
Technical Memo
Information Builders
IBM FOCUS Division
Two Penn Plaza
New York, NY 10121-2898
(212) 736-4433

 page 1 of 6

FOCUS Version 7.0/EDA Release 4.2.1 and below TM7961

April 16, 1999

Strategies for Updating DB2 Databases With Cactus/Maintain
This technical memo describes programming techniques for updating a DB2 database using the
Cactus/Maintain language. It applies to the Maintain facility on all platforms as well as the
Maintain language component of Cactus applications. The DB2 Interface is used throughout this
tech memo for purposes of illustration; however, you can apply the same concepts to other
relational Interfaces with modifications to account for RDBMS-specific behavior.

When updating a relational database, it is very important to make sure that another application
does not modify a row after your application first retrieves the row and before it actually updates
the row. If the row was modified by another application after it was first retrieved by Maintain
and before it was updated by the same Maintain application, the update must not take place. A
set of database transactions that must occur together or not at all is called a logical transaction or
Logical Unit of Work (LUW).

The following two strategies are available for ensuring transaction integrity:

• Depend on DB2’s row locking mechanism. With this technique, DB2 locks each row as it
is read and retains the lock until the logical transaction is released by a COMMIT or ROLL-
BACK command. This technique is simple to use. All it requires is that you use an isolation
level of Repeatable Read for all database I/O. However, the set of rows read can remain
locked indefinitely, waiting for the user to respond to the terminal display and complete the
edits to the data. During this time, other users may be denied access to the set of rows.

• Change Verify Protocol (CVP). This technique locks each row while it is being retrieved,
releases the lock, and then relocks the row when it is ready for update, after making sure
that the row was not changed by another user in the interim. The DB2 Interface using the
MODIFY facility supports Change Verify Protocol and handles it automatically. Since Main-
tain allows updates of sets of rows, the same CVP facility is not applicable to Maintain pro-
cedures. Therefore, the Maintain programmer will need to develop a coding strategy for
implementing a Change Verify function.

This technical memo describes how to implement these two strategies for updating relational
databases with Maintain. Each strategy has advantages and disadvantages. The strategy you
choose depends on your site’s needs and DBMS programming standards. Your strategy will
depend on the following factors:

• How Maintain implements logical units of work (LUW).

• RDBMS row locking requirements.

• Application change verify protocol coding.

• DB2 Interface isolation levels.

Overview: Logical Units of Work

 page 2 of 6

Overview: Logical Units of Work
A logical unit of work is the span of time that starts when a transaction connects to a database
and ends when a COMMIT or ROLLBACK command is issued to the database. The COMMIT
or ROLLBACK command releases the locks held by the update or retrieval process.

Correctly acquiring and releasing locks is crucial in Maintain applications that update a
database. Since the COMMIT and ROLLBACK commands release locks, you need to
understand how and when a Maintain application communicates the COMMIT command to the
Interface. The relational database Interface issues automatic commits to the RDBMS differently
for Maintain language requests than for FOCUS or EDA requests. Note that a ROLLBACK
command is never issued automatically by Maintain.

Maintain automatically (implicitly) issues a COMMIT at the end of every procedure unless you
specify a GOTO END KEEP in the called procedure. The Maintain command GOTO END
KEEP is the only way to sustain one logical unit of work during the execution of multiple
Maintain procedures. In addition, you can explicitly issue a COMMIT or ROLLBACK
command in any Maintain procedure.

Automatic Commits in Maintain
Maintain does not support the FOCUS/EDA SQL DB2 SET AUTOCOMMIT environmental
command that can be invoked in MODIFY or FOCUS TABLE requests to control automatic
commits. Maintain automatically issues a COMMIT at the end of every Maintain procedure. To
keep changes from taking place from one Maintain procedure to the next, the called procedure
must contain a GOTO END KEEP command. With this command, locks that are acquired in the
calling procedure and in called procedures remain in effect until the main calling procedure
ends.

Given these factors, you have two strategies for writing Maintain procedures that update a DB2
database:

• All ow DB2 to control all row locking.

