Information Builders
IBM FOCUS Division

Infarmation :
- Technical Memo 1wo penn Plaza
Builders New York, NY 10121-2898

(212) 736-4433

FOCUS Version 7.0/EDA Release 4.2.1 and below TM7961
April 16, 1999

Strategies for Updating DB2 Databases With Cactus/Maintain

This technical memo describes programming techniques for updating a DB2 database using the
Cactus/Maintain language. It applies to the Maintagility on all platforms as well as the

Maintain language component of Cactus applications. The DB2 Interface is used throughout this
tech memo for purposes of illustratiorgwever, you can apply the same concepts to other
relational Interfaces with mdiitations to account for RDBMS-spécibelavior.

When updating a relational database, itesy important to miee sure that another application

does not modify aowv after your applicatiofirst retrieves the ow and before it actually updates

the ow. If the row was modiied by another application after it wéisst retrieved by Maintain

and before itvas updatetly the same Maintain application, the update must ketpéace. A

set of database transactions that must occur together or not at all is called a logical transaction or
Logical Unit of Work (LUW).

The following two straggies areavailable for ensuring transaction égtity:

e Depend on DB2srow locking mechanism.With this technique, DB2 locks eaabwr as it
is read and retains the lock until the logical transaction is relégsee€OMMIT orROLL-
BACK command. This technique is simple to use. All it requires is that you use an isolation
level of Repeatable Read for all database I/@véVer, the set ofaws read can remain
locked indéinitely, waiting for the user to respond to the terminal display and complete the
edits to the data. During this time, other users may be denied access to thevegt of r

e ChangeVerify Protocol (CVP). This technique locks eacbw while it is being reteved,
releases the lock, and then relocks twe when it is ready for update, after making sure
that the ow was not changely another user in the interim. The DB2 Interface using the
MODIFY facility supports Chang¥erify Protocol and handles it automatigabince Main-
tain allows updates of sets afws, the same CVP facility is not applicable to Maintain pro-
cedures. Therefore, the Maintain programmer will needtseldp a coding stragy for
implementing a Changeerify function.

This technical memo describeamhto implement thesevb straggies for updating relational
databases with Maintain. Each stpt has adantages and diseantages. The sty you
choose depends on your Steeeds and DBMS programming standayastr straggy will
depend on the fadlving factors:

e How Maintain implements logical units of work (LUW).
« RDBMS row locking requirements.

« Application changeerify protocol coding.

« DB2 Interface isolationelels.

page 1 of 6

Overview: Logical Units ofWork

Overview: Logical Units of Work

A logical unit ofwork is the span of time that starts when a transaction connects to a database
and ends when a COMMIT ®OLLBACK command is issued to the database. The COMMIT
or ROLLBACK command releases the locks higjdhe update or retval process.

Correctly acquiring and releasing locks is crucial in Maintain applications that update a
database. Since the COMMIT aR®LLBACK commands release locks, you need to
understand dw and when a Maintain application communicates the COMMIT command to the
Interface. The relational database Interface issues automatic commits to the RDiek&B)

for Maintain language requests than for FOCUSDAEequests. Note thatROLLBACK
command is ever issued automaticallyy Maintain.

Maintain automatically (implicitly) issues a COMMIT at the endxadry procedureinless you
specify a ®TO END KEEP in the calledrpcedue. The Maintain command @O END

KEEP is the onlyvay to sustain one logical unit whrk during theaxecution of multiple

Maintain procedures. In addition, you caplicitly issue a COMMIT oiROLLBACK

command in @y Maintain procedure.

Automatic Commits in Maintain

Maintain does not support the FOCUBASQL DB2 SETAUTOCOMMIT environmental
command that can bevioked in MODIFY or FOCUSTABLE requests to control automatic
commits. Maintain automatically issues a COMMifTthe end oévery Maintain pocedue. To
keepcharges fom taking placerbm one Maintain pcedue to the ext, the called pcedue
must contain a GTO END KEEP commandVith this command, lks that & acquied in the
calling pocedue and in called pceduesremain in éfect until the main callingmpcedue

ends.

