Issue 2, Februray 2002

El

MICRO FOocus
APS FoOrR z/0S

REFERENCE

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,

Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL Il COBOL™, License Management Facility™, License Server™,

Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020219095653

Table of Contents

b e e 11
01 11
RENAMES . . e 13
B8 e 14
Application Definition Report (APO1). 16
Application Field EditRoutines. 18
Application Painter 24
Application Painter Member Processing Exits 27

Selection Code Processing.cuiiiinninninnn.. 28
Application Reports e 32
APSMACS Rule Libraryo 37
AT END/INVALID KEY . . oot e e e e 39
ATT R e 40
Attributes, Screen Fields 42
Bind and Translate Options, SQL. 46
CA 49
CCODE ..ttt 50
Checkin ... e 51
Checkout. 53
CIC-ADDRESS. . . o it 55
CIC-ASSIGN .. e 55
CIC-CANCEL. . .o e e 56
CIC-DELAY . .t 57
CIC-DELETEQ-TD . . ottt et et e e e e e e 58

Reference

Reference

CIC-DELETEQ-TS . . ottt e e e 59

CIC-FREEMAIN . .o e 59
CIC-GETMAIN . . .o e e 60
CIC-LOAD . . .ot e e e e e 61
CIC-READQ-TD . . ottt et e e e e e e e 62
CIC-READ QTS ottt e e e e 63
CIC-RELEASE . . . oot e 64
CICS e 65
CIC-SCHEDULE-PSB.ttt 65
CIC-SEND-TEXT . . ot ittt e e e e e e e e e 66
CIC-SERVICE-RELOAD.\t 67
ClC-START . e e e e 67
CIC-TERM-PSB. . . o ot e 68
CIC-WRITEQ-TD .o ettt e e et et 69
ClIC-WRITEQ-TS . o ot ittt e e e e e e 70
CLEAR 71
CLEAR-ATTRS . it e e e 71
COBOL/2 SUPPOrt. . o e e e 72
CODE .ot 74
CommeENts ... 75
Component List (MSOT).t e 76
CONTROL . e e e 78
Control Files. i 80
Control Points e 88
Database Calls 97
Data CommunicationCalls 101
Data Structure Definition (DSO1)t ... 107
Data Structures 109

Date and Time Field Edits 113

DB/DC Target Combinations 118
DB-BIND . ..ot 119
DB-CLOSE . .ottt 120
DB-COMMIT . . e e 121
DB-DECLAREot e 122
DB-ERASE . . e 128
DB-FETCH ..t 134
DB-FREE. . . .ttt 135
DB-GET .ottt 137
DB-MODIFY . ottt e e 138
DB-OBTAIN . ..o 143
DB-OPEN . . .ottt 158
DB-PROCESS . .ottt e e 160
DB-ROLLBACK . . . oottt e e e e 174
DB-STORE . .ottt e 175
DB-SUBSCHEMAo e e 180
DDIFILE Report (DBOT) . .. oottt e e e 181
DDIStatements. 182
DDISYMB Flags . .« oo e e e e 194
DECL ottt 199
DLG-ISPEXEC ottt e 200
DLG-ISREDIT . .ot e 201
DLG-SETMSGottt e e 201
DLG-VCOPY . . ittt 203
DLG-VDEFINE e e 204
DLG-VDELETE . . . oottt e e e e 205
DLG-VREPLACEot e e 206

Reference

Reference

DLG-VRESET . ..o e 207

DPAR 207
DS 209
Entity Content Report (MS02). i, 210
Entity Cross Reference (MDO1)o, 212
Entity Parts List (ENOT) it 214
Entity Search Utility Report (GSO1). 216
Entity Use Report (ENO2). it 219
ENTRY 221
Error Handling 222
Error Processing Messages, 239
ESCAPE .. e 241
EVALUATE . .. e 242
EXit Points. 244
EXIT PROGRAM . . e e e 245
Expressions, SQL. 246
FD 247
Field Eits.o 248
Field Edit Values. 251
Fields and Flags, Data Communication 256
Field/Screen Cross Reference (SC02), 262
FREM 264
Functions, SQL 265
GENERATE . .. 269
Generator Options. i 271
Generation Parameters, Screens. i 273
GROUP BY .. e 278
GSAM Calls. . ..o 280

ID Parameters: e 281

IDM-COMMIT . .. e e e 282
IDM-CONNECT ... et e 283
IDM-DISCONNECTot e e 284
IDM-IF e 285
IDM-PROTOCOL . ..ottt e e e 285
IDM-RETURN e 287
IDM-ROLLBACK. . . et 288
DM 288
IDMS DB Sample Programst 289
IDMS Options . .. oo 293
IF/ELSE-IF/ELSE. . . . e et 294
$IM- Data Communication Calls 299
SIM-FLD . .t e 301
SIM-F S A 301
SIM-POS. . 303
% INCLUDE e e 304
INIT AT E . . e e e 305
IO e 305
ISPF Dialog Compatibility: with IMSDC, CICS. 306
JobControl Cards. ... 307
JOINS 307
Keywords 311
Limits e 319
LINK e 321
LK 326
Macro/Program Cross Reference (MCO1) 327
MFS Function Keys e 329

Reference

Reference

MFS Trancode Construction 330

MID MOD Reorder.t 332
MOCK e 333
MOCKUP LINES . ..ot e 334
Mock-Up Report (RPOT).o e e i 335
Modified Data Tags, CICS Data Transmission. 336
MSG-SWV . o e 337
NTRY e 340
NULL Indicator Field i 349
OCCURS it 349
OPT e 351
OVERPRINT . . o e e 352
PAGE LIMIT. . .o e 353
Panel Options, ISPFDialog 355
PARA and Paragraphs 356
PERFORM . .. e 359
PFKey Values. e 361
Precompiler Options i e 364
PROC o e 370
Program Control Blocks, 1O.o i, 371
Program DB/DC Report (PG02)o, 372
Program Definition Report (PGO1) oo .. 374
Program Specification Blocks 375
Project and Group Options. 376
REC 377
RED o e 378
REDEFINES . .ot e 379
REFERENCE.ot e 380

REM e 382

REPEAT . e 383
Report Mock-Ups 388
Report Sample Program and Mock-Up 389
Report Writer Structures 404
Reports, Application-Generated 407
Reserved Words i 409
RESET-PFKEY . .. e e 411
S-COBOL Structures e 413
Scenario Definition Report (CNO1) iuo... 419
Screen Hardcopy/Field Attribute Report (SCO1) 420
Screen Redefinition L 424
SCRNLIST . e e 426
SD 429
SEARCH . . e 430
SEND e 431
SOURCE . . .ottt e e 438
Special Registers 440
SPN M e 441
SQL e e 441
STOP RUN . .o e e e 444
STUB e e 444
Subselect Clause i e 445
SUM e 447
SUPPRESS (IMSDB Option)coiuiii e 450
SUPPRESS (Report Writer)t 450
SUPRA e e 451
SY* KeyWoOrds . . . oot e 452

Reference

10

Reference

System Service Calls. 454
TERM 460
TERMINATE. . . o e e e 461
TP-BACKOUT ..o e e e 462
TP-COMMAREA . .o e e e 463
TP-LINKAGE . . .o e 468
TP-NULL . . 471
TP-PERFORM . . e 472
TRUE/FALSE . o e e e 473
TRUE, FALSE, ALWAYS, NEVER i 475
TY PE e 475
UNION e 480
UNTIL/WHILE .« . e e e 483
USE BEFORE REPORTINGo o it e e 485
UserHelpo e 486
USERNAME. e 489
VALUE (Data Structure)o 490
VALUE (Report Writer) i eiiie e 491
Values, Conversion Values, and Value Ranges. 493
Variable Length File Support i 494
WRITE ROUTINEot e 495
VS 496
XL et 497

++
Category: Program Painter and Specification Editor keyword (see Keywords)
Description: Generate a PANVALET ++INCLUDE statement.
Syntax: -KYWD- 12-*----20---%----30---%----40---*----50---%----60
++ PANVALETnenber nane
Comment: The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords are:
FD File Section (see FD)
SD Sort File Description (see SD)
WS Working-Storage Section (see WS)
LK Linkage Section (see LK)
Example: -KYWD- 12-%----20---%----30---%----40---%----50---%----60
W5
REC WS- | NPUT- REC
W5- I N- PART- NO N8
W5- 1 N- DESC X50
W5- | N- BASE- PRI CE N6V2
01 W5- OUT- REC.
DS05 WSOUTREC
++ PANWEREC
Category: Program Painter and Specification Editor keyword (see Keywords)
Description: Use the 01 keyword to:

® Define the input and output files in a batch program File Section.
® Define a data structure in Working-Storage or Linkage Section.

® Copy a data structure into the Working-Storage or Linkage Section.

Reference

1

12

Syntax:

Comments:

Reference

Define APS Report Writer statements for headings, footers, or detail
lines.

Format 1, define input or output files:

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

10

01

filename ASSIGN [TQ
ORGANI ZATION | S . ..
i nput| out put recor dname Pl C cl ause

Format 2, define a data structure:

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60

01

COBOLdat astructure
[05 COBQ.datastructure]

Format 3, copy a data structure:

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60

01

COBOL.copyst at enent

Format 4, define Report Writer line types:

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60

01

[dat anane] TYPE [|S] reportgroup
[NEXT GROUP [I S] nunber| PLUS nunber| NEXT PAGE][.]
[LINE [NUMBER | S] number| PLUS nunmber| NEXT PAGE]
MOCKUP| M LI NE| LI NES /i nenunber1 [THRU [i nenunber N
[OVERPRI NT] WHEN "characterstring" AT COLUW col umm]
[SOURCE] [IS] datananme [options]]
[VALUE] [1S] literal]
[REFERENCE [1 S] datananme PIC[TURE] [IS] picclause
[options]]
[SUM + [I S] dataname [dat anane] .

[UPON detail group [detail group] ...]

[RESET [ON] [FI NAL] dat anane]

[options]]

You must provide all necessary COBOL punctuation.

The following COPY statement formats are available for OS/VS
COBOL. They are not supported by COBOL Il, where the LANGLVL
compiler option is set to 1.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
01 COPY copybooknane

01 dat aname COPY copybooknane

RENAMES

01 dat aname
COPY copybooknane

01 dat aname COPY copybooknane
REPLACI NG fi el dnamel BY fiel dnanme2

® To write subordinate elementary data telements, include the level

numbers in columns 12 - 72.

® If you use the COBOL/2 compiler, or your copybook contains an

indexed table, enter the SWYS or SYLK keyword in the KYWD
column and the APS statement % INCLUDE, rather than a COBOL
COPY statement. % INCLUDE inserts the copybook into the program
before precompilation, so the APS Precompiler can interpret the
index. See the Customization Facility User's Guide for more
information.

® The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords

are
FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)
LK Linkage Section (see LK)

RENAMES

Category:
Description:
Syntax:

Parameters:

Comment:

Data Structure Painter construct (see Data Structures)
Code 66-level RENAMES clauses in your data structures.
66 anyt ext

anyt ext Valid COBOL Syntax: for 66-levels.

A 66-level variable needs the same or deeper indentation than the data
name it refers to.

Reference

13

14

Example: Data Structure Painter format:

- LI NE-
000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013

------- DATA STRUCTURE PAI NTER - -------

WORK- RECORD
WORK- RECORD- GRP1
WORK- FI ELD- 1 XX
WORK- FI ELD- 2 XXX
WORK- FI ELD- 3 PI C X(04)
WORK- RECORD- GRP2
WORK- FI ELD- 4 PI C X(02)
WORK- FI ELD- 5 Pl C X(06)
WORK- RECORD- GRP3
WORK- FI ELD- 6 Pl C X(08)
WORK- FI ELD- 7 PI C X(02)
66 RECORD- 1- REN RENAMES WORK- FI ELD- 1
THRU WORK- FI ELD- 6

Generated COBOL code:

01 WORK- RECORD.

05

05

05

66

WORK- RECORD- GRPL.

10 WORK-FIELD-1 PI C XX.

10 WORK-FI ELD-2 Pl C XXX.
10 WORK-FI ELD-3 Pl C X(04).
WORK- RECORD- GRP2.

10 WORK-FI ELD-4 PI C X(02).
10 WORK-FI ELD-5 PI C X(06) .
WORK- RECORD- GRPS.

10 WORK-FI ELD-6 PI C X(08).
10 WORK-FI ELD-7 PI C X(02).

RECORD- 1- REN RENAMES WORK- FI ELD- 1
THRU WORK- FI ELD- 6.

88

Category: Data Structure Painter construct (see Data Structures)

Description: Code 88-level clauses in your data structures.

Syntax: 88 datanane VALUE ’'valuel’ [THRU ' value2]

Reference

"value3 [THRU ' val ue4']
"value5 [THRU ' val ue6’]

Parameters:

Comments:

Examples:

88

"valueN [THRU ' val ueN]

value 88-level value; do not enclose numeric values in

single quotation marks.

An 88-level variable needs the same or deeper indentation as the
data name it refers to.

You can code the VALUE clause either
® On the same line as dataname if it fits entirely on that line.

® Onits own line and continue it on subsequent lines with the
continuation symbol.

Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAI NTER --------
000001 WRK1- FI ELD-1 X5

000002 88 OPEN- VAL

000003 ... V'OPEN ’'BEG N

000004 ... ' START

000005 88 OPEN- FLAG

000006 ... VALUE 'QON

000007 ... "YES

Generated COBOL code:

01 WRK1-FIELD-1 PI C X(5).
88 OPEN- VAL VALUE ' OPEN' ' BEG N
" START' .
88 OPEN-FLAG VALUE ' ON
"YES' .

Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAI NTER --------
000009 WRK1- FI ELD-2 X(04)

000010 88 SUB-LVL1

000011 ... V’'ABCD '’ EFGH

000012 ... 'FFFF THRU ' MW

000013 ... 'PPPP THRU ' 72277

000014 88 SUB-LVL2

000015 ... V LOW VALUES

Reference

15

16

Generated COBOL code:

01 WRK1-Fl ELD-2 PI C X(04).
88 SUB-LVL1 VALUE ' ABCD ' EFGH
"FFFF THRU * MW
"PPPP THRU ’ 27277’ .
88 SUB-LVL2 VALUE LOW VALUES.

® Data Structure Painter format:

-LINE- ------- DATA STRUCTURE PAI NTER --------
000016 WRK1- FI ELD-3 H

000017 88 SUB-LVL3

000018 ... V -1000 +1000

000019 ... -900 THRU -700

000020 ... 1500 THRU +800

Generated COBOL code:

01 WRK1-FIELD-3 PI C S9(4) COWP.
88 SUB-LVL3 VALUE -1000 +1000
-900 THRU - 700
+500 THRU +800.

Application Definition Report (AP01)

Category:

Description

Reference

APS-generated report (see Application Reports)

The Application Definition Report displays each component of an
application in a separate report section.

This report consists of the following collection of reports.

® Data Structure Definition Report (DS01) (Data Structure Definition
(DS01))

® Program Definition Report (PGO1) (Program Definition Report
(PGO1))

® Report Definition Report (RP01)

® Screen Hardcopy/Field Attribute Report (5C01) (Screen
Hardcopyi/Field Attribute Report (SC01))

Application Definition Report (AP01)

® Screen Field Edits Report (EDO1) (Field/Screen Cross Reference
(5C02))

® Program DB/DC Report (PG02) (Program DB/DC Report (PG02))

Comments: ® Produce the Application Definition Report from the Report
Generator, Painter Menu, or Application Painter.

® This report does not provide information about the scenarios that
you create in the Scenario Painter.

Example:

REPCRT CODE: REPT APS ENTI TY REPORT FACILITY PAGE 1
CLSAPS. CLS2 01/21/92 09: 28
REPCRT CRI TERI A:
ALL ASSCCI ATED ENTI TIES OF THE APPLI CATION : TDDEMO

hokkkkkhkhkkkkkkkkkhkkkhkhk ok kA kA kA kA kA kA kk kh kh khkk ok ko ko ko k ok ok ok k ok kkkkkkkkkkkkkkkkkk kA kA kA kA kk k& %

LI BRARY ENTITY

TYPE NAME STATUS Conment s:
AP TDDEMOD REPORTED
PG TDCM REPORTED
PG TDCS REPORTED
PG TDVE REPORTED
PG TDQJ REPORTED
PG TDOM REPORTED
PG TDOT REPORTED
PG TDQU REPORTED
SC TDCM REPORTED
SC TDCS REPORTED
REPORT CODE: APO1 APS APPLI CATI ON PAI NTER PACE 1
APPLI CATI ON DEFI NI TI ON REPORT 01/21/92 09: 28
CLSAPS. CLS2
SELECTI ON CRI TERI A:
TDDEMO
APPLI CATI ON: TDDEMO CREATED: 02/ 15/ 90
TITLE : UPDATED: 08/ 30/ 90
AUTHOR : CLSTR1L DC TARCET: acs

DB TARCET: VSAM

hokkkkkhkkkkkkkkkkkkkhk ok ok hk ok kA kA kA kA kA kA kh kk kk kk sk ok ok k ok ok ok ko ko k ok ok ok kkkkkkkkkkkkkkkkkkkkkk kk kk kk k& %

- LI NE- PROGRAMS SCREENS |10 REPCRTS DATA STR TY SBSC/ PSB USERMACS LCC

000001 TDME TDMVE e}

000002 TDCM TDCM e} TDDB2

000003 TDPL TDPL e} TDDB2

000004 TDOM TDOMV e} TDDB2

000005 TDOT TDOT e} TDDB2

000006 TDQJ TDQJ e} TDDB2
e} TDDB2

000007 TDOU TDQU

Reference

17

18

Application Field Edit Routines

Category:
Description:

Procedure:

Reference

Screen Painter feature (see Field Edits)

Specify additional edits or tests for input or output data.

To assign an edit routine, follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 To access the Application Edits screen, select the Application Editing
prompt on any Field Edit screen.

3 Complete the following options.

Option
Type

Name

Arguments

Paragraph

Subprogram

APS macros

Description

Indicate whether this application edit is a
paragraph, subprogram, or APS macro.
Default is P(aragraph).

Enter a descriptive name for the
application edit; maximum 32 characters.

To pass a screen field or error flag, prefix
the name with the screen name and a
hyphen. If the field is located in a list box or
combination box, APS suffixes the name
with (APS-ROW-SUB).

Enter the following arguments separated
by commas and enclose literals in single
quotation marks.

Data names or literals that pass to the
paragraph through a PERFORM with
arguments statement in the generated
program.

Data names that appear on the CALL USING
statement in the generated program.

Customization Facility macro terms, literals,
and numeric literals. Do not enclose
arguments with double quotation marks.

Comments:

Option

Execute Before/After
APS Edits

Paragraph COPYLIB
or APS Macro
USERMACS Member

Working-Storage
COPYLIB Member

Application Field Edit Routines

Description

Specify when the program executes this
application edit--before or after the normal
APS field edit routine. Default is b(efore).
See also "Comments:" below.

Specify an associated COPYLIB member or a
paragraph or the associated USERMACS
member name for an APS macro.

Specify a Working-Storage COPYLIB
member to be included in the program
Working-Storage section.

Alternately, for screen fields, you can select a predefined edit from the
Application Edit List, which is a centralized collection of routines
maintained by your APS Administrator. To do so:

1

On the Application Editing screen, enter appllist listname in the
Command field, where listname is the name of the list of available
edits. See your APS Administrator for the name of the list at your
site. The Application Selection screen displays.

COMMAND ===3

SCREEN FIELD HAME

E TYPE
CUSTOMER-NAME I
5 _ CUSTOMER-UERIFY I

: CUSTOMER-NO

SCROLL==> PRE

LENH 886 ROW @89 COL 027
DESCRIPTION

CHECK FOR DUPLICATE CUSTOMER HAMES
EHSURE_CUSTOMER HUMBER IS UALID

BOTTOM OF DATA

Iy

Type s before the input or output edit routine you want.

Press Enter to select the edit and return to the Application Editing
screen. APS copies the field values from the selected edit routine,
overlaying existing entries. You can modify the selected edit routine

on this screen.

You can interrogate the following APS-generated flags and data
fields to determine input data errors.

APS-EDITS-PASSED

Flag that APS sets to T(rue) if
there are no input errors and
F(alse) if there are input errors

Reference

19

APS-EDIT-ERRORS-CTR Data field containing the number
of screen fields in error

screenname-fieldname-FLAG Flag that APS sets to T(rue) if an
error occurs and F(alse) if not

® You can use the following APS-generated fields to code your
application edit routines. The option Execute Before/After APS Edits
determines which field to reference, as shown in the table below.

Representation = Execute Option Name and Format

Input After APS edits Screenname-fieldname.
Internal picture was updated
by any previous field edits.

Input Before APS edits Screenname-fieldname-INPT.
Data field containing any
invalid data entered by the
end user. Edits have not
been performed; data is in
screen input format. Field
length is field length
painted on the screen;
definition is PIC X.

Output After APS Edits Screenname-fieldname-EDIT.
Data was moved to -EDIT by
previous output edits. Data
may contain special symbols.
Default length is field length
painted on the screen;
definition is PIC X.

Output Before APS Edits Screenname-fieldname.
Data was not processed by
previous output edits and is
still in the internal format.
Data in this field moves to
the -EDIT field when an
output format is specified.
Default length is field length
painted on the screen;
definition is PIC X.

Reference

Representation
Input or Output

Input or Output

Input or Output

Input or Output

Execute Option

Before or After
APS Edits

Before or After
APS Edits

Before or After
APS Edits

Before or After
APS Edits

Application Field Edit Routines

Name and Format

(APS-ROW-SUB). This data
field contains the row
number being processed for
fields in a repeated block, or
in a list box or combination
box.

APS-EDIT-MESSAGE. Data
field that lets you display an
error message in addition to
any you defined in the field
edits for the field. Move a
literal or data name
containing the text into this
field.

Screenname-fieldname-LEN.
For CICS only. Contains the
length of the field;
definition is PIC X.

Screenname-fieldname-
ATTR. For CICS only. Contains
the attribute values assigned
to the field; definition is

PIC X.

APS processes input data from the screenname-fieldname-INPT
field. After the data passes the input edits, the data moves to
screenname-fieldname and takes on the characteristics of the
internal picture. For output, the data moves to the screenname-
fieldname-EDIT field and takes on the characteristics of the output
format specifications.

Application edit routines execute for a field whether the data
passes or fails field edits, unless you set various switches in the
APFEIN control file (see Control Files). To indicate an error in an
application edit routine, move T to screenname-fieldname-FLAG.
This tells APS to execute error processing; you can display an
additional error message from the APS-EDIT-MESSAGE field.

Reference

21

22

Examples:

Reference

The following is sample generated code for a screen record with input
and output edits.

01 EMPLOYEE- RECORD.
05 EMPLOYEE- SALARY- GRP.

10 EMPLOYEE- SALARY-| NPT.
15 FILLER PI C X(03).
15 EMPLOYEE- SALARY Pl C S9(05) V99.

10 EMPLOYEE- SALARY- OUTP REDEFI NES

EMPLOYEE- SALARY- | NPT.

15 EMPLOYEE- SALARY-EDI T Pl C $$3, $$9. 99.

The following three examples show the generated code when you code
an application edit routine as a paragraph, subprogram, and macro.
Each routine:

® Validates the part number entered in the CUSTOMER-NO field.
® s invoked during field edit input logic execution.
® Executes After APS Edits.

® Passes the following arguments
*CUSTOMER-NO, *CUST-NO-FLAG, APS-EDIT-MESSAGE

In the first example illustrated below, the edit routine uses the
VALIDATE-CUSTOMER-NO paragraph, which resides in the CUSTPARA
copylib, as shown below.

COMMARD ==> _

SCREEH FIELD HAME : CUSTOMER-HO LEH @886 ROW @818 COL 024
OUTPUT Application Edit Type ==» p
P - Paragraph § - Subprogram M - APS Macro
Hame ==» validaie-cusiomer-no

Arguments: .
==» =pustomer-no,=cust-no-flag, aps-edit-message

Wi
W

Execute beforefafter APS edits ==» a [B - Before, A - After)
Paragraph COPYLIB or APS Macro USERMACS member (optionall:

ember Hame == rcusipara .
HORKING-STORAGE COPYLID member ==> lg [optional)

The VALIDATE-CUSTOMER-NO paragraph receives the SCRN-
CUSTOMER-NO data, verifies it exists, and returns a T(rue) value to
SCRN-CUST-NO-FLAG if the part number is not found. Then, APS checks

Application Field Edit Routines

the SCRN-CUST-NO-FLAG to determine whether an error was found. If
so, the APS-EDIT-MESSAGE text displays on the screen.

PERFORM VALI| DATE- CUSTOMVER- NO(SCRN- CUSTOVER- NO,
SCRN- CUST- NO- FLAG, APS- EDI T- MESSACE)

VAL| DATE- CUSTOMVER- NO(+W5- CUSTOVER- NO, - W8- ERROR- FLAG,
WS- MESSAGE)
DB- OBTAI N REF CUST- RECORD
WHERE CUSTOMER- NO-KEY = WS- CUSTOVER: NO
| F NTF- O\ REC
MOVE ' T° TO WS- ERROR- FLAG
MOVE ’ CUSTOMER NUVBER NOT FOUND ON FI LE’
TO 8- MESSAGE
MOVE * ° TO WS- ERROR- FLAG
ELSE
MOVE ' T° TO WS- ERROR- FLAG
MOVE ’ ABNORMAL RETURN ON PART NBR VALI DATI ON
TO WS- MESSAGE

In the second example, the edit routine uses the CUSTVER subprogram.
The subprogram accepts the arguments into the Linkage Section.

CALL ’ CUSTVER USI NG
SCRN- CUSTOVER- NO,
SCRN- CUST- NO- FLAG,
APS- EDI T- MESSAGE

In the third example, the edit routine uses the $VALIDATE-CUSTOMER-
NO macro, which resides in USERMACS CUSTMAC. The $VALIDATE-
CUSTOMER-NO macro receives the SCRN-CUSTOMER-NO as an
argument, verifies it exists, and returns a T(rue) value to SCRN-CUST-NO-
FLAG if the part number is not found. Then, APS checks the SCRN-CUST-
NO-FLAG to determine whether an error was found. If so, the APS-EDIT-
MESSAGE text displays on the screen.

$VALI DATE- CUSTOVER- NQO(" SCRN- CUSTOVER- NO',
% ... "SCRN- CUST-NO FLAG',
% ... "APS-ED T- MESSAGE")

% DEFI NE $VALI DATE- CUSTOVER- NO(&CUSTOVER- NO, &ERROR- FLAG,
% ... &MESSAGE)

$DB- OBTAI N(" REF CUST- RECORD",

% ... <%CQ WHERE CUSTOVER- NO- KEY = &CUSTOMER- NO&CQ>)

Reference

23

24

I'F NTF- ON- REC
MOVE ' T' TO &ERROR- FLAG
MOVE ' PART NUMBER NOT FOUND ON FILE TO &MESSAGE
ELSE- | F OK- ON- REC
MOVE ' ' TO &ERROR- FLAG
ELSE
MOVE ' T' TO &ERROR- FLAG
MOVE ' ABNORMAL RETURN ON CUSTOVER NUMBER VALI DATI ON
... TO &VESSAGE

Application Painter

Description: Create an application definition by listing all its components in a matrix

Field
DC

DB

Reference

that indicates their relationsip to each other. Specify requirements on
the Application Painter screen, as follows:
Description and Values

Data communications target. Valid targets are CICS, DLG (ISPF Dialog), IMS, ISPF,
MVS (batch). Specify the target as follows:

If application contains... Specify this DC target...

Only online programs Your online DC target.

Only batch programs MVS. In addition, leave each program Screens field
blank.

Both online and batch Your online DC target. To identify the batch programs,

programs enter *batch in the Screens field next to each batch

program name.

For a list of valid DB/DC combinations for generating
executable programs, see DB/DC Target Combinations.

Database target. Valid values are DLI (or IMS), IDMS, VSAM.

To specify a SQL target, leave the DB field blank or let default to VSAM. Then go
to the Generator Options screen and specify the SQL target.

If your application accesses multiple database targets, specify the DB target as
follows.

If application accesses .. Specify this DB target. ..

Two DB targets, The non-VSAM target--APS always gives you access to
including VSAM the VSAM target.

Field

Screen
Size

Program

Screen

10

Report

Data St

Ty

Application Painter

Description and Values

Two or more DB targets, Any DB targets. When you generate the programs, first

excluding VSAM generate just the programs of your specified DB target.
Then change the DB target to the next target and
generate just the programs of that next target. For
example, if your application accesses both SQL and IMS
subschemas, generate your SQL programs separately
from your IMS programs.

For a list of valid DB/DC combinations for generating executable programs to run
on various operating systems, see See DB/DC Target Combinations.

Specify the size of the screen for your application by selecting one of the
following application screen sizes from the Screen Size field.

Application Dimension Development Screen Size

Screen Size

MOD?2 24 x 80 MOD2, MOD3, MOD4, or MOD5
MOD3 32x 80 MOD3 or MOD4

MOD4 43 x 80 MOD4

MOD5 27 x 132 MOD5

Enter program names; maximum eight characters. The first character must be
alphabetic; others can be alphabetic, numeric, or the special characters #, $, or @.
The names all and dummy are invalid.

Associated screen name; eight-character maximum, except for IMS DC and ISPF
Prototyping, which have a seven-character maximum. The first character must be
alphabetic, others can be alphanumeric. For batch programs, enter *batch in the
Screens field, on the same row as the program name. For online programs, enter
the program associated screen name, on the same row as the program name.

Specify whether the screen is input-only (i), output-only (o), or input/output (io).
For batch programs, leave the IO field blank.

Batch program report mock-up name; eight character maximum. The first
character must be alphabetic or the special characters #, $, or @; others can be any
of these or numeric.

Name of any data structure file that the program will reference; eight character
maximum. The first character must be alphabetic; others can be alphanumeric. If
the program references multiple data structure files, enter their names on
subsequent rows. To make the data structures global, or available to all programs
of the application, enter their names on rows above all programs.

Type of data structure file, indicating the program location where you plan to
include it, as follows.

Reference

25

26

Field

Schema

User Mac

Loc

Description and Values

WS Working-Storage Section
LK Linkage Section
CA Commarea

Subschema or PSB name; eight character maximum. The first character must be
alphabetic; others can be alphanumeric. To make the subschema or PSB global, or
available to all programs of the application, enter its name on a row above all
programs.

Name of user-defined macro library file that the program will reference; eight
characters maximum. The first character must be alphabetic; others can be
alphanumeric. If the program references multiple macro library files, enter their
names on subsequent rows. To make the files global, or available to all programs
of the application, enter their names on rows above all programs. The files must
reside in your project.group USERMACS PDS.

Location of the macro library file, indicating the program location where you
plan to invoke its macros, as follows:

T Default; top of program, before Identification Division

B Bottom of program

WT Top of Working-Storage Section

WS Working-Storage Section, after any data structures you include in
the Data Str field

WB Bottom of Working-Storage Section

LT Top of Linkage Section

LK Linkage Section, after any data structures you include in the Data Str
field

LB Bottom of Linkage Section

10 Top of Input-Output Section

FD Top of File Section

RP Top of Report Section

CA Top of Commarea

Comments: ® You can include procedural subroutines that any program of the

Reference

application can reference, known as global stubs. To do so, enter
the stub name in the Program field, and enter *stub in the field.
Regardless of the row where you enter a global stub name, any
program of the application can reference it. See STUB.

Application Painter Member Processing Exits

To create a new application definition quickly, you can copy an
existing one and modify it. To do so, use the Create Like function on
the Painter Menu.

If you are creating a CICS or IMS DC application that accesses SQL or
VSAM databases, and you want to create an application prototype
to execute and test within the APS Prototype Execution facility, set
the DC target to ISPF and the DB target to SQL or VSAM. After
testing the ISPF prototype, change the DB/DC targets to the
production targets, and regenerate the application.

Deleting a component from the Application Painter matrix removes
it from the application definition, but not from the APS Repository;
the componenet is available to add to other applications. However,
if you delete a component from the Painter Menu, APS removes it
from the APS Repository; you must delete it from all applications
that reference it.

If you are creating an IMS application that does not access the IMS
message queue, specify MVS as your DC target.

Application Painter Member Processing Exits

Description

On the Application Painter, the selection fields next to programs,
screens, reports, and data structures accept the following APS-defined
selection codes.

This code... Represents...

OoX

w

, €

- Q T

bd

Select Online Express program
Select or Edit

Browse

Generate

Report

BIND

You can create selection codes to do additional things by writing a
member processing exit subroutine. For example, you could create a
member processing exit that contains logic to archive an entity to tape
when the user-defined selection code T is entered. You can also create

Reference

27

28

Procedure:

Reference

member processing exits to modify or disable the APS-defined selection
codes.

To write an Application Painter member processing exit, follow these
steps:

1 Copy the APS-provided member processing exit program template,
A1TUXAPO1, which resides in the APSPROG PDS. Modify the copy
with your own logic to suit your needs, and generate the program.
Note that in the ATUXAPO1 program, a like-named macro library is
included; the $APS-UXAPO1-LINK-PARMS macro member of this
library defines the parameters you use in the exit program.

2 Access the APS Administration Configuration screen and define your
member processing exit name.

3 Test your member processing exit. If you get a system abend code
806 from the Application Painter, the exit is not in the system search
path - perhaps you entered the wrong name in step 2, or your exit
did not compile.

4 To make your exit available from any Project and Group, copy the
generated load module to an appropriate load library, such as the
APS software library ISPLLIB2, or any library in the system search
path.

Selection Code Processing

When you enter one or more selection codes on the Application Painter,
the Painter first validates that the selection codes were entered
correctly. Then, if no errors are found, the Painter processes the
selection codes.

You can code logic in an exit program for any of three Application
Painter processing points - during validation, before processing, and
after processing. APS provides the following two structures in the exit
macro and the exit program template respectively, to determine which
function is requested.

P- FUNC- CD X(1)
88 P- FUNC- CD- VALI DATE V'V
88 P- FUNC- CD- PRE- PROCESS V ' B’
88 P- FUNC- CD- POST- PROCESS V ' A

Applicat
EVALUATE P- FUNC- CD
WHEN 'V’
PERFORM VALI DATE- FUNC
WHEN ' B’
PERFORM CUSTOM PREPROCESS
WHEN " A’

PERFORM CUSTOM PCSTPROCESS

ion Painter Member Processing Exits

APS also provides the following variables in the exit macro. To define
your own selection code(s) to the exit program, reference these

variables in your program.

% &APS- UE- SEL- BRONBE

% &APS- UE- SEL- BI ND

% &APS- UE- SEL-EDI T

% &APS- UE- SEL- GEN

% &APS- UE- SEL- ONLI NE- EXPRESS
% &APS- UE- SEL- REPORT

% &APS- UE- SEL- SELECT

Validation

L | A O I B 1
0]

The Painter validates each selection code entered. It also calls the exit

program’s validation paragraph on
paragraph, you can use the followi

Return Code
&APS-UE-RC-OK

&APS-UE-RC-UNKNOWN-SEL-CD

&APS-UE-RC-CONTINUE

&APS-UE-RC-USER-ERROR

ce per selection code. In the
ng return codes.

Meaning

All validations for the selection
code are successful; the exit
program should handle this
selection and bypass APS
processing.

The selection code is not user-
defined; APS should handle it.

The selection code is a standard APS
selection code. Both the exit
program and APS should process
this selection code.

The selection code is in error; APS
should stop validation and redisplay
the Application Painter screen for
user correction.

Reference

29

30

Reference

For example:

/* R R R O R R kR ik kR R O S R

/* USER LOG C TO VALI DATE SELECTI ON CODES
/* EE R R R I I I R S
PARA VALI DATE- FUNC
/* VALI DATE THE SELECTI ON CCDE. ..
| F P-SEL-CD = ’yourcode’
RETURN- CODE = &UE- RC- K
ELSE
RETURN- CODE = &UE- RC- UNKNOWN- SEL - CD

Preprocessing:

If validation was successful, the Application Painter processes the
selection codes in this order:

g Generate screens, then programs
bd Bind

r Report

oxX Online Express

s, €, b, and user-defined codes Codes processed as they appear on
Application Painter, from top to
bottom, and right to left

For each selection code, the Application Painter checks the return code
set by the exit program during validation. If the return code is &APS-UE-
RC-OK or & APS-UE-RC-CONTINUE, the Application Painter calls the exit
program preprocessing paragraph; otherwise standard Application
Painter processing occurs.

In the exit program preprocessing paragraph, write your custom
preprocessing logic, and then set one of these return codes.

Return Code Meaning

&APS-UE-RC-OK Processing of this selection code is
complete.

&APS-UE-RC-CONTINUE The exit program preprocess

paragraph is successful; continue with
standard Application Painter
processing.

Comments:

Application Painter Member Processing Exits

Return Code Meaning

&APS-UE-RC-POSTPROCESS The exit program preprocess
paragraph is successful; continue with
both standard Application Painter and
exit program postprocessing.

&APS-UE-RC-USER-ERROR The exit program preprocess
paragraph is unsuccessful; continue
processing with the next selection
code.

For each selection code, when the exit program preprocess paragraph
returns &APS-UE-RC-CONTINUE or &APS-UE-RC-POSTPROCESS, the
Application Painter attempts to perform its standard processing. Then,
for &APS-UE-RC-POSTPROCESS, the Application Painter calls the exit
program postprocess paragraph. The call parameter P-APS-STATUS
indicates the success or failure of the standard Application Painter
processing.

Postprocessing:

Use the exit program postprocessing paragraph to execute any action
after the standard Application Painter processing. A common action is
to free resources allocated by the preprocess paragraph. The
postprocessing paragraph should set one of these return codes.

Return Code Meaning

&APS-UE-RC-OK The exit program postprocessing
paragraph is successful.

&APS-UE-RC-ERROR The exit program postprocessing

paragraph failed.

® A member processing exit can display one or more ISPF screens.
® A member processing exit can invoke one or more subroutines.
® Each member processing exit must return to the Application Painter.

® A member processing exit cannot directly or indirectly invoke the
Application Painter.

® A member processing exit can set a message using the SETMSG
paragraph provided in ATUXAPO1. Depending on the circumstances,
a subsequent APS message can override this message.

Reference

31

32

Application Reports

Description:

Reference

APS provides a set of reports that help you understand your application
and its various components. Use these reports as you develop an
application to determine the status of your work and the tasks left to
complete. Some reports help you to troubleshoot problems in an
application that you are developing, or to determine the impact of a
proposed change. Others help you to verify the results of your work.
Once you have fully implemented an application, use the APS reports to
document it so that developers who later maintain or enhance the
application can easily understand it in detail.

You can produce reports on an entire application, on selected
components, or on selected members of components. You can produce
reports from the Report Generator, Painter Menu, Application Painter,
or Documentation Facility, as follows.

Report Available from
Application Definition (AP01) lists and Painter Menu
describes all components of an application Application Painter
except the scenario prototype. See Report Generator
Application Definition Report (APO1).

Component List (MS01) catalogs and totals Documentation Facility
the components for each painter. See

Component List (MSO01).

Data Structure Definition (DS01) lists and Painter Menu
describes structures that you create in the Application Painter
Data Structure Painter. See Data Structure Report Generator

Definition (DSO1).

DDIFILE (DBO01) describes the contents of the || Documentation Facility
file that contains information about your
database, formatted to APS specifications.
See DDIFILE Report (DBO01).

Entity Content (MS02) lists summary Documentation Facility
information for each application component.
See Entity Content Report (MS02).

Application Reports

Report

Available from

Entity Cross Reference (MDO1) cross
references and totals application
components. See Entity Cross Reference
(MDO1).

Documentation Facility

Entity Parts List (ENO1) catalogs selected parts
of one or more application components. See
Entity Parts List (ENOT).

Documentation Facility

Entity Search Utility (GSO1) lets you create
reports on application components that meet
the selection criteria that you specify. See
Entity Search Utility Report (GSO1).

Documentation Facility

Entity Use (EN02) lists components that copy,
include, or otherwise use the target
component. See Entity Use Report (ENO2).

Documentation Facility

Field/Screen Cross Reference (5C02) lists
application screens along with their IO and
text fields. See Field/Screen Cross Reference
(5C02).

Documentation Facility

Macro/Program Cross-Reference (MCO01) lists
macros and the programs that use them. See
Macro/Program Cross Reference (MCO1).

Documentation Facility

Mock-Up (RPO1) lists and displays report
mock-ups as painted in the Report Mock-Up
Painter. See Mock-Up Report (RPO1).

Painter Menu
Application Painter
Report Generator

Program DB/DC (PG02) lists the screens and
the subschemas or PSBs used by a program.
See Program DB/DC Report (PG02).

Documentation Facility

Program Definition (PGO1) provides a
printout of programs created in APS. See
Program Definition Report (PGO01).

Painter Menu
Application Painter
Report Generator

Scenario Definition (CNO1) describes
components created in the Scenario
Prototype Painter. See Scenario Definition
Report (CNOT).

Painter Menu
Application Painter
Report Generator

Reference

33

Report Available from

Screen Hardcopy/Field Attribute (5C01) Painter Menu
displays the components of a screen as Application Painter
painted in the Screen Painter as well as field Report Generator
attribute and field edit information. See
Screen Hardcopyl/Field Attribute Report
(sco1).

Procedures: Use the following procedures to produce APS reports from the Report
Generator, Painter Menu, Application Painter, and Documentation
Facility.

Report Generator
Produce reports from the Report Generator following these steps.

1 On the Painter Menu, enter in the Type field the component type
that you want to report on - ap(plication), cn (scenario), ds (data
structure), pg (program), rp (report mock-up), or sc(reen).

2 Leave the Member field blank.

3 Enter report in the Command field and press Enter to display the
Report Generator screen.

4 Enter one of the following selection criteria.

® To report on all members of all component types, type 1in the
Option field. Make sure that all entry fields are blank on the
screen.

® To report on all members of the one component type, type 2 in
the Option field. Leave the value that displays in the Library
field.

® To report on a specific member of a component, type 3 in the
Option field. Leave the value that displays in the Library field,
and enter the component’s member name in the Member Name
field.

® To report on a range of members in a component, type 3 in the
Option field. Enter the component type in the Library field and
the value range of the members you want to report on in the
Range Greater and Range Less fields.

5 Press Enter to submit a job to produce the report.

Reference

Application Reports

Painter Menu

Produce reports from the Painter Menu following these steps.

1

4

In the Type field, enter the component type that you want to report
on - ap(plication), cn (scenario), ds (data structure), pg (program), rp
(report mock-up), or sc(reen).

In the Member field, enter the member name that you want to
report on.

Enter report in the Command field and press Enter. The Print Report
screen displays.

Press Enter to submit a job to generate the report.

Application Painter

Produce reports from the Application Painter following these steps.

1

3

To report on all members of all components, or all members of a
specific component, do one of the following.

® Type report in the Command field to report on all members of
all components of an application.

® Enter report componenttype all in the Command field to report
on all members of a specific component. Componenttype can be
ap(plication), cn (scenario), ds (data structure), pg (program), rp
(report mock-up), or sc(reen).

To report on a specific member of a component, do one of the
following.

® Enter report componenttype componentname in the Command
field.

® Type r next to the component name in the Application Painter
matrix.

Press Enter to submit a job to generate the report.

Documentation Facility

Produce reports from the Documentation Facility following these steps.

1

From the APS Main Menu screen, enter option 2 in the Option field.
The Dictionary Services screen displays.

Reference

35

36

Comments:

Reference

From the Dictionary Services screen, enter option 3 in the Option
field. The Documentation Facility screen displays.

Select the desired report from the Actions listing on the action bar
or enter the applicable option number in the Option field. A
selection criteria screen displays for the selected report.

Enter any selection criteria. See the individual report descriptions
for details.

Press Enter to submit a job to generate the report.

Although the procedures for producing reports from the Painter
Menu and the Report Generator are very similar, the Report
Generator offers more flexibility. On the Painter Menu you can
report on specific component members, while the Report Generator
lets you report on any range of component members that you
specify.

Make sure that the current Project and Group contain the
application entities you want to report on. If you want to change
your Project\Group, do the following. Alternatively, from the APS
Main Menu, select option 0, Options. The APS Options Menu
displays. Select option 2, Project Group Environment. Enter the
desired Project and Group values and press PF3 to return to the APS
Main Menu.

Set up job card information so that you can submit jobs to generate
reports. To do so, from the APS Main Menu, select option 0 and then
option 6, Job Card Options. Alternatively, enter opt in the
Command field.

To set the job class, from the APS Main Menu, select option 0 to
invoke the Generator Options panel. Then select option 1 and
reference the job card you created.

APSMACS Rule Library 37

Description:

Category:

APSMACS Rule Library

Contains macros used by APS during generation. Place user macros in
project.group.USERMACS.

Note: This feature is closely associated with the Control Files feature.

See Control Files.

APS library.

Rule Name

A1CMLIB

ATUXAPO1
APAUTOED
APBTCHTP

APCICSTP

APCMSCAN

APDB2DB
APDLGMAC, APDLGTP
APFEDCLR, APFEMACS
APHLPMAC
APIDMSPT

APIDMSTP

APIMSDB

APIMSTP

APMSGADB

APMSGBTC
APMSGCIC
APMSGDB2

APMSGDCL
APMSGDLG

Usage

Endevor Configuration Management
Application Painter User Exit
Character based Automatic Edits
Batch Generator

CICS Generator

TCP/IP Generator

SQL Generator (all SQL database types)
ISPF Dialog Generator

Field Edits

Online Help

IDMS Pass Thru Generator

IDMS DC Generator

IMS DB Generator

IMS/TM Generator

Database Generator Errors (all database
types)

Batch Generator Messages

CICS Messages

SQL Generator Messages (all SQL database
types)

IMS Database Messages

DLG Messages

Reference

38

Rule Name
APMSGHLP

APMSGIDB, APMSGIDC

APMSGIMS
APMSGMDC
APMSGVSM
APPCVSM
APPIPMAC
APSBASE
APSCRGEN
APSDBCMD
APSUBSCH
APVBXMAC
APVSMCIC
APVSMDB
APVSMMVS
DCLMACS
DDIAMS
DXPGO02
IDMDBMAC
IDMPROTO

IMSDBMAC, IMSPHYS

SSMXPGO02
VSMDBMAC
VSMPHYS

Usage

User Help Messages

IDMS Generator Messages

IMS Generator Messages

Character based TP messages (CICS, IMS)
VSAM Generator Messages

VSAM Generator

TCP/IP Generator

APS Base (all targets)

Character based Screen Generator
Database Generator (all database types)
Subschema Processor

Visual Basic Extension (VBX) Generator
VSAM Generator (CICS only)

VSAM Generator (all platforms)

VSAM Generator (batch)

IMS DB and VSAM Generator

VSAM IDCAMS Generator (mainframe only)
PGO02 (Program Painter) Report Generator
IDMS DB Generator

IDMS Messages

IMS DB Generator

PGO02 (Specification Editor) Report Generator
VSAM Generator

VSAM Generator (all platforms)

AT END/INVALID KEY

AT END/INVALID KEY

Category:

Description:

Syntax:

Comments:

Example:

S-COBOL structure (see S-COBOL Structures)

Test the END-OF-FILE or AT END condition for files accessed sequentially,
and test the INVALID KEY condition for files accessed randomly.

condi tional verb [AT] END ON fil enane

I NVALI D [KEY] ON

st at enent bl ock

® S-COBOL defines 05 filename - END PIC x and 05 filename - INV PIC x
as flags for the AT END and INVALID KEY conditions for each file.

® END ON filename and INVALID ON filename are 88-level file status
condition names that S-COBOL provides with the AT END and
INVALID KEY flags. You can use these as a condition in any
conditional statement.

® Flag setting occurs when the file is accessed by a READ, WRITE,
START, etc., statement and before the AT END ON/INVALID KEY ON
conditional is valid.

- KYWD-
PARA

MAIN-LOG C
OPEN | NPUT MASTER-FI LE
REPEAT
READ MASTER- FI LE | NTO MASTER- REC
I NVALI D KEY
MASTER- REC = HI GH- VALUES
ELSE-1 F MASTER-TYPE = ' A
PERFORM PROCESS- TYPE- A
ELSE-1 F MASTER-TYPE = ' C
PERFORM PROCESS- TYPE- C
ELSE
PERFORM PROCESS- OTHER- TYPES
UNTI'L I NVALI D KEY ON MASTER-FI LE
CLCSE MASTER- FI LE
STOP RUN

Reference

39

40

ATTR

Category: Data communications call (see Data Communication Calls)

Description: Modify the screen 1/O field attributes attributes at run time. To reset all
screen field attributes to their original painted values, see CLEAR-ATTRS.

Syntax: ISPF Prototyping
[TP-]1 ATTR screennane POS fi el dnane[(subscript)]

CICS, IMS DC, and ISPF Dialog

[TP-]1 ATTR screennane
attributell+attribute2...]

fiel dnanme[(subscript)][+fieldname[(subscript)] ...]
Keywords attribute Specify one or more attributes as follows.
BRT Bright character images
NORM Normal character images
DARK Suppress character display

MDTON Enable modified data tags (CICS only)
MDTOFF Disable modified data tags (CICS only)

NUMI[LOCK] Enable numeric locking (not applicable
for DDS)

NOLOCK]| Disable numeric locking (not applicable
NUMOFF for DDS)

POS[ITION] Position the cursor at the first field in the
string (not applicable for DDS)

PROT Specify write-protection

ASKIP Specify write-protection (not applicable
for DDS)

UNPROT|NO Cancel write-protection

PROT

COLSEP Specify column separator (DDS only)

Reference

Comments:

fi el dnane
[(subscript)]

screenname

DET

NODET|DET
OFF

Color

ATTR

Enable light pen detection
Disable light pen detection

Specify one of the following character
image colors:

BLUE | BL
GREEN | GN
PINK | PK
TURQ | TQ
DEFCOL (default)
NEUTRAL | NU
RED | RD
YELLOW | YL

Highlighting Specify one of the following character
highlights:
BLINK Blinking cursor
NOBLINK Nonblinking cursor
RVID Reverse video
NORVID Normal video
UNDER Underlining

NOUNDER No underlining

Screen field name(s). Code only the field name, not its
screen name prefix; code the field subscript if

applicable.

Screen name; value must be literal (maximum 8

characters).

® \When redefining a screen, use the original name.

® Code only as many fieldnames as can fit on a single line. To code
more field names, code another ATTR.

® For character-based applications, to modify color or highlighting,
set the Extattr Modifiable field to Y in the Screen Painter Screen
Generation Parameters: screen.

® You can code attributes that are not supported, such as when
prototyping, without causing an error. They are ignored at
generation/execution time.

Reference

41

42

Examples:

® Position the cursor to a specific field.

ATTR SCRA POS SS- NUM

® Change the intensity of a field.
ATTR SCRA BRT EMPL- NAVE

® Apply multiple attributes to multiple fields.
ATTR SCRA PROT+BRT SS- NUM+EMPL- NAME

® |f fieldname is part of a repeated block, it must be subscripted and
the subscript included with the field name as passed to ATTR. The
following example depicts SOC-SEC-NUM as part of a repeated
block.

ATTR SCRA BRT+POS SOC- SEC- NUM LI NE- CTR)

Attributes, Screen Fields

Category:

Description:

Reference

Screen Painter feature

Assign field attributes by modifying the default attribute values for
your text and I/O fields. To modify screen field attributes at run time,
see ATTR and CLEAR-ATTRS.

Valid attribute values for screen fields on the Field Attribute screens are
the following.

Attribute Description and Values

Name I/0 field name; maximum 16 characters. Text fields do
not have names because programs do not reference
them. If you are retargeting an APS application to
05400, your field names can be only 10 characters long.

Hints:

® If you give a screen field the same name as its
corresponding database field, APS Online Express
automatically maps the relationship for you,
prefixing the field name with the screen name;
otherwise you must type the database field names
in your program.

Attribute

Length

Intensity

Type

MDT

Value

APS edits

Attributes, Screen Fields

Description and Values

® If the same field appears on several screens, give it
the same name on each screen. APS lets you pass
data between identically named fields on different
screens during scenario prototyping and ISPF
prototyping.

Display field only; to change field length, move the
cursor to the Xs designating the field and type in your
changes. You can space over or delete the Xs
representing the field, or extend the field with more
Xs.

B Bright

N Normal

D Dark

U Unprotected (default); field is for both input
and output.

P Protected; field is output only.

Applies to IMS and CICS only. The modified data tag
tells the terminal whether to return field data. When
this tag is On for a field, the terminal always sends back
data; when Off, the terminal returns data only if the
user changes the data.

On Default. Always send data, whether or not
the end user modifies field; default for I/O
fields.

Off Send data only when end user modifies field;

default for text fields.
When you use field edits with an update program:

® For IMS, always set the tag On, Otherwise, results
are unpredictable.

® For CICS, if you set the tag Off, you must set some
variables in the CTRL file; otherwise, results are
unpredictable. See Control Files.

Initial value for screen field; maximum is field length or
27 characters, whichever is less.

Display field indicating if any field edits were assigned
to the screen field.

Reference

43

44

Attribute
Num Lock

Light Pen

Init cursor

Color

Highlight

Modify

Reference

Description and Values

On Activate keyboard numeric shift lock

Off Deactivate numeric shift lock (default)

See also Comments.

On Light pen detectable.

Off Not light pen detectable (default).

No Do not position cursor on this field when the
Yes program sends the screen. Default for all but

the first I/O field.

Position cursor on this field. Default for first
I/0 field.

If you change cursor positioning by setting a new field
to Yes, you must change the previous "yes" field to No.

By default Online Express positions the cursor on the
function field for the non-repeated record block data.
To override the default with the field you select here,
blank out the Position Cursor on Field field with spaces
on the Online Express Program Definition screen.

B Blue

G Green

N Neutral

P Pink

R Red

T Turquoise

Y Yellow

B Blinking

U Underline

R Reverse video

IMS only.

No Program cannot modify extended attributes
Yes at run time (default).

Program can modify extended attributes.
APS generates the extra attribute bytes
required.

See also "Comments" below.

Comments:

Attributes, Screen Fields

Attribute Description and Values
Format For KANJI use only. Format field characters for a

double-byte character set (DBCS) terminal.
blank Single-byte characters only (default)

D Double-byte characters only
M Single- and double-byte characters
combined
Ruledline For KANJI use only. Place lines around the field on a

DBCS terminal, as follows.
spaces No lines

B Surround field

R Right side of field

L Left side of field

0] Over field

V] Under field

00-0F See "Comments" below.

Under ISPF Prototyping, you cannot assign both the Protected and
Dark attributes to 1/0 fields.

Turning the numeric keyboard locking attribute on does not ensure
only numeric data is entered, because it is terminal dependent.

The Modify Extended Attributes attribute works in conjunction with
the EXATTR MODIFBLE parameter on the Screen Generation
Parameters: screen. If you set that parameter to F(alse), APS ignores
the Modify attribute. If you set the parameter to T(rue), APS
searches your screen to find which fields have the Modify attribute
on.

To define a field to accept an MFS system literal, you give it the
name of the literal, preceded by an asterisk (*). For example, for a
field to contain the system literal DATE2, the field name should be
*DATE2. When a field is used as a system literal, it is unavailable to
the program and does not have modifiable attributes. See your MFS
documentation for valid system literals.

Reference

45

46

® Using the values 00 through OF for the KANJI ruled line attribute,
surround the field as follows.

Value Under Right Over Left

00 Equivalent to spaces
01 X Equivalent to U
02 X Equivalent to R
03 X X

04 X Equivalent to O
05 X X

06 X X

07 X X X

08 X Equivalent to L
09 X X

0A X X

0B X X X

0C X X

oD X X X

OE X X X

OF X X X X Equivalent to B

Bind and Translate Options, SQL

Compatibility SQL DB targets
Description: Define bind options for DB2 application and program generation.

Procedure 1 From the APS Options Menu enter option 5 in the Command field.
Alternatively, from any APS screen enter opt 5 in the Command or
Option field. The APS Bind Options screen displays.

Reference

Bind and Translate Options, SQL

Select Bind and translate options as described below.

Field
DB2 System Name

Plan Name

Owner of Plan
(Authid)

Qualifier

Action

Retain Execution
Authority

Isolation Level
Plan Validation Time

Explain Path
Selection

Resource Acquisition
Time

Resource Release
Time

Defer Prepare

Description and Values

Specify the appropriate name for your site.
Default: DB2.

Specify the plan name you use when you
Bind an application. If you leave this field
blank, the default depends upon your use of
the BIND command in the Application
Painter.

Leave this field blank or specify a primary or
secondary authorization ID of the BIND.

Leave this field blank or specify the implicit
qualifier for the unqualified table names,
views, indexes, and aliases contained in the
plan.

Specify the bind action to be executed. Valid
values: add or replace.

Specify Yes if you specified REPLACE in the
BIND ACTION field. Otherwise specify No.

Valid values: rr or cs.
Valid values: run or bind.
Yes Activates the DB2 EXPLAIN function.

No Does not activate the function.

Valid values: use or allocate. If you enter
ALLOCATE, you must enter DEALLOCATE in
the Resource Release Time field.

Valid values: commit or deallocate. The
value you enter in this field depends on the
value you entered in the Resource
Acquisition Time field.

Yes Generates the keyword
DEFER(PREPARE), which defers the
prepare statement referring to a
remote object.

No Default.

Reference

47

Field Description and Values

Cache Size Specify the size (in bytes) of the
authorization cache to be acquired in the
EDMPOOL for the plan. Valid values: 0 to
4096.

Data Currency Yes Data currency is required for
ambiguous cursors.

No Data currency is not required for
ambiguous cursors.

Current Server Leave this field blank or specify a connection
to a location before the plan runs.
Message Flag Specify which messages display. Valid values:
I, W, E, C, or blank.
Example:

COMMAND ===

DATABASE (0S/2 DB WGR) === (If different from APPLICATION)

DB2 SYSTEM NAME ===p B2

PLAN NANE ===} (If different from APPLICATION)
OWNER OF PLAM [RUTHID) ===} (Blank or one of the 1Ds)

QUALTFIER ===5

ACTION ===» REPLACE (Add ar Replace)

RETAIN EXECUTION AUTHORITY -—=> LS (Yes or No)

ISOLATION LEVEL > BB [HR or C§)

PLAN VALIDATION TIME === BIND Run or Bind)

ERPLAIN PATH SELECTION ===> Hi (Ves or

RESOURCE HLUUISIIIUN TIME ===» U3E Use or Hllucatel

RESOUACE MELEASE TIME ===5 CIUMIT Comnit or Deallocate)

DEFER PREPARE ===3 Kl Yes or

CACHESTZE ===3 850 be0e)

DATA CURRENCY ===) (Yes or Mol

CURRENT SERVER ===}

WESSAGE FLAG ===> (L, W, E, or C)

Comments: ® To reinstate the defaults defined for your site, enter reset in the
Option field.

® For detailed explanations of these fields, see the IBM DB2
Application Programing Guide.

Reference

CA

CA

Category

Description:

Syntax:

Comments:

Example:

Program Painter and Specification Editor keyword (see Keywords)

Redefine the TP-USERAREA field of the Commarea. To pass data
between programs, see TP-COMMAREA.

® Format 1:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
CA dat astructure

® Format 2:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
CAO05 COBOLdat astructure

® Format 3:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
CADS dat ast ruct ur enane

e All formats generate an 05-level REDEFINES TP-USERAREA for the
TP-USERAREA data structure and all other data elements at the
same indentation level.

® When using Formats 1 and 3, code the data structure in the Data
Structure Painter format; when using Format 2, code in COBOL
format.

® A CA keyword in a batch program is not applicable and is ignored.

® For IMS, ISPF Dialog, and CICS programs, Commarea data structures
are generated in Working-Storage; for prototyping under ISPF, they
are generated in Linkage.

® &TP-USER-LEN controls the size of TP-USERAREA--for CICS, the
default is 80 bytes; for IMS and ISPF Dialog, the default is zero.
Change the size of this area by coding % &TP-USER-LEN=nnn, with a
length greater than zero. Code this variable with the SYM1 or SYM2
keyword.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
No) | NPUT- FI LE ASSI GN TO UT- S- | NPUT
10 OUTPUT- FI LE ASSI GN TO UT- S- QUTPUT

Reference

49

FD I NPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS

01 I NPUT- REC PI C X(80).
DSO1 I NPUTREC
FD OUTPUT- FI LE

LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS

REC OUTPUT- REC X80
01 OUTPUT- REC- R REDEFI NES QUTPUT- REC.
... COPY QUTREC.
CA CA-1 NPUT- REC
CA-1 N- PART- NO N8
CA-1 N- DESC X50

CA-1 N- BASE- PRI CE N6V2
CADS CAQUTREC

CCODE

Compatibility IMS DB target

Description: Use CCODE to include additional IMS command codes in DB-OBTAIN,
DB-MODIFY, DB-PROCESS, and DB-STORE.

Syntax: Valid IMS CCODEs are:

Establish parentage at this level.
Enqueue the segment.

cC O ©

Maintain current position at this level.
Null command code.

APS generates the following IMS CCODEs; do not code them yourself.

D Put segment in I/O area (generated by REC).
F Locate first occurrence (generated by FIRST).
L Locate last occurrence (generated by LAST).
N Do not replace segment (generated by REF).
Y, Maintain current position at this level (generated by

CURRENT).

Reference

Comments:

Example:

Checkin

For more information, refer to the applicable IMS manuals.

® Most IMS command codes are generated by the call keywords; any
command code you specify with the CCODE keyword is added to
these.

® Use CCODE carefully, because the command codes you specify with
it are not validated by the APS/IMS DB Generator.

Retrieve and enqueue RECORD-A and make it unavailable to other
processing until the program terminates or explicitly frees the record
with a checkpoint call.

DB- OBTAI N REC RECORD- A
WHERE KEY- A = WS- KEY-A CCODE ' Q
REC RECORD- B
WHERE KEY-B = WS- KEY-B
VI EW PCBNAME RESET

Checkin

Category

Description:

ENDEVOR Interface feature

Add to or update the ENDEVOR library with an APS component from an
APS Project Group. Alternatively, sign in a component at check in,
without adding to or updating the ENDEVOR library. To retrieve a
member from the library, see Checkout.

From the APS/ENDEVOR Version Control Menu, select option 1, Checkin.
Alternatively, enter Cl in the Command field on any APS screen.

Specify requirements on the Checkin screen, as follows.

Field Description and Values

Entity Type Entity type of the APS component to check in.
Valid values are:

ap Application Painter component in
APSAPPL plus its related component in
APRAPPL

Reference

51

52

Field

Member

System

Subsystem

Comment
CCID
Bypass Gen Processor

Delete Input Source

Processor Group
Override Signout

Signin Only

Stage

Reference

Description and Values

cn Scenario Painter componentin
APSCNIO

ds Data Structure Painter component in
APSDATA

oX Online Express component in APSEXPS

P9 Program Painter component in
APSPROG plus its related component in
APRPROG

rp Report Mock-up Painter component in
APSREPT

sC Screen Painter component in APSSCRN

For other APS component types in your
Project.Group, specify a data set name, such as
USERMACS and DDISYMB.

Component name to check in, or leave the
Member field blank to select from a member
list.

ENDEVOR System name, if it differs from the
default System name for your current APS
Project.Group.

ENDEVOR Subsystem name, if it differs from the
default Subsystem name for your current APS
Project.Group.

Text comment for the check in.
ENDEVOR CCID for the check in.

Specify yes to bypass the associated ENDEVOR
Generate Processor.

Specify yes to delete the component from the
APS Project.Group.

Name of the ENDEVOR Processor Group.

Specify yes to override an existing signout. You
must have authority to do so.

Specify yes to Signin only, releasing a previous
signout of the component issued with your user
ID; the Add or Update action is not executed.

ENDEVOR Stage number for signin.

Field
Component Parts

Checkout

Description and Values

For checking in AP and PG component type
components. Valid values are:

none Default. Process only the component
specified in the Member field.

all Process the component specified in the
Member field and all its associated
component parts, or components.

list Display the Component Types Selection
screen, to select the associated
component types for processing.

APS submits a batch job to perform the check in
when some or all component parts are checked
in with the component specified in the Member
field.

Checkout

Category

Description:

ENDEVOR Interface feature

Retrieve and, by default, sign out a revision from a controlled member
of the ENDEVOR library to an APS Project Group so that you can modify
it. To add or update the library, see Checkin.

From the APS/ENDEVOR Version Control Menu, select option 2,
Checkout. Alternatively, enter CO in the Command field on any APS

screen.

Specify requirements on the Checkout screen, as follows.

Field
Entity Type

Member

Description and Values

Component Type of the component to check
out. Valid values same as for Checkin.

Member name to check out, or leave the

Member field blank to select from a member list.

Reference

53

54

Reference

Field
System

Subsystem

Stage

Version

Level

Comment
CCID
No Signout

Replace Member
Override Signout

Component Parts

Description and Values

ENDEVOR System name, if it differs from the
default System name for your current APS
project.group.

ENDEVOR Subsystem name, if it differs from the
default Subsystem name for your current APS
Project.Group.

ENDEVOR Stage number of the member to
check out.

Default to the current revision. You can
optionally override this value with another
version number.

Default to the current level. You can optionally
override this value with another level number.

Text comment for the check out.
ENDEVOR CCID to associate with the check out.

Specify yes to check out and browse the
member without signing it out to your user ID.

Specify yes to overlay an existing member in the
APS project.group.

Specify yes to override an existing Signout by
another user. You must have authority to do so.

For checking out AP and PG component type
components. Valid values are:

none Default. Process only the component
specified in the Member field.

all Process the component specified in the
Member field and all its associated
component parts, or components.

list Display the Component Types Selection
screen, to select the associated
component types for processing.

APS submits a batch job to perform the check in
when some or all component parts are checked
in with the component specified in the Member
field.

CIC-ADDRESS 55

CIC-ADDRESS

Category:
Compatibility:
Description:
Syntax:

Parameters:

Example:

Data communication call (see Data Communication Calls)
CICS target
Use with the TP-LINKAGE call (TP-LINKAGE) to access CICS storage areas.

Cl C- ADDRESS opti on(| i nkdat anane) [option(linkdatanane) ...]

option CWA Common Work Area
TCTUA Terminal Control Table User Area
TWA Transaction Work Area
CSA Common Storage Area (z/OS target only)
EIB Execute Interface Block (z/OS target only)
linkdataname 01-level Linkage Section data area identical to the

linkdataname in the associated TP-LINKAGE call.

Pass information to the application program. Set the Linkage Section
data area (LK-CWA) in the current program to the address of the CWA
for access.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYLK TP-LINKAGE LK- OWA

LKO1 LK-CwA PI C X(200).

NTRY Cl G ADDRESS CWA(LK- CWA)

CIC-ASSIGN

Category:
Compatibility:

Description:

Data communication call (see Data Communication Calls)
CICS target

Obtain values outside the program and assign them to a Working-
Storage data area in the current program.

Reference

56

Syntax: Cl C-ASSI GN CI CSopt i on(dat aarea) [Cl CSoption(dataarea)....]
[ERROR(error para)]

Parameters: option Valid CICS option. See your CICS reference
manual for more information.
(dataarea) COBOL data name containing the result of the
call.
(errorpara) User-defined error routine to perform when an

abnormal condition occurs.

Example: Obtain a value outside the application program and assign it to a user-
defined area.

Cl C- ASSI GN APPLI D(W5- APPLI D)
ERROR(ERROR- PARA)

CIC-CANCEL

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS target

Description: Cancel a previously issued CIC-DELAY (See CIC-DELAY) or CIC-START (See
CIC-START).

Syntax: Cl C- CANCEL [REQ D(nane)]
[TRANSI D(nane) |
[SYSI D(nane) |
[ERROR(error para)]

Parameters: ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

REQID(name) Unique call name; can be a literal or COBOL data
name (maximum 8 characters).

Reference

Example:

SYSID(name)

TRANSID(name)

CIC-DELAY

Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

Transaction code identifying the program where
control returns; can be a literal (maximum 4
characters) or COBOL data name (minimum 5
characters).

Cancel an activity invoked by a CIC-START.

Cl C- CANCEL TRANSI D(’ TRAN') ERROR(ERROR- PARA)

CIC-DELAY

Category:
Compatibility:
Description:

Syntax:

Parameters:

Data communication call (see Data Communication Calls)

CICS target

Suspend task processing for a prescribed time interval.

Cl C- DELAY [REQ D(nane)]
[I NTERVAL(hhmss) | TI ME(hhnmss)]
[ERROR(error para)]

ERROR(errorpara)

INTERVAL(hhmmss)

REQID(name)

TIME(hhmmss)

User-defined error routine to perform when an
abnormal condition occurs.

Time interval between issuing and executing a
call. Hhmmss can be replaced by zero, a decimal
constant, or a COBOL data name defined as PIC
S9(07) COMP-3.

Unique call name; can be a literal or COBOL data
name (maximum 8 characters).

Expiration time for the DELAY function. Hhmmss
can be replaced by a decimal constant or a COBOL
data name defined as PIC $9(07) COMP-3.

Reference

57

58

Examples:

Suspend task processing for a 5-minute interval; let another task cancel
this activity (UNIQCOM command).

Cl C- DELAY | NTERVAL(500) ERROR(ERROR- PARA) REQ D(’ UNI QCOM)

Suspend task processing until 1:30 a.m.

Cl C- DELAY TI ME(013000) ERROR(ERROR- PARA) REQI D(’ UNI QCOM)

CIC-DELETEQ-TD

Category:
Compatibility:

Description:

Syntax:

Parameters:

Example:

Reference

Data communication call (see Data Communication Calls)
CICS target

Delete all transient data associated with a predefined transient data
queue.

Cl C- DELETEQ TD QUEUE(nane)
[SYSI D(nane) |
[ERROR(error para)]

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

Delete all the intrapartition transient data stored in storage queue
'TDAQ'".

Cl C- DELETEQ TD QUEUE(’ TDAQ) ERROR(ERROR- PARA)

CIC-DELETEQ-TS

CIC-DELETEQ-TS

Category:
Compatibility:

Description:

Syntax:

Parameters:

Example:

Data communication call (see Data Communication Calls)
CICS target

Delete all temporary data and free all storage associated with a
temporary storage queue.

Cl C- DELETEQ TS QUEUE(nane)
[SYSI D(nane) |
[ERROR(erropar a) |

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

Delete all the data stored in temporary storage queue ‘'TSAQ’.

Cl C- DELETEQ TS QUEUE(’ TSAQ) ERROR(ERROR- PARA)

CIC-FREEMAIN

Category:
Compatibility:

Description:

Syntax:

Data communication call (see Data Communication Calls)
CICS target

Release storage previously acquired by a CIC-GETMAIN (See CIC-
GETMAIN).

Cl C- FREEMAI N DATA(/ i nkdat anane)

Reference

59

60

Parameters:

Example:

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

Release the main storage of LK-STORAGE-AREA.

Cl C- FREEMAI N DATA(LK- STORAGE- AREA)

CIC-GETMAIN

Category:

Compatibility:

Description:

Syntax:

Parameters:

Reference

Data communication call (see Data Communication Calls)
CICS target

Obtain and initialize main storage. To release storage, see CI/C-
FREEMAIN.

Cl C- GETMAI N SET(/i nkdat anane)
LENGTH(val ue) | FLENGTH(val ue)
[INITIMX val ue)]

[ERROR(error para)]

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INITIMG(value) Initialize storage area. Value is 1 byte; can be a
literal or COBOL data name.

FLENGTH(value) Applies to the z/OS target only.
Specify length as a full word value.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

Example:

CIC-LOAD

Obtain an area of main storage of the length specified in the Working-
Storage data area (WS-LENGTH). Specify initialization value (WS-BLANK)
for the acquired main storage.

Cl C- GETMAI N SET(STORAGE- AREA)
LENGTH(WS- LENGTH)
I NI TI M3 V8- BLANK)
ERROR(ERROR- PARA)

CIC-LOAD

Category:
Compatibility:

Description:

Syntax:

Parameters:

Data communication call (see Data Communication Calls)
CICS target

Load specified programs, tables, or maps from a library to main storage;
to delete these, see CIC-RELEASE.

Cl C- LOAD PROGRAM narne) [SET(/i nkdat anane)]
[LENGTH(dat aar ea)] | [FLENGTH(dat aar ea)]
[ENTRY(poi nt ref)]
[HOLD] [ERROR(errorpara)]

ENTRY (pointref) BBL cell containing program address after the
LOAD operation.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FLENGTH(value) Applies to the z/OS target only. Specify length
as a full word value.

HOLD Hold loaded module in main storage until a CIC-
RELEASE call executes.

LENGTH(value) Maximum length of data; can be a literal (LINK

or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

Reference

61

62

Example:

PROGRAM(name) Name of module to load into main storage; can
be a literal or COBOL data name (maximum 8
characters).

SET(linkdataname) 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

Load table TAXTAB into main storage; perform user-defined error
routine ERROR-PARA when an error occurs; store the address at which
the module was loaded in Linkage Section data area TAX-TABLE-AREA,;
and store the length of the loaded module in Working-Storage data
area TAX-LEN.

Cl C- LOAD PROGRAM’ TAXTAB')
SET(TAX- TABLE- AREA) LENGTH(TAX- LEN)
ERROR(ERROR- PARA)

CIC-READQ-TD

Category:
Compatibility:
Description:

Syntax:

Parameters:

Reference

Data communication call (see Data Communication Calls)
CICS target
Read transient data from a predefined data queue.

Cl C- READQ TD QUEUE(nane)
| NTQ(dat aar ea) | SET(/ i nkdat anane)
[LENGTH(dat aarea)] [SYSI D(nane)]
[ERROR(error para)]

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTO(dataarea) Name of data area where APS places transient
or temporary data.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

Example:

QUEUE(name)

SET(/inkdataname)

SYSID(name)

CIC-READQ-TS

Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

Applies to the z/OS target only. Remote system
name; can be a literal or a COBOL data name
(maximum 4 characters).

Read a record from a transient data queue ‘TDAQ’ into data area WS-

TD-REC.

Cl C- READQ TD QUEUE(’ TDAQ) | NTQ(WS- TD- REC)
LENGTH(WS- TD- LEN)
ERROR(ERROR- PARA)

CIC-READQ-TS

Category:
Compatibility:

Description:

Syntax:

Parameters:

Data communication call (see Data Communication Calls)

CICS target

Retrieve data from a temporary storage queue in main or auxiliary

storage.

Cl C- READQ TS QUEUE(nane)

... I NTQ dat aarea) | SET(! i nkdat anane)
LENGTH(dat aarea) NUM TEMS(dat aar ea)
[| TEM val ue) | next]

[SYSI D(nane) |

[ERROR(error para)]

ERROR(errorpara)

INTO(dataarea)

User-defined error routine to perform when an
abnormal condition occurs.

Name of data area where APS places transient
or temporary data.

Reference

63

64

Example:

ITEM(value)

LENGTH(value)

NEXT
NUMITEMS(dataarea)

QUEUE(name)

SET(/inkdataname)

SYSID(name)

Relative record number in the queue; can be a
literal or COBOL data name defined as
S9(04)COMP. Required with REWRITE.

Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

Read next sequential logical record.

Applies to the z/OS target only.
Number of items in the queue.

Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

Applies to the z/OS target only. Remote system
name; can be a literal or a COBOL data name
(maximum 4 characters).

Read the next (or only) record from temporary storage queue 'TSAQ’
into data area WS-TD-RECORD.

Cl C- READQ TS QUEUE(’ TSAQ)
| NTQ(W5- TD- RECORD) LENGTH(WS- TD- RECLEN)
ERROR(ERROR- PARA)

CIC-RELEASE

Category:
Compatibility:

Description:

Reference

Data communication call (see Data Communication Calls)

CICS target in the z/OS environment

Delete program, table, or map, previously loaded with a CIC-LOAD call
(See CIC-LOAD), from main storage.

CICs

Syntax: Cl C- RELEASE PROGRAM nane)
[ERROR(error para)]
Parameters: ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs
PROGRAM(name) Main storage module to be deleted; can be a
literal or COBOL data name (maximum 8
characters)
Example: Delete program PROG5.
Cl C- RELEASE PROGRAM ' PROGS’)
ERROR(ERROR- PARA)
Category: Data communication call (see Data Communication Calls)
Compatibility: CICS targets
Description: Code and pass through native CICS calls.
Syntax: CICS conmand
Example: Retrieve the system time of day.

CI CS ASKTI VE

CIC-SCHEDULE-PSB

Category:

Compatibility:

Data communication call (see Data Communication Calls)

CICS and IMS DB targets

Reference

65

66

Description:

Syntax:

Comment:

Schedule the PSB in the program, if not currently scheduled; to
terminate it, see C/C-TERM-PSB. APS automatically generates these calls
when you specify a PSB in the Application Painter.

Cl C- SCHEDULE- PSB

To define a PSB in your application definition, see the APS User’s Guide
chapter Paint the Application Definition."

CIC-SEND-TEXT

Category
Compatibility

Description:

Syntax:

Parameters:

Comment:

Reference

Data communication call (see Data Communication Calls)
CICS target

Format output data without mapping and transmit to a terminal or line
printer.

Cl C- SEND- TEXT FROM dat aar ea)
LENGTH(val ue) [Cl CSopti ons]
[ERROR(error para)]

CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FROM(dataarea) Data area to be acted on.

LENGTH(value) Maximum length of data; can be a literal (LINK

or XCTL only) or COBOL data name defined as
S9(04)COMP; can also be a partial length (XCTL
only).

Use CIC-SEND-TEXT prior to a TERM (See TERM) from a main program in
order to clear the screen and unlock the keyboard.

Example:

CIC-SERVICE-RELOAD

CIC-SEND-TEXT outputs data block TEXT-STRING, to be formatted
without being mapped.

Cl C- SEND- TEXT FROM TEXT- STRI NG)
LENGTH(100) ERASE FREEKB
ERROR(ERROR- PARA)

CIC-SERVICE-RELOAD

Category
Compatibility

Description:

Syntax:

Parameters:

Comment:

Example:

Data communication call (see Data Communication Calls)
CICS target

Establish addressability to a data area in the Linkage Section following
an address change in the BLL cell.

Cl C- SERVI CE- RELOAD [i nkdat anane

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated TP-LINKAGE
call.

SERVICE-RELOAD is an OS/VS COBOL statement; do not use with COBOL
Il, because the compiler treats this call as a CONTINUE statement.

Establish addressability to Linkage area LINK-AREA-1 after an address
change.

MOVE PASSED- ADDRESS TO LI NK- AREA- 1- PNTR
Cl C- SERVI CE- RELOAD LI NK- AREA- 1

CIC-START

Category:

Compatibility:

Data communication call (see Data Communication Calls)

CICS target

Reference

67

68

Description:

Syntax:

Parameters:

Examples:

Start a task on a local or remote system at a specified time.

Cl C- START TRANSI D(nane)
[| NTERVAL(hhmrss) | TI ME(hhnmss)] [O CSopt i ons]
[ERROR(error para)]

CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

INTERVAL(hhmmss) Time interval between issuing and executing
the call. Hhmmss can be replaced by zero, a
decimal constant, or a COBOL data name
defined as PIC S9(07) COMP-3.

TIME(hhmmess) Expiration time for the START function.
Hhmmss can be replaced by a decimal constant
or a COBOL data name defined as PIC S9(07)
COMP-3.

TRANSID(name) Transaction code identifying the program
where control returns; can be a literal
(maximum 4 characters) or COBOL data name
(minimum 5 characters).

Start a specific task (not associated with a terminal) in one hour.

Cl C- START TRANSI D(’ TRNL’) | NTERVAL(10000)
ERROR(ERROR- PARA)

Initiate task TRN2 associated with terminal STA3; begin the task at 5:30
P.M.

Cl C- START TRANSI D(’ TRN2') TI ME(173000)
TERM D(’ STA3’') ERROR(ERROR- PARA)

CIC-TERM-PSB

Category:

Compatibility:

Reference

Data communication call (see Data Communication Calls)

CICS target

Description:

Syntax:

CIC-WRITEQ-TD

Terminate the currently scheduled PSB (See CIC-SCHEDULE-PSB). You
normally use this call before transferring to another program.

Cl C- TERM PSB

CIC-WRITEQ-TD

Category:
Compatibility:
Description:

Syntax:

Parameters:

Example:

Data communication call (see Data Communication Calls)

CICS target

Write transient data to a predefined data queue.

Cl C-WRI TEQ TD QUEUE(nane) FROM dat aar ea)

[LENGTH(val ue)]

[SYSI D(nane) |

[ERROR(error para)]

ERROR(errorpara)

FROM(dataarea)
LENGTH(value)

QUEUE(name)

SYSID(name)

User-defined error routine to perform when an
abnormal condition occurs.

Data area to be acted on.

Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only). Required with SYSID.

Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

Write data to predefined transient data queue 'TRDQ’.

Cl C-WR TEQ TD QUEUE(’ TRDQ) FROM WS- MESSAGE)
LENGTH(Ws- TD- LEN)
ERROR(ERROR- PARA)

Reference

69

70

CIC-WRITEQ-TS

Category:
Compatibility:
Description:

Syntax:

Parameters:

Reference

Data communication call (see Data Communication Calls)
CICS target
Write or rewrite temporary data records to a temporary storage queue.

Cl C-WRI TEQ TS QUEUE(nane) FROM dat aar ea)
LENGTH(val ue) [SYSI D(nane)]
[| TEM dat aarea) [REWRI TE] [O CSopti ons]
[NOSUSPEND]
[ERROR(error para)]

CICSoptions Valid CICS option. See your CICS reference
manual for more information.

ERROR(errorpara) User-defined error routine to perform when an
abnormal condition occurs.

FROM(dataarea) Data area to be acted on.

ITEM(value) Relative record number in the queue; can be a

literal or COBOL data name defined as
S9(04)COMP. Required with REWRITE.

LENGTH(value) Maximum length of data; can be a literal (LINK
or XCTL only) or COBOL data name defined as
S9(04)COMP. Can also be a partial length (XCTL
only).

NOSUSPEND Return to the program without waiting for
resources to become available.

QUEUE(name) Queue name; can be a literal (maximum 8
characters), or COBOL data name (maximum 30
characters) defined as X(4).

REWRITE Overwrite existing record in queue with data
contained in data area.

SYSID(name) Remote system name; can be a literal or a
COBOL data name (maximum 4 characters).

CLEAR

Example: Write a record to a temporary storage queue in auxiliary storage, where
the queue name is in QUEUE-NAME.

Cl C-WRI TE- TS QUEUE(QUEUE- NAVE)
FROM WS- TS- RECORD)
LENGTH(WS- TS- LENGTH)
| TEM W5- TS- | TEM NO)
ERROR(ERROR- PARA)

CLEAR

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS, IMS DC, and ISPF Dialog targets
Description: Move spaces or low-values to all fields in a specified screen.
Syntax: [TP-| SC-] CLEAR screennane
Comment: This call does not alter the field attributes.

Example: Move spaces to all fields on screen SCRA.

CLEAR SCRA

CLEAR-ATTRS

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS, IMS DC, and ISPF Dialog targets
Description: Reset all screen field attributes to their original painted values.

Syntax: [TP-] CLEAR-ATTRS screennane

Reference

72

Comment:

Example:

The screen field contents do not change.

Reset all field attributes to their original values for screen SCRA.

CLEAR- ATTRS SCRA

COBOL/2 Support

Description:

Comments:

Reference

Code program logic in both the Program Painter and Specification
Editor using COBOL/2 structures.

Under APS COBOL/2 support, you can:

Code both S-COBOL and COBOL/2 structures in the same program.
Code structures in columns 7 - 80 (rather than column 12 - 72).

Import existing COBOL/2 program Procedure Division code directly
into APS, without any changes.

Generate COBOL/2 output, regardless of whether you use S-COBOL,
COBOL/2, or a combination.

Generate PERFORM THRU paragraphname-EXIT code for each
paragraph. To do so, change the default NO setting for the GENEXIT
flag to YES in the ISPSLIB member SSMCOMP.

You can turn COBOL/2 support on and off by setting the Generate
COBOL/2 field on the Generation Options screen.

When programming in the Program Painter or Specification Editor, you
can code in COBOL/2 as follows.

To turn on COBOL/2, enter cobol2 on the Command line.

To turn off COBOL/2, enter scobol on the Command line.
APS saves the current status of COBOL/2 support; therefore it
remains turned on or off the next time you access APS.

There are slight differences in the Program Painter and Specification
Editor screens when COBOL/2 is turned on.

COBOL/2 Support

All keywords are supported and required as before. Exception: The
PARA keyword is optional; you can code the paragraph name
beginning in column 8. Keywords are coded in columns 8 - 11 (area
B).

Paragraph names can have a maximum of 24 characters.
Code only one verb per line.
Nested COBOL/2 programs are not supported.

You must use consistent indentation (we recommend four spaces)
throughout your program, even when importing COBOL/2
structures, or you will receive warning messages and your
generated logic will probably be inaccurate. For example:

000001 | F OK-TO- PROCEED

000002 MOVE A TO B
000003 IF D=E

000004 MOVE F TO G
000005 ELSE

000006 MOVE H TO |

When compiling and generating the above code, APS will not know
which IF statement lines 005 and 006 belong to.

If a COBOL/2 EVALUATE statement is also valid S-COBOL EVALUATE
syntax, APS processes it as an S-COBOL statement.

When importing existing COBOL/2 code into APS, remember to
assign the appropriate APS keywords to non-Procedure Division
statements.

APS stores COBOL/2 program files in a slightly different format to
support access up to column 80. When an existing S-COBOL program
is subsequently saved under COBOL/2, the source text of keyword
lines shifts one byte to the right. This truncates any character coded
in column 72 and displays a Truncation has occurred warning.

This truncation only occurs on a keyword line, and in fairly unusual
circumstances, such as a PARA keyword followed by a long string of
arguments with the last argument ending in column 72. If it
happens, edit the member, fix the line, and save the file with
COBOL/2 support turned on.

Reference

73

74

CODE

Category:

Compatibility:

Description:

Syntax:

Parameters:

Comments:

Example:

Reference

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer

Batch environments

Specify a two-character literal placed at the beginning of each report
line. It is useful when writing multiple reports to one file.

CODE /i teral

literal A two-character, non-numeric name inserted as
the first two bytes of each report record or
print line

® The two bytes identifying a literal are included in the logical record
size, not in the print line description.

® If your report has a File Description (FD) in the REPORT IS clause,
include a RECORD CONTAINS clause that allows for the two extra
bytes the CODE clause needs; the default value of 133 for RECORD
CONTAINS does not.

If your report does not have a File Description, the APS default
record length of 250 includes the extra two bytes the CODE clause
needs.

® If you specify CODE for one report, specify it for all reports in the
file.

See the APS User’s Guide chapter Create Reports with Report Writer.

Comments

Comments

Description:

Syntax:

Comments:

Enter comments in your program. To write comments in the
Identification Division, see REM.

Format 1, code anywhere in your program:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
/* comrentl i ne

Format 2, code in the Procedure Division only:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
[/ *conment ! i ne

Format 3, code in the Procedure Division only:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
Program code [* conment

Format 4, code in Customization Facility macros:
% comment
Format 5, code in the Data Structure Painter only:

* comment
/* conmment
9% conment

Comment lines do not affect the function of a program or data
structure. In the Program Painter, the last keyword entered before
your comment line(s) is still in effect.

Note: You cannot code comments within database calls, data
communication calls, or Data Structure Painter constructs.

Do not use evaulation brackets in Formats 2, 3, and 4.
Begin each comment line with /* or %*.

In the Procedure Division, you can code /* anywhere in the column
12 - 72 area.

Reference

75

76

Examples:

® A Customization Facility comment (Format 4) can start in any
column, as long as it is on a line by itself and is indented (we
recommend four spaces) underneath the Customization Facility
statement.

® To code macro statements, use Format 4.

® Do not code comments within database calls.

In the Program Painter:

“LINE- -KYWD- 12--%--20---%--=-30----%--=40-=-*-=--50---*----

60
002000 /* S COBOL COMMENT LI NE
002010 /* COBOL COMVENT LI NE

002020 PARA MAIN-PARA /* S-COBOL COMMVENT

In the Data Structure Painter:

-LINE- -------- DATA STRUCTURE PAINTER -------
000001 /* WORK FI ELD 1 RECORD

000002 WRK1- Fl ELD-1 X(5)

000003 88 OPEN- VAL V' OPEN
000004 88 CLOSED- VAL V CLCGSE

Generated COBOL code:

000001 */* WORK FIELD 1 RECORD

000002 01 WRK1-FIELD-1 PI C X(5).
000003 88 OPEN- VAL VALUE ' OPEN .
000004 88 CLOSED- VAL VALUE ’' CLOSE' .

Component List (MS01)

Category:

Description:

Reference

APS-generated report (see Application Reports)

The Component List Report catalogs all of the components created for
an application within a specific Project andGroup.

The report lists components by painter in six columns - one each for
applications, programs, screens, report mock-ups, data structures, and

Component List (MS01)

scenarios. Within each column, the report lists components in
alphabetical order. The bottom of the report totals the number of
components listed for each painter. You can produce a report listing

application components of one or more types.

Comments: ©

Example:

REPORT CODE: MS01
PAGE 1

05/ 17/92 09: 13

SELECTI ON CRI TERI A: AL

Produce the Component List Report from the Documentation

Facility.

This report does not provide information about subschemas or
about the contents of each listed component.

L

APS APPLI CATI ON DI CTI ONARY

COVPONENT LI ST

MKTAPS. MKT2

R R S I R Rk Sk S ok kR R O R R Rk O Rk Ik I I kO R Rk o

khkkhkkkkkkhkhkkkkh*k

APPLI CATI ONS PROGRAMS SCREENS

ClI CSJSS ADEMO

Cl CSVSAM AW2PGM
CUSTORDR AW3PGM
DEMCKEB XXXPGM
DEMO1803 ANNER1
DLXVAPPL DLG NQ
DLX2APPL LGWN\U
DWAPPL DLXVI NQ
LEVEL30 DLX2UPD
MVS20SCR DMVOVNU
PTSUNLD PM NFOT1
PXAPPL PM NFOT2
QSSAPPL PM NFG3
SSKTEST PM NFO4
TDDEMO PMUDS1
TESTQSS PMXXXXT2
USRDEMO PMXXXXT3

ADEMO
ADEMOKB
ADEMOL
ADEMO1J
ADEMOL X
ADEMOBD
ADEMOBJ
A2CASE
CMKTEMP
C\K1
DLGU
DMOM
KEB
KEBDEMOL
KEB1
MEAD1
P22604

PMLSVKEY REWDEMO

PTSUNLD

TDCS
PXCUSTM
PXMENU
PXORDRM

$APSCMR APCOWM

MANUFAC ~ AWOB

MAPART BANK2

REPORT1 COVAREA2

VNDROPD DLGAPPL
CPFDATAB
DB2DEMD
MARI A
QSSGLOBL
QSS9

TDDDH

TDDST

TDFI RN

DATA STRUCTURES SCENARI OS

APDEMO
APSDEMO
APSDEMC2
APSDEMC3
DEMMA

CBI S
DL2APPL
DEMO###

| SRO0007
MS21
SSS2
TEST

Reference

77

78

APP

LI CATI ONS
PROGRANS
SCREENS
REPORTS

DATA STRUCTURES

SCENARI GS

PXORDRS TDJH
PXPARTL TDMVE
PXVCUSTM TDQJ

PXVMENU TDOM
PXVORDRM TDOT
PXVORDRS TDQU
PXVPARTL TDPF

TDCM
TDCS
TDVE
TDQJ

TDOM
TDOT
TDOQU
TDPF
TDPL
TDPM

- 28
- 60
- 50

- 13
- 18

CONTROL

Category:

Comp

Des

Reference

atibility:

cription:

Syntax:

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer.)

Batch environments

Identify control data items (controls), which are tested for a change
each time a detail line is printed. Create a control hierarchy for the
report control headings and footings (control breaks).

® Format 1:

CONTRCL [I'S] [FINAL] dat anane

Parameters:

Comments:

Example:

CONTROL

Format 2:
CONTRCOLS [ARE] [FINAL] datananel ... datanameN
dataname Data item that causes a control break when it
changes.
FINAL Inclusive report control group not associated

with a control dataname. It represents the
highest level of control.

Datanames can be qualified, but cannot be subscripted or indexed,
or have a subordinate data item with a variable size defined in an
OCCURS clause. Each dataname must be a different data item.

List the datanames from the highest to lowest level. An implicit
FINAL is the highest control. The first dataname is the major control;
the last dataname is the minor (lowest) control.

You can omit the CONTROL clause when the only control is FINAL.

The first time a GENERATE builds a report, all control values are
saved. The next GENERATE tests controls for changes every time a
detail line is printed, by comparing the contents with the contents
saved from the last GENERATE of the same report, as follows.

