Typically, this environment
variable/command-line flag is only used under the direction of the IBM
Support Center in resolving a PE for z/OS related problem. Valid values
are yes or no. If not set, the default is no. The value of this environment
variable can be overridden using the -pmdlog flag.

MP_PMDSUFFIX
Determines a string to be appended to the normal tcp service. The normal
tcp service specified in /etc/services is named pmv2. By setting
MP_PMDSUFFIX, you can append a string to pmv2. If MP_PMDSUFFIX
is set to abc, for example, then the service requested in /etc/services is
pmv2abc. This permits testing of alternate versions of the Partition Manager
Daemon. Typically, this environment variable is only used under the
direction of the IBM Support Center in resolving a PE for z/OS related
problem. Valid values are any string. This environment variable has no
associated command-line flag. In addition this variable can be used to run
pmds from other releases in a multi release environment.

The following environment variables are associated with the Message Passing
Interface.

MP_BUFFER_MEM
Changes the maximum size of memory used by the communication
subsystem to buffer early arrivals. The default is 2.8 megabytes. The value
of this environment variable can be overridden using the -buffer_mem
flag.

MP_CSS_INTERRUPT
Determines whether or not arriving message packets cause interrupts. This
may provide better performance for certain applications. Valid values are
yes and no. If not set, the default is no. The value of this environment
variable can be overridden using the -css_interrupt flag.

MP_EAGER_LIMIT
Changes the threshold value for message size, above which rendezvous
protocol is used.Valid values are integers less than or equal to 65535. The
value of this environment variable can be overridden using the
-eager_limit flag.

poe

Appendix A. Parallel Environment commands 277

MP_INTRDELAY
Allows user programs to tune the delay parameter without having to
recompile existing applications. Valid values are integers greater than or
equal to 0. The value of this environment variable can be overridden using
the -intrdelay flag.

MP_IONODEFILE
The name of a parallel I/O node file — a text file that lists the nodes that
should be handling parallel I/O. This enables you to limit the number of
nodes that participate in parallel I/O, guarantee that all I/O operations are
performed on the same node, and so on. Valid values are any relative or
full path name. If not specified, all nodes will participate in parallel I/O
operations. The value of this environment variable can be overridden using
the -ionodefile command-line flag.

MP_MAX_TYPEDEPTH
Changes the maximum depth of message buffer types. Valid values are
positive integers. The value of this environment variable can be overridden
using the -max_typedepth flag.

MP_POLLING_INTERVAL
Specifies the interval (in microseconds) POE waits between polling for data
in case a blocked thread or task is waiting and MP_WAIT_MODE=poll.
The default is 180,000 and the maximum value used by poe is
approximately 2000 seconds. The value of this environment variable can be
overridden using the -polling_interval flag.

MP_SHARED_MEMORY
Determines whether or not tasks running on the same node should use
shared memory for message passing (instead of UDP). Valid values are yes
or no. If not set the default is no. The value of this environment variable
can be overridden using the -shared_memory flag.

MP_SINGLE_THREAD
Avoids mutex lock overheads in a single threaded program. This is an
optimization flag, with values of no and yes. The default value is no,
which means that multiple user message passing threads are assumed.

Note: MPI-IO cannot be used if this is set to YES. Results are undefined if
this is YES, with multiple message passing threads in use.

The value of this environment variable can be overridden using the
-single_thread flag.

MP_THREAD_STACKSIZE
Determines the additional stacksize allocated for user programs executing
on an MPI service thread. If you allocate insufficient space, the program
may encounter a SIGSEGV exception. See “Chapter 8. Programming
considerations for user applications in POE” on page 63 for more details.
The default is 0 (No addition to the minimum). The value of this
environment variable can be overridden using the -thread_stacksize flag.

MP_USE_FLOW_CONTROL
Throttles sender before the number of outstanding eager send messages
can overflow the early arrival buffer at a destination. Flow control insures
that programs with weak synchronization and aggressive use of small
messages will never overflow early arrival buffers. Most MPI programs
may be run without flow control if that improves performance but without
flow control certain programs may ocassionally fail with an ″out of

poe

278 z/OS UNIX System Services PE: Operation and Use

memory″ error. Possible values are yes and no. The default value is yes.
The value of this environment variable can be overridden using the
-use_flow_control flag.

MP_WAIT_MODE
Determines how a thread or task behaves when it discovers that it is
blocked, waiting for a message to arrive. Values are poll, yield, and sleep.
The default mode is sleep. The value of this environment variable can be
overridden using the -wait_mode flag.

The following are miscellaneous environment variables:

MP_EUIDEVELOP
Determines whether or not the Message Passing Interface performs more
detailed checking during execution. This additional checking is intended
for developing applications, and can significantly slow performance. Valid
values are yes or no, deb (for “debug”), nor (for “normal”), and min (for
“minimum”). If not set, the default is no. The value of this environment
variable can be overridden using the -euidevelop flag.

MP_FENCE
Determines a fence string to be used for separating options you want
parsed by POE from those you do not. Valid values are any string, and
there is no default. Once set, you can then use the fence string followed by
additional options on the poe command line. The additional options will not
be parsed by POE. This environment variable has no associated
command-line flag.

MP_NOARGLIST
Determines whether or not POE ignores the argument list. Valid values are
yes and no. If set to yes, POE will not attempt to remove POE
command-line flags before passing the argument list to the user’s program.
This environment variable has no associated command-line flag.

MP_PMLIGHTS
Indicates the number of lights displayed per row on the Program Marker
Array. The value of this environment variable can be overridden using the
-pmlights flag.

MP_TMPDIR
The temporary directory to which the debug log file is written if
MP_DEBUG_LOG is set. pedb also uses this as the location for some
work files. The default value is /tmp. The value of this environment
variable can be overridden using the -tmpdir flag.

MP_USRPORT
Indicates the port id used by the Partition Manager to connect to the
Program Marker Array. By default, the Partition Manager connects to the
Array using a socket assigned to port 9999. If you get an error message
indicating that the port is in use, specify a different port. Standard TCP/IP
practice suggests using ports greater than 5000 and less than 10000. The
value of this environment variable can be overridden using the -usrport
flag.

Examples
1. Assume the MP_PGMMODEL environment variable is set to spmd, and

MP_PROCS is set to 6. To load and execute the SPMD program sample on the
six remote nodes of your partition, enter:
poe sample

poe

Appendix A. Parallel Environment commands 279

2. Assume that you have an MPMD application consisting of two programs –
master and workers. These programs are designed to run together and
communicate via calls to message passing subroutines. The program master is
designed to run on one processor node. The workers program is designed to run
as separate tasks on any number of other nodes. The MP_PGMMODEL
environment variable is set to mpmd, and MP_PROCS is set to 6. To
individually load the six remote nodes with your MPMD application, enter:
poe

Once the partition is established, the poe command responds with the prompt:
0:host1_name>

To load the master program as task 0 on host1_name, enter:
master

The poe command responds with a prompt for the next node to be loaded (e.g.
workers). When you have loaded the last node of your partition, the poe
command begins execution.

3. Assume that you want to run three SPMD programs – setup, computation, and
cleanup – as job steps on the same partition of nodes. The MP_PGMMODEL
environment variable is set to spmd, and MP_NEWJOB is set to yes. You enter:
poe

Once the partition is established, the poe command responds with the prompt:
Enter program name (or quit):

To load the program setup, enter:
setup

The program setup executes on all nodes of your partition. When execution
completes, the poe command again prompts you for a program name. Enter the
program names in turn. To release the partition, enter:
quit

4. To check the process status (using the non-parallel command ps) for all remote
nodes in your partition, enter:
poe ps

Files
host.list (Default host list file)

Related Information
commands mpcc, mpCC, pdbx, pedb, pmarray

poe

280 z/OS UNIX System Services PE: Operation and Use

poekill

Purpose
poekill – terminates all remote tasks for a given program.

Format

�� poe poekill program name
poe options

��

�� poekill program name ��

poekill is a shell script that searches for the existence of running programs owned
by the user, and terminates them via SIGTERM signals. Only programs are
searched which are named program name or the name containing the term
program name . If run under poe, poekill uses the standard POE mechanism for
identifying the set of remote nodes (host.list).

If called directly poekill terminates all running programs on the local node. If such
program exist and the communication infrastructure is complete, this will
terminate the whole partition.

Flags
Standard POE flags apply for poe poekill.

Usage
poekill determines the user ID of the user that submitted the command. It then
uses the ID to obtain a list of active processes, which is filtered by the program
name argument into a scratch file in /tmp. The file is processed by an awk script
that sends a SIGTERM signal to each process in the list, and echoes the action back
to the user. The scratch file is then erased, and the script exits with code of 0.

If you do not provide a program name, an error message is printed and the script
exits with a code of 1.

The program name can be a substring of the program name of the program to be
killed.

Note: Termination initiated by poe poekill runs concurrently with the termination
process within the partition of the parallel program. This may result in error
messages issued by kill. These error messages may be ignored.

Related Information
commands poe, kill

poekill

Appendix A. Parallel Environment commands 281

poekill

282 z/OS UNIX System Services PE: Operation and Use

Appendix B. POE environment variables and command-line
flags

This appendix contains tables which summarize the environment variables and
command-line flags discussed throughout this book. You can set these variables
and flags to influence the execution of parallel programs, and the operation of
certain tools. The command-line flags temporarily override their associated
environment variable. The tables divide the environment variables and flags by
function.
v Table 11 on page 284 summarizes the environment variables and flags for

controlling the Partition Manager. These environment variables and flags enable
you to specify such things as an input or output host list file, and the method of
node allocation. For a complete description of the variables and flags
summarized in this table, see “Chapter 4. Executing parallel programs” on
page 15.

v Table 12 on page 285 summarizes the environment variables and flags for job
specifications. These environment variables and flags determine whether or not
the Partition Manager should maintain the partition for multiple job steps,
whether commands should be read from a file or STDIN, and how the partition
should be loaded. For a complete description of the variables and flags
summarized in this table, see “Chapter 4. Executing parallel programs” on
page 15.

v Table 13 on page 286 summarizes the environment variables and flags for
determining how I/O from the parallel tasks should be handled. These
environment variables and flags set the input and output modes, and determine
whether or not output is labeled by task id. For a complete description of the
variables and flags summarized in this table, see “Managing standard input,
output, and error” on page 32.

v Table 14 on page 287 summarizes the environment variables and flags for
collecting diagnostic information. These environment variables and flags enable
you to generate diagnostic information that may be required by the IBM Support
Center in resolving PE related problems.

v Table 15 on page 289 summarizes the environment variables and flags for the
Message Passing Interface. These environment variables and flags allow you to
change message and memory sizes, as well as other message passing
information.

v Table 16 on page 290 summarizes some miscellaneous environment variables and
flags.

