
iWay
iWay SQL Reference
Version 5 Release 2.0

DN3501035.1002

EDA, FIDEL, FOCUS, FOCUS Fusion, Information Builders, the Information Builders logo, TableTalk, and Web390 are registered trademarks
and SiteAnalyzer, SmartMart, WebFOCUS, and WorldMART are trademarks of Information Builders, Inc.

Acrobat and Adobe are registered trademarks of Adobe Systems Incorporated.

Allaire and JRun are trademarks of Allaire Corporation.

UniVerse is a registered trademark of Ardent Software, Inc.

AvantGo is a trademark of AvantGo, Inc.

WebLogic is a registered trademark of BEA Systems, Inc.

SUPRA and TOTAL are registered trademarks of Cincom Systems, Inc.

Alpha, DEC, DECnet, and NonStop are registered trademarks and Tru64, OpenVMS, and VMS are trademarks of Compaq Computer
Corporation.

CA-ACF2, CA-Datacom, CA-IDMS, CA-Top Secret, and Ingres are registered trademarks of Computer Associates International, Inc.

MODEL 204 and M204 are registered trademarks of Computer Corporation of America.

Paradox is a registered trademark of Corel Corporation.

StorHouse is a registered trademark of FileTek, Inc.

HP MPE/iX is a registered trademark of Hewlett Packard Corporation.

Informix is a registered trademark of Informix Software, Inc.

Intel is a registered trademark of Intel Corporation.

ACF/VTAM, AIX, AS/400, CICS, DB2, DRDA, Distributed Relational Database Architecture, IBM, MQSeries, MVS, OS/2, OS/390, OS/400, RACF,
RS/6000, S/390, VM/ESA, and VTAM are registered trademarks and DB2/2, Hiperspace, IMS, MVS/ESA, QMF, SQL/DS, VM/XA and WebSphere
are trademarks of International Business Machines Corporation.

INTERSOLVE and Q+E are registered trademarks of INTERSOLVE.

Orbix is a registered trademark of Iona Technologies Inc.

Approach and DataLens are registered trademarks of Lotus Development Corporation.

ObjectView is a trademark of Matesys Corporation.

ActiveX, FrontPage, Microsoft, MS-DOS, PowerPoint, Visual Basic, Visual C++, Visual FoxPro, Windows, and Windows NT are registered
trademarks of Microsoft Corporation.

Teradata is a registered trademark of NCR International, Inc.

Netscape, Netscape FastTrack Server, and Netscape Navigator are registered trademarks of Netscape Communications Corporation.

NetWare and Novell are registered trademarks of Novell, Inc.

Oracle is a registered trademark and Rdb is a trademark of Oracle Corporation.

Palm is a trademark and Palm OS is a registered trademark of Palm Inc.

INFOAccess is a trademark of Pioneer Systems, Inc.

Progress is a registered trademark of Progress Software Corporation.

Red Brick Warehouse is a trademark of Red Brick Systems.

SAP and SAP R/3 are registered trademarks and SAP Business Information Warehouse and SAP BW are trademarks of SAP AG.

Silverstream is a trademark of Silverstream Software.

CONNECT:Direct is a trademark of Sterling Commerce.

Java and all Java-based marks, NetDynamics, Solaris, SunOS, and iPlanet are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

PowerBuilder and Sybase are registered trademarks and SQL Server is a trademark of Sybase, Inc.

Unicode is a trademark of Unicode, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company, Ltd.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. In most, if not
all cases, these designations are claimed as trademarks or registered trademarks by their respective companies. It is not this publisher's
intent to use any of these names generically. The reader is therefore cautioned to investigate all claimed trademark rights before using any
of these names other than to refer to the product described.

Copyright © 2002, by Information Builders, Inc. All rights reserved. This manual, or parts thereof, may not be reproduced in any form
without the written permission of Information Builders, Inc.

Printed in the U.S.A.

Preface
This manual provides information on the iWay Server Structured Query Language (SQL). It
is primarily intended for those persons concerned with programming applications that use
the iWay Server SQL.

iWay is a family of integrated middleware products which, when combined, insulate both
application end-users and developers from the complexity and incompatibilities of
proprietary computing environments.

How This Manual Is Organized
This manual includes the following chapters:

Chapter/Appendix Contents

1 Introduction Provides an overview of the Server SQL.

2 SQL Services Explains how the server handles SQL requests, using
either SQL Passthru or SQL Translation.

3 Language Elements Describes the language elements of SQL, including
characters, tokens, qualifiers and identifiers.

4 SQL Reference Provides a summary of supported and unsupported SQL
statements and expected results from queries.

5 Tables and Views Describes how to build tables and views.

6 Preparing and
Executing SQL
Requests

Describes how to use PREPARE to submit parameterized
SQL requests for subsequent execution using EXECUTE.

A SQL Translate
Keywords

Lists SQL keywords.

B BNF Summary Provides a summary of Backus Naur Form notation.
iWay SQL Reference iii

Documentation Conventions
Documentation Conventions
The following conventions apply throughout this manual:

Convention Description

THIS TYPEFACE or
this typeface

Denotes syntax that you must enter exactly as shown.

this typeface Represents a placeholder (or variable) in syntax for a value that
you or the system must supply.

underscore Indicates a default setting.

this typeface Represents a placeholder (or variable) in a text paragraph, a
cross-reference, or an important term.

this typeface Highlights a file name or command in a text paragraph that
must be lowercase.

this typeface Indicates a button, menu item, or dialog box option you can
click or select.

Key + Key Indicates keys that you must press simultaneously.

{ } Indicates two or three choices; type one of them, not the
braces.

[] Indicates a group of optional parameters. None are required,
but you may select one of them. Type only the parameter in
the brackets, not the brackets.

| Separates mutually exclusive choices in syntax. Type one of
them, not the symbol.

... Indicates that you can enter a parameter multiple times. Type
only the parameter, not the ellipsis points (…).

.

.

.

Indicates that there are (or could be) intervening or additional
commands.
iv iWay Software

Preface
Related Publications
Visit our World Wide Web site, http://www.iwaysoftware.com, to view a current listing of
our publications and to place an order. You can also contact the Publications Order
Department at (800) 969-4636.

Customer Support
Do you have questions about iWay Server Structured Query Language (SQL)?

Call Information Builders Customer Support Service (CSS) at (800) 736-6130 or
(212) 736-6130. Customer Support Consultants are available Monday through Friday
between 8:00 a.m. and 8:00 p.m. EST to address all your iWay Server Structured Query
Language (SQL) questions. Information Builders consultants can also give you general
guidance regarding product capabilities and documentation. Please be ready to provide
your six-digit site code number (xxxx.xx) when you call.

You can also access support services electronically, 24 hours a day, with InfoResponse
Online. InfoResponse Online is accessible through our World Wide Web site, http://
www.informationbuilders.com. It connects you to the tracking system and known-problem
database at the Information Builders support center. Registered users can open, update,
and view the status of cases in the tracking system and read descriptions of reported
software issues. New users can register immediately for this service. The technical support
section of www.informationbuilders.com also provides usage techniques, diagnostic tips,
and answers to frequently asked questions.

To learn about the full range of available support services, ask your Information Builders
representative about InfoResponse Online, or call (800) 969-INFO.

Information You Should Have
To help our consultants answer your questions most effectively, be ready to provide the
following information when you call:

• Your six-digit site code number (xxxx.xx).

• Your iWay Software configuration:

• The iWay Software version and release.

• The communications protocol (for example, TCP/IP or LU6.2), including vendor and
release.

• The stored procedure (preferably with line numbers) or SQL statements being used in
server access.

• The database server release level.
iWay SQL Reference v

http://www.iwaysoftware.com
http://www.informationbuilders.com
http://www.informationbuilders.com

User Feedback
• The database name and release level.

• The Master File and Access File.

• The exact nature of the problem:

• Are the results or the format incorrect? Are the text or calculations missing or
misplaced?

• The error message and return code, if applicable.

• Is this related to any other problem?

• Has the procedure or query ever worked in its present form? Has it been changed
recently? How often does the problem occur?

• What release of the operating system are you using? Has it, your security system,
communications protocol, or front-end software changed?

• Is this problem reproducible? If so, how?

• Have you tried to reproduce your problem in the simplest form possible? For example,
if you are having problems joining two data sources, have you tried executing a query
containing just the code to access the data source?

• Do you have a trace file?

• How is the problem affecting your business? Is it halting development or production?
Do you just have questions about functionality or documentation?

User Feedback
In an effort to produce effective documentation, the Documentation Services staff
welcomes any opinion you can offer regarding this manual. Please use the Reader
Comments form at the end of this manual to relay suggestions for improving the
publication or to alert us to corrections. You can also use the Documentation Feedback
form on our Web site, http://www.iwaysoftware.com.

Thank you, in advance, for your comments.
vi iWay Software

http://www.iwaysoftware.com
http://www.iwaysoftware.com

Preface
iWay Software Consulting and Training
Interested in training? Our Education Department offers a wide variety of training courses
for iWay Software and other Information Builders products.

For information on course descriptions, locations, and dates, or to register for classes, visit
our World Wide Web site (http://www.iwaysoftware.com) or call (800) 969-INFO to speak to
an Education Representative.

Interested in technical assistance for your implementation? Our Professional Services
department provides expert design, systems architecture, implementation, and project
management services for all your business integration projects. For information, visit our
World Wide Web site (http://www.iwaysoftware.com).
iWay SQL Reference vii

http://www.iwaysoftware.com
http://www.iwaysoftware.com
http://www.iwaysoftware.com
http://www.iwaysoftware.com

iWay Software Consulting and Training
viii iWay Software

Contents
1. Introduction .1-1

SQL Translation Services .1-2
Language Dialect .1-2

2. SQL Services .2-1
SQL Passthru Services .2-2
Using SQL Passthru .2-2

Rules for SQL Passthru .2-4
SQL Passthru Processing .2-4

Enabling SQL Passthru .2-5
Specifying an RDBMS Using SET SQLENGINE .2-5
Setting the Database Engine Using a Client .2-5
Setting the Database Engine Using Stored Procedures .2-6
Setting the Database Engine Using the API .2-7

Catalog Requirements .2-8
Valid Database Engine Settings .2-8
SQL Translation Services . 2-11
SQL Translation Operations . 2-11

Setting Automatic Passthru . 2-12
Dialect Translation . 2-13

Rules for Dialect Translation . 2-14
Dialect Translation Processing . 2-15

Data Manipulation Language (DML) Generation . 2-16
Join Optimization in DML Generation . 2-17

Setting Join Strategy . 2-17
Nested Loop Processing . 2-18
Joining Columns of Unequal Length . 2-20
Turning Join Optimization ON . 2-21
WHERE Predicate Cloning . 2-21

3. Language Elements .3-1
BNF Conventions .3-2
Characters .3-3

Letters .3-3
Digits .3-3
Special Characters .3-3
iWay SQL Reference ix

Contents
Tokens .3-5
Keywords .3-5
Literals .3-5
Identifiers .3-6
Identifier Naming Conventions .3-6

Qualifiers .3-6

4. SQL Reference .4-1
Supported and Unsupported SQL Statements .4-2

Supported SQL Statements and Features .4-2
Unsupported SQL Statements and Features .4-3
Expected Results From SQL Queries .4-3

SELECT Statement .4-4
FROM Clause .4-5
Outer Joins .4-5
Correlation Names .4-6
WHERE Clause .4-8
GROUP BY Clause .4-9
HAVING Clause . 4-10
AS Clause . 4-10
Aggregate Functions . 4-11
Subqueries . 4-12
Correlated Subqueries . 4-13
Generating a Result Set . 4-13
ORDER BY . 4-14

Scalar Functions . 4-14
Column Functions . 4-15
Predicates . 4-16

Comparison Predicates . 4-16
Between Predicates . 4-16
Like Predicates . 4-17
Null Predicates . 4-17
In Predicates . 4-18
Quantified Predicates . 4-18
Existence Predicates . 4-18
Search Conditions . 4-19

Data Manipulation Commands . 4-20
INSERT . 4-20
DELETE . 4-21
UPDATE . 4-21

Commit and Rollback . 4-22
COMMIT . 4-22
ROLLBACK . 4-22
x iWay Software

Contents
5. Tables and Views .5-1
Creating Tables .5-2

Data Types .5-2
Null Values .5-2
Column Names and Aliases .5-2
CREATE TABLE .5-3

Creating Views .5-4
CREATE VIEW .5-4

6. Preparing and Executing SQL Requests .6-1
Preparing SQL Requests .6-2
Executing SQL Requests .6-2

A. SQL Translate Keywords . A-1
Keywords . A-2

B. BNF Summary .B-1
Condensed SQL Language Syntax Definition .B-2
iWay SQL Reference xi

Contents
xii iWay Software

CHAPTER 1

Introduction

Topics:

• SQL Translation Services

• Language Dialect

SQL requests may be expressed in a universally applicable,
ISO standard SQL dialect, or in a Database Management
System (DBMS) specific dialect supported by any available
native SQL engine.

When data is known to be homogeneous, when
performance is a major concern, or when the unique
features of a particular DBMS can be used advantageously,
developers should submit queries native to the particular
DBMS. In these instances, a service called SQL Passthru is
used.

However, when direct usage of a DBMS engine is either
impossible or undesirable, developers should invoke ISO
standard SQL. In these instances, a service called SQL
Translation is used. Every programmer should become
familiar with ISO standard SQL because of its broad
applicability and its ability to impose a relational view on
non-relational data.

