Adabas
Concepts and Facilities

Manual Order Number: ADA741-0061 BB

This document applies to Adabas Version 7.4 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

Readers comments are welcomed. Comments may be addressed to the Documentation Department at the
address on the back cover or to the following e-mail address:

Documentation@softwareag.com
© December 2002, Software AG

All rights reserved
Printed in the Federal Republic of Germany

Software AG and/or dl Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

TABLE OF CONTENTS

ABOUT THISMANUAL ... e e e e e 1
L ADABASI S . . 3
Operational Highlights e 3
High Availability e 3
Storage Space Optimizationot e 3
P OrMIANCE . .. o 3
Fault TOlEranCeot e e 3
Operating Environment 4
Supported DataModels 4
Operating StrUCIUNreo e e e 6
Nucleus, I/O Buffer, and Threadsc i e 6
Data Storage, Associator, and WOrKt e 7
Utilities, User Programs, and TP MONItOrSt 8
Executing Adabas e 10
=S 0] N)Y/ 0= 10
SOragE AT . . i ittt e e e e e 10
Modes Of OPErationii it e 10
ADARUN Start-up Parameters e 12
SESSION CONMIOl . . o\ ottt e e e 12
2. ADABASDESIGN ... e e 13
AdabasENtities 13
Adabas Limits e 13
Adabas Space Management ot e 14
Database ComMpPoNentSottt e 14
Dala SlOragE . . . oottt 14

A SSOC A O v ot ettt e e e e 18
V0T o e 21
Other ComMPONENES . ..ot e e e e e 21

Adabas Concepts and Facilities

Database Files e 22
SYStEM IS . . oo 22
Coupled FIles ..o 22
Structuring Files to Enhance Performance i 23

Recordsand Field Definitions o i 26
RECOrd SITUCIUNE oot e e e e e 27
Flald LeVElS ... 27
Flald NamMES . ..o 28
Field Length and Data Formatttt e e e 28
Field OptioNs i 29
Specia Field and Descriptor Attributes i 33

USING ADABAS . . e e e 37

Accessing aDatabasefromProgramsc i 37
Direct Call INnterfaceo 37
ComMPlEX SEACNES . ..t e e 40
ACCESS MEENOOSo e 41
Using Triggers and Stored ProcedureS vttt et 45
Universal Encoding Support (UES)ot e e e 46

Maintaining Database Integrity i 47
TranSaCtion LOgiCottt e e e e 47
Competitive Updatingc.ii i e 48
TIMEOUL CONMIOIS . ..ot 50
Backout, Recovery, and Restart 51
Extended Error Handling and Message Buffering 53

ADABASUTILITIES ... e e e e e 55

Initial Designand Load Operations 55
ADACMP : ComPress/ DECOMPIESS . . .ottt e et ettt ettt 55
ADALOD : LOader . ..ot 57
ADAULD : Unloado e e e e 58

Table of Contents

Backup/ Restore/ Recovery Routines, 59
ADAPLP: Protection Log/Work Print 59
ADARAI i Recovary Aid ... o e 59
ADARES . ReStart ... 60
ADASAV : Save/ Restore Databaseor Files i 61
ADASEL : Select Protection Dataot e 62

Database Modification RoUtingsccciiiiiii .. 62
ADACDC : Changed-Data Capturettt et e 62
ADACNYV : Database COnNVErSIONttt et ettt et et 63
ADADBS : Database SErVICES . . oot e 63
ADADEF : DefineaDatabaseo 67
ADAFRM : Format DatasatS oot e 67
ADAINY INVEIt L e e 68
ADAORD : REOMAEN . ..\ttt 69
ADAZAP : Modify Physical Database Blocks i 70

Audit/ Control / Tuning Proceduresttt 70
ADAACK : Check Address Convertercouiiiiiii et 70
ADADCK : Check Data Storageo vttt et ettt e e 70
ADAICK : Check Index and Address Convertert 71
ADAMER : ADAM EStimationttt e e e e 71
ADAREP . RO .. e e 72
ADAVAL : Validatethe Databaset e e e 73
ADAPRI : Print Selected AdabasBIocks i 73

5. ADABAS SECURITY . e e e e e 75

Data ENCryplion e 75

Multiclient Files e 76

Adabas Security and ADASCR 76
Access/Update Level Protectiont e e 76
Value Level Protection o e e 77

Adabas Interfaceto SAF-based Packages 77
Adabas SAF Security (ADASAF) . ..ottt 78

Adabas Concepts and Facilities

6.

Related Security Options e 81
Adabas Online System SECUNTY v it e e e 81
Natural SECUNY ...t e 81
Using the SAF Repository to Secure Software AG Products 81
Entire Security SAF GateWayottt 81
Entire Net-Work SAF Security (NETSAF)ot 83

OPTIONAL EXTENSIONS e 85

Adabas Online System 85

AdabasCaching Facility 87

AdabasDeltaSave Facility 88

AdabasFastpath 89

Adabas Vista 20

Adabas TransaCtion Managero ittt et e 92

Adabas ReVIieW 92
The HUD Server ..o 93
The Interface Client o 94
Interface Calls o 94
Example Client/Server EnVironmentttt ittt 95

Adabas Statistics Facility 96
Data Collection Program . ..ottt e et e e 96
Data Evaluation Programsvu ittt e 97

AdabasParallel Services ... 99

Adabas CluSter SErVICESot e e 100
Cluster Services With Other Adabas Products. oo 100
Advantages of Using Entire Net-Work i i 101

Adabas Text Retrieval i 103

AdabasBridges ... 104
Adabas Bridge for VSAM ... 104
Adabas Bridge for DL/l (and IMSIDB)ot i e e e e 107

Entire Transaction Propagatorcoiinirinii it 110

Table of Contents

Entire Net-Work Multisystem ProcessingTool 111
Adabas Native SOL e 114
Adabas SOL SErVEr e 115
Natural Application Development Environment 117
Predict DataDictionary System 119
GLOSSARY OF TERMS e 121
IN DX . o 131

\

ABOUT THISMANUAL

This manual provides a technical introduction to the principles and functions of Adabas,
Software AG's adaptabl e database management system. It provides an overview of Adabas for
those who require a basic understanding of Adabas operating environments, design, use, and
optional extensions.

Unit
Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6

Appendix A

Content

presents a system overview and discusses the supported operating
environments.

describes the structures used by Adabas and their functions and interactions.
talks about accessing the database and maintaining its integrity.

briefly describes the Adabas utilities.

describes the security features available with Adabas.

briefly describes the optional extensions available from Software AG to add
functionality to the Adabas core product.

isaglossary of the Adabas terms used in this manual.

ADABASIS. ..

Adabas, the adaptable database, is a high-performance, multithreaded, database management
system for mainframe platforms where database performance is a critical factor. It is
interoperable, scalable, and portable across multiple, heterogeneous platforms including
mainframe, midrange, and PC.

Operational Highlights

High Availability

Adabas is designed for operation 7 days a week and 24 hours a day. Space is managed
dynamically (see page 14), files can be loaded and unloaded, backed up and restored, and system
performance can be analyzed without interrupting the active database.

Stor age Space Optimization

Adabas stores data in compressed form to reduce space requirements. Since modern databases
are measured in gigabytes (1000 megabytes) or even terabytes (1000 gigabytes), the savingsin
disk space can be considerable. Reduced space requirements also mean that the input/output
(I/0) system is more efficient.

Performance

Performance is the key factor of Adabas, which includes a number of features to enhance it. For
instance, a number of set-up parameters are available for fine-tuning the database operating
environment, and many of these can be modified while the database is active.

Fault Tolerance

Adabas recovers automatically after an abnormal database or system termination. Each time an
Adabas database is started, an automatic check is initiated to determine whether the database
previously terminated “cleanly” or an active transaction was interrupted. If a transaction was
interrupted, Adabas automatically resets all changes of the uncompleted transaction so that the
database is consistent.

Adabas Concepts and Facilities

Operating Environment

Adabas 7.4 for mainframes supports the following operating environments:
* SNI’'sBS2000
* IBM’s0S/390, Z/OS, VSE/ESA, VM/ESA, and ZVM
e Fujitsu'sOS IV/F4 MSP

Mainframe Adabas can be used in distributed environments with Adabas on
e Digital’s VAX and Alpha AXP under OpenVMS
e IBM’s AS/400 under OS/400
e Wangunder VS
. IBM’s PC and compatibles under OS/2 or Windows/NT
e avariety of supported UNIX platforms
As the telecommunication interface, mainframe Adabas supports TP monitors such as Software

AG's Com-plete; and other popular monitors such as TSO, CICS, IMS/DC, AITM/DC, TIAM,
UTM, and Shadow.

Software AG's multisystem processing tool Entire Net-Work provides the benefits of
distributed processing by allowing you to communicate across a network with Adabas and other
service tasks.

Support for network access methods is implemented in the form of line drivers. Mainframe
Entire Net-Work provides drivers for VTAM, IUCV, DCAM, CTCA (channel-to-channel
adapter), TCP/IP, and XCF.

Supported Data Models

Adabas is a “relational-like” database in that

e it stores information in tables in which rows represent individual data records and columns
represent fields; and

e separate Adabeas files can be linked logically by a common field.

Adabas Is . ..

Adabas differs from true relational databases in that it

stores many data relationships physicaly, resulting in fewer demands on CPU resources than
true relational databases, which create all relationships logically at runtime.

supports repeating groups of fields.

Adabas separates data relationships, management, and retrieval from the actual physical data
and stores the physical dataindependently. It provides flexible access techniques and performs
both simple and complex searches quickly and efficiently. The independence of the data from
the program minimizes the need to reprogram when the database structure changes.

Logica data relationships can be created as needed. Adabas can accommodate any
representational and access requirements dictated by the user environment. Each individual
corporate user can decide how to view data in the system, and can alter data relationships
dynamically—without altering the database or existing programs.

In contrast to systems that require asingle model for all data, Adabas allows you to choose any
structure your application requires. You can access the same data using your choice of
data-model perspective:

relationa including nested relational (tables within tables)

entity relationship, with proven ability to support structural objects
hierarchical; network

geographical

text

Support for an object-oriented data model is currently being developed.

These data models can be combined within a single business solution; multiple solutions can
view Adabas data using different data models.

As new requirements develop, Adabas evolves in both scope and complexity without redesign
of the database or reprogramming of application systems. For example, field and access keys
may be added to an Adabas file at any time without reloading or reorganizing the file.

Adabas Concepts and Facilities

Operating Structure

Figure 1-1 shows the operating structure of the Adabas system.

CPU Memory Disk File
S —
Adabas 1 Work Area
Utility] Adabas
| Nucleus Associator
User < 5 :
Program ‘
1/0 Buffer Data
. Storage
TP Monitor
Threads
Adabas

Figure 1-1: The Adabas System

Nucleus, |/O Buffer, and Threads

The Adabas nucleus and input/output (1/0) buffer are loaded into main memory at startup. The
“nucleus’ is a set of programs that drives Adabas, coordinates all work, and translates user
program statements into Adabas commands. All programs access Adabas files through the
nucleus. All database activities such as data access and update are managed by the Adabas
nucleus. In most cases, a single nucleus is used to manage a single physical database.

Note:

For information about running multiple nuclei against a single physical database under a single
operating system image (Adabas Parallel Services), see page 99; or under multiple OS390 or
ZIOS images (Adabas Cluster Services), see page 100.

Adabas Is . ..

The Adabas “1/0” buffer area, which can be resized for each Adabas session, contains the most
frequently used data and data relationships; it helps to minimize physical input/output (1/0)
activity and thus saves computer time. It contains blocks read from the database and blocks to
be written to the database:

e For blocks read from the database, a “buffer algorithm” ensures that the most frequently
accessed blocks stay in memory. When a block from the database is needed, the buffer content
is checked to determine if the block is already in memory, thus avoiding unnecessary reads.

e Multiple updates are accumulated in a block before being written (“flushed”) to the database.
Adabas provides multithreaded processing to maximize throughput. If 1/0 activity suspends

command processing in an active thread, Adabas automatically switches to another thread. The
user may set the number of 8-kilobyte threads to be used for an Adabas session up to amaximum

of 250.
e
ADABAS / Associator
ADABAS
Buffer
\

Threadl Data
Thread? Storage
Thread3

Threadn

Figure 1-2: Adabas Multithread Processing

Data Storage, Associator, and Work

The Data Storage, Associator, and Work components are physical disk areas:
e Data Storage contains raw data, generally in compressed form.

Adabas Concepts and Facilities

e The Associator contains information about data relationships.

e The Work area contains the data protection area and temporary storage for intermediate results
during complex search operations or distributed transaction processing.

See the chapter Adabas Design starting on page 13 for more information about these database
components.

Utilities, User Programs, and TP Monitors
Utilities
Database services such asloading or deleting files are handled by an integrated set of online and

batch-mode “utility” programs. Most utilities can be run in paralel with normal database
activity to preclude interruption of daily production.

Adabas utilities provide initial design and load operations, backup/restore/recovery routines,
database modification routines, and audit/control/tuning procedures. See the Utilities chapter
starting on page 55 for a brief explanation of each utility.

User Programs

The nucleus is called using a batch or online “user program” written in

e Natural, Software AG's fourth-generation application devel opment environment, or some other
fourth-generation language; or

e Assembler, or athird-generation programming language such as FORTRAN, COBOL, or PL/I
(the REXX/V SE interpreter language is also supported) that uses the powerful and flexible
Adabas direct call interface. Each Adabas call is accompanied by a parameter list identifying
buffers defined in the user program that are used to transfer information to and from Adabas.

Note:

See page 114 for information about Adabas Native SQL, a precompiler for Ada, COBOL,
FORTRAN, and PL/I programs; and page 115 for information about Adabas SQL Server, an SQL
interface to Adabas.

Data from VSAM, DL/I, IMS/DB, SESAM, or TOTAL database structures can be transferred
to and stored in Adabas using Adabas “bridge” products. The original, unmodified programs
continue operating with their original data access commands while the bridge products intercept
the data access commands and translate them to Adabas direct calls. See page 104 for more
information about Adabas bridges.

Adabas Is . ..

Special User Programs: Triggersand Stored Procedures

The Adabas triggers and stored procedures facility, an integral part of Adabas, can be used with
Natural (see page 117) to write and manage triggers and stored procedures in the Adabas server
environment. “Triggers’ are systematically used programs that are started automatically based
on an event; they can be used to ensure referential integrity, for instance. “ Stored procedures’
are programs used by a number of different clients that are executed by Adabas as a result of
a special user call. Storing these programs in an Adabas file on the server reduces the amount
of data traffic to and from the server. See page 45 for more information about Adabas triggers
and stored procedures.

TP Monitors, Adalinks, and the Adabas API

Since most systems do not alow a standard call to Adabas, Software AG provides an application
program interface (API) to translate calls issued by an application program into aform that can
be handled by Adabas. The Adabas API is available across all supported mainframe platforms
for both batch and online operations.

Online operations are controlled by teleprocessing (TP) monitors, which serve as
telecommunication interfacesto Adabas. Supported TP monitors are listed on page 4. Software
AG provides versions of the Adabas API that are specific to particular TP monitors. “ Adalink”
isageneric term that refersto the portion of the API that is specific to a particular TP monitor.

Batch applications are supported in both single-user and multiuser mode (see page 10 for a
discussion of these modes). The Adabas batch API uses a standard calling convention that is
supported by al major programming languages through their CALL mechanisms. Most
mainframe operating systems allow batch application modulesto be linked either with the batch
API or with ADAUSER.

Software AG strongly recommends linking batch application programs with the Adabas
version-independent module ADAUSER. The ADAUSER module can optionally be linked
with the Adabas API. ADAUSER provides upward compatibility with Adabas releases and a
degree of isolation from future changes to the API or to mechanisms that handle interregion
communication between the user and the nucleus (see page 11).

A client running under IBM’s OpenEdition can access Adabas. An OpenEdition application
containing calls to Adabas can be linked with either the batch APl or ADAUSER.

Adabas Concepts and Facilities

Executing Adabas

Session Types

Three types of sessions can be identified for Adabas:

e The “Adabas session” starts when the nucleus is invoked and ends when the nucleus is
terminated. An Adabas nucleus is invoked using job control specific to a particular operating
system that contains Adabas start-up or “ADARUN" parameters.

. A “user” is either abatch mode program or aperson using aterminal. A “user session” can occur
only during an Adabas session; that is, when the Adabas nucleus is active. A user session isa
sequence of Adabas calls optionally starting with an open user session (OP) command and
ending with a close user session (CL) command.

e A‘“utility session” is executed in batch, or online using the Adabas Online System (see page 85).
Some utilities require the Adabas nucleus to be active; others do not. ADARUN start-up
parameters are also used for executing utilities.

Storage Areas

The Adabas nucleus and each user program or Adabas utility is executed in a separate storage
area defined by the operating system. The name of the storage area depends on the operating
system:

BS2000 task

0S/390 or zZ/OS address space, data space, hiperspace, 64-bit virtual space
VM/ESA or zZVM virtua machine

VSE/ESA partition, address space, data space

For consistency and simplification, Adabas manuals refer to al non-VM areas (task, address

space, partition, etc.) as “regions’. VM areas are called “virtua machines’.

M odes of Operation

Adabas supports two modes of operation: single-user and multiuser.

Single-user mode is in effect when a user program (or Adabas utility) is executed in the same
partition/region as the Adabas nucleus.

10

Adabas Is . ..

/ e
ADABAS .
/ Associator
ADABAS TS
Buffer
\ e
Region / < Threadl Data
Partition Storage
User Program)
(or ADABAS utility)
\

Figure 1-3: Single-User Mode

Multiuser mode is in effect when the Adabas nucleus is located in a separate partition/region.
It is the most efficient and therefore the recommended mode of operation.

—
‘ User Program 1 ‘ ADABAS R
/
| ADABAS Uiility | ADABAS)
T —
User Program 2 Threadl sData
t
Thread2 ﬂ
‘ User Program 3 ‘
Threadn

Figure 1-4: Multiuser Mode

When using Adabas in multiuser mode, interregion communication is handled by Adabasin a
manner that takes optimum advantage of the communications facilities offered by the various
operating systems.

For single-user mode, the appropriate Adabas nucleus JCL must be included with the job control
for the utility or user program.

11

Adabas Concepts and Facilities

ADARUN Start-up Parameters
The ADARUN control statement defines and starts the Adabas operating environment. The
ADARUN control statement also starts Adabas utilities. ADARUN

e Joads the ADAIOR module, which performs al database /O and other
operating-system-dependent functions;

e interprets the ADARUN parameter statements; then loads and modifies the appropriate Adabas
nucleus or utility modules according to the ADARUN parameter settings; and

e transfers control to Adabas.
The ADARUN statement, normally a series of entries each specifying one or more ADARUN

parameter settings, is specified in the DDCARD (0S/390, z/OS, MSP, VM/ESA, z/VM, or
BS2000) or VSE/ESA CARD dataset.

Session Control

Adabas provides several ways to monitor and control Adabas, user, and utility sessions:

e Adabas “operator commands’ can be entered from the operator console during an Adabas
session or during utility operation.

e The ADADBS OPERCOM utility function can issue operator commands to the Adabas nucleus.
Adabas then issues a message to the operator confirming the command execution.

e For those using Adabas Online System (demo or full version), you may be able to execute
functions corresponding to operator commands while an Adabas session is active using menu
options or direct commands.

Operator commands can be used to terminate an Adabas or user session; display nucleus or
utility information; log commands; and change Adabas operating parameters or conditions.

Adabas “direct call commands’ can also be used to open and close a user session. See page 37
for more information about direct call commands.

12

ADABASDESIGN

Database systems often involve complex data structures and data handling procedures that can
be designed and used only by persons with extensive knowledge and experience. Adabas has
a remarkably simple structure by comparison, yet it provides significant advantages for
operational efficiency, ease of design, definition, and database evolution.

Adabas Entities

In Adabas, a“field” isthe smallest logical unit of information (e.g., current salary) that may be
defined and referenced by the user. A “record” is a collection of related fields that make up a
complete unit of information (e.g., al the payroll datafor asingle employee). A “file’ isagroup
of related records that have the same format (with some exceptions; see page 24). A “ database”
is a group of related files.

AdabasLimits
The table bel ow shows the maximum number that mainframe Adabas supports for each entity:
Entity Maximum
Databases 65,535
Blocks per database 2,147,483,646 using 4-byte RABNs
Files per database the lower of 5,000 or the Associator block size minus one
Records per file 4,294,967,294 using 4-byte ISNs
Fields per record 926

Uncompressed record length depends on the operating system
Compressed record length Data Storage block size

13

Adabas Concepts and Facilities

Adabas Space M anagement

The disk storage space alocated to a single Adabas database is segmented into “logical” Adabas
files. A certain part of the overall space within the database is allocated to each logical file.
When the space is filled with records from the file, Adabas automatically allocates more space
to the file from the common free space pool. This dynamic space allocation, together with the
dynamic recovery of released space, allows Adabas databases to run without intervention for
long periods of time.

The distribution of database space across disk drives can be controlled by “physically”
segmenting it into multiple independent datasets. When all physical database space is filled,
more datasets can be allocated dynamically, or the size of existing datasets can be increased so
that new physical files can be loaded without reorganizing the entire database.

Database Components

To support the separation of data and access structures, the Adabas nucleus uses three database
components:

Data Storage for compressed data
Associator for data management and retrieval
Work, a scratch area for complex search criteria, etc.

Data Storage

14

Data Storage is divided into “blocks’, each identified by a 3- or 4-byte relative Adabas block
number or “RABN?” that identifies the block’s physical location relative to the beginning of the
component. Data Storage blocks contain one or more physical records and a padding area to
absorb the expansion of records in the block.

A logical identifier stored in the first four bytes of each physical record is the only control
information stored in the data block. Thisinternal sequence number or “ISN” uniquely identifies
each record and never changes. When arecord is added, it is assigned an ISN equal to the highest
existing ISN plus one. When arecord is deleted, its ISN is reused only if you instruct Adabas
to do so. Reusing | SN's reduces system overhead during some searches and is recommended for
files with records that are frequently added and deleted.

Adabas Design

For each file, between 1-90 percent (default 10%) of each block can be allocated as padding
based on the amount and type of updating expected. This reserved space permits records to
expand without migrating to another block and thus helps to minimize system overhead.

RABN Records (identified by ISNs) Padding Area
1 0071 0595 0221 7//
2 0222 0991 2021 ///
3 0300 0401 0532 ///

Figure 2—1: Adabas Data Storage Blocks

Free Space and Space Reusage

If records become too large for their blocks, they migrate to new locations. When a record
migrates or is deleted, free space is opened in the data block between the last record and the
padding area. Figure 2—2 shows free space created when the record with ISN 0401 becomes too
large for the block and migrates to another block:

/7\

Padding Area

0300 0401 0533 %
Free Space Padding Area
0300 0533 W%

Figure 2-2: Free Data Storage Space Created by Record Migration

You can instruct Adabas to reuse free space. Reusing space saves computer time, since Adabas

then reads fewer physical blocks during searches. It is recommended for all files.

Adabas Concepts and Facilities

Compression

16

Data compression significantly reduces the amount of storage required. It also permits the
transmission of more information per physical transfer, resulting in greater 1/0O efficiency.

Adabas retains data records in compressed form. Four compression options are supported:
default compression;

null suppression;

fixed format; and

forward or “prefix” index compression.

The first three options define and execute compression at the field level; the fourth option can
be implemented at the file or the database level, in which case specific files can be set
differently; the file-level setting overrides the database setting. The null suppression and fixed
format options are added as field options and are discussed on page 30. The forward index
compression option is set using the ADALOD utility and can be changed using the ADAORD
utility.