You can use the POE command-line flags on the poe, pdbx, and pedb command.
You can also use some of these flags on program names when individually loading
nodes from STDIN or a POE commands file. The flags are:
v -infolevel or -ilevel
v -euidevelop

© Copyright IBM Corp. 1997, 2001 283

Table 11. POE environment variables and command-line flags for Partition Manager control

The environment
variable and
command-line flag(s):

Set: Possible values: Default:

MP_EUILIBPATH

-euilibpath

The path to the message passing and
communication subsystem.

Any path specifier none

MP_HOSTFILE

-hostfile
-hfile

The name of a host list file for node
allocation. ″NULL″ or ″″ (empty string) if
no host list file should be used.

v Any file specifier
or

v the word NULL
or

v an empty string (″ ″)

./host.list in the
current directory.

MP_PROCS

-procs

The number of program tasks. Any number from 1 to 512. 1

MP_PULSE

-pulse

The interval (in seconds) at which POE
checks the remote nodes to ensure that
they are actively communicating with the
home node.

An integer greater than or
equal to 0.

600

MP_REMOTEDIR

(no associated
command-line flag)

Specifies the name of the current
directory to be used on the remote
nodes. By default, the current directory is
the directory on the home node at the
time POE is run.

Any valid directory
specifier

None

MP_RESD

-resd

Whether or not the Workload Manager
should automatically allocate nodes. If
set to ’yes’, WLM is used for automatic
task allocation. If set to ’no’, Round
Robin automatic task allocation is used.

yes
no

no

MP_RMPOOL

-rmpool

The name of the WLM scheduling
environment that should be used for
non-specific node allocation. The setting
of this environment variable is ignored if
MP_HOSTFILE is not ″NULL″ nor ″″
(empty string).

A WLM scheduling
environment name.

None

MP_SAVEHOSTFILE

-savehostfile

The name of an output host list file to be
generated by the Partition Manager.

Any relative or full path
name.

None

MP_TIMEOUT

(no associated
command-line flag)

The length of time that POE waits before
abandoning an attempt to connect to the
remote nodes.

Any number greater than 0. 150 seconds

MP_WLM_ENCLAVE

-wlm_enclave

Whether or not the parallel job should
run in a WLM Multi-System enclave.

yes
no

no

284 z/OS UNIX System Services PE: Operation and Use

Table 12. POE environment variables and command-line flags for job specification

The environment
variable and
command-line flag(s):

Set: Possible values: Default:

MP_CMDFILE

-cmdfile

The name of a POE commands file used
to load the nodes of your partition. If set,
POE will read the commands file rather
than STDIN.

Any file specifier. None

MP_NEWJOB

-newjob

Whether or not the Partition Manager
maintains your partition for multiple job
steps.

yes
no

no

MP_PGMMODEL

-pgmmodel

Determines the programming model you
are using.

spmd
mpmd

spmd

Appendix B. POE environment variables and command-line flags 285

Table 13. POE environment variables and command-line flags for I/O control

The environment
variable and
command-line flag(s):

Set: Possible values: Default:

MP_LABELIO

-labelio

Whether or not output from the parallel
tasks is labeled by task id.

yes
no

no

MP_STDINMODE

-stdinmode

The input mode. This determines how
input is managed for the parallel tasks. all All tasks receive

the same input
data from STDIN.

none No tasks receive
input data from
STDIN; STDIN
will be used by the
home node only.

a task id
STDIN is only sent
to the task
identified.

all

MP_HOLD_STDIN

(no associated
command-line flag)

Whether or not sending of STDIN from
the home node to the remote nodes is
deferred until the message passing
partition has been established.

yes
Any other value defaults
to no

no

MP_STDOUTMODE

-stdoutmode

The output mode. This determines how
STDOUT is handled by the parallel tasks.

One of the following:

unordered
all tasks write
output data to
STDOUT
asynchronously.

ordered output data from
each parallel task
is written to its
own buffer. Later,
all buffers are
flushed, in task
order, to STDOUT.

a task id
only the task
indicated writes
output data to
STDOUT.

unordered

286 z/OS UNIX System Services PE: Operation and Use

Table 14. POE environment variables and command-line flags for diagnostic information

The environment variable
and command-line flag(s):

Set: Possible values: Default:

MP_INFOLEVEL

-infolevel
-ilevel

The level of message reporting. One of the following
integers:

0 error

1 warning and error

2 informational,
warning, and error

3 informational,
warning, and
error. Also reports
high-level
diagnostic
messages for use
by the IBM
Support Center.

4, 5, 6 informational,
warning, and
error. Also reports
high- and
low-level
diagnostic
messages for use
by the IBM
Support Center.

1

MP_DEBUG_LOG

(no associated
command-line flag)

The level of diagnostic messages written
to $MP_TMPDIR/debug_log.pid.taskid.
Typically, this environment variable is
only used under the direction of the IBM
Support Center in resolving a PE-related
problem.
Note: MP_DEBUG_LOG is only valid
for pedb.

0 - 4 0

MP_DEBUG_INITIAL_STOP

(no associated
command-line flag)

The initial breakpoint in the application
where pdbx or pedb will get control.

One of the following:
“filename”:line_number
function_name

The first
executable
source line in
the main
routine.

MP_PMDLOG

-pmdlog

Whether or not diagnostic messages
should be logged to a file in /tmp on
each of the remote nodes. Typically, this
environment variable/command-line flag
is only used under the direction of the
IBM Support Center in resolving a
PE-related problem.

One of the following:
yes
no

no

Appendix B. POE environment variables and command-line flags 287

Table 14. POE environment variables and command-line flags for diagnostic information (continued)

The environment variable
and command-line flag(s):

Set: Possible values: Default:

MP_PMDSUFFIX

(no associated
command-line flag)

A string to be appended to the normal
tcp service. The normal tcp service
specified in /etc/services is named pmv2.
By setting MP_PMDSUFFIX, you can
append a string to pmv2. If
MP_PMDSUFFIX is set to abc, for
example, then the service requested in
/etc/services is pmv2abc. This permits
testing of alternate versions of the
Partition Manager Daemon. Typically,
this environment variable is only used
under the direction of the IBM Support
Center in resolving a PE-related problem.
In addition this variable can be used to
run pmds of other releases in a
multi-release environment. See 277.

any string None

288 z/OS UNIX System Services PE: Operation and Use

Table 15. POE environment variables and command-line flags for Message Passing Interface (MPI)

The environment variable
and command-line flag(s):

Set: Possible values: Default:

MP_BUFFER_MEM

-buffer_mem

To change the maximum size of memory
used by the communication subsystem to
buffer early arrivals.

An integer less than or
equal to 64 MB.

2,800,000 bytes

MP_CSS_INTERRUPT

-css_interrupt

To determine whether arriving message
packets cause interrupts.

One of the following:
yes
no

no

MP_EAGER_LIMIT

-eager_limit

To change the threshold value for message
size, above which rendezvous protocol is
used.

To ensure that at least 32 messages can be
outstanding between any 2 tasks,
MP_EAGER_LIMIT will be adjusted
based on the number of tasks according to
the following table (when
MP_EAGER_LIMIT and
MP_BUFFER_MEM have not been set by
the user):

Number of Tasks MP_EAGER_LIMIT
=============== ==============

1 - 16 4096
17 - 32 2048
33 - 64 1024
65 - 128 512
129 - 256 256
257 - 512 128

An integer less than or
equal to 65535.

128 byte to
4KB

MP_INTRDELAY

-intrdelay

To tune the delay parameter without
recompiling existing applications.

An integer greater than or
equal to 0.

35

MP_IONODEFILE

-ionodefile

To limit the number of nodes that
participate in parallel I/O.

v relative pathname

v full pathname

none

MP_MAX_TYPEDEPTH

-max_typedepth

To change the maximum depth of
message buffer types.

An integer greater than or
equal to 1.

5

MP_POLLING_INTERVAL

-polling_interval

Specifies the interval (in microseconds)
POE waits between polling for data in
case a blocked thread or task is waiting
and MP_WAIT_MODE=poll.

A value between 0
(periodic polling is turned
off) and 2,000,000,000 (2000
seconds)

180,000

MP_SHARED_MEMORY

-shared_memory

To determine whether tasks running on
the same node use shared memory.

yes

no

no

MP_SINGLE_THREAD

-single_thread

To avoid mutex lock overheads in a
program which is known to be single
threaded.

no
yes

no

Appendix B. POE environment variables and command-line flags 289

Table 15. POE environment variables and command-line flags for Message Passing Interface (MPI) (continued)

The environment variable
and command-line flag(s):

Set: Possible values: Default:

MP_THREAD_STACKSIZE

-thread_stacksize

To specify the additional stacksize
allocated for user programs executing on
an MPI service thread. If you allocate
insufficient space, the program may
encounter a SIGSEGV exception.

nnnnn or nnnK or nnM
(where K=1024 bytes and

M=1024*1024 bytes)

None

MP_USE_FLOW_CONTROL

-use_flow_control

To limit the maximum number of
outstanding messages posted by a sender.

yes
no

yes

MP_WAIT_MODE

-use_wait_mode

To specify how a thread or task behaves
when it discovers it is blocked, waiting
for a message to arrive.

poll
yield
sleep

sleep

Table 16. Other POE environment variables and command-line flags

The environment
variable and
command-line flag(s):

Set: Possible values: Default:

MP_EUIDEVELOP

-euidevelop

Whether or not the Message Passing
Interface performs more detailed checking
during execution. This additional checking
is intended for developing applications,
and can significantly slow performance.
You can also start and stop parameter
checking with deb (for “debug”) and min
(for “minimum”).

yes (for “develop”)
no (for “no checking”)
nor (for “normal”)
deb (for “debug”)
min (for “minimum”)

no

MP_FENCE

(no associated
command-line flag)

A “fence” character string for separating
arguments you want parsed by POE from
those you do not.

Any string. None

MP_NOARGLIST

(no associated
command-line flag)

Whether or not POE ignores the argument
list. If set to yes, POE will not attempt to
remove POE command-line flags before
passing the argument list to the user’s
program.

yes
no

no

MP_PMLIGHTS

-pmlights

The number of lights displayed (per row)
on the Program Marker Array.

An integer greater than or
equal to 0.

0

MP_TMPDIR

-tmpdir

The directory to which diagnostic message
files and temporary work files are written
by the debugger.

Any path specifier /tmp

MP_USRPORT

-usrport

The port id used by the Partition Manager
to connect to the Program Marker Array.

Any positive integer less
than 32767. Standard
TCP/IP practice suggests
using ports greater than
5000 and less than 10000.

