|IAM

c oONCEPTS & FACI L I TI1I E S G U I D E

go INNOVATION®
o™ DATA PROCESSING

INEFOAUCTION ...ttt ettt 3
PART ONE. AN OVEIVIEW OF VSAMooiiiiiice et 5
Talu e o [N Tel 1 [o] o P PP P PP PPPPPPRPPPPPRPN 5
DefiNiNg @ VSAM FlE ..ottt e e et e e e ekt e e e e et e e e e a i e e e e e e 5
THE VSAM FHE SIIUCTUIE ..ottt ettt e ekt e e ek et e e et e e e e et e e e e e 6
[IoT=To [l oo [N 1 g [T = = LU TP PPPPTTT 6
ClU FREESPACE ...t oo e oo e e e e e e e et e et e ettt e e e e bebeba b e e e e e e e e e eeeas 7
Adding RECOrdS 10 the FlE ...t e et e e e e e e e et eeeeaaaeeeaaas 7
CAYD FREESPACE ...ttt e oo e oo e e e e e et ettt e ettt et et e bebe b et e e e e e e e e eeeeas 7
INSErtiNG ‘HIGH KEY’ RECOITUS.ttt ettt ettt e e e e e e e s e e bbbttt e e e e e e e e e e e nnb bt bbb e e eeaaaaeaaaas 9
DASD UITIZALON ...ttt ekt e oot e e ekttt e e ea bttt e e ek et e e e et e e e e n b e e e e ane 9
(O LS o I =101 (= £ PR PR PRTPPP 10
PART TWO. VSAM ProbBIemS. ... 11
T igelo (¥ ox1To] o EUT T TR PPPTTPPPTPPN 11
(O 7(07 NS o] 11111V P PRSP PPR 11
DN B U L7 (o [TSROSO PP PPPPPPTPPPPIN 12
BUFFER USAQE ... oottt e e oo oo oo e e e e et et et ettt e e e es et be bbb bbb e e e e e e e e e e e e e e aeaeaeeeaeeeeees 13
SUIMIMIATY <.ttt o oo oo 2o e e e e e e e ee ettt et et eeeeee et et stk 4 1o 44442222 e e e e e e e e et e e eeeeneesebebb bbb e e e e e e e e e eeas 14

PART THREE. TAMcooee ettt sttt e te b e beebesseeseeseeseeneenean 15
Ta 1o o 18 Tel 1 (o] o PP PUP PP PPPPIN 15
IAM: THE POWET OVEI VSAM.. ..tttk e e et e e ekt e e sttt e e et e e e s ananeeeeas 15
THEe VSAM INTEITACE (VIF) ..ttt ettt e ekt e e e et e e e e et b e e e s anbeeeeennes 16
Creating an [AM File: IDCAMS SUPPOIT.....eieiiitiiteeaitiite ettt ettt e et e e e b e e s s abre e e e e enneeas 16
DY O YT o [T PP TP PUP PP PPPPRN 17
TRE TAM Fl8 STIUCTUIE ...tttk e e ekt e e ek bt e e e s aa b bt e e e s et e et e e e sbbeeeeennes 18
FIle REOMGANIZATION.....cei ittt oottt e ekttt e e sttt e e okt e e st e et e st e e e s e nnne e e e s 19
Using the Optional ‘Data CoOmMPreSSION’ FEATUIEciiiiiiiiieeiiiii ettt 20
Support for zZ/OS Hardware COMPIESSIONc.uuiiieiiiiiie ettt e ettt e e e et e e ab e e e e enneees 20
SPACE REICASE ...ttt e s 20
T8 o] o o] i (0] g =Y OO PP PP PPPRT PO 20
‘In-Core Index’, ‘Real Time Tuning’ and ‘DynamicC Tabling’ccuvieiiiiiieiiii e 21
1YY/ e o (=] S O [O3 T TP PTUTT 22
IAM EXECULION TIME STALISTICS ... vveeeeiiuiiiieeeiitte ettt e et e e st e e e e e e e s annne e e s 22
Special Feature: Record Level Sharing (RLS)ccoiiiiiiiiiiie ettt 23
Special Feature: Alternate INdeX (AIX) SUPPOITccoiiiiiieiiii et 24
ESDS SUPPOIT ...ttt e oo e ettt e e e e e e e et e e e e e e e e 25
Identifying Candidates fOr IAM CONVEISIONcciitiiiiieiiieie ettt ettt e s r e e e e s annne e s 26
SIMS SUPPOIT ..ttt e e e oot e et e e oo e e s e et e e e e e e e e et e e e e e e e e e na e 27
TAM REIADIITY ...ttt ettt e e e e ekt e e he e e bt e she e e mbe e ebeeenbeeenbeebeeanbeenneeenneans 27
TAM INSTAITATION ...ttt ettt e okttt e e e sttt e e ekttt e e ek e e e e e e e e s e nnne e e s 28
JAM ISP PANEIS ...ttt ettt ookttt oo a et e e ekt e e st e e e e e e e s 28
SUIMIMATY .ttt e oo oottt e e e e e e o4 e e e bbbt et e et e e e e e e s e bbb b e ettt e e e e e e e e s e s bbb e ae e et e e e e e e s nesannrnns 28

APPENAIX ..ottt ettt ettt ettt ettt s et r s tens 29

- INTRODUCTION

CONCEPTS & FACILITIES GUIDES

For more than 30 years, Innovation Data Processing has been producing high-quality Storage
Management Software. Over the years, its products have evolved into today’s ultra high-speed,
safe, reliable storage management solutions for 0S/390, z/OS, LAN and Open Systems Data.

It all started with the FDR Storage Management Family, of which over 5000 licenses have now
been sold worldwide. The FDR Family is the complete Storage Management System for OS/390
and z/OS.

FDR has become the industry standard for fast, reliable backups of MVS OS/390 data.

ABR adds a layer of automation to the standard functions of FDR, providing advanced backup
facilities like Incremental Backup, Application Backup and Archiving.

COMPAKTOR and FDRREORG further enhance the suite by adding intelligent and powerful
reorganization processes, for whole DASD volumes and for Sequential, PDS and VSAM datasets.

FDREPORT provides extensive customized DASD Management Reporting to suit many needs
and purposes.

FDRCLONE is an extension to ABR, providing the ability to “clone” volumes and/or datasets on
a test or disaster recovery system. It includes FDRDRP, a utility that can reduce ABR full-volume
recovery time by up to 80%.

FDRINSTANT enables FDR/ABR to take non-disruptive backups of offline volumes, created by
the latest DASD Subsystem features like StorageTek/IBM SnapShot Copy, EMC?2 TimeFinder/BCV,
HDS Shadowlmage and IBM FlashCopy.

FDRPAS (FDR Plug and Swap) allows for the non-disruptive movement of OS/390 disk volumes
from one disk device to another. When new disk subsystems are installed, active online disk
volumes can be swapped to drives in the new subsystem without disrupting normal operations or
requiring a re-IPL. This allows a 24 x 7 installation, with no window for major re-configurations and
hardware changes, to install and activate new hardware.

THE FDR/UPSTREAM Family of Products builds on the strengths of the FDR Storage
Management Family providing a fast, safe and reliable solution to backing up Open Systems data
from file servers and workstations, across a network connection to disk or tape on the OS/390
host. If the Open Systems data is resident on an EMC2 Symmetrix with Enterprise Storage
Platform (ESP), FDRSOS and FDR/UPSTREAM/SOS products provide additional performance
enhancements to the backup and restore process by utilizing high-speed mainframe channels.

IAM is Innovation’s alternative to VSAM KSDS, ESDS and (as a cost option) AlX files. It eliminates
VSAM performance bottlenecks and reduces VSAM file sizes by more than 50%.

FATS/FATAR and FATSCOPY are a set of multi-purpose tape subsystem Media Integrity tools
that allow for online tape certification, verification and erasure, as well as the ability to analyze
and copy tapes.

- INTRODUCTION

CONCEPTS & FACILITIES GUIDES

Each of the Innovation products are described in a range of Concepts & Facilities Guides that
have been created by the Innovation UK office, but which are available free of charge from your
local office (see back cover for details).

In this particular guide, we look at IAM.

PART ONE and PART TWO give a basic overview of the fundamentals of the VSAM file structure
and explain how this structure is the cause of most of VSAM's performance problems.

Note: These first two sections are aimed at readers who are unfamiliar with VSAM and who would
like to gain a better understanding of its design and structure.

Readers who are already familiar with VSAM may want to go directly to PART THREE.

In PART THREE of this guide we look at how IAM can be used to provide a quick and relatively
cheap solution to the problems caused by VSAM.