® |f the control is numeric, the relation test compares two numeric
operands.

® |f the control is an index, the test compares two index data
items.

® |f it is neither numeric nor an index, it compares two non-
numeric operands.

A change in dataname (a control) causes a control break that:

® Prints control footings for lower level datanames, followed by
the control footing for the dataname causing the control break

® (Clears counters associated with the datanames

® Prints control headings for the dataname and lower level
datanames

® Prints the detail line causing the break

See the APS User’s Guide chapter Create Reports with Report Writer

Reference

79

Control Files

Description: Use APS control file variables to control certain functions. Each control
file contains documentation on its variables. Look in the APS CNTL PDS
or library for these files.

APS CNTL File Environment or Function Controlled
APCICSIN CICS

APSDBDC Database and data communication calls
APFEIN Field edits

APDLGIN ISPF Dialog

APIMSIN IMS DB and DC

APDB2IN sQL

APVSAMIN VSAM

APHLPIN User Help Facility database

CICS

File APCICSIN controls:
® DLIUIB name
® Prologue generation

® Inline error checking (for example, CICS IGNORE globally or
NOHANDLE on a call-by-call basis)

® Data name suffixes generated for field length and attribute data
names

® DFHAID and APS-EIBRCODE copybook inclusion
® EJECTs

® CICS comments

® APS/CICS call overrides

® RESP/RESP2 options

Reference

DB and DC Calls

Control Files

Note: Changing APSDBDC file parameter values affects the entire
installation. To override values only for a specific Project, set the
variables in the CNTL file APSPROJ.

Parameter
% SET NOBLANK

% SET EVAL-BRACKETS "<>"

% SET LOOP-LIMIT 500

% &MACRO-COMMENTS = 1 and
% &TP-MACRO-COMMENTS =1

% SET TRACE ERROR

Description

Suppress blank lines from appearing in the
output. Override with % SET BLANK.

Define the characters used as evaluation
brackets.

Important: Overriding this parameter is not
recommended because it will affect the
Customization Facility macros.

Limit the APSMACS (APS macros) and
USERMACS (user macros) Customization
Facility loop structures to a maximum of 500
loops. Override with another number, 6 digits
maximum.

Note: Loop limit flags for DB-PROCESS loops
are in the target-specific APS CNTL files.

Allows COBOL comments to appear in
generated source. Override with 0.

Customization Facility parameter. An error
trace mechanism that identifies the line of
source that caused the error, the active %
INCLUDE statement(s), the macro(s) currently
invoked and not yet ended, and the number
of loops completed at the time of error (if
applicable). The severity codes of errors traced
are F (Fatal), E (Error), W (Warning), and |
(Information) messages. To eliminate
Information message traces, append a space
and the keyword NOINFO to the trace
statement. To turn off the trace in selected
portions of a program, code % SET NOTRACE.

Reference

81

82

Parameter
% &IM-HOLD-DEFAULT = "NOHOLD"

% &VS-PROTOTYPE-MODE = "NO"

% &IM-SUPPRESS-DB-CALL = "NO"

% &IM-USE-DFSOAER =0

% &GEN-DB-REC-01-NAMES =0

Reference

Description

Prevent APS-generated IMS DB-OBTAIN calls
from HOLDing a record for update except
when HOLD is specified in the DB-OBTAIN call.
Override with "procopt"”, which does HOLD a
record automatically, assuming the subschema
or PSB specifies that the program can update
the record.

"Yes" specifies that a VSAM program is a
prototype, enabling you to code DB calls
without accessing a VSAM file. All subschema
validation at program generation is still
performed. NO means prototype mode is
inactive.

Deactivate the prototype mode for an IMS
program. "Yes" specifies that an IMS program
is a prototype, enabling you to code DB calls
without accessing a data base. All subschema
validation at program generation is still
performed.

Disable the APS-supplied IMS database error
routine macros from calling the IMS-supplied
error display module, DFSOAER. All database
errors are resolved using only the APS-
supplied status flags. To enable use of
DSFOAER and the APS-supplied flags, set to 1.
If your installation does not use DFSOAER,
leave this flag set to 0. See Error Handling.

IMS DB parameter. If your top-level copylib
records begin with the level number 01
positioned in column 8, use the flag default of
0. If they don't, override with 1. When writing
DDI statements for copylibs that don’t begin
with 01-level records, see instructions in the
topic Writing DDI Statements for IMS in the
APS User’s Guide.

Note: For VSAM, an equivalent flag exists in
the APS CNTL file APVSAMIN.

Parameter
% &IM-SUPPRESS-COPYLIB =0 and
% &VS-SUPPRESS-COPYLIB=0

% &IM-USE-ASSEMBLER-BLOCKING = 1

% ©-SECTION = "WORKING-STORAGE"

% &TP-RETRY =1

% &IM-EXEC-DLI =0

% &DBCS =0

Control Files

Description

Override with 1 to suppress a copylib
described in your DDI statements. &M is for
IMS; &VS is for VSAM.

Use a supplied Assembler routine to move
data between record I/O areas and IMS
concatenated segment I/O areas in APS-
generated programs. This method is
recommended because it's more efficient and
doesn’t require redefining the record I/0
areas.

Note: Because this module is linked during
generation of COBOL code, setting this
variable to 1 might interfere with
transportablilty of the generated code.

Overriding with 0 causes APS-generated
programs to block and unblock IMS
concatenated I/O areas using a byte-level loop
in the generated code. Setting to 0 also causes
APS to automatically redefine all record 1/0
areas as an array of bytes Note: Setting to 0 is
incompatible with copylib members
containing a COBOL OCCURS DEPENDING ON
clause or multiple record declarations in a
single member.

Specifies that copylib members are placed in
Working-Storage.

Set the parameter RETRY as the default
parameter for the NTRY call. Override with 0
to set the default to NORETRY. You can also
override on a program-by-program basis by
coding RETRY or NORETRY in the NTRY call.
See NTRY for more information.

Generate CALL 'CBLTDLI’ syntax. Override with
1 to generate EXEC DL/I syntax.

Set to 1, the Double Byte Character Set flag,
for KANJI support.

Reference

83

84

Reference

Field Edits

File APFEIN controls:

Setting the maximum number of input and output edited fields per
paragraph. The default is ten input fields and ten output fields. To
change the defaults, set the &FE-INP-PARA-BREAK and &FE-OUT-
PARA-BREAK variables as desired.

Preventing execution of a user-defined input application edit when
the field does not pass assigned field edits. The default is NO, which
continues execution. To prevent execution, set the variable &FE-
BYPASS-INPUT-APPL-EDIT to YES.

Preventing execution of subsequent input and output field edits if a
field fails a user-defined input application edit. The default is NO,
which continues execution. To prevent execution, set the variables
&FE-BYPASS-EDITS-IF-APPL-FAIL and &FE-BYPASS-OUTPUT-EDITS to
YES. Overriding this parameter is not recommended because it
affects Customizer rules.

Using the USA format or European format that reverses the comma
and decimal point. The default is the USA format. To use the
European format, set the &FE-DECIMAL-IS-COMMA variable to YES.

Supporting DBCS (Double Byte Character Set) characters. The
default for the &FE-DBCS-ENABLE variable is YES.

Resetting attribute bytes to the painted values if the field passes all
assigned input edits under CICS. The default for the &FE-RESET-CICS-
ATTRS variable is YES.

Resetting field attribute bytes before or after input edits under
CICS. The default for the &FE-RESET-CICS-ATTRS-AT-TOP variable is
NO, which means after input edits.

Allowing spaces within numbers. The default for the $FE-EMB-
SPACE-IN-NUMERIC is NO.

Performing numeric calculations where the numeric de-edit option
was not selected. The default is NO. Setting the &FE-EDIT-WHEN-
NUMERIC to YES readies all numeric fields on the screen for
calculations.

Interpreting the century for output date formats. The default for
the &FE-FIRST-YEAR-OF-CENTURY is 10. This means that APS
interprets any date with a YY (year) value of 11 through 99 as being
in the 20th century, that is, year 1911 through 1999, and any YY

Control Files

value of 00 through 10 as being in the 21st century, that is, year
2000 through 2010.

IMS DB and DC

Use the IMS control file, APIMSIN, to control these functions:

Prologue generation

EJECTs

Color, Blink, Reverse Video, Underscore switches

System Service Calls (IM-STAT, IM-LOG, IM-ROLL, IM-ROLB)
GSAM RSA calls

DB-PROCESS call loop limit flag, &VS-IMS-LOOP-MAX (default 100);
you can change the limit number or disable the check for the limit.

ISPF Dialog

Use the ISPF Dialog contol file, APDLGIN, to control these functions:

DYNAM or NODYNAM calls
VDELETE variables upon TP-TERM

TP-LINK and TP-XCTL generation of COBOL CALLs or ISPEXEC
SELECTs

Automatic open/close for VSAM files (enable/disable)

DB2 COMMIT generation for ISPF Dialog TP-LINK, TP-XCTL, and TP-
TERM calls

Prologue generation
EJECTs

ISPF comments

SQL

Use the DB2 control file, APDB2IN, to control these functions:

Comment generation (default: comments are generated)

EJECTs

Reference

85

86

Reference

Size of SQL calls accepted (default: 200 tokens, for example, items
separated by spaces)

Generation of the IBM DCLGEN convention, DCLtablename, for host
01-level qualifiers

Automatic error processing, controlled by the variable &D2-AUTO-
ERROR-HANDLING (default: ON)

Customization of automatic error processing, including:

® Modifying the APS error processing paragraph &D2-ERROR-
PARA, which resides in the macro $DB2-ERROR-SETUP

® Modifying which status codes should be considered error
conditions, in the macro $DB2-CHECK-RETURNS-AUX, and
changing the status of a referential integrity constraint from an
abnormal condition to an invalid key

The DB-PROCESS call loop limit flag, &DB2-LOOP-LIMIT (default:
100); you can change the limit number or disable the check for the
limit.

COMMIT generation for the DB-MODIFY, DB-STORE, DB-ERASE, and
DB-CLOSE calls

DB2 customization exits, which are program locations where you
can write your own macros to customize APS/SQL calls

Generated data names. You can:

® Override the use of the IND-cursorname structure when
generating indicator variables

® Use an 01-level name instead of copylib-REC for DB2 record
host-variable qualification

® Modify generated data names used by $DB2-EPILOGUE, which is
invoked after all DB2 calls have been processed

® Use a table alias name instead of the table name

Comment generation for the APS $DB2- calls, which are used by the
APS/SQL calls

Control Files

VSAM Batch and Online

Use the VSAM control file, APVSAMIN, to control these functions:

® Functions for both CICS/VSAM and batch:

Abnormal error processing (enable/disable automatic APS
routine)

Non-referenced record descriptions (include/exclude)
Record inclusion

A flag you must use if your copylib records don’t begin with the
01-level number

® CICS/VSAM-specific functions:

Abnormal error processing (exclude certain CICS Exceptional
Conditions and ISI-Errors from being abnormal conditions)

DB-PROCESS call loop limit flag, &VS-CICS-LOOP-MAX (default
100); you can change the limit number or disable the check for
the limit.

ENDBR/UNLOCK

Customization exits, which are program locations where you can
write your own macros to customize APS/VVSAM and native
VSAM calls

Data name generation

Comment generation

® Batch-specific functions:

Abnormal error processing (exclude certain batch conditions
from being abnormal conditions)

DB-PROCESS call loop limit flag, &VS-MVS-LOOP-MAX (default:
999,999); you can change the limit number or disable the check
for the limit

Termination method (STOP RUN or call your own abend
program)

Customization exits, which are program locations where you can
write your own macros to customize APS/VSAM calls

Reference

87

® Data name generation

® Comment generation

User Help

Use the APS User Help Facility control file, APHLPIN, to control these
functions for generating the User Help database:

® Program and screen names (if naming conflicts exists)
® Internal and external storage database targets
® Subschema access used by the help database

® Database name and attributes

® Database field names--COBOL or native

® Screen data storage options

® Data field length

® Global screen message field name

® Field help indicator string

® Date format

® PF key designations

® COBOL help invocation conditions

® APS-generated User Help comment suppression

Control Points

Category: Online Express feature

Description: Write and execute custom processing logic to supplement or override
the default logic that Online Express generates. Execute this logic at any
of the APS-provided locations in your program, known as program
control points.

Reference

Control Points

To view the control points in your program, display the Control Points
screen or the Database Call Tailoring screen. Or, you can look in your
generated program source to see where the control points occur. The
complete set of control points is as follows.

Control Point
After-Receive-Para

Post-Screen-Read

Transid-Invoked-Para
Program-Invoked-Para

Pre-Term
After-Enter-Check
Pre-Function-Test
Pre-Branch
Ed-Error-Pre-Send

General-Pre-Send

Before-Send-Para
Pre-Screen-To-Rec

Post-Screen-To-Rec

Pre-Rec-To-Screen

Post-Rec-To-Screen

Location in Program

After entering a program, regardless of
invocation mode.

After a screen-invoked program receives its
screen.

After a transid-invoked program is invoked.

When APS displays the screen of a program
invoked by the XCTL or MSG-SW function.

Before APS terminates the program.

After the end user presses the processing key
(the Enter key is the default), and before the
PRE-FUNCTION-TEST paragraph executes.
Before APS evaluates all functions except the
Terminate, or Exit, function.

Before each MSG-SW, XCTL, or Call function
executes.

Before APS send a screen whose field edits
have failed.

After APS checks all functions, and before the
TP-SEND call executes, when invocation mode
is screen-invoked.

Before APS sends the screen, regardless of
invocation mode.

Before APS performs the MOVE-SCREEN-TO-
REC paragraph.

After APS performs the MOVE-SCREEN-TO-
REC paragraph, and the Update or Add
function executes.

Before APS performs the MOVE-REC-TO-
SCREEN paragraph.

After APS performs the MOVE-REC-TO-
SCREEN paragraph, and after the Query
function executes.

Reference

89

20

Reference

Control Point
Pre-RB1-Row-To-Rec

Post-RB 1-Row-To-Rec

Pre-Rec-To-RB1-Row

Post-Rec-To-RB 1-Row

Error-Send-And-Quit

Misc-User-Paragraphs

Before DB Access
Before Loop
Normal Status (Before

Record is Processed)
Normal Status

Exception Status

Error Status

Location in Program

Before the Add or Update function executes
for a repeated record block row, and before
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

Before the Add or Update function executes
for a repeated record block row, and after
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

After the Query or Forward function executes
for a repeated record block row, and before
database fields move to screen fields. APS
uses the subscript CTR to reference repeated
block rows.

After the Query or Forward function executes
for a repeated record block row, and after
database fields move to screen fields. APS
uses the subscipt CTR to reference repeated
block rows.

When a program terminates abnormally, such
as when a database call fails when the
Database Call Tailoring screen’s Abort On
Error parameter issetto Y.

A location where you can write and store any
number of paragraphs to perform at any
control point in the program. Code all your
paragraphs in one file in this location.

Before a non-loop database call executes
Before a loop database call executes

Before Online Express maps looped records to
the screen

After Online Express maps any records to the
screen

After the database call returns a status flag
with the Exception status code

After the database call returns a status flag
with the Error status code

Control Point
After DB Access
After Loop

Control Points

Location in Program
After a non-loop database call executes
After a loop database call executes

Flowcharts The following flowcharts illustrate the locations of all control points in
APS-generated programs.

Chart 1: Standard Control Points

IF
TRANSIO-
MUOKED

CF: AFTER-RECEIVE-PARA |

PGEM-IHUOKED

How
Inuaked

—| CP: TRAMSID-INUOKED-FPARA |

|I3P: FROGRAM-INUOKED-PARA Ii

SCREEN | IMUOKED

CP: POST-SCREEM-READ |

Online Edpress
generated logic

CF: ED-ERROR-PRE-SEHD

CF: PRE-FUMCTIOM-TEST |

Evaluate function DB error
fields and FF kews
and execute functions —)i CP: ERROR-SEMO-AMO-RUIT

See Chart 2

| #*

CP: GEMERAL-PRE-SEMD |

3

!

CP: BEFORE-SEMO-PARA I‘-{

CP: MISC-USER-PARAGRAPHE

CF: = Control point .
= send screen and terminate

Reference

91

92

Reference

Funct ion
code and PF key
processing

Chart 2: Function Code and PF Key

Processing

CF: PRE-FUMCTIOMN-TEST

‘e

Fiow
process’?

Validate row action
codes

CF: PRE-TERM

GUERY logic
CP: PRE-REC-TO-SCREEM
CFP: POST-REC-TO-SCREEM

End function
processing

CF: PRE-SCREEH-TO-REC
CP: POST-5CREEN-TO-REC
AOD logic

CP: PRE-SCREEMN-TO-REC
CP: POST-SCREEM-TO-REC
UPDATE logic

DELETE leogic

BACKWARD querw logic

FORWARD query logic

CLEAR =cieen

Control Points 93

Chart 2. <{continued> O
2b

CFP: PRE-ERAMCH
CALL or LIME program

CP: PRE-ERAMCH
TP-MSG-5M call

TP-FERFORM call

Maowe screen data
to SCrEEn
CP: GEMERAL-FPRE-SEMD

Enecute global
or lozal stub

CP: PRE-BRAMCH
Transfer control
to progran

Inwvoke wser—defined
Macro

Error processing
CP: ERROR-SEMT-AHD-QUIT

III :
Mo

Row y
proceEssT
Ha

End function
processing

Evaluate row actions
See Chart 2.1

Reference

94

Chart 2_.1: Evaluate Row Actions

Evaluate row
actions

AOO logic
CP: PRE-RE1-ROW-TO-SCREEN
CP: POST-RE1-ROW-TO-SCREEN

DELETE logic

CF: PRE-SCREEM-TO-RE1-ROW
CP: POST-SCREEM-TO-RE1-ROW
UFDATE logic

TP-FERFORM call

Execute global
or lozal stub

Inwoke wser—-def ined
=it

Error processing
CP: ERROR-SEMO-AMO-GUIT

End evaluate
oW actions

The flowchart below illustrates the location of the database call control
points in generated programs.

Reference

Control Points

Hon—Loop Call

|EP: EEFORE DE ACCESS |

IF OE-TO-FROCEED
database call
IF OE-OH-REC

|CP: HORMAL STATUS

ELEE-IF exception—status

|CP: EXCEFTION STATUS |

ELSE

| CF: ERROR STATUS |

MOUE MESSAGE TO SCREEM
FERFORM ERROR SEHD AMD RUIT

| CF: AFTER DB ACCESS |

Loop Call

CF: BEFORE LOOF

IF DOk-TO-FROCEED
DE-FROCESS call

CP: MORMAL STAHTUS
(EEFORE REC MAFFED TO SCREEM)

IF OkK-TO-FROCEED
poO0 1 +to CTR
CHECE CTR
FERFORM STOREKEY

| CF: HORMAL STATUS |

FERFORM MOUVE REC TO SCRELES

| CF: AFTER LOOF |

Comments: ® Because the design and functionality of many programs differ, you
often see a different subset of control points from program to
program.

® APS generates comments in your program to identify the control
points. To activate or deactivate the generation of these comments
in Online Express, access the Express Parms screen and enter yes in
the Control Points Comments field.

Reference

95

96

Example:

Reference

® The Normal Status (Before Record is Processed) control point lets
you add custom logic before looped records map to the screen. Use
this control point to map only some of the records that a loop
obtains. In your stub or macro, write conditional logic to determine
which records to map. APS provides a flag, OK-TO-PROCEED, that
you set to True to map and process the record, or False to bypass
mapping and processing. You can ignore the flag if you do not use
this control point; the flag is set to True by default. To add custom
logic after APS maps any record to your screen, use the Normal
Status control point.

Map records that show annual sales of $100,000 or more in the
Northwest region, and calculate and map the grand total of those
records. First define a loop call and qualify it to obtain the records of
$100,000 or more. Then tailor the loop call with two local stubs. The first
stub checks the records obtained by the loop to allow only records of the
Northwest region to be processed further. The second stub calculates the
grand total of those records, and maps the total to the screen.

DB- PROCCESS REC SALES- RECORD

WHERE ANNUAL- SALES- TOTAL > 99999

PERFORM CHECK- BEFORE- VAPPI NG- STUB- PARA

I F OK- TO- PROCEED
ADD 1 TO CTR
PERFORM RECORD- STOREKEY- PARA
MOVE REC- TO- SCREEN- BLK1
PERFORM CHECK- AFTER- MAPPI NG- STUB- PARA

CHECK- BEFORE- MAPPI NG- PARA
TRUE OK- TO- PROCEED
| F SALES- REGI ON NOT = NORTHWEST
FALSE OK- TO- PROCEED
CHECK- AFTER- MAPPI NG- PARA
cal cul ation and mapping routine for grand total

Note:

® The CHECK-BEFORE-MAPPING-PARA paragraph executes at the
Normal Status (Before Record is Processed) control point.

® The CHECK-AFTER-MAPPING-PARA paragraph executes at the
Normal Status control point.

Database Calls

Database Calls

Compatibility:

Description:

All targets

APS Logical View Database (DB) calls are predefined, easy-to-use
statements with common syntax that allows transparent access to a
variety of databases. The APS Logical View DB calls let you focus on
what needs to be accomplished, rather than the mechanics of the target
environment. To address environment-specific requirements, you can
extend these calls with keywords; no native coding is required. These
calls facilitate both generic processing and specialized requests.

APS supports the following database targets:

* |IDMS
* |MSDB
* SQL

® \SAM batch
® VSAM online

Code database calls in the APS Program Painter for batch, report, or
complex online programs, or in the Online Express Specification Editor
for an Express program.

IDMS DB
The APS/IDMS calls include the following:

DB-BIND Bind all records and the run-unit.
DB-CLOSE Close a record.

DB-ERASE Delete a record.

DB-GET Move data into Working-Storage.
DB-OBTAIN Read a record.

DB-OPEN Open a record.

DB-MODIFY Update a record.

DB-STORE Add a record.

DB-PROCESS Obtain and loop records.

Reference

97

98

Reference

IDM-COMMIT
IDM-CONNECT
IDM-DISCONNECT
IDM-IF
IDM-PROTOCOL
IDM-RETURN
IDM-ROLLBACK

IMS DB

Write a commit checkpoint.

Connect a record to a set.

Disconnect a record from set.

Test a conditional.

Specify the program execution mode.

Return the database key from an indexed set.

Write an abort checkpoint to an IDMS journal
file.

The APS/IMS DB calls include the following:

DB-ERASE
DB-MODIFY
DB-OBTAIN
DB-PROCESS
DB-STORE
$IM-FSA
$IM-POS

SQL

Delete a record.

Update a record.

Read a record.

Read multiple records in a loop.
Add a record.

Build a Field Search Argument.
Access Data Entry Data Bases.

The APS/SQL DB calls include the following:

DB-CLOSE
DB-COMMIT
DB-DECLARE
DB-ERASE
DB-FETCH
DB-MODIFY
DB-OBTAIN
DB-OPEN
DB-PROCESS
DB-ROLLBACK
DB-STORE

Close a cursor set.

Perform the SQL COMMIT function.
Declare a cursor set.

Delete a row.

Obtain a row from a cursor set.
Update a row.

Read a table.

Open a cursor set.

Read a table and loop on it.
Perform the SQL ROLLBACK function.
Add a record.

VSAM Online

Database Calls

The APS/VSAM online DB calls include the following:

DB-ERASE
DB-FREE
DB-MODIFY
DB-OBTAIN
DB-PROCESS
DB-STORE

VSAM Batch

Delete a record.

Release file resources.
Update a record.

Read a file.

Read a file and loop on it.
Add a record.

The APS/VSAM batch DB calls include the following:

DB-CLOSE
DB-ERASE
DB-MODIFY
DB-OBTAIN
DB-OPEN
DB-PROCESS
DB-STORE

Coding Conventions

Close a file.

Delete a record.

Update a record.

Read a file.

Open a file.

Read a file and loop on it.
Add a record.

APS Logical View DB calls can consist of a call name, keywords, and
arguments. Observe the following conventions when you code a DB

call:

® Code the call using COBOL indentation. Improperly indented calls

may cause errors.

® Argument values can be:

® Variables

® 1-to 7-digit numbers

® Lliteral strings delimited by single or double quotation marks

® Separate each call component with a space, unless indicated
otherwise in the syntax.

Reference

99

100

Related Topics:

Reference

® Never code comments within database calls. To code comments, see

Comments.

® Continue a call on as many as 101 subsequent lines by coding an
ellipsis followed by a space (...). Break a call for continuation at any
blank space, but do not break a parameter.

® Do not extend the call past column 72.

See...

Error Handling

ID Parameters

IDMS

IDMS DB Sample Programs

CCODE

Error Handling

GSAM Calls

SUPPRESS (IMS DB Option)
System Service Calls

Error Handling

Fields and Flags, Data
Communication

Variable Length File Support

Error Handling

Fields and Flags, Data
Communication

Error Handling
Expressions, SQL
Functions, SQL
GROUP BY

Joins

NULL Indicator Field
Special Registers
Subselect Clause
UNION

For more information about...

Using IDMS database calls in program
logic

Using IMS DB database calls in program
logic

Using VSAM Batch database calls in
program logic

Using VSAM Online database calls in
program logic

Using SQL database calls in program
logic

Data Communication Calls

See... For more information about...

Control Files Controlling certain target-specific
functions

Comments Entering comments in your program

Reserved Words Avoiding use of APS reserved words

Limits Recognizing size limitations

Data Communication Calls

Compatibility:

Description:

All targets

APS Logical View Data Communication (DC) calls are predefined, easy-
to-use statements that let you focus on what needs to be accomplished,
rather than the mechanics of the target environment. To address
environment-specific requirements, you can extend these calls with
keywords; no native coding is required. These calls facilitate both
generic processing and specialized requests.

APS supports the following data communication targets:
® CICS

® [MSDC

® |SPF Dialog (DLG)

® [SPF prototyping

Code data communication calls in the APS Program Painter for batch,
report, or complex online programs, or in the Online Express
Specification Editor for an Express program.

Reference

101

102

Reference

List of DC Calls

CICs

The APS/CICS DC calls include the following:

ATTR

CIC-ADDRESS
CIC-ASSIGN

CIC-CANCEL
CIC-DELAY
CIC-DELETEQ-TD

CIC-DELETEQ-TS

CIC-FREEMAIN
CIC-GETMAIN
CIC-LOAD

CIC-READQ-TD
CIC-DELETEQ-TS

CIC-RELEASE

CIC-SCHEDULE-PSB

CIC-SEND-TEXT

CIC-SERVICE-RELOAD

CIC-START
CIC-TERM-PSB
CIC-WRITEQ-TD
CIC-WRITEQ-TS

CLEAR

Override default I/0 screen field attributes at run
time.

Access CICS storage areas.

Assign values defined outside the program to a
data area in Working-Storage.

Cancel a CIC-START or CIC-DELAY.
Suspend a task.

Delete all transient data in a transient data
queue.

Delete temporary data in a temporary storage
gueue and free all storage in the queue.

Release storage acquired by a CIC-GETMAIN call.
Obtain and initialize main storage.

Load programs, tables, or maps from a resident
system library to main storage.

Read transient data from a transient data queue.

Read a temporary storage queue in main or
auxiliary storage.

Delete from main storage any programs, tables,
or maps loaded by CIC-LOAD.

Schedule an IMS PSB.

Clear the screen and unlock the keyboard before
terminating a program.

Establish addressability to a data area in the
Linkage Section following an address change in
its BLL cell.

Start a task on a local or remote system.
Terminate the currently scheduled IMS PSB.
Write transient data to a predefined data queue.

Write temporary records to a temporary storage
queue.

Move spaces to all screen fields.

CLEAR-ATTRS

LINK

RESET-PFKEY
SCRNLIST

SEND

TERM
TP-BACKOUT
TP-COMMAREA

TP-LINKAGE
TP-NULL

TP-PERFORM

XCTL

IMS DC

Data Communication Calls 103

Reset screen field attributes to their original
values.

Transfer control to a subprogram and optionally
send Commarea data.

Simulate screen invocation.

Enable the program to receive multiple screens.
Send a screen to the monitor.

Terminate the program.

ABEND the program.

Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

Handle addressability of Linkage Section records.

Move LOW-VALUES to all fields of a specified
screen.

Perform a paragraph and optionally pass
arguments.

Transfer program control to another program at
the same logical level, and send Commarea data.

The APS/IMS DC calls include the following:

ATTR

CLEAR
CLEAR-ATTRS

$IM-CHNG
$IM-CMD
$IM-GCMD
$IM-GN
$IM-GU
$IM-ISRT
$IM-PURG

Override default I/0 screen field attributes at run
time.

Move spaces to all screen fields.

Reset screen field attributes to their original
values.

Issue a change call to another IO PCB.

Issue a read of the next IMS message.
Issue a unique read of an IMS message.
Insert an IMS message.

Issue a purge for a PCB.

Reference

104

Reference

LINK
MSG-SW

RESET-PFKEY
SCRNLIST

SEND

TERM
TP-BACKOUT
TP-COMMAREA

TP-LINKAGE
TP-NULL

TP-PERFORM

ISPF Dialog

Transfer control to a subprogram and optionally
send Commarea data.

Transfer control to another program and
optionally send screen data.

Simulate screen invocation.

Enable the program to receive multiple screens.
Send a screen to the monitor.

Terminate the program.

ABEND the program.

Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

Handle addressability of Linkage Section records.

Move LOW-VALUES to all fields of a specified
screen.

Perform a paragraph and optionally pass
arguments.

The APS/ISPF Dialog DC calls include the following:

ATTR

CLEAR
CLEAR-ATTRS

DLG-ISPEXEC
DLG-ISREDIT
DLG-SETMSG
DLG-VCOPY

DLG-VDEFINE

DLG-VDELETE

DLG-VREPLACE

Override default I/0O screen field attributes at
run time.

Move spaces to all screen fields.

Reset screen field attributes to their original
values.

Invoke services through ISPEXEC calls.
Invoke services through ISREDIT calls.
Display a message on the next panel.

Copy an ISPF Dialog variable value to a COBOL
variable.

Link an ISPF Dialog variable and a COBOL
variable.

Delete an ISPF Dialog variable from the function
pool.

Move a COBOL variable value to the function
pool.

DLG-VRESET
LINK

RESET-PFKEY
SCRNLIST

SEND

TERM
TP-COMMAREA
TP-LINKAGE
TP-NULL

TP-PERFORM

XCTL

ISPF Prototyping

Data Communication Calls 105

Reset function pool variables.

Transfer control to a subprogram and optionally
send Commarea data.

Simulate screen invocation.

Enable the program to receive multiple screens.
Send a screen to the monitor.

Terminate the program.

Generate a Working-Storage record for data
that the program can send to and receive from
other programs.

Handle addressability of Linkage Section
records.

Move LOW-VALUES to all fields of a specified
screen.

Perform a paragraph and optionally pass
arguments.

Execute the LINK call.

The APS/ISPF prototyping DC calls include the following:

ATTR

LINK

MSG-SW

See RESET-PFKEY
SCRNLIST

SEND

TERM
TP-COMMAREA

See TP-PERFORM

Override default I/0 screen field attributes at run
time.

Transfer control to a subprogram and optionally
sends Commarea data.

Transfer control to another program and
optionally send screen data.

Simulate screen invocation.

Enable the program to receive multiple screens.
Send a screen to the monitor.

Terminate the program.

Generate a Linkage Section record for data that
the program can send to and receive from other
programs.

Perform a paragraph and optionally pass
arguments.

Reference

106

Related Topics

Reference

XCTL Transfer program control to another program at
the same logical level, and send Commarea data.

Coding Conventions

APS Logical View DC calls can consist of a call name, keywords, and
arguments. Observe the following conventions when you code a DC
call:

® Code the call using COBOL indentation. Improperly indented calls
may cause errors.

® Argument values can be:
® Variables
® 1-to 7-digit numbers
® Lliteral strings delimited by single or double quotation marks

® Separate each call component with a space, unless indicated
otherwise in the syntax.

® Code positional arguments in the order shown in the syntax for
each call.

® To omit a positional argument, code an asterisk (*) in its place,
except for the last argument.

® Never code comments within data communication calls. To code
comments, see Comments.

® Continue a call on as many as 101 subsequent lines by coding an
ellipsis followed by a space (...). Break a call for continuation at any
blank space, but do not break a parameter.

® Do not extend the call past column 72.

See... For more information about...
Error Handling Using CICS data
PF Key Values communication calls in

e program logic
Program Specification Blocks

TP-COMMAREA

See...

Error Handling

$IM- Data Communication Calls
Program Control Blocks, 10
System Service Calls
TP-COMMAREA

ISPF Dialog Compatibility with IMS DC,
Cics

PF Key Values
TP-COMMAREA

Comments

Control Files

Reserved Words

Limits

Data Structure Definition (DS01)

For more information about...

Using IMS DC data
communication calls in
program logic

Using ISPF Dialog data
communication calls in
program logic

Entering comments in your
program

Controlling certain target-
specific functions

Avoiding use of APS reserved
words

Recognizing size limitations

Data Structure Definition (DS01)

Category:

Description:

Comment:

APS-generated report (see Application

Reports)

The Data Structure Definition Reports displays data structure
components exactly as painted, together with the following

supplementary information.

® The Data Structure name and creation date

® The Data Structure title and date of last update

The report documents this aspect of your application to support future
maintenance and enhancement efforts.

Produce the Data Structure Definition Report from the Report
Generator, Painter Menu, or Application Painter.

Reference

107

108

Example:

REPCRT CODE: REPT APS ENTI TY REPORT FACILIY PAGE 1
CLSAPS. CLS2 07/ 18/ 92 14: 49

REPCRT CRITERI A 2

ALL MEMBERS OF LI BRARY TYPE : DS

Ghkhhhhkhhhhkhkhkhkhkhkhkkhhhhh ok k ok kk ok ok k ok k ok k ok kkkkkkkkkkkkkkkkkkkkkk kk kk kk kk kk k ok kk ok ok ok & ok & % &

LI BRARY ENTI TY
TYPE NAME STATUS REMARKS
DS APFI ELDS REPORTED
DS BATCHL REPORTED
DS com REPORTED
DS CONDATA REPORTED
DS cosT REPORTED
DS DSFRDL REPORTED
DS FORD2DS REPORTED
DS HBSPA REPORTED
DS PARTDATA REPORTED
DS PARTMSTR REPORTED
DS P2COMM REPORTED
DS RECORDL REPORTED
DS SBAPPL REPORTED
DS STRLA REPORTED
DS TOTCOST REPORTED
DS TOTCST REPORTED
DS TRAAPL REPORTED
DS TRADATA REPORTED
DS TRFI ELDS REPORTED
DS TR3RECD REPORTED
DS TREAPPL REPORTED
DS TR7APPL REPORTED
DS TR8PART REPORTED
REPCRT CODE: DSO1 APS APPLI CATI ON PAI NTER PAGE 1
DATA STRUCTURE DEFI NI TI ON REPORT 07/18/92 14: 49
CLSAPS. CLS2
SELECTI ON CRI TERI A:
APFI ELDS
R R R R R R R R R R R R R R R e RS R R E R EEEEEREEEE SRR
DATA STRUCTURE: APFI ELDS CREATED: 06/ 06/ 90
TITLE UPDATED: 06/ 06/ 90
R RS R R E R R EEEEREEEE SRR
START DATA STATEMENT LINE NO
Q0L - = = = = = m = .
8 PART- MASTER- REC 00010000
10 PM PART- NO 9(8) 00020000
10 PM NEW PART- NO 9(8) 00030000
10 PM OLD- PART- NO 9(8) 00040000
10 PM PART- SHORT- DESC X13" 0050000
10 PM UNI TS 9(8) 00060000
10 PM UNI T- BASE- PRI CE S6V2 00070000
10 PM DI MENSI ONS X(8) 00080001

Reference

Data Structures

Data Structures

Description:

Constructs:

APS lets you code reusable data structures for programs and copy
libraries, using a shorthand format in the Data Structure Painter. Or, you
can code these data structures specifically for your program in the
Program Painter. The shorthand format substitutes indentation for level
numbers and allows shorthand picture formats. The APS Generators
insert level numbers for indentation levels, expand the shorthand
formats to full COBOL formats, and insert the necessary punctuation.

Alternately, you can code data structures in the standard COBOL format.

VALUE (Data Structure) Specify a VALUE clause.

RED Specify a REDEFINES clause.

OCCURS Specify an OCCURS clause.

88 Assign a value(s) to an 88-level variable.
66 . . . RENAMES Designate a 66-level RENAMES clause.

Edit Mask Characters
Code the following COBOL edit mask characters in your data structures.

AP zZ + - * B $ 0

For example:

APS Code Generated Code
A(12) 000B Pl C A(12) 000B.
PPP999 Pl C PPP999.
Z779. 99 Pl C Z2Z79. 99
+999. 99 Pl C +999. 99.
T Pl C *%%% %%
S999PPP Pl C S999PPP.

Reference

109

110

Reference

Picture Formats

Code data structures in the Data Structure Painter format, which is a

shorthand syntax.

Format

9

99

999

9999

9(n)

9n

9&vari abl e
A

AA

AAA

A(n)

An

A&vari abl e
C

a(n)

Cn

C3

Cn-3

C&vari abl e
C&vari abl e+-3
F| FULL

H HALF

1| 1 NDEX

N

N(n)

Nn

N&vari abl e
P| PO NTER

R| REDEF| REDEFI NES

Generated COBOL

PIC 9.

PIC 99

PI C 999

PI C 9999

PIC 9(n)

PIC 9(n)

PI C 9(&vari abl e)

PIC A

PI C AA.

PI C AAA

PIC A(n).

PIC A(n).

PI C A(&vari abl e) .

PI C S9 COwP.

PI C S9(n) COWP.

PIC S9(n) COWP.

PI C S9 COWP- 3.

PI C S9(n) COWP-3.

PI C S9(&vari abl) COVP.
PI C S9(&vari abl e) COVP- 3.
PI C S9(9) COwWP.

PI C S9(4) COwWP.

I NDEX. (For [USAGE | S] | NDEX)
PIC 9.

PIC 9(n).

PIC 9(n).

PI C 9(&vari abl e) .

PO NTER.

(For COBOL/2 only:
PO NTER.])

REDEFI NES dat anane.

[USAGE | S]

Comments:

Data Structures

Format Generated COBOL
S PI C 9.

S(n) PIC S9(n).

Sn PIC S9(n).

S&vari abl e PI C S9(&vari abl e) .
SYNC SYNCHRONI ZED

V(n) PIC VI(n).

Vn PIC VI(n).

V&vari abl e PI C V9(&vari abl e) .
Wal uecl ause VALUE val uecl ause.
X PIC X

XX PI C XX.

XXX PI C XXX.

XXXX PI C XXXX.

Xn PIC X(n).

X(n) PIC X(n).

X&vari abl e PI C X(&vari abl e) .

Continuation of a format

® Application generation treats most format specifications beginning
with COBOL edit mask characters as a valid COBOL formats, and
passes them directly to the generated program. However, APS
translates an A, followed by a numeral, as follows.

A8 generates

PIC A(8).

® Enter only the level 66, 77, or 88 numbers; do not enter other level
numbers, such as 01, 05.

® Enter one data element name per line only. A data element name
can be a valid COBOL name of 1 - 30 characters, or expression
introduced by one of the Customizer default symbols.

® You can continue the data structure on multiple lines wherever a

space occurs, for example:

-------- Data Structure Painter -------
WORK1- FI ELD1 X(13)
V' 13 CHARS LONG
WORK1- FI ELD2 X(120)
VALUE " A LONG LI TERAL NAY
BE CONTI NUED ON ONE OR
MORE LI NES'

Reference

111

112

Example:

Reference

You do not need to code the word PICTURE in a picture clause. A
PICTURE clause format can be a valid COBOL format or a APS Data
Structure Painter shorthand picture format.

If you do code the PICTURE or PIC, use only valid COBOL syntax
within the PIC clause--do not use the APS shorthand picture format.

If you code the word PIC, you must follow it with valid COBOL
syntax.

APS treats the Data Structure Painter formats 99, A9, N9, S9, and V9
as valid COBOL formats and passes them directly to the generated
program (as PIC 99, PIC A9, and so on). If, however, you want the
generated COBOL to be PIC 9(9), PIC V(9), and PIC A(9), use the Data
Structure Painter formats 9(9), V(9), and A(9).

If a format includes an Customizer variable followed by additional
format syntax, use a plus sign (+) to separate the Customizer
variable from the additional syntax. During processing, APS
eliminates the plus sign and concatenates the suffix onto the syntax.
For example,

9&vari abl etV5 generates PIC 9(&vari abl e) VO(5).
Distinguish Vvalueclause from V as an implied decimal point.

® For Vvalueclause, precede the V with a space and immediately
follow it with the valueclause.

® ForV as an implied decimal point, use no space before or after
the V.

For example:

N8V4 generates PIC 9(8) VI(4).
N8 V4 generates PIC 9(8) VALUE 4.

Never code comments within Data Structure Painter constructs. To
code comments, see Comments.

The following illustrates using indentation to create level numbers.

Data Structure Painter code:

“LINE- ---cmcccmmmccaeaa- Data Structure Painter -----------
000001 PROG- SPECI FI C- WORKI NG- DATA

000002 PGWS- FI ELD1

000003 PGWS- FI ELD2

000004 PGWs- FI ELD3

Date and Time Field Edits 113

000005 PGWS- FI ELD4

000006 PGAS- FI ELD5

000007 PGAS- FI ELD6

000008 PGAB- FI ELD7 X13
000009 ... V ABCDEFGHI JKL’
000010 PG\&- FI ELD8

000011 PGAS- FI ELD9

000012 PGAS- FI ELD10 N13

Generated COBOL code:

01 PROG SPECI FI C- WORKI NG DATA.
05 PGWS- FI ELDL.
10 PGWS- FI ELD2.
15 PGWS- FI ELD3.
20 PGWS- FI ELD4.
25 PGWS- FI ELDS.
30 PGWS- FI ELDS.
35 PGWS- FI ELD7
PI C X(13)
VALUE ' ABCDEFGHI JKL' .
15 PGWS- FI ELDS.
20 PGWS- FI ELD9.
25 PGWS- FI ELD10
PIC 9(13).

Date and Time Field Edits

Category: Screen Painter feature (see Field Edits)

Description: Specify the storage format, the format and data requirements that the
end user must adhere to when entering data into a date or time screen,
and specify the format requirements for displaying the date or time.

Procedure: To assign internal, input, or output edits to a date screen, follow these
steps.

1 Access the Screen Painter, then access the Field Edit Facility. From
the Edit Selection window, select the Special Edits option.

Reference

114

Reference

2 From the Special Edits Screen Painter, select one of the following.

Option

Date--Predefined
Edits

Description

Gregorian, Julian, or system date storage
format and a predefined list of input/output
formats

Date--User-Defined Storage, input, and output date format that

Edits

you define

Time--User-Defined Storage, input, and output formats that you

Edits

define

3 Assign date edits to fields as listed in the following Predefined
Dates, User-Defined Dates, and Time Field tables or procedures.

Predefined Dates

Field
Storage Format

In/Out Format

Date Required

Error Processing

System Data
Displayed

Description and Values

Specify the internal storage format as follows.
J Julian--generates X(5)

JP Julian packed--generates 9(5) COMP-3

G Gregorian--generates X(6)

GP Gregorian packed--generates 9(6) COMP-3

If you do not specify a Storage Format, you must
select the System Data Displayed option to
capture the system date.

Select the format. All formats are valid input
formats. The field length determines if the special
characters are assigned. For example, if you select
the MM/DD/YY format, and the field length is 8,
then APS assigns MM/DD/YY to the field; if the
field length is 6, APS assigns MMDDYY to the
field.

Select to indicate that the end user must enter a
value in the field.

Select to transfer to the Error Processing window
to specify error messages and attributes when the
field fails input edits.

Select to capture the system date. Select this
option if you do not specify a storage format.

Field
Application Editing

User-Defined Dates

Field
Internal Picture

Storage Format
Input Format Output
Format

Date and Time Field Edits

Description and Values

Select to transfer to the Application Editing
window to specify your own edits in a paragraph,
subprogram, or APS rule for input or output.

Description and Values

Select to transfer to the Internal Picture window
to specify the COBOL picture characteristics.

Type the internal storage format mask, input
format mask, and output format mask. Valid
mask characters are Y (year), M (month), D (day),
and special characters if the field is not defined
numeric. Restrictions are

Y Can be 2 or 4 characters, where:
® 2 Ysindicate a numeric year, such as 93.

® 4Ysindicate a numeric century and year, such
as 1993.

M Can be 2, 3, or 9 characters, where:
® 2 Ms indicate a numeric month, such as 12.

® 3 Msindicate a short character month, such as
DEC.

® 9 Ms indicate a long character month, such as
DECEMBER.

D Can be 3 characters if you do not define Month,
otherwise it must be 2 characters, where:

® 2 Dsindicate a numeric Gregorian day, such as
30.

® 3 Dsindicate a numeric Julian day, such as
360.

The storage length must equal the Internal
Picture length. Month, day, and year must be in
the same order in both the Input and Output
Formats.

Reference

115

116

Field

Date Required

Error Processing

System Date Data

Application Editing

Time Fields

Field
Internal Picture

Storage Format

Reference

Description and Values

Example:

Storage Format YYYYMMDD

Input Format MMDDYY

Output Format MMMMMMMMM DD, YYYY

Select to indicate that the end user must enter a
value in the field.

Select to transfer to the Error Processing window
to specify error messages and attributes when the
field fails input edits.

Select one of the following.

| During input editing, insert the system
date only if the field is blank.

IR During input editing, always insert the
system date, regardless of the field
contents.

o During output editing, insert the system
date only if the field is blank.

OR During output editing, always insert the
system date, regardless of the field
contents.

Select to transfer to the Application Editing
window to specify your own edits in a paragraph,
subprogram, or APS rule for input or output.

Description

Select to transfer to the Internal Picture
window to specify the COBOL picture
characteristics.

Specify the internal storage format mask.
Valid characters are HH (hour), MM (minute),
SS (second), *s and special characters if the
field is not defined numeric. The storage
format must equal the Internal Picture length.
Seconds are optional. For example, HH:MM**

Field

Input Format and
Output Format

Input Required

Error Processing

Application Editing

System Time Data

Date and Time Field Edits

Description

Type the input and output format masks. Valid
mask characters are HH (hour), MM (minute),
SS (second), *s, and special characters if the
field is not defined numeric. Seconds are
optional.

Append your format with asterisks to indicate
the AM and PM indicators that you specify,
using a one-to-one correspondence. For
example, if your indicators are A.M. and P.M.,
you would append **** to your format; if
they are AM and PM, you would append ** to
your format.

Hours, minutes, and seconds must be in the
same order in both the Input and Output
Formats. For example:

Input Format HHMMSS
Output Format HH.MM.SS**

Select to indicate that the end user must enter
a time value in the field.

Select to transfer to the Error Processing
window to specify error messages and
attributes when the field fails input edits.

Select to transfer to the Application Editing
window to specify your own edits in a
paragraph, subprogram, or APS rule for input
or output.

Select one of the following:

| During input editing, insert the system
time only if the field is blank.

IR During input editing, always insert the
system time, regardless of the field
contents.

o During output editing, insert the

system time only if the field is blank.

OR During output editing, always insert
the system time, regardless of the field
contents.

Reference

117

118

Field Description

AM Indicator Type the AM time indicator, such as a.m. or
am.

PM Indicator Type the PM time indicator, such as p.m. or
pm.

Note: In a report mock-up, use PIC clauses instead of COBOL masks
when formatting dates and times containing / $ or :. See Report Mock-
Ups.

DB/DC Target Combinations

Description:

Reference

The following table shows all valid DB/DC combinations for generating
executable programs.

DC Target DB Target
CICs DB2
IMS
VSAM
IMS DB2
IDMS
IMS
ISPF DB2
VSAM
DLG (ISPF Dialog) IDMS
DB2
VSAM
MVS (batch) DB2

DB-BIND

DC Target DB Target
IMS
VSAM

DB-BIND

Category: Database call (see Database Calls)
Compatibility: IDMS target

Description: Bind all records copied into a program subschema via a COPY IDMS
statement; bind the run unit.
Syntax: Format 1:

DB- Bl ND REC [recor dnane]

Format 2:
DB- Bl ND RUN- UNI T
SUBSCHEMA narme| NODENAMVE narme| DBNAME nane

Parameters: DBNAME name Database name from the IDMS database name
table.

NODENAME name IDMS network node.

REC [recordname] Retrieve record. Recordname is optional because
the record is previously located by a DB-OBTAIN
REF.

RUN-UNIT Specify binding, if IDMS run unit.

SUBSCHEMA name Bind the run unit with the subschema.

Comments: ® All programs accessing IDMS databases must be bound to the run
unit.

® DB-BIND generates the IDMS command COPY IDMS SUBSCHEMA-
BINDS.

Reference

119

120

Example:

® All programs with a subschema generate a DB-BIND, but if protocol
is manual, you must code a DB-BIND REC recordname. Coding DB-
BIND overrides the automatic generation of the call.

® |f IDM-PROTOCOL MANUAL is not coded, do not code any options
with DB-BIND. APS generates a COPY IDMS RECORD recordname for
every DB-BIND REC recordname.

® No status flags are generated; paragraph IDMS-STATUS checks for
errors.

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60
SYEN | DM PROTOCOL BATCH AUTOSTATUS MANUAL

PRCC
DB- BI ND RUN- UNI T DBNAME TESTDB
DB- BI ND REC EMPLOYEE
DB- OPEN MODE RETRI EVAL
PERFORM 100- PROCESS- RTN

DB-CLOSE

Category:
Compatibility:

Description:

Reference

Syntax:

Database call (see Database Calls)
IDMS DB, SQL, and VSAM batch targets

Close IDMS files and subschema areas; close SQL cursor sets; close VSAM
batch files.

IDMS DB

DB- CLOSE ALL
VSAM Batch
Format 1:

DB- CLOSE FILE filenanel [... fil enaneN

DB-COMMIT 121

Format 2:

DB- CLCSE FILE ALL

SQL
DB- CLOSE CUR[SOR] cursornane

Parameters: ALL Specify all files and ready all areas defined in
the subschema.

CURI[SOR] cursorname Specify cursor. Cursorname must be previously
named by DB-DECLARE or DB-PROCESS-ID.

FILE filename File(s) to process.

Comments:
IDMS DB

DB-CLOSE nullifies all currencies; execute appropriate DB-BIND and
DB-OPEN calls in order to use the database again within the same
program.

® APS generates DB-CLOSE for all online programs unless the program
is a linked program or DB-CLOSE is coded.

SQL

A cursor set can be opened, processed, and closed multiple times in the
same program; you must code DB-CLOSE before you invoke another DB-
OPEN.

VSAM Batch
DB-CLOSE is required.

DB-COMMIT

Category: Database call (see Database Calls)
Compatibility: SQL target

Description: Perform database commit functions.

Reference

122

Syntax:

Parameters:

Comments:

DB- COM T [HOLD]

HOLD Do not release resources; do not close open

cursors; preserve prepared SQL statements;
release locks on specific rows acquired during
the transaction.

Any SQL program running under ISPF prototype or ISPF Dialog
generates DB2 COMMITs upon normal termination of the program (for
example, through TP-SEND, TP-XCTL, TP-TERM). In addition, APS
provides two variables you can code that generate COMMITs for DB calls
under either ISPF prototyping or ISPF Dialog.

&DB2-AUTO-COMMIT = 0. Code this variable before the NTRY call in
your program to generate a COMMIT for the following DB calls.

DB-STORE
DB-ERASE (except with WHERE or WHERE CURRENT)
DB-MODIFY (except with WHERE or WHERE CURRENT)

&TP-ISPF-DB2-COMMIT-NEEDED = 1. If you modify the NTRY call in
such a way that you need a COMMIT generated at the end of your
modification routine (for example, if you perform an update or
open a cursor), code this variable and set it to 1 before the NTRY call
in your program. You can modify NTRY by updating $TP-ENTRY
functions in the APS CNTL file APDLGIN and coding edit routines.

DB-DECLARE

Category:
Compatibility:

Description:

Reference

Database call (see Database Calls)

SQL target

Designate a set of rows as a logical group, that is, a cursor set. The call
declares:

All rows and columns in a table
All columns, from specific rows, in a table

Specific columns in a table

Syntax:

DB-DECLARE

® Specific columns, from specific rows, in a table

Format 1, unqualified, select all columns:

DB- DECLARE cursorname copyl! i bname- REC
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
[UPDATE| ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]

Format 2, qualified, select all columns:

DB- DECLARE cursorname copyl! i bname- REC
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
WHERE col urm operator [[:]altval ue]| col umm
[AND| OR col urm operator [[:]altval ue]| col unmj]
[UPDATE| ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]

Format 3, select specific columns:

DB- DECLARE cursorname copyl! i bname- REC
[DI STI NCT]
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
columl [(altvalue)] [... columN [(altval ue)]]
[WHERE col uim operator [[:]al tval ue]| col umm
[AND| OR correl nane.] col unrm operator [[:] al tval ue]| col unmj

[AND| OR correl nane.] col unrm operator [[:]al tval ue]| colum]]
[UPDATE| ORDER
columl [ASC|DESC] [...columN [ASC| DESC]]]

Format 4, join columns from two or more tables:

DB- DECLARE cursorname correl nane. copyl i bname- REC
[DI STI NCT]
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
[columl [(altvalue)] [... columN [(altvalue)]]l]
[correl nane. copyl! i bname- REC
[columl [(altvalue)] [... columN [(altvalue)]]]

Reference

123

124

Parameters:

Reference

. [WHERE correl name. col unm oper at or
[:]al tval ue| correl nane. col unm
[AND| OR correl nane. col unm oper
[:]al tval ue| correl nane. col unmj

. [AND| OR correl nane. col unm oper at or
[:]al tval ue| correl nane. col]]
[ORDER
columl [ASC|DESC] [...columN [ASC| DESC]]]

Format 5, specify a UNION:

DB- DECLARE cursorname copyl! i bname- REC
[DI STI NCT]
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
[columl [(altvalue)] [... columN [(altvalue)]]]
[WHERE col uim operator [[:]al tval ue]| col umm
[AND| OR col urm operator [[:]altval ue]| col unm]

. [AND| OR col urm operator [[:]altvalue|]colum]]
UNI ON [ALL]
DB- OBTAI N REC copy! i bname- REC

. [ORDER

columl [ASC| DESC] [...colummN [ASC| DESC]]]
[:1(altvalue) Alternate value; can be a literal, column

name, or host-variable, as follows.

® A host-variable is any COBOL data
item referenced in your APS/SQL
code; can a be data item generated
automatically by APS/SQL to match a
DB2 column name.

AND col op col|[:]1altval

copylibname-REC

correlname.

cursorname

DISTINCT

FETCH ONLY

OPTIMIZE number

OR col op col|[:]altval

DB-DECLARE 125

® An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

Value can be a literal or data name. See
also the altvalue parameter above.

Copybook library name of source data.

Correlation name; maximum 18
characters, ending with a period.
Required if columnname is in a select list
or if the WHERE clause appears in
multiple joined tables.

Cursor name (maximum 12 characters)
must be unique, and cannot be the same
as the subschema copylib names.

Eliminate all but one row from each set
of duplicate rows. Duplicate rows have
identical selected columns from the
results table.

Specify that the table is read-only and
therefore the cursor cannot be referred
to in positioned UPDATE and DELETE
statements. Do not code in a call that
contains an UPDATE clause.

Specify estimated maximum number of
rows that call will retrieve. If the call
retrieves no more than number rows,
performance could be improved.
Specifying this keyword does not prevent
all rows from being retrieved.

Value can be a literal or data name. See
also the altvalue parameter above.

Reference

126

Comments:

Reference

ORDER [ASC|DESC] [colT colN] Sort the results table in ascending

UPDATE col1 colN

WHERE col op [:]altval

WITH HOLD

(default) or descending order, based on
the values in the columns specified.
Specify the column either by name or by
relative position in the column selection
list. Specify at least one column. Do not
code with UPDATE.

Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you code UPDATE first. Do
not code UPDATE with UNION, DISTINCT,
GROUP BY, or if call specifies a join or
selects column functions.

Column is the column on which to qualify
the selection. Operator can be =, A=, >, <,
>=, <=, native SQL predicates (such as
LIKE and BETWEEN). See also the altvalue
parameter above.

Prevent the closing of a cursor as a
consequence of a commit operation. See
also "Comments" below.

® Declare a cursor before coding a DB-OPEN or DB-FETCH call.

® Because a declared cursor name is referenced by all subsequent calls
for that cursor, code UPDATE to specify which columns can be
modified; otherwise columns cannot be modified in subsequent

cursor processing.

® When specifying columns for sorting, identify them either by name
or position in the selection list; do not mix references.

® When you code WITH HOLD, a commit operation commits all the
changes in the current unit of work, but releases only locks that are
not required to maintain the cursor. Afterwards, you must code an
initial DB-FETCH before you can execute a positioned update or
delete. After the initial DB-FETCH, the cursor is positioned on the
row following the one it was positioned on before the commit

operation.

® The WITH HOLD clause is ignored in CICS and IMS DC.

Examples:

DB-DECLARE

Declare cursor set D2MAST-CURSOR; define to include all rows and
columns in D2MASTER table; allow updating for PM_COLOR and
PM_NEW_PART_NO columns.

DB- DECLARE D2MAST- CURSOR D2TAB- REC
UPDATE PM COLOR PM NEW PART_NO

Declare cursor set consisting of entire rows selected by evaluating two
columns; if duplicate rows, select only one row where
PM_PART_SHORT_DESC equals Working-Storage variable
WS_PART_SHORT_DESC and PM_UNIT_BASE_PRICE is greater than 10
and less than 50.

DB- DECLARE D2MAST- CURSOR D2TAB- REC
DI STI NCT
WHERE PM PART SHORT_DESC =
. WB- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE BETWEEN 10 AND 50

Declare cursor and define its set to include two columns; select only
rows that meet selection criteria; for column PM_PART_NO, move data
to default destination; for column PM_COLOR, move data to alternate
host-variable WS-COLOR.

DB- DECLARE D2MAST- CURSOR D2TAB- REC
PM _PART_NO
PM_COLOR (V8- COLOR)
WHERE PM PART SHORT_DESC =
: WB- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE BETWEEN 10 AND 50

Declare cursor and define its set to include two columns; select only one
row that meets selection criteria. Sort columns by position within
selection list; sort cursor first by PM_COLOR (second column in selection
list), then within PM_COLOR by PM_PART_NO (first column).

DB- DECLARE D2MAST- CURSOR D2TAB- REC
DI STI NCT
PM_PART_NO PM COLOR
WHERE PM PART SHORT_DESC =
. WB- PART- SHORT- DESC
ORDER 2, 1

Declare a cursor set to include three columns drawn from two separate
select statements, UNIONed together. Select two columns from D2TAB-
REC and one column from D2INVEN-REC in the first UNION. Base
selection criteria on PM_PART_NO matching IN_PART_NO, with

Reference

127

128

PM_COLOR equal to the Working-Storage field WS-COLOR and IN-
COLOR equal to '‘BLUE’.

Select three columns from D2TAB-REC in the second UNION. Base
selection criteria on PM_COLOR not equal to '‘BLUE’' and PM_UNITS less
than 50. Sort the result table (consisting of rows returned from both
select statements) by PM_PART_NO within PM_COLOR.

DB- DECLARE JO N- CUR A. D2TAB- REC
DI STI NCT
PM_PART_NO PM COLOR
B. D21 N\VEN_REC | N_QTY_ONHAND
WHERE A. PM_PART_NO = B. | N_PART_NO
AND A. PM_COLOR = : W8- COLOR
AND B.IN_COLOR = ' BLUE
... UNION
DB- OBTAI N REC D2TAB- REC
PM_PART_NO PM COLOR PM UNI TS
WHERE PM COLOR ~= ' BLUF’
AND PM UNI TS < 50
ORDER 1 ASC, 2 ASC

DB-ERASE

Category: Database call (see Database Calls)

Description: Delete a record or records.
Under IDMS, the call deletes:
® Record from all sets in which it participates as a member
® Record from database
® Mandatory and optional member records
Under IMS, the call deletes:
® Record and all dependent segments

® Record obtained by a path call DB-OBTAIN

Reference

DB-ERASE

Under SQL, the call deletes:
® Allrows in a table
® Specific row in a table

® Cursor set rows

Under VSAM, the call deletes:

® Record(s) specified by key qualification via DB-OBTAIN (key
qualified)

® Record retrieved by DB-OBTAIN or DB-PROCESS (unqualified)

Syntax: IDMS DB
DB- ERASE REC recordnanme [PERM SELECT| ALL]

IMS DB
Format 1:

DB- ERASE REC segnent [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

Format 2:, records obtained by path calls:

DB- ERASE REC| REF segnent 1 [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]
REC| REF segnent 2 [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

. REC segnent N [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

SQL
Format 1:
DB- ERASE REC copy! i bnanme- REC

[WHERE col unm operator [:]altval ue
[AND| OR col urm operator [:]al tval ue

AND| OR col unm operator [:]altval ue]]

Reference

129

130

Parameters:

Reference

Format 2:

DB- ERASE REC copy! i bnanme- REC
[WHERE CURRENT [OF] cursornane]

VSAM Batch

Format 1, key-qualified:

DB- ERASE REC recor dnane
WHERE pri marykeyname = val ue
[SUB val ue] [OF dat aar ea]

Format 2, unqualified:

DB- ERASE REC recor dnane

VSAM Online

Format 1, key-qualified:

DB- ERASE REC recor dnane
WHERE pri mar ykeyname = val ue
[SUB val ue] [OF dataarea]l [KLEN val ue]
[SYSI D systemnmane] [DDN ddnane]

Format 2, unqualified:

DB- ERASE REC recor dnane

[:1(altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

® A host-variable is any COBOL data
item referenced in your APS/SQL
code; can a be data item generated
automatically by APS/SQL to match a
DB2 column name.

® An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

® Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

ALL

AND col op [:]altval

DDN ddname

FROM dataarea

IMSREC segmentname

KLEN value
or
KEYLENGTH value

OF dataarea

OR col op [:]altval

PCB pcbname

DB-ERASE 131

Same as PERManent, but delete all
optional records.

Value can be a literal or data name. See
also the altvalue parameter above.

File data description name; supply a value
to the name option of CICS DATASET
option. Ddname can be a literal or data
name defined as PIC X(8).

Alternate I/O area where program
deletes, modifies, or adds a record.
Required for a record obtained from an
I/O area other than the default I/O area,
such as by DB-OBTAIN INTO. See also
"Comments" below.

Specify that the segment name
(maximum 8 characters) is in a Working-
Storage variable for the program to read,
modify, add, or delete.

Specify number or characters in key
length; full or partial length is valid.
Value can be a number or a data name
defined as PIC 5S9(4) COMP. APS generates
the CICS GENERIC option for a partial key
length.

Qualify the 1/0 area moving to the value
field, when more than one structure in
the Data Division contains the field.
Optionally code IN instead of OF.

Value can be a literal or data name. See
also the altvalue parameter above.

Synonymous with VIEW. Specify PCB used
when PSB contains multiple PCBs for the
same database.

Reference

132

Comments:

Reference

PERM[ANENT]

SELECTI[IVE]

SUB[SCRIPT] (value)

SYSID systemname

VIEW pcbname

WHERE col op [:]altval

WHERE primarykey = val

WHERE CURRENT [OF] cursor

IDMS DB

Disconnect optional records and delete
® Named record

® Mandatory member records owned
by the named record

® Mandatory member records, if a
mandatory member record is an
owner

Same as PERMANENT, but delete optional
records if they are not members of
another set.

Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online,
an integer.

Process records stored on remote systems.
Name a file residing in a remote data set.
Systemname can be a 4-character literal
region name or a Working-Storage field
containing a 4-character region name.

Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.

Not valid for cursor processing. Column is
the column on which to qualify the
selection. Operator can be =, A=, >, <, >=,
<=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.

Valid for cursor processing only. Act upon
the row retrieved from cursor.

Record to be deleted must be current of run unit.

Examples:

DB-ERASE

IMS DB

® DB-ERASE assumes record retrieval from the default I/0 area. If this
is not true, you must code FROM dataarea.

® \When arecord is obtained from a PCB other than the default PCB,
such as by DB-OBTAIN with VIEW or PCB, you must code VIEW
pcbname.

® Specify every segment down to the first segment being deleted for
records obtained by path calls. That is, every record named in an DB-
OBTAIN preceding an ERASE must be named in the DB-ERASE, also.

IDMS DB

Record type ORDER is current of run unit. Delete it from the database;
disconnect it from all set occurrences in which the record participates;
delete all mandatory and optional member records.

DB- ERASE REC ORDER ALL

IMS DB

Delete only RECORD-B and RECORD-C. First, issue the following DB-
OBTAIN call.

DB- OBTAI N REC RECORD- A WHERE KEY- A = VALUE- A
REC RECORD- B WHERE KEY-B = VALUE-B
REC RECCORD- C WHERE KEY-C = VALUE-C HOLD

Then, name all segments accessed by the prior path call DB-OBTAIN.
Because the children of a deleted segment are also deleted, there is no
need to code beyond the highest level segment being deleted
(RECORD-B).

DB- ERASE REF RECORD- A
REC RECORD- B
REC RECORD-C

SQL

Delete any row in table D2MASTER where PM_PART_NO equals 123 or
567.

DB- ERASE REC D2TAB- REC
WHERE PM_PART_NO = ' 123’
OR PM_PART_NO = ' 567’

Reference

133

134

VSAM Batch

Delete a record where ORDR-NUMBER equals the value in the Working-
Storage variable CUST-ORDR-NUMBER.

DB- ERASE REC ORDR- RECORD
WHERE CRDR- NUMBER = CUST- ORDR- NUMBER

Read a CUST-RECORD for deletion.

DB- OBTAI N REC CUST- RECORD

WHERE CUST- KEY = SCREEN- CUST- KEY
I F OK-ON- REC

DB- ERASE REC CUST- RECORD

VSAM Online

Delete a group of ORDR-RECORD records; use partial key length. For
successful deletes, store the number of actual records in APS data field
APS-VSAM-NUMREC.

DB- ERASE REC ORDR- RECORD
WHERE CORDR- NUMBER = SCREEN- PARTI AL- CRDR- NUMBER
... KLEN 6
IF OK-ON-REC
SCREEN- MSG =
" ORDER RECORDS DELETED, NUMBER ORDERS =’
SCREEN- NBR- RECS = APS- VSAM NUMREC

Hold a CUST-RECORD for deletion.

DB- OBTAI N REC CUST- RECORD
WHERE CUST- KEY = SCREEN- CUST- KEY
HOLD

I F OK-ON- REC
DB- ERASE REC CUST- RECORD

DB-FETCH

Category:

Compatibility:

Reference

Database call (see Database Calls)

SQL target

Description:

Syntax:

Parameters:

Comments:

Example:

DB-FREE

Sequentially retrieve rows from the cursor set defined by DB-DECLARE.

DB- FETCH CUR[SOR] cursor nane
[| NTO dat anane]

CURI[SOR] cursorname Specify cursor. Cursorname must be
previously named by DB-DECLARE or DB-
PROCESS-ID.

INTO dataname Move host variable structure into the

alternate data structure data name. Data
moves after the actual SQL call via a MOVE
statement. Generated code is:

| F OK- OV REC
MOVE host nane TO dat anane

® \When you define a cursor set with DB-DECLARE, SQL places the
selected rows in a results table, or cursor set. DB-FETCH retrieves
these rows.

® Fach DB-FETCH returns the next row of the cursor set until the end
of the results table is reached. The row returned by the current
iteration of DB-FETCH is the current row.

® You can code DB-FETCH within an S-COBOL loop to retrieve multiple
rows from a cursor set.

® To FETCH into individual columns, specify those alternate host
variables in DB-DECLARE.
® Retrieve columns and rows in cursor set D2MAST-CURSOR; place

information into WS-D2MAST-RECORD in Working-Storage.

DB- FETCH CURSCOR D2NMAST- CURSCR
I NTO W&- D2 VAST- RECORD

DB-FREE

Category:

Compatibility:

Database call (see Database Calls)

VSAM online target

Reference

135

136

Description:

Syntax:

Parameters:

Comments:

Reference

Release file resources and:
® End asequential DB-OBTAIN browse.

® Unlock a held record (a record held by a DB-OBTAIN HOLD) when
DB-OBTAIN is not followed by DB-MODIFY or DB-ERASE.

DB- FREE REC recordnanme| ALL
[VI EW keynane]
[ENDBR] [UNLCCK] [REQ D nunber]
[SYSI D systemmane] [DDN ddnane]

ALL Process all subschema records. When coded with
SYSID, all files must reside on the same region.

DDN ddname Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to the
name option of CICS DATASET.

ENDBR End active browse; generate CICS ENDBR
command. See also "Comments" below.

REC recordname COBOL record to process.

REQID number Unique browse identifier for performing a
simultaneous browse on the same key; is a single
integer (0 - 9). Assign &V/S-ENDBR-CONTROL =
"USER" in the APS CNTL file APVSAMIN.

SYSID systemname Remote system name (maximum 4 characters);
can be a literal region name or a Working-
Storage field.

UNLOCK Unlock file; generate CICS UNLOCK command.
See also "Comments" below.

VIEW keyname Specify primary or alternate key.

® UNLOCK and ENDBR are default keywords. De-activate as follows.
® Coding only ENDBR makes UNLOCK inactive.
® Coding only UNLOCK makes ENDBR inactive.

® When ALL is coded and UNLOCK and ENDBR are active, a single DB-
FREE call (located in a central paragraph) works for the entire
program. Note Code ALL only when &VS-ENDBR-CONTROL = "APS"
(found in the APS CNTL file APVSAMIN).

Examples:

DB-GET

Release a record held by a direct DB-OBTAIN; deactivate ENDBR.

DB- OBTAI N REC ORDR- RECORD
WHERE ORDR- NUMBER = SCREEN- ORDR- NUVBER
HOLD

DB- FREE REC ORDR- RECORD UNLOCK

Terminate a sequential DB-OBTAIN; specify the key used; deactivate
UNLOCK.

DB- OBTAI N REC CUST- RECORD
VI EW CUST- NUMBER

DB- FREE REC CUST- RECORD
VI EW CUST- NUMBER ENDBR

DB-GET

Category:

Compatibility:

Description:

Syntax:

Parameter:

Example:

Database call (see Database Calls)
IDMS DB target

Move data from a previously located record (via a DB-OBTAIN REF) into
Working-Storage.

DB- GET REC [recordnane]

recordname Retrieve record. Recordname is optional because
the record is previously located by a DB-OBTAIN
REF.

Record type ORDER is current of record type. After a successful DB-GET
make ORDER data available to the program Working-Storage.

DB- GET REC ORDER

Reference

137

138

DB-MODIFY

Category: Database call (see Database Calls)

Description: Modify a record.

Under IDMS DB, the call rewrites the object record in the database from
Working-Storage.

Under SQL, the call updates row contents in a table or cursor set, as
follows.

® Allrows in a table

® Specific rows in a table

® Specific columns in a table

® Specific columns of a specific row

® Cursor set rows

Syntax: IDMS DB
DB- MODI FY REC recordnane

IMS DB

DB- MODI FY
REC| REF recordnanel [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

. REC| REF recordnaneN [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

SQL

DB- MODI FY REC copy! i bname- REC
[columl [(altvalue)] [... columN [(altvalue)]]l]
[FROM dat anane]
[WHERE col utm1 operator [:] al tval ue

Reference

Parameters:

DB-MODIFY

AND| OR col unmN operator [:] al tval ue]

[END[WHERE]]]

[WHERE CURRENT [OF]

VSAM Batch

cur sornane]

DB- MODI FY REC recordnanme [FROM dat aar ea]

VSAM Online

DB- MODI FY REC recordnanme [FROM dat aar ea]

[SYSI D syst emane]

[:1(altvalue)

AND col op [:]altval

DDN ddname

END[WHERE]

[DDN ddnane]

Alternate value; can be a literal, column
name, or host-variable, as follows.

A host-variable is any COBOL data
item referenced in APS/SQL code; can
a be data item generated by APS/SQL
to match DB2 column name.

linstruct APS/SQL to use an alternate
variable instead of the variable
automatically generated for a column.
If you name alternate host-variables
for specific columns, do not code
FROM, which names an entire
alternate host structure.

Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

Value can be a literal or data name. See
also the altvalue parameter above.

Specify file ddname; can be a literal or
data name defined as PIC X(8). Supply a
value to the name option of CICS
DATASET.

Terminate a WHERE clause. Required if
you code WHERE before FROM.

Reference

139

140

Reference

FROM dataarea

FROM dataname

IMSREC segmentname

OR col op [:]altval

PCB pcbname

REC
copylib-REC

REC recordname

REF recordname

SYSID systemname

VIEW pcbname

Alternate I/O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an 1/O area other
than the default I/O area, such as by DB-
OBTAIN INTO.

Move alternate data structure to the host
variable structure name. Data moves prior
to the actual SQL call via MOVE
statement.

Preferred format is to code FROM before
WHERE, otherwise you must separate the
WHERE and FROM with ENDWHERE. See
also "Comments" below.

Specify that the segment name (maximum
8 characters) is in a Working-Storage
variable for the program to read, modify,
add, or delete.

Value can be a literal or data name. See
also the altvalue pararameter above.

Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

COBOL record or IMS segment to process.

Specify a COBOL record to reference.
Under IMS, the program uses the
referenced segment for navigating the
database. See also "Comments" below.

Remote system name (maximum 4
characters); can be a literal region name
or a Working-Storage field.

Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.

DB-MODIFY 141

WHERE col Not valid for cursor processing. Column is

op [:]altval the column on which to qualify the
selection. Operator can be =, A=, >, <, >=,
<=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE CURRENT [OF] cursor Valid for cursor processing only. Act upon
the row retrieved from cursor.

Comments: IDMS DB

The object record must be current of run unit. If a CALC key is modified,
the object record can be accessed by the new CALC key value.

IMS DB

® The record must be retrieved and held by a DB-OBTAIN or DB-
PROCESS call before it can be modified.

® DB-MODIFY assumes record retrieval is from the default I/O area. If
it is not, code FROM dataarea.

® \When arecord is not obtained from the default PCB, such as by DB-
OBTAIN with VIEW or PCB, code VIEW pcbname.

® To modify records obtained by a path call DB-OBTAIN, specify every
segment obtained in the path. To specify that a segment is not
modified, code REF.

VSAM Batch and Online

Before modifying a record, retrieve it with a DB-OBTAIN or DB-PROCESS
call.

Examples: IDMS DB

Rewrite record type ORDER, which is current of run unit, from Working-
Storage.

DB- MODI FY REC ORDER

IMS DB
Modify only RECORD-C.

DB- OBTAI N REC RECORD- A VWHERE KEY- A = VALUE- A
REC RECORD-B VWHERE KEY-B = VALUE-B

Reference

142

Reference

REC RECORD- C WHERE KEY-C = VALUE-C HOLD
DB- MODI FY REF RECORD- A

REF RECORD- B

REC RECORD-C

SQL

Update specific columns of specific rows using selection criteria and
alternate data from different areas for each column.

DB- MODI FY REC D2TAB- REC
PM_UNI T_BASE_PRI CE (25. 99)
PM_UNI TS (: WS- UNI TS)
WHERE PM PART SHORT DESC = ' W DGET’
AND PM COLOR = ' RED
AND PM UNI T_BASE_PRI CE < 50

VSAM Batch

Hold CUST-RECORD for modification; specify an alternate storage area
to contain the data that updates the record.

DB- OBTAI N REC CUST- RECORD
WHERE CUST- NUMBER = SCREEN- CUST- NUVBER
IF OK-ON-REC
DB- MODI FY REC CUST- RECORD
FROM CUST- RECORD- UPDATE- AREA

VSAM Online

Hold CUST-RECORD for modification; specify an alternate storage area
to contain the data that updates the record.

DB- OBTAI N REC CUST- RECORD
WHERE CUST- NUMBER = SCREEN- CUST- NUVBER
HOLD
IF OK-ON-REC
DB- MODI FY REC CUST- RECORD
FROM CUST- RECORD- UPDATE- AREA

DB-OBTAIN

DB-OBTAIN

Category:

Description:

Database call (see Database Calls)

Read and retrieve a database record.

Under IDMS DB, DB-OBTAIN:
® Retrieves or finds a record stored within an IDMS database
® Moves a record into Working-Storage

® Establishes currency for a given record type

Under IMS, DB-OBTAIN retrieves segments at any level and performs:
® Qualified and unqualified record retrievals

® Retrieval of records qualified on multiple fields (Boolean
qualification)

® Retrieval of records qualified on secondary indices composed of
more than one field

® Compound calls

® Path calls

® Hold segments for modification or deletion
® Current positioning

® Reset positioning

® First/last qualification

® Naming of an alternate I/O area that a record is read into or stored
from

® Retrieval of segments using concatenated key qualification
Under SQL, DB-OBTAIN:

® Selects an entire row qualified on one column

® Selects an entire row qualified on multiple columns

® Selects specific columns from a row

Reference

143

144

Reference

Syntax:

® Names an alternate data name into which the host-variable
structure is moved

® Joins columns from more than one table
® Specifies a union

Under VSAM, DB-OBTAIN:
® Reads records from a file

® Provides a starting point in a file that meets specified key criteria in
the call

® Reads calls sequentially, in ascending key order (sequential DB-
OBTAIN)

® Reads a record based upon specified key criteria (direct DB-OBTAIN)

® Positions a file for a sequential DB-OBTAIN, based upon key criteria
(positional DB-OBTAIN)

IDMS DB
Format 1, based on a CALC key or an indexed or sorted set:

DB- OBTAI N REC| REF recordnane
WHERE keyname = val ue [NEXT]
[HOLD] [EXCLUSI VE]

Format 2, where the most recently retrieved occurrence of a record type
is current of run unit:

DB- OBTAI N REC| REF recordnanme CURRENT
[HOLD] [EXCLUSI VE]

Format 3, where the most recently retrieved occurrence of any record in
the set or area is current of run unit:

DB- OBTAI N REC| REF | DMSREC
SET set nane| AREA areaname CURRENT
[HOLD] [EXCLUSI VE]

Format 4, based on database address:

DB- OBTAI N REC| REF | DMSREC| r ecor dnane
WHERE DBKEY = val ue
[HOLD] [EXCLUSI VE]

DB-OBTAIN

Format 5, where the set owner is obtained when record is unknown:

DB- OBTAI N REC| REF | DMSREC
SET set nanme OANER
[HOLD] [EXCLUSI VE]

Format 6, based on a CALC key or an indexed or sorted set, using a valid
operator:

DB- OBTAI N [REF recordnanel]l REC| REF recordnanme2
WHERE sort key operator val ue
[SET setnanme [RESET]]| [RESET]
[HOLD] [EXCLUSI VE]

Format 7, based on position within set:

DB- OBTAI N [REF recordnanel]l REC| REF recordnanme2
[SET set nane]
[WHERE SEQUENCE = nunber | FI RST| LAST| PREV| NEXT]
[HOLD] [EXCLUSI VE]

Format 8, based on position within the set when the record is unknown:

DB- OBTAI N REC| REF | DMBREC SET set nane| AREA areanane
[WHERE SEQUENCE = nunber| Fl RST| LAST| PREV| NEXT]
[HOLD] [EXCLUSI VE]

Format 9, based on position within area:

DB- OBTAI N REC| REF recordnane [AREA ar eanane]
[WHERE SEQUENCE = nunber | FI RST| LAST| PREV| NEXT]
[HOLD] [EXCLUSI VE]

IMS DB
Format 1, unqualified:

DB- OBTAI N REC recordnanme [HOLD] [RESET]

Format 2, qualified:

DB- OBTAI N REC recordnane
WHERE fi el dnanmel operator val ue
[AND| OR fi el dnanme2 oper at or val ue [Fl RST| LAST]
[| NTO dat aar ea]

[AND| OR fi el dnameN oper at or val ue] [FlRST| LAST]
[NTO dataareal [HOLD|]] [RESET]

Reference

145

146

Reference

Format 3, qualified on secondary index values:

DB- OBTAI N REC recordnane
WHERE fi el dname operator (valuel [... valueN)
[| NTO dat aar ea]
[FI RST| LAST] [HOLD] [RESET]

Format 4, qualified compound retrieval:

DB- OBTAI N REF segnent nanel WHERE fi el dnanel operat or val ue
REC| REF segnent name2 WHERE fi el dname2 oper at or val ue

[REC segnment nameN WHERE fi el dnameN oper at or val ue
[FI RST| LAST] [HOLD]]
[RESET]

Format 5, retrieve next segment:

DB- OBTAI N NEXT[REC] | NTO dat aar ea
... VI EW pcbnanme| PCB pcbname [HOLD] [RESET]

Format 6, retrieve segment specified in program at run time:

MOVE '’ segnment nane’ TO segnent nane
DB- OBTAI N | MSREC segnent nane FROM dat aar ea
VI EW pcbnane| PCB pcbnane

Format 7, retrieve dependent of current record:

DB- OBTAI N REF recordnanmel CURRENT
REC recordnane2 [WHERE fi el dname oper at or val ue]

Format 8, retrieve segment from PSB with multiple PCBs:

DB- OBTAI N REC recordnane
[WHERE fi el dnanme operator val ue]
VI EW pcbnane| PCB pcbnane

Format 9, retrieve qualified or subscripted field:

DB- OBTAI N REC recordnane
WHERE keynane operator fiel dname
OF dat aarea| SUB (nunber)

Format 1, retrieve dependent record via concatenated key:

DB- OBTAI N REC recordnane CKEYED dat anane

DB-OBTAIN

Format 1, qualified, select all columns:

DB- OBTAI N REC copy! i bname- REC
WHERE col urm operator [:] al tval ue| col um
[AND| OR col urm operator [:] al tval ue| col unmj

[AND| OR col urm operator [:] al tval ue| col unmj
[| NTO dat anane]

Format 2, unqualified, select all columns:

DB- OBTAI N REC copy! i bname- REC
[| NTO dat anane]

Format 3, join all columns from two tables:

DB- OBTAI N REC correl nanel. copyl! i bname- REC
REC correl nanmeN. copyl i bname- REC
[WHERE cor rel nanme. col utm oper

[:]al tval ue| correl nane. col unm
[AND| OR correl nane. col unm op

[:]al tval ue| correl nane. col unmj

[AND| OR correl nane. col unm oper
[:]al tval ue| correl nane. col]]

Format 4, select specific columns:

DB- OBTAI N REC copy! i bname- REC [DI STI NCT]
columl [(altvalue)] [... columN [(altval ue)]]
[WHERE [correl nane.] col unm operator [:] altval uel col urmj

VSAM Batch
Format 1, sequential:

DB- OBTAI N REC recordnane
[VI EW keynanme] [|INTO dataarea]l [RESET]

Format 2, direct:

DB- OBTAI N REC recordnane
WHERE keyname oper ator val ue [SUB val ue]
[OF dataarea]l [|NTO dataareal

Reference

147

148

Parameters:

Reference

Format 3, positional:

DB- OBTAI N REF recordnane
WHERE keyname oper ator value [SUB val ue] [OF dat aarea]

VSAM Online

Format 1, sequential:

DB- OBTAI N REC recordnane
[VI EW keynane] [|NTO dat aar ea]
[HOLD] [PREV] [REQ D nunber] [RESET]
[SYSI D systemnmane] [DDN ddnane]

Format 2, direct:

DB- OBTAI N REC recordnane
WHERE keyname oper ator val ue [SUB val ue]
[OF dataarea]l [|NTO dataarea]l [KLEN val ue]
[HOLD] [REQ D nunber]
[SYSI D systemnmane] [DDN ddnane]

Format 3, positional:

DB- OBTAI N REF recordnane
WHERE keyname operator value [SUB val ue] [OF dat aarea]
[KLEN val ue]l [RESETBR] [REQ D number]
[SYSI D systemnmane] [DDN ddnane]

[:1(altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

® A host-variable is any COBOL data item
referenced in your APS/SQL code; can a
be data item generated automatically
by APS/SQL to match a DB2 column
name.

® An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

® If you name alternate host-variables for
specific columns, do not code INTO,
which names an entire alternate host
structure.

AND col op xol|[:]altval

AREA areaname

CKEYED dataname

correlname.

CURRENT

DBKEY=value
DDN ddname

DISTINCT

EXCLUSIVE

FIRST

DB-OBTAIN 149

® Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

Value can be a literal or data name. See also
the altvalue parameter above.

IDMS area name.

Single data area containing concatenated
key information.

Correlation name (maximum 18 characters);
end with a period. Required if columnname
is in a select list or if the WHERE clause
appears in multiple joined tables.

Under IDMS DB, process the last record of
the type accessed. See also "Comments”
below.

Under IMS DB, establish positioning at the
specified dependent of the current,
previously-read parent.

Assign value to DB key.

Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to
the name option of CICS DATASET.

Eliminate all but one row from each set of
duplicate rows. Duplicate rows have
identical selected columns from the results
table.

IDMS keep exclusive; place an exclusive lock
on the record.

Under IDMS DB, retrieve the first record in
the set.

Under IMS DB, establish positioning at the
first occurrence of the specified segment;
generate IMS code F.

Reference

150

FROM dataarea

HOLD

IDMSREC

IMSREC segmentname

INTO dataarea

INTO dataname

KLEN value
or
KEYLENGTH value

LAST

Reference

Alternate I/O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an I/O area other
than the default I/O area, such as by DB-
OBTAIN INTO.

Hold a record for modification or deletion.
Code only once, at end of call. Do not code
with PREV or KLEN. See also "Comments"
below.

Under IDMS DB, keep DML; place an explicit
shared lock on the record.

Retrieve IDMS record; do not specify a
record name.

Specify that the segment name (maximum 8
characters) is in a Working-Storage variable
for the program to read, modify, add, or
delete. See also "Comments" below.

Specify I/0O area where the program reads a
record.

Move host variable structure into the
alternate data structure dataname. Can
code before or after WHERE.

Data moves after the actual SQL call via a
MOVE statement. Generated code:

| F OK- ON- REC
MOVE host nanme TO dat anane

Specify number or characters in key length;
full or partial length is valid. Value can be a
number or a data name defined as PIC S9(4)
COMP. APS generates the CICS GENERIC
option for a partial key length. Do not use
with HOLD.

Under IDMS DB, retrieve last record in set.

Under IMS DB, establish positioning at the
last occurrence of the specified segment;
generate IMS code L.

NEXT

OF dataarea

OR col op col|[:]altval

OWNER
PCB pcbname

PREV[IOUS]

REC copylib-REC

REC recordname

REF recordname

REQID number

DB-OBTAIN 151

Under IDMS DB, retrieve next record in the
set (default).

Under IMS DB, sequentially read forward in
database.

Qualify the 1/0 area moving to the value
field, when more than one structure in the
Data Division contains the field. Optionally
code IN instead of OF.

Value can be a literal or data name. See also
the altvalue parameter above.

Specify owner record.

Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. Must be last
keyword in call. See also "Comments"
below.

Perform a reverse sequential browse
starting at the last record in file. Do not
code with HOLD or KLEN.

Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Copybook library name of
source data. Cannot be the same as any
cursor names or DB-PROCESS-ID names. See
also "Comments" below.

COBOL record or IMS segment to process.

Specify a COBOL record to reference. Under
IMS, the program uses the referenced
segment for navigating the database. See
also "Comments" below.

Unique browse identifier for performing a
simultaneous browse on the same key; is a
single integer (0 - 9). Assign &VS-ENDBR-
CONTROL = "USER" in the APS CNTL file
APVSAMIN.

Reference

152

Reference

RESET

RESETBR

SEQUENCE = number

SET setname

SUB[SCRIPT] (value)

SYSID systemname

VIEW keyname
VIEW pcbname

WHERE column op [:]altval

WHERE fld|key op val|fld

Reset database or file positioning to the
beginning. Code only once, at end of call.
Code with PREV or KLEN, to reset file
position to end.

Alternate reset method: prior to retrieving
under VSAM Batch or Online, set RESET-
OBTAIN flag to TRUE; under IMS DB, set
RESET-POSITION flag to TRUE.

Reset active browse on key name; generate
CICS RESETBR.

Specify sequence number.

Specify IDMS set name. See also
"Comments" below.

Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online, an
integer.

Remote system name (maximum 4
characters); can be a literal region name or
a Working-Storage field.

Specify key primary or alternate key.

Synonymous with PCB. Specify the PCB used
when the PSB contains multiple PCBs for
the same database. Must be last keyword in
call. See also "Comments" below.

Column is the column on which to qualify
the selection. Operator can be: =, A=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

Under VSAM Batch or Online, operator can
be: =, EQ, >=, GTEQ; otherwise operator can
be: =, EQ, >, GT, <, LT, >=, GE, <=, LE, <>, NE,

N=

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.

Comments:

DB-OBTAIN

IDMS DB

If REF is coded without REC, the action performed is a FIND.

In Format 1:, if an indexed or sorted set has a complex key (that is,
more than one field makes up the key), a Working-Storage area
named setname-KEY is generated to store the key values. Before
coding DB-OBTAIN, move the desired values to the appropriate
fields in the record obtained.

In Format 6, to use multiple sets, code SET setname. Code RESET
unless currency on the set has been established.

IMS DB

In Format 2, fieldname1 can be a primary key, secondary key,
segment sequence field, or segment search field. If it is a secondary
key made up of more than one field, the data name supplied as
value must be a concatenation of all fields composing the index.

In Format 3, the number of values listed within parentheses must
equal the number of source fields making up the index, and be
listed in the same order. Values can be qualified or subscripted.

In Format 4:

® Ensure that all segments lie along a single imaginary path that
runs from the root down to the dependent segment, and are in
the same logical database.

® Specify segments in hierarchical order.

® With a compound DB-OBTAIN, code REC for the lowest level
segment.

In Format 5:
® Do not use with IMS call codes.

® NEXTREC generates IMS retrieval call without segment search
arguments (SSAs).

® Do not use field qualifications with NEXTREC and IMSREC.
In Format 6:

® Code only one segment per call. Move the correct IMS segment
name into Working-Storage before issuing the call.

® Do not use field qualifications with NEXTREC and IMSREC.

Reference

153

154

Examples:

Reference

® InFormat7:
® Code CURRENT only with REF.
® Code CURRENT for the first level specified.

® Do not qualify a CURRENT segment in any other way; you can
qualify segments below as usual.

VSAM Online
Always follow a DB-OBTAIN HOLD with a DB-MODIFY or DB-ERASE.

IDMS DB
Retrieve records with complex key.

MOVE SCR1- LAST-NAME TO CUSTOMER- LAST- NAME
MOVE SCR1- FI RST- NAME TO CUSTOVER- FI RST- NAME
DB- OBTAI N REC CUSTOMER WHERE CUSTOVER- NAME- KEY = *

Make recent occurrence of any record current of run unit.

DB- OBTAI N REC | DMSREC AREA CUST- REG ON
CURRENT

Obtain record based on database address.

DB- OBTAI N REC CUSTOVER WHERE DBKEY = W5- DBKEY

Obtain fifth record in the set.

DB- OBTAI N REF CUSTOMVER REF ORDER WHERE SEQUENCE = 5

IMS DB
Do a compound DB-OBTAIN to obtain SEGMENT-C.

DB- OBTAI N REF SEGVENT- A WVHERE KEY-A = VALUE-A
REF SEGVENT- B WHERE KEY-B = VALUE-B
REC SEGMVENT- C WHERE KEY-C = VALUE-C HOLD

Do a path call to retrieve three segments. Use REC at each level to
indicate that each record is retrieved.

DB- OBTAI N REC SEGVENT- A WVHERE KEY-A = VALUE-A
REC SEGVENT- B WHERE KEY-B = VALUE-B
REC SEGVENT- C HOLD

DB-OBTAIN

Do a path call to retrieve specific records (SEGMENT-A, SEGMENT-C) at
certain levels. Specify that SEGMENT-B is used for qualification only and
is not retrieved.

DB- OBTAI N REC SEGVENT- A WVHERE KEY-A = VALUE-A
REF SEGVENT- B WHERE KEY-B = VALUE-B
REC SEGVENT- C HOLD

Using position, qualify database access. First, retrieve RECORD-A. Then,
retrieve RECORD-B; restrict the retrieval of RECORD-B to children of the
previously retrieved RECORD-A.

DB- OBTAI N REC RECORD- A WHERE FI ELD-1 = VALUE-1
DB- OBTAI N REF RECORD- A CURRENT
REC RECORD-B WHERE FI ELD-2 = VALUE-2

Retrieve the last occurrence of RECORD-B under a specific RECORD-A.

DB- OBTAI N REF RECORD- A WHERE FI ELD-1 = VALUE-1
REC RECORD-B LAST

Reference the next occurrence of RECORD-A,; retrieve the first
occurrence of RECORD-B under RECORD-A and read it into DATAAREA-
B. Also, retrieve the first occurrence of RECORD-C under RECORD-B and
read it into DATAAREA-C.

