
ADABAS Native SQL 2.1.1

Reference Manual

Manual Order Number: SQL211-030ALL

This document applies to Product Version ADABAS Native SQL Version 2.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers’ comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com

� July 2000, Software AG
All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

I

TABLE OF CONTENTS

PREFACE 1.

Using this Manual 1.

Other Sources of Information 3.

1. INTRODUCTION 5.

2. PROGRAMMING CONSIDERATIONS 9.

Source Program Maintenance 13.

The Record Buffer and Reference to Data 15.

Response Code Interpretation 39.

Host Variables 42.

ISN Lists and the ISN Buffer 42.

HOLD Logic 43.

Security Options 44.

Record Buffer — ADA 46.

Record Buffer — COBOL 47.

Fields in FORTRAN 48.

Record Buffer — PL/I 49.

Date and Time Conversion Routines 50.

Support of Distributed Data Structures 52.

Without Adabas Star 54.

With Adabas Star 55.

Relational Null Support 61.

Long Alpha field Support 63.

3. SINGLE AND MULTIPLE-RECORD PROCESSING 65.

Single-Record Processing 66.

Multiple-Record Processing 67.

Adabas Native SQL Reference Manual

II

4. OVERVIEW OF STATEMENTS 71.

Syntax 72.

Overview of Adabas Native SQL Statements 76.

Database Query Statements 76.

Data Storage READ Statements 79.

Associator READ Statement 80.

Statements for Processing Multiple Records 81.

Database Modification Statements 82.

Logical Transaction Processing Statements 83.

Checkpointing Statement 83.

Other Adabas Native SQL Statements 84.

Adabas Native SQL Clauses 87.

5. ADABAS NATIVE SQL STATEMENTS 105.

The BEGIN Statement 105.

The CHECKPOINT Statement 106.

The CLOSE Statement 107.

The COMMIT WORK Statement 108.

The COMPARE Statement 110.

The CONNECT Statement 118.

The COPY Statement 127.

The DBCLOSE Statement 128.

The DELETE Statement 131.

The FETCH Statement 135.

The FIND Statement 136.

The FIND COUPLED Statement 151.

The GENERATE Statement 161.

The HISTOGRAM Statement 163.

The HOLD Statement 170.

The INSERT Statement 171.

The OPEN Statement 180.

Table of Contents

III

The READ ISN Statement 181.

The READ LOGICAL Statement 189.

The READ PHYSICAL SEQUENCE Statement 198.

The READ USERDATA Statement 205.

The RELEASE Statement 207.

The RELEASE ISN Statement 208.

The RESTORE Statement 209.

The ROLLBACK WORK Statement 210.

The SAVE Statement 211.

The SORT Statement 214.

The TRACE Statement 223.

The UPDATE Statement 224.

The WHENEVER Statement 236.

The WRITE TO LOG Statement 237.

6. USING ADABAS NATIVE SQL STATEMENTS IN TP PROGRAMS 239.

COM-PLETE 239.

Customer Information Control System (CICS) 239.

7. GLOBAL PARAMETERS 243.

The ABORT Parameter 244.

The ADACALL Parameter 247.

The APOS Parameter 249.

The CICS STUB Parameter 250.

The LANG Parameter 251.

The LIBRARY Parameter 252.

The MODE Parameter 253.

The MONITOR Parameter 255.

The NAME Parameter 257.

The NETWORK Parameter 258.

The OPTIONS Parameter 259.

Adabas Native SQL Reference Manual

IV

The SYSFILE Parameter 269.

The TELE Parameter 270.

The USER Parameter 271.

The VIRTUAL-MACHINE Parameter 272.

The XREF Parameter 273.

APPENDIX A — SIZE LIMITATIONS 275.

APPENDIX B — DESCRIPTIONS OF THE FILES
USED IN THE EXAMPLES 277.

APPENDIX C — ADABAS NATIVE SQL STATEMENTS
USED IN THE EXAMPLES 281.

APPENDIX D — ADA EXAMPLES 283.

APPENDIX E — EXAMPLE OF ADA CODE GENERATED BY ADABAS
NATIVE SQL 293.

APPENDIX F — COBOL EXAMPLES 303.

APPENDIX G — EXAMPLE OF COBOL CODE GENERATED BY
ADABAS NATIVE SQL 315.

APPENDIX H — FORTRAN EXAMPLES 325.

APPENDIX I — EXAMPLE OF FORTRAN CODE GENERATED
BY ADABAS NATIVE SQL 335.

APPENDIX J — PL/I EXAMPLES 345.

APPENDIX K — EXAMPLE OF PL/I CODE GENERATED
BY ADABAS NATIVE SQL 355.

INDEX 365.

1

PREFACE

Using this Manual

This manual describes the functions provided by Adabas Native SQL, Software AG’s language
for accessing Adabas files from Ada, COBOL, FORTRAN and PL/I programs. SQL stands for
Structured Query Language.This manual also describes how to code the statements that provide
these functions.

The manual’s intended audience is an Ada, COBOL, FORTRAN77 or PL/I programmer who
is also acquainted with Adabas concepts and who wishes to develop applications using Adabas
Native SQL.

The manual contains the following chapters.

� Chapter 1: Introduction
This chapter describes the basic concepts of Adabas Native SQL.

� Chapter 2: Programming Consideration
This chapter provides background information you should read before using Adabas Native
SQL for the first time. This material will help you understand

– the data structures that Adabas Native SQL builds in your programs,

– how your program should react if Adabas Native SQL detects an error,

– how Adabas Native SQL reads lists of records in sequence,

– how to hold records in order to avoid updating conflicts, and

– how to access and update files that are protected by the Adabas security mechanisms.

This chapter also includes a section on distributed data processing. You should read this section
if you are using Adabas Star.

� Chapter 3: Single and Multiple-Record Processing
This chapter deals with considerations when operating in single or multiple-record processing
mode.

� Chapter 4: Overview of Statements
This chapter provides an overview of the syntax used in Adabas Native SQL statements,
together with a brief description of the statements themselves, grouped logically according to
statement function. This chapter also describes in detail the clauses common to statements
which retrieve data from the database.

Adabas Native SQL Reference Manual

2

� Chapter 5: Adabas Native SQL Statements
This chapter describes in detail all the statements in alphabetical order for easy reference.

� Chapter 6: Using Adabas Native SQL Statements in TP Programs
This chapter provides additional information on the facilities provided for writing
teleprocessing (TP) application programs.

� Chapter 7: Global Parameters
This chapter describes global parameters which can be used to define processing options and
adapt them to your particular requirements.

� Appendix A: Size Limitations
Lists the size limitations of Adabas Native SQL.

� Appendix B: Descriptions of the Files used in the Examples
Contains a description of the files used in the sample programs and the FORTRAN synonyms
that must be used.

� Appendices C – K:
The other appendices show examples of programs using Adabas Native SQL statements.

Preface

3

Other Sources of Information

The statements described in this manual are summarized in the Adabas Native SQL Reference
Card.

This reference manual, read in conjunction with the Adabas Introduction Manual, should
provide all the information that you need when writing Adabas Native SQL application
programs. However, when writing TP application programs or if the database is protected by
the Adabas security features, you may need to refer to other sources, for example the database
administrator (DBA) or the following literature:

� Adabas Operations Manual

� Adabas Utilities Manual

� Adabas DBA Reference Manual

� Adabas Security Manual

� Adabas Command Reference Manual

� Adabas Installation Manual

� Adabas Messages and Codes.

4

1

5

INTRODUCTION

Adabas Native SQL is an easy-to-use data manipulation language for accessing and updating
information held in an Adabas database. The following example shows a typical Adabas Native
SQL statement that selects a record from the database and retrieves the required data:

EXEC ADABAS
 SELECT NAME, AGE, SALARY
 FROM PERSONNEL
 WHERE NUMBER-OF-DEPENDENTS > 4
END-EXEC

This statement selects the data fields ‘NAME’, ‘AGE’ and ‘SALARY’ from the first record in
the ‘PERSONNEL’ file that satisfies the criterion ‘NUMBER-OF-DEPENDENTS > 4’.

Statements such as this one are embedded into Ada, COBOL, FORTRAN77 or PL/I programs.
This means you have the advantage of being able to use a familiar programming language to
code the logic of your problem, whilst the Adabas Native SQL statements give you ready access
to all the facilities of Adabas, a powerful modern database management system.

Adabas Native SQL incorporates the full power of the Natural userview concept. This means
you refer to fields defined in a userview as logical entities without having to concern yourself
with the physical details of file structure and record structure. For example, if you specify a
group field, Adabas Native SQL automatically creates Ada, COBOL, FORTRAN or PL/I data
declarations with the correct:

– set of fields (possibly a subset of the fields in the database record; conversely, a field may
occur repeatedly in the userview if desired)

– field names

– field sequence

– record structure, including all groups, sub-groups, sub-sub-groups, etc.

– field formats (alphanumeric, numeric, packed numeric, etc.)

– field lengths.

Adabas Native SQL works in conjunction with Predict, Software AG’s data dictionary system.
The information about file and record layouts contained in Predict is used to generate the data
structures that the generated Ada, COBOL, FORTRAN or PL/I program needs to access the
database. As an Adabas Native SQL programmer, you do not need to code detailed data
declarations in your program, so you are free to concentrate on the logic of the application.

Adabas Native SQL Reference Manual
1

6

Conversely, as Adabas Native SQL is processing the program, it records active cross-reference
information, or Xref data, in Predict. This Xref data includes the names of the files and fields
that the program accesses. Thus it is easy to find out which programs use which data fields, etc.,
so that the programs that need to be recompiled when data structures are altered can readily be
determined.

The interaction between Adabas Native SQL and Predict is illustrated in the following figure.

Generated
Code

ADABAS SQL

PREDICT
Data Dictionary

Xref
Data

Data Structure
Definitions

Field descriptions
– Field names
– Short field names
– Field formats
– Field lengths
– Synonyms

Verification

Generation options
Periodic groups– Prefix

– Suffix
– Validation
– Truncation
– Condition names

documentation

multiple fields

of program

and

– Count fields
– Group structure

Copy/Include Code

Active Cross Reference
Information
– Program name
– Programming language
– Subroutines referred to
– Files referred to
– Field usage
– Date and time of compilation
– Library name
– Use of ET data

– Ada
– COBOL
– FORTRAN
– PL/I

Introduction
1

7

Consistent use of Adabas Native SQL throughout a data processing installation eliminates the
risk of writing incorrect data declarations in programs that access the database. It also creates
comprehensive records in the data dictionary that show which programs read from the database
and which programs update it. This makes programs easier to maintain and provides the DBA
with an effective management tool.

After it has been preprocessed by Adabas Native SQL, the program — containing data
definitions and executable code generated by Adabas Native SQL as well as the original Ada,
COBOL, FORTRAN or PL/I code written by the programmer — is compiled and link-edited in the
normal manner.

8

2

9

PROGRAMMING CONSIDERATIONS

Using Adabas Native SQL does not require you to learn new programming techniques.
Programs are written in Ada, COBOL, FORTRAN77 or PL/I as before, with Adabas Native SQL
statements that access the Adabas database inserted at the required places. The Adabas Native
SQL preprocessor converts the Adabas Native SQL statements into comments, inserts the
generated code and data structures into the source stream and passes the remainder of the
program through without alteration. At the same time, Adabas Native SQL optionally writes to
the data dictionary a cross-reference list of the files and fields used by the program.

How this Chapter is Organized

� Source Program Maintenance (page 13)

� The Record Buffer and Reference to Data (page 15)

– Referencing Database Fields

– Additional Fields in the Record Buffers (Ada, COBOL, PL/I) (page 35)

– Additional Fields in FORTRAN Programs (page 37)

– End-of-File Flag (ADACODE, SQLCOD) (page 38)

� Response Code Interpretation (page 39)

� Host Variables (page 42)

� ISN Lists and the ISN Buffer (page 42)

� HOLD Logic (page 43)

– RETURN Option (page 43)

� Security Options (page 44)

– Password Protection

– Ciphering

– Security by Value

� Record Buffer — Ada (page 46)

� Record Buffer — COBOL (page 47)

� Fields in FORTRAN (page 48)

� Record Buffer — PL/I (page 49)

Adabas Native SQL Reference Manual
2

10

� Date and Time Conversion Routines (page 50)

� Support of Distributed Data Structures with(out) Adabas Star (page 52)

� Relational Null Support (page 61)

� Long Alpha Field Support (page 63).

Programming Considerations
2

11

Generated
Code

Linkage
editor

Adabas SQL

Load
module

Global
parameter file

Ada, COBOL, FORTRAN
or PL/I program with
Adabas Native SQL

statements

Precompile

Compile

Link

Execute

Predict
Data Dictionary

Xref
Data

Data Structure
Definitions

Adabas
Database

Ada, COBOL, FORTRAN
or PL/I program

Object
module

Output

Compiler

Adabas Native SQL Reference Manual
2

12

Rules for Adabas Native SQL Statements
Each Adabas Native SQL statement is preceded by ‘EXEC ADABAS’. Each Adabas Native
SQL statement is terminated by ‘END-EXEC’ (in Ada, COBOL or FORTRAN), or by
‘END-EXEC’ or ‘;’ (in PL/I). These delimiters enable the preprocessor to distinguish Adabas
Native SQL statements from regular Ada, COBOL, FORTRAN or PL/I code. The following
COBOL program includes two Adabas Native SQL statements:

IDENTIFICATION DIVISION.
PROGRAM ID. EXAMPLE.
AUTHOR. SAG.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
DATA DIVISION.
WORKING-STORAGE SECTION.
 SKIP2
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
PROCEDURE DIVISION.
 EXEC ADABAS
 SELECT NAME, AGE, SALARY
 FROM PERSONNEL
 WHERE NUMBER-OF-DEPENDENTS GT 4
 END-EXEC
 DISPLAY NAME AGE SALARY
 GOBACK.

‘EXEC ADABAS’ must be specified within one line. The same is true for ‘END-EXEC’. Only
one Adabas Native SQL statement may be written between ‘EXEC ADABAS’ and
‘END-EXEC’. The Adabas Native SQL statement is restricted to a maximum of 100 lines in
length (including ‘EXEC ADABAS’ and ‘END-EXEC’).

Mixing Adabas Native SQL statements and regular source code statements is not allowed; Ada,
COBOL, FORTRAN or PL/I code or comments should not appear between ‘EXEC ADABAS’
and the corresponding ‘END-EXEC’.

Note for COBOL users:
The generated statements may include periods to terminate internal ‘IF’ statements. Adabas
Native SQL statements are therefore not permitted within ‘IF...ELSE’ sections. This restriction
does not apply to programs generated with the global parameter ‘LANG COBOL/II.’; in this
case, Adabas Native SQL generates ‘END-IF’ statements instead of periods, so there are no
restrictions on nesting Adabas Native SQL statements within other ‘IF...ELSE...END-IF’
statements.

Programming Considerations
2

13

Note for COBOL/II users:

Adabas Native SQL will generate an extra statement with a period at the end while generating
a SQL statement in COBOL/II in the case that the END-EXEC clause ends with a period:
END-EXEC. In this case, users can “ask” Adabas Native SQL to generate a period at the end
of the generation.

Source Program Maintenance

The source program stored in the programmer’s library includes Adabas Native SQL
statements, but not the code they generate. Therefore every compilation must be preceded by
a pass through the Adabas Native SQL preprocessor. The preprocessor produces as its output
a program in Ada, COBOL, FORTRAN or PL/I, including the original Adabas Native SQL
statements, which are now marked as comments. This program should now be compiled and
link-edited in the normal manner. In the compiler listing, the generated statements are identified
in columns 73..80 by the characters ‘ADABAS’ (executable code and internal data) or
‘ADADATA’ (data definitions that are of use to you). This identification enables you to locate
the lines that contain the data definitions easily.

Note:
Do not alter variables that are declared in lines marked ‘ADABAS’. You should only use those
variables that are declared in lines marked ‘ADADATA’.

Ada, FORTRAN and IBM PL/I source files may include line numbers in columns 73..80.
COBOL source files may include line numbers in columns 1..6 and/or 73..80. Adabas Native
SQL preserves this line-numbering, which serves as a cross-reference between the source code
in the programmer’s library and the compiler listing.
The line sequence numbers are also used by the response code interpretation report and the
TRACE report to help you when debugging.

PL/I source files in VMS environments may not include line numbers.

If the source code is not numbered, Adabas Native SQL automatically generates line numbers
in columns 73..80.

Adabas Native SQL Reference Manual
2

14

The first Adabas Native SQL statement in the program must be the following:

EXEC ADABAS
 BEGIN DECLARE SECTION
END-EXEC

Adabas Native SQL generates all the variables including the Adabas buffers after this statement.

Note for COBOL users
This statement must be in the WORKING-STORAGE SECTION of the DATA DIVISION.

Programming Considerations
2

15

The Record Buffer and Reference to Data

A record buffer is an area of storage in the user’s program that is used by Adabas to transfer
information to or from the database. Whenever an Adabas read command is executed, the
desired database fields are located and copied into the record buffer.

Note:
No record buffer is generated for FORTRAN programs; however, there is a character string
which encompasses all fields and serves the same purpose as a record buffer. Throughout this
document, the term “record buffer” is used; however if a FORTRAN program is being discussed,
this term should be interpreted as the character string referred to above.

Referencing Database Fields

To use data in database fields, refer to it using qualified identifiers composed of the record buffer
name together with the basic field name as defined in the data dictionary. See table below.

Language Form of Reference

Ada, PL/I BUFFER.FIELD

COBOL FIELD OF BUFFER

FORTRAN No qualification possible

Note:
If more than one database field is used, a prefix or suffix (in the SELECT statement itself) should
be used to make the name unique.

If the Adabas Native SQL statement that causes the record buffer to be generated does not have
an alias name in the FROM clause, then the level-1 record buffer name is the same as the (first)
file name. If the FROM clause does include an alias name, then the alias name is used as the
level-1 record buffer name. Levels are not used in Ada or FORTRAN.

Adabas Native SQL generates a name at level 2 for internal use only. Do not use this name in
your programs.

Adabas Native SQL Reference Manual
2

16

Synonyms

The field names are generated beginning at level 3. The variable names that Adabas Native SQL
generates are taken from Predict. If the program is written in Ada and an Ada field name
synonym is defined in the data dictionary, then the synonym is used to generate the field name
in the Adabas Native SQL record buffer. If the program is written in COBOL, FORTRAN or
PL/I, then the COBOL, FORTRAN or PL/I field name synonym is used respectively. If no field
name synonym is defined for the language in which the program is written, the basic name of
the field is used. Note that the cross-reference information written to the data dictionary by
Adabas Native SQL is always the basic name of the field and not the language-dependent
synonym.

Prefix/Suffix

Having selected the field name or synonym, Adabas Native SQL then attaches the prefix and
suffix to the name. These are taken from one of the following sources:

– Local (highest priority)
Use the PREFIX and SUFFIX options for the current COMPARE, FIND, HISTOGRAM,
INSERT, READ, SORT or UPDATE statement.

– Global
Use the PREFIX and SUFFIX clauses of the global Adabas Native SQL OPTIONS
parameter (see page 259)

– Predict (lowest priority)
The current generation defaults for the respective language are used.

The first two options can only be used if the appropriate field in the Predict Modify...Defaults screen
for Ada, COBOL, FORTRAN or PL/I is marked with an ‘X’, indicating it may be modified by the
user. Otherwise the prefix and suffix values defined in the data dictionary cannot be overridden.

Validation

The field name is now validated by examining it for characters that do not conform with the rules
for forming identifiers in the appropriate language (Ada, COBOL, FORTRAN or PL/I). If any
illegal characters are found, they are processed according to the setting of the ‘validation
character ’. See table below:

Programming Considerations
2

17

Validation Character Result

Null string (two consecutive apostrophes) in
global parameter
or
Blank (Predict default)

Invalid characters in a field name will result
in an error message but will not be modified.

Replace character
(letters A-Z, digits 0-9 or special
character depending on language)

Invalid characters in a field name are re-
placed by this character.

Asterisk Invalid characters in the field name are de-
leted.

The validation character is taken from one of the following sources:

– Global (higher priority)
Use the VALIDATION clause of the global OPTIONS parameter of Adabas Native SQL.
See page 259. Only possible if the field Validate in the Predict Modify...Defaults screen
is marked with an ‘X’.

– Predict
The current generation default for the respective language is used.

Truncation

If the field name is now too long, it is truncated by deleting characters from the left, middle or
right, and a warning message is issued. The truncation character is taken from one of the
following sources:

– Global
Use the TRUNCATION clause of the global Adabas Native SQL OPTIONS parameter.
See page 259. Only possible if the field Truncation in the Predict Modify...Defaults screen
is marked with an ‘X’.

– Predict
The current generation default for the respective language is used.

Field Attributes

The attributes of the variables (format, length, etc.) are also taken from the data dictionary. If
the definition does not conform to the Ada, COBOL, FORTRAN or PL/I standards, the field is
declared as an alphanumeric field. (Examples of non-conforming definitions would be 3 bytes
binary or 5 bytes binary.)

Adabas Native SQL Reference Manual
2

18

Example: If there are fields called NAME and CITY in the Adabas file PERSONNEL, the
following Adabas Native SQL statement-fragment is valid:

SELECT NAME, CITY
FROM PERSONNEL

You may refer to the variables in the record buffer as:

PERSONNEL.NAME, PERSONNEL.CITY (Ada)
NAME OF PERSONNEL, CITY OF PERSONNEL (COBOL)
NAME, CITY (FORTRAN)
PERSONNEL.NAME, PERSONNEL.CITY (PL/I)

If you use the alias name option:

SELECT NAME, CITY
FROM PERSONNEL PERSON-ALIAS

then Adabas Native SQL generates a record buffer structure with the name PERSON_ ALIAS
(Ada, PL/I) or PERSON-ALIAS (COBOL). You may refer to the variables in the record buffer
as:

PERSON_ALIAS.NAME, PERSON_ALIAS.CITY (Ada)
NAME OF PERSON-ALIAS, CITY OF PERSON-ALIAS (COBOL)
NAME, CITY (FORTRAN)
PERSON_ALIAS.NAME, PERSON_ALIAS.CITY (PL/I)

Note for FORTRAN users
Qualification is not possible in FORTRAN. However, if the database field is used in more than
one Adabas Native SQL statement, a prefix or suffix (in the statement itself) must be used to
make the name unique.

Note for Ada and FORTRAN users
Numeric fields are transformed into character fields; therefore, whenever these fields are
initialized and whenever values are assigned to these fields, the values must be filled with
leading zeros, for example, ‘0001’.

Programming Considerations
2

19

Groups

If the name specified is the name of a group (GR), Adabas Native SQL automatically generates
declarations for the lower-level fields at all levels, in accordance with the definition stored in
the data dictionary. The field names will be the full field names as defined in the data dictionary.
If Ada, COBOL, FORTRAN or PL/I synonyms are defined in the data dictionary, they will be
used in place of the full field names.

Example:

SELECT PERSON
FROM PERSONNEL

The structure of the Ada record buffer is as follows:

type RECORD_BUFPERS is
 record

 NAME : STRING (1..20);
 FIRST_NAME : STRING (1..15);
 INITIAL : STRING (1..1);
 SEX : STRING (1..1);
 AGE : STRING (1..2);
 FAMILY_STATUS : STRING (1..10);
 NUMBER_OF_DEPENDENTS : STRING (1..2);
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;

end record;
PERSONNEL: RECORD_BUFPERS;

Adabas Native SQL Reference Manual
2

20

The structure of the COBOL record buffer is as follows:

01 PERSONNEL.
 02 RECORD-BUF-0-1.
 03 PERSON.
 04 NAME PIC X(20).
 04 FIRST-NAME PIC X(15).
 04 INITIAL PIC X(1).
 04 P-DES.
 05 SEX PIC X(1).
 05 AGE PIC 9(2).
 05 FAMILY-STATUS PIC X(10).
 05 NUMBER-OF-DEPENDENTS PIC 9(2).
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 20 NAME
CHARACTER* 15 FNAME
CHARACTER* 1 INIIAL
CHARACTER* 1 SEX
CHARACTER* 2 AGE
CHARACTER* 10 FAMSTA
CHARACTER* 2 NUMNTS
CHARACTER* 51 PERSON
CHARACTER* 15 PDES
CHARACTER* 51 PERNEL

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names depends
on the operating system.)

Note:
The field PERNEL encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Programming Considerations
2

21

The structure of the PL/I record buffer is as follows:

DCL 1 PERSONNEL,
 2 RECORD_BUFPERS_1 UNAL,
 3 PERSON,
 4 NAME CHAR (20),
 4 FIRST_NAME CHAR (15),
 4 INITIAL CHAR (1),
 4 P_DES,
 5 SEX CHAR (1),
 5 AGE PIC ’(1)99’,
 5 FAMILY_STATUS CHAR (10),
 5 NUMBER_OF_DEPENDENTS PIC ’(1)99’,
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(51) BASED (ADDR(RECORD_BUFPERS_1));

Any field within a group may also be specified as a single field name.

Note:
The level-2 name generated for the record buffer includes the cursor-name, if one was specified.
The COBOL example shows a record buffer that was generated from an Adabas Native SQL
statement without a cursor-name; the Ada and PL/I examples show a record buffer that was
generated from an Adabas Native SQL statement with the cursor-name ‘PERS’.)

Adabas Native SQL Reference Manual
2

22

Multiple-Value Fields

A multiple-value (MU) field is specified as a single field name; Adabas Native SQL takes the
number of occurrences from the data dictionary. If the number of occurrences is specified as zero
in the data dictionary, then Adabas Native SQL will declare 191 occurrences of the field. It is
therefore strongly recommended that the number of occurrences be correctly specified in the
data dictionary.

A single occurrence or a range of occurrences may optionally be specified within parentheses.
The upper limit of the range or the number of the occurrence must not be greater than the number
of occurrences as specified in the data dictionary, otherwise it will be ignored and a warning
message will be printed. The valid formats are:

mu
mu(i)
mu(:var)
mu(i-j)
mu(LAST)
mu(i-LAST) (only at the end of the SELECT list)

where mu denotes the name of the multiple field; i and j denote integer constants; and var
denotes the name of an integer variable. In Ada, var must be defined as ‘STRING(1..3)’. In
FORTRAN, var must be defined as ‘CHARACTER*3’ and should contain a 3-digit number.
LAST may be specified as the occurrence of an MU field to indicate that the last occurrence is
to be read. This option is available for Adabas 5 users and for VMS users only. For MU fields
it is also possible to specify (i-LAST) at the end of the SELECT list to indicate a range of
occurrences, from the occurrence with number i through to the last occurrence.

If a multiple-value field is referenced in the WHERE clause of a data retrieval statement, the
only valid format is:

mu

If a single occurrence or a range not starting from 1 is specified, the name in the record buffer
will be followed by a ‘-’ or ‘_’ and the number of the occurrence or the range.

Programming Considerations
2

23

Example:

SELECT OIL-CREDIT(1-5), OIL-CREDIT(7), OIL-CREDIT(9-10)
FROM FINANCE

The structure of the Ada record buffer is as follows:

type OIL_CREDITPERS is array (INTEGER range <>)
 of STRING (1..7);
type OIL_CREDIT_9_10PERS is array (INTEGER range <>)
 of STRING (1..7);

type RECORD_BUFPERS is
 record
 OIL_CREDIT : OIL_CREDITPERS (1..5);
 OIL_CREDIT_7 : STRING (1..7);
 OIL_CREDIT_9_10 : OIL_CREDIT_9_10PERS (1..2);
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;
 end record;
FINANCE : RECORD_BUFFERS;

The structure of the COBOL record buffer is as follows:

01 FINANCE.
 02 RECORD-BUFPERS.
 03 OIL-CREDIT PIC X(7) OCCURS 5.
 03 OIL-CREDIT-7 PIC X(7).
 03 OIL-CREDIT-9-10 PIC X(7) OCCURS 2.
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 7 OCRE (00005)
CHARACTER* 7 OCRE7
CHARACTER* 7 OCR910 (00002)
CHARACTER* 56 FINNCE

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names depends
on the operating system.)

Adabas Native SQL Reference Manual
2

24

Note:
The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
 2 RECORD_BUFPERS_1 UNAL,
 3 OIL_CREDIT (5) CHAR (7),
 3 OIL_CREDIT_7 CHAR (7),
 3 OIL_CREDIT_9_10 (2) CHAR (7),
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(56) BASED (ADDR(RECORD_BUFPERS_1));

If the range is not explicitly specified, the default range is from the first occurrence up to the
number specified in the data dictionary file (or 191 if the number of occurrences is not specified
in the data dictionary).

In conjunction with multiple-value fields, you may additionally code mu(COUNT), i.e., the
field name followed by the keyword COUNT in parentheses. This causes Adabas Native SQL
to generate a special field in which Adabas stores the actual number of occurrences in the record.
The field is two bytes long and has the following binary format:

– SHORT_INTEGER in ADA;

– PIC S9(4) COMP in COBOL;

– INTEGER*2 in FORTRAN;

– FIXED BIN(15,0) in PL/I.

The name generated for the COUNT field is the same as the name of the multiple-value field,
preceded by:

– ‘C_’ in ADA;

– ‘C–’ in COBOL;

– ‘C’ in FORTRAN;

– ‘C_’ in PL/I.

A count field is also generated if a count field is defined in a Predict field maintenance function.
This is particularly useful in conjunction with the Adabas Native SQL ‘SELECT *’ statement.
A count field is never generated for a multiple-value field within a periodic group.

Programming Considerations
2

25

Example:

SELECT OIL-CREDIT, OIL-CREDIT(COUNT)
FROM FINANCE

The structure of the Ada record buffer is as follows:

 type OIL_CREDITPERS is array (INTEGER range <>)
 of STRING (1..7);
 type RECORD_BUFPERS is
 record
 OIL_CREDIT : OIL_CREDITPERS (1..191);
 C_OIL_CREDIT : SHORT_INTEGER;
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;
 end record;
FINANCE: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

01 FINANCE.
 02 RECORD-BUFPERS.
 03 OIL-CREDIT PIC X(7) OCCURS 191.
 03 C-OIL-CREDIT PIC S9(4) COMP.
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 7 OCRE (00191)
INTEGER* 2 COCRE
CHARACTER* 1340 FINNCE

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names depends
on the operating system.)

Note:
The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Adabas Native SQL Reference Manual
2

26

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
 2 RECORD_BUFPERS_1 UNAL,
 3 OIL_CREDIT (191) CHAR (7),
 3 C_OIL_CREDIT FIXED BIN(15,0),
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(1339) BASED (ADDR(RECORD_BUFPERS_1));

Programming Considerations
2

27

Periodic Groups

A periodic group (PE) consists of up to 191 occurrences of a group. The default number of
occurrences remains 99, as in the previous version. Adabas Native SQL automatically generates
definitions of all fields within the periodic group, using the full field names as defined in the
data dictionary, or the Ada, COBOL, FORTRAN or PL/I synonyms if present. You may limit
the number of occurrences as for multiple value fields. A COUNT field containing the number
of occurrences of the periodic group may be generated by coding pe(COUNT) or by defining
a PE count field with a Predict field maintenance function.
Valid formats:

pe
pe(i)
pe(:var)
pe(i-j)

where pe denotes the name of the periodic group; i and j denote integer constants; and var
denotes the name of an integer variable. In Ada, var must be defined as ‘STRING(1..3)’. In
FORTRAN, var must be defined as ‘CHARACTER*3’ and should contain a 3-digit number.

If a periodic group is referenced in the WHERE clause of a data retrieval statement, the valid
formats are:

pe
pe(i)

Suffixes defining a single occurrence or a range of occurrences not starting from 1 will be added
to all fields within the periodic group. A range starting from the first occurrence is not given a
suffix.

If you do not need all the fields within the periodic group, you may request individual fields,
which are treated as multiple-value fields, except that you may not request the COUNT of such
a field, but only the COUNT of the periodic group as a whole.

For COBOL and PL/I, Adabas Native SQL supports the ‘GROUP STRUCT’ attribute which can
be defined in the data dictionary for periodic groups. Correct use of this attribute can result in
a significantly shorter Adabas format buffer. For more information see “Defining More
Attributes of Fields, 3GL Specification” in section “Field” of Chapter “Predefined Object
Types” of the Predict Reference Manual.

Note for Ada and FORTRAN users
Periodic groups will always be generated with GROUP STRUCT = N, and no consideration will
be given to the Predict definition.

Adabas Native SQL Reference Manual
2

28

Example:

SELECT MAJOR-CREDIT(1), MAJOR-CREDIT(3-5), MAJOR-CREDIT(7),
 MAJOR-CREDIT(COUNT)
FROM FINANCE

The structure of the Ada record buffer is as follows:

 type CREDIT_CARD_3_5PERS is array (INTEGER range <>)
 of STRING (1..18);
 type CREDIT_LIMIT_3_5PERS is array (INTEGER range <>)
 of STRING (1..4);
 type CURRENT_BALANCE_3_5PERS is array (INTEGER range <>)
 of STRING (1..4);
 type RECORD_BUFPERS is
 record
 CREDIT_CARD_1 : STRING (1..18);
 CREDIT_LIMIT_1 : STRING (1..4);
 CURRENT_BALANCE_1 : STRING (1..4);
 CREDIT_CARD_3_5 : CREDIT_CARD_3_5PERS (1..3);
 CREDIT_LIMIT_3_5 : CREDIT_LIMIT_3_5PERS (1..3);
 CURRENT_BALANCE_3_5 : CURRENT_BALANCE_3_5PERS (1..3);
 CREDIT_CARD_7 : STRING (1..18);
 CREDIT_LIMIT_7 : STRING (1..4);
 CURRENT_BALANCE_7 : STRING (1..4);
 C_MAJOR_CREDIT : SHORT_INTEGER;
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;
 end record;
FINANCE: RECORD_BUFPERS;

Programming Considerations
2

29

The structure of the COBOL record buffer is as follows:

01 FINANCE.
 02 RECORD-BUFPERS.
 03 MAJOR-CREDIT-1.
 04 CREDIT-CARD-1 PIC X(18).
 04 CREDIT-LIMIT-1 PIC 9(4).
 04 CURRENT-BALANCE-1 PIC 9(4).
 03 G-MAJOR-CREDIT-3-5.
 04 MAJOR-CREDIT-3-5 OCCURS 3.
 05 CREDIT-CARD-3-5 PIC X(18).
 05 CREDIT-LIMIT-3-5 PIC 9(4).
 05 CURRENT-BALANCE-3-5 PIC 9(4).
 03 MAJOR-CREDIT-7.
 04 CREDIT-CARD-7 PIC X(18).
 04 CREDIT-LIMIT-7 PIC 9(4).
 04 CURRENT-BALANCE-7 PIC 9(4).
 03 C-MAJOR-CREDIT PIC S9(4) COMP.
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 18 CCARD1
CHARACTER* 4 CLIM1
CHARACTER* 4 CBAL1
CHARACTER* 26 MAJIT1
CHARACTER* 18 CCAD35(00003)
CHARACTER* 4 CLIM35(00003)
CHARACTER* 4 CBAL35(00003)
CHARACTER* 78 MAJT35
CHARACTER* 18 CCARD7
CHARACTER* 4 CLIM7
CHARACTER* 4 CBAL7
CHARACTER* 26 MAJIT7
INTEGER* 2 CMADIT
CHARACTER* 132 FINNCE

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names depends
on the operating system.)

Adabas Native SQL Reference Manual
2

30

Note:
The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
 2 RECORD_BUFPERS_1 UNAL,
 3 MAJOR_CREDIT_1,
 4 CREDIT_CARD_1 CHAR(18),
 4 CREDIT_LIMIT_1 PIC ’(3)99’,
 4 CURRENT_BALANCE_1 PIC ’(3)99’,
 3 G_MAJOR_CREDIT_3_5,
 4 MAJOR_CREDIT_3_5 (3),
 5 CREDIT_CARD_3_5 CHAR(18),
 5 CREDIT_LIMIT_3_5 PIC ’(3)99’,
 5 CURRENT_BALANCE_3_5 PIC ’(3)99’,
 3 MAJOR_CREDIT_7,
 4 CREDIT_CARD_7 CHAR(18),
 4 CREDIT_LIMIT_7 PIC ’(3)99’,
 4 CURRENT_BALANCE_7 PIC ’(3)99’,
 3 C_MAJOR_CREDIT FIXED BIN(15,0),
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(132) BASED(ADDR(RECORD_BUFPERS_1));

Programming Considerations
2

31

Multiple-Value Fields within Periodic Groups

Adabas Native SQL supports multiple-value fields that occur within periodic groups. If the
number of occurrences is not specified, the number of occurrences is taken from the data
dictionary. If the number of occurrences is not explicitly specified, or if the index is variable,
the occurrence number is not appended as a suffix to the field name.

Reference to elements of such a field is made as follows:

mp
mp(i(k))
mp(i(k-l))
mp(i-j(k))
mp(i-j(k-l))
mp(:ivar(k))
mp(:ivar(k-l))
mp(i(:kvar))
mp(i-j(:kvar))
mp(:ivar(:kvar))
mp(LAST)
mp(LAST(LAST))
mp(i(k-LAST)) (only at the end of the SELECT list)

mp denotes the name of the multiple-value field. i, i-j and ivar indicate which group or groups
are required. k, k-l and kvar indicate which occurrence or occurrences of the multiple-value
field are required. i, j, k and l denote integer constants. j must be greater than i, and both must
be in the range 1..191. l must be greater than k, and both must be in the range 1..191. ivar and
kvar denote the names of integer variables. LAST means the last occurrence.

If a multiple-value field within a periodic group is referenced in the WHERE clause of a data
retrieval statement, the only valid format is:

mp

Adabas Native SQL Reference Manual
2

32

Counter fields can also be generated for multiple-value fields occurring within periodic groups.
mp(COUNT1) generates a counter field containing the number of occurrences of the multiple-
value field mp in the first occurrence of the periodic group, mp(COUNT1-3) generates counter
fields for the multiple-value field mp in each of the first three occurrences of the periodic group,
and mp(COUNTLAST) generates a counter field for the multiple-value field in the last occur-
rence of the periodic group. The names of the counter fields are:

ADA COBOL FORTRAN PL/I

C_mp_1 C-mp-1 Cmp1 C_mp_1

C_mp_2 C-mp-2 Cmp2 C_mp_2

C_mp_3 C-mp-3 Cmp2 C_mp_3

Programming Considerations
2

33

Example:

SELECT INSURANCE-COMPANY(2-4(6-8))
FROM FINANCE

The structure of the Ada record buffer is as follows:

type INSURANCE_COMPANY_6_8PERS is array (INTEGER range <>,
 INTEGER range <>)
 of STRING (1..25);
type RECORD_BUFPERS is
 record
 INSURANCE_COMPANY_6_8 : INSURANCE_COMPANY_6_8PERS (1..3, 1..3);
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;
 end record;
FINANCE: RECORD_BUFPERS;

The structure of the COBOL record buffer is as follows:

01 FINANCE.
 02 RECORD-BUFPERS.
 03 A-INSURANCE-COMPANY-2-4 OCCURS 3.
 04 INSURANCE-COMPANY-6-8 PIC X(25) OCCURS 3.
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

The FORTRAN equivalent is as follows:

CHARACTER* 25 INCM68(00003 , 00003)
CHARACTER* 225 FINNCE

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names depends
on the operating system.)

Note:
The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Adabas Native SQL Reference Manual
2

34

The structure of the PL/I record buffer is as follows:

DCL 1 FINANCE,
 2 RECORD_BUFPERS_1 UNAL,
 3 A_INSURANCE_COMPANY_2_4 (3),
 4 INSURANCE_COMPANY_6_8 (3) CHAR(25),
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(225) BASED(ADDR(RECORD_BUFPERS_1));

Programming Considerations
2

35

Additional Fields in the Record Buffers (Ada, COBOL, PL/I)

If a field is specified in the SELECT clause, and Predict contains redefinitions for this field, then
the redefined fields are also included in the record buffer. The prefix and suffix are added to the
field names and the result is truncated if necessary. (Ada does not support redefinition.)

Unless the global parameter ‘ABORT .’ is specified, Adabas Native SQL appends three fields
to each record buffer. A record buffer containing these three fields is also generated for DELETE
statements, although no database fields are generated. The names of the fields are shown in the
tables below. They may only be used in conjunction with an adequate file name.

If the global parameter ‘ABORT .’ is specified, these three fields are generated as global data
and they have the names SQLISN, SQLQTY and SQLRSP, as used in FORTRAN programs.
Since no record buffers are ever generated for FORTRAN, the field names are always global
to the program.

The ISN variable is a 4-byte binary field in which Adabas returns the ISN (internal sequence
number) of the (first) record found or read or, in the case of a HISTOGRAM command where
the descriptor is in a periodic group, the number of the current occurrence. The ISN variable is
defined as:

Language Variable Name* Format

ADA ISN INTEGER

COBOL ISN PIC 9(9) COMP

PL/I ISN FIXED BIN (31)

* The variable name is SQLISN if the global parameter ‘ABORT .’ is coded. See description
of the ABORT parameter on page 244 for more information.

Adabas Native SQL Reference Manual
2

36

The QUANTITY variable is a 4-byte binary field which, when used in conjunction with a
COMPARE, FIND, FIND COUPLED or SORT statement, is available after executing the
OPEN statement. It returns the number of ISNs in the ISN list, or the number of ISNs in the ISN
buffer. When used in conjunction with a HISTOGRAM statement, the quantity variable, which
is available after executing the FETCH statement, returns the number of records that contain
the specified descriptor value. (The quantity variable is not available in conjunction with READ
statements.) The quantity variable is defined as:

Language Variable Name* Format

ADA QUANTITY INTEGER

COBOL QUANTITY PIC 9(9) COMP

PL/I QUANTITY FIXED BIN (31)

* The variable name is SQLQTY if the global parameter ‘ABORT .’ is coded.
See description of the ABORT parameter on page 244 for more information.

The RESPONSE_CODE (Ada), RESPONSE-CODE (COBOL) or RESPONSE_CODE (PL/I)
variable is a 2-byte binary field in which Adabas returns the response code after execution of
the command. The response code variable is defined as:

Language Variable Name* Format

ADA RESPONSE_CODE SHORT_INTEGER

COBOL RESPONSE–CODE PIC 9(4) COMP

PL/I RESPONSE_CODE FIXED BIN (15)

* The variable name is SQLRSP if the global parameter ‘ABORT .’

See “Response Code Interpretation” on page 39 below and the description of the ABORT
parameter on page 244 for more information.

Programming Considerations
2

37

Additional Fields in FORTRAN Programs

Adabas Native SQL enters values in three global variables after each SQL statement. These
variables contain only the values generated by the last command and will be changed when a
new command is issued.

The ISN variable is a 4-byte binary field in which Adabas returns the ISN (internal sequence
number) of the (first) record found or read or, in the case of a HISTOGRAM command where
the descriptor is in a periodic group, the number of the current occurrence.

Language Variable Name Format

FORTRAN SQLISN INTEGER*4

The QUANTITY variable is a 4-byte binary field which, when used in conjunction with a
COMPARE, FIND, FIND COUPLED or SORT statement, is available after executing the
OPEN statement. It returns the number of ISNs in the ISN list, or the number of ISNs in the ISN
buffer. When used in conjunction with a HISTOGRAM statement, the quantity variable, which
is available after executing the FETCH statement, returns the number of records that contain
the specified descriptor value. (The quantity variable is not available in conjunction with READ
statements.)

Language Variable Name Format

FORTRAN SQLQTY INTEGER*4

The response code variable is a 2-byte binary field in which Adabas returns the response code
after execution of the command.

Language Variable Name Format

FORTRAN SQLRSP INTEGER*2

See “Response Code Interpretation” on page 39 below and the description of the ABORT
parameter on page 244 for more information.

If you want to use for example the response codes returned by more than one statement, then
you must save each response code before new SQL statements are executed.

Adabas Native SQL Reference Manual
2

38

End-of-File Flag (ADACODE, SQLCOD)

The ADACODE (Ada, COBOL, DEC FORTRAN and PL/I) or SQLCOD (IBM FORTRAN)
variable is a 2-byte binary field in which Adabas Native SQL returns an end-of-file flag. The
value 3 in this field indicates that end-of-file was detected in a sequential read command, or
end-of-list after reading all the records found by a search statement. It is defined as:

Language Variable Name Format

ADA ADACODE SHORT_INTEGER

COBOL ADACODE PIC 9(4) COMP

FORTRAN SQLCOD INTEGER*2

FORTRAN/VMS ADACODE INTEGER*2

PL/I ADACODE FIXED BIN (15)

Programming Considerations
2

39

Response Code Interpretation

The Adabas response code is a code that is returned to the caller after every Adabas command.
It is stored in a variable called RESPONSE-CODE (COBOL) or RESPONSE_CODE (Ada and
PL/I) in the record buffer of the command that was executed, or in the global variable SQLRSP
(FORTRAN). A value of zero returned in this variable indicates that the Adabas Native SQL
statement has been executed successfully. A non-zero value (other than 3, which denotes
end-of-file) indicates that an error occurred. In this case, the statement has not been executed.
Each value is associated with a distinct type of error, as shown in the list below.

Adabas Native SQL automatically calls an error-checking routine after each Adabas command
if the response code is non-zero. Software AG supplies default routines which check and
interpret the response code. If the response code has a value other than 3, the routine prints out
the appropriate error message, the contents of the Adabas control block and the line number of
the erroneous statement in the source program, calls an appropriate trace module, issues a
‘backout transaction’ (ROLLBACK WORK) command, closes the database (DBCLOSE), and
finally terminates the program.

Language Default Abort Module Default Trace Module

ADA RESPF PRTRAC

COBOL RESPINT PRTRACE

FORTRAN RESPF PRTRAC

PL/I RESPINT PRTRACE

In many cases, the action described above may be all that is required. However, if the action
taken by the standard routine is inappropriate or insufficient, the ABORT parameter can be used
to specify that a user-defined error handling routine with a different name should be called
instead. The data administrator will know whether alternative error handling routines are
available at your installation.

See page 244 for more information on the ABORT parameter.

Adabas Native SQL Reference Manual
2

40

Response Codes

The response code is returned in the variable ‘RESPONSE_CODE’ (Ada),
‘RESPONSE-CODE’ (COBOL), ‘SQLRSP’ (FORTRAN) or ‘RESPONSE_ CODE’ (PL/I) that
is attached to every record buffer.
The normal response code (success) is 0.

If the following response code occurs and the error handling routine is that shown in the table
above, control will be returned to the user program directly following the statement that caused
the response code.

3: Response Code 3 (which is also signaled in the variable ADACODE (Ada, COBOL or
PL/I) or SQLCOD (FORTRAN)) indicates that end-of-file was detected in a sequential
read command, or end-of-list after reading all the records found by a search statement.

The following response codes may also occur during normal operation. If a user-written error
handling routine is called, it should take appropriate action for all response codes that might
occur. This might include printing an error message and/or returning to the application program.
The standard error handling routines ‘RESPINT’ and ‘RESPF’ supplied by Software AG can
be used as a model when writing this routine.

1: The ISN list is too big to be sorted.

9: A partially-completed transaction has been automatically backed-out, possibly as the re-
sult of a timeout (for programs that use ET-mode). Note that Adabas may release the
command-ID when Response Code 9 occurs. ISN lists, hold queue entries and user data
(see also the CHECKPOINT, COMMIT WORK, CONNECT, DBCLOSE and READ US-
ERDATA statements) are no longer accessible.

17: Invalid file number. A file required by the program could not be found in the database.

19: An attempt has been made to update a file that was opened for access only.

41: Adabas has detected an error in the format buffer. This can be caused by an incorrect data
field definition in Predict.

48: The user-ID specified in the CONNECT statement is already in use; or the mode of usage
specified for a file in the CONNECT statement conflicts with the file’s current usage.

98: A descriptor value in a record to be INSERTed or UPDATEd exists already in the file and
the file has the ‘unique descriptor’ attribute (VAX response code).

Programming Considerations
2

41

113: A READ ISN statement without the SEQUENCE option was issued and Adabas could not
find a record having the specified ISN; or a READ ISN statement attempted to read a re-
cord and the ‘security by value’ check failed. It can also indicate that an INSERT statement
using the ‘WHERE ISN=n’ clause specified an ISN that was already present in the file.

144: An UPDATE or DELETE statement was issued but the relevant record was not in hold sta-
tus for the program that issued the statement.

145: The program attempted to hold a record that is already being held by another user. This
code may be returned if the HOLD RETURN option is used.

148: The Adabas nucleus is not available.

198: A descriptor value in a record to be INSERTed or UPDATEd exists already in the file and
the file has the ‘unique descriptor’ attribute.

See Chapter “Adabas Response Codes” in the Adabas Messages and Codes Manual for more
information.

Adabas Native SQL Reference Manual
2

42

Host Variables

Host variables are normal program variables that are also used in Adabas Native SQL
statements. They are declared using normal Ada, COBOL, FORTRAN or PL/I statements.
When used in an Adabas Native SQL statement, the name of each host variable must be
immediately preceded by a colon (‘:’), for example ‘:NAME’.

