
DBA Tasks

Adabas Version 7.4.2

This document applies to Adabas Version 7.4.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 1999-2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks
of their respective owners.

Table of Contents
................ 1About this Documentation
................ 1About this Documentation
............... 2DBA Roles and Responsibilities
............... 2DBA Roles and Responsibilities
.............. 3Central Control and Coordination
.............. 3Central Control and Coordination
............... 4The DBA in the IS Organization
............... 4The DBA in the IS Organization
............ 4Position of the DBA in the Organization
.............. 4Necessary Attributes for a DBA
................ 5Management Support
............... 5What Mistakes Are Possible?
.......... 6Establishing Database Control and Administration
........... 6Establishing Database Control and Administration
.......... 6Establishing Database Procedures and Standards
................ 6Database Procedures
............... 7Data Security Procedures
.............. 7Planning Recovery Procedures
................. 7Setting Standards
............ 7Maintaining Procedures and Standards
............... 8Assisting in Database Design
................. 8Educating Users
........ 8Selecting Applications Suitable for the Database System
............... 9DBA Function Summary
................ 10Data Definition and Control
............... 10Data Definition and Control
........... 10Planned Approach : Central Control of Data
............. 10Determining Responsibility for Data
........ 10Selecting Applications : Advising on System Development
........... 11Advising on Data Collection and Validation
............... 11Defining Database Contents
................ 13Database Documentation
................ 13Database Documentation
................... 13Standards
............... 14Description of the Database
............. 15Data Dictionary, Function and Use
............. 16Predict : The Adabas Data Dictionary
.............. 16Applications Using the Database
............... 17Description of Data Sources
............ 18Data Access and Manipulation Procedures
.............. 18Passwords and User Identification
................ 19Back-Up Procedures
.............. 20Restart and Recovery Procedures
............ 20DBMS Performance and Measurement
................. 22Education and Training
................ 22Education and Training
................... 22Overview
................. 23Database Concepts

i

Table of ContentsAdabas DBA Tasks

................... 23Database Design

.................... 24Programming

.............. 24Operating Procedures and Techniques

.................... 24Data Entry

.............. 25Database Query and Report Generation

.................. 26The DBA and the User

.................. 26The DBA and the User

.................. 26Liaison with the User

.................. 27Access Requirements

.................. 28Application Interface

.............. 28Complying with Standards and Controls

............ 29The DBA and Application Selection/Development

............ 29The DBA and Application Selection/Development

............. 29Configuration and Applications Planning

................. 30Database Organization

........... 30Understanding Current and Future User Requirements

............... 30Coordinating Database Activities

............... 31Analyzing Access Requirements

................ 31Establishing Data Availability

................ 31Performance Versus Flexibility

........... 32Advising on Application/Program/Database Design

............. 32Determining Physical Storage Requirements

.............. 33The Test Database and Testing Strategy

............... 34The DBA and Computer Operations

............... 34The DBA and Computer Operations

.............. 34Influence of the Database Administrator

................ 34Scheduling Computer Time

.................. 34Operating Procedures

............... 35Restart and Recovery Procedures

................... 35Database Utilities

................ 36Working with Software AG

................. 36Training and Education

................... 36New Releases

............ 37Distribution of Documentation and Updates

............. 37Advice or Consultancy from Software AG

.................. 37Problem Reporting

................. 37DBMS Improvement

.................... 38Database Design

................... 38Database Design

............. 39Performance Control During System Design

............. 39Performance Control During System Design

.......... 39Methodology for Performance Control in System Design

.................. 41File and Record Design

.................. 41File and Record Design

............. 41Multiple-Value Fields and Periodic Groups

............ 43Different Record Types in a Single Adabas File

............ 44Linking Physical Files in a Single Logical File

................... 45Data Duplication

................. 45Physical Duplication

................. 45Logical Duplication

................. 45Adabas Record Design

ii

Adabas DBA TasksTable of Contents

.................. 46Combining Fields

................. 46Using Field Groups

.................. 46Numeric Fields

................. 46Fixed-Storage Option

.................. 47Data Access Strategies

.................. 47Data Access Strategies

................ 47Efficient Use of Descriptors

.................. 48Collation Descriptor

................... 48Superdescriptor

................... 48Subdescriptor

.................. 48Phonetic Descriptor

................... 49Hyperdescriptor

................... 49File Coupling

.................. 49Physical Coupling

.................. 50Logical Coupling

.................. 50User-Assigned ISNs

................ 50Using the ISN as a Descriptor

................... 50ADAM Usage

.................... 52Disk Space Usage

................... 52Disk Space Usage

.................. 52Data Compression

................... 53Fixed Storage

................. 53Ordinary Compression

................. 53Null-Value Suppression

................ 54Forward Index Compression

................... 55Padding Factors

.................... 56Adabas Security

................... 56Adabas Security

................... 56Security Planning

.................. 56Password Security

.................. 58Security by Value

.................... 58Ciphering

.................. 58Adabas SAF Security

............. 59Natural andAdabas Online System Security

.................. 60Recovery/Restart Design

................. 60Recovery/Restart Design

................... 60Adabas Recovery

............. 61Planning and Incorporating Recoverability

.............. 61Matching Requirements and Facilities

.................. 62Transaction Recovery

............... 62End Transaction (ET) Command

................. 62Close (CL) Command

................... 62Reading ET Data

................ 63System or Transaction Failure

............ 63Limitations of Adabas Transaction Recovery

............... 63Adabas Checkpoint Commands

................. 63Exclusive File Control

............ 63Checkpointing Exclusively Controlled Files

................ 64System or Program Failure

.............. 64Limitations of Exclusive File Control

.................. 64User Restart Data

iii

Table of ContentsAdabas DBA Tasks

................. 66The Adabas Recovery Aid

................. 66The Adabas Recovery Aid

................ 66The Recovery Log (RLOG)

................. 67Starting the Recovery Aid

................... 68Multiclient Support

................... 68Multiclient Support

.................. 68The Owner Concept

.................... 69Super Users

................. 70Program Compatibility

................. 70Support for Soft Coupling

................. 70Data and Index Structures

................... 70Data Storage

.................... 71Associator

................ 72Performance Considerations

.................. 73User Profile Table

............... 73Possible Adabas Response Codes

............... 73Utility Support for Multiclient Files

............. 73The ADALOD Utility LOAD Function

............. 74The ADALOD Utility UPDATE Function

................. 74The ADAULD Utility

................. 75The ADACMP Utility

.................... 76Expanded Files

.................... 76Expanded Files

.................... 76Overview

................. 77Defining Expanded Files

.................. 77Using ADALOD

................ 78Using the Online System

.............. 78Rules for Defining Expanded Files

................ 78Inserting a Component File

................ 79Removing a Component File

................. 79Deleting Expanded Files

................ 79Inspecting an Expanded File

............. 79Expanded Files and the Adabas Nucleus

.......... 79Recommended Nucleus Changes for Expanded Files

............. 80Restrictions When Using Expanded Files

.............. 80Expanded Files and Adabas Utilities

........... 80Functions That Process Complete Expanded Files

............. 81Functions That Process Component Files

................. 83Database Maintenance Tasks

................. 83Database Maintenance Tasks

................. 84Defining an Adabas Database

................ 84Defining an Adabas Database

............. 84Step 1 : Estimate the Size of the Database

............. 84Components Required by the Nucleus

.................. 85Other Components

................ 86General Space Requirements

............. 86General Procedure for Estimating Space

................. 87Estimation Formulas

.................. 87Normal Index (NI)

.................. 90Upper Index (UI)

................ 91Address Converter (AC)

iv

Adabas DBA TasksTable of Contents

................... 92Data Storage

.............. 93How Adabas Allocates Work Space

............. 93Work Part 1: Data Protection Information

............. 94Work Part 2: Intermediate Search Results

........... 95Work Part 3: ISN Lists from Search Commands

....... 96Work Part 4: Data Related to Distributed Transaction Processing

..................... 96Sort

................. 99Step 2 : Allocate Space

.................... 100Examples

.................. 100Performance Note

................. 101Step 3 : Format the Space

.............. 101Step 4 : Define Database Parameters

................. 102Database Space Management

................ 102Database Space Management

................. 102Adabas Physical Extents

............. 103Relative Adabas Block Number (RABN)

................. 103Adabas Logical Extents

............. 104Adabas Space Allocation and Deallocation

.................. 104Free Space Table

............. 104Space Allocation by the Adabas Nucleus

............ 106Space Allocation with the ADADBS Utility

............ 107Space Allocation with the ADAINV Utility

............ 108Space Allocation with the ADALOD Utility

............ 110Space Allocation by the ADAORD Utility

........ 111Space Allocation by ADASAV (RESTORE FILES Function)

.......... 111Using the Database Status Report to Control Space Use

......... 112Potential Space Use Problems and Recommended Actions

................. 112Full Physical Extents

.............. 113Maximum Physical Extents Reached

.............. 113Maximum Logical Extents Reached

................ 114Database Monitoring and Tuning

................ 114Database Monitoring and Tuning

................. 114Monitoring Resource Use

................ 114Reporting on Resource Use

................ 114Monitoring Database Controls

............ 115Performance Management, Statistics, and Tuning

................. 116Adabas Session Statistics

................. 116Input/Output Statistics

.................. 117Command Statistics

................ 118Additional Session Statistics

................ 120Buffer and Queue Statistics

.................. 121Command Logging

.............. 122Error Handling and Message Buffering

.............. 122Error Handling and Message Buffering

.................... 122Overview

.................. 122Range of Operations

.................. 122User Exit Failures

............... 123Recovery or Plug-In (PIN) Routines

................... 123PIN Processing

............... 124Default PIN Module ADAMXY

.............. 125Additional PIN Modules Provided

v

Table of ContentsAdabas DBA Tasks

.................. 132PIN Routine User Exit

.................. 133User Exit Inputs

.................. 133User Exit Outputs

................ 133Condition Description Block

.............. 133Modifying and Reloading the Exit

............... 134Using the Exit with PINAUTOR

................ 134Using the Exit with PINRSP

............... 136Universal Encoding Support (UES)

............... 136Universal Encoding Support (UES)