Any comments or suggestions regarding this guide can be directed to:
support@fdrinnovation.com

© Copyright 2003 Innovation Data Processing

- PART ONE

AN OVERVIEW OF VSAM

Note: Readers who are already familiar with VSAM may wish to skip PART ONE
and PART TWO and go directly to PART THREE.

Introduction

IBM’s primary access method, VSAM, has been around now for several decades, yet it is still
frequently used as the basis for high-profile ‘bought in’ packages—such as Financial and
Personnel applications—as well as numerous ‘home-grown’ systems. The very highest levels of
a company’s Management (e.g. Financial Directors) can often use these applications, as well as
the regular workforce.

The design of VSAM directly affects the performance and efficiency of these systems. Common
problems caused by VSAM are an increase in Response Times during the online day and/or an
unacceptably long overnight Batch Window, which then impacts the availability of the online
system the following morning. The use of DASD space can also be an issue, especially if users
of an application are charged for their DASD consumption. Some files can grow very large—to
several Gigabytes and more.

When these problems are being experienced, the users of the system (including Management) are
unlikely to accept, or even understand, that the cause is due to the VSAM file structure. Equally,
they will find it unacceptable to be told that, because of the nature of VSAM, there is little that can
be done without a great deal of manual intervention and tuning. They will want quick solutions.
Unfortunately, traditional ‘quick’ solutions like hardware upgrades, can only give short-term relief
and are often very expensive to implement.

In order to understand fully the problems inherent in VSAM, it is first necessary to take a look

at the VSAM file structure, as it is here that the root cause of the problems exists. We will
concentrate on the structure of VSAM KSDS'’s although, as you will see in PART THREE, IAM also
supports Alternate Index (AlX) and ESDS datasets. Readers already familiar with VSAM may

wish to bypass the rest of PART ONE and move on to PART TWO on page 11. It is assumed that
all readers have a basic understanding of Catalogs, VVDS’s and VTOCs.

Defining a VSAM File

Let's start by looking at how VSAM files are created. Under DFSMS, this can be done through
regular JCL but, for the purposes of this overview, we will assume that IDCAMS is still the
preferred method. The following JCL extract illustrates a DEFINE of a single Index VSAM KSDS
using IDCAMS:

//DEFVSAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER
(NAME(MY . TEST.DATASET) -
VOLUMES(MVS001) -

SPEED REUSE) -

DATA (RECORDS(5000 500) -
FREESPACE(10 20) -
KEYS(10 0) -
RECORDSIZE(256 256) -
CISIZE(4096))

/*

- PART ONE

AN OVERVIEW OF VSAM

The IDCAMS job on the previous page would result in a VSAM KSDS cluster being created with
the name ‘MY.TEST.DATASET'. This cluster would be comprised of two components:

» The ‘DATA’ Component: Containing the data records for the file, stored in key sequence,
hence the name Key Sequence DataSet (KSDS).

* The ‘INDEX’ Component: Containing records indexing the data component.

In our example job both components would be allocated on MVS001, the cluster would be
cataloged to MVS001 and an entry placed in the VVDS on the volume for both the Cluster and
the individual Component names. In addition, DSCB’s for the component names would be placed
in the VTOC on MVSO00L1. It is not, however, this recording mechanism for VSAM which is the
cause of its poor performance. Instead, it is the internal structure of the file itself.

The VSAM File Structure

Within the DATA and INDEX components, an internal structure is created at the time of the
DEFINE. We will be concentrating on the DATA component, but a similar design (and resulting
performance problems) can be experienced in the INDEX component as well.

The DATA component is divided into Control Areas (CA's) that are, in turn, divided into Control
Intervals (CI's). A typical CA size is 1 CYLINDER and the CI's contained within each CA are of a
size defined by the CISIZE parameter coded in the DEFINE. In our example earlier, if the file was
allocated on a 3390, twelve 4096 CI's would fit onto a track and, as the 3390 has 15 tracks per
cylinder, the CA would contain 180 ClI’s. The internal structure of the DATA component would
therefore look something like this:

Cl1 Cl Cl Cl Cl
CA:

Cl Cl Cl Cl Cl 180

Cl1 Cl Cl Cl Cl
CA:

Cl Cl Cl Cl Cl 180

Cl1 Cl Cl Cl Cl
CA3

Cl Cl Cl Cl Cl 180

Loading the Data

Once the file has been DEFINE’d, the data records must be loaded into it. Remember that the
data is stored in a KSDS in key sequence order. The initial loading of data is usually done using
an IDCAMS REPRO, as shown below. In the following example, the input data is coming from a
previously created sequential file (SEQFILE) held on disk, and is going out to a VSAM file called
‘NEW.VSAM.FILE" which has already been DEFINE’d in a previous step or job.

//DEFVSAM EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*

//SEQFILE DD DSN=seq.file,DISP=SHR
//SYSIN DD *

REPRO INFILE(CSEQFILE) OUTDATASET(NEW.VSAM.FILE)
/*

PART ONE

AN OVERVIEW OF VSAM

Cl% FREESPACE

When the KSDS is DEFINE’d, a decision has to be made as to whether any freespace must be
reserved in the file during the initial LOAD. If the KSDS will only be used for READ purposes,
there would not be any need to reserve freespace. However, if records are to be inserted into the
file (or increased in size as a result of being updated), space must be reserved to allow these
inserts or updates to take place.

The first type of freespace available in a VSAM KSDS is called Cl% FREESPACE. This is
reserved when the file is DEFINE'd, via the FREESPACE parameter. In our earlier IDCAMS
example, we requested Cl1% Freespace of 10%. When REPRO loads each CI with data, 10% of
the space would be reserved for future inserts. After the load has completed, every Cl in every
CA throughout the whole KSDS would look something like this:

Cl .

10% Reserved ClI Freespace'
Adding Records to the File

As additional records are subsequently added to the KSDS after the initial load, VSAM will attempt
to place them into the appropriate ClI. In the example below, a record with the key of ‘2’ is to be
added to the KSDS. To maintain the key sequence, it must be placed in the Cl, which already
contains records with keys of ‘1’ and ‘3'.

l
1|3

2
o] s|cluo |15 |4 ss oz [
CA% FREESPACE

Depending on the level of insert activity, and the amount of freespace coded on the DEFINE, it
may be possible to exhaust the available freespace in a Cl, such that additional inserted records

cannot fit into the correct CI.
o I ?

112/3|5|7|9/(10/11|12(14

PART ONE

AN OVERVIEW OF VSAM

To cope with this, another type of freespace, called CA% FREESPACE, is also reserved in the file.
This is achieved using the second value on the FREESPACE parameter in the IDCAMS DEFINE
and it involves reserving whole free CI's within a CA during the load process:

Free CI Free CI

When a CI has exhausted its Cl% Freespace, it is divided into two in an operation known as a

‘Cl Split’.

Approximately half of the records from the full Cl are moved into one of the reserved free Cl’s at
the end of the same CA (see below). Once the CI Split has completed, the new record that caused
the split to occur can then be inserted into the original CI.

Cl [1|2|4|6]|7|8]|10[11]13|15/16|19

4

1/2|/4|6|7|8

1022251610 N

Unfortunately, CA% freespace can also become exhausted. If, for example, a large number of
records are being added to a file, and they all have a similar key value, it is quite common for
all of the free ClI's in a CA to become used as a result of the CI Splitting (see below). How then
can additional records be added?

1
—)

PART ONE

AN OVERVIEW OF VSAM

Once all free Cl's in a CA have been exhausted, new Cl's cannot be used from another CA.
Instead, VSAM has to do what is known as a ‘CA split’:

Cl Cl Cl Cl Cl
Cl Cl Cl Cl Cl

CA

Cl Cl Cl Cl Cl

A B B

Cl Cl Cl Cl Cl

In the ‘CA split’ process, a new CA is formatted at the end of the file to include the same CI and
CA freespace as used throughout the rest of the file. Once the new CA has been formatted, half
of the CI's in the original CA are moved into the new one (see above).

Unfortunately, it doesn’t end there. Once the CA split has completed, a CI split still has to occur
in the original CA to allow the original ClI to take the inserted record! Only when the CI split has
completed successfully can the record finally be added to the file.

PART TWO of this Concepts Guide highlights the effects that this CI/CA splitting can have on the
performance of the KSDS, both during the split and also when the records are later being
processed. It also discusses the inadequacy of the two commonly used alternatives for reducing
the number/effect of splits—namely ‘Increasing freespace’ and ‘Running regular REORGS’.