ISN Lists and the ISN Buffer

The abbreviation ISN occurs frequently in this manual. It stands for Internal Sequence Number:
a reference number that identifies each record uniquely within an Adabas file. Each new record
created by the INSERT statement must have an ISN. If you do not allocate the ISN explicitly,
it is assigned automatically by Adabas. When allocating ISNs, care should be taken that each
ISN is unique and that no ISN that exceeds the MAXISN parameter is specified.

When a FIND statement finds more than one record in the file, Adabas makes a list of the ISNs
of these records and returns this ISN list as the result of the FIND operation.

You have the option of providing an ISN buffer, whose size is specified by the ISNSIZE
parameter either in the global OPTIONS parameter (see page 259) or in each individual Adabas
Native SQL statement. If an ISN buffer of adequate size is provided, Adabas stores the ISN list
in this buffer. If an ISN buffer is not provided, or if it is too small to contain the ISN list created
by a particular FIND statement, then the excess ISNs are automatically written to the Adabas
workfile. They are then read from the ISN buffer and/or from the workfile and returned to the
user one by one each time a statement (for example, FETCH) that requires an ISN is executed.

In general, programs run more efficiently if the ISN buffer is large enough to contain the entire
ISN list. However, if the ISN buffer has to be made smaller, the program will continue to run
exactly as before; the process of buffering excess ISNs in the Adabas workfile is completely
transparent to the user.

The ISN buffer cannot be used if Adabas security by value is in effect, or in CICS or UTM
programs that use the Adabas Native SQL statements SAVE and RESTORE.

Programming Considerations
2

43

HOLD Logic

The HOLD option can be used with all Adabas Native SQL data retrieval statements except
HISTOGRAM to place the record in hold status. A record in hold status is prevented from being
updated by other users until it is explicitly released by issuing a COMMIT WORK,
ROLLBACK WORK or RELEASE statement. This avoids the conflict that would arise if two
or more users attempted to update one record simultaneously.

RETURN Option

The presence or absence of the RETURN option determines Adabas’s response if the record to
be accessed is currently being held by another user.

If HOLD is used without the RETURN option and an attempt is made to access a record held
by another user, the program is suspended until the record is released by the other user.

If HOLD is used with the RETURN option and an attempt is made to access a record held by
another user, Adabas returns Response Code 145 to the user program.
If the response code interpretation routine as supplied by Software AG is being used, an error
message is printed and the program ABENDs.
If some other action is required, an alternative routine that checks for this response code and
takes appropriate action must be supplied (see also the description of the ABORT parameter on
page 244).
The response code is returned in the variable ‘RESPONSE_CODE’ (Ada),
‘RESPONSE-CODE’ (COBOL) or ‘RESPONSE_CODE’ (PL/I), which is attached to every
record buffer, or in the global variable ‘SQLRSP’ (FORTRAN).

See section “Competitive Updating” in the Adabas Command Reference Manual for more
information on Adabas hold logic.

Adabas Native SQL Reference Manual
2

44

Security Options

Adabas offers the following facilities to prevent unauthorized users from accessing or updating
confidential data:

– Password protection

– Ciphering

– Security by value.

Password Protection

Password protection permits only those database operations that cite the correct password.
Adabas commands that include an incorrect password, or no password at all, are rejected.
Furthermore, access and update security levels are associated with each password. Whenever
a database operation is executed, Adabas checks that the security level associated with the
password equals or exceeds the security level of the database, both at the file level and at the
field level. Password protection therefore provides a very flexible mechanism for controlling
the degree of access individual computer users can exercise.

Ciphering

If a file is ciphered, the data are stored on disk in an encrypted format that is incomprehensible
to any user who does not know the correct cipher key. Adabas uses the cipher key in conjunction
with a special decryption algorithm to reconstruct the original data. Cipher protection offers a
very high level of security against unauthorized efforts to read data from a database. Conversely,
a file update made with a wrong cipher key is conspicuous because the decryption algorithm
converts the data into a meaningless jumble when a legitimate user tries to read them.

Further details of the password and data encryption security facilities are given in the Section
“Security Planning” in the Adabas DBA Reference Manual.

Programming Considerations
2

45

Security by Value

The third security option Adabas offers is security by value. Using this facility, access to records
is controlled by the values contained in specified fields. For example, a user may be forbidden
from accessing records in the PERSONNEL file that have a value in the SALARY field
exceeding 6000.

The ISNSIZE option cannot be used when processing files that are protected by this feature. See
page 99 for more information.

See the Adabas Security Manual for more information. Note that this manual is only sent to
DBAs on written application.

Consult your DBA before writing programs that access files protected by any of the mechanisms
described in this section.

Adabas Native SQL Reference Manual
2

46

Record Buffer — ADA

The fields generated in the record buffers in Ada programs have the clauses shown in the table
below:

Predict
Format Length Ada clause Observations

A nnn STRING (1..nnn)

B or I 1 SHORT_SHORT_INTEGER VMS only

B or I 2 SHORT_INTEGER

B or I 4 INTEGER

F 4 FLOAT

F 8 LONG_FLOAT VMS only

N or U nn.m STRING (1..nn+m)

P nn.m STRING (1..y)

L BOOLEAN

D STRING (1..4)

T STRING (1..7)

Counter fields SHORT_INTEGER

Note:
Numeric fields are transformed into character fields; therefore, whenever these fields are
initialized and whenever values are assigned to these fields, the values must be filled with
leading zeros, for example ‘0001’.

Note:
y = (nn+m+1) / 2

Programming Considerations
2

47

Record Buffer — COBOL

The fields generated in the record buffers in COBOL programs have the clauses shown in the
table below:

Predict
Format Length COBOL clause Observations

A nnn PIC X(nnn)

B or I 2 PIC S9(4) COMP

B or I 4 PIC S9(9) COMP

B or I 8 PIC S9(18) COMP

F 4 COMP-1

F 8 COMP-2

N or U nn.m PIC 9(nn)V9(m) In any of these fields, nn+m

NS or US nn.m PIC S9(nn)V9(m)
may not exceed 18
and if m=0, the term V9(m)

P nn.m PIC 9(nn)V9(m)COMP-3
and if m=0, the term V9(m)
is omitted

PS nn.m PIC S9(nn)V9(m)COMP-3

L PIC X

D PIC 9(7) COMP-3

T PIC 9(13) COMP-3

Counter fields PIC S9(4) COMP

An automatically generated counter field has the clause PIC S9(4) COMP.

A numeric or binary format field with a length not included in the table above is treated in
COBOL as an alphanumeric format field

Packed fields in COBOL/II under operating system BS2000 are generated as ‘PACKED
DECIMAL’ instead of ‘COMP-3’.

No alignment is performed.

Adabas Native SQL Reference Manual
2

48

Fields in FORTRAN

The fields generated in FORTRAN programs have the clauses shown in the table below:

Predict
Format Length FORTRAN Clause Compiler Alignment

assuming word length=4

A nnn CHARACTER*nnn any

B or I 1 LOGICAL*1 IBM, Siemens, VMS

B or I 2 INTEGER*2 IBM, Siemens, VMS half-word boundary

B or I 4 INTEGER*4 IBM, Siemens, VMS word boundary

B or I 8 INTEGER*8 Siemens double-word boundary

B or I 8 CHARACTER*8 IBM, VMS

F 4 REAL*4 IBM, Siemens, VMS word boundary

F 8 REAL*8 IBM, Siemens, VMS double-word boundary

N or NS
U or US

nn.m CHARACTER*x
where x=nn+m

any

P or PS nn.m CHARACTER*y
where y=(nn+m+1)/2

any

L LOGICAL*1 any

D CHARACTER*4 any

T CHARACTER*7 any

– If generated for IBM, Siemens or VMS compilers:
Any file number field, length fields and automatically generated counter fields have the
clause INTEGER*2.

Note:
Numeric fields are transformed into character fields; therefore, whenever these fields are
initialized and whenever values are assigned to these fields, the values must be filled with
leading zeros, for example ‘0001’.

Programming Considerations
2

49

Record Buffer — PL/I

The fields generated in the record buffers in PL/I programs have the clauses shown in the table
below:

Fields in the PL/I include code have a PL/I clause determined by the length and format of the
corresponding Predict field object, as shown in the table below where s is the numeric sign
whose content (T, I, or 9R) and position (left or right) are defined in the PL/I generation defaults;
nn+m must not exceed 15; and if m is zero, V(m)9 is omitted.

Predict
Format Length PL/Iclause Observations

A nnn CHAR (nnn)

B 1 FIXED BIN(7) VMS only

B or I 2 FIXED BIN (15,0)

B or I 4 FIXED BIN (31,0)

F 4 FLOAT DEC (6)

F 8 FLOAT DEC (16)

N or U nn.m PIC ‘(nn)9V(m)9’

NS or US nn.m PIC ‘s(nn-1)9V(m)9’ or
PIC ‘(nn)9V(m-1)9s’

P or PS nn.m FIXED DEC (nn+m,m)

L BIT (8)

D FIXED DEC (7,0)

T FIXED DEC(13,0)

Counter fields FIXED BIN (15,0)

A numeric or binary format field with a length not included in the table above is treated in PL/I
as an alphanumeric format field.

Adabas Native SQL Reference Manual
2

50

Date and Time Conversion Routines

The following routines are delivered with this version of Adabas Native SQL and can be used
in the application:

SQTODATE

This module accepts two parameters:

N-DATE (N8) in format DDMMYYYY
DATE (D)

It converts the first parameter into a format D number and returns it in the second parameter.

SQFRDATE

This module accepts two parameters:

N-DATE (N8) in format DDMMYYYY
DATE (D)

It converts the second parameter, which is a format D number, into a numeric date and returns
it in the first parameter.

SQTOTIME

This module accepts three parameters:

N-DATE (N8) in format DDMMYYYY
N-TIME (N7) in format HHMMSSS
TIME (T)

It converts the first and second parameters into a format T number and returns it in the third
parameter.

Programming Considerations
2

51

SQFRTIME

This module accepts three parameters:

N-DATE (N8) in format DDMMYYYY
N-TIME (N7) in format HHMMSSS
TIME (T)

It converts the third parameter, which is a format T number, into a numeric date and numeric
time and returns them in the first and second parameters.

Adabas Native SQL Reference Manual
2

52

Support of Distributed Data Structures

In previous versions of Adabas Native SQL, distributed data structures were supported by the
DBID or AUTODBID clauses in Adabas Native SQL statements. These clauses put the DBID
number defined in Predict in the control block, and the only check that was performed was to
validate that the appropriate file belonged to the database used.

There are now two methods of supporting distributed data structures: either with or without
Adabas Star. The two methods are described below. Both take advantage of the extended
metastructure of Predict Version 3.2 or above:

DATABASE

NETWORK

FILE

������
�����	
���

*

*

*

*
*

VIRTUAL
MACHINE

*

A B*

A B*

A is parent of B

B is entered in A

Key
STARTAB
elements

Predict objects of type network, virtual
machine, database and file are used to define
where exactly data is stored.

Adabas attributes of Predict file objects are
used to define how files are implemented in
a database, for example partitioned or
replicated .
Adabas attributes document the physical
links between files and databases.

STARTAB elements determine the
accessibility of the physical files when using
Adabas Star.

Programming Considerations
2

53

New Global Parameters NETWORK and VIRTUAL-MACHINE

These global parameters are mandatory with Predict Version 3.2 or above if Adabas Star is used
or if more than one network is defined in Predict.

These parameters define the network and virtual machine in which the program is to run. Adabas
Native SQL checks that the network and virtual machine exist in Predict and that the virtual
machine is linked as a child object to the network.

For every database used (DBID, AUTODBID and AUTODBID-ALL clauses) Adabas Native
SQL checks the following:

– that if the database is defined as local, it is linked to the current virtual machine,

– that if the database is defined as isolated, it is linked (via the current virtual machine) to
the current network.

Note:
In this Chapter, the terms current network and current virtual machine are used to describe the
network and virtual machine specified with the global parameters NETWORK and
VIRTUAL-MACHINE respectively.

See pages 258 and 272 for a more detailed description of these options.

Adabas Native SQL Reference Manual
2

54

Without Adabas Star

If Adabas Star is not used (ADASTAR clause of global OPTIONS is not set), the distribution
is handled by the application programmer. The program uses the DBID, AUTODBID and
AUTODBID-ALL. If you are using Predict Version 3.2 or above, Adabas Native SQL performs
the following additional checks:

– If one of the DBID clauses is used, the ADASTAR parameter of the corresponding Predict
database object must be I (isolated) or L (local), otherwise an error message is given.

– If the database is local, Adabas Native SQL checks that it is linked to the current virtual
machine.

– If the database is isolated, Adabas Native SQL checks that it is linked to the current
network.

After checking the database, Adabas Native SQL checks the physical link between the file and
the database. The physical link information is stored in the Adabas attributes in Predict for every
physical file connected to the database. This information includes the physical file number and
the physical ADASTAR type (how the file is implemented). This type must be either blank
(simple file) or E (expanded).

If the file is expanded, this means that there are several files with the same layout in the same
database, and that every file has a different range of ISNs. Adabas Native SQL checks for the
physical file with the lowest minimum ISN value (ADALOD LOAD parameter MINISN).

With both simple and expanded files, Adabas Native SQL takes the physical file number from
this physical link information. Note that in previous versions of Predict, the physical file number
and the logical file number (as exists in the file description) had to be identical. As of Predict
Version 3.2 or above, however, the same logical file may have different physical file numbers.

With this kind of distribution, the application is responsible for defining the DBID where every
file exists. The AUTODBID-ALL option allows an update program which updates one database
and accesses up to five more databases. With AUTODBID-ALL, Adabas Native SQL
automatically detects which is the updated database and issues the COMMIT and ROLLBACK
commands to it. It also generates different CONNECT and DBCLOSE statements to the
different databases.

Programming Considerations
2

55

With Adabas Star

With Adabas Star, data belonging to one logical file can be physically distributed across several
physical files, which may reside in different databases. You no longer need to specify the
database where the file exists because the distribution is handled by Adabas Star using the
ADASTAR translation table.

Prerequisites

If you are using Adabas Star, the following preconditions must be met:

– ADASTAR clause of global OPTIONS must be set. No error message is given if Adabas
Star is installed and this option is not set.

– Global parameters NETWORK and VIRTUAL-MACHINE must be specified (see above).
Adabas Native SQL ignores all DBID, AUTODBID and AUTODBID-ALL clauses (with
a warning) and instead uses the ADASTAR file number (see below).

– Every file must have an ADASTAR access number defined in Predict otherwise an error
message is given. This number identifies a file uniquely for Adabas Native SQL.

Defining an ADASTAR Access Number in Predict

The ADASTAR access number must be defined in Predict for every file accessed by Adabas
Native SQL. It is specified with the Predict maintenance functions Add|Modify file. Great care
must be taken when assigning this number, otherwise results will be unpredictable. How you
define the ADASTAR access number depends on the file’s logical ADASTAR type:

Adabas Native SQL Reference Manual
2

56

� If the file has a logical ADASTAR type replicated or partitioned, a STARTAB element must
already exist for the file. This STARTAB element also contains the ADASTAR number, which
identifies a file uniquely throughout a network. The ADASTAR number can be viewed in the
Predict file maintenance function Modify STARTAB elements (see screen below).
Enter this ADASTAR number for the file attribute ADASTAR access number.

ÂÂÂÂÂÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂÂÂÂÂÂ

 12:51:47 ***** P R E D I C T 3.2.0 ***** 93-03-16
 – Modify STARTAB element –
 File ID HEB-FI-REP Added: 92-07-01 at 12:51
 Type ADABAS, Replicated Modified:

 NetworkHEB-NW
 User ID*
 ADASTAR number1212 L-DBnr .. 4 L-Fnr .. 188
 Simple N (Y,N)
 phys.
 Database PDBnr PFnr ADASTAR type
 *------------------------------- ----- ----- ------------
 1 HEB-DA-HEB-OP 4747 91 R
 2 HEB-DA-3 33333 21 R
 3 PD-A2 40 19 R
 4 PD-A3 41 191 R
 5 PD-A5 47 19 R
 6 PD-X 61 19 R
 7 HEB-DA-HEB-OP 53 24 RM
 8

Programming Considerations
2

57

� If the file has a logical ADASTAR type simple or expanded, enter the physical database number
and physical file number of the file in the fields L-DBnr and L-Fnr of the Predict Add|Modify
file screen (see below).

The ADASTAR access number will then be calculated using the formula
ADASTAR access number = L-DBnr * 256 + L-Fnr.

ÂÂÂÂÂÂÂÂÂÂÂÂ
ÂÂÂÂÂÂÂÂÂÂÂÂ

 09:51:09 ***** P R E D I C T 3.2.0 ***** 93-03-16
 – Modify file –
 File ID JCA_FI22
 Type ADABAS, Simple file
 File number 23
 in database JCA_DA1
 Keys .. Zoom: N

 Sequence field*
 ADASTAR access number ..* 0 L-DBnr .. L-Fnr ..
 ADABAS SQL usage Y (Y/N)
 Literal name

 Comments Zoom: N

Adabas Native SQL Reference Manual
2

58

Additional Checks if ADASTAR Parameter is used

Adabas Native SQL performs the following internal checks if ADASTAR is used:

Continue with
STARTAB checking

Y (translator)
or N (no

translator)

simple or
expanded

Yes

Use ADASTAR access number and
current network to find the STARTAB

element for that number.
 STARTAB element found?

Check that STARTAB element is not
a dummy. At least one entry in

database list of STARTAB element?

Physical ADASTAR type?

ADASTAR access number exists?

Divide number by 256. The result
is the database number, the
remainder the file number.

Check ADASTAR parameter in
corresponding databse object in Predict

Check Adabas attributes. Is file linked to
the database in Predict?

If file type=A and partitioned, do all
partitions have corresponding entry

in database list of STARTAB
element?

No

Check that database is linked to
current network

Yes

Error. Check
documentation in

Predict

Use database number and file
number computed from ADASTAR

access number

Yes
No

partitioned or
replicated

I (isolated) or L
(local)

Yes
No

Yes
No

Yes No

Yes
No

Programming Considerations
2

59

General Considerations when using Adabas Star

If the ADASTAR clause of the global OPTIONS parameter is set, the CONNECT statement
must contain the USERID clause, otherwise an error message is given.

For all general purpose commands (i.e. non-update and non-retrieval), Adabas Native SQL uses
the number of an ADASTAR database which is linked to the current network and which has the
ADASTAR parameter Y or N.

For files specified in the CONNECT statement, Adabas Native SQL performs checks similar
to those described on page 58 above and uses the ADASTAR access number instead of the file
number when generating the record buffer.

OPTIONS

The following clauses in the global OPTIONS parameter are provided to support Adabas Star:

ADASTAR Specifies that Adabas Star is to be supported.

ETID=userid Specifies that Adabas Native SQL itself has to issue an ‘open’
with ETID because the FDIC and FNAT files belong to an
Adabas Star database.

OPEN Performs an explicit ‘open’ on Predict file during
preprocessing.

Running Adabas Native SQL under Adabas Star

If Adabas Native SQL itself is running under Adabas Star (the FNAT and/or the FDIC file is in
an Adabas Star database) the following clauses are required:

Adabas Native SQL Reference Manual
2

60

ETID Clause of Global OPTIONS Parameter

Adabas Native SQL has to issue an OPEN statement with ETID. In order to specify it to Adabas
Native SQL, the following clause in the global OPTIONS parameter is used:

ETID=userid

This clause specifies the USERID to be used by Adabas Native SQL.

DBID Clause of Global ABORT Parameter

Use this new clause to specify the DBID of the production FNAT file. This DBID should be a
number which – together with the file number specified with the FILE clause – will make the
ADASTAR access number of the production FNAT file.
See also description of the global ABORT parameter on page 244.

Programming Considerations
2

61

Relational Null Support

Adabas V5.3 introduces relational Null Support. The Null field has an indicator in two binary
Byte format which indicates whether the field has a value or is Null. This indicator appears in
the Adabas record and value buffers.

The definition of a Null field in Predict is shown by ‘R’ or ‘U’ in the field Suppression Column.

Adabas Native SQL supports Null fields in the following three clauses:

� SELECT clause

Every field specified in the SELECT clause which has a Null value indication is generated in
the record buffer as two fields. The first field is the Null value indicator as two binary Bytes and
its name is the field name, prefixed with ‘S–’. The second field is the field itself.

This definition is generated for every Null field even if it belongs to a group, or even if SELECT*
is used.

When the record is read from the database, a value of zero in the Null field indicator means that
the value in the field itself is a real value. A value of ‘–1’ (x’FFFF’) in the Null field indicator
means that the field has no value and is a real Null.

� UPDATE/STORE clauses

There is a new reserved word ‘NULL’ which may be specified as a value for Null fields. For
example:

SET field=NULL

Adabas Native SQL will move –1 (x’FFFF’) to the Null field indicator of the specified field
in the record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a
Null value indicator, Adabas Native SQL will automatically reset the Null field indicator of that
field. If the user does not specify the SET clause, but initiates the fields in the record buffer by
himself, he should also reset or turn on the Null field indicator.

Adabas Native SQL Reference Manual
2

62

� WHERE clause

There is an extension to the syntax:

WHERE descriptor IS [NOT] NULL

This may be used in order to search for all records where the specified descriptor is Null or not
Null. This extension is allowed only for descriptors which are defined with the new relational
Null support.

Programming Considerations
2

63

Long Alpha field Support

Adabas V5.3 introduces a new field format ‘LA’ , standing for Long Alpha field.

This format represents a variable field whose length may be up to 16K Bytes.

Because it is a variable field, Adabas returns its value together with two binary Bytes in front
of the value which represents the actual length of the field (the length includes the two binary
Bytes.).

The definition of a Long Alpha field in Predict uses the format ‘AV’.

Adabas Native SQL generates a Long Alpha field as two separate elements in the record buffer.
The first element is the field length as two binary Bytes with the name suffixed with ‘–LEN’.
Immediately after is the the second element, which is the definition of the field itself as a
character string with a total length taken from Predict with the name suffixed with ‘–TXT’.

Because Adabas returns the value of the field in a variable way, it is impossible to have a defini-
tion of a field following the Long Alpha field in the record buffer.

For this reason the following restrictions hold:

– the Long Alpha field may be generated only as the last element in the record buffer.

– Only an elementary field is supported as a Long Alpha field (no MU or PE allowed).

64

3

65

SINGLE AND MULTIPLE-RECORD PROCESSING

Adabas Native SQL data retrieval statements operate in one of two modes: single-record
processing mode and multiple-record processing mode.

The READ ISN statement always operates in single-record mode. The Adabas Native SQL
statements in the following list can be used in either single-record processing or multiple-record
processing mode:

– COMPARE

– FIND

– FIND COUPLED

– HISTOGRAM

– READ LOGICAL

– READ PHYSICAL SEQUENCE

– SORT.

Adabas Native SQL generates the appropriate data declarations and code for multiple-record
processing if the keyword ‘FOR’ is present in the DECLARE clause of the statement (see list
above). If the ‘FOR’ keyword is not coded or if the DECLARE clause is omitted, Adabas Native
SQL generates code for single-record processing.

Adabas Native SQL Reference Manual
3

66

Single-Record Processing

If single-record processing is to be used, the OPEN, FETCH and CLOSE statements are not
required and only the FIND, READ, etc., statement is required. Adabas Native SQL generates
executable code from this statement, which must therefore appear in the procedure division of
COBOL programs. In FORTRAN, the statement must be included within the executable
statements.

Single-record processing should be used if the user needs to access only one record from the file.

Example (single-record processing):

 .
 .
 .
EXEC ADABAS
 SELECT PERSON
 FROM PERSONNEL
 WHERE PERSONNEL-NUMBER = 180001
END-EXEC
DISPLAY NAME FIRST-NAME AGE SEX.

In this example, the program uses the single-record processing method to display data from the
record located by the ‘WHERE’ criterion.

Single and Multiple-Record Processing
3

67

Multiple-Record Processing

The OPEN, FETCH and CLOSE statements are used for multiple-record processing. The set
of records to be processed is determined using a COMPARE, FIND, HISTOGRAM, READ or
SORT statement, followed by an OPEN statement. The records are then processed one by one
using the FETCH statement, which will normally be coded in a loop. Finally, the CLOSE
statement, which releases the ISN list and other Adabas resources, must be issued if the records
were located by a FIND, COMPARE or SORT statement, i.e., if an ISN list was created.

It is the FETCH statement that actually reads each record from the database file and retrieves
the values in the fields specified in the SELECT clause of the COMPARE, FIND,
HISTOGRAM, READ or SORT statement. The OPEN, FETCH and CLOSE statements
generate executable Adabas commands, whereas the COMPARE, FIND, HISTOGRAM,
READ or SORT statement merely sets up parameter lists for later use.

The keyword ‘FOR’ must be specified in the DECLARE clause of COMPARE, FIND,
HISTOGRAM, READ or SORT in multiple-record processing mode. Using the DECLARE
clause, you define a cursor that associates a ‘cursor-name’ with the statement. Once the cursor
has been defined, it may be referred to in the OPEN, FETCH and CLOSE statements. These
statements have the following syntax:

Adabas Native SQL Reference Manual
3

68

EXEC ADABAS

END–EXEC

OPEN cursor–name

EXEC ADABAS

END–EXEC

FETCH cursor–name

EXEC ADABAS

END–EXEC

CLOSEcursor–name

cursor-name is the name used in the FIND, READ, SORT, COMPARE or HISTOGRAM

statement that was previously declared. The cursor-name provides the link between the
parameter-defining statement (FIND, READ, SORT, COMPARE or HISTOGRAM) and the
corresponding executable statements (OPEN, FETCH and CLOSE).

Single and Multiple-Record Processing
3

69

Example (multiple-record processing):

 .
 .
 .
 .
 EXEC ADABAS
 DECLARE PERS CURSOR FOR
 SELECT PERSON
 FROM PERSONNEL
 WHERE NAME > = ’BROWN’
 END-EXEC
 .
 .
 .
 .
 EXEC ADABAS
 OPEN PERS
 END-EXEC
 EXEC ADABAS
 FETCH PERS
 END-EXEC
 PERFORM READ-PERSONNEL UNTIL ADACODE = 3.
 EXEC ADABAS
 CLOSE PERS
 END-EXEC
 .
 .
 .
 .
READ-PERSONNEL.
 DISPLAY NAME FIRST-NAME AGE SEX.
 EXEC ADABAS
 FETCH PERS
 END-EXEC

70

4

71

OVERVIEW OF STATEMENTS

How this Chapter is Organized
� Syntax (page 72)

A description of the syntax conventions used in Adabas Native SQL statements.

� Overview of Adabas Native SQL Statements (page 76)

This section describes briefly the function of each Adabas Native SQL statement. Full
descriptions, with the details needed to code each statement, are given in Chapter 5.

– Database Query Statements (page 76)

– Data Storage READ Statements (page 79)

– Associator READ Statement (page 80)

– Statements for Processing Multiple Records (page 81)

– Database Modification Statements (page 82)

– Logical Transaction Processing Statements (page 83)

– Checkpointing Statement (page 83)

– Other Adabas Native SQL Statements (page 84)

� Adabas Native SQL Clauses (page 87)

This section describes in detail the clauses common to the Adabas Native SQL statements that
retrieve data from the database.

– DECLARE Clause (page 87)

– SELECT Clause (page 88)

– FROM Clause (page 93)

– WHERE Clause (page 95)

– OPTIONS Clause (page 96)

– ORDER BY Clause (page 103)

– GROUP BY Clause (page 103)

Adabas Native SQL Reference Manual
4

72

Syntax

The Adabas Native SQL statements use the following syntax conventions:

Upper Case

Words printed in upper case must be entered exactly as they appear in the definition. However,
if the initial part of an upper-case word is underlined, it may be abbreviated by entering only
the underlined portion.

Lower Case

Words or hyphenated terms printed in lower-case are either the names of further syntax
definitions, or else they are self-descriptive words that must be replaced by a suitable
substitution. For example, the first term in the syntax definition shown below is

statement-name, which is in turn described in the next syntax definition; the word constant
is self-descriptive and might be replaced by the number 667.

Braces

Braces �� are used:

– to enclose alternatives, which are either stacked vertically, or stacked horizontally and
separated by vertical bars. One of the alternatives must be coded. Default values that apply
when a parameter is omitted are underlined.

– to group terms together. Ellipsis (see below) following the closing brace applies to the
entire group, that is, to everything within the braces.

Brackets

Brackets �� indicate that the enclosed expression is optional.

Overview of Statements
4

73

Ellipsis

Ellipsis (a series of dots ...) after a term indicates that the term may be repeated. If the ellipsis
follows a bracketed expression, the whole of the expression must be repeated. Ellipsis followed

by a number, for example ...�, indicates the maximum number of times that the term may be
coded. Example:

A...3

denotes any one of the following strings:

A
AA
AAA

Ellipsis Preceded by a Comma

Ellipsis preceded by a comma (,...) after a term indicates that the term may be repeated; if it
is repeated, the occurrences must be separated by commas. Ellipsis preceded by a comma and
followed by a number, for example ,...�, indicates the maximum number of times that the term
may be coded. Example:

X,...�

denotes any one of the following strings:

X
X,X
X,X,X

Other Special Characters

Other special characters, for example comma, asterisk * or parentheses () must be coded exactly
as they appear in the definition.

Adabas Native SQL Reference Manual
4

74

Syntax Diagram for Adabas Native SQL Data Retrieval Statements
EXEC ADABAS

statement–name
DECLAREcursor–name CURSOR FOR

SELECT field–name
*

FROM file alias

WHERE search–criterion

OPTIONS

PASSWORD= value4

ISNSIZE= len

SAVE

SEQUENCE

ISN= value2

GROUP BY field-name

END–EXEC

,...

PREFIX= prefix

SUFFIX= suffix

STATIC=
Y
N

{ },...

DESCENDING
ASCENDING

ORDER BY de1... 3

value3

DBID=

AUTODBID
AUTODBID–ALL

database-name

CIPHER= value1

YCOND–NAME= N

HOLD RETURN

INDEXED=

MAXTIME=

Y
N

Overview of Statements
4

75

Syntax Diagram for statement-name

statement–name

FIND

PHYSICAL

READ LOGICAL

READ ISN

HISTOGRAM

SORT

READ SEQUENCE

COMPARE LISTISN

FIND COUPLED

LISTS

LISTISN LISTS

Adabas Native SQL Reference Manual
4

76

Overview of Adabas Native SQL Statements

This section describes briefly the function of each Adabas Native SQL statement.

Database Query Statements
Each of these statements produces a list containing the numbers of the database records (ISNs)
that satisfy the given retrieval criterion.

If you are only interested in the record whose number appears first in the list, then the database
query statement on its own will produce the list and then retrieve the data from this record.
However, more generally you will wish to process all of the records identified by the list.

The database query statement, which in this case must include the ‘DECLARE cursor-name

CURSOR FOR’ clause, does not retrieve any data. It must be followed by the OPEN, FETCH
and CLOSE statements, which are described in section “Statements for Processing Multiple
Records” on page 81 below.

Overview of Statements
4

77

Statement Action

COMPARE Produces an ISN list that is a logical combination of two ISN lists that
have previously been produced. The ISN list may include all records
whose ISNs appear
– in the first list AND in the second list
– in the first list OR in the second list, or
– in the first list BUT NOT in the second list.

If the keyword ‘FOR’ is not coded in the DECLARE clause, this
statement also reads data from the record whose ISN is at the begin-
ning of this list.

FIND Produces an ISN list containing the ISNs of all records that satisfy
the given retrieval criterion. If required, the ISN list will be sorted
so that the records to which it points can be retrieved in ascending
or descending sequence, ordered by the values in one, two or three
descriptor fields.

If the keyword ‘FOR’ is not coded in the DECLARE clause, this
statement also reads data from the record whose ISN is at the begin-
ning of this list.

FIND COUPLED Finds the records in a secondary file that are coupled to a specified
record in the primary file. For example, having found a particular
record in the PERSONNEL file (primary file), you could use the
FIND COUPLED statement to find all the records in the
AUTOMOBILES file (secondary file) that detail the cars owned by
this employee.
The PERSONNEL and AUTOMOBILES files are coupled by the
PERSONNEL-NUMBER/OWNER-PERSONNEL-NUMBER fields.

If the keyword ‘FOR’ is not coded in the DECLARE clause, this
statement also reads data from the record whose ISN is at the begin-
ning of this list.

Note that this statement is not available under VMS.

Adabas Native SQL Reference Manual
4

78

Statement Action

SORT Sorts an ISN list that has been produced by a previous Adabas Native
SQL FIND or COMPARE statement. The ISN list is sorted so that
the records to which it points can be retrieved in ascending or
descending sequence, ordered by the values in one, two or three
descriptor fields.

If the keyword ‘FOR’ is not coded in the DECLARE clause, this
statement also reads data from the record whose ISN is at the begin-
ning of this list.

Overview of Statements
4

79

Data Storage READ Statements

These statements read specified data fields from the database. The READ ISN statement always
reads from a single record; the remaining statements can also read data from a single record but
they will normally be used in conjunction with the OPEN and FETCH statements to read from
a series of records.

Statement Action

READ ISN Reads data fields from a single record. The ISN of the record is
specified by the program.

READ LOGICAL Reads data fields from one or more records. The records are read in
logical sequence, based on the ascending order of a given descriptor.
The program may optionally specify a starting value for the
descriptor. The user may request a Descending option.

READ PHYSICAL SEQUENCE
Reads data fields from one or more records. The records are read in
the order in which they are physically stored in the database.

This is the most efficient method of reading if an entire file is to be
processed and the record sequence is not important.

Adabas Native SQL Reference Manual
4

80

Associator READ Statement

This statement will normally be used with the ‘DECLARE cursor-name CURSOR FOR’
clause and in conjunction with the OPEN and FETCH statements in order to retrieve all
descriptor values sequentially. The first FETCH statement will return the lowest descriptor
value (and optionally the number of records that contain this value), the second FETCH
statement will return the next descriptor value, and so forth.

Statement Action

HISTOGRAM Reads from the Adabas Associator but does not read from Data
Storage. It returns to the user the values of a specified descriptor in
ascending sequence. Optionally, it can also return the number of
records that contain each descriptor value.
The user may request that the order of the values returned be in
descending order.

Overview of Statements
4

81

Statements for Processing Multiple Records

As mentioned above, some of the Adabas Native SQL statements can be used to process multiple
records or descriptor values. This applies to the following:

– statements that produce an ISN list (FIND, FIND COUPLED, SORT and COMPARE)

– statements that initiate sequential reading (READ LOGICAL and READ PHYSICAL
SEQUENCE), and

– the HISTOGRAM statement, which initiates reading a sequence of descriptor values.

In each case, the records or descriptor values are actually read by a FETCH statement, which
is normally executed in a loop. The FETCH statement is preceded by the statement that initiates
processing and by the OPEN statement, both of which are executed once only. When as many
records as desired have been processed, the program should issue a CLOSE statement to release
the ISN list.

Statement Action

OPEN This statement must be issued after the statement that initiates
reading and before the sequence of FETCH statements that actually
retrieve the data from the database.

FETCH This is the statement that actually retrieves data from the database.
Normally it will be executed in a loop until the end-of-data response
code is detected.

CLOSE Performs housekeeping tasks, such as releasing the ISN list, which
is no longer required.
This statement must be issued after the FIND, FIND COUPLED,
SORT and COMPARE statements.

Optionally, it may be issued after a READ LOGICAL, READ
PHYSICAL SEQUENCE or HISTOGRAM statement.

Adabas Native SQL Reference Manual
4

82

Database Modification Statements

These three statements modify the data held in the database. Normally, the DELETE and
UPDATE statements will be preceded by other Adabas Native SQL statements that find the
required record. This record must be placed in hold status so that other programs cannot interfere
until the modification is completed.

All of these statements can be disabled by setting the global parameter MODE NOUPD. This
can be useful when testing programs, and also for production programs which should not modify
the database in any way.

Statement Action

DELETE Deletes a record from the database.

INSERT Inserts a new record in the database.

UPDATE Updates the values held in one or more fields of the specified record.
This statement is also used to update fields that were previously
empty.

Overview of Statements
4

83

Logical Transaction Processing Statements

A logical transaction is defined as the smallest unit of change that, when applied to the database,
leaves it in a logically consistent state from the point of view of the application. If processing
were to be interrupted when a logical transaction had been only partially applied to the database,
there would be a logical inconsistency; this state must be avoided at all costs. Adabas has been
designed so that these inconsistent states can never occur if the following three statements are
used correctly.

Statement Action

COMMIT WORK Marks the end of a logical transaction.

ROLLBACK WORK
Cancels all modifications made to the files which the user is
accessing during the user’s current logical transaction.

READ USERDATA The COMMIT WORK, CHECKPOINT and DBCLOSE statements
allow the program to store additional data in a special data area. This
facility would typically be used to store information about the
positions of input files, etc., so that processing can be restarted in the
event of a system failure. The READ USERDATA statement is used
to recover this information.

Checkpointing Statement

This statement applies only to programs that update a database in file cluster mode or exclusive
mode.

Statement Action

CHECKPOINT Synchronizes all the programs that access the files in the cluster so
that a checkpoint can be taken.

Adabas Native SQL Reference Manual
4

84

Other Adabas Native SQL Statements

Statement Action

BEGIN This statement must be included as the first Adabas Native SQL
statement in every program, with the possible exception of the
COPY and GENERATE statements. In Ada programs, it must be
coded in the data declaration part of the program; in COBOL
programs it must be coded in the DATA DIVISION; and in
FORTRAN programs it must be coded in the DATA DEFINITION
area of the program.

CONNECT Indicates the files to be accessed and the access mode (read-only or
read and update). Options are included to specify the processing
mode, to specify the password to be used to gain access to
password-protected files, and to retrieve user data that were written
by a previous program (see also the description of the READ
USERDATA statement above).

COPY Permits a file layout generated by Predict as Ada, COBOL,
FORTRAN or PL/I code to be copied into the program.

DBCLOSE Flushes the Adabas buffer, so that database updates are written to the
physical storage medium. It can be used if desired after a sequence
of logically related transactions. In online applications, however, it
should only be used at the end of a user session and not at the end of
each TP transaction program.

GENERATE The COPY statement copies a file layout that was generated using
information contained in the data dictionary into the program. If it
has not already been generated using Predict’s facilities, or if the data
dictionary information may have been changed since the layout was
generated, this statement can be used to generate the file layout from
the latest information and copy it into the program in a single step.

Overview of Statements
4

85

Statement Action

HOLD Places a record in hold status. Other programs cannot interfere with
this record so long as it is in hold status.

A record must be put in hold status before it can be deleted or up-
dated.

See also the HOLD option, which can be used with all Adabas Native
SQL data retrieval statements except HISTOGRAM.

See also the RELEASE ISN statement.

RELEASE Releases an ISN list that was created by a COMPARE, FIND, FIND
COUPLED or SORT statement and retained because the SAVE
option was coded. This statement will only be required in
exceptional circumstances.

RELEASE ISN Releases a record from hold status. The converse of the HOLD
statement.

RESTORE Restores the Adabas Native SQL environment after swapping. Used
in conjunction with the SAVE statement in CICS programs running
in pseudo-conversational mode and in UTM programs with
multi-step transactions.
Adabas must be running in get-next mode, that is, you must not
specify an ISN buffer (ISNSIZE parameter).

SAVE Makes the Adabas Native SQL environment available to the user,
who should save it in a safe place before swapping takes place.
Used in conjunction with the RESTORE statement in CICS
programs running in pseudo-conversational mode and in UTM
programs with multi-step transactions.
Adabas must be running in get-next mode, that is, you must not
specify an ISN buffer (ISNSIZE parameter).

TRACE A debugging aid used to switch trace printing of all executed Adabas
Native SQL statements on and off.

Adabas Native SQL Reference Manual
4

86

Statement Action

WHENEVER Controls generation of code that tests the response code after
execution of Adabas Native SQL statements and, if a non-zero
response code occurs, branches to a user-written error handling
routine.

WRITE TO LOG Writes data to the Adabas data protection log. The data can
subsequently be read using an Adabas utility program. This
statement will only be required in exceptional circumstances.

Overview of Statements
4

87

Adabas Native SQL Clauses

The following clauses are common to the data retrieval statements, i.e., COMPARE, FIND,
FIND COUPLED, HISTOGRAM, READ ISN, READ LOGICAL, READ PHYSICAL
SEQUENCE and SORT.

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name is used to generate the Adabas command-ID unless the
DYNAMCID option is specified in the OPTIONS parameter (see page 263).

The cursor-name may be up to four characters long and cannot contain special characters such
as @, #, $ and %.

Note:
In COBOL programs, all cursor-names should be exactly four characters long. Otherwise, some
compilers may issue warning messages.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name.

If only a single record is to be processed, the DECLARE clause may be omitted.

Adabas Native SQL Reference Manual
4

88

SELECT Clause

SELECT field–name
*

,...

The SELECT clause indicates which fields are to be retrieved from the database in the file which
is specified in the FROM clause. All types of fields may be selected, with the exception of
redefined fields and phonetic descriptors. Fields that are not mentioned in the SELECT clause
are not included in the record buffer structure, they are not read from the Adabas file and
consequently they cannot be referenced later in the program. The fields may be specified either
by their full primary names or by appropriate language-specific synonyms as defined in the data
dictionary. See “Synonyms” on page 16 for more information.

If you intend to use language-specific synonyms in SELECT clauses and are running Predict
3.1, invert a new superdescriptor in the FDIC file. This superdescriptor must have the
2-character name ‘SN’ and consist of the following parent fields:

SYNONYM-NAME (CL).
FILE-NAME (CC).

The message DESCRIPTOR SYNONYM will appear in the Adabas Native SQL MESSAGES.
The message SYNONYM will appear whether or not this superdescriptor is inverted.

If the SELECT clause is omitted, then no records are processed, but other functions such as
search may be performed.

The field expressions are used by Adabas Native SQL when generating the format buffer and
record buffer. The field names generated by Adabas Native SQL for the record buffer are
generated from the field-names as defined in the data dictionary, except that language-specific
synonyms will be used if they have been defined in the data dictionary. The prefix and suffix
are added to the basic field-name, invalid characters may be replaced by the ‘validation
character ’, and excess characters may be deleted (truncated) if the name is too long. The field
attributes, including format, length, etc., are also taken from the data dictionary. Chapter 2
describes the record buffer structure that Adabas Native SQL generates using the SELECT
clause, the FROM clause and the definitions stored in the data dictionary.

The name of the record buffer structure is the ‘alias’ specified in the ‘FROM’ clause or, if no
alias is specified, the file name specified in the ‘FROM’ clause.

If an asterisk is specified following the keyword ‘SELECT’, all the fields within the userview
are read.

Overview of Statements
4

89

Example:

SELECT *
FROM FINANCE

The structure of the Ada record buffer is as follows:

 type CREDIT_CARDPERS is array (INTEGER range <>)
 of STRING (1..0018);
 type CREDIT_LIMITPERS is array (INTEGER range <>)
 of STRING (1..0004);
 type CURRENT_BALANCEPERS is array (INTEGER range <>)
 of STRING (1..0004);
 type OIL_CREDITPERS is array (INTEGER range <>)
 of STRING (1..0007);
 type INSURANCE_COMPANYPERS is array (INTEGER range <>,
 INTEGER range <>)
 of STRING (1..0025);
 type POLICY_AMOUNTPERS is array (INTEGER range <>,
 INTEGER range <>)
 of STRING (1..0006);
 type ON_VACPERS is array (INTEGER range <>)
 of STRING (1..0001);
 type RECORD_BUFPERS is
 record
 PERSONNEL_NUMBER : STRING (1..0008);
 CREDIT_CARD : CREDIT_CARDPERS (1..0002);
 CREDIT_LIMIT : CREDIT_LIMITPERS (1..0002);
 CURRENT_BALANCE : CURRENT_BALANCEPERS (1..0002);
 OIL_CREDIT : OIL_CREDITPERS (1..0010);
 NET_WORTH : STRING (1..0008);
 CREDIT_RATING : STRING (1..0002);
 INSURANCE_COMPANY : INSURANCE_COMPANYPERS (1..0003,1..0004);
 POLICY_AMOUNT : POLICY_AMOUNTPERS (1..0003,1..0004);
 COLLEGE : STRING (1..0016);
 ON_VAC : ON_VACPERS (1..0005);
 INVESTMENT : STRING (1..0015);
 SAVINGS : STRING (1..0007);
 BANK : STRING (1..0020);
 ISN : INTEGER;
 QUANTITY : INTEGER;
 RESPONSE_CODE : SHORT_INTEGER;
 end record
FINANCE: RECORD_BUFPERS;

Adabas Native SQL Reference Manual
4

90

Note:
This example shows a record buffer that was generated from an Adabas Native SQL statement
with the cursor-name ‘PERS’. The periodic group fields are always generated with
STRUCT=‘N’.

The structure of the COBOL record buffer is as follows:

Note:
The level-2 name generated for the record buffer includes the cursor-name, if one was specified.
The COBOL example below shows a record buffer that was generated from an Adabas Native
SQL statement without a cursor-name.

01 FINANCE.
 02 RECORD-BUF-0-1.
 03 PERSONNEL-NUMBER PIC 9(8).
 03 G-MAJOR-CREDIT.
 04 MAJOR-CREDIT OCCURS 2.
 05 CREDIT-CARD PIC X(18).
 05 CREDIT-LIMIT PIC 9(4).
 05 CURRENT-BALANCE PIC 9(4).
 03 OIL-CREDIT PIC X(7) OCCURS 10.
 03 NET-WORTH PIC 9(8).
 03 CREDIT-RATING PIC 9(2).
 03 G-INSURANCE-POLICY-TYPES.
 04 INSURANCE-POLICY-TYPES OCCURS 3.
 05 INSURANCE-COMPANY PIC X(25) OCCURS 4.
 05 POLICY-AMOUNT PIC 9(6) OCCURS 4.
 03 COLLEGE PIC X(16).
 03 G-VACATION.
 04 VACATION OCCURS 5.
 05 ON-VAC PIC X(1).
 03 INVESTMENT PIC X(15).
 03 SAVINGS PIC 9(7).
 03 BANK PIC X(20).
 02 ISN PIC 9(9) COMP.
 02 QUANTITY PIC 9(9) COMP.
 02 RESPONSE-CODE PIC 9(4) COMP.

Overview of Statements
4

91

The FORTRAN equivalent is as follows:

CHARACTER* 8 PERBER
CHARACTER* 18 CCARD (00002)
CHARACTER* 4 CLIM (00002)
CHARACTER* 4 CBAL (00002)
CHARACTER* 52 MAJDIT
CHARACTER* 8 NETRTH
CHARACTER* 2 CREING
INTEGER* 2 CINPES
CHARACTER* 25 INCOM (00003 , 00004)
CHARACTER* 6 POLUNT(00003 , 00004)
CHARACTER* 372 INSPES
CHARACTER* 16 COLEGE
CHARACTER* 1 ONVAC (00005)
CHARACTER* 5 VACION
CHARACTER* 15 INVENT
CHARACTER* 7 SAVNGS
CHARACTER* 20 BANK
CHARACTER* 507 FINNCE

Note:
The cursor is not shown for FORTRAN.

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B and
truncation is assumed to occur in the middle of the word. (The maximum length of names is
operating-system dependent.)

Note:
The field FINNCE encompasses all other fields and is the equivalent of the record buffer in
COBOL and PL/I.

Adabas Native SQL Reference Manual
4

92

The structure of the PL/I record buffer is as follows:

Note:
The level-2 name generated for the record buffer includes the cursor-name, if one was specified.
The PL/I example shows a record buffer that was generated from an Adabas Native SQL
statement with the cursor-name ‘PERS’.

DCL 1 FINANCE,
 2 RECORD_BUFPERS_1 UNAL,
 3 PERSONNEL_NUMBER PIC ’(7)99’,
 3 G_MAJOR_CREDIT,
 4 MAJOR_CREDIT (2),
 5 CREDIT_CARD CHAR (18),
 5 CREDIT_LIMIT PIC ’(3)99’,
 5 CURRENT_BALANCE PIC ’(3)99’,
 3 OIL_CREDIT (10) CHAR (7),
 3 NET_WORTH PIC ’(7)99’,
 3 CREDIT_RATING PIC ’(1)99’,
 3 G_INSURANCE_POLICY_TYPES,
 4 INSURANCE_POLICY_TYPES (3),
 5 INSURANCE_COMPANY (4) CHAR (25),
 5 POLICY_AMOUNT (4) PIC ’(5)99’,
 3 COLLEGE CHAR (16),
 3 G_VACATION,
 4 VACATION (5),
 5 ON_VAC CHAR (1),
 3 INVESTMENT CHAR (15),
 3 SAVINGS PIC ’(6)99’,
 3 BANK CHAR (20),
 2 ISN FIXED BIN(31),
 2 QUANTITY FIXED BIN(31),
 2 RESPONSE_CODE FIXED BIN(15),
 RECORD_BUFPERS CHAR(585) BASED (ADDR(RECORD_BUFPERS_1));

Overview of Statements
4

93

FROM Clause

FROM file alias{ },...