SQL Passthru Services is an optional component of a server.
It provides SQL operations against proprietary Relational
Database Management Systems (RDBMS). Using SQL
Passthru, the server can pass SQL requests directly to the
specified RDBMS for processing, without translating it in
any way.
iWay SQL Reference 1-1

SQL Translation Services
SQL Translation Services is the core component of a server. Using a feature called Automatic
Passthru, the server initiates one of two possible processes to translate SQL requests and
generate internal SQL command streams:

• Dialect Translation converts inbound SQL statements to statements that can be
processed by the target DBMS engine.

• Data Manipulation Language (DML) converts inbound SQL that is ineligible for Dialect
Translation to the internal retrieval language, TABLE. A data adapter then converts this
to the target DBMS engine’s internal DML.

After one of these conversions is complete, the request is passed to a backend database
access module for subsequent action. It is the responsibility of the backend module to
interpret internal SQL text and to interact with individual DBMSs as required.

See Chapter 2, SQL Services, for more information on SQL Passthru and SQL Translation
Services.

The purpose of this manual is to define ISO SQL in precise terms. It contains no information
about native RDBMSs or their language support. Every mention of SQL within the body of
this document should be considered a reference to ISO SQL—the dialect of SQL
implemented by SQL Translation Services.

Language Dialect
The server is designed to accommodate the broadest possible range of SQL applications.
Accordingly, the API encourages connector programs to generate SQL requests during
run-time rather than rely on predefined, hard-wired commands. The major technical
implication of this design philosophy is that servers bind and execute SQL requests
dynamically.

In contrast, ISO SQL requires that SQL requests be hard-coded in the application programs
that invoke them. Although the server, with its dynamic orientation, is not ISO-compliant in
this sense, it adheres very closely to the standard. The syntax of every statement is
patterned directly on the ISO SQL model and most statements are exactly the same.
1-2 iWay Software

Introduction
SQL Translation Services has what might be called a “read-mostly” emphasis. It supports full
ISO SELECT syntax and semantics. But certain features of SQL—CREATE TABLE, CREATE
VIEW, INSERT, UPDATE, and DELETE—to be specific, are subject to restrictions. The lifetime
of a table or view, for example, is limited to a single session, and a table or view
manufactured by one user is not generally accessible to any other user. Finally, all database
objects that come into being through the translator mechanism are managed by the server.

Such restrictions are in line with the read-mostly emphasis of SQL Translation Services. A
table is regarded as a temporary repository for information extracted from a production
database rather than an integral part of that database. SQL Translation Services invites the
user to create one or more tables, populate them with data selected from production
databases, and query them in the knowledge that they will disappear at the close of the
session.
iWay SQL Reference 1-3

1-4 iWay Software

CHAPTER 2

SQL Services

Topics:

• SQL Passthru Services

• Using SQL Passthru

• Enabling SQL Passthru

• Catalog Requirements

• Valid Database Engine Settings

• SQL Translation Services

• SQL Translation Operations

• Dialect Translation

• Data Manipulation Language (DML)
Generation

• Join Optimization in DML
Generation

This chapter explains how the server handles SQL requests,
using either SQL Passthru or SQL Translation.
iWay SQL Reference 2-1

SQL Passthru Services
SQL Passthru Services provides SQL operations against proprietary RDBMSs. The server can
pass SQL requests directly to the specified RDBMS for processing, without intercepting the
request or translating it in any way. This provides an efficient way to process requests
against a specific RDBMS, while incurring minimal system overhead.

A data adapter for each type of supported relational data source needs to be installed. See
the Server Administration manual for information about using data adapters.

Using SQL Passthru

A Hub or Full-Function Server can utilize SQL Passthru to operate in SQL Passthru mode by
session or per request—the user is responsible for activating and deactivating SQL Passthru
as needed. This requires the RDBMS engine to be set on a client, using either a stored
procedure or the API.

In addition, a Hub or Full-Function Server using its dialect translation capability attempts to
pass SQL requests to the target RDBMS using SQL Passthru.

SQL Passthru Services can be used under certain conditions on a Hub or Full-Function
Server.
2-2 iWay Software

SQL Services
The user must ensure that dialect-specific SQL is being passed to the source RDBMS when
using SQL Passthru. A client application passing anything other than dialect-specific SQL
receives an error message. SQL Passthru is shown in the solid-line circle in the figure below.

The solid-line circle represents the supported dialect-specific SQL requests of SQL Passthru
(some of which are also supported by Automatic Passthru).

Dialect translation and DML generation are discussed in Dialect Translation on page 2-13
and Data Manipulation Language (DML) Generation on page 2-16, respectively.
iWay SQL Reference 2-3

Rules for SQL Passthru
Because SQL Passthru sends SQL requests directly to the RDBMS, it only supports valid
dialect-specific SQL. Valid dialect-specific SQL complies with the syntax required by the
source RDBMS.

The user initiating the SQL request must ensure that the request:

• Uses the valid dialect-specific SQL of the RDBMS.

• Refers to fully-qualified table and column names of the RDBMS.

If the RDBMS receives SQL requests that are not compatible with its dialect or table names,
it generates an error message and returns it to the server. The server then returns the error
message to the application.

SQL Passthru Processing
This section provides an example of SQL requests targeting a single RDBMS using SQL
Passthru.

1. The client application issues a request in the dialect-specific SQL of the targeted
RDBMS.

2. The server invokes an SQL Passthru agent, which passes the request to the applicable
data adapter.

3. On receiving the request, the data adapter attaches to the RDBMS, using standard
database attachment calls. The data adapter then passes the request to the RDBMS.

4. The RDBMS processes the request.

5. The results are returned to the client application.

For details on the SQL features supported for a specific RDBMS, see the documentation for
the RDBMS and Chapter 4, SQL Reference.

Note

A three-part name can be used if the target RDBMS allows three qualifiers, such as
LOCATION.CREATOR.TABLE.
2-4 iWay Software

SQL Services
Enabling SQL Passthru

• Setting the database engine using the client.

Both of these methods are discussed below.

Specifying an RDBMS Using SET SQLENGINE
If you configure a Hub or Full-Function Server, the server profile does not contain an engine
setting by default. Instead, the Hub or Full-Function Server intercepts the request and then
either passes it directly to the RDBMS (Automatic Passthru), or converts it into Data
Manipulation Language before passing it to the RDBMS (SQL Translation).

Example Specifying a Particular RDBMS

SET SQLENGINE=SQLORA

In this example, SQLORA is the name used to specify Oracle. See Valid Database Engine
Settings on page 2-8 for a complete list of database engine settings.

Setting the Database Engine Using a Client
A client connecting to a Hub or Full-Function Server can set SQL Passthru on demand. This
effectively puts the server into SQL Passthru mode per session or per query.

When the client sets the engine in this manner, SQL Passthru behavior is altered for that
client’s session only; it does not affect any other client/server sessions.

The client application can set a database engine using two methods:

• Executing stored procedures that specify a database engine setting.

• Setting the database engine using the API.

Before using the client to change the database engine setting, you must configure the
server environment. For more information, see the Server Administration manual.

There are two ways to enable SQL Passthru:

• Specifying an RDBMS using the SET SQLENGINE command.
iWay SQL Reference 2-5

Setting the Database Engine Using Stored Procedures

Example Putting the Client’s Session in SQL Passthru Mode for All Requests

To put the client’s session in SQL Passthru mode for all following requests, the client must
execute a stored procedure that contains the SET SQLENGINE command, as shown in the
following example.

SET SQLENGINE = SQLORA
 SQL SELECT COST FROM ORDERS;
 TABLE
 ON TABLE PCHOLD
 END
 SQL SELECT SALARY FROM EMPLOYEE;
 TABLE
 ON TABLE PCHOLD
 END

In this example, all SQL requests after the SET SQLENGINE command are passed directly to
Oracle until the client disconnects. This is equivalent to setting the engine in the server
profile, but affects only the client’s session.

When the database engine is specified in a stored procedure, the server passes requests
directly to the RDBMS for processing. This behavior persists as long as the database engine
is set on the server. Therefore, RDBMS rules apply regarding SQL syntax and qualification of
table and column names. If the request is not acceptable to the RDBMS, the server returns
an error message to the client application.

In addition, when the database engine is set, ODBC stored procedure requests use
RDBMS-specific ODBC programs.

Syntax How to Terminate SQL Passthru Mode

To terminate SQL Passthru mode, another stored procedure must be executed that contains
the following command:

SET SQLENGINE = OFF

The client application can execute stored procedures to enable SQL Passthru on a per
session or per request basis.
2-6 iWay Software

SQL Services
Example Putting the Client’s Session in SQL Passthru Mode for a Single Request

To put the client’s session in SQL Passthru mode for a single request, the client must
execute a stored procedure that contains the SQL engine command. In this mode, the
server processes any requests that include this command using SQL Passthru, while
processing all other requests using SQL Translation. This is shown in the following example.

SQL SQLDS
SELECT COUNTRY FROM OWNER.CAR;
TABLE
ON TABLE PCHOLD
END

SQL SQLORA
SELECT * FROM OWNER.EMPLOYEE;
TABLE
ON TABLE PCHOLD
END

In this example, the server passes the first query directly to DB2, and the second to Oracle.
The engine setting applies only for the duration of the SELECT statement. When the engine
is specified in a stored procedure, RDBMS rules apply regarding SQL syntax and
qualification of table and column names. If the request is not acceptable to the RDBMS, the
server returns an error message to the client application.

For a list of database engine settings that can be specified in a stored procedure, see Valid
Database Engine Settings on page 2-8.

Setting the Database Engine Using the API
An API application can issue a command to set the database engine to a specific RDBMS. All
subsequent EDASQL and EDAPREPARE calls are directed to that RDBMS for the duration of
the session. Remote procedure calls (executed by EDARPC), however, are not affected by
the engine setting.

The engine setting can be changed as needed. In this way, applications can request data
from multiple RDBMSs.
iWay SQL Reference 2-7

Syntax How to Set the Database Engine Using the API

You can set the database engine in the API application by issuing the command

EDASET (0,eng)

where:

0

Is the code that indicates you are changing the database engine setting. Must be set to
0 (zero).

eng

Is a database engine setting for the API. When the database engine is set in the
application, the server expects SQL in the dialect of the RDBMS. Otherwise, it returns an
error message to the application. If no engine is specified, the server defaults to SQL
Translation.

See Valid Database Engine Settings on page 2-8 for a list of permissible settings for RDBMSs.

You can also specify a database engine using the Connector for ODBC. For instructions, see
the Connector for ODBC manual.

Catalog Requirements
The following considerations apply to cataloging metadata when using SQL Passthru:

• Applications, including ODBC applications, written to access RDBMS catalog tables can
use the native RDBMS catalog.

• Before using the client to change the database engine setting, you must configure the
server environment. For more information, see the Server Administration manual.

Valid Database Engine Settings

• Issue in a stored procedure.

• Use in an API application.

This section lists the valid database engine settings that you can:

• Include in the server profile.
2-8 iWay Software

SQL Services
Reference Engine Settings for a Server Profile or Stored Procedure

The following table lists valid database engine settings. If you are using a Hub or
Full-Function Server, you may include one of the settings in a stored procedure.

SQLDBC Teradata

SQLDS or DB2 DB2, DB2/6000, DB2/2 (for MVS, UNIX, and Windows NT)

SQLINF Informix

SQLING Ingres

SQLIPX Unisys DMS/RDMS 1100/2200

SQLMAC Microsoft Access

SQLMSS Microsoft SQL Server

SQLNUC Nucleus

SQLODBC ODBC (Generic ODBC when DBMS is not supported)

SQLORA Oracle

SQLPRO Progress

SQLRDB Rdb

SQLRED Red Brick

SQLSYB Sybase

SQLUV Universe

EDA or SQLEDA The SQL command or environment command is processed by
the server, not by SQL Passthru).

Note: This setting is not valid for CREATE SYNONYM.

OFF Terminates SQL Passthru mode if previously activated in a stored
procedure.
iWay SQL Reference 2-9

Reference Engine Settings for API Applications

The following table lists the valid database engine settings for use in API applications.

0 NOENGINE

1 DB2

2 ORACLE

3 TERADATA

4 SQL/DS

6 Microsoft SQL Server

8 INGRES

9 SYBASE

10 RDB

11 INFORMIX

13 Internal

15 SQL-400

16 NONSTOP-SQL

17 ALLBASE

18 PROGRESS

19 RED BRICK

20 UNIVERSE

23 IDMS/SQL

25 SQLODBC

26 SQLMSQ

27 SQLNUC

28 SQLMAC
2-10 iWay Software

SQL Services
SQL Translation Services
SQL Translation is used with Hub and Full-Function Servers. It facilitates SQL read
operations against relational and non-relational data sources and write operations against
relational data sources, IMS, and FOCUS data sources.

A Hub or Full-Function Server processes all incoming SQL requests using SQL Translation
unless the application or profile setting sets SQL Passthru.

SQL Translation Operations

The mode of operation is determined by the Automatic Passthru (APT) variable setting. See
Setting Automatic Passthru on page 2-12 for a description of this variable.

When an SQL request is processed, the following takes place:

1. The request is parsed to ensure that the syntax is valid. If it is not, an error is returned to
the application. Parsing produces an abstract syntax tree data structure to be used in
later analysis.

2. The Server Dynamic Catalog is used to determine the data source, information about
the tables and columns, and the data types of the columns.

3. Semantic analysis is performed on the abstract syntax tree to ensure that the query
conforms to the semantic rules. If not, an error is returned to the application.

4. If the Server Dynamic Catalog contains DBA or the query refers to a defined column in
the catalog, DML Generation is required (see Data Manipulation Language (DML)
Generation on page 2-16 for more information). Processing continues with Step 8.