9999

290 z/OS UNIX System Services PE: Operation and Use

Appendix C. Command-line flags for Normal or Attach Mode

This appendix lists the poe command-line flags that pdbx and pedb use, indicating
which ones are valid in normal and in attach debugging mode. When starting in
attach mode, the debugger gives a message listing the invalid flags used, and then
exits.

Table 17. Command-line flags for Normal or Attach Mode

Flag Description Normal Mode Attach Mode

-procs number of processors yes no

-tmpdir diagnostic message directory yes yes

-hostfile name of host list file yes no

-hfile name of host list file yes no

-infolevel message reporting level yes yes

-ilevel message reporting level yes yes

-pmlights number of LEDs yes no

-usrport port for API-to-user programmable monitor yes no

-resd directive to use Workload Manager yes no

-euidevelop EUI develop mode yes no

-pmdlog use pmd logfile yes yes

-savehostfile list of hosts from resource manager yes no

-stdoutmode STDOUT mode yes no

-stdinmode STDIN mode yes no

-labelio label output yes yes

-rmpool Workload Manager scheduling environment yes no

-d nesting depth of program blocks yes yes

-I (upper case i) path to search for source files yes yes

-a start in attach mode N/A yes

-wlm_enclave usage of WLM Multi-system enclave yes no

© Copyright IBM Corp. 1997, 2001 291

292 z/OS UNIX System Services PE: Operation and Use

Appendix D. MPI safety

This appendix provides information on creating a safe MPI program. Much of the
information presented here comes from MPI: A Message-Passing Interface Standard,
Version 1.1 available from the University of Tennessee.

Safe MPI coding practices

What is a safe program?
This is a hard question to answer. Many people consider a program to be safe if no
message buffering is required for the program to complete. In a program like this,
you should be able to replace all standard sends with synchronous sends, and the
program will still run correctly. This is considered to be a conservative
programming style, which provides good portability because program completion
doesn’t depend on the amount of available buffer space.

On the flip side, there are many programmers that prefer more flexibility and use
an unsafe style that relies, at least somewhat, on buffering. In such cases, the use of
standard send operations can provide the best compromise between performance
and robustness. Good MPI programs will supply sufficient buffering so that these
programs will not result in deadlock. The buffered send mode can be used for
programs that require more buffering, or in situations where you want more
control. Since buffer overflow conditions are easier to diagnose than deadlock, this
mode can also be used for debugging purposes.

Nonblocking message passing operations can be used to avoid the need for
buffering outgoing messages. This prevents deadlock situations due to a lack of
buffer space, and improves performance by allowing computation and
communication to overlap. It also avoids the overhead that is associated with
allocating buffers and copying messages into buffers.

Some general hints and tips
To ensure that you have a truly MPI-based application, you need to conform to a
few basic rules of point-to-point communication. In this section, we will alert you
to some of the things you need to pay attention to as you create your parallel
program. Note that most of the information in this section was taken from MPI: A
Message Passing Interface Standard , so you may want to refer to this document for
more information (see “Related non-IBM publications” on page 307.

Order
With MPI, it is important to know that messages are non-overtaking; the order of
sends must match the order of receives. Assume a sender sends two messages
(Message 1 and Message 2) in succession, to the same destination, and both match
the same receive. The receive operation will receive Message 1 before Message 2.
Likewise, if a receiver posts two receives (Receive 1 and Receive 2), in succession,
and both are looking for the same message, Receive 1 will receive the message
before Receive 2. Adhering to this rule ensures that sends are always matched with
receives.

If a process in your program has a single thread of execution, then the sends and
receives that occur follow a natural order. However, if a process has multiple

© Copyright IBM Corp. 1997, 2001 293

threads, the various threads may not execute their relative send operations in any
defined order. In this case, the messages can be received in any order.

Here is an example of using non-overtaking messages. Note that the message sent
by the first send must be received by the first receive, and the message sent by the
second send must be received by the second receive.

MPI_Comm_rank(comm,&rank;);
if(rank == 0){

MPI_Bsend(buf1,count,MPI_FLOAT,1,tag,comm);
MPI_Bsend(buf2,count,MPI_FLOAT,1,tag,comm);

}
else{

/* rank == 1 */
MPI_Recv(buf1, count, MPI_FLOAT,0,MPI_ANY_TAG,comm,&status;);
MPI_Recv(buf2, count, MPI_FLOAT,0,tag,comm,&status;);

}

Progress
If two processes initiate two matching sends and receives, at least one of the
operations (the send or the receive) will complete, regardless of other actions that
occur in the system. The send operation will complete unless its matching receive
has already been satisfied by another message, and has itself completed. Likewise,
the receive will complete unless its matching send message is claimed by another
matching receive that was posted at the same destination.

The following example shows two matching pairs that are intertwined in this
manner. Here is what happens:
1. Both processes invoke their first calls.
2. process 0’s first send indicates buffered mode, which means it must complete,

even if there is no matching receive. Since the first receive posted by process 1
does not match, the send message gets copied into buffer space.

3. Next, process 0 posts its second send operation, which matches process 1’s first
receive, and both operations complete.

4. process 1 then posts its second receive, which matches the buffered message, so
both complete.

MPI_Comm_rank(comm,&rank;);
if(rank == 0){

MPI_Bsend(buf1,count,MPI_FLOAT,1,tag1,comm);
MPI_Ssend(buf2,count,MPI_FLOAT,1,tag2,comm);

}
else{

/* rank == 1 */
MPI_Recv(buf1, count, MPI_FLOAT,0,tag2,comm,&status;);
MPI_Recv(buf2, count, MPI_FLOAT,0,tag1,comm,&status;);

}

Fairness
MPI does not guarantee fairness in the way communications are handled, so it is
your responsibility to prevent starvation among the operations in your program.

So what might unfairness look like? An example might be a situation where a send
with a matching receive on another process doesn’t complete because another
message, from a different process, overtakes the receive.

294 z/OS UNIX System Services PE: Operation and Use

Resource limitations
If a lack of resources prevents an MPI call from executing, errors may result.
Pending send and receive operations consume a portion of your system resources.
A good MPI program uses only a small amount of resources for each pending send
and receive, but this buffer space is required for storing messages sent in either
standard or buffered mode when no matching receive is available.

When a buffered send operation cannot complete because of a lack of buffer space,
the resulting error could cause your program to terminate abnormally. On the
other hand, a standard send operation that cannot complete because of a lack of
buffer space will merely block and wait for buffer space to become available or for
the matching receive to be posted. In some situations, this behavior is preferable
because it avoids the error condition that is associated with buffer overflow.

Sometimes a lack of buffer space can lead to deadlock. The program in the
example below will succeed even if no buffer space for data is available.

MPI_Comm_rank(comm,&rank;);
if(rank == 0){

MPI_Send(sendbuf,count,MPI_FLOAT,1,tag,comm);
MPI_Recv(recvbuf,count,MPI_FLOAT,1,tag,comm,&status;);

}
else{

/* rank == 1 */
MPI_Recv(recvbuf, count, MPI_FLOAT,0,tag,comm,&status;);
MPI_Send(sendbuf, count, MPI_FLOAT,0,tag,comm);

}

In this next example, neither process will send until other the process sends first.
As a result, this program will always result in deadlock.

MPI_Comm_rank(comm,&rank;);
if(rank == 0){

MPI_Recv(recvbuf,count,MPI_FLOAT,1,tag,comm,&status;);
MPI_Send(sendbuf,count,MPI_FLOAT,1,tag,comm);

}
else{

/* rank == 1 */
MPI_Recv(recvbuf, count, MPI_FLOAT,0,tag,comm,&status;);
MPI_Send(sendbuf, count, MPI_FLOAT,0,tag,comm);

}

The example below shows how message exchange relies on buffer space. The
message send by each process must be copied out before the send returns and the
receive starts. Consequently, at least one of the two messages sent needs to be
buffered in order for the program to complete. As a result, this program can
execute successfully only if the communication system can buffer at least the
words of data specified by count.
MPI_Comm_rank(comm,&rank;);
if(rank == 0){

MPI_Send(sendbuf,count,MPI_FLOAT,1,tag,comm);
MPI_Recv(recvbuf,count,MPI_FLOAT,1,tag,comm,&status;);

}
else{

/* rank == 1 */
MPI_Send(sendbuf, count, MPI_FLOAT,0,tag,comm);
MPI_Recv(recvbuf, count, MPI_FLOAT,0,tag,comm,&status;);

}

Appendix D. MPI safety 295

When standard send operations are used, deadlock can occur where both processes
are blocked because buffer space is not available. This is also true for synchronous
send operations. For buffered sends, if the required amount of buffer space is not
available, the program won’t complete either, and instead of deadlock, we’ll have
buffer overflow.

296 z/OS UNIX System Services PE: Operation and Use

Appendix E. Copying Parallel Environment Executables in a
Security Environment

In a security environment where the BPX.DAEMON facility class is defined the
programs
v pmd,
v poe (for V2R7 and following releases) and
v pdbx (for V2R7 and following releases)

must be defined as ’program controlled’ to the security manager. In addition poe,
pmd, pdbx and mpcc/mpCC compiled applications (including mcp, mcpgath and
mcpscat) must have the ’share address space’ attribute unset. The HFS extended
attributes for both ’program controlled’ and ’share address space’ get lost during
HFS copies. Therefore these extended attributes must be explicitly set or unset
respectively. The system administrator’s userid must be granted permission to the
BPX.FILEATTR.PROGCTL RACF® profile in order to grant the necessary authority
to set the ’program controlled’ extended attribute bit. The extattr command from
the UNIX System Services shell to label a program as being program controlled.
For example:

extattr +p /mybin/pmd

In case this fails the administrator may have to perform the next two steps to get
permission to the BPX.FILEATTR.PROGCTL RACF profile.
1. Create the BPX.FILEATTR.PROGCTL RACF profile and grant READ

permission to the system programmer’s id.
2. Perform a SETROPTS RACLIST(FACILITY) REFRESH.

To unset the ’share address space’ extended attribute of a program the owner of
the program can use the extattr command from the UNIX System Services shell.
For example:

extattr -s /mybin/mcp

To check the extended attributes of a file, use the command:
ls -E <file>

© Copyright IBM Corp. 1997, 2001 297

298 z/OS UNIX System Services PE: Operation and Use

Appendix F. Migration and Multi-release Compatibility

Parallel Environment Compatibility
The partition manager (poe), the partition manager daemons (pmd) and the MPI
libraries (ppe.dll, libppe.a) of different Parallel Environment releases are
incompatible. Therefore the same release of Parallel Environment must be used on
all systems that participate in running a parallel program with poe. To enable
running a parallel program on systems with different operating system releases
back-level releases of Parallel Environment must be installed on the newer systems.
This support is not part of the default installation of Parallel Environment. This
appendix describes how to set up the Parallel Environment in a way that multiple
versions of PE may coexist on the same system.