The FROM clause specifies the file from which data is to be retrieved. This clause is used
together with the SELECT clause to generate the record buffer (Ada, COBOL or PL/I) or the
equivalent FORTRAN data structure, and to control the retrieval of information from the
database. The fields specified in the SELECT clause refer only to the first file named in the
FROM clause; however, the retrieval criterion in the WHERE clause can refer to fields from
a maximum of 5 physically-coupled files, or a maximum of 16 soft-coupled files.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique within the program (including linked modules), is required if two or more Adabas
Native SQL statements within the module refer to the same file. It can then be used as a qualifier
in subsequent Ada, COBOL or PL/I statements that wish to refer to the fields in the respective
record buffers. Note that the alias is not preceded by a comma.

Example:

SELECT NAME, CITY
FROM PERSONNEL

The record buffer has the name ‘PERSONNEL’. You may refer to the variables in the record
buffer as:

PERSONNEL.NAME (Ada)
PERSONNEL.CITY (Ada)
NAME OF PERSONNEL (COBOL)
CITY OF PERSONNEL (COBOL)
NAME (FORTRAN)
CITY (FORTRAN)
PERSONNEL.NAME (PL/I)
PERSONNEL.CITY (PL/I)

Adabas Native SQL Reference Manual
4

94

If you use the alias option:

SELECT NAME
FROM PERSONNEL PERSON-ALIAS

then Adabas Native SQL generates a record buffer structure with the name ‘PERSON_ALIAS’
(Ada or PL/I) or ‘PERSON-ALIAS’ (COBOL). You may refer to the variables in the record
buffer as:

PERSON_ALIAS.NAME (Ada)
PERSON_ALIAS.CITY (Ada)
NAME OF PERSON-ALIAS (COBOL)
CITY OF PERSON-ALIAS (COBOL)
NAME (FORTRAN)
CITY (FORTRAN)
PERSON_ALIAS.NAME (PL/I)
PERSON_ALIAS.CITY (PL/I)

Overview of Statements
4

95

WHERE Clause

WHERE search–criterion

The search-criterion specifies the criterion for selecting the records to be read by the retrieval

statement. Since individual statements use the search-criterion differently, it is explained for
each statement separately. Fields taken from files that are not specified in the FROM clause must
be qualified, for example, FILE.FIELD or ALIAS.FIELD.

Note:
Ada and FORTRAN users
Packed and unpacked fields are generated as character fields, thus search values must include
leading zeros in order to pass numeric values to an alphanumeric field. For example, WHERE
PERSONNEL-NUMBER = ‘00000105’.

Note:
Ada users
Character constants (literals) used as search values must be padded with leading spaces.

Special restrictions apply when referring to periodic groups, multiple-value fields and
multiple-value fields within periodic groups in WHERE clauses. See repective sections from
page 22 for more information.

Adabas Native SQL Reference Manual
4

96

OPTIONS Clause

OPTIONS

HOLD RETURN

PASSWORD= value4

CIPHER= value1

ISNSIZE= len

SAVE

SEQUENCE

ISN= value2

INDEXED=
Y
N

COND–NAME= Y
N

PREFIX= prefix

SUFFIX= suffix

DBID= database-name

AUTODBID

STATIC=
Y
N

MAXTIME= value3

Note:
Not all options apply to each retrieval statement.

Overview of Statements
4

97

AUTODBID Option

This option indicates to Adabas Native SQL that the database ID is to be taken from the data
dictionary. If the file is linked to more than one database, the database specified first will be
used.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

This option must be specified when accessing a ciphered file.

The keyword CIPHER is followed by an ‘=’ sign and the cipher key (cipher code), which may
be a constant of up to 8 characters or the name of a variable containing the cipher key. If the
cipher key is specified as a constant, it will appear in the program listings and its security may
be compromised. The use of a variable whose value is read in at run-time is recommended. If
the cipher key is specified as the name of a variable, it must be preceded by a colon (‘:’).

Great care should be taken to remember the cipher key used when updating a file. If you update
a file and subsequently forget the cipher key, the data can never be recovered from the file
correctly.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as Level-88 entries.

The value is taken from one of the following sources:

– Local (higher priority)
Use the COND-NAME option for the current COMPARE, FIND, HISTOGRAM, INSERT,
READ, SORT or UPDATE statement.

– Global (lower priority)
Use the COND-NAME clause of the global OPTIONS parameter (see page 259)

This option can only be set if field With Cond. names in the Predict Modify COBOL Defaults
screen is marked with an ‘X’. See also “Generate COBOL Copy Code” in the Predict
Administration Manual.

Adabas Native SQL Reference Manual
4

98

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode.

See “HOLD Logic” on page 43 for more information.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

The value for this option is taken from one of the following sources:

– Local (higher priority)
Use the INDEXED option for the current COMPARE, FIND, HISTOGRAM, INSERT,
READ, SORT or UPDATE statement.

– Global (lower priority)
Use the INDEXED clause of the global OPTIONS parameter (see page 259).

This option can only be set if the field Indexed by in thePredict Modify COBOL Defaults screen
is marked with an ‘X’. See also “Generate COBOL Copy Code” in the Predict Administration
Manual.

Overview of Statements
4

99

ISN Option

The ISN option may be used with the READ PHYSICAL SEQUENCE and READ LOGICAL
statements. In the READ PHYSICAL SEQUENCE statement, it specifies the ISN of the first
record to be read. If a record with this ISN does not exist, the record with the next higher ISN
will be read. In the READ LOGICAL statement, the ISN option specifies the ISN of the first
record to be read from the set of records that satisfy the WHERE clause.

The parameter that follows the keyword ‘ISN’, namely value2, may be either a constant or the
name of a variable that contains the ISN. If value2 is a variable name, it must be immediately
preceded by a colon (‘:’), for example ‘:NAME’.

ISNSIZE Option

The ISNSIZE parameter defines the maximum number of ISNs that can be stored in the ISN
buffer. If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess
ISNs are stored by Adabas and retrieved automatically when required. This process is
transparent to the programmer.

If this option is not coded locally, that is, as an option in a COMPARE, FIND, FIND COUPLED
or SORT statement, the ISNSIZE defined in the global OPTIONS parameter (see 265) takes
effect. If neither a local nor a global ISNSIZE definition is coded, an ISN buffer is not allocated.
This latter mode must be used if the file is protected by the ‘security by value’ facility, or if the
SAVE and RESTORE statements are used in CICS or UTM programs.

A larger value for the ISNSIZE parameter may improve processing speed. See your DBA for
further advice about selecting an appropriate value for this option.

MAXTIME Option

This option specifies the time limit for Adabas Sx commands.

Speficify either a number or a variable containing a number. The default is defined with the
parameter Maximum time for an Sx command on the Adabas Native SQL Defaults screen.

See section “OP Command”, paragraph “Additions 4” in the Adabas Command Reference
Manual for more information..

Adabas Native SQL Reference Manual
4

100

PASSWORD Option

The keyword PASSWORD is followed by an ‘=’ sign and then the password, which may be a
constant of up to 8 characters or the name of a variable containing the password.

Note:
If the password is specified as a constant, it will appear in the program listings and its security
may be compromised.

The use of a variable whose value is read in at run-time is recommended. If the password is
specified as the name of a variable, it must be immediately preceded by a colon (‘:’).

Example: PASSWORD = :VAR
where VAR is the name of a variable containing the password.

This option must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless the password is
specified globally in the CONNECT statement (see page 120).
In this case, Adabas Native SQL will use this password in all generated Adabas commands
unless it is overridden by a password specified in the PASSWORD parameter of the OPTIONS
clause for an individual statement.

PREFIX Option

The prefix is taken from one of the following sources:

– Local (highest priority)
Use the PREFIX option for the current COMPARE, FIND, HISTOGRAM, INSERT,
READ, SORT or UPDATE statement.

– Global
Use the PREFIX clause of the global OPTIONS parameter (see page 259)

– Predict (lowest priority)
The current generation default for the respective language are taken from the data
dictionary.

The first two options can only be used if the Field name prefix field in the Predict
Modify...Defaults screen for Ada, COBOL, FORTRAN or PL/I is marked with X, indicating it
may be modified by the user. Otherwise the prefix value defined in the data dictionary cannot
be overridden.

Overview of Statements
4

101

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

– a further Adabas Native SQL statement that creates another ISN list with the same name
(same command-ID) is executed, or

– an Adabas Native SQL ‘CLOSE’ or ‘DBCLOSE’ statement is executed, or

– the non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returned when the next Adabas command is
attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FIND COUPLED and SORT). If the CLOSE statement is not
executed, large amounts of storage will be occupied for the remainder of the Adabas session.

SEQUENCE Option

The SEQUENCE option is used only with the READ ISN statement.

If this option is coded, the record with the specified ISN or the next higher ISN is read. The ISN
of the record that was read is returned in the field ‘ISN’, which is appended to every record buffer
(see page 42). If the file does not contain a record having an ISN higher than the specified ISN,
end-of-file is signaled. Therefore, when using this option, the flag ADACODE (Ada, COBOL
and PL/I) or SQLCOD (FORTRAN) should be checked for end-of-file status.

If this option is not specified, the record with the specified ISN is read.
If the file does not contain a record having the specified ISN, an error is reported (response-code
= 113). This causes the program to terminate unless a user-written response code interpretation
routine is provided.

See also description of the global parameter ABORT on page 244.

Adabas Native SQL Reference Manual
4

102

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded, all buffers generated by Adabas Native SQL will be defined
as static.

The value is taken from one of the following sources:

– Local (higher priority)
Use the STATIC option for the current COMPARE, FIND, HISTOGRAM, INSERT,
READ, SORT or UPDATE statement.

– Global (lower priority)
Use the STATIC clause of the global OPTIONS parameter (see page 259)

Note:
This option can only be set if the field Static in the Predict Modify PL/I Defaults screen is marked
with an ‘X’. See also “Generate PL/I Include Code” in the Predict Administration Manual.

SUFFIX Option

The suffix is taken from one of the following sources:

– Local (highest priority)
Use the SUFFIX option for the current COMPARE, FIND, HISTOGRAM, INSERT,
READ, SORT or UPDATE statement.

– Global
Use the SUFFIX clause of the global OPTIONS parameter (see page 259)

– Predict (lowest priority)
The current generation default for the respective language is taken from the data
dictionary.

The first two options can only be used if the Field name suffix field in the Predict
Modify...Defaults screen for Ada, COBOL, FORTRAN or PL/I is marked with X, indicating it
may be modified by the user. Otherwise the suffix value defined in the data dictionary cannot
be overridden.

Overview of Statements
4

103

ORDER BY Clause

DESCENDING

ASCENDING
ORDER BY de1... 3

The ORDER BY clause specifies the order in which the records are retrieved. It is used in the
FIND, HISTOGRAM, READ LOGICAL and SORT statements.

In the FIND and SORT statements, the ISN list may be sorted on up to three descriptors in
ascending or descending sequence. In the READ LOGICAL statement, this clause specifies one
descriptor that determines the logical sequence in which the records are to be read.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may
it be a phonetic descriptor.

The keyword DESCENDING, which may be abbreviated to DESC, specifies descending
sequence, otherwise ascending sequence is assumed as default.

GROUP BY Clause

GROUP BY field–name

The GROUP BY clause is used only in the HISTOGRAM statement. It specifies the descriptor
for which the values are to be retrieved. If the ‘WHERE’ clause is coded, the field used in the

GROUP clause must be the same as the field used in the WHERE clause.

104

5

105

ADABAS NATIVE SQL STATEMENTS

The BEGIN Statement

EXEC ADABAS

END–EXEC

BEGIN DECLARE SECTION

This statement must appear in every program that uses Adabas Native SQL statements. The only
Adabas Native SQL statements allowed to precede this statement are COPY and GENERATE.

– In Ada programs, the BEGIN statement must be coded in the data declaration part of the
program.

– In COBOL programs it must be coded in the DATA DIVISION.

– In FORTRAN programs it must be coded in the DATA DEFINITION area of the program.

Adabas Native SQL generates Adabas control blocks, format buffers, search buffers, value
buffers and other miscellaneous information in response to the BEGIN DECLARE SECTION
statement.

Adabas Native SQL Reference Manual
5

106

The CHECKPOINT Statement

EXEC ADABAS

END–EXEC

USER=CHECKPOINT value1

The CHECKPOINT statement is used by update programs that issue checkpoints. It is only
applicable to programs that run in exclusive file control mode. One option is available:

USER

For user checkpoints made in exclusive file control mode.
An Adabas C1 command is generated.

value1 is a constant of 4 characters identifying the checkpoint code or the name of a variable
containing the checkpoint code. If value1 is a variable name, it must be preceded by a colon
(‘:’).

Examples:

EXEC ADABAS
 CHECKPOINT USER = ’CK01’
END-EXEC

EXEC ADABAS
 CHECKPOINT USER = :CURRENT-CKPT
END-EXEC

Adabas Native SQL Statements
5

107

The CLOSE Statement

EXEC ADABAS

END–EXEC

CLOSE cursor–name

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing
multiple records. See Chapter 3 for further details.

The CLOSE statement must be used in conjunction with the COMPARE, FIND, FIND
COUPLED and SORT statements, that is, with those statements that generate an ISN list.
It may be used with the HISTOGRAM, READ LOGICAL and READ PHYSICAL SEQUENCE
statements, but its use following these statements is not mandatory.

The CLOSE statement releases various Adabas resources, and it also releases the command-ID
from the ISN list table. This makes it impossible to refer to the records after the CLOSE
statement has been executed. No more FETCH statements can be executed after the CLOSE has
taken place.

This statement generates an Adabas RC command.

Adabas Native SQL Reference Manual
5

108

The COMMIT WORK Statement

EXEC ADABAS

USERDATA= value

END–EXEC

COMMIT WORK

The COMMIT WORK statement is used to indicate the end of a logical transaction. It should
be issued by ET mode users whenever the program has completed the processing of one logical
transaction. Failure to do this may lead to an excessively large hold queue in the Adabas work
file and eventually to hold queue overflow.

Should the application program ABEND, the status of the database at the time when the last
COMMIT WORK was issued will automatically be restored when Adabas is restarted
(autobackout).

An Adabas ET (end-of-transaction) command is generated.

Adabas Native SQL Statements
5

109

USERDATA Clause

USERDATA= value

The user may write data to the Adabas system file using the ‘USERDATA = value’ clause. The

data can be retrieved using the CONNECT and READ USERDATA statements. value can be

a constant enclosed in apostrophes or the name of a variable containing the user data. If value

is a variable name, it must be immediately preceded by a colon (‘:’). See the examples below.

If the USERDATA clause is used, a CONNECT statement with a valid user-ID must have been
executed. The user-ID that was specified in the CONNECT statement is associated with the user
data, and it must be quoted when recovering the user data with a subsequent CONNECT or
READ USERDATA statement.

This facility can be used to record information required when performing a restart, for example
the positions of files that are being processed sequentially.

The length of the user data, i.e., the number of characters to be written, must not exceed the limit
specified in the USERDATA clause of the global OPTIONS parameter. See page 267.

Examples:

EXEC ADABAS
 COMMIT WORK
 USERDATA = :USERVAR
END-EXEC

EXEC ADABAS
 COMMIT WORK
 USERDATA = ’TEST1234’
END-EXEC

Adabas Native SQL Reference Manual
5

110

The COMPARE Statement

���������

�����
���������	

������ ���

����
��
����	

�

����������� ���������	
�

�����

����

���� ��
 ����

� �!���

����

��"

�����

 ��������

����!��

���
�

�! ������
�

!���!#�
�

$

$

$

������!�

!�����

���������
�

 ��!����
���

������

����!��
�

�

��!���������
���	

��� �� !�� �!���

���
��

�������
������� ���������	
�

Adabas Native SQL Statements
5

111

The COMPARE statement performs logical processing on two ISN lists that were previously
created using FIND, FIND COUPLED or COMPARE statements with the SAVE option. It can
compute the intersection (logical AND) or union (logical OR) of two ISN lists, or the set of ISNs
that are in one list but not in the other (logical AND NOT).

The two ISN lists to be compared must relate to the same file, and they must be in ascending
ISN sequence. Therefore the ORDER BY option is not permitted in the FIND statement that
created the ISN lists to be compared.

The ISN lists to be compared must have been created by Adabas Native SQL statements with
the SAVE option. They should be released with the CLOSE statement when they are no longer
required.

In general, the COMPARE statement will return a list containing the ISNs of many records.

If more than one record is to be processed, the COMPARE statement must contain the
DECLARE cursor-name CURSOR FOR clause and it must be followed by an
OPEN/FETCH/CLOSE sequence as described in chapter NO TAG. The fields specified in the
SELECT clause are available after execution of the FETCH statement.

If only the record whose ISN is at the head of the resulting ISN list is to be processed, the
DECLARE clause may be omitted and the fields specified in the SELECT clause are available
after execution of the COMPARE statement. In this case Adabas Native SQL generates
executable code for the COMPARE statement, which must therefore appear in the procedure
division in COBOL programs.

An Adabas S8 command is generated.

Adabas Native SQL Reference Manual
5

112

DECLARE Clause

DECLAREcursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

See page 87 for more information.

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of phonetic descriptors. The fields must be specified
by their full names as defined in the data dictionary.

If an asterisk is specified following the keyword ‘SELECT’, all the fields within the userview
are read.

See page 88 for more information.

Adabas Native SQL Statements
5

113

FROM Clause

FROM file1 alias

The FROM clause specifies the file from which data is to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used.

See page 93 for more information.

WHERE Clause

WHERE CURSOR= cursor–name1
AND
OR

AND NOT
CURSOR= cursor–name2

The WHERE clause is used to specify the cursor names defined in the FIND or COMPARE
statements that created the ISN lists. Both of thes statements should have the SAVE option.

The COMPARE statement can be used to perform the following logical operations:

AND The resulting ISNs will contain those ISNs that are present in
both ISN lists.

OR The resulting ISNs will contain those ISNs that are present in
either the first ISN list or the second ISN list or both.

AND NOT The resulting ISN list will contain those ISNs that are present

in the first ISN list (identified by cursor-name1) but not

present in the second ISN list (identified by cursor-name2).

Adabas Native SQL Reference Manual
5

114

OPTIONS Clause

OPTIONS

HOLD

SAVE

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value2

CIPHER= value1

ISNSIZE= len

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

The AUTODBID option and the HOLD option may not be used together. This implies to Adabas
Native SQL that you are attempting to update a database other than your default database. Also,
AUTODBID and DBID may not be used together.

Adabas Native SQL Statements
5

115

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes as level-88 entries the condition names defined in Predict.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The

database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

The DBID option and the HOLD option may not be used together. This implies to Adabas Native
SQL that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode.

See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID, AUTODBID-ALL or DBID
options. This implies to Adabas Native SQL that you are attempting to update a database other
than your default database.

Adabas Native SQL Reference Manual
5

116

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from the Predict additional
field attribute 3GL specification, Indexed by.
If no index name is specified here, the name of the multiple-value field or periodic group is used,
prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines the maximum number of ISNs that can be stored in the ISN
buffer. If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess
ISNs are stored by Adabas and retrieved automatically when required. This process is
transparent to the programmer.
See page 99 for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the password clause of the CONNECT statement (page 120).

See page 44 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

Adabas Native SQL Statements
5

117

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

– A further Adabas Native SQL statement that creates another ISN list with the same name
(same command-ID) is executed, or:

– An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:

– The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returned when the next Adabas command is
attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FIND COUPLED and SORT). If the CLOSE statement is not
executed, large amounts of storage will be occupied for the remainder of the Adabas session.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

Adabas Native SQL Reference Manual
5

118

The CONNECT Statement

EXEC ADABAS

ACC= file

END–EXEC

CONNECT
userid

WITH password

,...

UPD= file,...

EXU= file,...

AND USERDATA INTO var

OPTIONS

MAXISN=value1

MAXHOLD=value2

MAXCID=value3

MAXTIME=value4

TT=value5

TNA=value6

DBID= database-name

NORESTRICTED

The CONNECT statement is used to indicate the beginning of a user session and to list the files
that will be used and the modes in which they are to be opened. The CONNECT statement
should not be issued by modules called from the main program. If a CONNECT statement is
used, it must be in the main program and it must include not only the files used by the main
program but also those used by all modules called from the main program. It must be the first
executable Adabas Native SQL statement in the program, with the possible exception of COPY
and GENERATE statements (compare with the BEGIN statement).

Adabas Native SQL Statements
5

119

If the CONNECT statement is omitted, the program will run in ET mode. Any files can be read
and updated, with only the customary password and cipher restrictions on access.

If the program is to run in exclusive-control mode or if files are to be accessed in access-only
mode (all attempts to modify the database will be rejected), then the CONNECT statement must
be included.

If the Adabas user session is still active when the CONNECT statement is issued (from a
previous program that was not terminated correctly with the DBCLOSE statement), a
ROLLBACK WORK will be performed and Response Code 9 is returned.

This statement generates an Adabas OP (open) command.

If Adabas Star is used, this statement generates in the record buffer the ADASTAR access
number of the file instead of the file number. See page 59 for more information.

USERID Clause

userid

This clause specifies the user-ID for the user session. A user-ID must be provided if you intend
to store and/or read user data and you require this data to be available during a subsequent user
session or Adabas session (see also the CHECKPOINT, COMMIT WORK, DBCLOSE, READ
USERDATA and WRITE TO LOG statements). The value provided for the user-ID should be
unique for this user (that is, it should not be used by any other user). Response Code 48 will be
returned if the user-ID is already in use.

The first character must be an upper-case letter or a digit. userid may be a constant of up to 8

characters, or the name of a variable containing the user-ID. If userid is a variable name, it must
be immediately preceded by a colon (‘:’), for example ‘:NAME’.

Note:
If userid is a constant, it must be enclosed in single quotes.

This clause is mandatory if Adabas Star is used.

Adabas Native SQL Reference Manual
5

120

Password Clause

WITH password

You may, if you wish, specify the password only once in your program, in the PASSWORD
clause of the CONNECT statement. Adabas Native SQL will pass this password to all generated
Adabas commands.

If you also code the PASSWORD option in an Adabas Native SQL statement, the local
specification overrides the global specification in the CONNECT statement for that statement
only.

password may be a constant of up to 8 characters or the name of a variable containing the

password. If password is a variable name, it must be preceded by a colon (‘:’) for example
‘:SECRET’.

Adabas Native SQL Statements
5

121

ACC Clause

ACC= file,...

This is a list of the names of the Adabas files to be accessed by the program in access-only
(read-only) mode. Any attempt to update a file opened in access-only mode or to add or delete
records will be rejected (response-code=19).

If this clause is present, all files to be processed by the program must be listed in the CONNECT
statement. An attempt to read a file that was not specified will cause an error (response
code=17).

Example:

EXEC ADABAS
 CONNECT ACC = PERSONNEL, AUTOMOBILES, FINANCE
END-EXEC

This program uses the files PERSONNEL, AUTOMOBILES and FINANCE in access-only
mode.

Adabas Native SQL automatically adds the ABEND file to the ACC list so that the error texts
corresponding to non-zero response codes can be retrieved from it as required by the response
code interpretation routine. The default is UPD.

Adabas Native SQL Reference Manual
5

122

UPD and EXU Clauses

UPD= file,...

EXU= file

All files updated by the program should be specified in the CONNECT statement. An attempt
to update a file that is not specified in the CONNECT statement will cause an error (response
code=17).

There are two types of update programs:

ET-mode
These are programs that can update files in parallel with other programs updating the same files.
Programs that run in ET mode must put the required record in hold status before updating or
deleting it, and must issue the COMMIT WORK statement at the end of each logical transaction.
This mode is used for online update programs.

Exclusive mode
These are programs that have exclusive use of the selected files. During the entire execution
time, other programs are prevented from updating these files.

Adabas Native SQL Statements
5

123

Thus, one or more of the following possibilities may be specified:

– ‘UPD =’ followed by a list of file names, for programs that run in ET mode. The application
program should check the response-code after each Adabas Native SQL statement that
generates one or more Adabas commands for the value 9, which would mean that an
automatic backout has occurred and the program should restart the transaction from the
beginning;

– ‘EXU =’ followed by a list of file names, for EXCLUSIVE mode;

Further information about exclusive control updating may be found in the Adabas Command
Reference Manual and the Adabas DBA Reference Manual. Consult your DBA before writing
programs that run in exclusive file control mode or file cluster mode.

Examples:

EXEC ADABAS
 CONNECT ’MEMUNE’
 ACC = PERSONNEL UPD = AUTOMOBILES
END-EXEC

The program uses the PERSONNEL file in access-only mode and updates the AUTOMOBILES
file in ET-logic mode.

EXEC ADABAS
 CONNECT ’MEMUNE’
 UPD = PERSONNEL EXU=PERSONNEL
END-EXEC

The program uses the PERSONNEL file in access-only mode and updates the PERSONNEL
file in ET-logic mode.

Adabas Native SQL Reference Manual
5

124

USERDATA Clause

AND USERDATA INTO var

This clause enables the user to retrieve the user data stored in the Adabas system file by a
CHECKPOINT, COMMIT WORK or DBCLOSE statement.

The last USERDATA record that was stored with a CHECKPOINT, COMMIT WORK or

DBCLOSE statement is read into var. var must be preceded by a colon (‘:’), for example
‘:NAME’.

This option may only be used if the user specified the same user-ID for the current user session
and also for the session during which the USERDATA were stored.

OPTIONS Clause

OPTIONS

MAXISN=value1

MAXHOLD=value2

MAXCID=value3

MAXTIME=value4

TT=value5

TNA=value6

DBID= database-name

Note:
Default values for all values except DBID are specified in the Predict Modify Adabas Native
SQL Defaults screen.

Adabas Native SQL Statements
5

125

DBID Option

This option should be used if the program accesses more than one database. The

database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

Note:
Only read or search access is permitted if the DBID option is used; the INSERT, UPDATE and
DELETE statements must not be used. One CONNECT statement must be issued for each
database to be accessed.

MAXISN Option

This option specifies the maximum number of ISNs resulting from the execution of Sx
commands that Adabas can store internally in its ISN table. Increasing the default setting may
reduce access to the Adabas work file.

MAXHOLD Option

This option specifies the maximum number of records that the user may have in hold status at
any time.

MAXCID Option

This option specifies the maximum number of Command IDs that may be active for the user
at the same time.

Adabas Native SQL Reference Manual
5

126

MAXTIME Option

This option specifies the time limit for the execution of Sx commands.

The programmer should consult with the DBA about the system default values for these
parameters before changing them. For further details, see the Adabas Command Reference
Manual, section “OP Command”, paragraph “Additions 4”.

TT Option

This option may be used to specify a transaction time limit.

TNA Option

This option may be used to specify a non-activity time limit.

NORESTRICTED option

There is a new option in the CONNECT statement:

NORESTRICTED.

If this option is used, the Adabas OPEN command will be generated without the RESTRICTED
option, so files which are not specified in CONNECT may be added later to the Adabas user
queue element.

Adabas Native SQL Statements
5

127

The COPY Statement

���������

END–EXEC

COPY file–name member–name

�

EXEC ADABAS

END–EXEC

COPY
file–name

member–name

FILE=

MEMBER=

�

Adabas Native SQL supports the COPY statement as described in the chapter “The
Preprocessor” of the Predict Administration Manual. A file layout that has been generated as
Ada, COBOL, FORTRAN or PL/I code by Predict can be copied into the program by means of
this statement.

The file-name must always be specified. It is the name of the file as defined in the data
dictionary.

The member-name must be specified if more than one file layout has been generated for this
file.

The file-name and member-name can be specified as positional parameters (see � above) or
as keyword parameters (see � above).

Adabas Native SQL Reference Manual
5

128

The DBCLOSE Statement

EXEC ADABAS

USERDATA= var

END–EXEC

DBCLOSE

DBID= database-name

OPTIONS

The DBCLOSE statement is used to terminate a user session. All Adabas resources are released.

This statement may be issued at the end of the main program. It should not be issued by modules
called by a main program, nor should it be issued at the end of a TP transaction program unless
this coincides with the end of the user session.

Adabas Native SQL Statements
5

129

USERDATA Clause

USERDATA= var

The user may store user data in the Adabas system file by including the ‘USERDATA = var’
clause. The user data can be retrieved by a subsequent CONNECT or READ USERDATA
statement. var is the name of the variable containing the user data. The variable name must be
immediately preceded by a colon (‘:’), for example ‘USERDATA = :NAME’. The length of the
user data, that is the number of characters to be written, must not exceed the limit specified in
the USERDATA clause of the global OPTIONS parameter. See page 267.

This statement generates an Adabas CL (close) command.

Example:

EXEC ADABAS
 DBCLOSE
 USERDATA = :USERVAR
END-EXEC

Adabas Native SQL Reference Manual
5

130

OPTIONS Clause

DBID=

OPTIONS

database-name

DBID Option

This option may be used if the program has accessed more than one database. The
database-name must be defined in the data dictionary, including the file or files that have been
accessed. One DBCLOSE statement should be issued per database.

Adabas Native SQL Statements
5

131

The DELETE Statement

EXEC ADABAS

DECLAREcursor–name CURSOR

OPTIONS PASSWORD= value1
CIPHER= value2

END–EXEC

DELETE

WHERE
ISN=

CURRENT OF
value
cursor–name1

FROM file1 alias

The DELETE statement deletes a record from the specified file. The record to be deleted must
be retrieved by the FIND statement or one of the READ statements before issuing the DELETE
statement. The record must be in hold status unless the program is running in EXU mode (see
the CONNECT statement). A record can be ‘held’ either by specifying the ‘HOLD’ option in
the statement that reads it, or by issuing a separate HOLD statement. If the record is not in hold
status, it will implicitly be ‘held’.

When the logical transaction has been completed, a COMMIT WORK statement should be
issued. One of the effects of this statement is to release records that are in hold status.

This statement generates an Adabas E1 command.

Adabas Native SQL Reference Manual
5

132

DECLARE Clause

DECLAREcursor–name CURSOR

The cursor-name may be up to four characters long. The DECLARE clause will not normally
be required, but it may be used if desired to define the Adabas command ID.

Note:
This clause should not be used if the WHERE CURRENT OF clause is used.

FROM Clause

FROM file1 alias

file1 is the Adabas file name or view name, as defined in the data dictionary, of the file from
which the record is to be deleted. If the same file appears in another statement, an alias should
be used.

Adabas Native SQL Statements
5

133

WHERE Clause

WHERE
ISN=

CURRENT OF
value
cursor–name1

The WHERE clause is used to specify the ISN of the record to be deleted.

In order to delete a record whose ISN is explicitly known, the ‘WHERE ISN = value’ option
should be used. value may be a constant or the name of a variable containing the ISN. If value
is a variable name, it must be immediately preceded by a colon (‘:’), for example ‘:NAME’. The

colon must not be coded following the ‘=’ sign if value is a numeric constant, for example
‘WHERE ISN = 1234’.

The option ‘WHERE CURRENT OF cursor-name1’ should be coded in order to delete a

record found by a previous Adabas Native SQL statement. cursor-name1 is the name of the
cursor defined in that statement.

OPTIONS Clause

OPTIONS PASSWORD= value1

CIPHER= value2

Adabas Native SQL Reference Manual
5

134

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See page 97 for more information.

Adabas Native SQL Statements
5

135

The FETCH Statement

EXEC ADABAS

END–EXEC

FETCH cursor–name

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing
multiple records. See “Multiple-Record Processing” on page 67 for more information.

The FETCH statement reads the data from the file into the record buffer. An OPEN statement
must always be issued before the first FETCH statement can be executed when using
multiple-record processing. Each successive FETCH statement automatically reads the next
record (or delivers the next descriptor value in the case of the HISTOGRAM statement), until
all the records have been passed to the user program. When all records have been read, an
end-of-file condition is encountered and the flag ADACODE is set to 3.

Adabas Native SQL Reference Manual
5

136

The FIND Statement

EXEC ADABAS

DECLAREcursor–name CURSOR FOR

SELECT field–name
*

WHEREsearch–criterion

END–EXEC

FIND

,...

FROM file alias ,...

OPTIONS

DESCENDING
ASCENDING

ORDER BY de1... 3

HOLD

SAVE

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISNSIZE= len

Y

Y

Y

AUTODBID

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

MAXTIME= value2

N

DBID= database-name

Adabas Native SQL Statements
5

137

The FIND statement performs a retrieval query against a database file, selecting the record or
records specified by the search criterion in the WHERE clause. The keyword ‘FIND’ may
optionally be omitted.

This statement returns either a list of the ISNs of the records that satisfy the search criterion, or
an ‘end-of-file’ indication in the variable ADACODE (Ada, COBOL or PL/I) or SQLCOD
(FORTRAN), indicating that no records satisfied the search criterion.

In general, the FIND statement will return a list containing the ISNs of many records.

If all of the records found by the FIND statement are to be processed, then the FIND statement
must include the ‘DECLARE cursor-name CURSOR FOR’ clause and it must be followed by
an OPEN/FETCH/CLOSE sequence as described from page 67. The fields specified in the
SELECT clause are available after execution of the FETCH statement.

If only the first of these records is to be processed, then the DECLARE clause may be omitted
and the fields specified in the SELECT clause are available after execution of the FIND
statement. In this case, ADABAS Native SQL generates executable code for the FIND
statement, which must therefore appear in the procedure division in COBOL programs.

The FIND statement can only retrieve data from the first file (main file) named in the
FROM-clause, although the search criterion can include descriptor fields taken from up to five
physically-coupled or 16 soft-coupled files (except in the case of VMS which does not support
coupled files). The coupling relationships must be defined in PREDICT. If data fields are to be
retrieved not from the main file but from a coupled file, the FIND COUPLED statement must
be used in conjunction with the FIND statement.

The FIND statement causes an ADABAS S1/S4 command to be generated, or an S2 command
if the ‘ORDER BY’ clause is coded.

Adabas Native SQL Reference Manual
5

138

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to ADABAS Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

See page 87 for more information.

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of phonetic descriptors. The fields must be specified
by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as
search may be performed.

If an asterisk is specified following the keyword ‘SELECT’, all the fields within the userview
are read.

See page 88 for more information.

Adabas Native SQL Statements
5

139

FROM Clause

FROM file alias ,...

The FROM clause specifies the file or files that contain the fields used in the search criterion.
It is also used, in conjunction with the SELECT clause, to generate the record buffer and to
control the retrieval of information from the database.

file is the ADABAS file name or view name as defined in the data dictionary. The alias, if

present, is used as the name of the record buffer; otherwise, the name file is used.

In the FIND statement, up to 5 physically-coupled or 16 soft-coupled files may be specified in
the FROM clause. This facility is used if the search criterion includes fields taken from more
than one file. Every file containing fields used in the search criterion must be listed in the FROM
clause. Data can only be retrieved from the first file (main file) whose name directly follows
the keyword ‘FROM’.

The second and subsequent files listed in the FIND statement must be physically coupled to the
main file. Note that the names of the coupled files are separated by commas, but the alias is not
preceded by a comma.

See page 93 for more information.

Note:
In VMS only one file can be specified in the FROM clause, because coupled files are not
supported.

Adabas Native SQL Reference Manual
5

140

WHERE Clause

WHEREsearch–criterion

The WHERE clause identifies the set of records to be selected. Only database fields that are
defined as descriptors, subdescriptors, superdescriptors, hyperdescriptors or phonetic
descriptors may be used to form the search-criterion. In ADABAS Version 5, non-descriptor
fields may be used, if the NONDE indication in the ADABAS Native SQL DDA allows it.

The search-criterion is made up of descriptors, logical operators and values, according to the
type of selection relevant to the application.

Search Criterion

search–criterion

search–expression AND
OR

search–expression ...

Search Expression

�
�����
���
�����

descriptor comp value
descriptor BETWEEN value1 AND value2

descriptor IN (value),...

SETID= cursor–name

exception

’ ’

file1
alias1 .de1 = file2

alias2 .de2

descriptor IS [NOT] NULL

Adabas Native SQL Statements
5

141

descriptor

de1

de3(i)

file
alias .de2

comp

EQ

GE
LT
LE
=

GT

>
>=
<
<=

NE

exception

AND fieldname NOT= value3
fieldname NOT BETWEEN value3 AND value4

de1 is the name of the descriptor to be used in the search expression. The name must refer to

a descriptor, subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor. de1 is a
descriptor in the main file, that is, the file whose name appears first in the FROM clause, directly
following the keyword.

Adabas Native SQL Reference Manual
5

142

The second construct, file.de2, shows the name of a descriptor (de2) qualified by the filename
(file). The qualifier is required if the descriptor is in a coupled file, i.e., is not in the main file.

de3(i) is a reference to a specific occurrence of a descriptor which is a field in a periodic group.

file1.de1 = file2.de2

This construction is used to connect two files via the soft coupling option of Adabas 5. The
relationship should exist in Predict (see the release notes).

Example:

EXEC ADABAS
 FIND
 SELECT *
 FROM PERSONNEL,AUTOMOBILES
 WHERE NAME = ’SMITH’ AND AUTOMOBILES.MAKE = ’FORD’
END-EXEC

In this example, NAME is a descriptor field in the main file PERSONNEL, whilst MAKE is a
descriptor field in the file AUTOMOBILES which is coupled to the main file.

descriptor comp value

value is the descriptor value that is to be sought. value can be either a constant or the name of
a variable. In the latter case, the name must be immediately preceded by a colon (‘:’), for
example ‘:NAME’.

descriptor BETWEEN value1 AND value2

The BETWEEN option indicates that any record in which the value of the specified descriptor

lies between value1 and value2 will satisfy the search expression. value1 contains the lower

limit of the range, and value2 contains the upper limit of the range.

Adabas Native SQL Statements
5

143

descriptor NOT= value3

The NOT = option is used to exclude a specified value of the descriptor from a previous range

(given in the BETWEEN option). value3 must lie between value1 and value2 of the preceding
BETWEEN option.

descriptor NOT BETWEENvalue3 ANDvalue4

The NOT BETWEEN option is used to exclude a specified range of values from a previous range
(given in the BETWEEN option). value3 and value4 must lie between value1 and value2 of
the preceding BETWEEN option.

descriptor IN (value),...

The IN option is used when the user wishes to select records in which a descriptor has any one
of a number of values. The search expression is satisfied if the descriptor has any of the values
specified in the list.

SETID= cursor–name’ ’

The search expression may also be a cursor-name referring to another FIND statement in which
the ‘SAVE ISN-list’ option was used. The search expression denotes the ISN list produced by
the previous FIND statement. Records can be selected from this ISN list, so the search can be
refined, by combining the SETID option with other search expressions.

descriptor IS NULL

This search expression will find all records where this descriptor has a relational NULL value
(has no value at all).

Adabas Native SQL Reference Manual
5

144

descriptor IS NOT NULL

This search expression will find all records where this descriptor has a value.

Note:
The order of evaluation of the operators within the Adabas Search Algorithm is:

� Evaluate the range of values and OR between values of the same descriptor.

� Evaluate the AND operator.

� Evaluate the new Logical OR operator (the Logical operator between different descriptors and
search criteria).

Examples of Search Criteria

AGE = 27
AGE = 27 AND CITY = ’NY’
AGE BETWEEN 25 AND 35
CITY IN (’NY’, ’WA’, :CITA)
AGE BETWEEN 18 AND 21 OR AGE BETWEEN 65 AND 120
AGE BETWEEN :XAGE AND :YAGE AND AGE > = 18
AGE > 27 AND SETID = ’PERS’
SETID = ’PER1’ AND SETID = ’PER2’
AGE BETWEEN 18 AND 30 AND AGE NOT BETWEEN 24 AND 26
AUTOMOBILES.MAKE = ’FORD’
AGE = 30 AND AUTOMOBILES.MAKE = ’FORD’
PERSONNEL.PERSONNEL_NUMBER = AUTOMOBILES.OWNER_PERSONNEL_NUMBER AND ...

Adabas Native SQL Statements
5

145

OPTIONS Clause

OPTIONS

HOLD

SAVE

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISNSIZE= len

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

MAXTIME= value2

N

database-name

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

The AUTODBID option and the HOLD option may not be used together. This implies to Adabas
Native SQL that you are attempting to update a database other than your default database. Also,
AUTODBID and DBID may not be used together.

Adabas Native SQL Reference Manual
5

146

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes as level-88 entries the condition names defined in Predict.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The

database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

The DBID option and the HOLD option may not be used together. This implies to Adabas Native
SQL that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode.

See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

Adabas Native SQL Statements
5

147

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from the Predict additional
field attribute 3GL specification, Indexed by.
If no index name is specified here, the name of the multiple-value field or periodic group is used,
prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines the maximum number of ISNs that can be stored in the ISN
buffer. If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess
ISNs are stored by Adabas and retrieved automatically when required. This process is
transparent to the programmer.
See page 99 for more information.

MAXTIME Option

Limits the time of executing the FIND statement. See page 99 for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the password clause of the CONNECT statement (page 120).

See page 44 for more information

Adabas Native SQL Reference Manual
5

148

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

– A further Adabas Native SQL statement that creates another ISN list with the same name
(same command-ID) is executed, or:

– An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:

– The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returned when the next Adabas command is
attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FIND COUPLED and SORT). If the CLOSE statement is not
executed, large amounts of storage will be occupied for the remainder of the Adabas session.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

149

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

Adabas Native SQL Reference Manual
5

150

ORDER BY Clause

DESCENDING
ASCENDINGORDER BY de1... 3

The ORDER BY clause specifies the order in which the records are retrieved.

The ISN list may be sorted on up to three descriptors in ascending or descending sequence.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may
it be a phonetic descriptor.

The keyword DESCENDING, which may be abbreviated to DESC, specifies descending
sequence, otherwise ascending sequence as default is assumed. If more than one descriptor is
specified, the ASCENDING/DESCENDING option applies collectively to all of them. It is not
possible to specify ascending sequence for one descriptor and descending sequence for another.

Adabas Native SQL Statements
5

151

The FIND COUPLED Statement

EXEC ADABAS

DECLARE cursor–name CURSOR FOR

SELECT field–name
*

FROM file1,file2 alias1
WHERE ISN= value

OPTIONS

END–EXEC

FIND COUPLED

,...

HOLD

SAVE

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISNSIZE= len

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

MAXTIME= value2

N

database-name

Adabas Native SQL Reference Manual
5

152

The FIND COUPLED statement retrieves fields from a record or records coupled to a given
record in another file. Specify the names of both files and the ISN of the record to which the
records to be retrieved are coupled.

FIND COUPLED is normally used together with FIND. The FIND statement is used to find a
record of interest (the search criterion may include fields from several files); the FIND
COUPLED statement is then used to retrieve information from the record or records that are
coupled to that record. If more than one record satisfied the search criterion of the original FIND
statement, the FIND COUPLED statement must be repeated for each record in the ISN list
returned by the FIND statement.

In general, the FIND COUPLED statement will return a list containing the ISNs of several
records that are coupled to the specified record in the main file.

If all of the records found by the FIND COUPLED statement are to be processed, then the FIND
COUPLED statement must include the ‘DECLARE cursor-name CURSOR FOR’ clause and
it must be followed by an OPEN/FETCH/CLOSE sequence as described from page 67. The
fields specified in the SELECT clause are available after execution of the FETCH statement.

If, however, only the first of these records is to be processed, then the DECLARE clause may
be omitted and the fields specified in the SELECT clause are available after execution of the
FIND COUPLED statement. In this case, Adabas Native SQL generates executable code for the
FIND COUPLED statement, which must therefore appear in the procedure division in COBOL
programs.

Examples including the FIND COUPLED statement may be found in the appendices.

Note:
The examples using coupled files cannot be executed under VMS, since coupled files are not
supported.

An Adabas S5 command is generated.

Adabas Native SQL Statements
5

153

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword FOR indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

See page 87 for more information.

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of phonetic descriptors. The fields must be specified
by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as
search may be performed.

If an asterisk is specified following the keyword SELECT, all the fields within the userview are
read.

See page 88 for more information.

Adabas Native SQL Reference Manual
5

154

FROM Clause

FROM file1,file2 alias1

This is the file list. file1 and file2 are Adabas file names or view names as defined in the data

dictionary. The two files must be coupled. file1 is the name of the file from which the records

are to be read. file2 is the name of the file containing the record whose ISN is specified in the
WHERE clause.

alias1 is the alias associated with file1. If present, it is used as the name of the record buffer;
otherwise, the name file1 is used. The alias — which should be unique within the program
(including linked modules) — is required if two or more Adabas Native SQL statements within
the module refer to the same file. It can then be used as a qualifier in subsequent Ada, COBOL
or PL/I statements that wish to refer to the fields in the respective record buffers.

The names of the coupled files are separated by a comma, but the alias — if present — is not
preceded by a comma.

Example:

EXEC ADABAS
 FIND COUPLED
 SELECT NAME, CITY
 FROM PERSONNEL,AUTOMOBILES
 WHERE ISN = :VAR
END-EXEC

Adabas Native SQL Statements
5

155

WHERE Clause

WHERE ISN= value

The WHERE clause specifies the ISN of the record in file2 to which the records in file1 are

coupled. value may be a numeric constant or the name of a variable containing the ISN. If value

is a variable name, it must be immediately preceded by a colon (‘:’), for example ‘:NAME’. The

colon must not be coded following the ‘=’ sign if value is a numeric constant, for example
‘WHERE ISN = 1234’.

Adabas Native SQL Reference Manual
5

156

OPTIONS Clause

OPTIONS

HOLD

SAVE

DBID=

Y

Y

Y

AUTODBID

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISNSIZE= len

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

MAXTIME= value2

N

database-name

Adabas Native SQL Statements
5

157

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See page 97 for more information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

Adabas Native SQL Reference Manual
5

158

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode. See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines the maximum number of ISNs that can be stored in the ISN
buffer. If the number of records that satisfy the selection criterion exceeds ISNSIZE, the excess
ISNs are stored by Adabas and retrieved automatically when required. This process is
transparent to the programmer.
See page 99 for more information.

MAXTIME Option

This option is used to limit the time of executing the FIND statement. The user may specify a
number or variable containing a number.

Adabas Native SQL Statements
5

159

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

SAVE Option

Use this option if you need to retain the entire ISN list. The saved ISN list can be used later in
COMPARE, FIND and SORT statements. The saved ISN list is discarded when:

– A further Adabas Native SQL statement that creates another ISN list with the same name
(same command-ID) is executed, or:

– An Adabas Native SQL CLOSE or DBCLOSE statement is executed, or:

– The non-activity time limit or transaction time limit is exceeded.

Under these circumstances, response code 9 is returned when the next Adabas command is
attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FIND COUPLED and SORT).
If the CLOSE statement is not executed, large amounts of storage will be occupied for the
remainder of the Adabas session.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Reference Manual
5

160

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

Adabas Native SQL Statements
5

161

The GENERATE Statement

EXEC ADABAS

FILE= file–id

OPTIONS

START–LEVEL= start–level

END–EXEC

GENERATE

INDEXED=
Y
N

COND–NAME= Y
N

PREFIX= prefix

SUFFIX= suffix

STATIC=
Y
N

This statement is used to generate copy code you wish to include in your program or to
regenerate copy code for which the Predict dictionary definitions have been modified after
generation.

This Adabas Native SQL statement provides a subset of the facilities provided by the Predict
GENERATE statement. If you require any of the extended range of facilities, use the Predict
preprocessor.

Adabas Native SQL Reference Manual
5

162

If more than one preprocessor is used, they must be used in the following order:

– Predict

– Adabas Native SQL

– CICS.

The start-level is in the range 1..40.

See the description of the analogous GENERATE command in chapter “The Preprocessor” of
the Predict Administration Manual for more information.

Adabas Native SQL Statements
5

163

The HISTOGRAM Statement

���������

��������������	
 ������ ���

���� ��
 ����

���

�����

�!���%���

% &�

��
����	
 ���
�

��
����	
 ���� ���
� ��� ���
�

%��� ��$

� �!���

�����'�(���� ��
����	
 �� �

�

� ��

� �

��
����	
 �� �

��!��

������!�

$

$

 ��������

����!��

���
�

���������
�

 ��!����
���

������

����!��
�

�������
���	

�����!�%

�����!�%
������$��
����	
�

�)�

* +

* +

* +

* +

%�

��

&

)

Adabas Native SQL Reference Manual
5

164

The HISTOGRAM statement is used to determine the values present for a given descriptor in
the specified file. The values are returned in ascending or descending sequence. Along with each
descriptor value, Adabas Native SQL indicates the number of records that contain that value.
This information is read from the Associator inverted lists; no access is made to Data Storage.

The HISTOGRAM statement will normally be used to read many descriptor values in sequence.
In this case, the ‘DECLARE cursor-name CURSOR FOR’ clause must be coded, and the
HISTOGRAM statement must be followed by the OPEN and FETCH statements described from
page 67. The descriptor field specified in the SELECT clause and also the QUANTITY, i.e., the
number of records with that descriptor value, are available after execution of the FETCH
statement.

If only the first (lowest) descriptor value that is greater than or equal to the specified starting
value is required, the DECLARE clause may be omitted. The descriptor field specified in the
SELECT clause is available directly after execution of the HISTOGRAM statement.

An Adabas L9 command is generated.

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple descriptor values are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword FOR indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single descriptor value is to be processed, the
DECLARE clause may be omitted.