PART THREE of this Guide then shows how the IAM file structure handles inserted records with a
much greater level of efficiency.

Inserting ‘HIGH KEY’ Records

So far, we have concentrated on inserting records into the file which have keys lower than the
‘last’ record in the file when it was first loaded. If records with higher keys are to be added to
the end of the file, they are written to the last CA. When that CA becomes full, new CA’s will be
formatted. Eventually, assuming it was allowed within the DEFINE, the VSAM file would start to
take additional secondary extents (up to 123 per volume) to cater for new ‘high-key’ records
being added to the file.

DASD Utilization

In the Introduction, we suggested that VSAM's inefficient DASD utilization can be as much of a
problem to users as the performance issues highlighted above. Indeed, the two problems can
often go hand-in-hand. For example, PART TWO of this Guide shows how increasing the
freespace values for the file can reduce the CI/CA splitting described above, but can then lead
to excessive DASD usage/wastage.

- PART ONE

AN OVERVIEW OF VSAM

In addition, VSAM also wastes DASD space in the following situations:

* When the file contains records with Large Keys. VSAM can waste Cl’s in every CA when
handling these.

* When inefficient blocksizes are chosen. The blocksize of a VSAM KSDS must be a multiple
of 512 or 2048 bytes. This means that KSDS's are often created with blocksizes that are not
the most efficient for the DASD device on which they reside.

* When a small Index CISIZE is used in conjunction with a small Data CISIZE. In the Index
component, a Cl must index all of the CI's within an individual CA in the Data component. If the
Data CISIZE is small (i.e. lots of CI's in the CA) the Index CI referencing it can fill up, leaving
the remaining CI's in the Data CA unused.

Later, in PART THREE of this Guide, we show how IAM’s efficient file structure, default blocking
factors, and optional Data Compression and Space Release features can be used to utilize DASD
more effectively.

Using Buffers

When the data in a VSAM file is to be processed, either by an online system (e.g. CICS) or by a
batch job, the data records are moved into areas of virtual storage called ‘buffers’. Holding records
in these buffers eliminates the need for I/O operations (to disk) to access the data records in the file.

The number of buffers that can be used to hold INDEX and DATA records can be controlled by the
user, either through the BUFSP parameter on the IDCAMS DEFINE, through the AMP parameter
in JCL, or hard-coded within the actual accessing program itself. Under CICS, a ‘pool’ of buffers
can be created and shared by various VSAM files.

Although it may be generally true that the more buffers made available, the better the performance
of a VSAM file will be, this is not always the case. Indeed, it is important to take into account

the type of access being done against the file—sequential or random. This will often vary between
CICS during the day and batch at night. It is not, therefore sufficient to give all VSAM files
maximum buffers; this would have a serious impact on the overall consumption of storage. More
care has to be taken to ensure that the files that need the buffers get them, and the ones that do
not, will not.

Unfortunately, some of the methods described above for specifying the number of buffers (BUFSP,
AMP, etc) are manual processes. PART TWO of this Guide highlights the problems caused by this
and PART THREE shows how IAM’s ‘In-Core Index’, ‘Real Time Tuning’ and ‘Dynamic Table’
mechanisms can alleviate these problems.

That completes our brief overview of VSAM. In PART TWO, we move on to highlight the
problems inherent within the VSAM file structure and explain the difficulties facing those
responsible for the management, control and tuning of VSAM files within an application.

PART TWO

VSAM PROBLEMS

Introduction

PART ONE of this Guide gave a brief overview of VSAM and showed how the internal file
structure is the root cause of the most common VSAM problems—namely Performance and
DASD Utilization. Here, in PART TWO, we take a closer look at those problems and assess the
implications they have on the Applications that use VSAM.

CI/CA Splitting

PART ONE described the concept and resulting inefficiency of VSAM's CI/CA splitting mechanisms.
This inefficiency can be described as:

* An overhead on CPU usage and I/O’s, both to complete the split and to process the records that
have been placed in a split CI/CA.

* An increase in the Response Times of online systems and Elapsed Times of batch jobs as a
result of the delays during the split, and subsequent processing of a split file.

* A potential exposure to data integrity. VSAM clusters can become unusable if an insert is
interrupted during a Cl or CA split because records in the ClI or CA being split may be lost if
the split does not complete successfully.

One method used to counteract CI/CA splitting is to increase the freespace definitions in
VSAM files that are to take a high number of inserts, with a view to decreasing the number of
CI/CA splits.

For example, ‘FREESPACE(50 50)’ could be coded to request that 50% of each CI be left free
and 50% of all CI's in every CA be left empty (see below, left). This would, however, only reduce
the number of CI/CA splits that occur if the new records are being inserted evenly throughout the
file. This is rarely the case! Often (see below, right), the insertion of new records is concentrated
around a specific range of keys. Freespace cannot be graduated around the file, so if the inserts
are clustered, splitting will still occur around the area of insert activity, while other areas of
freespace go completely unused.

k

(13

An alternative for reducing the effect of CI/CA splitting is to reorganize the file on a regular basis.
Reorganization is a process where IDCAMS reads all of the data records from the KSDS containing
CI/CA splits and reloads them in proper key sequence, replenishing the freespace areas as it goes.
Depending on the size of the KSDS, a Reorganization can take a considerable amount of time

(i.e. tens of minutes) and while it is taking place, no other users or applications can access the file.

- PART TWO

VSAM PROBLEMS

As we pointed out in the Introduction to PART ONE, VSAM files are often used in very
‘high-profile’ systems, for which such prolonged unavailability is undesirable and, in extreme
cases, can result in a loss of company business. The need to REORGANIZE therefore creates
two major headaches for the personnel responsible for the performance and availability of VSAM
in the systems concerned:

* REORG vs PERFORMANCE

On the one hand, they can keep the file available ‘non-stop’ for several days, at the expense
of letting it split and suffer ever-decreasing performance. Alternatively, they can opt to
REORGANIZE the file(s) each night, potentially causing a delay in the availability of data and,
in addition, adding work to an overnight schedule that may already be stretched to the limit.

* SELECTING FILES FOR REORG

The selection of files for REORG is a manual task with IDCAMS and is open to error. Some files
that really need reorganization may, for example, get missed (and continue to perform badly),
while others that don’t need reorganizing still get REORG’d (causing unnecessary downtime and
adding to the total REORG time for the system).

The FDRREORG component of the FDR DASD Management System can be used to help with
these problems. First, it automates the selection of files requiring reorganization (based on user
criteria) to ensure that all the files which need REORGing will be picked up, while those that don’t
can be bypassed. This ensures their continued availability and reduces the total REORG time.
Secondly, FDRREORG can then do the actual reorganization of the selected files much faster
than IDCAMS. For more information on the functions and benefits of FDRREORG, see the

‘FDR Storage Management Family’ Concepts and Facilities Guide.

PART THREE of this Concepts Guide shows how IAM can also be used to further reduce the
effect of these problems by handling inserted records in a much more efficient manner, thus
reducing the processing overhead when REORG'’s are run.

DASD Usage

As highlighted in PART ONE (and again earlier in this section), VSAM is not the most efficient user
of DASD Space. Its freespace mechanism can waste large areas of space, unless records are
inserted evenly throughout the file. In addition, VSAM has a limited ability for specifying the
blocksize of files for optimum DASD usage.

DASD space may be cheaper ‘by the GB’ these days, but few companies can afford to
unnecessarily waste it. And, of course, it is never just a case of the purchase price of the DASD.
Consideration also has to be made on the increased hardware maintenance costs, the increase

in backup times for the ‘over-large’ files and, perhaps more importantly, the increase in restore

and disaster recovery time.

With an increasing demand for keeping more historical data online, the main files in some
application systems can easily grow to several Gigabytes in size. When VSAM files reach this
size, performance problems and poor DASD utilization becomes all the more apparent.

PART THREE of this Guide describes how IAM can be used to:
« Store data in significantly less space than required for VSAM
 Improve the performance on larger files

PART TWO

VSAM PROBLEMS

There are two other ‘DASD Usage’ issues that are common problems for VSAM:

» Qver-allocation: It is difficult to calculate the space required for a VSAM file. Users often
over-allocate, or use a standard IDCAMS DEFINE job to create their VSAM files, without first
altering the space allocation to match each individual file’s requirement.

 Additional extents: VSAM files can grow to 123 extents. Multi-extent datasets are inefficient
and can degrade the performance and utilization of the DASD on which they reside.