.................... 136Overview

................. 136Wide-Character Encodings

................ 138Wide-Character Data Support

............... 138Extended Alphanumeric Fields

................. 139Wide-Character Fields

............. 140Special DBCS Format Conversion Rules

................. 141Multiple Platform Support

................. 141Multiple Platform Support

.................... 141Overview

.................... 141Encodings

................ 142ADACOX Conversion Exit

............. 143Conversion of High Value in Value Buffer

................ 143Data Translation Restrictions

................. 144Platform Considerations

............... 145Adabas Online System Demo Version

............... 145Adabas Online System Demo Version

..................... 146Overview

..................... 146Overview

............ 146What You Can Do with the AOS Demo Version

.................. 148Main Menu Functions

.................. 148Main Menu Functions

............. 149Specifying the AOS Demo Version Database

............... 149Using Program Function (PF) Keys

................. 150Selecting a Menu Option

.................... 150Getting Help

................ 150AOS Demo Version Messages

................... 151Session Monitoring

................... 151Session Monitoring

................ 152Display ADARUN Parameters

.................. 153Display Hold Queue

............. 153Display System Status and Thread Usage

................... 154System Status

................... 155Thread Usage

................ 155Display Maintenance Levels

.................... 156List Checkpoints

................... 156List Checkpoints

.................... 158File Maintenance

................... 158File Maintenance

.................. 160Database Maintenance

.................. 160Database Maintenance

vi

Adabas DBA TasksTable of Contents

............... 161System Operator Command Functions

............... 161System Operator Command Functions

................. 162Extended Error Recovery

................ 162Add / Delete PIN Modules

............... 163Display/Modify PIN Routines

.................. 164Display Locked Files

.................... 165Stop User(s)

............. 165Terminate a Session Normally (ADAEND)

.................... 167Database Report

................... 167Database Report

................... 167Display Files

........... 168Display a List of Files in the Specified Database

............. 169Display Information for a Specific File

............... 171Display General Database Layout

.................. 173Command Log Formats

.................. 173Command Log Formats

.................. 173CLOGLAYOUT=4

.................. 176CLOGLAYOUT=5

.............. 176Explanation of Log Record Types

............. 177Adabas Basic Log Record Type (x’0001’)

........... 181Asynchronous Request Log Record Type (x’0002’)

.................. 185Supplied UES Encodings

................. 185Supplied UES Encodings

................. 186Interoperable Encodings

.............. 186Single-Byte Character Sets (Latin-1)

............. 188Single-Byte Character Sets (Non-Latin-1)

............. 188Double- and Multiple-Byte Character Sets

.................. 189Coexistent Encodings

................ 190Single-Byte Character Sets

............. 191Double- and Multiple-Byte Character Sets

vii

Table of ContentsAdabas DBA Tasks

About this Documentation
Note:
Dataset names starting with DD are referred to in the Adabas documentation with a slash separating the
DD from the remainder of the dataset name to accommodate VSE/ESA dataset names that do not contain
the DD prefix. The slash is not part of the dataset name.

This documentation describes the complete range of management and control tasks necessary for the
successful operation of the database environment. This information is organized in the following parts:

DBA Roles and Responsibilities This part reviews the role and functions of the database
administrator (DBA).

Database Design This part provides information on database design. It
includes information on Adabas file structures, multiple
value fields and periodic groups, record design, use of keys
(descriptors), disk space usage (compression, null-value
suppression, padding factors), security planning, restart and
recovery planning, multiclient files, and expanded files.

Database Maintenance Tasks This part describes tasks involved in defining and
maintaining a database, including tuning and error handling.

Adabas Online System Demo
Version

This part describes the Adabas Online System (AOS) demo
version supplied with Adabas that provides also access to the
online services of selected other Adabas products.

1

About this DocumentationAdabas DBA Tasks

DBA Roles and Responsibilities
The success of a database environment depends on central control of database design, implementation,
and use. This central control and coordination is the role of the database administrator (DBA).

This part of the DBA documentation describes the roles of the DBA, the authority and responsibility the
DBA might have, the skills needed, the procedures, standards, and contacts the DBA may need to create
and maintain.

"DBA" in the context of this documentation is a single person; however, large organizations may divide
DBA responsibilities among a team of personnel, each with specific skills and areas of responsibility such
as database design, tuning, or problem resolution.

This information is organized under the following headings:

Central Control and Coordination

The DBA in the IS Organization

Establishing Database Control and Administration

Data Definition and Control

Database Documentation

Education and Training

The DBA and the User

The DBA and Application Selection/Development

The DBA and Computer Operations

2

Adabas DBA TasksDBA Roles and Responsibilities

Central Control and Coordination
In a database environment such as Adabas, the same data is used by many applications ("users") in many
departments of the organization. Ownership of and responsibility for the data is shared by departments
with diverse and often conflicting needs. One task of the DBA is to resolve such differences.

Data security and integrity are no longer bound to a single individual or department, but are inherent in
systems such as Adabas; in fact, the DBA controls and customized security profiles offered by such
systems usually improve security and integrity.

In the past, application development teams have been largely responsible for designing and maintaining
application files, usually for their own convenience. Other applications wishing to use the data had to
either accept the original file design or convert the information for their own use. This meant inconsistent
data integrity, varied recovery procedures, and questionable privacy safeguards. In addition, little attention
was given to overall system efficiency; changes introduced in one system could adversely affect the
performance of other systems.

With an integrated and shared database, such a lack of central control would soon lead to chaos. Changes
to file structure to benefit one project could adversely influence data needs of other projects. Attempts to
improve efficiency of one project could be at the expense of another. The use of different security and
recovery procedures would, at best, be difficult to manage and at worst, result in confusion and an
unstable, insecure database.

Clearly, proper database management means that central control is needed to ensure adherence to common
standards and an installation-wide view of hardware and software needs. This central control is the
responsibility of the DBA. For these and other reasons, it is important that the DBA function be set up at
the very beginning of the database development cycle.

3

Central Control and CoordinationAdabas DBA Tasks

The DBA in the IS Organization
The ability of the database administrator (DBA) to work effectively depends on the skill and knowledge
the DBA brings to the task, and the role the DBA has on the overall Information Systems (IS) operation.
This section describes how best to define the DBA role, discusses the relationship of the DBA to the IS
organization, and makes suggestions for taking advantage of that relationship.

This chapter covers the following topics:

Position of the DBA in the Organization

Necessary Attributes for a DBA

Management Support

What Mistakes Are Possible?

Position of the DBA in the Organization
The DBA should be placed high enough in the organization to exercise the necessary degree of control
over the use of the database and to communicate at the appropriate level within user departments.
However, the DBA should not be remote from the day-to-day processes of monitoring database use,
advising on and selecting applications, and maintaining the required level of database integrity.

The appropriate position and reporting structure of the DBA depends solely on the nature and size of the
organization.

In most organizations, the DBA is best placed as a functional manager with an status equivalent to the
systems, programming, and operations managers. The DBA should have direct responsibility for all
aspects of the continued operation of the database. It is also useful to give the DBA at least partial control
over the programming and IS operation standards, since the DBA must have the ability to ensure that
DBMS-compatible standards are understood and observed.

Necessary Attributes for a DBA
The DBA is an essential resource to the organization: a politician, technician, diplomat, and policeman.
The DBA needs to be a fair-minded person who is able to see both sides of database problems (that is, the
IS department’s side and the user’s side) without prejudice in favor of either side. The DBA is expected to
resolve problems for the benefit of the organization as a whole.

The DBA also needs

administrative skill to set up and enforce the standards and procedures for using the database;

technical ability to understand the factors governing hardware performance, with considerable
knowledge both of the operating system software and the DBMS being used;

4

Adabas DBA TasksThe DBA in the IS Organization

a thorough knowledge of existing and future applications; and

skills to produce an efficient database design that meets the application requirements.

In many medium-to-large installations, DBA functions are performed by a team rather than an individual.
In this case, different members of the team specialize in different skills and aspects of managing database
resources.

In a small installation, it may be difficult to justify a team, yet impossible to find an individual with all the
necessary attributes. In this case, a DBA must rely on assistance from other specialists such as the systems
programmer, senior operator, or senior analyst.

Management Support
To be effective, the DBA must be recognized and supported by both IS and user group management. With
an in-depth understanding of the database operation and the service it provides to the organization, the
DBA needs to be recognized as a center of competence for all matters involving the design or use of the
database.

In principle, management should include the DBA in all decisions affecting the database to ensure that the
database environment is not disrupted. Additionally, the DBA may often be able to suggest more
cost-effective solutions that were known to management.

What Mistakes Are Possible?
When establishing the DBA function, the following mistakes should be avoided:

Placing the DBA too low in the organization (insufficient authority). To function effectively, the
DBA should be given enough authority to match the DBA’s responsibilities. Far from being a threat
to the established scheme of IS management, the DBA should be seen as a necessary adjunct when
working in a DBMS environment. The DBA needs the cooperation, support, and respect of fellow
managers, but will not have it if he or she is denied sufficient authority to perform the necessary
tasks.

Placing the DBA too high in the organization (too much authority). The position of the DBA should
ensure the smooth operation of the DBMS environment, not bring it to a standstill under mounds of
paper, unnecessarily restrictive procedures, or overbearing management. It is accepted that the
dividing line between too little and too much authority is narrow, but the line must be recognized and
drawn for each organization.

Failing to define all DBA functions and responsibilities. The DBA should be authorized to perform
the necessary functions, as they apply to the DBMS site. These functions need to be defined by
participating managers from both the IS and user areas after careful consideration of the
organization’s requirements. Once the functions are defined, the DBA is responsible for establishing
the procedures needed to ensure that they are performed.

Failing to select a DBA with sufficient administrative experience. The DBA function is not an
appropriate place to teach administration to a junior manager. The DBA function requires
considerable management expertise, particularly in the area of human relations.

5

The DBA in the IS OrganizationAdabas DBA Tasks

Establishing Database Control and
Administration
When establishing the system for controlling and administering the database environment, the general
responsibilities of the DBA include

establishing database procedures and standards;

assisting in database design;

educating users;

selecting applications suitable for the database system;

maintaining database documentation; and

administering the database.

This chapter covers the following topics:

Establishing Database Procedures and Standards

Maintaining Procedures and Standards

Assisting in Database Design

Educating Users

Selecting Applications Suitable for the Database System

DBA Function Summary

Establishing Database Procedures and Standards
Standards and procedures are more effectively established as part of the initial planning, rather than later
after problems have arisen. This section discusses the general points to consider when defining procedures
and standards.

Database Procedures

Procedures for effective control of the database environment should be established at the very beginning
of the organization’s use of a DBMS.

These procedures are outlined elsewhere in this documentation. Although many installations adopt the use
of a DBMS in a short space of time, the planning aspect of the whole process (particularly in the design
and implementation of administration and control procedures) must not be sacrificed just to enable startup
in a minimum period of time.

6

Adabas DBA TasksEstablishing Database Control and Administration

Obviously, the implementation of these procedures will involve much discussion, both within IS and with
the users (particularly in regard to what is acceptable, cost effective, etc.), and the first application of
DBMS technology at a particular site may see a parallel development of the DBA procedures. However, it
is essential that the organization’s IS and user management be made aware of the need for such
procedures, and (after due discussion) accept them.

Data Security Procedures

Who decides just how secure a data item must be? The users are too close and too personally involved in
the matter. The analysts may miss the organization-wide implications of such a decision. The final
arbitrator must be the DBA. After all, the DBA is the one who must monitor the procedures and correct
the results of violations.