DB- OBTAI N REF RECORD- A
REC RECORD-B | NTO DATAAREA-B
REC RECORD- C | NTO DATAAREA- C

Retrieve RECORD-A based on the value of the data name FIELD-X, which
is found in DATAAREA-Z.

DB- OBTAI N REC RECORD- A
WHERE KEY-A = FI ELD- X OF DATAAREA-Z

Assume FIELD-X is an array as shown. First, retrieve RECORD-A based on
the value of the seventh occurrence of FIELD-X. Then, obtain a
dependent record by specifying its concatenated key.

01 FIELD-X OCCURS 10 TI MES PI C X(10).

DB- OBTAI N REC RECORD- A
WHERE KEY-A = FI ELD- X SUB(7)

Reference

155

156

DB- OBTAI N REC RECORD- C
CKEYED Ws- FI ELD

SQL

Select the rows where PM_PART_NO equals 123; move the data to an
alternate area, WS-D2MAST-RECORD in Working-Storage.

DB- OBTAI N REC D2TAB- REC
WHERE PM_PART_NO = ' 123’
I NTO W&- D2VAST- RECORD

Select only one row (if duplicates exist) based on multiple selection
criteria.

DB- OBTAI N REC D2TAB- REC DI STI NCT
WHERE PM_PART_SHORT_DESC = ' W DGET’
AND PM COLCR = ' RED

Select only columns PM_PART_NO and PM_COLOR, from rows of table
D2MASTER based on multiple selection criteria; eliminate duplicate
rows. For column PM_PART_NO, move the data to the default
destination, the COBOL host-variable of the same name; for column
PM_COLOR, name an alternate destination, Working-Storage field WS-
COLOR.

DB- OBTAI N REC D2TAB- REC DI STI NCT
PM_PART_NO PM COLOR (WS- COLOR)
WHERE PM PART SHORT _DESC = ' W DGET’
AND PM COLOR = ' RED

VSAM Batch
Read records sequentially by the CUST-NUMBER key.

DB- OBTAI N REC CUST- RECORD VI EW CUST- NUMBER

Read records sequentially; store record in an alternate storage area.

DB- OBTAI N REC CUST- RECORD
I NTO CUST- RECORD- SAVE- AREA

Read records by CUST-NUMBER key; identify the subscripted SCREEN-
CUST-NUMBER that is used as the key search value. After successful
execution, establish file position so that a sequential DB-OBTAIN can
read the next record.

DB- OBTAI N REC CUST- RECORD
WHERE CUST- NUMBER = SCREEN- CUST- NUVBER

Reference

DB-OBTAIN

SUB (ROW CTR)

Verify the existence of a CUST-NUMBER and (if successful) provide a
starting point in the file for a sequential DB-OBTAIN to execute.

DB- OBTAI N REF CUST- RECORD
WHERE CUST- NUMBER = SCREEN- CUST- NUVBER
IF OK-ON-REC
DB- OBTAI N REC CUST- RECORD
VI EW CUST- NUMBER

VSAM Online

Sequentially read records into an alternate storage area and hold a
record for updating. The VSAM Generator ends the sequential read and
rereads the file via the primary key for updating. The sequential read is
then resumed on the next execution of the DB-OBTAIN call.

DB- OBTAI N REC CUST- RECORD
I NTO CUST- RECORD- SAVE- AREA
HOLD

DB- MODI FY REC CUST- REC

Read records sequentially by the CUST-NUMBER key.

DB- OBTAI N REC CUST- RECORD VI EW CUST- NUMBER

Read records by CUST-NUMBER key. Identify the subscripted SCREEN-
CUST-NUMBER that is used as the key search value. Establish file
position for a sequential DB-OBTAIN.

DB- OBTAI N REC CUST- RECORD
WHERE CUST- NUMBER = SCREEN- CUST- NUMBER SUB (ROW CTR)

Read by ORDR-NUMBER; hold the record for updating. Note that if
ORDR-NUMBER was an alternate key, the file would be reread via the
primary key for updating.

DB- OBTAI N REC ORDR- RECORD
WHERE CORDR- NUMBER = CUST- ORDR- NUMBER HOLD

Verify the existence of CUST-RECORD with the value specified in CUST-
NUMBER and (if successful) provide a starting point in the file for a
sequential DB-OBTAIN.

DB- OBTAI N REF CUST- RECORD
WHERE CUST- NAME = SCREEN- CUST- NAME

Reference

157

158

IF OK-ON-REC
DB- OBTAI N REC CUST- RECORD. .. VI EW CUST- NAME

DB-OPEN

Category:
Compatibility:
Description:

Syntax:

Parameters:

Reference

Database call (see Database Calls)
IDMS DB, SQL, and VSAM batch targets
Open a record, cursor set, or file.

IDMS DB

DB- OPEN [ALL] [MODE usagenopde]
[AREA ar eanane]

SQL
DB- OPEN CUR[SOR] cur sornane

0S4 and VSAM Batch

Format 1:

DB- OPEN FILE filenanme [... filenane]
MODE option

Format 2:

DB- OPEN FI LE ALL

MODE option
ALL Specify all files and ready all areas defined in
the subschema.
AREA areaname IDMS area name.

CURI[SOR] cursorname Specify cursor. Cursorname must be previously
named by DB-DECLARE or DB-PROCESS-ID.

FILE filename File(s) to process.

Comments:
IDMS DB

Examples:

DB-OPEN

MODE option File processing mode: INPUT, OUTPUT, I-O,
EXTEND

MODE usagemode Usage mode--RETRIEVAL (default),PROTECTED
RETRIEVAL, EXCLUSIVE RETRIEVAL, UPDATE,
PROTECTED UPDATE, EXCLUSIVE UPDATE

DB-OPEN generates an IDMS READY command; if not coded, the call
is automatically generated.

® Usagemode, if specified in the subschema, replaces RETRIEVAL as
the default.

SQL

A cursor set can be opened, processed, and closed multiple times in the
same program. A DB-OPEN issued for an open cursor set causes an error;
first code a DB-CLOSE.

SAM Batch
DB-OPEN is required.

Open the DORDER file for write-only processing.

DB- OPEN FI LE DORDER MODE EXTEND

IDMS DB

Ready all areas in the data view in the default usage mode.

DB- OPEN ALL

Ready CUSTOMER-REGION in PROTECTED UPDATE usage mode.

DB- OPEN MODE PROTECTED UPDATE AREA CUSTOMVER- REG ON

SQL

Open cursor set D2MAST-CURSOR, previously defined in DB-DECLARE.
DB- OPEN CURSOR D2MAST- CURSOR

VSAM Batch

Open the AORDER and ASUPLIR files for I-O processing.

DB- OPEN FI LE AORDER ASUPLIR MODE |-0O

Reference

159

160

DB-PROCESS

Category: Database call (see Database Calls)

Description: Combine record retrieval and looping functions into one call.

Under IDMS DB, DB-PROCESS processes all records within a set, an area,
or an indexed set based on a specified value.

Under IMS, DB-PROCESS processes:
® Records that satisfy the key qualification (key qualified)

® Records sequentially (unqualified)

Under SQL, DB-PROCESS simplifies cursor row processing by:

® Declaring a cursor

® Opening a cursor for processing

® Defining a loop flag and a loop counter

® Providing logic for retrieving rows from the results table

® Executing user-written row processing code

® Processing closing the cursor set file at the end of processing
® Processing entire rows throughout a cursor set

® Processing specific columns throughout a cursor set

® Processing specific columns and rows throughout a cursor set

® Processing columns from more than one table, such as a join)

Under VSAM, DB-PROCESS processes records:

® Sequentially, beginning at the position established by the key
qualification (key qualified)

® Sequentially, beginning at the beginning, end, or a previously
defined position in the file (unqualified)

Reference

Syntax:

DB-PROCESS

IDMS DB

DB- PROCESS [REF recordnane] REC recordnane
[DB- PROCESS- | D nane] [WHERE keynanme operat or val ue]
[SET set nane| AREA areanane] [RESET] [HOLD] [EXCLUSI VE]
Controlled | ogic block

IMS DB
Format 1, key-qualified:

DB- PRCCESS REC recor dname
[WHERE keyname operator val ue [SUB val ue]l [OF dataareal]
[DB- PROCESS- | D nane] [| NTO dat aar ea]
[HOLD] [RESET]
[VI EW pcbnane| PCB pcbnane]
Controlled | ogic block

Format 2, unqualified:

DB- PROCCESS REC recor dname
[DB- PROCESS- | D nane] [| NTO dat aar ea]
[HOLD] [RESET]
[VI EW pcbnane| PCB pcbnane]
Controlled | ogic block

SQL
Format 1, unqualified--select all columns:

DB- PROCESS REC copyl! i bname- REC
[DB- PRCCESS- | D nane]
[DB- LOOP- MAX=number]
[FETCH ONLY] [W TH HOLD]
[OPTI M ZE nunber]
[UPDATE| ORDER
columl [ASC|DESC] [...columN [ASC| DESC]]]
... [INTO dat anane]
Controlled | ogic block

Format 2, qualified--select all columns:

DB- PROCESS REC copyl! i bname- REC
[DB- PRCCESS- | D nane]
[FETCH ONLY] [WTH HOLD] [OPTIM ZE nunber]
WHERE col urm operator [[:]] al tval ue]| col urm
[AND| OR col urm operator [[:]altval ue]| col unmj]

[AND| OR col urm operator [[:]altval ue]| col unmj]

Reference

161

162

[DB- LOOP- MAX=number]
[UPDATE| ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]
[| NTO dat anane]
Controlled | ogic block

Format 3, select specific columns:

DB- PROCESS REC copyl! i bname- REC
[DB- PRCCESS- | D nane]
[DI STI NCT]
[FETCH ONLY]
[WTH HOLD]
[OPTI M ZE nunber]
columl [(altvalue)] [... columN [(altval ue)]]
WHERE col urm operator [[:]altval ue]| col umm
[AND| OR col urm operator [[:]altval ue]| col unm]

[AND| OR col urm operator [[:]altval ue]| col umm]

[DB- LOOP- MAX=number]

[UPDATE| ORDER

columl [ASC|DESC] [...columN [ASC| DESC]]]
Controlled | ogic block

Format 4, join columns from two or more tables:

DB- PROCESS REC correl nane. copy! i bname- REC
[DB- PROCESS- | D nane] [DI STI NCT]
[FETCH ONLY] [W TH HOLD]
[OPTI M ZE nunber]

[columl [(altvalue)] [... columN [(altvalue)]]l]
REC correl nane. copyl i bnanme- REC
[columl [(altvalue)] [... columN [(altvalue)]]l]

[WHERE cor rel nanme. col urm oper
[[:]altval ue]| correl nane. col umm

[AND| OR correl nane. col unm oper
[[:]altval ue]| correl nane. col]

[AND| OR correl nane. col unm oper
[[:]altval ue]| correl nane. col]
[DB- LOOP- MAX=number]
[ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]
Controlled | ogic block

Reference

Format 5, specify a UNION:

DB- PROCESS REC copyl! i bname- REC
... [DB-PROCESS- 1D nane]

[DI STI NCT]

[FETCH ONLY]

[WTH HOLD]

[OPTI M ZE nunber]

DB-PROCESS

[columl [(altvalue)] [... columN [(altvalue)]]]
[WHERE col unm operator [[:]al tval ue]| col umm
[AND| OR col urm operator [[:]altval ue]| col unmj

[AND| OR col urm operator [[:]altval ue]| col unm]]

[DB- LOOP- MAX=number]
UNI ON [ALL]
DB- OBTAI N REC copy! i bname- REC

[ORDER
columl [ASC| DESC] [...colummN [ASC|
Controlled | ogic block

VSAM Batch
Format 1, qualified:

DB- PROCESS REC recor dname WHERE keynane
[DB- PROCESS- | D nane] [SUB val ue]
[OF dataarea]l [|NTO dataareal
Controlled | ogic block

Format 2, unqualified:

DB- PROCESS REC recordnane [VI EW keynane]
[DB- PROCESS- | D nane] [| NTO dat aar ea]
Controlled | ogic block

VSAM Online
Format 1, key-qualified:

DB- PROCESS REC recor dname WHERE keynane
[DB- PROCESS- | D nane] [SUB val ue]
[OF dataarea]l [|NTO dataareal
[KLEN val ue] [HOLD] [PREV]
[REQ D nunmber] [SYSID systenmnane]

DESC] 1]

oper at or val ue

[RESET]

oper at or val ue

Reference

163

164

Parameters:

Reference

[DDN ddnane]

Controlled | ogic block

Format 2, unqualified:

DB- PROCESS REC recor dnane
[DB- PROCCESS- | D nane]
[HOLD] [PREV] [RESET]

[NTO dat aar ea]

[REQ D nunmber] [SYSID systenmnane]
[VI EW keynane] [DDN ddnane]

Controlled |ogic block

[:1(altvalue)

AND col op col|[:]1altval

AREA areaname
BROWSE col1 colN

Alternate value; can be a literal, column
name, or host-variable, as follows.

® A host-variable is any COBOL data
item referenced in your APS/SQL code;
can a be data item generated
automatically by APS/SQL to match a
DB2 column name.

® An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

® If you name alternate host-variables
for specific columns, do not code
INTO, which names an entire
alternate host structure.

® Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

Value can be a literal or data name. See
also the altvalue parameter above.

IDMS area name.

Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you specify UPDATE first.
Do not code BROWSE with ORDER,
UNION, DISTINCT, GROUP BY, or if the call
specifies a join or selects column
functions.

CKEYED

correlname.

CURRENT

DB-LOOP-MAX=number

DB-PROCESS-ID name

DDN ddname

DISTINCT

EXCLUSIVE

DB-PROCESS 165

Retrieve segment with a concatenated
key.

Correlation name (maximum 18
characters); end with a period. Required if
columnname is in a select list or if the
WHERE clause appears in multiple joined
tables.

Under IDMS DB, process the last record of
the type accessed.

Under IMS DB, establish positioning at the
specified dependent of the current,
previously-read parent.

Maximum number loops allowed.
Overrides loop flags for current structure
only; you can define a different limit for
each DB-PROCESS. See also "Comments"
below.

Generate:
® Cursor named name (for SQL targets)

® End-process flag named name-END-
PROCESS

® Counter named name-PROCESS-CTR

Name (maximum 12 characters) must be
unique, and cannot be the same as the
subschema copylib names. See also
"Comments" below.

Specify file ddname; can be a literal or
data name defined as PIC X(8). Supply a
value to the name option of CICS
DATASET.

Eliminate all but one row from each set of
duplicate rows. Duplicate rows have
identical selected columns from the
results table.

IDMS keep exclusive; place an exclusive
lock on the record.

Reference

166

Reference

FETCH ONLY

FIRST

HOLD

IMSREC segmentname

INTO dataarea

INTO dataname

KLEN value
or
KEYLENGTH value

LAST

Specify that the table is read-only and
therefore the cursor cannot be referred to
in positioned UPDATE and DELETE
statements. Do not code in a call that
contains an UPDATE clause.

Under IDMS DB, retrieve the first record in
the set.

Under IMS DB, establish positioning at the
first occurrence of the specified segment;
generate IMS code F.

Hold a record for modification or
deletion. Code only once, at end of call.
Do not code with PREV or KLEN.

Under IDMS DB, keep DML; place an
explicit shared lock on the record.

Specify that the segment name (maximum
8 characters) is in a Working-Storage
variable for the program to read, modify,
add, or delete.

Specify I/0 area where the program reads
a record.

Move host variable structure into the
alternate data structure dataname. Can
code before or after WHERE.

Data moves after the actual SQL call via a
MOVE statement. Generated code:

| F OK- ON- REC
MOVE host nanme TO dat anane

Specify number or characters in key
length; full or partial length is valid. Value
can be a number or a data name defined
as PIC S9(4) COMP. APS generates the CICS
GENERIC option for a partial key length.
Do not use with HOLD or PREV.

Under IDMS DB, retrieve last record in set.

Under IMS DB, establish positioning at the
last occurrence of the specified segment;
generate IMS code L.

NEXT

OF dataarea

OPTIMIZE number

OR col op col|[:]altval

DB-PROCESS 167

Under IDMS DB, retrieve next record in
the set (default).

Under IMS DB, sequentially read forward
in database.

Qualify the I/0O area moving to the value
field, when more than one structure in
the Data Division contains the field.
Optionally code IN instead of OF.

Specify estimated maximum number of
rows that call will retrieve. If the call
retrieves no more than number rows,
performance could be improved.
Specifying this keyword does not prevent
all rows from being retrieved.

Value can be a literal or data name. See
also the altvalue parameter above.

ORDER [ASC|DESC] [co/T colN] Sort the results table in ascending

PCB pcbname

PREV[IOUS]

REC copylib-REC

REC recordname

REF recordname

(default) or descending order, based on
the values in the columns specified.
Specify the column either by name or by
relative position in the column selection
list. Specify at least one column. Do not
code with UPDATE.

Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

Perform a reverse sequential browse
starting at the last record in file. Do not
code with HOLD or KLEN.

Specify the 01-level name of the COBOL
row layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

COBOL record or IMS segment to process.

Specify a COBOL record to reference.
Under IMS, the program uses the
referenced segment for navigating the
database.

Reference

168

Reference

REQID number

RESET

SUB[SCRIPT] (value)

SYSID systemname

UPDATE col1 colN

VIEW keyname
VIEW pcbname

WHERE col op [:]altval

Unique browse identifier for performing
a simultaneous browse on the same key; is
asingle integer (0 - 9). Assign &VS-ENDBR-
CONTROL = "USER" in the APS CNTL file
APVSAMIN.

Reset database or file positioning to the
beginning. Code only once per call, at
end. Code with PREV or KLEN, to reset file
position to end.

Alternate reset method: prior to
retrieving under VSAM Batch or Online,
set RESET-OBTAIN flag to TRUE; under IMS
DB, set RESET-POSITION flag to TRUE.

Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online,
an integer.

Remote system name (maximum 4
characters); can be a literal region name
or a Working-Storage field.

Modify columns during cursor processing.
In cursor processing, you cannot modify a
column unless you specify UPDATE first.
Do not code UPDATE with ORDER, UNION,
DISTINCT, GROUP BY, or if the call
specifies a join or selects column
functions.

Specify primary or alternate key.

Synonymous with PCB. Specify the PCB
used when the PSB contains multiple PCBs
for the same database.

Column is the column on which to qualify
the selection. Operator can be: =, A=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

Loop Structure

DB-PROCESS

WHERE fld|key op value Under VSAM Batch or Online, operator
can be: =, EQ, >=, GTEQ; otherwise
operator can be: =, EQ, >, GT, <, LT, >=, GE,
<=, LE, <>, NE, A=

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the
key value.

WITH HOLD Prevent the closing of a cursor as a
consequence of a commit operation. See
also "Comments" below.

DB-PROCESS provides a built-in loop structure to process records and
rows. The loop structure can include blocks of user-supplied logic and
APS-generated control fields. User logic executes once for each
successful iteration of DB-PROCESS, and can include

® Any APS/DB call, except DB-OPEN, DB-DECLARE, or DB-CLOSE

® Record and row processing code, for example, MOVE DATA TO
SCREEN

APS generates the following fields, enabling you to logically terminate
the loop structure.

APS-END-PROCESS S-COBOL flag initialized FALSE. To end the
process loop, set flag to TRUE.

name-END-PROCESS APS generates this flag, where name is the
PROCESS-ID name. Use this flag when using DB-
PROCESS-ID clauses for nested loops.

name-PROCESS-CTR APS generates this counter, where name is the
PROCESS-ID name. Use this counter when using
DB-PROCESS-ID clauses for nested loops.

APS-PROCESS-CTR APS increments this counter at each process loop
execution. This counter

® Controls looping.

® Serves as a subscript when moving data into
a table or screen fields.

® Counts processed records.

Reference

169

170

Reference

IMS DB, VSAM Batch, and VSAM Online
Sample loop syntax:

/* Begin process | oop
DB- PRCCESS REC recor dname
WHERE keyname oper at or val ue paraneters
[DB- PRCCESS- | D nane]
| F APS- PROCESS- CTR| nane- PROCESS- CTR > val ue
/* End process | oop
TRUE APS- END- PROCESS| nane- END- PROCESS
ELSE
/* User-written record processing |logic

IF ...

/*Logi c executed after process loop term nation
/* Includes file status checking

IDMS DB

Sample loop syntax:

DB- OBTAI N REC recordname WHERE key = val ue
/* Begin process | oop
DB- PRCCESS REF recordname REC recordname
| F APS- PROCESS- CTR > val ue
/* End process | oop
TRUE APS- END- PROCESS
ELSE
/* User-written record processing |logic
/* Can include file status checking
/* Logic executed after process |oop term nation
/* Can include file status checking

SQL
Sample loop syntax:

/* Begin process | oop
DB- PRCCESS REC recor dname
/* Custom row processing code
| F APS- PROCESS- CTR| nane- PROCESS- CTR > val ue
/* End process | oop
TRUE APS- END- PROCESS| nane- END- PROCESS

ELSE
/* Custom record processing |ogic
/* Can include file status checking
/* Logic executed after process |oop term nation
/* Can include file status checking

Comments:

DB-PROCESS

Under IDMS DB and SQL, code file status checking inside a DB-
PROCESS loop; under IMS DB, and VSAM Batch or Online, code file
status checking outside the process loop.

You can nest DB-PROCESS calls if you supply each call with a unique
DB-PROCESS-ID clause, thus providing controlled exits for each.

DB-PROCESS continues looping until the program reaches a TRUE
APS-END-PROCESS or TRUE name-END-PROCESS, an invalid or end
of file condition, the limit defined by an APS internal counter.

You can change the value of LOOP-MAX in the APSMACS file; this
affects all generated applications. Or, change the LOOP-MAX limit
at the program level by redefining it at the top of your program
with the SYM1 or SYM2 keyword. For example:

Symi % &prefi x- LOOP- MAX = 200
APS defines a loop limit as follows:

® If you do not code DB-PROCESS-ID, the loop limit is 500, set by
the APS counter & APS-DB-PROCESS-GLOBAL-LIMIT. This counter
resides in the APSMACS file APSBASE.

® If you do code DB-PROCESS-ID, adhere to the following loop
limit and counter for each target.

Target Limit APS Counter

IDMS 100 &IDMS-LOOP-MAX
IMS DB 100 &VS-IMS-LOOP-MAX
sQL 100 &DB2-LOOP-MAX
VSAM Batch 999,999 &VS-MVS-LOOP-MAX
VSAM Online 100 &VS-CICS-LOOP-MAX

IMS DB

Processing begins at a previously established position in the database or,
if RESET coded, at the beginning of the database.

SQL

DB-PROCESS generates and performs the DB-DECLARE, DB-OPEN,
DB-FETCH, and DB-CLOSE calls within loop structure.

Reference

171

172

Reference

APS automatically declares the cursor at the first DB-PROCESS. All
subsequent calls within the loop reference the cursor. The cursor is
named

® Byyou, if you code DB-PROCESS-ID.

® By APS, which generates a copylib name and a numeric suffix,
beginning with one and increasing by one with each
subsequent DB-PROCESS for the same DCLGEN or copybook
member.

When you code WITH HOLD, a commit operation commits all the
changes in the current unit of work, but releases only locks that are
not required to maintain the cursor. Afterwards, you must code an
initial DB-FETCH before you can execute a positioned update or
delete. After the initial DB-FETCH, the cursor is positioned on the
row following the one it was positioned on before the commit
operation.

The WITH HOLD clause is ignored in CICS and IMS DC.

VSAM Batch

The ENDFILE condition can be determined outside of the process
loop, even after DB-PROCESS ends the sequential browse.

You must precede a DB-PROCESS call with a DB-OPEN call, and code
a subsequent DB-CLOSE call. APS does not support automatic file
opening and closing.

VSAM Online

Because DB-PROCESS terminates the active browse when the
process loop is terminated, it is not necessary to end the browse
with the DB-FREE call.

DB-PROCESS unlocks a locked record when the process loop
terminates. Unlocking a record via a DB-FREE UNLOCK is
unnecessary.

The ENDFILE condition can be determined outside of the process
loop, even after DB-PROCESS ends the sequential browse.

Examples:

DB-PROCESS

IMS DB, VSAM Batch, and VSAM Online

Process CUST-RECORD; execute logic upon each successful read. Note
that CUST-PROCESS-CTR serves as a subscript for the screen fields.

DB- PROCESS REC CUST- RECORD
WHERE CUST- KEY >= SCREEN- KEY
DB- PRCCESS- | D CUST
I F CUST- PROCESS- CTR > SCREEN- MAX
TRUE CUST- END- PROCESS
ELSE
SCREEN- CUST (CUST- PROCESS- CTR) = CUST- NAME
SCREEN- PHONE ~ (CUST- PROCESS- CTR) = CUST- PHONE
SCREEN- ADDRESS (CUST- PROCESS- CTR) = CUST- ADDRESS
I F NTF- ON- REC
SCREEN- MSG = * CUSTOVER NOT FOUND
ELSE- | F END- ON- REC
SCREEN- MSG = ' END OF CUSTOVER RECCORDS’

IDMS DB
Process CUST-RECORD; execute logic upon each successful read.

DB- PROCESS REC CUST- RECORD
WHERE CUST- KEY >= SCREEN- KEY
SET CUST- ORDR
DB- PRCCESS- | D CUST
I F CUST- PROCESS- CTR > SCREEN- MAX
TRUE CUST- END- PROCESS
ELSE

SCREEN- CUST (CUST- PROCESS- CTR) = CUST- NAME
SCREEN- PHONE ~ (CUST- PROCESS- CTR) = CUST- PHONE
SCREEN- ADDRESS (CUST- PROCESS- CTR) = CUST- ADDRESS

I'F NTF- ON- REC

SCREEN- MSG = * CUSTOVER NOT FOUND
ELSE- | F END- ON- REC

SCREEN- MSG = ' END OF CUSTOVER RECCRDS’

SQL

Declare, name, and open a cursor; retrieve all rows and columns; process
only one row from duplicate rows; close the cursor; move data into an
alternate area.

DB- PROCESS REC D2TAB- REC
DB- PROCCESS-1 D D2MAST- | D
DI STI NCT
I NTO W&- D2IVAST- RECORD

Reference

173

174

Select specific columns from selected rows; name alternate host-
variables for specific columns; sort columns by position in selection list.

DB- PROCESS REC D2TAB- REC
DB- PROCESS- | D D2MAST- | D
PM_PART_NO (WS- PART- NO)
PM_NEW PART_NO (WS- NEW PART-NO) PM _UNI TS
ORDER 1 ASC 3 DESC

Nest one DB-PROCESS within another.

DB- PROCESS REC A. D2TAB- REC
DB- PROCESS- | D D2MAST- | D
DI STI NCT
PM_PART_NO PM UNI TS PM PART_SHORT_DESC
| F D2VAST- | D- PROCESS- CTR >5
TRUE D2MAST- | D- END- PROCESS
ELSE
/* Customlogic to process SAVEKEY
I F NOT TRUE D2MAST- | D- END- PROCESS
DB- PROCESS REC D21 NV- REC
DB- PROCESS- | D D21 Nv- 1 D
VWHERE | NPM_PART_NO = : WS- SAVE- PART- NO
/* Customrecord processing |ogic

DB-ROLLBACK

Category: Database call (see Database Calls)
Compatibility: SQL target
Description: Perform SQL ROLLBACK functions.

Syntax: DB- ROLLBACK

Reference

DB-STORE

DB-STORE

Category:

Description:

Syntax:

Database call (see Database Calls)

Write a record to a file or database.

Under IMS, DB-STORE lets you:

Specify either a single record level or multiple records along a path,
like DB-OBTAIN.

Store a dependent segment--one that references one or more
parent level segments to specify the exact record placement. This is
a compound DB-STORE.

Under SQL, DB-STORE lets you add entire rows or selected columns.

IDMS DB
DB- STORE REC recordnane

IMS DB
DB- STORE [REC| REF recordnanel] [FROM dat aarea]

[VI EW pcbnane| PCB pcbnane]

[WHERE fi el dname operator val ue]

[REC| REF recordname2] [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

[WHERE fi el dname operator val ue]

[SUB nunber] [OF dat aar ea]

REC recordnameN [FROM dat aar ea]
[VI EW pcbnane| PCB pcbnane]

[WHERE fi el dnanme operator val ue]
[SUB nunber] [OF dat aar ea]

0s4
DB- STORE REC recordnane

[FORMAT format nane]
[FROM dat aar ea]

Reference

175

176

Parameters:

Reference

SQL
Format 1:

DB- STORE REC copy! i bnanme- REC
[columl [(altvalue)] [... columN [(altvalue)]]]
[FROM dat anane]

Format 2:

DB- STORE REC copy! i bnanme- REC

[columl [(altvalue)] [... columN [(altvalue)]]]
[DB- OBTAI N REC copy! i bnanme- REC
columl [... columN

WHERE col urml1 operator [:]altvalue
[AND| OR col urm2 operator [:]altval ue]]

[AND| OR col urmN operator [:]altval ue]]

VSAM Batch
DB- STORE REC recordnane [FROM dat aar ea]

VSAM Online

DB- STORE REC recordnane [FROM dat aar ea]
[SYSID systemnmane] [DDN ddnane]

[:1(altvalue) Alternate value; can be a literal, column
name, or host-variable, as follows.

® A host-variable is any COBOL data item
referenced in your APS/SQL code; can a
be data item generated automatically
by APS/SQL to match a DB2 column
name.

® An alternate host-variable is one you
instruct APS/SQL to use instead of the
automatically generated one for a
column.

® If you name alternate host-variables for
specific columns, do not code FROM,
which names an entire alternate host
structure.

AND col op [:]altval

CKEYED
DDN ddname

FROM dataarea

FROM dataname

IMSREC segmentname

OF dataarea

OR col op [:]altval

PCB pcbname

DB-STORE 177

® Precede host-variables and alternate
host-variables with a colon. APS
generates a # symbol for the colon.

Value can be a literal or data name. See also
the altvalue parameter above.

Position to correct parent segments.

Specify file ddname; can be a literal or data
name defined as PIC X(8). Supply a value to
the name option of CICS DATASET.

Alternate I/0O area where program deletes,
modifies, or adds a record. Required for a
record obtained from an I/O area other than
the default I/O area, such as by DB-OBTAIN
INTO. See also "Comments" below.

Move alternate data structure to the host
variable structure name. Data moves prior
to the actual SQL call via MOVE statement.

Preferred format is to code FROM before
WHERE, otherwise you must separate the
WHERE and FROM with ENDWHERE. See
also "Comments" below.

Specify that the segment name (maximum 8
characters) is in a Working-Storage variable
for the program to read, modify, add, or
delete;.

Qualify the I/O area moving to the value
field, when more than one structure in the
Data Division contains the field. Optionally
code IN instead of OF.

Value can be a literal or data name. See also
the altvalue parameter above.

Synonymous with VIEW. Specify the PCB
used when the PSB contains multiple PCBs
for the same database. See also
"Comments" below.

Reference

178

Comments:

Reference

REC copylib-REC Specify the 01-level name of the COBOL row
layout in the DCLGEN or copybook
information. Cannot be the same as any
cursor names or DB-PROCESS-ID names.

REC recordname COBOL record or IMS segment to process.

REF recordname Specify a COBOL record to reference. Under
IMS, the program uses the referenced
segment for navigating the database.

SUB[SCRIPT](value) Move the subscripted field value to a
specified field. Value can be a data name,
literal, or, under VSAM Batch or Online, an
integer.

SYSID systemname Remote system name (maximum 4
characters); can be a literal region name or
a Working-Storage field.

VIEW pcbname Synonymous with PCB. Specify the PCB used
when the PSB contains multiple PCBs for the
same database. See also "Comments"
below.

WHERE col op [:]altval Column is the column on which to qualify
the selection. Operator can be: =, A=, >, <,
>=, <=, native SQL predicates (such as LIKE
and BETWEEN). See also the altvalue
parameter above.

WHERE fld|key oper value Code only with REF parameter.

Under VSAM Batch or Online, operator can
be: =, EQ, >=, GTEQ; otherwise operator can
be: =, EQ, >, GT, <, LT, >=, GE, <=, LE, <>, NE,

N=

Value can be literal, data name, or an
asterisk (*). An asterisk indicates the
segment record description contains the key
value.

IDMS DB

Initialize all CALC keys; make all sets, in which the object record
participates as a mandatory member, current of record type. If the
location mode of the object record is VIA, establish currency for the set
in which the record participates as a member.

Examples:

DB-STORE

IMS DB

® \When a record is not obtained from the default I/O area, such as by
DB-OBTAIN INTO, code FROM dataarea.

® \When arecord is not obtained from the default PCB, such as by DB-
OBTAIN VIEW|PCB, code VIEW|PCB pcbname.

® When you store a new root, DB-STORE places the record according
to its key field value. If a STORE for a dependent record provides
qualification at each parent level, this qualification specifies the
position of the new record. Otherwise, prior database positioning
determines record placement. Thus, a DB-STORE for a dependent
record should either

® Specify qualification at each parent level, or

® Ensure that the preceding database call executed for the
database PCB accesses the desired parent.

IDMS DB
Write record type ORDER from Working-Storage.

DB- STORE REC ORDER

IMS DB
Add an occurrence of RECORD-A to the database.

DB- STORE REC RECORD- A

Add one occurrence of RECORD-A and one of its dependents,
RECORD-B.

DB- STORE REC RECORD- A REC RECORD- B
Add one occurrence of RECORD-B, a dependent of a specific RECORD-A.
DB- STORE REF RECORD- A WHERE FI ELD-1 = VALUE-1 REC RECORD- B

Alternately, add RECORD-B by coding DB-STORE after DB-OBTAIN.

DB- OBTAI N REF RECORD- A VHERE KEY- A = VALUE- A
DB- STCRE RECORD- B

Reference

179

180

SQL

Insert specific columns into D2MASTER; for PM_PART_NO, store
information from the default COBOL host variable; for other columns,
name alternate sources of information.

DB- STORE REC D2TAB- REC
PM_PART_NO PM NEW PART_NO (' 23432’)
PM_COLOR (: WS- NEW COLOR)

Insert columns IN_PART_NO and IN_UNIT_BASE_PRICE from D2MASTER
into table D2INVEN; select only rows from D2MASTER where
PM_PART_NO does not equal PM_NEW_PART_NO.

DB- STORE REC D21 NVEN- REC | N_PART_NO | N_UNI T_BASE_PRI CE
DB_OBTAI N REC D2MASTER- REC PM _PART_NO PM UNI T_BASE_PRI CE
WHERE PM PART_NO not= PM NEW PART NO

VSAM Batch and VSAM Online
Write ORDR-RECORD to the file; check file status.

DB- STORE REC ORDR- RECORD
I F OK-ON- REC

SCREEN- MSG = * ORDER ADDED TO FI LE
ELSE-I F | VD- ON- REC

SCREEN- MSG = ' ORDER ALREADY EXI STS

DB-SUBSCHEMA

Category:
Compatibility:

Description:

Syntax:

Comment:

Reference

Database call (see Database Calls)
IDMS DB, IMS DB, SQL, VSAM batch, and VSAM online targets

Include the imported program subschema in your program. APS
automatically does this for you when you specify your subschema in the
Application Painter after importing the subschema.

DB- SUBSCHEMA subschemanane

Specify a subschema for an APS program in either of the following
ways.

DDIFILE Report (DBO1)

® Recommended way Code the subschema name in the Application
Painter.

® (Code a DB-SUBSCHEMA call prior to the NTRY parameter.

DDIFILE Report (DB01)

Category: APS-generated report (see Database Calls)

Description: The DDIFILE Report describes the contents of the DDIFILE that contains
your imported database definitions. Use this report to understand and
evaluate the results of an import.

The report provides a section for each of the following items.
® DBDs
® PSBs
® Files
® Subschemas
Comment: Produce the DDIFILE Report from the Documentation Facility.
Example:
REPORT CODE: DB01 APS DATA DESCRI PTI ON | NTERFACE PAGE 1
DBD REPORT 92/01/21 09:53
NAVE CREATED UPDATED REC NO MESSAGE
BE3ORDER 88/08/19 88/08/19 20 | NCOVPLETE SET OF DDl NAMES FOUND
BE3ORDRX 88/08/19 88/08/19 3 NO DDl NAMES SPECI FI ED
CORDPSB 89/10/12 00/ 00/ 00 3
CPTORDLD 89/11/02 00/ 00/ 00 3
REPORT CODE: DB01 APS DATA DESCRI PTI ON | NTERFACE PAGE 4
FI LE REPORT 92/01/21 09:53
NAVE CREATED UPDATED REC NO MESSAGE
CUSTMAST- REC 90/08/13 90/ 08/ 15 5
CUSTORDR- REC 90/08/13 90/ 08/ 15 5

Reference

181

182

REPCRT CODE: DBO1

APS DATA DESCRI PTI ON | NTERFACE PAGE 5
SUBSCHEMA REPORT 92/01/21 09:53
CREATED UPDATED REC NO MESSAGE

DWI NQ
DWLST

90/ 05/ 10 90/ 12/ 07
90/ 05/ 10 90/ 12/ 07

Kok ok ok ok ok ok Kk kK FI NAL TOTALS Kk ok ok ok ok ok ok ok ok ok

TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL
TOTAL

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

DBDS

DBD RECS
PSBS

PSB RECS

FI LES

FI LE RECS
SUBSCHS
SUBSCH RECS
ENTI TI ES
RECORDS

ARARAAAARRRR

18
530

93

30
10
21
63
623

DDI Statements

Compatibil

ity:

Category:

Descripti

Reference

on:

IMS and VSAM targets

Importer feature

Identify IMS database segments and VSAM files and their corresponding

COBOL Syntax

DDI statements are comprised of the literal *DDI followed by a
statement type and its applicable parameter parameters. The statement
type identifies what database or file component to import. For
example, database, record or field. Code DDI statements for any
environment as follows:

Column
7-10

1
12-14
15
16-18

Value

*DDI

Blank

Statement type
Blank

Keyword parameter

DDI Statements

IMS DB

The DBD statement corresponds to the DBD statement:

*DDI DBD NAME=dbnane

The REC statement corresponds to the SEGM statement/copylib:

*DDI REC NAME=cpy! i brec| [new COBOL- recor dnane] ,
*DDI SEG=segnane, [COPY=nenmbernane||[new copyli bnang]],
*DDI [GENO1=Y| N

The FLD statement corresponds to the FIELD and XDFLD
statement/copylib field:

*DDlI FLD NAME=cpy! i bfl dname, | NSNAVE=fI dnane,
*DDI [Pl C=cpyl i bpi c]

The PSB statement corresponds to the PSB name:

*DDI PSB NAME=PSBnaire

The PCB statement is a positional, or placeholder statement. It
corresponds to the PCB for which you are assigning an additional set of
names:

*DDI PCB

VSAM DB
The VSM statement corresponds to the VSAM file external ddname:

*DDI VSM DDN=ext ddname, TYPE=K| E| R, VSPREFI X=fi I eprefi X,
[CYL| TRK| REC(size)], ClISZ(cntlintrval size),
VOL(vol nane), CAT=catnanme, [idcansparns]

The REC statement corresponds to the copylib record name and copylib
file name:

*DDI REC NAMVE=recnane, SHORT=shrtrecnane, COPY=nenbernane,
SOURCE=P| C| , MAXLEN=maxrecl en, AVA.EN=avgrecl en

The IDX statement is for a keyed file. It corresponds to copylib key field
name and copylib file name:

*DDI | DX NAME=cpy! i breckeyf | dnane, [ALl AS=redefinefld],
TYPE=P| U D, KEYLEN=keyf!l dl en, OFFSET=positi on,
DDN=/ ndxddnarme, Pl C=nunber, [i dcanspar ns]

Reference

183

184

Parameters:

Reference

The SUB statement identifies the copylib record name(s) used by your
APS program, record processing, batch options, and VSAM file external

ddname:

*DDI SUB NAMVE=subschemanane, RECORD=r ecnane,

PROCOPT=A| G| | | D| R
[LABEL=STANDARD] ,

ACCESS=options

ALIAS=redefinefld

ASSIGN=extddname

AVGLEN=avgreclen

CAT=catname

CISZ(cntlintrvalsize)

COPY=membername

CYL|TRK|REC(size)
DDN=extddname

DDN=indxddname

GENO1=Y|N

[ACCESS=0pt i ons], [BLOCK=0],
[ASSI GN=ext ddnane]

Batch access options. Dynamic for KSDS
files. Sequential for ESDS/RRDS files.

If a VSAM file uses multiple copylib
records, this value is the field name
that redfines
NAME=cpylibreckeyfldname.
Maximum 30 characters.

VSAM file external ddname. Default is
the value of the *DDI VSM statement
DDN parameter. Maximum 8
characters.

Average record length. Default is the
value of MAXLEN.

Catalog name.

Control interval size. Default is
CISZ(4096).

Copylib member name. Default for IMS
is SEGM NAME=. Maximum 8
characters.

Size of file in cylinders, tracks or
records.

VSAM file external ddname. Maximum
8 characters.

DDNAME of the index. Default is
primary=ddname. Maximum 24
characters.

GENO1=Y Indicates segname is an 01
level name.

GENO1=N Overrides the value of &GEN-
DB-REC-01-NAMES flag.

idcamskeywrds

IMSNAME=fieldname

IMSNAME=new-COBOL fldname

KEYLEN=keyfldlen

MAXLEN=maxreclen

NAME=copylibfldname

NAME=cpylibrec

NAME=cpylibreckey fldname

NAME=dbname
NAME=new-COBOL-fldname

NAME=new-COBOL-rechname

NAME=PSBname

NAME=recname

NAME=subschemaname

OFFSET=position

PIC=cpylibpic

DDI Statements

Other IDCAMS keywords. Code exactly
as they appear on IDCAMS control
statements.

DBD value of FIELD NAME= or XDFLD
NAME=. Maximum 8 characters.

New copylib name for the new COBOL
record .

Length of key field. Maximum 4
characters.

Maximum record length.

Copylib field name. Default is DBD
value of FIELD NAME= or XDFLD
NAME=. Maximum 30 characters.

Copylib record name. Default is DBD
value of SEGM NAME=. Maximum 30
characters.

VSAM file copylib record key field
name. Maximum 30 characters.

DBD name. Maximum 8 characters.

New COBOL record name of the
segment.

New COBOL record name of the
segment.

Specifies the program PSB name.

VSAM file record name. Maximum 30
characters.

A unique subschema name. Maximum
8 characters.

The offset position of the field relative
to the beginning of the record (first
position is 0). Maximum characters.

COBOL picture clause. Default is x(n).
n=the value of the BYTES parameter in
the DBD. Maximum 24 characters.

Reference

185

186

Comments:
IMS DB/DC

Reference

PIC=keypicture

PROCOPT=A|G|I|ID|R

RECORD=recname

SEG=segname

SHORT=shrtrecname

SOURCE=P|C

TYPE=K|E|R

TYPE=P|U|D

VOL(name)
VSPREFIX=fileprefix

Picture of keyed field. Required for
non-alphanumeric. Maximum 24
characters.

Process control options. Values are:
A(ll); G(et); I(nsert); D(elete); R(eplace).

Value of the first or only DDI REC
statement NAME=recname. Maximum
30 characters.

DBD value of SEGM NAME-=. If you
supplement or override this statement
segname is as it appears in the
program PSB. Maximum 8 characters.

Short record name. Maximum 8
characters.

Method used to put copylib members
in program. Values are: P (via an APS
%INCLUDE statement). C(via COBOL
COPY command).

VSAM file type. Values are: K(eyed);
E(ntry); R(elative). Default is K.

Index type. Values are P(rimary);
U(nique); D(uplicate). The first index
must be primary.

Volume name.

VSAM file prefix.

® When APS generates DDI symbols, it converts special characters that
appear in IMS data names follows:

® $ convertsto an X
® #convertstoanyY

® @convertstoaZ

® To access the index database itself, define the index DBD to the APS
Generator, and include PCBs for it in PSBs defined to the APS

Generator.

DBD
AREA
AREA
AREA
SEGM
FI ELD

Examples:

DDI Statements

® |f a PSB contains multiple PCBs for the database, use the VIEW or
PCB parameter when you code the database macro to ensure that
the correct PCB is used for the generated call.

® Select option 3, Generate DDISYMB symbols from DDIFILE, only if
you want to regenerate DDI symbols that have been previously
generated by following the procedures above.

IMS DB
DBD and copylib DDI statements.

DBD NAME=DBD1 etc.
SEGM NAME=S1 etc.
FIELD NAME=S1FLD etc.
SEGM NAME=S2 etc.

FI ELD NAME=S2FLD etc.

Copylib file (S1)
01 SALES- REC.
05 REG O\-FLD PIC 9(03).

Copylib file (S2)
01 CUST- REC.
05 LOCATI ON- FLD PI C X(30).

DDI statements applicable to the above DBD statements and copylib.

KYWD 12-+----20---+----30---+----40---+----50---+-
*DDI DBD NAME=DBD1

*DDI REC NAME=SALES- REC, SEG=S1, COPY=S1,

* DDI GENO1=Y

*DDlI FLD NAME=REG ON- FLD, | MSNAME=S1FLD, PI C=9(03)
*DDI REC NAME=CUST- REC, SEG=S2, COPY=S2,

* DDI GENO1=Y

*DDlI FLD NAME=LOCATI ON- FLD, | MSNAME=S2FLD, PI C=X(30)

Fast path DBDs and PSBs.

NAME=DEDBASE, ACCESS=DEDB, RVNANME=DEDBRAND

DEVI CE=3380, SI ZE=1024, UOW(20, 5) , ROOT=(40, 10) , DD1=AREAl
DEVI CE=3380, SI ZE=1024, UOW(20, 5) , ROOT=(40, 10) , DD1=AREA2
DEVI CE=3380, S| ZE=1024, UOW(20, 5) , ROOT=(40, 10) , DD1=AREA3
NAME=CUST, PARENT=0, BYTES=(80, 80)

START=03, BYTES=06, TYPE=C, NAME=(ACCTNO, SEQ U)

Reference

187

188

FIELD START=09, BYTES=09, TYPE=C, NAME=SSA

FIELD START=18, BYTES=30, TYPE=C, NAME=NAME

FIELD START=48, BYTES=30, TYPE=C, NAME=ADDRESS

SEGM NAME=SUMM PARENT=CUST, BYTES=(30, 30) , TYPE=SEQ

FIELD START=03, BYTES=10, TYPE=C, NAME=ACTI ON

FIELD START=13, BYTES=08, TYPE=C, NAME=AMOUNT

FIELD START=21, BYTES=10, TYPE=C, NAME=TELLER

SEGM NAME=TRAN, PARENT=CUST, BYTES=(50, 50), TYPE=DI R, X
SSPTR=8

FIELD START=03, BYTES=06, TYPE=C, NAME=(TRANDATE, SEQ

FIELD START=09, BYTES=06, TYPE=C, NAME=TRANAMT

FIELD START=15, BYTES=15, TYPE=C, NAME=TYPE

FIELD START=30, BYTES=08, TYPE=C, NAME=BAL ANCE

SEGM NAME=CHARGE, PARENT=TRAN, BYTES=(30, 30), TYPE=DI R, SSPTR=5

FIELD START=03, BYTES=06, TYPE=C, NAME=DATE

FIELD START=09, BYTES=06, TYPE=C, NAME=SERVCHAR

FIELD START=15, BYTES=10, TYPE=C, NAME=TYPECHAR

DBDGEN

FI NI SH

END

DDI statements:

*DDI DBD NAME=DEDBASE

*DDI REC NAME=CUSTOVMER- RECORD, SEG=CUST, COPY=CUST
*DDI FLD NAME=CUSTQOVER- ACCT- NO, | MSNAME=ACCTNO

*DDI FLD NAME=CUSTOMER- SSA, | MSNAME=SSA

*DDI FLD NAME=CUSTOVER- ADDRESS, | MSNAME=ADDRESS

*DDI REC NAME=SUMMARY- RECORD, SEG=SUMV| COPY=SUWMM
*DDI FLD NAME=SUMVARY- ACTI ON, | MSNAME=ACTI ON

*DDI FLD NAME=SUMMARY- AMOUNT, | MSNAMVE=AMOUNT

*DDI FLD NAME=SUMMARY- TELLER, | MSNAME=TELLER

*DDI REC NAME=TRANSACTI ON- RECORD, SEG=TRAN, COPY=TRAN
*DDI FLD NAME=TRANSACTI ON- TRANDATE, | MSNAME=TRANDATE
*DDI FLD NAME=TRANSACTI ON- AMOUNT, | MSNAME=TRANAMT
*DDI FLD NAME=TRANSACTI ON- TYPE, | MSNAME=TYPE

*DDI FLD NAME=TRANSACTI ON- BALANCE, | MSNAME=BALANCE
*DDI REC NAME=CHARCGE- RECORD, SEG=CHARGE, COPY=CHARGE
*DDI FLD NAME=CHARCE- DATE, | MSNAME=DATE

*DDI FLD NAME=CHARCGE- SERVCHAR, | MSNAME=SERVCHAR

*DDI FLD NAME=CHARGE- TYPECHAR, | MSNAME=TYPECHAR

DBD NAVE=DEDB1, ACCESS=DEDB,
RVNAVE=(DBFHD040)

AREA DD1=DEDB1DD, DEVI CE=3380, S| ZE=1024,
ROOT=(10, 5) , UOW:(15, 10)

SEGM NAME=A, BYTES=(48, 27) , PARENT=0

FIELD NAME=(Al, SEQ U), BYTES=10, START=3, TYPE=C

Reference

SEGM NAME=B, BYTES=(24, 11), PARENT=((A, SNGL)) , TYPE=DI R, SSPTR=5

FIELD NAME=(B1, SEQ U), BYTES=5, START=3, TYPE=C

FIELD NAME=B2, BYTES=5, START=10, TYPE=C

SEGM NAME=C, BYTES=(34, 32) , PARENT=((B, DBLE)) , RULES=(, HERE)
TYPE=DI R

FIELD NAME=(Cl, SEQ U), BYTES=20, START=3, TYPE=C

SEGM NAME=D, BYTES=(52, 33) , PARENT=((A, DBLE)), TYPE=DI R, SSPTR=3

FIELD NAME=(DL1, SEQ U), BYTES=2, START=3, TYPE=C

SEGM NAME=E, BYTES=(52, 33) , PARENT=((A, DBLE)), RULES=(, FI RST),
TYPE=DI R

FIELD NAME=(El, SEQ U), BYTES=2, START=3, TYPE=C

DBDGEN

FI NI SH

END

DDl *DDI DBD NAME=DEDB1

DBD NAME=MSDB1, ACCESS=MSDB

DATASET REL=NO

SEGM NAME=A, BYTES=4

FIELD NAME=(Al, SEQ U), BYTES=1, START=1, TYPE=X
DBDGEN

FI NI SH

END

*DDI DBD NAME=MSDB1

PSB
PCB TYPE=DB, DBDNAMVE=DEDB1, PROCOPT=A, KEYLEN=35
SENSEG NAME=A, PARENT=0

SENSEG NAME=B, PARENT=A, SSPTR=((1, R), (2, U), (5))
SENSEG NAME=C, PARENT=B

PCB TYPE=DB, DBDNAME=DEDBASE, PROCOPT=A, KEYLEN=12
SENSEG NAME=CUST, PARENT=0

SENSEG NAMVE=SUMV PARENT=CUST

SENSEG NAME=TRAN, PARENT=CUST

PCB TYPE=DB, DBDNAME=MSDB1, PROCOPT=A, KEYLEN=1
SENSEG NAME=A, PARENT=0

PSBGEN PSBNANE=FASTPATH, LANG=COBOL

END

DDI Statements

® Copylib for a fixed length KSDS file with three indices accessing one

record.

01 EMPLOYEE- RECORD.

05 EMPL - EMP- NUM PI C X(06) .
05 EMPL- LAST- NAME PI C X(20).
05 EMPL-FIRST-I NI T PI C X(02).

Reference

189

190

05 EMPL-M DDLE-INI' T PI C X(02).
05 EMPL - SOURCE- CODE PI C X(06) .
05 EMPL- SALARY PI C 9(7) COWP- 3.
05 EMPL - SCHED- HOURS PI C 9(04).
05 EMPL- ACTI VE- FLAG PI C X(02).
05 EMPL- LAST- PROV+ DATE PI C X(06) .
05 EMPL- LAST- EXT- DATE PI C X(06) .
05 EMPL- START- YR PI C X(02).

DDI for fixed length KSDS file.

KYWD 12-+-=--20- - 4--==30---+---=40-==+-==-50- - +- - -
*DDl VSM DDN=EMPLOYEE

* DDI TYPE=K, VSPREF| X=VQAC6550. APS17X,
* DDI TRK(100 10), Cl SZ(8192), VOL(SAGE03) ,

* DDI REPLI CATE, FSPC(15 15), SHR(1 3), NOl MBED

*DDI REC NAME=EMPLOYEE- RECORD, SHORT=EMPL,

* DDI COPY=EMPLOYEE, SOURCE=P,

* DDI MAXLEN=56

*DDI | DX NAME=EMPL- EMP- NUM TYPE=P, KEYLEN=6, OFFSET=0,

* DDI DDN=EMPLOYEE, TRK(5 5), VOL(SAGE03)

*DDI | DX NAME=EMPL- SOURCE- CODE, TYPE=D,

* DDI KEYLEN=6, OFFSET=30, DDN=EMPLOYEL,

* DDI TRK(3 3), VOL(SAGE03) , NOI MBED

*DDI | DX NAME=EMPL- SALARY, TYPE=D,

* DDI KEYLEN=4, OFFSET=36, DDN=EMPLOYEZ,

* DDI PI C=9(7) COWP- 3, TRK(3 3), VOL(SAGED3)

*DDI SUB NAME=SAMPPGM RECORD=EMPLOYEE- RECORD, PROCOPT=A,
* DDI LABEL =STANDARD, BLOCK=200, ASS| GN=EMPLOYEE

Copylib for a variable length keyed sequential file with one index
accessing multiple records.

% * ClI CS RECORDS ARE REDEFI NED FOR WORKI NG STORAGE.
% * MVS RECORDS ARE NOT REDEFI NED;, ARE PLACED DI RECTLY UNDER

FD.

% | F &APS-MDC = "CI CS- TP
&VSSUF = " REDEFI NES ORDER- RECORD"

% ELSE
&VSSUF = ""

01 ORDER- RECORD.
05 ORDER- KEY PI C X(05).
05 ORDER- RECORD- TYPE PI C X(01).
05 ORDER- CUST- NUMBER PI C X(07).
05 ORDER- PART- NUMBER PI C X(07).
05 ORDER- QUANTI TY- ORDERED PI C 9(05).
05 ORDER- QUANTI TY- TYPE PI C X(10).
05 ORDER- ORDER- AMOUNT PI C 9(05) V99.

Reference

01

01

05
ORDE!
05
05
05
05
05
ORDE!
05
05
05
05
05

DDI Statements

ORDER- ORDER- STATUS PI C X(04).
R- PART- RECORD &VSSUF.

FI LLER PI C X(06).
PART- NAMVE PI C X(05).
PART- DESCRI PTI ON PI C X(25).
PART- SUPPLI ER- NBR PI C X(07).
PART- SUPPLI ER- NAVE PI C X(25).
R- DELV- RECORD &VSSUF.

FI LLER PI C X(06).
DEL V- CONTACT- NAVE PI C X(30).
DEL V- CONTACT- PHONE PIC X(12).
DEL V- ADDRESS PI C X(35).
DELV- SPECI AL- | NSTRUCTI ONS ~ PI C X(50) .

DDI for variable length KSDS files.

KYWD 12-+-=--20- - 4--==30---+---=40-==+-==-50- - +- -
VSM DDN=ORDER
REC NANME=ORDER- RECORD, SHORT=ORDER, COPY=ORDER, SOURCE=P,

* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDl

I DX

MAXLEN=133, AVGLEN=46
NAME=ORDER- KEY, TYPE=P, KEYLEN=5, OFFSET=0, DDN=ORDER

REC NAME=ORDER- PART- RECORD, SHORT=PART, MAXLEN=68
REC NAME=ORDER- DELV- RECORD, SHORT=DELV, MAXLEN=133

SUB

NAME=ORDERSS,
RECORD=CRDER- RECORD, PROCOPT=A,
LABEL=STANDARD, BLOCK=0, ASSI GN=ORDER

DDI statements for generating DDISYMB and IDCAMS.

* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI
* DDI

VSM DDN=PERSON

TYPE=K, VSPREF| X=VAPS6550),
Cl SZ(4096) , VOL(PDVL02) , TRK(5 5)

REC NAME=PERSONNEL- RECORD, SHORT=PERSONEL,

I DX

I DX

I DX

SUB

COPY=PERSONEL, SOURCE=P, MAXLEN=80, PREFI X=PER
NAVE=SSA, AL| AS=SSA- X, TYPE=P, KEYLEN=9,
OFFSET=0, DDN=PERSON,

TRK(5, 5), VOL(PDVLO02)

NAVE=LAST- NAVE, TYPE=D, KEYLEN=15,
OFFSET=9, DDN=PERSONL,

TRK(5, 5) , REUSE, VOL (PDVL02)

NAVE=TI TLE, TYPE=D, KEYLEN=15,
OFFSET=24, DDN=PERSON2,

TRK(5, 5) , REUSE, VOL(PDVL02)
NAVE=SAMPLE, RECORD=PERSONNEL - RECORD,
PROCOPT=A

Generated IDCAMS source.

03590000

Reference

191

192

Reference

DELETE VAPS6550. PERSON. CLUSTER

CLUSTER
PURGE
I F LASTCC = 8
THEN
SET LASTCC = 00

DEFI NE CLUSTER

(1 NDEXED
NAVE (VAPS6550. PERSON. CLUSTER)

UNI QUE)

DATA
(NAME (VAPS6550. PERSON. DATA)
TRK(5, 5)

VOL(PDVL02)

RECSZ (80 80)

Cl Sz (4096)

KEYS (9 0)

SHR (3 3))

| NDEX
(NAME (VAPS6550. PERSON. | NDEX)
TRK(5, 5)

VOL(PDVL02)

Cl SZ (1024)

SHR (3 3)

)

I F LASTCC < 5
THEN
REPRO

DEF

| NFI LE (DDL)
ODS (VAPS6550. PERSON. CLUSTER)

Al X
(NAME (VAPS6550. PERSONL. Al X)

RELATE (VAPS6550. PERSON. CLUSTER)

REUSE
TRK(5, 5)

VOL(PDVL02)
RECSZ (256 512)
Cl Sz (1024)
KEYS (15 9)
NONUNI QUEKEY
UPGRADE)

DATA

01550000
01610000
01620000
01640000
01650000
01660000
01670000
01680000
01690000
01760000
01820000
01980000
01990000
02000000
02010000
02030000
02080000
02130000
02170000
02240000
02320000
02340000
02350000
02360000
02440000
02460000
02550000
02660000
02690000
02710000
02720000
02730000
02740000
02750000
02760000
02770000
02890000
02990000
03000000
03040000
03110000
03180000
03220000
03260000
03290000
03340000
03380000
03390000

(NAVE(VAPS6550. PERSONL. DATA))
| NDEX
(NAVE(VAPS6550. PERSONL. | NDEX))

I F LASTCC < 5
THEN
BLDI NDEX

I DS (VAPS6550. PERSON. CLUSTER)
ODS (VAPS6550. PERSONL. Al X)

I F LASTCC < 5
THEN

DEF

DEF

PATH
(NAME (VAPS6550. PERSONL. PATH)
PENT (VAPS6550. PERSONL. Al X)
UPDATE)

Al X

(NAME (VAPS6550. PERSON2. Al X)
RELATE (VAPS6550. PERSON. CLUSTER)
REUSE

TRK(5, 5)

VOL(PDVL02)

RECSZ (256 512)

Cl SZ (1024)

KEYS (15 24)

NONUNI QUEKEY

UPGRADE)

DATA

(NAME(VAPS6550. PERSON2. DATA))

| NDEX

(NAME(VAPS6550. PERSON2. | NDEX))

I F LASTCC < 5
THEN
BLDI NDEX

I DS (VAPS6550. PERSON. CLUSTER)
ODS (VAPS6550. PERSON2. Al X)

I F LASTCC < 5
THEN

DEF

PATH
(NAME (VAPS6550. PERSON2. PATH)
PENT (VAPS6550. PERSON2. Al X)
UPDATE)

DDI Statements 193

03400000
03410000
03420000
03430000
03440000
03450000
03460000
03470000
03480000
03490000
03500000
03510000
03520000
03530000
03540000
03550000
02890000
02990000
03000000
03040000
03110000
03180000
03220000
03260000
03290000
03340000
03380000
03390000
03400000
03410000
03420000
03430000
03440000
03450000
03460000
03470000
03480000
03490000
03500000
03510000
03520000
03530000
03540000
03550000

Reference

194

DDISYMB Flags

Compatibility:

Description:

Syntax:

Comments:

Reference

SQL target

You can use special DDISYMB flags to suppress or modify DCLGEN
copybook generation. After you generate your subschema and
DDISYMB file, insert these override flags into the DDISYMB file.
Flag 1, suppress inclusion of the APS-generated DCLGEN copybook:

&D2- | NCLUDED- COPYLI B- copybooknane = " YES'|"NO'

Flag 2, specify user override of APS indicator structure generation:

&D2- 1 NCLUDED- | V- copybookname = "YES"| " NO'

Flag 3, specify indicator variable prefix override, overriding the APS
default prefix IND:

&D2- copybooknanme- | V- PREFI X = " prefi xval ue"

Flag 4, specify indicator structure, group-level, override name:
&D2- copybookname-1 V- 01- NAME = " ndi cat orvari abl enane"
Flag 5, specify host structure, group-level override name:

&D2- copybookname- HOST- 01- NAME = " 01/ evel nane"

Flag 6, generate a value for &D2-copybookname-HOST-01-NAME:

&D2- GLOBAL- DCLGEN- NAME = "YES"| " NO'

Flag 7, override use and generation of the default IND-cursorname
structure:

&D2- USE- CURSOR- | ND = " YES'| " NO'

® CodeFlag 1 to:
® Include your own DB2 host variable copybook.

® Suppress inclusion of the corresponding APS-generated DCLGEN
copybook named by copybookname.

DDISYMB Flags

Code Flag 2 to:

® Include your own indicator variable structure in the copybook or
DB2 DDI symbols for that table.

® Suppress generation of the APS host indicator variable structure
for the table named by copybookname.

For Flag 2, the APS-generated host indicator variable structure
follows the format:

01 | ND- copybookname- REC
05 I ND- col nanel
05 I ND- col nane2

If you override the host indicator variable structure generated by
APS, you still must conform to the format above. However, you can
override the IND prefix with one of your own. You can specify one
prefix for each host indicator variable structure. The prefix you
create must be supplied to APS via the variable &D2-
copybookname-IV-prefix.

Similarly, you may also override the 01-level name of the host
indicator variable structure. If the 01-level name you choose is not in
the APS format shown above, supply it to APS via the variable &D2-
copybookname-IV-01-name. These two user flags are described
below.

For Flag 3:

® Code it to substitute a value for the default prefix, IND, on all
indicator variables for a table.

® Include this flag to supply your own indicator variable structure
and if the variable names have a prefix other than IND.

® The prefix you enter can include up to 11 characters.

® Follow the naming convention of prefix-columname for
indicator variable names, where prefix is either IND or a value
you specify in the prefix override. For example, for a table
represented by a copybook named TAB2, the entry:

% &D2- TAB2-1 V- PREFI X = "TAB2-1 V"
Yields the following indicator variable structure.

01 TAB2-1V- TAB2- REC.
05 TAB2-1V-col nanel

Reference

195

196

Reference

05 TAB2-1V-col nane2
05 TAB2-1V-col nane3

05 TAB2-1 V- col naneN

If you do not supply this variable, the APS uses the structure
generated for each cursor, cursorname-IND-variable, for cursor
processing.

For Flag 4:

Code it to create your own 01-level name for the indicator
variable structure. Indicatorvariablename replaces the APS-
generated 01-level name. The default for the 01-level name is
prefixcolumnamerec.

Include this flag to supply an override indicator variable
structure when the 01-level name does not conform to the APS
naming convention.

The maximum length of indicatorvariablename is 30 characters.

Indicator variable names must follow the naming convention of
prefix-columname, in which prefix is either IND or a value you
specify in &D2-copybookname-IV-PREFIX. For example, a table
represented by a copybook named TAB2, the entry:

% &D2- TAB2-1 V- 01- NAME = "TAB2-1 ND- VAR"
Yields the following indicator variable structure:

01 TAB2-1| ND- VAR.
05 I ND- col nanel
05 I ND- col nane2
05 I ND- col nane3

05 | ND- col naneN

If you do not supply this variable, the APS uses the structure
generated for each cursor, cursorname-IND-variable, for cursor
processing.

Code Flag 5 to change the default host structure after the DCLGEN
process creates it. 01/evelname replaces the APS-generated 01-level
name, copylibnamerec. APS uses your host 01-level name when it
qualifies host variables during SQL generation.

Examples:

DDISYMB Flags

® You can use Flag 6, rather than Flag 5, to generate a name for all
your tables. In the APS CNTL file APDB2IN, set the flag &D2-
GLOBAL-DCLGEN-NAME to yes. APS generates a value for &D2-
copybookname-HOST-01-NAME, using the IBM DCLGEN convention
of DCLtablename. Defining this flag in APDB2IN overrides manually-
coded definitions in all applications.

® Use Flag 7 to override the default indicator variable structure, IND-
cursorname with the structure IND-tablerec. APS generates the
default indicator variable structure, as follows:

01 TABLE- REC.

05 COoL1 PI C X(4).

05 COL2 PIC X(8).
01 | ND TABLE- REC.

05 |ND-COL1 Pl C S9(4) COWP.
01 | ND- CURSORL.

05 |ND-COL1 Pl C S9(4) COWP.

DB- FETCH CURSCR CURSCR1
I F OK- ON- REC
IF IND-COL1 OF | ND-CURSOR1L = +0
MAP-COL1 = COL1 in TABLE-REC

Note: Using the host indicator variable structure can simplify your code
because the one indicator variable structure can be used repeatedly. In
nested processes, however, the host indicator variables are overwritten
by each successive nesting level.

Substitute the prefix TAB2-IV for the default prefix IND for all indicator
variables in a table represented by copybookname and for the 01-level
name.

% &D2- copybooknane- | V- PREFI X = "TAB2-| V"

Substitute a different 01-level name in the indicator variable structure
generated by APS.

% &D2- copybookname-1 V- 01- NAME = " USER- | ND- VAR- NAME"

Sample source code:

% &D2- D2MASTER- HOST- 01- NAME = " XYZ- D2MASTER- STRUCT"

Reference

197

198

R S O Rk kR S R R kS S R

* COBOL DECLARATI ON FOR TABLE D2NMASTER
* 01-LEVEL NAME POST- PROCESSED

R S I Ok Rk S R R kS R Rk

01 XYZ- D2MASTER- STRUCT.

10 PM PART- NO PIC X(8).
10 PM NEW PART- NO PIC X(8).
10 PM OLD- PART- NO PIC X(8).
10 PM PART- SHORT- DESC PIC X(13).
10 PM UNI TS PIC 9(5).
10 PM UNI T- BASE- PRI CE PIC 9(5).
10 PM DI MENSI ONS PIC X(8).
10 PM COLOR PIC X(8).

Generated SQL code using &D2-D2MASTER-HOST-01-NAME

EXEC SQL SELECT ...
I NTO XYZ- D2MASTER- STRUCT. PM- PART- NO,
XYZ- D2MASTER- STRUCT. PM- NEW PART- NO,

XYZ- D2MASTER- STRUCT. PM COLCR,
FROM . ..
WHERE . ..
END- EXEC

Generated SQL code without using &D2-D2MASTER-HOST-01-NAME

EXEC SQL SELECT ...
I NTO D2TAB- REC. PM PART- NQ,
D2TAB- REC. PM NEW PART- NG,

D2TAB- REC. PM COLCR,
FROM . ..
WHERE . ..
END- EXEC

Reference

DECL

DECL

Category:

Compatibility:

Description:

Syntax:

Comments:

Example:

Program Painter and Specification Editor parameter

ISPF Dialog and ISPF prototyping batch programs; CICS and IMS DC
programs without screens

Create Declarative Section statements only--not sections or paragraphs.

See also DPAR and USE BEFORE REPORTING for creating Declarative
Section statements, paragraphs, and sections.

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
DECL decl arati vestatenents

® \We recommend that you code declaratives at the end of your
program, because APS generates the END DECLARATIVES statement
when either:

® |t encounters another keyword in the KYWD column.

® The Declaratives Section is at the end of the program.
® Do not code the DECLARATIVE SECTION header or the END

DECLARATIVES statement. APS generates these for you.

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
DECL decl arative statenent
decl arative statenent

Generated APS source:

DECLARATI VES.

decl arati ve statenent
decl arati ve statenent
END DECLARATI VES

Reference

199

200

DLG-ISPEXEC

Category:
Compatibility:
Description:
Syntax:

Parameters:

Comment:

Examples:

Reference

Data communication call (see Data Communication Calls)
ISPF Dialog target

Invoke ISPF services that use CALL ISPEXEC format.

DLG- | SPEXEC commandpr ocedur esynt ax

commandproceduresyntax Syntax for call executed in Command
Procedure (CLIST) format.

Data field DLG-ISPEXEC-RC contains the return code after the call
execution.

Use the CONTROL service to disable the user’s split screen capability.

DLG | SPEXEC CONTRCL SPLI T DI SABLE
IF DLG | SPEXEC-RC = 8
/* SPLIT SCREEN ALREADY DI SABLED
TRUE SPLI T- SCREEN- DI SABLED
ELSE-IF DLG | SPEXEC-RC = 0
/* SPLIT SCREEN DI SABLED
TRUE SPLI T- SCREEN- DI SABLED

Define an application message library to search before the default
message library.

DLG- | SPEXEC LI BDEF | SPM.1 B DATASET | D(" ABC. DEF. | SPM.I B’)
IF DLG | SPEXEG-RC = 0
[* K
ELSE
DI SPLAY '’ ??? LIBDEF | SPM.I B ERROR, RC ="' DLG | SPEXEC- RC

Invoke a command procedure to allocate application files.

DLG- | SPEXEC SELECT CMD(%ALOCFI LE ALLCOC)
IF DLG | SPEXEG-RC = 0
[* K
ELSE
DI SPLAY '’ ??? ALOCFILE ERROR, RC = ' DLG | SPEXEC- RC

DLG-ISREDIT

DLG-ISREDIT

Category:
Compatibility:
Description:
Syntax:

Parameter:

Comment:

Example:

Data communication call (see Data Communication Calls)
ISPF Dialog target

Invoke ISREDIT services.

DLG | SREDI T conmmandprocedur esynt ax

commandproceduresyntax Syntax for call executed in Command
Procedure (CLIST) format

Data field DLG-ISREDIT-RC contains the return code after call execution.

Determine if the member is new or existing. DLG-VDEFINE links ISPF
variable &LASTLINE to COBOL variable LASTLINE.

DLG- VDEFI NE LASTLI NE &APS- FULL
DLG-| SREDI T (LASTLINE) = LI NENUM . ZLAST
IF LASTLINE = 0

/* NEW MEMBER

TRUE NEW MEMBER

DLG-SETMSG

Category:
Compatibility:

Description:

Syntax:

Data communication call (see Data Communication Calls)
ISPF Dialog target

Display a message on the next panel; predefine message text and
attributes.
Format 1, SETMSG definition:

DLG- SETMBG
[SHORT ' short messaget ext’ |
[LONG ’ | ongnessaget ext’ |

Reference

201

202

Parameters:

Comments:

Examples:

Reference

[ALARM ' YES' | ' NO]
[HELP * hel ppanel nane’ |

Format 2, SETMSG definition for execution by Format 3:

DLG SETMSG erroridentifier
[SHORT ' short messaget ext’ |
[LONG ’ | ongnessaget ext’ |
[ALARM ' YES | ' NO]
[HELP * hel ppanel nane’ |

Format 3, SETMSG execution

DLG SETMSG [erroridentifier| mnessagel

ALARM 'YES'|'NO’ Sound alarm when screen displays.

erroridentifier Unigue name referencing predefined message
text and attributes.

HELP ‘help Help panel that displays via PF1.

panelname’

messagelD ISPF MSGID for SETMSG service.

LONG ‘long Display text in long message field when the end

messagetext’ user presses PF1 for the first time. Messagetext
must fit on the same line as LONG.

SHORT ‘short Display text in short message field. Messages

messagetext’ longer than 24 characters can cause truncation
errors. Messagetext must fit on the same line as
SHORT.

® If you use Format 2, include at least one of the keywords.

® Data field DLG-SETMSG-RC checks the return code after call
execution.

Define a message for an invalid option condition. INVALID-OPT (error
identifier) identifies the message information to display when DLG-
SETMSG is invoked in the execution format.

DLG- SETM5G | NVALI D- OPT
SHORT ' | NVALI D OPTI ON
LONG ' ENTER ONE OF THE LI STED OPTI ONS
ALARM ’ YES’

DLG-VCOPY

Then, display the invalid option message.

IF SCRA-OPTION = 'val ue
/* VALI D CONDI TI ON
ELSE
DLG SETMSG | NVALI D- OPT

DLG-VCOPY

Category: Data communication call (see Data Communication Calls)
Compatibility: ISPF Dialog target

Description: Copy data from a Dialog variable to a COBOL program variable and
generate the Working-Storage entry for the COBOL variable, if the
COBOL level is specified.

Syntax: DLG VCOPY [COBQL/ evel] COBOLvariabl e
[[FROM di al ogvari abl e]
[PIC CcOBA.pi cture] | LEN val ue

[GENONLY]
Parameters: COBOLlevel COBOLvariable level number.

COBOLvariable COBOL data name the call processes.

FROM dialog ISPF Dialog variable where data comes from;

variable default is COBOLvariable, truncated to eight
characters.

GENONLY Define COBOLvariable data item in Working-
Storage only.

LEN value COBOLvariable length; can be numeric integer,
COBOL variable, or arithmetic expression.

PIC COBOLpicture COBOLvariable picture; default is

alphanumeric.

Comments: ® Code FROM dialogvariable on the same line as COBOLvariable.

® Coding COBOLlevel generates COBOLvariable Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

Reference

203

204

Examples:

® Data field DLG-VCOPY-RC contains the return code after call
execution.

Copy data from a system variable into a screen field. The call does not
generate the COBOL variable because the COBOL level number is not
coded.

DLG VCOPY SCRA- ZUSER FROM ZUSER LEN 8

Copy data from a system variable into a Working-Storage variable.
Coding the COBOL level number generates the COBOL variable.

DLG- VCOPY 01 WS- LONG ERROR- MESSAGE PI C X(78) FROM ZERRLM

DLG-VDEFINE

Category:
Compatibility:

Description:

Syntax:

Parameters:

Reference

Data communication call (see Data Communication Calls)
ISPF Dialog target

Establish a link between a Dialog function pool variable and a COBOL
program variable.

DLG VDEFI NE [COBOL! evel] COBOLvari abl e
[[AS] dial ogvari abl €]
[PIC CcOBA.pi cture] | LEN val ue

[GENONLY]
AS dialog ISPF Dialog variable where data links from;
variable default is COBOLvariable, truncated to eight
characters.
COBOLlevel COBOLvariable level number.
COBOLvariable COBOL data name the call processes.
GENONLY Define the COBOLvariable data item in Working-

Storage only.

Comments:

Example:

DLG-VDELETE

LEN value COBOLvariable length; can be numeric integer,
COBOL variable, or arithmetic expression.

PIC COBOLpicture COBOLvariable picture; default is alphanumeric.

® Code AS dialogvariable on the same line as COBOLvariable.
® NTRY automatically links any panel variables to screen field names.

® Coding COBOLlevel generates COBOLvariable in Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

® Data field DLG-VDEFINE-RC checks the return code after call

execution.

Establish a link between function pool variable COMDATA and COBOL
variable WS-COMM-DATA. Coding the COBOL level number generates
the COBOL data name.

DLG- VDEFI NE 01 WS- COMM DATA PI C X(150) AS COMVDATA

DLG-VDELETE

Category:
Compatibility:

Description:

Syntax:

Parameters:

Comments:

Data communication call (see Data Communication Calls)
ISPF Dialog target

Remove the Dialog variables, previously defined by VDEFINE, from the
function pool.

DLG VDELETE di al ogvari abl e| *

dialogvariable Delete a specific ISPF Dialog variable.

* (asterisk) Delete all variables.

® Coding an asterisk deletes the variables according to the value of
the control variable &DLG-AUTO-VARIABLE-VDELETE.

® Data field DLG-VDELETE-RC contains the return code after call
execution.

Reference

205

206

Example:

Remove the link between function pool variable COMDATA and COBOL
variable WS-COMM-DATA.

DLG- VDEFI NE 01 WS- COMM DATA LEN(150)
AS COVDATA
DLG- VDELETE COVDATA

DLG-VREPLACE

Category:
Compatibility:

Description:

Syntax:

Parameters:

Comments:

Reference

Data communication call (see Data Communication Calls)
ISPF Dialog target

Move data from a COBOL program variable to an ISPF function pool
variable.

DLG VREPLACE [COBOLl evel] COBQ.vari abl e
[[INTQ dial ogvari abl e]
[PIC CcOBA.pi cture] | LEN val ue

[GENONLY]

COBOLlevel COBOLvariable level number.

COBOLvariable COBOL data name the call processes.

GENONLY Define COBOLvariable data item in Working-
Storage only.

INTO dialog ISPF function pool variable data replaces;

variable default is COBOLvariable, truncated to eight
characters.

LEN value COBOLvariable length; can be numeric integer,

COBOL variable, or arithmetic expression.
PIC COBOLpicture COBOLvariable picture; default is alphanumeric.
® Code INTO dialogvariable on the same line as COBOLvariable.

® Coding COBOLlevel generates COBOLvariable in Working-Storage;
otherwise, define the COBOL variable in Working-Storage.

Example:

DLG-VRESET

Move a new value to the function pool variable ZPFO1 and invoke ISPF
help services with PFO1.

DLG VREPLACE 01 W5-PFO1-HELP PI C X(04) VALUE ' HELP' | NTO ZPFO1

DLG-VRESET

Category:
Compatibility:

Description:

Syntax:

Comment:

Data communication call (see Data Communication Calls)
ISPF Dialog target

Reset all program function pool variables and delete the links between
COBOL variables and Dialog variables within the function pool.

DLG VRESET

Data field DLG-VRESET-RC contains the return code after call execution.

DPAR

Category:

Compatibility:

Description:

Syntax:

Program Painter and Specification Editor parameter (see Keywords)

ISPF Dialog and ISPF prototyping programs; CICS and IMS DC batch
programs and reports

Create a Declarative Section or section paragraph--not declarative
statements.

See also DECL and USE BEFORE REPORTING for creating Declarative
Section statements, paragraphs, and sections.

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
DPAR sectionname SECTI ON
USE decl ar ati vesent ence
[DPAR paragraphnane

Reference

207

208

paragr aphst atenent s |

Parameters: sectionname Specify Section paragraph.
USE declarative APS supports the USE clause with the exception
sentence of USE AFTER DEBUGGING, which is not
supported.

Comments: ® We recommend that you code declaratives at the end of your
program, because APS generates the END DECLARATIVES statement
when either:

® |t encounters another parameter in the KYWD column.
® The Declaratives Section is at the end of the program.

® Do not code the DECLARATIVE SECTION header and the END
DECLARATIVES statements. APS generates these for you.

Example: Program Painter code:

- KYWD- 12-*----20---*%----30---*----40---*%----50---*----60---
*----70-
DPAR DUMW- FOOTER SECTI ON
USE BEFORE REPORTI NG FOOTER- DUMWY
DPAR DUMWY- FOOTER- PARA
MOVE TOTAL-DI FF TO Tl ME- TOTAL
SUPPRESS PRI NTI NG
DPAR TOTAL- FOOT- SECTI ON SECTI ON
USE BEFORE REPORTI NG TOTAL- FOOT
TOTAL- FOOT- PARA
TI ME- AVERACE = TI ME- TOTAL / AVERAGCE- CNT
CALL- PERCENTACE = (HALF- HOUR- CALLS / AVERAGE- CNT)
* 100
MOVE HALF- HOUR- CALLS TO HOLD- CALLS
ADD HOLD- CALLS TO HALF- HOUR- CNT
MOVE ZERO TO HALF- HOUR- CALLS
DPAR CONTRCL- FOOTI NG- FI NAL SECTI ON
USE BEFORE REPORTI NG CNTL- FT- GP
DPAR CONTRCL- FOOTI NG- FI NAL- PARA
I F SYSI N TRACKER NOT = ' CTSALL’
SUPPRESS PRI NTI NG
ELSE
FI NAL- PERCENTAGE =
(HALF- HOUR- CNT / FI NAL- PROB- CNT * 100)

Reference

DS

Generated code:

DECLARATI VES.

DUMWY- FOOTER SECTI ON.
USE BEFORE REPORTI NG FOOTER- DUMWY
DUMWY- FOOTER- PARA.
MOVE TOTAL-DI FF TO Tl ME- TOTAL
SUPPRESS PRI NTI NG
TOTAL- FOOT- SECTI ON SECTI ON.
USE BEFORE REPORTI NG TOTAL- FOOT
$TOTAL- FOOT- PARA
Tl ME- AVERACGE = TI ME- TOTAL / AVERAGE- CNT
CALL- PERCENTACE = (HALF- HOUR- CALLS / AVERAGE- CNT)
* 100
MOVE HALF- HOUR- CALLS TO HOLD- CALLS
ADD HOLD- CALLS TO HALF- HOUR- CNT
MOVE ZERO TO HALF- HOUR- CALLS
CONTRCL- FOOTI NG- FI NAL SECTI ON.
USE BEFORE REPORTI NG CNTL- FT- GP
CONTRCL- FOOTI NG- FI NAL- PARA.
I F SYSI N TRACKER NOT = ' CTSALL’
SUPPRESS PRI NTI NG
ELSE
FI NAL- PERCENTAGE =
(HALF- HOUR- CNT / FI NAL- PROB- CNT * 100)

END DECLARATI VES

DS

Category: Program Painter and Specification Editor parameter (see Keywords)

Description: In your program, include a data structure created in the Data Structure
Painter and in that format.

Syntax: -Kyw- 12-*----20---%----30---*----40---%----50---*----60
DS[nn] dat astructurenane

Comments: ® Nnisthe beginning level number for the data structure entity. This
is useful when concatenating multiple data structure entities in the

Reference

209

210

same program. Nn overrides the default 01-level created with the
REC parameter in the Data Structure Painter.

The preceding section parameter determines the placement of a
data structure in the generated program. Associated section
keywords are

FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)
LK Linkage Section (see LK)

Entity Content Report (MS02)

Category:

Description:

Reference

APS-generated report (see Application Reports)

The Entity Content Report lists the following information for each
component of an application.

The painter where you create the component
The component name

The date when the component was created

The date when the component was last updated

The title of the component

You can produce a report for one type of component, or all types. If you
include all types, the report provides a separate section for components
by painter, with the painters arranged alphabetically.

This report helps you track the status of an evolving application. Use it
to verify which components have been created and modified as
planned.

TYPE

APPL
APPL
APPL

CNI O
CNI O
CNI O

DATA
DATA
DATA

Comments: ©

Example:

Produce the Entity Content Report from the Documentation Facility.

You can limit the report to components created or updated on or
between the dates you specify. If you do not specify any dates, the
report includes all components currently in the application.

CLSAPS. CLS2
SELECTI ON CRITERI A: ALL
CREATE DATE > 00/ 00/ 00
CREATE DATE < 99/99/ 99
SORTED BY: TYPE/ NAME
R R S I R Rk Ik Sk b R R R O R Rk O R Rk R O kR GR E k E E
CREATE UPDATE
NAME DATE DATE TITLE
AEDEMO 10/ 20/ 89 02/ 16/ 90
BCAPPL 11/07/90 11/07/ 90
BFAPPL 11/07/90 11/07/ 90
PADEMO 08/13/90 08/ 15/ 90 CUSTOMVER/ ORDER MAI' N MENU
PBDEMO 08/13/90 08/ 15/ 90 PARTS CRDER MAI N MENU
PCDEMO 08/13/90 08/ 15/ 90 CUSTOMER ORDER MAIN MENU
APFI ELDS 06/ 06/ 90 06/ 06/ 90 *** NOT AVAI LABLE ***
BATCH1 07/13/ 89 07/13/ 89 *** NOT AVAI LABLE ***
CONDATA 09/ 19/ 89 09/ 19/ 89 *** NOT AVAI LABLE
REPORT CODE: MS02 APS APPLI CATI ON DI CTI ONARY PAGE 4
CONTENT REPORT 06/ 17/92 15: 26
CLSAPS. CLS2
SELECTI ON CRITERI A: ALL
CREATE DATE > 00/ 00/ 00
CREATE DATE < 99/99/ 99
SORTED BY: TYPE/ NAME
R R S I R Rk Sk ok ok kR R R R R i R R R R R bk I R R R I S O
CREATE UPDATE
DATE DATE TITLE

Reference

21

212

PROG APP2
PROG EVOM
PROG EVPL

REPT COSTRPT
REPT MERPT
REPT TI1RPT
SCRN AAAAA
SCRN DLMENU

APPLI CATI ONS:
SCENARI OS:

DATA- STRUCTURES:
PROGRAMS:
REPORTS:

SCREENS:

12/ 17/ 90 12/ 18/ 90
01/10/91 01/ 10/91
01/10/91 01/ 10/91

07/ 27/ 90 07/ 27/ 90 *** NOT AVAI LABLE ***
08/ 24/ 90 08/ 24/ 90 *** NOT AVAI LABLE ***
07/ 27/ 90 07/ 27/ 90 *** NOT AVAI LABLE ***
06/ 04/ 90 06/ 07/ 90 TEST SCREEN

03/ 29/ 90 03/ 29/ 90

45
43
27
93

112

Entity Cross Reference (MDO1)

Category:

Description:

Comment:

Reference

APS-generated report (see Application Reports)

The Entity Cross Reference Report provides a list of application
components and the painters where you create the components. Use
this report for impact analysis, when you need to find the components
affected by a proposed change. For example, when a data structure
changes, that can affect components in a variety of applications and
programs. This report can show at a glance all of the affected
components that reference a particular data structure.

The report has a section for each cross-referenced component. The
report arranges the associated components in alphabetical order, along
with the type of each component and a description of it. The report
ends with the total number of cross-referenced components.

Produce the Entity Cross Reference report from the Documentation
Facility.

Entity Cross Reference (MDO1)

Example:

REPCRT CODE: MDO1 APS APPLI CATI ON DI CTI ONARY PAGE 1
ENTI TY CROSS REFERENCE 01/17/92 08: 48
MKTAPS. MKT2
SELECTI ON CRI TERI A: PROGRAM
ENTI TY NAMVE = ADEMO
ENTITY: ADEMO CREATED: 09/ 17/90
TITLE: UPDATED: 09/ 18/ 90

Ghkhkkkhhhhkhkkhkkhkhkkhkhkhkhhkhkk ok ok k ok k ok k ok k ok k ok k ok kkkkkkkkkkkkkkkkk ok kA kA kk kkkkkk kk kk ok ok ok ok ok ok ok &k &

ASSCCI ATED ENTITY TYPE TITLE

*** NO ASSCCI ATED ENTI TI ES FOUND FOR THI S SELECTI ON ***

REPCRT CODE: MDO1 APS APPLI CATI ON DI CTI ONARY PAGE 99
ENTI TY CROSS REFERENCE 01/17/ 92 08: 48
MKTAPS. MKT2
SELECTI ON CRI TERI A: PROGRAM
ENTITY NAMVE = ALL
ENTITY: TDCM CREATED: 03/19/90
TITLE: UPDATED: 09/17/ 90

Ghkhkkkhhhhkhkkhkkhkhkhkhkhkhkhhhh ok k ok k ok k ok k ok k ok k ok k ok kkkkkkkkkkkkkkkkk ok kA kk kk kk kk kk k ok kk ok ok ok ok ok ok ok ok &k &

ASSCCI ATED ENTITY TYPE TITLE

MWS21 APSAPPL

TDDEMO APSAPPL

TDCM APSEXPS

REPCRT CODE: MDO1 APS APPLI CATI ON DI CTI ONARY PAGE 100
ENTI TY CROSS REFERENCE 01/17/ 92 08: 48

MKTAPS. MKT2

SELECTI ON CRI TERI A: PROGRAM

ENTITY NAVE = ALL
ENTITY: TDCS CREATED: 04/ 26/ 90
TITLE: UPDATED: 08/24/ 90

Ghkhkkkhhhhkhkkkkhkkhkkhkhkhkhhh ok kk k ok k ok k ok k ok ok ok k ok k ok kkkkkkkkkkkkkkkkk ok kk k kA kk kk kk kk k ok kk kk ok ok ok ok ok &k &

ASSCCI ATED ENTITY TYPE TITLE
MWS21 APSAPPL

TDDEMO APSAPPL

TDCS APSEXPS

TOTAL NUVBER OF DEFI NED PROGRAMS - 60

TOTAL NUVBER OF UNDEFI NED PROGRAMS - 48

Reference

213

214

Entity Parts List (ENO1)

Category:

Description:

Comments:

Reference

APS-generated report (see Application Reports)

The Entity Parts List Report catalogs the components of one or more
selected applications, data structures, programs, report mock-ups,
screens, subschemas, user macros, APS macros, or COPYLIBs, down to
the level of detail that you specify. The report categorizes information
based on how it is used in the APS generation process. You can report

on:

The APS entities needed to generate an application-for example,
APS macros and entities used internally to generate APS
applications.

Unresolved references that the APS Generator creates-for example,
CALL WS-PROG IN WS-PROG. Use this information to help you
debug an application.

The source code that the APS Generator produces. Use this
information when you need a code listing.

Together these items provide a record of the complete progression of
your application from APS entity definitions to code.

Produce the Entity Parts List Report from the Documentation
Facility. In addition to the standard types, you can specify non-APS
libraries defined at your site.

To specify the application that contains the program, report on the
global application components, such as data structures and user
macros, that are associated with the program in a particular
application.

To specify the depth of detail that you want to report on, type a
value between 1 and 999 in the Explosion Limit field, or leave the
field blank to report on all available levels.

To specify the kind of data that you want to report on, complete the
Use Type field as follows:

® A(ps) to report on APS product components, such as APS macros

® |(nfo) to report on unresolved references

Entity Parts List (ENO1) 215

® S(ource) to report on a component that is not part of the APS

product
Example:
REPORT CODE: ENO1 APS APPL| CATI ON DI CTlI ONARY PAGE 1
ENTITY PARTS LI ST 92/ 07/23 12:18
CTSAPS. TEST

ENTITY TYPE: APSAPPL
ENTITY NAME: *

APPLI CATI ON:

EXPLOSI ON LIM T:

USE TYPES: SOURCE

APSAPPL (DEMOAPPL) 92/07/23 12:17
APSPROG (DEMOPGL) 92/07/23 11:55
APSDATA (DEMODS1) 92/ 07/23 12:08
APSSCRN (DEMOSCL) 92/ 07/23 11:57
DDl SYMB (DEMOPSB) 92/ 05/ 15 15: 20
COPYLI B (D2MASTER)
COPYLI B (D2STOCK)
USERMACS(DEMOUS1) 92/ 07/23 12:11
USERMACS(DEMOUS5) 92/ 07/23 12: 14
APSPROG (DEMOPG2) 92/07/23 11:56
APSDATA (DEMODS2) 92/ 07/23 12:08
APSSCRN (DEMOSC2) 92/ 07/23 12:05
DDl SYMB (DEMOPSB) 92/ 05/ 15 15: 20
COPYLI B (D2MASTER)
COPYLI B (D2STOCK)
USERMACS(DEMOUS2) 92/ 07/23 12:13
USERMACS(DEMOUS6) 92/ 07/23 12: 15
APSPROG (DEMOPG3) 92/07/23 11:56
APSDATA (DEMODS3) 92/ 07/23 12:08
APSSCRN (DEMOSC3) 92/ 07/23 12: 06
DDl SYMB (DEMOPSB) 92/ 05/ 15 15: 20
COPYLI B (D2MASTER)
COPYLI B (D2STOCK)
USERMACS(DEMOUS3) 92/ 07/23 12: 14
USERMACS(DEMOUS7) 92/ 07/23 12: 15
APSPROG (DEMOPG4) 92/07/23 11:57
APSDATA (DEMODS4) 92/ 07/23 12: 09
APSSCRN (DEMOSC4) 92/ 07/23 12: 07
DDl SYMB (DEMOPSB) 92/ 05/ 15 15: 20
COPYLI B (D2MASTER)

Reference

216

COPYLI B (D2STOCK)
USERMACS(DEMOUS4) 92/ 07/23 12:13
USERMACS(DEMOUS8) 92/ 07/ 23 12: 16

1 TARGET WAS LI STED.

Entity Search Utility Report (GS01)

Category:

Description:

Comments:

Reference

APS-generated report (see Application Reports)

The Entity Search Utility Report lets you use search expressions to report
on subsets of application data that meet the requirements that you
specify. A search expression can be either a literal text string or a regular
expression that lets you search for a certain criteria, such as all
occurrences of certain data name strings in a group of data structures.