These issues cannot be ignored. It is the aim of all DASD Managers and Storage Administrators
to ensure that their DASD Space is being used efficiently and they will carefully monitor the
thresholds of their DASD volumes. However, because of a lack of suitable tools, many do not
look at the actual usage of the allocated space within the files themselves. The wasted space
inside VSAM files caused by over allocation and the CI/CA freespace mechanism can often go
unnoticed. It is almost impossible, for example, to find out how much of the CA freespace in a

file has been used. Even if the DASD wastage and multi-extent problems are recognized and fully
understood, the ‘cure’ is usually a reduction in the freespace definitions, at the expense of more
CI/CA splits and the resulting performance degradations described earlier.

These problems can, in part, be addressed using the COMPAKTOR component of the FDR DASD
Management System, as described in the ‘FDR Storage Management Family’ Concepts And
Facilities Guide. Compaktor can be used to release unused over-allocated space in VSAM files
and merge the extents of multi-extent VSAM files. PART THREE of this Concepts Guide shows
how IAM can also be used as an additional solution, by controlling unnecessary over-allocation
through its ‘Automatic Release’ feature.

Buffer Usage

As highlighted in PART ONE, the methods available for specifying the number of DATA/INDEX
buffers for a VSAM file are entirely manual. Using these methods, two options are available to
decide how many buffers to allocate:

» Someone can look at the activity of each individual file and try to assess its buffer requirements.
This can cause problems if a file is accessed by several programs (some doing Random 1/O,
others doing Sequential) which may require different buffering. It also assumes a regular
‘check-up’ will be made to ensure that the buffer requirements set previously are still valid,
particularly if the use of the file has altered in some way.

* Alternatively, a ‘rule-of-thumb’ mechanism can be used, where buffering is estimated on a past
history basis. This may lead to some files getting insufficient buffers, while others are given far
more than they need. Neither is satisfactory. The ones needing more buffers will not perform as
well as they could and the files with too many buffers will be using resources (i.e. storage) that
could be better utilized elsewhere.

A further complication arises when there are insufficient skills within a site to carry out the ‘manual’
buffer tuning described above. Furthermore, as many sites now have hundreds, if not thousands
of VSAM files, manually tuning them could easily become a full-time job!

Mechanisms such as DFSMS VSAM System Managed Buffering (implemented via the
DATACLAS) and the LSR pooling functions under CICS can help to alleviate some of these
problems. However, the creation and specification of these systems is still a manual task often
requiring some degree of ‘VSAM Skill' to implement and monitor.

In PART THREE we show how the ‘In-Core Index’, ‘Real Time Tuning’ and ‘Dynamic Table’
mechanisms of IAM can remove the requirement for manual buffer tuning and, of course, the
exposure to getting it wrong.

- PART TWO

VSAM PROBLEMS

Summary

Although some of the problems highlighted in the first two Parts of this Guide can, in part, be
addressed by time-consuming manual effort, this is rarely feasible in today’s Data Centers where
manpower is already stretched. Moreover, many of the ‘cures’ are simply a shifting of the problem
from one area to another. Increasing freespace can, for example, reduce CI/CA splitting, but as we
have shown, this ‘cure’ comes at the expense of an increase in DASD consumption and wastage.

It would appear to be a no-win situation for the personnel responsible for VSAM in a site. This is
not the case! PART THREE of this Guide describes how IAM provides an alternative to VSAM, to
address the problems we’ve highlighted above.

- PART THREE

IAM

Introduction

PARTS ONE and TWO of this Guide highlighted the problems inherent in VSAM. They illustrated
how the VSAM file structure can be stressed when used in the high-access, high-profile application
systems of today. As such, the problems that were perhaps just minor headaches a few years ago
have now become so acute that the manual ‘cures’ which have served well in the past are no
longer sufficient. In many Data Centers there are now simply too many VSAM files to handle and
too little time to spend manually tuning them.

Several products exist in the market which try to alleviate this problem by removing some of the
manual tuning effort. All of these products, however, ignore the fact that the fundamental problem
of VSAM is the file structure. The only way to truly address the problems caused by VSAM is to
move the data into an alternate, more efficient file structure.

IAM: The Power Over VSAM

The Innovation Access Method (IAM) is a reliable, high-performance disk File Manager, designed
as a transparent alternative to VSAM. It will significantly outperform VSAM under z/OS and
0S/390 systems and it does not require any permanent modifications to the Operating System.

It is designed to co-exist with VSAM without affecting the normal use of VSAM, and without
interfering with VSAM Catalog Management.

IAM supports the concept of Record Level Sharing (RLS) within a single MVS image, allowing
files to be shared (for read or update) between multiple CICS regions, TSO users and batch
jobs—see “Special Feature—RLS Support” on page 23.

IAM offers the following benefits over VSAM KSDS files without the need for manual tuning:

* 50-80% reduction in 1/0’s (EXCP’s)

» 20-40% reduction in CPU usage

» 30-70% reduction in DASD space usage

* 50-80% reduction in Batch Elapsed Times

» 50-80% reduction in Online Response Times

The “IAM/AIX” cost option provides special support for VSAM Alternate Index (AIX) files
(see page 24).

From 3" Quarter 2003, the “IAM/AIX" option also provides support for VSAM RRDS datasets.
ESDS files are also supported (see page 25).

In a moment, we will take a closer look at IAM to see how the above benefits are possible. First,
we are going to see how IAM files can be used in place of VSAM without requiring any permanent
changes to JCL, or to application programs, CICS, or even the Operating System!

The secret is the IAM/VSAM Interface: the VIF...

User Experiences
“IAM reduced VSAM space requirements from 106,000 tracks to less than 53,000 tracks...”

“We converted our VSAM files to IAM without change. Now the file is over 20GB...”
“We replaced our existing VSAM compression package with IAM and saw a 50% saving in CPU time...”

See the Appendix for a list of vendor products that have successfully converted their VSAM files to use IAM.

- PART THREE

IAM

The VSAM Interface (VIF)

The VIF allows any program (e.g. Cobol, Assembler, PL/1, RPG) which uses keyed index access
against a VSAM KSDS to load and then sequentially or randomly access IAM files without
program changes. It is started at MVS IPL time, and dynamically installs itself in the SVC table.

It then intercepts the SVC 26 (Locate), VSAM OPEN, VSAM CLOSE (TYPE=T), and SHOWCATs
to determine if the request is for a VSAM file, or an IAM file:

MVS < >

Application VIF ~ —

Program P
\

VSAM
—

If the request is for VSAM, the normal IBM routines are given control and the file processing
continues as normal. If the file is IAM, the OPEN of its ACB is simulated to look like a VSAM
OPEN. Then, when an online system or batch application program issues a record request
against the file (e.g. GET, PUT, POINT, etc) the request will be processed by the VIF to look like
the VSAM requests.

Creating an IAM File: IDCAMS Support

The VIF is also designed to intercept IDCAMS DEFINE's if they are ‘tagged’ as being DEFINE’s
for IAM files. This allows 1AM files to be created using regular IDCAMS DEFINE jobs, despite
having an entirely different file structure. (Note: The other methods for allocating VSAM files—JCL,
SMS, etc—can also be used to create 1AM files. However, as in PART ONE, we will assume that
IDCAMS will be the preferred method). The REPRO, DELETE, PRINT and LISTCAT functions of
IDCAMS are also supported for IAM files.

Because IAM files can be DEFINE’'d with IDCAMS, this allows for a very easy migration from
VSAM to IAM. Indeed, as VSAM files are usually DELETE/DEFINE’d on a regular basis during
the Reorganization process, the IDCAMS DEFINE jobs are already available. It is a very simple
task, therefore, to create IAM files with those jobs.

As you will see later, some of the parameters of the IDCAMS DEFINE are not relevant to an
IAM file, but these parameters do NOT have to be removed and are ignored when the 1AM file
is created. Other parameters (e.g. FREESPACE) may be altered by IAM to take into account its
more efficient handling of data. This will also be explained later in this section.

Using IDCAMS, there are 2 methods (shown below) for ‘tagging’ a DEFINE to create an IAM file.
(Note: In the UK, the tag is £IAM):

* Placing ‘$IAM’ in the OWNER field
* Placing the characters ‘$IAM’ anywhere within the file name

Either of the above methods can be used each time an IAM file is created. The ‘owner’ method is
the most transparent because the actual filename does not change and, hence, the JCL of jobs
that processes it will run without requiring any alteration.

- PART THREE

IAM

The ‘filename’ method can be chosen instead, if there is a particular need to identify files as IAM
by their filename. IAM files do not have separate ‘.DATA’ and ‘.INDEX’ components to make them
easily identifiable—the index portion of the IAM file is contained within the main file allocation
itself. Regardless of the method chosen, the VIF will intercept the DEFINE and an IAM file (with an
MVS DSORG=PS) will be created.