Planning Recovery Procedures

The DBA must establish standard recovery procedures for use at the installation. These procedures must
be adequate for each application before it is implemented. Different approaches (file save/restore instead
of database save/restore, for example) must be chosen; the DBA should participate in any decisions made
in this area.

Setting Standards

Much of this documentation attempts to define guidelines for a database environment. Not all of the topics
discussed will be relevant to a particular installation. Whether a guideline becomes a standard or not
depends mostly on the size and diversity of the user/developer organization. Small, homogeneous user
groups usually have good communication and do not require an extensive, rigidly defined set of rules.

On the other hand, larger user groups comprising various areas or geographic locations usually lack the
contact necessary for proper controls; such groups may require "rules of the road" to avoid incongruous
data structures or program development. No one likes rules, unless they see an obvious benefit in them.
And standards are generally rules. So here are some "guidelines" to consider when defining standards:

Keep standards brief, clear, and to a minimum. However, if a standard could be seen as arbitrary,
give a brief justification. For example, a standard covering the use of temporary datasets in the
Adabas environment might require the following:

Using Temporary Datasets
To ensure that your job is recovery-/restart-capable, always catalog temporary datasets .
The Adabas database uses the Adabas Recovery Aid feature to automatically restore and restart the nucleus,
rebuild failed job streams, and resubmit the rebuilt job. If temporary datasets are not cataloged, the Recovery
Aid cannot include them in the rebuilt job stream.

Review the standards at least as often as you add to them, and remove or revise outdated ones.
Provide an overview of changed/deleted/added standards to users.

If a particular control or administration procedure is deemed to be necessary at a particular site, it
should be defined as a standard.

Maintaining Procedures and Standards
The maintenance of database documentation should be treated as a natural part of the application
development process. For this reason, the DBA will need to become involved in the development of each
new system that uses the DBMS. The data dictionary is a major tool in this documentation process.

7

Establishing Database Control and AdministrationAdabas DBA Tasks

With a wide knowledge of current database applications, future plans, and responsibility for the integrity
of the database, the DBA should be involved in the design of the data validation procedures inherent in
each system that inputs data to the database. In this way, the DBA can ensure that the quality of the data in
the database is maintained at an acceptable level. The Data Dictionary may also be used to document such
validation requirements.

Assisting in Database Design
The assistance that the DBA provides to the project team in this area is best illustrated by the following
questions:

Is the logical design a true statement of the problem? A logical database design should not embody
any limitations/features of a particular DBMS;

Does the physical design cause any processing disadvantages? A project team will work in isolation
on a specific problem unless otherwise directed;

What about the future? Is the design flexible? The DBA and the organization will have to live with
this design for some time.

As an independent function, the DBA is the only person who can provide such an objective view of the
resulting database design. In some cases, the DBA may even become involved in the design process itself,
and at such times will ensure that the right answers can be supplied to these questions.

Educating Users
Users can be oversold on the benefits which are to be derived from DBMS technology, despite the efforts
of the system analyst or DP resources manager. Such topics as "flexibility", "program/data independence"
and "data availability" can lead to unjustified expectations and give rise to a false sense of "creative
freedom".

It is therefore the responsibility of the DBA to ensure that the user appreciates the problems as well as the
benefits associated with working in a database environment. The DBA should devise, select and provide
introductory training for the user that meets these needs.

Selecting Applications Suitable for the Database System
When an installation acquires a DBMS, it is only natural that analysts and programmers will be eager to
use it. Every new application suddenly seems to require DBMS technology. Someone has to take a firm
grasp of this situation and control the selection of applications that truly are suitable for DBMS
technology. That person is the DBA.

The DBA should produce a list of the "pros and cons" of using the DBMS for each application. This
should be done at the feasibility study stage (that is, before too much time and money is spent), before the
system is acquired. The analysis of the proposed application should involve such considerations as:

Does the application need DBMS?

8

Adabas DBA TasksEstablishing Database Control and Administration

Will the application disturb our existing environment?

Will the proposed system be flexible?

Will it be cost effective?

Has the problem that led to proposal of the application been fully analyzed?

The DBA, as a center of competence in database matters, is thus the ideal person to oversee the selection
of new database projects.

DBA Function Summary
The following is a summary of the functions for which the DBA is generally responsible:

Designing Standard data definitions
Physical database
Security, privacy and recovery procedures
Support software (if not acquired with the DBMS package)

Selecting Database management system
Performance measurement tools
Tuning aids

Predicting Effect of changing volumes/new applications

Deciding Search strategies
Access methods
Database design
Record relationships
Rules of use of database

Training Analysts and programmers: in database techniques
Operators: in database operating procedures

Enforcing Standards for design, documentation, etc.
Quality control
Access rules

Organizing/Administering Data dictionary creation/maintenance
File conversions
Integrity, security and recovery benchmarks
Acceptance tests
Communication of changes to the users

Measuring Hardware performance
Software performance
Database usage statistics

Tuning System performance

9

Establishing Database Control and AdministrationAdabas DBA Tasks

Data Definition and Control
This chapter covers the following topics:

Planned Approach : Central Control of Data

Determining Responsibility for Data

Selecting Applications : Advising on System Development

Advising on Data Collection and Validation

Defining Database Contents

Planned Approach : Central Control of Data
Everyone involved with the database must apply a uniform methodology and standard procedure for data
definition (this overlaps with the task of establishing the data dictionary). The DBA must formulate,
establish, and maintain a consistent set of controls and standards in this area. These standards must be
planned in conjunction with all affected parties: users, IS operations, applications designers, and the
DBMS vendor.

Determining Responsibility for Data
Ultimately, one user department must be given the sole responsibility for maintaining a subset of the data
in the database, ensuring its currency and integrity relative to the remainder of the database. The decision
as to which user this will be is for the DBA to make. It is not only necessary to decide who shall be
responsible; this decision must be made known to (and agreed by) all the other affected users. This is
where the DBA’s diplomacy will be called into play. Although it is natural that user A is responsible now,
in a years time, when the use of the database has changed, it may be that user B is now the appropriate
person to accept responsibility for some or all of the data.

Selecting Applications : Advising on System Development
The selection of applications for database implementation should be made by a committee, chaired by the
DBA. The organization should decide whether or not the users should participate in this process. As a
general rule, the user will only be interested in the cost, facilities, feasibility and extensibility of the
system, if the database design team has performed it’s data gathering and analysis tasks adequately. The
DBA must be an impartial judge with the DBA’s own independent advisers on the various topics which
are likely to be discussed.

As a center of competence, the DBA and the related staff should be in a position to advise on systems
development (but only insofar as to whether the DBMS should be used or not)-advice that can only be
given if the DBA is serving a full and useful role within the database environment and has the
wholehearted support of all interested parties.

10

Adabas DBA TasksData Definition and Control

As far as involvement in systems development is concerned, the DBA should be responsible for the
process of defining and describing new data entities and relationships, using uniform data definition
procedures. the DBA’s is the task of maintaining records of the organization’s "logical database" and
controlling what part of it is and is not implemented.

Advising on Data Collection and Validation
The DBA should be responsible for establishing and enforcing uniform procedures for describing and
defining the attributes of the data entities in the database. The DBA should also introduce standards for
editing and validation of the input to the database.

Besides ensuring that the minimum criteria for data quality are met, it is important that the quality of the
input be uniform so that the database remains as consistent as is practical.

The data dictionary can serve as a tool for the recording and implementation of these edit and validation
rules.

Two types of data should be considered:

Private
data

That is, data with a defined, single "owner". Here, the DBA can only
insist that certain satisfactory data validation procedures and reasonability
checks are performed;

Common
data

That is, common-usage data. Unless a particular user can be identified
who should have control and is prepared to accept that responsibility, the
DBA should accept and exercise the appropriate level of control over the
quality of such data.

Defining Database Contents
The majority of the documentation requirements for the database environment are supportable by the data
dictionary. The data dictionary is one of the DBA’s most important tools. It must be based upon a set of
uniform data definition procedures as indicated above. The dictionary should record logical data formats
and relationships and be broken down into three main areas:

Conceptual the data and existing natural relationships

Usage how it is used now

Implementation how it is currently stored in the database

Standards are required relating to the use and/or interpretation of specific data entities.

The data dictionary should contain

logical data structures;

physical storage structures;

11

Data Definition and ControlAdabas DBA Tasks

data attributes;

a description of data sources:

Where the data comes from

How it is obtained

How it is edited and validated

accuracy and security requirements:

What are the accuracy requirements?

What are the security requirements?

Who may access each data item?

Who may update each data item?

response requirements: for each application area, what are the retrieval and response requirements?

Database Documentation lists these requirements in more detail. The online capability provided by
Predict, the Adabas data dictionary, significantly reduces the effort involved in satisfying documentation
requirements.

12

Adabas DBA TasksData Definition and Control

Database Documentation
Database documentation includes the recording of the procedures, standards, guidelines and database
descriptions necessary for the proper, efficient and continuing use of the database.

The documentation must be specially prepared for and selectively distributed to

end users;

DBA function itself;

computer operations function;

applications development function.

The DBA has the responsibility for providing and maintaining adequate documentation for these
recipients. This chapter discusses the types of documentation that are required. The list given is not
necessarily exhaustive.

This chapter covers the following topics:

Standards

Description of the Database

Data Dictionary, Function and Use

Predict : The Adabas Data Dictionary

Applications Using the Database

Description of Data Sources

Data Access and Manipulation Procedures

Passwords and User Identification

Back-Up Procedures

Restart and Recovery Procedures

DBMS Performance and Measurement

Standards
Establish and maintain a consistent set of database controls, particularly in the following areas:

Data definition: a uniform methodology should be adopted;

13

Database DocumentationAdabas DBA Tasks

Data usage;

Ownership of, and responsibility for, identifiable portions of the database;

Data access and manipulation: Standards for the way data is accessed and updated in the database are
crucial to ensure data integrity. Standard procedures for coding requests reduce the possibility of errors.
For example, the updating of key values should be strictly controlled;

Data edit and validation: The DBA must establish procedures to ensure compliance with the rules
and maintain consistent levels of data quality in the database. The DBA should, therefore, become
involved in systems and acceptance testing of new applications that use the DBMS;

Computer operations: The DBA is responsible for ensuring that standard procedures are used by
computer operations personnel when they deal with the database. This includes standard backup
procedures, restart and recovery procedures, and other operations-related activities.

Some personnel will resist the establishment of standards for the database environment. Give careful
consideration to the status of a standard and of areas where standards should be established. In general, a
new standard will require negotiation, arbitration, and compromise before all the parties concerned will
accept it even as a proposed standard. The only way to determine whether a standard is practical is to
implement it.

Standards are subject to change. The process of changing an existing standard must be as tightly
controlled as that of installing a new one. Changes should be formally proposed and communicated to all
the affected users. After a trial period, review the proposed change with users to decide whether it should
become a standard.