5. If APT=ON or APT=ONLY and the data source is a single RDBMS engine, the feature flags
for that RDBMS are obtained.

6. The statement is checked against the feature flags. If the construct has an analogous
RDBMS construct as indicated by the feature flags, Dialect Translation is invoked to
regenerate the request using the same or similar syntax of the RDBMS. (See Dialect
Translation on page 2-13 for more information.) Processing continues with Step 10.

7. If APT=ONLY and the request is not translatable, the request is rejected and an error is
returned to the application.

SQL Translation performs two distinct types of operations:

• Dialect Translation transforms the query into native SQL dialects.

• The query is reconstructed into Data Manipulation Language (DML), allowing for
retrieval from the native RDBMS.
iWay SQL Reference 2-11

8. If APT=OFF, or if APT=ON and the data source is not from a single RDBMS or there is no
feature flag for a given construct, DML Generation is invoked.

9. The appropriate data retrieval logic is triggered to process the translated dialect or the
DML.

10. The results for SELECT operations from Dialect Translation or DML Generation are
returned to the application as an answer set as shown below.

Setting Automatic Passthru
Automatic Passthru (APT) refers to the server profile option that enables SQL Translation
Services to translate eligible incoming requests into native SQL dialects. This process, called
Dialect Translation, passes the generated SQL to SQL Passthru. This processing is
transparent to the application when APT is turned on.

You can use the API call EDASET to set the database engine. This engine, in turn, sets the
Passthru mode. For more information on the EDASET API call, see the API Reference manual.

Syntax How to Set Automatic Passthru

To change the setting for APT, issue the following command on the server:

SQL
SET APT[=] set_apt ;
END

where:

set_apt

Allows you to set the Automatic Passthru mode. Possible values are:

ON turns APT on. This is the default setting in the server profile of a Hub or Full-Function
Server. When this is the value of the APT setting, SQL Translation analyzes each inbound
request to determine whether Dialect Translation can be invoked to pass the request to
SQL Passthru.
2-12 iWay Software

SQL Services
The server determines whether the SQL request is valid for the targeted RDBMS:

• If the request passes all the rules of Dialect Translation, it is translated and passed
to SQL Passthru for processing.

• If the server receives an SQL request that does not conform to the rules of Dialect
Translation, it invokes DML Generation to translate the request into Data
Manipulation Language to be handled by one or more data adapters. The data
adapters then generate engine-specific DML and pass it to the DBMSs for
processing.

See Rules for Dialect Translation on page 2-14 for the list of rules.

OFF turns APT off. All SQL requests are processed using DML Generation, which
translates them into Data Manipulation Language to be processed by the appropriate
data adapters.

ONLY states that all requests must be appropriate for Dialect Translation, that is, they
must meet the requirements defined in Rules for Dialect Translation on page 2-14. No
SQL requests go through DML Generation. If a request does not meet the
requirements, the query is rejected, and an error is returned to the application.

This enables Data Administrators to configure access to servers to avoid any overhead
that would be incurred when generating DML.

Dialect Translation

Dialect Translation transforms an incompatible statement into one that can be processed
by the destination SQL engine, while preserving the semantic meaning of the statement.

Dialect Translation is the default behavior of SQL Translation in a Hub or Full-Function
Server. This behavior can be modified by changing the server profile or executing a stored
procedure to modify the value of the APT variable.

To qualify for Dialect Translation, the request must meet the requirements outlined in Rules
for Dialect Translation on page 2-14. If the syntax of a request does not conform to the
syntax of the DBMS or is not translatable to the syntax of the DBMS, the request will be
translated to DML.

Dialect Translation is a feature of SQL Translation Services that enables a Hub or
Full-Function Server to route inbound SQL requests to SQL-capable subservers and data
adapters wherever possible. Dialect Translation avoids translation to Data Manipulation
Language, while maintaining data location transparency.
iWay SQL Reference 2-13

Dialect Translation is shown in the shaded area of the following figure. Valid requests are
represented by the broken-line circle as shown in the figure below.

Rules for Dialect Translation
If the incoming request meets the following criteria, Dialect Translation is invoked by SQL
Translation Services:

• APT is set to ON or ONLY in the server profile.

• All data referenced by the request resides in an RDBMS.

• No defined columns in the table are referenced.

• The referenced tables contain no security restrictions as listed in the Server Dynamic
Catalog.
2-14 iWay Software

SQL Services
• The syntax of the incoming SQL statement must correspond precisely to the syntax of
the RDBMS, or must be translatable into the RDBMS’s dialect of SQL based on the
feature flags for that RDBMS. The server translates the following into the dialect of the
target RDBMS:

• The “not equal” symbol.

• The substring scalar function, length.

• The concatenation binary operator.

• The PREPARE parameter marker.

• Date literals, durations.

• Cast-type scalar functions (those functions that apply to an expression or column
name and change only the data type, not the value).

• Outer joins (with limitations).

• For fetch only.

• <> = NULL.

If a request does not meet these requirements but is valid, the server translates the request
into Data Manipulation Language using DML Generation. One or more data adapters then
generate driver-specific DML and pass it to the DBMS for processing.

Dialect Translation Processing
The following steps illustrate how a request for relational data is processed using Dialect
Translation on a Hub or Full-Function Server:

1. The abstract syntax tree data structure is traversed:

• For each construct in the abstract syntax tree that corresponds to a feature flag,
Dialect Translation substitutes a dialect-correct RDBMS construct.

• Each table name is changed to its actual name in the targeted DBMS, as stored in
the Server Dynamic Catalog.

• Each column name is changed to its actual name, as stored in the Server Dynamic
Catalog.

2. The SQL statement is rebuilt token by token from the abstract syntax tree.

3. The resulting generated SQL is passed to SQL Passthru for processing.
iWay SQL Reference 2-15

4. SQL Passthru sends the request to the RDBMS, which executes it and, for SELECT
operations, returns an answer set.

5. The server returns any resulting answer set to the client.

Incoming SQL syntax is often compatible with the dialect-specific SQL of the target RDBMS.
In that case, Dialect Translation substitutes the correct table and column names rather than
translates the dialect.

Data Manipulation Language (DML) Generation
DML Generation transforms requests into a format that allows retrieval from native DBMS
engines. Specifically, it translates the request into the Data Manipulation Language (DML)
and invokes one or more data adapters. A data adapter generates the native DML of the
DBMS and passes it to the DBMS for processing.

DML Generation is used when an application attempts to perform one of the following:

• Read from non-relational data sources.

• Address a join between heterogeneous data sources in a single SQL statement.

• Join two or more relational tables from different RDBMS engines.

• Join data sources that are distributed across servers.

• Send an SQL request using syntax for which there is no corresponding feature flag for
the target RDBMS.

• Retrieve defined columns.

• Retrieve data from tables having security restrictions in the Server Dynamic Catalog.

• Use a Hub or Full-Function Server whose APT setting is OFF.
2-16 iWay Software

SQL Services
DML Generation is shown in the shaded portion of the solid-line circle as shown in the
figure below.

Join Optimization in DML Generation

Setting Join Strategy
SQL Translation offers two types of join strategy in DML Generation: nested loop and sort/
merge. To set a preferred join strategy, issue the following command in the Hub Server
profile.

This section describes how joins can be optimized for DML Generation using SQL
Translation and Hub Servers. This is particularly important when joining heterogeneous
data sources across servers.
iWay SQL Reference 2-17

Syntax How to Set Preferred Join Strategy

SQL EDA SET JOINTYPE {NESTEDLOOP|SORTMERGE}

where:

NESTEDLOOP

Selects all rows from the outer table that match screening conditions, then uses those
rows to obtain qualified data from the inner tables. DML Generation uses this strategy
only for an equijoin on joinable columns.

Nested Loop is very effective when the screening conditions limit the number of rows
returned from a file. It is not recommended otherwise.

NESTEDLOOP is the default for JOINTYPE if this setting is deleted from the server
profile.

SORTMERGE

Retrieves data from each table and then sorts, merges, and aggregates at the end of the
process. When SORTMERGE is specified, DML Generation always uses a sort/merge
strategy to retrieve data. By default, the Hub Server contains an entry in the server
profile setting JOINTYPE to SORTMERGE.

Sort/merge is used automatically if a query fails nested loop conditions. A Hub Server
uses sort/merge, even if nested loop is the set strategy, if the server determines that
one or more join conditions are for non-joinable columns. A non-joinable column is
one in a non-relational data source without a declared index or key.

Sort/merge works effectively with large volumes of data. A sort/merge always fetches
all data from the outer table to disk, then joins them locally.

Nested Loop Processing
If JOINTYPE is not set or is set to NESTEDLOOP, DML Generation performs a set of
optimization functions:

• Determines the order of the tables in the FROM clause.

• Determines which columns in the WHERE clause are joinable and at what cost.

• Determines whether the formats of the potential join columns are compatible.
2-18 iWay Software

SQL Services
DML Generation uses the following methodology:

1. Assigns a relative cost to each join candidate to find the least expensive join structure.

2. Examines each WHERE clause predicate.

If it finds an equijoin (that is, WHERE clauses of the form fld1 = fld2, where fld1 and fld2
are columns from two of the FROM clause tables), DML Generation determines if either
fld1 or fld2 is joinable.

3. Examines the join columns to ensure that they have compatible formats.

4. Creates a matrix of joinability containing information about the costs of joining from
table to table. Each join candidate is assigned a cost, as follows:

After it builds the matrix, DML Generation tries the following join strategies:

• Single-path join based on the FROM clause left-to-right order. The tables in the
FROM clause are examined to determine if the first table is joinable to the second,
the second to the third, and so forth. This is done by examining the matrix for each
pair in FROM order. If each pair has a cost of 1, then this strategy is taken, resulting
in the creation of a single-path nested loop structure.

• Multi-path join based on the FROM clause left-to-right order. DML Generation
examines the matrix using the leftmost table as the outermost table. It then
determines if it can join the FROM tables in such a way that each TO table is to the
right of the FROM table and the cost of each is 1. This results in the creation of a
multi-path nested loop structure.

COST=1 An equijoin to a joinable column (the to column is joinable
and the columns have compatible formats).

COST=16 An equijoin to a non-joinable column (the to column is not
joinable or the columns do not have compatible formats).

COST=256 A non-equijoin or unrestricted Cartesian product (there is
no such relationship present in the WHERE clause).
iWay SQL Reference 2-19

• Composite join structure. DML Generation sorts the costs and chooses those with
a cost of 1 over those with a higher cost. It builds a structure that either:

• Is composed completely of equijoins based on joinable columns.

• Requires the creation of intermediate hold tables to accomplish an equijoin on
non-joinable columns.

• Requires the creation of intermediate hold tables to accomplish a Cartesian
product-based join.

DML Generation tries to respect the order of tables in the FROM clause. Therefore,
optimal performance is achieved by making the most restricted table the outer table—
that is, first in the FROM clause.

In any case, the least expensive join based on these rules is constructed and the rows
returned are the same.

Joining Columns of Unequal Length
All data adapters allow joins of columns of unequal length. With this capability, DML
Generation assigns a cost of 1 to alphabetic joins of unequal length and between
short-packed (8-byte) and long-packed (16-byte) columns.

Reference Joinable Columns

DML Generation considers the following columns to be joinable:

Host Column Target Column

A (any length) A (any length)

short P short P

Long P long P

short P long P

Long P short P

I I

D D

F F

new date new date

old date (I) old date (I)
2-20 iWay Software

SQL Services
Some data adapters for legacy files allow a generic join, which violates relational join rules
by including extra columns that do not strictly match the select list. For those data
adapters, DML Generation reapplies the screening criteria after the records are retrieved to
ensure strict relational compliance.

For all signed numeric columns, the handling of different values for the + and - is performed
by the data adapter, not DML Generation. All values corresponding to + and - should be
retrievable in a join.

Turning Join Optimization ON
Join optimization is controlled by the SET JOINOPT setting in the server profile. It is turned
ON by default. For more information on SET JOINOPT, see the Server Administration manual.

WHERE Predicate Cloning

DML Generation builds a table of equivalent columns, which have the same value for all
rows in the answer set. The equivalencies are found by searching the WHERE clause for
predicates that equate one database column to another (for example, A = B). Equijoins
always fit this pattern. Next, all WHERE clause predicates on columns in the equivalence
table are duplicated, and the column name in the predicate is replaced with its equivalent
column.

Example Cloning the WHERE Clause Predicates Using Nested Loop

The following example illustrates an optimization procedure using a nested loop strategy.
In this example:

• Table A is 100,000 rows, 100 of which refer to Smith (as a foreign key).

• Table B is 100 rows; one has Smith as its key.

For this SELECT statement

new date old date (I)

old date (I) new date

Host Column Target Column

Note

Old dates of alpha format are not supported. If you have such a column, it should be
defined as alpha.

DML Generation also clones WHERE clause conditions, where appropriate, for optimal join
performance. This optimization is performed for both nested loop and sort/merge joins
when there is explicit value selection criteria on one of the columns.
iWay SQL Reference 2-21

SELECT * FROM A,B WHERE B.key=A.key AND B.key='SMITH'

DML Generation clones the selection criteria for 'SMITH' by also applying it to A.key.
Logically, the SELECT is transformed as follows:

SELECT * FROM A,B WHERE B.key=A.key AND B.key='SMITH' AND A.key='SMITH'

The subsequent processing involves the following operations:

1. Selecting rows from the outer table A by applying the generated WHERE clause criteria
to retrieve the first 'SMITH' row.

2. Selecting rows from the inner table B by supplying the from column value of 'SMITH'
and the WHERE clause criteria (also 'SMITH') to retrieve one row.