“Default compression” deletestrailing blanksin aphanumeric fields and leading zerosin binary
fields. An inclusive length byte (ILB) at the beginning of the field indicates the total number
of stored bytes, including the ILB. Thus, if “Susan” is entered in a “first-name” field defined
with a 20-character length and default compression, its stored size will be six bytes: five bytes
for the letters of the name, plus one byte for the ILB. In addition, empty fieldsin arecord are
not stored; an empty field is replaced by a one-byte empty field counter (EFC). Adabas can store
up to 63 contiguous empty fields in a single hexadecimal byte.

Many Adabas files require only 50% to 60% of the space used for the raw data. Even with the
addition of approximately 25% for the access structures stored in the Associator, Adabas storage
requirements are still less than those required for traditional file storage or for DBMSs that do
not use data compression.

Adabas Design

Data Before Compression (45 bytes)

|J\O\'\\IE\S\ LLb Ll \2\2\2\ \N\IAwle\ \S\T\ [‘0‘0‘0‘0‘8‘()'0‘0|
~— 15 — e 22 —>|<— 8 —>
bytes bytes bytes

Adabas Compressed Data (22 bytes)

JONES| 222 MAIN ST,;2298°
||HHH|HHHHHHl\S\O\Cl

| < 6 >|<— 12 —|=<yg>]

bytes bytes bytes

Figure 2-3: An Example of Adabas Default Compression

Forward (or ‘front’ or ‘prefix’) index compression removes redundant prefix information from
index values. Within one index block, the first value is stored in full length. For all subsequent
values, the prefix that is common with the predecessor is compressed. An index value is
represented by

<l,p,value>

—where

p isthe number of bytes that are identical to the prefix of the preceding value.
I is the exclusive length of the remaining value including the p-byte.

For example:

Before Compression After Compression

ABCDE
ABCDEF
ABCGGG
ABCGGH

6 0 ABCDE
25F
4 3 GGG
25H

17

Adabas Concepts and Facilities

The decision to compress index values is based on the similarity of index values and the size
of the file:

the more similar the index values, the better the compression resullts.

small files are not good candidates because the absolute amount of space saved would be small
whereas large files are good candidates for index compression.

Even in a worst case scenario where the index values for a file do not compress well, a
compressed index will not require more index blocks than an uncompressed index.

Associator

The Associator is an organizational unit used for storing the structures required to access data
in Data Storage. It contains

a control block for the database as a whole and control blocks for each file;

all tables needed to control and maintain the database including afield definition table or “FDT”
(see page 26) for each file and coupling lists for physically coupled files (see page 22);

an inverted list for each descriptor in each file of the database and an address converter for each
file.

Inverted Lists

18

Aninverted list, which is used to resolve Adabas search commands and read records in logical
sequence, is built and maintained for each field in an Adabasfile that is designated as a key field
or “ descriptor” (see page 29). It iscalled an “inverted” list because it is organized by descriptor
value rather than by ISN. The list comprises the normal index (NI) and as many as 14 upper
indexes (UI).

The normal index (NI) of the inverted list for a particular descriptor has an entry for each value.
The entry contains the value itsdlf, the number of records in which the value occurs, and the ISNs
of those records.

To increase search efficiency, upper index (Ul) levels are automatically created by Adabas as
required, each level to manage the next lower level index. The first level Ul, like the NI it
manages, contains entries for only one descriptor in each index block. All other Ul levels contain
entries for all descriptors in each index block. Uls require a minimal amount of space: two
blocks is the minimum.

Adabas Design

Note:

The Adabas direct access method (ADAM) facility permits the retrieval of records directly from
Data Sorage without accessing the inverted lists. The Data Sorage block number in which a
record is located is calculated using a randomizing algorithm based on the ADAM key of the
record. The use of ADAM is completely transparent to application programs and query and
report writer facilities. See page 44 for more information.

Figure 2—4 shows a typical normal index for the descriptor “city” in a customer file.

Value Count ISNs

London 27 3 ...

New York 61 96 ...

Zurich 31 2 6 2376

/\

\

Figure 2—4: A Normal Index

The example indicates that there are 31 records with the “ city” Zurich (the ISNs of these records
are 2,6,23,76...).

Address Converter

The address converter determines the physical location of arecord. It is an index that maps the
logical identifier of arecord (that is, the ISN) to the relative Adabas block number (RABN) of
the Data Storage block where the record is stored.

The address converter contains a list of RABNs in ISN order. Only the RABNSs are actually
stored in the address converter; the ISNs are identified by their relative position.

19

Adabas Concepts and Facilities

Figure 2-5 shows the relationship between an inverted list, the address converter, and Data
Storage. For example, to determine the physical location of the record whose ISN is 6, Adabas
uses the ISN as an index into the address converter. The sixth entry in the address converter is
2. Therefore, ISN 6 is located in physical block 2 in Data Storage for thisfile.

Associator Data Storage
Block 1
Address 112758 ABC-COMP| Loqdon
Inverted List for CITY Converter 2112600 JEL-COMP | Zurich
— 3114811 XYZ-COMP| London
London | 27 |3 .. 111 .
New York| 61 |96 ... 12/ 1
Zurich [31 [262376). [3|1
L %% Block 2
615 |- |6 111643] R—COMP__ | Zurich
7112 96/14542] S-COMP | New York L
N 8 5 | 14]10002 B-COMP | Munich \
\/] o .
0 .
€ Block 3
=
=
/\

Figure 2-5: Adabas Access Technique

When a record moves or is deleted, Adabas updates the address converter automatically and
transparently.

Since the ISN for a record never changes, and its physical block address is stored only in the
address converter entry, the record itself may be moved in Data Storage with only one update
to the address converter required and with no extension to the access path of the record.

Even if arecord has many descriptors defined, the inverted list for each descriptor need not be
modified because it contains ISNs.

This process explains how Adabas is able to perform simple and complex searches quickly and
efficiently without storing pointer information in Data Storage.

Wor k

Adabas Design

The Work area stores information in four parts:
Part Stores. ..
1 data protection information required by the routines for autorestart and autobackout.

See page 51 for more information.

intermediate results (ISN lists) of search commands.
final results (ISN lists) of search commands.

data related to two-phase commit processing.

Other Components
Sort and Temp Areas

Logs

Certain Adabas utilities (ADAINV, ADALOD) require two additional datasets, sort and temp,
for sorting and intermediate storage of data. Certain functions of other utilities require the temp
dataset for intermediate storage.

The size of the temp and sort datasets varies according to the utility function to be executed.
These datasets can be allocated during the job and then released, or permanent datasets can be
allocated and reused.

Adabas uses the following optional logs:

The “command log” (CLOG) records information from the control block of each Adabas
command that isissued. The CLOG provides an audit trail and can be used for debugging and
for monitoring the use of resources. Single, dual, or multiple (2-8) datasets can be used (multiple
datasets are recommended).

The “protection log” (PLOG) records before- and after-images of records and other elements
when changes are made to the database. It is used to recover the database (up to the last
completed transaction or “ET") after restart. Single, dual, or multiple (2-8) datasets can be used
(multiple datasets are recommended).

The “recovery log” (RLOG) records additional information that the Adabas Recovery Aid uses
to construct a recovery job stream. See the ADARAI utility discussion on page 59 for more
information.

21

Adabas Concepts and Facilities

Database Files

Each database contains system files and datafiles. A datafileis generally created for each record
structure required; that is, for each set of related fields identified.

Files are loaded into the database using the ADALOD utility. A file number must be uniquein
the database and not greater than the maximum file number defined for the database in the
MAXFILES parameter. For a checkpoint, security, system file, or physically coupled file, the
number cannot be greater than 255; other files including a trigger file can have two-byte file
numbers. File numbers are assigned by the user in any sequence.

System Files

Adabas uses certain files to store system information. Using the ADALOD tility’s FILE
parameter, you can identify an Adabas system file as one of the following:

CHECKPOINT Adabas checkpoaint file
SECURITY Adabas security file

SYSFILE Adabas system file
TRIGGER Adabas trigger file
Coupled Files

File coupling allows you to select, using a single search command, records from one file that
are related (coupled) to records containing specified values in a second file.

Physical Coupling

22

Any two files with file numbers 255 or lower may be physically coupled if a common
“descriptor” (see page 29) with identical format and length definitions is present in both files.
A single file may be coupled with up to 18 other files, but only one coupling relationship may
exist between any two files at any one time. A file may not be coupled to itself.

When files are coupled, coupling lists are created in the Associator for each file being coupled.
File coupling is bidirectional rather than hierarchical in that two coupling lists are created for
each coupling relationship with each list containing the ISNs that are coupled to the other file.

Adabas Design

Once the physical coupling lists have been created, any key field in either file may be used
within a search criteria.

Physical coupling may add a considerable amount of overhead if the files involved are
frequently updated. The coupling lists must be updated if arecord in either of thefilesis added
or deleted, or if the descriptor used as the basis for the coupling is updated in either file.

Physical coupling may be useful for information retrieval systemsin which
e files seldom change;

e the additional overhead of the coupling listsis insignificant compared with the increased ease
of formulating queries; or

e filesare small and primarily query-oriented.

Logical or “Soft” Coupling

Multiple files may also be queried by specifying the field to be used for interfile linkage in the
search criteria. Adabas then performs all necessary search, read, and internal list matching
operations.

This technique is called logical or “soft” coupling because it does not require the files to be
physically coupled. Although logical coupling requires read commands, it is normally more
efficient because it avoids the increased overhead of coupling lists.

Structuring Filesto Enhance Perfor mance

An Adabas database with one file for each record type supports any application functions
required of it and is the easiest to manipulate for interactive queries, but it may not yield the best
performance:

¢ Asthe number of Adabas files increases, the number of Adabas calls increases. Each Adabas
call requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and
gueuing overhead.

. In addition to the input/output (1/O) operations necessary for accessing at least one index,
address converter, and Data Storage block from each file, the “onefile per record type” structure
requires buffer pool space. If sufficient buffer space is not available, blocks are overwritten that
may be needed for alater request.

23

Adabas Concepts and Facilities

The number of Adabas files used by critical programs can be reduced by
e using multiple-value fields and periodic groups (see page 27);
¢ linking physica filesinto a single logical (expanded) file;
¢ including more than one type of record in an Adabas file;
¢ including records for more than one category of user in an Adabas (multiclient) file; and

e controlling data duplication and the resulting high resource usage.

Expanded Files

If you have alarge number of records of a single type, you may need to spread the records over
multiple physical files.

To reduce the number of files accessed, Adabas alows you to link multiple physical files
containing records of the same format together asasingle logical file. Thisfile structureis called
an “expanded file” and the physical files comprising it are the “ component files’. An expanded
file can comprise up to 128 component files, each with a unique range of logical ISNs. An
expanded file cannot exceed 4,294,967,294 records.

Note:
Snce Adabas now supports larger file sizes and a greater number of Adabas physical files and
databases, the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the fileis the number
of the expanded file's base component or “anchor” file), Adabas selects the correct component
file based on the data in a field defined as the “criterion” field. The data in this field has
characteristics unique to records in only one component file. When an application updates the
expanded file, Adabas looks at the data in the criterion field in the record to be written to
determine which component file to update. When reading expanded file data, Adabas uses the
logical ISN as the key to finding the correct component file.

Multiple Record Typesin One File

Multiple record types can be defined within asingle physical record; each record typeisalogical
record composed of asubset of the fields defined for thefile. Fields that do not belong to agiven
type are null-suppressed.

24

Adabas Design

Record types can be identified to Adabas by
e defining arecord type field with values to differentiate one type from another; or

e using values of an existing field to differentiate type; for example, to differentiate two types,
avalue of zero for afield common to both types might identify one type and any nonzero value
for the same field might identify the other type.

Multiclient Files

Records for multiple users or groups of users can be stored in a single Adabas physical file
defined as “multiclient”. The multiclient feature divides the physical file into multiple logical
files by attaching an internal owner ID to each record.

The owner ID isassigned to auser ID. A user ID can have only one owner ID, but an owner ID
can belong to more than one user. Each user can access only the subset of records that is
associated with the user’s owner ID.

Note:
For any installed external security package such as RACF, CA-ACF2, or CA-Top Secret, a user
is still identified by either Natural ETID or LOGON ID.

All database requests to multiclient files are handled by the Adabas nucleus.

Controlled Data Redundancy

“Physical” redundancy increases storage requirements but may also enhance performance and
decrease complexity. For example, if a database stores customer and order information in a
customer-orders file and product descriptionsin an inventory file, and a program that generates
invoices requires product descriptions in addition to customer-order data, it might enhance
performance to store a duplicate copy of the product descriptions in the customer-orders file.

“Logical” redundancy also increases storage demands while decreasing complexity. It involves
storing in one file the results of a process on data in another file; thus, the duplicate data is
implied by the content of another file, rather than being physically stored in two places.

Physical and logical redundancy cause update programs to run more slowly. The duplicate
updates required when changes in one file affect records in another file may degrade
performance severely. Redundancy should be used only for static data or data that is updated
rarely. You can control data redundancy by using multiple-value fields, periodic groups, and
multiple record types within afile.

25

Adabas Concepts and Facilities

Records and Field Definitions

In Adabas, the record structure and the content of each field in a physical file are described in
afield definition table or “FDT”, which is stored in the Associator. There isone FDT for each
database file. The FDT is used by Adabas during the execution of Adabas commands to
determine the logical structure and characteristics of any given field (or group) in the file.

The FDT liststhe fields of thefilein physical record order; providesa“quick index” to thefile's
records; and defines the file's fields, sub/superfields, and descriptors including collation,
sub-/super-/hyper- and phonetic. A minimum of one and a maximum of 926 field definitions
may be specified.

Information about each field includes the level, name, length, format, options, and special field
and descriptor attributes.

/////FIELD DESCRIPTION TABLE \\\\\

I I I I I
LEVEL I NAME I LENGTH I FORMAT I OPTIONS I PARENT OF

I I I I I

—————— i S e e

I I I I I I

1 I AA T 8 I A I DE,UQ I I

1 I AB I I I I I

2 I AC I 20 I A I NU I I

2 I AE I 20 I A I DE I SUPERDE, PHONDE I

2 I AD I 20 I A I NU I I

1 I AF I 1 I A I FI I I

1 I AG I 1 I A I FI I I

1 I AH I 6 I U I DE I I

1 I A2 I I I I I

1 I AO I 6 I A I DE I SUBDE, SUPERDE I

1 I AQ I I I PE I I

2 I AR I 3 I A I NU I SUPERDE I

2 I As I 5 I P I NU I SUPERDE I

1 I A3 I I I I I

2 I AU I 2 I U I I SUPERDE I

\\\\\\ 2 I AV I 2 I U I NU I SUPERDE j/////

Figure 2-6: Field Definition Table

26

Adabas Design

Record Structure

The order of the fieldslisted in the FDT determines the structure of the record and the efficiency
of retrieval. The following factors should be considered when ordering fields:

e Fieldsthat will be accessed frequently should be ordered first in the FDT. This technique reduces
CPU time because Adabas does not have to read the whole record when retrieving a field.

e Fields that will frequently be accessed together should be assigned to a “group” field.

e Fieldsthat will always be accessed together should be defined as asingle field. This technique
may inhibit compression and query language use; however, it decreases processing time by
providing more efficient internal processing and shorter format buffers.

. If appropriate, fields that will frequently be empty should be ordered together in the FDT and
set to use default compression or null suppression.

e Numeric fields should be loaded in the format in which they will be used most often.

Field Levels

When two or more consecutive fields in the FDT are frequently accessed together, you can
reference them together by defining a group field. Other than its level and Adabas short name,
a group field has no attributes defined. It immediately precedes its member fields in the FDT.
A higher field “level” number is used to assign the member fields to the group field. Adabas
supports up to seven field levels. User programs can access each member field individually, or
all member fields together by referencing the group field.

For example, in Figure 2—6 on page 26, field AB is defined as agroup field and assigned to level
1. Fields AC, AE, and AD are assigned to level 2, indicating that they belong to group field AB.
The next field, AF, is assigned to level 1, indicating that it is not part of the AB group. User
programs can access AC, AE, and AD individually, or together by referencing the group field
AB.

A group field can be assigned as a“ periodic” group field if it is comprised of fields that can have
more than one value (for example, group field AQ in Figure 2-6); see page 31.

27

Adabas Concepts and Facilities

Field Names

A field is identified to Adabas by a two-character Adabas “short” name that must begin with
an alphabetic character and can be followed by anumeral or letter (the combinations EO—E9 are
reserved and special characters are not allowed) and must be unique within a file. Adabas
assigns short names to fields automatically, although you can choose to assign them yourself.
Adabas uses the short names internally and actually accesses fields by their short names.

Field Length and Data Format

28

Field values are fixed or variable in length and can be in aphanumeric, binary, fixed-point,
floating-point, packed/unpacked decimal, or wide character formats.

The length (expressed in bytes) and format (expressed as a one-character code) of afield define
the standards (defaults) to be used by Adabas during command processing. They are used when
the field is read/updated unless the user specifies an override.

If standard length is zero for afield, the field is assumed to be a variable-length field. Standard
format must be specified for a field. The format specified determines the type of default
compression to be performed on the field.

The maximum field lengths that may be specified depend on the “format” value:

Format Format Description Maximum Length

A Alphanumeric (left-justified) : see also the long 253 bytes
alphanumeric (LA) option on page 31

B Binary (right-justified, unsigned/positive) 126 bytes

F Fixed point (right-justified, signed, positive value in 4 bytes (dways
normal form; negative value in two's complement form) exactly 2 or 4 bytes)

G Floating point (normalized form, signed) 8 bytes (always

exactly 4 or 8 bytes)

P Packed decimal (right-justified, signed) 15 bytes

U Unpacked decimal (right-justified, signed) 29 bytes

W Wide character (left-justified) : see also the long 253 bytes

alphanumeric (LA) option on page 31

Adabas Design

Field Options

Field options are specified using two-character codes, which may be specified in any order,
separated by a comma.

Code Option Page

DE Field isto be a descriptor (key). 29

FI Field isto have afixed storage length; values are stored without an internal 30
length byte, are not compressed, and cannot be longer than the defined

field length.
LA An aphanumeric or wide-character, variable-length field may contain a 31
value up to 16,381 bytes long.
MU Field may contain up to 191 values in a single record. 31
NC Field may contain a null value that satisfies the SQL interpretation of a 33

field having no value; that is, the field's value is not defined (not counted).

NN Field defined with NC option must always have a value defined; it cannot 33
contain an SQL null (not null).

NU Null values occurring in the field are to be suppressed. 30

NV An aphanumeric or wide-character field is to be processed in the record 31
buffer without being converted.

PE Thisgroup field is to define consecutive fields (which may include one or 31
more MU fields) in the FDT that repeat together (up to 191 times) in a

record.

UQ Field isto be aunique descriptor; that is, for each record in the file, the 29
descriptor must have a different value.

X1 For this field, the occurrence (index) number is to be excluded from the 29

unique descriptor (UQ) option set for a periodic group (PE).

Descriptor Options DE, UQ, and XI

A “descriptor” is a search key. The DE option indicates that the field is to be a descriptor. The
UQ option can only be specified if DE is also specified; it indicates that the DE field is to have
adifferent (i.e., unique) value for each record in the file. Entries are made in the Associator’s
inverted list for DE fields, adding disk space and processing overhead requirements.

29

Adabas Concepts and Facilities

Any field can be used within a selection criterion. When a field that is used extensively as a
search criterion is defined as a descriptor (key), the selection processis considerably faster since
Adabas is able to access the descriptor’s values directly from the inverted list without reading
any records from Data Storage.

A descriptor field can be used as a sort key in a search command, as away of controlling alogical
sequential read process (ascending or descending values), or as the basis for file coupling.

Any field and any number of fieldsin afile can be defined as descriptors. When amultiple-value
field or afield in a periodic group is defined as a descriptor, multiple key values are generated
for the record. Key searches may be limited to particular occurrences of a periodic group.

The XI option is used for unique descriptors in periodic groups to exclude the occurrence (index)
number from the definition of uniqueness.

Because the inverted list requires disk space and update overhead, the descriptor option should
be used judiciously, particularly if the file is large and the field that is being considered as a
descriptor is updated frequently. For instance, the inverted list for a periodic group used as a
descriptor may be very large because each occurrence is stored.

A descriptor may be defined at the time a file is created, or later by using an Adabas utility.
Because the definition of adescriptor isindependent of and has no effect on the record structure,
descriptors may be created or deleted at any time without the need for database restructuring
or reorganization.

Note, however, that if adescriptor field is not ordered first in the record structure and logically
falls past the end of the physical record, the inverted list entry for that record is not generated
for performance reasons. To generate the inverted list entry in this case, it is necessary to unload
short, decompress, and reload the file; or use an application program to reorder the field first
for each record of thefile.

A portion of afield may be defined as a “subdescriptor”; combinations of fields or portions
thereof may be defined as a “ superdescriptor”; a user-supplied agorithm may be the basis of
a “collation descriptor” or “hyperdescriptor”; and a “sounds-like” encoding algorithm may be
the basis of a “phonetic descriptor”, which may be customized for specific language
requirements. See page 33 for more information.

Data Compression Options FI and NU

Default data compression is described on page 16. At the field level, additional compession can
be specified (null suppression option) or all compression can be disabled (fixed storage option).

30

Adabas Design

“Null suppression” (NU) differs from default compression in that searches on descriptor fields
defined with null suppression do not return records in which the descriptor field is empty.

Fields defined as“fixed format” (FI) do not include alength byte and are not compressed. This
option actually saves storage space for one-byte fields or fields that are nearly alwaysfull (e.g.,
afield containing the social security number).

Encoding Conversion Option NV

Alphanumeric (A) or wide-character (W) format fields with the NV option are processed in the
record buffer without being converted to or from the user.

The field has the characteristics of the file encoding; that is, the default blank
e for A fieldsis always the EBCDIC blank (X’40’), and
e for W fiddsis aways the blank in the file encoding for W format.

The NV option is used for fields containing data that cannot be converted meaningfully or
should not be converted because the application expects the data exactly as it is stored.

The field length for NV fields is byte-swapped if the user architecture is byte-swapped.

Long Alpha Option LA

The long alphanumeric (LA) option can only be specified for variable-length alphanumeric or
wide-character fields; i.e., “A”- or “W"-format fields having a length of zero. With the LA
option, such an aphanumeric or wide-character field can contain a value up to 16,381 bytes
long.

An alphaor wide field with the LA option is compressed in the same way as an apha or wide
field without the option. The maximum length that a field with LA option can actually haveis
restricted by the block size where the compressed record is stored.

MU and PE Optionsand Field Types

Adabas supports two basic field types: elementary fields and multiple-value fields. An
“elementary” field has only one value per record. A “multiple-value” (MU) field can have up
to 191 values, or occurrences, in a single record. Each multiple-value field has a “binary
occurrence counter” (BOC) that stores the number of occurrences.

31

32

Adabas Concepts and Facilities

A “periodic” (PE) group field defines consecutive fields in the FDT that repeat together in a
record. Like the members of a non-periodic group field, PE members immediately follow the
PE group field, have a higher level number than the PE field, and can be accessed both
individually and as a group. Each PE has a BOC that stores the number of occurrences.

A periodic group may be repeated up to 191 times per record and may contain one or more
multiple-value fields. Occurrences or values that are not used require no storage space.

Adabas thus supports four field types:

Single Value per Record Multiple Values per Record

Single Field Elementary MU
Multiple Fields Group PE

Figure 2—7 illustrates the four field types in a single record structure.

CUSTOMER FIRST LAST PE MU
NUMBER NAME NAME BOC BOC STREET CITY STATE ZIP
19811 ‘ Laura ‘ Cagnetti ‘ 3 1 118 Glade Erie PA 16509
— 2 271 Larue Cincinnati OH 45211
ELEMENTARY
FIELD P.O. Box 88
‘ 2 733 Hall Easton ‘ PA ‘ 19014 ‘
P.O.Box 7
MULTIPLE VALUE
FIELD
/ o —~ _/
GROUP FIELD PERIODIC GROUP
(NAME) (ADDRESS)

Figure 2—7: The Adabas Field Types

A PE cannot be nested within another PE. Nesting an MU within a PE, as shown in Figure 2—7,
is permitted but complicates programming by introducing a two-dimensional array. It also has
implications for data access: when Adabas accesses the periodic group, it returns only the first

occurrence of the MU for each occurrence of the PE returned.