In the examples below, the result will be a non-VSAM dataset allocated on MVS001 with the name
of ‘MY.TEST.DATASET’ or ‘MY.TEST.$IAM.DATASET’'. This is an example of creating a single
index IAM KSDS. See later for details on creating IAM ESDS and Alternate INDEX (AIX) files.

The 'OWNER FIELD’ Method The ‘FILENAME’ Method

//DEFVSAM EXEC PGM=IDCAMS //DEFVSAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=* //SYSPRINT DD SYSOUT=*
//SYSIN DD * //SYSIN DD *

DEFINE CLUSTER
(NAME (MY . TEST.DATASET) -
VOLUMES (MVS001)
OWNER(S$I1AM) -

DEFINE CLUSTER
(NAME(MY . TEST . $1AM_DATASET) -
VOLUMES (MVS001) -
SPEED REUSE) -

SPEED REUSE) -
DATA (RECORDS(5000 500) -
FREESPACE(10 20) -

DATA (RECORDS(5000 500) -
FREESPACE(10 20) -
KEYS(10 0) -

KEYS(10 0) - RECORDSIZE(256 256) -
RECORDSIZE(256 256) - CISIZE(4096))
CISI1ZE(4096)) 7

/*

(Note: If required, IAM datasets can be defined as DFSMS extended format sequential datasets, allowing
them to fully utilize 3390-9 and other “large” devices, such as the 3390-27. This effectively raises the
theoretical maximum size of an IAM file to almost 3 terabytes of compressed data).

IAM Overrides

Some of the optional features of IAM (e.g. Data Compression—see later) are requested at file
creation time. This is done by coding an IAMOVRID DD in the IDCAMS DEFINE JCL. The example
below shows how to request Data Compression on all files being DEFINE’d in the particular step.

//DEFVSAM EXEC PGM=I1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

DEFINE CLUSTER
(NAME(MY . TEST.$1AM.DATASET) -
VOL(MVS001) -
KEYS(9 0) -
RECORDSIZE(1024 1024) -
, CYLINDERS(500 200)
k.3

/7 1AMOVRID DD *

CREATE DD=&ALLDD, DATACOMPRESS=YES
/*

There is also an ‘ACCESS’ Override statement available to request further IAM features at file
access time (e.g. Dynamic Tabling). These features will be discussed later in this section.

Let's take a look now at the internal structure of an IAM file...

- PART THREE

IAM

The IAM File Structure

PART ONE of this Guide described the internal structure of a VSAM file and illustrated its
inefficiency when handling randomly inserted records. The IAM file structure, on the other hand,
is designed to take inserted records more efficiently.

When allocated, an IAM file is divided into logical blocks of a size determined by the CISIZE
parameter in the IDCAMS DEFINE, or via the BLKSIZE parameter coded on a CREATE override
statement. These blocks are contained in the Prime Data Area of the IAM file. Unlike VSAM, |IAM
files are not limited to blocksizes of multiples of 512 or 2048 bytes. They can be created with an
optimum blocksize for the device on which they are being allocated. IAM files typically have
blocksizes of 1/4 or 1/2 track.

IAM Data Blocks are usually much larger than VSAM CI’s, and are not contained in anything
equivalent to a CA. However, when loaded, they are used in the same way as a Cl. Records
are written into each block in key sequence and, if Cl freespace was coded on the DEFINE, an
equivalent percentage of freespace will be reserved within each block. This freespace is known
as Integrated Overflow, indicated by the shaded areas below:

Data Block

Data Block

Data Block

As new records are inserted into the IAM file after the initial load, they are placed in the appropriate
Data Block, using the Integrated Overflow available. This, however, is as far as the similarity with
VSAM goes. If the Integrated Overflow has been exhausted in a block, IAM does not do a ‘split’.
Instead, the new record is placed into an Extended Overflow block at the end of the file:

1%,

Overflow Block

IAM’s Extended Overflow Blocks replace the function of VSAM CA Freespace. Unlike CA
Freespace, however, Overflow blocks are not tied to specific Prime Blocks. They can be used for
any inserts that cannot fit into a Prime Block. They are also structured to cater for variable length
records, giving optimum efficiency when the Maximum Record Length for the data records in the
file is significantly larger than the defined Average Record Length.

All of this means that less DASD space is required to handle random insert activity when
compared to VSAM. When a VSAM file is converted to IAM format, its size can be significantly
reduced. Typically, the size of a VSAM file can be reduced by 20-40% simply by converting it to
IAM format.

- PART THREE

IAM

Inserts to the end of an IAM file (i.e. new high keys) go into Extended PE blocks. They are similar
to Extended Overflow blocks.

An 1AM file is ‘self-describing’. Its control information (e.g. Blocksize, RECFM, LRECL) is stored
at the front of the file, followed by the Prime Data Area which contains data loaded by the initial
REPRO into the file. The Data Blocks in the Prime Data Area may have Integrated Overflow
freespace reserved in them to cater for inserted records.

After the Prime Data Area comes the Index to the Prime Area. This is an efficient index that is
held in storage when the file is opened to reduce DASD I/O when processing the file.

Control Information

Prime Data Area

Index

Extended

Overflow Extended PE

Finally, if the Integrated Overflow in a Prime Data Block has been exhausted, or if records have
been added to the end of the file, you will find Extended Overflow and Extended PE blocks at the
end of the IAM file. Secondary extents are taken by IAM (if coded) when additional DASD space
is required for these overflow blocks.

File Reorganization

Despite IAM’s more efficient method of handling inserted records, IAM files still require a
reorganization from time to time to move records from the Overflow Blocks (and Integrated
Overflow) into the Prime Data Blocks.

This Reorganization can be done using the same IDCAMS REPRO jobs that were used for the
equivalent VSAM files. The basis for ‘REORG selection’, however, will be the amount of Overflow
usage (and resulting secondary extents) rather than the number of CI/CA splits, as under VSAM.

Because of the nature of IAM, IDCAMS REORG's of IAM files will usually run faster than a
REORG of the equivalent VSAM file. A feature in IAM called ‘Backup Compressed’ allows the
reorganization of compressed IAM files to take place without needing to de-compress and
re-compress the data on backup and reload. This saves a considerable amount of CPU and
elapsed time on reorganization—particularly on large IAM files.

If REORG's are still taking too long, however, you may wish to apply more intelligence to your
IAM (and VSAM) reorganizations by using the FDRREORG component of the FDR DASD
Management System.

As described in the ‘FDR Storage Management Family’ Concepts And Facilities Guide,
FDRREORG allows for a more intelligent REORG selection of VSAM/IAM files based on user
specified criteria (e.g. ‘CISPLIT > nnn’ for VSAM files and ‘ORECS=nnn’ for IAM).

This intelligent selection ensures that only the files that really need REORGing will be reorganized.

- PART THREE

IAM

Using the Optional ‘Data Compression’ Feature

Requesting Data Compression can further reduce the DASD requirement for an IAM file. This
optional feature compresses the data records in the file, reducing the overall file size by an
additional 20-50%. Files exceeding 5 cylinders are automatically compressed and smaller files
can be compressed via the DATACOMPRESS=YES parameter on a CREATE override.

Data Compression also reduces I/O’s to the file, which has a knock-on effect on CPU usage
because it costs CPU to do I/O’s. CPU is expended doing the de-compression and re-compression
of the data, but IAM’s efficient compression routines and the reduction in CPU from the reduced
I/O’s, usually keeps the overall CPU usage below that of the original uncompressed VSAM file.

Support for z/OS Hardware Compression

IAM also supports z/OS Hardware Compression. With the performance improvements that IBM
has made on the data compression instructions on the zSeries processors, IAM customers may
realize some CPU time reductions when reading data by using z/OS Hardware Compression.

Warning: The use of hardware compression is not recommended on the older processors,
because the additional CPU time is substantial.

Hardware compression is an option that users can select for the desired files through the IAM
Override facility described earlier. IAM provides one compression dictionary, which is designed to
handle primarily text data, with some numerical data, such as might be found in files containing
name and address information.

Users can also create their own compression dictionaries to be used by IAM for selected files.
Such dictionaries can provide for a higher degree of compression than would be possible with a
generic dictionary. When an IAM file is loaded with a user-provided compression dictionary, that
dictionary will be written into the 1AM file to insure that the dataset can be successfully processed
should some subsequent changes be made to the user provided dictionary.

Space Release

Unused space within an IAM file can be released after the file has been loaded or reloaded.