When you generate this report, you specify the level of detail that you
want to report on. The available levels depend in part on the type of
data that you select for the report.

® Produce the Entity Search Utility Report from the Documentation
Facility.

® To report on components with common criteria, such as a common
name prefix, enter a wildcard as explained below.

® To report on a program, optionally specify the application that
contains it. Do so to report on the global application components,
such as data structures and user macros, that are associated with the
program in a particular application.

® To specify the depth of detail that you want to report on, type a
value between 1 and 999 in the Explosion Limit field, or leave the
field blank to report on all levels.

® You can specify whether to include APS members in the report.

® You can specify the search expression that represents the specific
information you want to report on.

Entity Search Utility Report (GS01) 217

A search expression can be a text string or a regular expression. You
can create a list of one or more search expressions, and include both
text strings and regular expressions.

A text string is a literal sequence of characters to search on. For
example, the string ABC finds ABC. The string is case sensitive. If the
string contains spaces, delimit it with single or double quotation

marks.

A regular expression is a pattern of characters. It may include text
characters and metacharacters. Metacharacters have special
meaning; see below for details.

Create regular expressions using the following metacharacters.

Metacharacter

()

Description

Match any value you seek. For example, DATA...
matches such values as DATA-TY or DATASTR.

Delimit spaces in an expression. For example, "%
DEFINE." or ‘% DEFINE." match % DEFINE and %
DEFINED.

In a pair, specify a group that can be a range (such
as A-Z) or a list (such as ABCD). Within a group, use
only the following metacharacters.

0 Specify the first character in a group.
Specify a range within a group.
\ Represent a metacharacter as itself.

Match zero or more occurrences of the single
character or character group immediately
preceding the *. For example, PROG*1 matches
PRO1, PROG1, and PROGGG1 but not PR1, because
the characters PRO must be part of the match. The
qguoted * simply represents itself.

Match one or more occurrences of the single
character or character group immediately
preceding the +. The example is the same as the
prior case, but there must be at least one match.
The quoted + simply represents itself.

Reference

218

Metacharacter

?

Example:
REPORT CODE: GS01

APPLI CATI ON:
ENTI TY: USERMACS
MEMBER: A1UTTREE
EXPLOSION LIM T:
USE TYPES:

SEARCH EXPRESSI ONS:
r:"% *DEFI NE "
r:"% *END "
R "% *I F"
R: " % * ELSE"

APPL ENTITY TYPE

e L 20+

USERMACS

Reference

Description

Match zero or one occurrences of the single
character or character group immediately
preceding this metacharacter. The example is the
same as the prior case, but there can be at most
one match. The quoted ? simply represents itself.

In the first position, represent a logical not, and
select data that does not specify the specified
criteria. In the first position of an expression, it
matches the rest of any expression. In any other
position, it represents itself.

Specify the preceding character or group of
characters if the metacharacter appears in the last
position of the expression and the match appears
at the end of the line. For example, WS-CNT$
matches ADD WS-CNT TO WS-TOT.

Indicate that the single metacharacter immediately
following the \ is an ordinary text character rather
than a metacharacter. For example, [A-Z\7]
matches the character range A through Z and the A
character.

APS APPLI CATI ON DI CTlI ONARY
ENTI TY SEARCH UTILITY
APS. TEST

PAGE

1

92/07/10 02:06

ENTI TY NAME LI NE

RC T R R R R - T S SR
ALUTTREE 1 0019 YDEFI NE $TREE- DEFI NE(
3 0030 % F &TREE = "*
3 0032 % F &LENGTH(&TREE) > 6
3 0036 % F &DEFI NED(&ALUTTREE- <&TREE>- DEFI NED)
3 0041 % F &POI NTER- S| ZE = "HALF"

0044
0047
0050
0053
0055
0061
0068
0115
0122
0126
0137
0147
0158
0163
0165
0168
0170

AP WP WWERPNWENWWRAWWRESS

Entity Use Report (EN02)

YELSE- | F &POI NTER- SI ZE = " FULL"
Y%ELSE

% F &ALLOC- PARA NOT = "*

% F &DEBUG = 0

Y%ELSE

% F NOT &DEFI NED(&A1UTTREE- WORK- AREA)
%F &S = " LI NKAGE"

YEND

YDEFI NE $TREE- CLEAR(

% F &TREE = "*

YEND

YDEFI NE $TREE- ADD(

% F &TREE = "*

% F &NODEX = "*

YELSE- | F & NDEX(&NODEX, "(")
% F &PREVX = "*

YELSE- | F & NDEX(&PREVX, "(")

Entity Use Report (EN02)

Category:

Description:

Comments:

APS-generated report (see Application Reports

The Entity Use Report lists components that use the target component,
as in a COPY or INCLUDE statement. For example, you can get a list of
components that use a certain subschema.

When you generate this report, you specify the level of detail that you
want to report on. The available levels depend in part on the type of
data that you select for the report.

® Produce the Entity Use Report from the Documentation Facility.

® Ifyou are reporting on a program, optionally specify the application
that contains it. Do so to report on the global application
components, such as data structures and user macros, that are
associated with the program in a particular application.

® Specify the depth of detail that you want to report on. To do so,
type a value between 1 and 999 in the Explosion Limit field, or leave
the field blank to report on all available levels.

® Specify the kind of data that you want to report on by completing
the Use Type field as follows.

Reference

219

220

® A(ps) to report on APS product components, such as APS macros

® |(nfo) to report on unresolved references not used during APS
Generation--for example, CALL WS-PROG-NAME

® S(ource) to report on a component that is not part of the APS
product

® Blank to report on all types of information

Example:
REPORT CODE: ENO2 APS APPLI CATI ON DI CTlI ONARY PAGE 1
ENTI TY USE REPORT 02/ 06/ 21 14:02

APS. WS21DEV
TARGET: USERMACS(| SPFUSER)
APPLI CATI ON:
EXPLCSION LIM T:
USE TYPE SELECTI ONS:

APSAPPL (APSLI NK8)
APSPROG (A2CNFI G8)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2NDMGD8)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2NDMGUS)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2RECGUS)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2RECV8)
APSPROG (A2RECGUS)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2RECV8)

Reference

USERMACS(| SPFMACS)
USERMACS(| SPFCOMM)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2SENDB)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSLI NK8)
APSPROG (A2SENGDS)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)
APSAPPL (APSPC)
APSPROG (APSNA)
USERMACS(| SPFMACS)
USERMACS(| SPFCOMV)
USERMACS(| SPFUSER)

ENTRY 221

ENTRY

Category: S-COBOL structure (see S-COBOL Structures)
Purpose Establish an entry point in a COBOL subprogram.

Syntax: ENTRY /i teral

[USING identifierl,

identifierN

Comments: ® S-COBOL considers the paragraph where the program enters the

subprogram as a main-logic paragraph.

® Code ENTRY immediately after a paragraph name.

® Code ENTRY only in a paragraph that is not performed by any other
paragraph within the subprogram. At the end of this paragraph,
control returns to the calling program, so that you do not need to

code EXIT PROGRAM.

® If the program reaches an EXIT PROGRAM before the end of the

paragraph, control returns to the calling program.

Reference

222

Error Handling

Description:

Example:

Reference

CICS

Test for any Exceptional condition in the CICS environment.

APS generates a CICS IGNORE CONDITION command that ignores all
CICS Exceptional conditions, and generates an 88-level EIBRCODE
structure.

The APS/CICS default for inline error checking is to generate a global
CICS IGNORE condition. You can generate a NOHANDLE on a call-by-call
basis. Flags for both are in the APS CNTL file APCICSIN.

Test for the MAPFAIL condition and perform a user-defined paragraph
to handle it.

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60
NTRY
| F MAPFAI L
PERFORM MAPFAI L- PARA

EIBRCODE Structure:

The variable that controls generation of the EIBRCODE structure is &CIC-
APS-EIBRCODE, which resides in APCICSIN. The following is the APS-
generated EIBRCODE structure, which resides in APCICSTP.

01 APS- El BFN- EI BRCODE.

05 APS- El BFN PI C X(01).
05 APS- El BRCODE PI C X(06) .
01 FILLER REDEFI NES

APS- El BFN- EI BRCODE.
05 APS- El BFN- EI BRCODE- X PI C S9(04) COWP.

88 (CBI DERR VALUE +1259.
88 DI SABLED VALUE +1549.
88 DSI DERR VALUE +1537.
88 DSSTAT VALUE +7684.
88 DUPKEY VALUE +1668.
88 DUPREC VALUE +1666.
88 ENDDATA VALUE +4097.
88 ENDFILE VALUE +1551.
88 ENDI NPT VALUE +1218.
88 ENQBUSY VALUE +4658.

88
88
88

88
88
88
88
88
88
88

88
88

88

88
88
88

88
88
88
88
88

ENVDEFERR
EODS
EOF

EXPI RED
FUNCERR

| GREQCD
ILLOG C

| NVERRTERM
| NVMPSZ

| NVREQ

I NVTSREQ
I OERR

| SCI NVREQ

| TEMERR
JI DERR
LENGERR

MAPFAI L
NQJBUFSP
NOPASSBKRD
NOPASSBKWR
NOSPACE

VALUE +4329
VALUE +1040

VALUE +1028
+1217

VALUE +4128
VALUE +7688
VALUE +1258
VALUE +1538
VALUE +6176
VALUE +6152

VALUE +736
+1248
+1544
+2592
+3808
+4351
+4832
+5122
+6145
+6880.

VALUE +4116

VALUE +1664
+2052
+2564
+4100
+5127

VALUE +1745
+2257
+2769
+4305.

VALUE +2561
VALUE +5121

VALUE +1249
+1761
+2273
+2785
+3297
+4321
+5126
+6369
+7905.

VALUE +6148
VALUE +5129
VALUE +1255
VALUE +1256

VALUE +1667
+2064
+2568.

Error Handling 223

Reference

224

Reference

88
88
88

88

88
88
88

88
88

88
88
88
88
88
88
88
88
88
88

88
88
88
88

88

NOSTG
NOTALLCC
NOTFND

NOTOPEN

PGM DERR
QBUSY
Q DERR

QZERO
RDATT

RETPAGE
RTEFAI L
RTESQOVE
SEG DERR
SELNERR
SESSBUSY
SESSI ONERR
S| GNAL
SYSBUSY
SYSI DERR

TERM DERR
TRANSI DERR
UNEXPI N
WRBRK

ERROR- FOUND

+1537
+1218
+4128
+736

+4832
+2052
+2769
+2273
+7905
+2064
+1548
+2562
+6208

+7684
+4658
+7688
+1248
+5122
+2564
+4305
+2785
+6148
+2568
+2056
+2049
+1540

+1668
+4329
+1258
+1544
+6145
+4100
+2561
+3297
+5129
+3298
+5125
+1252
+7692

VALUE +3298
VALUE +1237
VALUE +1665
+4225.
VALUE +1548
+2056
+5125
VALUE +3585
VALUE +2240
VALUE +2050
+2562.
VALUE +2049
VALUE +1252
+6372.
VALUE +6146
VALUE +6272
VALUE +6208
VALUE +1540
VALUE +7692
VALUE +1236
VALUE +1234.
VALUE +1253
VALUE +1235
VALUE +1232
+1744
+2256
+2768
+4304
VALUE +1254
+4114.
VALUE +4113
VALUE +7696
VALUE +1251
+6371.
VALUE +1259

+1666
+1040
+1538
+2592
+6880
+5127
+5121
+4321
+1255
+1237
+3585
+6372
+1236

+4097
+1028
+6176
+3808
+4116
+1745
+1249
+5126
+1256
+1665
+2240
+6146
+1234

+1551
+1217
+6152
+4351
+1664
+2257
+1761
+6369
+1667
+4225
+2050
+6272
+1253

Description:

Error Handling

+1235 +1232 +1744 +2256 +2768 +4304
+1254 +4114 +4113 +7696 +1251 +6371.

05 FILLER

IDMS DB

PI C X(05).

Test for any error condition in the IDMS DB environment. Check the call
status in your program with flags provided by the APS/IDMS DB
Generator. All flags are COBOL 88-level condition names.

Flag
AB-ON-REC

DUP-ON-REC
END-ON-REC
NTF-ON-REC
OK-ON-REC

POS-ON-REC

VIO-ON-REC

Status Code

0001 thru 0306
0308 thru 0325
0327 thru 0625
1206 thru 9999

0705 0805 1205
0307

0326 0626
0000

Error Condition

Any error other than those listed

Duplicate key

End of set, area, or index

Record not found

Successful operation

All values of AB-ON- Positioning error

REC whose last 2
bytes are 06, 13

All values of AB-ON- Update violates IDMS DB rules

REC whose last 2
bytes are 01, 02, 08,
09, 10, 14, 15, 23, 31

After any APS/IDMS call, the value of ERROR-STATUS moves to DBIO-
STATUS. The program checks the associated 88-level flags for status
checking. If a DB call contains a record name, such as DB-STORE REC
CUSTOMER, you can move the value of ERROR-STATUS to record-
STATUS, as well as DBIO-STATUS, and the program checks both fields.

Generated record-STATUS flags have the following format.

ORDER- STATUS

Pl C X(04) VALUE

88 STABLE- ON- ORDER

88 AT- END- ON- ORDER

88 | NVALI D- KEY- ON- ORDER
88 | NVALI D- DUP- ON- ORDER
88 ABNORMAL- ON- OR

VALUE
VALUE
VALUE
VALUE
VALUE

' 0000’ .
' 0000’ .
' 0307
' 0326’
'1205’
' 0001
' 0308’
' 0327

' 0626’ .

' 0805 " 0705’ .
THRU ' 0306’
THRU ' 0325’
THRU ' 0625’

Reference

225

226

' 0627
' 0706’
' 0806’
'1206’

THRU ' 0704’
THRU ' 0804’
THRU ' 1204’
THRU ' 9999’ .

DB- OBTAI N REC | DMSREC AREA CUSTOMER- REGI ON FI RST
I F OK-ON- REC
DB- OBTAI N REF CUSTOMER REC ORDER FI RST
I F OK- ON- ORDER
PERFORM ORDER- PRCCESSI NG- PARA
ELSE- | F AT- END- ON- ORDER

OR | NVALI D- KEY- ON- ORDER
PERFORM NO- ORDERS- PARA

ELSE
PERFORM ABNORMAL - ON- ORDER- PARA

DB-OBTAIN and DB-GET generate record-STATUS flag values (when the
record name is given). All other calls generate DBIO-STATUS values.

Example: 01 DBIO STATUS PIC X(04) VALUE ' 0000’.
88 OK-ON-REC VALUE ' 0000’ .
88 END-ON-REC VALUE ’ 0307 .
88 NTF-ON-REC VALUE ® 0326’ ' 0626’ .
88 DUP-ON-REC VALUE ’ 1205 ' 0805’
" 0705 .
88 AB-ON- REC VALUE ' 0001° THRU ’ 0306’
"0308" THRU ' 0325’
"0327° THRU ’ 0625’
"0627° THRU ' 0704’
"0706° THRU ’ 0804’
'0806° THRU ' 1204’
'1206° THRU ’ 9999’ .
01 APS17-STATUS REDEFI NES DBI O- STATUS.
02 APS17- MAJOR- CODE PI C X(02).
02 APS17-M NOR- CODE PI C X(02).
88 POS- ON- REC VALUE ' 06" '13’.
88 VIO ON-REC VALUE ' 01’ ' 02
08 09
100 14
'15° 28
' 31

Reference

Description:

Error Handling 227

IMS DB

Test for any error condition in the IMS DB environment. Check the call
status in your program with flags provided by the APS/IMS DB
Generator. All flags are COBOL 88-level condition names.

Flag Status Code Error Condition
AB-ON-REC Any not listed For any error code not listed below
below
DUP-ON-REC |, NI LB Call failed because the new segment
would create a duplicate for a key or
sequence field defined as unique
END-ON-REC GB End of database reached
NTF-ON-REC GE GB Requested record not found
OK-ON-REC 2 spaces, GA GD Everything is OK
GK
POS-ON-REC DJ LCLD LE Positioning error; requested
positioning not established
RTY-ON-REC GG Record not available; retry

VIO-ON-REC AMDADXRXIX Update violates IMS DB rules

Abnormal Error Processing:

By default, the APS-supplied IMS database error macros--$IM-ERR-
CONDITION and $IM-ERR-ACTION--use APS-supplied status flags.

The macros also call DFSOAER, the IMS-supplied error display routine. To
enable the call to DFSOAER, go to the APS CNTL file APSDBDC and set
the variable % &IM-USE-DFSOAER to 1. If you don’t have DFSOAER at
your installation, or you want to disable it, just leave the variable set
to 0.

APS supplies two error macros in the APSMACS file IMSPHYS.

$IM-ERR-CONDITION Specifies the conditions for which the
database return status indicates an error. The
conditional statement IF AB-ON-REC tests for
the APS data base status flags (found in the
generated Working-Storage field IM-FLGS),
and the IMS status codes (in the field IM-
STATUS).

Reference

228

Reference

$IM-ERR-ACTION Contains the procedures executed when the

condition specified in $IM-ERR-CONDITION is
True. When AB-ON-REC codes are returned,
this macro calls DFSOAER, the IMS-supplied
error display routine. Reminder: To enable
calling DFSOAER, go to APSDBDC and make
sure % &IM-USE-DFSOAER is set to 1.

To modify $IM-ERR-CONDITION, write an overriding macro of the same
name in the USERMACS macro library. Use the override macro for

A specific application, enter the macro name in the Application
Painter field USERMACS, and specify in the Loc(ation) field a
location after the Identification Division but before the Procedure
Division.

An entire Project and Group, code in your project.group.APSPROJ
file the APS customization exit name $DB-SUBSCHEMA-EXIT-2, and
an % INCLUDE statement that includes the override macro. For
example:

% DEFI NE $DB- SUBSCHEMA- EXI T- 2
% | NCLUDE USERMACS(MY- OVERRI DE- MAC)
% END

Notes:

The override macro for $IM-ERR-CONDITION must generate one
simple or compound S-COBOL conditional statement that tests APS
data base status flags (found in the generated Working-Storage
field IM-FLGS), the IMS status code (in the field IM-STATUS), or both.

To modify $IM-ERR-ACTION, write an overriding macro of the same
name. You can use the override macro for a specific application or
an entire Project and Group, as detailed above.

The override macro for $IM-ERR-ACTION must generate S-COBOL
procedural code for the action specified when a condition(s) tested
by $IM-ERR-CONDITION is True. You can use the following

Examples:

Error Handling 229

parameters, whose values are passed to $IM-ERR-ACTION after a
bad database call.

Parameter Description

&ERR-PCB Name of PCB used for call.
&ERR-MACNAME Name of call resulting in error.

&ERR-FUNC IMS function code used in call.
&ERR-SEGNAME Name of segment requested in call.
&ERR-PAR-SEGNAME Segment name of parent requested in call.
&ERR-IOAREA COBOL name of record I/O area.
&ERR-PAR-IOAREA COBOL name of parent record I/O area.
&ERR-USER-MSG COBOL name of 72 byte error message field.
&ERR-SSA1 thru 15 SSA(s) used in call.

&IM-LVL-MAX Maximum level of the call.

® Receive the status flag NTF-ON-REC on a DB-OBTAIN with a single
segment level to indicate the requested employee number does not
exist.

DB- OBTAI N RECORD EMPLOYEE- MASTER
WHERE EMP- NO = NEEDED- EMP- NO

® |n contrast, receiving NTF-ON-REC on a DB-OBTAIN requesting the
return of segments at three levels, cannot specify the segment at
which the call failed. Resolve this by checking the IMS error fields.

DB- OBTAI N RECORD EMPLOYEE- MASTER
WHERE EMP- NO = NEEDED- EMP- NO REC WEEKLY- Tl ME- SEG
WHERE WEEK- END- DATA = PERI OD- DATE REC PRQJECT- Tl M- REC
WHERE PRQJ- CODE = CURRENT- PRQJ

IMS Error Fields

IMS provides error fields that show how far your call was processed
prior to failure.

IM-DB-PCB-SEGLEV Lowest level of the segment found in the
database, for example, 15, if a 15th-level
segment is found. Default 00.

IM-DB-PCB-SEGNAME 8-character IMS name for the lowest-
level segment located.

Reference

230

IM-DB-PCB-KEY-FEED-BACK

IM-DB-PCB-KEY-KFBLEN

IMS DC

Concatenated key information for the

path from the root-level to the lowest-
level segment found.

Length of data in the IM-DB-PCB-KEY-

FEED-BACK field.

Description: Test for any error condition in the IMS DC environment. Check the call
status in your program with flags provided by the APS/IMS DC
Generator. All flags are COBOL 88-level condition names.

Flag
AB-ON-DC-CALL

FP-ERR

NO-MORE-MSGS

NO-MORE-SEGS

SEG-NOT-FOUND

OK-ON-DC-CALL

SEC-VIO

SPA-IO-ERR

Reference

Status Code
CH X1 X8

FF FH FS FV

QcC

QD

GE

2 spaces, CC CE
CFCG A dCK

CL FD FW FF FH
FS FV GE QC QD

A4 FI

XA XB XE XF
XG X1 X2 X3 X4
X5 X6 X7 X8 X9

Error Condition

Category 5 status code return; call
not complete.

Category 3 status code return.
Fast Path error; call complete.

Category 3 status code return on
the TP call; no more input
messages exist.

Category 3 status code return; no
more segments exist for this
message.

Category 1 status code return;
segment not found.

Categories 1 and 2 status code
return; processing proceeds.

Category 4 status code returned;
security violation occurred; call
not complete.

Categories 4 and 5 status code
return; SPA error; call not
complete.

Error Handling 231

Flag Status Code Error Condition

TP-PGM-ERR AA AB AD AL Category 4 status code return;
AP AT AY AZ programming error; call not
A1 A2 A3 A4 complete.
A5 A6 A7 A8
A9 CACB CD
QE QH

Abnormal Error Processing

By default, the APS-supplied IMS data communication error macros--
$TP-ERR-CONDITION and $TP-ERR-ACTION--use APS-supplied status
flags.

The macros also call DFSOAER, the IMS-supplied error display routine. To
enable the call to DFSOAER, to to the APS CNTL file APSDBDC and set
the variable % &IM-USE-DFSOAER to 1. If you don’t have DFSOAER at
your installation, or you want to disable it, just leave the variable set
to 0.

APS supplies these two error macros in the APSMACS file IMSPHYS.

$TP-ERR-CONDITION Specifies the conditions for which the data
communication return status indicates an error.
The conditional statement IF AB-ON-DC-CALL
tests for the APS data communication flags
(found in the generated Working-Storage field
TP-FLGS), and the IMS status codes (in the field
TP-STATUS).

$IM-ERR-ACTION Contains the procedures executed when the
condition specified in $TP-ERR-CONDITION is
True. When AB-ON-DC-CALL codes are returned,
this macro calls DFSOAER, the IMS-supplied error
display routine.

Note: To enable calling DFSOAER, go to
APSDBDC and make sure % &IM-USE-DFSOAER is
setto 1.

To modify $TP-ERR-CONDITION, write an overriding macro of the same
name in the USERMACS macro library. You can use the override macro
for a specific application or an entire Project and Group.

Reference

232

Description:

Reference

The override the macro for $TP-ERR-CONDITION, generate a simple or
compound S-COBOL conditional statement that tests APS data
communication status flags (found in the generated Working-Storage
field TP-FLGS), the IMS status code (in the field TP-STATUS), or both.

To modify $TP-ERR-ACTION, write an overriding macro of the same
name. You can use the override macro for a specific application or an
entire Project and Group. The override macro must generate S-COBOL
procedural code for the action specified when a condition(s) tested by
$TP-ERR-CONDITION is True. You can use the following parameters that
are passed to $TP-ERR-ACTION after a bad data communication call.

Parameter Description
&TP-ERR-PCB Name of the I/O PCB used for the call
&TP-ERR-FUNC Generated Working Storage field, IM-CALL-

FUNC, to which the DC call function is moved
prior to the call

&TP-ERR-MSG Generated 72-byte Working Storage field, IM-
ERR-MSG, containing an error message

&TP-ERR-SEG-IOAREA Generated Working Storage field, either TP-
SEGMENT or user record area

&TP-ERR-SPA Generated Working Storage field, TP-SPA,
present only in IMS conversational programs

SQL

Test for any error condition in the SQL environment. Check the call
status in your program with flags provided by the APS/SQL Generator;
test SQLCODE. All flags are COBOL 88-level condition names.

Flag Error Condition
AB-ON-REC Any error not listed in this table.

DB2-DEADLOCK DB-PROCESS calls check this status to ensure the
cursor is not already closed before closing it; SQL
closes the cursor if database is locked.

DUP-ON-REC DB-STORE failed because the row already exists;
duplicates not allowed.

END-ON-REC End of table or cursor set reached.

NTF-ON-REC Requested row not found.

OK-ON-REC Operation successful.

Description:

Error Handling 233

Flag Error Condition

RI-ON-REC Referential Integrity check successful (corresponds
to SQLCODE -532 to -530).

Abnormal Error Processing

APS/SQL provides flags for you to code in your program to check the
status of SQL calls. When the AB-ON-REC flag is returned, it invokes an
abnormal condition processing macro ($D2-ERROR-PARA) that displays a
message and, for IMS and CICS programs, terminates the program.

If your DC target is IMS, and you are not running IMS under BTS, set
&D2-EXEC-UNDER-BTS=NO in the APS CNTL file APDB2IN. This
eliminates "Display" statements in the APS-generated error handling
routine.

To disable &D2-ERROR-PARA, go to the APS CNTL file APDB2IN and set
&D2-AUTO-ERROR-HANDLING to OFF.

You can modify error processing in two ways.

® Modify the APS error processing paragraph &D2-AUTO-ERROR-
HANDLING, which resides in the APS CNTL file APDB2IN macro
$DB2-ERROR-SETUP

® Modify which status codes should be considered error conditions, in
the APS CNTL file APDB2IN macro $DB2-CHECK-RETURNS-AUX. In
addition, you can change the status of a referential integrity
constraint from an abnormal condition, to an invalid key. Go to the
APS CNTL file APDB2IN and set the flag &D2-RI-IS-INVALID-KEY
to Yes.

Trace Flag

Use the S-COBOL trace flag for debugging. This facility displays where
APS performs each paragraph.

The Trace facility differs from the IBM READY-TRACE because it displays
the paragraph name only when a PERFORM executes a paragraph, and
not each time a loop executes.

Note: To activate the Trace facility, specify SCBTRACE on the Precompiler
Options screen.

Reference

234

Syntax:

Comments:

Description:

Example:

Reference

WORKI NG- STCRAGE SECTI ON.

02 SAGE-TRACE-FLAG PIC X VALUE "T".

PROCEDURE DI VI SI ON.

par agraphnane

| F SAGE- TRACE- FLAG = TRUE
DI SPLAY " EXEC: - - paragr aphnanme- -" .

® You can incorporate logic to set SAGE-TRACE-FLAG to FALSE until
some selected point in the program, and then set it to TRUE.

® To turn the TRACE feature off at run-time, code:

MOVE FALSE TO SAGE- TRACE- FLAG

VSAM Batch

Test for any error condition in the VSAM batch environment. Check the
call status in your program with flags provided by the APS/VSAM Batch
Generator. All flags are COBOL 88-level condition names.

Flag Status Code
OK-ON-REC 00
DUP-ON-REC 02
END-ON-REC 10
INV-ON-REC 2021222324
IVD-ON-REC 22
NTF-ON-REC 23

AB-ON-REC 3034909192
93 94 95 96 97

DB- STORE REC CUST- RECORD
I F OK-ON- REC

Error Condition

Successful operation

Duplicate key; duplicates allowed
End of file

Invalid key condition

Duplicate key; duplicates not allowed
Record not found

Abnormal condition

SCREEN- M5G = * CUSTOVER ADDED TO FI LE

Error Handling 235

ELSE-I F | VD- ON- REC
SCREEN- MSG = ’ DUPLI CATE CUSTOMER - NOT ADDED

Abnormal Error Processing

When the AB-ON-REC flag is returned, it invokes an abnormal condition
processing macro ($DB-ERR-CALL) to identify and process run-time 1/0
errors, terminate the program, and display a message giving the
following information.

® DBcallinerror

® Native VSAM Batch call name
® File name

® Program name

® Status code

® Program termination method; default isa COBOL STOP RUN

Note: APS identifies the status code values listed in the previous table;
the developer should test for all other conditions, such as, 00, 02, 10, 20,
21, 22, 23, and 24.

Program generation options
® Exclude specific status code values from AB-ON-REC.

® Deactivate the APS/VSAM Batch abnormal condition processing
routine.

There are three ways to modify AB-ON-REC processing.

® Exclude certain CICS Exceptional Conditions and ISI-Errors, or batch
conditions, from being AB-ON-REC conditions. To do so, go to the
APS CNTL file APVSAMIN and override their variables.

® Disable $DB-ERR-CALL. In the APVSAMIN file, set &VS-AUTO-ERROR-
HANDLING to No.

® Override $DB-ERR-CALL.

To override $DB-ERR-CALL, define (or % INCLUDE in your program,
using the SYM1 keyword) your own $DB-ERR-CALL macro.

Reference

236

Example:

Description:

VSAM Flag

AB-ON-REC

DUP-ON-REC

END-ON-REC
INV-ON-REC
IRQ-ON-REC

Reference

% DEFI NE $DB- ERR- CALL
PERFORM LOG- VSAM ERROR

% END

% SET EPI LOGUE $LOG VSAM ERROR
% DEFI NE $LOG VSAM ERROR
% SET WORKI NG STORAGE

COPY LOGDATA.

% SET PROCEDURE
LOG VSAM ERROR.
/* CAPTURE EI B DATA
MOVE El BFN TO
MOVE ElI BRCODE TO
MOVE El BDS TO
MOVE ElI BDATE TO
MOVE ElI BTIME TO
MOVE ElI BTASKN TO
MOVE EI BTRM D TO
MOVE ElI BTRNID TO

/* TRANSFER CONTROL TO LOG PROGRAM

CI CS XCTL

CA- El BFN
CA- EI BRCODE
CA- El BDS
CA- El BDATE
CA- El BTI ME
CA- El BTASKN
CA- El BTRM D
CA- El BTRNI D

PROGRAM ' LOGERRCR)
COVMAREA(CA- El B- AREA)

LENGTH(CA- El B- AREA- LENGTH)

% END

VSAM Online

Test for any error condition in the VSAM online environment. Check the
call status in your program with flags provided by the APS/VSAM
Generator. All flags are COBOL 88-level condition names. Two
equivalent sets of flags, APS/CICS VSAM and APS/CICS EIBRCODE, are

provided.
EIBRCODE Flag

DSIDERR ILLOGIC IOERR
LENGERR NOSPACE
NOTOPEN SYSIDERR

DUPKEY

ENDFILE
NOTFND DUPREC
INVREQ

ISI-Errors/ Exceptional
Condition

DSIDERR ILLOGICIOERR

LENGERR NOSPACE
NOTOPEN SYSIDERR

DUPKEY

ENDFILE
NOTFND
INVREQ

DUPREC

Error Condition

Abnormal condition

Duplicate key;
duplicates allowed

End of file
Invalid key condition
Invalid request

VSAM Flag
IVD-ON-REC

NTF-ON-REC
OK-ON-REC

Examples:

Error Handling

EIBRCODE Flag ISI-Errors/ Exceptional Error Condition
Condition
DUPREC DUPREC Duplicate key;
duplicates not allowed
NOTFND NOTFND Record not found
N/A N/A Successful operation

With APS/CICS VSAM flags:

DB- STORE REC CUST- RECORD
I F OK-ON- REC
SCREEN- M5G = * CUSTOVER ADDED TO FI LE
ELSE-I F | VD- ON- REC
SCREEN- MSG = ’ DUPLI CATE CUSTOMER - NOT ADDED

With APS/CICS EIBRCODE flags:

DB- STORE REC CUST- RECORD
| F El BRCODE = LOW VALUES
SCREEN- MSG = ' CUSTOMVER ADDED
ELSE- | F DUPREC
SCREEN- MSG = * DUPLI CATE CUSTOMER - NOT ADDED

Abnormal Error Processing

When the AB-ON-REC flag is returned, it invokes an abnormal condition
processing macro ($D2-ERR-CALL) to identify and process run-time I/O
errors, terminate the program, and display a message giving the
following information.

® DB callinerror

® Native VSAM Batch call name

® File name

® Program name

® Status code

® Program termination method, which is a generated TERM

® For a LENGERR condition, the actual record length provided by CICS
(derived from APS-shortrecname-VAR after CICS updates this field)

Reference

237

238

Note: APS identifies the status code values listed in the previous table;
all other conditions, such as, DUPKEY, DUPREC, ENDFILE, INVREQ, and
NOTFND, are processed by the programmer.

Program generation options:

® Exclude specific CICS exceptional conditions and ISI-ERRORS from
AB-ON-REC.

® Deactivate the APS abnormal condition processing routine.

There are three ways to modify AB-ON-REC processing.

® Exclude certain CICS Exceptional Conditions and ISI-Errors, or batch
conditions, from being AB-ON-REC conditions. To do so, go to the
APS CNTL file APVSAMIN and override their variables.

® Disable $DB-ERR-CALL. In the APVSAMIN file, set &VS-AUTO-ERROR-
HANDLING to No.

® Override $DB-ERR-CALL.

To override $DB-ERR-CALL, define (or % INCLUDE in your program,
using the SYM1 keyword) your own $DB-ERR-CALL macro.

Example: % DEFI NE $DB- ERR- CALL
PERFORM LOG VSAM ERROR
% END
% SET EPI LOGUE $LOG VSAM ERROR
% DEFI NE $LOG- VSAM ERROR
% SET WORKI NG STORAGE
COPY LOGDATA.
% SET PROCEDURE
LOG VSAM ERROR.
/* CAPTURE EI B DATA
MOVE El BFN TO CA- El BFN
MOVE ElI BRCODE TO CA- El BRCODE
MOVE El BDS TO CA- El BDS
MOVE EI BDATE TO CA- El BDATE
MOVE EI BTI ME TO CA- El BTI ME
MOVE EI BTASKN TO CA- El BTASKN
MOVE ElI BTRM D TO CA- El BTRM D
MOVE EI BTRNI D TO CA- El BTRNI D
/* TRANSFER CONTROL TO LOG PROGRAM
Cl CS XCTL
PROGRAM ’ LOGERRCR')

Reference

Error Processing Messages

COVMAREA(CA- El B- AREA)
LENGTH(CA- El B- AREA- LENGTH)
% END

Error Processing Messages

Category:

Description:

Procedure:

Screen Painter feature (see Field Edits)

Code default error messages to display when the end user enters invalid
data or neglects to enter data that is required. You can code these
messages for each screen field, or globally for all screen fields.

Note: A field-specific message overrides a global message.

Field-Specific
To assign an error message for a specific field, follow these steps.
1 From the Screen Painter, access the Field Edit Facility.

2 Access the Error Processing screen by selecting the Error Processing
prompt on any Field Edit screen.

3 Code messages of up to 75 characters. This message overrides any
global default messages you entered on the Parm screen for screen
fields.

4 Specify the attribute values for fields that fail input edits using the
following syntax:

attri bute+attribute+. ..

The default attributes are bright intensity and cursor positioning on
the field.

5 You can copy the default messages and attributes from the Parm
screen, and apply them to the current field. To do so, enter def or
defaults in the Command field. You can the modify the message as
desired.

Reference

239

240

Reference

Global

To assign an error message that applies to all screen fields, or to bypass
input edits for the screen, follow these steps.

1
2

From the Screen Painter, access the Field Edit Facility.

From the Field Selection screen, enter pm or parm in the Command
field. The Parm Screen screen displays.

Enter the name of the field on your screen that will display the
global error message.

Enter the text to display when the data does not pass field edits and
enter the text to display when required data is not entered in the
appropriate fields.

Specify the attribute values for fields that fail input edits using the
following syntax:

attri bute+attribute+. ..

The default attributes are bright intensity and cursor positioning on
the field.

To define conditions for bypassing input edits for the screen, select
Bypass Edits on the Parm Screen screen. A subsequent Parm Screen
screen for bypassing edits displays. You can define bypass conditions
for one field per screen; if any of these conditions occur, APS
bypasses field edits for the entire screen. If the field is in a repeated
block, APS bypasses edits for all fields in that row occurrence only.

Complete the fields on this screen as follows.

Field Description and Values

Field Name Specify any field on the screen, including a field in
a repeated block, to bypass.

Value(s) Specify the value or values that let end users
bypass input edits. Valid COBOL reserved words
are spaces, low-values, and high-values.

Additional Enter as many additional bypass values that can
Value(s) fit on the line; separate each value with a comma.
Program Select the PF keys the end user can press to bypass

Function Keys the input edits.

ESCAPE 241

ESCAPE

Category: S-COBOL structure (see S-COBOL Structures)
Description: Exit from the current paragraph.

Syntax: ESCAPE

Comments: Processing resumes with the first statement after the statement
performing the paragraph, except if ESCAPE occurs in the first or main
logic paragraph of

® The main program--control returns to the operating system by
generating an EXIT PROGRAM statement.

® A called program--control passes to the first statement after the
CALL statement in the calling program. The called program
generates an EXIT PROGRAM statement.

Example: If the condition in line 2220 is true, pass control back to line 2050.

002030 CHECK- DATA
002040 PERFORM STEP- 1
002050 ADD 1 TO COUNTER

002210 STEP-1

002220 IF X =1
002230 ESCAPE
002240 ADD 1 TO FI ELD-A

Reference

242

EVALUATE

Category:
Purpose

Syntax:

Parameters:

Reference

S-COBOL structure (see S-COBOL Structures)
Perform logic by cases, such as a decision table.

Format 1, standard evaluation procedure:

EVALUATE i dentifier
WHEN val uexpressi onl
statement bl ock

[

WHEN val uexpressi onN
statenment bl ockN]

[WHEN OTHER
statement bl ock]

Format 2, decision table:

EVALUATE identifierl], ..., identifierN
WHEN val uexpressionl[, ..., valuexpressionN
statenent bl ock

[

WHEN val uexpressi onN+1[, ..., val uexpressi onN+N
statement bl ock]
[WHEN OTHER
statement bl ock]
identifier Any COBOL identifier
valuexpression In Format 1, a data name or a group of COBOL

literals, identifiers, and arithmetic expressions
forming expressioni, expression2,

In Format 2, one of the following
ANY, or

expression1 [THRU expression2]
... OR expression3[THRU expression4]
... [OR expression5 [THRU expression6]]

Symbols such as =, <, and > are not valid.

Comments:

Example:

EVALUATE

® For run time efficiency, APS generates the GO TO ... DEPENDING ON
translation with Format 1, if the code meets the following criteria.

® Each WHEN valuexpression is a numeric literal.
® The literals increase in value from left to right, top to bottom.

® The largest (last) literal in the statement is less than four times
as big as the number of WHEN clauses, not counting WHEN
OTHER.

If the above criteria are met and the evaluated field is not defined
as numeric, a COBOL error occurs.

® Only the first WHEN condition met is executed.

® |f a WHEN condition is true and it does not include an optional
statement block, program control passes to the next statement with
the same or less indentation as the word EVALUATE.

® To prevent logic from falling through if no WHEN conditions are
met, code WHEN OTHER.

® EVALUATE does not evaluate 88-levels, as the COBOL/2 EVALUATE
statement does.

® |f a COBOL/2 EVALUATE statement is also valid S-COBOL EVALUATE
syntax, APS processes it as S-COBOL statement.

® You can evalulate a maximum of 255 conditions/fields. You can code
a maximum of 102 WHEN conditions.

® You can use EVALUATE to code the NEXT SENTENCE concept of
passing program control out of a particular construct to the next
executable statement.

Create a mailing list that includes new subscribers (less than 1 year) and
preferred subscribers (more than 5 years) broken down by region.

EVALUATE MONTHS, REG ON
WHEN 1 THRU 11, ' EAST

WRI TE NEW EAST- REC
WHEN 1 THRU 11, ' WEST

WRI TE NEW WEST- REC
WHEN 61 THRU 9999, ' EAST

WRI TE PREFERRED- EAST- REC
WHEN 61 THRU 9999, ' WEST’

WRI TE PREFERRED- VVEST- REC

Reference

243

244

Exit Points
Category:
Compatibility:

Description:

Reference

Database calls (see Database Calls)
SQL, VSAM Batch, and VSAM Online targets

At various program locations, you can write your own rules to
customize methods. In your program, you write a rule using one of the
APS-supplied predefined rule names, and APS invokes it at its proper
location. You can write rules that are automatically invoked at the
beginning and end of the processing using either of these predefined
rule name formats.

SQL
For DB-ERASE:

$D2- DB- ERASE- BEGI N- EXI T
$D2- DB- ERASE- END- EXI T

For DB-MODIFY:

$D2- DB- MODI FY- BEG N- EXI T
$D2- DB- MODI FY- END- EXI T

For DB-OBTAIN:

$D2- DB- OBTAI N- BEG N- EXI T
$D2- DB- OBTAI N- END- EXI T

For DB-PROCESS:

$D2- DB- PROCESS- BEGI N- EXI T
$D2- DB- PROCESS- END- EXI T

For DB-STORE:

$D2- DB- STORE- BEGI N-EXI T
$D2- DB- STORE- END-EXI T

VSAM Batch and VSAM Online
For DB-ERASE:

$VS- DB- ERASE- BEGI N- EXI T
$VS- DB- ERASE- END- EXI T

For DB-MODIFY:

$VS- DB- MODI FY- BEG N- EXI T
$VS- DB- Modi f y- END- EXI T

For DB-OBTAIN:

$VS- DB- OBTAI N- BEG N- EXI T
$VS- DB- OBTAI N- END- EXI T

For DB-PROCESS:

$VS- DB- PROCESS- BEGI N- EXI T
$VS- DB- PROCESS- END- EXI T

For DB-STORE:

$VS- DB- STORE- BEGI N-EXI T
$VS- DB- STORE- END-EXI T

EXIT PROGRAM

EXIT PROGRAM

Category:

Purpose

Syntax:

Comments:

S-COBOL structure (see S-COBOL Structures)

End the execution sequence of a program or subprogram and return

control to the invoking source.

EXI T PROGRAM

® EXIT PROGRAM can appear anywhere in an S-COBOL paragraph.

® In a called program, EXIT PROGRAM passes control to the first
statement after the CALL statement in the calling program.

® An EXIT PROGRAM terminates all APS programs, unless you include

a STOP RUN or GOBACK (IBM COBOL extension).

® APS generates an EXIT PROGRAM at the end of the first paragraph
of any called program so that you do not need to code it.

Reference

245

246

Expressions, SQL
Compatibility: SQL target

Description: APS/SQL supports expressions for the DB-DECLARE, DB-OBTAIN, and DB-
PROCESS calls.

Sample Expressions Return INTO Host Null Indicator
INTEGER (DOB) - INTEGER(PERF - 1) (WS-RET-INT) WS-RET-INT IND-DOB
CURRENT DATE - 1 DAY (WS-CURRDATE) WS-CURRDATE -

RATE + (DED / 2.0) RATE IND-RATE
YTD + RATE + DED /2 YTD IND-YTD
PERF /2 PERF IND-PERF
INTEGER(YTD - DED) * INTEGER(RATE) (WS-INT-FLD) WS-INT-FLD INT-YTD
HIREDTE + YEAR(CURRENT DATE) YEARS HIREDTE IND-HIREDTE
SUM(YTD) / 2 YTD IND-YTD
AVG(DED - 1)/ 5 (WS-AVG-DED) WS-AVG-DED IND-DED
SUM(RATE) + SUM(DED) (WS-RATE-DED) WS-RATE-DED IND-RATE

Comment: If an INTO variable is not specified, the result returns to the host
variable for the first column.

Examples: DB- OBTAIN REC TABLE1
RATE + (DED / 2.0)
PERF / 2
| NTEGER(DOB) - | NTEGER(PERF - 1) (WS- RET-INT)
WHERE PERF > 100

DB- OBTAI N REC RECORD1- RED

RATE + YEAR TO DATE (W8- CALC- RATE)
MONTH(Hl REDATE) - DAY(H REDATE) (WS- DATE- RETURN
AVG(RATE - 1) / 4 (8- AVG- RATE)

YEAR((CURRENT DATE - H REDTE), Ws- CALC- DATE, Y)
CHAR((H REDTE - 28 DAYS, USA), WS- DATE- AREA, Y)
WHERE RATE > 7

Reference

FD

FD

Category:

Purpose

Syntax:

Comments:

Program Painter and Specification Editor keyword (see Keywords)

Define the file descriptions for input and output files, including report
files.
Format 1:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
FD i nput fil enane| outputfil ename
[Appl i cabl e COBOL FD cl auses]

Format 2:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
FD fil ename
[Appl i cabl e COBOL FD cl auses]

REPORT | S| REPORTS ARE reportnanel [... reportnanelb]

® Use one FD keyword per file description.

® |n Format 1, follow each file description with the file record
description, using the 07, DS, REC, or ++ keywords.

® |nFormat 2:
® Reportnames may be in any order.

® Each Reportname must have a corresponding RED statement.
Reportnames in both statements must be identical.

® The RED statement for each report replaces the file record
description entry required for Format 1.

® The default size for a report record is 133. To define a different
report record size in your FD statement, calculate the size as
follows, and code it in a RECORD CONTAINS clause.

Record Size = Report mock-up size (maximum 247 characters)
+ 1 byte for carriage control
+ 2 bytes for the CODE clause, if used.

Reference

247

248

Example:

® If you define the report record in the WRITE ROUTINE clause,
the default size is either 248 or 250. See WRITE ROUTINE.

® APS generates the file description 01-level identifier(s) for each
report output file(s); you need not code them.

® |f reportname exceeds 20 characters, Report Writer creates an
abbreviated record name, as follows--the first character of each
hyphenated word in the data name (except the last word), a
hyphen, the last word, a hyphen, and RECORD. For example,

Input REALLY-LONG-REPORT-NAME
Output RLR-NAME-RECORD

Report example:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
FD I NPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAI'NS 0 RECORDS.
01 PART- STOCK- REC PI C X(80).
FD REPORT- OUTPUT- FI LE
LABEL RECORDS ARE STANDARD
REPORT | S STOCK- REPORT.

Field Edits

Category:

Description:

Reference

Screen Painter feature

Screen fields can be one of the following types:
® Character
® Numeric

® Date or time

Define the internal, input, and output data representation

Depending on the type of field you create, you assign field edits that
define the data representations for the field. APS supports the
following field edits.

Field Edits

Internal field edit values specify the COBOL picture characteristics
for storing data the end user enters. These include:

Alphabetic, character, or numeric data type
Internal length

Binary or packed format

Sign specification

Right justification

Input field edit values specify format and data requirements that
the end user must adhere to when entering data into the field.
These include:

Required data

Input mask

Julian, Gregorian, system, or user-defined date type
User-defined or system time type
Minimum/maximum input requirements

Testing for blank spaces or special characters
Testing for numeric data

Testing for specific values

Zero-fill when blank

Output field edit values specify the format requirements for
displaying the data. These include:

Output mask

Output picture

Julian, Gregorian, system, or user-defined date type
User-defined or system time type

Right justification

Commas

Zero suppression

Reference

249

250

Related Topics:

Reference

® Floating, leading, and trailing symbols

® Values or conversion values ensure only certain values are entered.

You can test for:

® A specific value or range of values for input data

® Conversion values for input and output data representation to

define how data is stored and converted for output

® Application edit routines specify additional edits or tests for input

or output data. Edit routines can be paragraphs, subprograms, or
APS macros that you create. Or, you can select a predefined
application edit routine from a centralized listing of edit routines
maintained by your APS Administrator.

Specify global or specific error messages

When users fail to enter data correctly, you can display an error message
that explains the problem. You can define two error messages, one for
when the end user enters invalid data, and one for when the end user

neglects to enter data that is required.

These can be global messages that display for all screen fields, or

specific messages that display for individual fields. Messages defined for

a specific field override the global messages. You can also define
conditions for bypassing input edits under certain conditions.

See... For other information about Field
Edits...

Field Edit Values Assigning the internal picture, input

Date and Time Field Edits format and data requirements, and

output display format for:
® Character and numeric fields

® Date and time fields

Application Field Edit Routines Specifying editing and testing
routines for input or output data

Error Processing Messages Displaying error messages for invalid

field data

Values, Conversion Values, and Ensuring that fields accept only
Value Ranges certain data values

Field Edit Values

Field Edit Values

Category:

Description:

Procedure:

Screen Painter feature (see Field Edits)

Specify the data storage requirements, the format and data
requirements that the end user must adhere to when entering data into
the field, and specify the format requirements for displaying the data.

Follow these steps.

1 From the Screen Painter, access the Field Edit Facility.

2 From either the Field Selection or Edit Selection screen, access the
Internal Picture, Input Editing, or Output Editing screen.

3 Assign data representations by completing the fields listed below.

4 From either the Input Editing or Output Editing screen, you can

transfer to:

Values or
Conversions

Application Edits

Error Processing

Internal Picture

Option
Data Type

A
C

Enter s to transfer to the Values or
Conversions screen to specify valid values,
ranges of values, or conversion values. See
Values, Conversion Values, and Value
Ranges.

Enter s to transfer to the Application Editing
screen to specify your own edits in a
paragraph, subprogram, or APS macro. See
Application Field Edit Routines.

Enter s to transfer to the Error Processing
screen to specify error messages and
attributes that display if the field fails input
edits. See Error Processing Messages.

Description

Aphabetic field.
Default. Character field.
Numeric field.

Reference

251

252

Option

Internal Length

Justified Right
Decimal Places

COMP (Binary)

COMP-3 (Packed)

Signed

Sign Leading

Sign Separate

Input Editing

Field
Internal Picture

Required

Input Mask

Description

G For KANJI use only. Extended Graphics
Character Set (EGCS).

Enter the number of characters. The default is the
screen field length. For numeric fields, enter the
number of digits that precede the decimal point.

Type s to generate right justification on the
COBOL picture.

Enter the number of digits that follow the decimal
point.

Type s to store input data in binary format. Not
valid with signed data.

Type s to store input data in packed format. Not
valid with signed data.

Type s to store the input data with either a
positive or negative value. Not valid with a binary
or packed format.

Type s to store the sign at the left of the number.
Not valid with a binary or packed format.

Type s to store the sign in a separate byte from the
number. Not valid with a binary or packed format.

Description

Enter s to transfer to the Internal Picture
screen to change the storage format.

Enter s to indicate that the end user must enter
a value in the field.

Enter the pattern or mask to accept input data
and separators. Or, enter s to transfer to the
Masking screen and specify the mask in the
Input Mask field. Note the following.

® Strip special characters on input if the
internal picture does not have space for
them. To remove special characters when
converting the data to the storage format,
enter s in the Strip Special Characters field
on the Masking screen. A special character

Field

Minimum Input

Maximum Input

No Embedded Spaces

Field Edit Values

Description

is any character other than input mask
characters.

® Include optional mask characters on either
end of the mask, not on both ends.

® Required mask characters do not require
data entry; they require that any data is
entered be of that specific type. For
example, the A mask character requires an
alphabetic character in that position if any
data is entered

Note the following for character fields.

® The mask length, the mask characters plus
special characters, must equal the field
length.

® The number of mask characters, excluding
special characters, must equal the internal
picture length.

Note the following for numeric fields.
® Valid mask characters are 9 and N.

® The mask length cannot exceed the
internal picture length. If it is less, APS
places leading zeroes in the internal
picture.

® Include optional mask characters on either
end of the mask, not on both ends.

Enter the length of the shortest valid entry.
Default is zero. You cannot specify an input
mask with this option. This option does not
imply that data is required.

Enter the length of the longest valid entry.
Default is field length. You cannot specify an
input mask with this option. This option does
not imply that data is required.

Enter s to reject characters separated by spaces.
Leading and trailing blank spaces are
unaffected by this option.

Reference

253

254

Reference

Field
Numeric Test
Numeric De-Edit

Zero When Blank

Minimum Digits

Minimum Decimals

Maximum Digits

Maximum Decimals

Output Editing

Field
Internal Picture

Description
Enter s to allow only numeric data.

Enter s to validate that the data is numeric and
to remove special characters. Select this option
if you specify an output COBOL picture; doing
so removes the special characters for data

computations. This option does not imply that
data is required. Not valid with an input mask.

Move zero to the internal picture if no data is
entered. Not valid with required fields or fields
with input masks. To prevent zeroes from
appearing in the field when data is not
entered, zero suppress the output picture on
the Output Picture screen.

Enter the smallest number of digits required
before the decimal point. Default is zero. You
cannot specify an input mask with this option.
This option does not imply that data is
required.

Enter the smallest number of digits required to
follow the decimal point. Default is zero. This
option does not imply that data is required.

Enter the largest number of digits allowed
before the decimal point. Default is the
maximum number that fits in the internal
picture. Not valid with an input mask. This
option does not imply that data is required.

Enter the largest number of digits allowed to
follow the decimal point. Default is the
maximum number that fits in the internal
picture. This option does not imply that data is
required.

Description

Enter s to transfer to the Internal Picture
screen to change the storage format.

Comments:

Field
Output Mask

Output Picture

Right Justify
Insert Commac(s)
Zero Suppression

Floating Symbol

Fixed Leading Symbol

Fixed Trailing Symbol

Field Edit Values

Description

Enter the pattern or mask to position data and
separators. Or, enter s to transfer to the
Masking screen and specify the mask in the
Output Mask field. Note the following.

® The X character is the placeholder for
output data.

® The mask length must equal the screen
field length; the total number of Xs must
equal the internal picture length.

Enter the output COBOL picture. Or, enter s to
transfer to the Output Picture screen and
specify the mask in the Picture field. You
cannot assign an output picture if you use an
output mask.

Enter s to generate right justification for the
output format.

Enter s to format data with commas in
appropriate positions.

Enter s to generate the zero suppression
symbol.

Enter a $, +, or - symbol to generate a floating
dollar, plus sign, or minus sign to the left of the
first digit.

Enter a $, +, or - symbol to generate a fixed
dollar, plus sign, or minus sign in the leftmost
position.

Enter a $, +, or - symbol to generate a fixed
dollar, plus sign, or minus sign in the rightmost
position.

® \When you change the internal picture of a field with existing edits,
a message warns you of the possible effects of changing the internal
picture for that field. Press Enter or F3 to proceed with the change

anyway.

Reference

255

256

® APS verifies an edit mask depending on whether the field has
optional characters in an edit mask, as follows.

Optional Mask Characters Verification

No Left to right scan
Yes, on the left Left to right scan
Yes, on the right Right to left scan

® To reverse commas and decimal points in the output picture of
numeric fields, such as Z2.277.779,99, modify the CNTL(APSPROJ)
file in one of the following ways, and then compile the screen and
program.

® Code the following assignment statements in CNTL(APSPRO)J),
where membername is the USERMACS member name that
contains the $TP-SPECIAL-NAMES macro definition. APS includes
the member for you. The $TP-SPECIAL-NAMES macro generates
the DECIMAL-POINT-IS-COMMA statement.

% &FE- DECI MAL- POl NT- | S- COMVA = " YES"
% &FE- TP- SPECI AL- NAMES- MACMBR = " TPSPEC' | " nenber nane"

Then, copy TPSPEC from &SSMAPS..CNTL to
&SSMDSN..USERMACS. Modify the $TP-SPECIAL-NAMES macro
as desired to generate statements in the SPECIAL-NAMES
paragraph.

® (Code the following statement in CNTL(APSPROJ). The DC target
epilogue macro generates the DECIMAL-POINT-IS-COMMA
statement.

% &FE- DECI MAL- POl NT- | S- COMVA = " YES"

Fields and Flags, Data Communication

Description:

Reference

CICS Invocation Mode

To determine how to invoke a CICS program, APS/CICS provides the
following 88-level flags to indicate the mode of program invocation.

TP- 1 NVOCATI ON- MODE PI C X(01).
88 TP- TRANSI D- | NVOKED VALUE ' T .

Description:

Fields and Flags, Data Communication

88 TP- PROGRAM | NVOKED VALUE ' P .
88 TP- SCREEN- | NVOKED VALUE ’ S .
88 TP- LI NK- I NVOKED VALUE 'L’ .

TP-TRANSID-INVOKED A transaction code entered on a blank screen
invokes the program.

TP-PROGRAM-INVOKED An XCTL call from another program invokes
the program.

TP-SCREEN-INVOKED The SEND call sends the screen and a PF key
or ENTER key invokes the program.
TP-LINK-INVOKED A LINK call from another program invokes

the program.

IMS DC Invocation Mode

To determine how to invoke an IMS DC program, APS provides the
following 88-level program support variable flags.

TP- 1 NVOCATI ON- MODE PIC X
88 TP-TRANSI D- | NVOKED VALUE ' T'.
88 TP- PROGRAM | NVOKED VALUE ' P’ .
88 TP- SCREEN- | NVOKED VALUE ' S'.
TP-TRANSID-INVOKED A transaction code invokes the program;
the input message contains no additional
data.
TP-SCREEN-INVOKED Program reads an input message consisting

of more than just the transaction code;
often this is screen data.

TP-PROGRAM-INVOKED A program, rather than a terminal, sends
the input message. Program-invoked mode
applies only to conversational programs.

APS tests for a TRUE value to determine which invocation paragraph to
perform.

Reference

257

258

ISPF Dialog Invocation Mode

Description: To determine how to invoke an ISPF Dialog program, APS provides the
following 88-level flags.

TP- | NVOCATI ON- MODE PI C X(01).
88 TP- TRANSI D- | NVOKED VALUE ' T .
88 TP- PROGRAM | NVOKED VALUE ' P .
88 TP- SCREEN- | NVOCKED VALUE ' S .
88 TP- LI NK- | NVOKED VALUE 'L’ .
TP-TRANSID-INVOKED Provided for upward compatibility; has no
function.

TP-PROGRAM-INVOKED A LINK call from another program invokes
the program.

TP-SCREEN-INVOKED The SEND call sends the screen and a PF key
or ENTER key invokes the program.

TP-LINK-INVOKED Provided for upward compatibility; has no
function.

VSAM Batch

Description: Use APS-defined data fields and S-COBOL flags in your program.
Name Associated Calls Description
APS-END-PROCESS DB-PROCESS Flag that terminates a DB-

PROCESS loop. Example: TRUE
RESET-OBTAIN

ddname-RRN DB-OBTAIN Field that controls relative
DB-PROCESS record number (RRN) of a
DB-ERASE retrieved or stored RRDS file
DB STORE record; generates value for

the RELATIVE KEY clause of
the SELECT statement.

Ddname is the external file
name specified in the
subschema.

Generated field definition
ddname-RRN PIC 9(09).

Reference

Description:

Fields and Flags, Data Communication

Name Associated Calls Description
RESET-OBTAIN DB-OBTAIN Flag that resets browse to
DB-PROCESS beginning of file. Example:

TRUE RESET-OBTAIN

RRDS and ESDS Support

In RRDS processing, APS/VSAM generates ddname-RRN, deriving the
RRN (relative record number) of the current retrieved record. This
allows access to a specific RRN. The field value is the RRN of each
retrieved or stored record, and is updated after every successful
READNEXT operation.

Assign a RRN value to ddname-RRN prior to a DB-STORE, if the SELECT
statement ACCESS clause is either RANDOM or DYNAMIC.

An ESDS file is opened in I/O mode.

VSAM Online

Use APS-defined data fields and S-COBOL flags in your program.

Name Associated Calls Description

APS-shortrecname-VAR DB-OBTAIN Field that contains actual
DB-STORE record length after a
DB-MODIFY successful record retrieval
DB-PROCESS (direct or sequential for DB-
DB-ERASE OBTAIN and DB-PROCESS).

Supplies value to dataarea in
CICS LENGTH option.
Shortrecname comes from
the subschema definition; it
is the REC card SHORT
keyword.

See also "Skip Sequence
Processing" below.
APS-END-PROCESS DB-PROCESS Flag that terminates DB-

PROCESS loop. Example:
TRUE RESET-OBTAIN

Reference

259

260

Reference

Name
APS-VSAM-NUMREC

ddname-APS-
KEYnumber

ddname-RBA

ddname-RRN

RESET-OBTAIN

Associated Calls Description

DB-ERASE

DB-OBTAIN
DB-PROCESS

DB-OBTAIN
DB-PROCESS
DB-STORE

DB-OBTAIN
DB-PROCESS
DB-STORE

DB-OBTAIN
DB-PROCESS

Field that contains number
of records deleted after key-
qualified ERASE with partial
key length specified.

Field that contains APS-
generated key name for use
in skip-sequential processing.

Ddname is the subschema
file. See also "Skip Sequence
Processing" below.

Example: ORDER-APS-KEY1

Field that contains relative
byte address (RBA) of a
retrieved, stored ESDS file
record; supplies value to CICS
RIDFLD option. See also
"ESDS Support" and "Skip
Sequence Processing” below.

Ddname is the subschema
file.

Generated field definition
ddname-RBA PIC S9(08)
COMP

Field that contains relative
record number (RRN) of a
retrieved or stored RRDS file
record; supplies value to CICS
RIDFLD option. See also
"RRDS Support" and "Skip
Sequence Processing” below.

Generated field definition
ddname-RRN PIC S9(08)
COMP

Flag that resets browse to
beginning of file. When used
with PREV, resets to end of
file. Example: TRUE RESET-
OBTAIN

Fields and Flags, Data Communication

ESDS Support

Ddname-RBA provides access to a specific relative byte address (RBA).
The current retrieved or written (stored) record determines the RBA;
every successful READNEXT, READPREV, and WRITE operation updates
the RBA. Note the following.

® DB-ERASE cannot delete a record from an ESDS file.

® The operator must be EQUAL or = for a direct or positional DB-
OBTAIN and for a qualified DB-PROCESS.

® Assign ddname-RBA an RBA value prior to a DB-STORE or direct
(key-specified) call.

® If a key qualification specifies a non-existent RBA, the ILLOGIC
condition occurs (the DB status flag AB-ON-REC). The APS-supplied
abnormal condition processing may need to be customized to access
this condition.

RRDS Support

Ddname-RRN provides access to a specific relative record number (RRN).
The current retrieved determines the RRN; every successful READNEXT
and READPREV operation updates the RBA.

Assign ddname-RRN a RRN value prior to a DB-STORE or direct (key-
specified) call.

Skip Sequence Processing

Skip-sequential processing moves new key search criteria to an APS-
generated key while an active sequential DB-OBTAIN or DB-PROCESS
browse is in progress. The following indicates the APS-generated keys
by target.

File Type Record Key

ESDS ddname-RBA PIC S9(08) COMP.
RRDS ddname-RRN PIC S9(08) COMP.
KSDS ddname-APS-KEYnumber

Number indicates the key number, as follows:

1 = Prime record key

The remaining numbers correspond to the order of the
DDI IDX subschema cards for that record.

2 = First alternate index,

3 =Second alternate index, . . .

Reference

261

262

Variable Length Files

APS/VSAM provides the APS-shortrecname-VAR field, which contains
length information for variable length files, for each record definition
in the subschema.

APS-shortrecname-VAR must be updated with the calculated record
length prior to all DB-STORE and DB-MODIFY calls.

For example, the following updates APS-CUST-VAR with the actual
length of CUST-RECORD prior to the DB-STORE.

APS- CUST- VAR = W5- FI XED- PORTI ON +
(CUST- NBR- CRDERS * WS- OCCURS- LENGTH)
DB- STORE REC CUST- RECORD

Field/Screen Cross Reference (SC02)

Category:

Description:

Comments:

Reference

APS-generated report (see Application Reports)

The Field/Screen Cross Reference Report lists all the screens containing
I/0 fields, along with the attribute values for the field in each screen.
The fields appear alphabetically on the report. For each field, the report
lists the field attributes assigned in the Screen Painter, and the number
of field occurrences within a repeated block. The reports denotes
default values with periods (..). The end of the report shows the total
number of fields cross-referenced, the associated screens reported, and
the actual number of stored screens. The report documents this aspect
of your application to support future maintenance and enhancement
efforts.

® Produce the Field/Screen Cross Reference Report from the
Documentation Facility.

® To select all fields, leave all fields on this screen blank.

® To select a specific field, type its name in the Equal field.

® To select a range of fields, select the subset you need by entering a
Greater value, a Less value, or both. Use alphabetic characters to
indicate the range; full field names are not necessary. For example,

Example:

REPCRT CODE: SC02

SELECTI ON CRI TERI A:

Field/Screen Cross Reference (SC02)

to list fields with names beginning with letters K through Z, type K
in the Greater field.

APS SCREEN PAI NTER

FI ELDY SCREEN CROSS REFERENCE

CLSAPS. CLS2

PAGE 1
01/17/9211: 57

hokkkkkhkhkkkkkkkhkhkkkkk ok k ok kA kA kA kA kA kA kA kh kh kk sk k ok ko ko ko k ok ok ok ok ok kkkkkkkkkkkkkkkkkk kA kk kk kk kk k& %

ED T
INTEN MDT NUMDET NMASK MOD

A- RONOS5- FLDOO1
A- ROADO8- FLDOO1

BASE- PRI CE

CUST- ENTRY- DATE

RXK001 8 26

DLORDRM 5 17

D2ORDRM 5 17

LHORDRM 5 17

OXPARTL 8 11

EVOM

KSOM

LBOM

LIJOM

PSOM

TDQJ

TDOM

TIov

TLOM

TPOM

WPORDI

TOTAL FI ELDS REPORTED:
TOTAL SCREENS REPORTED:
TOTAL SCREENS IN FILE:

11

11

11

11

11

11

11

11

12

8 14

113
112
112

25

44

44

a4

49

24

24

24

24

24

18

24

24

24

22

18

10

10

10

10

UNPR

UNPR

UNPR

UNPR

UNPR

PROT

UNPR

UNPR

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

BRI GHT .

Reference

263

264

FRFM

Category:

Description:

Syntax:

Comments:

Examples:

Reference

Program Painter and Specification Editor keyword (see Keywords)

Pass COBOL or S-COBOL statements to the APS Generator without
translation, in a freeform manner, and insert the statements in the
program section where they are coded.

Format 1, for Working-Storage and Linkage Sections only:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
FRFM COBOLst at enent s| S- COBA_st at enent s

Format 2, for Procedure Division only:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
ENTER COBOL| ENTER S- COBOL| ++| NCLUDE nenber nane
COBOLst at enent s| S- COBA_st at enent s

® The next keyword (except the comment keyword, /*) terminates the

FRFM function.

® |n Format 1, all COBOL and S-COBOL statements shift four spaces to

the left during generation.

® |n Format 2, omit the FRFM keyword; all COBOL statements remain
in Column 12 during generation.

® Do not use the ENTER COBOL and ENTER S-COBOL statements
within REPEAT or IF/ELSE-IF/ELSE structures.
Code 77-level data structures and put the data elements in column 8:

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

FRFM 77 FIELD-A PI C S99 COWP- 3.
77 FIELD-B PI C S99 COWP- 3.
77 FIELD-C PI C S99 COWP- 3.

Code 77-levels with Customizer symbols:

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

SYWs &08+77 FI ELD-A PI C S99 COWP- 3.
&08+77 FIELD-B PI C S99 COWP- 3.
&08+77 FIELD-C PI C S99 COWP- 3.

Functions, SQL 265

Functions, SQL

Category: Database call keywords (see Database Calls)
Compatibility: SQL target

Description: Code SQL built-in and scalar functions as keywords for the database
access calls DB-DECLARE, DB-OBTAIN, AND DB-PROCESS.

Syntax: For DB-DECLARE:

DB- DECLARE cursornanme [correl nanel.] copyl i bname- REC
functionl[(] (expression)[,resultfield ,Y][)]]
function2[(] (expression)[,resultfield ,Y][)]]

functibnl\{(](expression)[,resu/tfie/d[,Y][)]]
WHERE . ..

For DB-OBTAIN:

DB- OBTAIN REC [correl nanel.] copyl! i bname- REC
functionl[(] (expression)[,resultfield ,Y][)]]
function2[(] (expression)[,resultfield ,Y][)]]

functibnl\{(](expression)[,resu/tfie/d[,Y][)]]
WHERE . ..

For DB-PROCESS:

DB- PROCESS REC [correl nanel.] copyl i bname- REC
[DB- PRCCESS- | D nane]
functionl[(] (expression)[,resultfield,Y]
function2[(] (expression)[,resultfield,Y]

[)]1]
[)1]

functibnl\{(](expression)[,resu/tfie/d[,Y][)]]
WHERE . ..

Reference

266

Comments:

Examples:

Reference

If you code a column function, every column in the call must use
column functions, unless you code GROUP BY.

You can mix scalar functions with individual column selections in a
call.

If you apply a function against a single column, the result is
returned to the host variable. To override the result, specify a result
field in the call and either:

® C(Create afield in Working-Storage with the same data type as its
corresponding columns or expression result. For scalar functions,
the data type is determined by the function used and its
associated rules.

® Enter Y after the result field in the column function to let APS
create the field.

If you apply a function against multiple columns, a literal, or an
expression for which there is no host-variable, declare a result field
in Working-Storage. The result field name can be as large as 26
characters; use COBOL naming conventions.

If the function can return a null value, it requires an associated
indicator variable as follows.

® \When APS creates the result field, it creates a null indicator
variable with the name based in the result field, such as
resultfield-IND.

® If you create the indicator variable in Working-Storage, use the
same naming convention so that APS can correctly name each
indicator variable in the resulting SQL.

® Limit resultfield to 26 characters, to allow room for -IND. Define
resultfield-IND as PIC S9(4) COMP.

If you do not specify a result field with the COUNT function, the
APS-created field APS-COUNT-ROWS returns the COUNT result.

Select the minimum unit base price and count the number of colors it
finds for a given part number; create the result fields and appropriate
indicator variables in Working-Storage.

DB- DECLARE D2MAST- CURSOR D2TAB- REC

M N((PM_UNI T_BASE_PRI CE) , Ws- PM UNI T- BASE- PRI CE, Y)
COUNT((DI STI NCT PM_COLOR) , W&- PM COLOR, Y)
WHERE PM PART_NO = : W&- PART- NO

Functions, SQL

SQL code with MIN and MAX functions:

DB- OBTAI N REC D2TAB- REC
MAX((PM_UNI T_BASE_PRI CE) , Ws- MAX- PRI CE, Y)
M N((PM _UNI T_BASE_PRI CE * PM UNI TS), W- M N- RESULT, Y)
WHERE PM PART SHORT _DESC = ' W DGET’

Generated code:

EXEC SQL SELECT
MAX(PM_UNI T_BASE_PRI CE)
M N(PM UNI T_BASE_PRI CE * PM UNI TS)
| NTO : WS- MAX- PRI CE, : WS- MAX- PRI CE- | ND
:WB-M N- RESULT : WS- M N- RESULT- | ND
FROM AUTHI D. D2MASTER
WHERE PM PART SHORT _DESC = ' W DGET’
END- EXEC.

SQL code with SUM and AVG functions:

DB- OBTAI N REC D2TAB- REC
SUM PM_UNI TS)
AVG((PM_UNI TS) , W5- AVG- UNI TS, Y)
WHERE PM PART NO = ' 23432’

Generated code:

EXEC SQL sel ect
SUM PM_UNI TS)
AVGE PM_UNI TS)
I NTO : D2TAB- REC. PM UNI TS : | ND- D2TAB- REC. | ND- PM UNI TS,
:WB- AVG UNI TS : WS- AVG UNI TS- | ND
FROM AUTHI D. D2MASTER
WHERE PM PART_NO = ' 23432’
END- EXEC.

SQL code with COUNT function:

DB- OBTAI N REC D2MASTER- REC
MAX((PM UNI TS) , Ws- MAX- PM UNI TS)
COUNT((*), W5~ PM COUNT- FLD)
AVG((PM UNI T- BASE- PRI CE) , W5- AVG- PRI CE)
WHERE PM PART- SHORT- DESC=" W DGET’
AND PM COLOR=' RED

Generated code:

EXEC SQL sel ect
MAX(PM UNI TS)
M N(PM UNI T- BASE- PRI CE)

Reference

267

268

Reference

COUNT(*)
AVG(PM UNI T- BASE- PRI CE)
| NTO WS- MAX- PM UNI TS WB- MAX- PM UNI TS- | ND,
WS- PM- COUNT- FLD,
WS- AVG- PRI CE WS- AVG- PRI CE- | ND
FROM AUTHI D. D2MASTER
WHERE PM PART- SHORT- DESC=" W DGET’
AND PM COLOR=' RED
END- EXEC.

SQL code with DATE, TIME, and AVG scalar functions:

DB- OBTAI N REC D21 NVEN- REC
| N_PART_NO
DATE(| N_DATE_LAST_UPDTE)
TI ME((I N_TI ME_LAST_UPDTE) , W&- TI ME- RETURN, Y)
CHAR((1 N_DATE_LAST_ORDER, | SO) , W5- CHAR- RETURN)
| N_QTY_ONHAND
WHERE | N_PART NO = ' 23432’

Generated code:

EXEC SQL SELECT
| N_PART_NO
DATE(| N_DATE_LAST_UPDTE)
TI ME(I N_TI ME_LAST_UPDTE)
CHAR(| N_DATE_LAST_ORDER, | SO)
| N_QTY_ONHAND
| NTO : D21 NVEN- REC. | N- PART- NO,
: D21 NVEN- REC. | N- DATE- LAST- UPDTE
: | ND- D2I NVEN- REC. | N- DATE- LAST- UPDTE,
: WB- Tl ME- RETURN : WS- TI ME- RETURN- | ND,
: WB- CHAR- RETURN : WS- CHAR- RETURN- | ND,
: D21 NVEN- REC. | N- QTY- ONHAND
: | ND- D21 NVEN- REC. | N- QTY- ONHAND
FROM AUTHI D. D21 NVTRY
WHERE | N_PART NO = ' 23432’
END- EXEC.

In this example, the following occurs.
® Field IN_DATE_LAST_UPDTE is of type DATE.

® Because the result field WS-TIME-RETURN is followed by Y and the
TIME function can return a null value, APS creates both a result field
with a picture appropriate for a TIME data type and a WS-TIME-
RETURN-IND indicator in Working-Storage.

GENERATE 269

® Because the result field WS-CHAR-RETURN is not followed by Y and
the char function can return a null value, both the field and WS-
CHAR-RETURN-IND indicator variable were created in Working-
Storage.

GENERATE

Category: Report Writer statement (see Report Writer Structures in your APS
User’s Guide chapter Creating Reports with Report Writer)

Compatibility: Batch environments

Description: Produce either a detail report or a summary report; test controls;
generate control breaks; print totals, detail lines, headings, and
footings; clear counters and accumulators; and, paginate the report.

Syntax: GENERATE dat anane| r eport name

Parameters: dataname Produce a detail report. Specify dataname in the
TYPE clause as DETAIL.

reportname Produce a summary report that contains no
detail lines. Use reportname only if the
referenced report group description contains:

® A CONTROL clause

® At least one REPORT HEADING, REPORT
FOOTING, CONTROL HEADING, CONTROL
FOOTING, or DETAIL group

® No more than one DETAIL report group

Comments: ©® On first GENERATE clause execution, APS saves the control values.
During other GENERATE executions, APS tests these control values
to determine control breaks until it detects one. When a control
break occurs, APS saves the new set of control values.

Reference

270

Example:

Reference

During report printing, APS processes PAGE HEADING and PAGE
FOOTING report groups for each page.

When the first GENERATE clause of a report executes, APS processes,
in order, the report groups defined in the report description--
REPORT HEADING, PAGE HEADING, and CONTROL HEADINGs, (from
major to minor order).

When GENERATE dataname executes, APS processes the designated
report group. When GENERATE reportname executes, APS performs
certain steps to process a DETAIL report group.

When a GENERATE clause other than the first one executes, APS
locates control breaks. The rules for determining the equality of
control data items are the same as for relation conditions. If a
control break occurs:

® CONTROL FOOTING, USE procedures and CONTROL FOOTING,
SOURCE statements are able to access the control data item
values.

® APS processes the CONTROL FOOTING report groups in minor to
major order. APS does not process the CONTROL FOOTING
report groups of a higher level than where the control break
occurs.

® APS processes the CONTROL HEADING report groups in major to
minor order. APS does not process the CONTROL HEADING
report groups of a higher level than where the control break
occurs.

GENERATE processing can only occur after INITIATE processing and
before TERMINATE processing, for the report.

To generate large reports, enter bigrwt in the APS Parm field on the
Generator Options screen.

See the APS User’s Guide chapter Creating Reports with Report Writer.

Generator Options

Generator Options

Category:

Purpose

Procedure:

Application generation

Define the development environment for application, program, and

screen generation.

To select generator options, follow these steps.

1 Access the Generator Options screen. To do so, from the APS
Options Menu enter option 2 in the Option field. Alternatively, from
any APS screen enter opt 2 in the Command field. The Generator
Options screen displays.

2 Set options appropriate for your environment as described below.

Option
Target OS
DC

DB

SQL
Job Class

Msg Class
Listgen

COBOL

Object

Description and Values
Operating system.
Data communications target. For valid DB/DC

combinations see DB/DC Target
Combinations.

Database target. For valid DB/DC
combinations see DB/DC Target
Combinations.

SQL target.

Specify any job class valid at your site and
known to the APS generators.

Site-specific.

Yes Generate a listing of generated code.
See the APS Error Messages manual for
sample.

No Default.

Yes Save generated COBOL program source
in the library or PDS appropriate for
your DC target. For the complete list of
libraries and PDSs.

No Default

Yes Save generated object code in
appropriate library.

Reference

271

272

Comments:

Reference

Option

MFS/BMS

GENSRC

User Help

Job Dest

CARDIN Member
Generate COBOL I
COBOL Compiler
CICS Release

IMS Release
SUPRA

APS Parm

COBOL Parm

Description and Values

No Default.

Yes Save generated BMS or MFS mapsets in
the GENBMS or GENMFS libraries.

No Default.

Yes Save generated source code in the
GENSRC PDS or data set.

No Default.

Yes Enable generation of APS User Help
Facility source files.

No Default.

Site-specific.

Specify the CNTL library APSDBDC member.
Yes Generate COBOL Il source code.

No Default.

1 OS/VS COBOL (Generate COBOL Il = No)
2 CoBOLII

3 COBOL for MVS

Specify the CICS release at your site.

Specify the IMS release at your site.

Yes Pass SUPRA procedural statements

through APS unchanged.

No Processes SUPRA procedural
statements.

Override the APS Parm field on the
Precompiler Options screen. Display all
options whose default values you have
overridden in the Precompiler Options
screen. You can temporarily override these
values simply by overtyping them in this field,
but changes made here are not saved; they
remain in effect only until you exit APS.

Specify parameters or directives for COBOL
compiler. See the COBOL Language
Operating Guide for valid values.

To reinstate all options to their default installation values, enter
reset in the Command field.

Example:

Generation Parameters, Screens

® Ifyou enter yes in the COBOL-II field, APS includes the new COBOL/2
generator support as well as MVS COBOL/2 compiler support. If you
want to continue using the COBOL/74 generator support in
conjunction with the COBOL/2 compiler, a fix will be provided.

COMHAND ===3> _
TARGET 08 ===> 082
DL ===> CICS
DB ===> VUSAM
SQL ===> DB
JOB CLASS ===
MSE CLASS ===3*
LISTGEN » NO
COBOL ===> NO
OBJECT ===» NO
WFS/BHS ===> NO
GEMSRC ===> MO
APS DEBUG ===> YES
USER HELP ===3 NO
APS Parm ===» RLATE=S
COBOL Parm ===

(MyS, D82, PCDDS, 0SLAA, VSE)

(PH, IMS, CICS, DLG, DDS, WVS, or ISPF [prototyper)]

(IMS, DLi, VSAM, IDHS, or 0S4]
{Blank, D§2DH, %DB, SGLDS, DB2, SQL4AA)

JOB DEST =

CARDIN MEMBER
GEWERATE COBOL-II
COBOL-11 COMPILER

CICS RELENSE
INS RELEASE
SUPRA

EBCDIC

PC CICS

CLIENT/SERVER
cB

»

» RAPSDBDC

> HD [Yes or Ho)

» YES (Yes or No)

» (Blank, A ar B)
> (Blank, A or B)
> ND Yes or Ho

> HO Yes or Mo

» MFOCUS (IBM, MFOCUS)

* NO [Yes or No)

Generation Parameters, Screens

Category:

Description:

Screen Painter feature

Change parameter values that affect the screen in any environment, as

desired. Applicable parameters and valid values on the Screen
Generation Parameters screen are:

Parameter
Prt Asm Mac Expn

No Assembler END

Retain Dataname

Description and Values

F

T

-n

Default. Do not print expanded

assembler macros.
Print macros.

Default. Do not generate an

assembler END statement.
Generate statement.

Default. Do not retain painted field

names as assembler labels.

Reference

273

274

Reference

Parameter

Global Fld Unpro

Exattr Modifbl

Gen Panel KANA

Unpro Fld Box

Kextattr Modifble

System Message

Description and Values

T

Retain field names. Under BMS or
MFS, duplicate or invalid names can
occur due to the maximum number
of characters that BMS and MFS
allow.

Default. Do not unprotect all /0O
fields for prototyping.

Unprotect all I/O fields.

Default. Do not modify extended
attributes at run time.

Allow modification at run time;
generate EXTATTR=YES and extra
attribute bytes in DSECT.

Anything specified in this field has no effect
during prototyping.

F

T

NO or
blank

YES or
SYSMSG

fieldname

For KANJI only. Default. Do not
generate the KANA keyword in the
ISPF panel) body header statement to
display Japanese Katakana.

Display Japanese Katakana.

For KANJI only. Default. Do not
enclose unprotected I/O fields with
lines.

Enclose unprotected I/0 fields.

For KANJI only. Default. Do not
modify Format and Ruledline
attributes for text fields at run time.

Modify at run time.

Default. Do not display system
messages.

Display messages on last line of the
screen, if space is available.

Display messages in fieldname.

Parameter

Intensity

Color

Blink
Rvideo
Underline

CICS Parameters

Parameter
Associated Trans

Mapset Name

Generation Parameters, Screens

Description and Values

YES, row, Display message of up to length
length|YES, characters on specified row. Row
row|YES,, default is last line of screen. Length
length can be from 40 to 70 characters or up
to 131 characters for MOD5 screens.

Change the intensity of all text fields.

N Default. Normal.

B Bright.

Change the color of all text fields.
NU Neutral

BL Blue

PK Pink

TQ Turquoise

RD Red

GN Green

YL Yellow

Set only one field to T(rue) for text fields. Blinking,
reverse video, and underline are mutually
exclusive.

Description and Values

Specify an associated transaction ID; default is the
first four characters of the screen. If more than
one screen begins with the same four characters,
you need to define a unique transid.

Override an APS-generated mapset name;
maximum seven characters. To generate a
multiple-map mapset that includes some or all
screens, assign the same mapset name to the
applicable screens in the application

Reference

275

276

Reference

Parameter

Line

Description and Values

The default mapset name reflects the number of
characters in the screen name, as follows.

4-character name: screennameSET

5-, 6-character name: screenname$
7-character name: screenname$; the $ replaces
the seventh character

Starting line of the map on the physical screen;
default is 001; value cannot exceed the screen
depth.

ISPF Prototype Parameter

Parameter
Associated Pgm

IMS DC Parameters

Parameter
Device Type

Cursor Feedback

Description and Values

Name of the program receiving control from the
screen; default program name is screenname.

Description and Values

Standard device characters for different model
terminals and printers. Defaults are IBM-
recommended device characters. See your IBM
MFS or IMS installation manual for further
details.

F Default. Do not define a field in the MID as
the cursor feedback field.

T Provide cursor information for input
processing. To hold the information, APS
appends two halfword binary fields to the
screen record. screen-CURSOR-ROW and
screen-CURSOR-COL.

Cursor feedback fields do not affect output
cursor positioning.

Parameter
DIF-DOF Name

Optional FId Name

MID Segment Exit:
Number
Vector

Opr Logical Paging

MID Name

MID Default Values

Generation Parameters, Screens 277

Description and Values

Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameDF

5-, 6-character name: screenname$

7-, 8-character name: screenname truncated to 6
characters

Specify fieldname or MFS PFKEY to hold the
trancode or operator logical paging command.
Alternatively, enter *PF and assign the PF key
value on the MFS Function Keys screen, or *TC
and construct a trancode on the Trancode
Construction screen.

Generate the EXIT parameter on the MID
segment statement with Number as the exit
routine number and Vector as the exit vector
number. Valid values are:

Number: 0 to 127

Vector: 0 to 255

F Default. Do not request operator logical
paging.
T Request paging. Enter name of field that

will contain the paging requests in the
Optional Fld Name field.

Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameMI|

5-, 6-, 7-character name: screennamel
8-character name: screennamel; the | replaces
the eighth character

F Default. Do not treat initial values as
default values for fields in the MFS-
generated MID.

T Treat initial values as default values.

Reference

278

Parameter
MOD Name

MOD Fill Char

DSCA

"Labeled" Screen

Lines Per Page

Trancode:
Literal

Description and Values

Override APS-generated name. Default reflects
the number of characters in the screen name, as
follows.

4-character name: screennameMO

5-, 6-, 7-character name: screennameO
8-character name: screennameO; the O replaces
the eighth character

Generate fill characters in the MOD segment
statement. Valid characters are --, NULL, PT, C, or
‘X', where x is any character value.

Override the Default System Control Area
default value of X'00A0".

F Do not append screen name to the input
message.

T Append the screen name.

If device type is a printer, specify number of
lines to print on a page.

Specify any literal value as the trancode. Default
is the screen name.

GROUP BY

Category:
Compatibility:

Description:

Comments:

Reference

Database call clause (see Database Calls)

SQL target

Apply column functions to data elements that are collected into groups
and define a hierarchy for these groups.

® Code GROUP BY with DB-DECLARE and DB-PROCESS only.

® Each column name in the SELECT list must be in the GROUP BY
statement, and vice versa.

® Use the ORDER BY keyword with GROUP BY to sort rows.

Examples:

GROUP BY

Separate each item in the GROUP BY and ORDER BY clauses with a

space; commas are optional.

Use the HAVING clause, which acts as a WHERE clause, with GROUP
BY to identify or evaluate the groups you want to include. A

HAVING clause

® Directly follows the GROUP BY statement

® Names a grouping column or column function with its search

conditions or qualifications

® Can link qualifications with the Boolean operators AND and OR

® When coded with COUNT, can test the number of rows found

for a group. COUNT(*) operator value

This statement:

DB- PROCESS REC EMPLOYEE- REC

DB- PROCESS- | D D2EMP
EMP- DEPT

MAX(EMP- SALARY)

WHERE EMP- NAME NOT NULL
GROUP BY EMP- DEPT
ORDER BY EMP- DEPT

Results in:

EMP- DEPT EMP- SALARY

FI NOO1 66700. 000
FI N201 45250. 000
MKT001 72300. 000
PAY001 68800. 000
PAY002 43500. 000
SYS001 75000. 000

DB- PROCESS REC EMPLOYEE- REC

DB- PROCESS- | D D2EMP
EMP- DEPT

EMP- SEX

MAX(EMP- RATE)

MAX(EMP- SALARY)

WHERE EMP- NAME NOT NULL

This statement, which first groups rows by EMP-DEPT number, then
within department by EMP-SEX, and then calculates maximum rates and
salaries for each group:

Reference

279

280

GROUP BY EMP- DEPT, EMP- SEX
HAVI NG COUNT(*) > 2

AND M N(EMP- RATE) > 3
ORDER BY EMP- DEPT, EMP- SEX

Results in:

EMP- DEPT EMP- SEX EMP- RATE EMP- SALARY
FI NOO1 F 32. 067 66700. 000
FI NOO1 M 31. 105 64700. 000
FI N201 F 19. 711 41000. 000
FI N201 M 21. 754 45250. 000
PAY001 F 33.076 68800. 000
PAY001 M 31. 884 66320. 000
SYS001 F 32.692 68000. 000
SYS001 M 36. 058 75000. 000

GSAM Calls

Category: IMS database calls
Compatibility: IMS DB target
Description: Access GSAM databases.

Syntax: | M CLSE view
I M OPEN vi ew
I M OPEN- I NP vi ew
I M OPEN- QUT vi ew
I M OPEN- QUTA vi ew
I M OPEN- QUTM vi ew
I M GN PCBnane [ssal [...ssal5]]
I M GQJ PCBname ssal [...ssalb]
I M| SRT PCBname [ssal [...ssal5]]

Parameters: pcbname Database view; can be up to 20 characters.
Default is 10-PCB.

Reference

ID Parameters: 281

ssa SSA (record search) arguments that trigger
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA. Default is IM-IO-AREA with a length
of 32,000 bytes; set IM-IO-AREA-LEN in your
program or DDISYMB member to override the
length.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working-Storage to hold the corresponding
values.

view Database view. Must correspond to a GSAM PCB.

Example: The following code:

$I M OPEN (" PARDBI NP")
$I M OPEN- | NP (" PARDBI NP")
$I M GN (" PARDBI NP")

Generates in the Procedure Division:

CALL * CBLTDLI’ USI NG
I M OPEN PARDBI NP- PCB
MOVE PARDBI NP- STATUS TO | M STATUS
MOVE " INP° TO | M| O AREA
CALL * CBLTDLI’ USI NG
I M OPEN PARDBI NP- PCB
I M1 O AREA
MOVE PARDBI NP- STATUS TO | M STATUS
CALL * CBLTDLI’ USI NG
I M GN PARDBI NP- PCB
GSAM | N- | O- AREA
MOVE PARDBI NP- STATUS TO | M STATUS

ID Parameters:

Category: Program Painter and Specification Editor keyword (see Keywords:)
Compatibility: IDMS DB target

Description: Code native IDMS calls in the Data and Environment Divisions and pass
them through, without translation, to the precompile process.

Reference

282

Syntax:

Comments:

Data Division:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
| DCS | DMBCont r ol Secti onst at enent s

Environment Division:

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
| DSS SchemaSect i onst at enent s

® The IDCS keyword generates an IDMS-Control Section at the top of
the Environment Division. All statements adjacent to or following
this keyword and preceding the next keyword pass through to the
generated program, starting in column 8.

® The IDSS keyword generates a Schema Section at the top of the
Data Division. All statements adjacent to or following this keyword
and preceding the next keyword pass through to the generated
program, starting in column 8.

IDM-COMMIT

Category:
Compatibility:

Description:

Syntax:

Parameter:

Reference

Database call (see Database Calls)
IDMS DB target

Write a COMT checkpoint to the IDMS journal file to designate the start
or end of specific database accessing activities associated with the
issuing run unit and release all record locks except select locks held on
current records.

| DM COMM T [ALL]

ALL Release all record locks and set all currencies to
null.

Example:

IDM-CONNECT

Write a COMT checkpoint to the IDMS journal file; release all record
locks held on current records; set all currencies to null.

| DM COW T ALL

IDM-CONNECT

Category:
Compatibility:
Description:
Syntax:

Parameters:

Comments:

Example

Database call (see Database Calls)

IDMS DB target

Connect the named record to the named set.
| DM CONNECT REC [recordnanme] TO set nane

TO setname
Connect record to specified IDMS set name.

REC [recordname] Retrieve specified record. Define recordname as
a member of the set and current of its record
type. Put any area(s) that the set uses in an
update mode.

® Make the owner record current of its record type, and if needed,
establish position by walking the set.

® Recordname is optional because the record is previously located by
a DB-OBTAIN REF.

Connect record type ORDER to CUSTOMER-ORDER. Note that owner
record is current of record type.

MOVE SCR- CRDER- NUM TO ORDERNUM
MOVE SCR-QTY-ORD TO ORDER- QTY
DB- STORE REC ORDER
I F OK-ON- REC
MOVE SCR- ORDER- NUM TO ORDER- NUM
MOVE SCR- QTY- ORD TO ORDER- QTY
DB- OBTAI N REC CUSTOVER WHERE CUST- NUMBER = W6- CUST- KEY
I F OK- ON- REC
| DM CONNECT REC ORDER TO CUSTOVER- ORDER

Reference

283

284

I F AB- ON- REC
PERFORM 950- ERROR- RTN

IDM-DISCONNECT

Category:
Compatibility:

Description:

Syntax:

Parameters:

Comment:

Example:

Reference

Database call (see Database Calls)
IDMS DB target

Disconnect the record from the set in which it participates as an
optional member.

| DM DI SCONNECT REC [recordnane] FROM set nane

FROM setname Disconnect record from specified IDMS set name.