Parallel Environment Releases
Since the Parallel Environment is shipped as part of z/OS UNIX System Services,
it may not be obvious whether different systems run different releases of Parallel
Environment. The following table shows the relation between Parallel Environment
releases and OS/390 or z/OS releases.

Table 18. Relation between OS releases, Parallel Environment releases and PTF’s

OS release Parallel Environment
release

Compatibility PTF

OS/390 Version 2 Release 4 Release 1 OW64380

OS/390 Version 2 Release 5 Release 1 OW64381

OS/390 Version 2 Release 6 Release 1 OW64382

OS/390 Version 2 Release 7 Release 2 OW64383

OS/390 Version 2 Release 8 Release 2 OW64384

OS/390 Version 2 Release 9 Release 3 n/a

z/OS Version 1 Release 1 Release 3 n/a

Note: All statements made in the following for OS/390 V2R9 also apply to z/OS
V1R1.

Since publications never mention Parallel Environment release numbers we will
henceforth only refer to OS/390 releases. With regard to the OS/390 Parallel
Environment, OS/390 releases that share the same release of the Parallel
Environment are considered equivalent.

Principles of Multi-release Compatibility
The architecture of Parallel Environment requires that the poe, all pmds and the
MPI libraries (ppe.dll or libppe.dll) are of the same release of Parallel Environment.
Therefore the same Parallel Environment release must be installed on all systems
that participate in the execution of a parallel program. This Parallel Environment
release must be the oldest of all systems participating in the execution of the
parallel program. Henceforth we will call this release the partition release. Note, the
partition release may not be older than the Parallel Environment release used to
build the parallel program. The general idea of a Multi-release Compatibility setup

© Copyright IBM Corp. 1997, 2001 299

is to install the partition release on all newer systems participating in the execution
of a parallel program. This implies that on these newer systems a back-level release
of Parallel Environment must be installed in addition to the release available with
the standard OS/390 installation. Once common (back-level) releases of Parallel
Environment are installed on a set of systems the user can control which release of
Parallel Environment shall execute a parallel program by setting the environment
variables PATH, MP_PMDSUFFIX and MP_EUILIBPATH appropriately. Note, a
precondition to any compatibility solution for PE is that the user (and the
application) adheres to the compatibility guidelines set forth by the Language
Environment® and the C/C++ compilers.

Installing a Back-level Release
To install a back-level release of Parallel Environment on a system the key
components of Parallel Environment of that release must be copied to appropriate
locations in the systems’ HFSes and access to these components must be ensured.
The key components of PE are
v poe,
v pmd and
v ppe.dll.

These installation steps must be performed by a system administrator (UNIX super
user).

Installing a Back-level poe
The releases of Parallel Environment shipped before OS/390 Version 2 Release 9
did not support the coexistence of multiple PE releases on a single system. To fix
this problem the PTFs mentioned in Table 18 on page 299 must be installed first.
Subsequently the (fixed) poe executable from the partition release must be copied
to an appropriate location in the HFSes of the newer releases. As location we
suggest the HFS directory /samples/pe/Rx/bin where Rx denotes the OS/390 release
of the partition release (e.g. R4 or R7). The back-level version of poe must have
read and execution permission for the world. For example set
chmod a+rx /samples/pe/Rx/bin/poe

to grant read and execution permission of /samples/pe/Rx/bin/poe to all users.

See “Appendix E. Copying Parallel Environment Executables in a Security
Environment” on page 297 if the system is running in a security environment.

Installing a Back-level pmd
The pmd executable of the partition release must be copied to an appropriate
location in the HFSes of the newer releases. As location we suggest the HFS
directory /samples/pe/Rx/bin where Rx denotes the OS/390 release of the partition
release (e.g. R4 or R7). The back-level version of pmd must have read and
execution permission for the world. For example set
chmod a+rx /samples/pe/Rx/bin/pmd

to grant read and execution permission of /samples/pe/Rx/bin/pmd to all users.

See “Appendix E. Copying Parallel Environment Executables in a Security
Environment” on page 297 if the system is running in a security environment.

The pmd is started by the internet daemon inetd. Therefore a new service denoting
the partition release of the pmd must be registered on all systems participating in

300 z/OS UNIX System Services PE: Operation and Use

running the parallel program. Such services are defined in /etc/services and
/etc/inetd.conf. For example the administrator may enter the following line to
/etc/services:
pmv2Rx 6128/tcp #POE Partition Manager Daemon for OS/390 Version 2 Release x

The port number chosen (here 6128) must be the same on all systems and it may
not conflict with existing or reserved port numbers. In /etc/inetd.conf the following
line might be added on all newer releases:
pmv2Rx stream tcp nowait OMVSKERN /samples/pe/Rx/bin/pmd pmd

and the following line might be added on systems where the partition release is
installed by default:
pmv2Rx stream tcp nowait OMVSKERN /bin/pmd pmd

After changing these configuration files the inetd must be forced to read them.
This can be done by restarting the inetd or by sending the SIGHUP signal to the
inetd:
kill -HUP <pid of inetd>

Installing a Back-level ppe.dll
The MPI library ppe.dll of the partition release must be copied to an appropriate
location in the HFSes of the newer releases. As location we suggest the HFS
directory /samples/pe/Rx/lib where Rx denotes the OS/390 release of the partition
release (e.g. R4 or R7). The back-level version of ppe.dll must have read and
execution permission for the world. For example
chmod a+rx /samples/pe/Rx/lib/ppe.dll

Running a Back-level Release of Parallel Environment
Once the partition release of Parallel Environment is installed on all systems in a
mixed OS/390 release environment this release can be chosen to run a parallel
program by the user. To do this the following environment variables must be set
appropriately.
1. The PATH environment variable must be set to point to the poe executable of

the partition release.
2. The MP_PMDSUFFIX environment variable must be set to the suffix of the

service calling the pmd of the partition release
3. The MP_EUILIBPATH variable must be set to point to the ppe.dll of the

partition release. poe will concatenate the MP_EUILIBPATH and the LIBPATH
and use the result to link to ppe.dll.

If the partition release has been installed as suggested above this may look as
follows:
export PATH=/samples/pe/Rx/bin:$PATH
export MP_PMDSUFFIX=Rx
export MP_EUILIBPATH=/samples/pe/Rx/lib

Note that these environment variables need only to be set on the system used to
start the parallel program. poe will send these settings to all systems participating
in the execution of the parallel program.

Appendix F. Migration and Multi-release Compatibility 301

Multi-release Compatibility for Statically Linked Programs
If the parallel program is statically linked then the aforementioned set-up must be
modified as follows: for statically linked parallel programs the partition release
must always be equal to the Parallel Environment release used to build the parallel
program.

Servicing Back-level Parallel Environment Releases
Note SMP/E based service to PE can only be applied to the OS/390 release it was
shipped with. Therefore applying service to components of a back-level PE
installation means:
1. Apply SMP/E based service to the OS/390 release from which the back-level

PE release was copied.
2. Copy the affected components from the HFS of the serviced back-level system

to the HFS of the target system.

302 z/OS UNIX System Services PE: Operation and Use

Appendix G. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1997, 2001 303

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schönaicher Str. 220
D-71032 Böblingen
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States, other countries, or both:

IBM
Intelligent Miner
Language Environment
OpenEdition
OS/2
OS/390
Parallel Sysplex
RACF
S/390
z/OS

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Some of the references and quotes herein are from MPI: A Message-Passing Interface
Standard, Version 1.1 by Message Passing Interface Forum, June 6, 1995. Permission
to copy MPI: A Message-Passing Interface Standard, Version 1.1 by Message Passing
Interface Forum, is granted, provided the University of Tennessee copyright notice
and the title of the document appear, and notice is given that copying is by
permission of the University of Tennessee. ® 1993, 1995 University of Tennessee,
Knoxville, Tennessee.

304 z/OS UNIX System Services PE: Operation and Use

Accessing Licensed Books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
www.ibm.com/servers/resourcelink

To access the licensed books:
1. Log on to Resource Link using your Resource Link user ID and password.
2. When prompted, enter the key code.
3. Click on Library.
4. Click on z/OS.
5. Navigate to the licensed documents.

LookAt System for Online Message Lookup
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
the News and Help link or from the z/OS Collection.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following:
lookat cbda100i

This results in direct access to the message explanation for message CBDA100I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For such
messages, LookAt prompts you to choose which book to open.

Appendix G. Notices 305

 http://www.ibm.com/servers/resourcelink
 http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

306 z/OS UNIX System Services PE: Operation and Use

Bibliography

Related publications

Parallel Environment publications
v z/OS UNIX System Services Parallel Environment:

Operation and Use, SA22-7810
v z/OS UNIX System Services Parallel Environment:

MPI Programming and Subroutine Reference,
SA22-7812

Related z/OS publications
v z/OS UNIX System Services Command Reference,

SA22-7802
v z/OS UNIX System Services Messages and Codes,

SA22-7807
v z/OS UNIX System Services Planning, GA22-7800
v z/OS UNIX System Services Programming Tools,

SA22-7805

Related non-IBM publications
v Message Passing Interface Forum: MPI: A

Message-Passing Interface Standard, Version 1.1,
University of Tennessee, Knoxville, Tennessee,
June 6, 1995

v Message Passing Interface Forum: MPI-2:
Extensions to the Message-Passing Interface,
Version 2.0, University of Tennessee, Knoxville,
Tennessee, July 18, 1997

v Almasi, G., Gottlieb, A.: Highly Parallel
Computing, Benjamin-Cummings Publishing
Company, Inc., 1989

v Foster, I.: Designing and Building Parallel
Programs, Adison Wesley, 1995

v Gropp, W., Lusk, E., Skjellum, A.: Using MPI,
The MIT Press, 1994

v Bergmark, D., Pottle, M.: Optimization and
Parallelization of a Commodity Trade Model for the
SP1, Cornell Theory Center, Cornell University,
June, 1994

v Phister, Gregory F.: In Search of Clusters (2nd
ed.), Prentice Hall, 1998

v Snir, M., Otto, S., Huss-Lederman, S., Walker,
D., Dongarra, J.: MPI: The Complete Reference,
The MIT Press, 1996

v Spiegel, Murray R.: Vector Analysis,
McGraw-Hill, 1959

© Copyright IBM Corp. 1997, 2001 307

308 z/OS UNIX System Services PE: Operation and Use

Glossary of terms and abbreviations

This glossary includes terms and definitions from:
v The Dictionary of Computing , New York:

McGraw-Hill, 1994.
v The American National Standard Dictionary for

Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

v The ANSI/EIA Standard - 440A: Fiber Optic
Terminology , copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are
identified by the symbol (E) after the definition.

v The Information Technology Vocabulary developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

This glossary defines technical terms and
abbreviations used in z/OS UNIX System Services
Parallel Environment documentation. If you do not
find the term you are looking for, refer to the
index of the appropriate z/OS UNIX System
Services Parallel Environment manual or view IBM
Dictionary of Computing, available from:
http://www.ibm.com/ibm/terminology.