3. Repeating steps 1 and 2 a total of 99 more times.

The outer table SELECT returns 100 rows in one DBMS event. The inner SELECT is executed
100 times and returns one row for 100 DBMS events. The total is 200 reads, 101 DBMS
events, and 100 rows returned for the query.

If DML Generation did not clone the WHERE predicate, the outer SELECT would return
100,000 rows, 99,900 of which would be rejected once the inner SELECT was applied using
key values not equal to 'SMITH', which would return no rows. The total would have been
100,001 reads, 100,001 DBMS events, and 100 rows returned for the query.

Thus, with WHERE predicate cloning, maximum efficiency is reached: 200 reads instead of
100,001. WHERE clause cloning provides join optimization, and makes this operation
almost as efficient, in this case, as the second example.

Example Cloning the WHERE Clause Predicates Using Sort/Merge

The following example illustrates an optimization procedure using a sort/merge strategy. In
this example:

• Table A is 100,000 rows, 100 of which refer to Smith (as a foreign key).

• Table B is 100 rows; one has Smith as its key.

For this SELECT statement

SELECT * FROM A,B WHERE A.key=B.key AND B.key='SMITH'

DML Generation clones the selection criteria for 'SMITH' by applying it to A.key. Logically,
the SELECT is transformed as follows:

SELECT * FROM A,B WHERE B.key=A.key AND B.key='SMITH' AND A.key='SMITH'

The subsequent processing involves the following operations:

1. Selecting rows from table A by applying the generated WHERE clause criteria to
retrieve all 100 'SMITH' rows.
2-22 iWay Software

SQL Services
2. Selecting rows from table B by applying the original WHERE clause criteria to retrieve
one row.

3. Merging the results from steps 1 and 2.

The first SELECT would return 100 rows for one DBMS event. The second would return one
row for one DBMS event. The total is 101 reads, two DBMS events, and 100 rows returned for
the query.

If DML Generation did not clone the WHERE predicate, there would have been 100,001
reads.

In each case, this transformation yields a query semantically equivalent to the original
because A.key and B.key must be equal at all times to satisfy the preexisting equijoin
criteria. In any retrieval scenario, the number of rows returned from table A will be reduced
by the added predicate.
iWay SQL Reference 2-23

2-24 iWay Software

CHAPTER 3

Language Elements

Topics:

• BNF Conventions

• Characters

• Tokens

• Qualifiers

This chapter describes the Backus Naur Form (BNF)
notation and the language elements of SQL.
iWay SQL Reference 3-1

BNF Conventions

A language construct may be used on the right hand side of such an expression (sometimes
called a production) to define something else. When a known construct appears on the
right side of a production it is represented by its name enclosed within angled brackets
(<…>).

a_new_thing ::= <any_old_thing>

The right hand side of a production may be composed of any sequence of bracketed names
and printable characters. Curly brackets ({…}) are used to delimit choices separated by
vertical bars and square brackets ([…]) are used to indicate optional phrases. When a
bracketed expression is followed by an asterisk ([…]*) it represents zero, one or more of the
enclosed language constituents. Printable characters employed outside of brackets in
productions are meant to be used verbatim.

The ::= operator is the BNF equivalent of is made up of in English.

Example Using the ::= Operator

The following productions could be read as computer books are made up of zero, one or more
instances of information or examples and syntax.

computer_books ::= [<technical_information>]* and syntax.
technical_information ::= information | examples

Productions amount to formulas for creating a well-formed string in a given language. All of
the following conform to the computer_books syntax:

information examples and syntax.
and syntax.
information information information and syntax

This manual employs a variant of what is known as Backus Naur Form (BNF) notation to
describe SQL syntax. In BNF, a language construct is defined as follows:

something ::= its definition
3-2 iWay Software

Language Elements
Reference BNF Symbols

The chart below summarizes the BNF symbols and their meanings.

Characters

Letters
alpha ::= A..Z | a..z

Digits
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9| 0...9

digit ::= 0...9

Special Characters
special-character ::=

A special character is any character in the character set of a server other than a digit or an
alpha.

Symbol Meaning

{ } Indicates a group of valid options. You must choose at least one
of the enclosed options.

[] Indicates a group of valid options. You can select one of the
options or none.

::= Indicates is made up of.

< > Indicates the command or production qualifier or construct.

, Indicates that you can select one or more or none of the
options.

| Indicates that you can select one of the options or none.

[]* Zero or more occurrences of item in brackets.

Characters are the fundamental building blocks of the SQL language. The user can
compose names, phrases, expressions, literals, and other higher-level constructs with them.
Upper and lower case letters, spaces, digits, and new line markers are all in the SQL
character set, as are a variety of special symbols.

Note

A..Z means any character from A to Z.
iWay SQL Reference 3-3

<blank> ::=

<double quote> ::= "

<percent> ::= %

<ampersand> ::= &

<quote> ::= ‘

<left paren> ::= (

<right paren> ::=)

<asterisk> ::= *

<plus sign> ::= +

<minus sign> ::= -

<period> ::= .

<solidus> ::= /

<colon> ::= :

<semi-colon> ::= ;

<less than operator> ::= <

<equals operator> ::= =

<greater than> ::= >

<question mark> ::= ?

<left bracket> ::= [

<right bracket> ::=]

<underscore> ::= __

<vertical bar > ::= |

<caret> ::= ^

Tokens

Tokens are sequences of characters having special lexical significance. There are three basic
SQL token types: keywords, literals, and identifiers. A token can be followed by a delimiter
or a separator.
3-4 iWay Software

Language Elements
delimiter ::= <alpha-literal> | , | (|) | < | > | . | : | =
 | * | + | - | / | <> | >= | <=
separator ::= <comment> | <space> | <newline>
comment ::= --[<character>]*<newline>

Keywords
Keywords are tokens that have a predetermined meaning in the SQL language. For clarity, it
is recommended that keywords not be used as identifiers. See Appendix A, SQL Translate
Keywords, for a list of SQL keywords.

Literals
Literals are used in SQL statements to represent values that can occur in the database. Each
type of literal represents a distinct kind of database value.

numeric-literal ::= [{+ | -}]<numeric-tail>
numeric-tail ::= <integer>[.<integer>] | .<integer>
approx-literal ::= <numeric-literal> E[{+ | -}] <integer>
alpha-literal ::= '[<lit-character>]*'
literal ::= <alpha-literal> | <numeric-literal> |
 <approx-literal>
integer ::= <digit>[<digit>]*
lit-character ::= <non-quote> | "

Example Specifying a Literal

'Down by the seaside'
'Ain''t got nobody'
- 6.5

Identifiers
Identifiers are tokens used to name database objects. There are two types of identifiers:
long and short. Short identifiers cannot exceed 8 characters in length; long identifiers can
contain up to 48 characters. Both are formed according to the following lexical rules:

identifier ::= <normal-identifier> | <delimited-identifier>
normal-identifier ::= <alpha>[<id-character>]*
delimited-identifier ::= "<any printable character string>"
id-character ::= <alpha> | <digit> | _

Example Specifying an Identifier

DEPARTMENT

customer_id

Note

A non-quote is any character in the character set of a server other than a single-quote
symbol. Two single quotes can be used to represent an embedded quote (see the example
below).
iWay SQL Reference 3-5

Identifier Naming Conventions
Several terms are used in this document to represent identifiers. The purpose is to make it
clear what kind of object is being manipulated by a given language construct. Syntactically,
the terms have no particular significance—they all represent identifiers—but semantically,
the difference is significant. Note that the names of certain classes of database objects must
be short identifiers.

authorization-id ::= <short identifier>
location-id ::= <long identifier>
column-name ::= <long identifier>
table-name ::= <short identifier>
view-name ::= <long identifier>
statement-name ::= <short identifier>
range-variable ::= <long identifier>
procedure-name ::= <identifier>

Qualifiers
Qualifiers are used to specify the precise information that is required.

table-ref ::= [<table-qualifier>.]<table-name>
table-qualifier ::= <loc-id>.<auth-id> | <auth-id>
column-ref ::= [<column-qualifier>.]<column-name>
column-qualifier ::= <table-ref> | <range-variable>
3-6 iWay Software

CHAPTER 4

SQL Reference

Topics:

• Supported and Unsupported SQL
Statements

• SELECT Statement

• Scalar Functions

• Column Functions

• Predicates

• Data Manipulation Commands

• Commit and Rollback

This chapter contains a summary of supported and
unsupported SQL statements, clauses, variables, functions,
predicates, and commands.
iWay SQL Reference 4-1

Supported and Unsupported SQL Statements

Supported SQL Statements and Features
SQL Translation supports the following:

• SELECT, including SELECT ALL and SELECT DISTINCT.

• CREATE TABLE. The following data types are supported for CREATE TABLE: REAL,
DOUBLE PRECISION, FLOAT, INTEGER, DECIMAL, CHARACTER, and SMALLINT.

• DROP TABLE for relational data sources.

• INSERT, UPDATE, and DELETE for relational data sources, IMS, Adabas, VSAM, and
FOCUS data sources.

• Equijoins and non-equijoins.

• CREATE VIEW and DROP VIEW.

• PREPARE and EXECUTE.

• Delimited identifiers of table names and column names. Table and column names
containing embedded blanks or other special characters in the SELECT list should be
enclosed in double quotation marks.

• AS phrase, used in conjunction with SELECT statements.

• The UNION and UNION ALL operators.

• Non-correlated subqueries for all requests.

• Correlated subqueries for requests that are candidates for Dialect Translation to an
RDBMS that supports this feature.

• Numeric constants, literals, and expressions of literals in the SELECT list.

• The following scalar functions for all queries: DECIMAL, FLOAT, INTEGER, and SUBSTR
(or SUBSTRING).

• The following scalar functions for queries that are candidates for Dialect Translation if
the RDBMS engine supports the scalar function type: CHAR, DATE, DAY, DAYS, DIGITS,
HEX, HOUR, LENGTH, MICROSECOND, MINUTE, MONTH, SECOND, TIME, TIMESTAMP,
VALUE, VARGRAPHIC, and YEAR.

• The concatenation operator, ||, or the syntax alpha1 CONCAT alpha2 used with literals
or alphanumeric columns.

• The following column functions: COUNT, MIN, MAX, SUM, and AVG.

This section contains a summary of supported and unsupported SQL statements and the
expected results from SQL queries.
4-2 iWay Software

SQL Reference
• Date literals of formats YYYY-MM-DD, YYYY/MM/DD, MM-DD-YYYY, and MM/DD/YYYY.

• All requests that contain ANY, SOME, and ALL that do not contain =ALL, <>ANY, and
<>SOME.

• =ALL, <>ANY, and <>SOME for requests that are candidates for Dialect Translation if
the RDBMS engine supports quantified subqueries.

• The special registers USER, CURRENT DATE, CURRENT TIME, CURRENT TIMESTAMP,
CURRENT EDASQLVERSION, and CURRENT TIMEZONE.

• IS NULL and IS NOT NULL predicates.

• =NULL and <>NULL predicates.

• LIKE and NOT LIKE predicates.

• IN and NOT IN predicates.

• EXISTS and NOT EXISTS predicates.

• GROUP BY clause expressed using explicit column names.

• ORDER BY clause expressed using explicit column names or column numbers. Note
that ORDER BY with UNION supports the column number syntax only.

• FOR FETCH ONLY feature to circumvent record locking.

• Continental Decimal Notation when the CDN variable is set in the server profile.

• National Language Support.

• Outer joins.

• Date arithmetic.

Unsupported SQL Statements and Features
SQL Translation does not support the following:

• More than 15 joins per SELECT.

• Correlated subqueries in DML Generation.

• =ALL, <>ANY, and <>SOME in DML Generation.

Expected Results From SQL Queries
All SQL queries produce Cartesian product style answer sets. In addition, all dates are
converted to YYYYMMDD format on output regardless of their original format.
iWay SQL Reference 4-3

SELECT Statement

The SELECT statement is the most powerful and complex SQL statement. The SELECT
statement can be used along with INSERT, UPDATE, and DELETE to manipulate data and
query the tables in a database. SELECT can be used with a number of clauses and qualifiers,
such as FROM, WHERE, DISTINCT, or ALL to define how information will be presented and
what information will be retrieved.

DISTINCT

Instructs the system to remove duplicates.

ALL

Instructs the system to ignore duplicates when and if they occur.

query-spec ::= SELECT [<sel-qualifier>] <selection> <table-exp>
sel-qualifier ::= ALL | DISTINCT
selection ::= <select-list> | *
select-list ::= <scalar-exp> [, <scalar-exp>]*
table-exp ::= <from-clause> [<where-clause>] [<group-by-clause>]
 [<having-clause>]
from-clause ::= FROM <from-ref> [, <from-ref>]*
where-clause ::= WHERE <search-condition>
group-by-clause ::= GROUP BY <column-name> [, <column-name>]*
having-clause ::= HAVING <search-condition>
subquery ::= (SELECT [ALL | DISTINCT] <result-spec>
<table-expression>)
result-spec ::= <scalar-exp> | *

Example Selecting and Manipulating Values From the Employee Table

SELECT DEP_NBR, MAX(SALARY)
FROM EMPLOYEE
GROUP BY DEP_NBR
HAVING MAX(SALARY) > 100000

Among the most important features of SQL is its ability to query relational data sources and
to provide an answer set based on defined criteria. A query can be a:

• SELECT statement that is used in conjunction with the FROM, WHERE, ORDER BY,
GROUP BY, and HAVING clauses.

• Number of queries connected by the UNION keyword.