Periodically review the database standards to evaluate their effectiveness and to ensure that they are being
followed. Corrective action may need to follow such a review. The DBA also has the principal
responsibility for ensuring that all personnel who work in the database environment are aware of, and
adequately trained in, the use of the standards.

Because each site has its own procedures and requirements, this documentation does not suggest a specific
set of standards.

Description of the Database
The database description should cover the following main areas:

Conceptual database: a formal description of the data to be stored and a definition of its inherent
logical data structures. The DBA should explicitly define data structures which reflect the DBA’s
knowledge of foreseeable developments and include the needs of other known or potential users.

Use of the database: information should be recorded at both the application level and the individual
data item level. This documentation will be of immense value when new systems are being
developed. The information that should be recorded is discussed in the next subsection.

Implementation: how the data is currently stored in the database. This is the documentation of the
physical storage structure of the database and it should include (among other items):

14

Adabas DBA TasksDatabase Documentation

Implemented data structures (logical data formats and relationships). These are normally a
subset of the conceptual database;

Storage structure (physical data formats and relationships), in terms of Adabas, this means the
contents of the Field Definition Tables, coupling relationships and other inherent relationships;

Volume of data: number and average size of records in each file;

Anticipated growth: by file and field size (and, therefore, record size);

Additions and deletions of records: number in an average maintenance run. It is also useful to
keep a note of the distribution of additions and deletions (i.e., are they random across the file or restricted
to a small portion of it), as well as the manner (user program or utility) in which these additions and
deletions are performed.

In addition, the reasons why this particular implementation has been chosen should be recorded. This
information will later prove useful when maintenance or new application design is undertaken.

The DBA is responsible for formally describing the database in the manner discussed above and
maintaining this description on a data dictionary (whether this process is automated or not). The project
team will be required to provide the DBA with all the information the DBA needs to perform this task.

Data Dictionary, Function and Use
A data dictionary contains information about the definition, structure and use of data. It does not store the
actual data itself, but rather data about data. Simply stated, the data dictionary contains the name of each
data type (element), its definition (size and type), where and how it is used and its relationship to other
data elements.

A data dictionary enables the DBA to exercise better management and control over the organization’s data
resources. Advanced users of data dictionaries have also found them to be valuable tools in project
management and systems design.

The data dictionary will enable the DBA independently to manage actual data items and the programs that
manipulate and access them. This independence of control results in the substantially enhanced usefulness
of the data. The data dictionary serves to collect the information needed in order to make the data more
useful.

Containing all of the definitions of the data, the dictionary becomes the information repository for the
data’s attributes, characteristics, sources, use, and interrelationships with other data. The data dictionary
should provide the following information:

The kind of validity tests which have been applied to this data type;

What modules, programs, systems and reports use this data type?

The level of security which has been applied; Who is allowed to access the data type? Who is
authorized to update this data type?

By what other names is the data type known in various application environments?

15

Database DocumentationAdabas DBA Tasks

What is the input source for this data type?

Textual description of the data type.

Predict : The Adabas Data Dictionary
Predict, the Adabas data dictionary system, is used to establish and maintain an online data dictionary.

Database information may be entered into the dictionary in online or batch mode. The description of the
data in the Adabas dictionary includes information about files, the fields defined for each file and the
relationship between files. The description of use includes information about the owners and users of the
data in addition to the systems, programs, modules and reports that use the data. Dictionary entries are
provided for information about

network structures

Adabas databases

files, fields, and relationships

owners and users

systems, programs, modules and reports

field verification (processing rules)

Standard data dictionary reports may be used to

display the entire contents of the data dictionary

print field, file, and relationship information

print field information by file

In addition, the dictionary data can also be accessed directly from Natural since it is stored in a standard
Adabas file.

Refer to the Predict docuomentation for more detailed information about the Adabas data dictionary
system.

Applications Using the Database
For each application using the database, the following information should be recorded:

Application characteristics:

Description of the function of the application;

Mode of use: batch/online, single or multiuser;

16

Adabas DBA TasksDatabase Documentation

Frequency of use: standard scheduled times;

Type and volume of transactions;

Performance considerations: minimum acceptable response time;

File requirements:

Which files are accessed;

How files are accessed (the use of descriptors);

Specific data items (fields, subfields, superfields, and so on) used;

Security requirements:

Ciphering and/or password usage (that is, cipher keys and/or passwords are not to be made
generally available);

Authorized users of this system/program/enquiry;

Back-up requirements: frequency and content of file backups;

Restart requirements.

Since any database is only a partial implementation of the conceptual database (see previous section) and
user’s requirements change with time, new applications of the database will be found as time passes.
Some of these applications may be developed into new systems or additions to existing systems, but they
first arise as a simple user requirement .

Establish procedures for recording unplanned applications of the database; if one becomes relatively
frequent or important, you can often gain a processing advantage by redesigning or reorganizing the
database or files within it. For example, assume that a file was initially loaded in Customer Number order.
Subsequently, applications that process the file by Salesman Number assume greater significance. You
can unload the file and reload it in Salesman Number sequence without affecting the logical operation of
most existing applications, thus achieving an overall reduction in the processing time needed by all the
applications that use the file.

Records of this unplanned use of the database or shift of emphasis in processing priorities, can be made
when a user makes an interactive request for information, whether the user does this in his or her own
department or through the DBA. These records should be regularly reviewed by the DBA and discussed
with the affected users.

Description of Data Sources
For any new application, the data dictionary is the first reference document for determining the potential
sources of information. The description of data sources will be derived during the systems analysis and
design phases of a new project.

Record and retain the following information about each system:

17

Database DocumentationAdabas DBA Tasks

The present form and location of data: forms, files, computer storage media;

Access techniques to be used to acquire the data;

The intended use of the data in relation to its present accuracy, completeness, and timeliness,
including necessary validation or editing;

The need for modification of the data before it is stored on the database;

The authorized agent for the use of the data;

The cost of acquiring the data.

Data Access and Manipulation Procedures
The DBA must have administrative control over all access to and updating of the data in the database.
Unless this is so, there can be little meaningful control or protection exercised over it. The lack of such
control can result in serious security and integrity problems.

Because authority and responsibility for the database cross organizational boundaries, a corporate policy
covering database usage by and among operating units should be published. Such policy statements can
enhance the administrative control of the DBA and help to promote clear understanding of database
procedures among users and data processing personnel.

Part of this policy will include statements on

the use of DBMS commands-who can and (more important) cannot use the various facilities provided
by the DBMS?

database usage-is this to be achieved by user programs? Are standard interfaces such as Natural or
SQL to be used? What error handling procedures should be observed? To whom should difficulties
be reported, and how (for example, a trouble report)?

maintenance and update procedures-who will be responsible?

This policy statement should be proposed and drafted by the DBA, and then reviewed and agreed upon by
all the affected parties.

Passwords and User Identification
User ID and password information needs to be stored securely by the DBA, as only the DBA and the
affected users should have access to it. This documentation will include

assignment procedures for cipher keys, passwords and user identification;

actual assignments: cipher keys (where it is necessary for the DBA to know this), passwords and user
identifications;

terminal and data access procedures;

18

Adabas DBA TasksDatabase Documentation

access authorities must be established for each data entity. These should define:

Who has the right and/or need to know the content of the data, as well as of its existence;

Who can read the data from the database, add new occurrences of the data, update existing
values of the data, and/or delete the data from the database.

Once this authority has been established, it is important to set up proper control procedures in order to
ensure that violations of database security do not occur.

database security procedures. The physical protection of the data in the database should be recorded,
detailing

positive human control over the database (communications rooms, access to the computer and
terminals, storage of database backup and log tapes);

physical separation of data entities (separate files, separate databases, use of partial mount and
file cluster facilities);

secure areas for terminals (lockable terminals, keyholders, leased or dial-up lines, taken offline
when not in use);

persons authorized to receive published information about the database.

The DBA uses the Adabas Security utility to implement and control password security (see the Adabas
Security documentation for more information). The DBA must be the only person at an installation who is
permitted to use this utility.

The DBA must implement procedures to physically secure the security utility itself, and all documentation
concerning security.

Back-Up Procedures
The content of back-up files, as either database or file copies (taken by the Adabas ADASAV utility)
should be recorded together with the following information:

What state (or point in time) the backup data refers to;

Identification of the data which can be backed up;

The volume of data that is involved;

The backup facilities that should be used in order to reestablish the database to that state;

The frequency and schedule of database backup operations.

The DBA should help computer operations personnel to develop procedures for carrying out the database
backup task. Database backup is an essential step in ensuring that the database can be restored to its
proper state in the event of destruction or damage. The decision will have to be taken (for every
application) as to whether the entire database is to be backed up or whether dumping and restoring of
specific files is more appropriate.

19

Database DocumentationAdabas DBA Tasks

Information about developing backup procedures for a particular application is included in the Adabas
Operations documentation.

Restart and Recovery Procedures
The DBA is responsible for formulating and supervising procedures for

restarting the DBMS after failure;

recovering the database to a recent checkpoint (if necessary), thus removing the need to repeat
database maintenance work;

controlling the priority and sequence of database restoration.

Restart and recovery is an important database protection consideration. The DBA must develop standards,
procedures and rules to provide such a capability. The DBA must be certain that the standards and rules
are being adhered to and enforced. Restart and recovery must be planned for and designed in conjunction
with the implementation of the DBMS. It should not be added as an afterthought.

Detailed information about Adabas restart and recovery is included in the Adabas Operations
documentation.

DBMS Performance and Measurement
The DBA has a continuing role in maintaining and improving the performance of the database system.

To do this, the DBA must monitor the performance of the system and try alternative design strategies to
improve it. As work patterns change in the company, both the volume and relative proportion of types of
transactions may change. This may affect performance and design changes may be necessary to counteract
it.

In the longer term it may be possible to predict changes in workload, and plan how to meet them by
redesign or equipment enhancement.

The effect of new hardware or software should also be evaluated, and possible changes should be
cost-justified and incorporated into the long term strategy.

Keeping track of (and measuring) the performance of the DBMS is therefore an important part of the
DBA’s function. The DBA should establish and maintain records of

the computing resources used, including frequency of use, by each application area;

the users who are serviced by a particular application; and

DBMS effectiveness with respect to response time and cost.

The DBA will also need to establish and document procedures for

monitoring the frequency of DBMS usage; and

20

Adabas DBA TasksDatabase Documentation

DBMS performance management.

It is the responsibility of the DBA to monitor the database environment on a continuing basis, in order to
ensure that an efficient level of service is provided while database integrity is maintained. This
responsibility for monitoring takes the form of a variety of activities and procedures, of which
performance management is but one.

The Adabas Online System provides the DBA with a powerful tool for monitoring the database. See the
Adabas Online Systems documentation for more information.

21

Database DocumentationAdabas DBA Tasks

Education and Training
This chapter briefly discusses the main features of a training program suitable for the database
environment.