This glossary includes terms and definitions from:
v Vocabulary for Information Processing, ANSI,

copyright 1970 by American National Standards
Institute (ANSI). It was prepared by
Subcommittee X3K5 on Terminology and
Glossary of the American National Standards
Committee X3. Copies may be purchased from
the American National Standards Institute, 11

West 42nd Street, New York, New York 10036,
USA. Definitions are identified by the symbol
(A) after the definition.

Other definitions in this glossary are taken from
IBM Dictionary of Computing.

A
address. A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

API. Application Programming Interface.

application. The use to which a data processing
system is put; for example, to payroll application, an
airline reservation application.

argument. A parameter passed between a calling
program and a called program or subprogram.

attribute. A named property of an entity.

B
bandwidth. The total available bit rate of a digital
channel.

blocking operation. An operation which does not
complete until the operation either succeeds or fails.
For example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint. A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or
to a specified program.

broadcast operation. A communication operation in
which one processor sends (or broadcasts) a message to
all other processors.

buffer. A portion of storage used to hold input or
output data temporarily.

C
C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

© Copyright IBM Corp. 1997, 2001 309

C++. A general purpose programming language that
is based on C, which includes extensions that support
an object-oriented programming paradigm. Extensions
include:
v strong typing
v data abstraction and encapsulation
v polymorphism through function overloading and

templates
v class inheritance.

client. A function that requests services from a server,
and makes them available to the user.

cluster. A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication. A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective
communication operations. All tasks in a communicator
must participate.

communicator. An MPI object that describes the
communication context and an associated group of
processes.

compatibility mode. A mode of processing, in which
the IEAIPSxx and IEAICSxx parmlib members
determine system resource management. See also goal
mode.

compile. To translate a source program into an
executable program.

condition. One of a set of specified values that a data
item can assume.

core dump. A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file. A file which preserves the state of a
program, usually just before a program is terminated
for an unexpected error. See also core dump.

D
data decomposition. A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating
on each part independently.

data parallelism. Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems.

debugger. A debugger provides an environment in
which you can manually control the execution of a
program. It also provides the ability to display the
program’s data and operation.

domain name. The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
environment variable. 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event. An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

executable. A program that has been link-edited and
therefore can be run in a processor.

execution. To perform the actions specified by a
program or a portion of a program.

expression. In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness. A policy in which tasks, threads, or processes
must be allowed eventual access to a resource for
which they are competing. For example, if multiple
threads are simultaneously seeking a lock, then no set
of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s
fiber optic LAN).

file system. A collection of files and file management
structures on a physical or logical mass storage device.

fileset. 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

310 z/OS UNIX System Services PE: Operation and Use

foreign host. See remote host.

functional decomposition. A method of dividing the
work in a program to exploit parallelism. One divides
the program into independent pieces of functionality
which are distributed to independent processors. This
is in contrast to data decomposition which distributes
the same work over different data to independent
processors.

functional parallelism. Refers to situations where
parallel tasks specialize in particular work.

G
global max. The maximum value across all processors
for a given variable. It is global in the sense that it is
global to the available processors.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

goal mode. A mode of processing where the active
service policy determines system resource management.
See also compatibility mode.

GUI (Graphical User Interface). A type of computer
interface consisting of a visual metaphor of a
real-world scene, often of a desktop. Within that scene
are icons, representing actual objects, that the user can
access and manipulate with a pointing device.

H
home node. The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file. A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name. The name used to uniquely identify any
computer on a network.

hot spot. A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks, preventing
many other processors from having it, thereby forcing
them to become idle.

I
IBM Parallel Environment for z/OS. A licensed
program that provides an execution and development
environment for parallel C or C++ programs. It
supports the Parallel Intelligent Miner™ for z/OS.

InfoExplorer. A program that displays hypertext and
allows navigation within it.

Internet. The collection of worldwide networks and
gateways which function as a single, cooperative
virtual network.

Internet Protocol (IP). A protocol that defines how
information gets passed between systems in a network.
It is used to route data from its source to its destination
in an Internet environment.

IP. See Internet Protocol.

K
kernel. The core portion of the UNIX operating
system which controls the resources of the CPU and
allocates them to the users. The kernel is
memory-resident, is said to run in kernel mode (in other
words, at higher execution priority level than user
mode) and is protected from user tampering by the
hardware.

L
latency. The time interval between the instant at
which an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

local variable. A variable that is defined and used
only in one specified portion of a computer program.

loop unrolling. A program transformation which
makes multiple copies of the body of a loop, placing
the copies also within the body of the loop. The loop
trip count and index are adjusted appropriately so the
new loop computes the same values as the original.
This transformation makes it possible for a compiler to
take additional advantage of instruction pipelining,
data cache effects, and software pipelining.

See also optimization.

M
menu. A list of options displayed to the user by a
data processing system, from which the user can select
an action to be initiated.

Glossary of terms and abbreviations 311

message catalog. A file created using the Message
Facility from a message source file that contains
application error and other messages, which can later
be translated into other languages without having to
recompile the application source code.

message passing. Refers to the process by which
parallel tasks explicitly exchange program data.

MPMD (Multiple Program Multiple Data). A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N
network. An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit
data to and receive data from other systems and users.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
a sysplex, or systems connected through a network, a
single location or workstation in a network.

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation. An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code. The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization. A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag. Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command-line options.

P
parallelism. The degree to which parts of a program
may be concurrently executed.

parallelize. To convert a serial program for parallel
execution.

Parallel Operating Environment (POE). An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter. (1) An item in a menu for which the
operator specifies a value or for which the system
provides a value when the menu is interpreted. (2) A
name in a procedure that is used to refer to an
argument that is passed to the procedure. (3) A
particular piece of information that a system or
application program needs to process a request.

Partition Manager. The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard
error (STDERR).

PE. The Parallel Environment program product.

performance monitor. A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

point-to-point communication. A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure. (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process. A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process’s state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

312 z/OS UNIX System Services PE: Operation and Use

The process is created via a fork() system call and ends
using an exit() system call. Between fork and exit, the
process is known to the system by a unique process
identifier (pid).

Each process has its own virtual memory space and
cannot access another process’s memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

profiling. The act of determining how much CPU
time is used by each function or subroutine in a
program. The histogram or table produced is called the
execution profile.

program marker array. An X-Windows run time
monitor tool provided with the Parallel Operating
Environment used to provide immediate visual
feedback on a program’s execution.

R
reduction operation. An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host. Any host on a network except the one at
which a particular operator is working.

S
shell script. A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a
terminal.

segmentation fault. A system-detected error, usually
caused by referencing an invalid memory address.

server. A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

source line. A line of source code.

source code. The input to a compiler or assembler,
written in a source language. Contrast with object code.

SPMD (Single Program Multiple Data). A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN). In the Parallel Operating
Environment for z/OS system, the primary source of
data entered into a command. Standard input comes
from the keyboard unless redirection or piping is used,
in which case standard input can be from a file or the
output from another command.

standard output (STDOUT). In the Parallel Operating
Environment for z/OS system, the primary destination
of data produced by a command. Standard output goes
to the display unless redirection or piping is used, in
which case standard output can go to a file or to
another command.

subroutine. (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in
a computer program. (3) A group of instructions that
can be part of another routine or can be called by
another program or routine.

synchronization. The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

T
task. A unit of computation analogous to a UNIX
process.

U
User Datagram Protocol (UDP). A communications
protocol that offers limited service for messages
exchange between applications in a network which
uses the Internet Protocol (IP). It neither adds
reliability, flow control nor error recovery to IP.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that
may issue or receive commands and message to or
from the information processing system.

utility program. A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the
processes of a computer; for example, an input routine.

V
variable. (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose
value can be changed, while the program is running,
by referring to the name of the variable.

Glossary of terms and abbreviations 313

view. (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

W
workload. A group of work to be tracked, managed,
and reported as a unit. Also, a group of service classes.

workload management mode. The mode in which
workload management manages system resources on
an MVS image. The mode can be either compatibility
mode, or goal mode.

314 z/OS UNIX System Services PE: Operation and Use

Index

Special Characters
-hostfile option 14
-infolevel option 11
-infolevel option, -ilevel option 14
-labelio option 8, 14
-pmdlog option 14
-procs option 13
-stdoutmode option 9, 14

A
access, to nodes 4
address, IP 100
administration, PE 3
aliases

creating, removing, and listing with
pdbx 121

allocation of nodes, specific and
automatic 18

application
parallelizing the application 1

Application Message Queues
window 170

application programming interface (API)
mpc_disableintr() 43
mpc_enableintr() 44
mpc_queryintr() 43
mpc_queryintrdelay() 43
mpc_setintrdelay(int val) 43

area in pedb
break/trace area 139
global data area 139
local data area 139
stack data area 139
task area 139
threads area 139

argument
command-line arguments for

pedb 133
condition 111
ignoring argument list within

POE 32
ignoring within POE 31
procedure 111
source_line 111
string 68

arithmetic operations 122
asynchronous interrupts support 41
Attach Dialog window 82
Attach screen, pdbx debugger 100
attaching the debugger 81