• Number of subqueries that are used within comparison predicates, in predicates,
all-or-any predicates and existence tests.
4-4 iWay Software

SQL Reference
FROM Clause
A FROM clause establishes—conceptually—a candidate set, S, from which output tuples
are eventually drawn. The FROM clause is defined as:

from-ref ::= <table-definition> [<range-variable>]
table-definition ::= { <table-ref> | <joined-table> | (<joined-table>) }
joined-table ::= <table-definition><join-spec><table-definition>
 <on-condition>
join-spec ::= { INNER JOIN | LEFT [OUTER] JOIN | RIGHT [OUTER]
JOIN }
on-condition ::= ON <search-condition>

If the FROM clause consists of only table T, then the candidate set S is T. If the clause is

FROM T1, T2, ..., Tn

then S is defined to be the Cartesian product T1 x T2 x…x Tn of the tables. The Cartesian
product of T1…Tn is the set of all possible tuples formed by concatenating, or pasting
together, a row from T1 with a row from T2 with a row from T3, …, and a row from Tn.

Outer Joins

Inner joins can be thought of as the cross product of the tables (combine each row of the
left table with every row of the right table), keeping only the rows where the join-condition
is true. The result table may be missing rows from either or both of the joined tables. Outer
joins include the inner join and preserve these missing rows. There are three types of outer
joins:

• Left outer join includes rows from the left table that were missing from the inner join.

• Right outer join includes rows from the right table that were missing from the inner
join.

• Full outer join includes rows from both the left and right tables that were missing from
the inner join.

A joined table specifies an intermediate result table that is the result of either an inner join
or an outer join. The table is derived by applying one of the join operators: INNER, LEFT
OUTER, RIGHT OUTER, or FULL OUTER to its operands.
iWay SQL Reference 4-5

Example Defining a Candidate Set as the Join of Component Tables

The FROM clause may also define the candidate set as the “join” of component tables, as
shown in the following example:

FROM CUSTOMER

FROM CUSTOMER, ORDER, INVENTORY

FROM T1 LEFT OUTER JOIN T2 ON T1.X=T2.Y

For this example, the candidate set S is formed as follows. First, the Cartesian product of the
two tables (T1 and T2) is formed. Next, the on condition is used to remove those tuples or
rows that do not satisfy the condition. If an INNER JOIN was requested, we would have S.
Since, in actuality, LEFT OUTER JOIN was requested, we check if all rows of table T1 (the left
table) display. For any rows that do not appear, we add a tuple consisting of a row from T1
with a row consisting of null values from T2. If this a RIGHT OUTER JOIN, we would add
tuples to ensure that every row of T2 was represented.

If tables T1 and T2 contained the following data:

T1: column X T2: column Y
 1 3
 2 4
 3 5

• T1 INNER JOIN T2 ON T1.X=T2.Y produces a table with only one row corresponding to
the tuple <1,1>.

• T1 LEFT OUTER JOIN T2 ON T1.X=T2.Y contains the tuples <1,1>, <2, ->, and <3,-> (the
dash indicates a null value).

• T1 RIGHT OUTER JOIN T2 ON T1.X=T2.Y has the tuples <1,1>, <-,4>, and <-,5>.

Example Describing Join Table Results as a Component of Another Join

This example shows that the result of a joined table may in turn be a component of another
join.

FROM (T1 INNER JOIN T2 ON T1.X=T2.Y)
 LEFT OUTER JOIN T3 ON T1.X=T3.Z

Correlation Names
An identifier that is a correlation name is associated with a table within a particular scope.
The scope of a correlation name is either a select statement: single row, subquery, query
specification, or is a trigger definition. Scopes may be nested. In different scopes, the same
correlation name may be associated with different tables or with the same table.
4-6 iWay Software

SQL Reference
Example Defining Correlation Names

FROM clauses are also used to define correlation names. A correlation name, R, can assume
the value of a row taken from a single specified table, T (R is said to range over T). Consider
the following example:

FROM CUSTOMER C, PERSONNEL P

In this example, C ranges over CUSTOMER and P over PERSONNEL. Whenever a correlation
name is introduced in the FROM clause of an SQL subselect, it must be used throughout the
request. Thus, in the above example, C should be used in lieu of CUSTOMER within the
confines of the select statement containing “FROM CUSTOMER C.” Correlation names can
be used as abbreviations for long table names. But correlation names offer more than
notational convenience.

Example Defining Correlation Names by Joining the Employee Table to Itself

SELECT A.EMP_NBR, A.NAME
FROM EMPLOYEE A, EMPLOYEE B
WHERE A.SALARY > B.SALARY AND A.REPORTS_TO = B.EMP_NBR

In English, this query might read, “Get the names of all employees earning more than their
managers.” Here, producing the correct response entails joining the employee table to
itself. The correlation names, A and B, are required to distinguish one conceptual copy of
the employee data source from another.

There are a number of rules governing the use of correlation names in SQL statements:

• Correlation names must be unique within the subselect, S, in which they are
introduced.

• Correlation names cannot duplicate the names of tables referenced in the FROM clause
of S.

• Correlation names cannot duplicate the names of columns belonging to tables
referenced in the FROM clause of S.

• When a table, T, is referenced more than once in a FROM clause, all but one instance of
T must be accompanied by a correlation name.

• When a correlation name, R, is introduced for a table, T, in a subselect, R must qualify all
qualified references to columns of T within that same subselect.

Note

Catalog and Schema identifiers are permitted, but are ignored by the server Universal
Translator. That is, the system treats the following requests as if they were exactly the same
because they each contain the same Table name (PERSON).
iWay SQL Reference 4-7

SELECT FIRST_NAME, LAST_NAME
FROM LONDON.SMITH.PERSON
WHERE SEX = 'F'

SELECT FIRST_NAME, LAST_NAME
FROM BLOGGS.PERSON
WHERE SEX = 'F'

SELECT FIRST_NAME, LAST_NAME
FROM PERSON
WHERE SEX = 'F'

WHERE Clause

where-clause ::= WHERE <search-condition>

The WHERE clause can be qualified when combined with:

• Comparison predicates such as = equal to, < less than, or > greater than.

• Logical operators such as AND, OR, and NOT.

• Between predicates such as BETWEEN and NOT BETWEEN.

• Like predicates such as LIKE and NOT LIKE.

• Null predicates such as IS NULL and IS NOT NULL.

• Any or all predicates such as ALL, SOME, and ANY.

WHERE clauses are governed by two rules:

• Every column identified within a WHERE clause must either belong to S or be a
correlation reference.

• Column functions cannot appear in WHERE clauses.

Syntax How to Specify a Search Condition

where-clause ::= WHERE <search-condition>

Example Specifying a Search Condition

SELECT DEP_NBR, MAX(SALARY)
FROM EMPLOYEE
GROUP BY DEP_NBR
WHERE MAX(SALARY) = 70000

The WHERE clause is part of the SELECT statement that specifies a search criteria. A WHERE
clause is a search condition preceded by the keyword WHERE.
4-8 iWay Software

SQL Reference
GROUP BY Clause

Each column reference in the GROUP BY list must belong to a subset and must refer
unambiguously to a column specified in the SELECT list. Columns within views whose
values are derived by means of expressions, functions, or constants must never display in a
GROUP BY list.

GROUP BY partitions a set into subsets, S1 .. Sn. Each subset corresponds to a fixed set of
values assumed by the grouping columns. (Null values are considered to be equal for the
purpose of forming groups.)

When GROUP BY is present, the elements in the select list must be single-valued by group.
Select list elements can be aggregate functions, they can be columns referenced in the
group by list (which by definition are single-valued by group), or they can be expressions.
They must not assume multiple values for any group to which they belong.

The GROUP BY clause can be used with:

• Aggregates to provide summary values for each set.

• WHERE to locate the information specified and to group that information into sets.

• ORDER BY to sort the answer set into ascending (ASC) or descending (DSC) order:

• ASC sorts the answer set in ascending order from the lowest to the highest.

• DSC sorts the answer set in descending order from the highest to the lowest.

• HAVING to limit the number of rows returned within a group.

Syntax How to Group Table Elements

group-by-clause ::= GROUP BY <column-name> [, <column-name>]*

where:

GROUP-BY

Groups the elements of a subset together to form a new intermediate result.

Example Producing a Single Row for Each Department Number in the Employee Table

SELECT DEP_NBR, MAX(SALARY)
FROM EMPLOYEE
GROUP BY DEP_NBR

The GROUP BY clause, which follows the WHERE clause in an SQL query, is used to group
the elements of a table into sets. This clause is also used to produce a single row of results
for each group of rows that have the same values.
iWay SQL Reference 4-9

HAVING Clause

The HAVING clause applies qualifying conditions to groups after they have been formed.
The HAVING clause complements the GROUP BY clause. The HAVING clause allows you to
include column functions such as, COUNT, AVG, MAX, MIN, or SUM in the search condition.
Each HAVING compares one column or column function expression of the group with
another column function expression of the group or with a constant.

HAVING can be used with the logical operators ADD, OR, or NOT to combine conditions.

Expressions in the HAVING clause must be single-valued per group. Each column name in
the search condition must reference a grouping column or be a correlated reference.

having-clause ::= HAVING <search-condition>

Example Specifying a Qualifying Condition

SELECT DEP_NBR, MAX(SALARY)
FROM EMPLOYEE
GROUP BY DEP_NBR
HAVING MAX(SALARY) > 100000

AS Clause
The AS clause makes it possible to rename existing column titles in your reports.

as-clause ::= AS <column-name>

Syntax How to Change Default Titles

SELECT field1 AS title1, field2 AS title2

where:

field

Can be a sort field, display field, column total, or row total.

title

Is the new column title lines.

Aggregate Functions

The HAVING clause is similar to the WHERE clause. WHERE eliminates rows, and the HAVING
clause eliminates groups. The HAVING clause and WHERE clause have similar syntax. They
both consist of a keyword followed by a search condition.

The SQL Translator provides five aggregate functions: COUNT, SUM, AVG, MAX, and MIN.
These aggregate functions can be used with a:

• GROUP BY clause to organize the rows returned by a FROM clause.
4-10 iWay Software

SQL Reference
• HAVING clause to eliminate sets that do not meet the selection criteria.

Each is represented by a name followed by a parenthetical expression containing a single
argument. Arguments designate result set columns and can be preceded by the keyword
DISTINCT to remove duplicates.

Aggregate functions must be coded as follows:

function-ref ::= COUNT(*) | <distinct-fn-ref> | <all-fn-ref>
distinct-fn-ref ::= [<fn-name> | COUNT] (DISTINCT <column-ref>)
all-fn-ref ::= <fn-name> ([ALL] <scalar-exp>)
fn-name ::= AVG | MAX | MIN | SUM

Note that COUNT(*) is treated as a special case. COUNT(*) counts the number of rows in a
table without eliminating duplicates.

The keyword DISTINCT can be used with any aggregate except COUNT(*).

Example Producing a Count From the Condition “CITY=Denver”

SELECT COUNT(*) FROM CLIENT WHERE CITY = 'Denver'

This would generate a single output element (a table consisting of one row and one
column). The result would be produced by counting every row that satisfies the CITY =
'Denver' predicate. It is significant that each row participates in the count. Among the SQL
functions, COUNT(*) is unique in that it does not reject an operand because it is null, or
because it contains a null value.

Reference Function Names

The following functions operate on the set of non-null scalar values found within one
column of a result table. All of these produce single-valued output. A list of function names
and their meanings follow:

COUNT([DISTINCT]) The number of (distinct) non-null elements in the column.

SUM([DISTINCT]) The sum of the (distinct) elements in the column. This function
can only be used with numeric columns.

AVG([DISTINCT]) The average of the (distinct) elements in the column. This
function can only be used with numeric columns.

COUNT The number of non-null elements in the column.

SUM The sum of the non-null elements in the column. This function
can only be used with numeric columns.

AVG The average of the non-null elements in the column. This
function can only be used with numeric columns.
iWay SQL Reference 4-11

Subqueries
Subqueries, which access single-column tables from the database, are used within
comparison predicates, in predicates, all-or-any predicates, and existence tests. A subquery
is a SELECT statement that nests:

• Inside the WHERE, HAVING, or SELECT clause of another SELECT.

• Inside an UPDATE, DELETE, or INSERT statement.

• Inside another subquery.

subquery ::= (SELECT [ALL | DISTINCT] <result-spec>
<table-expression>)
result-spec ::= <scalar-exp> | *

Example Using Subqueries

SELECT ITEM FROM INVENTORY WHERE UNIT_COST <
 (SELECT AVG(UNIT_COST) FROM INVENTORY)

SELECT ITEM FROM INVENTORY WHERE UNIT_COST < ALL
 (SELECT UNIT_COST FROM INVENTORY
 WHERE ITEM_CODE LIKE 'X%')

SELECT ITEM, DESCRIPTION FROM ORDERS
WHERE ITEM_CODE NOT IN
 (SELECT ITEM_CODE FROM INVENTORY)

SELECT A.ITEM, A.DESCRIPTION FROM ORDERS A
WHERE EXISTS
 (SELECT * FROM INVENTORY B
 WHERE A.ITEM_CODE = B.ITEM_CODE
 AND B.QTY_ON_HAND > 1000)

Subselects used within comparison predicates are required to return a single row of output.
Subselects used within quantified predicates must return a single column of values, S. If S is
empty or if the given comparison is true for all values of S, then x <relop> ALL S is true; it is
false otherwise. If x <relop> S is true for at least one value of S, x <relop> ANY S is true.

MAX The maximum value in the column.

MIN The minimum value in the column.
4-12 iWay Software

SQL Reference
Correlated Subqueries
A correlated subquery is a subquery expressed in terms of a value produced by an outer
query. Consider, for example, the fourth SELECT statement in the preceding Using
Subqueries example. The subselect in the EXISTS test contains the following comparison:

A.ITEM_CODE = B.ITEM_CODE

A.ITEM comes from the outer select; B.ITEM comes from the inner select. To develop an
answer set for this query, the SQL Translator must—conceptually—evaluate the inner
query once for every value of A.ITEM produced by the outer select.