REC [recordname] Retrieve specified record. Define recordname as
a member of the set and current of its record
type. Put any area(s) that the set uses in an
update mode.

Recordname is optional because the record is previously located by a
DB-OBTAIN REF.

Disconnect record type ORDER from CUSTOMER-ORDER.

DB- OBTAI N REF CUSTOMER REC ORDER
I F OK-ON- REC
| DM DI SCONNECT REC ORDER FROM CUSTOMER- ORDER
I F AB- ON- REC
PERFORM 950- ERROR- RTN

IDM-IF

IDM-IF

Category:
Compatibility:

Description:

Syntax:

Parameters:

Examples:

Database call (see Database Calls)
IDMS DB target

Determine if a data set is empty or if a record is a member of a given
set; perform logic if condition is met.

I DM | F SET set nane [EMPTY| NOT EMPTY]
[MEMBER| NOT MEMBER] par agraphnane

[NOT] EMPTY Specify if there are member records for setname.

[NOT] MEMBER Specify if the record, that is current of RUN-UNIT,
is a member of setname.

paragraphname Perform paragraphname when IF condition is
met.

SET setname Specify IDMS set name.

| DM | F SET DEPT- EMPLOYEE MEMBER 2000- GET- OANER

| DM | F SET DEPT- EMPLOYEE NOT MEMBER
2100- NO- O\NER

| DM | F SET DEPT- EMPLOYEE NOT EMPTY
3100- GET- EMPS

IDM-PROTOCOL

Category:
Compatibility:

Description:

Database call (see Database Calls)
IDMS DB target

Specify the program execution mode and the location of IDMS record
descriptions.

Reference

285

286

Syntax:

Parameters:

Comments:

Example:

Reference

-KYyWD- 12--%--20---%*----30----*%---40---%----50---*----60
SYEN | DM PROTOCCOL progranmode | ocati on

programmode Execution mode. Refer to the IDMS COBOL

Programmer’s Guide for valid program modes.

location Place IDMS record descriptions copied from the

IDMS Dictionary in this program area. Valid
values are:

L-S or LS Linkage Section
W-S or WS Working-Storage

MANUAL Generate an IDMS-Records
Manual statement within
Working-Storage; generate COPY
and BIND statements for records
referenced within the program.

APS generates IDM-PROTOCOL based on values found in the
Application View, unless you code this call or code the IDCS
keyword. The location for generated protocols is Working-Storage.

Code MANUAL to control DB-BIND processing.

If &I DM-GEN-AUTOSTATUS is set to YES in .CNTL(APIDMSIN), APS
generates the appropriate autostatus protocol and copies the IDMS-
STATUS paragraph to the program. For each DML command
executed, APS checks the error status and performs IDMS-STATUS
for an abnormal condition. Valid error status codes for DML
commands are in .CNTL(APSIDMSIN).

If & DM-GEN-AUTOSTATUS is set to NO, APS generates the
appropriate non-autostatus protocol; the value of & DM-GEN-IDMS-
STATUS determines if IDMS-STATUS is copied to the program. No
automatic error checking occurs.

Set the protocol for an IDMS CICS program; place IDMS record
descriptions in Working-Storage.

| DM PROTOCCOL CI CS- EXEC- AUTO W S

IDM-RETURN

IDM-RETURN

Category:
Compatibility:

Description:

Syntax:

Parameters:

Examples

Database call (see Database Calls)

IDMS DB target

Return the database key and symbolic key (optional) from an indexed
set via a currency or key value.

| DM RETURN dat anane FROM i ndexset nane
[CURRENCY [FI RST| LAST| NEXT| PRI OR]]

[USI NG keyfiel d

[KEY | NTO keyfiel d]

CURRENCY

dataname

KEY INTO keyfield

USING keyfield

Retrieve database key based on currency within
the indexed set. If CURRENCY or USING is not
coded, default is CURRENCY.

Return the database key into the named
Working-Storage field. Define as PIC S9(08)
COMP SYNC.

Return the symbolic key obtained from the
indexed set into Working-Storage keyfield.
Currency specification is optional.

Use the value of keyfield to sea"rch the index
and return the database key. See also
"Comments:" below. If USING is not coded,
default is CURRENCY.

| DM RETURN WS- SAVE- DBKEY FROM | X- EMP- NAME

CURRENCY

| DM RETURN WS- SAVE- DBKEY FROM | X- EMP- NAME

FI RST CURRENCY

| DM RETURN WS- SAVE- DBKEY FROM | X- EMP- NAMVE

| DM RETURN WS- SAVE- DBKEY FROM | X- EMP- NAME
USI NG W6- EMP- KEY

| DM RETURN WS- SAVE- DBKEY FROM | X- EMP- NAME
FI RST CURRENCY KEY | NTO Ws- EMP- KEY

Reference

287

288

IDM-ROLLBACK

Category:
Compatibility:

Description:

Syntax:

Parameter:

Comments:

Database call (see Database Calls)
IDMS DB target

Write an ABRT checkpoint to the IDMS journal file to recover the
recovery unit (the part of the run unit falling between two
checkpoints); allow the run unit to continue accessing the database
without issuing the DB-BIND and DB-OPEN calls.

| DM ROLLBACK [CONTI NUE]

CONTINUE Specify recovery unit is to roll back.

® All currencies are nullified.

® |f CONTINUE is coded, the recovery unit rolls back (recovers), but the
run unit does not terminate. Database access resumes, without BIND
and READY calls. Any character string is valid for a continue.

IDMS

Category:

Compatibility:

Description:

Syntax:

Reference

IDMS statement
IDMS DB target

Code native IDMS calls in the Procedure Division and pass them
through, without translation, to the precompile process.

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
| DCS | DMS nativecal |

Comments:

Example:

IDMS DB Sample Programs

® |n the Procedure Division, begin every IDMS statement with the
IDMS verb, typed in columns 12 to 72. Begin subsequent lines of the
statement with a continuation ellipsis; do not use %

® The IDMS Procedure Division statement generates, a $IDMS rule.
This rule generates IDMS COBOL at compile time. APS considers any
code adjacent to the IDMS verb the first rule parameter, the next
line the second parameter, and so on.

® See also ID Parameters:
-KYWD- 12--%--20---%----30----%---40---*%----50---*%----60

| DMS OBTAI N FI RST CUST- REC
W THI N CUST- REG ON

Generated rule:

$I DMS (" OBTAIN FI RST CUST- REC',
% ... "WTH N CUST- REGI ON")

IDMS DB Sample Programs

Compatibility:

- LI NE-
000100
000200
000300
000800
001000
001100
001300
001400
001500
001600
001601
001700
001701
001710
001720
001730

IDMS DB target

Batch Program:

“KYWD- 12--%--20--=%--=-30----*---40---*-=--50---%---60
SYML % SET NOBLANK

&07*NO- ACTI VI TY- LOG

&07*DMLI ST

PRCC

DB- OPEN MODE UPDATE
DB- OBTAI N REC CUSTOMVER FI RST AREA CUSTOMER- REG ON
I F OK-ON- REC /* APS IDMS 1.7 FLAG

DI SPLAY ' FI RST CUSTOVER | S ' CUST- NAME
REPEAT

DB- OBTAI N REC CUSTOVER

NEXT AREA CUSTOMVER- REG ON

UNTIL NOT OK- ON- REC

DI SPLAY ' NEXT CUSTOMER | S ' CUST- NAME
| F END- ON- REC

DI SPLAY ' END OF AREA SWEEP
ELSE-1F VI O ON- REC

Reference

289

290

001740
001750
001760
001770
001780
001781
001790
001791
001792
001793
001794
001800

Reference

DI SPLAY ' | DM5 RULE VI OLATI ON ' ERROR- STATUS

ELSE

DI SPLAY ' CATCH ALL ERROR ' ERROR- STATUS

ELSE-1 F POS- ON- REC
DI SPLAY ’* CANNOT POSI TI ON W THI N CUST AREA

ERROR- STATUS

ELSE-1F VI G- ON- REC
DI SPLAY ' | DM5 RULE VI OLATI ON OCCURRED

ELSE

ERROR- STATUS

DI SPLAY ' CATCH ALL ERROR ' ERROR- STATUS
DB- CLOSE

Line 100--The SYM1 keyword places FMP symbols and other
statements before the Identification Division.

Line 200--&07*NO-ACTIVITY-LOG is an IDMS translator directive to
turn off the program statistics that are kept in the IDD. We
recommend that you set the Dictionary Update parameter on the
IDMS Options window.

Line 300--&07*DMLIST is an IDMS translator directive, which sets the
IDMS option to list the native DML calls prior to converting them.
We recommend that you set the DMLIST parameter on the IDMS
Options window.

Line 800--The PROC keyword indicates that the following
statements are procedural and generates the Procedure Division
statement.

Line 1000--DB-OPEN executes before any other database call. It
translates into the IDMS/R READY command. This example readies
the database in update mode.

Line 1100--DB-OBTAIN retrieves the first customer record found
within customer-region.

Line 1300--IDMS flag OK-ON-REC tests for normal database
conditions.

Line 1600--DB-OBTAIN retrieves the next customer record found
within the customer region.

Line 1800--DB-CLOSE notifies IDMS that database processing for this
program is complete, frees any locked records, and nullifies all
database currency. If the program logic requires additional DB
processing, an appropriate ready command must be executed. DB-
CLOSE translates into the IDMS/R FINISH command.

IDMS DB Sample Programs

Program with Generated Code:

Program Painter code:

- KYWD-
I DCS

| DSS

NTRY
PARA

PARA

PARA

PARA

12--%-e220---%--230----%c40---*---50---*---60---*

PROTOCOL. MCODE | S BATCH DEBUG

| DMS- RECORDS | N WORKI NG- STORAGE SECTI ON
DB SAMPSS W THI N SAMPSCH.
PROG

MAI N- PARA.
COPY | DMS SUBSCHEMA- Bl NDS
| DM5 READY USAGE- MODEL | S RETRI EVAL
TP- PERFORM | DMS- STATUS
TP- PERFORM PROCESS- CUSTOVERS
| DVMS FI NI SH
PROCESS- CUSTOMVERS.
| DM5 OBTAI N FI RST CUST- REC W THI N CUST- REG ON
I F ERROR- STATUS GREATER THAN ' 0000’
TP- PERFORM ABORT- PARA
ELSE
TP- PERFORM DI SPLAY- CUSTOVER
REPEAT
| DM5S OBTAI N NEXT CUST-REC W THI N CUST- REG ON
UNTI L ERROR- STATUS GREATER THAN ' 0000’
TP- PERFORM DI SPLAY- CUSTOVER
I F ERROR- STATUS = ' 0307’
DI SPLAY '’ ***** END OF CUST- RE@ ON *****’
ELSE
PERFORM ABORT- PARA
DI SPLAY- PARA.
DI SPLAY SPACE
DI SPLAY ' CUST-REC = ' CUST- REC
ABORT- PARA.
DI SPLAY SPACE
DI SPLAY '’ ***** READ FAI LURE *****’
DI SPLAY ' ERROR- STATUS = ' ERROR- STATUS
| DMS FI NI SH
STOP RUN

Generated S-COBOL program:

% &AP- GEN-VER = 1719

% &AP-PGW I D = " TSTI DM5"

% &AP- GEN- DB- TARCGET = "VSAM'

% &AP- TP- ENTRY- KYWD- SEEN = 1

% &AP- SUBSCHEMA = ""

% &AP- APPLI CATION-1 D = "TSTI DV5"

Reference

291

292

Reference

% &AP- GEN- DATE = "870105"
% &AP-GEN-TI ME = "15482536"
I DENTI FI CATI ON DI VI SI ON.

PROGRAM- | D. TSTI DVS.

AUTHOR. AP- SYSTEM GENERATED.
DATE- WRI TTEN. 870105.

DATE- COVPI LED. &COWPI LETI ME.

ENVI RONVENT DI VI SI ON.
| DMS- CONTRCOL SECTI ON.
PROTOCOL. MODE | S BATCH DEBUG
| DMS- RECORDS W THI N WORKI NG- STORAGE SECTI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COMPUTER. &SYSTEM
OBJECT- COMPUTER &SYSTEM
DATA DI VI SI ON.
SCHEMA SECTI ON.
DB SAMPSS W THI N SAMPSCH.
WORKI NG- STCRAGE SECTI ON.
$TP- W5- MVARKER
$TP- COMVAREA
$TP-ENTRY ("", "")
MAI N- PARA.
COPY | DM5 SUBSCHEMA- Bl NDS
$I DV5 (" READY USAGE- MODEL | S RETRI EVAL")
$TP- PERFORM (" | DV5- STATUS")
$TP- PERFORM (" PROCESS- CUSTOVERS")
$IDVS ("FI NI SH")
PROCESS- CUSTOMVERS.
$I DV5 (" OBTAI N FI RST CUST- REC',
% ... "WTH N CUST- REG ON")
I F ERROR- STATUS GREATER THAN ' 0000’
$TP- PERFORM (" ABORT- PARA")
ELSE
$TP- PERFORM (" DI SPLAY- CUSTOVER")
REPEAT
$I DVS (" OBTAI N NEXT CUST- REC W THI N CUST- REG ON")
UNTI L ERROR- STATUS GREATER THAN ' 0000’
$TP- PERFORM (" DI SPLAY- CUSTOVER")
I F ERROR- STATUS = ' 0307’
DI SPLAY '’ ***** END OF CUST- RE@ ON *****’
ELSE
PERFORM ABCRT- PARA
DI SPLAY- PARA.
DI SPLAY SPACE
DI SPLAY ' CUST-REC = * CUST- REC
ABORT- PARA.
DI SPLAY SPACE
DI SPLAY '’ ***** READ FAI LURE *****’

IDMS Options
DI SPLAY ' ERROR- STATUS = ' ERROR- STATUS
$IDVS ("FI NI SH")
STOP RUN

IDMS Options

Compatability:
Category:

Description:

Procedure:

IDMS DB target
Application generation

Define processing environment for application and program
generation.

1 From the APS Options Menu enter option 7 in the Option field.
Alternatively, from any APS screen enter opt 7 in the Command or
Option field. The IDMS Options screen displays.

2 Specify IDMS options appropriate for your environment.

Option Description and Values
Dictionary Name Specify the dictionary name.

Central Version or Local Specify the compile environment. APS
generates a SYSTRNL with a unique
DSN whose high level qualifier is your

user ID.
laY Default. Central Version.
local When you specify local, also

enter a volume in the IDMS
Local Jrnl Disk Vol field.

dummy When you specify dummy,
APS generates a SYSTRNL DD
DUMMY

IDMS Local Jrnl Disk Vol Local compile disk volume for journal.

Dictionary Update Yes Log program compile
information to the
dictionary.

Reference

293

294

Option

IDMS DMLC Output to
PDS

IDMS Loadlib Qualifier
IDMS SYSCTL DSN

CV Node Name

DMLIST (List Generation)

Generate DB-BIND in
Pgm

IDMS Password

Description and Values

No Default. Do not log program
compile information.
Yes Write DMLC compile

statements to a PDS. If you
enter yes, you must allocate
a &DSN..IDMSOUT PDS prior
to compilation.

No Default. Do not write DMLC
compile statements to a PDS.

Specify full qualifiers for
IDMS..LOADLIB.

Optional. Specify DSN of IDMS
dictionary.

Name of central version DDS
(Distributed Database System) node
under which loadlib program compiles.

Yes Generate list.

No Default.

Yes Generate the DB-BIND
macro.

No Suppress the generation of

the DB-BIND macro. Code
the DB-BIND macro in your
program.

N/A

IF/ELSE-IF/ELSE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Evaluate a condition.

Reference

Syntax:

IF/ELSE-IF/ELSE

Format 1:

IF conditionl
st at enent bl ock

[ELSE-1F| ELSE | F condition2
st at enent bl ock

ELSE-| F| ELSE | F condi ti onN
statenent bl ock]
[ELSE
statenent bl ock]

Format 2:

COBOLi nper at i vest at ement
COBOLcondi ti onal cl ause
st at enent bl ock
ELSE-| F| ELSE | F conditionl
st at enent bl ock

[

ELSE- | F| ELSE | F conditionN
statenent bl ock]

[ELSE
statenent bl ock]

Logic Execution:

When IF conditionT is true, its statement block executes. Control
then passes to the next statement at the same or less indented level
as the IF statement (other than related ELSE-IF or ELSE statements
which, by definition, are at the same level as their IF).

When IF conditionT is false, S-COBOL looks for ELSE-IF statements at
the same level. If such ELSE-IF statements are present, the conditions
are evaluated one after the other. If one of the conditions is true, its
statement block executes. Control then passes to the next statement
at the same or less indentation as the IF statement (other than
related ELSE-IF or ELSE statements).

If no ELSE-IF statements are present, or if the IF condition and the
ELSE-IF conditions are all false, control passes to the statement block
subordinate to the ELSE statement; if no ELSE statement is present,
control passes to the next statement at the same or less indentation
as the IF and ELSE-IF statements.

Reference

295

296

Comments:

Examples:

Reference

® |f an ELSE-IF statement has no subordinate statement block and the
condition is true, control passes to the next statement at the same
or less indentation level as the ELSE-IF statement.

® You can nest up to fourteen IF levels.

® The last IF, ELSE-IF, or ELSE coded in a related series requires a
subordinate statement block.

® You can use the IF construct to code the NEXT SENTENCE concept of
passing program control out of a particular construct to the next
executable statement. See the example below.

® \With Format 2, you can form conditional constructions similar to IF,
ELSE-IF, ELSE by combining a COBOL imperative verb and its
conditional clauses with ELSE-IF and ELSE statements. Verbs that
permit this construction are

ADD, RETURN, CALL, REWRI TE, COWPUTE, START, DELETE,
STRI NG DI VI DE, SUBTRACT,
MULTI PLY, UNSTRI NG, READ, WRI TE.

® AT END and INVALID KEY conditional clauses can be combined with
ELSE-IF and ELSE statements.

If line 2020 is false, pass control back to line 1020, the first statement
after the PERFORM statement, because there is no ELSE-IF or ELSE
coding associated with this IF, and the first character at the same or less
indentation as this IF is a new paragraph name, which denotes the end
of the preceding PERFORMed paragraph. If the line 2020 condition is
true, execute its subordinate statement block (lines 2030 through 2170)
and return control to line 1020.

After line 2030 is executed, test line 2040. If the condition in line 2040 is
true, execute lines 2050 through 2071; pass control to line 2170. If line
2040 is false, test line 2080, etc. If lines 2040, 2080, and 2120 are false,
execute the ELSE statement block (line 2160) and pass control to line
2170.

“LINE- -KYWD- 12-%----20---*-=--30---%--=-40---%----50----
001010 PERFORM EMPLOYEE- BENEF! T- DEDUCTI ON
001020 NOVE . . .

002010 PARA EMPLOYEE- BENEFI T- DEDUCTI ON
002020 | F EMPL- COVERAGE NOT = SPACES

IF/ELSE-IF/ELSE

002030 PERFORM CALC- BASI C- BEN
002040 | F EMPL- COVERAGE- TYPE = ' EXTRA’
002050 PERFORM CALC- EXTRA- BEN
002060 PERFORM CALC- DENTAL- BEN
002070 BEN- FI ELD = XTRA- BEN +
002071 DENTAL- BEN

002080 ELSE-1 F EMPL- COVERAGE- TYPE =
002081 "FAM LY

002090 PERFORM CALC- FAM LY- BEN
002100 PERFORM CALC- DENTAL- BEN
002110 BEN- FI ELD = FAM LY-BEN +
002111 DENTAL- BEN

002120 ELSE-1 F EMPL- COVERAGE- TYPE =
002121 " DENTAL

002130 PERFORM CALC- DENTAL- BEN
002140 BEN- FI ELD = BASI C- BEN +
002141 DENTAL- BEN

002150 ELSE

002160 BEN- FI ELD = BASI C- BEN
002170 EMPL- DED- FI ELD =

002171 ... BEN-FIELD *

002180

002190 PARA CALC- BASI C- BEN

Nest conditional statements.

IF conditionl
statenent bl ock1
I F condition2
| F condition3
statenent bl ock2
ELSE-I F condition4
ELSE-I F condition5
statenent bl ock3
ELSE
st at enent bl ock4
ELSE
stat enent bl ock5
| F condition6
I|'F condition7
statenent bl ock6

statenent bl ock7

Make the MULTIPLY function conditional by ON SIZE ERROR.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

WS- NET- PAY = EMP- HOURS *
EMP- HOURLY- RATE

Reference

297

298

ON S| ZE ERROR

PERFORM PRI NT- ERROR- MESSAGE

DI SPLAY SSNO WS- NET- PAY

WS- NET- PAY WS- DEDUC = 0
ELSE-1 F EMP- HOURLY- RATE =

M N- WAGE

PERFORM CALC- DEDUC- M N
ELSE-1 F EMP- HOURLY- RATE < 5. 00

PERFORM CALC- DEDUGC- 1
ELSE-1 F EMP- HOURLY- RATE >= 5. 00

PERFORM CALC- DEDUGC- 2

I F EMP- HOURLY- RATE > 20. 00

DI SPLAY SSNO
EMP- HOURL Y- RATE

ELSE

DI SPLAY SSNO EMP- HOURLY- RATE

PERFORM PRI NT- ERROR- MESSAGE
NET- PAY = WS- NET- PAY - W5- DEDUC

Using a NEXT SENTENCE construction, the following S-COBOL code:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
PARA CALC-BENEFI T

BEN- FI ELD = ZERO
| F PERM PART- TI ME

PERFORM GROUP- A- CALC

I F HRS- WORKED > 25

BEN- FI ELD =
BEN- FI ELD * 1.25

ELSE-1 F PART-TI ME
ELSE-1 F FULL-TI ME

PERFORM GROUP- B- CALC
EMPL- REC- BEN- FI ELD =

BEN- FI ELD

Replaces the following COBOL code.

CALC- BENEFI T.
MOVE ZERO TO BEN- FI ELD.
I F PERM PART- TI ME
PERFORM GROUP- A- CALC
I F HRS- WORKED > 25
MULTI PLY BEN-FI ELD BY 1. 25
ELSE
NEXT SENTENCE
ELSE
I F PART-TI ME
NEXT SENTENCE
ELSE

Reference

$IM- Data Communication Calls

I F FULL-TI ME
PERFORM GROUP- B- CALC
ELSE
NEXT SENTENCE.
MOVE BEN- FI ELD TO EMPL- REC- BEN- FI ELD.

$IM- Data Communication Calls

Category:
Compatibility:
Description:

Syntax:

Parameters:

IMS Fast Path DC call (see Data Communication Calls)
IMS DC target for single-platform applications
Perform Fast Path data communication calls.

$I M CHNG al tvi ew [desti nati on]

$I M C\VD [PCBnane] [nsgar ea)

$I M GC\VD [PCBnane] [nsgar ea]

$I M GN PCBnane SSAl1 [... SSAl15]

$I M GU PCBnane SSAl1 [... SSAl15]

$1 M | SRT [PCBnane] al tview] SSAI [... SSA15]
$I M PURG [PCBnane] [nsgarea] [npd]

altview Alternate view or 10 PCB name.

destination Terminal destination; can be data name or literal
in an 8-byte field.

msqgarea Area where IMS returns the message segment
being processed; APSAPS treats this area as the
first segment of a new message.

mod Data name or literal in an 8-byte field naming
the message output description.

pcbname Database view (maximum 20 characters); default
is |0-PCB.

Reference

299

300

Examples:

Reference

SSA Segment Search Argument, which triggers
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA,; default is IM-IO-AREA with a length
of 32,000 bytes. To override the length, set IM-
IO-AREA-LEN in your program or the DDISYMB
member.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working-Storage to hold the corresponding
values.

The following code:

$I M CHNG ("ALT-10', "YOUR- TERM NAL- NAMVE")

Generates in Working-Storage:

01 | M DESTI NATI ON- NAME PI C X(8).

Generates in the Procedure Division:

MOVE YOUR- TERM NAL- NAVE

TO | M DESTI NATI ON- NAVE
CALL * CBLTDLI’ USI NG

I M CHNG ALT-1 O PCB

I M- DESTI NATI ON- NAMVE
MOVE ALT- | O STATUS

TO | M STATUS

The following code:

$I M CHNG ("ACT-1 0", "’ YOURTERM ")

Generates in Working-Storage:

01 | M DESTI NATI ON- NAME PI C X(8).

Generates in the Procedure Division:

MOVE ' YOURTERM

TO | M DESTI NATI ON- NAMVE
CALL ’* CBLTDLI* USI NG

I M CHNG ALT-1 O PCB

| M- DESTI NATI ON- NAME
MOVE ALT-1 O STATUS

TO | M STATUS

$IM-FLD

$IM-FLD

Category:
Compatibility:

Description:

Syntax:

Parameters:

Comment:

IMS Fast Path database call (see Database Calls)
IMS DB target

Access Main Storage Data Bases (only) at the field level, and query the
field contents and subsequently change the field value.

$1 M FLD MSDBvi ew f sanane [r oot ssal)

fsaname COBOL dataname for the generated field search
argument. See also $/M-FSA.

MSDBview Main Storage Data Base PCB.

rootssa Root segment search argument; if not specified,

APS retrieves the first segment in the MSDB.

Refer to your IMS documentation for more information on $IM-FLD.

$IM-FSA

Category:
Compatibility:
Description:

Syntax:

IMS Fast Path database call (see Database Calls)
IMS DB target
Build your own field search argument (FSA) to use with the IM-FLD call.

$I M FSA fsanane segnent
[fieldi[/picturel] operator operandl
[field2[]picturel]l operator operandZ2]

[field10[! picturel[operator operandl0]

Reference

301

302

Parameters: field

fsaname

operand

operator

picture

segment

Segment field name; can be 8-character IMS
field name or the corresponding COBOL record
name.

COBOL data name for the generated FSA;
references the FSA in $IM-FLD.

Value to test against field in a field verify, or
actual field value in a field change.

Valid operators for a field verify are:
E Verify that field and operand are equal.
G Verify that field is greater than operand.

H Verify that field is greater than or equal to
operand.

L Verify that field is less than operand.

M Verify that field is less than or equal to
operand.

N Verify that field is not equal to operand.
Valid operators for a field change are:

+ Add operand from field.

- Subtract operand from field.

+ Set field to value of operand

COBOL picture; if not specified, APS calculates
picture from field length and field type.

The segment referenced by the FSA; can be
eight-character IMS segment name or the
corresponding COBOL field name.

Comment: Refer to your IMS documentation for more information on $IM-FSA.

Reference

$IM-POS

$IM-POS

Category: IMS Fast Path database call (see Database Calls)
Compatibility: IMS DB target

Description: Access Data Entry Data Bases (DEDBs) only. Retrieve the location of a
specific sequential dependent segment or the last inserted sequential
dependent segment, or determine the amount of unused space within
each DEDB area.

Syntax: $| M- PGS DEDBvi ew [SSA

Parameters: DEDBview Data Entry Data Base PCB

SSA Segment Search Argument, which triggers
COBOL MOVEs to or from the generated I/O area
IM-IO-AREA,; default is IM-IO-AREA with a length
of 32,000 bytes. To override the length, set IM-
I0-AREA-LEN in your program or DDISYMB
member.

Specify only one SSA per hierarchical level along
a path. These arguments generate 8-byte records
in Working Storage to hold the corresponding
values.

Comments: ® After an IM-POS call successfully executes, information returns in
the field IM-POS-10-AREA, which is defined:

01 | MPGCS-| O AREA

05 | M PCS- LENGTH PI C S9(04) COwWP.
05 | M PCS- DATA- AREA- PONAME OCCURS 240.
10 | M POS- AREA- DDNAME PI C X(08).

10 | M PGS-1 NFO
15 | M PGS- CYCLS- COUNT PI C S9(8) COwP.
15 | M PCS- VSAM RBA PI C S9(8) COwP.
10 | M PCS- UNUSED- SEQDEP-CI'S PIC S9(8) COwWP.
10 | M PCS-UNUSED-I NDEP-CIS PIC S9(8) COwP.

e Refer to your IMS documentation for more information on $IM-POS.

Reference

303

304

% INCLUDE

Category:

Description:

Syntax:

Parameters:

Comments:

Examples:

Reference

APS Customizer statement (see your Customization Facility User’s Guide)

Open, read, and process a user-defined rule, copybook, or other file in
an APS program.

% | NCLUDE ddname(fil enane)

ddname (filename) Ddname and file to include

® When including copybooks, use % INCLUDE when either of the
following conditions are true.

® You use a COBOL/2 compiler
® Your copybook contains an indexed table

® When including copybooks, use a COBOL COPY statement when
both of the following conditions are true.

® You use an OS/VS COBOL compiler
® Your copybook does not contain an indexed table

® Inyour program, you can code % INCLUDE in a file that is
INCLUDEd; you can have up to ten levels of nested INCLUDEs.

® Always use an SY* keyword (see SY* Keywords)--such as SYM1--with
an % INCLUDE to specify where to put the included file in the
program.

Include a rule at the top of the program.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % | NCLUDE USERMACS(MY- RULE)

Include a rule at the bottom of the program.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYBT % | NCLUDE USERMACS(MY- RULE)

Include a copybook in Working-Storage.

“KYWD- 12-%----20---%----30---%----40
SYWS % | NCLUDE COPYLI B(MY- COPYBOCK)

Include a copybook in Linkage.

“KYWD- 12-%----20---%----30---%----40
SYLK % | NCLUDE COPYLI B(MY- COPYBOCK)

INITIATE

INITIATE

Category: Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Creating Reports with Report Writer.)
Compatibility: Batch environments
Description: Initialize all report counters and accumulators; set up control heading
and control footing items.
Syntax: | NI TI ATE reportnanmel [, reportnaneZ]
Comments: ® Define each report name in a RED statement.
® |nitialization does not open the report file. Code a COBOL OPEN
OUTPUT statement before the INITIATE to do so.
® You must TERMINATE reportname1 before executing an INITIATE
for reportname2.
Category: Program Painter and Specification Editor keyword (see Keywords:)
Compatibility: Batch environments

Reference

305

306

Description:

Syntax:

Comments:

Generate the Input-Output Section File-Control paragraph.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
10 filename ASSIGN [TQ] systemnane
Appl i cabl e COBOL FI LE- CONTRCL cl auses

® Do not code the SELECT verb in your syntax.

® Do not use ellipses to continue a FILE-CONTROL clause on
subsequent lines. Any keyword except /* (the comment keyword)
designates the end of the continuation.

® Code an 10 keyword for each file.

® APS generates both the program INPUT-OUTPUT section header and
the FILE-CONTROL header.

ISPF Dialog Compatibility: with IMS DC, CICS

Compatibility:

Description

Reference

ISPF Dialog target

The following calls improve communication between APS/ISPF Dialog
and other DC targets.

NTRY You can list explicit data areas; this allows
flexibility in passing data areas between
programs.

TP-COMMAREA Not required to pass data areas between
programs, but is supported for upward
compatibility.

SEND Provided for upward compatibility; does not
invoke a program. Use LINK to invoke a
program that displays a screen.

TP-LINKAGE Provided for upward compatibility. This call is
necessary for APS/CICS to order the LINKAGE
section properly, but APS/ISPF Dialog lets you
locate user records in LINKAGE without coding
TP-LINKAGE.

Job Control Cards

The PFKEY option allows PF key processing similar to APS/CICS and
APS/IMS with the Program-Controlled option when converting an
APS/CICS or APS/IMS application to ISPF Dialog.

Screens being converted from APS/CICS or APS/IMS must have a
command field, at least 4-bytes long, for users to enter ISPF commands
and to allow PF key processing to function. The command field must be.
Otherwise, data truncation errors result.

Do not use the APS Prototype Execution facility to execute your ISPF
Dialog programs; execute them using the Dialog Test facility provided
by ISPF.

Job Control Cards

Category: Application generation
Description: Create job cards to submit application/program generation batch jobs.
Procedure: To create up to five job cards--named J1 through J5-- with varying job
names, account information, classes, and other attributes, follow these
steps.
1 Access the Job Control Cards screen. To do so, from the APS Options
Menu enter option 6 in the Option field. Alternatively, from any APS
screen enter opt 6 in the Command or Option field. The Job Control
Cards screen displays.
2 Modify the cards as desired.
Joins
Category: Database access clauses
Compatibility: SQL target

Reference

307

308

Description: In the same call, select rows or specific columns from more than one
table in the same call. Join tables together by using the DB-DECLARE,
DB-OBTAIN, and DB-PROCESS calls.

Syntax: With DB-DECLARE:

DB- DECLARE cursorname correl nanel. copyl i bname- REC

[DI STI NCT]
[columl1 [... colummN] | [NONE]

correl nanmeN. copyl! i bname- REC
[columl1 [... colummN] | [NONE]

[WHERE correl nane. col um1 oper [:]val ue| correl nane. col um2
[AND| OR correl nane. col unm3 oper
[:] val ue| correl name. col unn4

AND| OR correl name. col unrmN operator [:]val ue| correl naneN |
[ORDER
columl [ASC|/ DESC] [...colummN [ASC]]]

With DB-OBTAIN:

DB- OBTAI N REC correl nanmel. copyl i bnanme- REC

[DI STI NCT]
[columl1 [... colummN] | [NONE]

REC correl nanmeN. copyl i bname- REC

[columl1 [... colummN] | [NONE]

[WHERE correl nane. col um1 oper [:]val ue| correl nane. col um2
... [AND| OR correl nane. col unm3 oper
[:] val ue| correl name. col unn4

AND| OR correl name. col urmN oper [:]val| correl name. col unrmN |

Reference

Parameters:

Comments:

Examples:

Joins

With DB-PROCESS:

DB- PROCESS REC correl nanel. copyl i bname- REC

[DB- PROCESS- | D nane]

[DI STI NCT]
[columl1 [... colummN] | [NONE]

REC correl nanmeN. copyl i bname- REC

[columl1 [... colummN] | [NONE]

[WHERE correl nanme. col um1 oper [:]val ue| correl nane. col um?2
[AND| OR correl nane. col unm3 oper

[:] val ue| correl name. col unn4

AND| OR correl name. col urmN oper [:]val| correl name. col unrmN |
[DB- LOOP- MAX=number]

[ORDER

columl [ASC| DESC] [...colummN [ASC| DESC]]]

Controlled | ogic block

See the applicable database call for keyword descriptions.

Including a correlation name with each column is optional when
joining tables. Correlation names help insulate your code against
changes in table structures, and emphasize the exact columns you
are accessing. A call requires a correlation name if the column name
in a select list or WHERE clause appears in more than one of the
joined tables.

Use the NONE keyword to qualify on the table, that is, reference the
table with a WHERE clause, but do not select columns.

Join your tables together before coding WHERE. You can join any
number of tables. You can also join a table to itself.

The WHERE clause refers to any column prefaced with the
correlation name assigned to its table. Be sure to enter the correct
correlation name--the SQL Generator cannot check it for you.

Select specific columns from tables D2MASTER and D2INVTRY; add
gualifications to the WHERE clause. Note that every column in the
WHERE clause is preceded by a correlation name.

DB- OBTAI N REC A. D2TAB- REC

PM_PART_NO PM UNI TS PM COLOR

Reference

309

310

Reference

REC B. D2I NVEN- REC
I N_PART_NO | N_QTY_ONHAND | N_DATE_LAST_ORDER
WHERE A. PM PART_NO = B. | N_PART_NO

AND A. PM_ COLCR = ' RED

AND B.IN_COLOR = ' RED

Declare the cursor D2JOIN-CUR and include columns from tables
D2MASTER and D2INVTRY. Use a WHERE clause to select rows where

® Columns PM_PART_NO and IN_PART_NO from each table match
® Column IN_QTY_ONHAND from table D2INVTRY is greater than 100

Eliminate duplicate rows from the cursor set (rows with matching data
in every selected column are considered duplicates). Sort the cursor set
in ascending order by PM_PART_NO from table D2MASTER, then in
descending order by IN_QTY_ONHAND from table D2INVTRY.

DB- DECLARE D2JO N- CUR A. D2TAB- REC DI STI NCT
PM_PART_NO PM COLOR B. D21 NVEN- REC
I N_PART_NO | N_QTY_ONHAND
WHERE A. PM_PART_NO = B. | N_PART_NO AND B. | N_QTY_ONHAND >
100
ORDER A. PM_PART_NO B. | N_QTY_ONHAND DESC

Process the cursor D2MAST-ID. The cursor set includes columns from
tables D2MASTER and D2INVTRY. Use a WHERE clause to include rows in
the cursor set where:

® Columns PM_PART_NO and IN_PART_NO from each table match

® Column PM_PART_SHORT_DESC from table D2MASTER equals the
Working-Storage variable :WS-PART-SHORT-DESC

® IN_QTY_ONHAND from table D2INVTRY is greater than 100

Eliminate duplicate rows from the cursor set (rows with matching data
in columns PM_PART_NO, PM_COLOR, IN_PART_NO, and IN_COLOR are
considered duplicates). Sort cursor set in ascending order by D2MASTER
columns PM_PART_NO and PM_COLOR.

DB- PROCESS REC A. D2TAB- REC
DB- PROCESS- | D D2MAST- | D
DI STI NCT
PM_PART_NO PM COLOR
REC B. D2I NVEN- REC
I N_PART_NO | N_COLOR
WHERE A. PM_PART_NO = B. | N_PART_NO
AND A. PM_PART _SHORT_DESC =

Keywords

: WB- PART- SHORT- DESC

AND B. | N_QTY_ONHAND > 100
DB- LOOP- MAX=999

ORDER A. PM_PART_NO ASC

A. PM COLOR ASC

Join a table to itself. Retrieve records where the IN_QTY_ONHAND
column is greater than 100 and retrieve records whose
IN_DATA_LAST_ORDER column matches these records.

DB- PROCESS REC A. D2 NVEN- REC
DB- PROCESS- | D D2MAST- | D
. I N_PART_NO
.1 N_QTY_ONHAND
| N_DATE_LAST_ORDER
REC B. D2I NVEN- REC
| N_PART_NO (: W8 PART- NO)
IN_QTY_ONHAND (: WS- QTY- ONHAND)
WHERE A. | N_DATA LAST_ORDER = B.|N_DATE_LAST ORDER
AND A. I N_QTY_ONHAND > 100

Keywords

Description:

Program Painter/Specification Editor keywords designate program
Divisions and Sections. The keyword you choose determines the location
of your program code within the generated program.

Program Painter keywords also designate blocks of code within which
all other categories of APS structures are coded. Following any
keyword, you can enter

® Program code, including S-COBOL, COBOL, and COBOL/2 structures;
database and data communication calls

® Data structures
® Report Writer structures

® User-defined rules

Code keywords in the Program Painter for batch, report, or complex
online programs, or in Online Express.

Reference

31

Keywords:

program.

Location
Beginning of program

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION

Input/Output Section

DATA DIVISION

File Section

Record description

WORKING-STORAGE

Reference

Keyword
SYM1, see SY* Keywords
SYM2, see SY* Keywords

REM

SPNM

SYEN, see SY* Keywords
SYIO, see SY* Keywords

10
SYDD, see SY* Keywords

SYFD, seeSY* Keywords

FD
or
SD
o1

DS

REC

++, see Joins

SYWS, see SY* Keywords

The following lists the keywords and their logical placement in a

Definition
Define rule variables.

Call user-defined rules after any rule
libraries named in Application View.

Create COBOL comments in the
Comments: Section. Not valid for
COBOL/2.

Create Special-Names paragraph

Call user-defined rules in Special-
Names paragraph.

Call user-defined rules after any rule
libraries.

Code SELECT statement.

Call user-defined rules at the
beginning of the Data Division.

Call user-defined rules after any rule
libraries included.

Code File Description or Sort
Description statement.

Code record description in COBOL
format.

Specify name of data structure
defined in Data Structure Painter
containing record description.

Specify name of data structure
defined in Data Structure Painter
containing record description.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

Specify PANVALET member name
containing record description.

Call user-defined rules after any rule
libraries and data structures named
in Application View.

Location

Data definitions

LINKAGE SECTION

Data definitions

Keyword
ws
o1

DS

REC

++ Joins

SQL
CA

SYLT, see SY* Keywords

SYLK, see SY* Keywords

LK
o1

DS

REC

Keywords

Definition
Designate Working-Storage section.

Code data structure in COBOL
format.

Specify name of data structure
defined in Data Structure Painter
containing data definition.

Specify name of data structure
defined in Data Structure Painter
containing data definition.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

Specify PANVALET member name
containing data definition.

Designate DB2 table or cursor.

Redefine the TP-USERAREA of the
COMMAREA in CICS, IMS, and DLG
parent programs.

Call user-defined rules after any rule
libraries and data structures named
in the Application View and
preceding any SYLK code.

Call user-defined rules after any rule
libraries and data structures named
in the Application View.

Designate Linkage Section.

Code data structure in COBOL
format.

Specify name of data structure
defined in Data Structure Painter
containing data definition.

Specify name of data structure
defined in Data Structure Painter
containing data definition.
Structure must be coded in Data
Structure Painter format (see Data
Structures).

Reference

313

314

Location

Report Section

PROCEDURE DIVISION

Declaratives Section

Bottom of program

Anywhere in the program

Reference

Keyword

++, see Joins

sQL
CA

SYRP, see SY* Keywords

RED

MOCK
o1

NTRY

or

PROC

OPT

PARA and Paragraphs
STUB

DECL

DPAR

SYBT, see SY* Keywords

/*, see Comments

FRFM

Definition
Specify PANVALET member name
containing data definition.

Designate DB2 table or cursor.

Redefine the TP-USERAREA of the
COMMAREA in CICS, IMS, and DLG
parent programs.

Call user-defined rules after any rule
libraries.

Create a Report Section and specify
the report name.

Identify the report mock-up.

Specify the type of report line, such
as header, footer, detail.

Designate the Procedure Division;
generate program skeleton and
program invocation logic.

Suppress generation of program
invocation logic.

Designate S-COBOL or COBOL
paragraph.

Name the global code to be
inserted.

Create a Declarative Section without
paragraphs; code declarative
statements.

Create a Declarative Section
paragraph; code declarative
paragraph statements.

Call user-defined rules.

Code comments. The /* keyword
does not end the action of the
current keyword; the next keyword
ends the current one.

Pass associated COBOL or S-COBOL
statements through the generator
without translation and move the
statements four columns to the left.

Syntax: Rules

Example:

Keywords

® Code keywords in the Program Painter for batch, report, or complex
online programs, or in Online Express.

® Important A keyword is active until the appearance of another
keyword, except for the comment keyword.

® You can code keywords in any sequence. Remember, keywords
designate blocks of logically related statement blocks and the
action of one keyword is terminated by the appearance of the next
keyword. The APS generators use these keywords to arrange the
program according to COBOL program requirements.

Pass-Through Parameters:

The following keywords provide pass-through support by letting you
code native calls and pass them through, without translation, to the
precompile process.

IDCS and IDSS, see IDMS Code and pass through native IDMS DB calls.
SQL Code and pass through native SQL calls.
Clcs Code and pass through native CICS calls.

The following examples include all APS keywords that you can enter in
the Program Painter when creating online or batch programs. They
illustrate

® The program locations where each keyword places the source code
after you generate the program through APS to produce an
executable COBOL or COBOL/2 program.

® The program locations at which APS places externally-defined
components associated with your program, such as user-defined
rules and data structures that you list on the Application View.

Online programs:

*SYML keyword pl aces Custom zer code here

*user rules from Appl View where Locati on=Top of program
*SYM2 keyword pl aces Custom zer code here

| DENTI FI CATI ON DI VI SI ON.

/ keyword pl aces comrents here (COBCL/2)
REMARKS. REM keyword pl aces conments here (COBQOL)
ENVI RONMENT DI VI SI ON.

Reference

315

316

Reference

SPECI AL- NAMES. SPNM keyword pl aces code here

*SYEN keyword pl aces Custom zer code here

DATA DI VI SI ON.

*SYDD keyword pl aces Custom zer code here

WORKI NG STORAGE SECTI ON.

*user rules from Appl View where Locati on=Top of WS

*data structures fromfrom Appl View where Location=Top of WS
*user rules from Appl View where Locati on=Wr ki ng- St or age
*SYWS keyword pl aces Custom zer code here

*W5 keyword, followed by any of the follow ng six

* keywords that you enter on the next line

*01 keywor d

*REC keyword

*DS keywor d

*SQL keyword

* 4+ keywor d

* FRFM keywor d

*user rules from Appl View where Locati on=Bottom of WS
*CA, CAO05, CADS keywords place code here in CICS, DDS, |Ms,
* DLG parent pgns

LI NKAGE SECTI ON.

*user rules from Appl View where Locati on=Top of Linkage
*data structures from Appl View where Locati on=Li nkage Section
*user rules from Appl View where Locati on=Li nkage Section
*SYLT keyword pl aces Custom zer code here

*SYLK keyword pl aces Custom zer code here

*LK keyword, followed by any of the follow ng six

* keywords that you enter on the next line

*01 keywor d

*DS keywor d

*REC keyword

*SQL keyword

* 4+ keywor d

* FRFM keywor d

*CA, CAO05, CADS keywords pl ace code here in DLG child prograns
*user rules from Appl View where Locati on=Bottom of Linkage
PROCEDURE DI VI SON. NTRY| PROC keyword generates this stnt
*OPT keyword pl aces code here

*PARA keyword pl aces code here

*STUB keyword pl aces code here

Keywords

*user rules from Appl View where Locati on=Bottom of program
*SYBT keyword pl aces Custom zer code here
*End of program

Batch programs:

*SYML keyword pl aces Custom zer code here

*user rules from Appl View where Locati on=Top of program
*SYM2 keyword pl aces Custom zer code here

| DENTI FI CATI ON DI VI SI ON.

/ keyword places comrents here (COBCL/2)
REMARKS. REM keyword pl aces conments here (COBQOL)
ENVI RONMENT DI VI SI ON.

SPECI AL- NAMES. SPNM keyword pl aces code here
*SYEN keyword pl aces Custom zer code here

I NPUT- QUTPUT SECTI ON.
*user rules from Appl View where Locati on=Top of |1/0O Section
*SYI O keyword pl aces Custom zer code here

FI LE- CONTROL.
*1O keyword places code here

DATA DI VI SI ON.

*SYDD keyword pl aces Custom zer code here

FI LE SECTI ON.

*user rules from Appl View where Locati on=Top of File Section
*FD keyword pl aces code here

*SD keyword pl aces code here

WORKI NG STORAGE SECTI ON.

*user rules from Appl View where Locati on=Top of WS

*data structures fromfrom Appl View where Location=Top of WS
*user rules from Appl View where Locati on=Wr ki ng- St or age
*SYWS keyword pl aces Custom zer code here

*W5 keyword, followed by any of the follow ng six

* keywords that you enter on the next line

*01 keywor d

*REC keyword

Reference

317

318

*DS keywor d

*SQL keyword

* 4+ keywor d

* FRFM keywor d

*user rules from Appl View where Locati on=Bottom of WS

LI NKAGE SECTI ON.

*user rules from Appl View where Locati on=Top of Linkage
*data structures from Appl View where Locati on=Li nkage Section
*user rules from Appl Vi ew where Locati on=Li nkage Section
*SYLT keyword pl aces Custom zer code here

*SYLK keyword pl aces Custom zer code here

*LK keyword, followed by any of the follow ng six

* keywords that you enter on the next line

*01 keywor d

*DS keywor d

*REC keyword

*SQL keyword

* 4+ keywor d

* FRFM keywor d

*user rules from Appl View where Locati on=Bottom of Linkage

PROCEDURE DI VI SON. [/ *NTRY keyword generates this stnt
PROCEDURE DI VI SON USI NG. / *PROC keyword generates this stnt
DECLARATI VES. /* DECL keyword generates this stnt

DECLARATI VES SECTION. /* DPAR generates this stnt
*DPAR keyword pl aces code here

END DECLARATI VES.

*OPT keyword pl aces code here

* PARA keyword pl aces code here
*STUB keyword pl aces code here

*user rules from Appl View where Locati on=Bottom of program
*SYBT keyword pl aces Custom zer code here
*End of program

Reference

Limits
Limits

APS enforces the following size and programming limitations.
COBOL/2
Item Max
Characters in paragraph name 24
Customization Facility
Item Max
Indents 50
Nested macros 139
Macro call arguments 1000
Nested INCLUDEs 10
DECLARE statements
Subscripts 300
® Length of subscript 12

200
® Tables 1000
® Parts per table 78
® Length of a table part
System limits
® Work files (beginning with WORK4) 8

80
® |RECL for INCLUDE lib 140
® |RECL for extended INCLUDE lib
Online Express
Item Max
Database calls 50
Record name occurrences 20
Field qualification occurrences 70

Reference

319

320

Reference

Item

Scrolling for repeated blocks

Field mapping for repeated blocks
Subschema limits

® Files, databases, tables

® DB2 tables
® Records

® Qualifiable fields

Painters

Item
Application Painter
® Associated screens

® Associated data structures

® Associated USERMACs
Screen Painter
® Number of fields

® ISPF only. Number 1-byte fields per screen

ISPF only. Number of field attributes per screen
® Characters in field name

® Trancode construction fields
Secnario Painter: Fields per screen

Report Writer

Item
Report mock-up lines
® Coded in Copylib

® (Coded in Report Painter
Number of reports for FD
Number SOURCE/SUM/ VALUE statements per program

Max

130
99

160
990

Max

30
60
90

500
25
127
16

400

Max

200
200

15
300

LINK

S-COBOL
Item Max
Paragraph 600
Characters in paragraph name 24
Indentation levels per nested IF structure 14
Paragraph arguments per program 400
EVALUATE statement
® Conditional fields 255

102

® \WHEN conditions

Symbol table entries (such as, paragraph names, file names, 1801
record names, verbs,section names, keywords, arguments,
indexes, flags)

LINK

Category:

Description:

Syntax:

Data communication call (see Data Communication Calls)

Transfer control and optionally send Commarea data from a CICS
program at one logical level to a CICS APS or non-APS application
subprogram; or, transfer control to an IMS or ISPF Dialog subprogram.

CICs

Format 1, link to an APS program:

[TP-1LI NK programane [errorpar al
[DLIUI B pcbname [pcbnane] ...]
[userparm [userparm...]
[COMWKRREA(dat aar ea) LENGTH(val ue)]| [NOCA]

Format 2, linking to a non-APS program:

[TP-1LI NK programame(NONAPS) [err or par a)
[COMWKRREA(dat aar ea) LENGTH(val ue)]| [NOCA]

Reference

321

322

Parameters:

Reference

DDS

Format 1, CALL format:

[TP-1LI NK programane [errorparal
[userparm [userparm...]

[COMVAREA]

IMS DC

[TP-1LI NK subprogram [errorpara] [argumentl ... argunent 36]

DLG

Format 1, CALL format:

[TP-1LI NK programane [errorparal
[userparm [userparm...]

[COMVAREA]

Format 2, SELECT format:

[TP-1LI NK programane

[errorparal
[opti ons]

ISPF Prototyping

[TP-1LI NK programanme [errorparal
[COMMAREA(dat aar ea) LENGTH(val ue)]| [NOCA]

argument

COMMAREA

COMMAREA (dataarea)

DLIUIB pcbname

Pass record area(s), such as a PCB. TP-
COMMAREA, TP-USERAREA, or *NOSPA, may
be an argument for conversational programs.

Pass the TP-COMMAREA, if the invoking
program is the main program. Pass DLG-
LINKAGE-COMMAREA, if the invoking program
is a called program, that is, one where &DLG-
COMMAREA-IN-LINKAGE = "YES'. See also
"Comments" below.

Pass data area to a program instead of TP-
COMMAREA.

DLI User Interface Block and the Program
Control Block for the next program.

Comments:

LINK

errorpara User-defined error routine to perform when an

abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its

place.

LENGTH (value) Maximum length of data; can be a literal or
COBOL data name; define as S9(04)COMP.

(NONAPS) Program is not an APS program.

NOCA Do not pass COMMAREA.

options ISPF Dialog Management services SELECT PGM
options.

programname Program name; can be a literal, variable, or

combination, where the literal is moved to the
variable (indicated by a slash (/) as the first
character) by macro logic.

subprogram APS-painted subprogram that links the calling
program.
userparm Pass linkage data area(s). Code with TP-

LINKAGE, which names the 01-level user-
defined area in the Linkage Section.

CIcs

When linking to an APS program, TP-COMMAREA passes by default.
Alternately, you may pass another data area, or pass neither. Ensure
that the Commarea in the "linked-to" program is the same length
as the TP-COMMAREA or alternate data area you pass.

When linking to a non-APS program, TP-USERAREA passes by
default. Alternately, you pass another data area, or pass neither.
Ensure that the Commarea in the non-APS program is the same
length as the TP-USERAREA or alternate data area you pass. (TP-
USERAREA gets its value from &TP-USER-LEN.)

Additionally, code the following before your NTRY statement:
% &TP-PROGRAM-INVOCATION = "NONAPS"

Coding TERM in the subprogram returns control to the program
that issued the link call.

ISPF Dialog

Including a TERM call in the invoked program returns control to the
program issuing the LINK.

Reference

323

324

® Code userparms in the same order as those in the LINKAGE SECTION
and the NTRY statement in the linked to program.

® To receive TP-COMMAREA as a passed data area from a called
program, code the following before the NTRY keyword.

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60
% &DLG- COVMAREA- | N- LI NKAGE = ' YES'

® LINK generates a COBOL CALL or ISPEXEC SELECT, depending on the
PROGRAM CONTROL TRANSFER option.

® The &APSPRE..CNTL member APDLGIN assigns the default value for
the PROGRAM CONTROL TRANSFER option. The variable &DLG-
PROGRAM-TRANSFER-OPTION can have the values CALL (default) or
SELECT.

® The PROGRAM CONTROL TRANSFER option affects the availability
of function pool variables between programs. Using CALL makes
the current function variable pool available to the linked-to
program; using SELECT does not.

® To override the PROGRAM CONTROL TRANSFER option:

a At the installation level, change the value in
&APSPRE..CNTL(APDLGIN).

b At the project group level, code the assignment statement in
&DSNPRE..CNTL(APSPROJ).

¢ At the application level, code the assignment statement in a
&DSNPRE..USERMACS member and include it for all application
programs.

d At the program level, code the assignment statement at the top
of the program.

® The PROGRAM CONTROL TRANSFER option lets you invoke the
LIBDEF service to define application-level libraries via the SELECT
value.
Examples: CICS
Link to PGMO0O1. No PSB is active and no arguments pass.

LI NK PGWDO1

Reference

LINK

Link to the program stored in WS-PROGNAME. No PSB is active and no
arguments pass.

LI NK / W5s- PROGNAMVE
Move the value PGMO003 to WS-PROGNAME and link to that program.

LI NK PGWO03/ W5- PROGNAMVE

Link to PGMO004; execute an error routine for an abnormal condition.
There is no active PSB and no arguments pass.

LI NK PGW04 ERROR- PARA

Link to PGMO0O05. Schedule a PSB and use a PCB named ABC-PCB for the
linked-to program. Omit the positional parameter errorpara .

LI NK PGWOS5 * DLI U B ABC- PCB

Link to PGMO006 and pass a Linkage data area SCR6-RECORD so that
PGMO006 can move data directly to screen fields.

LI NK PGWO0O6 * SCR6- RECORD
Link to PROGO001, a non-APS program, passing TP-USERAREA only.

LI NK PROGD01(NONAPS)

Link to PROG002, a non-APS program, passing the data area WS-
COMMAREA.

LI NK PROGD02(NONAPS) * COMMAREA(WS- COMVAREA) LENGTH(100)
Link to PROGO003, a non-APS program, without passing a COMMAREA.

LI NK PROGD03(NONAPS) * NOCA

IMS DC

The following examples show the CALL statements generated in the
program after linking to subprograms.

Codi ng LI NK SUBPGM * ARGI ARGZ2 ARG3
Yi el ds CALL ' SUBPGM USI NG TP- COMVAREA ARGI ARG ARG3

Codi ng LI NK SUBPGM * *NOSPA ARGl ARR ARG3
Yi el ds CALL ' SUBPGM USI NG ARGI ARG2 ARG3

Codi ng LI NK SUBPGM * ARGI TP- USERAREA ARG2 ARG3
Yields CALL ' SUBPGM USI NG ARGI TP- USERAREA ARG2 ARG3

Reference

325

326

ISPF Dialog

Invoke PGMO0O01 as a new program function. The SELECT service option
NEWPOOL creates a new shared variable pool. The SELECT option is in
effect.

LI NK PGWO1 * NEWPOOL

Invoke PGMO0O01 as a new program function. The SELECT service option
PARM passes data to PGMO0O1 via LINKAGE SECTION. To pass variable
data, VDEFINE a dialog variable. The SELECT option is in effect.

DLG- VDEFI NE 01 W5-EMPL-NBR PIC X(05) AS EMPNBR
MOVE EMPL- NBR TO WS- EMPL- NBR

LI NK PGWO1 * PARM ' &EMPNBR')

DLG- VDELETE EMPNBR

Link to the program in WS-PROGNAME. The CALL option is in effect.

MOVE * PGVDO1’ TO W5- PROGRAM
LI NK /WS- PROGNAME

Link to PGMO006 and pass Linkage data area SCR6-RECORD so that
PGMO006 can move data directly to screen fields. The CALL option is in
effect.

LI NK PGWO06 * SCR6- RECORD

LK

Category:
Description:

Syntax:

Parameter

Reference

Program Painter and Specification Editor keyword (see Keywords)
Create or include data structures in the Linkage Section.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
LK
kywd associ ated data structure

kywd Associated data structure keywords are: 01, DS,
REC, See SQL, ++, or 017.

Example:

Macro/Program Cross Reference (MC01)

Code Working-Storage and Linkage data structures using section
keywords.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
10 I NPUT- FI LE ASSI GN TO UT-S-1 NPUT
FD I NPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS

01 I NPUT- REC PI C X(80).
W5
REC W5- | NPUT- REC.
WS- | N- PART- NO N8
W5- | N- DESC X50
W5- | N- BASE- PRI CE N6V2
++ PANWSREC
LK
REC LK- 1 NPUT- REC
LK- I N- PART- NO N8
LK- 1 N- DESC X50
LK-1 N- BASE- PRI CE N6V2
01 LK- OUT- REC.

DS05 LK- OUT- REC

Macro/Program Cross Reference (MCO01)

Category:

Description:

APS-generated report (see Application Reports)

The Macro/Program Cross Reference Report lists the macros used in one
or more applications, along with all of the programs that invoke the
macros, and the macro libraries that the programs reside in. Use the
report to find all the programs and applications that use a given macro.

The cross-referenced macros appear alphabetically within an
application on the report. If you report on all applications, the
applications display alphabetically in the report. Specific macro libraries
are listed as follows.

® Macro libraries specified in the Application Painter display in the
macrolib indicator column.

® Global macro libraries display ***ALL*** in the type indicator
column.

Reference

327

328

® Stubs and batch programs display ***STUB*** in the type indicator
column.

After each application, summary statistics provide the:
® Total number of macros and libraries reported

® Number of programs with macro calls

® Number of common macro libraries

® Total number of programs in that application

Comment: Produce the Macro/Program Cross Reference Report from the
Documentation Facility.

Example:

REPORT CODE: MX01 APS APPLI CATI ON PAI NTER PAGE 1
MACRO' PROGRAM CRCSS REFERENCE 01/17/92 08: 26
MKTAPS. MKT2

SELECTI ON CRI TERI A: TDDEMO
APPLI CATI ON: TDDEMO

Rk S I R Rk ok S ok I S R R R S R R R O R R R O R R R O

MACROLI B. PROGRAM / STUB TYPE NO.OF TI MES
NAME OF MACRO / MACRCLI B: | ND. USI NG MACRO | ND MACRO CALLED
CLEAR TDCM 1
TDOM 1
TDPM 1
DB- ERASE TDCM 1
TDOM 1
TDPM 1
PX- CA- COVPUTE- LEN TDOM 1
TP- ATTR TDOM 13
TDOT 1
TP- PERFORM TDCM 36

Reference

XCTL

TOTAL MACROS & LI BRARI ES REPORTED 14

NO OF PGVS. W TH MACRO CALL I N CODE 10

NO OF COMMON MACROLIBS IN APPLN. 0O
TOTAL NO. OF PROGRAMS IN APPLN. 10

TDCS
TDMVE
TDAJ

TDOM
TDOT
TDOU
TDPF
TDPL
TDPM

TDCM
TDCS
TDMVE
TDAJ

TDOM
TDOT
TDOU
TDPF
TDPL
TDPM

MFS Function Keys

27

27
80
16

27
36

PRRPPRRPRPRNPRPR

MFS Function Keys

Compatibility:
Category:

Description:

Procedure:

IMS DC target

Screen Painter feature

Assign trancodes, operator logical paging, other IMS commands, and

nulls or spaces to the MFS PF key fields.

To define MFS function key values, follow these steps.

1

Type *pf in the Optional Fld Name field on the Screen Generation

Parameters screen.

Reference

329

330

Example:

2 From the Screen Generation Parameters screen, enter pf or pfk in
the Command field. The MFS Function Keys screen displays.

3 Enter *null or *space in the PFkey Global Default field to set a
global PF key default.

4 Enter the PF key functions.

5 To check for errors in the function key values you entered, press

Enter. A message displays for any value in error.

6 To save your key assignments and exit this screen, press F3. To exit
without saving your key assignments, enter cancel in the Command

field.

COMMAHD ===»
PFKEY GLOBAL DEFAULT:

PEKAL: =+1 PFKA2: =-1

: or frelime :odfor Fratdme
PEKB3: # frmtl PEKBG: 7! Frmi2
PEKBS: /for fretimo PEKB6: tran
PEKBT: trand PFKBB: 1rand
PEKBD: fexit PEK1#: fend_
PEK11: PEK12:
PFK13: PFK1G -
PEK15: PEK16:
PEK1{: PFK18:
PFK19: PEK20:
PEK21: PEK22:
PFK23: PFK24 :

MFS Trancode Construction

Compatibility:
Category:

Description:

Procedure:

Reference

IMS DC target

Screen Painter feature

Construct trancodes of up to eight parts by concatenating screen fields,

literals, and PF keys.

To create a trancode, follow these steps.

1 Enter *tc in the Optional FId Name field on the Screen Generation

Parameters screen.

Example:

MFS Trancode Construction

2 From the Screen Generation Parameters screen, enter tc or tran in
the Command field. The MFS Trancode Construction screen displays.

3 Complete the screen fields as follows.

Field

Field Name

Default

Literal

Fill

Description and Values

Enter name of field or *pf. If you enter *pf, specify
PF key values on the MFS Function Keys screen. If
you specify a field, APS ignores all field attributes,
including an initial value entered in the Value
field. You must enter the initial value in the
Default Literal field.

Enter any literal. If you supply a literal on the same
line as a field name or *PFKEY, APS transmits the
literal in the MID when no value is entered for the
field or when the PF key is not invoked.

Enter the MID fill character for the associated field
name or *PFKEY.

S Default. Space
N Null

4 To check for errors in the trancode values you entered, press Enter.
A message displays for any value in error.

5 To save your trancode and exit this screen, press F3. To exit without
saving your key assignments, enter cancel in the Command field.

Define a trancode definition, consisting of a function key (values
specified in the MFS Function Keys example on Example:), and the fields
OPTION-PREFIX and NEXT-OPTION. If the end user enters no values in
these two fields, the literal UPDTMENU transmits in the MID.

COMMAND ===>

TRANCODE PART
TRANCODE PART

1) T A) ek

FIELD NAMWE DEFAULT LITERAL FILL
*pFkey \
eptien-prefix updt I&
next-option MM

D OO DOGE NGE T

Reference

331

332

MID MOD Reorder

Compatibility:
Category:

Description:

Procedure

Example:

Reference

IMS DC target

Screen Painter feature

Change the MID/MOD order in which the I/O fields from your screen
appear in the generated Working-Storage. Do so to meet any site
standards that require transmittal of screen data in a particular order.

To change the order in which your I/O fields appear in the generated
Working-Storage, follow these steps.

1

From the Screen Generation Parameters screen, enter mm or mid-
mod in the Command field. The MID MOD Reorder screen displays,
with I/O fields listed in the order they appear on the application
screen, numbered by increments of ten.

Reorder fields as follows.

®* Type new sequence numbers, followed by at least one space,
over the existing ones. A trancode field is always the first field,
regardless of its sequence in the painted screen or on this
screen.

® Enter reorder in the Command field. Reordering fields in a
repeated record block reorders the entire block.

To reset the sequence of fields to the sequence on your screen,
enter reset in the Command field.

To save your new sequence and exit this screen, press F3. To exit
without saving your sequence, enter cancel in the Command field.
Any fields you add later to your screen are placed at the end of the
modified MID MOD sequence list.

Reorder the fields in the first screen. The second screen sequences ERR-
MSG after PAGING in the Working-Storage Section. The third screen
shows the result.

MOCK 333

COMMAND ===»
SEGHMENT THRESHOLD -
ORDER HANE ROW COL LEN TP IN SCR-ORDER §
BER1E PART-HER A6 ©#19 BER U N AE1
gaa2e SHORT-DESC g 019 B3l P H a2
BBR3R RR STARTS ROW 12 BE0 0Es A#3
#ueal ERR-MSG 20 pe2 @i P B aeh
HHB5R PAGTHG_ 21 882 #@g P 0 Gl
s
COMMAKD ===3 reorder_
SEGMEHT THRESHOLD -
RDER HAME ROW COL LEH TP IN SCR-ORDER SEG
HBH18 PART-HER 6 #19 Bpag Ul H a1
BEE2E SHORT-DESC B8 B19 H31 P H 12
#8839 RE STARTS ROW 12 Boo Bao 003
55 - 28 BR2 BI P B A8k
gegne PAGING 21 @e2 peg P D 085
&
COMMAND ===»
SEGMENT THRESHOLD -
RDER HAME ROW COL LEN TP IN SCR-ORDER SEG
BER1E PART-HER A6 ©19 HEB U H na1
dad2e SHORT-DESC g @819 B31 P H 192
BBRIA RO STARTS ROW 12 BEG @8@ A3
BBl PRAGING 21 pe2 was P] [Tk
GLEHT EHH-NSE_[% 20 B2 Bk P B ([

MOCK

Category:
Compatibility:
Description:

Syntax:

Comment:

Program Painter and Specification Editor keyword (see Keywords)
Batch environments
Specify the report mock-up name in your report program.

-KYWD- 12-*%----20---%----30---%----40---%----50---*----60
MOCK nockupnane

Mockupname is the name entered in the Reports field associated with
your program in the Application Painter and painted in the Report
Painter.

Reference

334

Example:

- KYWD- 12-*----20---*----30---*----40---*----50---*----60
RED STOCK- REPORT
CONTRCLS ARE FI NAL Ws- LOCATI ON- CODE
PAGE LIMT IS 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.
MOCK STCKPRT
01 TYPE IS REPORT HEADI NG NEXT GROUP
NEXT PAGE LI NE 20.
MOCKUP LI NES 1 THRU 6
SOURCE WS- DATE

MOCKUP LINES

Category:

Compatibility:

Description:

Syntax:

Comments:

Example:

Reference

Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Create Reports with Report Writer.)

Batch environments

In your report program, specify the line numbers in the report mock-up
that correspond to the detail lines, headers, and footers.

MOCKUP| M LI NE| LI NES /i nenunmber1 [THRU /i nenunber N

® Refer to all extra lines in a report mock-up with a MOCKUP
statement.

® The maximum number of report mock-up lines is 200.

Specify that lines 1 through 8 in the report mock-up contain the

heading text.

“KYWD- 12-%---20---%--=-30---%---=40---%----50---*----60
01 TYPE I'S REPORT HEADI NG LI NE 20 NEXT GROUP
NEXT PAGE.
MOCKUP LINES 1 THRU 8

Mock-Up Report (RP0O1)

Mock-Up Report (RP01)

Category: APS-generated report (see Application Reports)

Description: The Mock-Up Report contains a representation of a report mock-up as
painted in the Report Painter. When produced from the Report
Generator, the report includes line numbers. This report documents a
key aspect of an application for end users to review or for developers to
use when maintaining or enhancing the application.

Comments: ® Produce the Mock-Up Report from the Report Generator, Painter
Menu, or Application Painter.

® You can set or change generation options for the report. To do so,
access the Report Options screen in one of the following ways.

® From the Report Generator screen, enter 4 in the Option field.

® From any APS screen, enter opt in the Command or Options
field. From the APS Options Menu that displays, enter option 4
in the Options field.

The Report Options screen displays. Specify y(es) to print line
numbers or n(o) if you do not want to print them.

Example:
REPORT CODE: REPT APS ENTITY REPORT FACI LITY PAGE 1
CLSAPS. CLS2 01/18/92 15:01
REPORT CRI TERI A: 2
ALL MEMBERS OF LIBRARY TYPE : RP
LI BRARY ENTITY
TYPE NAME STATUS REMARKS
RP COSTRPT REPORTED
RP MERPT REPORTED
REPORT CODE: RP01 APS APPLI CATI ON PAI NTER PAGE 1
APPLI CATI ON DEFI NI TI ON REPORT 01/18/92 15: 01
CLSAPS. CLS2
SELECTI ON CRI TERI A: COSTRPT
REPORT: COSTRPT CREATED: 07/27/ 90
AUTHOR CLSONE UPDATED: 07/ 27/ 90

hokkkhkhkhkkkkkhkkkhk ok ok hk ok k ok kA kA kA kA kA kA kA kk kk k ok k ok ko ko k ok ok ok k ok ok ok ok ok ok ok ok kkkkkkkkkkkkk kA kA kA kkkk kk kk k& %

USER MANUFACTURI NG COVPANY
EXPENDI TURES REPORT AS OF XXXXXXXX

Reference

335

336

NO CUMULATI VE
MONTH DAY DEPT PURCHASES | TEM cosT cosT
XXXXXXXXX EXPENDI TURES
XHXXHXXHKXXX XX XXX 279 X 779.99
TOTAL COSTS FOR WE XXXXXXXXX XX Z,779. 88 Z77,2779.99

TOTAL COSTS FOR XXXXXXXXX ZZ, 779. 99
TOTAL EXPENDI TURES FOR YEAR-TO DATE 777, 779. 99

PAGE 7779
END OF REPORT
REPCRT CODE: RPO1 APS APPLI CATI ON PAI NTER PAGE 1
APPLI CATI ON DEFI NI TI ON' REPORT 01/18/92 15: 01
CLSAPS. CLS2

SELECTI ON CRI TERI A MERPT
REPORT: MERPT CREATED: 08/ 24/ 90
AUTHOR: CLSTRA UPDATED: 08/ 24/ 90
USER MANUFACTURI NG COVPANY
EXPENDI TURES REPORT AS OF XXXXXXXX

NO CUMULATI VE
MONTH DAY DEPT PURCHASES | TEM CosT CosT
XXXXXXXX EXPENDI TURES
XXXXXXXX XX XXX 2729 X 779. 99
TOTAL COSTS FOR W E XXXXXXXX XX Z,7279.99 77, 779. 99

TOTAL COSTS FOR XXXXXXXX ZZ, ZZ9. 99
TOTAL EXPENDI TURES FOR YEAR- TO DATE 777, 779. 99

PAGE 7779
END OF REPORT

Modified Data Tags, CICS Data Transmission

Description: Under normal screen processing, the MDT (Modified Data Tag) attribute
must be turned on for each field when you use Field Edits with an
updateable program. This causes the end user workstation or terminal
to always send all field modified or unmodified data to the program.

Transmission of data is more efficient if MDT is turned off, but then only
the data modified by the end user is returned to the program, and the
unmodified data is lost, which is of course, undesirable. To turn off the
MDT tag and not lose unmodified data, follow these steps.

1 Turn off the MDT for any number of updateable I/O fields--whether
they have field edits or not.

2 In the APS CNTL file APCICSIN, set the &CIC-MDTOFF-PROCESSING
flag to yes. This flag generates the processing logic to handle MDTs

Reference

Comments:

MSG-SW

that are turned off. APS generates the logic for all screens listed in
the SCRNLIST call or the screen specified in the NTRY call.

During processing, APS returns the modified data to the program,
and retains the unmodified data in temporary storage and returns it
to the program after the modified data is returned.

A macro, also in APCICSIN, named $TP-MDTOFF-BUILD-QUEUENAME
builds the temporary storage queue name used to store the screen
records. You can change this macro to build a name that conforms
to your site standards.

Also contained in APCICSIN are the following error processing
macros that execute when there is an error in reading, writing, or
deleting your screen records in temporary storage.

$TP-MDTOFF-READQ-TS-ERROR
$TP-MDTOFF-WRITEQ-TS-ERROR
$TP-MDTOFF-DELETEQ-TS-ERROR

As shipped, these macros generate a CICS-SEND-TEXT call to display
appropriate error messages, and a TERM to terminate the program.
You can change these macros to conform to your shop standards.

MSG-SW

Category:
Compatibility:

Description:

Syntax:

Data communication call (see Data Communication Calls)
IMS DC and ISPF Prototyping targets

Send a data or a message to the specified program trancode or
subprogram.

IMS DC

[TP-1 MBG SW t rancode| progr ammane| dat ananme [error paral

[screennane| recor dnane]
[keyword[+keyword] . . .|

Reference

337

338

Parameters:

Reference

ISPF Prototyping

[TP-]1 MBG SW t rancode| progr ammane| dat anane [error paral

[screennane]
dataname Name of data element.
errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.
keyword Valid keywords are:

NOALTRESP Default. Use an IO PCB, not an
alternate response 10 PCB to
send a response to the terminal.

ALTRESP Use an alternate response 10
PCB to send aresponse to the
terminal.

NOCONT Default. Control returns to top

of the Procedure Division of the
sending program.

CONT Control returns to the
instruction following call
execution, that is, the next
statement after the MSG-SW.

CONTCOND TP-CONTCOND determines if
control passes to the next
instruction or returns to the top
of the program.

NOEXPRESS Default. Do not send a message
for abnormal program
termination.

EXPRESS Send a message at program
termination.

NOENDCONV Default. Do not blank out the
TRANCODE in the SPA.

ENDCONV Blank out the TRANCODE in the
SPA.

Comments:

SCREEN

RECORD

NOPURG

PURG

recordname

MSG-SW

Default. Input is an APS-painted
screen. Multisegment screens
are not supported.

Input is recordname. See also
"Comments" below.

Send all messages to the same
destination as one multi-
segmented message. Default
with NOEXPRESS keyword.

After inserting the message,
send it as one single-segmented
message. Default with EXPRESS
keyword.

User-defined I/O area in Working-Storage. See

also "Comments" below.

screenname

trancode|
programname

Screen name; must be literal (maximum 8
characters).

Literal name of destination program or
transaction code identifying receiving program;

can be a literal (maximum 8 characters) or a
COBOL data name (minimum 9 characters).

® Allow the program to send invalid or empty screen values by
specifying NORETRY with the NTRY keyword; use generated flags to

test whether input data is valid.

® Use the PURG and NOPURG keywords to control how APS sends
messages. When issuing multiple inserts to the same destination
before reaching a SYNC point, IMS sends the messages as one multi-
segmented message. If you send the message via an Express PCB,
APS issues a PURG after the insert and sends it as one single-

segmented message.

® Omitting screenname or recordname sends a message with a
transaction code to the new program.

® Making both the sending and receiving program conversational
passes data in the Commarea (SPA) to the new program (see TP-

COMMAREA).

® MSG-SW lets a program send a message to itself. You might use this
feature to break a long process into several small pieces.

Reference

339

340

Examples:

® When coding RECORD and recordname in conversational programs,
and recordname differs from your application trancode, code
SYM1 % &recordname-TRANCODE = "trancode"

® Remember to define an alternate 10 PCB in the program
specification block (PSB) and specify MODIFY=YES (see Program
Control Blocks, 10).

Send messages to another program; perform error routine when error
occurs.

MSG- SW t r ancode PROCESS- ERRORS

Send messages and pass a screen record. Note that the asterisk (*)
replaces the positional parameter errorpara.

MSG- SW t rancode * SCRA

Send messages and pass a COBOL record.

MSG- SW t rancode * Ws- CUSTOVER RECORD

NTRY

Category:

Description:

Reference

Program Painter and Specification Editor keyword (see Keywords)

Generate a program template that fully defines all parts of your
program except for the procedural code that you supply.

NTRY generates a program template that defines:

® The Identification Division, based on your Application Painter
specifications

® The Environment Division, based on your Application Painter
specifications

® The Data Division, including the following Working-Storage and
Linkage Section structures:

® Your database record or file definitions, based on your imported
subschema

NTRY

Your screen field data structures, based on your Screen Painter
specifications

CICS EIBRCODE and DFHCOMMAREA structures

Your IMS PCB mask, including I/O and database PCBs, based on
your imported subschema

An APS data structure for passing data among programs, known
as a Commarea; the Commarea appears in either Working-
Storage or the Linkage Section, depending on your DC target

PF key definitions, based on your specified DC target

Flags required by APS

® Portions of the Procedure Division, including:

A housekeeping routine, to initialize Working-Storage fields,
flags, and counters

Program invocation logic, to initialize your program when it is
invoked by a transaction ID, a screen, or another program,
based on your specified DC target

Logic to send the program window or screen to the end user’s
monitor

In CICS programs, NTRY also generates code to:

® Obtain addressability to Linkage Section areas passed from other
programs via addresses in the program Commarea.

® Receive correct map if transaction is screen-invoked.

In ISPF Dialog programs, NTRY also generates code to display screens.

In IMS programs, NTRY also generates code to:

® Specify input as a screen or a user-defined I/O area in Working-
Storage.

® Generate code to receive the specified screen.

® Read SPA if the program is conversational.

Reference

341

342

Syntax:

Parameters:

Reference

CIcs

NTRY| ENTR screennane(napset nane) |
[errorparal
[RETRY| NORETRY]

IMS DC
Format 1:

NTRY| ENTR

Format 2:

NTRY| ENTR screennane
[errorparal
[RETRY| NORETRY]

Format 3:

NTRY| ENTR recor dnane
[errorparal
[RETRY| NORETRY]
* RECORD

ISPF Dialog

NTRY| ENTR screennane
[errorparal
[RETRY| NORETRY]
[CANCEL| RETURN]
[dat aar eas]

ISPF Prototyping

NTRY| ENTR screennane
[RETRY| NORETRY]
[CANCEL | RETURN]
[dat aar eas]

CANCEL Default. Generate CONTROL ERRORS CANCEL
(return control to ISPF when dialog error of
return code 12 or higher).

dataareas Generate the PROCEDURE DIVISION USING
statement. List user-defined data areas only, not
records defined by TP-COMMAREA, TP-LINKAGE,
and SCRNLIST, which automatically generate
other data areas. APS generates data areas in the
following order.

errorpara

mapsetname

NORETRY

*RECORD

recordname

RETRY

RETURN

screenname

NTRY

Data areas listed with NTRY.
® TP-COMMAREA record
® TP-LINKAGE records

® SCRNLIST screen records

User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

Mapset containing the screen(s) the program
receives; must be a literal (maximum 7
characters). See also Comments: for CICS below.

Accept invalid data in screen fields with assigned
edits. See also Comments: below.

Code when using recordname instead of
screenname as input.

User-defined I/O area in Working-Storage, long
enough for any input message that can be
received. The area receives the data returned
from the GU to the program control block.

For a conversational program, the program reads
the ASPA with a GU, and the input message with
a GN. It does not expect a multisegment input
message. PF keys are not generated; you must
code them.

Default. Accept only valid data in screen fields
with assigned edits; otherwise, return screen to
the terminal user for correction. See also
"Comments" below.

Generate CONTROL ERRORS RETURN to return
control to program when dialog error occurs.
See also Comments: below.

Screen name; value must be literal (maximum 8
characters).

Reference

343

344

Comments:

Reference

Code an NTRY, PROC, or OPT statement for each program.

To generate a batch program template with a PROCEDURE
DIVISION USING statement, code PROC.

The generated $TP-ENTRY generates a program template to send
the appropriate window depending on the program invocation
mode. To suppress the window and program invocation logic from
your program template, code OPT PROG (OPT).

CIcs

Normally, if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data
passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

APS-EDITS-PASSED 88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

screenname-fieldname-FLAG Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.

screenname-fieldname-INPT ~ APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

APS-MSG-IO-ERROR Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/O error message. Code
IF APS-MSG-IO-ERROR to test if
message sent.

APS-MSG-EDIT-ERROR 88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test if the message is
sent.

NTRY 345

When mapsetname is not specified, APS looks for it in the Screen
Generation Parameters screen information; otherwise, APS
generates a default mapset name, as follows.

Screen Name Length Generated Mapset Name

4 characters screennameSET

5 characters screenname$

6 characters screenname$

7 characters Last character of screenname

changesto $

8 characters Truncates eighth character of
screenname; seventh character
changesto $

You can write macros, using the following names, to customize
NTRY processing.

User Macro Name Where Included
TP-ENTRY-EXIT-1 Bottom of APS-HOUSEKEEPING-PARA
TP-ENTRY-EXIT-2 After APS-HOUSEKEEPING-PARA

IMS DC

Normally if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data
passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

APS-EDITS-PASSED 88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

screenname-fieldname-FLAG Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.

Reference

346

Reference

screenname-fieldname-INPT APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

APS-MSG-IO-ERROR Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/O error message. Code
IF APS-MSG-IO-ERROR to test if
message sent.

APS-MSG-EDIT-ERROR 88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test whether if
message sent.

A serially reusable IMS online program processes multiple input
messages in a single execution. After the program processes one
input message and sends a response, it reads and processes another
input message and terminates when there are no more input
messages.

The APS/IMS DC Generator creates programs consistent with this
practice. Termination DC calls (SEND, MSG-SW, TERM) do not
terminate a program, but instead return control to NTRY-generated
logic to receive a new input message.

Because a program may process multiple messages in a single
execution, you program should perform any Working-Storage
initialization in the Procedure Division, rather than in Working-
Storage using the VALUE clause. You can still use the VALUE clause
to initialize Working-Storage constants that are never changed
during execution.

You can write macros, using the following names, to customize
NTRY processing.

User Macro Name Where Included

TP-ENTRY-EXIT-1 Bottom of APS-HOUSEKEEPING-
PARA

TP-ENTRY-EXIT-2 After APS-HOUSEKEEPING-PARA

TP-ENTRY-EXIT-2S After screen message is sent

TP-ENTRY-EXIT-3 At end of $TP-ENTRY macro

ISPF Dialog

NTRY

Normally if received data fails to pass editing, APS returns the
screen, highlighting errors and displaying error messages in the
SYSMSG field. Application logic executes after the received data

passes editing.

It is possible, however, to accept screens with data that does not
pass editing. When NORETRY is coded, the application logic
executes regardless. A set of runtime flags allow application logic to
determine the success or failure of editing.

APS-EDITS-PASSED

screenname-fieldname-FLAG

screenname-fieldname-INPT

APS-MSG-IO-ERROR

APS-MSG-EDIT-ERROR

88-level flag set to true when data
for all edited fields is valid. Code IF
APS-EDITS-PASSED to test whether
the edit is OK.

Indicator flag set to spaces when
data for a specified field valid. Code
IF screenname-fieldname-FLAG =
SPACES to test whether the data is
valid.

APS-generated data field; contains
data exactly as entered if the field
failed to pass editing.

Applies to IMS DC only. 88-level flag
set to true when a program sends a
user-defined I/0O error message.
Code IF APS-MSG-IO-ERROR to test if
message sent.

88-level flag set to true when a
program sends a user-defined edit
error message. Code IF APS-MSG-
EDIT-ERROR to test whether if
message sent.

Code logic in errorpara to process all ISPEXEC display service return
codes with a value of 12 or higher.

Provide errorpara to handle dialog errors when coding RETURN.

Reference

347

348

Examples:

Reference

Generate code to receive screen SCRA when the program is screen-
invoked. Specify that the program can receive a screen that contains
invalid data. Omit the error paragraph.

“KYWD- 12--%--20---%--=-30----%--=40---*----50---*----60
NTRY SCRA * NORETRY

Receive multiple screens and include an error routine. Note that when
you use SCRNLIST, you do not specify any screens in the NTRY statement.

“KYWD- 12--%--20---%--=-30----%--=40---%----50---*----60
SYML SCRNLI ST CIORDR C20RDR C3ORDR
NTRY * PROCESS- ERRORS

CICs

Generate code to receive screen CUSTORDR in mapset CUSTOR$ for a
screen-invoked program. Perform MAP-ERROR-PARA when an
exceptional condition occurs on the RECEIVE MAP.

“KYWD- 12--%--20---%--=-30----%--=40---*----50---*----60
NTRY CUSTODR(CUSTOR$) MAP- ERROR- PARA

IMS DC
Receive a message into a COBOL record I/O area.

“KYWD- 12--%--20---%--=-30----%--=40---*----50---*----60
NTRY WS- CUSTOVER * *RECORD

DLG

Generate code to display screen SCRA. Perform PROCESS-ISPF-ERRORS
when return codes from services are greater than 12. Generate
CONTROL ERRORS RETURN code so the program can control all error
processing.

“KYWD- 12--%--20---%--=-30----%--=40---*----50---*----60
NTRY ~ SCRA PROCESS- | SPF- ERRORS RETURN

ISPF Dialog

Generate code to display screen SCRA. Perform PROCESS-ISPF-ERRORS
when return codes from services are greater than 12. Generate
CONTROL ERRORS RETURN code so the program can control all error
processing.

“KYWD- 12--%--20---%--=-30----%--=40---*----50---*----60
NTRY ~ SCRA PROCESS- | SPF- ERRORS RETURN

NULL Indicator Field

NULL Indicator Field

Compatibility:

Description:

Syntax:

Comments:

SQL target

Use a null indicator variable to indicate whether the associated host
variable has been assigned a null value.

APS/SQL generates a null indicator variable in Working-Storage, defined
as follows.

01 | ND- cursornane| | ND-recordnane
05 I ND colum

® \When using indicator variables, prefix them with the 01 level name,
because APS can generate duplicate names with different 01 levels.

® When column contains an underscore, it changes to a hyphen at
program generation.

® Normally, the IND-cursorname structure references a cursor set. To
override this structure when generating indicator variables, set the
&D2-USE-CURSOR-IND flag to NO in the APS CNTL member
APDB2IN. This generates the indicator variables with the IND-
recordname structure.

OCCURS

Category:
Description:

Syntax:

Data Structure Painter construct (see Data Structures)
Code OCCURS clauses in your data structures.

dat aname(OCCURSc! ause) [Tl MES]

[... DJQ ODO datanane]

[... X IBlIXB|IXBY datanane]

[... ASCENDI NG KEY | S dat anane]

[... DESCENDI NG KEY |S datanane]
Pl Cf or mat

Reference

349

350

Parameters:

Comment:

Examples:

Reference

Shorthand syntax for the dimensions of a table in an OCCURS clause.

OCCURS Format Generated Code

(number) OCCURS number

(number) TIMES OCCURS number TIMES
(numberi1-number2) OCCURS number1 TO number2
(number1 TO number2) OCCURS number1 TO number2
(&variable) OCCURS &variable

(&variable1 TO &variable2) OCCURS &variable1 TO &variable2

DOJODO

Generates DEPENDING ON

... IX[IXBJ|IXBY|IB Generates INDEXED BY

Always code an INDEXED BY clause on a continuation line.

Data Structure Painter format:

~LINE- ----

000001
000002
000003
000004
000005

--- Data Structure Painter --------
EXDS- TABLE

EXDS- TABLE-3 (1- 99)
ODO EXDS- TABLE- 3- SI ZE
| XB EXDS- | NDEX
X20

Generated COBOL code:

01 EXDS- TABLE.
05 EXDS-TABLE-3 OCCURS 1 TO 99

DEPENDI NG ON
EXDS- TABLE- 3- SI ZE

| NDEXED BY EXDS- | NDEX
PI C X(20).

Data Structure Painter format:

~LINE- ----

000001
000002
000003
000004
000005
000006
000007
000008

--- Data Structure Painter --------

TYPE- DESC- RATE- CONSTANTS X90
TYPE- DESC- RATE- TABLE- REDEF R
TYPE- DESC- RATE- TABLE (30)

ASCENDI NG KEY | S TYPE- CODE
| XB DATA- | NDEX
TYPE- CODE X
DESC- CODE X
RATE- CODE X

OPT

Generated COBOL code:

01 TYPE- DESC- RATE- CONSTANTS PI C X(90) .
01 TYPE- DESC- RATE- TABLE- REDEF REDEFI NES
TYPE- DESC- RATE- CONSTANTS.
05 TYPE- DESC- RATE- TABLE OCCURS 30
ASCENDI NG KEY | S TYPE- CODE
I NDEXED BY DATA- | NDEX.

10 TYPE- CODE PI C X.
10 DESC- CODE PIC X.
10 RATE- CODE PI C X.

Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 LOAN- RATE- TABLE

000002 LOAN- RATE- ROW OCCURS 10 TI MES
000003 ... ASCENDI NG KEY | S TYPE- CODE
000004 ... | XB DATA- | NDEX

000005 TYPE- CODE Pl C X(05)

Generated COBOL code:

01 LOAN- RATE- TABLE.

05 LOAN- RATE- ROW OCCURS 10 TI MES
ASCENDI NG KEY | S TYPE- CODE
| NDEXED BY DATA-| NDEX.

10 TYPE- CODE PI C X(05).

OPT

Category:
Compatibility:

Description:

Syntax:

Program Painter and Specification Editor keyword (see Keywords)
Programs created in Program Painter

Suppress the mainline program section generated by the NTRY or PROC
keyword, in order to supply your own screen and program invocation
logic. Use OPT only in programs with screens.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
NTRY]

PROC

PT PROG

Reference

351

352

Comment

® You can use PROGRAM, PROGRAMMER, PCONV, or PCONVERT in
place of PROG.

® Code an NTRY, PROC, or OPT statement for each program.

® To generate a batch program template with a PROCEDURE
DIVISION USING statement, code PROC.

® To generate a program template that fully defines all parts of
your program except for the procedural code that you supply,
code NTRY.

OVERPRINT

Category:

Compatibility:

Description:

Syntax:

Parameters:

Comment:

Reference

Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Create Reports with Report Writer.)

Batch environments

Print one line on top of the other without advancing the line printer.
Use this feature to create bold text or to underscore text.

OVERPRI NT| O WHEN ' char acterstring AT COLUW |/ nt eger

characterstring Line or text to be overprinted; must be identical
to characterstring in mock-up; delimit with
single or double quotation marks.

integer Starting column number of characterstring on
the mock-up.

In the mock-up, the two lines of text that print on one line of the page
must be consecutive. On the first line enter a text string. On the second
line enter the text that prints over the first line, and to the right of this
text enter a unique characterstring to identify the line. When the report
prints, blanks replace characterstring in the mock-up.

PAGE LIMIT 353

Examples: Underscore text within a page heading. Below are lines 7 and 8 of a
mock-up. The identifying character string, NO ADVANCING, begins in
column 70 of the second line.

NO ADVANCI NG

The OVERPRINT clause:

“KYWD- 12-%-2--20---%--=-30---%---=40---*----50---*----60
01 TYPE IS PAGE HEADI NG

MOCKUP LI NES 7 THRU 9

OVERPRI NT WHEN ’ NO ADVANCI NG AT COLUMN 70

The printed result:
XXXXXXX

Print text within the report heading of a mock-up twice, to appear as
bold type. The identifying character string begins in column 70.

W DCGETS
W DCGETS
DI TTO

The OVERPRINT statement:

“KYWD- 12-%-2--20---%--=-30---%---=40---*----50---*----60
01 TYPE I'S REPORT HEADI NG LI NE 20 NEXT GROUP NEXT PAGE.
MOCKUP LINES 1 THRU 6
OVERPRI NT WHEN ' DI TTO AT COLUMN 70

The printed result:
W DGETS

PAGE LIMIT

Category: Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer.)

Compatibility: Batch environments

Reference

354

Description:

Syntax:

Parameters:

Comments:

Reference

Define the page length and the vertical subdivisions of a printed page.

PAGE LIM T | S| ARE number [LINE| LI NES]
[FI RST DETAI L [/inenunber]
[LAST DETAIL /inenunber]
[FOOTI NG /i nenunmber] [.]

number LINE|LINES Number of lines on each report page.
Number cannot exceed 3 digits and must be
greater than or equal to the FOOTING
linenumber.

FIRST DETAIL linenumber First detail line. Print control break heading
and report body detail lines beginning on
linenumber. Print REPORT and PAGE
HEADING groups before linenumber.