This cures the problem of ‘over-allocated’ files that we discussed in PART TWO. Because IAM files
generally take 30-70% less space than VSAM, if the original space allocations are left unchanged
in the DEFINE’s during the conversion, the unused space can be released.

IAM first checks to ensure that secondary allocation has been allowed for the file before applying
the Space Release feature (to prevent immediate Sx37 abends) and also leaves a percentage of
freespace after the Release to avoid immediate Secondary Space allocation.

Support for PAV

IAM provides full support for Parallel Access Volume (PAV)—a feature of some DASD devices
which provides for concurrent physical I/O activity against the same physical z/OS DASD volume.
Use of this capability can provide substantial improvements in response times for online systems
or batch jobs that have heavy concurrent 1/O activity.

- PART THREE

IAM

‘In-Core Index’, ‘Real Time Tuning’ and ‘Dynamic Tabling’

So far, we have concentrated on the various features of IAM that reduce DASD Space
requirements for a file. We have also shown how IAM’s file structure can reduce 1/O’s and CPU
by eliminating CI/CA splits, and how the “Data Compression” and “PAV support” features can
further reduce 1/O’s to assist with the performance of a file.

In addition to all of the above, IAM’s ‘In-Core Index’, ‘Real Time Tuning’ and ‘Dynamic Table’
features (described below) can also provide a reduction in I/O’s and CPU, thus further improve
Elapsed Time or Response Time performance.

In-Core Index

When an IAM file is OPEN’d, IAM will read the entire INDEX of the file into Virtual Storage and all

references to the index are made to the ‘in storage’ copy. This essentially eliminates any I/O to the
INDEX. VSAM files that have a high ratio of activity to the index component (compared to the data
component) usually yield significant savings when converted to I1AM.

Real Time Tuning

Through its ‘Real Time Tuning’ mechanism, IAM will also dynamically tune the allocation and
use of DATA buffers to match the demands of the processing program. IAM continually monitors
I/O activity as a file is processed and applies the artificial intelligence concept of ‘learning by
experience’ to the file processing.

This process will, of course, differ depending on whether random or sequential processing is being
done. IAM determines, and then uses, the number of Data buffers that will result in the best level
of performance for the file. IAM then continually monitors buffer usage and determines from its
experience if any additional buffers would decrease real 1/O. If so, it acquires them. This dynamic
tuning of Data buffers eliminates the need to manually calculate, code, and monitor buffer allocation.
The files that need more buffers will get them and those that do not, will not.

For multi-volume files, IAM will also initiate multiple-concurrent I/O’s to further improve 1/0O
performance (including file Reorganizations on multi-volume 1AM files with FDRREORG).

Dynamic Tabling

IAM optionally ‘tables’ records read from a file in virtual storage. On random reads, IAM checks
to see if the requested record is already in its ‘Dynamic Table’ and if it is, passes it back to the
application, eliminating the 1/0 to the disk. If the record is not currently in the table, IAM reads it
from the file, passes it to the application and tables it for subsequent retrievals. If the record is
updated by the application, IAM changes the record in the table and on disk.

Files that gain the most benefit from Dynamic Tabling are those where the same records are
read and re-read in a short space of time, and where few are being updated. Small files with high
random READ activity effectively become in-core tables under Dynamic Tabling.

A Dynamic Table can be requested for a file at access time via the ‘DYNCORE=" parameter on an
ACCESS Override statement (see below). This is very flexible, because some files may require a
table for certain processing (e.g. during the ‘Online’ day) and not at other times (e.g. Overnight
batch). The Dynamic Table can therefore be requested only when needed.

PART THREE

IAM

In the example below, a Dynamic Table of 1000K has been requested for the file pointed to by the
FILE3 DD card in JCL. The file’s record size will determine the maximum number of records that
can be tabled at any one time.

//1AMOVRID DD *
ACCESS DD=FILE3,DYNCORE=1000
/*

Note: Reductions in Disk I/0O made as a result of the ‘In-Core Index’, ‘Real Time Tuning’ and ‘Dynamic Table’
can also contribute to a reduction in CPU usage and provide additional savings on Batch Elapsed Times
and Online Response Times. IAM is designed, however, to use storage as efficiently as possible (above the
16MB line) and goes to great lengths not to trade a reduction in I/O for an increase in paging.

IAM Under CICS

IAM files can be used under CICS systems without requiring any change to IAM or to CICS. The
FCT entry for the file can go unchanged. If the file is defined to an LSR Buffer pool, the definition
can remain unchanged. Although 1AM will not use the LSR buffer pool, it can take advantage of
other LSR related CICS services which improve CPU usage. The only potential change to CICS
would be a reduction in the size of LSR buffer pools. As files get converted to IAM, less LSR
buffers will be required for the remaining VSAM files.

IAM supports the BWO (Backup While Open) service, which is primarily used by CICS and
CICS/VR to allow for backing up open files, and then for subsequent forward recovery after the
dataset has been restored. BWO data includes three flags, indicating the BWO state of the file,
and the 8-byte date and time stamp field, which is used as a file recovery starting point. IAM
maintains this BWO data, which can be printed on an IAMPRINT LISTCAT report.

IAM Execution Time Statistics

With the potential DASD, CPU, I/0O and Elapsed/Response Time savings that can be obtained
from IAM, it is useful to be able to monitor and report on these savings. This can, in part, be
achieved by requesting the optional ‘IAM Execution Time Statistics’ report, produced by coding an
IAMINFO DD in the accessing JCL.

Once coded in a JCL step, the IAMINFO DD will cause this statistics report to be produced for
each CLOSE of an IAM file in that step. The report will include information such as:

* File Attributes (BLKSIZE, LRECL, RECFM)

« Buffer usage (Number Used, Size, Storage Required)

* File Activity (Reads, Writes, Deletes, Inserts)

» Extended Block usage (Overflow Blocks, Extended PE blocks)

The report will also indicate the size of the IAM file so that, during a VSAM-to-IAM conversion,

a clear indication is given of the DASD savings made. It also shows the number of 1/O’s that

were saved due to requests being satisfied by the buffers or Dynamic Table. The report will also
indicate if IAM was unable to obtain additional buffers for a file due to upper buffer limits or storage
constraints. More detailed reports can also be produced by writing the IAMINFO reports as SMF
records, which can then be processed by additional reporting programs supplied with IAM

(see ‘Identifying Candidates’ for IAM Conversion page 26).

A report similar to an IAMINFO can also be produced in real time under CICS or TSO.
The IAMXMON transaction can supply information on IAM files currently open to a CICS system.

- PART THREE

IAM

Special Feature: Record Level Sharing (RLS)

In today’s 24 x 7 environments it is no longer viable to restrict a file to the rigid protocol of
“CICS-only access” during the day, and “Batch-only access” (i.e. one-job-at-a-time) during the
evening. Now, to fit increasing amounts of work into decreasing windows of time, data centers
need to be able to safely access and update their files, whenever they want and from wherever
it is necessary.

IAM’s Record-Level Sharing (RLS) feature allows multiple applications (CICS Regions, Batch
Jobs, TSO Users etc) to concurrently share an 1AM file. Each of the sharing systems can have the
file open for either read or update. IAM ensures that the integrity of the shared file is maintained
during the concurrent access. Individual records within the file are protected from concurrent
update and resultant corruption. IAM provides Journaling and Backout services (see below) to
recover the shared file to a consistent point, in the event that one of the sharing/updating
applications abends.

IAM support for RLS is being introduced in several distinct phases. Phase 1, available now,
includes support for SHAREOPTIONS 3 and 4 within the same MVS system. Multiple jobs, CICS
regions, and TSO users running within a single system LPAR can now concurrently (and safely!)
update an IAM file.

RLS support is available on KSDS files, Alternate Indexes (AIX files), and ESDS files. Not all
IAM files used within a CICS system, or referenced by a batch job, or accessed by a TSO user
have to be RLS capable. Is it possible to mix-and-match to suit requirements. No extra JCL or
programming is required to implement basic RLS support.

An IAM RLS Address Space controls all I/0 to RLS-capable IAM files. This includes the required
locking of individual records during the update process, together with some sophisticated
‘deadlock protection’ routines, which minimize the exposure to deadlock situations between

the various sharing systems.

Journaling & Recovery

IAM provides the facility to write BEFORE and/or AFTER journal records, which can be employed
in either a “forward” or “backout” recovery of a file:

* A “backout recovery” is performed in the event of a failure/abend of a single (updating) job.
At the point of failure, the “Before” images of the updated data records are written back to the
IAM file, working backwards in time, thus removing all the updates.