Generating a Result Set
A join is a query that:

• Contains multiple table names, T1 .. Tn, in the FROM list.

• Specifies a link between T1 .. Tn in the WHERE clause.

Example Establishing a Join Condition of FACULTY and STUDENT

SELECT F.NAME, S.NAME
FROM FACULTY F, STUDENTS S
WHERE S.ADVISOR = F.EMP_NBR AND F.DEPT = 'Mathematics'
ORDER BY F.NAME

Conceptually, the SQL Translator evaluates this query in a series of steps:

• It forms a candidate set S1, the Cartesian product of FACULTY and STUDENT by pasting
together all possible combinations of rows taken from the two tables. (If there were N
students and M faculty members on file, S1 would consist of N*M rows. If there were X
columns in FACULTY and Y columns in STUDENTS, S1 would contain X+Y columns.)

• The SQL Translator then identifies those rows of S1 which conform to the join condition
S.ADVISOR = F.EMP_NBR. This would result in a (possibly) reduced candidate set, S2.

• The system further restricts S2 to those rows for which F.DEPT = MATHEMATICS. This
produces a third candidate set, S3.

• Finally, the SQL Translator eliminates all columns not named in the SELECT list. The
resulting set, known as a projection, would be returned to the user.

A production quality DBMS would never proceed in this manner because the overhead
caused by the size of S1 would preclude that. Still, it is instructive to think of the query
execution as taking place in this fashion.

The predicate, S.ADVISOR = F.EMP_NBR, is known as a join condition. Although, in practice,
most join operations are based on equal comparisons (and are therefore called equijoins),
the SQL Translator supports joins based on other valid SQL relational operators.
iWay SQL Reference 4-13

ORDER BY
The ORDER BY clause is used to sort the answer set by the values contained in one or more
columns.

order-by-clause ::= ORDER BY <ord-spec> [, <ord-spec>]*
ord-spec ::= {<integer> | <column-ref>} [{ASC | DSC}]

Example Sorting a Result Set From Employee Table

SELECT DEP_NBR, SALARY
FROM EMPLOYEE
ORDER BY DEP_NBR, SALARY

Scalar Functions
Scalar functions represent scalar values. The syntax is

scalar-exp ::= <term> | <scalar-exp> <addop> <term>
addop ::= + | -
term ::= <factor> | <term> <multop> <term>
multop ::= * | /
factor ::= <literal> | <column-ref> | <function-ref> |
 (<scalar-exp>)

Example Specifying a Scalar Expression

COUNT(DISTINCT EMP_NBR)
3 * (AMOUNT + BALANCE)

Column Functions

function-ref ::= COUNT(*) | <distinct-fn-ref> | <all-fn-ref>
distinct-fn-ref ::= <fn-name> (DISTINCT <column-ref>)
all-fn-ref ::= <fn-name> ([ALL] <scalar-exp>)
fn-name ::= AVG | MAX | MIN | SUM| COUNT

Note that COUNT(*) is treated as a special case in the definition of function-ref. COUNT(*)
counts the number of rows in a table without eliminating duplicates.

The functions operate on the set of non-null scalar values found within one column of a
table. All of them produce single-valued output.

The SQL Translator provides column functions that can be used to summarize data: COUNT,
SUM, AVG, MAX, and MIN. Each function is represented by a name followed by a
parenthetical expression containing a single argument. Arguments designate result set
columns and can be preceded by the keyword DISTINCT to remove duplicates. Column
functions must be coded as follows:
4-14 iWay Software

SQL Reference
Reference Function Names

The following table lists and defines function names.

Example Counting the Number of Rows Including Duplicates

This query would generate a single output row containing the count of every row that
satisfies the CITY = 'Denver' predicate. It is significant that each row participates in the
count. Among the SQL functions, COUNT(*) is unique in that it does not reject an operand
because it is null or because it contains a null value.

SELECT COUNT(*) FROM CLIENT WHERE CITY = 'Denver'

Example Counting the Number of Rows Excluding Duplicates

This query, by ignoring duplicates, produces a true count of customers on file.

SELECT COUNT(DISTINCT CUST_NBR) FROM CUSTOMER

Example Applying a Column Function to a Group of Values

This query illustrates how column functions can be applied to groups of values (GROUP BY).

SELECT DEPARTMENT, SUM(SALARY), MAX(SALARY), MIN(SALARY)
FROM PERSONNEL
GROUP BY DEPARTMENT

Example Using a Column Function Within a Subquery

This query illustrates the use of a column function within a subquery.

SELECT MAKE, MODEL FROM CAR
WHERE DEALER_COST >
 (SELECT AVG(DEALER_COST) FROM CAR)

If a quantifier is not specified, then ALL is implicit. If SUM or AVG is specified, a character
string, bit string, or datetime cannot be used.

COUNT The number of non-null elements in the column.

SUM The sum of the non-null elements in the column. SUM requires numeric
input.

AVG The average of the non-null elements in the column. This function
requires numeric input.

MAX The maximum value in the column.

MIN The minimum value in the column.
iWay SQL Reference 4-15

Predicates

Comparison Predicates
A comparison predicate compares two values—a scalar expression, and either some other
scalar expression or a subquery result.

comparison-predicate ::= <scalar-exp> <relop> <comp-tail>
comp-tail ::= <scalar-exp> | <subquery>
relop ::= = | <> | < | > | <= | >=

Example Comparing Values

SALARY > THRESHOLD
DEALER_COST < (SELECT AVG(DEALER_COST) FROM CAR)
DEPARTMENT = 100

Between Predicates
A between predicate is true if the value is greater than or equal to the first limit and less
than or equal to the second limit. A between predicate specifies a range comparison.

between-predicate ::= <scalar-exp> [NOT] BETWEEN <limits>
limits ::= <scalar-exp> AND <scalar-exp>

Example Specifying a Range

SPEED NOT BETWEEN LEGAL_LIMIT AND 70
PRICE BETWEEN GOING_RATE AND 1.1 * GOING_RATE

Like Predicates
A like predicate is used to isolate string values that conform to a given pattern.

like-predicate ::= <column-ref> [NOT] LIKE <literal>

A like predicate is true for a given row whenever the specified column (which must be of
type string) matches a particular pattern. Patterns are expressed as literal strings composed
of printable characters. Special symbols (“_” and “%”) are used to represent arbitrary
characters and character strings. To be specific, an underscore represents a single character
and the percent sign represents any sequence of zero or more characters. All other
characters represent themselves.

Predicates, which evaluate to true or false, can be applied to a row or a group of rows in an
answer set, and display in data manipulation statements as well as in queries. There are
seven types of predicates in SQL: comparison predicates, between predicates, like
predicates, null predicates, in predicates, quantified predicates, and existence predicates.
4-16 iWay Software

SQL Reference
Example Isolating String Values

LAST_NAME LIKE 'SM_TH'
CITY LIKE '%TON'
LAST_NAME NOT LIKE 'JONES%'

The first predicate would be true for such values as SMITH and SMYTH but not for JONES.
The second would be true for TRENTON, PRINCETON, SCRANTON, and TON but not for
PHILADELPHIA or AKRON. The third predicate excludes all rows that begin with JONES.

Since the SQL Translator permits the use of the backslash as an escape character, patterns
containing control symbols can be expressed as string literals.

Example Full Support for ESCAPE Sequence

To search for rows containing isolated embedded escape characters, issue a query
employing the following predicate:

SQL
SELECT * FROM ESC WHERE FLD01 LIKE '@%%' ESCAPE '@';
END

Null Predicates
A null predicate tests for a null value.

A null predicate is NULL if the referenced column of a given row contains a null value. A null
predicate is NOT NULL if the referenced column of a given row contains a non-null value.

null-predicate ::= <column-ref> IS [NOT] NULL

Example Testing for a Null Value

LAST_NAME IS NOT NULL
ACCOUNT_ID IS NULL

In Predicates
An in predicate is true if the specified value, v, is a member of a set S. S can be defined by a
static enumeration or by a subquery.

in-predicate ::= <scalar-exp> [NOT] IN <value-set>
value-set ::= <subquery> | <enumeration>
enumeration ::= (<literal> [,<literal>]*)

Example Testing Whether a Value Is a Member of a Set

MAKE_OF_CAR IN ('CHEVROLET', 'FORD', 'PLYMOUTH')
ACCOUNT NOT IN (SELECT ACCT_NUMBER FROM CUSTOMER WHERE STATUS =
'DEADBEAT')
iWay SQL Reference 4-17

Quantified Predicates
Quantified predicates, which resemble the comparison predicates, produce a true result
when all (any) of the values generated by a given subquery satisfy the stipulated
comparison. Although three quantifiers—ALL, ANY, and SOME—are permitted, ANY and
SOME are synonymous.

all-or-any-pred ::= <scalar-exp> <quant-op> <subquery>
quant-op ::= <relop> <quantifier>
quantifier ::= ALL | ANY | SOME

Example Generating Values That Satisfy a Specified Comparison

SOFTWARE > ALL (SELECT SOFTWARE FROM PRODUCTS WHERE PROD-NAME = 'FOCUS')
RATING > ANY (SELECT RATING FROM PRODUCTS WHERE COST > 5.00)

The first predicate searches for FOCUS, alone or in a longer string, such as FOCUS Six for
Windows. The second is true for any RATING exceeding that of at least one $5.00 product on
file.

Existence Predicates
An existence predicate produces a true result if the given subquery has a significant (for
example, non-null) answer set.

existence-predicate ::= [NOT] EXISTS <subquery>

Example Testing Whether a Subquery Has a Significant Answer Set

EXISTS (SELECT * FROM CANDIDATES WHERE EYE_COLOR = 'Blue')

Search Conditions
Predicates linked together by logical operators—AND, OR, and NOT—form search
conditions.

search-condition ::= <boolean-term> |
 <search-condition> OR <boolean-term>
boolean-term ::= <boolean-factor> |
 <boolean-term> AND <boolean-factor>
boolean-factor ::= [NOT] <boolean-primary>
boolean-primary ::= <predicate> | (<search-condition>)

Search conditions are evaluated by systematically applying logical operators to the results
generated by their constituent predicates. If no logical operators are present, a search
condition is nothing more than a predicate and is evaluated accordingly. When logical
operators are present, they are applied in a specific order: NOT before AND, AND before OR.
Parenthesized search conditions are evaluated before logical external operators are taken
into consideration.
4-18 iWay Software

SQL Reference
Example Specifying a Search Condition

HEIGHT > 6 AND WEIGHT < 150 OR WEIGHT > 200
HEIGHT > 6 AND (WEIGHT < 150 OR WEIGHT > 200)

The first search condition produces a true result either for six footers weighing less than 150
pounds or for candidates weighing more than 200 pounds regardless of height. The second
search condition would be true for any six footer weighing less than 150 pounds or more
than 200 pounds. The parentheses in the second example reverse the implicit order in
which the logical operators are applied.

Data Manipulation Commands

• The INSERT statement introduces new rows into an existing table. Insertion can be
accomplished one row at a time (insert-row) or in a block (insert-set).

• The DELETE statement removes a row or combination of rows from a table.

• The UPDATE statement permits the user to update a row or group of rows in a table.

When a WHERE clause is used in conjunction with an INSERT, DELETE, or UPDATE, it
describes what is known as an SQL searched statement.

• In a searched update, every row that meets the search criteria is updated.

• In a searched delete, every row satisfying the condition specified in the WHERE clause is
removed from the specified table.

• In a searched insert, a row is inserted in the column that satisfies the condition
specified in the WHERE clause.

INSERT
Inserts rows or values into an existing table. The insertion of rows can be accomplished one
row at a time (insert-row) or in a block (insert-set). You can insert rows or values into a table
with a VALUE keyword or with a SELECT statement.

insert-statement ::= <insert-row> | <insert-set>
insert-set ::= <insert-head> <query-spec>
insert-row ::= <insert-head> [(<column-list>)] VALUES
 (<val-list>)
insert-head ::= INSERT INTO <table-name>
val-list ::= <literal> [, <literal>]*

Syntax How to INSERT Values Into the Employee Table

INSERT INTO <table-name> VALUES (literal1 [, literal2]
[, literal3]....)

The server provides three basic commands for manipulating or modifying data:
iWay SQL Reference 4-19

where:

table-name

Is the table name.

literal

Is a non-null value or constant: a specific unchangeable value that satisfies the
constraints of its data type.

Example Inserting Values Into the Employee Table

INSERT INTO EMPLOYEE VALUES
'12345678','Joseph','Bloggs','123 Main Street','New York',
'NY','G','M', '212 321-4561'

DELETE
Removes a row or a combination of rows, based on the search criteria specified.

delete-statement: searched ::= DELETE FROM <table-name> [Where
<search condition>]

where:

table-name

Is the name of the table that contains the data you want to delete.

Where

Specifies the search criteria that must be met in order for the deletion to take place.

If a search condition is not specified, then all rows of the table are marked for deletion. If a
search condition is specified, only those rows that meet the search criteria are marked for
deletion.

Example Deleting Rows in the Employee Table

The following statement deletes all rows in the Employee table whose company name is
Ragmount.

DELETE FROM EMPLOYEE WHERE company = 'Ragmount'

UPDATE
Changes the contents of a row or a group of rows in a table.

update-statement ::= UPDATE <table-name>
 SET <asg-list> [<where-clause>]
asg-list ::= <asg-element> [, <asg-element>]*
asg-element ::= <column-name> = {<scalar-expression> | NULL }
4-20 iWay Software

SQL Reference
A WHERE clause is typically used with the UPDATE command to define which rows should
be modified. Subqueries can also be included in the WHERE.