LAST DETAIL linenumber Line number of the last report body detail
line. Print CONTROL FOOTING, PAGE
FOOTING, and REPORT FOOTING lines after
this number. Linenumber must be greater
than FIRST DETAIL linenumber.

FOOTING linenumber Last line number of the last control footing
report group. Print PAGE FOOTING and
REPORT FOOTING lines after this number.
Linenumber must be greater than or equal
to LAST DETAIL linenumber.

® Code PAGE LIMIT before FIRST DETAIL, LAST DETAIL, or FOOTING.
® Code FIRST DETAIL, LAST DETAIL, and FOOTING in any order.

® Each report group should fit on one page; Report Writer never splits
a report group across page boundaries.

® Coding PAGE LIMIT assumes default values.
® Omitting FIRST DETAIL assigns the heading line value to linenumber.

® Omitting either LAST DETAIL or FOOTING assigns the PAGE number
value to them.

® Coding FOOTING without LAST DETAIL assigns the FOOTING
linenumber to LAST DETAIL linenumber.

® Coding LAST DETAIL without FOOTING assigns the LAST DETAIL
linenumber to FOOTING linenumber.

Panel Options, ISPF Dialog 355

® Omitting PAGE LIMIT generates a single-page report of indefinite
length without page and line counter registers.

Example: - KYWD- 12-%----20---%---=30---%----40---%----50---*----60
RED STOCK- REPORT
CONTROLS ARE FI NAL WS- LOCATI ON- CODE
PAGE LIMT I'S 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.

Panel Options, ISPF Dialog
Compatibility: ISPF Dialog target
Category: Screen Painter feature
Description: Generate native panel definition statements.

Procedure: To generate native panel definition statements, follow these steps.

1 From any screen in the Screen Painter, select Actions ISPF Panel
Options from the action bar or enter is in the Command field. The
ISPF Panel Options screen displays.

2 Complete the screen fields as follows:

Field Description and Values

Command Field Enter screen field name for the panel
command field that allows end users to
enter ISPF commands and prevents
truncation errors when they use PF keys.
Default is the first unprotected I/O field on
the screen.

This option generates the native)BODY
CMD(variable) statement.

Reference

356

Field

Long Message Short
Message

Help Panel

Pfkey Option

Description and Values

Enter sysmsg, if specified on Screen
Generation Parameters screen, or a screen
field name for the panel long and short
message fields. These fields allow the
program to move literal messages to the
screen.

These options generate the native)BODY
LMSG(variable) statement for the long
message and the)BODY SMSG(variable)
statement for the short message.

Enter the name of the panel to display, if
the end user requests help.

This option generates the HELP =
panelname statement.

P Program controls PF key processing. APS
saves the end user’s original PF key values
and replaces them with literals not
recognized by ISPF, so that you can control
the PF key usage. When the program
terminates, the original PF key values are
restored. See PF Key Values.

| Default. ISPF controls PF key processing.

3 To save your selections and exit this screen, press F3 or enter end in
the Command field. To exit without saving your selections, enter
cancel in the Command field.

PARA and Paragraphs

Category: Program Painter and Specification Editor keyword (see Keywords)

Description: Indicate a paragraph in your program code. A paragraph is a Procedure
Division routine that you write and perform specifically for one

Reference

PARA and Paragraphs 357

program. Use paragraphs to perform the following, depending on
which APS tool you use.

Use paragraphs in... To perform...

Online Express Custom actions for events; Custom routines
at window events

Specification Editor Custom routines in the Procedure Division

Program Painter Custom routines in the Procedure Division

Syntax: Format 1:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
PARA paragraphname [SECTI ON.]
paragr aphcode

Format 2:

“KYWD- 12-%----20---%-=--80---%--=-40---*----50---*----60--

PERFORM par agr aphnane [(argunents)]

PARA paragraphname [(+| - argunents)]
st at enent

PERFORM subpar agr aphnane [(argunents)]
PARA subpar agraphnanme [(+| - argunents)]
st at enent

01 group-1evel -data-item
05 el enentary-data-item

Comments: ® Use Format 1 with SECTION to code a SORT procedure.

® The keyword PARA, followed by a paragraph name with an optional
list of arguments, denotes a paragraph. Within a paragraph,

Reference

358

Reference

indentation determines the exact positioning of its logic statements,
or statement blocks.

A paragraph ends with the next appearance of any Procedure
Division keyword, except the comment keyword (/*); there is no
need to code an END-paragraphname.

Code at least one PERFORM statement before any PARA keywords
in your program. Generally, you code a PERFORM statement that
performs your main logic paragraph.

Paragraph Rules:

Rules for coding paragraphs in Online Express:

A paragraph can consist of a main paragraph, other paragraphs that
the main paragraph performs, and Data Division source code for the
paragraphs.

For each paragraph, enter the PARA keyword in the KYWD column
and the paragraph name in column 12 on the same line. On the
following lines, enter COBOL, COBOL/2, or S-COBOL paragraph
statements. Do not use any other APS keywords in paragraphs.

After all paragraphs, use APS Data Division keywords to define data
items that the paragraphs reference.

Rules for coding paragraphs in the Specification Editor and Program
Painter:

A paragraph can perform other paragraphs.

For each paragraph, enter the PARA keyword in the KYWD column
and the paragraph name in column 12 on the same line. On the
following lines, enter COBOL, COBOL/2, or S-COBOL paragraph
statements. Do not use any other APS keywords in paragraphs.

Anywhere in the program, use APS Data Division keywords to define
any data items that the paragraphs reference.

PERFORM

PERFORM

Category:

Description:

Syntax:

Parameters:

S-COBOL structure (see S-COBOL Structures)

Depart from the normal program execution sequence to execute a
particular paragraph or section and then return control to the
statement immediately following the PERFORM statement.

Format 1, perform a paragraph:

PERFORM par agr aphnane

Format 2, perform a paragraph and pass arguments:

PERFORM par agr aphnane (actual argunent 1[[,]
actual argunent 2[,] ... actual argunentN)

PARA paragraphname ([+| -] formal argunment 1[[,]
[+|-]1formal argument2[,] ... [+ -] formal argunmentN)

+- A plus (+) or minus (-) sign preceding a formal
argument passes values between actual
arguments and formal arguments, as follows.

® With a plus sign (+), PERFORM passes the
actualargument value to formalargument
after the paragraph executes. The program
does not return the formalargument value
to actualargument.

® With a minus sign (-), PERFORM passes the
formalargument value to the
actualargument after the paragraph
executes.

® If there is no plus or minus sign, the
PERFORM passes the actualargument to its
corresponding formalargument. After the
paragraph executes, PERFORM passes the
formalargument back to its corresponding
actualargument.

Reference

359

360

Comments:

Examples:

Reference

actualargument Values you send to or receive from a
formalargument in the paragraph; can be
literals, identifiers, arithmetic expressions,
variables, or index names.

formalargument Values you receive from or send to an
actualargument in the PERFORM statement.

paragraphname Name of paragraph to perform.

® \When continuing a list of arguments onto one or more other lines,
do not break an argument.

® The number of actual arguments must equal the number of formal
argument names and be in the same order.

PERFORM PARA-1(' ABC, ABC-FLD, RESULT)

PARA- 1(+ARGl, +ARRX2, -'Y')
Generates:

MOVE * ABC TO ARG 1

MOVE ABC- FLD TO ARG
PERFORM PARA-1 THRU
MOVE 'Y TO RESULT

Perform GET-SALARY (line 5010); pass the literal 20 to HOURS-WORKED
and the value of HOURLY-RATE to PAY-RATE before calculating TOT-PAY
(line 5020). After the GET-SALARY paragraph executes, pass the value of
PAY-RATE to HOURLY-RATE and the value of TOT-PAY to WEEKLY-PAY.

SLINE- -KYWD- 12-%---20---%--=230---*----40---%-=--50---%*--
000100 NTRY

003010 I F CLASS = 'HALF-TI MF

003020 PERFORM GET- SALARY(20,
003021 ... HOURLY- RATE, WEEKLY- PAY)
003030 ELSE

003040 PERFORM GET- SALARY(40,
003041 ... HOURLY- RATE, WEEKLY- PAY)
003050 WEEKLY- PAY = WEEKLY- PAY * TAX
003060 COVPUTE MEDI CAL- DEDUC =

003061 ... HOURLY-RATE * 1.50

005010
005011
005020

PF Key Values

PARA GET- SALARY(+HOURS- WORKED,
PAY- RATE, - TOT- PAY)
TOT- PAY = HOURS- WORKED * PAY- RATE

PF Key Values

Category:
Compatibility:
Description:

Syntax:

Data communications feature (see also Data Communication Calls)

CICS, IMS DC, and ISPF Dialog targets

Use the PF key 88-levels generated by APS.

CICs

PFKEY- FI ELD PI C X(01).

88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88

ENTER- KEY VALUE '’ ' . (single quotation mark)
CLEAR- KEY VALUE ' _'.

PEN VALUE ' =".

OPI D VALUE ' W .

MSRE VALUE ' X' .

STRF VALUE ' H .

TRIG VALUE ' "’ . (double quotation nark)
PA1 VALUE ' 9% .

PA2 VALUE ' >'.

PA3 VALUE ', '.

PFO VALUE '’'. (single quotation mark)
PFOO VALUE ''’. (single quotation mark)
PF1 VALUE '1'.

PF2 VALUE ' 2'.

PF3 VALUE ' 3'.

PF4 VALUE ' 4'.

PF5 VALUE '5'.

PF6 VALUE ' 6'.

PF7 VALUE ' 7'.

PF8 VALUE ' 8'.

PF9 VALUE ' 9'.

Reference

361

362

88 PF1 VALUE ':’.
88 PF11 VALUE ' # .
88 PFl12 VALLE ' @.
88 PF13 VALUE ' A'.
88 PF14 VALUE 'B'.
88 PF15 VALUE ' C.
88 PF16 VALUE 'D .
88 PF17 VALUE 'E .
88 PF18 VALUE ' F' .
88 PF19 VALUE ' G.
88 PF20 VALUE 'H .
88 PF21 VALUE 'I’.
88 PF22 VALUE '[’.
88 PF23 VALUE ' .'.
88 PF24 VALUE ' <.

IMS DC

APS assigns character values for the 24 PF keys and the ENTER key to
APS-painted screens. NTRY generates logic to place this portion of the
input message in a field with 88-level condition names to facilitate
program testing for PF and ENTER keys.

TP- PF- KEY PI C X(132).
88 PFO VALUE ' .
88 PFOO0 VALUE ' .
88 PF1 VALUE ' 1'.
88 PFO1 VALUE ' 1'.
88 PF2 VALUE ' 2" .
88 PF02 VALUE ' 2" .
88 PF3 VALUE ' 3’ .
88 PFO03 VALUE ' 3’ .
88 PF4 VALUE ' 4’ .
88 PF04 VALUE ' 4.
88 PF5 VALUE ' 5" .
88 PFO05 VALUE ' 5" .
88 PF6 VALUE ' 6" .
88 PFO06 VALUE ' 6" .
88 PF7 VALUE ' 7.
88 PFO7 VALUE ' 7.
88 PF8 VALUE ’ 8.
88 PFO08 VALUE ' 8" .
88 PF9 VALUE ' 9" .
88 PFO09 VALUE ' 9" .
88 PF10 VALUE " A" .
88 PFl11 VALUE ' B'.
88 PF12 VALUE ' C'.
88 PF13 VALUE 'D'.

Reference

PF Key Values 363

88 PF14 VALUE ' E' .
88 PF15 VALUE ' F' .
88 PF16 VALUE ' G .
88 PF17 VALUE ' H .
88 PF18 VALUE ' | .
88 PF19 VALUE ' J’.
88 PF20 VALUE ' K'.
88 PF21 VALUE 'L’
88 PF22 VALUE ' M .
88 PF23 VALUE "N .
88 PF24 VALUE ' O .
88 ENTER- KEY VALUE ’ °’

88 NO KEY- USED VALUE LOW VALUES.

During screen painting, if you paint PF key values or use a PF key to
supply all or part of the trancode value, you cannot use the above
facility for PF key testing.

ISPF Dialog
TP- PF- KEY PI C X(04).
88 ENTER- KEY VALUE "’ .
88 PF1 VALUE ' PFO1' .
88 PFO1 VALUE ' PFO1' .
88 PF2 VALUE ' PFO2' .
88 PF02 VALUE ' PFO2' .
88 PF3 VALUE ' PFO3' .
88 PFO03 VALUE ' PFO3' .
88 PF4 VALUE ' PFO4’ .
88 PF04 VALUE ' PFO4' .
88 PF5 VALUE ' PFO5’ .
88 PFO05 VALUE ' PFO5’ .
88 PF6 VALUE ' PFO6’ .
88 PF06 VALUE ' PFO6’ .
88 PF7 VALUE ' PFO7’ .
88 PFO7 VALUE ' PFO7’ .
88 PF8 VALUE ' PFO8’ .
88 PFO08 VALUE ' PFO8’ .
88 PF9 VALUE ' PFO9’ .
88 PF09 VALUE ' PFO9’ .
88 PF10 VALUE ' PF10’ .
88 PF11 VALUE ' PF11' .
88 PF12 VALUE ' PF12' .
88 PF13 VALUE ' PF13' .
88 PF14 VALUE ' PF14' .
88 PF15 VALUE ' PF15’ .
88 PF16 VALUE ' PF16’ .
88 PF17 VALUE ' PF17' .

Reference

364

88 PF18 VALUE ' PF18’ .
88 PF19 VALUE ' PF19’ .
88 PF20 VALUE ' PF20’ .
88 PF21 VALUE ' PF21’ .
88 PF22 VALUE ' PF22’ .
88 PF23 VALUE ' PF23’ .
88 PF24 VALUE ' PF24’ .

To let your program control PF key values, specify P(rogram controlled)
in the PFKEY Option field on the ISPF Panel Options screen. See Panel
Options, ISPF Dialog.

Precompiler Options

Category: Application generation
Description: Define variations and special features for program precompilation.

Procedure: 1 From the APS Options Menu enter option 3 in the Option field.
Alternatively, from any APS screen enter opt 3 in the Command
field. The Precompiler Options screen displays.

2 Set options appropriate for your environment as described below.

Option Description and Values
Apost Override Quote.
Yes Default. Use the apostrophe character to delimit non-
numeric literals in your input source.
Quote Override Apost.
Yes Use the single quote character to delimit non-numeric
literals in your input source.
No Default
SCBtrace Yes Activates the SAGE-TRACE-FLAG debugging facility.
RWT Yes Default. Generate COBOL code from APS Report Writer
statements. Specify with COBOL Il compiler.
No Pass Report Writer statements directly to theCOBOL
compiler.

Reference

Option

Lang

XLATE

MockupFMP

SUBR

Narrow

Precompiler Options

Description and Values

Note: For very large Report Writer programs, enter rwt=bigrwt in the APS
Parm field on the Generator Options screen.

Indicate which type of source to process and which columns to process.

SCB=yes

COBOL=yes
JCL=yes

Text=yes

Default. Processes APS specifications (S-COBOL) in
columns 8-72; the symbol &07 in your code forces a
character into column 7.

Process COBOL source in columns 1-72.

Process JCL in columns 1-72. Useful for text-processing JCL
and for controlling columns 1-6 of S-COBOL.

Process any source in columns 1-80. APS considers all
columns as text, and generates no sequence numbers.
Automatically set XLATE=FMP. To override XLATE=FMP,
enterXLATE=value in the APS Parm field. XLATE=value in
the APS Parm field.

Specify which processing step(s) that APS performs. You can stop processing
at any of the steps listed below to help isolate the step at which errors occur.
The steps are listed in the order in which APS executes them. All options
except ALL are mutually exclusive.

AlL=yes

FMP=yes

RED=yes

RWT=yes

Yes

No
Yes

No

Yes

Default. Process all source code through all applicable
processing steps and generates an error report; use when
COBOL compile immediately follows in jobstream.

Stop processing after APS macros and user-defined
Customization Facility macros are processed.

Stop processing after report mock-ups are translated into
IBM Report Writer source.

Stop processing after Report Section is translated into
COBOL Working-Storage and S-COBOL.

Scan lines in report mock-ups and processes the
characters % $ & and + as Customization Facility symbols.

Default.

Specify that the generated source is a subroutine
program.

Default. Specify that the generated source is a primary
program.

Default. Define 80 columns as the message report width.

Reference

365

366

Option

Evalmess

Seq

Syntax

Emark

Genseq

Spaceseq

Genident

Reference

Description and Values

No Define 132 columns as the width.

Yes Generate messages that list evaluation bracket
resolutions. Usually results in long listings.

No Default.

Specifiy the type of sequence numbers that APS generates. See also,
Genident, Spaceident, Ident.

COBOL=yes Generate COBOL-style numbers in cols 1-6.

Record=yes Generate new numbers in columns 73-80, incrementing
by 100 for each input record and by two for each
generated record.

Identifier=yes Generate line numbers in columns 73-80; columns 73-74
contain 0.

Specify which compiler to use.
COBOLll=yes Generate COBOL-II syntax.
S-COBOL=yes Generate S-COBOL syntax.

Generate a three-character string marking error and warning messages in
the message report.

Questions=yes Default. Generate ??2?.
Dollars=yes Generate $$$.

3-Char String Generate the string you specify.
=string

Override Spaceseq.

Yes Default. Generate sequence numbers in columns 1-6 for
blank or out-of-sequence lines of source code and when
new lines are generated.

Override Genseq.

Yes Generate spaces in columns 1-6; incompatible with
Lang=Text.

See also, Spaceident, Ident, Seq.

Yes Generate sequence numbers in columns 73-80 for blank
or out of sequence source code lines and when new lines
are generated.

No Default. Generate the last known contents of columns
73-80 when new lines are generated and passes
identifiers as they exist in GENSRC.

Option
Spaceident

Main

Ident

FMP

Source

Gendirect

Gencomment

Usernames

APS Parm

Precompiler Options

Description and Values
See also, Genident, Ident, Seq.

Yes Generate spaces in columns 73-80. Incompatible with
Lang=Text.

Specify location of the main input source.

MAININ=yes Default. Read from file named by external name MAININ.
Use this default unless using your own JCL.

Instream=yes Read source instream with the JCL that you provide.

Member Name= Read from the PDS or file name or source statement
membername library designated by the external name SCELIB.

See also, Genident, Spaceident, Seq.

Yes Generate the internal program name in columns 73-80.

No Default.

Yes Default. Process APS macros and user-defined
Customization Facility macros.

No Use only with your own JCL skeleton.

Yes Print the main input source program, specified in the
MAIN option, after the message report.

No Default.

Yes Allow generatation of nested IF statements in the COBOL
source.

Yes Generate replaced source statements as comments in the
COBOL source.

NO Default.

Yes Generate the following prefix for APS-generated

paragraphs: paraname-

No Default. Generate the following prefix for APS generated
paragraphs: G--

Note: To generate any other prefix, enter the following in the APS Parm
field on this screen. usernames=prefix

Display all Precompiler options whose default values you override. These
values also display in the APS Parm field on the Generator Options screen.
APS saves the values you change on the APS Parm field on the Precompiler
Option screen. APS does not save values that you change in the APS Parm
field on the Generator Options screen.

Reference

367

368

Example:
OPTION === _
APDST ===> VES LANG=SCD ===> VES RLATE=ALL ===
QUOTE ¥ CoBoL » FHP ¥
SCBTRACE ===> HO JCOL ===> RED ===>
RHT ===> VES TERT ===> RUT ===>
SCB ===> VES
HOCKUPFMP ===> NO
SUBR ===> VES SEQ=COBOL ===> VES SYNTAK=COBOLIT ===> VES
NARROW ===» YES RECORD ===% S-COBOL ===»
EVALMESS ===5> N0 IDENTIFIER ===)
EMARK=QUESTIONS ===) VES
EENSEH YES DOLLARS ===>
SPACESE NO 3-CHAR STRING ===>
GENIDENT HO HATN=MATNIN ===> VES _
SPACELDENT NO INSTREAM ===> IDENT=PGHID ===> NO
MEMBER NANE ===>
FHP YES
SOURCE ND
GENDIRECT YES
GENCOMMENT VES
USERNAHES NO
Parm RLATE=SCR

® Sequence and identify your generated source code lines as you
prefer. For example, generate sequence numbers in columns 73 to
80, numbering lines by 100 for input records and by 2 for S-COBOL

Reference

records.
GENI DENT ===> YES
SEQ=RECORD ===> YES

The generated lines are:

Input S-COBOL

00000100 00000002

00000200 00000004

00000300 00000006

Generate sequence numbers in columns 73-80, with 00 in columns
73-74.

GENI DENT ===> YES

SEQ=I DENTI FI ER ===> YES

The generated lines are:

Input S-COBOL
00000001 00000001
00000002 00000002
00000003 00000003

Precompiler Options

Stop APS processing at certain steps to help isolate the step at which
errors occur. For example, process S-COBOL, the APS macros and
user-defined Customization Facility macros and APS report mock-
ups, and then stop.

XLATE=RED ===> YES

Process S-COBOL, and report mock-ups but do not process the APS
macros or user-defined Customization Facility macros.

XLATE=RED ===> YES
FMP ===> NO

Process only the APS macros and user-defined Customization Facility
macros, columns 1-80. You must supply your own JCL to support this
override.

XLATE=FMP ===> YES
LANG=TEXT ===> YES

Specify the input source that APS reads if it resides in an external
file other than MAININ. When doing so, you must supply your own
JCL skeletons. For example, read the main input source from the file
in MYLIB, called XYZ. You must supply your own SCELIB DD
statement to describe MYLIB.

MAI N=MEMBER NAME ===> XYZ

Override the default prefix that APS generates for paragraphs. For
example, generate the prefix paraname- for all APS-generated
paragraphs, rather than the default prefix G--.

USERNAMES ===> YES

Generate the prefix xyz- for all APS-generated paragraphs, rather
than the default prefix G--.

APS Par m ===> USERNAMES=XYZ-

Accept double quotation characters, rather than apostrophes, as the
delimiters for non-numeric literals, and write an error message
report for a 132-column output device.

QUOTE ===> YES
NARROW ===> NO

Reference

369

370

PROC

Category:
Compatibility:

Description:

Syntax:

Comments:

Example:

Reference

Program Painter and Specification Editor keyword (see Keywords)
Non-IMS batch programs

Generate the batch program template, including a PROCEDURE
DIVISION USING clause that enables a called program to receive data
from the calling program.

-KYWD- 12-%----20---%----80---%----40---%----50---%----60
PROC [variabl enamel vari abl ename2 ... variabl enaneN
® Code an NTRY, PROC, or OPT statement for each program.

® The generated $TP-ENTRY generates a program template to
send the appropriate window depending on the program
invocation mode. To suppress the window and program
invocation logic from your program template, code OPT PROG
(OPT).

® To generate a program template to define all parts of your
program except for the procedural code, code See NTRY.

® Use PROC instead of NTRY in non-IMS batch programs called by
other programs. For IMS programs, use NTRY.

® (Code Linkage Section data structures for the variables that the
called program receives.
Program Painter code:

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
PROC REC 2 REC 2 REG 3

Generated COBOL code:

PROCEDURE DI VI SI ON USI NG REC-2 REC-2 REC- 3

Program Control Blocks, 10

Program Control Blocks, 10

Category:
Compatibility:

Description:

Comments:

Data communication feature (see also Data Communication Calls)

IMS DC target

APS generates an 10 PCB with the following format in the Linkage

Section.

LI NKAGE SECTI ON.
01 106 PCB.

05
05
05
05

05
05

| O- PCB- LTERM

FI LLER

| O- PCB- STATUS

| O- PCB- | NPUT- PREF.
10 10O PCB-DATE

10 16 PCB-TI ME

10 1O PCB- MSG SEQ
I O- PCB- MOD- NAME

| O- PCB- USER- | D

PI C
PI C
PI C

PI C
PI C
PI C
PI C
PI C

X(8).
X(2).
X(2).

S9(7) COVP-3.
S9(7) COVP-3.
S9(7) COWVP.
X(8).

X(8).

In an APS IMS/SQL program, code a PSB with the same name as your

DB2 subschema. The PSB must specify an 10 PCB (by setting CMPAT=YES
in the PSBGEN). If your program uses MSG-SW, the PSB must also specify
an alternate 10 PCB.

® A program requires IO PCBs to obtain an input message and return
a reply to the originating terminal.

® Tosend a message to a logical terminal instead of to the originating
terminal, code the MSG-SW call and specify an alternate IO PCB that
you define with MODIFY=YES in the program specification block
(PSB). MSG-SW cannot include the EXPRESS keyword when it
references this alternate 10 PCB.

Reference

371

372

Program DB/DC Report (PG02)

Category: APS-generated report (see Application Reports)

Description: The Program DB/DC Report includes documentation summaries on the
subschemas, PSBs, and screens used by a program. The Program DB/DC
Report has a separate section for database views, record I/O areas, and
screen I/O areas.

The Database Views section provides the following information.
® Record names of the root and each dependent segment

® Segments in hierarchical sequence, indented to show each
segment’s level in the database

® Functions (PROCOPTS) that can be performed for each segment
® Key and sequence fields for accessing each record

® VSAM file descriptions

The Record I/O Areas section provides information on the COBOL I/O
areas for the database and file records. Records are listed alphabetically
by record name.

The Screen 1/0 Areas section provides information on COBOL I/O areas
for up to 20 screens arranged alphabetically.

Comment: Produce the Program DB/DC Report from the Documentation Facility.

Example:

REPORT CODE: PQ02 APS PROGRAMVER SUBSYSTEM 01/ 17/ 92 14: 29
PROGRAM DB/ DC REPORT

Rk S R Rk S Sk R R R Rk kO R kR R R S O kS O O R

PROGRAM TDOM PSB/ SUBSCHEMA: TDDB2
SCREENS: TDOM

Rk S Rk Ik kS kO R R R I Rk R Rk Ik I kO S R ok

TABLES/ VI EW5: (DB2 RECCORDS)

TABLE: TDCUST- REC
TABLE: TDODET- REC

Reference

Program DB/DC Report (PG02)

TABLE: TDORDR- REC
TABLE: TDPART- REC

RECORD | O AREAS

RECORD: TDCUST- REC

ER Rk b kR R Sk S S R R R Ik R R R R Rk kR R R

* DCLGEN TABLE : MKTAEA. TDCUST USER CLSTR1 *
* LI BRARY: CLSAPS. CLS2. COPYLI B *
* MEMBER : TDCUST DATE: 90/ 11/27 *
* ACTI ON(REPLACE) TI ME 13:11: 44 *
* DB2 SYSTEM DB2B *
R R R R Ik R Rk R R R R Rk Ik kO O R

EXEC SQL DECLARE MKTAEA TDCUST TABLE

(CM_CUSTOMER_NO CHAR(6) NOT NULL,
CM CUSTOMER_NAME CHAR(20)
CM _CUSTOMER_ADDR CHAR(20) |,
CM CUSTOMER CI TY CHAR(20) |,
CM CUSTOMER ZI P CHAR(9))

END- EXEC.

E R R R R R Sk b o R R I R R R R Sk kR R R Rk kO S O

* COBOL DECLARATI ON FOR TABLE MKTAEA. TDCUST *
E R R R kI kR kb b R R R R R R Rk R Rk
01 TDCUST- REC.

10 CM CUSTOVER- NO PI C X(6) .

10 CM CUSTOVER- NAME PI C X(20).

10 CM CUSTOVER- ADDR PI C X(20).

10 CM CUSTOMVER-CITY PIC X(20).

10 CM CUSTOVER-ZI P PIC X(9).

Rk I R Rk O kR R R O R Rk kO R R R R S Rk Ik O

* THE NUMBER OF COLUMNS DESCRI BED BY THE DECLARATION IS 5 *

Rk S I R Ik kS R R kR R S R Rk kR R R R S Rk

SCREEN | O AREAS

SCREEN: TDOM FORMAT (:/DI'M)
RULEDLI NE:
INI TIAL CURSOR (X): :
COLOR ::
UNDERSCORE (U :)::
BLI NKI NG (B/:):

Reference

373

374

01
05
05
05
05
05
05
05
05
05

REVERSE VI DEO (R/:):
I NTENSI TY (B/:/D): :
PROTECT (P/U):

TDOM RECORD. N
TDOM FUNCTI ON PIC X(1). UB :
TDOM ORDER- NO PIC X(6). UB :
TDOM SAVEKEY- 1 PIC X(8). PD:
TDOM CUSTOMER- NO PIC X(6). UB :
TDOM CUSTOVER- NAVE PI C X(20). UB :
TDOM CUST- ENTRY- DATE ~ PIC X(8). UB :
TDOM ORDER- DEL- DUE-D PIC X(8). UB :
TDOM ORDER- DEL- | NSTR ~ PI C X(20) . UB :
TDOM TABLE- 1. S
10 FILLER OCCURS 5.
15 TDOM ROM FUNCTI ON
PIC X(1).
15 TDOM PART- NO PI C X(8).
15 TDOM LI NE-NO PI C X(4).
15 TDOM PART- SHORT- DESC
PIC X(14).
15 TDOM QTY- ORDERED
PIC X(8).
15 TDOM QTY- BASE- PRI CE
PI C X(10).
15 TDOM TAX- CATEGORY
PIC X(1).
15 TDOM SAVEKEY-2 PI C X(15).
05 TDOM MESSAGE PIC X(79). PB:

Program Definition Report (PG01)

Category:

Description:

Comment:

Reference

APS-generated report (see Application Reports)

The Program Definition Report produces a listing of the program code
you create in the Program Painter. Use this report when you need to
review program listings to troubleshoot problems, or when you need to
document completed programs in your applications.

Produce the Program Definition Report from the Report Generator,
Painter Menu, or Application Painter.

Program Specification Blocks

Example:
REPORT CODE: P01 APS APPLI CATI ON PAI NTER PAGE 1
PROGRAM DEFI NI TI ON REPORT 01/18/92 15:10
CLSAPS. CLS2
SELECTI ON CRI TERI A:
TDCM
PROGRAM TDCM CREATED: 03/19/90
TITLE :
UPDATED : 12/19/ 90
START KYWD STATEMENT LI NE NO
ca e e
8 SymL % | NCLUDE APSMACS (APXMACS) 00010007
8 NTRY ~ TDCOM * NORETRY 00020007
12 /** 00030007
12 /** 00040007
12 [00050007
12 /*** NMAINLINE LOGIC 00060007
12 [00070007
12 /** 00080007
12 /** 00090007
12 TP- PERFORM PX- | NI T- HOUSEKEEPI NG 00100007
12 /** 00110007
12 /* CONTROL POINT: - POST- SCREEN- READ 00120007
12 /** 00130007
12 IF SC-ED- ALL- XK 00140007
16 MOVE SPACE TO TDCM MESSAGE 00150007

Program Specification Blocks

Compatibility: CICS and IMS DB targets

Description: When you assign a PSB to a program by naming the PSB in the
Application Painter, CICS schedules only one PSB at a time. NTRY

schedules the PSB. This PSB is active until the program
® Encounters a SEND or TERM.

® |nitiates a CIC-TERM-PSB and continues processing.

To ensure that your PSB remains active when you link or transfer to
another program, pass the associated PCBs in the LINK or XCTL call, as

shown below.

LI NK programamne [errorparal
[DLIUI B pcbname [pcbname ...]]
[userparm [userparm...]

Reference

375

376

Example:

XCTL programane [errorparal
[DLIUI B pcbname [pcbnanme ...]]

The invoking program must pass the PCBs in the order that they are
coded in the Linkage Section of the invoked program.

When a program invokes a LINK to a subprogram, and passes a
scheduled PSB, it expects the PSB to remain scheduled when control
returns from the subprogram. To return without terminating the PSB,
use TERM because it does not terminate a PSB passed from a higher-
level program. To terminate a PSB, use the CIC-TERM-PSB call.

Pass part of a scheduled PSB and two Linkage Section data areas.

LI NK PROGRMB * DLI U B
ORDERDB- PCB
| TENVDB- PCB
USER- LI NK- 1
USER- LI NK- 2

The PSB remains scheduled at the start of the next program.

Project and Group Options

Category:

Description:

Procedure:

Reference

Application generation

Identify application project and group location and where you want
APS to generate the project and group DDIFILE dataset.

1 Access the Project Group Environment screen. To do so, from the
APS Options Menu, enter option 2 in the Option field. Alternatively,
from any APS screen enter opt 2 in the Command field. The Project
Group Environment screen displays.

2 Complete the fields on the Project Group Environment screen.

Field Description

Project The name of the project. For example,
MYPROJ. Must be 1-8 alphanumeric
characters; the first character must be
alphabetic.

REC

Field Description

Group The name of the group. For example, mygrp.
Must be 1-8 alphanumeric characters; the
first character must be alphabetic.

DDIFILE The location of the project and group
DDIFILE data set; do not specify the name
DDIFILE. Default: The project and group
path specified above. For example,
myproj.group.

Data Element Library Optional. The location of the Data Element

Prefix Facility APSDE data set; do not specify the
name APSDE. For example,
APSPG.PROJECT1.GROUP1.

REC

Category:

Description:
Define a data

Parameter:

Comments:

Program Painter and Specification Editor keyword (see Keywords)

-KYWD>- 12-*----20---%----30---%----40---*----50---*----60
REC dat astructure

datastructure Valid Data Structure Painter construct.

® Each REC keyword generates an 01-level data structure. APS
transfers the REC entity to the Working-Storage Section.

® The preceding section keyword determines the placement of a data
structure in the generated program. Associated section keywords

are
FD File Section (see FD)

SD Sort File Description (see SD)

WS Working-Storage Section (see WS)
LK Linkage Section (see LK)

Reference

377

378

® (Code a COBOL COPY with REC, as follows.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
REC dat aname
COPY copybooknane
REPLACI NG fieldl BY field2

RED

Category:
Compatibility:

Description:

Syntax:

Parameter:

Comments:

Reference

Program Painter and Specification Editor keyword (see Keywords)
Batch environments

Name and begin the statement block that defines the report; identify
the report name, control fields, and report page characteristics.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
RED report nane
[CODE literal]
[CONTROL [I'S] [FINAL] datanane |
CONTROLS [ARE] [FINAL] datananel ...
[WRITE ROUTINE [I S] paragraphnane]
[PACE LIMT[S] |S|ARE nunber LI NE[S]
[FI RST DETAIL [inenunber]
[LAST DETAI L Iinenunber]
[FOOTI NG /i nenunber]] [.]

dat ananmeN |

Report name of the REPORT clause in the File
Section

reportname

® Each report requires RED statement. Reportnames in both the RED
and FD statements must be identical.

® Code RED clauses in any sequence.

® |f reportname exceeds 20 characters, Report Writer creates an
abbreviated record name, consisting of:

® The first character of each hyphenated word of the report
name, except the last word

® A hyphen

Example:

® The last word

® RECORD

For example:

Input REALLY-LONG-REPORT-NAME

Output RLR-NAME-RECORD

RED YEAR- END- SALES- SUMVARY

CONTRCLS ARE FI NAL
REG ON REG ON- MGR- FLD OFFI CE

PAGE LIMT IS 58 LINES

FI RST DETAIL 9
HEADI NG 1
FOOTI NG 58.

REDEFINES

REDEFINES

Category:
Description:

Syntax:

Parameter:

Comment:

Data Structure Painter construct (see Data Structures)
Code clauses in your data structures to redefine elements.

dat aname REDEF[| NES] | R PI Cf or mat

PICformat

PICTURE format for data name being redefined

When identifing controls in the CONTROL clause, dataname must be an
elementary data name. In the following example, B cannot be used as a
control variable because it is a group data item. To make B into an

elementary data item, use the REDEFINES clause.

W01 A
W501 B.
02 B-1
02 B-2
W501 B- REDEF

REDEFI NES B

PIC X(2).

PIC 9(4).
PIC 9(4).
PIC X(8).

Reference

379

380

Example:

RED TEST- REPORT
CONTROLS ARE A B- REDEF

Data Structure Painter format:

-LINE- ------- Data Structure Painter --------
000001 WRK1- FI ELD- 8

000002 WRK1- FI ELD- 9 X4

000003 WRK1- FI ELD- 10 X(30)

000004 WRK1- FI ELD- 11 R X34

Generated COBOL code:

01 WRK1-FI ELD-8.

05 WRK1-FIELD-9 PIC X(4).
05 WRK1-FIELD- 10 PI C X(30).
01 WRK1-FIELD-11 REDEFI NES WRK1- FI ELD- 8
PIC X(34).

REFERENCE

Category:

Compatibility:

Description:

Syntax:

Parameters:

Reference

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Batch environments

Establish summing capability for a non-printing detail item and sum the
item in a control footing.

R[EFERENCE] [|S] datananme PIC[TURE] [IS] picclause
[DATA-NAME [S] fi el dnane]

dataname Data item being referenced

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the report
group. DATA-NAME moves the value of the
internal SUM accumulator to fieldname.

Comments:

REFERENCE

Code DATA-NAME when a SUM UPON clause
references a DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

PIC picclause Specify the format of dataname. If dataname is

a report mock-up field instead of a Working-
Storage field, the next matching COBOL picture
in the report mock-up is the picclause for
dataname.

When you code a REFERENCE statement, the PIC clause must match
the PIC clause in the record description.

For example:

-KYWD- 12-*----20---*----30---*%----40---*----
01 COST- DETAI L TYPE DETAI L
MOCKUP LI NE 9
SOURCE WS- DEPT
SOURCE WS- EMPLOYEE
SOURCE W5-CI TY
REFERENCE EMP-CTR PI C 999
01 TYPE CONTROL FOOTI NG
MOCKUP LI NE 9
SOURCE WS- DEPT
SUM EMP- CTR
W501 EMP-CTR PI C 999 VALUE 1.

If one of the PIC clauses were PIC 9(3), Report Writer would not find
a match.

In a REFERENCE statement, the data item referenced must be
defined in Working-Storage with a VALUE clause. The value in the
VALUE clause tells Report Writer the increment to add to the
internal accumulator each time the detail line prints. In the previous
example, APS adds 1 to the internal accumulator whenever the
detail line prints.

The generated program does not describe the referenced field,
dataname, on the report mock-up detail line, nor display it on the
printed detail line.

Reference

381

382

Example:
LAST COUNT QUANTI TY QUANTI TY QUANTI TY
LOCATI ON DATE I N STOCK | SSUED RECEI VED
HXXXXXXHXXXXX 99/ 99/ 99 277, 779 277,779 77,779
TOTAL BY LOCATI ON: Z,777, 779 Z,777,779 Z,277Z, 779

TOTAL NUMBER OF SALES BY LOCATI ON: ZZZ, 779
- KYWD- 12-*----20---*----30---*----40---*----50---*----60
01 DETAI L- LI NE TYPE | S DETAI L.

MOCKUP LI NE 16

SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH PI C 99
SOURCE WS- LAST- COUNT- DAY PI C 99
SOURCE WS- LAST- COUNT- YEAR PI C 99

SOURCE WS- QTY- 1 N- STOCK

SOURCE WS- QTY- 1 SSUED

SOURCE WS- QTY- RECEI VED

REFERENCE WS- NO- OF- SALES PI C 9999
01 TYPE IS CONTROL FOOTI NG W5- LOCATI ON- CODE

MOCKUP LI NES 17 THRU 20

SUM WS- NO- OF- SALES PI C 7779

REM

Category: Program Painter and Specification Editor keyword (see Keywords)
Compatibility: Supported for COBOL only, not COBOL/2
Description: Create Identification Division Comments: text.
Syntax: -KYWD- 12-*----20---%----30---*----40---*----50---%----60

REM comrentl i nel

comrent !l i neN

Reference

REPEAT

REPEAT

Category:

Description:

Syntax:

S-COBOL structure (see S-COBOL Structures)

Establish a loop for testing; use with WHILE or UNTIL statement to test
the loop at the middle or at the end. This construction eliminates the
need for GO TO statements and the multiple tests that are required to
form similar loops in COBOL.

Format 1:

REPEAT
st at enent bl ock
UNTI L| WHI LE condition
[statenentblock]

Format 2:

REPEAT VARYI NG LI NKI NG i ndexnane| i denti fierl
[FROM i ndexexpression] | [ari t hmeti cexpressi on]
[BY literal]l|[identifierZ2]
st at enent bl ock
UNTI L| WHI LE condition
[statenentblock]

Format 3:

REPEAT VARYI NG i ndexnane| i dentifier1
[FROM i ndexexpression] [arit hneticexpressi onl]
[BY literal]l|[identifierZ2]
.. |[DOWN] TQ THRU ari t hneti cexpressi on2
[statenentblock]

Format 4:

REPEAT LI NKI NG i ndexnane| i denti fier1
[FROM i ndexexpression] [arit hneti cexpressi onl]
BY identifier2
[DOWN] TO arithneticexpression2
[statenentblock]

Reference

383

384

Parameters:

Reference

Format 5:

REPEAT VARYI NG LI NKI NG ¢/ ausel

[... VARYING LI NKI NG cl auseN
[statenentblock]

UNTI L| WHI LE condition
[statenentblock]

arithmeticexpression A legal arithmetic relation-condition

indexexpression Format can be:
literal
Identifier +|- literal
indexname
identifier2 Names a table entry, such as a data name with

an OCCURS clause

Logic Execution:

® The statement block subordinate to the REPEAT, and any statement
block subordinate to the WHILE or UNTIL, forms the loop and
executes under control of the conditions specified with WHILE or
UNTIL.

® |f the WHILE or UNTIL does not have a subordinate statement block,
the condition is tested at the end of the loop. Control returns to the
beginning of the REPEAT statement block until the WHILE condition
is false or the UNTIL condition is true. The next statement executed
is the first one with the same or less indentation than the
REPEAT/WHILE or REPEAT/UNTIL.

® If the WHILE or UNTIL has a subordinate statement block, it
establishes a loop which contains a test in the middle. When the
WHILE condition is FALSE or the UNTIL condition is true, control
passes out of the loop to the next statement with the same or less
indentation than the REPEAT, without executing its statement
block.

® Coding an extraneous WHILE or UNTIL causes an endless loop, if the
looping condition is satisfied by the REPEAT VARYING/LINKING
preceding it.

Comments:

REPEAT

In the following format, APS tests the condition after the REPEAT
statementblock1 executes.

REPEAT
st at enent bl ock
UNTIL condition
statenent bl ock3

Be careful using this format for reading records--it can read the last
record twice.

In the following format, APS tests the condition after the REPEAT
statementblock1 executes, but before the UNTIL statementblock2
executes. When the UNTIL condition is true, the UNTIL
statemenblock2 does not execute.

REPEAT

st at enent bl ock
UNTIL condition

st at enent bl ock

stat enent bl ock3

DOWN is generally used if literal or identifier2 is negative at
execution, and used if positive. The loop executes until
UNTIL indexname identifier1 < arithmeticexpression2

With the TO option, the loop executes to, but not including, the
stop-point. With the THRU option, the loop executes through and
including the stop-point.

If FROM is not coded, the default is the value of indexname or
identifier1 at the time of execution.

If BY is not coded, the default is BY 1 (or -1, if DOWN TO/THRU is
coded).

APS initializes the index or identifier is immediately before the
REPEAT loop begins and increments it each time the loop repeats,
immediately before the statement block repeats.

For the identifier to be treated as an index, the indexed data
element structure must be present in the program during APS
precompilation, otherwise subscript processing is assumed.

To copy data containing an indexed structure, use the % INCLUDE
statement.

Reference

385

386

Examples: Read header records from a file, move the relevant data to a table, and

- LI NE- - KYWD-
002010 NTRY
002020
002030
002040
002050
002070
002080
002090
002100
002110
002120
002130
002140
002150
002160
002170
002180
002190
002200
002210
002211
002220
002230
002240
002250
002260
002270
002280
002290 PARA
002300
002310
002320
002330
002340

Reference

then print the table.

12-%-c220---%---2B0---*-ua-b0---*-ou-B50-n-%on-

LINE-SUB = 1
PRI NT- TABLE = SPACES
OPEN | NPUT | NPUT-FI LE
OUTPUT PRI NT-FI LE
/* BEGA N FI RST LOOP
REPEAT
READ | NPUT-FI LE
UNTI L AT END ON | NPUT-FI LE
| F REC-TYPE = ’ HDR
WORK- FI ELD = | NPUT- DATA
| F WORK- FI ELD NOT = SPACES
COLUWN-SUB = 0
/* BEGI N SECOND LOOP
REPEAT
COLUWN- SUB = COLUWN-SUB + 1
PRI NT- COL (LI NE-SUB, COLUMN- SUB) =
. WORK- FI ELD- CHAR (COLUMN- SUB)
UNTI L COLUWMN-SUB = COLUWN-SUB-LIM T
OR WORK- FI ELD- CHAR (COLUMN- SUB) =
o
/* END OF SECOND LOOP
LINE-SUB = LINE-SUB + 1
/* END OF FI RST LOOP

PERFORM WRI TE- PRI NT- TABLE
CLGOSE | NPUT- FI LE PRI NT-FI LE

VRl TE- PRI NT- TABLE
LINE-SUB = 1
VWHI LE PRI NT-LI NE (LI NE-SUB) NOT = SPACES
AND LI NE-SUB NOT > LINE-SUB-LIMT
WRI TE PRI NT- REC FROM PRI NT- LI NE (LI NE- SUB)
LINE-SUB = LINE-SUB + 1

Perform the same function as the second loop in the preceding
example, but use VARYING to set and increment COLUMN-SUB.

12-*----20---%----30---*----40---*----50---%*----
I F WORK- FI ELD NOT = SPACES
REPEAT VARYI NG COLUWN-SUB FROM 1 BY 1
PRI NT- COL (LI NE-SUB, COLUWN-SUB) =
WORK- FI ELD- CHAR (COLUMN- SUB)

REPEAT

UNTI L COLUWN-SUB = COLUWN-SUB-LIMT
. OR WORK- FI ELD- CHAR (COLUMN-SUB) = '/’
LINE-SUB = LINE-SUB + 1

Use REPEAT ... VARYING to move data items in diagonal sequence
(upper right to lower left) from a two-dimensional table to a one-
dimensional table. Terminate the loop when after DOWN THRU.

12-%--==20---*---=30---*-cc-40-=-*--o-50--c*om-
REPEAT VARY!I NG ROW SUB FROM 1 BY 1
VARYI NG COLUMN- SUB FROM 5 DOAN THRU 1
X- FI ELD (ROW SUB) =
TABLE- ELEMENT (ROW SUB, COLUWN- SUB)

Use Il as the pointer, MY-CHAIN for the initial setting, BLOCK-LINK for
the linking element in the table, and ZERO to establish when to stop.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

01 BLOCK- STRUCTURE.
02 BLOCK OCCURS 250 TI MES.
03 BLOCK-LINK PIC S9(9) COWP SYNC.
03 BLOCK-DATA PI C X(20).

NTRY
REPEAT LINKI NG |1 FROM MY- CHAI N
BY BLOCK- LI NK TO ZERO
PERFORM PASS- DATA(BLOCK- DATA (11))

PARA PASS- DATA(+PASS- DATA- BLOCK)

Generated COBOL code:

MOVE MY-CHAIN TO I I.
GO TO G -002.
G -001.
MOVE BLOCK-LINK (11) TO 1.
G -002.
IF 11 NOT = ZERO
MOVE BLOCK- DATA (11) TO PASS- DATA- BLOCK
PERFORM PASS- DATA THRU PASS- DATA--XI' T
&0 TO G- -001.

APS uses SET in the generated code if the subscript is an index;
otherwise, APS uses MOVE as shown above.

Reference

387

388

Report Mock-Ups

Category:

Description:

Mock-Up Rules:

Reference

Report layout associated with Report Writer program

Paint report layouts, called mock-ups, in the Report Painter. Define the
mock-up by typing literals and output fields to visually represent the
report output. Specify the following COBOL and COBOL/2 output edit
masks directly within the report mock-up:

® Floating numeric formats

® Alphanumeric formats

® Paint the mock-up in columns 1 to 247.
® Paint lines as they appear within their report group.

® Include any blank lines that appear between the first and last lines
of a report group in the mock-up.

® To minimize programming, include blank lines preceding or
following a report group in the mock-up.

® Paint the line or lines that compose a DETAIL group only once.

® Each field that composes a line must be shown with a COBOL
picture for variable data or with the literal for fixed data.

® Within the layout of a line, position each field in the desired
printing position with exact spacing between fields.

® All COBOL picture characters are available for output fields except
A, which is considered a literal character anywhere in the mock-up.

® APS considers a string of hyphens a literal because of its frequent
use for underlining.

® APS considers any single COBOL picture character, that is preceded
and followed by a space, a literal. Exception to this rule: 9 and X.

® APS considers a single COBOL picture character, such as -, X, Z, or 9,
that is embedded in a string of non-blank, non-picture characters as
part of a literal. For example, the following are literals:

1979
WKYZ

Example:

Report Sample Program and Mock-Up 389

EXTRA
W ZARD

and the following are pictures beside literals:

#99 Literal is #, PICis 99.
1 999 Literal is |, PICis 999.
Section-999 Literal is SECTION, PICis -999.

® Show a floating-point item in the mock-up with a COBOL picture in
floating-point form. The same picture must be repeated in a PIC
phrase in the corresponding SOURCE, SUM, or VALUE statement.

® Use PIC clauses instead of COBOL masks when formatting dates and
times containing/ $ or :.

EDIT ——— REPORT: REPORT ————— oo COLUKNS 881 B

COMMAND ===> SCAOLL ===> L3
xssce TOP OF DATA _

guglae WUOHDERFUL WIDGETS [HCORPORRIED

ABRORA _

LLLELT] STOCK REPOURT

RABLEH

guaLag drdRdR AR

RAAGAR _

did fan BID BILBRIIL

HREZAA STOCK REPORT

pLLEL] Lttt

LLELL S

g81108 LOCATION LAY COUHT QUAHIITY IH QURKHTITY URKIITY

gg%%gg DRTE STOCK 1880ED EELIUED

BB14AA HARKRRRRRRRA 99499/99 777,779 777,779 I7.779

glhan

RA15RE i S [S

gulge TOTAL BY LOCATION: 2,222,129 2,222,223 £,428,429

gB1908 I0TAL HUMBER OF SALES BY LOCRIIOH: 222,229

B | I I B R

Report Sample Program and Mock-Up

Category:

Description:

Report Writer program and Report Painter mock-up

Illustrate Report Writer structures and the use of iterative expressions.

Reference

390

Report Mock-Up:

EGAS, I NC.

XXXX YEAR- END PRODUCT SALES SUMVARY

Fok ko ok k kK Kk ko Kk Kk ok Kk Kk ko Kk Rk ok Rk Rk Rk Kk Rk ok Kk ko R Kk Kk Rk Kk Rk Kk kK

PAGEZZZZ9
REGI ON: XXXXXXXXX
XHRXKXHIKIHXXXIXHKKIHKKIHKIXXXKXHXKXK

----- 1-ST QUARTER ----- ----- 2-ND QUARTER ----- =----- 3-RD QUARTER -----
PRODUCT JAN FEB MAR TOTAL APR MAY JUN TOTAL JUL AUG SEP TOTAL

SALES OFFI CE: XXXXXXXXXXXXXXX
MANAGER: XXXXXXXXXXKXXXXXX

XXXKKXKXXXXXXXXXXX Z, 229 Z,2Z9 Z,Z29 ZZ,2Z9 Z,229 Z,22Z9 Z,7Z29 7Z,7Z29 Z,229 Z,72Z9 Z,729 7Z, 779

L0 T = =
XXXXXXXKKXXXXXX Z, 229 Z, 229 7,229 22,229 Z,229 7,229 Z,229 22,729 Z,229 Z,229 Z,229 7Z, 729
L0 T = =
XXXXXXXXX 2,229 7,229 7,229 72,229 Z,2729 Z,229 Z,229 2Z, 229 Z, 229 Z,27Z9 Z,229 ZZ, 729
TOTAL 2,229 7,229 7,229 72,229 Z,2729 Z,229 Z,229 27,229 Z, 229 Z,27Z9 Z,229 ZZ, 729

EGAS! BUY FROM EGAS!

----- 4-TH QUARTER ---- -
OCT NOV DEC TOTAL

Z,779 7,729 7,229 ZZ,7Z9

Fok ok Rk kK Kk ko Kk Kk K Kk Kk Rk Kk Kk ok Kk Rk Rk Kk Rk ok Kk ko Kk Kk Kk Rk Kk Rk Kk kK

EGAS! ANOTHERBANNER YEAR!

$$38, 388

Program Painter Source:

REM READS DATA. EXTRACT AND GENERATES A SUMVARY
REPORT BY REG ON, OFFI CE AND PRODUCT.

10 EXTRACT-FI LE ASSI GN TO UT- S- EXTRACT
ASSI GN TO UT- S- SUMVREPT

10O SALES- SUMVARY- FI LE

10 DEFINTIONFILE ASS|I GN TO UT- S- DEFS

FD EXTRACT-FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F
RECORD CONTAI NS 90 CHARACTERS
BLOCK CONTAINS 0 RECORDS.

01 EXTRACT- FI LE- RECORD

02 EXT-REG ON PIC X(9).

02 EXT- OFFI CE Pl C X(15).

02 EXT- PRODUCT PI C X(18).

02 EXT- SALES- DOLLARS PI C 9(4) OCCURS 12.

FD SALES- SUMVARY- FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F

Reference

FD

01

01

W501
W501
W501

W501

W501
W501

W501

W501

W501

W501

W501
W501

W501

Report Sample Program and Mock-Up

RECORD CONTAI NS 133 CHARACTERS
BLOCK CONTAINS 0 RECORDS
REPORT | S YEAR- END- SALES- SUMVARY.

DEFI NI TI ON- FI LE

LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F

RECORD CONTAI NS 38 CHARACTERS
BLOCK CONTAINS 0 RECORDS.

DEFI NI TI ON- RECORD.

02 DEFI NI TI ON- TYPE PI C X(3).

02 DEFI NI TI ON- REG ON PI C X(29).

02 FILLER PI C X(6).

DEFI NI TI ON- RECORD- 2.

02 FILLER PI C X(3).

02 DEFI NI TI ON- OFFI CE PI C X(35).

JJ PI C S9(4) COW SYNC VALUE ZERO.
I PI C S9(4) COW SYNC VALUE ZERO.
FI RST- FLG PIC X(1) VALUE 'T'.

REG ON- DEFI NI TI ONS.
02 REG ON-TABLE OCCURS 4 TI MES | NDEXED BY REGQ ON- | DX

03 REG ON- NAME PIC X(9).

03 REG ON- MANAGER PI C X(20).
REG ON PIC X(9).
REG ON- MGR.

02 REG MGR OCCURS 20 TI MES
| NDEXED BY REG MGR- | DX
PIC X(1).

REG MGR- MAX PI C S9(4) COWP SYNC VALUE +20.
REG ON- MGR- FI ELD.
02 REG ON-MGR- X OCCURS 30 TI MES | NDEXED BY MGR- | DX

PIC X(1).
REG ON- MGR- FLD REDEFI NES REGI ON- MGR- FI ELD

PI C X(30).
REG ON- MGR- MAX PI C S9(4) COWMP SYNC VALUE +30.
MANAGER- WORD Pl C X(10) VALUE ' MANAGER .

MANAGER- BY- CHAR REDEFI NES MANAGER- WORD.
02 MANAGER- LETTER OCCURS 10 TI MES

| NDEXED BY LETTER- | DX

PIC X(1).
MANAGER- WORD- S| ZE PI C S9(4) COWP SYNC VALUE +10.

Reference

391

392

W501 OFFI CE- DEFI NI TI ONS.
02 OFFI CE- TABLE OCCURS 14 TI MES | NDEXED BY OFFI CE- | DX

03 OFFI CE- NAMVE PI C X(15).
03 OFFI CE- MANAGER PI C X(20).
W501 OFFI CE PI C X(15).
W501 OFFI CE- MGR PI C X(20).
W501 QTR- 1- SALES- DOLLARS PI C 9(5) VALUE ZERO.
W501 QTR- 2- SALES- DOLLARS PI C 9(5) VALUE ZERO.
W501 QTR- 3- SALES- DOLLARS PI C 9(5) VALUE ZERO.
W501 QTR- 4- SALES- DOLLARS PI C 9(5) VALUE ZERO.
W501 YR- SALES- DOLLARS PI C 9(6) VALUE ZERO.
W501 CURRENT- DATE- X.
02 CURRENT- YEAR PIC 9(2).
02 FILLER PI C X(4).
W501 REPORT- YEAR
02 FILLER PIC 9(2) VALUE 19.
02 REPORT- YEAR- X PIC 9(2).

RED YEAR- END- SALES- SUMVARY
CONTRCLS ARE FI NAL REG ON REQA ON- MGR- FLD OFFI CE
PAGE LIMT IS 58 LINES
FI RST DETAIL 9
HEADI NG 1
FOOTI NG 58.

MOCK SUMMARY

01 RH- YEAR- END- SALES- SUMMARY TYPE | S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE.
MOCKUP LI NES 1 THRU 4
LI NE 25
SOURCE REPORT- YEAR PI C X(4).

01 PH- YEAR- END- SALES- SUMVARY TYPE | S PAGE HEADI NG
MOCKUP LI NES 10 THRU 17

SOURCE PAGE- COUNTER PI C ZZ779.
SOURCE REG ON PIC X(9).
SOURCE REG ON- MGR- FLD PI C X(30).
01 CH- REG ON TYPE |'S CONTROL HEADI NG
REG ON

NEXT GROUP | S NEXT PAGE.

Reference

01

01

01

01

01

01

CH- OFFI CE

MOCKUP LI NES 18 THRU 20

SOURCE OFFI CE
SOURCE OFFI CE- MGR

TYPE | S
OFFI CE.

PIC X(1
PIC X(2

Report Sample Program and Mock-Up

CONTROL HEADI NG

5).
0).

DE- YEAR- END- SALES- SUMVARY TYPE | S DETAI L.

MOCKUP LI NE 21
SOURCE EXT- PRODUCT

SOURCE EXT- SALES- DOLLARS (#1/ 3)

SOURCE QTR- 1- SALES- DOLLARS

SOURCE EXT- SALES- DOLLARS (#4/ 6)

SOURCE QTR- 2- SALES- DOLLARS

SOURCE EXT- SALES- DOLLARS (#7/9)

SOURCE QTR- 3- SALES- DOLLARS

SOURCE EXT- SALES- DOLLARS (#10/ 12)

SOURCE QTR- 4- SALES- DOLLARS
SOURCE YR- SALES- DOLLARS

PF- YEAR- END- SALES- SUMVARY

MOCKUP LI NE 32

RF- YEAR- END- SALES- SUMVARY

MOCKUP LI NE 38
LINE IS 25

CF- FI NAL

MOCKUP LI NES 29 THRU 31

SUM EXT- SALES- DOLLARS (#1/ 3)
SUM QTR- 1- SALES- DOLLARS

SUM EXT- SALES- DOLLARS (#4/ 6)
SUM QTR- 2- SALES- DOLLARS

SUM EXT- SALES- DOLLARS (#7/9)
SUM QTR- 3- SALES- DOLLARS

SUM EXT- SALES- DOLLARS (#10/12)
SUM QTR- 4- SALES- DOLLARS

SUM YR- SALES- DOLLARS

CF- REG ON

MOCKUP LI NES 26 THRU 28

SOURCE REG ON

SUM EXT- SALES- DOLLARS (#1/ 3)
SUM QTR- 1- SALES- DOLLARS
SUM EXT- SALES- DOLLARS (#4/ 6)
SUM QTR- 2- SALES- DOLLARS

TYPE | S

PI C X(8).
Pl C Z, 229
Pl C 7Z, 7279
Pl C Z, 229
Pl C 27, 729
Pl C Z, 279
Pl C 77, 779
Pl C Z, 229
Pl C 2Z, 779
Pl C $$$%, $$%

PAGE FOOTI NG

NEXT GROUP |'S NEXT PAGE.

TYPE | S

TYPE | S
FI NAL.

REPORT FOOTI NG

CONTROL FOOTI NG

PIC Z, 7279

PIC ZZ, 7279

PIC Z, 7279

PI C ZZ, 279

PIC Z, 7279

PIC ZZ, 279

PIC Z, 7279

PIC ZZ, 279
PIC $$$%, $$$

TYPE | S
REG ON.

CONTROL FOOTI NG

PI C X(9)

PIC Z, 779

PI C ZZ, 279

PIC Z, 779

PI C ZZ, 279

Reference

393

394

SUM EXT- SALES- DOLLARS (#7/9) PIC Z, 7279

SUM QTR- 3- SALES- DOLLARS PI C ZZ, 279
SUM EXT- SALES- DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR- 4- SALES- DOLLARS PIC ZZ, 279
SUM YR- SALES- DOLLARS PIC $3$33, $$$
01 CF- OFFI CE TYPE |I'S CONTROL FOOTI NG
OFFI CE.
MOCKUP LI NES 23 THRU 25
SOURCE OFFI CE PI C X(15)
SUM EXT- SALES- DOLLARS (#1/ 3) PIC Z, 7279
SUM QTR- 1- SALES- DOLLARS PIC ZZ, 279
SUM EXT- SALES- DOLLARS (#4/ 6) PIC Z, 7279
SUM QTR- 2- SALES- DOLLARS PIC ZZ, 279
SUM EXT- SALES- DOLLARS (#7/9) PIC Z, 279
SUM QTR- 3- SALES- DOLLARS PIC ZZ, 279
SUM EXT- SALES- DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR- 4- SALES- DOLLARS PIC ZZ, 279
SUM YR- SALES- DOLLARS PIC $3$33, $$$

DPAR SUPPRESS CH- REGI ON SECTI ON
USE BEFORE REPORTI NG CH REG ON
DPAR SUPPRESS CH- REGI ON- PARA
I F FIRST-FLG = TRUE
SUPPRESS PRI NTI NG

PRCC
ACCEPT CURRENT- DATE- X FROM DATE
MOVE CURRENT- YEAR TO REPORT- YEAR- X

PERFORM LOAD- DEFI NI TI ONS

OPEN | NPUT EXTRACT- FI LE
OPEN QUTPUT SALES- SUMVARY- FI LE

I NI TI ATE YEAR- END- SALES- SUMVARY
MOVE ZERO TO PAGE- COUNTER

REPEAT
READ EXTRACT- FI LE
UNTI L AT END ON EXTRACT- FI LE
| F EXT- OFFI CE NOT = OFFI CE
PERFORM LOCATE- MANAGERS

ADD EXT- SALES- DOLLARS (1) TO QTR- 1- SALES- DOLLARS

ADD EXT- SALES- DOLLARS (2) TO QTR- 1- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (3) TO QTR- 1- SALES- DOLLARS

Reference

PARA

Report Sample Program and Mock-Up 395

ADD EXT- SALES- DOLLARS (4) TO QTR-2- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (5) TO QTR-2- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (6) TO QTR-2- SALES- DOLLARS

ADD EXT- SALES- DOLLARS (7) TO QTR-3- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (8) TO QTR-3- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (9) TO QTR- 3- SALES- DOLLARS

ADD EXT- SALES- DOLLARS (10) TO QIR-4- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (11) TO QIR-4- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (12) TO QIR-4- SALES- DOLLARS

REPEAT VARYING Il FROM 1 BY 1
UNTIL Il > 12
ADD EXT- SALES- DOLLARS (I1) TO YR- SALES- DOLLARS

GENERATE DE- YEAR- END- SALES- SUMVARY
MOVE FALSE TO FI RST- FLG
MOVE ZEROES TO QIR- 1- SALES- DOLLARS
QIR- 2- SALES- DOLLARS QTR- 3- SALES- DOLLARS
QTR- 4- SALES- DOLLARS YR- SALES- DOLLARS
TERM NATE YEAR- END- SALES- SUMMVARY

CLOSE EXTRACT- FI LE SALES- SUMVARY- FI LE

LOAD- DEFI NI TI ONS.

SET REGON-1DX TO 1

SET REG ON-1 DX DOWN BY 1
SET OFFICE-IDX TO 1

SET OFFI CE-1 DX DOWN BY 1

OPEN | NPUT DEFI NI TI ON- FI LE
REPEAT
READ DEFI NI TI ON- FI LE
UNTI L AT END ON DEFI NI TI ON- FI LE
I F DEFI NI TI ON- TYPE = ' REG
SET REG ON-1 DX UP BY 1
MOVE DEFI NI TI ON- REG ON
TO REG ON- TABLE (REG ON- | DX)

ELSE-1F DEFI NI TI ON- TYPE = ' OFF

Reference

396

SET OFFICE-IDX UP BY 1
MOVE DEFI NI TI ON- OFFI CE
TO OFFI CE- TABLE (OFFI CE- | DX)

CLOSE DEFI NI TI ON- FI LE

PARA LOCATE- MANAGERS.
SET REGON-1DX TO 1
SEARCH REG ON- TABLE
VWHEN EXT- REG ON = REG ON- NAME (REG ON- | DX)
MOVE REG ON- MANAGER (REG ON- | DX) TO REG ON- MGR
MOVE SPACES TO REG ON- MGR- FLD

SET REG MGR-1 DX TO REG MGR- MAX

VWHI LE REG- MGR (REG MR- | DX) = SPACE
AND REG MGR-1 DX > ZERO
SET REG MGR-1 DX DOWN BY 1

SET JJ TO REG MGR-1 DX

COMPUTE || =
(REG ON- MGR- MAX - MANAGER- WORD- SI ZE - JJ) / 2
ADD 1 TO I

IF Il <= ZERO

MOVE 1 TO ||
SET REGMER-1DX TO 1
SET LETTER-IDX TO 1

REPEAT VARYI NG MGR- 1 DX FROM || BY 1
UNTI L MGR-1 DX > REG ON- MGR- MAX
| F LETTER- | DX <= MANAGER- WORD- SI ZE
MOVE MANAGER- LETTER (LETTER- | DX)
TO REG ON- MGR- X (MGR- | DX)
SET LETTER- I DX UP BY 1
ELSE- | F REG MGR- | DX <= REG- MGR- MAX
MOVE REG MGR (REG- MGR- | DX)
TO REG ON- MGR- X (MGR- | DX)
SET REG- MGR-IDX UP BY 1
ELSE
SET MGR-1DX TO REGI ON- MGR- MAX
DI SPLAY ' MANAGER | NDEXES OUT OF RANGE: '
EXTRACT- FI LE- RECORD

SET OFFICE-IDX TO 1
SEARCH OFFI CE- TABLE
VWHEN EXT- OFFI CE = OFFI CE- NAME (OFFI CE- | DX)
MOVE OFFI CE- MANAGER (OFFI CE- | DX) TO OFFI CE- MGR

Reference

Report Sample Program and Mock-Up 397

MOVE EXT- REG ON TO REG ON
MOVE EXT- OFFI CE TO OFFI CE

Generated Source:

% &AP- GEN-VER = 1719

% &AP-PGW I D = " SUMVARY"

% &AP- GEN- DC- TARCGET = "MWS"

% &AP- GEN- DB- TARCGET = "VSAM'
% &AP- PROC- DI V- KYWD- SEEN = 1
% &AP-FI LE- CONTRCL- SEEN = 1

% &AP- SUBSCHEMA = ""

% &AP- APPLI CATION-1 D = " GLGAP"
% &AP- GEN- DATE = "861204"

% &AP-GEN-TIME = "17142491"

I DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. SUMMVARY.
AUTHOR AP- SYSTEM GENERATED.
DATE- VRI TTEN. 861204.

DATE- COVPI LED. &COMPI LETI ME.

*

* REMARKS.

* READS DATA. EXTRACT AND GENERATES A SUMVARY
* REPORT BY REG ON, OFFI CE AND PRODUCT.

ENVI RONVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.

SOURCE- COMPUTER. &SYSTEM

OBJECT- COMPUTER &SYSTEM

I NPUT- OQUTPUT SECTI ON.

FI LE- CONTRCL.
SELECT EXTRACT- FI LE ASSI GN TO UT- S- EXTRACT.
SELECT SALES- SUMVARY- FI LE ASSI GN TO UT- S- SUMVREPT.
SELECT DEFI NI TI ON-FI LE ASSI GN TO UT- S- DEFS.

DATA DI VI SI ON.
FI LE SECTI ON.

FD EXTRACT-FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F
RECORD CONTAI NS 90 CHARACTERS
BLOCK CONTAI NS 0 RECCRDS.

Reference

398

01 EXTRACT- FI LE- RECORD

02 EXT- REG ON PIC X(9).

02 EXT- OFFI CE PI C X(15).

02 EXT- PRODUCT PI C X(18).

02 EXT- SALES- DOLLARS PIC 9(4) OCCURS 12.

FD SALES- SUMVARY- FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F
RECORD CONTAI NS 133 CHARACTERS
BLOCK CONTAI NS 0 RECCORDS
REPORT | S YEAR- END- SALES- SUMVARY.

FD DEFI NI TI ON-FI LE
LABEL RECORDS ARE STANDARD
RECORDI NG MODE | S F
RECORD CONTAI NS 38 CHARACTERS
BLOCK CONTAI NS 0 RECCRDS.

01 DEFI NI TI ON- RECORD.

02 DEFI NI TI ON- TYPE PI C X(3).

02 DEFI NI TI ON- REG ON PI C X(29).

02 FILLER PI C X(6).
01 DEFI NI TI ON- RECORD- 2.

02 FILLER PI C X(3).

02 DEFI NI TI ON- OFFI CE Pl C X(35).

WORKI NG- STCRAGE SECTI ON.
$TP- W5- MVARKER

01 JJ PI C S9(4) COW SYNC VALUE ZERO.
01 11 PI C S9(4) COW SYNC VALUE ZERO.
01 FIRST-FLG PIC X(1) VALUE 'T .

01 REG ON-DEFI NI TI ONS.
02 REG ON-TABLE OCCURS 4 TI MES | NDEXED BY REG ON-| DX

03 REG ON- NAME PIC X(9).
03 REG ON- MANAGER PI C X(20).
01 REG ON PIC X(9).

01 REG ON-MGR.
02 REG MGR OCCURS 20 TI MES
| NDEXED BY REG- MGR- | DX
PIC X(1).

01 REG MGR- MAX PI C S9(4) COWP SYNC VALUE +20.

Reference

01

01

01
01
01

01

01
01

01
01
01
01

01
01

01

Report Sample Program and Mock-Up

REGI ON- MGR- FI ELD.
02 REG ON-MGR- X OCCURS 30 TI MES | NDEXED BY MGR- | DX
PIC X(1).
REGI ON- MGR- FLD REDEFI NES REG ON- MGR- FI ELD
PI C X(30).
REGI ON- MGR- MAX PI C S9(4) COMP SYNC VALUE +30.
MANAGER- WORD PIC X(10) VALUE ' MANAGER. .
MANAGER- BY- CHAR REDEFI NES MANAGER- VORD.
02 MANAGER- LETTER OCCURS 10 TI MES
| NDEXED BY LETTER- | DX
PIC X(1).
MANAGER- WORD- S| ZE PI C S9(4) COWMP SYNC VALUE +10.
OFFI CE- DEFI NI TI ONS.
02 OFFI CE- TABLE OCCURS 14 TI MES | NDEXED BY OFFI CE- | DX.
03 OFFI CE- NAME PI C X(15).
03 OFFI CE- MANAGER PI C X(20).
OFFI CE PI C X(15).
OFFI CE- MGR PI C X(20).
QTR- 1- SALES- DOLLARS PIC 9(5) VALUE ZERO.
QTR- 2- SALES- DOLLARS PIC 9(5) VALUE ZERO.
QTR- 3- SALES- DOLLARS PIC 9(5) VALUE ZERO.
QTR- 4- SALES- DOLLARS PIC 9(5) VALUE ZERO.
YR- SALES- DOLLARS PIC 9(6) VALUE ZERO.
CURRENT- DATE- X.
02 CURRENT- YEAR PIC 9(2).
02 FILLER PIC X(4).
REPORT- YEAR.
02 FILLER PIC 9(2) VALUE 19.
02 REPORT- YEAR- X PIC 9(2).

REPORT SECTI ON.
RED YEAR- END- SALES- SUMMARY

01

CONTROLS ARE FI NAL REG ON REG ON- MGR- FLD OFFI CE
PAGE LIMT IS 58 LINES

FI RST DETAIL 9

HEADI NG 1

FOOTI NG 58.

RH YEAR- END- SALES- SUMVARY TYPE | S REPORT HEADI NG
NEXT GROUP |'S NEXT PAGE.

MOCKUP LI NES 1 THRU 4
LI NE 25
SQURCE REPORT- YEAR PI C X(4).

Reference

399

400

01 PH YEAR- END- SALES- SUMVARY TYPE | S PAGE HEADI NG
MOCKUP LI NES 10 THRU 17

SQURCE PAGE- COUNTER PI C Z7779.

SQURCE REGQ ON PIC X(9).

SOQURCE REG ON- MGR- FLD PI C X(30).

01 CH REG ON TYPE | S CONTRCOL HEADI NG
REG ON

NEXT GROUP | S NEXT PAGE.

01 CH CFFICE TYPE |'S CONTRCOL HEADI NG
OFFI CE.

MOCKUP LI NES 18 THRU 20

SQURCE OFFI CE PI C X(15).

SQURCE OFFI CE- MGR PI C X(20).

01 DE- YEAR- END- SALES- SUMVARY TYPE | S DETAI L.
MOCKUP LI NE 21

SQURCE EXT- PRODUCT PI C X(8).
SOURCE EXT- SALES- DOLLARS (#1/ 3) PI C Z, 7279
SQURCE QTIR- 1- SALES- DOLLARS PI C ZZ, 779
SOURCE EXT- SALES- DOLLARS (#4/ 6) PI C Z, 7279
SQURCE QTR- 2- SALES- DOLLARS PI C ZZ, 779
SOURCE EXT- SALES- DOLLARS (#7/9) PIC Z, 7279
SQURCE QTR- 3- SALES- DOLLARS PI C ZZ, 779
SOURCE EXT- SALES- DOLLARS (#10/12) PIC Z, ZZ9
SQURCE QTR- 4- SALES- DOLLARS PI C ZZ, 779
SOURCE YR- SALES- DOLLARS Pl C $$33, $$$

01 PF- YEAR- END- SALES- SUMVARY TYPE | S PAGE FOOTI NG
NEXT GROUP | S NEXT PAGE.

MOCKUP LI NE 32

01 RF- YEAR- END- SALES- SUMVARY TYPE | S REPORT FOOTI NG

MOCKUP LI NE 38

LINE IS 25

01 CF-FI NAL TYPE IS CONTROL FOOTI NG
FI NAL.

MOCKUP LI NES 29 THRU 31

SUM EXT- SALES- DOLLARS (#1/ 3) PIC Z, 7229

SUM QTR- 1- SALES- DOLLARS PI C ZZ, 779

SUM EXT- SALES- DOLLARS (#4/ 6) PIC Z, 7279

SUM QTR- 2- SALES- DOLLARS PI C ZZ, 779

SUM EXT- SALES- DOLLARS (#7/9) PIC Z,6 7279

SUM QTR- 3- SALES- DOLLARS PI C ZZ, 779

SUM EXT- SALES- DOLLARS (#10/ 12) PIC Z,6 7279

SUM QTR- 4- SALES- DOLLARS PI C ZZ, 779

SUM YR- SALES- DOLLARS Pl C $$33, $$$

Reference

Report Sample Program and Mock-Up 401

01 CF-REG ON TYPE |'S CONTROL FOOTI NG
REG ON.
MOCKUP LI NES 26 THRU 28
SQURCE REGQ ON PI C X(9)
SUM EXT- SALES- DOLLARS (#1/ 3) PI C Z, 7279
SUM QTR- 1- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#4/ 6) PIC Z, 7279
SUM QTR- 2- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#7/9) PI C Z, 7279
SUM QTR- 3- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#10/ 12) PIC Z, 7279
SUM QTR- 4- SALES- DOLLARS PI C ZZ, 779
SUM YR- SALES- DOLLARS Pl C $$33, $$$
01 CF-CFFICE TYPE |'S CONTROL FOOTI NG
OFFI CE.
MOCKUP LI NES 23 THRU 25
SQURCE OFFI CE PI C X(15)
SUM EXT- SALES- DOLLARS (#1/ 3) PI C Z, 7279
SUM QTR- 1- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#4/ 6) PI C Z, 7279
SUM QTR- 2- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#7/9) PIC Z,6 7279
SUM QTR- 3- SALES- DOLLARS PI C ZZ, 779
SUM EXT- SALES- DOLLARS (#10/ 12) PIC Z,6 7279
SUM QTR- 4- SALES- DOLLARS PI C ZZ, 779
SUM YR- SALES- DOLLARS Pl C $$33, $$$

PROCEDURE DI VI SI ON.
DECLARATI VES.

SUPPRESS CH REG ON SECTI ON.
USE BEFORE REPORTI NG CH- REGI ON

SUPPRESS CH REG ON- PARA.
I F FI RST-FLG = TRUE
SUPPRESS PRI NTI NG
END DECLARATI VES.
ACCEPT CURRENT- DATE- X FROM DATE
MOVE CURRENT- YEAR TO REPORT- YEAR- X

PERFORM LOAD- DEFI NI TI ONS

Reference

402

OPEN | NPUT EXTRACT- FI LE
OPEN QUTPUT SALES- SUMVARY- FI LE

I NI TI ATE YEAR- END- SALES- SUMVARY
MOVE ZERO TO PAGE- COUNTER

REPEAT
READ EXTRACT-FI LE
UNTI L AT END ON EXTRACT-FI LE
| F EXT- OFFI CE NOT = OFFI CE
PERFORM LOCATE- MANAGERS

ADD EXT- SALES- DOLLARS (1) TO QIR- 1- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (2) TO QIR- 1- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (3) TO QIR- 1- SALES- DOLLARS

ADD EXT- SALES- DOLLARS (4) TO QIR- 2- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (5) TO QIR- 2- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (6) TO QIR- 2- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (7) TO QIR- 3- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (8) TO QIR- 3- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (9) TO QIR- 3- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (10) TO QTR- 4- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (11) TO QTR- 4- SALES- DOLLARS
ADD EXT- SALES- DOLLARS (12) TO QTR- 4- SALES- DOLLARS
REPEAT VARYING || FROM 1 BY 1
UNTIL Il > 12
ADD EXT- SALES- DCLLARS (11) TO YR- SALES- DOLLARS
GENERATE DE- YEAR- END- SALES- SUMVARY
MOVE FALSE TO FI RST-FLG
MOVE ZERCES TO QTR- 1- SALES- DOLLARS
QIR- 2- SALES- DOLLARS QTR- 3- SALES- DOLLARS
QIR- 4- SALES- DOLLARS YR- SALES- DOLLARS
TERM NATE YEAR- END- SALES- SUMVARY
CLOSE EXTRACT- FI LE SALES- SUMVARY- FI LE

LOAD- DEFI NI T1 ONS.
SET REG ON-1DX TO 1

Reference

Report Sample Program and Mock-Up 403

SET REG ON-1 DX DOWN BY 1
SET OFFICE-IDX TO 1
SET OFFI CE-1 DX DOWN BY 1

OPEN | NPUT DEFI NI TI ON-FI LE

REPEAT
READ DEFI NI TI ON- FI LE
UNTI L AT END ON DEFI NI TI ON- FI LE

I F DEFI NI TI ON- TYPE = ' REG
SET REG ON-1DX UP BY 1
MOVE DEFI NI TI ON- REG ON
TO REG ON- TABLE (REG ON- | DX)

ELSE-1F DEFI NI TI ON-TYPE = ' OFF
SET OFFI CE-1DX UP BY 1
MOVE DEFI NI TI ON- OFFI CE
TO OFFI CE- TABLE (OFFI CE- | DX)

CLOSE DEFI NI TI ON-FI LE

L OCATE- MANAGERS.
SET REG ON-1DX TO 1
SEARCH REG ON- TABLE
VWHEN EXT- REGI ON = REG ON- NAME (REG ON- | DX)
MOVE REG ON- MANAGER (REG ON- |1 DX) TO REA ON- MGR
MOVE SPACES TO REG ON- MGR- FLD

SET REG MGR- | DX TO REG MGR- VAX

VWH LE REG MGR (REG MGR- I DX) = SPACE
AND REG MGR- 1 DX > ZERO
SET REG MGR- | DX DOMWN BY 1

SET JJ TO REG MGR-| DX

COWUTE I =
(REG ON- MGR- MAX - MANAGER- WORD- SI ZE - JJ) [/ 2
ADD 1 TO I

IF 1l <= ZERO

MOVE 1 TO Il
SET REG MER-IDX TO 1
SET LETTER-1DX TO 1

REPEAT VARYI NG MGR-1 DX FROM || BY 1

UNTI L MGR-I DX > REG ON- MGR- MAX
I F LETTER- I DX <= MANAGER- WORD- S| ZE

Reference

404

MOVE MANAGER- LETTER (LETTER- | DX)
TO REGI ON- MGR- X (MGR- | DX)
SET LETTER-1DX UP BY 1
ELSE-| F REG MGR- | DX <= REG MGR- MAX
MOVE REG MGR (REG- MGR- | DX)
TO REGI ON- MGR- X (MGR- | DX)
SET REG MGR- 1 DX UP BY 1
ELSE
SET MGR-1DX TO REG ON- MGR- MAX
DI SPLAY ' MANAGER | NDEXES OUT OF RANGE:
EXTRACT- FI LE- RECORD

SET OFFICE-1DX TO 1
SEARCH OFFI CE- TABLE
VWHEN EXT- OFFI CE = OFFI CE- NAME (OFFI CE- | DX)
MOVE OFFI CE- MANAGER (OFFI CE- I DX) TO OFFI CE- MGR

MOVE EXT- REGI ON TO REG ON
MOVE EXT- OFFI CE TO OFFI CE

Report Writer Structures

Description:

List of Structures:

Reference

After you paint your report mock-up in the Report Painter, you must use
APS Report Writer structures to code report logic. These structures let
you automatically page the report, define headers and footers,
calculate field values, test and execute control and page breaks,
generate multiple reports, and generate all logic necessary to map
fields between reports and databases or files.

Code Report Writer structures in the Program Painter for report
programs.

10 and FD Name the input and output files.

RED Add a Report Section to your program.

CODE Specify a 2-character literal that identifies
each print line with a specific report.

CONTROL Identify data items that cause control breaks.

WRITE ROUTINE Override a standard COBOL WRITE statement

and execute your own routine.

Syntax Rules:

PAGE LIMIT

MOCK

071 and TYPE

MOCKUP LINES

OVERPRINT

SOURCE

VALUE (Report Writer)

REFERENCE

sum

INITIATE

GENERATE

USE BEFORE REPORTING

TERMINATE

Report Writer Structures

Define the report format, such as the number
of lines per page and where report lines
appear on the page.

Identify the report mock-up.

Describe function, format, and characteristics
of each report line.

Map the report mock-up lines to the lines on
the printed report.

Highlight or underscore the lines identified
in the MOCKUP LINES clause.

Map the report mock-up fields to the output
fields on the printed report.

Designate a literal value to print for the field
each time the line prints.

Identify a non-printing data field for
summing in a control break.

Establish a sum accumulator for a
corresponding SOURCE or REFERENCE data
field, and print the total in a control break.

Generate multiple SOURCE and SUM
statements for suffixed data items or array
elements with minimal coding.

Open report files and initialize page, line,
and sum counters and accumulators.

Generate and print all the report lines.

Specify additional processing for a report
group prior to printing.

Code Report Writer structures in the Program Painter, associating the
structures with keywords, as shown in the sample skeletal Report Writer

program below.

-KYWD- 12-%----20---%---- 30---%----40---*%----50
10 I nput/ Qut put statenents

FD I nput FD cl ause

Reference

405

406

Reference

01
FD
01

RED

nock

01

01

01

01

01

NTRY

I nput record description
Qut put FD cl ause
Qut put record description

reportfilenane

CODE cl ause

CONTROL cl ause

WRI TE ROUTI NE cl ause

PAGE LIMT nn LINE
FI RST DETAIL /i nenunber
LAST DETAIL /inenunber
FOOTI NG /i nenunber.

nockupr eport nane

TYPE | S REPORT HEADI NG /*for report header
MOCKUP LI NES c/ ause

OVERPRI NT cl ause

SOQURCE cl ause or VALUE cl ause

TYPE PAGE HEADI NG /*for page header
MOCKUP LI NES c/ ause
SOQURCE cl ause or VALUE cl ause

TYPE CONTROL HEADI NG /*for control header
MOCKUP LI NES c/ ause
SOQURCE cl ause or VALUE cl ause

TYPE DETAI L /*for detail lines
MOCKUP LI NES c/ ause

SOQURCE cl ause or VALUE cl ause

REFERENCE c/ ause

TYPE CONTROL FOOTING /*for control break
MOCKUP c/ ause

SOURCE cl ause or VALUE cl ause
SUM cl ause

I NI TI ATE st at enent
GENERATE st at enent

TERM NATE st at enent

Reports, Application-Generated

Reports, Application-Generated

Description:

List of Reports:

APS provides a set of reports that help you understand your application
and its various components. Use these reports as you develop an
application to determine the status of your work and the tasks left to
complete. Some reports help you to troubleshoot problems in an
application that you are developing, or to determine the impact of a
proposed change. Others help you to verify the results of your work.
Once you have fully implemented an application, use the APS reports to
document it so that developers who later maintain or enhance the
application can easily understand it in detail.

You can produce reports on an entire application, on selected
components, or on selected members of components. You can produce
reports from the Report Generator, Painter Menu, Application Painter,
or Documentation Facility, as follows:

Report Available In
Application Definition (APO1) lists and describes Painter Menu

all components of an application except the Application Painter
scenario prototype. Report Generator

Component List (MS01) catalogs and totals the Documentation Facility
components for each painter.

Data Structure Definition (DS01) lists and Painter Menu
describes structures that you create in the Data Application Painter
Structure Painter. Report Generator

DDIFILE (DBO1) describes the contents of the file Documentation Facility
that contains information about your database,
formatted to APS specifications.

Entity Content (MS02) lists summary Documentation Facility
information for each application component.

Entity Cross Reference (MDO1) cross references Documentation Facility
and totals application components.

Entity Parts List (ENO1) catalogs selected parts of Documentation Facility
one or more application components.

Reference

407

408

Reference

Report

Entity Search Utility (GSO1) lets you create
reports on application components that meet
the selection criteria that you specify.

Entity Use (EN02) lists components that copy,
include, or otherwise use the target component.

Field/Screen Cross Reference (SC02) lists
application screens along with their I/O and text
fields.

Macro/Program Cross-Reference (MCO01) lists
macros and the programs that use them.

Mock-Up (RPO1) lists and displays report mock-
ups as painted in the Report Painter.

Program DB/DC (PG02) lists the screens and the
subschemas or PSBs used by a program.

Program Definition (PG01) provides a printout
of programs created in APS.

Scenario Definition (CNO1) describes
components created in the Scenario Prototype
Painter.

Screen Hardcopy/Field Attribute (SC01) displays
the components of a screen as painted in the
Screen Painter as well as field attribute and field
edit information.

Available In

Documentation Facility

Documentation Facility

Documentation Facility

Documentation Facility

Painter Menu
Application Painter
Report Generator

Documentation Facility

Painter Menu
Application Painter
Report Generator

Painter Menu
Application Painter
Report Generator

Painter Menu
Application Painter
Report Generator

See these individual report descriptions for details about the content

and format of the information provided.

Reserved Words

Reserved Words

<<

<*

/*01
ACCEPT
ACCESS
ADD
ALTERNATE
APPLY
$APS
APSMACS
APSSRC
ARE
ASSIGN
ATTR
AUXOUT
BASIS
BEFORE

BIND
BLANK

BLOCK

BYTES

CA

CALL

CANCEL
CARDIN

CBL

CF

CH

CHANGE
CHARACTERS
$CIC-

CICS

CLEAR

CLOSE
COBMESS
COBIIMES
CODE
CODE-SET
COLUMN
COMMIT
COMP
&COMPILETIME
COMPUTATIONAL
COMPUTE
CONNECT
CONTAINS

The following words are reserved for APS use.

CONTINUE
CONTROL[S]
COPY
COPYLIB
CPERFORM
DATA
DATA-NAME
$DB-
DB-CLOSE
DB-ERASE
DB-IF
DB-MODIFY
DB-OBTAIN
DB-OPEN
DB-ROLLBACK
DB-STORE

DC

$DDI-
DDISYMB

DE

DEBUG

DECL
DECLARATIVES
&DEFINE[D]
&DEFVAL
DELETE
DEPENDING
DESTINATION
DETAIL

DISCONNECT
DISPLAY
DIVIDE
DIVISION
$DLG-
DPAR

DS
EDIT-FLAGS
EJECT

ELSE
ELSE-IF
END
END-OBTAIN
ENTER
ENTRY
EQF
ERASE
ERROR
ESCAPE
EVALUATE
EXAMINE
EXEC
EXHIBIT
EXIT

FALSE

FD

FILE
FILE-ID
FILE-LIMITS

Reference

409

410

FILLER
FIND

FINISH
FIRST
FOOTING
FRFM
GENERATE
GET

GO
GOBACK
GROUP
HEADING
HIGH-VALUE
HIGH-VALUES
IDM-

IF

$IM-

$IMS-

IN

&INDEX
INDEX[ED]
INDICATE
INITIATE
INPUT
INPUT-OUTPUT
INSERT
INSPECT

10

IS

JUST
JUSTIFIED
KEEP

LABEL

Reference

LAST
LEADING
&LENGTH
LIB1[IN]
LIB2[IN]
LIB3[IN]
LIMIT
LIMITS
LINE[S]
LINE-COUNTER
LINK
LINKAGE
LK
LOW-VALUE[S]
$MACRO-
MACRO
MAININ
$MDB-
$MDC-
MERGE
MOCK
MOCKUP
MODE
MODIFY
MOD-NAME
MOVE
MSG-SW
MULTIPLY
NARROW
NOMINAL
NOT

NOTE

NEXT

NTRY

NUMBER
&NUMERIC
OBTAIN
OBTAIN-BY-KEY

OBTAIN-BY-SEARCH

OBTAIN-NEXT
OBTAIN-PREV
OBTAIN-REL

OBTAIN-REL-BY-KEY

OCCURS

OF

OMITTED

ON

OPEN

OPT
ORGANIZATION
OUTPUT
OVERPRINT
PAGE
PAGE-COUNTER
PARA

&PARSE

PASS
PASSWORD
PERFORM

PF
PFKEY-VALUE
PH

PIC

PICTURE
PLUSPOSTSOUT
PRIVIN

PROC
PROCEDURE
PROCESSING
QUOTEIS]
RDREAD
READ
READY
REC
RECEIVE
RECORDIS]
RECORDING
RD

RED
REDEFINES
REFERENCE
RELEASE
REM
RENAMES
REPEAT
REPORTIS]
REPORTING
RERUN
RESERVE
RESET
RETURN
REWRITE
RF

RH

RIGHT
ROLLBACK
SAME

$SC-
SC-CLEAR

RESET-PFKEY

SCELIB STANDARD SYRP USEUSERMACS
$SCP- START SYSDBOUT USERNAME
$SCR- STATUS SYSIN VALUE[S]
SCRNLIST STOP SYSOUT $Vs-
SCRSYMB STORE SYSMSG $VSAM-
SD STRING SYWS WHEN
SPACE[S] STUB TERM WHILE
SPNM &SUBSTR TERMINATE WITH
SEARCH SUBTRACT TEXT WORK1
SECTION SUM TIMES WORK2
SEEK SUPRASUPPRESS $TP- WORK3
SELECT SYBT TRACE WORK4
SEND SYDD TRAILING WORKS5
SERVICE SYEN TRANCODE-AREA WORK6
SET SYFD TRANSFORM WORK?7
SIGN SYLK TRUE WORKS
SKIP1 SYlo TYPE WORK9
SKIP2 SYM1 UNSTRING WORKING-STORAGE
SKIP3 SYM2 UNTIL WRITE
SORT SYMBOLIC UPDATE WS
SOURCE SYNC UPON XCTL
sQL SYNCHRONIZED USAGE ZEROISI[ES]
RESET-PFKEY
Category: Data communication call (see Data Communication Calls)
Compatibility: CICS, IMS DC, ISPF Dialog, and ISPF Prototyping targets
Description: Simulate screen invocation.

Syntax:

[TP-]1 RESET- PFKEY keyval ue

Reference

411

412

Parameters: Valid keyvalues are the following.