* A“forward recovery” is used if an older copy of an IAM file has to be restored, perhaps after
encountering a media failure, or data corruption, or maybe even in the event of Disaster
Recovery. Once the older copy of the file is back on disk, the “After” images can then be
re-applied to the file, working forwards in time, thus recreating the updates that had taken place.

These procedures, which have been available for some time in IAM, have been enhanced to
accommodate the changes introduced by the RLS support described above.

IAM also features a “Dynamic Job Backout” (DJB) facility, which provides a controlled,

automated and fully dynamic “backout recovery” of IAM RLS files. If an updating job step abends,
all uncommitted updates (for that job) are automatically removed from all RLS files being updated
by that job. This negates the need to run separate, manual, batch-driven recoveries for each
affected file.

PART THREE

IAM

Special Feature: Alternate Index (AIX) Support

As mentioned earlier, users of the “IAM/AIX” cost option can also define one or more Alternate
Indexes (AIX’s) for the KSDS and ESDS files that they have converted to IAM. The procedure
for creating an IAM KSDS with an Alternate Index is the same as for VSAM:

« Define the base IAM file with the DEFINE CLUSTER command (using the $IAM identifier)
* Define the AIX with DEFINE ALTERNATEINDEX

* Build the AIX with BLDINDEX

* Define the PATH with DEFINE PATH

IAM files with AlX’s provide the same sort of savings over VSAM:

* IAM/AIX uses 20-50% less CPU than VSAM

* IAM/AIX performs 50-80% less EXCP’s than VSAM

* IAM/AIX runs in 50-80% less Elapsed Time than VSAM

Here are some results from recent benchmark tests, comparing an 1AM Alternate Index with a
VSAM AIX that had been tuned with LSR.

The first benchmark was a RANDOM I/O test against the files. This involved doing 256,000
Random READs, 160,000 Updates (half of which required an update to the other Alternate Index),
80,000 inserts, 16,000 deletes, 16,000 Points (start browses) with 80,000 sequential READs

(5 records read per start browse).

Notice how IAM took just 8 minutes Elapsed Time compared to VSAM’s 39 minutes!

VSAM
LSR

The second test was a SEQUENTIAL READ. This involved reading through the whole of the file,

Elapsed Time
(mins)

1AM

CPU Utilization
(secs)

VSAM 1AM
LSR

using the NONUNIQUE key Alternate Index.

Notice how IAM took just 7 minutes Elapsed Time compared to VSAM’s 15 minutes !

VSAM 1AM
LSR

Elapsed Time CPU Utilization EXCP’s
(mins) (secs)
125.0
VSAM 1AM VSAM 1AM VSAM 1AM
LSR LSR LSR

PART THREE

IAM

ESDS Support

ESDS files are also supported by IAM. Conversion of a VSAM ESDS into IAM is achieved in
the same way as a KSDS-to-IAM conversion—using the $IAM identifier within the IDCAMS

NONINDEXED define job.

Two examples of defining IAM ESDS files are shown here:

The 'OWNER FIELD’ Method

//DEFVSAM EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER
(NAME (AN . ESDS . DATASET) -

The ‘FILENAME’ Method

//DEFVSAM EXEC PGM=1DCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
DEFINE CLUSTER
(NAME (A . $1AM_ESDS.DATASET) -

VOLUMES(MVS001) - VOLUMES(MVS001) -
NONINDEXED - NONINDEXED -
OWNER(SIAM) - TRK(45 10) -

TRK(45 10) - RECORDSIZE(256 256) -
RECORDSIZE(256 256) SHAREOPTIONS(2,3))
SHAREOPTIONS(2,3)) Ve

/*

IAM provides the same advantages for ESDS files as highlighted previously with IAM KSDS
and IAM/AIX datasets, namely; reduced DASD space utilization, reduced I/0O and reduced batch
elapsed times and online response times. These savings are achieved with the same facilities
(Data Compression, advanced file structure, Real Time Buffer Tuning Management etc). IAM
ESDS file can also have associated alternate index (AlX) datasets.

The internal structure of an IAM ESDS is similar to that previously described for IAM KSDS'’s.

It also has the ability to provide Overflow space within the file. This space is required if the data
in the file is compressed. There may be occasions where records increase in size due to a
different compression after the update.

Because of this utilization of overflow within the IAM ESDS, the file will from time to time require
an IDCAMS Reorganization, similar to that for KSDS'’s. The process of doing this Reorganization
is the same as for KSDS—either a REPRO out to a sequential file and then back into the original
file, or a simple REPRO out to a new file. Alternatively, as for real KSDS’s and IAM KSDS'’s, an
IAM ESDS can be reorganized with Innovation’s FDRREORG as described in the ‘FDR Storage
Management Family’ Concepts and Facilities Guide.

IAM ESDS datasets can exceed 4 gigabytes as long as the application does not have a
dependency on the RBA's (Relative Byte Addresses) of each record being the identical value as
VSAM'’s. This capability is provided by the PSEUDORBA keyword on an IAM CREATE Override
when the file is defined or loaded. This indicates to IAM that it can generate a 4-byte RBA that is
different than the one VSAM would use for the same record. In effect, IAM will be returning a

4 byte relative record number.

Note: For applications that require a true 4-byte VSAM RBA value, such as the SAP product, the size
limitation is still 4 gigabytes of user data.

IAM also supports 8-byte RBA values, also known as Extended Addressability, which was
introduced with DFSMS 1.5. This allows ESDS files to exceed 4 gigabytes of user data while
using a VSAM compatible RBA value. The IAM support for Extended Addressability does not
require DFSMS 1.5, nor does it require the dataset to be SMS managed. This support is triggered
by specifying the XESDS keyword on the IAM CREATE Override.

- PART THREE

IAM

Identifying Candidates for IAM Conversion

There may also be some files which, although eligible for conversion to IAM, may only be very
small or have a very low activity against them. These files would not yield any major savings when
converted to IAM. When looking at implementing IAM, it is usually preferable, therefore, to target
the eligible files that are the biggest and/or have the highest activity against them, before looking
at the smaller and/or lower activity files.

It is not uncommon for just a few files in an application to be responsible for a very high percentage
(e.g. 80-90%) of the DASD Usage and I/O Activity. For these reasons, a facility is provided to help
identify the files which are both eligible for conversion to IAM, and which will offer the greatest savings.

Information about VSAM file size and activity is already being recorded via the standard SMF
recording function of MVS (record type 30 subtype 4, and record type 64). IAM utilizes this
information and provides a comprehensive reporting utility IAMSMFVS) to produce a list of

the BIGGEST and MOST ACCESSED eligible files. IAM can also supply information on which
jobs/steps use those files. This information is invaluable when assessing the conversion implications.

IAMSMFVS can be run against the current SMF file or a cumulative history file contained on disk
or tape. Here is a sample of the EXCP and SIZE reports that it produces:

VSAM EXCP REPORT

USE TOTAL SPLITS ALLCC
DATASET NAME CONT EXCPs RECORDS READ LNS UPDT DEL . CA TRKS
TEST. FI LE 426 28859815 28859815 - - - - . - -
TEST. FILE. INDEX 426 19809594 495 0 0 0 0 30 6 1

TEST. FI LE. DATA 426 9050221 469333 57041298 30177 55042 28009 1574 27 7350

ClI CS. FI LE 51 10329082 = = = = = = = =
Cl CS. FI LE. DATA 51 8516651 252100 5267982 670 890150 42 45 3 5220
Cl CS. FI LE. | NDEX 51 1812431 310 0 0 0 0 0 0 15
VSAM S| ZE REPORT
ALLCC TOT USE AVE KEY
DATASET NAME TRKS EXCPs CNT XTs LRCL LRCL BLKSZ LEN RKP CdlSIZE
Bl G FI LE 37155 2507803 24 - - - - - - -
Bl G FI LE. DATA 37100 2105001 24 5 223 580 4096 28 0 4096
Bl G FI LE. | NDEX 55 402802 24 1 - 1529 1536 28 0 1536
PROD. FI LE 16540 679216 159 - - - - - - -
PROD. FI LE. DATA 16500 270501 159 2 208 208 8192 9 0 8192
PROD. FI LE. | NDEX 40 408715 159 1 - 4059 4096 9 0 4096

PART THREE

IAM

Another utility (IAMSIMVS) can then be used to simulate the conversion of an eligible file into
IAM format to obtain a very accurate estimate of the DASD savings that can be made, both in
uncompressed and compressed format. It does this by reading a sample of the records in the
file (default 10%) and running them through its compression routines. The simulation is usually
accurate to within 5%:

LAM vs. VSAM ALLOCATI ON SI MULATI ON

VSAM TRKS I AM TRKS YSAVI NGS
DATASET NAMVE ALLOC USED STD cowe STD COwWP
Bl G CLUSTER 37155 SIS 27855 15600 25 58
Cl CS. FI LE. MASTER 21000 19005 12720 9495 55 50
NAME. ADDRESS. FI LE 9315 8985 6465 1875 28 79

SMS Support

IAM files can be placed on DFSMS controlled volumes and are treated as non-VSAM datasets.
As such, they are cataloged as non-VSAM and have an NVR in the VVDS. From then on, they
are treated in the same way as any other VSAM or Non-VSAM SMS file, as follows:

* When allocated, they go through the ACS routines and SMS Volume Selection
* They are managed as per the criteria of the Management Class to which they have been assigned

» They can be backed up, scratched or migrated by the SMS System’s Data Manager
(e.g. Innovation’s ABR or IBM’'s DFHSM)

An additional benefit under SMS Systems is provided via the DATA CLASS facility of SMS.