Example Changing the Parts Row

UPDATE PARTS
SET PRICE = 1.1 * PRICE
WHERE Partnum='R467Z'

Commit and Rollback
A commit terminates the current transaction normally. A rollback undoes all the changes to
the data source initiated by the current transaction. Both commands remove all prepared
SQL requests from the environment.

COMMIT
Terminates the current transaction normally.

commit-statement ::= COMMIT WORK

Example Terminating the Current Transaction Normally

COMMIT WORK

ROLLBACK
Undoes all the changes to the data source initiated by the current transaction.

rollback-statement ::= ROLLBACK WORK

Example Undoing Changes

ROLLBACK WORK
iWay SQL Reference 4-21

4-22 iWay Software

CHAPTER 5

Tables and Views

Topics:

• Creating Tables

• Creating Views

This topic describes how to build tables using the CREATE
TABLE command. These tables consist of data types, null
values, column names and aliases. In addition, this topic
also describes how to create views using the CREATE VIEW
command.
iWay SQL Reference 5-1

Creating Tables

The columns of a table have an inherent order; its rows do not. Every table must have at
least one column but the number of rows can be zero. A table with no rows is said to be
empty. If R is the number of rows in a table, and C is the number of columns, each column
would have R values, and each row would consist of a sequence of C values arranged in
column order.

CREATE is used to bring transient tables or views into existence, INSERT is used to insert a
row or a block of rows into a table or view, and DROP is used to explicitly remove transient
tables and views from the environment. Since the lifetime of a transient table is limited by
the duration of a user session (that period of time during which the application maintains
an active connection with the server), DROP is seldom required.

Data Types
Each column of a table has an associated data type. A data type determines the range of
values (domain) that can be assigned to the elements of a column and the manner in which
the elements can be manipulated and displayed.

Null Values
Columns can be created to contain null values. When a data element is null, we can infer
that either a value has not been assigned to it, its value is unknown, or the column is
nonapplicable. The existence of null values impacts system behavior in various ways.
Comparisons involving null values, for example, are always false (except comparisons using
the null predicate). Column functions, like SUM, operating on particular columns, ignore
null values. But COUNT(*) counts every row, even if a row contains null values.

Column Names and Aliases
Every column of a table has a name. The name must begin with an alphabetic character
(a-z). The rest of the name can contain numbers and the following special characters only:

#
$
@
.
-

CREATE TABLE

A table is a rectangular array of data elements that can be viewed as either a collection of
rows or a collection of columns. Every table is managed by a DBMS and accessed using the
server.

CREATE TABLE creates a new database table
5-2 iWay Software

Tables and Views
CREATE TABLE <table-name> (<column-definition> [,<column- definition>]*)
 [<default-clause>] [<constraint>]
constraint ::= NOT NULL [UNIQUE]
default-clause ::= DEFAULT {<literal> | NULL}
default ::= <literal> | NULL
column-definition ::= <column-name> <data-type>
data-type ::= <string-data-type> | <numeric-data-type>
numeric-data-type ::= NUMERIC[<pr-sc>] | {DECIMAL | DEC} [<pr-sc>]
 | INTEGER | INT | SMALLINT | FLOAT | REAL | DOUBLE PRECISION
pr-sc ::= (<precision>[,<scale>])

where:

table-name

Is the name of the table to be created. The length and format of the table-name must
comply with standard SQL requirements.

column-name

Is the name of a column to be created. The length and format of the column-name
must comply with standard SQL requirements. The maximum number of columns
permitted in one CREATE TABLE is 254.

data-type

Is the data type of the column. Possible values are:

The server creates a table when it receives a CREATE TABLE request. It requires that the table
name be unique (for example, that it not conflict with the name of an existing table) and
that it conform to the lexical constraints imposed on short identifiers (for example, that it
consist of the number of characters supported, which typically is eight or less characters).

The number of possible columns in a table is 254. Any server data type can be assigned to a
given column.

CHAR(n) Fixed-length alphanumeric, where n is less than 254.

DATE Date data types are used to store calendar dates.

INTEGER Four-byte binary integer.

DECIMAL(p,s) Packed decimal containing p digits with an implied number s
of decimal points.

REAL Four-byte, single-precision floating point.

FLOAT Eight-byte, double-precision floating point.
iWay SQL Reference 5-3

Example Creating a New Database Table

CREATE TABLE PERSON
 (
 PID CHAR(8) NOT NULL,
 FIRST_NAME CHAR(20),
 LAST_NAME CHAR(20),
 ADDRESS CHAR(40),
 CITY CHAR(40),
 STATE CHAR(2),
 DOB,
 DATE,
 FLOOR,
 INT,
 SALARY,
 DECIMAL,
)

Creating Views

In the server, a view does not persist beyond the close of the session in which it is created. A
session, for an individual connection, begins when an initial connection is established and
continues until no remaining active connections exist.

The server allows you to create one or more views based on the information that is
contained within a table, and to delete or drop the views created. The CREATE verb is used
to create views and DROP is used to explicitly remove views from the environment.

CREATE VIEW
CREATE VIEW permits the creation of a view based on the fields contained in a table.

CREATE VIEW <view-name> [<column-list>] AS <query-specification>
column-list ::= <column-name> [, <column-name>]
query-exp ::= <query-exp-head> <order-by-clause>
query-exp-head ::= <query-term> | <query-exp> UNION [ALL] <query-term>
order-by-clause ::= ORDER BY <ord-spec> [, <ord-spec>]*
ord-spec ::= {<integer> | <column-ref>} [{ASC | DSC}]
query-term ::= <query-spec> | (<query-exp>)
query-spec ::= SELECT [<sel-qualifier>] <selection> <table-exp>

A view is a transient object that inherits most of the characteristics of a table. Like a table, a
view is composed of rows and columns. The columns have data types and may, on
occasion, contain null values. Views may be queried as if they were tables. But, unlike tables,
views are dependent entities. Views are defined by selecting and pasting together
elements from existing tables. When a view, V, is referenced in an SQL request, the server
creates the illusion that V is a table by associating the appropriate data with it. You may not
insert, update, or delete from an SQL view.
5-4 iWay Software

Tables and Views
Example Creating a View

CREATE VIEW person_view AS SELECT first_name, last_name FROM person

where:

person_view

Is the name of the view.

first_name

Is a column name.

last_name

Is a column name.

person

Is a table name.
iWay SQL Reference 5-5

5-6 iWay Software

CHAPTER 6

Preparing and Executing SQL Requests

Topics:

• Preparing SQL Requests

• Executing SQL Requests

These topics describe how to use PREPARE to submit
parameterized SQL requests for subsequent execution
using EXECUTE.
iWay SQL Reference 6-1

Preparing SQL Requests

The SQL Translator checks the prototype statement for correct syntax. If it finds no
violations, it retains the statement for future use and returns an answer set description and
a parameter count to the application (see the EDAPREPARE specification in the API
Reference manual for a discussion of how to access this information). Prepared requests are
not shareable, nor are they held permanently. Statement prototypes are removed from the
environment at the close of an end user session or upon receipt of a COMMIT or ROLLBACK
request. The server provides no other means for removing, retaining, or maintaining
statement prototypes.

prepare-statement ::= PREPARE <stmt-name> FROM <prototype>
prototype ::= <query-exp> | <delete-statement> |
 <insert-statement> | <update-statement>

Example Preparing an SQL Request

PREPARE MY_QUERY FROM
 SELECT ENAME, DEPARTMENT
 FROM EMPLOYEE
 WHERE SALARY > ?
PREPARE NEW_CUST FROM
 INSERT INTO CUST(COMPANY, CNBR, SALESREP)
 VALUES (?, ?, ?)

Executing SQL Requests

• The SQL Translator is unable to locate a request with the given name.

• The number of parameters submitted differs from the number of parameter markers in
the stored request.

• The parameter insertion process results in an illegal SQL statement.

execute-statement ::= EXECUTE <stmt-name> [USING <parmlist>]
parmlist ::= <literal> [, <literal>]*

The PREPARE statement permits you to submit parameterized SQL requests for subsequent
execution using the EXECUTE verb. PREPARE contains a statement name and a statement
prototype. A statement name must not conflict with any other user-defined object, and a
statement prototype is an SQL request with possible parameter markers (question marks)
coded in place of a literal.

The EXECUTE statement is used to invoke a prepared request by name.

When it receives an EXECUTE command, the SQL Translator locates the named statement, S,
inserts parameter values (if any) into the text of S, reparses S, and, finally, executes S.
EXECUTE results in a diagnostic message if:
6-2 iWay Software

Preparing and Executing SQL Requests
Example Invoking a Prepared Request

EXECUTE MY_QUERY USING 30000
EXECUTE NEW_CUST USING "NEWCO", 10247, "BLOGGS"

While SQL imposes a limit of one parameter list per EXECUTE request, the API permits
application programs to submit multiple parameter lists per EDAEXECUTE call (see the API
Reference manual). This apparent contradiction is easily explained: the API recasts an
EDAEXECUTE request with a batch of parameter lists into a batch of EXECUTE requests,
each having a single parameter list.
iWay SQL Reference 6-3

6-4 iWay Software

APPENDIX A

SQL Translate Keywords

Topic:

• Keywords

This topic provides a list of the SQL Translator reserved
words.
iWay SQL Reference A-1

Keywords
Keywords have special meaning in SQL and may not be used as identifiers. Although some
entries in the following list are not part of the server SQL language dialect, the server SQL
Universal Translator treats them as keywords. This is for future expansion and to help
diagnose certain kinds of syntax errors.

ALIAS
ALTER
ALL
AND
ANY
AS
ASC
AVG

BETWEEN
BEGIN
BIND
BIT
BOTH
BY

CASE
CHAR
CHARACTER
CHECK
CLOSE
COALESCE
COLFETCH
COMMIT
CONNECT
COUNT
CREATE
CURRENT

DATABASE
DATE
DATETIME
DEC

DECIMAL
DECLARE
DELETE
DESC
DISTINCT
DOUBLE
DROP

ELSEEND
ESCAPE
EXCEPT
EXECUTE
EXISTS

FETCH
FILE
FLOAT
FOR
FROM

GRAPHIC
GROUP

HAVING

IMAGE
IN
INNER
INSERT
INT
INTEGER
INTERSECT INTO
IS

JOIN

KEY

LEADING
LEFT
LIKE
LOGICAL
LONG

MAX
MIN
MONEY

NOT
NULL
NULLIF
NUMBER
NUMERIC

OF
OFF
OPEN
ON
ONLY
OPTION
OR
ORDER
OUTER

PRECISION
PRIMARY

RAW
REAL
REFERENCE
RIGHT
ROLLBACK

SELECT
SERIAL
SET
SMALLFLOAT
SMALLINT
SOME
SQLID
SUM
SYSNAME

TABLE
TEXT
TIME
TIMESTAMP
TIMEZONE
TO

USER
UNION
UNIQUE
USER_TYPE_NAME
USING
UPDATE
A-2 iWay Software

APPENDIX B

BNF Summary

Topic:

• Condensed SQL Language Syntax
Definition

This topic provides the Backus Naur Form (BNF) notation to
describe SQL syntax.
iWay SQL Reference B-1

Condensed SQL Language Syntax Definition
digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
alpha ::= A..Z | a..z

special-character ::=
A special-character is any character other than a <digit> or an <alpha>.

delimiter ::= <alpha-literal> | , | (|) | < | > | . | : | = | * | + |
- | / | <> | >= | <= |

separator ::= <comment> | <space> | <newline>
comment ::= --[<character]*<newline>

lit-character ::= <nonquote> | ''
nonquote ::=
A nonquote is any character other than the single quote "'". Two
consecutive quotes "''" may be used to represent an embedded quote "'".

integer ::= <digit>[<digit>]*

numeric-literal ::= [{+ | -}]<numeric-tail>
numeric-tail ::= <integer>[.[<integer>]] | .<integer>

approx-literal ::= <numeric-literal> E[{+ | -}] <integer>

alpha-literal ::= '[<lit-character>]*'

literal ::= <alpha-literal> | <numeric-literal> | <approx-literal>

identifier ::= <normal-identifier> | <delimited-identifier>
normal-identifier ::= <alpha>[<id-character>]*
delimited-identifier ::= "<any printable character string>"

id-character ::= <alpha> | <digit> | _

authorization-id ::= <short identifier>

location-id ::= <long identifier>

column-name ::= <long identifier>

table-name ::= <short identifier>

view-name ::= <long identifier>

statement-name ::= <short identifier>

range-variable ::= <long identifier>

table-ref ::= [<table-qualifier>.]<table-name>
table-qualifier ::= <loc-id>.<auth-id> | <auth-id>

column-ref ::= [<column-qualifier>.]<column-name>
column-qualifier ::= <table-ref> | <range-variable>

string-data-type ::= {CHARACTER | CHAR}[(<length>)]
length ::= <integer>
B-2 iWay Software