See page 87 for more information.

Adabas Native SQL Statements
5

165

SELECT Clause

COUNT(*)SELECT field–name i()

field-name is the name of the descriptor for which the values are to be returned. field-name
must be the same descriptor as in the GROUP BY clause. The values are provided in ascending
or descending order. Null values are not returned for descriptors that were defined with the null
value suppression option.

Use the COUNT(*) option to find out how many records contain each descriptor value. The
count will then be returned in the variable QUANTITY attached to the record buffer. Note that
the string ‘COUNT(*)’ must be written without spaces.

If the descriptor is a field within a periodic group, the field ‘ISN’ (Ada, COBOL or PL/I unless
the global parameter ‘ABORT .’ is specified) or ‘SQLISN’ (Ada, COBOL or PL/I if the global
parameter ‘ABORT .’ is specified; also FORTRAN) will contain the number of the occurrence
in which the returned value is located.

FROM Clause

FROM file alias

The FROM clause specifies the file from which the descriptor values are to be retrieved.

file is the Adabas file name or view name as defined in the data dictionary.
The alias, if present, is used as the name of the record buffer; otherwise, the name file is used.

See page 93 for more information.

Adabas Native SQL Reference Manual
5

166

WHERE Clause

WHERE field–name

field–name BETWEEN value1 AND value2i()

i()

% &�

���
�
�)�

+

* +

* +

* +

%�

��

&

)

*

The range of descriptor values to be read may be restricted by coding an appropriate WHERE
clause.

Starting and ending values may be specified using the ‘WHERE field-name BETWEEN
value1 AND value2’ option. value1 represents the value with which reading is to begin and
value2 represents the value with which reading is to end.

The following restriction applies only if ADA–VERSION=62 in the global OPTIONS statement
or if the ADA–VERSION= parameter is omitted:
to specify only a starting value, use the ‘field-name >= value3’ or ‘field-name GE value3’
option for ascending order or ‘field-name <= value3’ or ‘field-name LE value3’ for
descending order (if the Adabas version allows it). value3 represents the value with which
reading is to begin.

In the case of ADA–VERSION=71 in the global OPTIONS statement, all the comparator
operators can be used for both ascending and descending order.

The field-name must be the descriptor specified in the GROUP BY clause. If the starting value
(value1, value3) is not contained in the file, the next higher value in the list will be used. If no
higher value exists, an end-of-file condition will result. value1, value2 and value3 may be
constants or the names of variables containing the values. If they are variable names, they must
be immediately preceded by colons (‘:’), for example ‘:NAME’.

field-name(i) is a reference to an occurrence within a periodic group.

Note:
If a prefix or suffix is used for a field-name specified in the data dictionary, you may not use the
BETWEEN option if ADA–VERSION=62 in the global OPTIONS statement or if the
ADA–VERSION= parameter is omitted.

Adabas Native SQL Statements
5

167

OPTIONS Clause

OPTIONS

DBID=

AUTODBID

Y

Y

PASSWORD=

SUFFIX=

value3

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

database-name

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in PREDICT as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the PREDICT Modify COBOL Defaults screen must be marked with an
‘X’ if you want to specify this option. See page 97 for more information.

Adabas Native SQL Reference Manual
5

168

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from PREDICT.

Field name prefix in the PREDICT Modify...Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 100 for more information.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the PREDICT Modify PL/I Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 102 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from PREDICT.

Field name suffix in the PREDICT Modify...Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

169

ORDER BY Clause

DESCENDING
ASCENDING

ORDER BYfield–name1

The field-name1 parameter specifies the descriptor that is to control the reading sequence. Note
that the descriptor specified may not be a member of a periodic group, nor may it be a phonetic
field.

If the descriptor was defined with the null value suppression option, records having a null value
in the descriptor field will not be read.

If the WHERE clause is coded, the descriptor field used in the WHERE clause must be the same
as the descriptor field used in the ORDER BY clause.

If DESCENDING is specified, the records are read in descending order.

Note:
The ‘GE’ operator cannot be specified together with the DESCENDING keyword if
ADA–VERSION=62 in the global OPTIONS statement or if the ADA–VERSION= parameter
is omitted.

GROUP BY Clause

GROUP BY field–name i()

field-name is the descriptor for which the values are to be returned.

The descriptor may not be a phonetic descriptor or a field in a periodic group. The use of
descriptors defined as multiple-value fields is not recommended.

If the SELECT, WHERE and/or ORDER BY clauses are coded, the field-name used in these
clauses must be the same as the field-name used in the GROUP BY clause.

Adabas Native SQL Reference Manual
5

170

The HOLD Statement

EXEC ADABAS

OPTIONS RETURN

END–EXEC

HOLD cursor–name

This statement is used to place a record in hold status. This reserves the record for subsequent
updating or deleting, preventing other users from updating the record until it is released by a
COMMIT WORK, RELEASE or ROLLBACK WORK statement. This statement should be
used after reading the record and before updating or deleting it, unless the read statement itself

included the HOLD option. The cursor-name identifies the statement that retrieved the record.

OPTIONS Clause

OPTIONS RETURN

If the RETURN option is coded and the record is already being held for another program, the
value 145 will be returned in the response-code. This will cause an error printout followed by
an ABEND unless a user-written response code interpretation routine is provided.

See description of the ABORT parameter on page 244 for more information.

If the RETURN option is not coded and the record is being held for another program, the
program will be suspended until the record is released.

In many applications, it is preferable to specify the HOLD option in the READ or FIND
statement rather than to use a separate HOLD statement.

This statement generates an Adabas HI command.

Adabas Native SQL Statements
5

171

The INSERT Statement

EXEC ADABAS

DECLAREcursor–name CURSOR

WHERE

assignments

OPTIONS PASSWORD= value1
CIPHER= value2

END–EXEC

INSERT

INTO file alias

ISN= CURRENT OFvalue cursor–name1

PREFIX= prefix

SUFFIX= suffix

Adabas Native SQL Reference Manual
5

172

assignments

��

��
����	
���� "����
��������
������	
 ����

���
��������

���
���������

The INSERT statement adds a new record to the Adabas file.

When an attempt is made to add a new record with one or more fields that have been defined
as unique descriptors, response code 198 will be returned if a record having the same descriptor
value as the new record already exists in the file. This will cause an error print-out (response
code 98 in VAX, otherwise 198) followed by an ABEND unless the user provides an alternative
response code interpretation routine. See description of the ABORT parameter on page 244.

This statement generates an Adabas N1 command, or an N2 command if the ‘WHERE ISN’
clause is coded.

INTO Clause

INTO file alias

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique, is required if two or more Adabas Native SQL statements within the module refer
to the same file. It can then be used as a qualifier in subsequent Ada, COBOL or PL/I statements
that refer to the fields in the record buffer.

Adabas Native SQL Statements
5

173

DECLARE Clause

DECLARE cursor–name CURSOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

The cursor-name specified in the DECLARE clause is used by Adabas as the command-ID.
Adabas avoids re-translating the format buffer when it recognizes a command-ID that has been
used before, so using this clause can improve performance, particularly if the ‘WHERE ISN’
option is used.

WHERE Clause

WHERE ISN= CURRENT OFvalue cursor–name1

Use one or both options. If both options are used, they can be specified in any order.

The ‘WHERE ISN=value’ option is used if you wish to specify the ISN of the record to be added
(user-ISN option). value may be either a constant or the name of a variable containing the ISN.

The ISN must lie between 1 and the maximum ISN value that was defined for the file. If value
is a variable name, it must be immediately preceded by a colon (‘:’), for example ‘:NAME’. The

colon must not be coded following the ‘=’ sign if value is a numeric constant, for example
‘WHERE ISN = 1234’. If a record with the specified ISN already exists, the value 113 will be
returned in the response-code. The ‘DECLARE cursor-name CURSOR’ clause should be used
if ‘WHERE ISN=value’ is coded, in order to avoid unnecessary format buffer translations.

If the option ‘WHERE CURRENT OF cursor-name1’ is used and no assignments are used,
it is not necessary to build a new record buffer; the existing record buffer is written to the
database. This can improve performance.

If the WHERE clause is omitted, the ISN of the new record will be allocated automatically by
Adabas.

Adabas Native SQL Reference Manual
5

174

Assignments
Note:
If the option ‘WHERE CURRENT OF cursor-name1’ is used, multiple-value fields and
periodic groups are not supported in the assignments. If multiple-value fields or periodic groups
are present, all assignments must be made before the statement. No assignments are permitted
within the statement.

expression,...
expression...SET

field–name ,... VALUES constant
var–name ,...

This clause specifies the fields to be written to the record and, optionally, the values to be
assigned to them. The expressions may be separated by blanks (spaces) or commas.

A new record buffer is built if this clause is coded. Avoiding this clause may improve
performance, because the record buffer of the statement specified in the CURRENT OF clause
is used.

expression

constant
var–namefield–name

field–name

=
NULL

field-name denotes the name of the elementary field. This is the full field name as defined in

the data dictionary. If necessary, the field-name can be subscripted to select the required field
from a multiple-value field, from a periodic group, or from a multiple-value field within a
periodic group. See Chapter NO TAG for more information.

Note:
Field-name can be a multiple-value or a part of a periodic group, but in this case an index must
be specified within parentheses. For a multiple-value within a periodic group the user should
move the value by himself before the INSERT/UPDATE statement.

Adabas Native SQL Statements
5

175

The option ‘SET field-name’ is used when the required value has already been assigned to the
field in the record buffer by means of normal Ada, COBOL, FORTRAN or PL/I statements.

The option ‘SET field-name = constant’ or ‘SET field-name = var-name’ is used to specify
the value to be assigned to the field.

constant denotes a constant (literal) value and var-name denotes the name of a variable
defined in the Ada, COBOL, FORTRAN or PL/I program, which must be preceded by a colon.

If NULL is specified, Adabas Native SQL will move –1 (x’FFFF’) to the Null field indicator
of the specified field in the Record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a
Null value indicator, Adabas Native SQL will automatically reset the Null field indicator of that
field. If the user does not specify the SET clause, but initiates the fields in the Record buffer by
himself, he should also reset or turn on the Null field indicator.

var–name

OF
IN:

: var

var

: root.var

root

(index)

(index)

(index)

If the variable name is unique within the program, it can be specified as :var. Otherwise, it
should be made unique by preceding it by root, a higher-level data name (qualifier) in the data
structure hierarchy. Both the COBOL-type construction (:var OF root or :var IN root) and the
PL/I-type construction (:root.var) are valid in Ada, COBOL and PL/I programs.

Both the ‘SET field-name’ option and the ‘SET field-name = data’ option can be used in the
same SET clause.

The optional index may be an integer constant or the name of a variable preceded by a colon.

Note that blanks (spaces) are not allowed between the :var and the parenthesis preceding the
index.

Adabas Native SQL Reference Manual
5

176

OPTIONS Clause

OPTIONS PASSWORD= value1

CIPHER= value2

PREFIX= prefix

SUFFIX= suffix

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

177

Example 1: Ada

type RECORD_BUFPERS is

 record

 SALARY: STRING (...

 .

 .

 .

 end record;
FINANCE: RECORD_BUFPERS;

FINANCE.OIL_CREDIT_2:= “0001000”;

EXEC ADABAS

 INSERT

 INTO FINANCE

 SET PERSONNEL-NUMBER = “005333756”
 OIL_CREDIT(3) = “0002000”

 OIL_CREDIT(1) = “0001000”

 INSURANCE_COMPANY(1(1)) = “AAA ”

 OIL_CREDIT(2)

END-EXEC

Example 2: COBOL

01 REC

 02 SALARY

 02 AGE

 02 PERSON-NAME

 .
 .

 .

MOVE 1000 TO OIL-CREDIT-2

EXEC ADABAS

 INSERT

 INTO FINANCE

 SET PERSONNEL-NUMBER = 5333756

 OIL-CREDIT(3) = 2000
 OIL-CREDIT(1) = 1000

 INSURANCE-COMPANY(1(1)) = ‘AAA‘

 OIL-CREDIT(2)

END-EXEC

Adabas Native SQL Reference Manual
5

178

Example 3: FORTRAN

CHARACTER* 8 PERBER

CHARACTER* 7 OCRE1

CHARACTER* 7 OCRE3

CHARACTER* 25 INCOM (00001 , 00001)

CHARACTER* 7 OCRE2

CHARACTER* 14002 FINNCE

.....
OCRE2 = ’0001000’

EXEC ADABAS

 INSERT

 INTO FINANCE

 SET PERSONNEL-NUMBER = ’005333756’

 OIL-CREDIT(1) = ’0002000’

 OIL-CREDIT(3) = ’0001000’
 INSURANCE-COMPANY(1(1)) = ’AAA’

 OIL-CREDIT (2)

END-EXEC

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B, and
truncation is assumed to occur in the middle of the word. (The maximum length of names is
operating-system dependent.)

The field FINNCE encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Adabas Native SQL Statements
5

179

Example 4: PL/I

DCL 01 REC,

 02 SALARY,

 02 AGE,

 02 PERSON_NAME;

 .

 .

 .
OIL_CREDIT_2 = 1000;

EXEC ADABAS

 INSERT

 INTO FINANCE

 SET PERSONNEL-NUMBER = 5333756

 OIL-CREDIT(3) = 2000

 OIL-CREDIT(1) = 1000

 INSURANCE-COMPANY(1(1)) = ’AAA’
 OIL-CREDIT(2)

END-EXEC

Adabas Native SQL Reference Manual
2

180

The OPEN Statement

EXEC ADABAS

END–EXEC

OPEN cursor–name

This statement is part of the OPEN/FETCH/CLOSE sequence that is used for processing
multiple records.

The OPEN statement processes the parameters defined in the WHERE clause of the statement
referenced by cursor-name and then issues the actual Adabas command if necessary. Once the
OPEN statement has been executed, the contents of the WHERE clause are not re-examined.
Therefore, changes to the variables in a WHERE clause will not have any effect until the OPEN
statement is re-executed.

In the case of the HISTOGRAM, READ LOGICAL and READ PHYSICAL SEQUENCE
statements, the OPEN statement does nothing more than to initialize the variables for the
executable Adabas commands. For the COMPARE, FIND, FIND COUPLED and SORT
statements, the OPEN statement initializes the variables and also executes the command (FIND,
SORT,...) that produces the ISN list. No records are actually fetched from the file until the
FETCH statement is executed.

When used in conjunction with a COMPARE, FIND, FIND COUPLED or SORT statement, the
OPEN statement puts the ISN quantity in the record buffer. Thus the number of records can be
found before executing the first FETCH statement.

Adabas Native SQL Statements
5

181

The READ ISN Statement

EXEC ADABAS
READ

DECLARE cursor–name CURSOR

SELECT field–name
*

FROM file alias

END–EXEC

ISN

WHERE ISN=
CURRENT OF

value
cursor–name1

,...

OPTIONS

HOLD

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value2

CIPHER= value1

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

SEQUENCE

Adabas Native SQL Reference Manual
5

182

The READ ISN statement is used to read from a file a single record whose ISN is known, or the
first record whose ISN is greater than a specified value.

This statement causes an Adabas L1 command to be generated, or an L4 command if the HOLD
option is coded.

Adabas Native SQL Statements
5

183

DECLARE Clause

DECLARE cursor–name CURSOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long. See page 87 for more
information.

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of subdescriptors, superdescriptors and phonetic
descriptors. The fields must be specified by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as
search may be performed.

If an asterisk (‘*’) is specified following the keyword ‘SELECT’, all the fields within the
userview are read.

See page 88 for more information.

Adabas Native SQL Reference Manual
5

184

FROM Clause

FROM file alias

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used.

See page 93 for more information.

WHERE Clause

WHERE ISN=
CURRENT OF

value
cursor–name1

The WHERE clause is used to specify the ISN of the record to be read. If the SEQUENCE option
is not specified, an error (response-code = 113) will result if the file does not contain a record
with this ISN. If the SEQUENCE option is specified and the file does not contain a record with
the given ISN, then the record with the next higher ISN will be read, or end-of-file will be
signaled if there is no such record.

value can be a constant or the name of a variable. If value is a variable name, it must be
immediately preceded by a colon (‘:’), for example ‘:NAME’. Note that the colon is not part
of the ‘=’ sign that follows the ‘ISN’ keyword.

If the programmer wishes Adabas Native SQL to use the ISN of a record found by a previous
statement, he should use the ‘CURRENT OF’ option, specifying the cursor-name of that
statement.

Adabas Native SQL Statements
5

185

OPTIONS Clause

OPTIONS

HOLD

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value2

CIPHER= value1

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

SEQUENCE

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

Adabas Native SQL Reference Manual
5

186

CIPHER Option

The cipher key must be specified when accessing a ciphered file.

See page 97 for more information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

See “HOLD Logic” on page 43 for more information.

Adabas Native SQL Statements
5

187

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement.

See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

Adabas Native SQL Reference Manual
5

188

SEQUENCE Option

If this option is coded, the record with the specified ISN or the next higher ISN is read. The ISN
of the record that was read is returned in the field ‘ISN’, which is appended to every record buffer
(see Chapter NO TAG). If the file does not contain a record having an ISN higher than the
specified ISN, end-of-file is signaled. Therefore, when using this option, the flag ADACODE
(Ada, COBOL, PL/I) or SQLCOD (FORTRAN) should be checked for end-of-file status.

If this option is not specified, the record with the specified ISN is read. If the file does not contain
a record having the specified ISN, an error is reported (response-code = 113). This causes the
program to terminate unless a user-written response code interpretation routine is provided.

See description of the ABORT parameter on page 244.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

189

The READ LOGICAL Statement

EXEC ADABAS
READ

DECLARE cursor–name CURSOR FOR

SELECT field–name
*

FROM file alias

OPTIONS

END–EXEC

LOGICAL

WHERE field–name1

,...

BETWEEN value1 value2AND

HOLD RETURN

PASSWORD= value6

CIPHER= value4

ISN= value5

INDEXED=
Y
N

COND–NAME= Y
N

PREFIX= prefix

SUFFIX= suffix

DBID= database-name

STATIC=
Y
N

AUTODBID

DESCENDING
ASCENDING

ORDER BY field–name1

% &�

���
�
�)�

+

* +

* +

* +

%�

��

&

)

*

Adabas Native SQL Reference Manual
5

190

Note:
The BETWEEN clause only applies if ADA–VERSION=71 in the global OPTIONS statement.

The READ LOGICAL statement is used to read a file, or portion thereof, in logical sequential
order based on the ascending or descending sequence of the values for a given descriptor.

This statement will normally be used to read many records in logical sequence. In this case, the

‘DECLARE cursor-name CURSOR FOR’ clause must be coded, and the READ LOGICAL
statement must be followed by the OPEN and FETCH statements described from page 67. The
fields specified in the SELECT clause are available after execution of the FETCH statement.

If only the first record in the file is required, the DECLARE clause may be omitted and the fields
specified in the SELECT clause are available directly after execution of the READ LOGICAL
statement.

This statement causes an Adabas L3 command to be generated, or an L6 command if the HOLD
option is coded.

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

Adabas Native SQL Statements
5

191

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of subdescriptors, superdescriptors and phonetic
descriptors. The fields must be specified by their full names as defined in the data dictionary.

If the SELECT clause is omitted, then no records are processed, but other functions such as
search may be performed.

If an asterisk is specified following the keyword ‘SELECT’, all the fields in the userview are
read.

See page 88 for more information.

FROM Clause

FROM file alias

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used.

See page 93 for more information.

Adabas Native SQL Reference Manual
5

192

WHERE Clause

WHERE field–name1

BETWEEN value1 value2AND

% &�

���
�
�)�

+

* +

* +

* +

%�

��

&

)

*

The records may be read starting from a particular descriptor value by using the WHERE clause,

where value represents the value from which reading is to begin. field-name1 must be the name
of the descriptor specified in the ORDER BY clause (see below).

If the starting value is not found in the file, the next higher value in the file will be used for
ascending sequence. If no higher value exists, an end-of-file condition (in ADA, COBOL and

PL/I programs: ADACODE = 3; in FORTRAN programs: SQLCOD = 3) will result. value may
be a constant or the name of a variable.

If value1, 2 or 3 is a variable name, it must be immediately preceded by a colon (‘:’), for
example ‘:NAME’.

The BETWEEN clause only applies when Adabas Version 7.1 or higher is used and the
ADA–VERSION parameter in the global OPTIONS statement is set to 71 or when Adabas
Version 3.1 or higher in OpenVMS is used.

Adabas Native SQL Statements
5

193

OPTIONS Clause

OPTIONS

Y

Y

HOLD RETURN

PASSWORD= value6

CIPHER= value4

ISN= value5

INDEXED= N

COND–NAME= Y
N

PREFIX= prefix

SUFFIX= suffix

DBID= database-name

STATIC= N

AUTODBID

AUTODBID Option

This option can be used if the file is linked to a single database. This option indicates to Adabas
Native SQL that the database ID is to be taken from the data dictionary. If the file is linked to
more than one database, an error message will be issued. (If the file is linked to more than one
database, the DBID option should be used.)

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

Adabas Native SQL Reference Manual
5

194

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as Level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The

database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode.

See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

Adabas Native SQL Statements
5

195

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISN Option

The ISN parameter indicates the place within a group of records with the same descriptor value
where reading is to begin. Of the records which satisfy the selection criterion field-name1 =
value (see the WHERE clause), reading begins at the record whose ISN is greater than value3.
If there is no record with field-name1 = value whose ISN is greater than value3, the first
record with the next descriptor value field-name1 > value is read. If there is none, the
end-of-file condition (in Ada, COBOL and PL/I programs: ADACODE=3; in FORTRAN
programs: SQLCOD=3) will be set.

The ISN value is specified in the value3 field. value3 may be a constant or the name of a

variable containing the ISN. If value3 is a variable name, it must be immediately preceded by
a colon (‘:’), for example ‘:NAME’.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

Adabas Native SQL Reference Manual
5

196

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

197

ORDER BY Clause

DESCENDING
ASCENDING

ORDER BYfield–name1

The field-name1 parameter specifies the descriptor that is to control the reading sequence. Note
that the descriptor specified may not be a member of a periodic group, nor may it be a phonetic
field.

If the descriptor was defined with the null value suppression option, records having a null value
in the descriptor field will not be read.

If the WHERE clause is coded, the descriptor field used in the WHERE clause must be the same
as the descriptor field used in the ORDER BY clause.

If DESCENDING is specified, the records are read in descending order.

Note:
If the ADA–VERSION parameter in the global OPTIONS statement is set to 62 or if the
ADA–VERSION= parameter is omitted, the ‘GE’ operator cannot be specified together with the
DESCENDING keyword on mainframe platforms, and if the ‘LE’ operator is specified, the
DESCENDING keyword may be omitted on mainframe platforms.

Adabas Native SQL Reference Manual
5

198

The READ PHYSICAL SEQUENCE Statement

EXEC ADABAS

READ

DECLARE cursor–name CURSOR FOR

SELECT field–name
*

FROM file alias

OPTIONS

END–EXEC

PHYSICAL SEQUENCE

,...

HOLD

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISN= value2

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

Adabas Native SQL Statements
5

199

This statement is used to read records in the sequence in which they are physically located in
the data files. It does not read records in any particular logical order.

This statement may be used to read an entire file at maximum speed, since no access is required
to the Associator.

This statement is normally used to read many records (possibly the entire file). In this case, the

‘DECLARE cursor-name CURSOR FOR’ clause must be coded, and the READ PHYSICAL
SEQUENCE statement must be followed by the OPEN and FETCH statements described from
page 67. The fields specified in the SELECT clause are available after execution of the FETCH
statement.

If only the first record in the file is required, the DECLARE clause may be omitted and the fields
specified in the SELECT clause are available directly after execution of the READ PHYSICAL
SEQUENCE statement.

This statement causes an Adabas L2 command to be generated, or an L5 command if the HOLD
option is coded.

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

See page 87 for more information.

Adabas Native SQL Reference Manual
5

200

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of subdescriptors, superdescriptors and phonetic
descriptors. The fields must be specified by their full names as defined in the data dictionary.

If this clause is omitted, no records are processed, but other functions such as search may be
performed.

If an asterisk is specified following the keyword ‘SELECT’, all the fields within the userview
are read.

See page 88 for more information.

FROM Clause

FROM file alias

This clause specifies the file from which data are to be retrieved. It is used together with the
SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used. See page 93 for more
information.

Adabas Native SQL Statements
5

201

OPTIONS Clause

OPTIONS

HOLD

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value3

CIPHER= value1

ISN= value2

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

Adabas Native SQL Reference Manual
5

202

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user. A record that is to be updated
or deleted must be in hold status unless the program is running in exclusive-control mode.

See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

Adabas Native SQL Statements
5

203

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISN Option

This option is used if the file is to be read in physical sequence starting at some position other
than the beginning of the file.

The ISN parameter specifies the ISN of the record preceding the record where reading is to

begin. The ISN is specified in the value2 field. value2 may be a constant or the name of a

variable containing the ISN. If value2 is a variable name, it must be immediately preceded by
a colon (‘:’), for example ‘:NAME’. This field is updated automatically by Adabas and need not
be modified by the user every time the next record is to be read.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

Adabas Native SQL Reference Manual
5

204

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Statements
5

205

The READ USERDATA Statement

EXEC ADABAS

USERID= value

END–EXEC

READ USERDATA

INTO var1

This statement reads user data previously stored in the Adabas system file by a CHECKPOINT,
COMMIT WORK or DBCLOSE statement.

The user data will be read into the variable whose name is var1. The variable name must be
immediately preceded by a colon (‘:’), for example ‘READ USERDATA INTO :NAME’.

This statement generates an Adabas RE command.

Adabas Native SQL Reference Manual
5

206

USERID Clause

���!�� ���

If you wish to read data stored by another user, or stored by you during a different Adabas
session, the USERID parameter must be used, specifying the user-ID that was used when the
data was written. value can be an alphanumeric constant or the name of a variable containing

the user-ID. If value is a variable name, it must be immediately preceded by a colon (‘:’). The

colon must not be coded if value is a constant.

Examples:

EXEC ADABAS
 READ USERDATA INTO :USER-VAR
 USERID = ’US01’
END-EXEC

EXEC ADABAS
 READ USERDATA INTO :TEMP1
 USERID = :HISNAME
END-EXEC

Adabas Native SQL Statements
5

207

The RELEASE Statement

EXEC ADABAS

END–EXEC

FOR FORMAT GLOBAL SEQ LIST

RELEASE cursor–name

You will not normally need this statement. It is used to release the Adabas global format-ID
and/or an Adabas command-ID.

The command-ID has three functions:
– to identify a format buffer so that further use of the same format buffer with the same

command-ID is more efficient,
– to identify the next READ statement in a sequential read process,
– to identify a list of ISNs found in a FIND statement.

You can release the command-ID from one, two or all three of the above functions. If the FOR
clause is not specified, then the command-ID will be released from all the functions and in
addition the global format-ID will be released.

FORMAT Releases the command-ID from the internal format buffer pool.

GLOBAL Releases the ADABAS global format-ID.

SEQ Releases the command-ID from the table of sequential commands.

LIST Releases the command-ID from the table of ISN lists.

The command-ID that will be released is the command-ID generated by Adabas Native SQL
for the set of buffers identified by cursor-name.

If cursor-name is not specified, all command-IDs will be released.

See the description of the RC command in the Adabas Command Reference Manual for more
information.

This statement generates an Adabas RC command.

Adabas Native SQL Reference Manual
5

208

The RELEASE ISN Statement

EXEC ADABAS

END–EXEC

RELEASE ISNcursor–name

This statement releases from hold status a record that has been held by a previous READ or
HOLD statement with the same cursor-name identification.

If you are using ET logic, do not use this statement to release a record that has been updated
during your current session.

The COMMIT WORK statement, which is used in ET-mode programs to mark the end of a
logical transaction, automatically releases records that were put into hold status during the
current transaction.

This statement generates an Adabas RI command.

Adabas Native SQL Statements
5

209

The RESTORE Statement

EXEC ADABAS

cursor var1

END–EXEC

RESTORE

This statement is used in programs that run under the control of a TP monitor, for example CICS
in pseudo-conversational mode or UTM with multiple-step transactions.

The data to be restored must be passed to the RESTORE statement in var1, which must have
a length of 80 bytes. The name of the variable var1 must be preceded by a colon (‘:’). The data
is passed to the Adabas Native SQL statement identified by cursor.

The data must be the same data that was returned from a preceding SAVE statement. The user
is responsible for preserving the data between the SAVE statement and the RESTORE
statement.

See also the complementary SAVE statement.

Adabas Native SQL Reference Manual
5

210

The ROLLBACK WORK Statement

EXEC ADABAS

WITHOUT filename

END–EXEC

ROLLBACK WORK

This statement is used to remove all the database modifications (insertions, deletions and
updates) that have been performed since the beginning of the Adabas user session or the last
COMMIT WORK or ROLLBACK statement. Note that the ROLLBACK WORK statement can
modify the state of files other than the files used in the program that issued the statement. After
the ROLLBACK WORK has been completed, the database has the status that it had when the
last COMMIT WORK was issued.

This statement generates an Adabas BT (backout transaction) command.

WITHOUT Clause

WITHOUT filename

The user may backout all files except one by specifying the appropriate file name in the
WITHOUT parameter.

Example:

EXEC ADABAS
 ROLLBACK WORK
 WITHOUT PERSONNEL
END-EXEC

In this example, all files in the database should be backed out with the exception of file
PERSONNEL.

Adabas Native SQL Statements
5

211

The SAVE Statement

EXEC ADABAS

cursor var1

END–EXEC

SAVE

This statement is used in programs that run under the control of a TP monitor, for example CICS
in pseudo-conversational mode or UTM with multiple-step transactions. Several SAVE
statements may be used, one for each Adabas Native SQL statement whose context must be
preserved over an I/O transaction. However, unnecessary SAVE statements should be avoided.

A typical sequence of operations is shown in the following diagram:

Adabas Native SQL Reference Manual
5

212

EXEC ADABAS
 FETCH cursor

END–EXEC

.....

EXEC ADABAS
 SAVE

END–EXEC
cursor var

Read
 disk workfile

var from

EXEC ADABAS
 RESTORE

END–EXEC
cursor var

Rollout

Rollin

Write
disk workfile

 var to

Terminal I/O

Adabas Native SQL Statements
5

213

The data to be saved from the Adabas Native SQL statement identified by cursor is returned
in var1, which must have a length of 80 bytes. The name of the variable var1 must be preceded
by a colon (‘:’). The data will normally be used in a subsequent RESTORE statement. The user
is responsible for preserving the data between the SAVE statement and the RESTORE
statement.

See also the complementary RESTORE statement.

Programs that use the SAVE statement must not use the ISNSIZE option in any Adabas SQL
statements.

Adabas Native SQL Reference Manual
5

214

The SORT Statement

���������

����� ���������	
 ������ ���

����
��
����	

�

���� ��
 ����

����������� ���������	

� �!���

�����

���� �!���!��

�����!�%

�����!�%
������$ �
���� �

����

����

��"

��!��

������!�

$

$

$

�����

 ��������

����!��

���
�

�! ������
�

!���!#�
�

!�����

���������
�

 ��!�� ��
���

������

����!��
�

�

�������
���	

Adabas Native SQL Statements
5

215

The SORT statement may be used to sort an ISN list that was created by a COMPARE or FIND
statement. The SAVE option must be used in the COMPARE or FIND statement in order to save
the ISN list.

The ISN list is sorted according to the values of one, two or three descriptors in the records
indicated by the entries in the given ISN list. The keyword DESCENDING, which may be
abbreviated to DESC, specifies descending sequence, otherwise ascending sequence will be
assumed. If more than one descriptor is specified, the ASCENDING/DESCENDING option
applies collectively to all of them. It is not possible to specify ascending sequence for one
descriptor and descending sequence for another.

The ISN list to be sorted must be in ascending ISN sequence. An ISN list that was produced by
a FIND statement with the ORDER BY clause or a SORT command cannot be sorted.

In general, the SORT statement will return a list containing the ISNs of many records.

If more than one of the records listed in the ISN list returned by the SORT statement are to be
processed, then the SORT statement must include the ‘DECLARE cursor-name CURSOR
FOR’ clause and it must be followed by an OPEN/FETCH/CLOSE sequence as described from
page 67. The fields specified in the SELECT clause are available after execution of the FETCH
statement.

If, however, only the first of these records is to be processed, then the DECLARE clause may
be omitted and the fields specified in the SELECT clause are available after execution of the
SORT statement. In this case, Adabas Native SQL generates executable code for the SORT
statement, which must therefore appear in the procedure division in COBOL programs.

An Adabas S9 command is generated.

Adabas Native SQL Reference Manual
5

216

DECLARE Clause

DECLARE cursor–name CURSOR FOR

This clause specifies a cursor-name that identifies, or labels, the current statement. Subsequent
statements can refer back to a statement that is labeled with a DECLARE clause by quoting the
cursor-name. The cursor-name may be up to four characters long.

If multiple records are to be processed, the ‘DECLARE cursor-name CURSOR FOR’
construction must be used. The keyword ‘FOR’ indicates to Adabas Native SQL that the
statement is used in conjunction with OPEN and FETCH statements that appear later in the
program quoting the same cursor-name. If only a single record is to be processed, the DECLARE
clause may be omitted.

SELECT Clause

SELECT field–name
*

,...

The SELECT clause specifies which fields are to be retrieved from the database. All types of
fields may be selected, with the exception of subdescriptors, superdescriptors and phonetic
descriptors. The fields must be specified by their full names as defined in the data dictionary.

If an asterisk is specified following the keyword ‘SELECT’, all the fields within the userview
are read.

See page 88 for more information.

Adabas Native SQL Statements
5

217

FROM Clause

FROM file alias

The FROM clause specifies the file from which data are to be retrieved. It is used together with
the SELECT clause to generate the record buffer and to control the retrieval of information from
the database.

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used.

See page 93 for more information

WHERE Clause

WHERE CURSOR= cursor–name

The cursor-name is the name coded in the DECLARE clause of the statement that created the
ISN list to be sorted. This statement must include the SAVE option. It must not be a FIND
statement with the ORDER BY clause or a SORT statement.

Adabas Native SQL Reference Manual
5

218

OPTIONS Clause

OPTIONS

HOLD

SAVE

DBID=

AUTODBID

Y

Y

Y

RETURN

PASSWORD=

SUFFIX=

value2

CIPHER= value1

ISNSIZE= len

INDEXED=

COND–NAME= N

PREFIX= prefix

suffix

STATIC= N

N

database-name

AUTODBID Option

The AUTODBID option can be used if the file is linked to a single database. This option
indicates to Adabas Native SQL that the database ID is to be taken from the data dictionary. If
the file is linked to more than one database, an error message will be issued.

If the file is linked to more than one database, the DBID option should be used.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

Adabas Native SQL Statements
5

219

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

DBID Option

This option should be used if the program accesses more than one database. The
database-name must be defined in the data dictionary, and the data dictionary description of
the database must include the file or files to be accessed.

This option may not be used together with the HOLD option. This implies to Adabas Native SQL
that you are attempting to update a database other than your default database.

HOLD Option

If the HOLD option is coded, the record retrieved is placed in hold status. As long as a record
is in hold status, it cannot be updated or deleted by any other user.

A record that is to be updated or deleted must be in hold status unless the program is running
in exclusive-control mode. See “HOLD Logic” on page 43 for more information.

The HOLD option may not be used together with the AUTODBID or DBID options. This
implies to Adabas Native SQL that you are attempting to update a database other than your
default database.

Adabas Native SQL Reference Manual
5

220

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISNSIZE Option

The ISNSIZE parameter defines the maximum number of ISNs that can be stored in the ISN
buffer. For the SORT statement, the ISN buffer must either be defined with size 0, or else it must
be large enough to contain the entire ISN list that is to be sorted. If an ISN buffer is defined that
is too small to contain the entire ISN list, the value 1 will be returned in the response-code.

The value of len must be either 0 or at least four times the number of records to be sorted.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement (see page 120).

See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

Adabas Native SQL Statements
5

221

SAVE Option

The SAVE option is used if the programmer needs to retain the entire ISN list. The saved ISN
list is discarded when:

– a further Adabas Native SQL statement that creates another ISN list with the same name
(same command ID) is executed, or

– an Adabas Native SQL CLOSE or DBCLOSE statement is executed, or

– the non-activity time limit or transaction time limit is exceeded. Under these
circumstances, response code 9 is returned when the next Adabas command is attempted.

A CLOSE statement must be executed to release the ISN list after every statement that generates
an ISN list (COMPARE, FIND, FIND COUPLED and SORT). If the CLOSE statement is not
executed, large amounts of storage will be occupied for the remainder of the Adabas session.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Reference Manual
5

222

ORDER BY Clause

DESCENDING
ASCENDINGORDER BY de1... 3

The ORDER BY clause specifies the order in which the records are retrieved.

The ISN list may be sorted on up to three descriptors in ascending or descending sequence.

A descriptor used in an ORDER BY clause may not be a member of a periodic group, nor may
it be a phonetic descriptor.

The keyword DESCENDING, which may be abbreviated to DESC, specifies descending
sequence, otherwise ascending sequence is assumed. If more than one descriptor is specified,
the ASCENDING/DESCENDING option applies collectively to all of them. It is not possible
to specify ascending sequence for one descriptor and descending sequence for another.

If the ISN list is too big to be sorted, an error is reported with response-code=1. See also the LS
(sort work space) parameter in the Adabas Operations Manual.

Note:
Sorting large ISN lists may take a long time.

Adabas Native SQL Statements
5

223

The TRACE Statement

EXEC ADABAS

END–EXEC

TRACE ON
OFF

This statement is used in conjunction with the global option ‘MODE TRACE’. See page 254.

Provided ‘MODE TRACE.’ has been specified, the TRACE ON and TRACE OFF statements
can be used within the application program to control trace output statically. Trace output will
only be produced in those program sections where TRACE ON is in effect.

Tracing is also controlled dynamically by a variable with the name TRCE (Ada, COBOL, PL/I)
or SQDE00 (FORTRAN) in sections where TRACE ON is in effect. The application program
can disable tracing dynamically by setting the content of this variable to the value ‘OFF’, and
can re-enable tracing by setting its content to any other value.

Three conditions must be satisfied for tracing to be active:

– the global option ‘MODE TRACE.’ must be set,

– the ‘TRACE ON’ statement must be issued, and

– the variable ‘TRCE’ or ‘SQDE00’ must not contain the value ‘OFF’.

Note that tracing is switched off when the program is started. No trace output will be produced
until a TRACE ON statement is executed.

Adabas Native SQL Reference Manual
5

224

The UPDATE Statement

EXEC ADABAS

DECLAREcursor–name CURSOR

OPTIONS

PASSWORD= value2

CIPHER= value1

STATUS

END–EXEC

UPDATE file alias

WHERE ISN=
CURRENT OF

value
cursor–name1

SET expression,...

PREFIX= prefix

SUFFIX= suffix

COND–NAME= Y
N

STATIC= Y
N

INDEXED= Y
N

Adabas Native SQL Statements
5

225

The UPDATE statement is used to update one or more fields of a record in the specified file.
The record to be updated must be retrieved by the FIND statement or one of the READ
statements before issuing the UPDATE statement. The record must be in hold status unless the
program is running in EXU mode (see the CONNECT statement). A record can be ‘held’ either
by specifying the HOLD option in the statement that reads it, or by issuing a separate HOLD
statement.

When the logical transaction has been completed, a COMMIT WORK statement should be
issued. One of the effects of this statement is to release records that are in hold status.

UPDATE file alias

file is the Adabas file name or view name as defined in the data dictionary. The alias, if present,

is used as the name of the record buffer; otherwise, the name file is used. The alias, which should
be unique, is required if two or more Adabas Native SQL statements within the module refer
to the same file. It can be used as a qualifier in subsequent Ada, COBOL, FORTRAN or PL/I
statements that refer to the fields in the record buffer.

This statement generates an Adabas A1 command.

DECLARE Clause

DECLARE cursor–name CURSOR

The cursor-name may be up to four characters long. A cursor-name should be specified if this
Adabas Native SQL statement is executed repeatedly; Adabas can recognize the cursor-name,
which is also used as the Adabas command-ID, and avoid re-translating the format buffer when
the statement is executed subsequently.

Adabas Native SQL Reference Manual
5

226

WHERE Clause

WHERE ISN=
CURRENT OF

value
cursor–name1

The WHERE clause is used to specify the ISN of the record to be updated.

To update a record having a specific ISN, the programmer should use the ‘ISN = value’ option.
value may be a constant or the name of a variable containing the ISN. If value is a variable
name, it must be immediately preceded by a colon (‘:’), for example ‘:NAME’. The colon must

not be coded following the ‘=’ sign if value is a numeric constant, for example ‘WHERE ISN
= 1234’. If the ‘WHERE ISN = value’ option is used, the SET clause must be coded.

To update a record using the ISN returned by a previous Adabas Native SQL statement, the
programmer should use the ‘CURRENT OF’ option. cursor-name1 is the cursor-name defined
in that statement.

If the user uses the ‘CURRENT OF cursor-name1’ option in the WHERE clause and the
DECLARE and SET clauses are omitted, Adabas Native SQL will use the Adabas variables
generated for the statement identified by cursor-name1 and will not generate variables for this
statement. In this case, modify the desired fields before issuing the UPDATE statement.

Example:

EXEC ADABAS
 FIND
 DECLARE PERS CURSOR
 SELECT SALARY
 FROM PERSONNEL
 WHERE PERSONNEL-NUMBER = 180001
 OPTIONS HOLD
END-EXEC
 .
 .
 .
SALARY = SALARY * 1.2
EXEC ADABAS
 UPDATE PERSONNEL
 WHERE CURRENT OF PERS
END-EXEC

Adabas Native SQL Statements
5

227

SET Clause

SET expression,...

The SET clause specifies the fields to be updated and, optionally, the values to be given to these
fields. The expressions may be separated by blanks (spaces) or commas.

The SET clause must always be coded if the option ‘WHERE ISN = value’ is used.

If the SET clause is coded, it is recommended that the ‘DECLARE cursor-name CURSOR’
clause be used as well to enhance performance.

Coding the SET clause causes Adabas Native SQL to generate a record buffer for this statement.
If the SET clause is not coded, the record buffer of the statement referenced by cursor-name1

will be used to update the database.

expression

constant
var–namefield–name

field–name

=
NULL

field-name denotes the name of the field to be updated. This is the full field name as defined

in the data dictionary. If necessary, the field-name can be subscripted to select the required field
from a multiple-value field, from a periodic group, or from a multiple-value field within a
periodic group. See ChapterNO TAG.

The option ‘SET field-name’ is used when the required value has already been assigned to the
field by means of normal Ada, COBOL, FORTRAN or PL/I statements.

Note:
Field–name can be a multiple–value or a part of a periodic group, but in this case an index must
be specified within parentheses. For a multiple–value within a periodic group the user should
move the value by himself before the INSERT/UPDATE statement.

Adabas Native SQL Reference Manual
5

228

The option ‘SET field-name = constant’ or ‘SET field-name = var-name’ is used to specify
the new value to be assigned to the field.

constant denotes a constant (literal) value and var-name denotes the name of a variable
defined in the Ada, COBOL, FORTRAN or PL/I program, which must be preceded by a colon.

If NULL is specified, Adabas Native SQL will move –1 (x’FFFF’) to the Null field indicator
of the specified field in the Record buffer used for updating the file.

If the user uses the SET clause and specifies a real value or a variable for a field which has a
Null value indicator, Adabas Native SQL will automatically reset the Null field indicator of that
field. If the user does not specify the SET clause, but initiates the fields in the Record buffer by
himself, he should also reset or turn on the Null field indicator.

var–name

OF
IN:

: var

var

: root.var

root

(index)

(index)

(index)

If the variable name is unique within the program, it can be specified as :var. Otherwise, it
should be made unique by preceding it by root, a higher-level data name (qualifier) in the data

structure hierarchy. Both the COBOL-type construction (:var OF root or :var IN root) and the
PL/I-type construction (:root.var) are valid in Ada, COBOL, FORTRAN and PL/I programs.

Both the ‘SET field-name’ option and the ‘SET field-name = data’ option can be used in the
same SET clause.

The optional index may be an integer constant or the name of a variable preceded by a colon.

Note that blanks (spaces) are not allowed between the :var and the parenthesis preceding the
index.

Adabas Native SQL Statements
5

229

Example 1: Ada

type REC_1 is
 record
 SALARY : STRING (1..6);
 AGE : STRING (1..2);
 PERSON_NAME: STRING (1..20);
 end record;
REC: REC_1;
 .
 .
 .
EXEC ADABAS
 FIND
 DECLARE PERS CURSOR
 FROM PERSONNEL PRSNNL
 WHERE PERSONNEL_NUMBER = “00180001”
 OPTIONS HOLD
END-EXEC
 .
 .
PERSONNEL.PHONE_NR = “00746127”;
EXEC ADABAS
 UPDATE PERSONNEL
 WHERE CURRENT OF PERS
 SET NAME = :REC.PERSON-NAME
 AGE = :REC.AGE
 SALARY = :REC.SALARY
 PHONE_NR
 ZIP = “06100”
 STATE = “BS”
END-EXEC

Adabas Native SQL Reference Manual
5

230

Example 2: COBOL

01 REC
 02 SALARY
 02 AGE
 02 PERSON-NAME
 .
 .
EXEC ADABAS
 FIND
 DECLARE PERS CURSOR
 FROM PERSONNEL PRSNNL
 WHERE PERSONNEL-NUMBER = 180001
 OPTIONS HOLD
END-EXEC
 .
 .
MOVE 746127 to PHONE-NR OF PERSONNEL
EXEC ADABAS
 UPDATE PERSONNEL
 WHERE CURRENT OF PERS
 SET NAME = :PERSON-NAME
 AGE = :AGE OF REC
 SALARY = :REC.SALARY
 PHONE-NR
 ZIP = 35
 STATE = ’BS’
END-EXEC

Adabas Native SQL Statements
5

231

Example 3: FORTRAN

CHARACTER* 20 VARNAM
CHARACTER* 2 VARAGE
CHARACTER* 6 VARSAL
.......
CHARACTER* 20 NAME
CHARACTER* 2 AGE
CHARACTER* 6 SALARY
CHARACTER* 8 PHONE
CHARACTER* 5 ZIP
CHARACTER* 2 STATE
CHARACTER* 43 PERNEL

EXEC ADABAS
 DECLARE PERS CURSOR
 FROM PERSONNEL
 WHERE PERSONNEL-NUMBER = ’00180001’
 OPTIONS HOLD PREFIX=A
END-EXEC

PNONE = ’00746127’

EXEC ADABAS
 UPDATE PERSONNEL
 WHERE CURRENT OF PERS
 SET NAME = :VARNAM
 AGE = :VARAGE
 SALARY = :VARSAL
 PHONE
 ZIP = ’35’
 STATE = ’BS’
END-EXEC

Note:
Synonyms are assumed to be defined in the data dictionary as shown in Appendix B, and
truncation is assumed to occur in the middle of the word. (The maximum length of names is
operating-system dependent.)

Note:
The field PERNEL encompasses all other fields and is the equivalent of the record buffer in Ada,
COBOL and PL/I.

Adabas Native SQL Reference Manual
5

232

Example 4: PL/I

DCL 01 REC,
 02 SALARY,
 02 AGE,
 02 PERSON_NAME;
 .
 .
EXEC ADABAS
 FIND
 DECLARE PERS CURSOR
 FROM PERSONNEL PRSNNL
 WHERE PERSONNEL-NUMBER = 180001
 OPTIONS HOLD
END-EXEC
 .
 .
PERSONNEL.PHONE_NR = 746127;
EXEC ADABAS
 UPDATE PERSONNEL
 WHERE CURRENT OF PERS
 SET NAME = :PERSON-NAME
 AGE = :AGE OF REC
 SALARY = :REC.SALARY
 PHONE-NR
 ZIP = 6100
 STATE = ’BS’
END-EXEC

Adabas Native SQL Statements
5

233

OPTIONS Clause

OPTIONS

PASSWORD= value2

CIPHER= value1

STATUS

PREFIX= prefix

SUFFIX= suffix

COND–NAME= Y
N

STATIC= Y
N

INDEXED= Y
N

CIPHER Option

The cipher key must be specified when accessing a ciphered file. See page 97 for more
information.

COND-NAME Option

This option applies only to COBOL programs.

If the option ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

If specified here, any value specified with the global parameter OPTIONS (page 259) will be
overridden.

With Cond. names in the Predict Modify COBOL Defaults screen must be marked with an ‘X’
if you want to specify this option. See page 97 for more information.

Adabas Native SQL Reference Manual
5

234

INDEXED Option

This option applies only to COBOL programs.

If the INDEXED option is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

Any specification here will override any setting of the global parameter OPTIONS (see
page 259).

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

PASSWORD Option

The password must be specified in each Adabas Native SQL statement that accesses a
password-protected file or a file that is protected by security by value, unless it is specified
globally in the CONNECT statement. See page 100 for more information.

PREFIX Option

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. Any value here will override values specified with the global
parameter OPTIONS (see page 259) or taken from Predict.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

STATIC Option

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded here, all buffers generated by Adabas Native SQL will be
defined as static. This will override any setting of the global parameter OPTIONS (see
page 259).

Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you want to
specify this option. See page 102 for more information.

Adabas Native SQL Statements
5

235

STATUS Option (available with Adabas Version 4 only)

The STATUS option invokes the Status Protection option of Adabas. This causes the data
protection information for the statement to be physically written to the Data Protection Log at
the time the statement is processed.

Note:
Use of the STATUS option is not recommended. See section “Status Protection Option” in
chapter “Concepts and Facilities” of the Adabas Command Reference Manual for more
information.

SUFFIX Option

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. Any value here will override values specified with the global
parameter OPTIONS (page 259) or taken from Predict.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 97 for more information.

Adabas Native SQL Reference Manual
5

236

The WHENEVER Statement

EXEC ADABAS

END–EXEC

SQLERROR
GO TO label
CONTINUE

GOTO label
WHENEVER NOT FOUND

The WHENEVER statement is used to control the error handling of the program. It affects the
code generated by the Adabas Native SQL preprocessor for handling exception conditions.

The ‘WHENEVER NOT FOUND GOTO label’ statement specifies a label to which the
program should jump if the ‘no records found’ condition occurs as a result of the execution of
a COMPARE, FIND, FIND COUPLED or SORT statement.

The ‘WHENEVER SQLERROR GOTO label’ statement specifies a label to which the program
should jump if an error response code (response code neither = 0 nor = 3) occurs as a result of
the execution of an Adabas Native SQL statement.

The ‘WHENEVER ... CONTINUE’ statement causes the Adabas Native SQL preprocessor to
stop generating test-&-branch code after each ADABAS Native SQL statement.

If a ‘WHENEVER SQLERROR ...’ statement is coded, it deactivates the error handling routine
of the standard abort module. You should normally use the SQLERROR together with ABORT.

The variables ISN, QUANTITY and RESPONSE_CODE (Ada, COBOL and PL/I unless the
global parameter ‘ABORT .’ is coded) or SQLISN, SQLQTY and SQLRSP (Ada, COBOL and
PL/I if the global parameter ‘ABORT .’ is coded; also FORTRAN) contain the values from the
most recent ADABAS Native SQL statement. These can be used for error analysis.

See sections “Additional Fields in the Record Buffers” on page 35 and “Response Code
Interpretation” on page 39 for more information.

See also description of the ABORT parameter on page 244 for more information on error
processing.

Adabas Native SQL Statements
5

237

The WRITE TO LOG Statement

EXEC ADABAS

END–EXEC

WRITE TO LOG

USERDATA= var

This statement is used to write user data to the Adabas data protection log. This data may be read
and displayed with the ADASEL utility program. See the Adabas Utilities Manual for more
information.

USERDATA Clause

USERDATA= var

The data to be written must be stored in the variable denoted by ���. The variable name must
be immediately preceded by a colon (‘:’), for example ‘USERDATA = :NAME’. The length of
the user data, that is, the number of characters to be written, must not exceed the limit specified
in the USERDATA clause of the global OPTIONS parameter. See page 267 for more
information.

238

6

239

USING ADABAS NATIVE SQL STATEMENTS IN
TP PROGRAMS

This chapter describes the procedures that must be observed when writing teleprocessing
application programs under COM-PLETE, CICS or UTM that issue Adabas Native SQL
statements.

No special precautions need to be taken when writing programs that are to run under
BS2000/RTIO, CMS, TSO or equivalent compatible systems. Programs should be coded in
exactly the same way as batch programs.

See also the Adabas Programmer’s Guide for Teleprocessing Applications.

COM-PLETE

TP application programs that are to run under the control of Software AG’s COM-PLETE TP
monitor should be coded in exactly the same way as batch programs.

The COM-PLETE utility program USCHC can be used to set the default hard-copy device to 0,
so that output produced by DISPLAY statements will be sent to the user’s terminal.

Customer Information Control System (CICS)

The CICS Transaction Work Area (TWA) provides a standardized interface for passing
parameters to the program. The first six words of the TWA are used by Adabas Native SQL for
communication with CICS. Alternatively, the user may choose to use the COMMAREA. Refer
to the global parameter MONITOR on page 255.

The CICS command level interface for Ada, COBOL, FORTRAN and PL/I ensures that
programs written in these languages will be quasi-reentrant.

Programs can be written in CICS pseudo-conversational mode with the aid of the SAVE and
RESTORE statements. Programs that use this facility must not use the ISNSIZE option.

Adabas Native SQL Reference Manual
6

240

Adabas Native SQL provides an easy way of defining parameters for generating the CICS code.
For further information, see the global parameter MONITOR on page 255.

See also the global parameter CICS STUB on page 250.

Passing Parameters to Adabas

The addresses of the Adabas control block, format buffer, record buffer, search buffer, value
buffer and ISN buffer are passed in the same manner for all releases of CICS. These addresses
must be placed in the first six words of the TWA. Software AG provides an Assembler
subroutine, ADASTWA, which places the parameter address in the TWA. The Adabas/CICS
interface routine, ADALNC, retrieves these addresses from the TWA. This module must be used
instead of the standard Adabas interface routine, ADALNK. The Ada, COBOL, FORTRAN or
PL/I program should call ADASTWA with the TWA as the first parameter; the next six
parameters are the customary parameters as used with Adabas direct calls.

Compiling and Executing Adabas Native SQL/CICS Programs

CICS applications programs that use Adabas Native SQL statements must be processed in the
following order:

� Run the program through the Adabas Native SQL preprocessor;

� Run the program through the CICS preprocessor;

� Compile the program in the normal manner;

	 Link-edit the program. An INCLUDE statement must be coded to force the inclusion of the
subroutine ADASTWA (Ada, COBOL and PL/I) or ADATWA (FORTRAN);

 Execute the program.

Using Adabas Native SQL Statements in TP Programs
6

241

COBOL TP Programs Using Adabas Native SQL and CICS
(Command Level)

The following global option parameters must be specified when preprocessing COBOL
programs:

ADACALL ADASTWA USING TWA.
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC”.
ABORT RESPCICS CICS.

The ADACALL parameter causes each ‘CALL ADABAS’ statement to be replaced by a ‘CALL
ADASTWA’ statement. The TELE parameter causes the CICS command level instruction to be
inserted after every Adabas command. The ABORT parameter causes the call to the response
code analysis module ‘RESPCICS’ to be called in a “CICS” way.

Alternatively ‘MONITOR CICS.’ may be used.

Also, the TWA must be declared in the linkage section of the program and the address of the
TWA must be made available.

FORTRAN Programs Using Adabas Native SQL and CICS
(Command Level)

The code for FORTRAN programs is identical to that for COBOL; however ADASTWA
(supplied in the Adabas source library) must be changed to ADATWA.

Adabas Native SQL Reference Manual
6

242

PL/I TP Programs Using Adabas Native SQL and CICS
(Command Level)

The following global option parameters must be specified when preprocessing PL/I programs:

ADACALL ADASTWA USING TWA.
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’);”.
ABORT RESPCICS CICS.

The ADACALL parameter causes each ‘CALL Adabas’ statement to be replaced by a ‘CALL
ADASTWA’ statement. The TELE parameter causes the CICS command level instruction to be
inserted after every Adabas command. The ABORT parameter causes the call to the response
code analysis module ‘RESPCICS’ to be called in a “CICS” way.

Alternatively, ‘MONITOR CICS.’ may be used.

Also, the TWA must be declared and its address must be made available.

If you implement a multiple-step transaction under UTM, the contents of the control block are
lost. You should therefore use the SAVE and RESTORE statements before and after every
screen-IO. Also, Adabas must be running in get-next mode, this means specify no ISNSIZE.

7

243

GLOBAL PARAMETERS

Adabas Native SQL provides a range of global parameters that can be used to define processing
options and adapt them to your particular requirements. The options are specified in a parameter
file, which is typically included in the job control stream and read by an ‘//ADAGLOB DD *’
JCL card or equivalent.

This chapter lists the global parameters and describes their syntax and their effect.

Note that each of these parameters is terminated by a period (‘.’).

Global parameters can now contain comment lines. Comment lines are signified by two
asterisks (‘**’) starting in column 1.

Adabas Native SQL Reference Manual
7

244

The ABORT Parameter

ABORT module–name

FILE=

PLI

filenumber

.

IDENT

DBID= database number

CICS

The ABORT parameter is used to modify Adabas Native SQL’s action when an Adabas
command returns a response code other than 0 or 3.

See also “Response Code Interpretation” on page 39 and the Adabas Messages and Codes
Manual.

In the absence of an ABORT parameter, the abort module RESPINT (Ada, COBOL or PL/I) or
RESPF (FORTRAN) is called. This module interprets the response code and prints the
appropriate text from the ABEND error message file, the content of the CONTROL-BLOCK
and the line sequence number of the erroneous source statement in the SYSOUT file, calls the
appropriate trace module, issues an Adabas BT command, and closes the database. Finally, it
ABENDs the run.

In particular, the following fields are passed to the error-handling routine:

CONTROL-BLOCK
DDFILE
CSEQ
FORMAT-BUF
RECORD-BUF
SEARCH-BUF
VALUE-BUF
CLN1
CLN2
TRCE
CLNNUM
DDDBID

Global Parameters
7

245

CLN1 and CLN2 are arrays that contain the Adabas Native SQL statement. CLN1 contains
characters 1..40 of each statement and CLN2 contains characters 41..80. CLNNUM is a variable
that indicates the number of elements used in each of these two arrays.

If you want to trap certain error conditions and handle them differently, you must write your own
error handling routine. Adabas Native SQL will generate calls to that module instead of to
RESPINT if an ABORT parameter with the appropriate module-name is executed. The fields
listed above are passed to the module.

If ‘ABORT FILE=0.’ is coded, Adabas Native SQL does not generate an OPEN for the Natural
system.

If ABORT is coded with no module-name, i.e., ‘ABORT .’, Adabas Native SQL will not check
the response code after executing Adabas commands and no exception handling routine will be
called. You must write inline code following each Adabas Native SQL statement to handle
exception conditions, or use the WHENEVER statement. In addition, if ABORT is coded with
no module-name, Adabas Native SQL generates three global fields with the names SQLISN,
SQLQTY and SQLRSP instead of generating the three fields ISN, QUANTITY and
RESPONSE_CODE for each record buffer.

See also “Additional Fields in the Record Buffers (Ada, COBOL, PL/I)” on page 35. (In
FORTRAN programs, since there are no record buffers, Adabas Native SQL always generates
the above-mentioned three global fields.)

IDENT Clause

If the ABORT parameter is used with the IDENT keyword, Adabas Native SQL generates a
statement of the form:

CALL identifier ...

where the variable identified by the identifier contains the name of the error-handling
routine. Otherwise, a statement of the form:

CALL ’module-name’ ...

is generated, where the name of the error-handling routine appears as a literal constant in the
CALL statement.

The first form is used for dynamic calls, the second for static calls.

This option is only available in COBOL programs, and it is not supported by all COBOL
compilers.

Adabas Native SQL Reference Manual
7

246

PLI Clause

If the user-written module is in PL/I, the keyword ‘PLI’ must be coded.

CICS Clause

This clause specifies that the calling mechanism to the response code analysis routine should
be generated for CICS. Hence Adabas Native SQL will generate the following:

CALL ’ADASTWA’ USING ADASQL–LINK–ADDRESSES CONTROL–BLOCKxxxx
DDFILE CSEQ FORMAT–BUFxxxx RECORD–BUFxxxx SEARCH–BUFxxxx VALUE–BUFxxxx
CLN1 CLN2 TRCE CLNNUM DDDBID
CALL ’ADASTWA’ USING TWA ADASQL–LINK–ADDRESSES
EXEC CICS LINK PROGRAM (’RESPCICS’) END–EXEC

Note:
The definition of ADASQL–LINK–ADDRESSES is generated by Adabas Native SQL, and the
user should define the TWA as a 24–byte string.

FILE Clause

If the error texts reside in a file other than the standard Natural system file (FNAT), the FILE
clause should be used to specify the file number. This number will be passed to the response code
interpretation routine as the second parameter, DDFILE. If FILE=0 is coded, no OPEN
command will be issued.

The error texts are commonly stored in the Natural system file (parameter FNAT in the
SYSFILE statement).

DBID Clause

This clause may be used to specify a database where the FNAT exists in another environment.
RESPINT now accepts another parameter DDDBID which has the database number of the
FNAT or zero (if the DBID clause is not specified).

If Adabas Native SQL is running under Adabas Star, see page 59.

Global Parameters
7

247

The ADACALL Parameter

ADACALLmodule–name USING id1...IDENT .LAST id2

The ADACALL parameter is used to instruct Adabas Native SQL to generate non-standard
Adabas calls. Instead of the standard call:

CALL ’ADABAS’ USING CONTROL-BLOCK... etc.

Adabas Native SQL will generate a call as follows:

CALL ’module-name’ USING id1... CONTROL-BLOCK... etc.

The subroutine name ‘ADABAS’ is replaced by the specified module name in each executable
command generated by Adabas Native SQL.

This parameter is used mainly in teleprocessing (TP) applications programs, where the user
must call the ADASTWA module. The first parameter of the ‘CALL’ statement is the terminal
work area (TWA); this is followed by the Adabas buffers.

A TP program should therefore specify the following ADACALL parameter:

ADACALL ADASTWA USING TWA.

This will cause Adabas Native SQL to generate the following call instead of ‘CALL
’ADABAS’’:

CALL ’ADASTWA’ USING TWA CONTROL-BLOCK... etc.

The ADACALL parameter may also be useful in installations that maintain an I/O interface
between the application and Adabas. The ADACALL parameter can be used to direct the calls
to the I/O interface, instead of to Adabas.

In CICS environments, the ADALNK module must be replaced by the ADALNC module, which
fetches the Adabas parameters (control block, record buffer, etc.) from the TWA.

See also the description of the ‘MONITOR’ and ‘TELE’ parameters.

CICS users should also refer to Chapter 6.

Adabas Native SQL Reference Manual
7

248

IDENT Clause

If the ADACALL parameter is used with the IDENT keyword, Adabas Native SQL generates
a statement of the form:

CALL identifier ...

where the variable identified by the identifier contains the name of the Adabas link
routine. Otherwise, a statement of the form:

CALL ’module-name’ ...

is generated, where the name of the Adabas link routine appears as a literal constant in the CALL
statement. The first form can be desirable in certain circumstances. This option is only available
in COBOL programs, and it is not supported by all COBOL compilers.

LAST Clause

The LAST clause is used to specify the seventh parameter generated for the Adabas call. id2
is a structure generated by Adabas Native SQL. It can be modified by the user as desired.

The seventh parameter is only an option of Adabas. It contains information that can be evaluated
by an Adabas user exit. Adabas Review uses the seventh parameter to receive information on
the program name and library name. Adabas Native SQL put the value of the program name
within the structure. The user should plug in the library name, using a simple MOVE statement
into the L–variable field. The last clause also causes Adabas Native SQL to generate code that
may enable Review to identify the use of the seventh parameter.

The LAST clause of the ADACALL parameter generates a structure with the following names
(not applicable to VMS or UNIX):

01 Variable
02 FILLER PIC x(276).
02 PR-variable PIC x(8)VALUE

’program’.
02 L-variable PIC x(8) VALUE

’library’.
02 RE-variable PIC x(76).

Global Parameters
7

249

The APOS Parameter

APOS NO.

If the APOS parameter is set to ‘NO’, character strings generated by Adabas Native SQL will
be enclosed in double quotes (”). If the APOS parameter is not coded, character strings will be
enclosed in single quotes, sometimes known as apostrophes (’).

Adabas Native SQL Reference Manual
7

250

The CICS STUB Parameter

CICS STUB.

This global parameter is used to improve performance of interpartition commands when using
CICS.

In this case, the call is made to the modulle “Adabas”, supplying as the first parameter the stub
pointer. Adabas Native SQL generates the definition of the stub pointer, and the user should
supply the name by using the ADACALL parameter:

ADACALL ADABAS USING pointer

With the CICS stub, the user should also use the ABORT CICS parameter if the response code
analysis routine should be invoked for CICS.

Note:
The user should define the TWA for this purpose.

Global Parameters
7

251

The LANG Parameter

LANG
COBOL

PLI

.COBOL/II
FORTRAN

FORTRAN/VMS

ADA

Adabas Native SQL generates declarations and code in the language specified by this parameter.
The code generated with the setting ‘COBOL’ is also compatible with the COBOL/II compiler,
but the code generated with the ‘COBOL/II’ setting makes use of the structured ‘END-IF’,
‘END-PERFORM’, etc., clauses.

If this parameter is omitted, Adabas Native SQL attempts to determine the language in which
the program is written by examining its first line. However, this technique is not completely
reliable, so we strongly recommend you include this parameter in every Adabas Native SQL
run.

Adabas Native SQL Reference Manual
7

252

The LIBRARY Parameter

LIBRARY name .

This new parameter is used to support a library concept for 3GL applications. name represents
a logical library name (max. 8 characters). If the library is not defined in Predict, an error
message is displayed.

This statement is mandatory.

Global Parameters
7

253

The MODE Parameter

MODE TRACENOUPDATE .FLOW
NOFLOW

This parameter controls debugging facilities that are built in to Adabas Native SQL.

MODE FLOW

If the parameter ‘MODE FLOW’ is specified, all Adabas Native SQL statements will be printed
out at runtime as they are executed.

MODE NOFLOW

If the parameter ‘MODE NOFLOW’ is specified, the code that copies Adabas Native SQL
source statements into a buffer is not generated. This reduces the size of the generated Ada,
COBOL, FORTRAN or PL/I code, but the FLOW and TRACE facilities are not available and
Adabas Native SQL cannot print out the source statement if a runtime error is detected. This
could make debugging more difficult.

MODE NOUPDATE

If MODE NOUPDATE is coded, statements that would modify the database (DELETE,
INSERT, UPDATE) have no effect.

Adabas Native SQL Reference Manual
7

254

MODE TRACE

This parameter must be coded if diagnostic output is required. Conversely, when a program has
been debugged and diagnostic output is no longer required, you can delete this parameter and
recompile the program. The resulting object module will be smaller and will run faster.

Diagnostic output is controlled by the following:

– the global parameter ‘MODE TRACE.’

– the Adabas Native SQL statements ‘TRACE ON’ and ‘TRACE OFF’, and

– the value contained in the variable TRCE (Ada, COBOL, PL/I) or SQDE00 (FORTRAN).

The action of the global parameter ‘MODE TRACE’ is described above.

When processing an Ada, COBOL, FORTRAN or PL/I program, and assuming that the global
parameter ‘MODE TRACE’ has been coded, Adabas Native SQL only generates the code for
producing diagnostic output when it encounters a ‘TRACE ON’ statement, it stops generating
this code when it encounters a ‘TRACE OFF’ statement. These two statements provide static
control of the diagnostic output, that is, they control the section or sections of the program in
which diagnostic code is generated.

When an Adabas Native SQL statement is executed, the first action of the diagnostic code is
to test the value contained in the variable TRCE (Ada, COBOL, PL/I) or SQDE00 (FORTRAN).
If this value is ‘OFF’, then no further action is performed. Otherwise, the statement is printed
out together with the contents of the buffers. This variable provides dynamic control of the
diagnostic output. By assigning values to this variable at runtime, you have greater control over
the diagnostic output. For example, you could limit output to the first five executions of a loop
that may be executed several hundred times.

Global Parameters
7

255

The MONITOR Parameter

MONITOR CICS [twa] [COMMAREA commarea-name POINTERS addr-name].

This parameter makes it unnecessary to code the ADACALL and TELE global parameters.

If the optional twa clause is coded, this name is used instead of the default name ‘TWA’.

For COBOL programs, coding ‘MONITOR CICS.’ is equivalent to coding the following three
global parameters:

ADACALL ADASTWA USING TWA.
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC”.
ABORT RESPCICS CICS

The MONITOR CICS parameter is not valid in FORTRAN programs.

For PL/I programs, coding ‘MONITOR CICS.’ is equivalent to coding the following three
global parameters:

ADACALL ADASTWA USING TWA.
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’) ;”.
ABORT RESPCICS CICS

These defaults may be overridden by coding one or both of the ADACALL or TELE parameters.

Prior to all calls created by the ADACALL parameter, the following code will be generated for
COBOL if ‘MONITOR CICS.’ has been coded:

MOVE xxxxxxxxxx to ADASQL-SAVE-TWA

The corresponding code for PL/I programs is:

ADASQL_SAVE_TWA = xxxxxxxxxx

xxxxxxxxxx is the field name supplied after USING in the global parameter ADACALL. (TWA
is the default ADACALL used.)

After each TELE line is generated, the following COBOL code is inserted if ‘MONITOR CICS.’
has been coded:

MOVE ADASQL-SAVE-TWA TO xxxxxxxxxx

Adabas Native SQL Reference Manual
7

256

The code for PL/I programs is:

xxxxxxxxxx = ADASQL_SAVE_TWA

If you are using more than 28 bytes in the TWA, code the following:

01 TWA.
 02 ADABAS-TWA PIC X(28)
 02 REST-OF-TWA PIC X(nnnn).

Then code the following ADACALL parameter for COBOL:

ADACALL ADASTWA USING ADABAS-TWA

We recommend defining the layout of the TWA in COBOL copy books which can be accessed
by all Adabas Native SQL programs.

The code for PL/I is:

DCL 01 TWA,
 02 ADABAS_TWA CHAR(28)
 02 REST_OF_TWA CHAR(nnnnn);

This parameter also controls the generation of EXEC CICS LINK to RESPCICS and
PRTRCICS instead of RESPINT and PRTRACE.

The COMMAREA parameter is for using the COMMAREA instead of the TWA.

The user then will have to define a structure for the Commarea usage as follows:

01 COMMAREA-NAME.
02 FILLER PIC X(8) VALUE ‘ADABAS52’.
02 ADDR-NAME PIC X(4) OCCURS 6.

Adabas Native SQL will then generate

� a call to ADASTWA with addr-name to move the addresses of the Adabas buffers into it;

� and then an EXEC CICS command with COMMAREA(commarea-name) instead of TWA.

The constant “ADABAS52” is the indicator for the Adabas CICS interface to detect the
COMMAREA parameter list. For the syntax of the Adabas parameter list, see also the Adabas CICS
command level interface description for CICS Version 3.2 and higher.

Note:
The RESPCICS and PRTRCICS will continue to use the TWA.

Global Parameters
7

257

The NAME Parameter

NAME program–name .

The program-name specified in the ‘NAME’ parameter is used by Adabas Native SQL in
conjunction with the programming language (Ada, COBOL, FORTRAN or PL/I) when Adabas
Native SQL writes Xref data to the data dictionary. The program-name is referred to in Predict
as Member.

Adabas Native SQL provides cross-reference reports of programs, modules and fields using the
Xref facilities of Predict. This information is automatically created during the preprocessor
pass. The names of the files and fields that are used are taken from the FROM, SELECT,
WHERE, SET, etc., clauses of the Adabas Native SQL statements; the name of the program that
uses them is taken from the ‘NAME’ parameter.

If the NAME parameter is omitted, Adabas Native SQL takes the program name from the
following sources:

Language Program name taken from

ADA the procedure

COBOL PROGRAM-ID paragraph in the environment division

FORTRAN the first line of the program, which must be PROGRAM
progname

PL/I the label preceding ‘PROC OPTIONS(MAIN)’

Adabas Native SQL Reference Manual
7

258

The NETWORK Parameter

NETWORK network–name .

This global parameter defines the network in which the program is to run. network-name must
be defined in Predict, and must be linked to the virtual machine specified with the
VIRTUAL-MACHINE parameter (see page 272).

This parameter is mandatory if Adabas Star is installed, or if one or more networks other than
HOME are defined in Predict.

A network contains all virtual machines and databases that are to be accessed. In fact, all
databases that are used in the program should belong to the network specified here.

For every database used (DBID, AUTODBID or AUTODBID-ALL clauses), Adabas Native
SQL checks that if the database is defined as local it belongs to the current virtual machine, and
if the database is isolated that it belongs to the current network.

If Adabas Star is used, DBID, AUTODBID or AUTODBID-ALL clauses are ignored and the
ADASTAR access number taken from the file record is used instead. Adabas Native SQL checks
that a physical link between the file and the database exists, and that the ADASTAR Parameter
of the database is Y (translator) or N (no translator). If not, it checks that a STARTAB element
exists which is global in the network specified with this parameter. If the file has a logical
ADASTAR type partitioned or replicated , a STARTAB element must also exist. The
ADASTAR access number is the DBnr multiplied by 256, plus the Fnr.

If Adabas Star is used, Adabas Native SQL uses a DBID of an ADASTAR database linked to
the network specified with this parameter in all general purpose commands (i.e. non-retrieval
and non-update) such as CONNECT, DBCLOSE, END-TRANSACTION.

Global Parameters
7

259

The OPTIONS Parameter

Y N{ }

OPTIONS

USERDATA= len2

DYNAMCID

ISNSIZE= len1

INDEXED=

COND–NAME= Y N

PREFIX= prefix

SUFFIX= suffix

L
M
R

TRUNCATION=

*
’

’ ’
VALIDATION= character ’ .

STATIC=

DBID= database-name

AUTODBID

SOFT=

NONDE=

GFORMAT

Y
N
D

OPEN

AUTODBID–ALL

ADASTAR

ETID=USERID

BINARY

NEW–CONTROL–BLOCK

{ }

Y N{ }

Y N{ }

ADA–VERSION={ 7162 }

Adabas Native SQL Reference Manual
7

260

The OPTIONS parameter enables the user to specify various processing options that will take
effect for the whole of the program unless they are overridden by declarations made at the
individual statement level.

The OPTIONS parameter should not be confused with the OPTIONS clause of individual
Adabas Native SQL statements.

ADA–VERSION Clause
The ADA–VERSION clause indicstes to Adabas Native SQL in which Adabas version the
precompiled program is to be executed. The default is 62, and this will generate code that can
be executed in all Adabas versions. The value 71 will enable using new features introduced in
Adabas Version 7.1 in the READ LOGICAL and HISTOGRAM statements.

Note:
A precompiled program with ADA–VERSION=71 may fail or give unpredicted results if
executed in an Adabas version lower than 7.1.

ADASTAR Clause
If ADASTAR is specified, it is only possible to access logical files or files which belong to an
ADASTAR database (not isolated and not local).

If this clause is specified, DBID, AUTODBID and AUTODBID-ALL are ignored and the
ADASTAR access number taken from the file record is used instead.

See “Support of Adabas Star” on page 52 for more information.

AUTODBID Clause
The AUTODBID option causes every access statement to use the database identified in Predict
for that file. If the file is linked to a database and no specific DBID is specified in the statement,
an error message is given.

AUTODBID-ALL Clause
The AUTODBID-ALL option causes all statements (both accesss and update) to use the
database identified in Predict for that file. If the file is linked to a database and no specific DBID
is specified in the statement, an error message is issued.

If AUTODBID-ALL is specified, neither the DBID nor the AUTODBID clause may be used.

Global Parameters
7

261

The following rules apply to the various statements when using the AUTODBID-ALL clause:

Statement Remarks

All statements One file must be documented in exactly one database.

If separate test and production environments are used, separate
dictionary files (FDIC) are necessary.

No source changes are necessary if only a recompile with the
production dictionary is required.

CONNECT, DBCLOSE These statements are mandatory and must be used within one
program.

The files specified in the UPDATE clause define the database
to be updated. All update files must be within one database
otherwise an error message is displayed.
If more than one database is accessed, several OPEN
commands must be generated, but only one OPEN command
is generated for update.
To generate a CLOSE command to the same databases which
are opened using CONNECT, the DBCLOSE must occur
within the same program, otherwise an error message is given.

COMMIT The COMMIT statement is always sent to exactly one
database. This database is identified by the CONNECT
statement (updatefiles => database) or by the UPDATE
statements available in the program. An UPDATE or
CONNECT statement must be coded, otherwise an error
message is given.

UPDATE, DELETE If the program does not contain a CONNECT statement, a
INSERT warning is issued that CONNECT must be executed before the

updates are performed, otherwise consistency cannot be
guaranteed. Adabas Native SQL must be able to check that
within one program updates are performed only on files that
belong to the same database.

The update of only one database is supported.

Adabas Native SQL Reference Manual
7

262

BINARY Clause

This clause applies to COBOL programs only.

It will cause all binary fields to be generated as BINARY instead of COMP.

COND-NAME Clause

This clause applies to COBOL programs only.

If the clause ‘COND-NAME = Y’ is coded, the record buffer generated by Adabas Native SQL
includes the condition names defined in Predict as level-88 entries.

This global value will be overridden by any value specified in a clause of an individual Adabas
Native SQL statement.

The field With Cond. names in the Predict Modify COBOL Defaults screen must be marked with
an ‘X’ if you want to specify this option. See also “Generate COBOL Copy Code” in the Predict
Administration Manual.

DBID Clause

This clause should be used if the program accesses more than one database. The database-name
must be defined in the data dictionary, and the data dictionary description of the database must
include the file or files to be accessed. All statements including UPDATE, DELETE and STORE
are affected by this clause.

Global Parameters
7

263

DYNAMCID Clause

If the DYNAMCID keyword is coded, Adabas Native SQL generates the command IDs of the
Adabas control blocks dynamically during program execution.

The automatic Adabas routine for generating the command ID is used. Using DYNAMCID
increases performance significantly.

If this clause is not specified, the command ID used for each Adabas command is generated from
the cursor-name of the corresponding Adabas Native SQL statement. If the DYNAMCID
keyword is not coded in the global OPTIONS parameter and a cursor-name is not defined for
a particular Adabas Native SQL statement, because the DECLARE option was not used, Adabas
Native SQL will generate command IDs in the form -m-n, where mn is a sequence number
starting from 01. The first statement without a DECLARE clause will have command ID -0-1,
the second statement will have -0-2, etc.

The command ID is used by Adabas for the following purposes:

– As an identifier for the internal, decoded version of the format buffer. Efficiency is
improved if Adabas statements that use the same format buffer use the same command ID,
otherwise Adabas is compelled to re-interpret the format buffer each time.

– When executing HISTOGRAM, READ LOGICAL and READ PHYSICAL SEQUENCE
statements. If the command ID is not given when the statement is executed, Adabas ‘loses
its place’ in the file and gives inconsistent results.

– To identify ISN lists. The command ID links the Adabas command (COMPARE, FIND,
FIND COUPLED, or SORT) that creates the ISN list with subsequent commands that
retrieve the records whose ISNs are stored in the list.

If several programs that use Adabas Native SQL statements are linked together, all command
IDs must be unique. This can be achieved explicitly, that is, by coding a unique cursor-name
for each statement, or by allowing Adabas Native SQL to allocate the command IDs
dynamically by means of the DYNAMCID global option. Coding unique cursor-names has the
advantage that the Adabas command log is easier to interpret.

See chapter “Command ID Usage” in the Adabas Command Reference Manual for more
information.

ETID=USERID Clause

This clause specifies that Adabas Native SQL itself has to issue an ‘open’ with ETID because
the FDIC and FNAT files belong to an ADASTAR database.

Adabas Native SQL Reference Manual
7

264

GFORMAT Clause

This clause indicates that a global format is to be generated for this program. Adabas Native
SQL generates a unique global format ID for every declaration generated (with the exception
of variable index used for periodic groups or multiple-value fields). The global format ID is
unique and will not exist in other programs. This clause can help to improve application
performance, particularly in on-line environments, by reducing the number of format buffer
translations that Adabas has to perform.

If this option is used, the global format ID is generated from the following information:

GFID = abcdeeef

Where for FDIC file number and DBID < 255,
a = x’C0’
b = x’83’
c = FDIC DBID
d = FDIC FNR
eee = Adabas Native SQL sequence number from Predict defaults
f = An internal sequence number within the program

Where for FDIC file number or DBID > 255
a = x’C1’
b = Possible value x’00’ to x’FF’
c = Right byte of FDIC DBID
d = Right byte of FDIC FNR
eee = Adabas Native SQL sequence number from Predict defaults
f = An internal sequence number within the program

The GFORMAT clause is not available in Ada programs.

Global Parameters
7

265

INDEXED Clause

This clause applies to COBOL programs only.

If the INDEXED clause is specified, all multiple-value fields and periodic groups are generated
with the ‘INDEXED BY’ keywords. The name of the index is taken from Predict. If no index
name is defined in the data dictionary, the name of the multiple-value field or periodic group
is used, prefixed with ‘I-’.

This global value will be overridden by any value specified in a clause of an individual Adabas
Native SQL statement.

Indexed by in the Predict Modify COBOL Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 98 and section “Generate COBOL Copy Code” in the
Predict Administration Manual for more information.

ISNSIZE Clause

If the ISNSIZE clause is specified, the default size of the ISN buffer is defined and all Adabas
Native SQL statements run in ‘ISN buffer’ mode; however, the buffer size can be modified for
individual retrieval statements by local ISNSIZE specifications.

If a global ISNSIZE value is not specified, ISN buffers are allocated for individual statements
as determined by the presence or absence of the ISNSIZE parameter in the OPTIONS clause
of each individual statement.

ISN buffer mode must not be used when accessing files that use the ‘security by value’ facility.

See also “ISN Lists and the ISN Buffer” on page 42.

NEW–CONTROL–BLOCK Clause

This option will cause Adabas Native SQL to generate the new control block structure
introduced in Adabas 6.1 on mainframe platforms and Adabas 4.1 in OpenVMS.

The new control block will allow file numbers and dbid’s to be greater than 255.

Adabas Native SQL Reference Manual
7

266

NONDE Clause

This clause is available with Adabas 5 only. It is used to allow (NONDE=Y) or inhibit
(NONDE=N) the use of non-descriptors within database search criteria. The option NONDE=D
specifies that each search criterion must include at least one descriptor (and possibly some
non-descriptors).

The field Non-descriptor search allowed in the Predict Modify Adabas Native SQL Defaults
screen must be set to ‘Y’ if you want to use this option.

OPEN Clause

If this clause is coded, Adabas Native SQL performs an explicit ‘open’ on Predict file as it
preprocesses your application program.

This clause is required if Adabas Star is installed.

PREFIX Clause

If the option ‘PREFIX = prefix’ is coded, the field names generated for the record buffer will
include the specified prefix. This global value will be overridden by any value specified in a
clause of an individual Adabas Native SQL statement or taken from the data dictionary.

Field name prefix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 100 for more information.

SOFT Clause

This clause is available with Adabas 5 only. It is used to enable (SOFT=Y) or inhibit (SOFT=N)
the soft-coupling option.

The field Use of soft-coupling allowed in the Predict Modify Adabas Native SQL Defaults screen
must be set to ‘Y’ if you want to specify this option.

Global Parameters
7

267

STATIC Clause

This option applies to PL/I programs only.

If the option ‘STATIC = Y’ is coded, all buffers generated by Adabas Native SQL will be defined
as static. This global value will be overridden by any value specified in a clause of an individual
Adabas Native SQL statement.

The field Static in the Predict Modify PL/I Defaults screen must be marked with an ‘X’ if you
want to specify this option. See page 102 for more information.

SUFFIX Clause

If the option ‘SUFFIX = suffix’ is coded, the field names generated for the record buffer will
include the specified suffix. This global value will be overridden by any value specified in a
clause of an individual Adabas Native SQL statement or taken from the data dictionary.

Field name suffix in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want
to specify this option. See page 102 for more information.

TRUNCATION Clause

A field name may exceed the maximum number of characters permitted by the language,
particularly if a prefix and/or suffix has been added. Adabas Native SQL uses the
TRUNCATION clause to delete excess characters:

TRUNCATION = L truncate from the left
TRUNCATION = M truncate from the middle
TRUNCATION = R truncate from the right.

This global value will override the value in the data dictionary.

The field Truncation in the Predict Modify...Defaults screen must be marked with an ‘X’ if you
want to specify this option.

USERDATA Clause

The USERDATA clause may be used to specify the size of the ET-data buffer, i.e.,
RECORD-BUFOPN. The default size is 500 bytes. This buffer is used in COMMIT WORK,
DBCLOSE and CHECKPOINT statements.

Adabas Native SQL Reference Manual
7

268

VALIDATION Clause

This option determines how invalid characters in field names — including prefix and suffix, if
specified — are handled by Adabas Native SQL.

Validation Character Result

Null string (two consecutive apostrophes) Invalid characters in a field name will result in an error
message but will not be modified.

Replace character
(letters A-Z, digits 0-9
or special character

depending on language)

Invalid characters in a field name are replaced by this char-
acter.

Asterisk Invalid characters in the field name are deleted.

This global value will override the value in the data dictionary.

Validation in the Predict Modify...Defaults screen must be marked with an ‘X’ if you want to
use this option.

Global Parameters
7

269

The SYSFILE Parameter

SYSFILE FNAT= dbid1,fnr1(,password1 ,cipher1)

FDIC= dbid2,fnr2(,password2 ,cipher2) .

The SYSFILE parameter specifies to Adabas Native SQL the number of the Natural system file
and the number of Predict file. The Adabas Native SQL error messages are normally stored in
the Natural system file. The SYSFILE parameter is mandatory, and the dbid and fnr must be
specified. These numbers are checked against the DDA default record in Predict and, in case
of incompatibility, execution stops.

PASSWORD Clause

If the Predict file or Natural system file is password-protected, the correct password must be
specified using this clause.

CIPHER Clause

If the Predict file or Natural system file is enciphered, the correct cipher key (cipher code) must
be specified using this clause.

Example:

SYSFILE FNAT = (3,9) FDIC = (3,8)

The database ID (DBID) of the Natural system file is 3, and its filenumber (FNR) is 9. The DBID
of the Predict file is 3, and its FNR is 8.

Adabas Native SQL Reference Manual
7

270

The TELE Parameter

TELE ”text .”

The TELE parameter specifies a source statement to be inserted after each CALL command in
the generated executable statements. The text may, for example, be a command required by a
teleprocessing monitor.

Example:

TELE ”EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC”. (COBOL)
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’);”. (PL/I)
TELE ”EXEC CICS LINK PROGRAM (’ADABAS’) END-EXEC”. (FORTRAN)

The above example inserts the CICS command level instruction after every CALL. This
parameter should be used in conjunction with the ADACALL parameter. See the example in
the ADACALL parameter.

There may be up to five TELE statements, so that up to five additional lines of text may be
generated after the call.

Note that in COBOL programs the “text” must not include a period.

See also the ‘MONITOR’ parameter on page 255.

Ada is still not supported by the CICS translator.

Global Parameters
7

271

The USER Parameter

USER userid.

This parameter is used to identify the user responsible for the program. This userid will be
documented in XREF. If no USER parameter is specified, Adabas Native SQL takes the first
3 characters of the program as the userid.

Adabas Native SQL Reference Manual
7

272

The VIRTUAL-MACHINE Parameter

VIRTUAL–MACHINE virtual–machine .

This statement defines the virtual machine, that is the real computer or node, in which the
program is to run.

virtual-machine must be defined in Predict, and must be linked as a child oject to the network
specified with the NETWORK parameter (see page 258).

This parameter is mandatory if Adabas Star is installed, or if one or more databases other than
HOME are defined in Predict.

For every database used (DBID, AUTODBID or AUTODBID clauses), Adabas Native SQL
checks that if the database is defined as local it belongs to the current virtual machine, and if
the database is isolated that it belongs to the current network.

Global Parameters
7

273

The XREF Parameter

XREF
ON
OFF

FORCE
.

This parameter controls the writing of cross-reference information (Xref data) to the data
dictionary.

Note that the XREF global Adabas Native SQL parameter interacts with Predict’s Preprocessor
force option. If the Predict option is set to ‘Y’, then Adabas Native SQL ignores the XREF
parameter in the Adabas Native SQL global parameter file (if present) and proceeds as though
‘XREF FORCE’ had been coded.

For details of the Predict Preprocessor Force option, see section “Common Parameters” in
chapter “Generation” of the Predict Administration Manual.

XREF ON. Adabas Native SQL makes entries in the data dictionary
indicating which files and fields are used by the current
program.

XREF OFF. No entries are made in the data dictionary.

XREF FORCE. Adabas Native SQL makes entries as for ‘XREF ON’ and
additionally checks that the data dictionary contains a program
description bearing the name of the current program.
An error message is output if this condition is not satisfied.

If the data dictionary is opened for access only (global parameter DDFILE ACC.), ‘XREF OFF.’
must be coded.

The program is identified by its name (referred to in Predict as Member) together with the
language in which it is written (Ada, COBOL, FORTRAN or PL/I). See NAME parameter on
page257.

274

A

275

APPENDIX A — SIZE LIMITATIONS

The standard version of Adabas Native SQL is limited to the following maximum sizes:

� Length of an Adabas Native SQL source statement: 100 lines.

Note:
If the length of the statement exceeds 15 lines, then only the first 11 lines, a line of dots, and the
last 3 lines will be stored for the purposes of TRACE, FLOW and runtime error reporting.

� Number of fields mentioned by name in the SELECT clause: 300.

� Number of fields contained in a file that is referenced with SELECT *: 500.

� Number of distinct field names used within the program (these are the field names that will be
written into the data dictionary by the cross-reference facility): 500 (DOS); 2000 (other
operating systems).

� Number of distinct external subroutines used within the programs (their names will be written
into the data dictionary by the cross-reference facility): 500.

� Number of variable indices used within the program: 99.

� Number of elements of redefinitions in one SELECT (PL/I only): 99.

� Number of Adabas Native SQL statements that use ‘CURSOR FOR’ (multiple record
processing): 120 (only applicable to operating systems MVS, BS2000 and VMS).

� Number of Adabas Native SQL statements that use ‘CURSOR’ (including statements that use
‘CURSOR FOR’): 150 (only applicable to operating systems MVS, BS2000 and VMS).

� Number of files mentioned in the CONNECT statement: 100.

� Number of lines of ADA, COBOL, FORTRAN or PL/I code generated for one Adabas Native
SQL statement, not including the direct calls: 200.

� Size of format buffer generated: 9999 bytes.

� Number of selection criteria in a ‘WHERE’ clause: 30.

� Number of constants (literals) used in selection criteria throughout the program: 250.

� Number of constants (literals) used in selection criteria within one Adabas Native SQL
statement: 69.

� Number of variables in SET clause of UPDATE/INSERT statement: 300.

� Number of characters in a literal within an Adabas Native SQL statement: 38.

Adabas Native SQL Reference Manual
A

276

Restrictions in ADA:

� No redefinition.

� No groups generated.

� Periodic groups are always generated with STRUCT=N.

� PACKED and UNPACKED fields are generated as alpha.

� Superdescriptors are not divided into parts in the value buffer.

� The DBID option is not supported.

� FIND COUPLED is not supported.

� The GLOBAL FORMAT-ID option is not supported.

B

277

APPENDIX B — DESCRIPTIONS OF THE FILES
USED IN THE EXAMPLES

These file descriptions, which are used in the Ada, COBOL, FORTRAN and PL/I examples
shown in the following appendices, are supplied on the Predict installation tape. They can be
loaded into the data dictionary using the Load function of the migration utility as described in
the Predict Administration Manual. FORTRAN synonyms that must be used in order for the
examples to run are listed at the end of this appendix.

Adabas Native SQL Reference Manual
B

278

 > > + Fi: EMPLOYEES L: 1 S:
36

Ty L Field name F Length Occ D U DB S

*– – –––––––––––––––––––––––––––––––– *– –––––––– ––––– * * –– *

 1 PERSONNEL–ID A 8.0 D U AA

GR 1 FULL–NAME AB

 2 FIRST–NAME A 20.0 AC N

 2 MIDDLE–I A 1.0 AD N

 2 NAME A 20.0 D AE

 1 MIDDLE–NAME A 20.0 AD N

 1 MAR–STAT A 1.0 AF F

 1 SEX A 1.0 AG F

 1 BIRTH U 6.0 D AH

GR 1 FULL–ADDRESS A1

MU 2 ADDRESS–LINE A 20.0 8 AI N

 2 CITY A 20.0 D AJ N

 2 ZIP A 10.0 AK N

 2 POST–CODE A 10.0 AK N

 2 COUNTRY A 3.0 AL N

GR 1 TELEPHONE A2

 2 AREA–CODE A 6.0 AN N

 2 PHONE A 15.0 AM N

 1 DEPT A 6.0 D AO

 1 JOB–TITLE A 25.0 D AP N

PE 1 INCOME 40 AQ

 2 CURR–CODE A 3.0 AR N

 2 SALARY P 9.0 AS N

MU 2 BONUS P 9.0 12 AT N

GR 1 LEAVE–DATA A3

 2 LEAVE–DUE U 2.0 AU

 2 LEAVE–TAKEN U 2.0 AV N

PE 1 LEAVE–BOOKED 20 AW

 2 LEAVE–START U 6.0 AX N

 2 LEAVE–END U 6.0 AY N

MU 1 LANG A 3.0 15 D AZ N

PH 1 PHONETIC–NAME A 20.0 D PH

SP 1 LEAVE–LEFT B 4.0 D H1 N

SB 1 DEPARTMENT A 4.0 D S1

SP 1 DEPT–PERSON A 26.0 D S2

SP 1 CURRENCY–SALARY A 12.0 D S3 N

–– – –––––––––––––––––––––––––––––––– –– –––––––– ––––– – – –– –

Appendix B
B

279

 > > + Fi: VEHICLES L: 1 S: 16

Ty L Field name F Length Occ D U DB S All
*– – –––––––––––––––––––––––––––––––– *– –––––––– ––––– * * –– *
 1 REG–NUM A 15.0 D U AA N
 1 CHASSIS–NUM B 4.0 AB F
 1 PERSONNEL–ID A 8.0 D AC
GR 1 CAR–DETAILS CD
 2 MAKE A 20.0 D AD N
 2 MODEL A 20.0 AE N
 2 COLOR A 10.0 D AF N
 2 COLOUR A 10.0 D AF N
 1 YEAR U 2.0 AG N
 1 CLASS A 1.0 D AH F
 1 LEASE–PUR A 1.0 AI F
 1 DATE–ACQ U 6.0 AJ N
 1 CURR–CODE A 3.0 AL N
MU 1 MAINT–COST P 7.0 60 AM N
SP 1 DAT–ACQ–DESC B 4.0 D AN
SP 1 MODEL–YEAR–MAKE A 22.0 D AO

–– – –––––––––––––––––––––––––––––––– –– –––––––– ––––– – – –– –

FORTRAN Synonyms

File EMPLOYEES: PERSONNEL-ID PID
FIRST-NAME FNAME
INCOME INC

File VEHICLES: PERSONNEL-ID PID
MODEL-YEAR-MAKE MOYEMA
REG-NUM REGNUM

In order to run FORTRAN example 3, the field SALARY must be changed from P9 to I4. The
small difference in the total is attributable to rounding in the integer-to-real and real-to-integer
conversions.

280

C

281

APPENDIX C — ADABAS NATIVE SQL
STATEMENTS USED IN THE EXAMPLES

The table below shows which statements are used in each example. For example, the BEGIN
and CLOSE statements are used in every example; the COMMIT WORK statement is used in
Examples 2 and 3.

The correspondingly numbered Ada, COBOL, FORTRAN and PL/I examples are equivalent.