Adabas Design

The unique characteristic of the periodic group and the reason for choosing the periodic group
structure isits ability to maintain the order of occurrences. If aperiodic group originally contains
three occurrences and the first or second occurrence is later deleted, those occurrences are set
to nulls; the third occurrence remainsin the third position. This contrasts with the way leading
null entries are handled in multiple-value fields. Theindividual valuesin a multiple-value field
do not retain positional integrity if one of the values is removed.

SQL Compatibility Options NC and NN

Special data definition options are included in Adabas to accommodate Software AG's
mainframe Adabas SQL Server (ESQ) and other structured query language (SQL) database
guery languages that require SQL-compatible null representation.

A field designated with the NC (not counted) option may contain a null value that satisfies the
SQL interpretation of afield having no value. An NC field containing a null means that no field
value has been entered; that is, the field's value is not defined.

This undefined state differs from anull value assigned to anon-NC field for which no value has
been specified: a non-NC field's null means the value in the field is either zero or blank,
depending on the field’s format.

The NN (not null) option can be specified only for NC-defined fields. It indicates that an NC
field must aways have avalue defined; it cannot contain an SQL null. This ensuresthat the field
cannot be left undefined when arecord is either created or updated. The field value may be zero
or blank, however.

Special Field and Descriptor Attributes
Parent Of

The FDT indicates whether afield isa“ parent” field for a collation descriptor, sub/superfield,
sub/superdescriptor, hyperdescriptor, or phonetic descriptor as described in the following
section.

Special Descriptors

Information about any special fields and descriptors (collation descriptors, subdescriptors,
subfields, superdescriptors, superfields, phonetic descriptors, and hyperdescriptors) in the file
is maintained in the special descriptor table or “SDT” part of the FDT.

33

Adabas Concepts and Facilities

/////, SPECIAL DESCRIPTOR TABLE \\\\\\

I I I I I I

TYPE I NAME I LENGTH I FORMAT I OPTIONS I STRUCTURE I
I I I I I I
——————— i S e e (S £
I I I I I I

SUPER I H1l I 4 I B I DE,NU I AU (1 - 2) I
I I I I I AV (1 - 2) I

SUB I s1 I 4 I A I DE I AO (1 - 4) I
SUPER I S2 I 26 I A I DE I AO (1 - 6) I
I I I I IAE (1 - 20)TI

SUPER I S3 I 12 I A I DE,NU, PE I AR (1 - 3) I
I I I I I AS (1 - 9) I

I I I I I I

PHON I PH I I I I PH = PHON (AE) I
I I I I I I

COL I Y1 I 20 I W I DE I CDX 8,PA I
COL I Y2 I 12 I A I DE,NU, PE I CbX 1,AR I
I I I I I I

I I I I I I

Figure 2-8: Specia Descriptor Table

Along with the name, length, format, and specified options of each special field and descriptor,
this table provides the following information:

Column Explanation

TYPE COL Collation descriptor
HYPER Hyperdescriptor
PHON Phonetic descriptor
SUB Subfield/subdescriptor
SUPER Superfield/superdescriptor

STRUCTURE The component fields and field bytes of the sub-, super-, or hyperdescrip-
tor. Phonetic descriptors show the equivalent alphanumeric elementary
fields. Collation descriptors show the associated collation descriptor user-
exit and the name of the parent field.

34

Adabas Design

Collation Descriptor

An aphanumeric or wide-character field can be defined as a parent field of a “collation”
descriptor. A collation descriptor is used to sort field valuesin a special user-defined sequence.
The LF command reports the collation descriptor field information.

A collation descriptor is assigned a collation descriptor user exit (1-8) which encodes the
collation descriptor value and decodes it back to the origina field value. The ADARUN
parameter CDXnn is used to specify collation descriptor user exits.

Hyperdescriptor

The hyperdescriptor option can be used to generate descriptor values based on a user-supplied
algorithm. Up to 31 different hyperdescriptors can be defined for a single physical Adabas
database. Each hyperdescriptor must be named by an appropriate HEXnn ADARUN statement
parameter in the job where it is used.

With hyperdescriptors, “fuzzy” matching is possible; i.e., retrieving data based on similar
rather than on exact search criteria. Hyperdescriptors allow multiple virtual indexes, meaning
that several different search index entries can be made for a single data field.

Hyperdescriptors can be used to implement “n”-component superdescriptors, derived keys, or
other key constructs. Using hyperdescriptors, it is possible to develop applications that are
simpler and more flexible than applications based on a strictly normalized relational structure.

One application area for hyperdescriptors is name processing. For example, the name
SCHROEDER could be stored not only with the index SCHROEDER itself, but also with the
“virtual” indexes SCHRODER, SCHRADER, SCHRODER or any other variation of the name.
Thus, although only the name SCHROEDER is physically stored in the data area of the database,
multiple search indexes exist to the data. If, subsequently, a search is made for the name
SCHRODER, the record SCHROEDER will be found.

A more sophisticated application area for hyperdescriptors is fingerprint matching, in which
typical characteristics of fingerprints can form the basis of afuzzy matching algorithm; i.e., the
original fingerprint is stored in the database, but any number of search indexes can be made to
the fingerprint, based on an algorithm that allows small-scale deviations from the original.

Phonetic Descriptor

A “phonetic” descriptor may be defined and used to search for all records that contain similar
phonetic values. The phonetic value of a descriptor is determined by an internal algorithm based
on the first 20 bytes of the field value with only alphabetic values being considered (numeric
values, specia characters and blanks are ignored).

35

Adabas Concepts and Facilities

Subfield / Superfield

A portion of afield (“subfield”) or any combination of fields (“superfield”) may be defined as
an elementary field (see page 31). Subfields and superfields may be used for read operations
only. They may only be changed by updating the original fields.

Subdescriptor

A “subdescriptor” is part of a single field used as a descriptor. The field from which the
subdescriptor is derived may or may not be an elementary descriptor (see page 29). If a search
criteria involves a range of values contained in the first “n” bytes of an aphanumeric field or
the last “n” bytes of anumeric field, a subdescriptor may be defined using only the relevant bytes
of the field. A subdescriptor allows you to increase the efficiency of a search by specifying a
single value rather than a range of values.

For example, if thefirst two bytes of afive-bytefield refer to a geographical region and you want
to retrieve all records for region 11 without using a subdescriptor, you would have to search for
all records in the range 11000-11999. If you define a subdescriptor comprising the first two
bytes of the field, you could search for all records with 11 in the subdescriptor.

Super descriptor

36

A “superdescriptor” combines al or parts of 2-20 fields. The fields from which the
superdescriptor is derived may or may not be elementary descriptors. When search criteria
involve values for a combination of fields, using a superdescriptor is more efficient than using
a combination of several elementary descriptors.

For example, to search for customers by last name within regions, you could create a
superdescriptor by combining the first two bytes (i.e., the geographical region indicator) of the
five-byte customer number field and the entire customer last name field.

USING ADABAS

Generally, Adabas uses between 10% and 50% of the data processing resources (disk storage,
CPU time, elapsed processing time) used by other database management systems. Since fewer
hardware facilities are used, more can be accomplished with less. Very large online applications
using several terabytes of data have been successfully implemented, with thousands of terminal
workstations, and with the response times and the cost of much smaller systems.

Accessing a Database from Programs

Adabas access is field-oriented: user programs access and retrieve only the fields they need.
User program statements invoke Adabas search and retrieval operations automatically.

Direct Call Interface

Adabas provides a powerful and flexible set of direct call commands for performing database
operations. Adabas direct call commands provide a direct interface to the Adabas database when
Natural or another fourth-generation database language is not being used.

The commands can be categorized by function:

e database query

¢ read (Data Storage or Associator)
e database modification

e logica transaction processing

e gpecial commands

37

Adabas Concepts and Facilities

Database Query Commands (Sx)

Database query commands (S1/$4, S2, S5)) search for and return the I SNs of specified records
or record groups according to specified search criteria. Other commands in this category (S8,
S9) sort the resulting 1SN lists in preparation for later operations.

The ISN lists resulting from any Sx command may be saved on the Adabas Work dataset for later
retrieval during the user session.

In most cases, these commands do not actually read the database; 1SNs are read directly from
the Associator’s inverted lists. Options allow the ISN’s record to be placed in hold status to
prevent it from being updated by other programs until the record is released; if desired,
additional field values contained in the first ISN’s record can be read from Data Storage.

Read Commands (L x)

The L1 through L6 commands are used to read actual records from Data Storage. Depending
on the specified command and its options, records are read individually

in the sequence in which they are stored,;
in the order of an ISN list created by one of the database query commands; or
in logical sequence according to a user-specified descriptor.

See page 41 for more information about sequential access methods.

A hold option allows the database records to be locked until released by a separate command
or at transaction end.

The L9 and LF commands read information directly from the Associator inverted lists or file
definition tables (FDTS), returning either the inverted list values for a specified descriptor or the
field definitions for a specified file in the database.

Database M odification Commands (A1, E1, N1/N2)

38

Database modification commands (A1, E1, and N1/N2) change, delete, or add database records
and update the related Associator lists accordingly. |SNs can be assigned to new records either
by the user or by Adabas.

The inverted lists and the address converter are automatically maintained by Adabas. When the
user supplies a new value for a descriptor, either in a new record or as part of arecord update,
Adabas performs all necessary maintenance of the inverted lists. When a new record is added
or a record is deleted, the address converter is appropriately updated. These operations are
completely transparent to the user.

Using Adabas

Logical Transaction Control Commands (ET/BT)

An Adabas logical transaction defines the logica start (BT) and end (ET) of the database
operation being performed. If the user operation or Adabas itself terminates abnormally, these
commands provide the capability for restarting a user, beginning with the last unsuccessfully
processed transaction. ET/BT commands

. define the transaction start and end;

e restore pretransaction conditions if a situation occurs that prevents successful completion of the
transaction; and

e read program-specified user data written during the transaction sequence.
Programs that use these commands are called ET logic programs. Although not required,

Software AG recommends that you use ET logic. See page 47 for more information about
transaction logic.

Special Commands

Specia commands perform many of the “housekeeping” functions required for maintaining the
Adabas database environment. Commands in this group

e open (OP) and close (CL) a user session (but do not control a transaction);
e write data protection information, user data, and checkpoints (C1, C3, C5); and
e sat (HI) and release (RI) record hold status.

In addition, the RC command releases one or more command |Ds currently assigned to a user,
or deletes one or all global format IDs.

The RE command reads user data previously stored in an Adabas system fileby C3, CL, or ET
commands.

39

Adabas Concepts and Facilities

Complex Searches

In many large database systems, the time required to process complex searches is often
excessive. Adabas efficiently solves this problem. Many Adabas applications are currently in
use with up to 150 complex selection criteria created dynamically. Data is retrieved
immediately from files with more than 50 million records.

Multifile Searching

It is often necessary to perform a multifile search in order to resolve an inquiry. Multifile
searching can be accomplished using multiple search commands, physically coupled files, or
soft file-coupling. See page 22 for information about coupled files.

Multiple search commands may be used in which avalue retrieved in one command is used as
the search value for the next command. This process is not restricted to two files.

Multi-index Searching

“Fuzzy” matching (i.e., retrieving data based on similar rather than on exact search criteria)
can be implemented using hyperdescriptors. Hyperdescriptors allow multiple virtual indexes,
meaning that several different search index entries can be made for asingle data field. See page
35 for information about hyperdescriptors.

40

Using Adabas

Access M ethods

Adabas supports both sequential and random access methods. Different calls use different
Adabas access paths and components; the most efficient method depends on the kind of
information you want and the number of records you need to retrieve.

Sequential Access

Physical sequence retrieves every record in a file in the order the records are stored in Data
Storage. You can limit the fields within each record for which values are to be returned. You can
also specify a“start” I1SN: the sequential pass then begins at the first record physically located
after the record identified by the specified ISN.

Adabas bypasses the Associator and goes directly to Data Storage, reading the first data block
(or thefirst record following a specified ISN) and continuing in consecutive sequence until the
last block is read. Physical sequence is the fastest way to process a large volume of records.

Returns field values

Work Area
Inverted
User List
Program Adabas Address
—_—] 1 Nucleus 2 Converter
Read
Physical
ysi ¢« 1/0 Buffer ¢ Data
L2/L5 4 3
‘ Storage

Figure 3-1: Read in Physical Sequence (L2/L5)

41

Adabas Concepts and Facilities

I SN sequence retrieves records in ISN order. Adabas uses database query commands (Sx) to
build and sort ISN lists, which can then be read using L1/L4 commands with the GET NEXT
option. When reading, Adabas uses the address converter to find the RABNs of each ISN in the
list and then reads and returns the records from Data Storage.

3
Work Area |—
/ (Sx ISN List)
User Inverted List
Program Adabas
1 Nucleus Address 4
Read by ISN Converter
ead by I/0 Buffer
Sx, L1/L4 (76 u ‘f Data
! Storage

Returns field values

Figure 3-2: Read in ISN Sequence (L1/L4)

Logical sequence retrieves records by descriptor value. Adabas finds the value(s) in the inverted
list, uses the address converter to find the RABNs of the ISNs related to the value, and retrieves
the records from Data Storage.

42

Work Area
Inverted i
User 2 List
Program Adabas Address <
1 Nucleus Converter || _4_
Read Logical

L3/L6 <——| |/OBuffer | < ——— Data <«—

- 5 Storage

Returns field values

Figure 3-3: Read in Logical Sequence (L3/L6)

Using Adabas

Reading inlogical sequenceretrieves all the records related to a single value or arange of values
of the specified descriptor. It returns the records sorted in ascending/descending order by
descriptor value, and in ascending/descending 1SN order within each value. You can specify a
starting and ending value. You can also specify the field(s) for which values are returned. Read
logical is useful when you want the returned records sorted on a particular field.

Adabas provides a special read command (L9) to determine the range of values present for a
descriptor, and the number of records that contain each value. Such a retrieval is called a
“histogram”. The L9 command does not require any access to data records, only to the inverted
lists stored in the Associator.

Work Area
Inverted
User / List
Program Adabas
1 Nucleus 3 Address
Converter
READ
VALUESFOR{<«—— | /O Buffer Data
descriptor .4 Storage
Returns count of ISNs for each value

Figure 3-4: Read Descriptor Values (L9)

Random Access

Adabas uses the S1/S2/S4 commands to select records that satisfy a sear ch criterion: the count
of the records found and alist of their ISNs is returned. The S1/S4 commands return the ISNs
in ascending sequence; the S2 command allows you to specify a sort sequence for the returned
ISNs.

The search criterion may comprise
e oneor morefieldsin asinglefile
e fields contained in two or more physically coupled files; or
e search, read, and internal list matching based on the soft coupling feature.

43

Adabas Concepts and Facilities

A search criterion may contain one or more fields that are not defined as descriptors. If
nondescriptors are used, Adabas performs read operations to determine which records to return
to the user. If only descriptors are used within the search criterion, Adabas resolves the query
by using the Associator inverted lists; no read operation is required.

Random Access Using the Adabas Direct Access M ethod (ADAM)

44

Note:
The ADAM feature is available on mainframe platforms only.

The Adabas direct access method (ADAM) improves random access performance on a
particular descriptor field in afile. ADAM uses the field value to compute the relative block
address (RABN) for record storage. The ADAM descriptor may also be used like any other
descriptor within a selection criterion, and for logical sequential processing aswell. This option
may be selected for any given file when the file is loaded into the database.

Customer ID=17802

Customer—ID= Customer File
17802
ADAM

Randomizer
RABN

Data Storage

Figure 3-5: Adabas Direct Access Method (ADAM)

Using Adabas

Using Triggersand Stored Procedures

The Adabas triggers and stored procedures facility is an integral part of Adabas; however,
Natural (see page 117) is required to use the facility. The online Trigger Maintenance facility
can be accessed using the selectable unit Adabas Online System (see page 85).

A procedure is aNatural subprogram that iswritten and tested using standard Natural facilities.

e Atrigger isaprocedurethat is executed automatically by Adabas when a specified set of criteria
is met. The set of criteriais determined for each command sent to Adabas and is based on the
target file number and optionally the command type and/or field. The command type refers to
the find, read, store, update, and delete commands. The field must be in the corresponding
format buffer of the command.

e A stored procedure is executed by Adabas, but is invoked directly by a special user call from
any of a number of applications that use it. Storing programs that are used by multiple clients
in an Adabas file on the server reduces the amount of data traffic to and from the server.

The same types of parameters are passed to the subprogram whether it is atrigger or a stored
procedure.

The Adabas facility for triggers and stored procedures allows you to implement and maintain
both types of procedures. It resides within Adabas and provides an extension to an application.
It can be used to

e implement various security and auditing features for an application; and

e provide a consistent, central environment where data can be verified or manipulated, either
manually by the application or automatically by Adabas when triggers are defined.

45

Adabas Concepts and Facilities

Universal Encoding Support (UES)

46

Adabas provides facilities for converting data bidirectionally between ASCII and EBCDIC
architectures. This makes it possible to support access to the mainframe database through the
TCP/IP protocol from web-based applications or from PC-based applications such as Natural
for Windows.

Adabas supports awide range of character sets or “code pages’ to handle the world's languages.
Character encoding and data conversion take place within Adabas using Unicode as the default
encoding for both storage (file encoding) and user presentation (user encoding).

The client application can specify a special encoding and communicate it to the Adabas nucleus
at session open (OP command). The LNKUES/ADALNK converts Adabas buffer data
depending on the architecture of the caller. A number of utilities provide for special encoding
and architecture settings.

Adabas supports double-byte character sets (DBCS) and multiple-byte character sets (MBCS)
characteristic of Asian languages. It uses two field formats. a phanumeric and wide-character.

alphanumeric fields are extended to support wide-character data by defining encoding keys on
both the database and file levels: the file level encoding takes precedence over the database
encoding. The encoding specifies the format in which the dataisto be stored. It isalso used as
the default format in which data is exchanged with a local user.

wide-character fields are similar to alphanumeric fields in that encoding keys are defined on
both the database and file levels: the file encoding takes precedence over the database encoding.
It differs from alphanumeric field encoding in that

— if no encoding is specified, the default Unicode encoding is used.
— the“interna” encoding specifies the format in which the data is stored.
— the“user” encoding specifies the default format for data presented to the user.

To ensure round-trip compatibility between architectures and encodings, Adabas uses a file
encoding that holds the superset of all characters defined in the “default user” and any specific
“user” encodings. For wide-character fields, such a file encoding defaults to the universal
character set encoding Unicode.

Callation encoding is defined for a descriptor field. Values for this encoding are obtained
algorithmically by calling a collation exit programmed to produce a culturally correct sorted
key; that is, a dictionary order. Collation encoding may be defined for both a phanumeric and
wide-character fields; the collation encoding/exit is defined on the file level for alpha and/or
wide descriptor fields.

Using Adabas

Maintaining Database Integrity

Adabas provides facilities to ensure the logical consistency of datain a competitive updating
environment and when a user or Adabas session is interrupted.

Facilities are available for both online and traditiona batch update. For online,
transaction-oriented processing, Adabas ensures that the database is free of incomplete
transactions. For batch mode updating, Adabas ensures restart in the event of failure by writing
checkpoints and backing out/regenerating updates.

Transaction Logic

Adabas data protection, recovery, and user restart are based on the concept of a “logical
transaction”: the smallest unit of work (as defined by the user) that must be performed in its
entirety to ensure that the information contained in the database is logically consistent.

A logical transaction may comprise one or more Adabas commands that together perform the
database read/update required to complete alogical unit of work. A logical transaction begins
with the first command that places arecord in hold status and ends when an ET (end transaction),
BT (back out transaction), CL (close), or OP (open) command is issued for the same user.

The OP (open) or RE (read ET data) commands can be used to retrieve user restart data stored
by the C3, CL, or ET command. This datais also written to the Adabas data protection log with
each checkpoint written by the transaction and can be read using the ADASEL utility.

The ET command must be issued at the end of each logical transaction. Successful execution
of an ET command ensures that all the updates performed during the transaction are physically
applied to the database, regardless of subsequent user or Adabas session interruption.

Updates performed during transactions for which ET commands are not successfully executed
are backed out, either manually by issuing the BT command or automaticaly by the
autobackout routine (see page 52).

a7

Adabas Concepts and Facilities

Distributed Transaction Processing

Adabas incorporates nucleus functions to support the execution of “global” database
transactions in distributed environments; that is, across multiple local or remote databases
and/or system images in parallel.

A two-phase commit protocol ensures that all database management systems (DBMSs) that
participate in processing the global transaction (that is, resource managers or RMs) either
commit or roll back their local parts of a transaction as a whole. In the first phase, the
coordinating component (a transaction manager or TM) prepares al involved RMs for the
commit. Only when the first phase is successful doesthe TM instruct the RMs to commit (second
phase).

Adabas functions in this scenario as an “RM”. Adabas Transaction Manager, a selectable unit
(see page 92), functions as the coordinator within operating system images and, with the help
of Entire Net-Work, across system images.

The new protocol also integrates Adabas with other DBMSs. It is transparent to existing
application systems and to Natural.

Included in Adabasis a CICS-controlled interface that conforms to the CICS Resource Manager
Interface (RMI). It issues the appropriate Adabas commands to coordinate with the two-phase
commit protocol.

Competitive Updating

48

Competitive updating isin effect when two or more users (in multiuser mode) are updating the
same Adabas file(s). The Adabas facilities used to ensure data integrity in a competitive
updating environment include record hold/release, avoidance of resource deadlock, and
exclusive control updating.

Using Adabas

Record Hold and Release

The Adabas record hold facility ensures that arecord will not be updated by more than one user
at atime. A user can put the record in “hold” status (that is, the ISN of the record is put in the
hold queue) using the commands $4 (find with hold), L4/L5/L6 (read with hold), A1/E1
(update/delete) with the hold option specified, N1I/N2 (add record with hold), or HI (hold
record).

If arecord requested for hold status is already being held by another user or utility, the user
issuing the record hold command is put in “wait” status until the record becomes available, at
which time Adabas reactivates the command. You may request that a response code be returned
if you do not want to be put in “wait” status.

Records in “hold” status can be accessed (found and read) by users who do not seek to hold the
record.

Records in “hold” status are released by issuing the ET or CL commands. Options are available
with ET and BT commands to release records selectively. The CL command releases all records
in “hold” status for the issuing user.

Avoiding Resource Deadlock

Resource deadlock occurs when two users are each waiting for arecord held by the other user.
Adabas protects against such a user deadlock situation by detecting the potential deadlock and
returning a response code to the second user after putting the first user in “wait” status.

Exclusive Control Updating
Users who use logical transaction commands (ET/BT) are called ET logic users.

Alternatively, auser can request exclusive control of one or more Adabas files for the duration
of the user session. If the file or files for which exclusive control is requested are not already
opened for update by another user or utility, exclusive control is granted and the user becomes
an exclusive update (EXU) user. Adabas treats EXU users as non-ET logic users.

Adabas does not place an ISN in “hold” status for EXU users. Adabas disables hold logic
processing for files being updated under exclusive file control.

Instead of using ET commands, EXU users can regquest checkpoints to act as reference points;
for example, updates applied after a checkpoint can be removed.

49

Adabas Concepts and Facilities

Timeout Controls

Adabas times out
e transactions that exceed a specified limit; and

e userswho are inactive for a specified amount of time.

Transaction Time Limit

Adabas provides a transaction duration time limit for ET logic users. The time limit is set with
the ADARUN TT parameter; an override for a specific user can be set using the OP command.