The following topics are covered:

Overview

Database Concepts

Database Design

Programming

Operating Procedures and Techniques

Data Entry

Database Query and Report Generation

Overview
The DBA is responsible for education and training in database concepts and the procedures and
techniques involved in operating in the database environment. The DBA develops the training curriculum
and selects the content of the training materials to be used. Information systems personnel must be trained
to implement, operate, and maintain the database environment. Users external to the data processing area
should receive training in database concepts, data availability, data entry, report generation, and the use of
query facilities.

It is wise to produce a general training program for each type of person who will come into contact with
the database environment. In this program, input (knowledge) expectations and output (performance)
expectations should be recorded together with the training that is to be given, to ensure that the person
meets the output expectations. A person requiring training can then be readily evaluated with the input
criteria and remedial training, or pre-course reading can be prescribed before attending the appropriate
training course. This approach will ensure the effectiveness of training.

The training given should correspond with the work requirements of the individual. The DBA’s training
should be carefully planned; it should be timely (i.e., not several months before or after the DBA is called
upon to use it); and it should be immediately followed by a period of "reinforcement" (i.e., practical use of
what the DBA has been taught.

When the DBMS is initially installed, a significant number of people will require training. The same is
true when a new project starts or a new system is installed. Apart from these major requirements, ongoing
training will be needed (for example, for new employees). For this reason, "packaged" training (for
example, tape cassettes and workbooks) is recommended for the small numbers of staff and full courses
for the large numbers.

22

Adabas DBA TasksEducation and Training

Database Concepts
All personnel who interact with the database environment should have an understanding of the concepts of
database management systems that includes

why DBMSs evolved;

similarities and differences between conventional data processing systems and DBMSs;

advantages and disadvantages of the reduction of data duplication;

flexibility inherent in the DBMS;

ease of use and accessibility;

the end user; differing "views" of the same data; the logical structuring capability of the DBMS;

functions provided by the DBMS;

importance of security, data integrity and recovery procedures in the database environment;

need for database standards and controls.

Database Design
Database designers need training in the design methodology preferred at the site so that they can quickly
become productive.

A large portion of training time should be spent on practical exercises that teach and give practice in the
use of the site’s standards, particularly for documentation. In a public course provided by Software AG,
this may not be possible. In that case, the student should receive training in site standards immediately
after returning to work.

The subjects taught should include

a high-level understanding of Adabas facilities, their control and operation;

loading files and file definitions; Adabas direct access method (ADAM) files; estimating disk space
requirements;

transaction processing; ET/BT logic;

integrity; restart/recovery; autobackout; autorestart;

security; passwords; ciphering;

an overview of the Adabas utilities;

program design and efficiency.

23

Education and TrainingAdabas DBA Tasks

Programming
Training for computer programmers should be based on installation procedures and standards. The
training must be as practical as is possible with a large portion of the time spent on exercises.

During the course, students should be expected to write an application program which will actually be run
on a computer. To provide some measure of continuity and reinforcement, provision should be made for
them to complete this exercise after the course has ended.

The subjects taught in this training should include

an overview of the Adabas facilities applicable to the applications programmer;

Adabas direct mode commands and/or high level programming interfaces (SQL, Natural) facilities
available to the programmer;

designing an Adabas program for efficiency and ease of maintenance.

Operating Procedures and Techniques
Training provided for computer operations personnel should be based on installation procedures and
standards. It should also be as practical as possible (for example, running application systems, executing
recovery and restart procedures).

The subjects taught should include

operating procedures; starting an Adabas session; shutting down an Adabas session; normal
operation; exceptions; problem recovery and restart;

running utilities: what they do and what to expect;

scheduling computer time; communication with the DBA;

performance management;

controls and audit trails;

error reporting and follow-up.

Obviously, these topics are heavily installation-dependent and as such, the training provided in this area
will need to be given by the installation’s own staff.

Data Entry
This form of training will be an essential part of that given to personnel in the user department when a
new application system is installed. As such, it is heavily application system-dependent. However, it is
possible to give some general guidelines.

Training should include

24

Adabas DBA TasksEducation and Training

input procedures, whether at a terminal or by input document; application rules;

standards and control; auditing;

what the system does with the input;

input errors and their correction.

Database Query and Report Generation
The content of this type of training will depend largely upon whether it is being given to data processing
or user personnel. The former will require training in the commands and facilities of the query facilities to
be used (for example, Natural) together with details of how to construct and run a request.

The user, on the other hand, will require much more specialized training. It will need to be geared much
more closely to the application system that the DBA is to use.

The subjects that should be covered include

how the query facility works (an overview only); for example, Natural or SQL;

the standard reports produced by the application system-their contents and adaptability;

the query facility commands, functions and use with an emphasis being given to the standards in
force.

25

Education and TrainingAdabas DBA Tasks

The DBA and the User
Before considering the normal database application development cycle and the DBA’s role within it, the
DBA must understand what the user requires from the database. The word "user" in its widest sense
embraces user management and personnel, data processing management, computer operations,
programming, systems, software support and the DBA’s section.

The relationship between the DBA and the user community can be delicate, especially if a particular user
actually or apparently must expend more effort or accept a lower level of service than would be the case
outside the database environment.

The users should feel that the DBA is an impartial and unbiased authority whose decisions will enhance
the welfare (and support the policies) of the organization as a whole.

The DBA must be aware of both corporate long-range plans and long-range user needs. The DBA must
reconcile any conflicts that arise between users or between a particular user and any corporate plans that
are affected.

Note that during the development of a new application, the DBA should involve the project group in any
interaction with the end user.

This chapter covers the following topics:

Liaison with the User

Access Requirements

Application Interface

Complying with Standards and Controls

Liaison with the User
Liaison with the user (whether programmer or end user) is the most important and sensitive part of the
DBA’s job.

In responding to an end-user request (which will normally be made in terms of retrieval requirements), the
DBA should check the documentation describing the production database, particularly the logical data
structure, to see whether the request can be readily handled.

Four basic outcomes are possible:

1. The request cannot be fulfilled at present
In this case, the DBA should note the request, and review it at regular intervals to determine whether
the situation (or need) has changed;

2. Preparing a one-time request
Using Natural, it may be possible to satisfy the request from the existing database with minimum
effort. Irrespective of whether the DBA’s section actually writes the application to fulfill the
request-indeed, the user department may have this capability-or if the application is written by a
programmer, the point is that the DBA should define the solution to this one-time requirement for

26

Adabas DBA TasksThe DBA and the User

database information;

3. Creating a new application program
Here the application is to be run regularly. The DBA will specify the program and negotiate with the
programming manager for it to be written and tested;

4. Changing an existing application
This may, of course, involve negotiation with the "prime owner" of the application system, if that
person is different from the requestor, because any such change affect the performance or flexibility of the
system.

Any end-user request should be fully documented, whatever the outcome. Such requests form one of the
most useful information sources of information for the DBA as to whether or not the training supplied to
the end user has been effective.

Requests from data processing personnel will normally be for

Training The DBA should decide with the requestor what training is required and when. The
DBA will need to cultivate an awareness in data processing management, that such
training cannot be provided at a moment’s notice. Such training should be properly
planned in advance.

Information The DBA will need to be satisfied that the requestor needs to know and is authorized to
have the information. If the answer to either of these questions deviates from the normal
situation, some temporary or permanent adjustment to existing standards and/or practices
may need to be made.

Problems The DBA will either know the answer or may need to refer the problem to Software AG.
In the latter case, the DBA will need to assemble as much documentation on the problem
as possible.

Assistance This could take a variety of courses. The DBA should ensure that it is indeed the DBA’s
responsibility to provide the assistance that has been requested.

Access Requirements
The DBA must have administrative control over any access to and updating of the database. The DBA
should establish with the users, the rights of access for each item in the database. Most of these access and
update authorities will be evident from the design of the application systems which use the data and the
data items will be secured with this in mind. When an unplanned request arises, the user should discuss
this with the DBA. The latter, by reference to the database documentation, will be able to advise the user
on the best way to satisfy the request. In addition, the very existence of the request is in itself useful input
to the DBA’s monitoring of the use of the database.

The requirement for access to the database, whether as a part of an application system or as an unplanned
requirement, can be thought of as a "user view" or subschema of the database implementation. Its content,
security, mode of access and manipulation should all be discussed and recorded.

Occasionally, the access requirement will cross application system boundaries. In this case, the DBA will
need to discuss the right to access the data item with the item’s "owner".

27

The DBA and the UserAdabas DBA Tasks

Application Interface
The documentation standards should define the normal interface for an application program to interact
with the DBMS. One of two approaches may be used:

1. Direct calls to Adabas from a host programming language;

2. Calls for service to an access module.

Whichever of these two approaches is used, there will be cases where it is not appropriate or even possible
to adhere to the standard interface policy. Before deviating from the standard interface technique,
however, the DBA should be consulted and approval obtained.

When dealing with unplanned requirements, the DBA should advise the user on the interface approach to
be adopted. This may be an application program, with or without an SQL access module; Natural; or
something else.

Complying with Standards and Controls
The DBA should carefully explain to the user the benefits which are to be derived from conforming to
database standards and control and the problems that can arise if any particular user decides to ignore
them.

A feeling of mutual trust between the user and the DBA must be developed. The users should feel that the
DBA is an impartial and unbiased authority, whose decisions will enhance the welfare and support the
policies of the organization as a whole.

If the user is allowed to access the database using Natural, the DBA should be encouraged to record any
unplanned requests and inform the DBA at regular intervals of these requirements. This is a part of the
feedback and monitoring information that helps the DBA to ensure the continued effectiveness of the
database environment.

28

Adabas DBA TasksThe DBA and the User

The DBA and Application
Selection/Development
This chapter covers the following topics:

Configuration and Applications Planning

Database Organization

Understanding Current and Future User Requirements

Coordinating Database Activities

Analyzing Access Requirements

Establishing Data Availability

Performance Versus Flexibility

Advising on Application/Program/Database Design

Determining Physical Storage Requirements

The Test Database and Testing Strategy

Configuration and Applications Planning
From the DBA’s knowledge of the use of the database and the monitoring of its performance, the DBA
can contribute valuable data-processing expertise for making management decisions in the area of
configuration and applications planning. The DBA is aware of the user’s short- and long-term needs, as
well as day-to-day problems and difficulties. The DBA’s contacts with Software AG enable the DBA to
keep abreast of the developments intended for the DBMS. The DBA should, therefore, be brought into
this type of discussion.

The DBA should be involved in any application development project from the beginning. The DBA will
be able to help in the initial survey in order to decide whether a database approach is justified in view of
the organization’s planned data processing developments.

The DBA will continue to be involved in project development after the initial implementation of the
database project(s). The addition of new projects creates special problems which the DBA must resolve
carefully.

The addition of new data and a changing use of existing data may change the performance characteristics
of an existing system. Careful redesign of the physical structure and placement of data may be needed in
order to give a reasonable service to all users.