Example 1 2 3

BEGIN x x x

CLOSE x x x

COMMIT WORK x x

CONNECT x

DBCLOSE x x x

DELETE x

FETCH x x x

FIND x x

HISTOGRAM x

OPEN x x x

READ LOGICAL x x

UPDATE x x

282

D

283

APPENDIX D — ADA EXAMPLES

Example 1

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
-- CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
-- NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
-- PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
-- FOLLOWING CONDITION:
-- PERSONNEL-ID BETWEEN 10000001 AND 19999999
-- MODEL-VEAR-MAKE >
-- CLASS = ’C’
procedure AEX1 is
 START_MODEL : STRING (1..20) := ”MERCEDES-BENZ ”;
 START_YEAR_MAKE : STRING (1..2) := ”86” ;
 START_MODEL_YEAR_MAKE : STRING(1..22) := START_MODEL &
 START_YEAR_MAKE ;

 FILLE1 : STRING(1..20) := ” PERSONNEL-ID ” ;
 FILLE2 : STRING(1..17) := ” NAME ” ;
 FILLE3 : STRING(1..18) := ” FIRST-NAME ” ;
 FILLE4 : STRING(1..6) := ”BIRTH ” ;
 FILLE5 : STRING(1..3) := ”SEX” ;
 HEADER : STRING(1..64) := FILLE1 & FILLE2 & FILLE3 & FILLE4
 & FILLE5 ;
 HEADER2: STRING(1..64) := (1..64 => ’*’);
 SPACE_LINE : STRING(1..80) := (1..80 => ’ ’);
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC

 EXEC ADABAS
 DECLARE EMPL CURSOR FOR
 SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
 FROM EMPLOYEES, VEHICLES
 WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
 AND PERSONNEL-ID BETWEEN ”100000001” AND ”19999999”
 AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
 AND VEHICLES.CLASS = ”C”
 END-EXEC

Adabas Native SQL Reference Manual
D

284

begin

 EXEC ADABAS
 OPEN EMPL
 END-EXEC
 PUT_LINE (HEADER) ;
 PUT_LINE (HEADER2) ;
 PUT_LINE (SPACE_LINE) ;

 EXEC ADABAS
 FETCH EMPL
 END-EXEC

 while ADACODE /= 3 loop
 PUT_LINE (” ” & EMPLOYEES.PERSONNEL_ID & ” ” & EMPLOYEES.NAME &
 ” ” & EMPLOYEES.FIRST_NAME & ” ” & EMPLOYEES.BIRTH & ” ”
 & EMPLOYEES.SEX) ;

 EXEC ADABAS
 FETCH EMPL
 END-EXEC

 end loop ;

 EXEC ADABAS
 CLOSE EMPL
 END-EXEC

 EXEC ADABAS
 DBCLOSE
 END-EXEC
end AEX1 ;

Appendix D
D

285

Example 2

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE
-- ASSIGNED TO THIS EMPLOYEE. APRIVATE CAR WILL BE DELETED
-- AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
-- BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.

procedure AEX2 is
 PERSONNEL_NUMBER : STRING(1..8) := ”20007100” ;
 EMPLOYEE_ISN : INTEGER := 0 ;

 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC

 EXEC ADABAS
 READ LOGICAL
 DECLARE VEH1 CURSOR FOR
 SELECT REG-NUM, PERSONNEL-ID, CLASS
 FROM VEHICLES
 WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
 OPTIONS HOLD
 ORDER BY PERSONNEL-ID
 END-EXEC

begin
--
-- FIND EMPLOYEE
--
 EXEC ADABAS
 FIND
 SELECT
 FROM EMPLOYEES EMPLOYEES_1
 WHERE PERSONNEL-ID = :PERSONNEL_NUMBER
 OPTIONS HOLD
 END-EXEC
--
-- IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
-- VEHICLES FILE

Adabas Native SQL Reference Manual
D

286

 if EMPLOYEES_1.QUANTITY = 1 then

 EMPLOYEE_ISN := EMPLOYEES_1.ISN ;
--
-- DELETE EMPLOYEE
--
 EXEC ADABAS
 DELETE
 FROM EMPLOYEES
 WHERE ISN = :EMPLOYEE_ISN
 END-EXEC
--
-- READ VEHICLES-FILE
--
 EXEC ADABAS
 OPEN VEH1
 END-EXEC

 EXEC ADABAS
 FETCH VEH1
 END-EXEC

 while ADACODE /= 3 AND
 VEHICLES.PERSONNEL_ID = PERSONNEL_NUMBER loop
 if VEHICLES.CLASS = ”P” then
 EXEC ADABAS
 DELETE
 FROM VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 PUT_LINE (”PRIVATE CAR” & VEHICLES.REG_NUM &
 ”HAS BEEN DELETED”);
 else
 VEHICLES.PERSONNEL_ID := VEHICLES.PERSONNEL_ID (1..1)
 & ” ” ;
 EXEC ADABAS
 UPDATE VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 PUT_LINE (”COMPANY CAR ” & VEHICLES.REG_NUM &
 ” HAS BEEN UPDATED”) ;
 end if ;
 EXEC ADABAS
 FETCH VEH1
 END-EXEC

Appendix D
D

287

 end loop ;

 EXEC ADABAS
 CLOSE VEH1
 END-EXEC
 EXEC ADABAS
 COMMIT WORK
 END-EXEC

 else
 PUT_LINE (”NO EMPLOYEES FOUND WITH PERSONNEL-ID ” &
 PERSONNEL_NUMBER) ;
end if ;
 EXEC ADABAS
 DBCLOSE
 END-EXEC
end AEX2 ;

Adabas Native SQL Reference Manual
D

288

Example 3

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
-- SALARY INCREASE
-- THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
-- 4 PERCENT.
-- THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
-- DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
-- OUT.
-- THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
-- PROGRAM EXECUTION WOULD RESTART FROM THE LAST DEPARTMENT
-- WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
-- OCCURED.

procedure AEX3 is
 type COMMIT_DATA_1 is
 RECORD
 COMMIT_DEPARTMENT : STRING(1..6) := ” ” ;
 COMMIT_SUM : INTEGER := 0 ;
 COMMIT_FIL : STRING(1..490) := (1..490 => ’ ’);
 end record ;
 COMMIT_DATA : COMMIT_DATA_1 ;
 COMMIT_DATA_2 : STRING(1..500);
 for COMMIT_DATA use at COMMIT_DATA_2’ADDRESS;
 START_DEPT : STRING(1..6) := ” ” ;
 J : INTEGER := 0 ;
 NEW_SALARY : INTEGER := 0 ;
 INCREASE : INTEGER := 0 ;
 SUM_DEPARTMENT : INTEGER := 0 ;
 SUM_TOTAL : INTEGER := 0 ;
 FILLE1 : STRING(1..10) := ” DEPARTMENT” ;
 FILLE2 : STRING(1..15) := (1..15 => ’ ’) ;
 FILLE3 : STRING(1..15) := ”SALARY INCREASE ” ;
 HEADER : STRING(1..40) := FILLE1 & FILLE2 & FILLE3 ;
 HEADER2 : STRING(1..40) := (1..40 => ’*’) ;
 SPACE_LINE : STRING(1..40) := (1..40 => ’ ’) ;

 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC

 EXEC ADABAS
 HISTOGRAM
 DECLARE EMP1 CURSOR FOR

Appendix D
D

289

 SELECT DEPT
 FROM EMPLOYEES EMPLOYEES_1
 WHERE DEPT GE :COMMIT_DATA.COMMIT_DEPARTMENT
 GROUP BY DEPT
 END-EXEC

 EXEC ADABAS
 READ LOGICAL
 DECLARE EMP2 CURSOR FOR
 SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
 FROM EMPLOYEES
 WHERE DEPT GE :START_DEPT
 ORDER BY DEPT
 OPTIONS HOLD
 END-EXEC

begin

 EXEC ADABAS
 CONNECT ’INCREASE’
 UPD=EMPLOYEES
 AND USERDATA INTO :COMMIT_DATA_2
 END-EXEC
--
-- A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
-- EMPLOYEES PER DEPARTMENT
--
 EXEC ADABAS
 OPEN EMP1
 END-EXEC

 EXEC ADABAS
 FETCH EMP1
 END-EXEC

 if COMMIT_DATA.COMMIT_DEPARTMENT /= ” ” then

 PUT_LINE (” LAST PROGRAM RUN TERMINATED ABNORMALLY ”) ;
 PUT_LINE (” LAST DEPARTMENT WAS: ” &
 COMMIT_DATA.COMMIT_DEPARTMENT) ;

 EXEC ADABAS
 FETCH EMP1
 END-EXEC

Adabas Native SQL Reference Manual
D

290

 end if ;

 START_DEPT := EMPLOYEES_1.DEPT ;

 EXEC ADABAS
 OPEN EMP2
 END-EXEC

 PUT_LINE(HEADER) ;
 PUT_LINE(HEADER2) ;
 PUT_LINE(SPACE_LINE) ;

 while ADACODE /= 3 loop
--
-- THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
-- DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
-- UPDATED.
--
 J := 1 ;
 while J <= EMPLOYEES_1.QUANTITY loop
 EXEC ADABAS
 FETCH EMP2
 END-EXEC
 J := J + 1 ;
-- THE SALAYRY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
-- PERIODIC GROUP IS LESS THAN 40.
 if EMPLOYEES.C_INCOME < 40 then
 INCREASE := (EMPLOYEES.SALARY(1) * 4)/100 ;
 NEW_SALARY := EMPLOYEES.SALARY(1) + INCREASE ;
 EMPLOYEES.SALARY(2..40) := EMPLOYEES.SALARY(1..39) ;
 EMPLOYEES.SALARY(1) := NEW_SALARY ;
 EXEC ADABAS
 UPDATE EMPLOYEES
 WHERE CURRENT OF EMP2
 END-EXEC
 SUM_DEPARTMENT := SUM_DEPARTMENT + INCREASE ;
 SUM_TOTAL := SUM_TOTAL + INCREASE ;
 else
 PUT_LINE(”UPDATE PERSON ” & EMPLOYEES.PERSONNEL_ID &
 ”NOT POSSIBLE”) ;
 end if ;
 end loop ;
 PUT_LINE(” ” & EMPLOYEES.DEPT & ” ” &
 INTEGER’IMAGE(SUM_DEPARTMENT)) ;
 SUM_DEPARTMENT := 0 ;

Appendix D
D

291

 COMMIT_DATA.COMMIT_DEPARTMENT := EMPLOYEES.DEPT ;
 COMMIT_DATA.COMMIT_SUM := SUM_TOTAL;
 EXEC ADABAS
 COMMIT WORK
 USERDATA = :COMMIT_DATA_2
 END-EXEC

 EXEC ADABAS
 FETCH EMP1
 END-EXEC
 end loop ;

 EXEC ADABAS
 CLOSE EMP1
 END-EXEC
 EXEC ADABAS
 CLOSE EMP2
 END-EXEC
 PUT_LINE(SPACE_LINE) ;
 SPACE_LINE(1..50) := (1..50 => ’-’) ;
 PUT_LINE(SPACE_LINE) ;
 SPACE_LINE(1..50) := (1..50 => ’ ’) ;
 PUT_LINE(SPACE_LINE) ;
 PUT_LINE(”TOTAL SALARY INCREASE : ” & INTEGER’IMAGE(SUM_TOTAL)) ;
 COMMIT_DATA.COMMIT_DEPARTMENT := ” ” ;

 EXEC ADABAS
 DBCLOSE
 USERDATA = :COMMIT_DATA_2
 END-EXEC
 end AEX3 ;

292

E

293

APPENDIX E — EXAMPLE OF ADA CODE
GENERATED BY ADABAS NATIVE SQL

with TYPES, ADABAS_GENERIC_CALLS, TEXT_IO ;
use TYPES, TEXT_IO ;
--
-- AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
-- CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
-- NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
-- PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
-- FOLLOWING CONDITION:
-- PERSONNEL-ID BETWEEN 10000001 AND 19999999
-- MODEL-VEAR-MAKE >
-- CLASS = ’C’

procedure AEX1 is
 START_MODEL : STRING (1..20) := ”MERCEDES-BENZ ”;
 START_YEAR_MAKE : STRING (1..2) := ”86” ;
 START_MODEL_YEAR_MAKE : STRING(1..22) := START_MODEL &
 START_YEAR_MAKE ;

 FILLE1 : STRING(1..20) := ” PERSONNEL-ID ” ;
 FILLE2 : STRING(1..17) := ” NAME ” ;
 FILLE3 : STRING(1..18) := ” FIRST-NAME ” ;
 FILLE4 : STRING(1..6) := ”BIRTH ” ;
 FILLE5 : STRING(1..3) := ”SEX” ;
 HEADER : STRING(1..64) := FILLE1 & FILLE2 & FILLE3 & FILLE4
 & FILLE5 ;
 HEADER2: STRING(1..64) := (1..64 => ’*’);
 SPACE_LINE : STRING(1..80) := (1..80 => ’ ’);
--
-- EXEC ADABAS
-- BEGIN DECLARE SECTION
-- END-EXEC
--

Adabas Native SQL Reference Manual
E

294

 ADACODE : SHORT_INTEGER := 0 ;
 CB_OPN : CONTROL_BLOCK :=
 (FILLER1 => ”AS” ,
 COMMAND_CODE => ” ” ,
 COMMAND_ID => ”OPEN” ,
 FILE_NUMBER => 0,
 RESPONSE_CODE => 0,
 ISN => 0,
 ISN_LOWER_LIMIT => 0,
 ISN_QUANTITY => 0,
 FORMAT_BUFFER_LENGTH => 0,
 RECORD_BUFFER_LENGTH => 0,
 SEARCH_BUFFER_LENGTH => 0,
 VALUE_BUFFER_LENGTH => 0,
 ISN_BUFFER_LENGTH => 4,
 COMMAND_OPTION_1 => ” ” ,
 COMMAND_OPTION_2 => ” ” ,
 ADDITIONS_1 => ” ”,
 ADDITIONS_2 => ” ” ,
 ADDITIONS_3 => ” ”,
 ADDITIONS_4 => ” ”,
 ADDITIONS_5 => ” ”,
 COMMAND_TIME => 0,
 USER_AREA => ”AS ”) ;
 FORMAT_BUF_OPN : FORMAT_BUFFER (1..0001) ;
 SEARCH_BUF_OPN : SEARCH_BUFFER (1..0001) ;
 VB_OPN : VALUE_BUFFER (1..0001) ;
 RB_OPN : RECORD_BUFFER (1..1500) ;
 ISN_BUF_OPN : ISN_BUFFER (1..0001) ;
 package A_OPN is new ADABAS_GENERIC_CALLS
 (FORMAT_BUFFER,RECORD_BUFFER,SEARCH_BUFFER,VALUE_BUFFER) ;
 DDFILE : STRING(1..3) := ”061” ;
 CSEQ : STRING(1..8) ;
 CLN1 : CLN_TYPE ;
 CLN2 : CLN_TYPE ;
 TRCE : STRING(1..7) ;
 CLNNUM : SHORT_INTEGER ;
 SQLRSP : SHORT_INTEGER ;
 SQLQTY : INTEGER ;
 SQLISN : INTEGER ;
 type FORMAT_BUFEMPL_1 is
 record
 FILLE001 : STRING(1..32) :=”AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG”;
 FILLE002 : STRING(1..05) :=”,1,A.”;
 end record ;
 FORMAT_BUFEMPL : FORMAT_BUFEMPL_1 ;

Appendix E
E

295

 type SEARCH_BUFEMPL_1 is
 record
 FILLE001 : STRING(1..32) :=”(22,AA,24,AC)/22/AA,8,A,S,AA,8,A”;
 FILLE002 : STRING(1..27) :=”,D,/24/AO,22,A,GT,D,AH,1,A.”;
 end record ;
 SEARCH_BUFEMPL : SEARCH_BUFEMPL_1 ;
 type RECORD_BUFEMPL is
 record
 PERSONNEL_ID : STRING (1..0008) ;
 NAME : STRING (1..0020) ;
 FIRST_NAME : STRING (1..0020) ;
 BIRTH : STRING (1..0006) ;
 SEX : STRING (1..0001) ;
 ISN : INTEGER ;
 QUANTITY : INTEGER ;
 RESPONSE_CODE : SHORT_INTEGER ;
 end record ;

 EMPLOYEES : RECORD_BUFEMPL ;
 type VALUE_BUFEMPL is
 record
 V_PERSONNEL_ID_F : STRING (1..0008)
 := (1..0008 => ’ ’) ;
 V_PERSONNEL_ID_T : STRING (1..0008)
 := (1..0008 => ’ ’) ;
 V_MODEL_YEAR_MAKE : STRING (1..0022)
 := (1..0022 => ’ ’) ;
 V_CLASS : STRING (1..0001)
 := (1..0001 => ’ ’) ;
 end record ;
 VBEMPL : VALUE_BUFEMPL ;
 ISN_BUFEMPL : ISN_BUFFER (1..0001) ;
 package AEMPL is new ADABAS_GENERIC_CALLS
 (FORMAT_BUFEMPL_1,RECORD_BUFEMPL,SEARCH_BUFEMPL_1,VALUE_BUFEMPL) ;
 CBEMPL : CONTROL_BLOCK :=
 (FILLER1 => ”AS” ,
 COMMAND_CODE => ” ” ,
 COMMAND_ID => ”EMPL” ,
 FILE_NUMBER => 22,
 RESPONSE_CODE => 0,
 ISN => 0,
 ISN_LOWER_LIMIT => 0,
 ISN_QUANTITY => 0,
 FORMAT_BUFFER_LENGTH => 37,
 RECORD_BUFFER_LENGTH => 55,

Adabas Native SQL Reference Manual
E

296

 SEARCH_BUFFER_LENGTH => 59,
 VALUE_BUFFER_LENGTH => 39,
 ISN_BUFFER_LENGTH => 4,
 COMMAND_OPTION_1 => ” ” ,
 COMMAND_OPTION_2 => ” ” ,
 ADDITIONS_1 => ” ”,
 ADDITIONS_2 => ” ” ,
 ADDITIONS_3 => ” ”,
 ADDITIONS_4 => ” ”,
 ADDITIONS_5 => ” ”,
 COMMAND_TIME => 0,
 USER_AREA => ”AS ”) ;
 ISNSIZEEMPL : INTEGER ;
 ISNMOREEMPL : INTEGER ;
 ISNINDEMPL : INTEGER ;
 EOFEMPL : BOOLEAN := FALSE ;

--
-- EXEC ADABAS
-- DECLARE EMPL CURSOR FOR
-- SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
-- FROM EMPLOYEES, VEHICLES
-- WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
-- AND PERSONNEL-ID BETWEEN ”10000001” AND ”19999999”
-- AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
-- AND VEHICLES.CLASS = ”C”
-- END-EXEC

--

begin

--
-- EXEC ADABAS
-- OPEN EMPL
-- END-EXEC
--
 VBEMPL.V_PERSONNEL_ID_F := ”10000001” ;
 VBEMPL.V_PERSONNEL_ID_T := ”19999999” ;
 VBEMPL.V_MODEL_YEAR_MAKE := START_MODEL_YEAR_MAKE ;
 VBEMPL.V_CLASS := ”C” ;
 ISNSIZEEMPL := INTEGER(CBEMPL.ISN_BUFFER_LENGTH / 4) ;
 ISNINDEMPL := 1 ;
 CBEMPL.ISN_LOWER_LIMIT := 0 ;
 CBEMPL.COMMAND_OPTION_1 := ” ” ;
 CBEMPL.COMMAND_OPTION_2 := ” ” ;

Appendix E
E

297

 CBEMPL.ISN_QUANTITY := 0 ;
 CBEMPL.ISN_BUFFER_LENGTH := 0 ;
 CBEMPL.COMMAND_CODE := ”S1” ;
 AEMPL.ADABAS (
 CBEMPL,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 ISN_BUFEMPL) ;
 EMPLOYEES.RESPONSE_CODE :=
 CBEMPL.RESPONSE_CODE ;
 EMPLOYEES.QUANTITY :=
 CBEMPL.ISN_QUANTITY ;
 EMPLOYEES.ISN :=
 CBEMPL.ISN ;
 if CBEMPL.RESPONSE_CODE /= 0
 then
 CSEQ := ”00000000” ;
 CLN1(01) := ” EXEC ADABAS ” ;
 CLN2(01) := ” ” ;
 CLN1(02) := ” OPEN EMPL ” ;
 CLN2(02) := ” ” ;
 CLN1(03) := ” END-EXEC ” ;
 CLN2(03) := ” ” ;
 CLNNUM := 03 ;
 AEMPL.RESPF
 (CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 CLN1,CLN2,TRCE,CLNNUM) ;
 end if ;
 ISNMOREEMPL := CBEMPL.ISN_QUANTITY ;
 if ISNMOREEMPL > 0 then
 EOFEMPL := FALSE ;
 else
 EOFEMPL := TRUE ;
 end if ;
 if ISNMOREEMPL < ISNSIZEEMPL then
 ISNSIZEEMPL := ISNMOREEMPL ;
 end if ;
 ISNINDEMPL :=0 ;

 PUT_LINE (HEADER) ;
 PUT_LINE (HEADER2) ;
 PUT_LINE (SPACE_LINE) ;

Adabas Native SQL Reference Manual
E

298

--
-- EXEC ADABAS
-- FETCH EMPL
-- END-EXEC
--
 if ISNINDEMPL = ISNMOREEMPL then
 EOFEMPL := TRUE ;
 end if ;
 if not(EOFEMPL) then
 EOFEMPL := FALSE ;
 CBEMPL.COMMAND_OPTION_2 := ”N” ;
 CBEMPL.COMMAND_OPTION_1 := ” ” ;
 CBEMPL.COMMAND_CODE := ”L1” ;
 AEMPL.ADABAS (
 CBEMPL,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 ISN_BUFEMPL) ;
 EMPLOYEES.RESPONSE_CODE :=
 CBEMPL.RESPONSE_CODE ;
 EMPLOYEES.QUANTITY :=
 CBEMPL.ISN_QUANTITY ;
 EMPLOYEES.ISN :=
 CBEMPL.ISN ;
 if CBEMPL.RESPONSE_CODE = 3 then
 EOFEMPL := TRUE ;
 else
 if CBEMPL.RESPONSE_CODE /= 0
 then
 CSEQ := ”00000000” ;
 CLN1(01) := ” EXEC ADABAS ” ;
 CLN2(01) := ” ” ;
 CLN1(02) := ” FETCH EMPL ” ;
 CLN2(02) := ” ” ;
 CLN1(03) := ” END-EXEC ” ;
 CLN2(03) := ” ” ;
 CLNNUM := 03 ;
 AEMPL.RESPF
 (CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 CLN1,CLN2,TRCE,CLNNUM) ;
 end if ;
 end if ;
 end if ;
 if EOFEMPL then
 ADACODE := 003 ;
 else

Appendix E
E

299

 ADACODE := 0 ;
 end if ;

 while ADACODE /= 3 loop
 PUT_LINE (” ” & EMPLOYEES.PERSONNEL_ID & ” ” & EMPLOYEES.NAME &
 ” ” & EMPLOYEES.FIRST_NAME & ” ” & EMPLOYEES.BIRTH & ” ”
 & EMPLOYEES.SEX) ;

--
-- EXEC ADABAS
-- FETCH EMPL
-- END-EXEC
--
 if ISNINDEMPL = ISNMOREEMPL then
 EOFEMPL := TRUE ;
 end if ;
 if not(EOFEMPL) then
 EOFEMPL := FALSE ;
 CBEMPL.COMMAND_OPTION_2 := ”N” ;
 CBEMPL.COMMAND_OPTION_1 := ” ” ;
 CBEMPL.COMMAND_CODE := ”L1” ;
 AEMPL.ADABAS (
 CBEMPL,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 ISN_BUFEMPL) ;
 EMPLOYEES.RESPONSE_CODE :=
 CBEMPL.RESPONSE_CODE ;
 EMPLOYEES.QUANTITY :=
 CBEMPL.ISN_QUANTITY ;
 EMPLOYEES.ISN :=
 CBEMPL.ISN ;
 if CBEMPL.RESPONSE_CODE = 3 then
 EOFEMPL := TRUE ;
 else
 if CBEMPL.RESPONSE_CODE /= 0
 then
 CSEQ := ”00000000” ;
 CLN1(01) := ” EXEC ADABAS ” ;
 CLN2(01) := ” ” ;
 CLN1(02) := ” FETCH EMPL ” ;
 CLN2(02) := ” ” ;
 CLN1(03) := ” END-EXEC ” ;
 CLN2(03) := ” ” ;
 CLNNUM := 03 ;
 AEMPL.RESPF

Adabas Native SQL Reference Manual
E

300

 (CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 CLN1,CLN2,TRCE,CLNNUM) ;
 end if ;
 end if ;
 end if ;
 if EOFEMPL then
 ADACODE := 003 ;
 else
 ADACODE := 0 ;
 end if ;

 end loop ;

--
-- EXEC ADABAS
-- CLOSE EMPL
-- END-EXEC
--
 CBEMPL.COMMAND_OPTION_1 := ”I” ;
 CBEMPL.COMMAND_OPTION_2 := ”S” ;
 CBEMPL.COMMAND_CODE := ”RC” ;
 AEMPL.ADABAS (
 CBEMPL,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,
 ISN_BUFEMPL) ;
 EMPLOYEES.RESPONSE_CODE :=
 CBEMPL.RESPONSE_CODE ;
 EMPLOYEES.QUANTITY :=
 CBEMPL.ISN_QUANTITY ;
 EMPLOYEES.ISN :=
 CBEMPL.ISN ;
 if CBEMPL.RESPONSE_CODE /= 0
 then
 CSEQ := ”00000000” ;
 CLN1(01) := ” EXEC ADABAS ” ;
 CLN2(01) := ” ” ;
 CLN1(02) := ” CLOSE EMPL ” ;
 CLN2(02) := ” ” ;
 CLN1(03) := ” END-EXEC ” ;
 CLN2(03) := ” ” ;
 CLNNUM := 03 ;
 AEMPL.RESPF
 (CBEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL,
 EMPLOYEES ,SEARCH_BUFEMPL,VBEMPL,

Appendix E
E

301

 CLN1,CLN2,TRCE,CLNNUM) ;
 end if ;

--
-- EXEC ADABAS
-- DBCLOSE
-- END-EXEC
--
 CB_OPN.RECORD_BUFFER_LENGTH := 1500 ;
 CB_OPN.COMMAND_OPTION_2 := ” ” ;
 CB_OPN.COMMAND_CODE := ”CL” ;
 A_OPN.ADABAS (
 CB_OPN,FORMAT_BUF_OPN,
 RB_OPN ,SEARCH_BUF_OPN,VB_OPN,
 ISN_BUF_OPN) ;
 if CB_OPN.RESPONSE_CODE /= 0
 then
 CSEQ := ”00000000” ;
 CLN1(01) := ” EXEC ADABAS ” ;
 CLN2(01) := ” ” ;
 CLN1(02) := ” DBCLOSE ” ;
 CLN2(02) := ” ” ;
 CLN1(03) := ” END-EXEC ” ;
 CLN2(03) := ” ” ;
 CLNNUM := 03 ;
 A_OPN.RESPF
 (CB_OPN,DDFILE,CSEQ,FORMAT_BUF_OPN,
 RB_OPN ,SEARCH_BUF_OPN,VB_OPN,
 CLN1,CLN2,TRCE,CLNNUM) ;
 end if ;
end AEX1 ;

302

F

303

APPENDIX F — COBOL EXAMPLES

Example 1

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CEX1.
 REMARKS.
* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH *
* CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID *
* NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, *
* PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE *
* FOLLOWING CONDITION:
* PERSONNEL-ID BETWEEN 10000001 AND 19999999
* MODEL-YEAR-MAKE >
* CLASS = ’C’
 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 START-MODEL-YEAR-MAKE.
 02 START-MODEL PIC X(20) VALUE ’MERCEDES-BENZ’.
 02 START-YEAR-MAKE PIC 9(2) VALUE 86.
*
 01 HEADER.
 02 FILLER PIC X(12) VALUE ’PERSONNEL-ID’.
 02 FILLER PIC X(8) VALUE SPACE.
 02 FILLER PIC X(4) VALUE ’NAME’.
 02 FILLER PIC X(13) VALUE SPACE.
 02 FILLER PIC X(10) VALUE ’FIRST NAME’.
 02 FILLER PIC X(8) VALUE SPACE.
 02 FILLER PIC X(5) VALUE ’BIRTH’.
 02 FILLER PIC X(1) VALUE SPACE.
 02 FILLER PIC X(3) VALUE ’SEX’.
 01 HEADER2 PIC X(64) VALUE ALL ’*’.
 01 SPACE-LINE PIC X(80) VALUE SPACE.
 01 LINE1.
 02 FILLER PIC X(2) VALUE SPACE.
 02 PERSONNEL-NR PIC X(8) VALUE SPACE.
 02 FILLER PIC X(3) VALUE SPACE.
 02 LAST-NAME PIC X(20) VALUE SPACE.
 02 FILLER PIC X(1) VALUE SPACE.
 02 F-NAME PIC X(20) VALUE SPACE.

Adabas Native SQL Reference Manual
F

304

 02 FILLER PIC X(1) VALUE SPACE.
 02 BIRTHDAY PIC X(6) VALUE SPACE.
 02 FILLER PIC X(1) VALUE SPACE.
 02 KIND PIC X(1) VALUE SPACE.
*
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
*
 EXEC ADABAS
 DECLARE EMPL CURSOR FOR
 SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
 FROM EMPLOYEES, VEHICLES
 WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
 AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’
 AND VEHICLES.MODEL-YEAR-MAKE > :START-MODEL-YEAR-MAKE
 AND VEHICLES.CLASS = ’C’
 END-EXEC

 PROCEDURE DIVISION.
*
 DISPLAY HEADER.
 DISPLAY HEADER2.
 DISPLAY SPACE-LINE.
*
 EXEC ADABAS
 OPEN EMPL
 END-EXEC
*
 EXEC ADABAS
 FETCH EMPL
 END-EXEC
*
 PERFORM READ-EMPLOYEES UNTIL ADACODE = 3.
*
 EXEC ADABAS
 CLOSE EMPL
 END-EXEC
*
 EXEC ADABAS
 DBCLOSE
 END-EXEC
*
 STOP RUN.
*

Appendix F
F

305

 READ-EMPLOYEES.
 MOVE PERSONNEL-ID TO PERSONNEL-NR.
 MOVE NAME TO LAST-NAME.
 MOVE FIRST-NAME TO F-NAME.
 MOVE BIRTH TO BIRTHDAY.
 MOVE SEX TO KIND.
 DISPLAY LINE1.
 MOVE SPACE TO LINE1.
*
 EXEC ADABAS
 FETCH EMPL
 END-EXEC

Adabas Native SQL Reference Manual
F

306

Example 2

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CEX2.
 REMARKS.
* DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE *
* ASSIGNED TO THIS EMPLOYEE. A PRIVATE CAR WILL BE DELETED *
* AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED *
* BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE. *
 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 PERSONNEL-NUMBER PIC X(8) VALUE ’20007100’.
 01 EMPLOYEE-ISN PIC 9(9) COMP VALUE ZERO.
 01 COUNTRY-NUMBER.
 02 COUNTRY-NO PIC X(1) VALUE SPACE.
 02 FILLER PIC X(14) VALUE SPACE.
*
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
*
 EXEC ADABAS
 READ LOGICAL
 DECLARE VEH1 CURSOR FOR
 SELECT REG-NUM, PERSONNEL-ID, CLASS
 FROM VEHICLES
 WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
 OPTIONS HOLD
 ORDER BY PERSONNEL-ID
 END-EXEC
*
 PROCEDURE DIVISION.
*
*** FIND EMPLOYEE
*
 EXEC ADABAS
 FIND
 SELECT
 FROM EMPLOYEES EMPLOYEES-1
 WHERE PERSONNEL-ID = :PERSONNEL-NUMBER
 OPTIONS HOLD
 END-EXEC
*

Appendix F
F

307

*** IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
*** VEHICLES FILE
*
 IF QUANTITY OF EMPLOYEES-1 = 1
 MOVE ISN OF EMPLOYEES-1 TO EMPLOYEE-ISN
 PERFORM DELETE-EMPLOYEE
 PERFORM READ-VEHICLES-FILE
 ELSE
 DISPLAY
 ’NO EMPLOYEE FOUND WITH PERSONNEL-ID ’, PERSONNEL-NUMBER.
*
 EXEC ADABAS
 DBCLOSE
 END-EXEC
*
 STOP RUN.

*
 DELETE-EMPLOYEE.
 EXEC ADABAS
 DELETE
 FROM EMPLOYEES
 WHERE ISN = :EMPLOYEE-ISN
 END-EXEC
*
 DISPLAY ’EMPLOYEE ’, PERSONNEL-NUMBER, ’ HAS BEEN DELETED’.
*
 READ-VEHICLES-FILE.
 EXEC ADABAS
 OPEN VEH1
 END-EXEC
*
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
*
 PERFORM READ-VEHICLES UNTIL ADACODE = 3 OR
 PERSONNEL-ID OF VEHICLES > PERSONNEL-NUMBER.
*
 EXEC ADABAS
 CLOSE VEH1
 END-EXEC
*
 EXEC ADABAS
 COMMIT WORK
 END-EXEC

Adabas Native SQL Reference Manual
F

308

*
 READ-VEHICLES.
 IF CLASS = ’P’
 PERFORM DELETE-PRIVATE-CAR
 ELSE
 PERFORM UPDATE-COMPANY-CAR.
*
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
*
 DELETE-PRIVATE-CAR.
 EXEC ADABAS
 DELETE
 FROM VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 DISPLAY ’PRIVATE CAR ’, REG-NUM, ’ HAS BEEN DELETED’.
*
 UPDATE-COMPANY-CAR.
 MOVE PERSONNEL-ID OF VEHICLES TO COUNTRY-NUMBER.
 MOVE COUNTRY-NO TO PERSONNEL-ID OF VEHICLES.
*
 EXEC ADABAS
 UPDATE VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 DISPLAY ’COMPANY CAR ’, REG-NUM, ’ HAS BEEN UPDATED’.

Appendix F
F

309

Example 3

 IDENTIFICATION DIVISION.
 PROGRAM-ID. CEX3.
 REMARKS.
* SALARY INCREASE.
* THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
* 4 PERCENT.
* THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
* DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
* OUT.
* THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
* PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
* WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
* OCCURED.

 ENVIRONMENT DIVISION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
*
 01 COMMIT-DATA.
 02 COMMIT-DEPARTMENT PIC X(6) VALUE SPACE.
 02 COMMIT-SUM PIC S9(10) COMP-3 VALUE +0.
 01 START-DEPT PIC X(6) VALUE SPACE.
 01 IND PIC 9(4) COMP VALUE 0.
 01 I PIC 9(4) COMP VALUE 0.
 01 J PIC 9(4) COMP VALUE 0.
 01 NEW-SALARY PIC S9(9) COMP-3 VALUE +0.
 01 INCREASE PIC S9(9) COMP-3 VALUE +0.
 01 SUM-DEPARTMENT PIC S9(10) COMP-3 VALUE +0.
 01 SUM-TOTAL PIC S9(11) COMP-3 VALUE +0.
*
 01 HEADER.
 02 FILLER PIC X(10) VALUE ’DEPARTMENT’.
 02 FILLER PIC X(15) VALUE SPACE.
 02 FILLER PIC X(15) VALUE ’SALARY INCREASE’.
 01 HEADER2 PIC X(40) VALUE ALL ’*’.
 01 SPACE-LINE PIC X(50) VALUE SPACE.
 01 LINE1.
 02 FILLER PIC X(3) VALUE SPACE.
 02 DEPARTMENT PIC X(6) VALUE SPACE.
 02 FILLER PIC X(16) VALUE SPACE.
 02 SUM-DEPT PIC Z,ZZZ,ZZZ,ZZ9.

Adabas Native SQL Reference Manual
F

310

 01 LAST-LINE.
 02 FILLER PIC X(21) VALUE ’TOTAL SALARY INCREASE’.
 02 FILLER PIC X(3) VALUE ’ : ’.
 02 TOTAL-SUM-DEPT PIC ZZ,ZZZ,ZZZ,ZZZ.
*
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
*
 EXEC ADABAS
 HISTOGRAM
 DECLARE EMP1 CURSOR FOR
 SELECT DEPT
 FROM EMPLOYEES EMPLOYEES-1
 WHERE DEPT GE :COMMIT-DEPARTMENT
 GROUP BY DEPT
 END-EXEC
*
 EXEC ADABAS
 READ LOGICAL
 DECLARE EMP2 CURSOR FOR
 SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
 FROM EMPLOYEES
 WHERE DEPT GE :START-DEPT
 OPTIONS HOLD
 ORDER BY DEPT
 END-EXEC
*

 PROCEDURE DIVISION.
*
 EXEC ADABAS
 CONNECT ’INCREASE’
 UPD=EMPLOYEES
 AND USERDATA INTO :COMMIT-DATA
 END-EXEC
*
*** A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
*** EMPLOYEES PER DEPARTMENT
*
 EXEC ADABAS
 OPEN EMP1
 END-EXEC
*
 EXEC ADABAS
 FETCH EMP1

Appendix F
F

311

 END-EXEC
*
 IF COMMIT-DATA NOT = ’ ’
 PERFORM RESTART.
*
 MOVE DEPT OF EMPLOYEES-1 TO START-DEPT.
*
 EXEC ADABAS
 OPEN EMP2
 END-EXEC
*
 DISPLAY HEADER.
 DISPLAY HEADER2.
 DISPLAY SPACE-LINE.
 PERFORM HIST-EMPL UNTIL ADACODE = 3.
*
 EXEC ADABAS
 CLOSE EMP1
 END-EXEC
*
 EXEC ADABAS
 CLOSE EMP2
 END-EXEC
*
 DISPLAY SPACE-LINE.
 MOVE ALL ’-’ TO SPACE-LINE.
 DISPLAY SPACE-LINE.
 MOVE SPACES TO SPACE-LINE.
 DISPLAY SPACE-LINE.
 MOVE SUM-TOTAL TO TOTAL-SUM-DEPT.
 DISPLAY LAST-LINE.
 MOVE ’ ’ TO COMMIT-DATA.
*
 EXEC ADABAS
 DBCLOSE
 USERDATA = :COMMIT-DATA
 END-EXEC
*
 STOP RUN.
*

Adabas Native SQL Reference Manual
F

312

 RESTART.
 DISPLAY ’LAST PROGRAM RUN TERMINATED ABNORMALLY’.
 DISPLAY ’LAST DEPARTMENT WAS: ’, COMMIT-DEPARTMENT.
*
 EXEC ADABAS
 FETCH EMP1
 END-EXEC.
*
 HIST-EMPL.
*
*** THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
*** DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
*** UPDATED.
*
 PERFORM READ-EMPL VARYING J FROM 1 BY 1 UNTIL
 J > QUANTITY OF EMPLOYEES-1.
 MOVE DEPT OF EMPLOYEES TO DEPARTMENT.
 MOVE SUM-DEPARTMENT TO SUM-DEPT.
 MOVE ZERO TO SUM-DEPARTMENT.
 DISPLAY LINE1.
 MOVE SPACE TO LINE1.
*
 MOVE DEPT OF EMPLOYEES TO COMMIT-DEPARTMENT.
 MOVE SUM-TOTAL TO COMMIT-SUM.
 EXEC ADABAS
 COMMIT WORK
 USERDATA = :COMMIT-DATA
 END-EXEC
*
 EXEC ADABAS
 FETCH EMP1
 END-EXEC.
*
 READ-EMPL.
 EXEC ADABAS
 FETCH EMP2
 END-EXEC.

*
*** THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
*** PERIODIC GROUP IS LESS THAN 40.
*
 IF C-INCOME < 40
 PERFORM SALARY-INCREASE
 ELSE
 DISPLAY ’UPDATE PERSON ’, PERSONNEL-ID, ’ NOT POSSIBLE’.

Appendix F
F

313

*
 SALARY-INCREASE.
 COMPUTE INCREASE = SALARY(1) * 0.04.
 COMPUTE NEW-SALARY = SALARY(1) + INCREASE.
 ADD 1 C-INCOME OF EMPLOYEES GIVING IND.
 PERFORM INCREASE-IN-SALARY VARYING I FROM C-INCOME BY -1
 UNTIL I = 0.
 MOVE NEW-SALARY TO SALARY(1).
*
 EXEC ADABAS

 UPDATE EMPLOYEES
 WHERE CURRENT OF EMP2
 END-EXEC
*
 COMPUTE SUM-DEPARTMENT = SUM-DEPARTMENT + INCREASE.
 COMPUTE SUM-TOTAL = SUM-TOTAL + INCREASE.
*
 INCREASE-IN-SALARY.
 MOVE SALARY(I) TO SALARY(IND).
 SUBTRACT 1 FROM IND.

314

G

315

APPENDIX G — EXAMPLE OF COBOL CODE
GENERATED BY ADABAS NATIVE SQL

 IDENTIFICATION DIVISION. 00000010
 PROGRAM-ID. CEX1. 00000020
 REMARKS. 00000030
* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH *
* CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID *
* NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, *
* PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE *
* FOLLOWING CONDITION:
* PERSONNEL-ID BETWEEN 10000001 AND 19999999
* MODEL-YEAR-MAKE >
* CLASS = ’C’
 ENVIRONMENT DIVISION. 00000040
 DATA DIVISION. 00000050
 WORKING-STORAGE SECTION. 00000060
 01 START-MODEL-YEAR-MAKE. 00000070
 02 START-MODEL PIC X(20) VALUE ’MERCEDES-BENZ’. 00000080
 02 START-YEAR-MAKE PIC 9(2) VALUE 86. 00000090
*
 01 HEADER. 00000100
 02 FILLER PIC X(12) VALUE ’PERSONNEL-ID’. 00000110
 02 FILLER PIC X(8) VALUE SPACE. 00000120
 02 FILLER PIC X(4) VALUE ’NAME’. 00000130
 02 FILLER PIC X(13) VALUE SPACE. 00000140
 02 FILLER PIC X(10) VALUE ’FIRST NAME’. 00000150
 02 FILLER PIC X(8) VALUE SPACE. 00000160
 02 FILLER PIC X(5) VALUE ’BIRTH’. 00000170
 02 FILLER PIC X(1) VALUE SPACE. 00000180
 02 FILLER PIC X(3) VALUE ’SEX’. 00000190
 01 HEADER2 PIC X(64) VALUE ALL ’*’. 00000200
 01 SPACE-LINE PIC X(80) VALUE SPACE. 00000210
 01 LINE1. 00000220
 02 FILLER PIC X(2) VALUE SPACE. 00000230
 02 PERSONNEL-NR PIC X(8) VALUE SPACE. 00000240
 02 FILLER PIC X(3) VALUE SPACE. 00000250
 02 LAST-NAME PIC X(20) VALUE SPACE. 00000260
 02 FILLER PIC X(1) VALUE SPACE. 00000270
 02 F-NAME PIC X(20) VALUE SPACE. 00000280
 02 FILLER PIC X(1) VALUE SPACE. 00000290
 02 BIRTHDAY PIC X(6) VALUE SPACE. 00000300

Adabas Native SQL Reference Manual
G

316

 02 FILLER PIC X(1) VALUE SPACE. 00000310
 02 FILLER PIC X(8) VALUE SPACE. 00000120
 02 FILLER PIC X(4) VALUE ’NAME’. 00000130
 02 FILLER PIC X(13) VALUE SPACE. 00000140
 02 FILLER PIC X(10) VALUE ’FIRST NAME’. 00000150
 02 FILLER PIC X(8) VALUE SPACE. 00000160
 02 FILLER PIC X(5) VALUE ’BIRTH’. 00000170
 02 FILLER PIC X(1) VALUE SPACE. 00000180
 02 FILLER PIC X(3) VALUE ’SEX’. 00000190
 01 HEADER2 PIC X(64) VALUE ALL ’*’. 00000200
 01 SPACE-LINE PIC X(80) VALUE SPACE. 00000210

 01 LINE1. 00000220
 02 FILLER PIC X(2) VALUE SPACE. 00000230
 02 PERSONNEL-NR PIC X(8) VALUE SPACE. 00000240
 02 FILLER PIC X(3) VALUE SPACE. 00000250
 02 LAST-NAME PIC X(20) VALUE SPACE. 00000260
 02 FILLER PIC X(1) VALUE SPACE. 00000270
 02 F-NAME PIC X(20) VALUE SPACE. 00000280
 02 FILLER PIC X(1) VALUE SPACE. 00000290
 02 BIRTHDAY PIC X(6) VALUE SPACE. 00000300
 02 FILLER PIC X(1) VALUE SPACE. 00000310
 02 KIND PIC X(1) VALUE SPACE. 00000320
*
*
* EXEC ADABAS
* BEGIN DECLARE SECTION
* END-EXEC
*
 01 ADACODE PIC 9(4) COMP VALUE 0. ADABAS
 01 CONTROL-BLOCKOPN. ADABAS
 03 FILLER1OPN PIC XX VALUE ’AS’. ADABAS
 03 COMMAND-CODEOPN PIC XX VALUE SPACE. ADABAS
 03 COMMAND-IDOPN PIC X(4) VALUE ’OPEN’. ADABAS
 03 FILE-NUMBEROPN PIC 9(4) COMP VALUE 0. ADABAS
 03 FILLER REDEFINES FILE-NUMBEROPN . ADABAS
 04 DBIDOPN PIC X. ADABAS
 04 FILLER PIC X. ADABAS
 03 RESPONSE-CODEOPN PIC 9(4) COMP VALUE 0. ADABAS
 03 ISNOPN PIC 9(9) COMP VALUE 0. ADABAS
 03 ISN-LOWER-LIMITOPN PIC 9(9) COMP VALUE 0. ADABAS
 03 ISN-QUANTITYOPN PIC 9(9) COMP VALUE 0. ADABAS
 03 FORMAT-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE 0. ADABAS
 03 RECORD-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE 0. ADABAS
 03 SEARCH-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE 0. ADABAS

Appendix G
G

317

 03 VALUE-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE 0. ADABAS
 03 ISN-BUFFER-LENGTHOPN PIC 9(4) COMP VALUE 4. ADABAS
 03 COMMAND-OPTION-1OPN PIC X VALUE SPACE. ADABAS
 03 COMMAND-OPTION-2OPN PIC X VALUE SPACE. ADABAS
 03 ADDITIONS-1OPN VALUE SPACE. ADABAS
 04 ADDITIONS-1-12OPN PIC XX. ADABAS
 04 FILLER PIC XX. ADABAS
 04 ADDITIONS-1-58OPN PIC X(4). ADABAS
 03 FILLER REDEFINES ADDITIONS-1OPN . ADABAS
 04 ADDITIONS-1-BNOPN PIC 9(4) COMP. ADABAS
 04 FILLER PIC X(6). ADABAS
 03 ADDITIONS-2OPN PIC X(4) VALUE SPACE. ADABAS
 03 ADDITIONS-3OPN PIC X(8) VALUE SPACE. ADABAS
 03 ADDITIONS-4OPN . ADABAS
 04 ADDITIONS-4-12OPN PIC 9(4) COMP VALUE 0. ADABAS
 04 ADDITIONS-4-34OPN PIC 9(4) COMP VALUE 0. ADABAS
 04 ADDITIONS-4-56OPN PIC 9(4) COMP VALUE 0. ADABAS
 04 ADDITIONS-4-78OPN PIC 9(4) COMP VALUE 0. ADABAS
 03 ADDITIONS-5OPN . ADABAS
 04 ADDITIONS-5-BNOPN PIC 9(9) COMP VALUE 0. ADABAS
 04 ADDITIONS-5-58OPN PIC X(4) VALUE SPACE. ADABAS
 03 FILLER REDEFINES ADDITIONS-5OPN . ADABAS
 04 ADDITIONS-5-1OPN PIC X. ADABAS
 04 ADDITIONS-5-28OPN PIC X(7). ADABAS
 03 COMMAND-TIMEOPN PIC 9(9) COMP. ADABAS
 03 USER-AREAOPN PIC X(4) VALUE ’AS’. ADABAS
 01 FORMAT-BUFOPN PIC X. ADABAS
 01 SEARCH-BUFOPN PIC X. ADABAS
 01 VALUE-BUFOPN PIC X. ADABAS
 01 ISN-BUFOPN PIC X. ADABAS
 01 RECORD-BUFOPN PIC X(1500). ADABAS
 01 OPENTYPE PIC X(0010). ADABAS
 01 DDFILE PIC 999 VALUE 30. ADABAS
 01 CSEQ PIC X(8). ADABAS
 01 CLN1. ADABAS
 02 CLN1V PIC X(40) OCCURS 20. ADABAS
 01 CLN2. ADABAS
 04 ADDITIONS-4-78OPN PIC 9(4) COMP VALUE 0. ADABAS
 03 ADDITIONS-5OPN . ADABAS
 04 ADDITIONS-5-BNOPN PIC 9(9) COMP VALUE 0. ADABAS
 04 ADDITIONS-5-58OPN PIC X(4) VALUE SPACE. ADABAS
 03 FILLER REDEFINES ADDITIONS-5OPN . ADABAS
 04 ADDITIONS-5-1OPN PIC X. ADABAS
 04 ADDITIONS-5-28OPN PIC X(7). ADABAS
 03 COMMAND-TIMEOPN PIC 9(9) COMP. ADABAS
 03 USER-AREAOPN PIC X(4) VALUE ’AS’. ADABAS

Adabas Native SQL Reference Manual
G

318

 01 FORMAT-BUFOPN PIC X. ADABAS
 01 SEARCH-BUFOPN PIC X. ADABAS
 01 VALUE-BUFOPN PIC X. ADABAS
 01 ISN-BUFOPN PIC X. ADABAS
 01 RECORD-BUFOPN PIC X(1500). ADABAS
 01 OPENTYPE PIC X(0010). ADABAS
 01 DDFILE PIC 999 VALUE 30. ADABAS
 01 CSEQ PIC X(8). ADABAS
 01 CLN1. ADABAS
 02 CLN1V PIC X(40) OCCURS 20. ADABAS
 01 CLN2. ADABAS
 02 CLN2V PIC X(40) OCCURS 20. ADABAS
 01 CLNNUM PIC 9(4) COMP. ADABAS
 01 TRCE PIC X(7). ADABAS
 01 SQLRSP PIC 9(4) COMP. ADABAS
 01 SQLQTY PIC 9(9) COMP. ADABAS
 01 SQLISN PIC 9(9) COMP. ADABAS
 01 SAVE-DBID-1OPN PIC 9(4) COMP. ADABAS
 01 SAVE-DBID-DEFOPN REDEFINES SAVE-DBID-1OPN . ADABAS
 02 FILLER PIC X. ADABAS
 02 SAVE-DBIDOPN PIC X. ADABAS
 01 FORMAT-BUFEMPL. ADABAS
 02 FILLER PIC X(37) VALUE ADABAS
 ’AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG,1,A.’. ADABAS
 01 SEARCH-BUFEMPL. ADABAS
 02 FILLER PIC X(47) VALUE ADABAS
 ’(22,AA,24,AC)/22/AA,8,A,S,AA,8,A,D,/24/AD,20,A.’. ADABAS
 01 EMPLOYEES. ADADATA
 02 RECORD-BUFEMPL. ADADATA
 03 PERSONNEL-ID PIC X(0008). ADADATA
 03 NAME PIC X(0020). ADADATA
 03 FIRST-NAME PIC X(0020). ADADATA
 03 BIRTH PIC 9(0006). ADADATA
 03 SEX PIC X(0001). ADADATA
 02 ISN PIC 9(9) COMP. ADADATA
 02 QUANTITY PIC 9(9) COMP. ADADATA
 02 RESPONSE-CODE PIC 9(4) COMP. ADADATA
 01 VALUE-BUFEMPL. ADABAS
 02 V-PERSONNEL-ID-F PIC X(0008) ADABAS
 VALUE ’ ’. ADABAS
 02 V-PERSONNEL-ID-T PIC X(0008) ADABAS
 VALUE ’ ’. ADABAS
 02 V-MAKE PIC X(0020) ADABAS
 VALUE ’ ’. ADABAS
 01 ISN-BUFEMPL. ADABAS
 03 ISN-BUFVECEMPL OCCURS 1 PIC 9(9) COMP. ADABAS