If a transaction exceeds the prescribed limit, Adabas generates a BT (back out transaction)
command to remove al the updates performed during the transaction and release all held
records. The user can then either repeat the backed out transaction from the beginning or begin
another transaction.

Non-Activity Time Limit
All users are subject to a non-activity time limit; different limits can be set for different user
types and for specific users within each user type.
If auser exceeds the prescribed limit and the user is

e an ET logic user, Adabas backs out the current transaction, releases all held records and
command IDs, and deletes the user’sfile list.

. an EXU user, Adabas deletes the user’s file list and releases all command IDs. The user loses
his EXU user status and becomes an access-only user.

e an access-only user, Adabas deletes the user’s file list.

50

Using Adabas

Backout, Recovery, and Restart

Backout, recovery, and restart may be required when a user or Adabas session isinterrupted due
to atimeout (see page 50); a program error when Adabas determines that a transaction cannot
be completed successfully; an Adabas, hardware, or operating system failure; or a power failure.

A “user session” is a sequence of Adabas calls optionally starting with an open (OP) command
and ending with a close (CL) command. A “user” is either a batch mode program or a person
using aterminal. The uniqueness of each user is assured by the user ID, a machine, an address
space, and aterminal ID.

An “Adabas session” starts when Adabas is activated and continues until Adabas is terminated.
During this time, the Adabas nucleus creates a sequence of protection entries in exact historical
sequence reflecting all modifications made in the database. The sequence of protection entries
iswritten to the Work dataset (part 1) and to a protection log in blocks. Each block contains the
nucleus session number, a unique block number, and a time stamp.

User Program Error

A user program that is processing a transaction can detect that the transaction cannot be
completed successfully. In this case, a BT (back out transaction) command is used to remove
or “back out” the incomplete transaction.

If a user program error causes logical damage to the database, it may be necessary to recover
the affected files using the ADASAV and ADARES tilities.

51

Adabas Concepts and Facilities

Adabas, Hardware, or Operating System Failure

52

After any failure that causes the Adabas nucleus to terminate abnormally, an automatic
procedure is executed when Adabas is reactivated to bring the database to a physically and
logically valid status. All partialy executed update commands are reset; al incomplete
transactions are backed out.

The automatic procedure comprises three steps. repair the database, autorestart, and
autobackout:

Database repair modifies the database to the status it would have had if a buffer flush had just
been completed at the time of failure. That is, all blocks in the database are at a status that
enables the nucleus to perform normally.

Autorestart backs out updates of single update commands that were partially executed when the
system failed. It resolves internal inconsistencies in the database and ensures physical integrity.

Autobackout, which is performed only for ET logic users, backs out updates of user transactions
that were partially executed when the system failed. Adabas performs an internal BT (back out
transaction) followed by autorestart, and then informs the user that the last transaction has been
backed out.

The autobackout routine is executed at the end of an ET session that was terminated with HALT.
It is also executed automatically at the beginning of the next Adabas session to remove any
updates performed within transactions that did not complete successfully.

After autobackout execution, the database contains updates only from logically complete
transactions.

Note:
ET users can manually back out an incomplete transaction at any time by issuing the BT (back
out transaction) command. See page 47.

If an Adabas, hardware, or operating system failure results in physical damage to the database,
it may be necessary to recreate the database using the ADASAV and ADARES dtilities.

Using Adabas

Power Failure

Depending on the hardware, a power failure during an 1/O operation may damage the Adabas
blocks that were being processed. This damage cannot be detected during autorestart and
therefore can result in problems later such as unexpected response codes or lost database
updates.

If the ADARUN IGNDIB=Y ES parameter is set, the autorestart routine checks whether a buffer
flush was active when the session interruption occurred. If a buffer flush was in process, the
autorestart shuts down and Adabas aerts the user to the potential problem and includes a list
of the files being updated when the buffer flush was in process. The DBA must then determine
whether a power failure occurred.

If the cause of a session interruption

e isapower falure, Software AG strongly recommends recovering the affected files using the
ADASAV and ADARES utilities.

e isdefinitely not a power failure and the integrity of the information on the output hardware can
be guaranteed, the database can be reactivated immediately. Database recovery is not necessary.

Extended Error Handling and M essage Buffering

The error handling and message buffering facility helps implement 24X7 operations by
analyzing and recovering from certain types of errors automatically with little or no DBA
intervention. It also generates additional information so that the error can be diagnosed by the
user and by Software AG.

A wrap-around message buffer collects Adabas messages for later review by Adabas Online
System in case online access to the console or to DDPRINT messages becomes unavailable. The
buffer aids problem analysis and performance tuning.

The error handling functions of the facility can be invoked from the operator console or from
Adabas Online System.

User exits and hyperexits that are essentia to the operation of the Adabas nucleus can be marked
as critical (the default) or not:

e acritical user exit is not affected by the error handling and message buffering facility: an
abnormal termination in it causes the Adabas nucleus to terminate abnormally as well.

e fora“notcritical” user exit, the facility maintains an active Adabas nucleus, optionally refrains
from invoking that exit, takes a dump of the nucleus at the point when the exit failed, and issues
messages to the system log to inform the DBA of the problem. The DBA can then examine the
diagnostic information, use it to resolve the problem, then load and reactivate the corrected exit.

53

54

Adabas Concepts and Facilities

The extensions (plug-in routines or “PINS’) analyze and, in some cases, determine the cause of
an ABEND while alowing the nucleus to continue processing. Each PIN service routine handles
a predefined condition when encountered, alowing the Adabas nucleus to

remain active when it otherwise would terminate abnormally; or

print extended error diagnostics as an aid to error recovery.

While the PIN is executing, most Adabas functionality is available to it as the registers at the
time of the abnormal event are available. The PIN determines whether it is safe to allow the
nucleus to continue processing and prints appropriate messages to notify the DBA.

Based on its execution, a PIN can either transfer control to the Adabas nucleus so that it can
resume normal processing—usually with aresponse code—or it can return control to the error
handling and message buffering facility, allowing the Adabas nucleus to terminate abnormally.

A PIN can also be used to format an intelligent dump in a number of circumstancesto help debug
a particular response or ABEND code.

A special PIN routine user exit can be used to obtain additional information about response
codes and ABENDSs. The user exit allows you to specify particular response codes or response
code/subcode combinations to be monitored. Once you have modified the user exit, you can
reload it and make your changes effective without bringing the database down.

ADABASUTILITIES

Database services such asloading or deleting files are handled by an integrated set of online and
batch-mode “ utilities’. Most utilities can be run in parallel with normal database activity to
preclude interruption of daily production. See the Adabas Utilities Manual for more
information.

Adabas utilities address initial design and load operations, backup/restore/recovery routines,
database modification routines, and audit/control/tuning procedures.

Note:
See page 85 for information about Adabas Online System, a menu-driven, interactive DBA tool.

Initial Design and L oad Operations

ADACMP : Compress/ Decompress

ADACMP COMPRESS is used to edit and compress data records to be loaded into the database
using ADALOD; ADACMP DECOMPRESS is used to decompress individual files for data
structure or field definition changes, or for use as input to non-Adabas programs.

COMPRESS

Input

ADACMP input data must be in a sequential dataset/file. Indexed sequential and VSAM input
cannot be used. The records may befixed, variable, or of undefined length. The maximum input
record length permitted depends on the operating system. The maximum compressed record
length is restricted by the Data Storage block size in use and the maximum compressed record
length set for the file (see the MAXRECL parameter, ADALOD utility). The input records can
be in either blocked or unblocked format.

It is possible to omit the input dataset if the parameter NUMREC=0 is supplied.

The logical structure and characteristics of the data for input to COMPRESS are described with
field definitions statements (FNDEF to define fields or groups of fields; SUBFN and SUPFN
to define sub- or superfields, respectively; COLDE, HY PDE, PHONDE, SUBDE, and SUPDE
to define various types of descriptors). Field definitions are used to create the Adabas field
definition table (FDT).

55

Adabas Concepts and Facilities

By default, input data records are processed in the order of the field definition statements. The
FORMAT parameter allows you to change the order of field processing or skip fields.

To support universal encoding (UES), parameters allow you to specify the data architecture and
user encodings of the input and the desired file and user encodings to use during compression.

Processing

Output

56

ADACMP COMPRESS edits and compresses the data records.

Editing includes checking each field defined with a*“packed” (P) or “unpacked” (U) format to
ensure that the field value is numeric and in the correct format. Any record that containsinvalid
data is written to the ADACMP error dataset and is not written to the compressed dataset.
Adabas user exit 6 can be used to specify additional editing to be performed during ADACMP
COMPRESS processing. See the Adabas DBA Reference Manual for information about user
exits.

Compression includes removing trailing blanks from alphanumeric fields; removing leading
zeros from numeric fields; removing trailing zeros in floating-point format fields; and packing
numeric unpacked fields. Fields with the fixed (FI) option are not compressed, and empty fields
located at the end of the record are neither stored nor compressed. Null value fields are processed
differently depending on options being used. SQL null value processing is supported.

If universal encoding support (UES) parameters have been specified, compression includes
converting the input to the specified encoding for compressed files.

Processed data records are written out together with the file definition information to a
sequential dataset with the “variable blocked” record format. This dataset, or several such
datasets from multiple ADACMP executions, can be used asinput to the ADALOD tility. The
dataset can be used asinput to ADALOD even if it contains no records, meaning that no records
were provided on the input dataset or al records were rejected during editing.

The ADACMP processing report indicates the approximate amount of space required in Data
Storage for the compressed records by device type (specified with the DEVICE parameter) and
for Data Storage padding factors between 5 and 30 percent. The compression rate is computed
based on the real amount of data used as input to the compression routine.

Utilities

DECOMPRESS

ADACMP DECOMPRESS accepts as input data records from existing Adabas files, either
directly without separate file unloading, or already unloaded with the ADAULD utility. If afile
isdirectly decompressed, it is unloaded without FDT information as part of the decomperssion
process, which can save time when decompressing larger files.

Direct decompression of multiclient files can be limited to records for a specific user only when
avalid owner ID (ETID parameter) is specified.

The FORMAT parameter may be used to decompress the record to a format other than that
specified by the FDT. This is particularly useful when the FDT of an existing file is to be
changed.

If universal encoding support (UES) is used, the encoding characteristics for the decompressed
file are passed in the header of the compressed sequential input. Parameters alow you to
overwrite these encoding characteristics.

Processed data records are written to a sequential dataset with the “variable blocked” record
format. Rejected data records are written to the error dataset.

ADALOD : Loader

The ADALOD LOAD function loads afile into the database. Compressed records produced by
the ADACMP or ADAULD utility may be used asinput. A parameter specifies whether the file
index is loaded in compressed or uncompressed form.

ADALOD loads each compressed record into Data Storage, builds the address converter for the
file, and enters the field definitions for the file into the field definition table (FDT). ADALOD
also extractsthe values for all descriptorsin the file together with the ISNs of all recordsin which
the value is present, to an intermediate dataset. This dataset is then sorted into value/ISN
sequence and entered into the Associator inverted lists.

The ADALOD UPDATE function is used to add or delete alarge number of records to/from an
Adabas file. The UPDATE function requires considerably less processing time than the
repetitive execution of the Adabas add/delete record commands. Records to be added may be
the compressed records produced by the ADACMP or ADAULD utility. The ISNs of records
to be deleted can be provided either in an input dataset or by using control statements.

Records may be added and other records deleted during a single execution of ADALOD.

57

Adabas Concepts and Facilities

ADAULD : Unload

58

The ADAULD utility unloads an Adabas file from the database or from a save tape.

Adabas files are unloaded from a database to

permit the data to be processed by a non-Adabas program. In this case, the file must also be
decompressed after unloading using the DECOMPRESS function of the ADACMP utility.

create one or more test files, all of which contain the same data. This procedure requires that
afile be unloaded, and then reloaded as a test file with a different file number.

change the field definition table (FDT). This requires that the file be unloaded, decompressed,
compressed using the modified field definitions, and reloaded. If the ADADBS utility is used
to add field definitions to afile, the file does not need to be unloaded first.

The sequence in which the records are unloaded may be

physical the order in which they are physically positioned within Data Storage.
logical a sequence controlled by the values of a user-specified descriptor.
ISN ascending 1SN sequence.

The unloaded record output isin compressed format. The output records have the same format
as the records produced by the ADACMP utility.

Adabas files may be unloaded from a qualified database or file save tape to

include afile from a save tape in one or another test environment.

move a file from a save tape with one blocksize to a database with another.

Utilities

Backup / Restore / Recovery Routines

ADAPLP : Protection Log/ Work Print

The ADAPLP utility prints data protection records contained on the Adabas Work dataset or the
Adabas data protection log. You can specify whether to print

ALL all protection records—the default

ASSO just Associator protection records

DATA just Data Storage protection records

C1 records resulting from Adabas C1 commands

C5 records resulting from Adabas C5 commands

EEKZ records written at completion of a nucleus buffer flush
ET records resulting from Adabas ET commands

REPR Work dataset records used by autorestart to repair the index
SAVO records resulting from online SAVE database/file operations
VEKZ records written at completion of update commands

The number of protection records printed can be reduced even more by specifying afile, ISN,
or RABN.

ADARAI : Recovery Aid

The Adabas Recovery Aid utility ADARAI can be used to automate and optimize database
recovery. See also the restart/recovery information in the Adabas Operations Manual.

ADARAI supports all Adabas-compatible tape management systems.

The ADARAI utility prepares the recovery log file (RLOG), which records the information
about datasets, utility parameters, and protection logs needed to build the recovery job control
statements. ADARALI lists the information contained in the RLOG, creates the job control
statements to recover the database, and disables ADARAI logging.

Information is stored on the RLOG by generations. A “generation” includes all activity between
consecutive ADASAV SAVE/RESTORE (database) and/or RESTORE GCB operations. The
first generation includes the first ADASAV SAVE/RESTORE (database) or RESTORE GCB
operation and extends to (but excludes) the second.

59

Adabas Concepts and Facilities

Minimally, the RLOG retains the number of generations specified by the MINGENS parameter
during the ADARAI PREPARE step. However, a maximum of 32 generations will be stored on
the RLOG if there is enough space available.

Systems using the Recovery Aid feature require arecovery log (RLOG) dataset DD/RLOGRL,
which must first be formatted with the ADAFRM utility and then defined using the ADARAI
utility.

ADARES: Restart

60

The ADARES tility performs functions related to database recovery:

BACKOUT removes all the updates applied between two checkpoints. The checkpoints used
are normally the result of a non-synchronized checkpoint command (C1) but may also be
synchronized checkpoints. The complete database may be included in the back-out process, or
backout may be limited to selected files.

CLCOPY copies a command log dataset from disk to a sequential dataset. This function is
necessary only if dual or multiple command logging isin effect for an Adabas session.

COPY copies a sequential Adabas protection log dataset. This function should be executed if
the Adabas session in which the sequential protection log dataset was created was terminated
abnormally.

MERGE CLOG manually merges command log datasets resulting from individual nucleus
CLCOPY executions into a single command log for a cluster of nuclei.

PLCOPY copies a protection log dataset from disk to a sequential dataset. This function is
necessary only if dual or multiple protection logging is in effect for an Adabas session.

REGENERATE reapplies all the updates performed between two user-specified checkpoints.
The checkpoints specified may be the result of a non-synchronized checkpoint command (C1)
but may also be synchronized checkpoints. The REGENERATE function may process al files
or be limited to one or morefiles. It is most often used after the database (or one or more files)
has been restored to a previous status with the RESTORE or RESTONL function of the
ADASAV utility.

REPAIR repairs one or more blocks in Data Storage that, for any reason, have become unusable.
The most recent save tape of the database and any protection log tapes created thereafter are used
as input to this function.

Utilities

To minimize the time required to recover after a system failure, the BACKOUT, BACKOUT
DPLOG or MPLOG, and REGENERATE functions of ADARES can be executed in multiple
threads that simulate the original update environment with multiple commands active at one
time.

ADASAV : Save/ Restore Database or Files

The ADASAV tility saves and restores the contents of the database, or one or morefiles, to or
from a sequential dataset. ADASAV should be run as often as required for the number and size
of the files contained in the database, and the amount and type of updating. For large databases,
ADASAV functions may be run in parallel for the various disk packs on which the database is
contained.

Special ADASAV functions are available for use with the Adabas Delta Save Facility. For more
information, see the Adabas Delta Save Facility Manual.

RESTONL functions restore from one or more SAVE datasets created while the Adabas nucleus
was active (that is, online); RESTORE functions restore from one or more SAVE datasets
created while the Adabas nucleus was inactive (that is, offline).

RESTONL and RESTORE have the subfunctions GCB, FILES, and FMOVE:

e Without a subfunction, RESTONL and RESTORE restore entire databases.

¢ With the GCB subfunction, they restore the general control block, Associator RABNs 2-30 of
the database, and specified files.

e With the FILES subfunction, they restore one or more files into an existing database to their
origina RABNSs.

e With the FMOVE subfunction, they restore one or more files into an existing database to any
free space, alowing changes to extent sizes.

If changes occurred during an online SAVE, the RESTONL function is followed automatically
by the RESTPLOG function. RESTPLOG applies the updates that occurred during, and
therefore were not included in, the online SAVE.

RESTPLOG is aso executed following a RESTONL or RESTONL FILES function that ended
before the protection log (PLOG) updates were completely restored. RESTPLOG applies the
database updates not applied by the unsuccessful RESTONL function.

The SAVE function to save a database or one or more files may be executed while the Adabas
nucleus is active (online) or inactive (offling). If the Recovery Aid option is active, a SAVE
database operation begins a new RLOG generation.

61

Adabas Concepts and Facilities

ADASEL : Sdlect Protection Data

The ADASEL utility selects information in the Adabas sequential (SIBA), dual, or multiple
(PLOG) protection log. ADASEL decompresses the information and writesit to a print dataset
(DD/DRUCK) or to a user-specified output dataset.

The protection log contains information on all updates applied to the database during a given
Adabas session. Information selected by ADASEL can be used for auditing or as input to a
Natural or non-Adabas program.

You can select before-images, after-images, or both for new, updated, and deleted records. You
can also select data written to the protection log by an Adabas C5 command.

Database Modification Routines

ADACDC : Changed-Data Capture

62

ADACDC isan interval-driven, asynchronous mass update feature to generate a sequential file
containing all database modifications. This feature is important for open systems and data
warehousing solutions.

ADACDC then processes the raw datain the sequential file to isolate the latest status of the data.
The ADACDC utility

takes as input one or more sequential protection logs; and

produces as output a“delta” of all changes made to the database over the period covered by the
input protection logs.

“Delta’ of changes means that the last change to each ISN in afile that was altered during this
period appears on the primary output file.

This output may be used on aregular basis as input for data warehousing population procedures
so that what is applied to the data warehouse database is the delta of changes to a database rather
than a copy of the entire database. This affords more frequent and less time consuming updates
to the data warehouse, ensuring greater accuracy of the information stored there.

Utilities

ADACNYV : Database Conversion

The utility ADACNV must be used to perform all necessary conversions of both operating
system-dependent and -independent database system structures when moving in either direction
between Adabas versions including 5.2, 5.3, 6.1, 6.2, 7.1, 7.2, and 7.4.

The ADACNV tility converts (CONVERT) an Adabas database from version 5.2 or above to
a higher version, and the reverse (REVERT).

To ensure database integrity, ADACNV writes changed blocks first to intermediate storage; that
is, to the sequential dataset DD/FILEA. After al changed blocks have been written out to
DD/FILEA, a“point of no return” is reached and the changed blocks are written to the database.
If ADACNYV terminates abnormally after the “point of no return”, the RESTART parameter can
be used to begin the ADACNYV run by reading the contents of DD/FILEA and writing them out
to the database.

The TEST parameter is provided to check the feasibility of a conversion or reversion without
writing any changes to the database.

ADADBS: Database Services

All ADADBS functions can also be performed using Adabas Online System (AOS). When the
Adabas Recovery Aid is active, using AOS is preferable for file change operations because it
writes checkpoints that are necessary for recovery operation.

ADADBS offersavariety of functions, any number of which may be performed during asingle
execution of the utility.

Database Functions

The ADD function adds a new dataset to the Associator or Data Storage to a maximum of five
datasets for each.

The DECREA SE function reduces the size of the last dataset currently being used for Associator
or Data Storage. The space to be released must be available in the free space table (FST).

The DECREASE function does not deallocate any of the specified physical extent space. To
deallocate space, you must decrease the database with the DECREA SE function; save it with
ADASAV SAVE; reformat the datasets with ADAFRM; and restore the database with ADASAV.

63

Adabas Concepts and Facilities

The INCREASE function increases the size of the last dataset currently being used for the
Associator or Data Storage. This function may be executed any number of times for the
Associator. The maximum of five Data Storage space tables (DSSTs) limits Data Storage
increases to four before all five Data Storage extents must be combined into a single extent with
either the REORASSO or REORDB function of the ADAORD Ltility.

The RENAME function changes the name assigned to a (file or) database. If a file is not
specified or is specified with file number zero, the database is renamed.

The TRANSACTIONS function suspends and resumes update transaction processing; that is,
it creates a quiesed state for the database that could be a recoverable starting point.

File Functions

64

The ALLOCATE/DEALLOCATE functions are used to allocate/deallocate, respectively, a
logical extent (an address converter, Data Storage, normal or upper index) of a specific size.
Only one extent may be allocated or deallocated per ADADBS execution.

The CHANGE function changes the standard length of an Adabas field but does not modify
records in Data Storage. The user is, therefore, responsible for preventing referencesto the field
that would cause invalid results because of an inconsistency between the new standard length
as defined to Adabas and the actual number of bytes contained in the record.

The DELETE function deletes an Adabas file from the database. The file may not be coupled.
If an Adabas expanded file is specified, the complete expanded file (the anchor and all
component files) is deleted. The deletion process deallocates all logical extents assigned to the
file, releasing space that may be used for a new file or for a new extent of an existing file.

The DSREUSE function determines, for a specified file, whether Data Storage blocks that
become free as aresult of record deletion are reused. Block reuseis originally determined when
afileisloaded into the database with the ADALOD FILE function, or when the system fileis
defined with the ADADEF DEFINE function. In both cases, block reuse defaultsto “YES’.

To support universal encoding (UES), the ENCODEF function can be used to define encodings
for fields in afile that is aready loaded:

an EBCDIC file encoding for alphanumeric fields; or
auser encoding for the wide-character fields. The file encoding of wide-character fields cannot
be changed using this function.

The ISNREUSE function determines, for a specified file, whether Adabas reuses the ISN of a
deleted record for anew record. If not, each new record is assigned the next higher unused 1SN.

Utilities

For a specified Adabas file that is not a system file, the MODFCB function modifies parameters
such as file padding factors for the Associator or Data Storage; maximum size of secondary
logical extent allocations for Data Storage, normal index, and upper index; maximum
compressed record length permitted; and whether a user program is allowed to perform afile
refresh operation by issuing a special E1 command.

The NEWFIELD function adds one or more fields to a specified Adabas file that is not a system
file. The new field definition is added to the end of the field definition table (FDT). NEWFIELD
cannot be used to specify actual Data Storage data for the new field; the data can be specified
later using Adabas add or update commands, or Natural commands.

The ONLINVERT function allows you to invert files when online applications are active,
ensuring continuous access to the files. You can add one descriptor per file per run.

The ONLREORFASSO (reorder Associator), ONLREORFDATA (reorder Data Storage), and
ONLREORFILE (reorder both Associator and Data Storage) functions allow you to reorder a
list of files when online applications are active, ensuring continuous access to the files. Files
are reordered within their existing extents, thus increasing 170 performance as free space is
recovered and the sort sequence of data records is changed according to processing needs.

The REFRESH function sets the file to “0” records loaded; sets the first extent for the address
converter, Data Storage, normal index, and upper index to “empty” status; and deallocates other
extents.