Given thesdactors, you Ave wo straegies for writing Maintain procedures that update a DB2
database:

e Allow DB2 to control all ow locking.
Using this stradgy, you depend on the RDBMS keep another user from modifyingaw
that Maintain is going to update ottever, locks will be retained on all regied ows until
the end of the topebel Maintain procedure.

< Design the Maintain application to includedtsn Change/erify function.

With this stratgy, locks will not be acquired until the application is ready to update the
database;dwever, additional Maintain coding is needed to implement the Ch¥lagéy
function.

page 2 of 6

Using Straggy 1: Allow DB2 to Control Rw Locking

Using Strate gy 1: All ow DB2 to Cont rol Row Lo cking

The following illustration slows the duration of connections, threads and Logical Unifgook
(LUWS) using this stragy:

DB2 connection
| >
thread
| >
| LUW. >|
F
[FOCUSorCACTUS session...... |
N
I I I I
MAIN CALLED CALLED |
PROCEDURE PROC1 PROC2 |
CALL PROC1 GOTO END KEEP GO TO END KEEP |
CALL PROC2 END OF MAIN
Optional COMMIT
R Maintain >|
I
AUTOMATIC
COMMIT

The requirements for this option are asdol.
1. The DB2 Interface plan must be bound with an isolateel lof Repeatable Read.
This is a DB2 Interface installation BIND PLAN paranmreten isolation ével of Repeat-

able Read retainsw locks on all ows that Maintain retaves into a stack. The locks are
not released until a COMMIT command is issued.

2. A Maintain procedure can call other Maintain procedures as long as each called Maintain

procedure ends iexecution with the @TO END KEEP command.

Any COMMIT or ROLLBACK command within ay called procedure will release all
locks, thus laving the application vulnerable to a possible update bigaahother use A
called procedure that ends without th@T® END KEEP command will also release all
locks.

3. Issue updates, inserts or deletes within the main or called Maintain procedures.

4. Do not issue a Maintain COMMIT &®OLLBACK command before all updateavk tken
place.

page 3 of 6

Using Strategy 1: Allow DB2 to Control Row Locking

The key to this strategy is the use of the GOTO END KEEP command to exit from each called
procedure. If you call a procedure that does not exit with this syrgedwill compromise the
integrity of the LUWThe only way to avoid using the GOTO END KEEP command is to code
the entire transaction within a single Maintain procedure, using cases instead of separate
procedures for the separate parts of the transaction.

The following illustration shows the duration of connections, threads and Logical Units of Work
(LUWS) using this technique:

DB2 connection
I >|
thread
I >|
| LUW. | |-----LUW----->|
F
[FOCUSorCACTUS session...... |
N
I I [I
MAINTAIN PERFORM PERFORM | MAINTAIN |
FILE CASE1 CASE2 END FILE END
[-==mmm Maintain------------ >l |--Maintain--->|
I I
AUTOMATIC AUTOMATIC
COMMIT COMMIT

The requirements for this option are as follows.
1. The DB2 Interface plan must be bound with an isolation level of Repeatable Read.

This is a DB2 Interface installation BIND PLAN parameter. An isolation level of Repeat-
able Read retains row locks on all rows that Maintain retrieves into a stack. The locks are
not released until a COMMIT command is issued.

2. Do not issue any CALL procedure commands within a single Maintain.

The end of a called Maintain procedure would issue an automatic commit, releasing all
locks and leaving the application vulnerable to a possible update breach by another user.
3. Issue all updates, inserts or deletes within one main Maintain procedure.

Instead of writing several Maintain procedures, write individual cases within one Maintain
procedure, and execute these cases using the Maintain statements Perform CASE1, Perform
CASEZ2, Perform CASES3. In this way, all processing takes place within one pair of MAIN-
TAIN FILE ... END commands and, therefore, within one LUW.