BNF Summary
numeric-data-type ::= NUMERIC[<pr-sc>] | {DECIMAL | DEC} [<pr-sc>] |
INTEGER | INT | SMALLINT | FLOAT | REAL | DOUBLE PRECISION
pr-sc ::= (<precision>[,<scale>])

date-data-type ::= DATE

scalar-exp ::= <term> | <scalar-exp> <addop> <term>

addop ::= + | -

term ::= <factor> | <term> <multop> <term>
multop ::= * | /
factor ::= <literal> | <column-ref> | <function-ref> | (<scalar-exp>)

comp-tail ::= <scalar-exp> | <subquery>

relop ::= = | <> | < | > | <= | >=

between-predicate ::= <scalar-exp> [NOT] BETWEEN <limits>
limits ::= <scalar-exp> AND <scalar-exp>

like-predicate ::= <column-ref> [NOT] LIKE <literal>

null-predicate ::= <column-ref> IS [NOT] NULL

in-predicate ::= <scalar-exp> [NOT] IN <value-set>
value-set ::= <subquery> | <enumeration>
enumeration ::= (<scalar-exp> [,<scalar-exp>]*)

all-or-any-pred ::= <scalar-exp> <quant-op> <subquery>
quant-op ::= <relop> <quantifier>
quantifier ::= ALL | ANY | SOME

existence-predicate ::= EXISTS <subquery>

search-condition ::= <boolean-term> | <search-condition> OR
<boolean-term>
boolean-term ::= <boolean-factor> | <boolean-term> AND
<boolean-factor>
boolean-factor ::= [NOT] <boolean-primary>
boolean-primary ::= <predicate> | (<search-condition>)

function-ref ::= COUNT(*) | <distinct-fn-ref> | <all-fn-ref>
distinct-fn-ref ::= [<fn-name> | COUNT] (DISTINCT <column-ref>)
all-fn-ref ::= <fn-name> ([ALL] <scalar-exp>)
fn-name ::= AVG | MAX | MIN | SUM
iWay SQL Reference B-3

query-exp ::= <query-exp-head> <order-by-clause>
query-exp-head ::= <query-term> | <query-exp> UNION [ALL] <query-term>
order-by-clause ::= ORDER BY <ord-spec> [, <ord-spec>]*
ord-spec ::= {<integer> | <column-ref>} [{ASC | DSC}]
query-term ::= <query-spec> | (<query-exp>)
query-spec ::= SELECT [<sel-qualifier>] <selection> <table-exp>
sel-qualifier ::= ALL | DISTINCT
selection ::= <select-list> | *
select-list ::= <scalar-exp> [, <scalar-exp>]*

table-exp ::= <from-clause> [<where-clause>] [<group-by-clause>]
 [<having-clause>]
from-clause ::= FROM <from-ref> [, <from-ref>]*
from-ref ::= <table-definition> [<range-variable>]
table-definition ::= { <table-ref> | <joined-table> | (<joined-table>) }
joined-table ::=
<table-definition><join-spec><table-definition><on-condition>
join-spec ::= { INNER JOIN | LEFT [OUTER] JOIN | RIGHT [OUTER] JOIN
}
on-condition ::= ON <search-condition>
where-clause ::= WHERE <search-condition>
group-by-clause ::= GROUP BY <column-name> [, <column-name>]*

having-clause ::= HAVING <search-condition>

subquery ::= (SELECT [ALL | DISTINCT] <result-spec>
<table-expression>)
result-spec ::= <scalar-exp> | *

prepare-statement ::= PREPARE <stmt-name> FROM <prototype>
prototype ::= <query-exp> | <delete-statement> |
<insert-statement> |
 <update-statement>

execute-statement ::= EXECUTE <stmt-name> [USING <parmlist>]
parmlist ::= <literal> [, <literal>]*

table-definition ::= CREATE TABLE <table-name>
 (<column-definition> [,<column-definition>]*)
 [<default-clause>] [<constraint>]
constraint ::= NOT NULL [UNIQUE]
default-clause ::= DEFAULT <default>
default ::= <literal> | NULL
column-definition ::= <column-name> <data-type>
data-type ::= <string-data-type> | <numeric-data-type>

view-definition ::= CREATE VIEW <view-name> [<column-list>] AS
 <query-specification>
column-list ::= <column-name> [, <column-name>]

drop-statement ::= DROP {<table-name> | <view-name>}
B-4 iWay Software

BNF Summary
insert-statement ::= <insert-row> | <insert-set>
insert-set ::= <insert-head> <query-spec>
insert-row ::= <insert-head> [<column-list>] VALUES <val-list>
insert-head ::= INSERT INTO <table-name>
val-list ::= <literal> [, <literal>]*

delete-statement ::= DELETE FROM <table-name> [<where-clause>]

update-statement ::= UPDATE <table-name> SET <asg-list> [<where-clause>]

asg-element ::= <column-name> = {<scalar-expression> | NULL }

asg-list ::= <asg-element>[, <asg-element>]*

commit-statement ::= COMMIT WORK

rollback-statement ::= ROLLBACK WORK
iWay SQL Reference B-5

B-6 iWay Software

Index

A

aggregate functions 4-11

ALL predicate 4-18

alphabetic characters in SQL 3-3

answer sets in SQL 4-3
generating 4-13
sorting 4-14

ANY predicate 4-18

APT (Automatic Passthru) 2-11–2-12
Dialect Translation and 2-13

AS clause 4-10

Automatic Passthru (APT) 2-11–2-12
Dialect Translation and 2-13

AVG function 4-11, 4-15

B

Backus Naur Form (BNF) conventions 3-1–3-3, B-
1–B-2

between predicates 4-16–4-17

BNF (Backus Naur Form) conventions 3-1–3-3, B-
2

C

canceling transactions 4-22

cataloging metadata 2-8

character set in SQL 3-3

column functions 4-15
applying to groups of values 4-16
subqueries and 4-16

column titles 5-2
renaming 4-10

columns 4-11, 5-2
joining 2-20

commit and rollback 4-22

COMMIT command 4-22

comparison predicates 4-16

correlated subqueries in SQL 4-13

correlation names in SQL 4-6–4-7

COUNT function 4-11, 4-15

COUNT(*) function 4-11, 4-15

counting rows 4-11, 4-15

CREATE TABLE command 5-1, 5-3–5-4

CREATE VIEW command 5-1, 5-4–5-5

creating tables 5-3–5-4

creating views 5-4–5-5

D

data adapters 2-16
generating DML 2-16

data manipulation commands 4-20

Data Manipulation Language (DML) 1-2, 2-16
generating 2-16–2-18, 2-20–2-23
SQL Translation and 2-11

data types 5-2

database engine settings 2-8–2-10

database engines 2-5
setting 2-5–2-8

dates in SQL 4-3

DELETE command 4-20–4-21

deleting rows 4-21
iWay SQL Reference I-1

Index
Dialect Translation 1-2, 2-11, 2-13
processing requests 2-15
requirements 2-14

digits in SQL 3-3

DML (Data Manipulation Language) 1-2, 2-16
generating 2-16–2-18, 2-20–2-23
SQL Translation and 2-11

double colon = operator 3-2

E

elements of tables 4-9
grouping 4-9–4-10

engine settings 2-8–2-10

EXECUTE command 6-2–6-3

existence predicates 4-18

F

FROM clause 4-5–4-7

G

GROUP BY clause in SQL 4-9–4-10

H

HAVING clause in SQL 4-10

I

identifiers in SQL 3-6, 4-6
naming 3-6

in predicates 4-18

inner join structures 4-5–4-6

INSERT command 4-20–4-21

inserting rows 4-20–4-21

inserting values 4-21

ISO SQL model 1-2

J

join structures 2-17, 4-5–4-6
optimizing 2-17–2-18, 2-20–2-23
queries in SQL and 4-13

JOINOPT parameter 2-21

JOINTYPE parameter 2-18

K

keywords in SQL 3-5, A-2

L

language constructs 3-2

letters in SQL 3-3

like predicates 4-17

literals in SQL 3-5

M

MAX function 4-11, 4-15

MIN function 4-11, 4-15

N

nested loop join strategy 2-18, 2-22

null predicates 4-17–4-18

null values 5-2

O

optimizing join structures 2-18, 2-20–2-23

ORDER BY clause in SQL 4-9, 4-14

outer join structures 4-5–4-6

outer queries 4-13
I-2 iWay Software

Index
P

predicates in SQL 4-16
between 4-16–4-17
comparison 4-16
existence 4-18
in 4-18
like 4-17
logical operators and 4-19
null 4-17–4-18
quanitified 4-18

PREPARE statement 6-2

Q

qualifiers in SQL 3-6

quantified predicates 4-18

queries in SQL 4-3–4-4
join structures and 4-13

R

RDBMS engine 2-2, 2-4
setting 2-5

reserved words A-1

ROLLBACK command 4-22

rows 5-2
counting 4-11, 4-15
deleting 4-21
inserting 4-20–4-21
updating 4-21

running SQL requests 6-2–6-3

S

scalar functions 4-14

search conditions 4-19

search criteria 4-8
specifying 4-8–4-10

SELECT statement 4-4, 4-20
AS clause 4-10
GROUP BY 4-9
HAVING clause 4-10
ORDER BY clause 4-14
subqueries 4-12
WHERE clause 4-8–4-9

setting a database engine 2-5, 2-7–2-8
client applications and 2-5
stored procedures and 2-6

SOME predicate 4-18

sort/merge join strategy 2-18, 2-23

special characters in SQL 3-3

specifying qualifying conditions to groups 4-10

SQL identifiers 3-6
naming 3-6

SQL keywords 3-5

SQL language 3-3

SQL literals 3-5

SQL passthru 1-1, 2-2, 2-4–2-6, 2-8
canceling 2-6
requirements 2-4
setting 2-7

SQL qualifiers 3-6

SQL queries 4-3–4-4

SQL requests 1-1–1-2, 2-1–2-2, 2-4–2-5, 2-11,
6-1–6-2

deleting 4-22
running 6-2–6-3

SQL statements 4-2
PREPARE 6-2
SELECT 4-4
unsupported 4-3

SQL syntax B-1–B-2
iWay SQL Reference I-3

Index
SQL Translation Services 1-1–1-2, 2-11
Data Manipulation Language and 2-11
Dialect Translation 2-13
generating DML 2-16

SQL Translator 4-13, 6-2, A-1

SQLENGINE command 2-5–2-6

subqueries in SQL 4-12–4-13

SUM function 4-11, 4-15

T

table columns 5-2

tables 5-2
creating 5-1–5-4

tokens in SQL 3-5
identifiers 3-6
keywords 3-5
literals 3-5

transactions 4-22
canceling 4-22
undoing changes 4-22

U

undoing changes to transactions 4-22

Universal SQL Translator A-2

UPDATE command 4-20–4-21

V

values 4-20
inserting 4-20–4-21

views 5-4
creating 5-4–5-5

W

WHERE clause in SQL 2-21, 2-23, 4-8–4-9, 4-20

WHERE clause predicates 2-22
I-4 iWay Software

Reader Comments

In an ongoing effort to produce effective documentation, the Documentation Services staff at
Information Builders welcomes any opinion you can offer regarding this manual.

Please use this form to relay suggestions for improving this publication or to alert us to corrections.
Identify specific pages where applicable. You can contact us through the following methods:

Name:___

Company:__

Address:___

Telephone:____________________________________Date:_____________________________________

E-mail:___

Comments:

Mail: Documentation Services - Customer Support
Information Builders, Inc.
Two Penn Plaza
New York, NY 10121-2898

Fax: (212) 967-0460

E-mail: books_info@ibi.com

Web form: http://www.informationbuilders.com/bookstore/derf.html
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay SQL Reference DN3501035.1002
Version 5 Release 2.0

Reader Comments
Information Builders, Two Penn Plaza, New York, NY 10121-2898 (212) 736-4433

iWay SQL Reference DN3501035.1002
Version 5 Release 2.0

	Preface
	Contents
	1 Introduction
	SQL Translation Services
	Language Dialect

	2 SQL Services
	SQL Passthru Services
	Using SQL Passthru
	Rules for SQL Passthru
	SQL Passthru Processing

	Enabling SQL Passthru
	Specifying an RDBMS Using SET SQLENGINE
	Setting the Database Engine Using a Client
	Setting the Database Engine Using Stored Procedures
	Setting the Database Engine Using the API

	Catalog Requirements
	Valid Database Engine Settings
	SQL Translation Services
	SQL Translation Operations
	Setting Automatic Passthru

	Dialect Translation
	Rules for Dialect Translation
	Dialect Translation Processing

	Data Manipulation Language (DML) Generation
	Join Optimization in DML Generation
	Setting Join Strategy
	Nested Loop Processing
	Joining Columns of Unequal Length
	Turning Join Optimization ON
	WHERE Predicate Cloning

	3 Language Elements
	BNF Conventions
	Characters
	Letters
	Digits
	Special Characters

	Tokens
	Keywords
	Literals
	Identifiers
	Identifier Naming Conventions

	Qualifiers

	4 SQL Reference
	Supported and Unsupported SQL Statements
	Supported SQL Statements and Features
	Unsupported SQL Statements and Features
	Expected Results From SQL Queries

	SELECT Statement
	FROM Clause
	Outer Joins
	Correlation Names
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	AS Clause
	Aggregate Functions
	Subqueries
	Correlated Subqueries
	Generating a Result Set
	ORDER BY

	Scalar Functions
	Column Functions
	Predicates
	Comparison Predicates
	Between Predicates
	Like Predicates
	Null Predicates
	In Predicates
	Quantified Predicates
	Existence Predicates
	Search Conditions

	Data Manipulation Commands
	INSERT
	DELETE
	UPDATE

	Commit and Rollback
	COMMIT
	ROLLBACK

	5 Tables and Views
	Creating Tables
	Data Types
	Null Values
	Column Names and Aliases
	CREATE TABLE

	Creating Views
	CREATE VIEW

	6 Preparing and Executing SQL Requests
	Preparing SQL Requests
	Executing SQL Requests

	A SQL Translate Keywords
	Keywords

	B BNF Summary
	Condensed SQL Language Syntax Definition

	Index