The RELEASE function releases a descriptor from descriptor status. All space currently
occupied in the Associator inverted list for this descriptor is released. The space can then be
reused for this file by reordering or by ADALOD UPDATE. No changes are made to Data
Storage.

The RENAME function changes the name assigned to afile or database. If afileisnot specified
or is specified with file number zero, the database is renamed.

The RENUMBER function changes the number of an Adabasfile that is not asystem file. If the
new number specified is aready assigned to another file, the RENUMBER function will not
execute.

The UNCOUPLE function eliminates the coupling relationship between two files.

65

Adabas Concepts and Facilities

Other Functions

66

The CVOLSER function prints the Adabas file extents that are contained on a disk volume
specified by its volume serial number.

The DELCP function deletes checkpoint information recorded up to and including a specified
date; checkpoint information recorded after the date specified is not deleted. After running
ADADBS DELCEP, the remaining records are reassigned ISNs to include those ISNs made
available when the checkpoint records were deleted. The lower 1SNs are assigned but the
chronological order of checkpoints is maintained.

The OPERCOM function issues operator commands to the Adabas nucleus. Adabas issues a
message to the operator, confirming command execution. In cluster environments, OPERCOM
commands can often be directed to another nucleus in the cluster or to all nuclei in the cluster
for execution.

The PRIORITY function sets or changes the Adabas priority of auser. A user’s priority can
range from O (the lowest) to 255 (the highest, and the default). The priority value is added to
the operating system priority by the interregion communications mechanism. The user for
which apriority isto be set or changed isidentified by the same user ID provided in the Adabas
control block (OP command, additions 1 field).

The RECOVER function recovers space alocated by rebuilding the free space table (FST).
RECOVER subtracts file and DSST extents from the total available space.

The REFRESHSTATS function resets statistical values maintained by the Adabas nucleus for
its current session. Parameters may be used to restrict the function to particular groups of
statistical values:

ALL (the default) resets values for the combination of CMDUSAGE, COUNTERS,
FILEUSAGE, POOLUSAGE, and THREADUSAGE.

CMDUSAGE resets the counters for Adabas direct call commands such as Lx, Sx, or Al

COUNTERS resets the counter fields for local or remote, physical or logica calls, format
trandations, format overwrites, autorestarts, protection log switches, buffer flushes, and
command throw-backs.

FILEUSAGE resets the count of commands for each file.

POOLUSAGE resets the high-water marks for the nucleus pools such as the Work pool, the
command queue, or the user queue.

THREADUSAGE resets the count of commands for each Adabas thread.

Utilities

Adabas maintains alist of the files used by each Adabas utility in the dataintegrity block (DIB).
The DDIB operator command (or Adabas Online System) displays this block to determine
which jobs are using which files. A utility removes its entry from the DIB when it terminates
normally. If autility terminates abnormally (for example, the job is cancelled by the operator),
the files used by that utility remain “in use”. The RESETDIB function releases any such files
and resets the DIB entries for a specified job and/or a particular utility execution.

ADADEF : Define a Database

The ADADEF tility is used to
e define a new database (DEFINE functions), including the checkpoint file,

e sat database encoding defaults for a new database or modify them (MODIFY function) for an
existing database

e define anew Work file (NEWWORK function) for an existing database.

Databases are defined with name, 1D, components (Associator, Data Storage, and Work) with
device type and size, and default encodings.

Adabas uses certain files to store system information. The checkpoint file is used to store
checkpoint data as well as user data provided with the Adabas CL and ET commands. It is
required and must be specified in the ADADEF DEFINE (database) function.

Before database components (Associator, Data Storage, and Work) can be defined with
ADADEF, each must be formatted by the ADAFRM Ltility.

ADAFRM : Format Datasets

The ADAFRM utility formats the Adabas direct access (DASD) datasets; that is, the Associator,
Data Storage, and Work datasets as well as the intermediate storage (temp, sort, recovery log,
and dual or multiple command/protection log) datasets.

Formatting with ADAFRM comprises two basic operations: creating blocks (that is, RABNS)
on the specified tracks/cylinders; and filling the created blocks with binary zeros (nulls).

Any new dataset must be formatted before it can be used by the Adabas nucleus or an Adabas
utility. After increasing a dataset with the ADADBS INCREASE or ADD function, new RABNs
must also be formatted.

67

Adabas Concepts and Facilities

ADAFRM also provides functionsto “reset” existing Associator, Data Storage, or Work blocks
to binary zeros (nulls).

More than one ADAFRM function (ASSOFRM, DATAFRM, RLOGFRM, and so on) can be
performed in the same job. However, each function must be specified on separate statements.

ADAINV : Invert

68

The ADAINV utility is used to
create a descriptor (INVERT function); or
couple two files (COUPLE function).

The INVERT function
modifies the field definition table (FDT) to indicate that the specified field is a descriptor; and
adds all values and corresponding ISN lists for the field to the inverted list.

The newly defined descriptor may then be used in the same manner as any other descriptor. This
function may also be used to create a subdescriptor, superdescriptor, phonetic descriptor,
hyperdescriptor, or collation descriptor.

The COUPLE function adds a common descriptor to two files (updates their inverted lists). Any
two files may be coupled provided that a common descriptor with identical format and length
definitions is present in both files. A single file may be coupled with up to 18 other files, but
only one coupling relationship may exist between any two files at any onetime. A file may not
be coupled to itself.

Note:
Only files with numbers 255 or lower can be coupled.

Changes affecting a coupled file's inverted lists are automatically made to the other file. The
DBA should consider the additional overhead required to update the coupling lists when the
descriptor used asthe basis for coupling is updated, or when records are added to or deleted from
either file. For example, if afield used as the basis for coupling contains alarge number of null
values and is not defined with the NU (null suppression) option, the result may be a significant
increase in execution time and required disk space to store the coupling lists.

An interrupted ADAINV operation can be restarted without first having to restore the file.

Utilities

ADAORD : Reorder

Three types of functions are available within the ADAORD utility; only one function may be
executed during a given execution of ADAORD.

Reorder Functions

The REORASSO function physically reorders al Associator blocks for all files; REORFASSO
reorders the Associator for a single file. This eliminates Associator space fragmentation, and
combines multiple address converter, normal and upper index, and Data Storage space table
(DSST) component extents into a single logical extent for each component.

The REORDATA function reorders Data Storage for al files in the database; REORFDATA
reorders Data Storage for a single file. This condenses extents containing only empty blocks,
and also eliminates any Data Storage fragmentation caused by file deletion.

The REORDB function performs both the REORASSO and REORDATA functionsin asingle
ADAORD execution; the REORFILE function performs both the REORFASSO and
REORFDATA functionsin asingle ADAORD execution. The records may be reordered in the
logical sequence by a descriptor, by 1SN, or in the current sequence.

Restructure Functions

The RESTURCTURE functions are used to relocate a database or specified filesto adifferent
physical device.

The RESTRUCTUREDB function unloads an entire database to a sequential dataset;
RESTRUCTUREF unloads one or more files to a sequential dataset. This dataset can be used
as input to the STORE function.

Store Function

The STORE function loads one or more files into an existing database using the output produced
by the RESTRUCTURE functions or the REORDB function.

69

Adabas Concepts and Facilities

ADAZAP : Modify Physical Database Blocks

The ADAZAP utility is used to modify physical database blocks. It can be used to

write a checkpoint for each VER and REP it processes providing an audit trail of database
modifications. SY NP 3F checkpoints are printed by both Adabas Online System and ADAREP
and are ignored by ADARES.

handle errors according to standard Adabas utility conventions.

Because caution is necessary when running ADAZAP:;

Software AG recommends that you have a current save tape available before running ADAZAP.
If an error is encountered while running ADAZAP, it may be necessary to restore the affected
file or database.

a mastercode available only to authorized personnel controls its use. The mastercode is
distributed by Software AG on written request.

Audit / Control / Tuning Procedures

ADAACK : Check Address Converter

ADAACK should only be used for diagnostic purposes. It checks

the address converter for a specified file(s) and ISN range. It is used in conjunction with
ADAICK.

each address converter element to determine whether the Data Storage RABN is within the used
portion of the Data Storage extents specified in the file control block.

the ISN for each record in each Data Storage block within the specified ISN range to ensure that
the address converter element for that ISN contains the correct Data Storage RABN.

ADADCK : Check Data Storage

70

ADADCK should only be used for diagnostic purposes. It checks the Data Storage and the Data
Storage space table (DSST) of a specific file (or files) in the database.

ADADCK reads each used Data Storage block (according to the Data Storage extentsin thefile
control block) and checks whether:

Utilities

e theblock length is within the permitted range (4 << block length << physical block size).
e the sum of the lengths of al records in the Data Storage block plus 4 equals the block length.

e any record exists with arecord length greater than the maximum compressed record length for
the file or with alength < 0.

e any duplicate ISNs exist within one block.

e theassociated DSST element contains the correct value. If not, the DSST must be repaired (see
REPAIR parameter).

ADAICK : Check Index and Address Converter

ADAICK should only be used for diagnostic purposes. It checks the physical structure of the
Associator. This includes validating the index based upon the descriptor value structures and
the Associator extents defined by the general control block (GCB) and file control block (FCB).

ADAICK can
e check index and address converter for specific files;
e print/dump the contents of any Associator or Data Storage block in the database; or
e produce aformatted print/dump of the contents of the GCB, FCBs, and FDTSs.

ADAMER : ADAM Estimation

The ADAMER tility produces statistics that indicate the number of Data Storage accesses
required to find and read a record when using an ADAM descriptor. This information is used
to determine

e whether the number of accesses required to retrieve arecord using an ADAM descriptor would
be less than the standard Adabas accessing method;

e the amount of Data Storage space required to produce an optimum distribution of records based
on the randomization of the ADAM descriptor.

The input datafor ADAMER is adataset containing the compressed records of afile produced
by the ADACMP or ADAULD utility.

The field to be used as the ADAM descriptor is specified with the ADAMDE parameter. A
multiple value field or a field contained within a periodic group may not be used. The ISN
assigned to the record may be used instead of a descriptor as the basis for randomization
(ADAMDE=ISN).

71

Adabas Concepts and Facilities

The ADAM descriptor must contain a different value in each record, since the file cannot be
successfully loaded with the ADAM option of the ADALOD dtility if duplicate values are
present for the ADAM descriptor. The ADAMER utility requires a descriptor field defined as
unique (UQ), but does not check for unique values; checking for unique descriptor valuesis done
by the ADALOD utility when loading the file as an ADAM file.

The BITRANGE parameter may be used to specify that a given number of bits are to be
truncated from each ADAM descriptor value before the value is used as input to the
randomization algorithm. This permits records containing ADAM descriptor values beginning
with the same value (for example, 40643210, 40643220, 40643344) to be loaded into the same
physical block in Data Storage. This technique can be used to optimize sequentia reading of
the file when using the ADAM descriptor to control the read sequence, or to remove
insignificant information such as a check digit.

ADAREP : Report

72

The ADAREP tility produces a status report that provides information concerning the current
physical layout and logical contents of the database or a qualified save tape.

The information provided in this report includes

a database overview: the database name, number, creation date/time, file status, and current log
number.

current space resources for Associator, Data Storage, and Work: amount and locations of
currently used space, and allocated but unused space.

summary and detailed file information: summary by file of 1SN, extent, padding factor,
used/unused Associator and Data Storage space, and file options; and detailed, optionally by
file, that includes all summary information plus MINISN/MAXISN settings, detailed space
information, creation and last use date/time, field definition table (FDT) contents, and general
or extended checkpoint file information.

checkpoint information: general and extended checkpoint file information.

physical structure: Associator/Data Storage RABN information including device type,
VOL SER number, file number (if appropriate), and usage (AC, NI/UI, Data Storage, DSST, or
unused).

The purpose of the save tape report is to determine what the save tape contains.

Utilities

ADAVAL : Validate the Database

The ADAVAL utility validates any or al fileswithin an Adabas database except the checkpoint
and security files.

ADAVAL compares the actual descriptor values contained in the records in Data Storage with
the corresponding values stored in the Associator to ensure that the Associator and Data Storage
are synchronized, and that there are no values missing from the Associator.

Before running ADAVAL, the consistency of the inverted lists should be checked with the
ADAICK utility.

ADAPRI : Print Selected Adabas Blocks

The ADAPRI utility prints the contents of a block (or range of blocks) contained in the
Associator, Data Storage, Work, temp, sort, dual or multiple command log (CLOG), dual or
multiple data protection log (PLOG), the recovery log (RLOG), or the Delta Save images
(DSIM) dataset.

73

74

ADABAS SECURITY

Adabas provides the following facilities to prevent unauthorized access to and/or updating of
Adabas database files:

e Adabas data encryption (ciphering) which provides data security;
. Adabas multiclient files to control access to records in afile;

e Adabas Security and the related security utility ADASCR, a selectable unit, which provides
selective user access/update protection at afile, field, and field value level; and

e Adabas SAF Security (ADASAF), a sdlectable unit, which provides control of Adabas resources
at a database/utility, command, or file level through standard security packages based on the
System Authorization Facility (SAF) such as RACF, CA-ACF2, and CA-Top Secret. ADASAF
isinitially available for 0S/390, z/OS, and OS I1V/F4 (FACOM) operating systems only.

Note:
It is planned that Adabas SAF Security will extend support to all supported operating system
in a subsequent release of Adabas.

Security is accomplished by comparing passwords and authorization levels.

Data Encryption

Data encryption is an integral feature of Adabas and requires no options or extra modules. Data
may be enciphered before being placed in the database.

The user must provide the cipher key at the time records are stored. This key is not stored and
must be available to request or decipher the data. This minimizes the chances of data being
compromised by unauthorized access to the system.

To retain maximum control over cipher codes, an Adabas user exit program can be created to
insert the currently valid cipher code into user applications; this removes the need to make the
codes known to users, and protects the file from corruption that can occur by adding data that
is encrypted with the wrong cipher code.

75

Adabas Concepts and Facilities

Multiclient Files

Also available as an integral feature of Adabas that requires no options or special modules is
the multiclient file.

A single Adabas physical file defined as “multiclient” can store records for multiple users or
groups of users. The multiclient feature divides the physical file into multiple logical files by
attaching an internal owner 1D to each record.

The owner ID isassigned to auser ID. A user ID can have only one owner ID, but an owner ID
can belong to more than one user. Each user can access only the subset of records that is
associated with the user’s owner ID.

Note:
For any installed external security package such as RACF or CA-Top Secret, a user is still
identified by either Natural ETID or LOGON ID.

All database requests to multiclient files are handled by the Adabas nucleus.

Adabas Security and ADASCR

Access/update control is available only with Adabas Security and the related security utility
ADASCR that defines and controls Adabas Security functions.

Adabas Security provides two levels of protection: access/update and value.

Access/Update L evel Protection

76

“Access-/update-level” protection applies a basic level of security on a file-by-file basis.
Access/update protection can be defined for some files and not for others. It restricts use of a
file or field within the file to those having an appropriate access/update profile definition and
a password specified by the user of the file.

Access/update permission values ranging from 0 to 14 are defined for each user and attached
to that user’s password, and each protected file (and selected field or fields, if desired) has
equivalent access/update “threshold” protection values of the same range. Only a user whose
permission value equals or is greater than the protection level of the specified file (and, when
applicable, field) is permitted to perform that operation type (access or update) on the file or
field. An access/update permission level of 0 only allows access/update of unprotected files or
fields with protection level 0 or no defined protection password.

Security

Value L evel Protection

“Value-level” protection applies restrictions on the type and range of values that can be accessed
or updated in specific fields. The restrictions are applied according to user password (files with
fields using value-level protection must be password-protected), can be for specific values or
for value ranges, and can be either “accept” or “reject” criteria.

Adabas Interface to SAF-based Packages

The System Authorization Facility (SAF) is used by OS/390 and compatible sites to provide
rigorous control of the resources available to a user or group of users. Compatible security
packages such as IBM’s RACF, Fujitsu's RACF executing under MSP, and Computer
Associates ACF2 or Top Secret allow the system administrator

e to maintain user identification credentials such as user ID and password; and

e to establish profiles determining the datasets, storage volumes, transactions, and reports
available to a user.

Generally, a security package allows the system administrator to authorize a user’s access to
system resources. The security package then monitors all users and their resource usage to
ensure that no unauthorized access or change occurs. Attempts by unauthorized users to use
either the system or specific system resources are recorded and reported.

A user profile, which can be for asingle user or agroup of users, defines which system hardware
and software resources a user is alowed to use. A resource profile defines access/update
privileges for one or more devices, volumes, and/or programs (resources that must be used
together to perform certain functions can be defined together in the same profile).

When auser logs on to the system, the security package uses the user’slogon ID to identify that
user’s profile. Each time the user attempts to perform atask or access information, the security
package uses information in its resource profiles to allow or deny access. Using the profile
concept, the security package expands the single point of authorization—the logon ID—to
provide extensive control over all system resources.

The resulting security repository and the infrastructure to administer it represent a significant
investment. At the same time, the volume of critical information held by abusinessis constantly
growing, as is the number of users referencing the data. The challenge of controlling these
ever-increasing accesses requires a solution that is flexible, easy to implement and, above all,
one that safeguards the company’s investment.

77

Adabas Concepts and Facilities

Adabas SAF Security (ADASAF)

78

Adabas SAF Security (ADASAF) enhances the scope of SAF-based security packages by
integrating Adabas resources into the central security repository. ADASAF enables

a single control and audit system for all resources;

industry-standard protection of Adabas data; and

maximized return on investment in the security repository.

ADASAF operation can be tailored on a nucleus-by-nucleus basis, allowing great flexibility in
its implementation. It comprises

a server operating in each secured Adabas address space;

router extensions linked with the Adabas SVC;

an online administration and monitoring system, an application written in Natural and accessed
from either the demo or full version of Adabas Online System (AOS); and

aplug-in routine PINSAF that interfaces with the Adabas error handling facility. It is activated
automatically at initialization to aid problem diagnosis.

Security

ADASAF dlows you to protect the following Adabas resources:

Resource

Protection

Database Nucleus
Adabas Utilities

Database Files
Database Commands

Production Environment Data

Transaction Data
Adabas Operator Commands

File Passwords and Cipher
Codes

Adabas Basic Services

Controls the users allowed to start an Adabas nucleus.

Controls the users allowed to execute utilities by utility
or database I1D; for example, a user or group might be
allowed to run ADAREP but not ADASAV against a
particular database.

Controls the users allowed to access database files.

Controls the users allowed to use access (READ/FIND)
and update (STORE/UPDATE/DELETE) commands.
To optimize performance, ADASAF disregards
commands such as RC that are not file-specific.

Controls the users allowed to operate in a production or
test environment. Such “cross-level” checking could be
used, for example, to prevent damage by an application
program inadvertently cataloged against the wrong
database ID.

Controls the users allowed to store or retrieve ET data.

Controls the Adabas operator commands that can be
issued from the system console.

Dynamically applies passwords and codes held in the
security repository or supplied by a user exit. This
eliminates the need for the application to manage
security data and removes the requirement to transmit
sensitive information from the client to the database.

Protects Adabas Basic Services at a selected level
(main functions only or main functions and
subfunctions) with defined resource profiles and
controls user access to those profiles.

79

80

Adabas Concepts and Facilities

In Figure 5-1, all traffic between database users and Adabas is controlled by the Adabas router.
With ADASAF installed, the ADASAF router replaces the Adabas router and controls all access
to Adabas:

Operating
System

r\ (ACEE Profile)
\
| Adabas
| ADASVC Environment RACF
| /
‘ Adaba >
| Nuolous ADASAF | i 3| CA-ACF2
\ \
} \ CA_Top
| | Secret
\ \
\ Adabas Files and |
| Utilities |
\ \
\ \
L e _

Figure 5-1: Adabas with ADASAF

The central security logon ID is used to log on to the system. Through the operating system or
TP monitor, the installed external security package checks the authorization of the logon ID.
For calls from aremote workstation or non-IBM platform, a remote logon procedure is used to
givethelogon ID to ADASAF. The router contains a security exit that extracts the user’slogon
ID from the ACEE for the user.

Full, flexible control is maintained with a one user : one definition approach while previous
investments in host-based security systems and infrastructures are enhanced, not discarded.

Security

Related Security Options

Adabas Online System Security

The demo version of Adabas Online System (AOS) distributed with Adabas includes a security
facility for restricting access to the Adabas online facilities. AOS Security requires Natural
Security as a prerequisite. See the Adabas Security Manual for more information.

Natural Security

The Natural Security system provides extensive security for Adabas/Natural users. It isrequired
for AOS Security and recommended for other features of Adabas. See the Natural Security
Manual for more information.

Using the SAF Repository to Secure Software AG Products

Adabas SAF Security or ADASAF (see page 78) is one of several Software AG security products
that enhance the effectiveness of the SAF central security repository:

Product Protects

Adabas SAF Security Adabas

Adabas SQL Server SAF Security Adabas SQL Server

Entire Net-Work SAF Security Entire Net-Work version 5.6 and above
EntireX Security EntireX, Entire Broker, Broker Services
Natural SAF Security Natural

Entire Security SAF Gateway

Entire Security SAF Gateway can be installed under OS/390, MVS/ESA, MSP F4 EX and AE.
Version 4.1.1 can be used to secure the following when using a SAF-compatible security system:
e Adabas (version 6.2 and earlier) for mainframes
e Adabas SQL Server operating in MV'S environments

e Natura RPC using Entire Broker

81

82

Adabas Concepts and Facilities

Natural for mainframes

Entire Broker (pre-EntireX) operating in MV S, UNIX, and Windows environments (the security
built into EntireX now protects Entire Broker and Broker Services as well).

Entire Net-Work version 5.5 and lower (the Entire Net-Work SAF Security Interface is used for
Entire Net-Work version 5.6 and above; see page 83).

API Facility for Windows and UNIX applications
SAF Gateway protects client/server, peer-to-peer, and standard application systems. The

software isimplemented at specific points where communication between clients, servers, and
peers is secured using definitions made in the SAF-based security system.

SAF Gateway comprises at least two separate components in any implementation:

The main component, referred to as the SAF Gateway started task, operates in its own MVS
address space as a gateway to SAF-based security systems. As a node in the Software AG
network, it focuses SAF-based processing for the products being protected. The SAF Gateway
started task can operate in combination with an existing Adabas database.

The second component depends on what is being protected and represents the various different
distributed and mainframe scenarios listed above. It can be located in the application software
itself; for example, mainframe Natural. Distributed applications are protected by authenticating
clientsg/servers and securing the communication between different components.

The API facility for Windows and UNIX applications is aready being used to secure

Web Servers operating under Windows NT and UNIX

Visual Basic applications under Windows

PowerBuilder applications under Windows

Delphi applications under Windows

C and C++ applications in Windows and UNIX

Security

Entire Net-Work SAF Security (NETSAF)

The Entire Net-Work SAF Security (NETSAF) is a separate, optional product for OS/390 and
Z/OS environments running Entire Net-Work version 5.6 or above. It allows Entire Net-Work
clients to access SAF-secured data sources (targets); for example, Adabas, Adabas SQL Server,
Entire Broker, and Entire System Server.

NETSAF can be activated on a link-by-link basis. If only one node of severa communicates
externally, security can be activated for that node alone and only for external links.

To secure Entire Net-Work, it is necessary to define resource profiles in the SAF repository.
Resource profiles are defined for each host target. Adabas resource profiles can be defined at
the file level. The command type determines the access level required for successful
authorization: valid access levels are READ, UPDATE, and CONTROL. CONTROL applies
to AOS commands, for example.

Point-of-access verification of incoming requests is made against the SAF-based central
security repository: all access from mainframe clients can be verified against the same security
profile.

Security checks are based on a trusted user ID, which must exist in the central security
repository. In some cases, the user ID is authenticated in the caller’s home environment or is
fixed by, for example, the Entire Net-Work configuration. A user ID can belost if calls are routed
through an intermediate gateway node.