29

The DBA and Application Selection/DevelopmentAdabas DBA Tasks

Database Organization
As mentioned elsewhere, the DBA is responsible for the formulation and definition of the data
relationships for the purpose of defining logical data structures. These data structures should reflect the
DBA’s knowledge of foreseeable developments and include the needs of other related users.

There are two major aspects:

the definition and organizing of existing data; and

the addition of new data.

Efficient physical structuring demands considerable expertise in translating and implementing logical
relationships. Space, performance and cost must be balanced, taking into account

data structure (logical data formats and relationships);

storage structure (physical data formats and relationships);

access methods (available and to be used);

frequency of access;

physical storage media requirements;

timing considerations; and

search strategies.

The solution (and the reasoning behind it) should be fully documented.

Understanding Current and Future User Requirements
The DBA is in an ideal position to help the members of a project team to appreciate and be aware of the
user’s current and future requirements. "User" is to be interpreted in its broadest sense. It does not only
mean the section or department for which the application system is being designed and developed. User
also means other potential users, not forgetting the organization as a whole. Known future developments
must be taken into account. At times, this may mean that the DBA will need to exercise control over the
development of a new application, in order that these developments may be readily included in the
database operation when completed.

Coordinating Database Activities
Providing that the contents of this documentation are put into practice, the DBA will be able to coordinate
all database activities. The DBA’s advice should be sought on all developments planned for the database
and the DBA should aim to ensure a steady, controlled progression to an integrated information system,
which will serve the organization as a whole.

In general, the DBA should be involved in all stages of a new project from feasibility study onwards, both
in order to advise on the practical uses of the database and also to carry out the DBA’s quality control
function.

30

Adabas DBA TasksThe DBA and Application Selection/Development

The DBA will, therefore, provide lines of communication between different project teams, as well as with
present and future users. The aim should be to cultivate the attitude of designing the database for the
greatest benefit of all users.

Analyzing Access Requirements
This is an important part of the design of the database. When new projects reach the data analysis and file
design stage, it is important for the DBA to ensure that the project team does not take too parochial a view
of the requirements for access to the data to be used by the new application system.

The analysis of access requirements is also an ongoing task. As the requirements of the organization
change (as they are bound to do with time), the DBA will be receiving feedback on these changing
requirements. However, the DBA should be careful not to overreact to a new requirement; it may only be
required this one time. Rather, the DBA should respond to gradual and perceptible changes of emphasis in
the access and/or processing requirements of the organization and even then, only after full discussion
with all the affected parties.

Establishing Data Availability
The DBA should assist the project team (possibly by using the data dictionary) to plan a suitable data
acquisition program, ensuring that the following aspects are taken into account:

The present form and location of the data;

How it is to be collected;

How accurate and complete it is at present;

What modifications are required to be made to the data before its inclusion in the database;

At what time should the data be collected in relation to the implementation of the application system.
How is the intervening period to be handled?

This process will result in a data collection program, which will include the necessary specifications for
any special editing or validation that may be required, as well as providing information to the DBA for
recording in the data dictionary.

Performance Versus Flexibility
The design of a (part of the) database will naturally involve consideration of performance (in the sense of
disk space utilization and computer processing time), as opposed to flexibility (the ease of adapting to
future unknown needs).

The DBA should ensure that the project team does not opt for performance at the expense of flexibility,
and vice versa. The DBA is in a good position to advise the project team on which areas of the application
need to be flexible (i.e., a planned system will also use this data) and which should be designed for good
performance. The ultimate aim of such considerations of "performance" versus "flexibility" is to avoid
making decisions where only one of these aspects is considered at the possible expense of the other.

31

The DBA and Application Selection/DevelopmentAdabas DBA Tasks

Advising on Application/Program/Database Design
From the DBA’s contact with project teams, with other Adabas users, and with Software AG, the DBA
gradually acquires considerable knowledge about application program and data structure design. The
DBA circulates appropriate information throughout the organization. In addition, the DBA must be
available to advise on application design.

Although the DBA may not actually design the database, he/she must be able to advise team members on
file/record design, descriptor selection, and other matters. This provides the DBA an opportunity to
represent other users in the database design.

The DBA must ensure that the design of the physical database will efficiently support the logical
requirements of the first application without prejudicing the success of later projects. The DBA will advise
on how Adabas should be used in order to fulfill the security, integrity and recovery needs of the
application system, design rules and procedures for these. In some cases, additional software may be
needed and the DBA will help to design this. The DBA will consider whether additional utilities are
needed for saving/restoring the database, measuring performance, analyzing the actual content of the
database, and so on.

During this phase, the DBA may also be advising application project teams on the best approach to data
analysis, the use of Adabas, how to design the logical data structure and which design options are likely to
prove to be the most efficient.

Determining Physical Storage Requirements
It is the DBA’s responsibility to provide assistance to the project team in determining the physical storage
requirements for a particular application system.

The following parameters should be considered:

The volume of data to be stored;

The anticipated growth of data;

The average size of records;

The number of additions and deletions of records over a given time period;

Data relationships (data structure);

Data representation (internal formats);

The effect of compression;

The access methods which are to be used on the data.

Evaluate carefully the tradeoffs between minimizing the use of storage media and processing costs while
maximizing service (measured in terms of speed or throughput). Also consider the need for flexibility in
the implementation of the application system; requirements may be subject to change, and other
application systems may need access to this application’s data. If, minimizing physical storage
requirements means a loss of flexibility, it should not be done without careful consideration of the
problems that may arise in the future. The DBA is, of course, ideally placed to provide the project team

32

Adabas DBA TasksThe DBA and Application Selection/Development

with this type of information.

The Test Database and Testing Strategy
The DBA should advise the project team on the type of test database to be used for the new application.
Assist the team by setting up the test database. During system testing, test with your own monitoring,
audit, error correction, and control procedures before the system goes "live". These procedures should not
be designed after the system has gone into production; they should be developed by the DBA in parallel
with the development of the application system.

It is best to keep test databases separate from the production database by loading them onto separate disk
packs, or even databases. This, in itself, poses two problems:

Tests cannot take place in parallel with production work in multiuser mode (in single-user mode, this
problem does not exist);

Production data (or some fields in a production file) may be required to test the new system.

The first of these problems could be solved (if storage permits) by running two copies of the Adabas
nucleus in parallel-one for production work, one for test work.

The second can be solved by using the Adabas ADASAV utility to copy across the required data from the
production database to the test packs. In this case, the access authorization for the test data will have to be
agreed before testing begins.

The main advantages of having a separate test database are that files can be loaded with the file numbers
they will have when the system goes live and testing can in no way corrupt the production database. This
is a particularly important consideration when fields are to be added to an existing file or new descriptors
are to be established for the new application system.

Before systems testing starts, the DBA should decide how file conversion and database initialization is to
be accomplished and ensure the preparation of any necessary special conversion or set-up programs. The
strategy for parallel running will need careful consideration and here, too, special programs may be
needed to assist in the comparison of outputs from the existing system and the new system or to carry out
validity checks. Special inquiry facilities (e.g., Natural) may be needed to help testing and parallel running
(these have sometimes also been found useful in subsequent live running).

Before the new database is finally implemented, acceptance tests should be run to demonstrate that all
aspects of the system, including performance and resilience, are satisfactory. These may or may not be
additional to the parallel runs.

Close control of the way in which the new project accesses data will be necessary in order to ensure that
there is not loss of data integrity for existing users of the database. For systems testing, a special "testing
mode" may be needed in order to ensure that "test changes" to the database do not actually affect the
operational database.

33

The DBA and Application Selection/DevelopmentAdabas DBA Tasks

The DBA and Computer Operations
This chapter covers the following topics:

Influence of the Database Administrator

Scheduling Computer Time

Operating Procedures

Restart and Recovery Procedures

Database Utilities

Working with Software AG

Influence of the Database Administrator
The DBA carries the responsibility for ensuring that the computer operations function performs its duties
with regard to the database environment. This responsibility is in terms of assisting the operations function
to establish database related operating procedures, restart and recovery procedures, special database
utilities and schedules for computer time for database related work.

The DBA also has a role in actually carrying out the day-to-day administration of the procedures and
safeguards associated with the use of the database.

The DBA will ensure that the operational procedures are correctly adhered to, that dumps and logs are
correctly taken and the DBA may also carry out periodic tests of the recovery systems.

In any emergency situation, the DBA may be involved in controlling recovery, discussing problems with
users and generally working out ways of minimizing the disruption.

Scheduling Computer Time
The DBA should exercise some degree of control over the scheduling of the computer, in order to
facilitate "scheduling around a problem" and to provide for priority use of the database in emergency
situations.

While direct control over the computer schedule will reside with the computer operations personnel, it is,
nevertheless, advisable to allow the DBA some degree of discretion in determining the schedule of events
as they relate to database processing. In doing so, (for example) problems involving currency of update
can be avoided and response time requirements during relatively infrequent peak load times can be
satisfied without undue effort.

Operating Procedures
The DBA is responsible for working with computer operations personnel in order to develop formal and
documented procedures for operating database-related jobs on the computer.

34

Adabas DBA TasksThe DBA and Computer Operations

Among the areas that should be considered are

loading a new database;

running database utilities;

maintaining the data dictionary;

maintaining the database;

backup procedures;

restart/recovery procedures;

production and testing requirements.

Restart and Recovery Procedures
The DBA must ensure that the database can be restored to its proper state in the event of destruction or
damage. Restart and recovery is thus an important protection consideration and the DBA must develop
standards, procedures, and rules to provide such a capability.

Computer operations personnel must be educated in and adhere to these standards and procedures in order
to ensure that the recovery and restart of the database can be accomplished without loss of data integrity.

Any variations to standard practice (for example, a particular sequence of programs to be run after restart
for a particular application system) should be recorded in the computer operations run book for that
application.

Database Utilities
The DBA is responsible for controlling the use of Adabas utilities and for developing or acquiring
specialized utilities to facilitate certain functions involving the database. These utilities may include

creation of test databases of suitable size which include all the features of real-life databases
(ADALOD utility);

save/restore individual files or the entire database (ADASAV utility);

provision of automated reports reflecting the integrity of the data in the database (ADAREP utility);

provision of automatic reporting of security violations (ADALOG facility).

The DBA should retain control over when the utilities are run, including who is authorized to use them.
The DBA’s permission should be sought before a utility is used (except, of course, in the case of
well-documented and tested recovery/restart procedures).

35

The DBA and Computer OperationsAdabas DBA Tasks

Working with Software AG
The DBA should be the primary contact between the organization and Software AG. The DBA’s
involvement with Software AG includes

obtaining education and training for the organization’s staff;

receiving and installing new releases and system changes to the Adabas nucleus and utilities;

receiving and distributing electronic documentation, manuals and other literature;

obtaining advice;

reporting problems;

suggesting improvements to the system.