Value CICS IMS DC ISPF Dialog ISPF Prototyping
PFO Y Y N N
PFOO Y Y N N
PFO1 thru PF24 Y Y Y Y
ENTER Y Y Y Y
ENTER-KEY Y Y Y Y
PA1 Y N N N
PA2 Y N N N
PA3 Y N N N
CLEAR-KEY Y N N N
CLEAR Y N N N
NO-KEY N Y N N
NONE N Y N N
PEN Y N N N
PFXX N N N Y
PFzz N N N Y
TRIG Y N N N
OPID Y N N N
MSRE Y N N N
STRF Y N N N
PAGE-DOWN N N N N
PAGE-UP N N N N
ROLL-UP N N N N
ROLL-DOWN N N N N
PRINT-KEY N N N N
PRINT N N N N
HELP-KEY N N N N
HELP N N N N
HOME-KEY N N N N
HOME N N N N

Reference

Comment:

Example:

S-COBOL Structures

ISPF Dialog

To use this call, set the PF Key Option field to P on the ISPF Panel
Options screen.

Simulate pressing the ENTER key.

/* Move Commarea key to key field
MOVE CA- PASSED- KEY TO SCRN- KEY- FLD
/* Move Qto FUNCTION field

MOVE ' Q TO SCRN- FUNCTI ON- FLD

/* Simulate pressing of ENTER key
/* wi th RESET- PFKEY cal |

RESET- PFKEY ENTER

/* Performprocessing |logic

TP- PERFORM APS- USER- CODE- PARA

S-COBOL Structures

Description:

An APS program can be coded in APS Structured COBOL (S-COBOL)
language structures, either in combination with or instead of COBOL
statements. S-COBOL structures are procedural, and extend the power
of native COBOL, yet simplify and shorten the amount of code you must
write.

You can write a complete APS program in S-COBOL. There are no
differences between S-COBOL and batch COBOL in the Identification,
Environment, and Data Divisions. The major differences exist in the
Procedure Division.

S-COBOL reserved words are the same as ANSI COBOL, plus the
following. For a complete list of all APS reserved words and symbols, see
Reserved Words.

ALWAYS ELSE-IF ESCAPE

EVALUATE FALSE FALSX

NEVER REPEAT SAGE-TRACE-FLAG
TRUE TRUX UNTIL

USERNAME (IMS only) WHILE

Reference

413

414

You code the S-COBOL structures in paragraphs and statement blocks. A
paragraph is denoted by the keyword PARA and a paragraph name,
followed by clauses or a statement block. Within a paragraph,
indentation determines the exact positioning of statements. A
paragraph ends with the next appearance of any Procedure Division
keyword.

Indentation determines how the statements execute. For example,
when you indent a statement under a conditional statement, the
indentation tells APS that this statement is subordinate to the
condition.

APS reads an S-COBOL program from top to bottom. The first paragraph
performs all other paragraphs. Within paragraphs and statement
blocks, statements execute sequentially until conditional statements,
PERFORMs, or CALLs modify the sequence of operations. Indentation
controls the logical sequence in which lines of source code execute.

Code S-COBOL structures in the Program Painter for batch, report, or
complex online programs, or in the Online Express Specification Editor
for an Express program.

List of Structures: The following are the S-COBOL structures.

Verbs

ENTRY Establish entry point for subprogram.

ESCAPE Exit from the current paragraph.

EVALUATE Evaluate one or more conditions; program a
decision table.

EXIT PROGRAM End the execution sequence.

PERFORM Execute a particular paragraph or section,
with or without arguments.

REPEAT Establish a loop for testing.

SEARCH Establish looping or conditionals for each
WHEN condition.

STOP RUN Return control to the operating system.

TRUE/FALSE Establish true and false flags; test the flags.

UNTIL/IWHILE Form a loop with a test.

USERNAME Title a procedure generated by the APS
Precompiler.

Reference

Syntax Rules:

Conditionals

AT END/INVALID KEY
EVALUATE

IFIELSE-IF/ELSE
SEARCH

TRUE/FALSE

Error Handling

AT END/INVALID KEY

TRUE, FALSE, ALWAYS,
NEVER

TRUE/FALSE
SAGE-TRACE-FLAG

Flags

TRUE, FALSE, ALWAYS,
NEVER

SAGE-TRACE-FLAG

Looping

REPEAT
UNTIL/WHILE

415

Test for end-of-file or invalid key condition.

Evaluate one or more conditions; program a
decision table.

Evaluate one or more conditions.

Establish looping or conditionals for each
WHEN condition.

Establish true and false flags; test the flags.

Test for end-of-file or invalid key condition.
Use these APS-supplied flags for testing.

Establish true and false flags; test the flags.
Debug with the Trace facility.

Use these APS-supplied flags for testing.

Debug with the Trace facility.

Establish a loop for testing.
Form a loop with a test.

Transferring Program Control

ENTRY

ESCAPE

EXIT PROGRAM
STOP RUN

Establish entry point for subprogram.
Exit from the current paragraph.

End the execution sequence.

Return control to the operating system.

Observe the following rules and conventions when coding an S-COBOL

program.

® When coding paragraph names, at least one character within the
first 24 characters must be unique for each paragraph in the

program.

Reference

416

Reference

Code only one verb per source code line.

Do not code punctuation in the Procedure Division. It is unnecessary
and therefore disregarded.

Code punctuation within the Identification, Environment, and Data
Divisions that conforms to COBOL rules.

Code structures with consistent indentation. The level of
indentation can vary with each new statement block; however, it
cannot vary within a statement block of code. We recommend using
four additional spaces for each new level of indentation.

Do not code the following structures.
PERFORM ... THRU st atenent

PERFORM par agr aphnane(argl, arg2, ..., argNh
UNTI L condition

GO TO st at enent

SORT| MERGE THRU ... sectionname with | NPUT PROCEDURE or
OUTPUT PROCEDURE.

NEXT SENTENCE

Avoid using the double-hyphen (--). The S-COBOL translator
frequently creates procedures and flags required for generating
ANSI COBOL that are unnecessary and sometimes invalid in S-
COBOL. Generated names for these procedures or flags always
contain a double-hyphen to avoid conflict with programmed names.
Under IMS, the USERNAME parameter can change double hyphens
to single hyphens at S-COBOL processing time.

Continue a structure on subsequent lines by coding an ellipsis
followed by a space (...).

Continue a non-numeric literal by splitting the literal and
concatenating the parts, which APS then treats as separate literals.
Concatenate non-numeric literals by separating them with an
ellipsis, space, two ampersands, and space (... &&), for example,

“KYWD- 12--%--20---%----30----*---40
REGISTER = " THIS IS A VERY, "
&& "VERY LONG LI TERAL"

Enclose literals with quotation marks. S-COBOL allows both single
and double quotation marks within the same program.

® Use any of the following relational operators to make comparisons.

Type of Comparison
Greater than

Not greater than

Less than

Not less than

Equal to
Not equal to

Greater than or equal to
Less than or equal to

IS
IS

IS
IS
IS

IS
IS

IS
IS
IS

IS
IS

IS
IS

>=

<=

Relational Operator

GREATER THAN
>

NOT GREATER THAN
NOT >
<=

LESS THAN
<

NOT LESS THAN
NOT <

>=

EQUAL TO

NOTr EQUAL TO
NOT =

® (Create compound conditions by using ANDs or OR:s.

® Optionally, use a simplified syntax

Abbreviated Syntax

A=B
AB =
A=B+C
B=B+C
A=B- C
A=B* C
A=B/ C
A=B+ (C* D
A<+ B
A<l B

A << B
A<* B

S-COBOL/COBOL Equivalent

MOVE B TO A

MOVE C TO A
COWPUTE A =
COVPUTE
COVPUTE
COVPUTE
COVPUTE
COVPUTE
COVPUTE
COVMPUTE

O o0 o000

C* D

> > >» > > > W
1
o © —

MOVE B TO A
COWUTE A = A* B

® Use the above simplified syntax with any of these verbs - ADD,
COMPUTE, DIVIDE, MOVE, MULTIPLY, SUBTRACT

Reference

417

418

Example:

Reference

® The following syntax is ambiguous, so results are unpredictable:

I'F condition = condition
ELSE-1F condition = condition
ELSE-IF condition = condition

To achieve correct results, code:

I'F condition = condition
ELSE-1F condition = condition
ELSE-1F condition = condition

or:

I'F condition = condition

ELSE-1F condition = condition
I'F condition = condition
ELSE-1F condition = condition

The following example demonstrates control logic without interrupting
the flow or readability of the program with a GO TO. Program control is
handled entirely by S-COBOL indentation.

SLINE- -KYWD- 12--%--20---%--=230----%---40---*-=--50---%*--
001030 PARA PAYROLL- CALCULATI ON /*PARAGRAPH NANE

001040 I F EMPLOYEE- TYPE = ' HRLY’

001050 | F HOURS- WORKED > 40

001060 HOURS- BASE = HOURS- WORKED * 2
001070 HOURS- BASE = HOURS- BASE - 40

001080 ELSE

001090 HOURS- BASE = HOURS- WORKED

001100 GRCSS- PAY = HOURS- BASE * HOURS- RATE
001110 ELSE

001120 GRCSS- PAY = EMPLOYEE- SALARY

Because IF conditions generally require an alternative action, you
generally code an ELSE-IF or ELSE statement at the same level of
indentation as the IF. In the previous example, if EMPLOYEE-TYPE is not
equal to HRLY (line 1040), control passes to the corresponding ELSE
statement on line 1110. On the other hand, if EMPLOYEE-TYPE is equal
to HRLY, lines 1050-1100 execute. In this case, if HOURS-WORKED is not
greater than 40, control passes to the ELSE statement at the same
indentation (line 1080). Thus, lines 1060-1070 execute only for hourly
employees who have worked over 40 hours, while line 1090 executes for
hourly employees who have worked 40 hours or less.

Related Topics:

Scenario Definition Report (CNO1)

Line 1100 executes for all hourly employees, because these lines are at
the same level as the preceding IF/ELSE. Line 1120 executes for
employees who are not hourly.

See... For other information about coding
S-COBOL programs...

See PARA and Paragraphs Coding statement blocks
See Limits S-COBOL limits

Scenario Definition Report (CNO1)

Category:

Description:

Comment:

Example:

REPCRT CODE: CNO1

SELECTI ON CRI TERI A:

TDDEMOL

APS-generated report (see Application Reports)

The Scenario Definition Report displays the Scenario Painter
components as they are painted, along with descriptive information
such as comments and screen title, as well as each screen in the scenario
as painted. Use this report to document scenarios for end users, so they
can help you determine whether your scenarios cover all of the required
cases.

Produce the Scenario Definition Report from the Report Generator by
selecting Actions and then the set of members you want. Or, enter 1, 2,
or 3 in the Option field. If you enter 3, enter a member name or range
of member names for selecting report data and then enter cn in the
Library field. Press Enter to submit a job to produce the report.

APS APPLI CATI ON PAI NTER PAGE 1
SCENARI O DEFI NI TI ON REPORT 01/18/92 15:00
CLSAPS. CLS2

hokkkkkkkhkkkkkkkkk ok ok sk ok sk ok hk h kA kA A A A A A A A A kA kA kA kA Ak hhkk kA khkkhkh ok ok k ok k ok k ok k ok k ok k ok k ok kkk ok k ok k k&

SCENARI O TDDEMOL

TITLE:

CREATED: 10/17/90
UPDATED: 10/17/ 90

hokkkkkkkkkkkkkkkk ok kk sk ok sk ok ok ok ok kA kA kA kA A A kA kA kA kA kA kA h kA kA khkkhk ok ok ok k ok k ok k ok k ok k ok k ok k ok kkkkk ok k k&

LI NE
0001
0002
0003

SCREEN TI TLE USER COMMVENT
CUSTOVER CRDER MAI'N MENU MENU SELECTS ONLY
CUSTOVER MAI NTENANCE BROASE ONLY

PARTS | NVENTORY LI ST

Reference

419

420

0004 TDOM ORDER RECCRD NMAI NTENANCE

0005 TDOT ORDER COST TOTALS SUMVARY SCREEN
0006 TDQJ CUSTOVER CRDERS | NQUI RY BROASE ONLY
0007 TDOU G FT CERTI FI CATES

0008 TDCS ORDERS DELI VERY LI ST

0009 TDPF PART LI ST SELECTI VE | NFO

0010 TDPM PART RECORD MAI NTENANCE UPDATE

Screen Hardcopy/Field Attribute Report (SC01)

Category: APS-generated report (see Application Reports)

Description: The Screen Hardcopy/Field Attribute Report provides a mock-up of the
screens you select as they are painted. In addition, the report includes
sections that describe field attributes and field edits.

The Field Attribute portion lists the attribute values for each field in the
order it appears on the screen. The report indicates default values with
periods (..). The Occ(urrence) column shows the number of field
occurrences within a repeated block. The end of the report shows the
total number of screens on the report.

The Field Edits section lists the field edits applied to the fields.

Comments: ® Produce the Screen Hardcopy/Field Attribute Report from the
Report Generator, Painter Menu, or Application Painter.

® You can then set or change generation options for the report. To do
so, access the Report Options screen in one of the following ways.

® From the Report Generator screen, select Options Report
Options, or enter 4 in the Option field.

® From any APS screen, select Options Report Options from the
action bar, or enter opt in the Command or Options field. From
the APS Options Menu that displays, select Actions Report
Options from the action bar, or enter option 4 in the Options
field.

Reference

Screen Hardcopy/Field Attribute Report (5C01)

Complete the fields on the Report Options screen.

Field Values

Left Justify Report Y

Field Attributes Report Y

Print the Screen Hardcopy Report
(5CO01) starting in column 1 to fit
an 8.5 x 11 inch page.

Default. Center the report.

Default. Print the Field Attributes
Report with the Screen Hardcopy
Report.

Do not print the Field Attributes
Report.

Default. Print the Field Edits
Report with the Screen Hardcopy
Report.

Do not print the Field Edits
Report.

PAGE 1
01/18/92 15: 04

PAGE 1
01/18/ 92 15: 04

CREATED: 02/ 15/ 90
UPDATED: 08/ 30/ 90
DC TARGET: CICS
DB TARGET: VSAM

SBSC/ PSB USERMACS LOC

TDDB2

N
Field Edits Report Y
N
Example:
REPORT CODE: REPT APS 1.8 ENTITY REPORT FACILITY
CLSAPS. CLS2
REPORT CRI TERI A:
ALL SCREENS | N THE APPLI CATI ON : TDDEMO
LI BRARY ENTI TY
TYPE NAMVE STATUS REMARKS
AP TDDEMO REPORTED
SC TDCM REPORTED
SC TDCS REPORTED
SC TDVE REPORTED
SC TDQ REPORTED
SC TDOM REPORTED
SC TDOT REPORTED
SC TDQU REPORTED
SC TDPF REPORTED
SC TDPL REPORTED
SC TDPM REPORTED
REPORT CODE: AP01 APS APPLI CATI ON PAI NTER
APPLI CATI ON DEFI NI TI ON REPORT
CLSAPS. CLS2
SELECTI ON CRI TERI A:
TDDEMO
APPLI CATI ON: TDDEMO
TITLE :
AUTHOR : LSTRL
- LI NE- PROGRAMS SCREENS 10 REPORTS DATA STR
000001 TDME TDME 10
000002 TDOM TDOM 10
000003 TDPL TDPL 10

TDDB2

Reference

422

000004 TDOM TDOM 10 TDDB2

000005 TDOT TDOT 10 TDDB2

000006 TDQJ TDQJ 10 TDDB2

000007 TDQU TDQU 10 TDDB2

000008 TDCS TDCS 10 TDDB2

000009 TDPF TDPF 10 TDDB2

000010 TDPM TDPM 10 TDDB2

REPCRT CODE: SC01 APS SCREEN PAI NTER PAGE 1
SCREEN HARDCOPY REPORT 01/18/ 92 15: 04

CLSAPS. CLS2

SELECTI ON CRI TERI A:

SCREEN- NAME = TDCM
ENTITY: TDCM CREATED: 09/13/ 89
TITLE: UPDATED: 03/20/ 90

Ghkkkkhhhhkhkkkkhkhkhkhkhhhhhhh ok k ok k ok k ok k ok ok ok ok ok kkkkkkkkkkkkkkkkkkk ok kA kk kk kk kkkk k ok kk ok ok ok ok ok ok ok ok &k &

B BT - o e e e S Rl SEETT SEPTy SRR S ;|
CUSTOMVER ORDER ENTRY SYSTEM

APS DEVELOPMENT CENTER

CUSTOMER RECORD MAI NTENANCE

FUNCTI ON ==========> X (Q QUERY U UPDATE A-ADD D DELETE)
CUSTOVER NUMBER XXXXXX XXXXXXX
CUSTOVER NAME == XXXXXXXXXXXXXXXXX
CUSTOVER ADDRESS ==> XXXXXXXXXXXIXXXXXXX
CUSTOVER CI TY = OO0 00000 0000000004
CUSTOVER ZI P == XXXXXXXXX

Enter CUSTOMER NUMBER TO QUERY A RECCRD

PF3 = MAIN MENU

%000.0.0.0.0.0,.0.0.0.0.0.0.0.0.0.0.0.0.0.00.00.00000000000000 0000000000000 00000000000 0000 00000000004
R e L e i e e e R e Tl CETE SRy]
REPCRT CODE: SC01 APS SCREEN PAI NTER PAGE 1
FI ELD ATTRI BUTE REPCRT 01/18/91 15: 04
CLSAPS. CLS2
SELECTI ON CRI TERI A:
SCREEN- NAME = TDCM

Ghkhkkkhhhhkhkkhkhkhkkhkhkhkhkkhk ok kkk ok k ok k ok k ok k ok kkkkkkkkkkkkkkkkkkkkkk kk kk kk kk k ok kk k ok kk ok ok ok ok ok & ok &k &

ENTITY: TDCM CREATED: 09/13/ 89

TITLE: UPDATED: 03/20/ 90
EDIT H - INIT

FI ELD OCC ROW COL TYPE | NTEN MDT NUM DET MASK MOD COLOR LITE CURS

FUNCTI ON 7 29 1 UNPR BRI GHT e T

CUSTOMER- NO 9 29 6 UNPR BRI GHT e

SAVEKEY 9 49 7 PROT DARK e

CUSTOMER- NAME 10 29 20 UNPR BRI GHT e
CUSTOMER- ADDR 11 29 20 UNPR BRI GHT e
CUSTOMER-CITY 12 29 20 UNPR BRI GHT e
CUSTOMER-ZIP 13 29 9 UNPR BRI GHT e

MESSAGE 24 2 79 PROT BRIGHT e e . .
REPORT CODE: EDO1 APS SCREEN PAI NTER PAGE 1
FIELD EDI T REPORT 01/18/ 92 15: 04
CLSAPS. CLS2

Reference

Screen Hardcopy/Field Attribute Report (5C01)

SELECTI ON CRI TERI A:
SCREEN- NAME = TDCM

Ghkhhkhhhhhhkkkh khkhkhkhhhhkhh ok kkk ok k ok k ok ok ok k ok k ok kkkkkkkkkkkkkkkkk ok kA kA kk kk kk kk kk kk kk ok ok ok ok ok ok &k &

ENTITY: TDCM CREATED: 09/ 13/89
TITLE: UPDATED: 03/ 20/ 90

Khkhhhhhhhhhkkhkkhkhkhkhkhkhhhhhkh ok k ok k ok k ok k ok ok ok k ok kkkkkkkkkkkkkkkkk ok kA kA kk kk kk kk k ok kk kk ok ok ok ok ok &k &

DEFAULT SCREEN LEVEL ERROR PROCESSI NG

SYSMSG FI ELD: MESSAGE
ERRCR ATTRI BUTI NG PCS+BRT

ERROR MESSAGE . FIELD AT CURSCR IS | N ERROR
REQUI RED FI ELD MESSAGE: FIELD AT CURSCR | S REQU RED
CONDI TI ONS TO BYPASS | NPUT EDI TI NG
BYPASS | NPUT EDI TS | F
FUNCTION = ' Q
BYPASS | NPUT EDI TS | F
PFO1 ==> PFO9 ==> PF17 PAOL ==>
PF02 ==> PF10 PF18 PAO2 ==>
PFO3 ==> S PFi1 PF19 CLEAR ==>
PFO4 ==> PF12 PF20 Enter ==>
PFO5 ==> PF13 PF21
PF0O6 ==> PF14 PF22
PFO7 ==> PF15 PF23
PFO8 ==> PF16 PF24
FIELD
CUSTOMER: NO LEN 6 RON 9 COL: 29 I|NTERNAL PICTURE: X(06)
I NPUT EDI TI NG
REQUI RED
NUMER! C TEST

ERROR PROCESSI NG
ERROR ATTRI BUTI NG POS+BRT
ERROR MESSAGE © YOU MUST Enter A NUMERI C VALUE
REQUI RED FI ELD MESSAGE: YOU MUST Enter A CUSTOMER NUMBER

REPCRT CODE: EDO1 APS SCREEN PAI NTER PAGE 2
FIELD EDI T REPCRT 01/18/ 92 15: 04
CLSAPS. CLS2
SELECTI ON CRI TERI A:
SCREEN- NAME = TDCM
CUSTOMER- NAME LEN: 20 RON 10 COL: 29 |INTERNAL PI CTURE: X(20)

I NPUT EDI TI NG
REQUI RED
| NPUT MASK: ADDDDDDDDDDDDDDDDDDD

ERROR PROCESS! NG:
ERROR ATTRI BUTI NG POS+BRT
ERROR MESSAGE . CUSTOVER NAME MUST NOT BE NUMERI C
REQUI RED FI ELD MESSAGE: YOU MUST Enter CUSTOMER NANE
CUSTOMER- ADDR LEN 20 ROW 11 COL: 29 |NTERNAL Pl CTURE X(20)
| NPUT EDI TI NG
REQUI RED

Reference

423

424

CUSTOMER- QI TY

CUSTOMER- ZI P

ERROR PRCCESSI NG
ERROR ATTRI BUTI NG POS+BRT
REQUI RED FI ELD MESSAGE: CUSTOMER ADDRESS MUST BE ENTERED

LEN:. 20 ROW 12 COL: 29 |INTERNAL PICTURE: X(20)

I NPUT EDI TI NG
REQUI RED

ERROR PRCCESSI NG
ERROR ATTRI BUTI NG POS+BRT
REQUI RED FI ELD MESSAGE: YOU MUST Enter THE CUSTOVER CI TY

LEN: 9 RON 13 CO.: 29 |INTERNAL PICTURE: X(09)

I NPUT EDI TI NG
REQUI RED

ERROR PRCCESSI NG
ERROR ATTRI BUTI NG POS+BRT
REQUI RED FI ELD MESSAGE: YOU MUST Enter THE POSTAL CODE

Screen Redefinition

Description: During screen generation, APS automatically generates record

definitions describing the data layout and format of a screen. You can
redefine the entire generated screen record, selected tables in the
screen, or selected fields in the screen.

To do so, you set a flag to enable redefinition, and create user macros
to generate the redefinition code. APS provides macro name suffixes
that the flags recognize and invoke automatically.

To redefine multiple screens, see SCRNLIST.

Procedure: 1 To set a flag to enable redefinition, go to the APS CNTL file

Reference

GENSYMB2 and set one of the following flags to 1.

&SCRGEN-RDF-REC Use for redefining an entire screen record
description. The flag invokes the
$screenname-RECORD-RDF macro, which
you write.

&SCRGEN-RDF-TAB Use for redefining a screen table. The flag
invokes the $screenname-TABLE-n-RDF
macro, which you write.

Comments:

Examples:

Screen Redefinition

&SCRGEN-RDF-FLD Use for redefining a screen field. The flag
invokes the $screenname-fieldname-RDF
macro, which you write.

2 In the USERMACS macro library, create a macro to redefine your
screen record description. Use the following macro naming
conventions.

Entire record description $screenname-RECORD-RDF
Field in a record description $screenname-fieldname-RDF
Table in a record description $screenname-TABLE-n-RDF

Where n is the table position in
sequence with other tables on the
screen, counting from top to bottom
on the screen.

® When using the TP-ATTR call in a macro, use the original screen
name, not the new (redefined) name.

® \When redefining a screen, include the attribute bytes as part of the
redefinition.

Redefine field PARTNO on screen INVENT. Note that all field names
within the screen are prefixed with the screen name.

% DEFI NE $I NVENT- PARTNO RDF
&12+05 | NVENT- PARTNO- Z99 &36+REDEFI NES | NVENT- PARTNO
&40+PI C Z99.

Redefine a table definition for a repeat block field named PART-NO-
ROW on screen INVENT. The variable &INVENT-TABLE-1-MAX contains
the number of occurrences for the repeated row block. The rule $SC-
REP-FIELD-HEADER-0 generates the native attribute fields depending on
the DC target. The field INVENT-PART-NO-ROW-EDITED contains the
picture that is used to edit the data for output display.

% DEFI NE $I NVENT- TABLE- 1- RDF
&12+05 FILLER &46+REDEFI NES | NVENT- TABLE- 1.
&16+10 FILLER &46+0OCCURS &l NVENT- TABLE- 1- MAX.
$SC- REP- Fl ELD- HEADER- 0(" PART- NO- ROW)
&0+15 | NVENT- PART- NO- ROW EDI TED &46+PI C ZZZ9.
% END

Reference

425

426

SCRNLIST

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS, DDS, IMS DC, ISPF Dialog, and ISPF prototyping targets

Description: Enable your program to use multiple screens and generate:
® Procedural code to receive each specified screen

® Screen records in the Working-Storage or Linkage Sections

SCRNLIST automatically generates when you specify multiple 1/O screens
for a program in the Application Painter. To redefine a single screen,
see Screen Redefinition.

Syntax CICS

[TP-]1 SCRNLI ST screennanel [... screennanell]
[MAPSET(mapset nane) |
[LI NKAGE]
[REDEFI NE| NOREDEF]

IMS DC
Format 1:

[TP-]1 SCRNLI ST screennanel [.../ screennane40]

Format 2:

[TP-]1 SCRNLI ST screennanel [... screennane40]

ISPF Dialog

Format 1:

[TP-]1 SCRNLI ST screennanel[(LK)] [... screennane40[(LK)]]
Format 2:

[TP-]1 SCRNLI ST screennanel] ... screennane40]
[LI NKAGE]

Reference

Parameters:

Comments:

SCRNLIST

ISPF prototyping

Any target syntax.

(LK) LINKAGE Generate every screen record in the Linkage
Section instead of in Working-Storage.

mapsetname Mapset containing the screen(s) received by the
program; must be a literal (maximum 7
characters).

NOREDEF Screen records do not redefine each other.

Ignored when coded with LINKAGE.

REDEFINE Default. Screen records redefine each other.

Code the SCRNLIST call to override the generated TP-SCRNLIST, or if
coding outside the APS Painters.

Code SCRNLIST only once, before NTRY, and do not code a screen
name with NTRY.

APS generates 88-level flags indicating the received screen.

TP- SCRN- RECEI VED Pl C X(08)

88 TP- screennane- RECElI VED VALUE ' screennane’ .

CICs

To generate multiple-map mapsets, access APS Utilities Menu, select the
APS Precompiler screen, and then select option 2X, Generate BMS
Multiple Map Mapset.

IMS DC

Label each screen in the APS Screen Painter. A labeled screen
contains eight extra bytes (appended to the MID) that contain the
screen name. NTRY logic determines which screen named in
SCRNLIST was received, moves the data to the appropriate screen
record description in Working-Storage, and performs any specified
field editing.

Screens separated with a slash (/) instead of a space redefine each
other in Working-Storage, limiting the size of Working-Storage.

A maximum of 30 screens can be listed in the Application Painter
(and thus appear in the automatically-generated TP-SCRNLIST).

Reference

427

428

Examples:

Reference

® You can write macros to customize SCRNLIST processing for some or
all screens in the screen list, using an APS-supplied predefined
macro name.. APS executes the macros at locations immediately
before and after the following APS-generated paragraphs.

APS Paragraph Paragraph Function
APS-CHK-SCRN-RECEIVED-PARA Checks which screen was
received
APS-screenname-RECEIVED-PARA Receives the screen
APS-SCRNLIST-EDIT-PARA Determines which screen has
field edits
APS-screenname-INP-EDIT-PARA Processes screen field edits

Define the macros using these predefined macro name formats.

$TP- PRE- CHK- SCRN- RECEI VED
$TP- POST- CHK- SCRN- RECEI VED
$TP- PRE- scr eennane- RECEl VED
$TP- POST- scr eennane- RECEI VED
$TP- PRE- SCRNLI ST-EDI T

$TP- POST- SCRNLI ST-EDI T

$TP- PRE-screennane- 1 NP-EDI T
$TP- POST- screennane- | NP-EDI T

CIcs

Generate screen records SCRA and SCRB, that redefine each other, in

Working-Storage. Both screens are in mapset SCRASET.

SCRNLI ST SCRA SCRB MAPSET(SCRASET)

Generate a screen record in the Linkage Section for screen SCRA.

SCRNLI ST SCRA NMAPSET(SCRASET) LI NKAGE

Generate screen records that do not redefine each other.

SCRNLI ST SCRA SCRB NOREDEF

IMS DC

Code logic that receives either SCREENA, SCREENB, or SCREENC, and
always sends SCREENC as the output screen:

| F TP- SCREENA- RECEI VED
SCREENGC- FI ELD-1 = SCREENA- FI ELD- X
SCREENGC- FI ELD- 2 = SCREENA- FI ELD-Y

SD

SCREENGC- FI ELD- 3 = SCREENA- FI ELD-Z

| F TP- SCREENB- RECEI VED
SCREENC- FI ELD- 1 SCREENB- FI ELD- XX
SCREENC- FI ELD- 2 SCREENB- FI ELD- YY
SCREENC- FI ELD- 3 SCREENB- FI ELD- ZZ

Code logic where, during a single execution, the program can receive
either SCREENA or SCREENB. Let SCREENA and SCREENB redefine each
other; keep SCREENC separate (not involved in the redefinition in the
SCRNLIST call) in order to prevent any improper overlaying (and thus
destruction) of data fields.

SCRNLI ST SCREENA/ SCREENB SCREENC

ISPF Dialog
Generate screen records SCRA and SCRB in Working-Storage:

SCRNLI ST SCRA SCRB

Generate screen record SCRA in Working-Storage, and screen record
SCRB in the Linkage Section

SCRNLI ST SCRA SCRB(LK)

SD

Category:
Description:

Syntax:

Comments:

Program Painter and Specification Editor keyword (see Keywords)

Include a sort file description.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
SD sortfilenane
[Appl i cabl e COBOL SD cl auses]

® Use one SD keyword per sort file description.

® Follow each file description with the file record description, using
the 01, DS, REC, or ++ keywords.

Reference

429

430

Example: -KYWD- 12-%----20---%----30---%*-=--40---*----50---%----60

10 I NPUT- FI LE ASSI GN TO UT-S-1 NPUT
10 OUTPUT- FI LE ASSI GN TO UT- S- QUTPUT
SPNM CO1 IS TOP- OF- PAGE

FD I NPUT- FI LE

LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS
01 I NPUT- RECORD PI C X(80)

FD OUTPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS
01 OUTPUT- RECORD PI C X(80)

SD SORT- FI LE
RECORD CONTAI NS 80 CHARACTERS
DATA RECORD | S SORT- RECORD

01 SORT- RECORD Pl C X(80)

SEARCH

Category: S-COBOL structure (see S-COBOL Structures)

Description: Use in the same manner as the COBOL SEARCH verb, including
conditionals and looping for each WHEN condition.

Syntax: Format 1:

SEARCH identifierl VARYI NG i ndexnane| i dentifier2
[[AT] END|
st at enent bl ock

[WHEN searchcondi tionl
statenent bl ock]

[WHEN searchcondi tionN
statenent bl ock]

Reference

Example:

SEND

Format 2:

SEARCH ALL identifier [[AT] END]
st at enent bl ock

WHEN sear chcondi ti on
st at enent bl ock

Use SEARCH to achieve the NEXT SENTENCE concept. If the condition in
lines 1040-1050 is true, pass control to line 1110.

SLINE- -KYWD- 12-%----20---%-==-30---%----40---%---50---*-
001010 PARA SEARCH TABLE

001020 SEARCH STOCK- ELEMENT AT END
001030 PERFORM END- ROUTI NE

001040 WHEN QUAN- ON- HAND (STOCK- | NDEX) NOT <
001050 ... QUAN- NEEDED (STOCK- | NDEX)

001060 WHEN QUAN- ON- HAND (STOCK- | NDEX) = ZERO
001070 PERFORM NO- STOCK- ROUTI NE

001080 WHEN QUAN- ON- HAND (STOCK- | NDEX) <
001090 ... QUAN- NEEDED (STOCK- | NDEX)

001100 PERFORM DETERM NE- | F- ORDER- ROUTI NE
001110 WORK- QUAN = QUAN- ON- HAND (STOCK- | NDEX)

SEND

Category:

Description:

Syntax:

Data communication call (see Data Communication Calls)

Display screen data for end user response. Additionally:

® Under CICS, generate a CICS SEND MAP command to send screen
data to a terminal for user response, as well as a CICS RETURN
command to return control to CICS.

® Under IMS DC, send screen messages, in screen or record layout
form, to terminals or printers.

CIcs

[TP-]1 SEND screen[(mapset nane)] [errorparal
[TRANSI D(nane) |
[NORETURN] [NOERASE]
[Cl CSoption [ClICSoption] ...]

Reference

431

432

Parameters:

Reference

ISPF Dialog

[TP-]1 SEND screen [errorpara]
[CONTI NUE| NOCONTI NUE]

IMS DC

[TP-]1 SEND screennane| recor dname [error par al

[/term
[keywor d[+keyword] ...]

ISPF Prototyping
Valid syntax is the CICS syntax, the ISPF Dialog syntax, and:

[TP-]1 SEND screennane| recordname [errorpar a)

[/term

CONTINUE Execute the next instruction after the call. See
also "Comments" below.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

keyword Valid keywords are:

NOALTRESP Default. Do not use the
alternate response 10 PCB to
send the response to the

terminal.

ALTRESP Use the alternate response 10
PCB to send the response to the
terminal.

NOCONT Default. Control returns to the

top of the program to process
another input message.

CONT Execute the next instruction
after the call.

CONTCOND TP-CONTCOND determines if
control passes to the next
instruction or returns to the top
of the program.

Iterm

mapsetname

NOCONTINUE

NOERASE
NORETURN

NOEXPRESS

EXPRESS

NOENDCONV

ENDCONV

SCREEN

RECORD

NOPURG

PURG

SEND

Default. Do not send a message
for abnormal program
termination.

Send a message at program
termination.

Default. Do not blank out
TRANCODE in the SPA.

Blank out TRANCODE in the
SPA.

Default. Input is an APS-painted
screen. Multisegment screens
are not supported.

Input is recordname. See also
"Comments" below.

Send all messages to the same
destination as one multi-
segmented message. Default
with NOEXPRESS keyword.

After inserting the message,
send it as one single-segmented
message. Default with EXPRESS
keyword.

Logical terminal or printer where program sends
message; can be a literal (maximum 8 characters)
or COBOL data name (maximum 9 characters).
Default is device that sends an input message to
the program.

Mapset containing the screen(s) the program
receives; must be a literal (maximum 7
characters). When not specified, APS generates a
default mapset name as per NTRY.

Default. Return control to the top of the
program. See also "Comments" below.

Suppress default generation of ERASE.

Suppress default generation of CICS RETURN
command (after a generated CICS SEND MAP
command).

Reference

433

434

Comments:

Reference

recordname User-defined I/O area in Working-Storage. See
also "Comments" below.

screenname Screen name; must be literal (maximum 8
characters).

TRANSID (name) Transaction code identifying the program where

control returns; can be a literal (maximum 4
characters) or COBOL data name (minimum 5
characters).

userparm Pass linkage data area(s). Code with TP-LINKAGE,

which names the 01-level user-defined area in
the Linkage Section.

ISPF Dialog

With NOCONTINUE, enter your return code checking routine under
TP-SCREEN-INVOKED logic. With CONTINUE, enter your return code
routine checking under SEND.

The following APS-provided structure checks the return code after a
SEND.

APS- TP- SEND- RC PI C 9(08).
88 OK- ON- SEND VALUE 0.
88 NTF- ON- SEND VALUE 4.
88 END- ON- SEND VALUE 8.
88 AB- ON- SEND VALUE 12 16 20
IMS DC

For recordname, move the MOD name to IM-SCREEN-RECORD-
MODNAME (an APS-generated field) prior to SEND. Multisegment
screens are not supported.

Use the PURG and NOPURG keywords to control how APS sends
messages. When issuing multiple inserts to the same destination
before reaching a SYNC point, IMS sends the messages as one multi-
segmented message. If you send the message via an Express PCB,
APS issues a PURG after the insert and sends it as one single-
segmented message.

When coding RECORD and recordname in conversational programs,
code the following statement if recordname differs from your
application trancode.

SYmML % &r ecor dname- TRANCODE = "t rancode"

SEND

When sending screens with edited fields, the value of the field
variable (the COBOL name assigned during screen painting) moves
to a field defined with a display format. The edited fields must
contain valid values on output or the screen returns for correction.

To allow end users to send invalid or empty screen values, specify
NORETRY with the NTRY keyword and use the generated flags to
test for input data validity.

SEND logically terminates a program when executed; however, the
program actually runs as a loop that processes multiple input
messages.

To retain control in the program after sending a screen, code the
CONT keyword. You can then send more than one screen or
message from a program while processing a single transaction, or
send multiple pages of output to the same destination.

When coding a conversational program in Online Express, APS
checks your alternate 10 PCB for the following parameters.

EXPRESS=YES
MODI FY=YES
ALTRESP=YES

If any parameters are missing, a message warns you that, if an error
occurs after successful database updates, APS does not send a
message to the originating terminal--the program simply terminates
and performs a rollback of the updates.

In a single program execution, the terminal operator can page
forward and backward with MFS logical paging commands. To do
this:

a Ensure that all pages are for the same screen format.
b Ensure that all generated APS screens contain a single DPAGE.

¢ Specify operator logical paging on the Screen Generation
Parameters screen in the Screen Painter.

d Specify that the trancode comes either from a screen field or
from PF keys. If PF keys provide all or part of the trancode,
define the PF key values on the MFS Function Key screen.

Reference

435

436

Examples: CICS
Send screen map SCRA.

Program Painter source

SEND SCRA

Generated source:

EXEC ClI CS SEND MAP(' SCRA)
FROM AA00- RECORD)
MAPSET(' SCRASET’)
CURSOR
ERASE
FREEKB END- EXEC.

EXEC Cl CS RETURN
TRANSI D(’ SCRA')
COVVAREA(TP- COMVAREA)
LENGTH(169) END- EXEC.

GO TO APS- USER- MAI N- PARA- - EXI T.

Generate a CICS SEND MAP for map SCRA in mapset SCRASET, return to
CICS with transaction code WXYZ. Override the default TRANSID
specified in the Screen Painter.

SEND SCRA(SCRASET) * TRANSI D(’ WKYZ')

Generated source:

EXEC CI CS SEND MAP(' SCRA)
FROM AA00- RECORD)
MAPSET(' SCRASET’)
CURSOR
ERASE
FREEKB END- EXEC.

EXEC Cl CS RETURN
TRANSI D(’ WKYZ')
COVVAREA(TP- COMVAREA)
LENGTH(169) END- EXEC.

GO TO APS- USER- MAI N- PARA- - EXI T.

Generate a CICS SEND MAP for map SCRA.

SEND SCRA * NORETURN

Generated source:

EXEC ClI CS SEND MAP(' SCRA)
FROM AA00- RECORD)

Reference

SEND

MAPSET(' SCRASET’)
END- EXEC.

DDS and DLG

Display screen SCRA. Determine whether END or RETURN was entered
on the screen.

NTRY SCRA
I F TP- PROGRAM | NVOKED
PERFORM | NI Tl ALI ZE- SCREEN- FI ELDS
ELSE- | F TP- SCREEN- | N\VOKED
I F END- ON- SEND
OR SCRA-FUNCTION = ' FE
/* USER ENTERED END OR RETURN
TERM
ELSE-1 F OK- ON- SEND
PERFORM PROCESS- SCREEN- DATA
ELSE
SCRA- SYSMSG = ' | NVALI D OPTI ON
SEND SCRA * NOCONTI NUE

Display screen SCRA. Determine whether END or RETURN was entered
on the screen. Perform return code checking immediately following the
SEND.

REPEAT

SEND SCRA * CONTI NUE
UNTI L APS-TP- SEND-RC > 0

PERFORM PROCESS- SCREEN- DATA
TERM

IMS DC

Send the single screen defined as output for the program.

SEND

In a program with multiple output screens, qualify the screens to send.
SEND SCRA

Send a screen using the EXPRESS PCB.

SEND SCRA * * EXPRESS

Send a screen using an alternate PCB and return to the next instruction
following the call.

SEND SCRA * * CONT+ALTRESP

Reference

437

438

SOURCE

Category:

Compatibility:
Description:

Syntax:

Keywords/
Parameters:

Reference

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Batch environments
Map Data Division items to output fields.

SOURCE [I S] datanane [iterativeexpression] [Pl C picclause]
[BLANK [WHEN] ZERQC]
[CHANGE | NDI CATE| GROUP | NDI CATE]
[JUSTI FI ED] JUST [RI GHT]
[DATA-NAME [S] fi el dnane]

BLANK WHEN ZERO Print spaces when SOURCE dataname is zero.
COBOL usage rules apply.

CHANGE INDICATE Print value of SOURCE dataname whenever it
changes. See also "Comments:" below.

dataname Data item being referenced; can be report
mock-up field or a Working-Storage field. See
also "Comments" below.

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the
generated report group. DATA-NAME moves
the value of the internal SUM accumulator to
fieldname.

Code the DATA-NAME clause when a SUM
UPON clause references DETAIL report group,
when the program references a sum
accumulator, or when a sum accumulator
requires a data name for qualification.

Comments:

SOURCE 439

GROUP INDICATE Identify an item, such as a header, that prints

on the first occurrence of its report group after
a control break or a page advance. You can use
GROUP INDICATE when a DETAIL type defines
a printable item; specify GROUP INDICATE for
elementary items. If the RED keyword does not
contain a PAGE or a CONTROL clause, a GROUP
INDICATE item prints the first time its DETAIL
line prints after INITIATE processing. See also
"Comments" below.

iterative expression Generate multiple SOURCE statements for

suffixed data items or elements of an array. See
the APS User’s Guide chapter Creating Reports
with Report Writer.

JUSTIFIED RIGHT Right justify the field value. COBOL usage rules
apply.
PIC picclause Specify the format of dataname. If dataname is

a report mock-up field instead of a Working-
Storage field, the next matching COBOL
picture in the report mock-up is the picclause
for dataname.

SOURCE immediately follows the MOCKUP or OVERPRINT clause.

SOURCE designates that the item is described in the program Data
Division, is the special Report Writer register LINE-COUNTER or
PAGE-COUNTER, or is the internal sum accumulator established by
Report Writer.

In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and
REPORT FOOTING report groups, SOURCE cannot reference controls
or data items referencing controls.

To map PAGE-COUNTER when there is more than one reportin a
program, code SOURCE PAGE-COUNTER OF reportname.

In a DETAIL type entry, use CHANGE INDICATE instead of GROUP
INDICATE to suppress printing the item after a page break.

In a report mock-up, use PIC clauses instead of COBOL masks when
formatting dates and times containing / $ or :. See Report Mock-
Ups.

Reference

440

Example:

- KYWD- 12-*----20---*----30---*----40---*----50---*----60
01 DETAI L- LI NE TYPE IS DETAI L.
MOCKUP LI NE 16
SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH PI C 99
SOURCE WS- LAST- COUNT- DAY PIC 99
SOURCE WS- LAST- COUNT- YEAR PIC 99

SOURCE WS- QTY- 1 N- STOCK JUSTI FI ED RI GHT
SOURCE WS- QTY-1 SSUED JUSTI FI ED RI GHT
SOURCE WS- QTY- RECEI VED JUSTI FI ED RI GHT

REFERENCE W6- NO- OF- SALES PI C 9999

Special Registers

Compatibility

Description:

Comment:

Examples:

Reference

SQL target

Use selected APS/SQL calls to reference and test special registers as
column values. Special registers include:

CURRENT DATE
CURRENT TI MVE
CURRENT TI MESTAWP
CURRENT TI MEZONE

Use special registers in DB-DECLARE, DB-OBTAIN, and DB-PROCESS calls
to:

® Store and display the special register values.

® Evaluate special register values in WHERE clauses for conditional
processing.

Do not use SQL function names,such as HOUR, TIMESTAMP, as column
names.

Store the value of CURRENT-DATE in a Working-Storage field.

DB- OBTAI N REC D2TAB- REC
PM_PART_NO
PM_COLOR (V8- COLOR)
CURRENT DATE (WS- CURR- DATE)
WHERE PM PART SHORT _DESC = ' W DGET’
AND PM COLOR = ' RED

SPNM

Select rows by comparing column SHIP_DATE with the special register
CURRENT DATE.

DB- PROCESS REC D2| NVEN- REC
DB- PROCESS- | D D21 NV- | D
| N_PART_NO
| N_PART_SHORT_DESC
| N_QTY_ONHAND
WHERE SHI P_DATE = CURRENT DATE

SPNM

Category:
Purpose
Syntax - KYWD-
SPNM
SPNM
Example: - KYWD-
SPNM

Program Painter and Specification Editor keyword (see Keywords)

Create a Special-Names paragraph in the generated program.

stat enent 1

stat enent 1

C01 IS TOP- OF- PAGE

SQL

Category:
Compatibility:

Description:

Program Painter and Specification Editor keyword (see Keywords)
SQL target

Designate a DB2 table or cursor declaration in the Working-Storage or

Linkage Section. Additionally, code native SQL statements and pass
them through, without translation, to the precompile process.

Reference

441

442

Syntax:

Comments:

Examples:

Reference

Format 1, Working-Storage and Linkage Sections:

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
SQL SQ@.dat ast ruct urest at enent

Format 2, Procedure Division:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
SQ. nativecall

® Use one SQL keyword for each SQL call. APS generates EXEC SQL
and END-EXEC statements before the first and last statements,
respectively.

® |nthe Data Division, the SQL keyword designates a DB2 table or one
or more cursor declarations in the Working-Storage or Linkage
Section. Use one SQL keyword for each SQL call. APS generates EXEC
SQL and END-EXEC statements before the first and last statements,
respectively.

® |n the Procedure Division, start every SQL Procedure Division
statement with the SQL verb, coded in columns 12 through 72.
Begin subsequent lines of the statement with continuation ellipses.
All statements pass to the precompiler without translation. SQL
statements can be coded anywhere after the PARA, PROC, or NTRY
keywords.

Program Painter code:

~KYWD- 12--%--220---%-==-30----%-=-40---%-=-50---*---60---
SQL
DECLARE DSN8. TDEPT TABLE

(DEPTNO CHAR(3) NOT NULL,

DEPTNAME CHAR(36) NOT NULL,

MGRNO CHAR(3) NOT NULL,

ADMVRDEPT CHAR(3) NOT NULL)
REC WS DEPARTMENT

DEPARTMENT- NUM X3
DEPARTMENT- NAME X36
DEPARTMENT- MGR- NO X3
DEPARTMENT- ADM N X3

NTRY

SQL

SQ
SELECT DEPTNO, DEPTNAME,
MGRNO, ADVRDEPT
| NTO : DEPARTMENT- NUM
: DEPARTVENT- NAVE,
: DEPARTMENT- MGR- NO,
: DEPARTMVENT- ADM N
FROM DSN8. TDEPT
WHERE DEPTNO > 0

| F SQLCODE > +0

PERFORM ERROR- DI SPLAY

Generated code:

%
%
%
%
%
%
%
%

&AP- GEN- VER = 1719

&AP-PGW I D = " TSTSQL"

&AP- GEN- DC- TARGET = "I SPF"
&AP- TP- ENTRY- KYWD- SEEN = 1
&AP- SUBSCHEMA = ""

&AP- APPLI CATION-1 D = "TSTSQL"
&AP- GEN- DATE = "861219"

&AP- GEN- TI ME = "16063323"

I DENTI FI CATI ON DI VI SI ON.

PROGRAM- | D. TSTSQL.

AUTHOR. AP- SYSTEM GENERATED.
DATE- WRI TTEN. 861219.

DATE- COVPI LED. &COWPI LETI ME.

ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.

SOURCE- COMPUTER. &SYSTEM

OBJECT- COMPUTER &SYSTEM

DATA DI VI SI ON.
WORKI NG- STCRAGE SECTI ON.
$TP- W5- MARKER

01

EXEC SQL | NCLUDE SQLCA

END- EXEC.

EXEC SQL

DECLARE DSN8. TDEPT TABLE I *
(DEPTNO CHAR(3) NOT NULL, I *

DEPTNAME CHAR(36) NOT NULL, I *

MGRNO CHAR(3) NOT NULL, I *
ADVRDEPT CHAR(3) NOT NULL) I *

END- EXEC.

G- DEPARTMENT.

05 DEPARTMENT- NUM PIC X(3).

05 DEPARTMENT- NAVE PI C X(36).

05 DEPARTMENT- MGR- NO PIC X(3).

Reference

443

444

05 DEPARTNMENT- ADM N PI C X(3).
$TP- COMWWAREA
$TP-ENTRY ("", "")

SQL
... SELECT DEPTNO, DEPTNAME,
MGRNO, ADMRDEPT
I NTO : DEPARTMENT- NUM
: DEPARTVENT - NAME,
: DEPARTMENT- MGR- NO,
: DEPARTMENT- ADM N
FROM DSN8. TDEPT
WHERE DEPTNO > 0
IF SQLCODE > +0
PERFORM ERROR- DI SPLAY

STOP RUN

Category: S-COBOL structure (see S-COBOL Structures)
Description: Return control to the operating system.

Syntax: STOP RUN

Comments: ® STOP RUN can appear anywhere in an S-COBOL program.

® APS generates a STOP RUN at the end of the first paragraph of an S-
COBOL program and at the end of the first paragraph of a called
program that compiles independently of the main program.

STUB

Category: Program Painter and Specification Editor keyword (see Keywords)

Purpose: Include a program stub, or a reusable program module, that is available
to any program in the application.

Reference

Subselect Clause

Syntax: -Kyw- 12-*----20---%----30---*----40---%----50---*----60
STUB stubnane

Comments: ® During generation, APS inserts the program stub where the
keyword STUB appears.

® To continue programming after a stub, code another keyword.

Example: -KYWD- 12-%----20---%--=-30---%*-=--40---*----50---%----60
NTRY MSCR
| F ENTER- KEY
PERFORM READ- RTN (MSCR- PART- NBR,
MBCR- NEW PART- NBR,
MBCR- OLD- PART- NBR,
MBCR- SHORT- DESC, MSCR- UNI TS,
MBCR- BASE- PRI CE,
MBCR- DI MENSI ONS,
... MBCR- ERR- MSQ)
ELSE
MBCR- ERR- MSG = ’ | NVALI D PF KEY ENTERED
SEND MSCR
STUB STUBPGM
PARA PROCESS- PARA

Subselect Clause

Compatibility: SQL target

Desciption: Create subselect clause by embedding a complete DB-OBTAIN call
within a WHERE clause.

Syntax: Embed a DB-OBTAIN call by enclosing it in parentheses. The syntax for
the embedded DB-OBTAIN is the same as that for a standard DB-
OBTAIN.

Comments: ® Create subselect code in a DB-DECLARE, DB-OBTAIN, DB-PROCESS,
or DB-STORE call.

® All standard SQL requirements for a subselect clause apply to the
embedded DB-OBTAIN.

Reference

445

446

Example:

Reference

® The number and type of columns coded must match the DB-OBTAIN
column sequence; both calls must specify columns from different
tables.

® When you code a DB-STORE call, make sure that you:

® Make the number of selected columns for DB-STORE match the
number of columns in the result table for the subselect.

® Do not code the same copylibname-REC in both the DB-STORE
and subselect calls.

® Do not code DB STORE FROM dataname.
® Do not code alternate values for any columns in DB-STORE.

® Do not enclose the subselect statement in parentheses, as you
do for other DB calls.

DB- OBTAI N REC A. D2TAB- REC
PM_PART_NO PM UNI T_BASE_PRI CE
WHERE EXI STS
(DB- OBTAI N REC D2l NVEN- REC
WHERE | N_PART NO = A. PM PART_NO)

DB- DECLARE D2MAST- CURSOR D2TAB- REC
PM_PART_NO PM UNI T_BASE_PRI CE PM COLOR
WHERE PM PART NO I N
(DB- OBTAI N
REC D2I NVEN- REC | N_PART_NO
WHERE | N_QTY_ONHAND > 100)

... AND PM UNI T_BASE_PRI CE BETWEEN 50 and 100

DB- PROCESS REC D2TAB- REC
PM_PART_NO PM UNI T_BASE_PRI CE PM COLOR
WHERE PM UNI TS <
(DB- OBTAI N REC D2TAB- REC
AVG(PM_UNI TS))

DB- STORE REC D2I NVEN- REC
I N_PART_NO | N_QTY_ONHAND
DB- OBTAI N REC D2TAB- REC
PM_PART_NO PM PART SHORT DESC
WHERE PM_UNI TS > ’ 99’

SUM

SUM

Category:

Compatibility:

Description:

Syntax:

Parameters:

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Creating Reports with Report Writer.)

Batch environments

Sum data items, and generate an internal SUM accumulator for a
SOURCE or REFERENCE data field to be used in a control footing group.

SUM + [I S] datanane [iterativeexpression| datanane]
[UPON det!lineidentifier [detlineidentifier] ...]
[RESET [ON] [FINAL] control nane]
[DATA-NAME [S] fi el dnane]

[PI CTURE| PIC [19]

dataname

DATA-NAME fieldname

iterative expression

pi ccl ause]

Data item to reference; can be report mock-up
field or a Working-Storage field. Define as a
numeric data item. See also "Comments"
below.

Name a sum accumulator established by a
SUM or REFERENCE clause. Do not define
fieldname in Working-Storage. At generation,
APS inserts fieldname after the level number
in the generated report group. DATA-NAME
moves the value of the internal SUM
accumulator to fieldname.

Code DATA-NAME when a SUM UPON clause
references DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

Generate multiple SUM statements for
numerically suffixed data items or elements of
an array. See the [terative Expressions topic in
the APS User’s Guide chapter Creating Reports
with Report Writer"

Reference

447

448

Comments:

Examples:

Reference

PIC picclause Specify the format of dataname. If dataname
is a report mock-up field instead of a Working-
Storage field, the next matching COBOL
picture in the report mock-up is the picclause
for dataname. Picclause determines the size of
the internal SUM accumulator.

RESET controlname Set the SUM accumulator to zero after a
control break on controlname. If RESET is not
coded, the internal SUM accumulator resets to
zero after each control break.

UPON detline-identifier Sum on the printing of a specific detail line,
when there is more than one detail line.
Detlineidentifier is the name of DETAIL report

group.

® To set up a SUM accumulator, identify the data field with a SOURCE
or REFERENCE on the detail line, and sum it with a SUM clause on
the control footing line. APS adds the value of dataname1 to its
internal sum accumulator each time the dataname1 data item prints
for a detail group.

® SUM is valid for a CONTROL FOOTING report group only. It follows
MOCKUP or OVERPRINT clause.

® The internal SUM accumulator value prints with the CONTROL
FOOTING group and then clears.

® |f the description for a printable data item contains a SUM clause,
the internal SUM accumulator serves as a data item, that is, Report
Writer moves the internal accumulator value to the data item for
printing.

® APS sums data field values into internal SUM accumulators during
GENERATE and TERMINATE processing.

Each time DEBIT-LINE generates, add SOURCE amount to the DEBIT-LINE
and CREDIT-LINE amount accumulators.

01 DEBI T- LI NE TYPE | S DETAI L.
MOCKUP LI NE 1
SOURCE AMOUNT PI C 9(5)
01 CREDI T- LI NE TYPE | S DETAI L.
MOCKUP LI NE 2
SOURCE AMOUNT PI C 9(5)

SUM

01 TYPE IS CONTROL FOOTI NG W5- PRODUCT - CODE.
MOCKUP LI NE 3
SUM AMOUNT UPON DEBI T-LINE PI C 9(6)
SUM AMOUNT UPON CREDI T-LI NE PI C 9(6)

Print CONTROL FOOTING and RESET the SUM accumulator to zero after
the final control break.

“KYWD- 12-%-2--20---%--=-30---%---=40---*----50---*----60
01 TYPE I'S CONTROL FOOTI NG WS- LOCATI ON- CODE.

MOCKUP LI NE 15 THRU 21

SUM W&- QTY- | N- STOCK RESET ON FI NAL

RESET the WS-LOCAL-SALES field to continue accumulating a sum until
the WS-REGION-SALES control break occurs.

- KYWD- 12-*----20---*----30---*%----40---*----50---*----60

RED SALES REPORT

CONTRCLS ARE FI NAL Ws- REG ON- SALES

WS- LOCAL - SALES

01 TYPE |I'S CONTROL FOOTI NG Ws- LOCAL- SALES.

MOCKUP LI NE 5

SUM WS- LOCAL- SALES RESET ON

W5- REG ON- SALES

Move the value of the NO-OF-SALES accumulator to the TOT-SALES
field.

“KYWD- 12-%---20---%--=-30---%---=40---*----50---*----60
01 TYPE I'S CONTROL FOOTI NG WS- LOCATI ON- CODE.

MOCKUP LI NE 12

SUM NO- OF- SALES DATA- NAVE TOT- SALES

Print all values for WS-QTY-IN-STOCK on the detail line in the report
and the total of those values in the control footing of the report. Print
the total only for WS-NO-OF-SALES in the control footing. When the
detail line is prints, add the REFERENCE field value to the SUM
accumulator.

- KYWD- 12-*----20---*----30---*%----40---*----50---*----60
01 DETAI L- LI NE TYPE IS DETAI L.
MOCKUP LI NE 16
SOURCE WS- QTY- 1 N- STOCK PI C 777, 779
REFERENCE WS- NO- OF- SALES PI C 9999
01 TYPE IS CONTROL FOOTI NG W5- LOCATI ON- CODE.
MOCKUP LI NES 17 THRU 23
SUM W&- QTY- | N- STOCK PIC Z, 277,779
SUM WS- NO- OF- SALES PI C 7779

Reference

449

450

SUPPRESS (IMS DB Option)

Compatibility:

Description:

Description:

IMS DB target

Suppress the generation of IMS database calls when prototyping under
ISPF.

The &IM-SUPPRESS-DB-CALL field prevents DB calls from being
generated in your program. During prototyping, this call enables you to
code APS/IMS DB calls before you are ready to access the database.

This field resides in the APS CNTL file APSDBDC; set it to YES to suppress
DB call generation; the default is NO.

Note: In Online Express, this is handled via the Database Calls field in
the Express Parms screen in Online Express.

SUPPRESS (Report Writer)

Category:

Description:

Syntax:

Comments:

Reference

Report Writer statement (see Report Writer Structures and the APS
User’s Guide chapter Creating Reports with Report Writer.)

Inhibit printing a report group named in a USE BEFORE REPORTING
clause.

SUPPRESS PRI NTI NG

® Use SUPPRESS only with USE BEFORE REPORTING.

® This structure suppresses the following report group functions.
® Line printing
® LINE NUMBER and NEXT GROUP processing
® LINE-COUNTER adjusting

Example:

SUPRA

® APS generates the COBOL statement MOVE 1 TO PRINT-SWITCH.
When this statement is processed the warning message, NEXT
GROUP WILL BE SUPPRESSED, displays.

- KYWD-
NTRY

DPAR

DPAR

OPEN | NPUT
OPEN QUTPUT
PERFORM NMAI N- PARA
SUPPRESS- CH- REGI ON SECTI ON

USE BEFORE REPORTI NG CH REG ON
SUPPRESS- CH- REGI ON- PARA

I F FI RST- FLG = TRUE

SUPPRESS PRI NTI NG

SUPRA

Category:

Description:

Syntax:

S-COBOL structure (see S-COBOL Structures)

Code native SUPRA DBMS procedural statements in the Procedure
Division of an S-COBOL program.

S-COBOL source input

W6

01 [viewnane] | NCLUDE [ogical vi ewnane [(userfieldlist)]

SUPRA supr ast at enent

suprast at enent

COBOL source output

WORKI NG- STORAGE SECTI ON.
01 [viewnane] | NCLUDE [/ ogicalviewnane [(userfieldlist)]

suprast at enent

supr ast at enent

Reference

451

452

Comments:

® SUPRA statements pass through the APS precompiler unchanged.

® You must code a native SUPRA INCLUDE statement in the Working-

Storage Section.

® PASS can be substituted for SUPRA to get the same results.

SY* Keywords

Description:

Syntax:

Reference

Specify in a program the location where the generator places source

code.

-KYWD- 12-*----20---*----30
SYBT source
SYEN source
SYDD source
SYFD source
SYI O source
SYLT source
SYLK source
SYmML source
SYme source
SYRP source
SYW5 source

Locations in Generated Code

Location Keyword
Top of program SYM1
SYM2

Environment Division SYEN

SYIO

Explanation

At the beginning of the program,
before rule libraries that you
include at the beginning of the
program

After rule libraries that you include
at the beginning of the program

In the Environment Division, after
the Special-Names paragraph

In the Input-Output Section, after
rule libraries that you include at the
beginning of the Input-Output
Section

Comments:

Examples:

SY* Keywords

Location Keyword Explanation
Data Division SYDD At the beginning of the Data
Division
SYFD In the File Section, after rule

libraries that you include at the
beginning of the File Section

SYWS In the Working-Storage Section,
after rule libraries and data
structures that you include in
Working-Storage

SYLT In the Linkage Section, after rule
libraries and data structures that
you include at the beginning of

Linkage

SYLK In the Linkage Section, after source
code that you include with the SYLT
keyword

SYRP In the Report Section, after any rule

libraries that you include at the
beginning of the Report Section

Procedure Division SYBT At the end of the program

® The effect of a SY* keyword ends with the appearance of another
keyword in the KYWD column.

® The generation process shifts the source to start in column 8.

Include a rule at the top of the program.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % | NCLUDE USERMACS(MY- RULE)

Include a rule at the bottom of the program.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYBT % | NCLUDE USERMACS(MY- RULE)

Place a variable assignment statement at the top of the program.

“KYWD- 12-%---220---%--2--30---*--=-40---*%----50---*----60
SYML &TP- USER-LEN = 49

Reference

453

454

Include a copybook in Working-Storage.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYWS % | NCLUDE COPYLI B(MY- COPYBOCK)

Include a copybook in Linkage.

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60
SYLK % | NCLUDE COPYLI B(MY- COPYBOCK)

System Service Calls

Category: IMS system service calls
Compatibility: IMS DB and IMS DC targets

Description: Ensure successful recovery from error conditions. Monitor and control
database services; define regular checkpoints from which you can
request a service for the database and check for error conditions;
perform error recovery from the last successful checkpoint status check.

Syntax: | M CHKP pcbname checkpoi nt| D
[/ engthl dataareal [... |ength7 dataarea7

I M XRST pcbnane
[lengthl areal [... length7 area7]]
[checkpoi nt1 D nmaxi ol engt h]

| M CHKP- OSVS pcbnane checkpoi nt | D

| M DEQ pcbnane deqchar act er

| M GSCD pcbnane

| M LOG pcbnarne | ogcode | ogl engt h nessage

I M ROLB pcbname [nsgar ea]

I M ROLL

| M STAT- DBAS- FULL pcbnane

| M STAT- DBAS- UNFORVATED pcbnane

| M STAT- DBAS- SUMMARY pcbnane

| M STAT- VBAS- FULL pcbnane

| M STAT- VBAS- UNFORVATED pcbnane

| M STAT- VBAS- SUMMARY pcbnane

Reference

System Service Calls

Parameters: checkpointid An 8-character COBOL data name or a literal

that specifies the ID for this checkpoint

dataarea Name of the data area designated in Working-
Storage

deqcharacter A COBOL data name or single character literal
string

length Length of data area as defined in Working-
Storage

logcode A COBOL data name or literal character string

containing a code that must be greater than or
equal to X'A0’ and less than or equal to X'EQ’

loglength Length of record, excluding the 5-byte header

maxiolength Length of the largest program 1/O area; can be

variable or literal; default is the longest path
call I/0 area, or 0 if no path call exists

message A COBOL data name or literal string

msqgarea Name of area in program where IMS returns the

message segment being processed

pcbname Database view; can be up to 20 characters;

default is 10-PCB

Comments: ® These calls generate Working-Storage areas as arguments.

® For checkpoint/restart functions:

These calls neither redefine the IMS facilities nor change the
considerations for their use. Consult your appropriate IMS
reference manuals for information.

Checkpoint and restart are normally not applicable to online
programs. This is because the database updates associated with
processing an online message represent a single work unit,
which executes for only a brief period of time.

Batch and BMP programs may require this facility based on the
expected duration of execution, number of database updates,
and the potential for conflict with other concurrent processes.

Checkpoint calls establish both an IMS commit point and a place
where the program can be restarted. There are two types of
checkpoints.

Reference

455

456

Example:

Reference

Symbolic checkpoints can specify up to seven data areas in the
program to checkpoint. The program restarts from the last
checkpoint call issued, before the abend or from a specific
checkpoint named in the restart call IM-XRST. APS restores
checkpoint areas to the condition they were when the program
abended.

Basic checkpoints do not restart the program; you must provide
your own logic. No data areas can be restored.

Use IM-CHKP for both symbolic and basic checkpoint processing.
Use IM-XRST for symbolic checkpoint and restart processing.

IM-XRST is the first IMS call executed by the program. Next, the
program should interrogate the IM-XRST-AREA field (generated
by this macro). If the field is not equal to spaces, perform restart
processing.

A checkpoint cancels all database positioning. After a
checkpoint or restart, the program must reestablish the
database positioning with fully qualified DB-OBTAIN calls.

In batch programs, the program needs the compatibility option
available in its PSB (CMPAT=YES).

Symbolic checkpoints do not support OS/VS files; basic
checkpoints do not support OS/VS or GSAM files.

The following code is from an APS batch program using a symbolic
checkpoint restart.

- KYWD-

W6

NTRY

/*
/*

12-%-=2=20---*---=30---*--==40---*----50---*----60
CHKPT- WORKAREAS
CHKPT- 1 D
FI LLERX4 V C D1’
CHKPT-ID-CTR 9(4) V O
CHKPT-LIMT S9(5) V 0 COWP-3
88 CHKPT-LI M T- REACHED V450
CHECKPOI NT- AREA- 1
PREV- PART- NO X8 V LOW VALUES

I M XRST |1 O 8 CHECKPO NT- AREA- 1
I'F NOT | MK
PERFORM ERROR- PARA
I'F I M XRST-AREA |S NOT BLANK,
PROGRAM | S BEI NG RESTARTED

/*

/*

PARA
/ *

System Service Calls

I F I M XRST- AREA NOT = SPACES
MOVE | M XRST- CHECKPO NT TO CHKPT-1 D
TRUE RESTART

ELSE
PERFORM FI RST CHECK PO NT
PERFORM SYMB- CHKPT- RTN

REPEAT
PERFORM READ- DB

UNTI L END- ON- REC
PERFORM PROCESS- DB- REC
I NCREMENT COUNTER FOR EACH RECORD READ
CHKPT-LIMT = CHKPT-LIMT + 1
I F CHKPT- LI M T- REACHED

PERFORM SYMB- CHKPT- RTN

SYMB- CHKPT- RTN

I NCREMENT CHKPT- | D CNTR

CHKPT-1D-CTR = CHKPT-1D-CTR + 1

I M CHKP | O CHKPT- I D
8 CHECKPO NT- AREA- 1

I'F NOT | MK
PERFORM ERROR- PARA

CHKPT-LIMT =0

The following code:

$IMCHKP ("1 0", "' MYCHKP' ", 25, "AREA-1",

% ...

37, "AREA-2")

$I M CHKP ("1 O, "MY-BASI G CHKP- NAME")
$I M XRST ("1 O, 25, "AREA-1")

Generates in Working-Storage:

01 | M CBLTDLI - ARGUMENTS.

05
05
05
05
05
05
05
05
05
05
05

IMCHKP PIC X(4) VALUE ’ CHKP' .
IMDEQ PIC X(4) VALUE ' DEQ ’.
IMLOG PIC X(4) VALUE ' LOG ’.

I M STAT PIC X(4) VALUE ’ STAT .
IMXRST PIC X(4) VALUE ’ XRST' .
OSVSCHKP PI C X(8) VALUE OSVSCHKP' .

| M CALL- FUNCTION PIC X(4).

| M1 O AREA- LEN PI C S9(9) COMP VALUE +0.
| M1 O MAXAREA- LEN PI C S9(9) COWP VALUE +0.
| MLEN-25 PI C S9(9) COVP VALUE +25.

| M LEN-37 PI C S9(9) COWVP VALUE +37.

01 | M LOG AREA.

05
05
05
05

I M LOG- LEN PI C S9(4) COWP.

FI LLER PI C S9(4) COW VALUE +0.
I M LOG- CODE PI C X

I M LOG- RECORD PIC X(55).

Reference

457

458

01 IMDEQCHR PICX
01 | M XRST- AREA.
05 | M XRST- CHECKPO NT PI C X(8).
05 FILLER PI C X(4) VALUE SPACES.
01 IMCHECKPO NT-1D PIC X(8).
01 | M STAT- FUNCTI ON.
05 FILLER PIC X(4).
05 | M STAT- FORVAT PIC X
05 FILLER PIC X(4).
01 I MSTATISTICS PIC X(120).

Generates in the Procedure Division:

MOVE * MYCHKP’
TO | M CHECKPO NT-1 D
I F I M| O MAXAREA- LEN < | M| O AREA- LEN
MOVE | M| O- AREA- LEN
TO | M1 O- MAXAREA- LEN
CALL * CBLTDLI’ USI NG
I M CHKP | O- PCB
I M1 O- MVAXAREA- LEN
I M CHECKPOI NT- | D
I M LEN-25 AREA-1
I M LEN- 37 AREA-2
MOVE | O- PCB- STATUS
TO | M STATUS
. TP- STATUS
MOVE My- BASI C- CHKP- NAMVE
TO | M CHECKPO NT-1 D
CALL * CBLTDLI’ USI NG
I M CHKP | O- PCB
I M CHECKPOI NT- | D
MOVE | O- PCB- STATUS
TO | M STATUS
. TP- STATUS
MOVE * MYOSVSCP’
TO | M CHECKPO NT-1 D
CALL * CBLTDLI’ USI NG
I M CHKP | O- PCB
I M CHECKPOI NT- | D
I M OSVSCHKP
MOVE | O- PCB- STATUS
TO | M STATUS
. TP- STATUS
MOVE ' A" TO | M DEQ- CHR
CALL * CBLTDLI’ USI NG
I M DEQ | O- PCB
... | M DEQ- CHR

MOVE | O- PCB- STATUS

TO | M STATUS
. TP- STATUS
COWUTE | MLOG-LEN = 38 + 5
MOVE LOG- CODE-1 TO | M LOG CODE
MOVE LOG- MESSAGE- 1

TO | M LOG- RECORD
CALL * CBLTDLI’ USI NG

I M LOG | O PCB

| O LOG AREA
MOVE | O- PCB- STATUS

TO | M STATUS
. TP- STATUS
COWUTE | MLOG-LEN = 55 + 5
MOVE LOG- CODE-2 TO | M LOG- CODE
MOVE LOG- MESSAGE- 2

TO | M LOG- RECORD
CALL * CBLTDLI’ USI NG

I M LOG | O PCB

| O LOG AREA
MOVE | O- PCB- STATUS

TO | M STATUS
. TP- STATUS
MOVE * VBAS'

TO | M STAT-FUNCTION /* CLR TAIL
MOVE 'S TO | M STAT- FORVAT
CALL * CBLTDLI’ USI NG

I M STAT BE1PARTS- PCB

I M STATI STI CS

I M STAT- FUNCTI ON
MOVE BE1PARTS- PCB- STATUS

TO | M STATUS
MOVE BE1PARTS- PCB

TO | M DB- PCB
MOVE SPACES

TO | M XRST- AREA
IF I M IO AREA- LEN > | M| O MAXAREA- LEN

MOVE | M| O- AREA- LEN

TO | M1 O- MAXAREA- LEN
CALL * CBLTDLI’ USI NG

I M XRST | O- PCB

I M1 O- AREA- LEN

I M XRST- AREA

I M LEN-25 AREA-1
MOVE | O- PCB- STATUS

TO | M STATUS

TP- STATUS

System Service Calls

Reference

459

460

TERM

Category:

Description:

Syntax:

Comments:

Example:

Reference

Data communication call (see Data Communication Calls)

Terminate programs and transaction operations.

Under ISPF Dialog, perform internal program cleanup, terminate the
program via GOBACK statement, and return control to the calling
program.

[TP-] TERM

CIcs

® APS generates a CICS RETURN without a TRANSID or COMMAREA.
Program control returns to either the next higher-level linked
program or to CICS.

® Code TERM in a linked-to program that returns to the calling
program and ensures that TP-COMMAREA data is passed back.
When returning to a calling program, TP-COMMAREA moves to
DFHCOMMAREA.

® (Call does not terminate an active PSB that is passed via LINK.

IMS DC

Use TERM after sending output messages (SEND or MSG-SW) with
CONTINUE. Do not use TERM prior to sending at least one response; this
causes a user terminal in response mode to remain locked, awaiting a
response.

Terminate a program when SCRA-FUNCTION = ‘E’ or PF3 is pressed.

IF SCRA-FUNCTION = 'E' OR PF3
TERM

TERMINATE

TERMINATE

Category:

Compatibility:

Description:

Syntax:

Parameter:

Comments:

Report Writer statement (see Report Writer Structures and the Report
Writer chapter in your APS User’s Guide)

Batch environments

End report processing. TERMINATE:

Adds all SUM operands and saves their values
Saves current values of all CONTROL items

Produces all CONTROL FOOTING report groups beginning with the
minor CONTROL FOOTING and ending with FINAL

Produces PAGE FOOTING and PAGE HEADING report groups if a
page break occurred

Produces REPORT FOOTING report group

Resets all CONTROL items to their values when TERMINATE was
executed

TERM NATE reportnanel [, reportnane2]

reportname Identify the report. Define reportname in a RED

statement in the Report Section of the Data
Division.

If GENERATE processing was not executed for a report between its
INITIATE and TERMINATE, TERMINATE does not produce any report
groups or perform any related processing. If INITIATE processing
does not execute, TERMINATE does not execute.

TERMINATE does not close the report file; to do so, code a COBOL
CLOSE statement. TERMINATE every INITIATEd report before a
CLOSE.

Reference

461

462

TP-BACKOUT

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS and IMS DC targets
Pupose ABEND the program.

Syntax: CICS
TP- BACKOUT [ABORT[(nane)] | NOABORT]

IMS DC
TP- BACKOUT [ABORT| NOABORT]

Parameters: CICS

ABORT(name) Invoke CICS ABEND to terminate task. Name
specifies a formatted dump of main storage; can
be literal or COBOL data name (maximum 4

characters).

NOABORT Nonfunctional--allowed for compatibility with
IMS.

IMS DC

ABORT Cancel program and do not reschedule.

NOABORT Default. Return next input message for
processing.

Comments: [IMS DC

® Use ABORT if the detected error prevents other messages from
processing successfully.

® Use NOABORT if the detected error is specific to the processing
message.

® This call invokes the IMS dynamic backout feature, canceling all
database updates and messages sent since running the program or
since receipt of the most recent input message.

Reference

Examples:

TP-COMMAREA 463

® To send a message and use TP-BACKOUT, use the EXPRESS keyword
with either SEND or MSG-SW.

® Coding NOABORT calls an IMS ROLB with the current input message
discarded; ABORT calls an IMS ROLL.

® The IMS option of issuing a ROLB with an IOAREA to reread the
current input message is not supported by TP-BACKOUT. For further
information on ROLL and ROLB, see the appropriate IMS manuals.

The following three examples execute identically. Each terminates a
task abnormally by invoking a CICS ABEND code.

TP- BACKQUT
TP- BACKOQUT ABORT
TP- BACKOUT NOABORT

Specify a recovery option and code name to identify a main storage
dump related to the task.

TP- BACKQUT ABORT(’ PGVL’)

TP-COMMAREA

Description:

CICS

TP-COMMAREA generates a Working-Storage record for passing data
between programs. This record contains APS information as well as user
data.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN--the default is 80--determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields.

The following calls pass a Commarea.

SEND Send a screen to the terminal and terminate the program.
CICS saves the data stored in the TP-COMMAREA and
makes it available to the next program when APS returns
the screen to CICS.

Reference

464

Example:

Reference

LINK Link to a subprogram, passing it the TP-COMMAREA
address. Define COMMAREA identically in each program.

XCTL Transfer control to another program, passing a copy of TP-
COMMAREA. Define TP-COMMAREA identically in both
programs.

You can redefine TP-USERAREA to fit program requirements.

® (Code the redefinition in the Data Structure Painter. You must also
specify the Commarea redefinition in Application View--code its
name in the Data Str field and specify its type as CA (Commarea).

® Code the redefinition in the Program Painter. Two keywords are
available to redefine TP-USERAREA--CA, where you code the
redefinition in Data Structure Painter syntax, CAO5 and CA, where
you code it in COBOL syntax.

Optionally, you can code the redefinition in a copybook or rule that you
include.

Redefine TP-USERAREA in the Program Painter.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % * SET THE LENGTH OF TP- USERAREA TO

%* 21 BYTES

% &TP- USER- LEN = 21

CA AACA- USERAREA
CA- DATE X8
CA-TI ME X8
CA- CUST- NUMBER X5

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
SYML % * SET THE LENGTH OF TP- USERAREA TO

% * 21 BYTES

% &TP- USER- LEN = 21
CA0S5 AACA- USERAREA

10 CA-DATE X8
10 CA-TIME X8
10 CA- CUST- NUMBER X5

Redefine TP-USERAREA in the Data Structure Painter.

AACA- USERAREA

CA- DATE X8
CA-TI ME X8
CA- CUST- NUMBER X5

Description:

TP-COMMAREA

Each of the above generates:

01 TP- COMVAREA

01 FILLER REDEFI NES TP- COMVAREA.

05 FILLER PI C X(40)

05 TP- USERAREA PIC X(21).

05 AACA- USERAREA REDEFI NES TP- USERAREA.
10 CA-DATE PI C X(08).
10 CA-TIME PI C X(08).

10 CA-CUST-NUMBER PIC X(05).
IMS DC

TP-COMMAREA coordinates the placement of the APS-generated
Commarea structure with a user-provided redefinition of that structure.
Use it only with conversational IMS programs--nonconversational IMS
programs do not use a Commarea.

In IMS, the Commarea is called a SPA (Scratch Pad Area). Its reserved
prefix includes an IMS LLZZ field, the input trancode, and the APS
invocation mode flag.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN--the default is 0--determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields. You must define the
Commarea in Working-Storage.

To redefine TP-USERAREA as a group-level data structure, the length
must be the same as the value specified for & TP-USER-LEN. A CAO01
keyword generates an 05-level REDEFINES TP-USERAREA statement.

To generate a single-field Commarea in Working-Storage called TP-
USERAREA, assign a value to the APS variable & TP-USER-LEN. Code the
following on one line.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % &TP- USER- LEN = nunber

® SYM1 indicates &TP-USER-LEN is a Customizer variable and places
the variable at the top of the program.

Reference

465

466

Example:

Description

Reference

® &TP-USER-LEN = number specifies the size of TP-USERAREA,; it
should be large enough to store all fields of data on the screen that
the program receives. Caution: An undefined & TP-USER-LEN
defaults to zero; when prototyping, the default is 2048.

“KYWD- 12-%----20---*-=--30---%--=-40---%----50---*----60
SYML % &TP- USER-LEN = 100
CAO5 MY- REDEF

10 CA-FLD-A PI C X(10).
10 CA-FLD-B PI C S9(4) COwP.
10 CA-FLD-C PI C X(20).

Generated source:

% &TP- USER-LEN = 100
| DENTI FI CATI ON DI VI SI ON

WORKI NG- STCRAGE SECTI ON.
$TP- W5- MVARKER
$TP- COMVAREA
05 MY- REDEF REDEFI NES TP- USERAREA.

10 CA-FLD-A PI C X(10).

10 CA-FLD-B PI C S9(4) COvP.

10 CA-FLD-C PI C X(20).
ISPF Dialog

TP-COMMAREA generates a Working-Storage record for passing data
between programs. This record contains APS information and user data.

There is no need to code a TP-COMMAREA call; APS generates it. The
value of &TP-USER-LEN - the default is zero - determines the size of TP-
USERAREA, the user portion of TP-COMMAREA. You can accept the APS
default of a single Commarea field, TP-USERAREA, or redefine TP-
USERAREA as multiple Commarea fields. You must define the
Commarea in Working-Storage.

To redefine TP-USERAREA as a group-level data structure, the length
must be the same as the value specified for & TP-USER-LEN. A CAO01
keyword generates an 05-level REDEFINES TP-USERAREA statement.

Example:

TP-COMMAREA

To generate a single-field Commarea in Working-Storage called TP-
USERAREA, assign a value to the APS variable & TP-USER-LEN. Code the
following on one line.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % &TP- USER- LEN = nunber

® SYM1 indicates &TP-USER-LEN is a Customizer variable and places
the variable at the top of the program.

® &TP-USER-LEN = number specifies the size of TP-USERAREA,; it
should be large enough to store all fields of data on the screen that
the program receives. The default for number is zero.

To receive TP-COMMAREA as a passed data area from a calling
program, code this assignment statement before NTRY.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
% &DLG- COVMAREA- | N- LI NKAGE = " YES"

The results are:
® APS generates the following in the Linkage Section.
01 DLG LI NKAGE- COMWAREA PI C X(&TP- USER- LEN) .
® APS generates the Procedure Division statement with
USI NG DLG LI NKAGE- COMVAREA

® Generated logic maps the data between TP-COMMAREA and DLG-
LINKAGE-COMMAREA at the following points.

® Upon program invocation, from DLG-LINKAGE-COMMAREA to
TP-COMMAREA

® Before execution of LINK or XCTL, from TP-COMMAREA to DLG-
LINKAGE-COMMAREA

® After execution of LINK or XCTL, from DLG-LINKAGE-
COMMAREA to TP-COMMAREA

® Before program termination, from TP-COMMAREA to DLG-
LINKAGE-COMMAREA
Redefine TP-USERAREA.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60
SYML % &TP- USER- LEN = 49
CAO5 PGV USERAREA

Reference

467

468

10 CA- EMPLOYEE- NAME PI C X(20).
10 CA-EMPLOYEE-TITLE PIC X(20).
10 CA- EMPLOYEE- SSN PI C X(09).

Generated source:

01 TP- COWAREA.

05 TP- USERAREA Pl C (X49).
05 PGW USERAREA REDEFI NES TP- USERAREA.
10 CA- EMPLOYEE- NAME PI C X(20).
10 CA- EMPLOYEE-TITLE PI C X(20).
10 CA- EMPLOYEE- SSN PI C X(09).

TP-LINKAGE

Category: Data communication call (see Data Communication Calls)
Compatibility: CICS, IMS DC, and ISPF Dialog

Description: Handle addressability of Linkage Section data records in a called
program.

Syntax: TP-LI NKAGE /i nkdat ananme[| copybooknane| macrof i | enane]
[i nkdat aname[| copybookname| macrofil enanme] ...]

Parameters: /copybookname Name of copybook that you INCLUDE or COPY
prior to this call. See also "Comments" below.

linkdataname 01-level Linkage Section data area identical to
the linkdataname in the associated call.

/macrofilename Name of macro file that you INCLUDE or COPY
prior to this call. See also "Comments" below.

Comments: ® List data items in the order that they appear in the Linkage Section,
copybook, or macro file.

® Make sure that each linkdataname you specify is defined in the
Linkage Section. Choose one of the following methods.

® Define them yourself.

Reference

TP-LINKAGE

® Include (using TP-LINKAGE) a copybook or macro file that
contains the linkdatanames.

To generate a COBOL COPY statement, instead of a % INCLUDE
statment, code &TP-COPY-LINKAGE = 1 prior to the TP-LINKAGE call.

In Online Express, list the records in the order they pass from the
calling program.

CIcs

Use TP-LINKAGE with calls that use the SET option.

Coding TP-LINKAGE with the SYLT keyword ensures that the APS-
generated DFHCOMMAREA is the first record in the Linkage
Section. This prevents the CICS translator from generating an
additional one.

One BLL cell is generated per 4,096 bytes. Linkage records longer
than 4,096 bytes require additional BLL cells to establish
addressability to the entire record.

To generate additional BLL cells, code dummy records after the
record that is greater than 4,096 bytes. A dummy record name must
be prefixed with DUMMY and its copybook name must be DUMMY.

BLL cells are not used with COBOL/2.

IMS DC

Code the call on the first line of the Linkage Section, and
inconjunction with NTRY or PROC to generate parameters for the
PROCEDURE DIVISION USING statement.

Do not define PCBs with TP-LINKAGE; the subschema defines them.

ISPF Dialog

APS provides this call for compatibility with APS/CICS and APS/IMS--
it is not required to handle addressability of Linkage Section
records.

Make the linkdataname a PARM area and the only area defined in
the Linkage Section, if the PROGRAM CONTROL TRANSFER option is
SELECT.

Reference

469

470

Examples: Define records LINK-REC-1 and LINK-REC-2. Include definitions from
USERMACS macro members LINKR1 and LINKR2.

TP- LI NKAGE LI NK- REC- 1/ LI NKR1 LI NK- REC- 2/ LI NKR2

Define records LINK-REC-1 and LINK-REC-2 and copy their definitions
from COPYLIB members LINKR1 and LINKR2.

% &TP- COPY- LI NKAGE = 1
TP- LI NKAGE LI NK- REC- 1/ LI NKR1 LI NK- REC- 2/ LI NKR2

Define records LINK-REC-1 and LINK-REC-2, coded in the Linkage
Section.

TP- LI NKAGE LI NK-REC-1 LI NK- REC- 2

Define records LINK-REC-1 and LINK-REC-2. LINK-REC-1 has been coded
in the Linkage Section; LINK-REC-2 is copied from COPYLIB member
LINKR2.

% &TP- COPY- LI NKAGE = 1
TP- LI NKAGE LI NK- REG-1 LI NK- REC- 2/ LI NKR2
LI NK- REC- 1 PI C X(100) .

CICS
Linkage record containing 10,000 bytes.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
SYLK TP-LI NKAGE LI NK- REC
DUMWY- LI NK- REC- BLL1/ DUMWY
. DUMWY- LI NK- REC- BLL2/ DUMWY
LKO1 LI NK- REC.

05 LI NK- REC- 1- 4096 PI C X(4096).
05 LI NK- REC- 2- 8192 PI C X(4096).
05 LI NK- REC- 3- 10000 PI C X(1808).
OPT PROG
NTRY
Cl G GETMAI N
SET(LI NK- REC)
LENGTH(10000)

/* PROGRAM HAS ADDRESSABI LI TY TO
/* THE FIRST 4,096 BYTES.
ADD 4096 LI NK-REC -P
G VI NG DUMWY- LI NK- REC- BLL1--P
G VI NG DUMWY- LI NK- REC- BLL2- - P
/* PROGRAM HAS ADDRESSABI LI TY TO
/* ALL 10, 000 BYTES.

Reference

TP-NULL

ISPF Dialog

Define a PARM area for use by TP-LINK and TP-ENTRY. The PROGRAM
CONTROL TRANSFER option has been set to SELECT. PGM-PARM-DATA
is coded inline. Note: You can place the PGM-PARM-DATA area in
Linkage without the use of TP-LINKAGE.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
SYLK TP-LI NKAGE PGV PARM DATA
LKO1 PGV PARM DATA.
05 PGV PARM DATA-LEN PIC S9(04) COWP.
05 PGV PARM EMPNBR PI C X(05).
05 FILLER PI C X(95).

TP-NULL

Category:
Compatibility:
Description:
Syntax:

Parameter:

Comment:

Example:

Data communication call (see Data Communication Calls)
CICS, IMS DC, and ISPF Dialog targets

Move LOW-VALUES to all fields in a specified screen record.
TP-| SC- NULL screennane

screenname Screen name; value must be literal.

This call does not alter the field attributes.

Move LOW-VALUES to all fields on screen SCRA.

TP- NULL SCRA

Reference

471

472

TP-PERFORM

Category: Data communication call (see Data Communication Calls)
Description: Perform a paragraph, with or without passing arguments.

Syntax: Format 1, perform a paragraph:

TP- PERFORM par agr aphnane

Format 2, perform a paragraph and pass arguments:

TP- PERFORM par agraphnanme actual argument 1[[,]
actual argunment 2[,] ... actual argunent 8]

paragraphname ([+|-]formal argument1[[,]
[+|-]1formal argument2[,] ... [+ -] formal argunent8])

Parameters: +|- A plus (+) or minus (-) sign preceding a
formalargument passes values between actual
arguments and formal arguments, as follows:

® With a plus sign (+), PERFORM passes the
actualargument value to formalargument
after the paragraph executes. The program
does not return the formalargumentvalue to
actualargument.

® With a minus sign (-), PERFORM passes the
formalargument value to the
actualargument after the paragraph
executes.

® |f there is no prefix, the PERFORM passes the
actualargument to its corresponding
formalargument. After the paragraph
executes, PERFORM passes the
formalargument back to its corresponding
actualargument.

Reference

Comments:

TRUE/FALSE

actualargument Values you send or receive from a

formalargument in the paragraph; can be
literals, identifiers, arithmetic expressions, or
index names.

formalargument Values you receive from or send to an

actualargument in the PERFORM statement.

paragraphname Name of paragraph to perform.

When continuing a list of arguments onto one or more other lines,
do not break an argument.

The number of actual arguments must equal the number of formal
argument names and be in the same order.

TRUE/FALSE

Category:
Description:
Syntax:

Comments:

S-COBOL structure (see S-COBOL Structures)

Establish flags, set them to true and false, and then test them.

TRUE| FALSE dat ananel [datananme2 [... datananeN]

For each dataname coded, S-COBOL provides an 02-level conditional
variable and an associated 88-level condition name entry in an 01
GENERATED-FLAGS area of Working-Storage. APS adds a --FLG suffix
to dataname to create the 02-level entry, and dataname itself
becomes the 88-level entry. APS always assigns VALUE ‘T* to the 88-
level condition name, never VALUE 'F'. For example:

The following code in the Procedure Division:

TRUE THERE- ARE- NO- ERRORS
FALSE W THI N- RANGE

Reference

473

474

Example:

Reference

Generates:

WORKI NG- STCRAGE SECTI ON.

02 THERE- ARE- NO- ERRORS- - FLG PI C X.
88 THERE- ARE- NO- ERRORS VALUE ' T .
02 W TH N-RANGE- - FLG PI C X
88 W THI N- RANGE VALUE ' T .

® If, for debugging purposes, you want to display a generated flag,
add the --FLG suffix to dataname in the DISPLAY statement. For
example:

TRUE THERE- ARE- NO- ERRORS gener at es
MOVE TRUE TO THERE- ARE- NO- ERRORS- - FLG.

® If only true statements, such as TRUE WITHIN-RANGE, or only false
statements, such as FALSE WITHIN-RANGE, are coded for dataname,
a warning message indicates a logic error.

® S-COBOL minimizes the code required to test the flags established
and set by the TRUE/FALSE verbs.

® Code WHILE THERE-ARE-NO-RECORDS instead of WHILE THERE-
ARE-NO-RECORDS--FLG = TRUE.

® Code IF NOT WITHIN-RANGE instead of IF WITHIN-RANGE--FLG =
FALSE.

Set two undefined flags, THERE-ARE-NO-ERRORS and WITHIN-RANGE to
TRUE (line 3030). Define these flags in Working-Storage (88-level
condition name flags), because this is the first TRUE or FALSE statement
for either flag in this program. If the condition in line 3060 is true, set
the THERE-ARE-NO-ERRORS flag to FALSE. If either condition in line
3110 is true, set the WITHIN-RANGE flag to FALSE. As long as the value
of the THERE-ARE-NO-ERRORS flag is TRUE, perform the loop. Inside the
loop test the other flag, WITHIN-RANGE. If the value is TRUE, execute
the subordinate statement block.

SLINE- -KYWD- 12-%----20---%-==-30---%----40---%----50---*

003030 TRUE THERE- ARE- NO- ERRORS

003031 ... WTH N RANGE
003060 I'F CODE-1 N NOT NUMERI C
003070 FALSE THERE- ARE- NO- ERRORS

TRUE, FALSE, ALWAYS, NEVER

003110 I'F COUNT > 372 OR COUNT < 50

003120 FALSE W THI N- RANGE
003150 WH LE THERE- ARE- NO- ERRORS
003160 I F W TH N- RANGE

TRUE, FALSE, ALWAYS, NEVER

Category:

Description:

Syntax:

Comment:

S-COBOL flag (see S-COBOL Structures)

TRUE, FALSE, ALWAYS, NEVER are data names whose meanings are
reserved and automatically provided by S-COBOL.