83

84

OPTIONAL EXTENSIONS

The selectable units discussed in this chapter are available to Adabas customers who have
exercised a separate purchase agreement for the feature or product.

Adabas Online System

Note:
Adabas includes a demo version of the Adabas Online System to illustrate its capabilities and
to provide access to selected other services.

Adabas Online System (AQOS) provides an online database administration tool for Adabas. The
same functionality is available using a batch-style set of utilities.

AOS s an interactive menu-driven system providing a series of services used for online Adabas
database analysis and control. These services alow a database administrator (DBA) to

e display Adabas user statistics, monitor and control access and operation of one or all users;

e display and modify Adabas fields and files: add fields, allocate and remove file space, change
file and database layout, view and remove field descriptors;

e redtrict file use to utility users only, or lock/unlock file access completely.

AOS iswritten in Natural, Software AG's fourth generation application development facility.
AOS security functions are available only if Software AG's Natural Security is installed and
operating.

AOS includes functions that are comparable to the Adabas operator commands and utilities.

85

86

Adabas Concepts and Facilites

MASS DATA
MANIPULATION

— compress / decompress

— load, unload, mass update
afile

— invert field(s) =
— couple files

— reorder files,
Associator, Data

— save / restore
(including delta save) =

T Adabas

Database

MAINTENANCE SESSION
REPORTING COMMUNICATION

file maintenance — display Adabas queues
o define new file . .
« file definitions — display / modify
o field definitions nucleus parameters
database maintenance — display system
* delete file performance
* DIB entries
e data set/ space allocation — control user priority
* uncouple files and access

database report — stop selected users

terminate / cancel
session

space calculation

list / delete checkpoints

(. _J
F

UTILITY FUNCTIONS OPERATOR COMMANDS

“—

—

BASIC SERVICES
(Real-time Monitoring)

Figure 6-1 Overview of Adabas Online System/Basic Services

Basic Services makesit possible for the DBA to interactively monitor and change aspects of an
Adabas database while an Adabas session is active. Using menu options or direct commands,
the DBA can view resource status and user queues, display and revise space allocation, change
file and database parameters, define anew file online, and stop a selected user or current Adabas

session.

Optional Extensions

Adabas Caching Facility

Adabas Caching Facility helpsimprove system performance and make full use of ESA functions
by augmenting the Adabas buffer pool in extended memory, data space, hiperspace and, in Z/OS
version 1.2 and above environments, 64-bit virtual storage.

Adabas Caching Facility augments the Adabas buffer manager by reducing the number of read
Execute Channel Programs (EXCPs; UPAM SV Csfor BS2000) to the database. This alowsyou
to use the available operating system facilities without monopolizing valuable virtual memory
resources.

Note:
Write EXCPs are always issued to maintain the integrity of the database.

Adabas Caching Facility is functionally similar to the Adabas buffer manager, but offers the
following additional capabilities:

e User-specified RABNSs (blocks) can be cached or “fenced” to make them readily accessible
when demand arises, even though the activity against them is not sufficient to keep them in the
active buffer pool. RABN-fencing reduces the required /O response time if the Adabas nucleus
needs to reread those RABNSs.

¢ The Adabas Work dataset parts 2 and 3 can be cached to improve performance in environments
that service large numbers of complex queries. Adabas Work parts 2 and 3 serve as temporary
work areas used to resolve and maintain the 1SN lists of complex queries. Reducing the number
of read and write EXCPs to Work parts 2 and 3 for these complex queries can decrease
processing time dramatically and improve performance substantially.

e Afileorrange of files can be specified to cache all associated RABNS. It is also possible to cache
only Associator or Data Storage blocks if required. Files can be prioritized by assigning a*“class
of service” which determines the percentage of the maximum available cache space that a given
file can use and when the file's RABN blocks will be purged from the cache.

e Operator commands are available to dynamically respond to a changing database environment
by modifying
— the RABNsto be cached by RABN range, file, or file range;
— the RABNsto be enabled or disabled by RABN range, file, or file range;
— when to acquire and release the system resources used by the Adabas Caching Facility.

87

Adabas Concepts and Facilites

When processing serial Adabas commands (e.g., read logical, read physical, histogram, and
searches using non-descriptors) with the read-ahead caching option, asingle EXCP isissued to
read all the consecutive ASSO and/or DATA blocks that reside on a single track of the disk
device. The blocks are kept in cache and are immediately avail able when the nucleus requests
the next block in a sequence. This feature may enhance performance by reducing the number
of physical read 1/Os for a 3380 ASSO by as much as 18:1.

The integrity of the database is preserved because Adabas RABNSs are not kept redundantly in
both the Adabas buffer pool and the cache. An Adabas RABN may reside either in the Adabas
buffer pool or in the cache area, but never in both. All database updates and consequently all
buffer flushes occur only from the Adabas buffer pool. Unlike other caching systems, this
mechanism of non-redundant caching conserves valuable system resources.

The demo or full version of Adabas Online System is required to use the online
cache-maintenance application Cache Services. For more information, see the Adabas Caching
Facility Manual.

Adabas Delta Save Facility

88

The Adabas Delta Save Facility (DSF) offers significant enhancements to ADASAV utility
processing. It reduces the volume of save output produced and shortens the duration of save
operations; this increases database availability. By allowing more frequent save operations to
be performed, it also reduces database recovery time.

DSF achieves these objectives by saving only those Associator and Data Storage blocks that
have changed (delta portion) since the last save operation. The result of this operation is called
a delta save tape. Because a much smaller volume of output is written to delta save tapes,
contention for secondary (tape, cassette etc.) storage is reduced.

DSF can
maintain a log of changed database blocks (RABNS);
create and merge interim “delta’ save tapes while the database remains online, if required;

consolidate delta save tapes with the most recent database save tape to create an up-to-date full
save tape;

restore the database from the most recent full save tape and all subsegquent delta save tapes.

Optional Extensions

DSF isintended for Adabas sites with one or more large, heavily updated databases that need
to be available most of the time. It is particularly beneficial when the volume of data changed
on a day-to-day basis is considerably smaller than the total database volume.

The demo or full version of Adabas Online System isrequired to use DSF. For more information,
see the Adabas Delta Save Facility Manual.

Adabas Fastpath

Adabas Fastpath optimizes response time and resources by bringing reference data closer to the
user, reducing overhead, and reducing response times by servicing requests locally (that is,
within the same region or partition).

Fastpath satisfies an Adabas query from within the application process, thus avoiding the
operating system overheads needed to send a query to and from the database. Database activity
such as command queue processing, format pool processing, buffer pool scanning, and
decompression are also avoided.

Fastpath uses a query sampler to efficiently identify

e the most commonly issued direct access queries; that is, queries where the client identifies the
data being sought (e.g., ISN, search value).

e sequential access queries,; that is, queries where the client identifies a series of dataitems related
by sequence or search criteria.

The query sampler reports interactively and at shutdown the exact types of queries that can be
optimized and their relative popularity.

For each type of query, Fastpath uses algorithms to recognize and retain the most popular data
and discard or overwrite the least popular data. Given a particular amount of memory to use that
isavailableto all clients within an operating system, Fastpath retains the results of popular data
queries so that they can be resolved in the client process when repeated. The retained results
comprise a common knowledge base that reflects the experience gained from past queries. The
knowledge base is dynamic in that it is continually updated; the least popular data held there
is discarded or overwritten.

A Fastpath component attached to the DBMS ensures that any changes to popular data are
reflected in the results returned to the knowledge base. Fastpath data is aways consistent with
the DBMS data.

89

Adabas Concepts and Facilites

Before a query is passed to the DBM S, the Fastpath optimizer attempts to resolve the query from
the knowledge base. If successful, the query is satisfied faster, without interprocess
communication or DBMS activity. Fastpath optimizes sequences by dynamically applying
Adabas prefetch read-ahead logic to reduce DBMS activity. As many as 256 data items can be
retrieved in asingle visit to the DBMS.

Fastpath optimization occurs in the client process, but requires no change to application
systems. Different optimization profiles can be applied automatically at different times of the
day. Once started, the Fastpath buffer can be left active without intervention; Fastpath reacts
automatically to DBMS startup and shutdown.

Adabas Vista

90

Adabas Vista alows you to “partition” data into separately managed files without
reconstructing your business applications, which continue to refer to one (simple) Adabas file
entity even though the physical data modd is partitioned and possibly distributed across a
wide-ranging computer complex.

Data can be partitioned across multiple Adabas database services. When a large file is
partitioned across two or more databases, the processing load is actually being spread across the
computer service. With more than one CPU engine in your computer, greater use is made of the
paralel availability of the CPU engines.

Adabas Vista partitions are truly independent Adabas files:

partitions need not be identical. Provided all the partitions support all of the views to be used
by Adabas Vista, the files can operate with different physical layouts (FDTs). Of course, the
Adabas source fields that are common to all partitions must be defined identically in each FDT.

partitions can be maintained individually. You can size, order, and restore according to the needs
of theindividual partition. You do not have to make al partitions operate from the same physical
constraints. You may choose some to be large, others medium, etc. You can also tune the ASSO
space according to the partition.

You can select the applications for which Adabas Vista provides a single file image for all the
partitions. You can also set an application for “mixed access mode” so that a program can access
a partition directly by its real file number, even while using the single file image.

A file is usually partitioned based upon the overall dominance of a key field such as location
or date: the “partition criteria’. However, it is possible to partition a file without a partition
criteria.

Optional Extensions

Applications generally access the file with search data based to some extent on the key field.
Adabas Vista minimizes processing overhead by detecting access explicitly or implicitly based
upon the partition criteria, interrogating the search argument, and directing the access to the
specific partition(s) needed. This is referred to as “focused access”.

The partition outage facility of Adabas Vista alows you to control what happens when a
partition becomes unavailable. You can set sensitivity to partition outage unilaterally and allow
business application to override it on a user basis. For example, if your partition criteria is
location and only data in a particular location is critical to usersin that location, you can set
partition outage so that users are interrupted by outagesin their own location but unaffected by
outages in other locations. This can greatly increase the overall availability of your data, which
can significantly enhance the effectiveness of your business.

The restricted partition facility of Adabas Vistaalowsyou to “hide” partitions even though the
datais available. You can use thisfacility to limit data to particular users based on role, location,
or other business definition for security or performance reasons.

The consolidation facility of Adabas Vista allows you to impose a single file image upon
multiple, previoudly unrelated files. The files may well be different but they support the same
consolidated view.

Adabas Vista can be used in IBM mainframe environments (0S/390, zZ/OS, VM/ESA, z/VM,
VSE/ESA) with all supported versions of Adabas.

Adabas Vista supports Adabas calls from 3GL programs as well as from Natural. An online
services option is available in a Natural environment.

Adabas Vista comprises a stub (client) part and a server part. By design, most processing occurs
in the client process rather than the server to

minimize CPU usage;
minimize the impact of overhead associated with partitioning on the database service; and

spread the load among as many CPU engines in parallel or even computers as possible.

91

Adabas Concepts and Facilites

Adabas Transaction Manager

Adabas Transaction Manager (ATM) is a selectable unit of Adabas that
coordinates changes to Adabas databases participating in a“global” transaction (see page 125);

(function not availablein first release) processes two-phase commit directions from transaction
managers that take a higher-level, controlling role in coordinating global transactions such as
IBM’s RRMS or the CICS Syncpoint Manager allowing transactions to encompass both Adabas
and non-Adabas databases operating within a single operating system image; and

plays akey rolein coordinating global transactions that change Adabas databases on more than
one system image. In this case, the communication mechanism between the components across
the system images in Entire Net-Work.

Each ATM instance (one per operating system image) executes in its own address space as a
specia kind of Adabas nucleus. Each ATM is aware of and “partners’ with the other ATMsin
the distributed system and the databases they coordinate. At any time, each ATM can account
for the status of the global transactions it is coordinating.

Adabas Review

92

Adabas Review (formerly Review Database) provides a set of monitoring, accounting, and
reporting tools that enable you to monitor the performance of the Adabas environment and the
applications executing within them.

Information retrieved about Adabas usage helps you tune application programs to achieve
maximum performance with minimal resources.

In addition to the “local” mode with Adabas Review running in the Adabas address space,
Adabas Review offers the “hub” mode, a client/server approach to the collection of performance
data for Adabas:

the Adabas Review interface (the client) resides on each Adabas nucleus.

the Adabas Review hub (the server) resides in its own address space, partition, or region.

Optional Extensions

TheHub Server

The Adabas Review hub is the data collector and the reporting interface for the user. The hub
handles the data consolidation and reporting functions for monitoring an Adabas database,
including usage information related to applications, commands, minimum command response
time (CMDRESP), 1/O activity, and buffer efficiency.

An interactive reporting facility allows you to pinpoint problems quickly, providing detailed
and summary data about Adabas activities. Specific information about each database is also
available.

Proven Adabas and Review components are combined in the centralized collection server (hub)
with the following advantages:

e A single hub can collect information from multiple Adabas nuclei and from Adabas nucleus
clusters managed by either Adabas Parallel Services or Adabas Cluster Services. This means
that the number of Adabas Review nuclei required to support an enterprise-wide distribution of
Adabas nuclel is minimized, resource requirements are minimized, and performance increases.

e Removing the Review subtask from the address space, partition, or region of each Adabas
nucleus improves the performance of the Adabas main task. At the same time, the isolation
minimizes the impact of future Adabas releases on the functioning of Adabas Review.

The hub comprises

¢ ADAREV, alogic module that manages and supervises the incoming Review data calls and
requests;

. REVHUB, a module to establish and maintain the environmentals for Adabas Review; and

e the Review nucleus and subsystems including RAOSAUTO, the autostarted report parameter
generation routine, and RAOSHI ST, the historical data population routine.

93

Adabas Concepts and Facilites

Thelnterface Client

The Adabas Review interface constructs and then transmits the Review data from the Adabas
nucleus to the Adabas Review hub. An Adabas Review interface is integrated with each Adabas
nucleus that is monitored.

The interface utilizes the existing Adabas interregion communication process; that is,
ADALNK, ADASVC, and ADAMPM. This communication process is consistent across
supported platforms.

When all supported platforms and systems are networked correctly, Adabas Review supports
a multiple platform, multiple operating system, Adabas database environment.

The interface comprises the following:
ADALOG, the Adabas command logging module;

RAOSDAEX, the Adabas Review command log extension module that is responsible for
acquiring additional information not present in the Adabas command log record; and

ADARVU, which handles the environment conditions for RAOSDAEX and the Adabas API
requirements for transmitting the Review data to the Adabas Review hub.

Interface Calls

94

To maximize performance, the ADARVU module issues an “optimistic” call from an Adabas
nucleus to the Adabas Review hub without waiting for a completion or “post” from the hub;
ADARVU assumes that the Review data was successfully passed to the hub.

However, ADARVU does perform an initialization step to ensure that the hub is active prior to
any command processing by the Adabas nucleus. If the hub is not active, ADARVU informs you
using WTOs and/or a user exit. If auser exit is used, you are given the option to wait for the hub
to be activated, or continue initialization and call the hub only when it is active.

On the hub side of the call, the elimination of the crossmemory “post” call enhances
performance by reducing the overhead of active communication with the Adabas clients. This
allows the hub to remain a passive data collector.

Optional Extensions

Example Client/Server Environment

Figure 6-2 shows the magjor components of the Adabas Review interface (Adabas nucleus
address space) and the Adabas Review hub (Adabas Review hub address space) in aclient/server

architecture.
! Adabas Nucleus I : ! Adabas :
I I Review
Supervisor
ADAREV
! ADALOG : ! * :
‘ Command Logging ‘
Environmentals
‘ REVHUB |
| [
\ ADARVU ‘ \
Environmentals
and Hub
Communications Adabas Review Database |
[‘ Nucleus (Subtask)
| ' Router Call ‘ REVIEWB !
RAOSDAEX | Adabas Review ‘
! Command Log ! Hub
[
Extension LAddress SpaceJ
Adabas Nucleus |
: Address Space |

Figure 6-2 : Example Adabas Review Environment (OS/390 or z/OS)

95

Adabas Concepts and Facilites

Adabas Statistics Facility

A database administrator (DBA) regularly checks the status of the database (such as disk and
memory utilization) and plans for the long term, such as ensuring that the future disk space
requirements can be met, based on current trends.

For Adabas, the DBA can check the status of individual databases and files using the ADAREP
(Database Report) utility, the nucleus end session protocol, and ad hoc inquiries made using the
Adabas Online System. This is often a time consuming process.

The Adabas Statistics Facility (ASF) provides an automated environment comprising
a program to collect data concerning groups of databases and files specified by the DBA; and
a set of programs to evaluate the data collected.

Data Collection Program

96

ASF uses a data collection program called the “store program” to collect database status
information at the start of, at the end of, or during an active nucleus session. This program is
normally scheduled to run as a batch program at regular intervals (perhaps once per day) over
aperiod of weeks or monthsto collect data that can be statistically evaluated. The store program
can aso be started by the DBA on an ad hoc basis, using commands in the ASF online menu
system.

The DBA defines “store profiles’, each specifying a different set of databases and files to be
monitored, that are specified as input to the store program when it runs. Several store programs,
each with a different store profile, can run concurrently.

Approximately 170 criteria called “data fields’ are used for monitoring Adabas databases and
files. The data fields represent aspects of an Adabas database such as disk and buffer usage,
thread usage, database load, ADARUN parameters, pool usage, and frequency of use of
particular Adabas commands. All data fields are stored for each database and file specified in
the store profile.

Start and end nucleus data, when accumulated over periods of weeks or months, give an
indication of the long term database growth, and permit projections of future database
requirements. Nucleus performance data, such as main memory usage and pool usage, provide
information for tuning Adabas nucleus parameters.

Optional Extensions

Data Evaluation Programs

ASF uses a set of programs called “evaluation programs’ to evaluate the statistics gathered by
the Store Program and produce summary reports called “ evaluation reports’ that can be viewed
online, printed, or downloaded to a PC.

For each evaluation report, the DBA uses the online menu system to define an evaluation profile
specifying

e thedatabases and files for which datais to be evaluated (data for these must have been collected
by a store program);

e for each database and file specified, one or more data fields to be analyzed in the report;
e the units of measurement of the data fields specified;
e upper and lower values representing “critical” levels for the data fields specified; and

e one of ten report types (01-10) which determines the format of the report heading.

The main types of reports are

e General evaluation: an analysis of the past and present database status. The statistical tables
generated provide an overview of the status of various databases and files. The maximum and
minimum values in rows of the output tables can be displayed, as well as statistical quantities
such as the sum and average of the values.

e Trend evaluation: tables of projected statistics, in time steps of days, weeks, or months, until
a specified end date.

e Critica Report: areport of databases and files for which the specified data fields have reached
or exceeded the specified “critical limits”.

e Critica Trend Report: a report of databases and files for which the specified data fields will
reach or exceed their critical limits within a time frame, based on an extrapolation of current
trends.

97

Adabas Concepts and Facilites

Adabas
Databases

Store-Profile I- - --| List of:
<—I Databases,
Store-Program Files
< \

Store-Type I

Store
Records ———F—"—"1"—"-—"""—"——"F——"——"———— — — — —

Selection criteria:

* Store—Profile
Store-Type

Store date/time

Evaluation Evaluation List of:
Program <— Profile - ,
Evaluation type,
Databases,
Files,
Data Fields

Evaluation
Report

Figure 6-3 Adabas Statistics Facility Components

Optional Extensions

Adabas Pardlle Services

Adabas Parallel Services (formerly ADASMP) implements multinucleus, multithread parallel
processing and optimizes Adabas in a multiple-engine processor environment on a single
operating system image.

Up to 31 Adabas nuclel in an Adabas Paralldl Services“cluster” are distributed over the multiple
engines that are synchronized by the operating system.

All nuclei in the cluster access a single physical database simultaneously. A “single physical
database” is one set of Associator and Data Storage datasets identified by a single database ID
number (DBID).

The nuclei communicate and cooperate with each other to process a user’s work. Compression,
decompression, format buffer trandlation, sorting, retrieving, searching, and updating
operations can all occur in parallel.

In addition to the increased throughput that results from parallel processing, Adabas Parallel
Services increases database availability during planned or unplanned outages: the database can
remain available when a particular cluster nucleus requires maintenance or goes down
unexpectedly.

An unlimited number of Adabas Parallel Services clusters can operate in the same operating
system image under the same or different SVCs; that is, an unlimited number of separate
databases can be processed, each with its own Adabas Parallel Services cluster of up to 31
nuclei.

Applications see only one database target; no interface changes are required. Applications still
communicate with their intended databases and communicate with an Adabas Parallel Services
cluster of nuclei without modification.

99

Adabas Concepts and Facilites

Adabas Cluster Services

Adabas Cluster Services implements multinucleus, multithread parallel processing and
optimizes Adabas in an IBM Parallel Sysplex (systems complex) environment. The Adabas
nuclei in a sysplex cluster can be distributed to multiple OS/390 or z/OS images that are
synchronized by a Sysplex Timer® (IBM). One or more Adabas nuclei may be run under an
0S/390 or Z/OS image.

Adabas Cluster Services comprises software components that ensure intercommunicability and
data integrity among the OS/390 or z/OS images and the associated Adabas nuclei in each
sysplex nucleus cluster. An unlimited number of sysplex clusters each comprising up to 32
clustered nuclel can reside on multiple OS/390 or Z/OS images in the sysplex.

Software AG's Entire Net-work (see also page 111) is used to send Adabas and Adabas Cluster
Services commands back and forth between OS/390 or z/OS images. It provides the
communication mechanism among the nuclei in the sysplex cluster. No changes have been
made to Entire Net-work to accommodate Adabas Cluster Services. To support a sysplex
environment that includes more than one OS/390 or z/OS image, a limited Entire Net-work
library isincluded as part of Adabas Cluster Services.

The ADACOM moduleis used to monitor and control the clustered nuclel. For each cluster, the
ADACOM module must be executed in each OS/390 or z/OS image that either has a nucleus
that participates in the cluster or has users who access the cluster database.

The Adabas Cluster Services SVC component SVCCLU is prelinked to the Adabas SVC and
is used to route commands to local and remote nuclei. CSA space is used to maintain information
about local and remote active nuclei, and currently active users.

The sysplex cache structure is used to hold ASSO/DATA blocks that have been updated during
the session. It synchronizes the nuclei, users, and the OS/390 or z/OS images; ensures data
integrity, and handles restart and recovery among the nuclei.

Cluster Services With Other Adabas Products

Adabas Online System communicates with al nuclei within the sysplex cluster.

Adabas Caching Facility supports clustered nuclei and can provide a performance boost to the
cluster.

100

Optional Extensions

Advantages of Using Entire Net-Wor k

In an Adabas Cluster Services environment, Entire Net-Work allows users on various network
nodes to query alogical database across multiple OS/390 or z/OS images. Users access a cluster
database as they would a conventional, single-node database.

A request to Adabas can be made from within an existing application, without change. The
request is processed automatically by the system; the logistics of the process are transparent to
the application.

Entire Net-Work ensures compatibility by using Adabas-dependent service routines for the
operating system interface as well asfor interregion communication. Job control statements for
running Entire Net-Work are much like those needed to run Adabas. For example, the EXEC
statement invokes the ADARUN program for Entire Net-Work just as it does for Adabas, and
the ADARUN parameters for Entire Net-Work are a subset of Adabas parameters.

Because status information is broadcast to all nodes whenever atarget or service establishes or
terminates communication with the network, there is no need to maintain or refer to database
or target parameter files at a central location.

Allowing only one Entire Net-Work task on each node enforces control over the network
topology by maintaining all required information in one place. This avoids confusion in network
operation and maintenance. If, however, more than one Entire Net-Work task is required, this
can be accomplished by installing additional routers.

Each Entire Net-Work node maintains only one request queue and one attached buffer pool for
economical use of buffer storage. All buffers that are not required for a particular command are
eliminated from transmission. In addition, only those portions of the record buffer and ISN
Buffer that have actually been filled are returned to the user on a database reply.