If a VSAM file is created with a DATA CLASS name containing $IAM, the DEFINE will be
intercepted by the VIF in the usual way and an IAM file will be created. SMS Data Classes can
make it simpler to standardize on file attributes such as Blocking Factor, which can be used to
improve performance. For this reason, the Data Class method of creating IAM files may be
preferable to placing ‘$IAM’ in the dataset name or Owner field as previously described.

IAM Reliability

As mentioned in the Introduction to this section of the Guide, IAM is a very robust file manager.
It has been designed with the aim of preserving file integrity in the event of a system or application
failure—even during insert processing.

* I1AM relieves the integrity problems caused by VSAM’s CI/CA split concept. VSAM clusters can
become unusable if an insert is interrupted during a split. Records in the CI or CA being split may
be lost if the split does not complete successfully. The structural integrity of an 1AM file is always
assured. Barring physical damage to the disk, IAM files are logically indestructible. IAM’s
Overflow concept allows records to be inserted without using splits. Records are added in a
single disk write, without the need to update the index.

* 1AM provides a recovery program. The IAMRECVR’ program can be used to read data in an IAM
file, even if portions of that file are physically damaged and/or the VIF is inactive. IAMRECVR
attempts to recover as much data as possible, copying the undamaged portion of the file to either
a sequential file, a new IAM file, or a new VSAM file.

PART THREE

IAM

IAM Installation

Despite the huge benefits that IAM provides over VSAM, it is a very easy product to install.
Indeed, it takes only three steps:

» Unload (with IEBCOPY) an Installation Control Library (ICL) from the distribution tape.

 Using the sample ‘INSTALL' job from the ICL, load the IAM modules from the tape into an APF
authorized library.

« Start the VIF using the sample ‘VIFSTART’ job from the ICL.

These steps can easily be completed in less than an hour and, once done, IAM files can immediately
be created by running IDCAMS DEFINE’s with $IAM either in the filename or owner field.

As well as the printed IAM manual that accompanies the product tape, there is also a CD-ROM
provided which contains a copy of the manual in PDF and BookManager formats.

IAM ISPF Panels

IAM also comes with a full set of ISPF panels to assist with the running of utility functions against
IAM and VSAM files (e.g. Allocation, Delete, Copy, Rename). The report programs highlighted
above (IAMSMFVS, IAMSIMVS, IAMXMON etc) can also be invoked from the panels. Tutorials
are also included.

Summary
IAM can provide significant savings over VSAM KSDS’s and ESDS'’s in the following areas:

* DASD Space

*1/O’s

* CPU

These savings result in:

* Reduced Batch Elapsed times

* Reduced BACKUP/REORG times
* Reduced Online Response times
 Improved DASD utilization

With IAM, you can be safe in the knowledge that your application data is being stored and used
as efficiently as possible, with the minimum of resources required (DASD, CPU, 1/0). You will be
relieved of the effort required to manually tune, implement and monitor your Buffer allocations and
the exposure to getting those calculations wrong. Your online system should perform better and
will be available each morning, because your overnight batch times will be reduced to allow you to
complete jobs in the window available.

IAM is the only real solution to your VSAM problems, because it addresses the root cause
—the VSAM file structure—rather than trying to work around it.

APPENDIX

APPENDIX

This is a list of vendor products that have successfully converted their VSAM files to use IAM

ADP - Paisy

Alltel - Financial Applications

American Mgmt Sys - ACAPS, Advantage Financial, HR, Materials Mgmt

American Software - Accounts Receivable

Anderson Consulting -DCSs

Automated Financial System - Commercial Loan

BCBS Arkansas - FISS medicare a payor system

Beta Systems - BETA93

BMC - Mainview, VRU Control-M

Bonner&Moore - Compass

Certegy - The Collection System

CGl - CLS

CHECKFREE - PEP+

Complex Systems - Banktrade, Trade Finance

Computer Associates - CAl, CA-7, CA-11, CTMSTATS, Infopoint Tracker,
DDA Suite Interest

Compuware - Abendaid/Fix

Credit Card Software - Banking Application, ISD, CV, CARDPAC

CsC - CAPS-I-L

Cyberlif - Cyberlife

Diebold - One-Link

Equifax - Bankcard System

Fair Isaacs - Triad

First Bankcard Sys - TBS, CCPS ,BankcardSystem, TCS

GEAC - Mortgageserv, 1Q Connect, MSA/DBS (Financial,
General Ledger), Payroll/DBA

Genesis - Payroll

Global Software - Fixed Asseis

GMIS - GMIS/Claimcheck

Groupl - Code-1/Plus, Mailsort ,

H&W - SYSM ,Mail ,Wizard

HBOC - Medipac

Hogan - Hogan Banking Package

Horisonten AB - Horisonten

IBM - CICS DFHCSO, SMP/E, Tivoli 0S/390, ALCS, SLR, RMDS

Info USA - White Pages

Information Builders - Focus

Insystems - Capsil

Integral - Intergral PR

ITS - Blue Shield ITS

Landmark/ASG - TMON, Monitors,TMON/MVS, TMON/CICS

Levi Ray & Shoup - Pagecenter

APPENDIX

LIDP - Aministrator

Macro 4 - TraceMaster

Mastersort International - Scrubmaster

McKinney Systems - MClI

Metavante - Custom Statement Formatter
Mobius - Infopac, ViewDirect

MSI Business Solutions - NADISPOST

PAISY - Payroll System

Paysys - Whirl, Vision+

Pitney Bowes - Finalist, Mailers Choice

Policy Mgmt Systems - BCMS, PMS

SAP - Financial, SAP R2

SCT - Student Financial Service, SCT Plus
SEMA - Cardlink

SHAW Systems - Online Collection

Siemens/Medical Systems - Invision, EAD/LCR, Hospital billing, Signature
Smartstream Technologies - Corona

SPI - SPITABT

Sungard - INVEST/1, ABC (General Ledger), Omni Plus
Systematics Alltel - IM, ST, RM

Teracloud - Spacefinder Workbench
ToneSoftware - OMC-Report

Trizetto Erisco - Claimfacts

Unitech Europe - XACT

Vision Plus - VP

Walker Interactive - AP/AR, HR CL

Note: Numerous customers have also successfully converted their own “home-written” VSAM applications
to use IAM files.

FRANCE

191, avenue Aristide Briand
94230 Cachan

Tel: (33) 1 49 69 94 02
Fax: (33) 1 49 69 90 98
frsales@fdrinnovation.com
frsupport@fdrinnovation.com

3. g INNOVATION
o™ DATA PROCESSING

Corporate Headquarters

Innovation Plaza

275 Paterson Avenue, Little Falls, New Jersey 07424-1658
Tel: (973) 890-7300 Fax: (973) 890-7147

support@fdrinnovation.com
www.innovationdp.fdr.com

European Offices

GERMANY

Orleansstral3e 4a
D-81669 Miinchen

Tel: 089-489 0210

Fax: 089-489 1355
desales@fdrinnovation.com
desupport@fdrinnovation.com

C ONCE P T S

epbruary 200

NETHERLANDS
(& Nordic Countries)

sales@fdrinnovation.com

UK

Brouwerstraat 8
1315 BP Almere

Tel: 036-534 1660

Fax: 036-533 7308
nlsales@fdrinnovation.com
nlsupport@fdrinnovation.com

Clarendon House
125 Shenley Road
Borehamwood, Herts
WD6 1AG

Tel: 0208-905 1266

Fax: 0208 905 1428
uksales@fdrinnovation.com
uksupport@fdrinnovation.com