_BPX_PTRACE_ATTACH 81
Attach Dialog window 82
Global data window 85
pedb main window 83
problems 87

automatic node allocation 18, 21
automatic node allocation, example 23

B
back-level release 300
blocking read 109

blocking send 116
BPX.DAEMON 6
breakpoint

blocking read 109
break/trace area in pedb 139
conditional breakpoint in pedb 148
conditional breakpoint window 149
conditions, in pedb 147
deleting 114
identifying tasks 149
redefining initial, automatic 124
removing 149
setting 109
setting, in pedb 134, 146
setting in pdbx 111
thread specific conditions 149

buffer 35
pedb main window 139

button
play control 152

C
call stacks 117
cancelling a POE job 41
CEEBINT 65
CEEBXITA 65
codes

debugging SPMD and MPMD codes
with pedb 134

collective communication 196
collective communications 71
Collective Communications Details

window 176
command

extattr 297
command-line flags

for Normal or Attach Mode 291
for POE 283

command man
pdbx subcommands 94

commandline flags, POE 22
commands, PE 185
common problems

attaching the debugger 87
bad output, attaching the

debugger 88
can’t compile a parallel program 74
can’t connect with the remote

host 75
can’t execute a parallel program 76
can’t start a parallel job 75
debugging a parallel program 77
no output 78
no output or bad output 77

communication subsystem library 1
compile flags

-cpp 15
-D_THREAD_SAFE 16
-W c,dll,’LANG(EXTENDED)’ 16

compile problems 74

compiler scripts 10
compiling

C example with MPI function
calls 10

compiling parallel C and C++ programs
c89, c++ 15
c89, c++ complile flags 16
enabling the MPI-2 C++ bindings 15
mpcc, mpCC 15

compiling with mpcc 11
copy files to individual nodes 16
copy utilities

mcp 44, 46
mcpgath 44, 46
mcpscat 44, 46

D
data decomposition 51, 52
data mining 58
dbx subcommands 214

help for subcommands 120
debugger

_BPX_PTRACE_ATTACH 81
Attach dialog window 82
attaching to POE job 81
Global data window 85
MP_DEBUG_INITIAL_STOP 96
option flags for pdbx 97
pdbx, attach mode 99
pdbx, normal mode 96
pedb 127
pedb main window 83
starting pdbx 96

debugging
pmarray 89
threaded programs 88

debugging parallel programs
with pdbx 93
with pedb 127

decomposition
data 51
functional 51, 58

directories, changing on remote
nodes 39

dynamic libraries 16

E
Early Arrival Message Details

window 176
environment

scheduling environment 5
security environment 6
setting up for debugging with

pedb 127
environment variables

_BPX_PTRACE_ATTACH 81
_BPX_SHAREAS 6
LANG 73
MP_DEBUG_INITIAL_STOP 96

© Copyright IBM Corp. 1997, 2001 315

environment variables (continued)
MP_EUIDEVELOP, error messages

when attaching the debugger 88
MP_EUILIBPATH 300
MP_HOSTFILE 14
MP_HOSTFILE, problems starting a

parallel job 75
MP_INFOLEVEL 14
MP_INFOLEVEL, problems

connecting a remote host 76
MP_LABELIO 14
MP_LABELIO, error messages when

attaching the debugger 88
MP_PMDLOG 14
MP_PMDSUFFIX 300
MP_PMLIGHTS 47
MP_PROCS 13, 22
MP_PROCS, problems starting a

parallel job 75
MP_RESD, problems starting a

parallel job 75
MP_RESD, problems starting a

parallel program 76
MP_RMPOOL, problems starting a

parallel job 75
MP_SAVEHOSTFILE 24
MP_SNDBUF 69
MP_STDOUTMODE 14
MP_STDOUTMODE, output

problems 78
MP_THREAD_STACKSIZE 67
MP_USRPORT 48
MP_WLM_ENCLAVE 24
NLSPATH 73
PAGER 99
PATH 136, 300
POE 283
reserved 71

errors
logging to a file 74
messages, attaching the debugger 88

events
changing 115
deleting 114

executable
creating 15
invoking 25
POE additions 65

executing parallel programs 15
execution

automatically repeat execution within
pedb 151

controlled with pdbx debugger 110
interrupt a waiting process 151
stepping execution within pedb 150
tracing program execution within

pedb 153
execution environment 17
exit status 64
exits, normal and abnormal 67
expressions, specifying with pdbx 122

F
file descriptor numbers 67
Find window 180
fork limitation 68
function

context sensitive subcommands 94

function (continued)
Parallel Utility Function 36

functional decomposition 51, 58

G
Global data window 85
group

adding group in pedb 141

H
help

for dbx subcommands 120
for pdbx subcommands 120

HFS, shared 71
host list file

comment in pin-list 18
creating 23
description 4
examples 5, 22
pin entry 4
pool entry 4

I
I/O, MPI

shared HFS 71
I/O, standard 69
individual nodes, copying files 16
initialization, how implemented 61
interrupt mode control 43
IP address 100

J
job-step, progression and termination 65
job steps, reading from standard

input 28

K
killing a POE job 41

L
libraries, dynamic 16
light, displaying details 48
log file 12
logging errors to a file 74
loops, unrolling 52

example 52

M
manpages

pdbx subcommands 94
mcp 185
mcpgath 187
mcpscat 191
memory, shared 71
message

blocking receive 116
FOMO0249 72

message catalog considerations 71

message catalogs
errors 73
Japanese version 73
national language support 26
NLSPATH xiv, 73

Message Group Information
window 177

message passing
communication model 51
multiple windows in pedb 182

Message Passing Interface
linking to MPI 15
parallelizing the application 1
placing calls to MPI 1

Message Passing Interface Forum 307
message passing routine 181
message queue debugger 169

starting the message queue
debugger 170

using the message queue
debugger 169

messages
errors, attaching the debugger 88
finding 73
format 74
identifiers 74
labeling message output 37
level reported 11
PE message catalog components 74
PE message catalog errors 73
problem determination 73

migration xv, 299
modes

attach mode of pedb debugger 130
function modes of pedb 128
normal mode of pedb debugger 128

MP_HOSTFILE 14
MP_INFOLEVEL 14
MP_LABELIO 14
MP_PMDLOG 14
MP_PROCS 13
MP_STDOUTMODE 14
mpc_disableintr() 43
mpc_enableintr() 44
mpc_marker 90
mpc_queryintr() 43
mpc_queryintrdelay() 43
mpc_setintrdelay(int val) 43
mpcc 11, 194
mpCC

-cpp flag 15
mpCC 194
MPI-2 C++ bindings

enabling 15
MPI_Comm_rank 53
MPI_Comm_size 53
MPI_COMM_WORLD 53, 60
MPI_Finalize 53
MPI function calls

C example 10
MPI-I/O

shared HFS 71
MPI_Init 53, 70
MPI_PROD 61
MPI programs, safety 87
MPI_Reduce 61
MPI_Scan 61

316 z/OS UNIX System Services PE: Operation and Use

MPI_SUM 61
MPMD (Multiple Program Multiple

Data) 1
MPMD model (Multiple Program

Multiple Data) 96
MPMD program, invoking 26
Multi-release Compatibility xv, 299

back-level release 300
partition release 299

N
national language support xiv, 3
network tuning 68
newjob mode 29
NLSPATH

message catalogs xiv
node allocation

automatic 21
specific 18, 20
specific and automatic 18

nodes, loading
from standard input 26
POE commands file 27

nonblocking operation 42
Notices 303

O
operation, nonblocking 42
operations, arithmetic 122
operators

arithmetic, in pedb 147
bitwise 123
bitwise, in pedb 147
data access and size 123
data access and size, in pedb 148
miscellaneous 123
miscellaneous, in pedb 148
relational and logical 123
relational and logical, in pedb 147

options
-hostfile 14
-infolevel 11
-infolevel, -ilevel 14
-labelio 8, 14
-pmdlog 14
-procs 13
-procs 4 8
-stdoutmode 9, 14
most likely needed 13

output
displaying task output 48
labeling message output 37
no or bad output 77
no output at all 78
output problems attaching the

debugger 88
output mode

ordered 36
single 36
unordered 35

P
parallel C and C++ programs

compiling with mpcc and mpCC 15

parallel file copy utilities 44
parallel job

problems starting a 75
termination 67

Parallel Operating Environment
-hostfile option 14
-infolevel option 11
-infolevel option, -ilevel option 14
-labelio option 14
-pmdlog option 14
-procs option 13
-stdoutmode option 14
compiling parallel C and C++

programs 15
description 7
options, most likely needed 13
parallel application, development and

execution 7
running, examples 7

Parallel Operating Environment (POE)
executing parallel programs 15

Parallel Operating Environment
commands

mpcc 15
parallel programs

controlling program execution 30
debugging with pdbx 93
debugging with pedb 127
executing 15
monitoring execution using the

Program Marker Array 45
parallel programs, creating

techniques 51
parallel task, definition 93
Parallel Utility function

mcp_marker 46
mcp_nlights 46

Parallel Utility Function 36
parallelizing the application 1
partition

defining size 22
definition 93
establishing 26
loading partition within pdbx 101
loading the partition within

pedb 135
Partition Manager 1, 25, 101

linking to Partition Manager 15
Partition Manager Daemon

problems connecting remote host 76
partition release 299
pdbx

relationship between home node and
remote tasks 106

subset of commands 109
pdbx debugger 93

accessing help for dbx
subcommands 120

accessing help for pdbx
subcommands 120

attach mode 99
attach screen 99
command context 93
command-line arguments,

considerations 101
controlling program execution 110

pdbx debugger 93 (continued)
creating, removing, and listing

aliases 121
deleting breakpoints 114
deleting events 114
deleting tracepoints 114
displaying source 119
displaying task states 102
displaying tasks 102
ending a debug session 124
events, checking status 115
exiting pdbx 125
hooking tasks 116
interrupting tasks 112
loading the partition 101
normal mode 96
overloaded symbols 124
reading subcommands from a

command file 122
setting breakpoints 111
setting command context 106
setting tracepoints 112
specifying expressions 122
specifying variables on trace and stop

subcommands 113
starting 96
unhooking tasks 116
variable ’task list’ 104
viewing program call stacks 117
viewing program variables 117
viewing type of program

variables 118
pdbx flags 93
pdbx prompt 110
pdbx subcommands 93, 94, 201

alias 121, 202
assign 204
attach 205
back 107, 206
case 207
catch 208
condition 209
cont 210
context insensitive subcommands 94
dbx 211
delete 114, 212
detach 124, 213
dhelp 120, 214
display memory 215
down 216
dump 217
file 218
func 219
goto 220
gotoi 221
group 103, 222
halt 224
help 225
help for subcommands 120
hook 116, 124, 226
ignore 227
list 119, 228
listi 230
load 101, 231
map 232
mutex 233
next 234

Index 317

pdbx subcommands 93, 94, 201
(continued)

nexti 235
on 106, 107, 236
online information, command

man 94
overview 93
print 117, 124, 238
quick reference listing 94
quit 124, 239
registers 240
return 241
search 242
set 243
sh 244
skip 245
source 246
status 115, 247
step 248
stepi 249
stop 111, 113, 250
task long 102
tasks 102, 252
thread 253
trace 112, 113, 124, 254
unalias 121, 256
unhook 116, 257
unset 258
up 259
use 260
whatis 118, 124, 261
where 117, 262
whereis 263
which 264