Buffer size support in Entire Net-Work is comparable to that in Adabas, ensuring that all buffer
sizes that are valid for Adabas can also be transmitted to remote nodes.

101

Adabas Concepts and Facilites

XCF LineDriver

102

Actua network data traffic is controlled by the Entire Net-Work XCF line driver, an interface
to IBM’s “cross-system coupling facility” (XCF) which allows authorized applications on one
system to communicate with applications on the same system or on other systems. XCF transfers
data and status information between members of a group that reside on one or more OS/390 or
Z/OS images in a sysplex.

The XCF line driver, which is installed on each Entire Net-Work node, provides high
performance, transparent communications between OS/390 or z/OS images that reside on
different central processors in the sysplex. Multiple connections to other nodes are supported,
and the line driver’s modular design permits easy addition of new access method support to the
system.

A “member” is a specific function (one or more modules/routines) of a multisystem application
that is defined to XCF and assigned to a group by the multisystem application. A member resides
on one OS/390 or zZ/OS image in the sysplex and can use XCF services to communicate (send
and receive data) with other members of the same group. Each Entire Net-Work node running
the XCF line driver isidentified as a different member in a group specifically set up for Entire
Net-Work connectivity.

0S/390 or z/OS 0S/390 or z/OS
— —
Entire
Net-Work

User Entire Adabas

- Program Net-Work
—_
<> |Database

XCF Driver

XCF Driver

Coupling Facility

Figure 6-4 : Cluster Services with Entire Net-Work

Optional Extensions

Adabas Text Retrieva

Adabas Text Retrieval is an extension of Adabas that allows you to develop applications that
access both formatted and unformatted (that is, text) data simultaneously. Adabas Text Retrieval
manages the index information and not the content of the data, making it possible to store the
document contents at any location: Adabas, sequentia files, CD-ROM, PC, etc. The call
interface for Adabas Text Retrieval can be embedded in Natural, Software AG’s fourth
generation application development environment, or in any third generation language such as
COBOL or PL/I.

Documents comprise “chapters’” designated as either free text to be managed by Adabas Text
Retrieval or formatted fields to be managed by Adabas itself. Free-text chapters comprise
paragraphs and sentences, which can be individually searched.

Text substrings of an entered text are identified or “tokenized” by identifying a character defined
in the Adabas Text Retrieval character table, by using algorithms to identify characters based
on their contexts, or by using trandlation tables to sort or limit previously identified characters.

Document index entries are created when unformatted data is inverted. The full text can be
inverted, or the inversion can be limited by a controlled thesaurus or by ignoring words in a
stopword list.

Searches can be based on words, parts of words (right/left/middle truncations are possible),
phonetics, synonyms, integrated thesaurus relations (broader/narrower terms), proximity
operators (adjacent, near, in sentence, in paragraph), relational operators, Boolean operators,
references to previous queries (refinement), or sorts (ascending or descending). Searches can
be independent of structure, meaning that they may encompass any combination of free text and
formatted fields. Search returns can be highlighted.

Natural users can expand the functions of Adabas Text Retrieval using Natural Document
Management, which provides complete document management services.

103

Adabas Concepts and Facilites

Adabas Bridges

Adabas Bridge technology allows you to access the DL/I (and IMS/DB) and VSAM application
development environments efficiently. Emulation requires no modifications to application
programs and the delay and expense of traditional conversion are avoided.

Note:
Solutions are also available for TOTAL and SESAM.
Adabas Bridge technology provides

user application transparency (it is not necessary to change any existing application programs
or third party application software using native VSAM or DL/I cals);

support for batch and online processing environments and the RPG, COBOL, PL/I, FORTRAN,
and Assembler programming languages,

data and application integrity.

AdabasBridgefor VSAM

104

Adabas Bridge for VSAM (AVB) alows application software written to access data in the
VSAM environment to access data in an Adabas environment. It operates either in batch mode
or online (under CICS) and is available for OS/390, z/OS, and V SE operating environments.

AVB may be executed in an environment with Adabas files only; VSAM files only; or both
Adabas and VSAM files (mixed environments). The ability to operate in a mixed environment
means that your migration schedule can be tailored to your needs and resources. You can migrate
files from VSAM to Adabas as needed, one application or even one file at atime.

AVB uses a“transparency table” to map the names and structures of VSAM filesto the numbers
and structures of corresponding Adabas files. Once aVSAM file has been migrated to Adabas
and defined in the AV B transparency table, it can be “bridged” to Adabas. When a VSAM file
is bridged, AVB converts each request for the VSAM file to an Adabas call; the Adabasfileis
accessed instead of the VSAM file.

Optional Extensions

When AVB is active, it intercepts each file OPEN and CLOSE request and performs a series of
checks to determine whether to process the request against an Adabas file. If not, AVB passes
the request to the operating system to open the referenced VSAM file.

When AVB detects an OPEN or CLOSE for abridged file, it convertsit to an Adabas command
and calls Adabas to open or close the corresponding Adabas file. After the OPEN, all requests
to read or update the VSAM file are passed directly to AVB.

AVB allocates VSAM control blocks and inserts information the application needs to process
results asif they were returned from astandard VSAM file request. After the Adabas call, AVB
returns the results to the application using standard VSAM control blocks and work areas.

- | Application program | -
issues VSAM OPEN

¢

AVB intercept
routine

¢

AVB simulates Yes
VSAM open,
converts request to
Adabas call, and
calls Adabas.

Operating system
calls VSAM to
open VSAM file.

Figure 6-5 Adabas Bridge for VSAM Operation

105

Adabas Concepts and Facilites

Advantages of Adabas over VSAM

106

The availability of Adabas in an environment in which only VSAM file structures were
previously used results in the following benefits:

Applications can be extended with the powerful indexing facilities of Adabas. You can query,
retrieve, and manipulate data using efficient views and paths.

Applications can be extended with programming languages such as Natural and SQL.

Application programs are independent of the data structure, which reduces maintenance costs
and increases programmer productivity.

Automatic restart/recovery ensures the physical integrity of the database in the event of a
hardware or software failure.

Data compression significantly reduces the amount of online storage required and allows you
to transmit more information per physical /0.

Security is improved by password protection at both the file and field levels and, on the basis
of data values, at the record level as well.

Adabas provides encryption options, including a user-provided key that drives the encryption
process.

After migration, your application programs have the same view of data as before, but you can
structure the new Adabas files to optimize the benefits outlined above.

The tables that identify files to Adabas are external to the applications and may be changed
without relinking the application programs. This feature is especially useful when you want to
change file or security information, or move applications from test to production status.

Optional Extensions

AdabasBridgefor DL/l (and IM S/DB)

Adabas Bridge for DL/I (ADL) isatool for migrating DL/I or IMS/DB databases into Adabas.
Theterm “DL/I” isused as ageneric term for IMS/VS and DL/I DOS/VS. ADL operates either
in batch mode or online (under CICS or IMS/DC) and is available for 0S/390, z/OS, and VSE
operating environments.

DL/l applications can continue to run without change: the migrated data can be accessed by
Natural and by SQL applications if the Adabas SQL Server is available. ADL can also be used
to run standard DL/I applications against Adabas databases.

Functional Units

ADL comprises six major functional units:

e A collection of conversion utilities automatically converts DL/I databases into Adabas files
called “ADL files’ to emphasize the special properties of these files as opposed to native Adabas
files.

e Asaresult of the conversion process, the DL/l database definitions (DBDs) and the related
Adabas file layouts are stored on an Adabas file called the “ADL directory”, which also contains
the ADL error messages and other information.

e A menu-driven application written in Natural provides a number of online services, including
reports on the contents of the ADL directory.

e A gpecia set of integration programs uses data from the ADL directory to generate Predict
definitions for ADL files, which can then be used to generate Natural views.

e Acdl interface allows DL/I applicationsto access ADL filesin the same way as original DL/I
databases (and both concurrently in “mixed mode”). It supports Assembler, COBOL, PL/I,
RPG, FORTRAN, and Natural for DL/I. A special precompiler is provided for programs using
the “EXEC DLI” interface.

e A “consistency” interface provides access to ADL files for Natural applications or programs
using Adabas direct calls. This interface preserves the hierarchical structure of the data, which
is important for ongoing DL/I applications.

107

108

Adabas Concepts and Facilites

VSAM

DL/
Database

ADL
CALLDLI
Interface

¢

DL/ 1
Applications

Adabas
ADL
|y ADL | > Online
ADL Directory Services
Conversion
E N \
e ADL
ADL R Predict
Files Integration
ADL
Consistency
Interface
S.QL. N‘?‘t“f?" - Predict
Applications Applications

Figure 6-6 Adabas Bridge for DL/I Functional Relationships

Optional Extensions

Advantages of Adabasover DL/I

The availability of Adabasin an environment in which only DL/I file structures were previously
used results in the following benefits:

e Data can be manipulated by Natural, Software AG's fourth generation language;
e Datais compressed at field level automatically by Adabas;

e Deleted data records are released from storage immediately. Thisisin contrast to DL/I, which
simply sets a flag in such records but does not release the storage used by them. With Adabas,
the released space can be reused immediately for new records. there is no requirement to
maintain records that are marked as “deleted”, and less reorganization of the database is
required;

e All converted DBDs have full “HIDAM” functionality, regardless of the original access method;
e Thelength of afield can be increased without unloading and reloading the data;

e Segments can be added to the end of a DBD without unloading and reloading the data;

e Trace facilities are available for online and batch;

e Thebatch CALLDLI test program is available.

e Since Adabas (unlike DL/I) does not run in the CICS region/partition, online system resources
are reduced.

¢ A symboalic checkpoint facility is available under VSE/ESA.
e HD databases are available under OS/390 and z/OS.

109

Adabas Concepts and Facilites

Entire Transaction Propagator

110

Entire Transaction Propagator (ETP) allows Adabas users to have duplicate, or replicate,
database files in a single database or distributed network. The copies can be distributed
throughout a network to provide quick, economical access at user locations.

The concept of a distributed database provides operating efficiency and flexibility while at the
same time offering almost unlimited data capacity. Such a “networked” database structure
means that the portion of the database data needed by a particular department can be located
on local systems and still be available corporate-wide as part of the common database resource.

One particularly appealing feature of distributed databasesis the possibility of having duplicate
copies of data at those locations where the data is needed most. This concept allows duplicate
copies of a datafile to be located throughout the database network, yet the copies are viewed
logically by users as a single file.

Normally, areplicated file requires an intricate control process to ensure data integrity in all file
copies after each change. For distributed systems with ahigh ratio of read transactions compared
to write transactions, however, such critical control may be unnecessary. ETP provides an
alternative replicated file concept using aless critical control process, but with virtualy all the
other advantages of replicated files. Using a “master/replicate” system of control, ETP
resynchronizes all replicate copies with a master copy at user-specified intervals.

Optional Extensions

Entire Net-Work Multisystem Processing Tool

Entire Net-Work, Software AG’'s multisystem processing tool, provides the benefits of
distributed processing by allowing you to communicate with Adabas and other service tasks on
a network-wide scope. This flexibility allows you to

e run Adabas database applications on networked systems without regard to the database location;
e operate adistributed Adabas database with components located on various network nodes;

e perform specific types of tasks on the network nodes most suitable for performing those services
without limiting access to those services from other network systems;

e access Entire System Server (formerly Natural Process) to perform operating system-oriented
functions on remote systems;

e access Entire Broker in order to implement your client/server applications.

Mainframe Entire Net-Work supports BS2000, 0S/390, MVS/ESA, VSE/ESA, VM/ESA, and
Fujitsu MSP. It provides transparent connectivity between client and server programs running
on different physical or virtual machines, with potentially different operating systems and
hardware architectures.

Entire Net-Work is additionally available on the midrange platforms OpenVMS, UNIX, and
AS/400 and on the workstation platforms OS/2, Windows, and Windows NT.

At itslowest level, Entire Net-Work accepts messages destined for targets or servers on remote
systems, and delivers them to the appropriate destination. Replies to these requests are then
returned to the originating client application, without any change to the application.

The method of operation and the location and operating characteristics of the servers are fully
transparent to the user and the client applications. The servers and applications can be located
on any node within the system where Entire Net-Work is installed and communicating. The
user’s view of the network targets and serversisthe same asif they were located on the user’s
local node. Note that due to possible teleprocessing delays, timing of some transactions may
vary.

111

112

Adabas Concepts and Facilites

Entire Net-Work insulates applications from platform-specific syntax requirements and shields
the user from underlying network properties. It also provides dynamic reconfiguration and
rerouting (in the event of a down line) to effect network path optimization and generate
network-level statistics.

Entire Net-Work is installed on each participating host or workstation system requiring
client/server capability. The configuration for a given system comprises an Entire Net-Work
control module, control module service routines, and any required line driver. Each system with
Entire Net-Work installed becomes a node in the network. Each node’s adjacent links to other
nodes are defined by name and driver type.

Each Entire Net-Work node maintains a request queue for incoming requests. This queue is
similar to the Command Queue used by Adabeas; it allows the node to receive Adabas calls from
locally executing user/client programs, which Entire Net-Work then dequeues and transports
to the nodes where the requested services reside.

Each local Entire Net-Work node also keeps track of al active network services, and therefore
can determine whether the user’s request can be satisfied or must be rejected. If the request can
be serviced, the message is transmitted; otherwise, Entire Net-Work advises the calling user
immediately, just as the Adabas router would do for alocal database request.

Actua network datatraffic is controlled by Entire Net-Work line drivers, which are interfaces
to the supported communications access methods, such as VTAM, IUCV, DCAM, XCF (see
page 102), and TCP/IP, or directly to hardware devices, such as channel-to-channel adapters
(CTCAS). Each Entire Net-Work node contains only those line drivers required by the access
methods active at that node. In addition, each line driver supports multiple connections to other
nodes; this modular line driver design permits easy addition of new access method support to
the system.

The Entire Net-Work XTI interface allows users to write their own client/server applications,
typicaly in “C", which are independent of the Adabas structures. XTI is an internationally
accepted vehicle for creating truly portable applications. In theory, an application created
according to XTI specifications can easily be ported to any other platform that supports the XTI
implementation.

Optional Extensions

The Entire Net-Work XTI implementation supports communication between programs running
on the same machine and programs running on different machines. Entire Net-Work is viewed
as the “transport provider” from the application programmer’s point of view.

VSE/ESA 0S/390 or z/OS
Router Router
Entire

Net-Work

=l = =2 paes
[———
i

VTAM T
Driver

VTAM - VTAM
| v |
| T

37x5 E > 37x5

Figure 6-7 Sample Entire Net-Work Data Flow

113

Adabas Concepts and Facilites

Adabas Native SQL

114

Adabas Native SQL is Software AG's high-level, descriptive data manipulation language
(DML) for accessing Adabas files from applications written in Ada, COBOL, FORTRAN, and
PL/I.

Database access is specified in an SQL-like syntax embedded within the application program.
The Adabas Native SQL precompiler then trandates the SQL statement into a transparent
Adabas native call.

Software AG’s Adabas, Natural, Predict, and the Software AG Editor are prerequisites for
Adabas Native SQL, which makes full use of the Natural user view concept and the Predict data
dictionary system to access al the facilities of Adabas.

Using your Natural field specifications, Adabas Native SQL automatically creates Ada,
COBOL, FORTRAN, or PL/I data declarations with the correct set of fields, field names, field
sequence, record structure, field format and length.

Adabas Native SQL uses information about file and record layouts contained in Predict to
generate the data structures that the generated Ada, COBOL, FORTRAN, or PL/I program needs
to access the database. Then, as Adabas Native SQL processes the program, it recordsin Predict
“active cross-reference” (Xref) information including the names of the files and fields that the
program accesses.

These features help to eliminate the risk of writing incorrect data declarations in programs that
access the database. In addition, they create comprehensive records in the data dictionary that
show which programs read from the database and which programs update it, providing the DBA
with an effective management tool.

Optional Extensions

Adabas SQL Server

Adabas SQL Server is Software AG's implementation of the ANSI/ISO Standard for the
standard database query language SQL. It provides an SQL interface to Adabas and an
interactive facility to execute SQL statements dynamically and retrieve information from the
catalog.

The server supports embedded static and dynamic SQL, as well as interactive SQL and SQL2
extensions. It automatically normalizes complex Adabas data structures into a series of
two-dimensional data views that can then be processed with standard SQL.

Adabas SQL Server accesses and manipulates Adabas data by submitting statements
e embedded in a Natural application program.
e embedded in the third generation host languages C, COBOL, or PL/I.

e using adirect, interactive interface.

Currently, Adabas SQL Server provides precompilers for SQL statements embedded in C,
COBOL, and PL/I. The precompiler scans the program source and replaces the SQL statements
with host language statements. Due to the modular design of Adabas SQL Server, the
functionality is identical regardless of the host language chosen.

Because certain extensions not provided for by the standard are available to take full advantage
of Adabas functions, one of three SQL modes must be selected when compiling an application
program: ANSI compatibility mode, DB2 compatibility mode, or Adabas SQL Server mode.

Both local and remote clients can communicate with the server using Entire Net-Work as the
protocol for transporting the client/server requests. With the Adabas ODBC Client, an ODBC
driver alows access to Adabas SQL Server using ODBC-compliant desktop tools. Entire
Access, also ODBC-compliant, provides a common SQL-eligible application programming
interface (API) for both local and remote database access representing a client-server solution
for Adabas SQL Server.

115

Adabas Concepts and Facilites

Software AG is committed to making Adabas SQL Server available in most hardware and
operating system environments where Adabas itself is available. The core functionality of the
Adabas SQL Server will be identical across platforms.

any ODBC-
compliant tool

—
ODBC Manager * Adabas L

Adabas ODBC Adabas SQL
Client Server
Entire .
Entire
Net-Work <1> Net-Work
PC Platform Server with Adabas

and Adabas SQL Server

* supplied by Microsoft

Figure 6-8 Typical Adabas SQL Server environment

116

Optional Extensions

Natural Application Development Environment

High-level accessto Adabasis provided by Natural, Software AG's advanced fourth generation
application development environment and the cornerstone of Software AG's application
engineering product family which includes analysis/design, code-generation, and repository
facilities.

The access can either be directly from Natural to Adabas or using an Entire Access call via
Adabas SQL Server.

Whereas the FDT defines the physical records in an Adabas file, Natural programs define and
use logical views of the physical file to access the file. There can be two levels of views: data
definition modules and user views.

“Data definition modules’” (DDMs) are Natural modules that look much like the Adabas FDT.
They consist of a set of fields and their attributes (type, format, length, etc.), and may contain
additional specifications for reporting formats, edit masks, and so on.

A DDM can include all the fields defined in the FDT or a subset of them. There must be at least
one DDM for each Adabasfile. For example, the Adabas file “Employees’ could have a DDM
caled “Employees’. The Natural statement “READ EMPLOYEESBY NAME” actually refers
to the DDM rather than the physical file; the DDM links the Natural statement to the Adabas
file.

You can define multiple DDMs for an Adabas file. Multiple DDMs are a way of restricting
access to fields in a file. For example, a DDM for a program used by managers could include
fields that contain restricted information; these fields would not be included in a DDM for a
general-use program. In a workstation group, a database administrator may define a standard
set of DDMs for the group.

A new Adabas FDT can be created from an existing Natural DDM. Conversely, Adabas can
generate or overwrite a DDM automatically when an FDT is created or changed.

Note:
When you delete a field from an Adabas file, you must also eliminate it from Natural programs
that reference it.

117

Adabas Concepts and Facilites

A Natural “user view” often contains a subset of thefieldsin aDDM. User views can be defined
in the Data Area Editor or within a program or routine. When a user view referencesa DDM,
the format and length do not need to be defined, since they are aready defined in the DDM. Note
that in a DDM or user view, you can define the sequence of fields differently from the FDT
sequence.

Adabas accessis field-oriented: Natural programs access and retrieve only the fields they need.
Natural statements invoke Adabas search and retrieval operations automatically.

Adabas supports a variety of sequential and random access methods. Different Natural
statements use different Adabas access paths and components; the most efficient method
depends on the kind of information you want and the number of records you need to retrieve.

118

Optional Extensions

Predict Data Dictionary System

Predict, the Adabas data dictionary system, is used to establish and maintain an online data
dictionary. Because it is stored in a standard Adabas file, it can be accessed directly from
Natural.

A data dictionary contains information about the definition, structure, and use of data. It does
not store the actual data itself, but rather data about data or “metadata’. Containing all of the
definitions of the data, the dictionary becomes the information repository for the data's
attributes, characteristics, sources, use, and interrelationships with other data. The dictionary
collects the information needed to make the data more useful.

A data dictionary enables the DBA to better manage and control the organization's data
resources. Advanced users of data dictionaries find them to be vauable tools in project
management and systems design.

Database information may be entered into the dictionary in online or batch mode. The
description of the data in the Adabas dictionary includes information about files, the fields
defined for each file, and the relationship between files. The description of use includes
information about the owners and users of the datain addition to the systems, programs, modules
and reports that use the data. Dictionary entries are provided for information about

e network structures

e Adabas databases

o files, fields, and relationships

e ownersand users

e systems, programs, modules and reports

o field verification (processing rules)

Standard data dictionary reports may be used to
e display the entire contents of the data dictionary
e print field, file, and relationship information
e print field information by file

119

120

GLOSSARY OF TERMS

Adabas

Adabas, the adaptable database, is a high-performance, multithreaded, database management
system for mainframe platforms where database performance is a critical factor. It is
interoperable, scalable, and portable across multiple, heterogeneous platforms including
mainframe, midrange, and PC.

Adalink

A generic term for that part of the Adabas API (application program interface) that is specific
to a particular teleprocessing (TP) monitor. The Adabas API is used to link application programs
to Adabas. The actual module name depends on the TP monitor being used; for example, the
module name for linking to a batch or TSO program is ADALNK, and for CICS, the module
name is ADALNC. The term “Adalink” refers to the module appropriate for the given
environment. The terms “Adalink(s) and “ADALNK(s)” are synonyms.

ADARUN

The ADARUN control statement defines and starts the Adabas operating environment. The
ADARUN control statement also starts Adabas utilities. ADARUN

e Joads the ADAIOR module, which performs al database /O and other
operating-system-dependent functions;

e interprets the ADARUN parameter statements; then loads and modifies the appropriate Adabas
nucleus or utility modules according to the ADARUN parameter settings; and

. transfers control to Adabas.

The ADARUN statement, normally a series of entries each specifying one or more ADARUN
parameter settings, is specified in the DDCARD (0S/390, MVS/ESA, MSP, VM/ESA, or
BS2000) or VSE/ESA CARD dataset.

121

Adabas Concepts and Facilities

address converter

Adabas stores each database record in a Data Storage block identified by arelative Adabas block
number (RABN). Each record’'s RABN is kept in a table called the address converter. The
address converters, one for each database file, are stored in the Associator. Address converter
entries arein ISN order (that is, thefirst entry tellsthe RABN location of datafor ISN 1, the 15th
entry holds the RABN location of data for ISN 15, and so on).

address space

The storage area assigned to a program task/work unit. In 0OS/390, MV S/ESA, or MSP, an
address space is aregion; in VSE/ESA, a partition; and in BS2000, a task. In this manual, the
term “region” is used as a synonym for “partition” and “task”.

buffer flush

Associator and Data Storage blocks in the buffer pool that have been updated since the last
“buffer flush” have write flags set “on”. When the buffer is “flushed”, these blocks are written
to Associator and Data Storage datasets, respectively. The “flushed” blocks remain in the buffer
pool with their write flags set “off”.

A buffer flush can be synchronous or asynchronous. Update commands cannot be selected
during a synchronous flush, but can be selected during an asynchronous flush.

data compression

122

Data compression significantly reduces the amount of storage required. It also permits the
transmission of more information per physical transfer, resulting in greater 1/0O efficiency.