Automatically generated in Working-Storage

01 GENERATED- FLAGS.

02 TRUX PIC X VALUE 'T'.
88 ALWAYS VALUE ' T'.
88 NEVER VALUE ' F' .
02 FALSX PIC X VALUE ' F'.

Because TRUE and FALSE are reserved words on some systems, S-COBOL
changes every occurrence of TRUE and FALSE to TRUX and FALSX, and
generates the flags accordingly.

TYPE

Category:

Compatibility:

Description:

Report Writer statement (see Report Writer Structures and the User’s
Guide chapter Create Reports with Report Writer)

Batch environments

Identify a report group, such as a header line, detail line, or footer line.

Reference

475

476

Syntax: Format 1, page header:

TYPE [1S] PAGE HEADI NG PH

[LI NE [NUMBER | S] nunber 1 -]
PLUS nunber

Format 2, page footer:

TYPE [1S] PAGE FOOTI NG| PF
[LI NE [NUVBER | S] number]

[NEXT GROUP [I S] nunber 1 [.]
PLUS nunber

Format 3, report header:

TYPE [1'S] REPORT HEADI NG RH

[LI NE [NUMBER | S] nunber]
PLUS nunber
number

[NEXT GROUP [IS] PLUS nunber] [.]
NEXT PAGE

Format 4, report footer:

TYPE [1'S] REPORT FOOTI NG RF

number
[LINE [NUMBER | S] PLUS nunber] [.]
NEXT PAGE

Format 5, control headers and footers:

TYPE [1'S] CONTROL HEADI NG CH [FI NAL] control dat anane
CONTROL FOOTI NG CF
nunber

[LINE [NUMBER | S] PLUS nunber]
NEXT PAGE
number

[NEXT GROUP [1S] PLUS nunper] [.]
NEXT PAGE

Reference

Keywords/
Parameters:

Format 6, detail lines:

TYPE 477

det ai | dat aname TYPE [| S] DE[TAI L]

[LI NE [NUVBER | S]

[NEXT GROUP [1 9]

CONTROL FOOTING| CF

CONTROL HEADING| CH

controldataname

DETAIL|DE

detaildataname
FINAL

LINE number

LINE NEXT PAGE

number
PLUS nunber]
NEXT PAGE

number
PLUS number] [.]
NEXT PAGE

Print group totals immediately following the
detail lines each time a control group ends, that
is, when a control break occurs.

Print heading line(s) before each detail group,
that is, when a control break occurs.

Designate control data name. Unless FINAL,
code controldataname in the corresponding
RED keyword CONTROL clause.

Specify the body group, that is, lines containing
data items of a report. See also "Comments"
below.

Name of detail line.

Specify the highest, most inclusive, control
group. Implicit; does not have to be coded in
order to be used in a CONTROL FOOTING.

Designate the line number where the current
header, footer, or detail line prints. Number
(maximum 3 digits) must be within the defined
page limits. Specify the RED keyword PAGE
LIMIT clause.

Print the current header, footer, or detail line
on a new page.

Reference

478

LINE PLUS number

NEXT GROUP number

NEXT GROUP PLUS
number

NEXT GROUP NEXT
PAGE

PAGE HEADING|PH

PAGE FOOTINGIPF

Reference

Designate the line where the current header,
footer, or detail line prints, and optionally
insert blank lines. Number (maximum 3 digits)
must be within the defined page limits.

PLUS increments the line number by number,
causing blank lines. A simpler way to print
blank lines, however, is to include them in your
mock-up.

Designate the line number where the next
TYPE entity prints (for example, a detail line,
header, or footer). Number (maximum 3 digits)
must be within the defined page limits. Specify
the RED keyword PAGE LIMIT clause. See also
"Comments" below.

Designate the line where the next TYPE entity
prints, and optionally insert blank lines (for
example, a detail line, header, or footer).
Number (maximum three digits) must be within
the defined page limits.

PLUS increments the line number number,
causing blank lines. A simpler way to print
blank lines, however, is to include them in your
mock-up. See also "Comments" below.

Print the next TYPE entity on a new page (for
example, a detail line, header, or footer). Do
not code NEXT PAGE with PAGE FOOTING.

First line(s) on each page. APS processes PAGE
HEADING as the first report group on each
page, unless a REPORT HEADING, that is not on
a page by itself, precedes it. APS ignores PAGE
HEADING on a page that contains only a
REPORT HEADING or REPORT FOOTING. See
also "Comments" below.

Last line(s) on each page. APS processes PAGE
FOOTING as the last report group on each page
of a report, unless a REPORT FOOTING, that is
not on a page by itself, follows it. APS ignores
PAGE FOOTING on a page that contains only a
REPORT HEADING or REPORT FOOTING. See
also "Comments" below.

Comments:

Examples:

TYPE

REPORT FOOTING|RF Last line(s) of the report. The TERMINATE
statement processes REPORT FOOTING as the
last report group.

REPORT HEADING|RH First line(s) of the report. It is the first report
group and processes once per report.

® Enter at least one TYPE statement per report.

® Code a TYPE statement for each report group in the report, that is,
each type of report line.

® (Code at least one detail line for each report, including a summary
report. Without a detail line, SUM accumulators are not summed.

® APS ignores NEXT GROUP with CONTROL FOOTING, unless
CONTROL FOOTING is at the highest level for a control break.

® (Code LINE NUMBER and NEXT GROUP clauses on separate lines.

® Specify the PAGE HEADING and PAGE FOOTING report groups only
if the RED statement has a PAGE LIMIT clause. Specify the CONTROL
HEADING or CONTROL FOOTING in the RED CONTROL clause. FINAL
is implicit.

01 TYPE |'S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE.
01 TYPE |I'S PAGE HEADI NG
SOURCE | S PAGE- COUNTER PI C 7779
01 PART- DETAIL TYPE IS DETAIL.
MOCKUP LI NES 5 THRU 6
SOURCE | S PM PART- NO Pl C XXXXXXXX
SOURCE | S PD- LONG- DESC PI C X(50)
SOURCE IS PM UNI T- BASE- PRI CE PI C $$$, $$9. 99
01 TYPE IS CONTROL FOOTI NG
MOCKUP LI NES 7
SUM PM- UNI T- BASE- PRI CE Pl C $$$$, $$9. 99

Print a report heading on line 20.

01 TYPE IS REPORT HEADI NG LI NE 20.

Insert blank lines in the report by incrementing the line number by two
before printing the footer.

01 TYPE IS REPORT FOOTI NG LI NE PLUS 2.

Reference

479

480

Print two blank lines between groups. Indentation causes continuation
when coding NEXT GROUP PLUS 2.

“KYWD- 12-%---20---%--=-30---%---=40---*----50---*----60
01 TYPE I'S CONTROL FOOTI NG 8- LOCATI ON- CODE
NEXT GROUP PLUS 2

Increment the page counter after printing a line.

“KYWD- 12-%---20---%--=-30---%---=40---*----50---*----60
01 TYPE | S REPORT HEADI NG
NEXT GROUP NEXT PAGE

UNION

Category:
Compatibility:

Description:

Syntax:

Reference

Database access clause
SQL target

Unite a DB-DECLARE or DB-PROCESS call with one or more DB-OBTAIN
calls via the UNION keyword, which collects similar columns from two or
more tables into one new table. The DB-OBTAIN calls in a union can
select rows from one or many tables; the union results in a single table
containing the rows selected by each call.

With DB-DECLARE:

DB- DECLARE cursornanme [correl nanel.] copyl i bname- REC

UNI ON [ALL]
DB- OBTAI N REC copyl! i bhanme- REC

[ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]

Parameters:

Comments:

UNION

With DB-PROCESS

DB- PROCESS REC [correl nanel.] copyl i bname- REC

UNI ON [ALL]
DB- OBTAI N REC copy! i bname- REC

[ORDER
columl [ASC| DESC] [...colummN [ASC| DESC]]]

See the applicable database call for parameter descriptions.

® To create a union of tables, code all keywords and parameters for
each DB-DECLARE, DB-OBTAIN, and DB-PROCESS call just as you do
for a single call.

® When coding a UNION, the columns selected in the DB-PROCESS or
DB-DECLARE statements in the UNION determine the host variables
the FETCH uses. Specify return-fields only in the DB-DECLARE or DB-
PROCESS statements of the UNION. See the last example below.

® Because a UNION places all rows in a single table, code INTO only in
the last DB-OBTAIN call. However, if a DB-OBTAIN call joins tables,
do not code INTO, which puts the results from only one table’s host-
area into the alternate area. A joined table has only part of its
contents placed into the alternate area named by INTO.

® The column selection list for DB-DECLARE, DB-PROCESS, and each
DB-OBTAIN must adhere to standard SQL rules for UNION.

® To identify the source call that produces each row in a UNION,
include numeric and character literals in your column specifications
for each call. Each row then includes a column that identifies the
specific DB-DECLARE, DB-OBTAIN, or DB-PROCESS call that
retrieved it.

® Although you can code a literal for a column in any APS/SQL call, its
primary use is for UNIONSs.

® UNION ALL includes all rows selected from the source tables in the
new table. To eliminate duplicate rows from the new table, do not
code ALL.

Reference

481

482

Examples:

Reference

® APS/SQL statements adhere to all other SQL requirements for tables
created through a union.

® UNION combines tables with the same number of columns. The rows
of each table must contain column sequences that match in data
type and length.

® To sort rows in a table, code the ORDER clause, as follows.

® Code ORDER only once, as the final statement in the last DB-
OBTAIN call. The ORDER clause applies to the result table
produced by UNION.

® Specify sort columns by their position in the selection list (for
example, 1 or 2), rather than by name.

Unite DB-DECLARE with one DB-OBTAIN; eliminate duplicate rows; sort
the combined table in ascending order by PM_PART_NO, then in
descending order by PM_UNIT_BASE_PRICE and PM_UNITS. Note that
the column literals STMT1 and STMT2 identify which call retrieves each
row.

DB- DECLARE D2MAST- CURSOR D2TAB- REC
DI STI NCT
PM_PART_NO PM UNI T_BASE_PRI CE PM UNI TS ' STMI'1’
WHERE PM PART SHORT_DESC = : WS- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE BETWEEN 50 AND 150

... UNION

DB- OBTAI N REC D2TAB- REC
PM_PART_NO PM UNI T_BASE_PRI CE PM UNI TS ' STMI2’
WHERE PM PART SHORT_DESC = : WS- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE > 300
AND PM UNI TS > 1000
ORDER 1, 2 DESC, 3 DESC

Unite DB-PROCESS with one DB-OBTAIN call. Sort the combined table in
ascending order by PM_PART_NO, then in descending order by
PM_UNIT_BASE_PRICE and PM_UNITS.

DB- PROCESS REC D2TAB- REC
DB- PROCESS- | D D2UNI ON- | D
DI STI NCT
PM_PART_NO PM UNI T_BASE_PRI CE PM UNI TS
WHERE PM PART _SHORT_DESC = : WS- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE > 50
AND PM UNI T_BASE_PRI CE < 150
DB- LOOP- MAX=500
UNI ON

UNTIL/WHILE

DB- OBTAI N REC D2TAB- REC
PM_PART_NO PM UNI T_BASE_PRI CE PM UNI TS
WHERE PM PART SHORT_DESC = : WS- PART- SHORT- DESC
AND PM UNI T_BASE_PRI CE > 300
AND PM UNI TS > 1000
ORDER 1, 2

Because return-fields are not specified for JOB_NAME and PROC_NAME,
the host variables of those same names are used. In the case of the
literal P, no host variable exists so a return-field must be specified.
Specify return-fields only in the DB-DECLARE or DB-PROCESS
statements.

DB- PROCESS
REC A. HTIJCLD- REC
DB- PROCESS- | D SHARED- | D
JOB_NAMVE
PROC_NAME
REC B. HTJOBR- REC
"P (WS- HOLD- ACTI ON)
WHERE B. RESOURCE = : WS- RESOURCE AND
B. JOB_NAME = : WS- JOB- NAME
... UNION ALL
DB- OBTAI N REC A. HTJCLD- REC
DI STI NCT JOB_NAVE

PROC_NAME
REC B. HTJSTEP- REC
" A

WHERE B. JOB_NAME = : W5- JOB- NAME
ORDER 01 03 02

UNTIL/WHILE

Category: S-COBOL structure (see S-COBOL Structures)

Description: Form a loop with a test at the beginning that allows a subordinate
statement block to execute repeatedly, either until or while a single or
compound condition is satisfied.

Reference

483

484

Syntax:

Comments:

Examples:

Reference

Format 1:

REPEAT

UNTI L| WHI LE conditionl [AND/ OR condition2
[... AND| OR conditionN]
st at enent bl ock

Format 2:

REPEAT
statenent bl ock1
UNTIL condition
st at enent bl ock2

Format 3:

REPEAT
statenent bl ock1
UNTIL condition
st at enent bl ock2
statenent bl ock3

® Use these statements with REPEAT to test a condition at the middle
or end of a loop.

® |nthe Format 2, APS tests the condition after the REPEAT
statementblock1 executes. Be careful using this format for reading
records--it can read the last record twice.

® Inthe Format 3, APS tests the condition after the REPEAT
statementblock1 executes, but before the UNTIL statementblock2
executes. When the UNTIL condition is true, the UNTIL
statemenblock2 does not execute.

Find the first X in a string of characters.

-KYWD- 12-*----20---*----30---*----40---*----50---*----60
PARA FI ND- X
A-SUB = 1
UNTIL A-SUB > 100
OR CHAR (A-SUB) = "X"
A-SUB = A-SUB +
I F A-SUB <= 100
CHARACTER- COUNT = A-SUB
ELSE

[

USE BEFORE REPORTING

Use WHILE to achieve the same results.

WH LE A-SUB <= 100
AND CHAR (A-SUB) NOT = 'YX

USE BEFORE REPORTING

Category:

Compatibility:

Description:

Syntax:

Parameters:

Comments:

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Batch environments

Code declarative procedures to modify any heading or footing report
group before it prints. You can specify special processing requirements,
including calculations in addition to those specified in the SUM clause,
and edits to a report line.

USE BEFORE REPORTI NG i dentifier

identifier Designate a HEADING or FOOTING report group.
Identifier cannot appear in more than one USE
BEFORE REPORTING.

® USE BEFORE REPORTING identifies declarative statements that
execute before HEADING or FOOTING report groups print. You
name the report group in the Report Section of the Data Division.

® A USE statement follows a section header in a declaratives section
and ends with a period and space. The section can consist of
paragraphs that define procedures.

® A USE BEFORE REPORTING statement cannot alter the value of any
control data item.

® The INITIATE, GENERATE, or TERMINATE clauses cannot appear in a
paragraph within a USE BEFORE REPORTING.

Reference

485

486

Example:

Report Writer ensures that the designated statements execute just
before the specified report group.

Declarative statements cannot reference non-declarative
statements; conversely, non-declarative statements cannot
reference a statement name appearing in the declarative portion.
The COBOL PERFORM statement is the only exception of a non-
declarative that refers to a declarative statement.

“KYWD- 12-%---20---%--=-30---%---=40---*----50---*----60
NTRY OPEN | NPUT

OPEN QUTPUT
PERFORM NMAI N- PARA

DPAR SUPPRESS- CH- REG ON SECTI ON

USE BEFORE REPORTI NG CH REG ON

DPAR SUPPRESS- CH- REG ON- PARA

I F FIRST-FLG = TRUE
SUPPRESS PRI NTI NG

User Help
Category:
Description:

Procedure

Reference

User application Help

Create the help source file.

To create the help source file, follow these steps,

1

From the APS Main Menu, enter option 2 in the Command field.
Then enter option 6 in the Command field. APS displays the User
Help Facility screen.

From the User Help Facility screen, enter 1 in the Command field.
APS displays the User Help Source Utility screen.

Select a utility to create your help source file. If you select,
Applications, APS displays the Applications Utility screen. If you
select Data Elements, APS displays the Data Elements Utility screen.
If you select Screens, APS displays the Screens Utility screen.

Field
Context Name

Context List
Application Name

Field Name

Screen Name

Edit Business Name

Edit text
Include Screens
Include Fields
Local Fields

Screen
Data Elements

Data Elements
Applications

Data Elements

Screens

All

All
Applications
Applications

Applications
and Screens

User Help 487

4 Complete the fields for the utility selected.

Description

Enter the context name
associated with the field to
display all the fields with
that context. Leave this
field blank to display the
fields with no context.
Enter all to display all the
fields with their contexts.

Display a context list.

Enter the user application
name, or leave this field
blank and press Enter to
display a selection list.
Select a name from the
selection list by entering s
next to it.

Type a field name or leave
this field blank to display a
selection list.

Type a screen name, or
leave this field blank to
display a selection list.

Select to assign a business
name a descriptive name
that easily identifies the
user application and its
components). If you do not
assign a business name, it
defaults to the user
application name.

Select to create help text.
Select to create screen help.
Select to create field help.
Select to create field help.

Reference

488

Examples:

Reference

Field
Create Values

Help Source File
Name

Screen
All

All

Description

Select to create field value
help.

Help source file name,
TMP.APSEXT. If this file
already exists, it is overlaid.
Note: Do not use an
extension with this

filename.
COMMAND ==
Specify the items to be included in the extract, then press ENTER
Application name Blank for entity list)
‘dit business name es or No)
Edit text [Yes or No)
Include screens {Yes or No)
If YES:
Edit business name ===> Ml [Yes or Ho)
Edit text > Wl [(Yes or No)
Local fields ===» Nl (Yes or Ho)
IF YES:
Edit business name ===» Hil [Yes or HNo)
Edit text ===> Hl (Yes or Ho)
Create values ===} Mi [Yes or No)
If YES:
Edit text ===} Ml [Yes or HNo)
Help source file name:
=== [:\THPAAPSERT
COMMAND ==
Specify the items to be included in the extract, then press EWIER
Context === {Mame, blank, or ALL
Context list === Hi [(Yes or Ho)
Field name ===} Blank = entity list
Edit business name ===> Kl Yes or Ho)
Edit text ===} Nl (Yes or Ho)
Create values === Hl [Yes or Ho)
If YES:
Edit text === Kl [(Yes or Ho)

Help source file name:
===» CL:VIMPARPSERT

COMHAND ==> _
Screen name

Edit business name
Edit text
Local tields
If YES:
Edit husiness name
Edit text

Create values
If YES:
Edit text

Help source file name:
===> [:\THPWAPSERT

===)

E & B2 £ BEZ

[(Blank for entity list)

[Yes
[Yes

[Ves

[Yes
[Yes

[Yes
[Yes

or
o

or

or
or

or

or

Specify the items to be included in the extract, then press ENTER

USERNAME

USERNAME

Category:

Description:

Syntax:

Comments:

S-COBOL structure (see S-COBOL Structures)

Direct either the current APS paragraph name or one you designate to
name a procedure generated by the APS Precompiler, so that your
program follows the conventions, requirements or preferences of a

given application or installation.

USERNANMVE par agr aphnane

® To activate any USERNAME statement, select the USERNAME option

at compile time from the APS Precompiler Options screen;
otherwise, the paragraph name for a generated procedure is G-
nnn, where G means generated and nnn begins with 001 and
increases by one for each generated paragraph name in top-down

order.

® When USERNAMIE is selected, APS creates paragraph names as

follows.

® APS generates single dashes instead of double dashes.

Reference

489

490

® APS uses the current paragraph name, unless USERNAME is
coded in a paragraph. Then it uses that paragraph name until
the end of the paragraph.

® USERNAME paragraph applies only to names assigned for
procedures generated as the direct result of code within the
paragraph where USERNAME appears. When more than one
USERNAME is coded in a paragraph, APS assigns the first user-
designated paragraph name until it is overridden by a second name
in the APS processing sequence.

® USERNAME does not appear in the generated code.

® Be careful to avoid any naming conflicts that can arise with
USERNAME.

VALUE (Data Structure)

Category:
Description:

Syntax:

Comments:

Examples:

Reference

Data Structure Painter construct (see Data Structures)
Code VALUE clauses in your data structures.

dat aname Pl Cf or mat
[...] [VALUE| V] ' val uecl ause’

® Valueclause can be as long as you need, continuing on subsequent
lines with the continuation symbol.

® You can code valueclause on the same line as dataname, if it fits
entirely on that line.

® Do not enclose numeric values in single quotation marks.

Data Structure Painter format:

-LINE- ----- Data Structure Painter ----------
000001 WRK1-FIELD-7 X(120)

000002 ... VALUE 'A LONG LI TERAL MAY BE
000003 ... CONTINUED ON ONE OR

000004 ... MORE LINES

000005 WRK1-FI ELD-8 X(80)

000006 ... V 'A VALUE CLAUSE THAT SPANS

VALUE (Report Writer)

000007 ... TWDO OR MORE LINES MUST BEG N
000008 ... ONITS OAN LINE

Generated COBOL code:

01 WRK1-FlELD-7 VALUE ’ A LONG LI TERAL MAY BE CONT
"I NUED ON ONE OR MORE LI NES'
Pl C X(120).
01 WRK1-FIELD-8 VALUE ' A VALUE CLAUSE THAT SPANS
" TWD OR MORE LI NES MUST BEG N ON | TS OWN LI NE’
Pl C X(80).

Data Structure Painter format:

-LINE- ------- Data Structure Painter ---------
000001 WRK1-FIELD-5 x(18) V 18 CHARACTERS LONG
000002 WRK1-FIELD-6 x(13)

000003 ... V 13 CHARS LONG

Generated COBOL code:

01 WRK1-FIELD-5 PIC X(18)

VALUE ’ 18 CHARACTERS LONG .
01 WRK1-FIELD-6 VALUE ' 13 CHARS LONG

PIC X(13).

VALUE (Report Writer)

Category:

Compatibility:

Description:

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Batch environments

Designate, as literals, any values that can be interpreted as PIC
characters, such as embedded Xs and 9s to a mock-up text field.

APS considers two or more consecutive COBOL PIC characters a COBOL
PIC clause and all other strings as literals, with the following exceptions.

® The letter Ais a literal character

® Asingle hyphen is a COBOL picture character; a string of hyphens is
a literal.

Reference

491

492

Syntax:

Keywords/
Parameters:

Example:

Reference

® A 9oran Xbounded by spaces is a COBOL PIC; any other character
surrounded by spaces is a literal.

® |ower case letters are literals, not I/O fields.

To distinguish literals from PIC strings, such as the literal EXXON, which
would be interpreted as the literal E, followed by the PIC string XX, and
the literal ON, paint the word as a data field in the report mock-up and
use the VALUE clause when coding the detail line data item description
in your program.

VALUE "characterstring" [PlC picclause]
[DATA-NAME [S] fi el dnane]

“character Designate a literal as follows.

string" .
® Enter the text field on the mock-up as a

data field (that is, a series of Xs).

® Code VALUE "characterstring", where
characterstring is the literal value of the
text field.

DATA-NAME fieldname Name a sum accumulator established by a SUM
or REFERENCE clause. Do not define fieldname
in Working-Storage. At generation, APS inserts
fieldname after the level number in the
generated report group. DATA-NAME moves
the value of the internal SUM accumulator to
fieldname.

Code DATA-NAME when a SUM UPON clause
references DETAIL report group, when the
program references a sum accumulator, or
when a sum accumulator requires a data name
for qualification.

PIC clause Specify the format of characterstring.

Create the report heading QUARTERLY REPORT FOR EXXPERT.

Values, Conversion Values, and Value Ranges

TYPE IS PAGE HEADI NG
MOCKUP LI NE 1
VALUE ' EXXPERT" PIC X(7)

Values, Conversion Values, and Value Ranges

Category:

Description:

Procedure:

Comments:

Screen Painter feature (see Field Edits)

Ensure that the end user enters only certain values in a screen field by
assigning values and value ranges or conversion values to that field.

Note: You can assign values or conversions, but not both.

To assign values to a field, follow these steps.

1
2

From the Screen Painter, access the Field Edit Facility.

Access the Values or Conversions screen by selecting the Values or
Conversions prompt on any Field Edit screen.

Assign a specific value or a range of values using the following
syntax formats.

val ue

| owal ue TQ THRU hi ghval ue
| owal ue UP

hi ghval ue DOWN

Assign conversion values using the following syntax format.

(inputl, input2, ..., inputN, |=internalvalue,
O=out put val ue)

To specify that the listed conversions are the only valid input values,
select the Verify Conversion Values option.

Follow these rules when you specify values.

Separate each entry with a comma.

Do not code commas in an entry.

Reference

493

494

® Code only numeric values or ranges for numeric fields.

® Ensure that the value length meets the restrictions of the Internal
Picture format.

® Use negative values only if the internal data representation is
signed.

® Use decimals only if the internal data representation includes a
decimal.

For example:

1000 to 30000, 50 down

NORTH, SOUTH, EAST, WEST

25.5 to 35.5, 45.5 to 55.5, 100
-10 to 25, 50.5 up

Follow these rules when you specify conversions.
® Separate each entry with a comma.
® Code the internal storage conversion format in internalvalue.
® Code the output display in outputvalue.
® Ensure that the internalvalue and outputvalue are valid input data.

For example, the entry (ja,jan,i=1,0=January) means that the end
user can enter ja or jan; APS converts and stores the ja or jan to 1;
and APS displays the output as January.

Variable Length File Support

Compatibility:

Description

Reference

VSAM batch target

APS locates a variable length record description directly under the
associated FD and places the fixed length record descriptions in
Working-Storage.

WRITE ROUTINE

WRITE ROUTINE

Category:

Compatibility:
Description:
Syntax:

Comments:

Example:

Report Writer clause (see Report Writer Structures and the APS User’s
Guide chapter Create Reports with Report Writer)

Batch environments
Override the COBOL WRITE statement and execute your own routine.
WRI TE ROUTINE [S] paragraphnanme

® If you code WRITE ROUTINE, you can define your report record as a
group-level record in the File Section and reference it in your WRITE
ROUTINE paragraph.

® APS generates a single-field 01-level report record when you code
REPORT IS in the FD statement. You can replace REPORT IS with a
definition of a group-level record--that is, an 01-level record with
elementary data items. APS generates a 248-byte 01-level report
record in Working-Storage, for the largest possible report; it
generates a 250-byte record if the RED keyword CODE clause is
coded.

® If FDs are not included in your program, as when accessing GSAM
files, you can still create a WRITE routine by defining an 01-level
user file record. Report Writer uses this record to generate an 01-
level report file record in Working-Storage that stores the report
records.

FD I NPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 RECORDS.
01 PART- STOCK- REC PI C X(80).
FD REPORT- QUTPUT- FI LE
LABEL RECORDS ARE STANDARD
01 USER- REPORT- RECORD.
03 USER- REPORT- APS- PART Pl C X(248).
03 USER- REPORT- USER- PART PIC X(7).

RED STOCK- REPORT

WRI TE ROUTI NE | S USER- DEFI NED- PARA

Reference

495

496

NTRY
PARA USER- DEFI NED- PARA

MOVE STOCK REPORT RECORD TO
.. . USER- REPORT- APS- PART

WS

Category:
Description:

Syntax:

Comment:

Example:

Reference

Program Painter and Specification Editor keyword (see Keywords)
Define or include data structures in the Working-Storage Section.

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*----60
W8
kywd associ ated data structure

Associated data structure keywords are 07, DS, REC, or ++.

Use Section keywords to code Working-Storage data structures.

“KYWD- 12-%----20---%-=--30---%--=-40---%----50---*----60

10 I NPUT- FI LE ASSI GN TO UT-S-1 NPUT
10 OUTPUT- FI LE ASSI GN TO UT- S- QUTPUT
SPNM CO1 IS TOP- OF- PAGE

FD I NPUT- FI LE

LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS

01 I NPUT- REC PI C X(80).
DSO1 I NPUT- REC
FD OUTPUT- FI LE

LABEL RECORDS ARE STANDARD
BLOCK CONTAI NS 0 RECORDS

REC OUTPUT- REC X80

01 OUTPUT- REC- R REDEFI NES QUTPUT- REC.
COPY QOUTREC.

W5

REC W5- | NPUT- REC
W5- | N- PART- NO N8
W5- | N- DESC X50

W5- | N- BASE- PRI CE N6V2

XCTL

01 WS- QUT- REC
DS05 WSOUTREC

XCTL

Category:
Compatibility:

Description:

Syntax:
clcs

Parameters:

Data communication call (see Data Communication Calls)
CICS, ISPF Dialog, and ISPF Prototyping, targets

Transfer control from a program at one logical level to an APS or non-
APS application program at the same level, and pass the Commarea.

Transferring to a APS program:

[TP-1 XCTL programane [errorparal
[LENGTH(val ue)]
[DLIUI B pcbname [pcbnanme ...]]
[userparm [userparm ...]

Transferring to a non-APS program:

[TP-1 XCTL programame(NONAPS) [errorpar al
[LENGTH(val ue)]

ISPF Prototyping

[TP-1 XCTL programmanme[(NONAPS) |
[LENGTH(val ue)]

DLIUIB pcbname DLI interface block and the Program Control
Block required by the next program.

errorpara User-defined error routine to perform when an
abnormal condition occurs. Errorpara is
positional; if omitted, code an asterisk (*) in its
place.

LENGTH(value) Maximum length of data; can be a literal or
COBOL data name defined as $9(04)COMP. Can
also be a partial length.

Reference

497

498

Comments:

Examples:

Reference

(NONAPS) The program is not an APS program.

NOTERM Do not terminate the screen display for the
calling program, that is, display screens for both
the called and the calling program.

programname Program name; can be a literal, variable, or
combination. If you precede a variable name
with a slash (/), APS moveS the literal to it.

® \When transferring control to an APS program, XCTL transfers
control to the program specified in the call and passes the TP-
COMMAREA. Ensure that the Commarea in the transferred-to
program is the same length as the TP-COMMAREA you pass.

® When transferring control to a non-APS program, XCTL transfers
control to the specified program and passes the TP-USERAREA.
Ensure that the Commarea in the transferred-to program is the
same length as the TP-USERAREA you pass. (TP-USERAREA gets its
value from &TP-USER-LEN.) Additionally, code the following before
your NTRY statement.

% &TP- PROGRAM | NVOCATI ON = " NONAPS*

ISPF Dialog

XCTL, which calls a subprogram at the next lower level, operates
identically to LINK. XCTL invokes LINK, providing no additional
functionality and does not pass the COMMAREA; XCTL is provided for
upward compatibility.

Transfer control to PGMO0O01. There is no active PSB and no passing of
arguments.

XCTL PGWDO1

Transfer control to the program whose name is stored in WS-
PROGNAME. There is no active PSB and no passing of arguments.

XCTL /W5 PROGNAMVE

Move the value PGMO003 to WS-PROGNAME and transfer control to that
program. There is no active PSB and no passing of arguments.

XCTL PGWDO03/ W5- PROGNAMVE

XCTL 499

Transfer control to PGMO004; execute an error routine for an abnormal
condition. There is no active PSB and no passing of arguments.

XCTL PGW04 ERR- PARA

Transfer control to PGMO0O05. A PSB is scheduled and the transferred-to
program uses PCB ABC-PCB.

XCTL PGWO5 * DLIUI B ABC-PCB

Transfer control to a non-APS program, PROGOO01.
XCTL PROGD01(NONAPS)

Reference

500

Reference

IndeXx

Symbols

++ keyword 11
/* keyword 75

Numerics

01 keyword 11
use in Report Writer 11, 405
66-level data item 111
66-level number 13
77-level data item 111
77-level number 264
88-level data item 111
88-level number 14
88-level status flags 225

A

abbreviated syntax for S-COBOL 417
abnormal condition processing

IMS DB 227

IMS DC 231

SQL 233

VSAM batch 235

VSAM online 237
AB-ON-DC-CALL flag

IMS DC 230, 231
AB-ON-REC flag

IDMS DB 225

IMS DB 227

501

SQL 232, 233
VSAM batch 234
VSAM online 236, 237
ABORT keyword
TP-BACKOUT 462
ABRT checkpoint 288
accumulators, Report Writer
initializing 305
page 305
sum 305, 380, 438, 447
addressability, CICS 67
After DB Access control point 91
After Loop control point 91
After-Enter-Check control point 89
After-Receive-Para control point 89
ALARM keyword
DLG-SETMSG 202
ALL keyword
DB-CLOSE 121
DB-ERASE 131
DB-FREE 136
DB-OPEN 158
IDM-COMMIT 282
alternate values
DB-DECLARE 124
DB-ERASE 130
DB-MODIFY 139
DB-OBTAIN 148
DB-PROCESS 164
DB-STORE 176
ALTRESP keyword
MSG-SW 338
SEND 432
ALWAYS flag 475
AND keyword
DB-DECLARE 125

Reference

502

DB-ERASE 131
DB-MODIFY 139
DB-OBTAIN 149
DB-PROCESS 164
DB-STORE 177
APCICSIN control file 80
APDB2IN control file 85
APDLGIN control file 85
APFEIN control file 84
APHLPINcontrol file 88
APIMSIN control file 85
Application Definition Report (AP01) 16, 407
application field edit routines 18, 251
Application Painter
accessing 24
generating reports 32, 407
user processing exits 27
Application Selection screen, user-defined
field edits 19
applications
application definition, copying 27
application definition, creating 24
components of, copying 27
components of, deleting 27
APS structures
data communication calls 101
database calls 97
Report Writer 404
APSDBDC file 81
APS-EDITS-PASSED flag 344, 347
APS-END-PROCESS flag 169
VSAM batch 258
VSAM online 259
APSMACS library 26
APS-MSG-EDIT-ERROR flag 344, 346
APS-MSG-IO-ERROR flag 344, 347
APS-PROCESS-CTR flag 169
APS-ROW-SUB data field 21
APS-VSAM-NUMREC field 259
APVSAMINcontrol file 87
AREA keyword
DB-OBTAIN 149
DB-OPEN 158
DB-PROCESS 164

Reference

arguments
passing 359, 472
performing a paragraph with 359
positional 106
AS parameter
DLG-VDEFINE 204
assembler macros, screen generation param-
eter 273
assign
see CIC-ASSIGN call
associated program, ISPF prototyping gener-
ation option 276
AT END condition 39, 296
ATTR call 40
attributes, field
assigning to a specific field 42
blinking 275
color 44, 275
cursor position, initializing 44
intensity 43, 275
light pen detection 44
list of 42
modified data tag 43
modified data tags, CICS 336
modifying at run time 40, 44
numeric keyboard locking 44, 45
overriding 40
protected 274
protected, ISPF prototype 45
resetting 71, 471
reverse video 275
underlining 275
unprotected 274
AVG function 246
SQL 265

BACKOUT

see TP-BACKOUT call
Before DB Access control point 90
Before Loop control point 90

Before-Send-Para control point 89
BIND
see DB-BIND call
bind options, SQL 46
blank lines
suppress in output 81
BLANK WHEN ZERO Report Writer clause 438
BLL cells 469
BMS mapsets
first line of, setting 276
generated name 345
multiple-map 426
names, overriding 275
BROWSE keyword
DB-PROCESS 164
bypass field edits 84, 240
bypassing field edits 84

C

CA keyword 49, 464, 465, 466
calling subroutines/subprograms 321
CANCEL keyword

NTRY 342
canceling

see CIC-CANCEL call
canceling processing 462
CCODE parameter

DB-MODIFY 50

DB-OBTAIN 50

DB-PROCESS 50

DB-STORE 50
CHANGE INDICATE Report Writer clause 438
changing 138

see modify
CHAR function 246
CHAR function, SQL 265
Checkin screen, ENDEVOR Interface 51
checking in files

to ENDEVOR 51
checking out files

from ENDEVOR 53

Checkout screen, ENDEVOR Interface 53

checkpoint/restart 454

CIC-ADDRESS call 55

CIC-ASSIGN call 55

CIC-CANCEL call 56

CIC-DELAY call 57

CIC-DELETEQ-TD call 58

CIC-DELETEQ-TS call 59

CIC-FREEMAIN call 59

CIC-GETMAIN call 60

CIC-LOAD call 61

CIC-READQ-TD call 62

CIC-READQ-TS call 63

CIC-RELEASE call 64

CICs
addressability 67
addressability of Linkage Section records

468

APCICSIN control file 80
assigning LOW-VALUES to fields 471
BMS mapsets, for a program 426
BMS mapsets, names, overriding 275
calls, list of 102, 106
clearing screen fields 71
Commarea, passing 323, 463
conversational programming 463
data transmission 336
EIBRCODE flags 222, 236
error handling 222, 236
Exceptional Conditions 222, 236
generating program template 340
invocation modes 256
ISI-ERRORS 236
main storage area 55, 59, 60, 64
modified data tag, setting 43
NTRY customization exits 345
overriding attributes 40
passing the Commarea 497
PCB use with 375
performing paragraphs 460, 472
PF keys 411
prototyping under ISPF 27
PSB use with 375
receiving multiple screens 426

Reference

503

504

resetting attributes 71 coding rules
sending screen data 431 data communication calls 106
specifying as target 24, 118 database calls 99
status flags 236 Report Writer 405
syntax parameter 83 S-COBOL programs 415
task processing starting 67 color, screen fields 44, 275
task processing, stopping 57 column functions
temporary storage area 59, 63, 70 see functions, SQL
terminating processing 462 command codes
transaction ID, specifying 275 see CCODE keyword
transferring program control 321, 497 COMMAREA keyword
transient data 58, 62, 69 LINK 322
CICS options, use with comments
CIC-ADDRESS 56 in data structures 75
CIC-SEND-TEXT 66 in generated source code 81
CIC-START 68 in macros 75
CIC-WRITEQ-TS 70 in program code 75
CIC-SCHEDULE-PSB call 65 COMMIT
CIC-SEND-TEXT call 66 see DB-COMMIT call and IDM-COMMIT
CIC-SERVICE-RELOAD call 67 call
CIC-START call 67 COMMIT generation
CIC-TERM-PSB call 68 ISPF 85, 122
CIC-WRITEQ-TD call 69 compiling
CIC-WRITEQ-TS call 70 COBOL Il compiler, specifying 272
CKEYED keyword Component List Report (MS01) 76, 407
DB-OBTAIN 149 computational formats in data structures 110
DB-PROCESS 165 COMT checkpoint 282
DB-STORE 177 conditional processing with S-COBOL 415
CLEAR call 71 AT END 39, 296
CLEAR-ATTRS call 71 EVALUATE statement 242
clearing screen fields 71 FALSE statement 473, 475
CLOSE IF structure 294
see DB-CLOSE INVALID KEY 39, 296
COBOL NEXT SENTENCE 243, 296, 298, 431
coding in Program Editor 356 ON SIZE ERROR 296, 297
coding in program or stub 264 REPEAT statement 383
coding in Specification Editor 88 TRUE statement 473
differences from S-COBOL 413 TRUE/FASE/ALWAYS/NEVER flags 475
edit masks in data structures 109 UNTIL statement 383, 483
coBov/ WHILE statement 383, 483
EVALUATE 243 CONNECT 283
limits 319 see IDM-CONNECT call
COBOL/2 72 CONT keyword
CODE Report Writer clause 74, 404 MSG-SW 338

Reference

SEND 432
CONTCOND keyword

MSG-SW 338

SEND 432
continuation

data structures 111

DB calls 99, 405

DC calls 106

IDMS DB pass-through support 289

S-COBOL structures 416

SQL pass-through support 442
CONTINUE keyword

IDM-ROLLBACK 288

SEND 432
control breaks for reports 78, 269, 379, 475
control files 80

CICS 80

DB/DC macros 81

DB/DC rules 81

field edits 84

IMS DB and DC 85

ISPF Dialog 85

SQL 85

User Help 88

VSAM 87
CONTROL FOOTING (CF) keyword 477
CONTROL HEADING (CH) keyword 477
control points

Online Express 88

standard, locations in programs, illustra-

tion 91

CONTROL Report Writer clause 78, 379, 404
conversational programming

CICS 463

IMS DC 465

ISPF Dialog 466
conversion values, field edits 493
converting

see data conversion values
COPY

see DLG-VCOPY call
COPY statement 12, 378
copying

application definitions 27

with COBOL COPY statement 12, 378
copylibs/copybooks

customize, SQL 194

including in programs 304, 452

placement 83, 452
correlation name

DB-DECLARE 125

DB-OBTAIN 149

DB-PROCESS 165
COUNT built-in function, SQL 279
COUNT function 246

SQL 265
counters, Report Writer 305
Create Like function 27
CURRENCY keyword 287
currency, establish 143
currency, establishing 143
CURRENT keyword

DB-OBTAIN 149, 154

DB-PROCESS 165
CURRENT special registers 440
cursor feedback, IMS DC generation option

276

CURSOR keyword

DB-CLOSE 121

DB-FETCH 135

DB-OPEN 158
cursor naming 125, 165
cursor processing

adding rows 175

closing 120, 160

declaring 122, 160

deleting rows 128

looping 160

modifying rows 138

opening 158, 160

processing rows 160

reading rows 134

retrieving rows 134

selecting rows 143, 160

storing rows 175

writing rows 175
cursor, positioning on screen field 44

Reference

505

506

Customization Facility
limits 319
Customization Facility macros
comments 75
Customizer rules
including rule libraries 304, 452
program locations, specifying for source
452
SY* keywords 452
customizing
Online Express programs, database call
error processing 88
Online Express programs, predefined
functions 88

D

data communication calls 101
CICS 102
coding rules 106
continuation 106
control files 81
IMS DC 103
IMS Fast Path 299
ISPF Dialog 104
targets supported 101
Data Element Facility
specifying for Project and Group 377
Data Structure Definition Report (DS01) 107,
407
Data Structure Painter 109
data structures
66-level 13
77-level 111
88-level 14
application limit 320
COBOL edit masks 109
COBOL Syntax
11
comments 75
computational formats 110
continuation 111

Reference

creating in program 377
edit masks 109
indentation 112
INDEXED BY clause 349
level numbers 112
Linkage Section 326
naming conventions 25
OCCURS clause 349
overview 109
PICTURE clauses, COBOL 112
picture formats 110, 112
REDEFINES clause 379
renames clause 13
specifying in application definition 25
specifying to program 209
USAGE clause 110
VALUE clause 14, 490
Working-Storage 496
data transmission
modified data tags, CICS 336
database calls 97
coding rules 99
continuation 99
generation of, suppressing 450
IDMS 97
IMS 98
IMS Fast Path 301, 303
IMS GSAM 280
SQL 98
targets supported 97
VSAM online 99
database calls, Online Express
control files 81
customizing 88
error handling 88
database functions, Online Express
customizing 88
DATA-NAME Report Writer clause 380, 438,
447, 491
DATE
function, SQL 246, 265
special register, SQL 440
date field edits
input 114

internal picture 115
output 114
DB target
specifying 24, 118
DB/DC macros
control files 81
DB2
specifying as target 118
DB2-DEADLOCK flag
SQL 232
DB-BIND call 119, 286
DB-CLOSE call 120
DB-COMMIT call 121
DB-DECLARE call 122
DB2 unions 480
expressions 246, 265
functions 246, 265
GROUP BY clause 278
HAVING clause 278
joining tables 307
special registers 440
DB-ERASE
customizing exits 133
DB-ERASE call 128
exit points 244
VSAM batch fields 258
VSAM online fields 259
DB-FETCH call 126, 134, 172
DB-FREE call 135
DB-GET call 137
DBKEY keyword
DB-OBTAIN 149
DB-LOOP-MAX keyword 165
DB-MODIFY call 138
exit points 244
VSAM online fields 259
DBNAME keyword
DB-BIND 119
DB-OBTAIN call 143
DB2 unions 480
exit points 244
expressions 246, 265
functions 246, 265
joining tables 307

507

special registers, SQL 440

VSAM batch fields and flags 258

VSAM online fields and flags 259
DB-PROCESS

customizing exits 172
DB-PROCESS call 160

DB2 unions 480

exit points 244

expressions 246, 265

functions 246, 265

GROUP BY clause 278

HAVING clause 278

joining tables 307

loop counters 169

looping 169

special registers, SQL 440

VSAM batch fields and flags 258

VSAM online fields and flags 259
DB-PROCESS-ID clause 165, 169, 171, 172
DB-ROLLBACK call 174
DB-STORE call 175

exit points 244

VSAM batch fields 258

VSAM online fields 259
DB-SUBSCHEMA call 180
DC target

specifying 118
DC target, specifying 24
DDI statements 182

VSAM, for KSDS fixed length files 190

VSAM, for KSDS variable length files 191
DDI, SQL

copybooks, customize 194
DDIFILE Report (DBO1) 181, 407
DDN keyword

DB-ERASE 131

DB-FREE 136

DB-MODIFY 139

DB-OBTAIN 149

DB-PROCESS 165

DB-STORE 177
DDS

performing paragraphs 472

receiving multiple screens 426

Reference

508

debugging programs
SCBTRACE option 364
decision table 242
DECL keyword 199
Declarative Section
DECL keyword 199
DPAR keyword 207
USE BEFORE REPORTING 485
declaratives, Report Writer 485
DECLARE Customization Facility structure
limits 319
declaring table rows 122
DEFINE
see DLG-VDEFINE call
delay
see CIC-DELAY call
DELETE
see DLG-VDELETE call
deleteq-TD
see CIC-DELETEQ-TD call
deleting
application components 27
database and file records 128
table rows 128
DEPENDING ON in data structures 349
DETAIL (DE) keyword 477
detail lines, Report Writer 475
detail reports, Report Writer 269, 475

device type, IMS DC generation option 276

DFSOAER
enable use of 82
DIF-DOF name, IMS DC generation option
277
DISCONNECT 284
DISTINCT keyword
DB-DECLARE 125
DB-OBTAIN 149
DB-PROCESS 165
DLG
conversational programming 466
error handling 434
DLG-AUTO-VARIABLE-VDELETE 205
DLG-ISPEXEC call 200
DLG-ISREDIT call 201

Reference

DLG-SETMSG call 201
DLG-VCOPY call 203
DLG-VDEFINE call 204
DLG-VDELETE call 205
DLG-VREPLACE call 206
DLG-VRESET call 207
DLIUIB keyword

LINK 322

XCTL 497
Documentation Facility

summary of reports 32, 407
DPAR keyword 207
DS keyword 209
DSCA, IMS DC generation option 278
DSIDERR error flag/condition 236
DUPKEY error flag/condition 236
DUP-ON-REC flag

IDMS DB 225

IMS DB 227

SQL 232

VSAM batch 234

VSAM online 236
DUPREC error flag/condition 236

E

Ed-Error-Pre-Send control point 89
edit masks in data structures 109
edits, field

APFEIN control file 84

bypassing 84, 240

control file for 84

conversion values for 493

date fields, input 114

date fields, internal picture 115

date fields, output 114

error handling 239

European format for numeric fields 84

input, date fields 114

input, time fields 117

internal picture, date fields 115

internal picture, time fields 116

invalid data, allowing or disallowing 343
list of 251
output, date fields 114
output, time fields 117
overview of 251
performing 340
time fields, input 117
time fields, internal picture 116
time fields, output 117
user-defined 251
user-defined, control file switches 84
user-defined, creating 18
user-defined, referencing APS-generated
field namesin 19
user-defined, selecting from predefined
list 19
value ranges for 493
edits, fields
bypassing 84
European format for numeric fields 84
user-defined, control file switches 84
EIBRCODE flags, CICS 222, 236
ENDBR keyword
DB-FREE 136
ENDCONV keyword
MSG-SW 338
SEND 433
ENDEVOR, APS Interface
checking in files 51
checking out files 53
ENDFILE error flag/condition 236
END-ON-REC flag
IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236
END-PROCESS flag 169
ENDWHERE keyword
DB-MODIFY 139
Entity Content Report (MS02) 210, 407
Entity Cross Reference Report (MD01) 212,
407
Entity Parts List Report (ENO1) 214, 407

Entity Search Utility Report (GS01) 216, 407
Entity Use Report (EN02) 219, 407
ENTRY parameter
CIC-LOAD 61
ENTRY statement 221
ERASE
DB-ERASE call 128
error handling
CICS 222, 236
field edits 84, 239
field edits, bypassing 240
IDMS DB 225
IMS DB, enable use of DFSOAER 82
IMS DC 230
IMS DC, enable use of DFSOAER 82
ISPF Dialog 342, 343
ISPF prototyping 342, 343
SAGE-TRACE-FLAG 233
SCBTRACE option 364
SQL 232
VSAM batch 234
VSAM online 236
ERROR parameter
CIC-CANCEL 56
CIC-DELAY 57
CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-GETMAIN 60
CIC-LOAD 61
CIC-READQ-TD 62
CIC-READQ-TS 63
CIC-RELEASE 65
CIC-SEND-TEXT 66
CIC-START 68
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70
Error Status control point 90
ERROR TRACE
see SET Customization Facility statements
errorpara parameter
LINK 323
MSG-SW 338
NTRY 343, 347
SEND 432

Reference

509

510

Error-Send-And-Quit control point 90
ESCAPE statement 241
ESDS support
VSAM batch 259
VSAM online 261
European format for numeric fields 84
EVALUATE statement 242, 321
COBOL/ 243
evaluation brackets 75, 81
Exception Status control point 90
EXCLUSIVE keyword
DB-OBTAIN 149
DB-PROCESS 165
exit points 244
EXIT PROGRAM statement 245
exits, customizing
DB-ERASE 133
DB-PROCESS 172
NTRY 345, 346
EXPRESS keyword
MSG-SW 338, 371
SEND 433
expressions 246
SQL 246, 265
extended attributes 42
modifying at run time 45
modifying at run time, ISPF prototyping
274

F

FALSE flag 475

FALSE statement 473

Fast Path
DC calls 299
IM-CHKP 454
IM-CHNG 299
IM-CMD 299
IM-DEQ 454
IM-FLD 301
IM-FSA 301
IM-GCMD 299

Reference

IM-GN 299
IM-GSCD 454
IM-GU 299
IM-ISRT 299
IM-LOG 454
IM-POS 303
IM-PURG 299
IM-ROLB 454
IM-ROLL 454
IM-STAT 454
IM-XRST 454
system service calls 454
FD keyword 74, 247
use in Report Writer 247, 404
FD parameter
use in Report Writer 74
FETCH
see DB-FETCH call
FETCH ONLY keyword
DB-DECLARE 125
DB-PROCESS 166
Field Attributes screen 42
field edits
control file 84
Field Edits Report (EDO1) 407, 420
Field/Screen Cross Reference Report (5C02)
262, 407
fields
APS-VSAM-NUMREC 259
CICS TP-USERAREA 49, 463
CICS, TP-USER-LEN 49, 463
DLG, TP-USERAREA 466
DLG, TP-USER-LEN 466
field edit, APS-ROW-SUB 21
field edit, -ATTR 21
field edit, -EDIT 20, 21
field edit, -INPT 20
field edit, -LEN 21
IMS DB, error 229
IMS DC, TP-USERAREA 49, 465
IMS DC, TP-USER-LEN 49, 465
ISPF Dialog, error 200, 201, 202, 204, 205,
207
ISPF Dialog, TP-USERAREA 49, 466

ISPF Dialog, TP-USER-LEN 49, 466
Report Writer, internal sum accumulators
380, 438, 447

Report Writer, PAGE-COUNTER 439
SQL, null indicator 349
VSAM batch 258
VSAM online 259

FILE keyword
DB-CLOSE 121
DB-OPEN 158

File Section
file description keyword 247
File-Control statement keyword 305
Report Writer 247

FINAL keyword 78, 477

FIRST keyword
DB-OBTAIN 149
DB-PROCESS 166

flags
ALWAYS 475
APS-END-PROCESS, VSAM batch 258
APS-END-PROCESS, VSAM online 259
CICS, EIBRCODE 222, 236
CICS, error 236
CICS, invocation mode 256
FALSE 473, 475
field edits 19
IDMS DB, error 225
IMS DB, error 227
IMS DC, error 230
IMS DC, invocation mode 257
ISPF Dialog, invocation mode 258
loop counters, DB-PROCESS 169
loop counters, LOOP-LIMIT 81, 171
looping, DB-PROCESS 169
NEVER 475
NTRY, error 344, 345, 347
NTRY, I/O 344, 345, 347
received screen 427
RESET-OBTAIN, VSAM batch 258
RESET-OBTAIN, VSAM online 259
SAGE-TRACE-FLAG 233, 364
S-COBOL 415
SQL, error 232

511

TP-LINK-INVOKED 258
TP-PROGRAM-INVOKED, CICS 256
TP-PROGRAM-INVOKED, IMS DC 257
TP-PROGRAM-INVOKED, ISPF Dialog 258
TP-SCREEN-INVOKED, CICS 256
TP-SCREEN-INVOKED, IMS DC 257
TP-SCREEN-INVOKED, ISPF Dialog 258
TP-TRANSID-INVOKED, CICS 256
TP-TRANSID-INVOKED, IMS DC 257
TRUE 473, 475
VSAM batch 258
VSAM batch, error 234
VSAM online 259
VSAM online, error 236

FLENGTH parameter
CIC-GETMAIN 60
CIC-LOAD 61

footers, Report Writer 475

format, character 45

FP-ERR flag
IMS DC 230

FREE 135
see DB-FREE call

FREEMAIN
see CIC-FREEMAIN call

FRFM keyword 264

FROM keyword
DB-ERASE 131, 133
DB-MODIFY 140
DB-OBTAIN 150
DB-STORE 177
DLG-VCOPY 203

FROM parameter
CIC-SEND-TEXT 66
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70
DB-STORE 179

functions
SQL 246, 265
SQL, DB-DECLARE 265
SQL, DB-OBTAIN 265
SQL, DB-PROCESS 265

functions, Online Express program
database, predefined, customizing 88

Reference

512

error processing 88
teleprocessing, predefined, customizing
88

G

GENEERATE Report Writer statement 405
General-Pre-Send control point 89
GENERATE Report Writer statement 79, 269
generating applications
job control cards 307
options, generator 271
options, IDMS 293
options, precompiler 364
options, resetting to default values 272
SQL options 46
suppressing database calls 450
generating reports 32, 407
generating screens
generation parameters 273
generation parameters, for all targets
273
generation parameters, for ISPF Dialog
355
generation parameters, for KANJI format
274
Generation Options screen 271
GENONLY keyword
DLG-VCOPY 203
GENONLY parameter
DLG-VDEFINE 204
DLG-VREPLACE 206
GET
see DB-GET call
GETMAIN
see CIC-GETMAIN call
global
field edit messages 239
stubs, creating 444
stubs, keyword 444
GO TO...DEPENDING ON 26, 243

Reference

GROUP BY clause 278
DB-DECLARE 278
DB-PROCESS 278

GROUP INDICATE Report Writer clause 438

grouping data elements, SQL 278

GSAM
IM-CLSE 280
IM-GN 280
IM-GU 280
IM-ISRT 280
IM-OPEN 280

H

HAVING clause 278
DB-DECLARE 278
DB-PROCESS 278

headers, Report Writer 475

HELP keyword
DLG-SETMSG 202

HOLD keyword
DB-COMMIT 122
DB-OBTAIN 150, 154
DB-PROCESS 166

HOLD parameter
CIC-LOAD 61
DB-OBTAIN 82

IDCS keyword 282
IDM-COMMIT call 282
IDM-CONNECT call 283
IDM-DISCONNECT call 284
IDM-GEN-AUTOSTATUS flag 286
IDM-IF call 285

IDM-PROTOCOL call 285
IDM-RETURN call 287
IDM-ROLLBACK call 288

IDMS DB
ABRT checkpoint 288
binding records 119
calls, list of 97
closing files and subschemas 120
COMT checkpoint 282
COPY IDMS statement 119
deleting records 128
error handling 225
modifying records 138
moving data to Working-Storage 137
native (pass-through) support 282, 288
opening 158
reading records 143, 144
retrieving and processing records 160
specifying as target 24, 118
status flags 225
storing records 175
subschemas 180
topics, list of 100
writing records 175
IDMS Options screen 293
IDMS statement 288
IDMSREC keyword
DB-OBTAIN 150
IDSS keyword 282
IF 285
IF structure 264, 294
nesting 297
ILLOGIC error flag/condition 236
IM-CHKP system service call 454
IM-CHNG data communication call 299
IM-CLSE database call 280
IM-CMD data communication call 299
IM-DB-PCB-KEY-FEED-BACK error field 229
IM-DB-PCB-KEY-KFBLEN error field 229
IM-DB-PCB-SEGLEV error field 229
IM-DB-PCB-SEGNAME error field 229
IM-DEQ system service call 454
IM-FLD database call 301
IM-FSA database call 301
IM-GCMD data communication call 299
IM-GN data communication call 299
IM-GN database call 280

513

IM-GSCD system service call 454
IM-GU data communication call 299
IM-GU database call 280
IM-ISRT data communication call 299
IM-ISRT database call 280
IM-LOG system service call 454
IM-OPEN database call 280
IM-POS database call 303
IM-PURG data communication call 299
IM-ROLB system service call 454
IM-ROLL system service call 454
IMS
specifying as target 27
IMS DB
abnormal condition processing 227
APIMSIN control file 85
blocking parameter 83
calls, list of 98
checkpoint/restart 454
command codes 50
copylib record parameter 82
DDI statements 182
deleting records 128
enable prototype mode 82
error handling 227
error handling, error fields 229
Fast Path 301, 303, 454
GSAM calls 280
modifying records 138
reading records 143, 145
retrieving and processing records 160
specifying as target 24, 118
status flags 227
storing records 175
subschemas 180
SUPPRESS option 450
topics, list of 100
writing records 175
IMS DC
abnormal condition processing 231
addressability of Linkage Section records
468
APIMSIN control file 85
assigning LOW-VALUES to fields 471

Reference

514

blocking parameter 83

calls, list of 103

checkpoint/restart 454

clearing screen fields 71
conversational programming 465
cursor feedback, specifying 276
DDI statements 182

device type, specifying 276
DIF-DOF name, specifying 277
DSCA, specifying 278

enable prototype mode 82

error handling 230

Fast Path 299, 454

generating program template 340
invocation modes 257

lines per page, specifying for printing 278
MFS function keys, assigning 329
MID MOD, reordering 332

MID, default values, specifying 277
MID, name, specifying 277

MOD, fill character, specifying 278
MOD, name, specifying 278

NTRY customization exits 346
operator logical paging, specifying 277
overriding attributes 40

PCBs 371

performing paragraphs 472

PF keys 362

PF keys, ret 411

program support variables 257
prototyping under ISPF 27

PSBs 371

receiving multiple screens 426
sending data or messages 337
sending messages 339, 431, 434
specifying as target 24, 118

SQL considerations 371

status flags 230

terminating processing 462
terminating programs 460

topics, list of 107

trancodes, creating 330
transferring program control 321

Reference

IMSREC keyword

DB-ERASE 131

DB-MODIFY 140

DB-OBTAIN 150, 153

DB-PROCESS 166

DB-STORE 177
IM-STAT system service call 454
IM-SUPPRESS-DB-CALL 450
IM-XRST system service call 454
INCLUDE Customizer statement 304
INCLUDE PANVALET member 11
including in programs

copybooks 304

copylibs/copybooks 452

rule libraries 304, 452
indentation

data structures 112

DB calls 99

DC calls 106

S-COBOL programs 357, 413
INDEXED BY clause in data structures 349
initializing reports, Report Writer 305
INITIATE Report Writer statement 305, 405
INITIMG parameter

CIC-GETMAIN 60
input field edits

date fields 114

time fields 117
Input-Output Section 305
intensity, screen fields 43, 275
internal picture

date fields 115

time fields 116
INTERVAL parameter

CIC-DELAY 57

CIC-START 68
INTO keyword

DB2 unions 481

DB-FETCH 135

DB-OBTAIN 150

DB-PROCESS 166
INTO parameter

CIC-READQ-TD 62

CIC-READQ-TS 63

DLG-REPLACE 206
INVALID KEY condition 39, 296
invocation modes 351
CICS 256
IMS DC 257
ISPF Dialog 258
INV-ON-REC flag
VSAM batch 234
VSAM online 236
INVREQ error flag/condition 236
10 keyword 305
use in Report Writer 404
10 PCB
see PCB
IOERR error flag/condition 236
IRQ-ON-REC flag
VSAM online 236
ISPEXEC
see DLG-ISPEXEC call
ISPF Dialog
addressability of Linkage Section records
468
APDLGIN control file 85
assigning LOW-VALUES to fields 471
calls, list of 104
clearing screen fields 71
COMMIT generation 85, 122
conversational programming 466
displaying screen data 431
error handling 342
generating program template 340
invocation modes 258
invoking programs 323
overriding attributes 40
passing the Commarea 323, 467, 497
PF keys 363, 411
receiving multiple screens 426
resetting attributes 71
screen generation parameters 355
specifying as target 24, 118
terminating programs 460
transferring program control 321, 497
ISPF Panel Options screen 355

515

ISPF prototyping
displaying screen data 431
error handling 342
generating program template 340
overriding attributes 40
passing the Commarea 497
PF keys 411
receiving multiple screens 426
sending data or messages 337
terminating programs 460
transferring program control 321, 497
ISREDIT
see DLG-ISREDIT call
ITEM parameter
CIC-READQ-TS 64
CIC-WRITEQ-TS 70
iterative expressions, Report Writer 405, 438,
447
IVD-ON-REC flag
VSAM batch 234

J

job control cards 307
joining tables
DB-DECLARE 307
DB-OBTAIN 307
DB-PROCESS 307
JUSTIFIED RIGHT Report Writer clause 438

K

KANJI
setting DBCS 83
KANJI format
generation parameter 274
ruled lines 45
specifying for fields 45
KEY INTO keyword 287

Reference

516

KEYLENGTH keyword
DB-ERASE 131
DB-OBTAIN 150
DB-PROCESS 166
keywords, Program Editor 311
KLEN keyword
DB-ERASE 131
DB-OBTAIN 150
DB-PROCESS 166

L

LAST keyword
DB-OBTAIN 150
DB-PROCESS 166

LEN keyword
DLG-VCOPY 203

LEN parameter
DLG-REPLACE 206
DLG-VDEFINE 205

LENGERR error flag/condition 236

length
screen fields, changing 43

LENGTH keyword
LINK 323
XCTL 497

LENGTH parameter
CIC-GETMAIN 60
CIC-LOAD 61
CIC-READQ-TD 62
CIC-READQ-TS 64
CIC-SEND-TEXT 66
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

level numbers in data structures 13, 112

light pen detection 44

limits in APS 319

line counter, Report Writer 305
LINE Report Writer clause 477

LINE-COUNTER Report Writer field 305

LINK call 321
Commarea, passing 323

Reference

passing the Commarea 323, 463, 467
PSB use with 375
LINKAGE
see TP-LINKAGE call
LINKAGE keyword
SCRNLIST 427
Linkage Section keyword 326
linking programs and subprograms 321, 498
LINK-INVOKED
see TP-LINK-INVOKED flag
literals
MFS system 45
S-COBOL, concatenating 416
literals, Report Writer 388, 491
LK keyword 326
loading
see CIC-LOAD call
Loc(ation) field, Application Painter 26
local
stubs, keyword 444
locations, program
specifying for Customizer source 452
logical paging 435
LONG keyword
DLG-SETMSG 202
looping
DB-PROCESS call 160
loop counters, DB-PROCESS call 169
loop counters, LOOP-LIMIT 81, 171
REPEAT statement 383
UNTIL statement 383, 483
WHILE statement 383, 483
LOOP-LIMIT flag 81, 171
LOW-VALUES in screen fields 71, 471

M

Macro/Program Cross Reference Report
(MCo01) 327, 407
macros, user-defined
including in application definition 26
naming conventions 26

program locations for 26
main storage area, CICS 55, 59, 60, 64
masks in data structures 109
MAX function
SQL 265
MDT (modifed data tags)
CICS 336
message switching 337
messages, sending in IMS DC 339, 434
MFS Function Keys screen 329
MFS mapsets
assigning to PF keys 329
system literals 45
trancode literal values, specifying 278
trancodes, creating 330
MFS Trancode Construction screen 330
MID
default values, specifying 277
name, specifying 277
MID MOD Reorder screen 332
MIN function
SQL 265
Misc-User-Paragraphs control point 90
MOCK keyword 333, 405
Mock-Up Report (RP01) 335, 407
MOCKUP Report Writer statement 334, 405
MOD
fill character, specifying 278
MODE keyword
DB-OPEN 159
modifiable extended attributes
prototyping under ISPF 274
modified data tags
CICS 336
setting 43
MODIFY 138
see DB-MODIFY call
MODIFY keyword
MSG-SW 371
modifying
database and file records 138
table rows 138
modifying rows and records 138

517

moving database records to Working-Stor-
age 143
MSG-SW call 337
IMS PCBs 371

N

nested IF 297
NEVER flag 475
NEXT GROUP Report Writer clause 478
NEXT keyword
DB-OBTAIN 151
DB-PROCESS 167
NEXT parameter
CIC-READQ-TS 64
NEXT SENTENCE 243, 296, 298, 416, 431
NEXTREC keyword
DB-OBTAIN 153
NOABORT keyword
TP-BACKOUT 462
NOALTRESP keyword
MSG-SW 338
SEND 432
NOCA keyword
LINK 323
NOCONT keyword
MSG-SW 338
SEND 432
NOCONTINUE keyword
SEND 433
NODENAME keyword
DB-BIND 119
NOENDCONYV keyword
MSG-SW 338
SEND 433
NOERASE keyword
SEND 433
NOEXPRESS keyword
MSG-SW 338
SEND 433
NO-MORE-MSGS flag
IMS DC 230

Reference

518

NO-MORE-SEGS flag
IMS DC 230
NONAPS keyword
LINK 323
XCTL 498
NONE keyword
DB-DECLARE 309
DB-OBTAIN 309
DB-PROCESS 309
NOPURG keyword
MSG-SW 339
SEND 433, 434
NOREDEF keyword
SCRNLIST 427
NORETRY keyword
NTRY 339, 343
NORETURN keyword
SEND 433
Normal Status control point 90
NOSPACE error flag/condition 236
NOSUSPEND parameter
CIC-WRITEQ-TS 70
NOTERM keyword
XCTL 498
NOTFND error flag/condition 236
NOTOPEN error flag/condition 236
NTF-ON-REC flag
IDMS DB 225
IMS DB 227
SQL 232
VSAM batch 234
VSAM online 236
NTRY keyword 340, 351, 427
customization exits 345, 346
NULL
see TP-NULL call
null indicators
SQL 349
null values in screen fields 71, 471
numeric keyboard locking 44, 45
NUMITEMS parameter
CIC-READQ-TS 64

Reference

O

OBTAIN 143

see DB-OBTAIN call
OBTAIN DB-OBTAIN call see 143
OCCURS in data structures 349
OF keyword

DB-ERASE 131

DB-OBTAIN 151

DB-PROCESS 167

DB-STORE 177
OK-ON-DC-CALL flag

IMS DC 230
OK-ON-REC flag

IDMS DB 225

IMS DB 227

SQL 232

VSAM batch 234

VSAM online 236
ON SIZE ERROR clause 296, 297
Online Express

control points 88

customizing programs, database call er-

ror processing 88
customizing programs, predefined func-
tions 88

database calls, customizing 88

limits 319
Online Express paragraphs 356
opening

cursor sets 158

records 158
operator logical paging, specifying 277
operators, relational in S-COBOL 417
OPT keyword 344, 351, 370
OPTIMIZE keyword

DB-DECLARE 125

DB-PROCESS 167
OR keyword

DB-DECLARE 125

DB-ERASE 131

DB-MODIFY 140

DB-OBTAIN 151

DB-PROCESS 167

DB-STORE 177
ORACLE

exit points 244
ORDER BY keyword

DB-DECLARE 278

DB-PROCESS 278
ORDER keyword

DB2 unions 482

DB-DECLARE 126, 310

DB-PROCESS 167, 310
054

storing records 175
output field edits

date fields 114

time fields 117
OVERPRINT Report Writer clause 352, 405
OWNER keyword

DB-OBTAIN 151

P

page counter, Report Writer 305
PAGE FOOTING (PF) keyword 478
PAGE HEADING (PH) keyword 478
PAGE LIMIT Report Writer clause 353, 405
PAGE-COUNTER Report Writer field 439
PAGE-LIMIT Report Writer option 78
Painter Menu

generating reports 32, 407
PANVALET keyword 11
PARA keyword 356, 413
paragraph names

COBOL/ 73
paragraphs

arguments 359, 472

in Online Express 356

performing 359, 472

S-COBOL names 415
Parm screen, field edits 240
passing the Commarea

CICS 323, 463

519

DDS 323
ISPF Dialog 323, 467
pass-through support
IDMS DB 282, 288
SQL 441
PCB keyword
DB-ERASE 131, 132
DB-MODIFY 140
DB-OBTAIN 151, 152, 153
DB-PROCESS 167, 168
DB-STORE 177
PCB parameter
DB-STORE 179
PCBs
CICS 375
IMS DC 371
PERFORM call 472
PERFORM statement 358
performing paragraphs with arguments 359,
472
PERMANENT keyword
DB-ERASE 132
PF keys
assigning MFS functions to 329
defined in CICS 361
defined in IMS DC 362
defined in ISPF Dialog 363
RESET call 411
PIC clause
in data structures 110, 112
Report Writer 380, 438, 447, 491
PIC keyword
DLG-VCOPY 203
PIC parameter
DLG-REPLACE 206
DLG-VDEFINE 205
PLUS keyword 478
positional arguments 106
POS-ON-REC flag
IDMS DB 225
IMS DB 227
Post-RB1-Row-To-Reccontrol point 90
Post-Rec-To-RB1-Row control point 90
Post-Rec-To-Screen control point 89

Reference

520

Post-Screen-Read control point 89
Post-Screen-To-Rec control point 89
Pre-Branch control point 89
Precompiler Options screen 364
precompiler, APS

options for 364
predicates, native SQL 126, 132, 141, 152,

168, 178

Pre-Function-Test control point 89
Pre-RB1-Row-To-Rec control point 90
Pre-Rec-To-RB1-Row control point 90
Pre-Rec-To-Screen control point 89
Pre-Screen-To-Rec control point 89
Pre-Term control point 89
Preventing 84
PREVIOUS keyword

DB-OBTAIN 151

DB-PROCESS 167
printing, suppressing in Report Writer 450
PROC keyword 351, 370
Procedure Division

NTRY keyword 340

PROC keyword 370

PROCEDURE DIVISION USING 342, 370,

469

Report Writer 269, 305, 461, 485
PROCESS 160

see DB-PROCESS call
PROCESS-CTR flag 169
processing

database and file records 160

table rows 160
processing rows and records 160
PROG statement for OPT keyword 352
program

control return to calling program 460

control, terminating processing 462
Program DB/DC Report (PG02) 372, 407
Program Definition Report (PG01) 374, 407
Program Editor keywords 311

program locations for Customizer source 452

Program Painter
DB calls 97
DC calls 101

Reference

Report Writer structures 404
PROGRAM parameter

CIC-RELEASE 65
program parameter

CIC-LOAD 62
PROGRAM-INVOKED flag

see TP-PROGRAM-INVOKED flag
Program-Invoked-Para control point 89
programs, batch

generation option, Report Writer 364

naming conventions 25

specifying as target 24

specifying in application definition 25
programs, online

naming conventions 25

specifying in application definition 25
Project Group Environment screen 376
protected fields 274

ISPF prototype screens 45
PROTOCOL 285
prototype

enable IMS prototype mode 82

enable VSAM prototype mode 82

generation of, suppressing DB calls 450
prototyping under ISPF

associated programs, specifying 276

CICS or IMS DC applications 27

field names 43

modifiable extended attributes 274

specifying as target 24, 118

suppressing database calls 450
PSBs

naming conventions 26

reporting on 372, 407

specifying in application definition 26

use with CICS 65, 68, 375

use with IMS DC 371
punctuation in S-COBOL programs 416
PURG keyword

MSG-SW 339

SEND 433, 434

Q

QUEUE parameter
CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-READQ-TD 63
CIC-READQ-TS 64
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70

R

READQ-TD
see CIC-READQ-TD call
READQ-TS
see CIC-READQ-TS call
REC keyword 377
DB-BIND 119
DB-DECLARE 125
DB-FREE 136
DB-GET 137
DB-MODIFY 140
DB-OBTAIN 151, 153
DB-PROCESS 167
DB-STORE 178
IDM-CONNECT 283, 284
RECORD CONTAINS Report Writer clause 74
RECORD keyword
MSG-SW 339, 433
NTRY 343
RED keyword 378, 404
REDEF keyword
SCRNLIST 427
REDEFINES clause in data structures 379
redefining
data elements 379
screen records 424, 426
REF keyword
DB-MODIFY 140, 141
DB-OBTAIN 151, 153
DB-PROCESS 167

521

DB-STORE 178
REFERENCE Report Writer clause 380, 405
registers

see special registers, SQL
relational operators in S-COBOL 417
relative byte address

VSAM online 261
relative record number

VSAM batch 259

VSAM online 261
release

see CIC-RELEASE call
REM keyword 382
RENAMIES clause in data structures 13
REPEAT LINKING statement 383
REPEAT statement 264, 383
REPEAT VARYING statement 383
REPLACE

see DLG-VDEFINE call
report file description keyword 247
REPORT FOOTING (RF) keyword 479
Report Generator

summary of reports 32, 407
REPORT HEADING (RH) keyword 479
report mock-ups

data fields 388

identifying in Report Section 333

limits 320

line limits 334

literal fields 388, 491

naming conventions 25

painting 388

PIC string 388

record size 74

specifying in application definition 25
Report Section

keywords 11, 333, 378

Report Writer 11, 333, 378
Report Writer

01 keyword 11

accumulators 305

accumulators, sum 380, 438, 447

begin processing 305

coding rules 405

Reference

522

coding your own WRITE statement 495

control breaks 78, 269, 379

counters 305

declaratives 485

defining the report 378

detail lines 475

detail reports 269, 475

end processing 461

FD keyword 247

File Section 247

footers 475

headers 475

identifying mock-up 333

initializing accumulators 305

Input-Output Section 305

iterative expressions 438, 447

keywords and structures 404

large reports 270

limits 353

literal values 491

mapping data items 438

MOCK keyword 333

multiple detail lines 447

non-printing fields 380

overview 404

Procedure Division statements 269, 305,
461, 485

processing each report 269

record length 74

RED keyword 378

report group types 475

Report Section 378

sample report programs 389

summary reports 269, 475

summing data items 380, 438, 447

suppressing printing 450

USE BEFORE REPORTING 485

reports, APS

Application Definition (AP01) 16, 407
Component List (MS01) 76, 407

Data Structure Definition (DS01) 107, 407

DDIFILE (DBO1) 181, 407
Entity Content (MS02) 210, 407
Entity Cross Reference (MDO01) 212, 407

Reference

Entity Parts List (ENO1) 214, 407
Entity Search Utility (GS01) 216, 407
Entity Use (EN02) 219, 407

Field Edits (EDO1) 407, 420

Field/Screen Cross Reference (SC02) 262,

407
generating 32, 407

Macro/Program Cross Reference (MC01)

327, 407
Mock-Up (RP0O1) 335, 407
Program DB/DC (PG02) 372, 407
Program Definition (PG01) 374, 407
Scenario Definition (CNO1) 407, 419

Screen Hardcopy/Field Attribute (5C01)

407, 420
summary of 32, 407
REQID parameter
CIC-CANCEL 56
CIC-DELAY 57
reserved words
COBOL and S-COBOL 413
complete listing 409
RESET
see DLG-VRESET call
RESET keyword
DB-OBTAIN 152
DB-PROCESS 168, 171
RESET Report Writer clause 447
RESETBR keyword
DB-OBTAIN 152
RESET-OBTAIN flag
VSAM batch 258
VSAM online 259
RESET-PFKEY call 411
restart
see checkpoint/restart
RETRY keyword
NTRY 343
RETRY parameter
NTRY 83
RETURN 287
RETURN keyword
NTRY 343

REWRITE parameter
CIC-WRITEQ-TS 70
rewriting IDMS DB records 138
RI-ON-REC flag
SQL 232
ROLLBACK
see DB-ROLLBACK call, IDM-ROLLBACK
call
RRDS support
VSAM batch 259
VSAM online 261
RTY-ON-REC flag
IMS DB 227
ruled line attribute, KANJI format 45
RUN-UNIT keyword
DB-BIND 119

S

SAGE-TRACE-FLAG 233
scalar functions
see functions, SQL
Scenario Definition Report (CNO1) 407, 419
Scenario Painter
field limit 320
SCHEDULE-PSB
see CIC-SCHEDULE-PSB call
S-COBOL
abbreviated syntax 417
coding rules 415
comments 75
continuation 416
differences from COBOL 413
flags 415
indentation 357, 413
limits 321
overview 413
punctuation 416
verbs 414
S-COBOL structures 413
screen fields
generation parameters 273

523

generation parameters, for all targets
273
generation parameters, for IMS 329, 330,
332
generation parameters, for ISPF Dialog
355
generation parameters, for KANJI format
274
length, changing 43
limits 320
LOW-VALUES 471
MFS, system literals, defining 45
MFS, trancodes, creating 330
MFS, trancodes, literal values 278
MID MOD reordering 332
naming conventions 42
null values 471
value, initial 43
Screen Hardcopy/Field Attribute Report
(sCo1) 407, 420
SCREEN keyword
MSG-SW 339
SEND 433
Screen Painter
field limits 320
SCREEN-INVOKED
see TP-SCREEN-INVOKED flag
screens
attributes, overriding 40
attributes, resetting 40, 71, 471
displaying 340, 431
field edits, performing 340
generating in Linkage Section 426
generation parameters 273
generation parameters, for all targets
273
generation parameters, for IMS 329, 330,
332
generation parameters, for ISPF Dialog
355
generation parameters, for KANJI format
274
I/O areas, reporting on 372
LOW-VALUES 71

Reference

524

naming conventions 25
null values 71
receiving multiple screens 426
redefining 424, 426
sending messages 431
sending multiple pages 435
sending single or multiple screens 431
simulating screen invocation 411
size, specifying 25
specifying in application definition 25
specifying in NTRY 340
screens, APS
Application Selection 19
Bind Options 46
Checkin, ENDEVOR Interface 51
Checkout, ENDEVOR Interface 53
Field Attributes 42
Generation Options 271
IDMS options 293
ISPF Panel Options 355
Job Control Cards 307
MFS Function Keys 329
MFS Trancode Construction 330
MID MOD Reorder 332
Parm 240
Precompiler Options 364
Project Group Environment 376
SCRNLIST call 426
SD keyword 429
SEARCH statement 430
SEC-VIO flag
IMS DC 230
SEG-NOT-FOUND flag
IMS DC 230
SELECT statement keyword 305
SELECTIVE keyword
DB-ERASE 132
SEND call 431
SEND-TEXT
see CIC-SEND-TEXT call
SEQUENCE keyword
DB-OBTAIN 152
SERVICE-RELOAD
see CIC-SERVICE-RELOAD call

Reference

SET ERROR Customization Facility statement
81
SET keyword
DB-OBTAIN 152
IDM-IF 285
SET parameter
CIC-GETMAIN 60
CIC-LOAD 62
CIC-READQ-TD 63
CIC-READQ-TS 64
SETMSG
see DLG-SETMSG
SHORT keyword
DLG-SETMSG 202
size limitations in APS 319
software library 26
Sort Description
keyword 429
SORT procedure keyword 357
SOURCE Report Writer clause 405, 438, 447
SPA (Scratch Pad Area) 465
SPA-IO-ERR flag
IMS DC 230
special registers, SQL 440
DB-DECLARE 440
DB-OBTAIN 440
DB-PROCESS 440
Special-Names keyword 441
Specification Editor
DB calls 97
DC calls 101
SPNM keyword 441
sQL
abnormal condition processing 233
adding rows 175, 176
APDB2IN control file 85
bind and translate generation options 46
calls, list of 98
closing cursor sets 120, 160, 161
committing 121
copybooks, customize 194
copybooks, placement 83
cursor naming 125, 165
customization exits 133, 172

declaring table rows 122, 160, 161
deleting rows 128
error handling 232
exit points 244
expressions 246, 265
functions 246, 265
grouping data elements 278
IMS considerations 371
joining tables 307
looping 160, 161
modifying rows 138
native (pass-through) support 441
null indicators 349
opening cursor sets 158, 160, 161
Procedure Division statement 442
processing rows 160, 161
reading rows 134
retrieving rows 134
rollback functions 174
selecting rows 143, 147, 160
special registers 440
specifying as target 24, 118
status flags 232
storing rows 175, 176
subchemas 180
topics, list of 100
unions 480
writing rows 175, 176
SQL keyword 441
SQL Server
exit points 244
starting
see CIC-START call
STOP RUN statement 444
STORE
see DB-STORE call
STUB keyword 444
stubs
see global stubs or local stubs
subroutines/subprograms
calling 321
invoking with ENTRY statement 221
invoking with LINK call 321
invoking with XCTL call 497

525

SUBSCHEMA keyword
DB-BIND 119
subschemas
DB-SUBSCHEMA call 180
in Program DB/DC Report 372, 407
naming conventions 26
specifying in application definition 26,
180
SUBSCRIPT keyword
DB-ERASE 132
DB-OBTAIN 152
DB-PROCESS 168
DB-STORE 178
sum accumulators, Report Writer 380, 438,
447
SUM function 246
SQL 265
SUM Report Writer clause 380, 405, 447
summary reports, Report Writer 269, 475
SUPPRESS option 450
SUPPRESS Report Writer statement 450
SUPRA statements 451
SY keywords 452
SY macro keywords 465
syntax, abbreviated for S-COBOL 417
SYSID keyword
DB-OBTAIN 152
SYSID parameter
CIC-CANCEL 57
CIC-DELETEQ-TD 58
CIC-DELETEQ-TS 59
CIC-READQ-TD 63
CIC-READQ-TS 64
CIC-WRITEQ-TD 69
CIC-WRITEQ-TS 70
SYSIDERR error flag/condition 236
SYSMSG field
creating 274
system messages
creating field for 274
system service calls
IMS Fast Path 454

Reference

526

T

task processing, CICS

starting 67

stopping 57
teleprocessing functions, Online Express

customizing 88
temporary storage area, CICS 59, 63, 70
TERM call 460
TERMINATE Report Writer statement 461
terminating programs 245, 444, 460, 462
TERM-PSB

see CIC-TERM-PSB call
time field edits

input 117

internal picture 116

output 117
TIME function, SQL 265
TIME parameter

CIC-DELAY 57

CIC-START 68
TIME special register, SQL 440
TIMESTAMP special register, SQL 440
TIMEZONE special register, SQL 440
TO keyword 283, 284
TP-ATTR

see ATTR call
TP-BACKOUT call 462
TP-CLEAR

see CLEAR call
TP-CLEAR-ATTRS

see CLEAR-ATTRS call
TP-COMMAREA call

CICS 323, 463, 498

CICS, passing 323, 463

IMS DC 465

ISPF Dialog 466

ISPF Dialog, passing 323, 467
TP-ENTRY

see NTRY keyword
TP-LINK

see LINK call
TP-LINKAGE call 468

Reference

TP-LINK-INVOKED flag 258
TP-MSG-SW MSG-SW call see 337
TP-NULL call 471
TP-PERFORM call 472
TP-PGM-ERR flag

IMS DC 230
TP-PROGRAM-INVOKED flag

CICS 256

IMS DC 257

ISPF Dialog 258
TP-RESET-PFKEY RESET-PFKEY call see 411
TP-SCREEN-INVOKED flag

CICS 256

IMS DC 257

ISPF Dialog 258
TP-SCRNLIST SCRNLIST call see 426
TP-SCRN-RECEIVED flag 427
TP-SEND SEND call see 431
TP-TERM TERM call see 460
TP-TRANSID-INVOKED flag

CICS 256

IMS DC 257

ISPF Dialog 258
TP-USERAREA 49, 498

CICS 463

IMS DC 465

ISPF Dialog 466
TP-USER-LEN 49

CICS 463

IMS DC 465

ISPF Dialog 466
TP-XCTLXCTL call see 497
trace facility

SCBTRACE 364
trancodes

creating 330

literal values, specifying 278
transaction ID, specifying 275
transferring to other programs 321, 497
TRANSID keyword

SEND 434
TRANSID parameter

CIC-CANCEL 57

CIC-START 68

TRANSID-INVOKED TP-TRANSID-INVOKED
flag see 256

Transid-Invoked-Para control point 89

transient data, CICS 58, 62, 69

translate options, SQL 46

TRUE flag 475

TRUE statement 473

Ty(pe) field, Application Painter 25

TYPE Report Writer clause 405, 475

U

unions
DB-DECLARE 480
DB-PROCESS 480
UNLOCK keyword
DB-FREE 136, 172
unprotected fields 274
UNTIL statement 383, 483
UPDATE keyword
DB-DECLARE 126
DB-PROCESS 168
UPON Report Writer clause 447
USAGE clause in data structures 110
Use 55
USE BEFORE REPORTING Report Writer clause
485
USE BEFORE REPORTING Report Writer state-
ment 405
user exits
Application Painter 27
user help 486
APHLPIN control file 88
user-defined field edits
control file switches 84
creating 18
examples 22
referencing APS-generated field names
in 19
selecting from predefined list 19
USERMACs
application limit 320

527

USERNAME statement 489, 490
USING keyword 287

\"

VALUE clause in data structures 14, 490
value ranges, field edits 493
VALUE Report Writer clause 405, 491
value, screen field, initial 43
variable length file support

VSAM batch 494

VSAM online 262
VCOPY DLG-VCOPY call see 203
VDEFINE DLG-VDEFINE call see 204
VDELETE DLG-VDELETE call see 205
VIEW keyword

DB-ERASE 131, 132

DB-FREE 136

DB-MODIFY 140, 141

DB-OBTAIN 151, 152, 153

DB-PROCESS 167, 168

DB-STORE 177
VIEW parameter

DB-STORE 179
VIO-ON-REC flag

IDMS DB 225

IMS DB 227
VREPLACE DLG-VREPLACE call see 206
VRESET DLG-VRESET call see 207
VSAM

specifying as target 24, 118
VSAM batch

abnormal condition processing 235

APVSAMIN control file 87

closing files 120

customization exits 134

DDI statements 182

deleting records 128

enable prototype mode 82

error handling 234

ESDS support 259

exit points 244

Reference

528

fields and flags 234, 258

modifying records 138

opening 158

reading records 143, 147

retrieving and processing records 160,
163

RRDS support 259

storing records 175, 176

subschemas 180

topics, list of 100

variable length file support 494

writing records 175, 176

VSAM online

abnormal condition processing 237

APVSAMINcontrol file 87

calls, list of 99

customization exits 134

DDI statements 182

deleting rows 128

enable prototype mode 82

error handling 236

ESDS support 261

exit points 244

fields and flags 236, 259

modifying records 138

reading records 143, 148

releasing file resources 135

retrieving and processing records 160,
163

RRDS support 261

storing records 175, 176

subschemas 180

topics, list of 100

variable length file support 262

writing records 175, 176

W

WHERE CURRENT keyword
DB-ERASE 132
DB-MODIFY 141

Reference

WHERE keyword

DB-DECLARE 126

DB-ERASE 132

DB-MODIFY 141

DB-OBTAIN 152

DB-PROCESS 168

DB-STORE 178
WHILE statement 383, 483
WITH HOLD keyword

DB-DECLARE 126

DB-PROCESS 169, 172
Working-Storage Section keyword 496
WRITE ROUTINE Report Writer clause 248,

404, 495

WRITEQ-TD CIC-WRITEQ-TD call see 69
WRITEQ-TS CIC-WRITEQ-TS call see 70
WS keyword 496

X

XCTL call 497

CICS PSB 375

Commarea, passing 323

passing the Commarea 323, 463, 467
XCTL call, Specification Painter

passing the Commarea 467

	Reference
	Table of Contents
	++
	01
	RENAMES
	88
	Application Definition Report (AP01)
	Application Field Edit Routines
	Application Painter
	Application Painter Member Processing Exits
	Selection Code Processing

	Application Reports
	APSMACS Rule Library
	AT END/INVALID KEY
	ATTR
	Attributes, Screen Fields
	Bind and Translate Options, SQL
	CA
	CCODE
	Checkin
	Checkout
	CIC-ADDRESS
	CIC-ASSIGN
	CIC-CANCEL
	CIC-DELAY
	CIC-DELETEQ-TD
	CIC-DELETEQ-TS
	CIC-FREEMAIN
	CIC-GETMAIN
	CIC-LOAD
	CIC-READQ-TD
	CIC-READQ-TS
	CIC-RELEASE
	CICS
	CIC-SCHEDULE-PSB
	CIC-SEND-TEXT
	CIC-SERVICE-RELOAD
	CIC-START
	CIC-TERM-PSB
	CIC-WRITEQ-TD
	CIC-WRITEQ-TS
	CLEAR
	CLEAR-ATTRS
	COBOL/2 Support
	CODE
	Comments
	Component List (MS01)
	CONTROL
	Control Files
	Control Points
	Database Calls
	Data Communication Calls
	Data Structure Definition (DS01)
	Data Structures
	Date and Time Field Edits
	DB/DC Target Combinations
	DB-BIND
	DB-CLOSE
	DB-COMMIT
	DB-DECLARE
	DB-ERASE
	DB-FETCH
	DB-FREE
	DB-GET
	DB-MODIFY
	DB-OBTAIN
	DB-OPEN
	DB-PROCESS
	DB-ROLLBACK
	DB-STORE
	DB-SUBSCHEMA
	DDIFILE Report (DB01)
	DDI Statements
	DDISYMB Flags
	DECL
	DLG-ISPEXEC
	DLG-ISREDIT
	DLG-SETMSG
	DLG-VCOPY
	DLG-VDEFINE
	DLG-VDELETE
	DLG-VREPLACE
	DLG-VRESET
	DPAR
	DS
	Entity Content Report (MS02)
	Entity Cross Reference (MD01)
	Entity Parts List (EN01)
	Entity Search Utility Report (GS01)
	Entity Use Report (EN02)
	ENTRY
	Error Handling
	Error Processing Messages
	ESCAPE
	EVALUATE
	Exit Points
	EXIT PROGRAM
	Expressions, SQL
	FD
	Field Edits
	Field Edit Values
	Fields and Flags, Data Communication
	Field/Screen Cross Reference (SC02)
	FRFM
	Functions, SQL
	GENERATE
	Generator Options
	Generation Parameters, Screens
	GROUP BY
	GSAM Calls
	ID Parameters:
	IDM-COMMIT
	IDM-CONNECT
	IDM-DISCONNECT
	IDM-IF
	IDM-PROTOCOL
	IDM-RETURN
	IDM-ROLLBACK
	IDMS
	IDMS DB Sample Programs
	IDMS Options
	IF/ELSE-IF/ELSE
	$IM- Data Communication Calls
	$IM-FLD
	$IM-FSA
	$IM-POS
	% INCLUDE
	INITIATE
	IO
	ISPF Dialog Compatibility: with IMS DC, CICS
	Job Control Cards
	Joins
	Keywords
	Limits
	LINK
	LK
	Macro/Program Cross Reference (MC01)
	MFS Function Keys
	MFS Trancode Construction
	MID MOD Reorder
	MOCK
	MOCKUP LINES
	Mock-Up Report (RP01)
	Modified Data Tags, CICS Data Transmission
	MSG-SW
	NTRY
	NULL Indicator Field
	OCCURS
	OPT
	OVERPRINT
	PAGE LIMIT
	Panel Options, ISPF Dialog
	PARA and Paragraphs
	PERFORM
	PF Key Values
	Precompiler Options
	PROC
	Program Control Blocks, IO
	Program DB/DC Report (PG02)
	Program Definition Report (PG01)
	Program Specification Blocks
	Project and Group Options
	REC
	RED
	REDEFINES
	REFERENCE
	REM
	REPEAT
	Report Mock-Ups
	Report Sample Program and Mock-Up
	Report Writer Structures
	Reports, Application-Generated
	Reserved Words
	RESET-PFKEY
	S-COBOL Structures
	Scenario Definition Report (CN01)
	Screen Hardcopy/Field Attribute Report (SC01)
	Screen Redefinition
	SCRNLIST
	SD
	SEARCH
	SEND
	SOURCE
	Special Registers
	SPNM
	SQL
	STOP RUN
	STUB
	Subselect Clause
	SUM
	SUPPRESS (IMS DB Option)
	SUPPRESS (Report Writer)
	SUPRA
	SY* Keywords
	System Service Calls
	TERM
	TERMINATE
	TP-BACKOUT
	TP-COMMAREA
	TP-LINKAGE
	TP-NULL
	TP-PERFORM
	TRUE/FALSE
	TRUE, FALSE, ALWAYS, NEVER
	TYPE
	UNION
	UNTIL/WHILE
	USE BEFORE REPORTING
	User Help
	USERNAME
	VALUE (Data Structure)
	VALUE (Report Writer)
	Values, Conversion Values, and Value Ranges
	Variable Length File Support
	WRITE ROUTINE
	WS
	XCTL
	Index