PE administration 3
access 4
inetd.conf 3
partition daemon 3

PE commands 185
mcp 185
mcpgath 187
mcpscat 191
mpcc 194
mpCC 194
pdbx 196
pedb 264
pmarray 267
poe 269
poekill 280

pedb.ad file
setting up 128, 183

pedb debugger
add group window 141
Attach window 132
Attach window, buttons 132
break/trace area 139
breakpoints, setting 146
buffer 139
changing a variable’s format 166
changing a variable’s value 166
command-line arguments 133
compiling options 133
context, setting 139
control buttons 144
controlling program execution 144
controlling source code 178
customizing pedb resources 183

pedb debugger (continued)
debugging multiple views 182
debugging programs using multiple

views 182
displaying local variables within the

program stack 157
displaying variable in more or less

detail 164
editing current source file 179
examining program data 156
executables, SPMD and MPMD 137
execution 144
execution, stepping 150
execution controls 139
getting help 183
global data area 139
hiding a task’s break/trace

information 156
hiding a task’s data information 156
hiding a task’s stack information 156
identifying breakpoint task 149
increasing storage 128
interrupt waiting process 151
leaving pedb 183
load executables window 136
loading phase 135
loading the partition 135
local data area 139
locating breakpoint in source 156
Main window 134
main window after partition is

loaded 138
mode, attach 130
mode, normal 128
multiple windows and views 182
option flags 130
pedb.ad file 128, 183
pedb main window

buttons 144
process identifier (PID) 132
program execution, tracing 153
program path 136
removing breakpoints 149
repeat execution 151
setting up environment 127
single step execution 150
specifying the array subrange 168
stack area 139
starting pedb 128
status codes 143
stop execution 151
storage requirements 128
task area 139
task groups, creating 140
task groups, deleting 140, 142
task number 132
thread specific breakpoints and

tracepoints 149
threads 145
threads area 139
trace record 153
understanding data types 157
unhooking tasks 155
using pedb 127
viewing the contents of an array 167
X-server 127

pedb main window 83

pedb subcommands
workstation-name 128
xhost 127

workstation-name 128
z/OS-machine name 128

z/OS-machine name 128
performance improvements, delay

parameter 42
pin entry 4, 18
pin-list 18
pin list, examples 22
piping

example 69
play control button, customizing 152
pmarray 90, 267
pmd daemon 63
poe 269
POE

-hostfile option 14
-infolevel option 11
-infolevel option, -ilevel option 14
-labelio option 14
-pmdlog option 14
-procs option 13
-stdoutmode option 14
application partition exit 125
commands file, for loading nodes

individually 27
commands file, reading job steps

from 29
compiling parallel C and C++

programs 15
controlling program execution using

POE 30
description of POE 7
executing non-parallel programs using

POE 30
invoking executables in 25, 30
options, most likely needed 13
parallel application, development and

execution 7
running, examples 7
setting up the execution

environment 17
POE command-line flags 283

-a 291
-buffer_mem 272, 289
-cmdfile 27, 29, 272, 285
-css_interrupt 272, 289
-d 291
-eager_limit 272, 289
-euidevelop 31, 273, 279, 290, 291
-euilibpath 284
-hfile 284, 291
-hostfile 284, 291
-I (upper case i) 291
-ilevel 272, 277, 287, 291
-infolevel 272, 277, 287, 291
-infolevel, -ilevel 38
-intrdelay 272, 289
-ionodefile 273, 289
-labelio 37, 272, 286, 291
-max_typedepth 273, 289
-newjob 28, 272, 285
-pgmmodel 25, 272, 285
-pmdlog 38, 272, 277, 291
-pmlights 47, 268, 273, 290, 291

318 z/OS UNIX System Services PE: Operation and Use

POE command-line flags 283
(continued)

-polling_interval 273, 289
-procs 22, 284, 291
-promptpw 273
-pulse 31, 41, 284
-resd 284, 291
-rmpool 284, 291
-savehostfile 24, 284, 291
-shared_memory 273, 289
-single_thread 273, 289
-stdinmode 33, 272, 286, 291
-stdoutmode 35, 36, 272, 286, 291
-thread_stacksize 273, 290
-tmpdir 273, 290, 291
-use_flow_control 273, 290
-usrport 273, 290, 291
-wait_mode 273, 290
-wlm_enclave 24, 284, 291
generating diagnostic logs 38
labeling task output 37
maintaining partition for multiple job

steps 28
managing standard input 33
managing standard output 35
setting the message reporting

level 37
specifying a commands file 27, 29
specifying additional error

checking 31
specifying programming model 25

POE commandline flags
-hfile 19
-hostfile 19, 20, 21
-resd 22
-rmpool 21
setting number of task processes 22

POE considerations
environment overview 63
exit status 64
exits, parallel task 67
file descriptor numbers 67
fork limitations 68
job-step function 65
message catalog considerations 71
network tuning, considerations 68
other thread considerations 70
POE additions 65
reserved environment variables 71
root limitation 67
shared HFS 71
shell scripts 68
standard I/O 69
standard I/O, piping 69
stdin, stdout or stderr, rewinding 68
task initialization 67
termination of a parallel job 67
thread termination 70
user authentication 63
user program, passing string

arguments 68
POE environment variables 283

generating diagnostic logs 38
ignoring argument list 32
labeling task output 37
maintaining partition for multiple job

steps 28

POE environment variables 283
(continued)

making POE ignore arguments 31
managing standard input 33
managing standard output 35
MP_BUFFER_MEM 277, 289
MP_CMDFILE 27, 29, 276, 285
MP_CSS_INTERRUPT 41, 277, 289
MP_CSS_INTERRUPT, overriding the

setting of 44
MP_DBXPROMPTMOD 199
MP_DEBUG_INITIAL_STOP 124,

200, 266, 287
MP_DEBUG_LOG 266, 287
MP_EAGER_LIMIT 277, 289
MP_EUIDEVELOP 30, 31, 279, 290
MP_EUILIBPATH 274, 284
MP_FENCE 30, 279, 290
MP_HOLD_STDIN 30, 33, 276, 286
MP_HOSTFILE 274, 284
MP_HOSTLIST 19, 20, 21
MP_INFOLEVEL 31, 38, 277, 287
MP_INTRDELAY 43, 278, 289
MP_IONODEFILE 278, 289
MP_LABELIO 31, 37, 276, 286
MP_MAX_TYPEDEPTH 278, 289
MP_NEWJOB 28, 276, 285
MP_NOARGLIST 30, 32, 279, 290
MP_PGMMODEL 25, 276, 285
MP_PMDLOG 31, 38, 277, 287
MP_PMDSUFFIX 277, 288
MP_PMLIGHTS 47, 268, 279, 290
MP_POLLING_INTERVAL 278, 289
MP_PROCS 22, 275, 284
MP_PULSE 275, 284
MP_REMOTEDIR 31, 275, 284
MP_RESD 22, 275, 284
MP_RMPOOL 18, 21, 275, 284
MP_SAVEHOSTFILE 24, 275, 284
MP_SHARED_MEMORY 278, 289
MP_SINGLE_THREAD 278, 289
MP_SNDBUF 69
MP_STDINMODE 30, 33, 276, 286
MP_STDINMODE, scenarios 35
MP_STDOUTMODE 30, 35, 36, 276,

286
MP_THREAD_STACKSIZE 67, 278,

290
MP_TIMEOUT 275, 284
MP_TMPDIR 266, 279, 290
MP_USE_FLOW_CONTROL 278,

290
MP_USRPORT 48, 268, 279, 290
MP_WAIT_MODE 279, 290
MP_WLM_ENCLAVE 24, 275, 284
sending STDIN from home to remote

node 33
setting number of task processes 22
setting the delay parameter 43
setting the message reporting

level 37
specifying a commands file 27, 29
specifying additional error

checking 31
specifying programming model 25

POE options

most likely needed 13

poekill 280
Point to Point Message Details

window 175
pool entry 4, 19
pool-list 17
pool list, examples 22
problems

attaching the debugger 87
attaching the debugger, bad

output 88
debugging a parallel program 77
program hangs 78

problems, common
bad output, attaching the

debugger 88
can’t compile a parallel program 74
can’t connect with the remote

host 75
can’t execute a parallel program 76
can’t start a parallel job 75
no output 78
no output or bad output 77

process 30
process id, getting with ps command 81
process id number, pid 12
process pinning 17

pin and pool list, summary 21
pin entry 4, 18
pin-list 18
pool entry 4, 19
pool-list 17
Round-Robin mode 17, 19, 21
WLM mode 17, 21

processor nodes, definition 93
program

termination 70
Program Marker Array 45

displaying details of light on 48
displaying task output on 48
mpc_marker 89
Parallel Utility Functions for PMA 46
pmarray, debugging 89
setting the number of lights on 47
starting 47
using 89
window 90

programs
loading as job steps 28
MPMD 26
non-parallel, invoking 30
problems starting 76
SPMD 25

PTF for Parallel Environment 299
publications

Message Passing Interface
Forum 307

non IBM 307
related 307
z/OS UNIX System Services 307
z/OS UNIX System Services Parallel

Environment 307

R
releasing nodes

used short keys 29
remote nodes 1, 179

Index 319

remote nodes 1, 179 (continued)
changing directories 39
detecting failures 41
problems with connecting 75

Resource Manager 101
return codes 78
root limitation 67
Round-Robin mode (RR) 17, 19, 21
running POE 7

S
safe coding practices 293, 294

fairness 294
order 293
resource limitations 295
safe program, described 293

safety
MPI programs 87

scheduling environment 5
security environment 6
Select Filters window 172
Send/Receive Message Details

window 175
serial program 1
setting up environment with pedb 127
shared memory 71
shell execution 68
shell script 2
short keys

3270 29
rlogin 29

sigaction()
sa_handler 65
sa_sigaction 65

signal
SIGTERM 78

signal handlers 65
signals 66
sine series algorithm 58
source, displaying 119
source code

control 178
creating 1
emphasis 181

specific node allocation 18, 20
specific node allocation, example 22
SPMD (Single Program Multiple Data) 1
SPMD model (Single Program Multiple