Appendix G
G

319

 01 CONTROL-BLOCKEMPL. ADABAS
 03 FILLER1EMPL PIC XX VALUE ’AS’. ADABAS
 03 COMMAND-CODEEMPL PIC XX VALUE SPACE. ADABAS
 03 COMMAND-IDEMPL PIC X(4) VALUE ’EMPL’. ADABAS
 03 FILE-NUMBEREMPL PIC 9(4) COMP VALUE 22. ADABAS
 03 FILLER REDEFINES FILE-NUMBEREMPL. ADABAS
 04 DBIDEMPL PIC X. ADABAS
 04 FILLER PIC X. ADABAS
 03 RESPONSE-CODEEMPL PIC 9(4) COMP VALUE 0. ADABAS
 03 ISNEMPL PIC 9(9) COMP VALUE 0. ADABAS
 03 ISN-LOWER-LIMITEMPL PIC 9(9) COMP VALUE 0. ADABAS
 03 ISN-QUANTITYEMPL PIC 9(9) COMP VALUE 0. ADABAS
 03 FORMAT-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE 37. ADABAS
 03 RECORD-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE 55. ADABAS
 03 SEARCH-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE 47. ADABAS
 03 VALUE-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE 36. ADABAS
 03 ISN-BUFFER-LENGTHEMPL PIC 9(4) COMP VALUE 4. ADABAS
 03 COMMAND-OPTION-1EMPL PIC X VALUE SPACE. ADABAS
 03 COMMAND-OPTION-2EMPL PIC X VALUE SPACE. ADABAS
 03 ADDITIONS-1EMPL VALUE SPACE. ADABAS
 04 ADDITIONS-1-12EMPL PIC XX. ADABAS
 04 FILLER PIC XX. ADABAS
 04 ADDITIONS-1-58EMPL PIC X(4). ADABAS
 03 FILLER REDEFINES ADDITIONS-1EMPL. ADABAS
 04 ADDITIONS-1-BNEMPL PIC 9(4) COMP. ADABAS
 04 FILLER PIC X(6). ADABAS
 03 ADDITIONS-2EMPL PIC X(4) VALUE SPACE. ADABAS
 03 ADDITIONS-3EMPL PIC X(8) VALUE SPACE. ADABAS
 03 ADDITIONS-4EMPL PIC X(8) VALUE SPACE. ADABAS
 03 ADDITIONS-5EMPL . ADABAS
 04 ADDITIONS-5-BNEMPL PIC 9(9) COMP VALUE 0. ADABAS
 04 ADDITIONS-5-58EMPL PIC X(4) VALUE SPACE. ADABAS
 03 FILLER REDEFINES ADDITIONS-5EMPL. ADABAS
 04 ADDITIONS-5-1EMPL PIC X. ADABAS
 04 ADDITIONS-5-28EMPL PIC X(7). ADABAS
 03 COMMAND-TIMEEMPL PIC 9(9) COMP. ADABAS
 03 USER-AREAEMPL PIC X(4) VALUE ’AS’. ADABAS
 01 ISNSIZEEMPL PIC 9(9) COMP. ADABAS
 01 ISNMOREEMPL PIC 9(9) COMP. ADABAS
 01 ISNINDEMPL PIC 9(4) COMP. ADABAS
 01 EOF-COBEMPL PIC 9 VALUE 0. ADABAS
 88 EOFEMPL VALUE 1. ADABAS
 88 NOT-EOFEMPL VALUE 0. ADABAS
 01 SAVE-DBID-1EMPL PIC 9(4) COMP. ADABAS
 01 SAVE-DBID-DEFEMPL REDEFINES SAVE-DBID-1EMPL. ADABAS
 02 FILLER PIC X. ADABAS

Adabas Native SQL Reference Manual
G

320

 02 SAVE-DBIDEMPL PIC X. ADABAS
*
*
* EXEC ADABAS
* DECLARE EMPL CURSOR FOR
* SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
* FROM EMPLOYEES, VEHICLES
* WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
* AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’
* AND VEHICLES.MAKE = ’FORD’
* END-EXEC
*

 PROCEDURE DIVISION. 00000330
*
 DISPLAY HEADER. 00000340
 DISPLAY HEADER2. 00000350
 DISPLAY SPACE-LINE. 00000360
*
*
* EXEC ADABAS
* OPEN EMPL
* END-EXEC
*
 MOVE ’10000001’ TO V-PERSONNEL-ID-F OF VALUE-BUFEMPL ADABAS
 MOVE ’19999999’ TO V-PERSONNEL-ID-T OF VALUE-BUFEMPL ADABAS
 MOVE ’FORD’ TO V-MAKE OF VALUE-BUFEMPL ADABAS
 COMPUTE ISNSIZEEMPL = ISN-BUFFER-LENGTHEMPL / 4 ADABAS
 MOVE 1 TO ISNINDEMPL ADABAS
 MOVE 0 TO ISN-LOWER-LIMITEMPL ADABAS
 MOVE 0 TO ISN-QUANTITYEMPL ADABAS
 MOVE ’ ’ TO COMMAND-OPTION-2EMPL ADABAS
 MOVE ’ ’ TO COMMAND-OPTION-1EMPL ADABAS
 MOVE 0 TO ISN-BUFFER-LENGTHEMPL ADABAS
 MOVE ’S1’ TO COMMAND-CODEEMPL ADABAS
 CALL ’ADABAS’ USING ADABAS
 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ADABAS
 SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 ISN-BUFEMPL ADABAS
 MOVE ISNEMPL TO ISN OF ADABAS
 EMPLOYEES ADABAS
 MOVE ISN-QUANTITYEMPL TO QUANTITY OF ADABAS
 EMPLOYEES ADABAS
 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ADABAS
 EMPLOYEES ADABAS

Appendix G
G

321

 MOVE 0 TO ISNINDEMPL ADABAS
 IF RESPONSE-CODEEMPL NOT = 0 ADABAS
 MOVE ’ ’ TO CSEQ ADABAS
 MOVE ’ EXEC ADABAS ’ TO CLN1V (01) ADABAS
 MOVE ’ ’ TO CLN2V (01) ADABAS
 MOVE ’ OPEN EMPL ’ TO CLN1V (02) ADABAS
 MOVE ’ ’ TO CLN2V (02) ADABAS
 MOVE ’ END-EXEC ’ TO CLN1V (03) ADABAS
 MOVE ’ ’ TO CLN2V (03) ADABAS
 MOVE 03 TO CLNNUM ADABAS
 CALL ’RESPINT’ ADABAS
 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ADABAS
 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 CLN1 CLN2 TRCE CLNNUM. ADABAS
 MOVE ISN-QUANTITYEMPL TO ISNMOREEMPL ADABAS
 IF ISNMOREEMPL > 0 MOVE 0 TO EOF-COBEMPL ADABAS
 ELSE MOVE 1 TO EOF-COBEMPL. ADABAS
 IF ISNMOREEMPL < ISNSIZEEMPL ADABAS
 MOVE ISNMOREEMPL TO ISNSIZEEMPL. ADABAS

*
*
* EXEC ADABAS
* FETCH EMPL
* END-EXEC
*
 IF ISNINDEMPL = ISNMOREEMPL MOVE 1 TO EOF-COBEMPL. ADABAS
 IF NOT-EOFEMPL ADABAS
 MOVE 0 TO EOF-COBEMPL ADABAS
 MOVE ’N’ TO COMMAND-OPTION-2EMPL ADABAS
 MOVE ’ ’ TO COMMAND-OPTION-1EMPL ADABAS
 MOVE ’L1’ TO COMMAND-CODEEMPL ADABAS
 CALL ’ADABAS’ USING ADABAS
 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ADABAS
 SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 ISN-BUFEMPL ADABAS

 MOVE ISNEMPL TO ISN OF ADABAS
 EMPLOYEES ADABAS
 MOVE ISN-QUANTITYEMPL TO QUANTITY OF ADABAS
 EMPLOYEES ADABAS
 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ADABAS
 EMPLOYEES ADABAS
 IF RESPONSE-CODEEMPL = 3 ADABAS
 MOVE 1 TO EOF-COBEMPL ADABAS
 ELSE IF RESPONSE-CODEEMPL NOT = 0 ADABAS

Adabas Native SQL Reference Manual
G

322

 MOVE ’ ’ TO CSEQ ADABAS
 MOVE ’ EXEC ADABAS ’ TO CLN1V (01) ADABAS
 MOVE ’ ’ TO CLN2V (01) ADABAS
 MOVE ’ FETCH EMPL ’ TO CLN1V (02) ADABAS
 MOVE ’ ’ TO CLN2V (02) ADABAS
 MOVE ’ END-EXEC ’ TO CLN1V (03) ADABAS
 MOVE ’ ’ TO CLN2V (03) ADABAS
 MOVE 03 TO CLNNUM ADABAS
 CALL ’RESPINT’ ADABAS
 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ADABAS
 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 CLN1 CLN2 TRCE CLNNUM. ADABAS
 IF EOFEMPL MOVE 003 TO ADACODE ADABAS
 ELSE MOVE 0 TO ADACODE. ADABAS
*
 PERFORM READ-EMPLOYEES UNTIL ADACODE = 3. 00000370

*
*
* EXEC ADABAS
* CLOSE EMPL
* END-EXEC
*
 MOVE ’I’ TO COMMAND-OPTION-1EMPL ADABAS
 MOVE ’S’ TO COMMAND-OPTION-2EMPL ADABAS
 MOVE ’RC’ TO COMMAND-CODEEMPL ADABAS
 CALL ’ADABAS’ USING ADABAS
 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ADABAS
 SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 ISN-BUFEMPL ADABAS
 MOVE ISNEMPL TO ISN OF ADABAS
 EMPLOYEES ADABAS
 MOVE ISN-QUANTITYEMPL TO QUANTITY OF ADABAS
 EMPLOYEES ADABAS
 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ADABAS
 EMPLOYEES ADABAS
 IF RESPONSE-CODEEMPL NOT = 0 ADABAS
 MOVE ’ ’ TO CSEQ ADABAS
 MOVE ’ EXEC ADABAS ’ TO CLN1V (01) ADABAS
 MOVE ’ ’ TO CLN2V (01) ADABAS
 MOVE ’ CLOSE EMPL ’ TO CLN1V (02) ADABAS
 MOVE ’ ’ TO CLN2V (02) ADABAS
 MOVE ’ END-EXEC ’ TO CLN1V (03) ADABAS
 MOVE ’ ’ TO CLN2V (03) ADABAS
 MOVE 03 TO CLNNUM ADABAS

Appendix G
G

323

 CALL ’RESPINT’ ADABAS
 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ADABAS
 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 CLN1 CLN2 TRCE CLNNUM. ADABAS
*
*
* EXEC ADABAS
* DBCLOSE
* END-EXEC
*
 MOVE 1500 TO RECORD-BUFFER-LENGTHOPN ADABAS
 MOVE ’ ’ TO COMMAND-OPTION-2OPN ADABAS
 MOVE ’CL’ TO COMMAND-CODEOPN ADABAS
 CALL ’ADABAS’ USING ADABAS
 CONTROL-BLOCKOPN FORMAT-BUFOPN RECORD-BUFOPN ADABAS
 SEARCH-BUFOPN VALUE-BUFOPN ADABAS
 ISN-BUFOPN ADABAS
 IF RESPONSE-CODEOPN NOT = 0 ADABAS
 MOVE ’ ’ TO CSEQ ADABAS
 MOVE ’ EXEC ADABAS ’ TO CLN1V (01) ADABAS
 MOVE ’ ’ TO CLN2V (01) ADABAS
 MOVE ’ DBCLOSE ’ TO CLN1V (02) ADABAS
 MOVE ’ ’ TO CLN2V (02) ADABAS
 MOVE ’ END-EXEC ’ TO CLN1V (03) ADABAS
 MOVE ’ ’ TO CLN2V (03) ADABAS
 MOVE 03 TO CLNNUM ADABAS
 CALL ’RESPINT’ ADABAS
 USING CONTROL-BLOCKOPN DDFILE CSEQ FORMAT-BUFOPN ADABAS
 RECORD-BUFOPN SEARCH-BUFOPN VALUE-BUFOPN ADABAS
 CLN1 CLN2 TRCE CLNNUM. ADABAS
*
 STOP RUN. 00000380

*
 READ-EMPLOYEES. 00000390
 MOVE PERSONNEL-ID TO PERSONNEL-NR. 00000400
 MOVE NAME TO LAST-NAME. 00000410
 MOVE FIRST-NAME TO F-NAME. 00000420
 MOVE BIRTH TO BIRTHDAY. 00000430
 MOVE SEX TO KIND. 00000440
 DISPLAY LINE1. 00000450
 MOVE SPACE TO LINE1. 00000460
*
* 00000470
* EXEC ADABAS 00000480

Adabas Native SQL Reference Manual
G

324

* FETCH EMPL 00000490
* END-EXEC 00000500
* 00000510
 IF ISNINDEMPL = ISNMOREEMPL MOVE 1 TO EOF-COBEMPL. ADABAS
 IF NOT-EOFEMPL ADABAS
 MOVE 0 TO EOF-COBEMPL ADABAS
 MOVE ’N’ TO COMMAND-OPTION-2EMPL ADABAS
 MOVE ’ ’ TO COMMAND-OPTION-1EMPL ADABAS
 MOVE ’L1’ TO COMMAND-CODEEMPL ADABAS
 CALL ’ADABAS’ USING ADABAS
 CONTROL-BLOCKEMPL FORMAT-BUFEMPL RECORD-BUFEMPL ADABAS
 SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 ISN-BUFEMPL ADABAS
 MOVE ISNEMPL TO ISN OF ADABAS
 EMPLOYEES ADABAS
 MOVE ISN-QUANTITYEMPL TO QUANTITY OF ADABAS
 EMPLOYEES ADABAS
 MOVE RESPONSE-CODEEMPL TO RESPONSE-CODE OF ADABAS
 EMPLOYEES ADABAS
 IF RESPONSE-CODEEMPL = 3 ADABAS
 MOVE 1 TO EOF-COBEMPL ADABAS
 ELSE IF RESPONSE-CODEEMPL NOT = 0 ADABAS
 MOVE ’ ’ TO CSEQ ADABAS
 MOVE ’ EXEC ADABAS ’ TO CLN1V (01) ADABAS
 MOVE ’ ’ TO CLN2V (01) ADABAS
 MOVE ’ FETCH EMPL ’ TO CLN1V (02) ADABAS
 MOVE ’ ’ TO CLN2V (02) ADABAS
 MOVE ’ END-EXEC ’ TO CLN1V (03) ADABAS
 MOVE ’ ’ TO CLN2V (03) ADABAS
 MOVE 03 TO CLNNUM ADABAS
 CALL ’RESPINT’ ADABAS
 USING CONTROL-BLOCKEMPL DDFILE CSEQ FORMAT-BUFEMPL ADABAS
 RECORD-BUFEMPL SEARCH-BUFEMPL VALUE-BUFEMPL ADABAS
 CLN1 CLN2 TRCE CLNNUM. ADABAS
 IF EOFEMPL MOVE 003 TO ADACODE ADABAS
 ELSE MOVE 0 TO ADACODE. ADABAS

H

325

APPENDIX H — FORTRAN EXAMPLES

Example 1

 PROGRAM FEX1
C AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
C CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
C NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
C PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
C FOLLOWING CONDITION:
C PERSONNEL-ID BETWEEN 10000001 AND 19999999
C MODEL-YEAR-MAKE >
C CLASS = ’C’
 CHARACTER*22 STARTS
 CHARACTER*20 STARTM /’MERCEDES BENZ’/
 CHARACTER*2 STAYM /’86’/
 EQUIVALENCE (STARTS,STARTM)
 EQUIVALENCE (STARTS(21:21),STAYM)
C
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
C
 EXEC ADABAS
 DECLARE EMPL CURSOR FOR
 SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
 FROM EMPLOYEES, VEHICLES
 WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
 AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’
 AND VEHICLES.MODEL-YEAR-MAKE > :STARTS
 AND VEHICLES.CLASS = ’C’
 END-EXEC
C
 WRITE (6,10)
C
 EXEC ADABAS
 OPEN EMPL
 END-EXEC
C
 EXEC ADABAS
 FETCH EMPL
 END-EXEC
C

Adabas Native SQL Reference Manual
H

326

 1 IF (SQLCOD .EQ. 3) GOTO 2
C
 WRITE (6,20) PID,NAME,FNAME,BIRTH,SEX
C
 EXEC ADABAS
 FETCH EMPL
 END-EXEC
C
 GOTO 1
C

 2 CONTINUE
C
 EXEC ADABAS
 CLOSE EMPL
 END-EXEC
C
 EXEC ADABAS
 DBCLOSE
 END-EXEC
C
 10 FORMAT (’1PERSONNEL-ID’,8X,’NAME’,13X,’FIRST-NAME’,8X,
 * ’BIRTH’,1X,’SEX’ / 1X,64(’*’) /)
 20 FORMAT (3X,A8,3X,A20,1X,A20,1X,A6,1X,A1)
C
 END

Appendix H
H

327

Example 2

 PROGRAM FEX2
C DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE
C ASSIGNED TO THIS EMPLOYEE. A PRIVATE CARS WILL BE DELETED
C AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
C BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.
C
 CHARACTER*8 PERSNR /’20007100’/
 INTEGER*4 EMPISN
 CHARACTER*15 CNUM
 CHARACTER*1 CNO
 EQUIVALENCE (CNUM,CNO)
C
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
C
 EXEC ADABAS
 READ LOGICAL
 DECLARE VEH1 CURSOR FOR
 SELECT REG-NUM, PERSONNEL-ID, CLASS
 FROM VEHICLES
 WHERE PERSONNEL-ID GE :PERSNR
 OPTIONS HOLD
 ORDER BY PERSONNEL-ID
 END-EXEC
C
C FIND EMPLOYEE
C
 EXEC ADABAS
 FIND
 SELECT
 FROM EMPLOYEES EMPL1
 WHERE PERSONNEL-ID = :PERSNR
 OPTIONS HOLD
 END-EXEC
C
C IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
C VEHICLES FILE
C
 IF (SQLQTY .EQ. 1) THEN
 EMPISN = SQLISN
 GOTO 3
 1 GOTO 4

Adabas Native SQL Reference Manual
H

328

 ELSE
 WRITE (6,10) PERSNR
 END IF
C
 2 CONTINUE
C
 EXEC ADABAS
 DBCLOSE
 END-EXEC
C
 STOP

C
C*** DELETE EMPLOYEE
C
 3 CONTINUE
C
 EXEC ADABAS
 DELETE
 FROM EMPLOYEES
 WHERE ISN = :EMPISN
 END-EXEC
C
 WRITE (6,20) PERSNR
C
 GOTO 1
C
C*** DEALLOCATE CARS
C
 4 CONTINUE
C
 EXEC ADABAS
 OPEN VEH1
 END-EXEC
C
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
C
 5 IF (SQLCOD .EQ. 3 .OR. PID .NE. PERSNR) GOTO 6
C
 IF (CLASS .EQ. ’P’) THEN
 EXEC ADABAS
 DELETE
 FROM VEHICLES

Appendix H
H

329

 WHERE CURRENT OF VEH1
 END-EXEC
 WRITE (6,30) REGNUM
 ELSE
 CNUM = PID
 PID = CNO
 EXEC ADABAS
 UPDATE VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 WRITE (6,40) REGNUM
 END IF
C
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
C
 GOTO 5
C
 6 CONTINUE
C
 EXEC ADABAS
 CLOSE VEH1
 END-EXEC
C
 EXEC ADABAS
 COMMIT WORK
 END-EXEC
C
 GOTO 2

C
 10 FORMAT (’ NO EMPLOYEE FOUND WITH PERSONNEL-ID ’,A8)
 20 FORMAT (’ EMPLOYEE ’,A8,’ HAS BEEN DELETED’)
 30 FORMAT (’ PRIVATE CAR ’,A15,’ HAS BEEN DELETED’)
 40 FORMAT (’ COMPANY CAR ’,A15,’ HAS BEEN UPDATED’)
 END

Adabas Native SQL Reference Manual
H

330

Example 3

 PROGRAM FEX3
C SALARY INCREASE.
C THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
C 4 PERCENT.
C THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
C DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
C OUT.
C THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
C PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
C WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
C OCCURED.
C
 CHARACTER*10 COMDAT
 CHARACTER*6 COMDEP
 INTEGER*4 COMSUM
 EQUIVALENCE (COMDAT,COMDEP)
 EQUIVALENCE (COMDAT(7:7),COMSUM)
 CHARACTER*6 SDEP
 INTEGER*4 IND, I, J, NEWSAL, INCRS, SUMDEP, SUMTOT, E1QTY
C
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
C
 EXEC ADABAS
 HISTOGRAM
 DECLARE EMP1 CURSOR FOR
 SELECT DEPT
 FROM EMPLOYEES E1
 WHERE DEPT GE :COMDEP
 OPTIONS PREFIX=E1
 GROUP BY DEPT
 END-EXEC
C
 EXEC ADABAS
 READ LOGICAL
 DECLARE EMP2 CURSOR FOR
 SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
 FROM EMPLOYEES
 WHERE DEPT GE :SDEP
 OPTIONS HOLD
 ORDER BY DEPT
 END-EXEC

Appendix H
H

331

C
 EXEC ADABAS
 CONNECT ’INCREASE’
 UPD=EMPLOYEES
 AND USERDATA INTO :COMDAT
 END-EXEC
C
C A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
C EMPLOYEES PER DEPARTMENT
C
 EXEC ADABAS
 OPEN EMP1
 END-EXEC

C
 EXEC ADABAS
 FETCH EMP1
 END-EXEC
 E1QTY = SQLQTY
C
 IF (COMDAT .NE. ’ ’) THEN
C
C RESTART PROCESSING
C
 WRITE (6,*) ’LAST PROGRAM RUN TERMINATED ABNORMALLY’
 WRITE (6,50) COMDEP
C
 EXEC ADABAS
 FETCH EMP1
 END-EXEC.
 E1QTY = SQLQTY
 END IF
C
 SDEP = E1DEPT
C
 EXEC ADABAS
 OPEN EMP2
 END-EXEC
C
 WRITE (6,10)
C
 1 IF (SQLCOD .EQ. 3) GOTO 4
C
C THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
C DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN

Adabas Native SQL Reference Manual
H

332

C UPDATED
C
 DO 3 J=1, E1QTY
 EXEC ADABAS
 FETCH EMP2
 END-EXEC
C THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
C PERIODIC GROUP IS LESS THAN 40.
 IF (CINC .LT. 40) THEN
 INCRS = NINT(REAL(SALARY(1)) * 0.04)
 NEWSAL = SALARY(1) + INCRS
 IND = CINC + 1
C
 DO 2 I = CINC, 0, -1
 SALARY(IND) = SALARY(I)
 IND = IND – 1
 2 CONTINUE
C
 SALARY(1) = NEWSAL
C
 EXEC ADABAS
 UPDATE EMPLOYEES
 WHERE CURRENT OF EMP2
 END-EXEC
C
 SUMDEP = SUMDEP + INCRS
 SUMTOT = SUMTOT + INCRS
 ELSE
 WRITE (6,40) PID
 END IF
C
 3 CONTINUE

C
 WRITE (6,20) DEPT, SUMDEP
 SUMDEP = 0
C
 COMDEP = DEPT
 COMSUM = SUMTOT
 EXEC ADABAS
 COMMIT WORK
 USERDATA = :COMDAT
 END-EXEC
C
 EXEC ADABAS
 FETCH EMP1

Appendix H
H

333

 END-EXEC
 E1QTY = SQLQTY
C
 GOTO 1
C
 4 CONTINUE
C
 EXEC ADABAS
 CLOSE EMP1
 END-EXEC
C
 EXEC ADABAS
 CLOSE EMP2
 END-EXEC
C
 WRITE (6,30) SUMTOT
 COMDAT = ’ ’
C
 EXEC ADABAS
 DBCLOSE
 USERDATA = :COMDAT
 END-EXEC
C
 10 FORMAT (’ DEPARTMENT’,15X,’SALARY INCREASE’/1X,40(’*’))
 20 FORMAT (4X,A6,16X,I10)
 30 FORMAT (/50(’-’)//’ TOTAL SALARY INCREASE : ’,I11)
 40 FORMAT (’ UPDATE PERSON ’,A8,’ NOT POSSIBLE’)
 50 FORMAT (’ LAST DEPARTMENT WAS ’,A6)
 END

334

I

335

APPENDIX I — EXAMPLE OF FORTRAN CODE
GENERATED BY ADABAS NATIVE SQL

 PROGRAM FEX1 00000010
C AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH 00000020
C CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID 00000030
C NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, 00000040
C PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE 00000050
C FOLLOWING CONDITION: 00000060
C PERSONNEL-ID BETWEEN 10000001 AND 19999999 00000070
C MODEL-YEAR-MAKE > 00000080
C CLASS = ’C’ 00000090
 CHARACTER*22 STARTS 00000100
 CHARACTER*20 STARTM /’MERCEDES BENZ’/ 00000110
 CHARACTER*2 STAYM /’86’/ 00000120
 EQUIVALENCE (STARTS,STARTM) 00000130
 EQUIVALENCE (STARTS(21:21),STAYM) 00000140
C 00000150
* 00000160
* EXEC ADABAS 00000170
* BEGIN DECLARE SECTION 00000180
* END-EXEC 00000190
* 00000200
 INTEGER*2 SQLCOD /0/ ADABAS
 CHARACTER* 2 SQC000 /’AS’ / ADABAS
 CHARACTER* 2 SQCC00 /’ ’ / ADABAS
 CHARACTER* 4 SQCI00 /’OPEN’ / ADABAS
 INTEGER* 2 SQCF00 / 0 / ADABAS
 INTEGER* 2 SQCR00 / 0 / ADABAS
 INTEGER* 4 SQCS00 / 0 / ADABAS
 INTEGER* 4 SQCL00 / 0 / ADABAS
 INTEGER* 4 SQCQ00 / 0 / ADABAS
 INTEGER* 2 SQC300 / 0 / ADABAS
 INTEGER* 2 SQC400 / 0 / ADABAS
 INTEGER* 2 SQC500 / 0 / ADABAS
 INTEGER* 2 SQC600 / 0 / ADABAS
 INTEGER* 2 SQC700 / 4 / ADABAS
 CHARACTER* 1 SQC100 /’ ’ / ADABAS
 CHARACTER* 1 SQC200 /’ ’ / ADABAS
 CHARACTER* 8 SQCM00 /’ ’ / ADABAS
 CHARACTER* 4 SQCN00 /’ ’ / ADABAS
 CHARACTER* 8 SQCO00 /’ ’ / ADABAS

Adabas Native SQL Reference Manual
I

336

 INTEGER* 2 SQCE00 / 0 / ADABAS
 INTEGER* 2 SQCH00 / 0 / ADABAS
 INTEGER* 2 SQCJ00 / 0 / ADABAS
 INTEGER* 2 SQCK00 / 0 / ADABAS
 INTEGER* 4 SQC800 / 0 / ADABAS
 INTEGER* 4 SQCT00 / 0 / ADABAS
 CHARACTER* 4 SQCU00 /’AS ’ / ADABAS
 CHARACTER* 4 SQC900 /’ ’ / ADABAS
 CHARACTER* 1 SQCD00 ADABAS
 CHARACTER* 2 SQCV00 ADABAS
 CHARACTER* 4 SQCW00 ADABAS
 CHARACTER* 8 SQCP00 ADABAS
 CHARACTER* 7 SQCG00 ADABAS
 CHARACTER* 1 SQCZ00 ADABAS
 CHARACTER* 80 SQCB00 ADABAS
 INTEGER* 2 SQCY00 ADABAS
 CHARACTER* 1 SQCA00(00080) ADABAS
 EQUIVALENCE (SQCA00(00001),SQCB00) ADABAS
 EQUIVALENCE (SQCA00(00001),SQC000) ADABAS
 EQUIVALENCE (SQCA00(00003),SQCC00) ADABAS
 EQUIVALENCE (SQCA00(00005),SQCI00) ADABAS
 EQUIVALENCE (SQCA00(00009),SQCF00) ADABAS
 EQUIVALENCE (SQCA00(00009),SQCD00) ADABAS
 EQUIVALENCE (SQCA00(00011),SQCR00) ADABAS
 EQUIVALENCE (SQCA00(00013),SQCS00) ADABAS
 EQUIVALENCE (SQCA00(00017),SQCL00) ADABAS
 EQUIVALENCE (SQCA00(00021),SQCQ00) ADABAS
 EQUIVALENCE (SQCA00(00025),SQC300) ADABAS
 EQUIVALENCE (SQCA00(00027),SQC400) ADABAS
 EQUIVALENCE (SQCA00(00029),SQC500) ADABAS
 EQUIVALENCE (SQCA00(00031),SQC600) ADABAS
 EQUIVALENCE (SQCA00(00033),SQC700) ADABAS
 EQUIVALENCE (SQCA00(00035),SQC100) ADABAS
 EQUIVALENCE (SQCA00(00036),SQC200) ADABAS
 EQUIVALENCE (SQCA00(00037),SQCM00) ADABAS
 EQUIVALENCE (SQCA00(00037),SQCV00) ADABAS
 EQUIVALENCE (SQCA00(00037),SQCY00) ADABAS
 EQUIVALENCE (SQCA00(00041),SQCW00) ADABAS
 EQUIVALENCE (SQCA00(00045),SQCN00) ADABAS
 EQUIVALENCE (SQCA00(00049),SQCO00) ADABAS
 EQUIVALENCE (SQCA00(00057),SQCP00) ADABAS
 EQUIVALENCE (SQCA00(00057),SQCE00) ADABAS
 EQUIVALENCE (SQCA00(00059),SQCH00) ADABAS
 EQUIVALENCE (SQCA00(00061),SQCJ00) ADABAS
 EQUIVALENCE (SQCA00(00063),SQCK00) ADABAS
 EQUIVALENCE (SQCA00(00065),SQC800) ADABAS

Appendix I
I

337

 EQUIVALENCE (SQCA00(00065),SQCZ00) ADABAS
 EQUIVALENCE (SQCA00(00066),SQCG00) ADABAS
 EQUIVALENCE (SQCA00(00069),SQC900) ADABAS
 EQUIVALENCE (SQCA00(00073),SQCT00) ADABAS
 EQUIVALENCE (SQCA00(00077),SQCU00) ADABAS
 CHARACTER* 1 SQFB00 ADABAS
 CHARACTER* 1 SQSB00 ADABAS
 CHARACTER* 1 SQVB00 ADABAS
 CHARACTER* 1 SQDS00 ADABAS
 CHARACTER* 500 SQRB00 ADABAS
 CHARACTER* 10 SQDK00 ADABAS
 CHARACTER* 3 SQDD00 /’030’ / ADABAS
 CHARACTER* 8 SQDA00 ADABAS
 CHARACTER* 40 SQDB00(00020) ADABAS
 CHARACTER* 40 SQDC00(00020) ADABAS
 CHARACTER* 7 SQDE00 ADABAS
 INTEGER* 2 SQDG00 ADABAS
 INTEGER* 2 SQLRSP ADABAS
 INTEGER* 4 SQLQTY ADABAS
 INTEGER* 4 SQLISN ADABAS
 CHARACTER* 8 SQDL00 ADABAS
 INTEGER* 2 SQDN00 ADABAS
 INTEGER* 4 SQDO00 ADABAS
 REAL* 4 SQDP00 ADABAS
 REAL* 8 SQDQ00 ADABAS
 CHARACTER* 1 SQDM00(00008) ADABAS
 EQUIVALENCE (SQDM00(00001),SQDL00) ADABAS
 EQUIVALENCE (SQDM00(00001),SQDN00) ADABAS
 EQUIVALENCE (SQDM00(00001),SQDO00) ADABAS
 EQUIVALENCE (SQDM00(00001),SQDP00) ADABAS
 EQUIVALENCE (SQDM00(00001),SQDQ00) ADABAS
 INTEGER* 2 SQDR00 ADABAS
 CHARACTER* 1 SQDF00 ADABAS
 CHARACTER* 1 SQDT00(00002) ADABAS
 EQUIVALENCE (SQDT00(00001),SQDR00) ADABAS
 EQUIVALENCE (SQDT00(00002),SQDF00) ADABAS
 CHARACTER* 37 SQFB01 ADABAS
 CHARACTER* 1 SQFA01(00037) ADABAS
 EQUIVALENCE (SQFA01(00001),SQFB01) ADABAS
 CHARACTER*37 SQFC01/’AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG,1,A.’/ ADABAS
 EQUIVALENCE (SQFA01(00001),SQFC01) ADABAS
 CHARACTER* 59 SQSB01 ADABAS
 CHARACTER* 1 SQSA01(00059) ADABAS
 EQUIVALENCE (SQSA01(00001),SQSB01) ADABAS
 CHARACTER*40 SQSC01/’(22,AA,24,AC)/22/AA,8,A,S,AA,8,A,D,/24/A’/ ADABAS
 EQUIVALENCE (SQSA01(00001),SQSC01) ADABAS

Adabas Native SQL Reference Manual
I

338

 CHARACTER*19 SQSD01/’O,22,A,GT,D,AH,1,A.’/ ADABAS
 EQUIVALENCE (SQSA01(00041),SQSD01) ADABAS
 EQUIVALENCE (SQRA01(00001),SQRB01) ADADATA
 EQUIVALENCE (SQRA01(00001),EMPLOY) ADADATA
 CHARACTER* 8 PID ADADATA
 EQUIVALENCE (SQRA01(00001),PID) ADADATA
 CHARACTER* 20 NAME ADADATA
 EQUIVALENCE (SQRA01(00009),NAME) ADADATA
 CHARACTER* 20 FIRSTN ADADATA
 EQUIVALENCE (SQRA01(00029),FIRSTN) ADADATA
 CHARACTER* 6 BIRTH ADADATA
 EQUIVALENCE (SQRA01(00049),BIRTH) ADADATA
 CHARACTER* 1 SEX ADADATA
 EQUIVALENCE (SQRA01(00055),SEX) ADADATA
 CHARACTER* 55 EMPLOY ADADATA
 CHARACTER* 55 SQRB01 ADADATA
 CHARACTER* 1 SQRA01(00055) ADADATA
 EQUIVALENCE (SQVA01(00001),SQVB01) ADABAS
 CHARACTER* 8 SQVC01 /’ ’ / ADABAS
 EQUIVALENCE (SQVA01(00001),SQVC01) ADABAS
 CHARACTER* 8 SQVD01 /’ ’ / ADABAS
 EQUIVALENCE (SQVA01(00009),SQVD01) ADABAS
 CHARACTER* 22 SQVE01 /’ ’ / ADABAS
 EQUIVALENCE (SQVA01(00017),SQVE01) ADABAS
 CHARACTER* 1 SQVF01 /’ ’ / ADABAS
 EQUIVALENCE (SQVA01(00039),SQVF01) ADABAS
 CHARACTER* 39 SQVB01 ADABAS
 CHARACTER* 1 SQVA01(00039) ADABAS
 INTEGER* 4 SQDS01(00001) ADABAS
 CHARACTER* 2 SQC001 /’AS’ / ADABAS
 CHARACTER* 2 SQCC01 /’ ’ / ADABAS
 CHARACTER* 4 SQCI01 /’EMPL’ / ADABAS
 INTEGER* 2 SQCF01 / 22 / ADABAS
 INTEGER* 2 SQCR01 / 0 / ADABAS
 INTEGER* 4 SQCS01 / 0 / ADABAS
 INTEGER* 4 SQCL01 / 0 / ADABAS
 INTEGER* 4 SQCQ01 / 0 / ADABAS
 INTEGER* 2 SQC301 / 37 / ADABAS
 INTEGER* 2 SQC401 / 55 / ADABAS
 INTEGER* 2 SQC501 / 59 / ADABAS
 INTEGER* 2 SQC601 / 39 / ADABAS
 INTEGER* 2 SQC701 / 4 / ADABAS
 CHARACTER* 1 SQC101 /’ ’ / ADABAS
 CHARACTER* 1 SQC201 /’ ’ / ADABAS
 CHARACTER* 8 SQCM01 /’ ’ / ADABAS
 CHARACTER* 4 SQCN01 /’ ’ / ADABAS

Appendix I
I

339

 CHARACTER* 8 SQCO01 /’ ’ / ADABAS
 CHARACTER* 8 SQCP01 /’ ’ / ADABAS
 INTEGER* 4 SQC801 / 0 / ADABAS
 INTEGER* 4 SQCT01 / 0 / ADABAS
 CHARACTER* 4 SQCU01 /’AS ’ / ADABAS
 CHARACTER* 4 SQC901 /’ ’ / ADABAS
 CHARACTER* 1 SQCD01 ADABAS
 CHARACTER* 2 SQCV01 ADABAS
 CHARACTER* 4 SQCW01 ADABAS
 CHARACTER* 7 SQCG01 ADABAS
 CHARACTER* 1 SQCZ01 ADABAS
 CHARACTER* 80 SQCB01 ADABAS
 INTEGER* 2 SQCY01 ADABAS
 CHARACTER* 1 SQCA01(00080) ADABAS
 EQUIVALENCE (SQCA01(00001),SQCB01) ADABAS
 EQUIVALENCE (SQCA01(00001),SQC001) ADABAS
 EQUIVALENCE (SQCA01(00003),SQCC01) ADABAS
 EQUIVALENCE (SQCA01(00005),SQCI01) ADABAS
 EQUIVALENCE (SQCA01(00009),SQCF01) ADABAS
 EQUIVALENCE (SQCA01(00009),SQCD01) ADABAS
 EQUIVALENCE (SQCA01(00011),SQCR01) ADABAS
 EQUIVALENCE (SQCA01(00013),SQCS01) ADABAS
 EQUIVALENCE (SQCA01(00017),SQCL01) ADABAS
 EQUIVALENCE (SQCA01(00021),SQCQ01) ADABAS
 EQUIVALENCE (SQCA01(00025),SQC301) ADABAS
 EQUIVALENCE (SQCA01(00027),SQC401) ADABAS
 EQUIVALENCE (SQCA01(00029),SQC501) ADABAS
 EQUIVALENCE (SQCA01(00031),SQC601) ADABAS
 EQUIVALENCE (SQCA01(00033),SQC701) ADABAS
 EQUIVALENCE (SQCA01(00035),SQC101) ADABAS
 EQUIVALENCE (SQCA01(00036),SQC201) ADABAS
 EQUIVALENCE (SQCA01(00037),SQCM01) ADABAS
 EQUIVALENCE (SQCA01(00037),SQCV01) ADABAS
 EQUIVALENCE (SQCA01(00037),SQCY01) ADABAS
 EQUIVALENCE (SQCA01(00041),SQCW01) ADABAS
 EQUIVALENCE (SQCA01(00045),SQCN01) ADABAS
 EQUIVALENCE (SQCA01(00049),SQCO01) ADABAS
 EQUIVALENCE (SQCA01(00057),SQCP01) ADABAS
 EQUIVALENCE (SQCA01(00065),SQC801) ADABAS
 EQUIVALENCE (SQCA01(00065),SQCZ01) ADABAS
 EQUIVALENCE (SQCA01(00066),SQCG01) ADABAS
 EQUIVALENCE (SQCA01(00069),SQC901) ADABAS
 EQUIVALENCE (SQCA01(00073),SQCT01) ADABAS
 EQUIVALENCE (SQCA01(00077),SQCU01) ADABAS
 INTEGER* 4 SQDH01 ADABAS
 INTEGER* 4 SQDJ01 ADABAS

Adabas Native SQL Reference Manual
I

340

 INTEGER* 2 SQDI01 ADABAS
 LOGICAL* 1 SQEF01 /.FALSE./ ADABAS
 INTEGER* 2 SQDR01 ADABAS
 CHARACTER* 1 SQDF01 ADABAS
 CHARACTER* 1 SQDT01(00002) ADABAS
 EQUIVALENCE (SQDT01(00001),SQDR01) ADABAS
 EQUIVALENCE (SQDT01(00002),SQDF01) ADABAS
C 00000210
* 00000220
* EXEC ADABAS 00000230
* DECLARE EMPL CURSOR FOR 00000240
* SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX 00000250
* FROM EMPLOYEES, VEHICLES 00000260
* WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID 00000270
* AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’ 00000280
* AND VEHICLES.MODEL-YEAR-MAKE > :STARTS 00000290
* AND VEHICLES.CLASS = ’C’ 00000300
* END-EXEC 00000310
* 00000320
C 00000330
 WRITE (6,10) 00000340
C 00000350
* 00000360
* EXEC ADABAS 00000370
* OPEN EMPL 00000380
* END-EXEC 00000390
* 00000400
 SQVC01 =’10000001’ ADABAS
 SQVD01 =’19999999’ ADABAS
 SQVE01 =STARTS ADABAS
 SQVF01 =’C’ ADABAS
 SQDA00=’00000400’ ADABAS
 SQDB00(01)=’ EXEC ADABAS ’ ADABAS
 SQDC00(01)=’ ’ ADABAS
 SQDB00(02)=’ OPEN EMPL ’ ADABAS
 SQDC00(02)=’ ’ ADABAS
 SQDB00(03)=’ END-EXEC ’ ADABAS
 SQDC00(03)=’ ’ ADABAS
 SQDG00=03 ADABAS
 SQDH01=SQC701 / 4 ADABAS
 SQDI01=1 ADABAS
 SQCL01=0 ADABAS
 SQCQ01=0 ADABAS
 SQC201=’ ’ ADABAS
 SQC101=’ ’ ADABAS
 SQC701=0 ADABAS

Appendix I
I

341

 SQDR01=188 ADABAS
 SQCD01=SQDF01 ADABAS
 SQCC01=’S1’ ADABAS
 CALL ADABAS (ADABAS
 1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
 1 SQDS01) ADABAS
 SQLRSP=SQCR01 ADABAS
 SQLQTY=SQCQ01 ADABAS
 SQLISN=SQCS01 ADABAS
 IF (SQCR01 .NE. 0 ADABAS
 1) THEN ADABAS
 CALL RESPF (ADABAS
 1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
 1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS
 END IF ADABAS
 SQDJ01=SQCQ01 ADABAS
 IF (SQDJ01 .GT. 0) THEN ADABAS
 SQEF01=.FALSE. ADABAS
 ELSE ADABAS
 SQEF01=.TRUE. ADABAS
 END IF ADABAS
 IF (SQDJ01 .LT. SQDH01) SQDH01=SQDJ01 ADABAS
 SQDI01=0 ADABAS
C 00000410
* 00000420
* EXEC ADABAS 00000430
* FETCH EMPL 00000440
* END-EXEC 00000450
* 00000460
 SQDA00=’00000460’ ADABAS
 SQDB00(01)=’ EXEC ADABAS ’ ADABAS
 SQDC00(01)=’ ’ ADABAS
 SQDB00(02)=’ FETCH EMPL ’ ADABAS
 SQDC00(02)=’ ’ ADABAS
 SQDB00(03)=’ END-EXEC ’ ADABAS
 SQDC00(03)=’ ’ ADABAS
 SQDG00=03 ADABAS
 IF (SQDI01 .EQ. SQDJ01) SQEF01=.TRUE. ADABAS
 IF (.NOT. SQEF01) THEN ADABAS
 SQEF01=.FALSE. ADABAS
 SQC201=’N’ ADABAS
 SQC101=’ ’ ADABAS
 SQDR01=188 ADABAS
 SQCD01=SQDF01 ADABAS
 SQCC01=’L1’ ADABAS
 CALL ADABAS (ADABAS

Adabas Native SQL Reference Manual
I

342

 1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
 1 SQDS01) ADABAS
 SQLRSP=SQCR01 ADABAS
 SQLQTY=SQCQ01 ADABAS
 SQLISN=SQCS01 ADABAS
 IF (SQCR01 .EQ. 3) THEN ADABAS
 SQEF01=.TRUE. ADABAS
 ELSE ADABAS
 1IF (SQCR01 .NE. 0 ADABAS
 1) THEN ADABAS
 CALL RESPF (ADABAS
 1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
 1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS
 END IF ADABAS
 END IF ADABAS
 IF (SQEF01) THEN ADABAS
 SQLCOD=003 ADABAS
 ELSE ADABAS
 SQLCOD=0 ADABAS
 END IF ADABAS
C 00000470
 1 IF (SQLCOD .EQ. 3) GOTO 2 00000480
C 00000490
 WRITE (6,20) PID,NAME,FNAME,BIRTH,SEX 00000500
C 00000510
* 00000520
* EXEC ADABAS 00000530
* FETCH EMPL 00000540
* END-EXEC 00000550
* 00000560
 SQDA00=’00000560’ ADABAS
 SQDB00(01)=’ EXEC ADABAS ’ ADABAS
 SQDC00(01)=’ ’ ADABAS
 SQDB00(02)=’ FETCH EMPL ’ ADABAS
 SQDC00(02)=’ ’ ADABAS
 SQDB00(03)=’ END-EXEC ’ ADABAS
 SQDC00(03)=’ ’ ADABAS
 SQDG00=03 ADABAS
 IF (SQDI01 .EQ. SQDJ01) SQEF01=.TRUE. ADABAS
 IF (.NOT. SQEF01) THEN ADABAS
 SQEF01=.FALSE. ADABAS
 SQC201=’N’ ADABAS
 SQC101=’ ’ ADABAS
 SQDR01=188 ADABAS
 SQCD01=SQDF01 ADABAS
 SQCC01=’L1’ ADABAS

Appendix I
I

343

 CALL ADABAS (ADABAS
 1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS
 1 SQDS01) ADABAS
 SQLRSP=SQCR01 ADABAS
 SQLQTY=SQCQ01 ADABAS
 SQLISN=SQCS01 ADABAS
 IF (SQCR01 .EQ. 3) THEN ADABAS
 SQEF01=.TRUE. ADABAS
 ELSE ADABAS
 1IF (SQCR01 .NE. 0 ADABAS
 1) THEN ADABAS
 CALL RESPF (ADABAS
 1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
 1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS
 END IF ADABAS
 END IF ADABAS
 IF (SQEF01) THEN ADABAS
 SQLCOD=003 ADABAS
 ELSE ADABAS
 SQLCOD=0 ADABAS
 END IF ADABAS
C 00000570
 GOTO 1 00000580
C 00000590
 2 CONTINUE 00000600
C 00000610
* 00000620
* EXEC ADABAS 00000630
* CLOSE EMPL 00000640
* END-EXEC 00000650
* 00000660
 SQDA00=’00000660’ ADABAS
 SQDB00(01)=’ EXEC ADABAS ’ ADABAS
 SQDC00(01)=’ ’ ADABAS
 SQDB00(02)=’ CLOSE EMPL ’ ADABAS
 SQDC00(02)=’ ’ ADABAS
 SQDB00(03)=’ END-EXEC ’ ADABAS
 SQDC00(03)=’ ’ ADABAS
 SQDG00=03 ADABAS
 SQC101=’I’ ADABAS
 SQC201=’S’ ADABAS
 SQDR01=188 ADABAS
 SQCD01=SQDF01 ADABAS
 SQCC01=’RC’ ADABAS
 CALL ADABAS (ADABAS
 1 SQCB01,SQFB01,SQRB01,SQSB01,SQVB01, ADABAS