Using this strategy, you depend on the RDBMS to keep another user from modifying a row
that Maintain is going to update. However, locks will be retained on all retrieved rows until
the end of the top level Maintain procedure.

• Design the Maintain application to include its own Change Verify function.

With this strategy, locks will not be acquired until the application is ready to update the
database; however, additional Maintain coding is needed to implement the Change Verify
function.

Using Strategy 1: Allow DB2 to Control Row Locking

 page 3 of 6

Using Strate gy 1: All ow DB2 to Cont rol Row Lo cking
The following illustration shows the duration of connections, threads and Logical Units of Work
(LUWs) using this strategy:

The requirements for this option are as follows.

1. The DB2 Interface plan must be bound with an isolation level of Repeatable Read.

This is a DB2 Interface installation BIND PLAN parameter. An isolation level of Repeat-
able Read retains row locks on all rows that Maintain retrieves into a stack. The locks are
not released until a COMMIT command is issued.

2. A Maintain procedure can call other Maintain procedures as long as each called Maintain
procedure ends its execution with the GOTO END KEEP command.

Any COMMIT or ROLLBACK command within any called procedure will release all
locks, thus leaving the application vulnerable to a possible update breach by another user. A
called procedure that ends without the GOTO END KEEP command will also release all
locks.

3. Issue updates, inserts or deletes within the main or called Maintain procedures.

4. Do not issue a Maintain COMMIT or ROLLBACK command before all updates have taken
place.

 DB2 connection

 |--->|

 thread

 |---> |

 |--------------LUW---------------------------------->|

 F

 | F O C U S or C A C T U S s e s s i o n I

 N

 | | | |

 MAIN CALLED CALLED |

 PROCEDURE PROC1 PROC2 |

 CALL PROC1 GOTO END KEEP GO TO END KEEP |

 CALL PROC2 END OF MAIN

 Optional COMMIT

 |--------- Maintain--------------------------------->|

 |

 AUTOMATIC

 COMMIT

Using Strategy 1: Allow DB2 to Control Row Locking

 page 4 of 6

The key to this strategy is the use of the GOTO END KEEP command to exit from each called
procedure. If you call a procedure that does not exit with this syntax, you will compromise the
integrity of the LUW. The only way to avoid using the GOTO END KEEP command is to code
the entire transaction within a single Maintain procedure, using cases instead of separate
procedures for the separate parts of the transaction.

The following illustration shows the duration of connections, threads and Logical Units of Work
(LUWs) using this technique:

The requirements for this option are as follows.

1. The DB2 Interface plan must be bound with an isolation level of Repeatable Read.

This is a DB2 Interface installation BIND PLAN parameter. An isolation level of Repeat-
able Read retains row locks on all rows that Maintain retrieves into a stack. The locks are
not released until a COMMIT command is issued.

2. Do not issue any CALL procedure commands within a single Maintain.

The end of a called Maintain procedure would issue an automatic commit, releasing all
locks and leaving the application vulnerable to a possible update breach by another user.

3. Issue all updates, inserts or deletes within one main Maintain procedure.

Instead of writing several Maintain procedures, write individual cases within one Maintain
procedure, and execute these cases using the Maintain statements Perform CASE1, Perform
CASE2, Perform CASE3. In this way, all processing takes place within one pair of MAIN-
TAIN FILE ... END commands and, therefore, within one LUW.

4. Do not issue a Maintain COMMIT or ROLLBACK command before all updates have taken
place.

 DB2 connection
 |--->|
 thread
 |-->|

 |--------------LUW--------------| |-----LUW----->|
 F
 | F O C U S or C A C T U S s e s s i o n I
 N
 | | | | | |
 MAINTAIN PERFORM PERFORM | MAINTAIN |
 FILE CASE1 CASE2 END FILE END
 |--------- Maintain------------>| |--Maintain--->|
 | |
 AUTOMATIC AUTOMATIC
 COMMIT COMMIT

Using Strategy 2: Implement a Change Verify Function in the Maintain Application

 page 5 of 6

Implications of Strategy 1

The advantage of this strategy is that letting DB2 handle row locking allows the Maintain code
to be much simpler.