This section discusses these interfaces in detail.

Training and Education

Software AG supplies two types of education and training courses:

In-house Tailored to the particular requirements of an individual user site.

Open General information; any user may participate.

In-house training is normally given when the Adabas system is first installed, although the DBA may from
time to time have sufficient need for additional courses of this type. Such courses can be tailored to meet
specific customer requirements and training objectives.

An open course is more general, and although thorough, it may not meet all of the DBA-defined specific
requirements. As a result, the DBA may need to arrange supplementary training to meet objectives.

Training is offered by Software AG in the following areas:

Application programming with Adabas;

Database design;

Query facilities (for example, Natural);

Internals of the Adabas system.

Detailed descriptions of training, including recommended sequences, prerequisites, schedules, and
enrollment information are available from your Software AG representative.

New Releases

When a new release has been thoroughly checked out, it will automatically be distributed to all Adabas
user sites together with instructions which cover the means of effecting a transfer to the new release.

36

Adabas DBA TasksThe DBA and Computer Operations

The new release should be thoroughly checked out by the DBA before production work is transferred to it.
If this is the case, the DBA may find that a standard set of test programs, in the form of a prepared job
stream, may be the best way of checking that the functions previously available still operate correctly.
Such a test job stream will grow with each new function provided by Adabas.

Distribution of Documentation and Updates

As the sole recipient of new literature from Software AG, the DBA should keep a record of the copies
distributed to ensure that the literature is kept as up-to-date as possible. A register of authorized document
holders is easily maintained and is perhaps the easiest way to perform this part of the DBA’s
responsibilities.

Advice or Consultancy from Software AG

During the initial installation of the Adabas system, assistance is provided to install Adabas into the user’s
system library, generate a test database, and perform checkout tests.

Beyond this initial period, there may be occasions when the DBA feels the need for advice or consultancy
from Software AG. Such a request should always come from the DBA.

Software AG will keep the DBA informed of any planned extensions to the Adabas package. As a general
rule, such extensions will be included in the training courses as soon as they have been firmly defined by
Software AG. The DBA, however, may need to pass on such information to existing projects in order that
advantage can be taken of the new facilities as soon as they become available, thus eliminating the need
for later redesign or reprogramming.

Problem Reporting

If a problem arises in the database, the DBA will most often be able to solve them without contacting
Software AG. Nonetheless, Software AG offers comprehensive support to help restore operations as
quickly as possible. The DBA can add to the effectiveness of this support by ensuring that the problem is
defined accurately and succinctly to Software AG’s technical support team. All available output should
first be noted and/or collected for eventual reference and, if necessary and requested, should be sent to
Software AG.

DBMS Improvement

Potential areas for system improvement logically occur as a result of the monitoring, auditing and
operations activities. The DBA will have the responsibility for evaluating these potential enhancements
and initiating any improvement activities. Software AG encourages and supports User Groups for its
systems, which are an excellent forum for discussing such enhancements. Users can start the process by
submitting a change/enhancement request to the appropriate User Group representative.

37

The DBA and Computer OperationsAdabas DBA Tasks

Database Design
This part of the DBA task description contains information about and guidelines for database design.
Topics discussed include performance, file structure, record design, efficient use of descriptors, use of the
Adabas direct access method (ADAM), disk storage space techniques, database recovery and restart
procedures, and security.

This information is organized under the following headings:

Performance Control During System Design

File and Record Design

Data Access Strategies

Disk Space Usage

Adabas Security

Recovery/Restart Design

The Adabas Recovery Aid

Multiclient Support

Expanded Files

38

Adabas DBA TasksDatabase Design

Performance Control During System Design
The performance of a system is measured by the time and computer resources required to run it. These
may be important for the following reasons:

Some system functions may have to be completed within a specified time frame;

The system may compete for computer resources with other systems that have more stringent time
constraints.

Performance may not be the most important objective. Trade-offs often need to be made between
performance and

flexibility;

data independence;

accessibility of information;

audit and security considerations;

currency of information;

ease of scheduling and impact on concurrent users of the database; or

disk space.

In some cases, performance may be a constraint to be met rather than an objective to be optimized. If the
system meets its time and volume requirements, attention may be turned from performance to other areas.

This chapter covers the following topics:

Methodology for Performance Control in System Design

Methodology for Performance Control in System Design
The need to achieve satisfactory performance may affect

the design of the database;

the options defined when first loading the database;

the logic of application functions (for example, whether to use direct access or a combination of
sequential accesses and sorts); and/or

operation procedures and scheduling.

Performance requirements must be considered early in the system design process. The following
procedure may be used as a basis for controlling performance:

39

Performance Control During System DesignAdabas DBA Tasks

1. Obtain from the users the time constraints for each major system function. These requirements are
likely to be absolute; that is, the system must meet them.

2. Obtain the computer resource constraints from both the users and operations personnel and use the
most stringent set.

3. Describe each function in terms of the logical design model specifying the

manner in which each record type is processed;

access path and the sequence in which records are required;

frequency and volume of the run;

time available.

4. Decide which programs are most "performance critical". The choice may involve volumes,
frequency, deadlines, and the effect on the performance or scheduling of other systems. Other
programs may also have minimum performance requirements which may constrain the extent to
which critical functions can be optimized.

5. Optimize the performance of critical functions by shortening their access paths, improving their logic,
eliminating database features that increase overhead, and so on. On the first pass, an attempt should
be made to optimize performance without sacrificing flexibility, accessibility of information, or other
functional requirements of the system.

6. Estimate the performance of each critical function. If this does not give a satisfactory result, either a
compromise between the time constraints and the functional requirements must be found or a
hardware upgrade must be considered.

7. Estimate the performance of other system functions. Calculate the total cost and compare the cost and
peak period resource requirements with the economic constraints. If the estimates do not meet the
constraints, then a solution must be negotiated with the user, operations, or senior management.

8. If possible, validate the estimates by loading a test database and measuring the actual performance of
various functions. The test database should be similar to the planned one in terms of the number of
records contained in each file and the number of values for descriptors. In the test database, the size
of each record is relatively unimportant except when testing sequential processing, and then only if
records are to be processed in physical sequence.

40

Adabas DBA TasksPerformance Control During System Design

File and Record Design
It is possible to design an Adabas database with one file for each record type as identified during the
conceptual design stage. Although such a structure would support any application functions required of it
and is the easiest to manipulate for interactive queries, it may not be the best from the performance point
of view, for the following reasons:

As the number of Adabas files increases, the number of Adabas calls increases. Each Adabas call
requires interpretation, validation and, in multiuser mode, supervisor call (SVC) and queueing
overhead.

In addition to the I/O operations necessary for accessing at least one index, address converter, and
Data Storage block from each file, the "one file per record type" structure requires buffer pool space
and therefore can result in the overwriting of blocks needed for a later request.

For the above reasons, it may be advisable to reduce the number of Adabas files used by critical programs.
The following techniques may be used for this procedure:

Using multiple-value fields and periodic groups;

Including more than one type of record in an Adabas file;

Linking physical files into a single logical (expanded) file;

Controlling data duplication (and the resulting high resource usage).

Each of these techniques is described in the following sections.

This chapter covers the following topics:

Multiple-Value Fields and Periodic Groups

Different Record Types in a Single Adabas File

Linking Physical Files in a Single Logical File

Data Duplication

Adabas Record Design

Multiple-Value Fields and Periodic Groups
The simple example below shows the practical use of a periodic group:

Order Number Order Date Date Filled Customer Date Required Item Code Quantity

A1234E 29MAR -- UK432M 10JUN 24801K 200

 -- 15APR 30419T 100

 -- 01JUN 273952 300

41

File and Record DesignAdabas DBA Tasks

Example of a Periodic Group

In the example shown in the table above, the order information in the table is shown converted to a record
format in an Adabas file called ORDERS. Each order record contains a periodic group to permit a variable
number of order items. In this case, the periodic group ORDER_ITEM, comprising the ITEM_CODE
field and the related fields QUANTITY, REQ_DATE, and FILL_DATE, can specify up to 191 different
items, quantity desired, and the date needed as well as when the order is actually filled. Each
item/quantity/date needed/date filled group is called an "occurrence"; up to 191 occurrences per periodic
group are possible.

The unique characteristic of the periodic group-the ability to maintain the order of occurrences-is the
reason for choosing the periodic group structure. If a periodic group originally contained three
occurrences and the first or second occurrence is later deleted, those occurrences are set to nulls; the third
occurrence remains in the third position. This contrasts with the way leading null entries are handled in
multiple-value fields, discussed below.

Note also that the record format shown for the ORDERS file may not seem the most logical; however,
fields most likely to contain nulls should be placed together and at the end of the record to save database
space. The fields comprising periodic groups, therefore, are combined after the other fields in the record.

On the other hand, the ORDERS file record structure, while being appropriate for managing orders, may
not as desirable when managing inventory. A stock control application for the items in the ORDER file
can require a completely different record structure. These records are kept in a different database file
called STOCK (see the figure below).

42

Adabas DBA TasksFile and Record Design

Example of a Multiple-Value Field

The record format in STOCK is more suitable to the applications required for stock management than the
format in the ORDERS file. The record is designed to handle cases where an item is designated as a
replacement for another that is no longer in the inventory. By allowing multiple values for the
ITEM_CODE field, the current stock item can also be labelled with the numbers of discontinued items
that the new item replaces, allowing references to the old items to automatically select the new
replacement item. To do this, the ITEM_CODE field is defined as a multiple-value field.

For example, the items 80819W and 337015Y are no longer in stock; their item codes have become
synonyms for the basic item 27395R. An application program that inquires about either discontinued item
can first look through all ITEM_CODE values for the old code, and then refer to the first ITEM_CODE
value in the multiple-value field to identify the replacement.

The ITEM_CODE field may contain from one to 191 values. Unlike a periodic group, however, the
individual values in a multiple-value field do not keep positional integrity if one of the values is removed.
For example, if the item 337015Y in the STOCK record shown above can no longer be ordered and the
pseudocode is set to a null, 80819W automatically becomes the second occurrence under ITEM_CODE.

The following limits apply when using multiple-value fields or periodic groups:

The maximum number of values of any multiple-value field is 191;

The maximum number of occurrences of any one periodic group is 191;

A periodic group cannot contain another periodic group;

Depending on the compressed size of one occurrence, their usage can result in extremely large record
sizes which may be larger than the maximum record size supported by Adabas.

Descriptors contained within a periodic group and subdescriptors or superdescriptors derived from fields
within a periodic group cannot be used to control logical sequential reading or as a sort key in find and
sort commands. In addition, specific rules apply to the ways in which search requests involving one or
more descriptors derived from multiple-value fields and/or contained within a periodic group may be
used. These rules are described in the Adabas Utilities documentation, ADACMP utility.