Data) 96
SPMD program, invoking 25
standard error (STDERR) 32
standard input (STDIN) 32
standard output (STDOUT) 32
start-up problems 76
static executable, creating 15
STDIN 29
stdin, stdout, stderr 68
stdin and stdout, piping example 69
stepping execution 150
stopping a POE job 41
subcommands 201

context insensitive 94
context sensitive 94
dbx 120, 214
pdbx 120, 201
reading from a file 122

subroutine 144

subset, pdbx commands 109
symbols, overloaded 124
synchronization in message passing

model 51
system call

sigaction() 65

T
task list

variable in pdbx debugger 104
Task Message Queue window 173
task number, taskid 12
task states

pdbx debugger 106
tasks

changing the name of a task
group 105

deleting from a task group 104
displaying 102
displaying output 48
getting additional information 84
grouping 103
hooking and unhooking 116
interrupting with pdbx debugger 112
status information in pedb 143
task area in pedb 139
task groups, blocking send 140
task groups, creating 140
task groups, deleting 142
task groups, deleting in pedb 140

thread
other considerations 70
termination 70

threaded programs
debugging 88

threads
conditional breakpoint and

tracepoint 149
displayed thread 146
interrupted thread 146
multiple threads in pedb 145
threads area in pedb 139
trace record 153

threads and debugging 89
Threads Viewer window 162
tracepoints 111, 112

conditional tracepoint window 149
identifying tasks 149
setting conditional tracepoint 154
specifying conditions 154
thread specific conditions 149
trace record 153

tracing
program execution 153

trademarks 304

U
UDP Protocol 1
unrolling loops 52

example 52
user authentication 63
User Datagram Protocol (UDP) 1
user exits, CEEBXITA and CEEBINT 65

V
variable 2

global 114
local 114

variables
viewing program variables 117

W
WLM mode 17, 21
WLM multi-system enclaves 24
Workload Manager (WLM)

multi-system enclaves 5

X
X-windows environment, setting up 46

320 z/OS UNIX System Services PE: Operation and Use

Readers’ Comments — We’d Like to Hear from You

z/OS
UNIX System Services
Parallel Environment:
Operation and Use

Publication No. SA22-7810-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7810-00

SA22-7810-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Deutschland Entwicklung GmbH
Information Development
Department 3248
Schönaicher Str. 220
D-71032 Böblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694–A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7810-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
z/

O
S

z/
O
S
U
N
IX

Sy
st
em

Se
rv
ic
es

PE
:O

pe
ra
tio
n
an
d

U
se

SA
22
-7
81
0-
00

	Contents
	Tables
	Figures
	About this book
	Who should use this book
	How this book is organized
	Overview of contents
	Note on terminology

	Document conventions
	Syntax diagrams

	National Language Support
	z/OS Migration Information

	Chapter 1. Introduction
	Chapter 2. Preparing to use POE
	Customizing INETD and setting up the Partition Daemon
	Configuring the inetd.conf file
	Configuring the services file
	Customizing Your Code Page for pmd
	WLM Support setup

	Access
	Host list file
	Scheduling environments
	WLM Multi-system Enclaves
	Restrictions in security environments

	Chapter 3. Getting started with POE
	The Parallel Operating Environment
	Starting the POE
	Running simple commands
	Compiling and running a simple parallel application
	Getting a little more information
	Most likely needed POE options
	-procs
	-hostfile or -hfile
	-labelio
	-infolevel or -ilevel
	-pmdlog
	-stdoutmode

	Chapter 4. Executing parallel programs
	Executing parallel programs using POE
	Step 1: Compile the program
	Creating a static executable

	Step 2: Copy files to individual nodes
	Step 3: Set up the execution environment
	Defining the pin- and pool-list
	Defining the automatic allocation mode
	Defining the partition size
	Examples
	Creating an output host list file
	Setting the MP_WLM_ENCLAVE environment variable

	Step 4: Start the X-Windows analysis tool
	Step 5: Invoke the executable
	Invoking an SPMD program
	Invoking an MPMD program
	Loading a series of programs as job steps
	Invoking a non-parallel program on remote nodes

	Controlling program execution
	Specifying develop mode
	Making POE ignore arguments
	Making POE ignore the entire argument list
	Making POE ignore a portion of the argument list

	Managing standard input, output, and error
	Managing standard input (STDIN)
	Using MP_HOLD_STDIN
	Using redirected STDIN
	Scenario A
	Scenario B
	Scenario C
	Scenario D
	Managing standard output (STDOUT)
	Labeling message output
	Setting the message reporting level for standard error (STDERR)
	Generating a diagnostic log on remote nodes
	Changing current directories on remote nodes

	Chapter 5. Managing POE jobs
	Stopping a POE job
	Cancelling and killing a POE job
	Detecting remote node failures
	Asynchronous Interrupts support
	Using MP_CSS_INTERRUPT
	Support for Performance Improvements
	Interrupt Mode Control

	Parallel file copy utilities

	Chapter 6. Monitoring program execution
	Step 1: Call PM Array parallel utility functions
	Step 2: Compile the program
	Step 3: Set up your X-Windows environment
	Step 4: Set the number of lights
	Step 5: Open the PM Array window
	Step 6: Invoke the program and monitor its execution
	Displaying details of a light
	Displaying task output

	Step 7: Close the PM Array window

	Chapter 7. Techniques for creating parallel programs
	Message passing
	Data decomposition
	Functional decomposition
	Duplication versus redundancy

	Chapter 8. Programming considerations for user applicationsin POE
	Environment overview
	User authentication
	Exit status
	POE job-step function
	POE additions to the user executable
	Initialization user exits CEEBXITA and CEEBINT
	Signal Handlers

	Limitations in setting the thread stacksize
	Do not hard code file descriptor numbers
	POE gets control first and handles process initialization
	Termination of a parallel job
	Your program cannot run as root
	Forks are limited
	Shell execution
	Do not rewind stdin, stdout or stderr
	Ensuring that string arguments are passed to your program correctly
	Network tuning considerations
	Standard I/O requires special attention
	STDIN/STDOUT piping example

	Program and thread termination
	Other thread-specific considerations
	Order requirement for system includes
	MPI_Init
	Collective communications

	Reserved environment variables
	Message catalog considerations
	MPI-IO Requires Shared HFS To Be Used Effectively
	Using Shared Memory

	Chapter 9. Debugging
	Messages
	Message catalog errors
	Finding messages
	Logging POE errors to a file
	Message format

	Cannot compile a parallel program
	Cannot start a parallel job
	Cannot execute a parallel program
	The program runs but...
	Debugging your parallel program
	The simplest problem
	The next simplest problem
	OK, the worst problem

	No output at all
	Should there be output?
	There should be output

	It hangs
	Let us attach the debugger
	Fix the problem
	What is the hang-up?

	Other hang-ups
	Bad output
	Error messages
	Bad results

	Debugging and Threads
	Keeping an eye on progress

	Chapter 10. Using the pdbx debugger
	pdbx subcommands
	Starting the pdbx debugger
	Normal mode
	Attach mode
	Attach screen
	Other compiling options
	Command-line arguments

	Loading the partition with the load subcommand
	Displaying tasks and their states
	Grouping tasks
	Syntax for group_name
	Syntax for task_list
	Adding a task to a task group
	Deleting tasks from a task group
	Changing the name of a task group
	Listing task groups
	Setting command context
	Context switch when blocked

	Controlling program execution
	Setting breakpoints
	Interrupting tasks
	Setting tracepoints
	Specifying variables on the trace and stop subcommands
	Deleting pdbx events
	Checking event status
	Unhooking and hooking tasks

	Examining program data
	Viewing program call stacks
	Viewing program variables
	Displaying source

	Other key features
	Accessing help for pdbx subcommands
	Accessing help for dbx subcommands
	Creating, removing, and listing command aliases
	Reading subcommands from a command file
	Specifying expressions

	Other important notes on pdbx
	Initial breakpoint
	Overloaded symbols

	Exiting pdbx

	Chapter 11. Using the pedb debugger
	Setting up the debugger environment
	Setting up your X-Window environment
	Be aware of storage requirements
	Setting up the pedb.ad file

	Starting the pedb debugger
	Normal mode
	Attach mode
	Attach window
	Other compiling options
	Command-line arguments

	The pedb main window
	Loading the partition from the Load Executables window
	Program search path
	The pedb window with a partition loaded
	Setting the context
	Controlling program execution
	Viewing MPI Request Queues
	Source code control
	Other key features

	Appendix A. Parallel Environment commands
	mcp
	mcpgath
	mcpscat
	mpcc/mpCC
	pdbx
	pdbx alias subcommand
	pdbx assign subcommand
	pdbx attach subcommand
	pdbx back subcommand
	pdbx case subcommand
	pdbx catch subcommand
	pdbx condition subcommand
	pdbx cont subcommand
	pdbx dbx subcommand
	pdbx delete subcommand
	pdbx detach subcommand
	pdbx dhelp subcommand
	pdbx display memory subcommand
	pdbx down subcommand
	pdbx dump subcommand
	pdbx file subcommand
	pdbx func subcommand
	pdbx goto subcommand
	pdbx gotoi subcommand
	pdbx group subcommand
	pdbx halt subcommand
	pdbx help subcommand
	pdbx hook subcommand
	pdbx ignore subcommand
	pdbx list subcommand
	pdbx listi subcommand
	pdbx load subcommand
	pdbx map subcommand
	pdbx mutex subcommand
	pdbx next subcommand
	pdbx nexti subcommand
	pdbx on subcommand
	pdbx print subcommand
	pdbx quit subcommand
	pdbx registers subcommand
	pdbx return subcommand
	pdbx search subcommand
	pdbx set subcommand
	pdbx sh subcommand
	pdbx skip subcommand
	pdbx source subcommand
	pdbx status subcommand
	pdbx step subcommand
	pdbx stepi subcommand
	pdbx stop subcommand
	pdbx tasks subcommand
	pdbx thread subcommand
	pdbx trace subcommand
	pdbx unalias subcommand
	pdbx unhook subcommand
	pdbx unset subcommand
	pdbx up subcommand
	pdbx use subcommand
	pdbx whatis subcommand
	pdbx where subcommand
	pdbx whereis subcommand
	pdbx which subcommand
	pedb
	pmarray
	poe
	poekill

	Appendix B. POE environment variables and command-lineflags
	Appendix C. Command-line flags for Normal or Attach Mode
	Appendix D. MPI safety
	Safe MPI coding practices
	What is a safe program?
	Some general hints and tips
	Order
	Progress
	Fairness
	Resource limitations

	Appendix E. Copying Parallel Environment Executables in aSecurity Environment
	Appendix F. Migration and Multi-release Compatibility
	Parallel Environment Compatibility
	Parallel Environment Releases
	Principles of Multi-release Compatibility
	Installing a Back-level Release
	Installing a Back-level poe
	Installing a Back-level pmd
	Installing a Back-level ppe.dll

	Running a Back-level Release of Parallel Environment
	Multi-release Compatibility for Statically Linked Programs
	Servicing Back-level Parallel Environment Releases

	Appendix G. Notices
	Trademarks
	Accessing Licensed Books on the Web
	LookAt System for Online Message Lookup

	Bibliography
	Related publications
	Parallel Environment publications
	Related z/OS publications
	Related non-IBM publications

	Glossary of terms and abbreviations
	Index
	Readers’ Comments — We'd Like to Hear from You