4. Do notissue a Maintain COMMIT or ROLLBACK command before all updates have taken
place.

page 4 of 6

Using Strategy 2: Implement a Change Verify Function in the Maintain Application

Implications of Strategy 1

The advantage of this strategy is that letting DB2 handle row locking allows the Maintain code

to be much simpler.
Possible drawbacks to this strategy include the following:

Since the DB2 Interface plan has an isolation level of RR, there is a chance that other users
may experience time outs due to row locking. DB2 will return either a -911 or -904 SQL
code.

Using this method, row locks are in effect for the greatest amount of time. These locks
remain in effect for the database on which the updates take place until the terminal user
completes the updates, which may interfere with ad-hoc queries that access the maintained
database. Therefore, a separate DB2 database for Cactus applications or other activity
scheduling may be needed.

This approach is the suggested method unless concurrency issues make it prohibitive.

Using Strategy 2: Implement a Change Verify Function in
the Maintain Application

The following illustration shows the duration of connections, threads and Logical Units of Work

(LUWS) using this strategy:

R connection

| thread

|----LUW.

>| LUW

FOCUSorCACTUS session

F

N
| re-retrieve
MAINTAIN copy stack & rows compare stacks
FILE retrieval gather updates and update rows END
[--mmmmmmmmee |-----Maintain | >|
I I I
user AUTOMATIC
ROLLBACK COMMIT

The Maintain procedure should do the following:

1. Retrieve the rows from DB2 using a plan with an isolation level of Repeatable Read.

2.

Execute a ROLLBACK command after reading either:
e A set of rows with the FOR {n]ALL} NEXT command.
« Each row in a repeat loop, until all of the rows are retrieved.

The ROLLBACK releases the lock on the rows held by the repeatable read isolation level.

page 5 of 6

Data Concurrecy

3. Make a cqy of the stack.
4. Apply the updates to tHest stack.

5. Before making the updates to the databasegvetgach ow that is to be updated once
again. Compare theawly retrieved ow to the ow in the sved stack. If there are noffiir-
ences, issue the update on thoat;rotherwise return an error message indicating that the
update is not atwed.

You can do all of this within one procedure and, therefoke,dd/antage of the automatic
commit after the end of the procedureeEuting a CALL to another procedure will alsork.

Implications of Strate gy 2

Advantages of this stregy include the fobbwing:
e This method reteves pws and releases locks as soon as possible.

e The stack can be manipulated for as long as needed withoimpact on the rest of the
DB2 database.

e The database regsial and update logic can be placed in separate Maintain procedures since
locks are not needed until the actual upddtegalace.

However, the Maintain coding is more complicated.

Data Concurren cy

Data concurrety can be described as the totiieet of multiple users on a database. Ttiect

of multiple update and re&ial processes on a single database raises issues efaiihility.

The more ows that are ldked or in use, the greater the chance that the application will hang for
long periodswaiting for the ow or rows to be freed. A popular application technique is for the
program to check for a l&ed condition upon reading ew. If the read request returnsawr

lock, the program can try to read it in a loop until the is freed. Theow is read for a user a
specfied number of times; aftexceeding the number of attempts, a screen is displayed to the
user indicating that thew is in useby another and to try again lat&his technique can be used

to mitigate the #ects of ow locks.

This technique is recommended for siggtl since the kelihood and number of locks held will
be greater than with stegly 2. Since ow locks will be held for longer periods of time, the
handling of lock situationby the Maintain procedure will be helpful.

Maintain Variables

As described mviously, a Maintain procedure can help to ease ffexts of ow locks. There

are rew features planned for the Maintain language that will help ykmiitdo account

relational database return codes. These return codes \ailaibable in rew Maintainvariables

to allow a Maintain procedure to query the contents. Depending on the SQLCODES returned,
the Maintain procedure can b&are of a ow lock situation and tee the appropriate steps.

page 6 of 6

	Back to Tech Memos
	Strategies for Updating DB2 Databases With Cactus/Maintain
	Overview: Logical Units of Work
	Automatic Commits in Maintain
	Using Strategy 1: Allow DB2 to Control Row Locking
	Implications of Strategy 1

	Using Strategy 2: Implement a Change Verify Function in the Maintain Application
	Implications of Strategy 2

	Data Concurrency
	Maintain Variables