Possible drawbacks to this strategy include the following:

• Since the DB2 Interface plan has an isolation level of RR, there is a chance that other users
may experience time outs due to row locking. DB2 will return either a -911 or -904 SQL
code.

• Using this method, row locks are in effect for the greatest amount of time. These locks
remain in effect for the database on which the updates take place until the terminal user
completes the updates, which may interfere with ad-hoc queries that access the maintained
database. Therefore, a separate DB2 database for Cactus applications or other activity
scheduling may be needed.

This approach is the suggested method unless concurrency issues make it prohibitive.

Using Strategy 2: Implement a Change Verify Function in
the Maintain Application
The following illustration shows the duration of connections, threads and Logical Units of Work
(LUWs) using this strategy:

The Maintain procedure should do the following:

1. Retrieve the rows from DB2 using a plan with an isolation level of Repeatable Read.

2. Execute a ROLLBACK command after reading either:

• A set of rows with the FOR {n|ALL} NEXT command.

• Each row in a repeat loop, until all of the rows are retrieved.

The ROLLBACK releases the lock on the rows held by the repeatable read isolation level.

 |-------------------connection----------------------------->|

 |-------------------thread--------------------------------->|

 |----LUW------->|----------------LUW----------------------->|
 F
 | F O C U S or C A C T U S s e s s i o n I
 N
 | re-retrieve
 MAINTAIN copy stack & rows compare stacks
 FILE retrieval gather updates and update rows END
 |---------------|-----Maintain-------|--------------------->|
 | | |
 user AUTOMATIC
 ROLLBACK COMMIT

Data Concurrency

 page 6 of 6

3. Make a copy of the stack.

4. Apply the updates to the first stack.

5. Before making the updates to the database, retrieve each row that is to be updated once
again. Compare the newly retrieved row to the row in the saved stack. If there are no differ-
ences, issue the update on that row; otherwise return an error message indicating that the
update is not allowed.

You can do all of this within one procedure and, therefore, take advantage of the automatic
commit after the end of the procedure. Executing a CALL to another procedure will also work.

Implications of Strate gy 2

Advantages of this strategy include the following:

• This method retrieves rows and releases locks as soon as possible.

• The stack can be manipulated for as long as needed without any impact on the rest of the
DB2 database.

• The database retrieval and update logic can be placed in separate Maintain procedures since
locks are not needed until the actual update takes place.

However, the Maintain coding is more complicated.

Data Concurren cy
Data concurrency can be described as the total effect of multiple users on a database. The effect
of multiple update and retrieval processes on a single database raises issues of data availability.
The more rows that are locked or in use, the greater the chance that the application will hang for
long periods waiting for the row or rows to be freed. A popular application technique is for the
program to check for a locked condition upon reading a row. If the read request returns a row
lock, the program can try to read it in a loop until the row is freed. The row is read for a user a
specified number of times; after exceeding the number of attempts, a screen is displayed to the
user indicating that the row is in use by another and to try again later. This technique can be used
to mitigate the effects of row locks.

This technique is recommended for strategy 1 since the likelihood and number of locks held will
be greater than with strategy 2. Since row locks will be held for longer periods of time, the
handling of lock situations by the Maintain procedure will be helpful.

Maintain Variables
As described previously, a Maintain procedure can help to ease the effects of row locks. There
are new features planned for the Maintain language that will help you take into account
relational database return codes. These return codes will be available in new Maintain variables
to allow a Maintain procedure to query the contents. Depending on the SQLCODEs returned,
the Maintain procedure can be aware of a row lock situation and take the appropriate steps.

	Back to Tech Memos
	Strategies for Updating DB2 Databases With Cactus/Maintain
	Overview: Logical Units of Work
	Automatic Commits in Maintain
	Using Strategy 1: Allow DB2 to Control Row Locking
	Implications of Strategy 1

	Using Strategy 2: Implement a Change Verify Function in the Maintain Application
	Implications of Strategy 2

	Data Concurrency
	Maintain Variables