Adabas retains data records in compressed form. It defines and executes compression at the field
level. Three compression options are supported: default compression, null suppression, and
fixed format. The last two options are added as field options.

Default compression deletes trailing blanks in alphanumeric fields and leading zeros in binary
fields. Aninclusive length byte (ILB) at the beginning of the field indicates the total number
of stored bytes, including the ILB. Thus, if “Susan” is entered in a “first-name” field defined
with a 20-character length and default compression, its stored size will be six bytes: five bytes
for the letters of the name, plus one byte for the ILB. In addition, empty fieldsin arecord are
not stored; an empty field is replaced by a one-byte empty field counter (EFC). Adabas can
store up to 63 contiguous empty fields in a single hexadecimal byte.

Glossary of Terms

Null suppression (NU field option) adds to default compression in that searches on descriptor
fields defined with null suppression do not return records in which the descriptor field is empty.

Fields defined as fixed format (FI field option) do not include a length byte and are not
compressed. This option actually saves storage space for one-byte fields or fields that are nearly
always full (e.g., afield containing the social security number).

database
In Adabas, a “database’ is a group of related files.

A physical database identified by its database ID number (DBID) is defined with Adabas
utilities. A single physical database is one set of Associator and Data Storage datasets
identified by a single DBID. An Adabas nucleus running in an address space allows access to
the physical files in the physica database.

Database Administrator (DBA)

Controls and manages the database resources. Tasks include defining database distribution,
assigning a structure and resources, creating and maintaining programming and operation
standards, ensuring high performance, resolving user problems, defining and teaching user
training, controlling database access and security, and planning for growth and the integration
of new database resource applications and system upgrades. Also known as the Database
Analyst.

descriptor

A descriptor is a search key. A unique descriptor has a different (i.e., unique) value for each
record in thefile. Entries are made in the Associator’s inverted list for descriptor fields, adding
disk space and processing overhead requirements.

Any field can be used within a selection criterion. When a field that is used extensively as a
search criterion is defined as a descriptor (key), the selection processis considerably faster since
Adabas is able to access the descriptor’s values directly from the inverted list without reading
any records from Data Storage.

A descriptor field can be used as a sort key in a search command, as away of controlling alogical
sequential read process (ascending or descending values), or as the basis for file coupling.

123

field

124

Adabas Concepts and Facilities

A portion of a field may be defined as a subdescriptor; combinations of fields or portions
thereof may be defined as a super descriptor ; a user-supplied algorithm may be the basis of a
hyperdescriptor or acollation descriptor; and a“sounds-like” encoding algorithm may be the
basis of aphonetic descriptor, which may be customized for specific language requirements.
See page 33 for more information.

In Adabas, a“field” isthe smallest logical unit of information (e.g., current salary) that may be
defined and referenced by the user.

Adabas supports four field types:

Single Value per Record Multiple Values per Record
Single Field Elementary MU
Multiple Fields Group PE

The two basic field types are elementary and multiple-value. An elementary field has only one
value per record. A multiple-value (MU) field can have up to 191 values, or occurrences, in
asingle record. Each multiple-value field has a binary occurrence counter (BOC) that stores
the number of occurrences.

When two or more consecutive fields in the FDT are frequently accessed together, you can
reference them by defining agroup field. Other than its level and Adabas short name, a group
field has no attributes defined. It immediately precedes its member fields in the FDT. A higher
field level number is used to assign the member fields to the group field. Adabas supports up
to seven field levels.

A periodic (PE) group field defines consecutive fields in the FDT that repeat together in a
record. Like the members of a normal group field, PE members immediately follow the PE
group field, have ahigher level number than the PE field, and can be accessed both individually
and as a group. Each PE has a BOC that stores the number of occurrences.

A portion of afield (subfield) or any combination of fields (superfield) may be defined as an
elementary field. Subfields and superfields may be used for read operations only. They may only
be changed by updating the original fields.

Glossary of Terms

field definition table (FDT)

file

A table that defines each file'srecord structure and content. Thereis one FDT for each database
file. FDTs, stored in the Associator’s fixed area, have three parts: the first isalist of thefile's
fields in physical record order, the second part isa“quick index” to the recordsin the first part,
and the third part defines the files sub/superfields and sub-/super-/hyper- and phonetic
descriptors.

In Adabas, a“file” isagroup of related records that have the same format (with some exceptions;
see page 24).

The disk storage space allocated to a single Adabas database is segmented into logical Adabas
files. A certain part of the overall space within the database is allocated to each logical file.
When this space isfilled with records from that file, Adabas automatically allocates more space
to the file from the common free space pool. This dynamic space allocation, together with the
dynamic recovery of released space, allows Adabas databases to run without intervention for
long periods of time.

A physical Adabas file contains database records. Each physica file is identified by a file
number. The number of physical files (and physica file numbers) per physical database is
limited to 5000 or one less than the ASSOR1 block size, whichever is lower.

An expanded file is a logical file comprising physical files in one or more locations. The
physical files have the same field definition table (FDT), but non-overlapping ISN ranges. The
data content of at least one field (the field value criterion) determines the physical filein which
a data record is located.

A multiclient fileis an Adabas file with records accessible through an owner ID. Only records
identified by the same individual or group owner ID can be accessed or updated by the related
user. This allows the file to be maintained as a single Adabas file, but to be used as multiple
logical files (each record group belonging to an owner ID isa*“logical file”). “Super” owner IDs
allow access to dl recordsin thefile.

global transaction

A “global” transaction isa unit of work that involves changes to resources under the control of
more than one database operating in one or more operating system images.

125

Adabas Concepts and Facilities

internal sequence number (1SN)

Every Adabas record is assigned an internal sequence number (I1SN) to identify the record. Each
record keeps its original ISN, regardless of where it is located.

Records in aphysical database file have four-byte |SNs ranging from MINISN to MAXISN. In
replicated files, arecord has the same ISN in all file copies. In partitioned files, the ISN ranges
are non-overlapping for each physical file.

/O buffer

The Adabas “1/0O buffer” area, which can be resized for each Adabas session, contains the most
frequently used data and data relationships; it helps to minimize physical input/output (1/0O)
activity and thus saves computer time. It is loaded into main memory at startup, along with the
Adabas nucleus.

The buffer contains blocks read from the database and blocks to be written to the database:

For blocks read from the database, a “buffer algorithm” ensures that the most frequently
accessed blocks stay in memory. When a block from the database is needed, the buffer content
is checked to determine if the block is aready in memory, thus avoiding unnecessary reads.

Multiple updates are accumulated in ablock before it is written (“flushed”) to external storage.

nucleus

126

The “nucleus’ is a set of programs that drive Adabas, coordinate all work, and translate user
program statements into Adabas commands. All programs access Adabas files through the
nucleus. All database activities such as data access and update are managed by the Adabas
nucleus. In most cases, a single nucleus is used to manage a single physical database.

Adabas Parallel Services makesit possible to run a cluster of up to 31 Adabas nuclei on asingle
operating system against a single database. Adabas Cluster Services supports the IBM parallel
sysplex environment making it possible to run a cluster of up to 32 Adabas nuclei on multiple
operating systems set up as a sysplex. Again the cluster runs against a single database.

Note:

See the Optional Extensions chapter starting on page 85 for information about running multiple
nuclei against a single physical database under a single operating systemimage (ADASMP) or
under multiple OS/390 or MVSESA images (Adaplex+).

Glossary of Terms

operator commands

Adabas operator commands are entered during an Adabas session or during utility operation to
e terminate an Adabas or user session;
e display nucleus or utility information;
¢ log commands into CLOG,;

e change Adabas operating parameters or conditions.

procedure

A procedure is aNatural subprogram that iswritten and tested using standard Natural facilities.
The same types of parameters are passed to the subprogram whether it isatrigger or astored
procedure.

RABN (relative Adabas block number)

The basis of Adabas storage addressing. Adabas divides Data, Associator, and Work disk space
into device-dependent logical blocks. The blocks in each of the three areas are numbered
consecutively in ascending sequence beginning with RABN 1. The data blocks themselves as
well as their addresses are referred to throughout Software AG publications as “RABNS’. In
other words, the sentence, “ Adabas assigns RABNs 1-10 to the Associator” means ten Adabas
storage blocks numbered 1-10 are assigned—not just the block numbers, whereas “ Adabas
assigns 50 RABNSs to the Associator” means 50 blocks of storage with unspecified RABN
numbers is assigned.

recor d
In Adabas, a“record” isa collection of related fields that make up a complete unit of information
(e.g., dl the payroll data for a single employee).

record buffer

The portion of the calling program’s parameter area, called the user buffer, that contains the data
transferred during Adabas read, search, and update operations. When reading data field
definitions, Adabas also returns the field definition information in the record buffer.

127

Adabas Concepts and Facilities

region

router

service

session

This manual uses “region” to collectively refer to storage space all ocated to user jobs by OS/390,
MVS/ESA, MSP, VSE/ESA, and BS2000 operating systems.

A central routine for communication within the boundaries of one operating system. Theroutine
is called by users with Adalink routines, and by targets with ADAMPM. The router’'s main
purpose is to transfer information between the Adalink and Adabas. The router also maintains
the ID table. VM/ESA and BS2000 environments divide router functions among Adalink or
other Adabas functions. The Adabas SVCs in 0OS/390, MVS/ESA, MSP, and VSE/ESA are
examples of routers.

A processor of Adabas callsand issuer of replies. An Adabas nucleusis an example of aservice.
See also target.

A user session is asequence of Adabas calls optionaly starting with an OP command and ending
with aCL command. A user is either a batch mode program or a person using aterminal. The
uniqueness of each user is assured by the user ID, a machine, an address space, and a terminal
ID.

An Adabas session starts when Adabas is activated and continues until Adabas is terminated.
During thistime, the Adabas nucleus creates a sequence of protection entries in exact historical
sequence reflecting all modifications made in the database. The sequence of protection entries
iswritten to the Work dataset (part 1) and to a protection log in blocks. Each block contains the
nucleus session number, a unique block number, and a time stamp.

stored procedure

tar get

128

A “stored procedure’ is a procedure executed by Adabas, but invoked directly or manually by
an application.

A receiver of Adabas calls. A target maintains a command queue, and communicates with
routers using ADAMPM. A target isalso classified as a service. The Adabas nucleusis atarget.

thread

Glossary of Terms

Adabas provides multithreaded processing to maximize throughput. If 1/0 activity suspends
command processing in an active thread, Adabas automatically switches to another thread. The
user may set the number of 8-kilobyte threads to be used for an Adabas session up to amaximum
of 250.

transaction

Adabas data protection, recovery, and user restart is based on the concept of a “logical
transaction”: the smallest unit of work (as defined by the user) that must be performed in its
entirety to ensure that the information contained in the database is logically consistent.

A logical transaction may comprise one or more Adabas commands that together perform the
database read/update required to complete alogical unit of work. A logical transaction begins
with the first command that places arecord in hold status and ends when an ET (end transaction),
BT (back out transaction), CL (close), or OP (open) command is issued for the same user.

The ET command must be issued at the end of each logical transaction. Successful execution
of an ET command ensures that all the updates performed during the transaction are physically
applied to the database, regardless of subsequent user or Adabas session interruption.

Updates performed during transactions for which ET commands are not successfully executed
are backed out, either manually by issuing the BT command or automaticaly by the
Autobackout routine (see page 52).

tranglator

trigger

A process that converts alogical ID of a user’s Adabas call into a corresponding physical 1D
for atarget.

A procedure that is executed automatically by Adabas when a specified set of criteriais met.
The set of criteriais determined for each Adabas command sent to the DBM S and is based on
the target file number and optionally the command type and/or field. The command type refers
to the commands FIND, READ, STORE, UPDATE, and DELETE. The field must be in the
corresponding format buffer of the command.

two-phase commit

“Two-phase commit” processing ensures commercial transaction integrity by securing or
rejecting transactions as a whole across separately managed resources.

129

Adabas Concepts and Facilities

user
A batch or online application program that generates Adabas calls and uses an Adalink for
communication.

work load balancing

Adabas Paralel Services attempts to balance the work load evenly across the cluster nuclei
based on the number of users and the number of commands processed by each of the nuclel.

130

INDEX

A

Accept, security-by-value criterion, overview,
77
Access methods
random, 43
ADAM, 44
sequential, 41
ACF2, Adabas interface to, 77
ADAACK utility, check address converter, 70
Adabas
definition of, 3, 121
implementing SAF security with, 78
version 6.2 and below, 81
session, definition of, 128
Adabas Bridge for DL/I, overview, 107
Adabas Bridge for VSAM
overview, 104
use of transparency table, 104
Adabas Caching Facility
online services, 88
overview, 87
read-ahead caching, 88
Adabas Cluster Services, overview, 100
Adabas Delta Save Fecility
online services, 89
overview, 88
Adabas Online System
overview, 85
requirement for delta save, 89
security, 81
use with Adabas Cluster Services, 100
Adabas Parallel Services
multiple thread processing, 99
overview, 99
paralel processing, 99
Adabas Review
hub (server) component, 93

interface (client) component, 94
interface calls, 94
overview, 92
sample environment, 95
Adabas SQL Server, 115
implementing security with, 81
Adabas Statistics Facility
data fields, 96
online menu system, 96
report type
critical, 97
critical trend, 97
genera evaluation, 97
trend evaluation, 97
store profiles, 96
Adabas Transaction Manager, 92
ADACMP utility, compress/decompress data, 55
ADADBS utility, database services, 63
ADADCK utility
block length check within range, 71
check data storage, 70
correct value in DSST, 71
duplicate ISNs in block, 71
max compressed record length, 71
record length sum, 71
ADADEF tility, define a database, 67
ADAFRM utility, format Adabas direct access
(DASD) datasets, 67
ADAICK utility, check index and address con-
verter, 71
ADAINYV utility, create a descriptor or couple
two files, 68
Adalink, definition of, 9, 121
ADALOD utility, load afile into Adabas, 57
ADAM
bypassing the inverted lists, 19
estimation using ADAMER utility, 71
random access retrieval, 44

131

Adabas Concepts and Facilities

ADAMER utility, ADAM estimation, 71
ADAORD utility, reorder databases and files, 69
ADAPLP tility, print data protection records,
59
ADAPRI utility, print selected Adabas blocks,
73
ADARAI tility, database recovery aid, 59
ADAREP utility
produce database status report, 72
produce save tape status report, 72
ADARES utility, database recovery and restart,
60
ADARUN, definition of, 121
ADASAF
description, 78
router, 80
ADASAV utility, save/restore database/files, 61
ADASEL utility, select and write data protection
log, 62
ADAULD utility, unload an Adabas file, 58
ADAUSER, link with Adabas API, 9
ADAVAL tility, validate the database, 73
Address, areas, by operating system, 10
Address converter
check using ADAACK utility, 70
check using ADAICK utility, 71
definition of, 122
function of, 19
Address space, definition, 122
AITM/DC, operation with Adabas, 4
Alphanumeric fields, no conversion option
(NV), 31
AP, link applications to Adabas, 9
API security facility, 82
Associator
component of Adabas, 14, 18
function of, 7
read commands (L9, LF), 38
reorder, using utility, 69
Autobackout, 52
Autorestart, 52
buffer flush check, 53

132

B

Backout, 51
remove changes between checkpoints, 60
Binary occurrence counter, definition of, 31, 124
Blocks, reorder, using utility, 69
Bridges, to VSAM, DL/I, IMS/DB, TOTAL,
SESAM, 104
Buffer flush
database status after, 52
definition of, 122
from 1/O buffer, 7, 126
session interruption during, 53
Buffer manager, augmented by Caching Facility,
87

C

CA-ACF2, use with ADASAF, 77
CA-Top Secret, using with ADASAF, 77
Cache, Work parts 2 and 3, 87
Checkpoint file, identify using ADALOD pa
rameter, 22
Checkpoints
command to write, 39
reapply changes between (ADARES REGEN-
ERATE), 60
CICS, operation with Adabas, 4
Ciphering, of critical data, 75
Cluster of nuclei, 126
Collation descriptor, 35
Command ID, release, using command, 39
Command log, 21
copy from disk to sequential dataset
(CLCOPY), 60
merge across a cluster, 60
Commands
operator, 12, 127
types of direct calls, 37
Com-plete, operation with Adabas, 4
Compression, forward index, 17
CTCA, driver with Entire Net-Work, 4

D

Data compression
default, 16, 122
definition of, 122
options, 16
fixed-storage (FI), 31, 123
null-value suppression, 31, 123
Data definition, field options
DE — descriptor, 29
FI — fixed storage, 30
LA —long alphanumeric, 31
MU — multiple-value, 31
NC — null not counted, 33
NN — not null, 33
NU — null value suppression, 30
NV —no conversion, 31
overview, 29
PE — periodic group, 31
UQ — unique descriptor, 29
Data dictionary, function and use, 119

Data protection area, command to write infor-

mation to, 39

Data redundancy
logical, 25
physical, 25

Data Storage
check using ADADCK utility, 70
component of Adabas, 14
function of, 7
read commands (L1-L6), 38
reorder, using utility, 69
repair blocks, 60

Database
accessing from programs, 37
definition of, 13, 123
definition of physical, 123

definition of single physical, 99, 123

maintaining integrity of, 47

Index

modification commands (A1, E1, NI/N2),

overview, 38
guery commands (Sx), overview, 38
repair after nucleus ABEND, 52
restructure, using utility, 69
single physical, defined, 99
supported models, 5
DBA, definition of, 123

DCAM, driver with Entire Net-Work, 4

Deadlock, avoiding resource, 49
Descriptor
collation, 35
definition of, 29, 123
hyperdescriptor, 35
phonetic, 35
subdescriptor, 36
superdescriptor, 36
value to order inverted list, 18
Direct calls, 8
types of commands, 37
DL/I, bridging files to Adabas, 107

E

Elementary, field type, 31

Empty field counter, definition of, 16, 122
Entire Broker, implementing security with, 82

Entire Net-Work

SAF Security Interface, description, 83

SAF security protection, 82

using with Adabas Cluster Services, 101

XCF line driver, 102
Entire Net-work

operation with Adabas, 4

supported drivers, 4

Entire Security SAF Gateway, description, 81

ET logic, 47

Execute Channel Program (EXCP), read and

write, 87
Expanded files, definition of, 24, 125

133

Adabas Concepts and Facilities

F

FDT, definition of, 26, 125
Field type, 31
elementary, 124
group, 124
multiple value, 124
periodic group, 124

Fields
definition of, 13, 124
elementary, 31
group, 27
levels, 27, 124
multiple value, 31
parent, 33

periodic group, 32
short names, 28
File coupling
logical, definition of, 23
physical, definition of, 22

Files
definition of, 13, 125
physical, 125
restructure, using utility, 69
security
access/update level, 76
by password, 76
system, 22

Format 1D, command to delete global, 39

G

Group, field type, 27, 124

H

Hold facility
command to release record hold status, 39
command to set record hold status, 39
Hyperdescriptor, 35

134

I/O Buffer
algorithm for, 7, 126
purpose of, 7
I/O buffer, definition of, 126
IMS
bridging IMS/DB files to Adabas, 107
operation with Adabas, 4
Inclusive length byte, definition of, 16, 122
Index, check using ADAICK utility, 71
Intercepts, OPEN or CLOSE, 105
Inverted list
Associator element, 18
function of, 18
normal index (NI), 18
upper index (Ul), 18
ISNs
definition of, 14, 126
reusing, 14
IUCV, driver with Entire Net-Work, 4

L

Log, types of, 21

Long aphanumeric (LA), field option, descrip-

tion, 31

M

Modes of operation
multiuser, 10
single-user, 10

Multiclient files
definition of, 25, 125
security use, 76

Multiple-value fields
definition of, 124
field type, 31

N

Natural

DDM, 117

implementing SAF security with, 82

use with Adabas, 117

user view, 118
Natural RPC, implementing security with, 81
Natural Security, 81
Nucleus

cluster, definition of, 99

definition of, 6, 126

number per operating system image, 100
Nucleus cluster, 126
Null value, SQL, meaning of, 33

O

OpenEdition MV'S, support for, 9
Operating systems, supported, 100
Operations

environments supported, 4

highlights, 3

overview of Adabas, 6

TP monitors supported, 4
Operator commands, 12, 127

P

Padding area, function of, 15
Parent field, of special descriptor, 33
Password, protection, overview, 76
Periodic groups

definition of, 124

field type, 32

restrictions on using, 32
Phonetic descriptor, 35
PINSAF, 78
Predict, using with Adabas, 119
Procedure, definition of, 127

Index

Profile, resource/user, description of a, 77
Protection log, 21
copy sequential dataset (COPY), 60
copy to sequential dataset (PLCOPY), 60

R

RABNs

definition of, 14, 127

fencing, 87

location, 88
RACF

Adabas interface to, 77

using with ADASAF, 77
Record buffer, definition, 127
Records

definition of, 13, 127

hold and release, 49

resource deadlock, 49

structure of, 27
Recovery, 51
Recovery log, 21
Region, address space as a, 10
Reject, security-by-value criterion, 77
Remote processing, 101
Resources, access/update privileges for, 77
Restart, 51

processing after system failure, 52
Router

ADASAF, 80

definition, 128

S

SAF Security Interface
Adabas, 78
Entire Net-Work, 83
SAF-based security, gateway to, 81
SAF-based security system, securing Software
AG products with, 81
Searches, complex, 40

135

Adabas Concepts and Facilities

Security
options available, 75
package (non-Software AG)
general description, 77
general operation, 77
SAF-based systems, gateway to, 81
system file, 22
Service, definition, 128
Session
Adabas, 10, 51, 128
command to
close, 39
open, 39
types of, 10
user, 10, 51, 128
utility, 10
Shadow, operation with Adabas, 4
Sort, dataset for, 21
Space, management, 14
SQL, interface to Adabas, 115
Stored procedure, definition of, 9, 45, 128
Subdescriptor, 36
Subfield, 36, 124
Superdescriptor, 36
Superfield, 36, 124
SY SACEF application, online cache maintenance,
88

T

Target, definition, 128
TCP/IP, driver with Entire Net-Work, 4
Temp, dataset for, 21
Threads
multithread processing, 7
size and number, 7
Threshold (protection) levels, overview, 76
TIAM, operation with Adabas, 4
Timeout control

136

non-activity limit, 50
transaction limit, 50
Top Secret, Adabas interface to, 77
TP monitor, overview in Adabas operation, 9
Transaction
control commands (ET/BT), 39
definition of, 47, 129
Trandator, definition of, 129
Trigger
definition of, 9, 45, 129
system file, 22
Triggers and stored procedures, overview, 45
TSO, operation with Adabas, 4

U

Universal encoding support (UES), no conver-
sion field option (NV), 31
UNIX, API security facility for, 82
Updating
competitive, 48
exclusive control, 49
reapply backed-out update, 60
User
definition of, 130
exclusive control, updating, 49
isolating within afile, 25, 76
multiuser operating mode, 10
profile, 77
program, relationship to Adabas operation, 8
session, 10
definition of, 51, 128
single-user operating mode, 10
User data, read, using direct call command, 39
User exits, controlling cipher codes with, 75
Utilities
overview, 8, 55
session, definition of, 10
UTM, operation with Adabas, 4

V

Value, security by, overview, 77

Virtual machines, term used to define storage
space, 10

VSAM, bridging files to Adabas, 104

VTAM, driver with Entire Net-Work, 4

W

Wide-character fields, no conversion option
(NV), 31

Index

Windows, API security facility for, 82
Work

component of Adabas, 14

function of, 7, 21

X

XCEF, driver with Entire Net-Work, 4
XCEF line driver, 102
XCF member, definition, 102

137

138

Notes

139

Adabas Concepts and Facilities

140

Notes

141

Adabas Concepts and Facilities

142

	Adabas Concepts and Facilities
	Table of Contents
	About this Manual
	Adabas is...
	Adabas Design
	Using Adabas
	Adabas Utilities
	Adabas Security
	Optional Extensions
	Glossary of Terms
	Index