Adabas Native SQL Reference Manual
I

344

 1 SQDS01) ADABAS
 SQLRSP=SQCR01 ADABAS
 SQLQTY=SQCQ01 ADABAS
 SQLISN=SQCS01 ADABAS
 IF (SQCR01 .NE. 0 ADABAS
 1) THEN ADABAS
 CALL RESPF (ADABAS
 1 SQCB01,SQDD00,SQDA00,SQFB01,SQRB01,SQSB01, ADABAS
 1 SQVB01,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS
 END IF ADABAS
C 00000670
* 00000680
* EXEC ADABAS 00000690
* DBCLOSE 00000700
* END-EXEC 00000710
* 00000720
 SQDA00=’00000720’ ADABAS
 SQDB00(01)=’ EXEC ADABAS ’ ADABAS
 SQDC00(01)=’ ’ ADABAS
 SQDB00(02)=’ DBCLOSE ’ ADABAS
 SQDC00(02)=’ ’ ADABAS
 SQDB00(03)=’ END-EXEC ’ ADABAS
 SQDC00(03)=’ ’ ADABAS
 SQDG00=03 ADABAS
 SQC400=0500 ADABAS
 SQC200=’ ’ ADABAS
 SQDR00=188 ADABAS
 SQCD00=SQDF00 ADABAS
 SQCC00=’CL’ ADABAS
 CALL ADABAS (ADABAS
 1 SQCB00,SQFB00,SQRB00,SQSB00,SQVB00, ADABAS
 1 SQDS00) ADABAS
 IF (SQCR00 .NE. 0 ADABAS
 1) THEN ADABAS
 CALL RESPF (ADABAS
 1 SQCB00,SQDD00,SQDA00,SQFB00,SQRB00,SQSB00, ADABAS
 1 SQVB00,SQDB00,SQDC00,SQDE00,SQDG00) ADABAS
 END IF ADABAS
C 00000730
 10 FORMAT (’1PERSONNEL-ID’,8X,’NAME’,13X,’FIRST-NAME’,8X, 00000740
 * ’BIRTH’,1X,’SEX’ / 1X,64(’*’) /) 00000750
 20 FORMAT (3X,A8,3X,A20,1X,A20,1X,A6,1X,A1) 00000760
C 00000770
 END 00000780

J

345

APPENDIX J — PL/I EXAMPLES

Example 1

 PEX1 : PROC OPTIONS(MAIN);
 /* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH
 CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID
 NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE,
 PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE
 FOLLOWING CONDITION:
 PERSONNEL-ID BETWEEN 10000001 AND 19999999
 MODEL-YEAR-MAKE >
 CLASS = ’C’ */
 /* */
 DCL 1 START_STRUC,
 2 START_MODEL CHAR(20) INIT(’MERCEDES-BENZ’),
 2 START_YEAR_MAKE PIC ’(2)9’ INIT(86);
 DCL START_MODEL_YEAR_MAKE CHAR(22) BASED(ADDR(START_STRUC));
 /* */
 DCL 1 HEADER,
 2 FILLER1 CHAR(12) INIT(’PERSONNEL-ID’),
 2 FILLER2 CHAR(8) INIT(’ ’),
 2 FILLER3 CHAR(4) INIT(’NAME’),
 2 FILLER4 CHAR(13) INIT(’ ’),
 2 FILLER5 CHAR(10) INIT(’FIRST-NAME’),
 2 FILLER6 CHAR(8) INIT(’ ’),
 2 FILLER7 CHAR(5) INIT(’BIRTH’),
 2 FILLER8 CHAR(1) INIT(’ ’),
 2 FILLER9 CHAR(3) INIT(’SEX’);
 DCL 1 HEADER2 CHAR(64) INIT((64)’*’);
 DCL 1 LINE1,
 2 FILLER1 CHAR(2) INIT(’ ’),
 2 PERSONNEL_NR CHAR(8) INIT(’ ’),
 2 FILLER2 CHAR(3) INIT(’ ’),
 2 LAST_NAME CHAR(20) INIT(’ ’),
 2 FILLER3 CHAR(1) INIT(’ ’),
 2 F_NAME CHAR(20) INIT(’ ’),
 2 FILLER4 CHAR(1) INIT(’ ’),
 2 BIRTHDAY CHAR(6) INIT(’ ’),
 2 FILLER5 CHAR(1) INIT(’ ’),
 2 KIND CHAR(1) INIT(’ ’);
 /* */
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC

Adabas Native SQL Reference Manual
J

346

 /* */
 EXEC ADABAS
 DECLARE EMPL CURSOR FOR
 SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX
 FROM EMPLOYEES, VEHICLES
 WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID
 AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’
 AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE
 AND VEHICLES.CLASS = ’C’
 END-EXEC
 /* */
 PUT SKIP EDIT (HEADER) (A);
 PUT SKIP EDIT (HEADER2) (A);
 PUT SKIP;
 /* */
 EXEC ADABAS
 OPEN EMPL
 END-EXEC
 /* */
 EXEC ADABAS
 FETCH EMPL
 END-EXEC
 /* */
 DO WHILE (ADACODE *= 3);
 PERSONNEL_NR = PERSONNEL_ID;
 LAST_NAME = NAME;
 F_NAME = FIRST_NAME;
 BIRTHDAY = BIRTH;
 KIND = SEX;
 PUT SKIP EDIT (LINE1) (A);
 EXEC ADABAS
 FETCH EMPL
 END-EXEC
 END;
 /* */
 EXEC ADABAS
 CLOSE EMPL
 END-EXEC
 /* */
 EXEC ADABAS
 DBCLOSE
 END-EXEC
 /* */
 END PEX1;

Appendix J
J

347

Example 2

 PEX2 : PROC OPTIONS(MAIN);
 /* DELETE AN EMPLOYEE RECORD AND RELEASE ALL CARS WHICH ARE
 ASSIGNED TO THIS EMPLOYEE. A PRIVATE CARS WILL BE DELETED
 AND A COMPANY CAR WILL BE MADE A POOL-CAR WHICH IS IDENTIFIED
 BY ITS PERSONNEL-ID CONTAINING ONLY THE COUNTRY CODE.
 */
 /* */
 DCL PERSONNEL_NUMBER CHAR(8) INIT (’20007100’);
 DCL EMPLOYEE_ISN FIXED BIN(31) INIT(0);
 DCL 1 COUNTRY_NUM,
 2 COUNTRY_NO CHAR(1) INIT (’ ’) ,
 2 FILLER CHAR(14) INIT (’ ’);
 DCL COUNTRY_NUMBER CHAR(15) BASED(ADDR(COUNTR_NUM));
 /* */
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC
 /* */
 EXEC ADABAS
 READ LOGICAL
 DECLARE VEH1 CURSOR FOR
 SELECT REG-NUM, PERSONNEL-ID, CLASS
 FROM VEHICLES
 WHERE PERSONNEL-ID GE :PERSONNEL-NUMBER
 OPTIONS HOLD
 ORDER BY PERSONNEL-ID
 END-EXEC
 /*
 *** FIND EMPLOYEE
 */
 EXEC ADABAS
 FIND
 SELECT
 FROM EMPLOYEES EMPLOYEES_1
 WHERE PERSONNEL-ID = :PERSONNEL_NUMBER
 OPTIONS HOLD
 END-EXEC
 /*
 *** IF THE PERSONNEL-ID EXISTS DELETE THE EMPLOYEE AND READ THE
 *** VEHICLES FILE
 */
 IF EMPLOYEES_1.QUANTITY = 1 THEN
 DO;

Adabas Native SQL Reference Manual
J

348

 EMPLOYEE_ISN = EMPLOYEES_1.ISN;
 CALL DELETE_EMPLOYEE;
 CALL READ_VEHICLES_FILE;
 END;
 ELSE
 PUT SKIP EDIT
 (’NO EMPLOYEE FOUND WITH PERSONNEL-ID ’,PERSONNEL_NUMBER)(A);
 /* */
 EXEC ADABAS
 DBCLOSE
 END-EXEC
 /***/

 DELETE_EMPLOYEE : PROC;
 /* */
 EXEC ADABAS
 DELETE
 FROM EMPLOYEES
 WHERE ISN = :EMPLOYEE_ISN
 END-EXEC
 /* */
 PUT SKIP EDIT
 (’EMPLOYEE ’,PERSONNEL_NUMBER,’ HAS BEEN DELETED’)(A);
 /* */
 END DELETE_EMPLOYEE;
 /***/
 READ_VEHICLES_FILE : PROC;
 /* */
 EXEC ADABAS
 OPEN VEH1
 END-EXEC
 /* */
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
 /* */
 DO WHILE (ADACODE *= 3 &
 VEHICLES.PERSONNEL_ID = PERSONNEL_NUMBER);
 IF CLASS = ’P’ THEN
 DO;
 EXEC ADABAS
 DELETE
 FROM VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 PUT SKIP EDIT

Appendix J
J

349

 (’PRIVATE CAR ’,REG_NUM,’ HAS BEEN DELETED’)(A);
 END;
 ELSE
 DO;
 COUNTRY_NUMBER = VEHICLES.PERSONNEL_ID;
 VEHICLES.PERSONNEL_ID = COUNTRY_NO;
 EXEC ADABAS
 UPDATE VEHICLES
 WHERE CURRENT OF VEH1
 END-EXEC
 PUT SKIP EDIT
 (’COMPANY CAR ’,REG_NUM,’ HAS BEEN UPDATED’)(A);
 END;
 /* */
 EXEC ADABAS
 FETCH VEH1
 END-EXEC
 /* */
 END;
 /* */
 EXEC ADABAS
 CLOSE VEH1
 END-EXEC
 /* */
 EXEC ADABAS
 COMMIT WORK
 END-EXEC
 /* */
 END READ_VEHICLES_FILE;
 /* */
 END PEX2;

Adabas Native SQL Reference Manual
J

350

Example 3

 PEX3 : PROC OPTIONS(MAIN);
 /* SALARY INCREASE.
 THIS PROGRAM INCREASES THE SALARY OF EVERY EMPLOYEE BY
 4 PERCENT.
 THE DEPARTMENT, THE OVERALL AMOUNT OF PAY RISE FOR THE
 DEPARTMENT AND THE PAY RISE FOR ALL DEPARTMENTS WILL BE PRINTED
 OUT.
 THE PROGRAM IS RESTARTABLE. AFTER AN ABNORMAL TERMINATION THE
 PROGRAM EXECUTION WOULD RESTART WITH THE LAST DEPARTMENT
 WHOSE SALARY UPDATE HAD BEEN COMPLETED BEFORE THE ABEND
 OCCURED.
 */
 /* */
 DCL 1 COMM_DATA,
 2 COMMIT_DEPARTMENT CHAR(6) INIT (’ ’),
 2 COMMIT_SUM FIXED DEC(10) INIT (0);
 DCL COMMIT_DATA CHAR(12) BASED(ADDR(COMM_DATA));
 DCL START_DEPT CHAR(6) INIT (’ ’);
 DCL IND FIXED BIN(15) INIT (0);
 DCL I FIXED BIN(15) INIT (0);
 DCL J FIXED BIN(15) INIT (0);
 DCL NEW_SALARY FIXED DEC(9) INIT (0);
 DCL INCREASE FIXED DEC(9) INIT (0);
 DCL SUM_DEPARTMENT FIXED DEC(10) INIT (0);
 DCL SUM_TOTAL FIXED DEC(11) INIT (0);
 /* */
 DCL 1 HEADER,
 2 FILLER1 CHAR(10) INIT (’DEPARTMENT’),
 2 FILLER2 CHAR(15) INIT (’ ’),
 2 FILLER3 CHAR(15) INIT (’SALARY INCREASE’);
 DCL 1 LINE1,
 2 FILLER1 CHAR(3) INIT (’ ’),
 2 DEPARTMENT CHAR(6) INIT (’ ’),
 2 FILLER2 CHAR(16) INIT (’ ’),
 2 SUM_DEPT PIC ’Z,ZZZ,ZZZ,ZZ9’;
 DCL 1 FOOT_LINE,
 2 FILLER1 CHAR(21) INIT (’TOTAL SALARY INCREASE’),
 2 FILLER CHAR(3) INIT (’ : ’),
 2 TOTAL_SUM_DEPT PIC ’ZZ,ZZZ,ZZZ,ZZZ’;
 /* */
 EXEC ADABAS
 BEGIN DECLARE SECTION
 END-EXEC

Appendix J
J

351

 /* */
 EXEC ADABAS
 HISTOGRAM
 DECLARE EMP1 CURSOR FOR
 SELECT DEPT
 FROM EMPLOYEES EMPLOYEES_1
 WHERE DEPT GE :COMMIT_DEPARTMENT
 GROUP BY DEPT
 END-EXEC
 /* */
 EXEC ADABAS
 READ LOGICAL
 DECLARE EMP2 CURSOR FOR
 SELECT PERSONNEL-ID, DEPT, SALARY, INCOME(COUNT)
 FROM EMPLOYEES
 WHERE DEPT GE :START_DEPT
 OPTIONS HOLD
 ORDER BY DEPT
 END-EXEC
 /* */
 EXEC ADABAS
 CONNECT ’INCREASE’
 UPD=EMPLOYEES
 AND USERDATA INTO :COMMIT_DATA
 END-EXEC
 /*
 A HISTOGRAM STATEMENT IS USED TO ASCERTAIN THE NUMBER OF
 EMPLOYEES PER DEPARTMENT
 */
 EXEC ADABAS
 OPEN EMP1
 END-EXEC
 /* */
 EXEC ADABAS
 FETCH EMP1
 END-EXEC
 /* */
 IF COMMIT_DATA *= ’ ’ THEN CALL RESTART;
 /* */
 START_DEPT = EMPLOYEES_1.DEPT;
 /* */
 EXEC ADABAS
 OPEN EMP2
 END-EXEC
 /* */
 PUT SKIP EDIT (HEADER) (A);

Adabas Native SQL Reference Manual
J

352

 PUT SKIP LIST ((40)’*’);
 PUT SKIP;
 /* */
 DO WHILE (ADACODE *= 3);
 CALL HIST_EMPL;
 END;

 /* */
 EXEC ADABAS
 CLOSE EMP1
 END-EXEC
 /* */
 EXEC ADABAS
 CLOSE EMP2
 END-EXEC
 /* */
 PUT SKIP;
 PUT SKIP LIST ((50)’-’);
 PUT SKIP;
 TOTAL_SUM_DEPT = SUM_TOTAL;
 PUT SKIP EDIT (FOOT_LINE) (A);
 COMMIT_DATA = ’ ’;
 /* */
 EXEC ADABAS
 DBCLOSE
 USERDATA = :COMMIT_DATA
 END-EXEC
 /***/
 RESTART : PROC;
 PUT SKIP LIST (’LAST PROGRAM RUN TERMINATED ABNORMALLY’);
 PUT SKIP EDIT (’LAST DEPARTMENT WAS: ’,COMMIT_DEPARTMENT)(A);
 /* */
 EXEC ADABAS
 FETCH EMP1
 END-EXEC
 END RESTART;
 /***/

 HIST_EMPL : PROC;
 /*
 THE EMPLOYEES FILE WILL BE READ UNTIL ALL RECORDS FOR THE
 DEPARTMENT HAVE BEEN PROCESSED AND THE SALARY HAS BEEN
 UPDATED
 */

Appendix J
J

353

 DO J=1 BY 1 TO EMPLOYEES_1.QUANTITY;
 EXEC ADABAS
 FETCH EMP2
 END-EXEC
 /* THE SALARY INCREASE CAN BE EXECUTED WHEN THE COUNT OF THE
 PERIODIC GROUP IS LESS THAN 40. */
 IF C_INCOME <= 40 THEN
 CALL SALARY_INCREASE;
 ELSE
 PUT SKIP EDIT
 (’UPDATE PERSON ’,PERSONNEL_ID,’ NOT POSSIBLE’)(A);
 END;
 /* */
 DEPARTMENT = EMPLOYEES.DEPT;
 SUM_DEPT = SUM_DEPARTMENT;
 SUM_DEPARTMENT = 0;
 PUT SKIP EDIT (LINE1) (A);
 /* */
 COMMIT_DEPARTMENT = EMPLOYEES.DEPT;
 COMMIT_SUM = SUM_TOTAL;
 EXEC ADABAS
 COMMIT WORK
 USERDATA = :COMMIT_DATA
 END-EXEC
 /* */
 EXEC ADABAS
 FETCH EMP1
 END-EXEC
 /* */
 END HIST_EMPL;
 /***/
 SALARY_INCREASE : PROC;
 INCREASE = SALARY(1) * 0.04;
 NEW_SALARY = SALARY(1) + INCREASE;
 IND = C_INCOME + 1;
 /* */
 DO I=C_INCOME BY -1 TO 0;
 SALARY(IND) = SALARY(I);
 IND = IND – 1;
 END;
 /* */
 SALARY(1) = NEW_SALARY;
 /* */
 EXEC ADABAS
 UPDATE EMPLOYEES
 WHERE CURRENT OF EMP2

Adabas Native SQL Reference Manual
J

354

 END-EXEC
 /* */
 SUM_DEPARTMENT = SUM_DEPARTMENT + INCREASE;
 SUM_TOTAL = SUM_TOTAL + INCREASE;
 END SALARY_INCREASE;
 /* */
 END PEX3;

K

355

APPENDIX K — EXAMPLE OF PL/I CODE
GENERATED BY ADABAS NATIVE SQL

 PEX1 : PROC OPTIONS(MAIN); 00000010

 /* AN EXAMPLE OF SOFT COUPLING WITH A SEARCH CRITERION WHICH 00000020
 CONTAINS FIELDS TAKEN FROM TWO FILES. THE FIELDS PERSONNEL-ID 00000030

 NAME, FIRST-NAME, BIRTH AND SEX (FROM THE MAIN FILE, 00000040
 PERSONNEL-ID) ARE PRINTED FOR RECORDS THAT SATISFY THE 00000050

 FOLLOWING CONDITION: 00000060

 PERSONNEL-ID BETWEEN 10000001 AND 19999999 00000070
 MODEL-YEAR-MAKE > 00000080

 CLASS = ’C’ */00000090
 /* */00000100

 DCL 1 START_STRUC, 00000110
 2 START_MODEL CHAR(20) INIT(’MERCEDES-BENZ’), 00000120

 2 START_YEAR_MAKE PIC ’(2)9’ INIT(86); 00000130
 DCL START_MODEL_YEAR_MAKE CHAR(22) BASED(ADDR(START_STRUC));00000140

 /* */00000150
 DCL 1 HEADER, 00000160

 2 FILLER1 CHAR(12) INIT(’PERSONNEL-ID’), 00000170

 2 FILLER2 CHAR(8) INIT(’ ’), 00000180
 2 FILLER3 CHAR(4) INIT(’NAME’), 00000190

 2 FILLER4 CHAR(13) INIT(’ ’), 00000200
 2 FILLER5 CHAR(10) INIT(’FIRST-NAME’), 00000210

 2 FILLER6 CHAR(8) INIT(’ ’), 00000220
 2 FILLER7 CHAR(5) INIT(’BIRTH’), 00000230

 2 FILLER8 CHAR(1) INIT(’ ’), 00000240
 2 FILLER9 CHAR(3) INIT(’SEX’); 00000250

 DCL 1 HEADER2 CHAR(64) INIT((64)’*’); 00000260
 DCL 1 LINE1, 00000270

 2 FILLER1 CHAR(2) INIT(’ ’), 00000280

 2 PERSONNEL_NR CHAR(8) INIT(’ ’), 00000290
 2 FILLER2 CHAR(3) INIT(’ ’), 00000300

 2 LAST_NAME CHAR(20) INIT(’ ’), 00000310
 2 FILLER3 CHAR(1) INIT(’ ’), 00000320

 2 F_NAME CHAR(20) INIT(’ ’), 00000330
 2 FILLER4 CHAR(1) INIT(’ ’), 00000340

 2 BIRTHDAY CHAR(6) INIT(’ ’), 00000350
 2 FILLER5 CHAR(1) INIT(’ ’), 00000360

 2 KIND CHAR(1) INIT(’ ’); 00000370
 /* */00000380

-/* ** 00000390

Adabas Native SQL Reference Manual
K

356

 EXEC ADABAS 00000400

 BEGIN DECLARE SECTION 00000410
 END-EXEC 00000420

 ** */ 00000430
 DCL ADACODE FIXED BIN(15) INIT (0); ADABAS

 DCL ADABAS ENTRY OPTIONS(ASM,INTER); ADABAS
 DCL RESPINT ENTRY OPTIONS(ASM,INTER); ADABAS

 DCL 1 CONTROL_BLOCKOPN UNAL, ADABAS
 3 FILLER1OPN CHAR(2) INIT (’AS’) , ADABAS

 3 COMMAND_CODEOPN CHAR(2) , ADABAS

 3 COMMAND_IDOPN CHAR(4) INIT (’OPEN’) , ADABAS
 3 FILE_NUMBEROPN FIXED BIN(15) INIT (0) , ADABAS

 3 RESPONSE_CODEOPN FIXED BIN(15) INIT (0) , ADABAS
 3 ISNOPN FIXED BIN(31) INIT (0) , ADABAS

 3 ISN_LOWER_LIMITOPN FIXED BIN(31) INIT (0) , ADABAS
 3 ISN_QUANTITYOPN FIXED BIN(31) , ADABAS

 3 FORMAT_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
 3 RECORD_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS

 3 SEARCH_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS
 3 VALUE_BUFFER_LENGTHOPN FIXED BIN(15) INIT (0) , ADABAS

 3 ISN_BUFFER_LENGTHOPN FIXED BIN(15) INIT (4) , ADABAS

 3 COMMAND_OPTION_1OPN CHAR(1) INIT (’ ’) , ADABAS
 3 COMMAND_OPTION_2OPN CHAR(1) INIT (’ ’) , ADABAS

 3 ADDITIONS_1OPN CHAR(8) INIT (’ ’) , ADABAS
 3 ADDITIONS_2OPN CHAR(4) INIT (’ ’) , ADABAS

 3 ADDITIONS_3OPN CHAR(8) INIT (’ ’) , ADABAS
 3 ADDITIONS_4OPN CHAR(8) INIT (’ ’) , ADABAS

 3 ADDITIONS_5OPN , ADABAS
 4 ADDITIONS_5_BNOPN FIXED BIN(31) INIT (0) , ADABAS

 4 ADDITIONS_5_58OPN CHAR(4) , ADABAS
 3 COMMAND_TIMEOPN FIXED BIN(31) , ADABAS

 3 USER_AREAOPN CHAR(4) INIT (’AS’) ; ADABAS

 DCL CONTROL_BLOCK_1OPN CHAR(80) ADABAS
 BASED(ADDR(CONTROL_BLOCKOPN)); ADABAS

 DCL ADDITIONS_1_12OPN CHAR(2) DEF ADDITIONS_1OPN ; ADABAS
 DCL ADDITIONS_1_BNOPN FIXED BIN(15) UNAL ADABAS

 BASED (ADDR(ADDITIONS_1OPN)); ADABAS
 DCL ADDITIONS_1_58OPN CHAR(4) DEF ADDITIONS_1OPN POS(5); ADABAS

 DCL 1 ADDITIONS_5_DEFOPN BASED (ADDR(ADDITIONS_5OPN)), ADABAS
 2 ADDITIONS_5_1OPN CHAR(1), ADABAS

 2 ADDITIONS_5_28OPN CHAR(7); ADABAS
 DCL 1 ADDITIONS_4_DEFOPN BASED (ADDR(ADDITIONS_4OPN)), ADABAS

 2 ADDITIONS_4_12OPN FIXED BIN(15), ADABAS

Appendix K
K

357

 2 ADDITIONS_4_34OPN FIXED BIN(15), ADABAS

 2 ADDITIONS_4_56OPN FIXED BIN(15), ADABAS
 2 ADDITIONS_4_78OPN FIXED BIN(15); ADABAS

 DCL DBIDOPN CHAR(1) BASED (ADDR(FILE_NUMBEROPN)); ADABAS
 DCL FORMAT_BUFOPN CHAR (0001) ; ADABAS

 DCL SEARCH_BUFOPN CHAR (0001) ; ADABAS
 DCL VALUE_BUFOPN CHAR (0001) ; ADABAS

 DCL ISN_BUFOPN CHAR (0001) ; ADABAS

 DCL RECORD_BUFOPN CHAR (1500) ; ADABAS
 DCL OPENTYPE CHAR (0010) ; ADABAS

 DCL DDFILE PIC’999’ INIT (30) ; ADABAS
 DCL CSEQ CHAR(8) ; ADABAS

 DCL CLN1(20) CHAR(40) ; ADABAS
 DCL CLN2(20) CHAR(40) ; ADABAS

 DCL TRCE CHAR(7) ; ADABAS
 DCL CLNNUM FIXED BIN(15) ; ADABAS

 DCL SQLRSP FIXED BIN(15) ; ADABAS
 DCL SQLQTY FIXED BIN(31) ; ADABAS

 DCL SQLISN FIXED BIN(31) ; ADABAS
 DCL SAVE_DBID_1OPN FIXED BIN(15) ; ADABAS

 DCL 1 SAVE_DBID_DEFOPN BASED(ADDR(SAVE_DBID_1OPN)), ADABAS

 2 FILLEROPN CHAR(1), ADABAS
 2 SAVE_DBIDOPN CHAR(1); ADABAS

 DCL 1 FORMAT_BUFEMPL_1 , ADABAS
 2 FILLE001 CHAR(34) INIT(’AA,8,A,AE,20,A,AC,20,A,AH,6,U,AG,1’), ADABAS

 2 FILLE002 CHAR(03) INIT(’,A.’), ADABAS
 FORMAT_BUFEMPL CHAR(00037) ADABAS

 BASED (ADDR(FORMAT_BUFEMPL_1)); ADABAS
 DCL 1 SEARCH_BUFEMPL_1 , ADABAS

 2 FILLE001 CHAR(34) INIT(’(22,AA,24,AC)/22/AA,8,A,S,AA,8,A,D’), ADABAS
 2 FILLE002 CHAR(25) INIT(’,/24/AO,22,A,GT,D,AH,1,A.’), ADABAS

 SEARCH_BUFEMPL CHAR(00059) ADABAS

 BASED (ADDR(SEARCH_BUFEMPL_1)); ADABAS
 DCL 1 EMPLOYEES UNAL, ADADATA

 2 RECORD_BUFEMPL_1 , ADADATA
 3 PERSONNEL_ID CHAR (0008) , ADADATA

 3 NAME CHAR (0020) , ADADATA
 3 FIRST_NAME CHAR (0020) , ADADATA

 3 BIRTH PIC ’(0005)99’ , ADADATA
 3 SEX CHAR (0001) , ADADATA

 2 ISN FIXED BIN(31), ADADATA
 2 QUANTITY FIXED BIN(31), ADADATA

 2 RESPONSE_CODE FIXED BIN(15), ADADATA

Adabas Native SQL Reference Manual
K

358

 RECORD_BUFEMPL CHAR(00055) ADADATA

 BASED (ADDR(RECORD_BUFEMPL_1)); ADADATA
 DCL 1 VALUE_BUFEMPL_1 UNAL, ADABAS

 2 V_PERSONNEL_ID_F CHAR (0008) ADABAS
 INIT(’ ’), ADABAS

 2 V_PERSONNEL_ID_T CHAR (0008) ADABAS
 INIT(’ ’), ADABAS

 2 V_MODEL_YEAR_MAKE, ADABAS

 3 S_YEAR PIC ’(0001)99’ ADABAS
 INIT(0), ADABAS

 3 S_MAKE CHAR (0020) ADABAS
 INIT(’ ’), ADABAS

 2 V_CLASS CHAR (0001) ADABAS
 INIT(’ ’), ADABAS

 VALUE_BUFEMPL CHAR(00039) ADABAS
 BASED (ADDR(VALUE_BUFEMPL_1)); ADABAS

 DCL V_MODEL_YEAR_MAKE_EMPL CHAR (0022) ADABAS
 BASED (ADDR(ADABAS

 VALUE_BUFEMPL_1.V_MODEL_YEAR_MAKE)); ADABAS
 DCL ISN_BUFEMPL (1) FIXED BIN(31); ADABAS

 DCL 1 CONTROL_BLOCKEMPL UNAL, ADABAS

 3 FILLER1EMPL CHAR(2) INIT (’AS’) , ADABAS
 3 COMMAND_CODEEMPL CHAR(2) , ADABAS

 3 COMMAND_IDEMPL CHAR(4) INIT (’EMPL’) , ADABAS
 3 FILE_NUMBEREMPL FIXED BIN(15) INIT (22) , ADABAS

 3 RESPONSE_CODEEMPL FIXED BIN(15) INIT (0) , ADABAS
 3 ISNEMPL FIXED BIN(31) INIT (0) , ADABAS

 3 ISN_LOWER_LIMITEMPL FIXED BIN(31) INIT (0) , ADABAS
 3 ISN_QUANTITYEMPL FIXED BIN(31) , ADABAS

 3 FORMAT_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (37) , ADABAS
 3 RECORD_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (55) , ADABAS

 3 SEARCH_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (59) , ADABAS

 3 VALUE_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (39) , ADABAS
 3 ISN_BUFFER_LENGTHEMPL FIXED BIN(15) INIT (4) , ADABAS

 3 COMMAND_OPTION_1EMPL CHAR(1) INIT (’ ’) , ADABAS
 3 COMMAND_OPTION_2EMPL CHAR(1) INIT (’ ’) , ADABAS

 3 ADDITIONS_1EMPL CHAR(8) INIT (’ ’) , ADABAS
 3 ADDITIONS_2EMPL CHAR(4) INIT (’ ’) , ADABAS

 3 ADDITIONS_3EMPL CHAR(8) INIT (’ ’) , ADABAS
 3 ADDITIONS_4EMPL CHAR(8) INIT (’ ’) , ADABAS

 3 ADDITIONS_5EMPL , ADABAS
 4 ADDITIONS_5_BNEMPL FIXED BIN(31) INIT (0) , ADABAS

 4 ADDITIONS_5_58EMPL CHAR(4) , ADABAS

Appendix K
K

359

 3 COMMAND_TIMEEMPL FIXED BIN(31) , ADABAS

 3 USER_AREAEMPL CHAR(4) INIT (’AS’) ; ADABAS
 DCL CONTROL_BLOCK_1EMPL CHAR(80) ADABAS

 BASED(ADDR(CONTROL_BLOCKEMPL)); ADABAS
 DCL ADDITIONS_1_12EMPL CHAR(2) DEF ADDITIONS_1EMPL; ADABAS

 DCL ADDITIONS_1_BNEMPL FIXED BIN(15) UNAL ADABAS
 BASED (ADDR(ADDITIONS_1EMPL)); ADABAS

 DCL ADDITIONS_1_58EMPL CHAR(4) DEF ADDITIONS_1EMPL POS(5); ADABAS

 DCL 1 ADDITIONS_5_DEFEMPL BASED (ADDR(ADDITIONS_5EMPL)), ADABAS
 2 ADDITIONS_5_1EMPL CHAR(1), ADABAS

 2 ADDITIONS_5_28EMPL CHAR(7); ADABAS
 DCL DBIDEMPL CHAR(1) BASED (ADDR(FILE_NUMBEREMPL)); ADABAS

 DCL ISNSIZEEMPL FIXED BIN(31) ; ADABAS
 DCL ISNMOREEMPL FIXED BIN(31) ; ADABAS

 DCL ISNINDEMPL FIXED BIN(15) ; ADABAS
 DCL SAVE_DBID_1EMPL FIXED BIN(15) ; ADABAS

 DCL 1 SAVE_DBID_DEFEMPL BASED(ADDR(SAVE_DBID_1EMPL)), ADABAS
 2 FILLEREMPL CHAR(1), ADABAS

 2 SAVE_DBIDEMPL CHAR(1); ADABAS
 DCL EOFEMPL BIT(1) INIT (’0’B); ADABAS

 /* */00000440

-/* ** 00000450
 EXEC ADABAS 00000460

 DECLARE EMPL CURSOR FOR 00000470
 SELECT PERSONNEL-ID, NAME, FIRST-NAME, BIRTH, SEX 00000480

 FROM EMPLOYEES, VEHICLES 00000490
 WHERE EMPLOYEES.PERSONNEL-ID = VEHICLES.PERSONNEL-ID 00000500

 AND PERSONNEL-ID BETWEEN ’10000001’ AND ’19999999’ 00000510
 AND VEHICLES.MODEL-YEAR-MAKE > :START_MODEL_YEAR_MAKE 00000520

 AND VEHICLES.CLASS = ’C’ 00000530
 END-EXEC 00000540

 ** */ 00000550

 /* */00000560
 PUT SKIP EDIT (HEADER) (A); 00000570

 PUT SKIP EDIT (HEADER2) (A); 00000580
 PUT SKIP; 00000590

 /* */00000600
-/* ** 00000610

 EXEC ADABAS 00000620
 OPEN EMPL 00000630

 END-EXEC 00000640
 ** */ 00000650

 VALUE_BUFEMPL_1.V_PERSONNEL_ID_F = ’10000001’; ADABAS

Adabas Native SQL Reference Manual
K

360

 VALUE_BUFEMPL_1.V_PERSONNEL_ID_T = ’19999999’; ADABAS

 V_MODEL_YEAR_MAKE_EMPL = START_MODEL_YEAR_MAKE; ADABAS
 VALUE_BUFEMPL_1.V_CLASS = ’C’; ADABAS

 DO; ADABAS
 ISNSIZEEMPL=ISN_BUFFER_LENGTHEMPL/4; ADABAS

 ISNINDEMPL=1; ADABAS
 ISN_LOWER_LIMITEMPL=0; ADABAS

 COMMAND_OPTION_1EMPL=’ ’; ADABAS

 COMMAND_OPTION_2EMPL=’ ’; ADABAS
 ISN_BUFFER_LENGTHEMPL=0; ADABAS

 ISN_QUANTITYEMPL=0 ; ADABAS
 COMMAND_CODEEMPL=’S1’; ADABAS

 CALL ADABAS (ADABAS
 CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS

 SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
 ISN_BUFEMPL); ADABAS

 EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
 EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS

 EMPLOYEES.ISN =ISNEMPL; ADABAS
 IF RESPONSE_CODEEMPL*=0 ADABAS

 THEN DO; ADABAS

 CSEQ=’00000650’; ADABAS
 CLN1(01)=’ EXEC ADABAS ’; ADABAS

 CLN2(01)=’ ’; ADABAS
 CLN1(02)=’ OPEN EMPL ’; ADABAS

 CLN2(02)=’ ’; ADABAS
 CLN1(03)=’ END-EXEC ’; ADABAS

 CLN2(03)=’ ’; ADABAS
 CLNNUM=03; ADABAS

 CALL RESPINT ADABAS

 (CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS

 RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
 CLN1,CLN2,TRCE,CLNNUM); ADABAS

 END; ADABAS
 ISNMOREEMPL=ISN_QUANTITYEMPL; ADABAS

 IF ISNMOREEMPL > 0 THEN EOFEMPL= ’0’B; ADABAS
 ELSE EOFEMPL= ’1’B; ADABAS

 IF ISNMOREEMPL<ISNSIZEEMPL THEN ISNSIZEEMPL=ISNMOREEMPL; ADABAS
 ISNINDEMPL=0; ADABAS

 END; ADABAS

Appendix K
K

361

 /* */00000660

-/* ** 00000670
 EXEC ADABAS 00000680

 FETCH EMPL 00000690
 END-EXEC 00000700

 ** */ 00000710
 DO; ADABAS

 IF ISNINDEMPL=ISNMOREEMPL THEN EOFEMPL=’1’B; ADABAS

 IF *EOFEMPL THEN DO; ADABAS
 EOFEMPL=’0’B; ADABAS

 COMMAND_OPTION_2EMPL=’N’; ADABAS
 COMMAND_OPTION_1EMPL=’ ’; ADABAS

 COMMAND_CODEEMPL=’L1’; ADABAS
 CALL ADABAS (ADABAS

 CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS
 SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS

 ISN_BUFEMPL); ADABAS
 EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS

 EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
 EMPLOYEES.ISN =ISNEMPL; ADABAS

 IF RESPONSE_CODEEMPL=3 ADABAS

 THEN EOFEMPL=’1’B; ADABAS
 ELSE ADABAS

 IF RESPONSE_CODEEMPL*=0 ADABAS
 THEN DO; ADABAS

 CSEQ=’00000710’; ADABAS
 CLN1(01)=’ EXEC ADABAS ’; ADABAS

 CLN2(01)=’ ’; ADABAS
 CLN1(02)=’ FETCH EMPL ’; ADABAS

 CLN2(02)=’ ’; ADABAS
 CLN1(03)=’ END-EXEC ’; ADABAS

 CLN2(03)=’ ’; ADABAS

 CLNNUM=03; ADABAS
 CALL RESPINT ADABAS

 (CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
 RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS

 CLN1,CLN2,TRCE,CLNNUM); ADABAS
 END; ADABAS

 END; ADABAS
 END; ADABAS

Adabas Native SQL Reference Manual
K

362

 IF EOFEMPL THEN ADACODE = 003; ADABAS

 ELSE ADACODE = 0; ADABAS
 /* */00000720

 DO WHILE (ADACODE *= 3); 00000730
 PERSONNEL_NR = PERSONNEL_ID; 00000740

 LAST_NAME = NAME; 00000750
 F_NAME = FIRST_NAME; 00000760

 BIRTHDAY = BIRTH; 00000770

 KIND = SEX; 00000780

 PUT SKIP EDIT (LINE1) (A); 00000790
-/* ** 00000800

 EXEC ADABAS 00000810
 FETCH EMPL 00000820

 END-EXEC 00000830
 ** */ 00000840

 DO; ADABAS
 IF ISNINDEMPL=ISNMOREEMPL THEN EOFEMPL=’1’B; ADABAS

 IF *EOFEMPL THEN DO; ADABAS
 EOFEMPL=’0’B; ADABAS

 COMMAND_OPTION_2EMPL=’N’; ADABAS

 COMMAND_OPTION_1EMPL=’ ’; ADABAS
 COMMAND_CODEEMPL=’L1’; ADABAS

 CALL ADABAS (ADABAS
 CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS

 SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS
 ISN_BUFEMPL); ADABAS

 EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS
 EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS

 EMPLOYEES.ISN =ISNEMPL; ADABAS
 IF RESPONSE_CODEEMPL=3 ADABAS

 THEN EOFEMPL=’1’B; ADABAS

 ELSE ADABAS
 IF RESPONSE_CODEEMPL*=0 ADABAS

 THEN DO; ADABAS
 CSEQ=’00000840’; ADABAS

 CLN1(01)=’ EXEC ADABAS ’; ADABAS
 CLN2(01)=’ ’; ADABAS

 CLN1(02)=’ FETCH EMPL ’; ADABAS
 CLN2(02)=’ ’; ADABAS

 CLN1(03)=’ END-EXEC ’; ADABAS
 CLN2(03)=’ ’; ADABAS

 CLNNUM=03; ADABAS

 CALL RESPINT ADABAS
 (CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS

Appendix K
K

363

 RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS

 CLN1,CLN2,TRCE,CLNNUM); ADABAS
 END; ADABAS

 END; ADABAS
 END; ADABAS

 IF EOFEMPL THEN ADACODE = 003; ADABAS
 ELSE ADACODE = 0; ADABAS

 END; 00000850

 /* */00000860
-/* ** 00000870

 EXEC ADABAS 00000880
 CLOSE EMPL 00000890

 END-EXEC 00000900
 ** */ 00000910

 DO; ADABAS
 COMMAND_OPTION_1EMPL=’I’; ADABAS

 COMMAND_OPTION_2EMPL=’S’; ADABAS
 COMMAND_CODEEMPL=’RC’; ADABAS

 CALL ADABAS (ADABAS
 CONTROL_BLOCKEMPL,FORMAT_BUFEMPL,RECORD_BUFEMPL, ADABAS

 SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS

 ISN_BUFEMPL); ADABAS
 EMPLOYEES.RESPONSE_CODE =RESPONSE_CODEEMPL; ADABAS

 EMPLOYEES.QUANTITY =ISN_QUANTITYEMPL; ADABAS
 EMPLOYEES.ISN =ISNEMPL; ADABAS

 IF RESPONSE_CODEEMPL*=0 ADABAS
 THEN DO; ADABAS

 CSEQ=’00000910’; ADABAS
 CLN1(01)=’ EXEC ADABAS ’; ADABAS

 CLN2(01)=’ ’; ADABAS
 CLN1(02)=’ CLOSE EMPL ’; ADABAS

 CLN2(02)=’ ’; ADABAS

 CLN1(03)=’ END-EXEC ’; ADABAS
 CLN2(03)=’ ’; ADABAS

 CLNNUM=03; ADABAS
 CALL RESPINT ADABAS

 (CONTROL_BLOCKEMPL,DDFILE,CSEQ,FORMAT_BUFEMPL, ADABAS
 RECORD_BUFEMPL,SEARCH_BUFEMPL,VALUE_BUFEMPL, ADABAS

 CLN1,CLN2,TRCE,CLNNUM); ADABAS
 END; ADABAS

 END; ADABAS
 /* */00000920

-/* ** 00000930

Adabas Native SQL Reference Manual
K

364

 EXEC ADABAS 00000940

 DBCLOSE 00000950
 END-EXEC 00000960

 ** */ 00000970
 DO; ADABAS

 RECORD_BUFFER_LENGTHOPN=1500; ADABAS
 COMMAND_OPTION_2OPN =’ ’; ADABAS

 COMMAND_CODEOPN =’CL’; ADABAS

 CALL ADABAS (ADABAS
 CONTROL_BLOCKOPN ,FORMAT_BUFOPN ,RECORD_BUFOPN , ADABAS

 SEARCH_BUFOPN ,VALUE_BUFOPN , ADABAS
 ISN_BUFOPN); ADABAS

 IF RESPONSE_CODEOPN *=0 ADABAS
 THEN DO; ADABAS

 CSEQ=’00000970’; ADABAS
 CLN1(01)=’ EXEC ADABAS ’; ADABAS

 CLN2(01)=’ ’; ADABAS
 CLN1(02)=’ DBCLOSE ’; ADABAS

 CLN2(02)=’ ’; ADABAS
 CLN1(03)=’ END-EXEC ’; ADABAS

 CLN2(03)=’ ’; ADABAS

 CLNNUM=03; ADABAS
 CALL RESPINT ADABAS

 (CONTROL_BLOCKOPN ,DDFILE,CSEQ,FORMAT_BUFOPN , ADABAS
 RECORD_BUFOPN ,SEARCH_BUFOPN ,VALUE_BUFOPN , ADABAS

 CLN1,CLN2,TRCE,CLNNUM); ADABAS
 END; ADABAS

 END; ADABAS
 /* */00000980

 END PEX1;

,-.

INDEX

A
ABORT global parameter, 244
ACC clause, CONNECT statement, 121
ADA-VERSION clause, global OPTIONS

parameter, 260
Adabas calls, generating non-standard, 247
ADACALL global parameter, 247
ADACODE (end-of-file flag), 38
ADASTAR clause, global OPTIONS parameter,

260
Adding records, 172
Alias, 88, 93
APOS global parameter, 249
AUTODBID clause, global OPTIONS

parameter, 260
AUTODBID option, 97
AUTODBID-ALL clause, global OPTIONS

parameter, 260
Automatic database recovery, 108

B
BEGIN statement, 84, 105
BINARY clause, global OPTIONS parameter,

262

C
CHECKPOINT statement, 83, 106
CICS, writing TP programs under, 239
CICS clause, global ABORT parameter, 246
CIPHER clause, global SYSFILE parameter,

269
CIPHER option, 44, 97
CLOSE statement, 67, 81, 107
COM-PLETE, writing TP programs under, 239

Command ID, 263
COMMIT WORK statement, 83, 108
COMPARE statement, 77
COND-NAME clause, global OPTIONS

parameter, 262
COND-NAME option, 97
CONNECT statement, 84, 118
COPY statement, 84, 127
COUNT keyword

multiple-value fields within periodic groups,
32

multiple-value fields, 24
periodic groups, 27

Coupled files, 111, 137, 139, 142, 152, 154
Cursor, 87

D
Data dictionary files, defining the, 269
Data references, 15
Database modification, 82
Date and time conversion, 50
DBCLOSE statement, 84, 128
DBID clause

global ABORT parameter, 246
global OPTIONS parameter, 262

DBID option, 98
DECLARE clause, 87

FOR keyword, 65, 67

DELETE statement, 82, 131
Distributed Data Structures, 52
DYNAMCID clause, global OPTIONS

parameter, 263

Adabas Native SQL Reference Manual

366

E
END-EXEC, 12
End-of-file (response code), 39, 135, 192
ET mode, updating in, 108, 119, 122
ETID=USERID clause, global OPTIONS

parameter, 263
Exclusive mode

taking checkpoints in, 106
updating in, 122

EXEC ADABAS, 12

F
FETCH statement, 67, 81, 135
FILE clause, global ABORT parameter, 246
FIND COUPLED statement, 77, 152
FIND statement, 66, 77
FLOW, global MODE parameter, 253
FROM clause, 93

G
GENERATE statement, 84
GFORMAT clause, global OPTIONS parameter,

264
GROUP BY clause, 103
Group fields, reference to, 19

H
HISTOGRAM statement, 80, 164
HOLD logic, 43
HOLD option, 98
HOLD statement, 85, 170
Host variables, 42

I
IDENT clause

global ABORT parameter, 245
global ADACALL parameter, 248

INDEXED clause, global OPTIONS parameter,
265

INDEXED option, 98
INSERT statement, 82, 172
INSIZE clause, global OPTIONS parameter, 265
INSIZE option, 42, 99, 213
ISN, field in record buffer, 35
ISN (definition), 42
ISN buffer, 42, 99
ISN list, 42, 99, 101
ISN option, 99

L
LAST Clause, global ADACALL parameter,

248
Logical transaction processing, 83

M
MODE global parameter, 253
Modify the database, 82
MONITOR global parameter, 255
Multiple databases, 97, 98, 125, 130, 145, 157,

167, 185, 193, 201, 218
Multiple-record processing, 67, 81
Multiple-value fields, reference to, 22
Multiple-value fields in a periodic group,

reference to, 31

Index

,-/

N
NAME global parameter, 257
NEW-CONTROL-BLOCK clause, global

OPTIONS parameter, 265
NOFLOW, global MODE parameter, 253
NONDE clause, global OPTIONS parameter,

266
NOUPDATE, global MODE parameter, 253

O
OPEN statement, 67, 81, 180
OPTIONS clause, 96
OPTIONS global parameter, 260
ORDER BY clause, 103

P
PASSWORD clause, global SYSFILE

parameter, 269
PASSWORD option, 44, 100
Periodic groups, reference to, 27
PLI clause, global ABORT parameter, 246
PREFIX clause, global OPTIONS parameter,

266
PREFIX option, 100

R
READ ISN statement, 79, 182
READ LOGICAL statement, 79, 190
READ PHYSICAL SEQUENCE statement, 79,

199
READ statement, 66
READ USERDATA statement, 83, 205
Record buffer, 15, 47, 49, 88, 90
References to data, 15
RELEASE ISN statement, 85, 208

RELEASE statement, 85, 207
Response code 0, 40
Response code 1, 40
Response code 3, 40, 135
Response code 9, 40, 119, 123
Response code 17, 40, 121, 122
Response code 19, 40, 121
Response code 41, 40
Response code 48, 40, 119
Response code 98, 40
Response code 113, 41, 173
Response code 144, 41
Response code 145, 41, 43, 170
Response code 148, 41
Response code 198, 41, 172
Response code interpretation routine, 39, 244
Response codes, 40
RESPONSE-CODE, field in record buffer, 36
RESTORE statement, 85, 209
Retrieval statements, 87
RETURN option, 43
ROLLBACK WORK statement, 83, 210

S
SAVE option, 101
SAVE statement, 85, 211
Search criterion, 140–150
Security by value, 45
SELECT clause, 88
SEQUENCE option, 101
Single-record processing, 66
SOFT clause, global OPTIONS parameter, 266
SORT statement, 78, 215
SQDE00 variable, 223, 254
STATIC option, 102
SUFFIX clause, global OPTIONS parameter,

267
SUFFIX option, 102

Adabas Native SQL Reference Manual

368

Support of distributed data structures
with Adabas Star, 55
without Adabas Star, 54

Syntax, 72
SYSFILE global parameter, 269

T
TELE global parameter, 270
TP monitor interface, 247, 270
TRACE, global MODE parameter, 223, 254
TRACE statement, 85, 223
TRCE variable, 223, 254
TRUNCATION clause, global OPTIONS

parameter, 267
TWA (CICS), 239

U
UPDATE statement, 82, 225
User data, 83, 109, 129, 205
USER global parameter, 271
USERDATA clause, global OPTIONS

parameter, 237, 267
UTM, writing TP programs under, 239

V
VALIDATION clause, global OPTIONS

parameter, 268

W
WHENEVER statement, 86, 236
WHERE clause, 95
WRITE TO LOG statement, 86, 237

X
XREF global parameter, 273

Notes

369

ADABAS Native SQL Reference Manual

370

Notes

371

ADABAS Native SQL Reference Manual

372

	Adabas Native SQL 2.1.1 Reference Manual
	Table of Contents
	Preface
	Introduction
	Programming Considerations
	Single and Multiple-Record Processing
	Overview of Statements
	Adabas Native SQL Statements
	Using Adabas Native SQL Statements in TP Programs
	Global Parameters
	Size Limitations
	Description of the Files used in the Examples
	Adabas Native SQL Statements used in the Examples
	ADA Examples
	Example of ADA Code created by Adabas Native SQL
	COBOL Examples
	Example of COBOL Code generated by Adabas Native SQL
	FORTRAN Examples
	Example of FORTRAN Code generated by Adabas Native SQL
	PL/I Examples
	Example of PL/I Code generated by Adabas Native SQL
	Index