Different Record Types in a Single Adabas File
Another method of reducing the number of files is to store data belonging to two logical record types in
the same Adabas file. The following example shows how a customer file and an order file might be
combined. This technique takes advantage of Adabas null-value suppression.

Fields in the field definition table for the combined file:

Key, Record Type, Order Data, Order Item Data

Stored records:

Key Type Order Data*

Key Type * Order Item Data

 * indicates suppressed null values.

43

File and Record DesignAdabas DBA Tasks

The key of an order item record could be order number plus line sequence number within this order.

This technique reduces I/O operations by allowing the customer and order record types to share control
blocks and higher-level (UI) index blocks. Fewer blocks have to be read before processing of the file can
start, and more space is left free in the buffer pool for other types of blocks.

The customer and order records can be grouped together in Data Storage, reducing the number of blocks
that have to be read to retrieve all the orders for a given customer. If all the orders are added at the same
time the customer is added, the total I/O operations required will also be reduced. If the orders are added
later, they might not initially be grouped in this way but they can be grouped later by using the ADAORD
utility.

The key must be designed carefully to insure that both customer and order data can be accessed
efficiently. To distinguish different orders belonging to the same customer, the key for a customer record
will usually have the null value of the suffix appended to it, as shown below:

A00231 000 Order header for order A00231
A00231 001 Order item 1
A00231 002 Order item 2
A00231 003 Order item 3
A00232 000 Order header for order A00232
A00232 001 Order item 1

A record type field is unnecessary if the program can tell whether it is dealing with a customer or order
record by the contents of the key suffix. It may be necessary for a program to reread a record to read
additional fields or to return all fields that are relevant to any of the record types.

Linking Physical Files in a Single Logical File
An Adabas file with 3-byte ISNs can contain a maximum of 16,777,215 records; a file with 4-byte ISNs
can contain 4,294,967,294 records. If you have a large number of records of a single type, you may need
to spread the records over multiple physical files.

To reduce the number of files accessed, Adabas allows you to link multiple physical files containing
records of the same format together as a single logical file. This file structure is called an "expanded file",
and the physical files comprising it are the "component files". An expanded file can comprise up to 128
component files, each with a unique range of logical ISNs. An expanded file cannot exceed 4,294,967,294
records.

Note:
Since Adabas version 6 supports larger file sizes and a greater number of Adabas physical files and
databases, the need for expanded files has, in most cases, been removed.

Although an application program addresses the logical file (the address of the file is the number of the
expanded file’s base component, or "anchor" file), Adabas selects the correct component file according to
the data in a field defined as the "criterion" field. The data in this field has characteristics unique to
records in only one component file. When an application updates the expanded file, Adabas looks at the
data in the criterion field in the record to be written to determine which component file to update. When
reading expanded file data, Adabas uses the logical ISN as the key to finding the correct component file.

Adabas utilities do not always recognize expanded files; that is, some utility operations automatically
perform their functions on all component files, and others recognize only individual physical files. See
Expanded Files for more information.

44

Adabas DBA TasksFile and Record Design

Data Duplication

Physical Duplication

In some cases, a few fields from a header record are required almost every time a detail record is accessed.
For example, the production of an invoice may require both the order item data and the product
description which is part of the product record. The simplest way to make this information quickly
available to the invoicing program is to hold a copy of the product description in the order item data. This
is termed physical duplication because it involves holding a duplicate copy of data which is already
physically represented elsewhere-in this case, in the product record. Physical duplication can also be in
effect if some fields from each detail record are stored as a periodic group in a header record.

Physical duplication seldom causes much of a problem if it is limited to fields that are updated only
infrequently. In the example above, the product description data rarely changes; the rule is: the less
activity on duplicated fields, the better.

Logical Duplication

Assume a credit control routine needs the sum of all invoices present for a customer. This information can
be derived by reading and totalling the relevant invoices, but this might involve random access of a large
number of records. It can be obtained more quickly if it is stored permanently in a customer record that
has been correctly maintained. This is termed "logical duplication" because the duplicate information is
not already stored elsewhere but is implied by the contents of other records.

Programs that update physically or logically duplicated information are likely to run more slowly because
they must also update the duplicate copies. Logical duplication almost always requires duplicate updating
because the change of any one record can affect data in other records. Logical duplication can also cause
severe degradation in a TP environment if many users have to update the same record.

Adabas Record Design
Once an Adabas file structure has been determined, the next step is usually to define the fields for the file.
The field definitions are entered as input statements to the ADACMP utility’s COMPRESS function, as
described in the Adabas Utilities documentation This section describes the performance implications of
some of the options that may be used for fields.

The fields of a file should be arranged so that those which are read or updated most often are nearest the
start of the record. This will reduce the CPU time required for data transfer by reducing the number of
fields that must be scanned. Fields that are seldom read but are mainly used as search criteria should be
placed last.

For example, if a descriptor field is not ordered first in the record and logically falls past the end of the
physical record, the inverted list entry for that record is not generated for performance reasons. To
generate the inverted list entry in this case, it is necessary to unload short, decompress, and reload the file;
or use an application program to reorder the field first for each record of the file.

45

File and Record DesignAdabas DBA Tasks

Combining Fields

If several fields are always read and updated together, CPU time can be saved by defining them as one
Adabas field. The disadvantages of combining fields in this way are:

More disk space may be required since combining fields may reduce the possibilities for
compression;

It may be more difficult to manipulate such fields in query language programs such as SQL.

Using Field Groups

The use of groups results in more efficient internal processing of read and update commands. This is the
result of shorter format buffers in the Adabas control block. Shorter format buffers, in turn, take less time
to process and require less space in the internal format buffer pool.

Numeric Fields

Numeric fields should be loaded in the format in which they will most often be used. This will minimize
the amount of format conversion required.

Fixed-Storage Option

The use of the fixed storage (FI) option normally reduces the processing time of the field but may result in
a larger disk storage requirement, particularly if the field is contained within a periodic group. FI fields,
like NU fields, should be grouped together wherever possible.

46

Adabas DBA TasksFile and Record Design

Data Access Strategies
This chapter covers the following topics:

Efficient Use of Descriptors

Collation Descriptor

Superdescriptor

Subdescriptor

Phonetic Descriptor

Hyperdescriptor

File Coupling

User-Assigned ISNs

Using the ISN as a Descriptor

ADAM Usage

Efficient Use of Descriptors
Descriptors are used to select records from a file based on user-specified search criteria and to control a
logical sequential read process. The use of descriptors is thus closely related to the access strategy used for
a file. Additional disk space and processing overhead are required for each descriptor, particularly those
that are updated frequently. The following guidelines may be used in determining the number and type of
descriptors to be defined for a file:

If data in certain fields needs to be resequenced before processing on the field can continue, a
collation descriptor can be defined.

The distribution of values in the descriptor field should be such that the descriptor can be used to
select a small percentage of records in the file;

Additional descriptors should not be defined to further refine search criteria if a reasonably small
number of records can be selected using existing descriptors;

If two or three descriptors are used in combination frequently (for example, area, department,
branch), a superdescriptor may be used instead of defining separate descriptors;

If the selection criterion for a descriptor always involves a range of values, a subdescriptor may be
used;

If the selection criterion for a descriptor never involves the selection of null value, and a large
number of null values are possible for the descriptor, the descriptor should be defined with the
null-value suppression (NU) option;

47

Data Access StrategiesAdabas DBA Tasks

If a field is updated very frequently, it should normally not be defined as a descriptor;

Files that have a high degree of volatility (large number of additions and deletions) should not
contain a large number of descriptors.

Collation Descriptor
A collation descriptor is used to sort (collate) descriptor field values in a special sequence based on a
user-supplied algorithm. An alpha or wide field can be defined as a parent field of a "collation" descriptor.

Special collation descriptor user exits are specified using the ADARUN parameter CDXnn (CDX01
through CDX08). The user exits are used encode the collation descriptor value or decode it back to the
original field value. Each collation descriptor must be assigned to a user exit, and a single user exit may
handle multiple collation descriptors.

Superdescriptor
A superdescriptor is a descriptor created from a combination of up to 20 fields (or portions of fields). The
fields from which a superdescriptor is derived may or may not be descriptors. Superdescriptors are more
efficient than combinations of ordinary descriptors when the search criteria involve a combination of
values. This is because Adabas accesses one inverted list instead of several and does not have to ‘AND’
several ISN lists to produce the final list of qualifying records. Superdescriptors can also be used in the
same manner as ordinary descriptors to control the logical sequence in which a file is read.

The values for search criteria that use superdescriptors must be provided in the format of the
superdescriptor (binary for superdescriptors derived from all numeric fields, otherwise alphanumeric). If
the superdescriptor format is binary, the input of the search value using an interactive query or report
facility such as Natural may be difficult.

Subdescriptor
A descriptor that is derived from a portion of a field is called a subdescriptor. The field used to derive the
subdescriptor may or may not be a descriptor. If a search criteria involves a range of values that is
contained in the first ‘n’ bytes of an alphanumeric field or the last ‘n’ bytes of a numeric field, a
subdescriptor may be defined from only the relevant bytes of the field. Using a subdescriptor allows the
search criterion to be represented as a single value rather than a range. This results in more efficient
searching, since Adabas does not need to merge intermediate ISN lists; the merged list already exists.

For example, assume an alphanumeric field AREA of 8 bytes, the first 3 of which represent the region and
the last 5 the department. If only records for region ‘111’ are desired, a search criterion of ‘AREA =
11100000 thru 11199999’ would be required without a subdescriptor. If the first three bytes of AREA
were defined as a subdescriptor, a search criterion equal to ‘REGION = 111’ can be specified.

Phonetic Descriptor
A phonetic descriptor may be defined to perform phonetic searches. Using a phonetic descriptor in a Find
command returns all the records that contain similar phonetic values. The phonetic value of a descriptor is
based on the first 20 bytes of the field value with only alphabetic values being considered (numeric values,
special characters and blanks are ignored).

48

Adabas DBA TasksData Access Strategies

Hyperdescriptor
The hyperdescriptor option enables descriptor values to be generated based on a user-supplied algorithm.
Up to 31 different hyperdescriptors can be defined for a single physical Adabas database. Each
hyperdescriptor must be named by an appropriate HEXnn ADARUN statement parameter in the job where
it is used.

Hyperdescriptors can be used to implement n-component superdescriptors, derived keys, or other key
constructs. For more information about hyperdescriptors, see the documentation on User and Hyperexits,
as well as the ADACMP utility description in the Adabas Utilities documentation.

File Coupling
Using a single Find command, file coupling allows the selection of records from one file that are related
(coupled) to records containing specified values in a second file. For example, assume two files,
CUSTOMER and ORDERS, that contain customer and order information, respectively. Each file contains
the descriptor CUSTOMER_NUMBER, which is used as the basis for relating (coupling) the files.

Physical Coupling

The files are physically coupled using the ADAINV utility, which creates a pair of additional indices in
the inverted list indicating which records in the CUSTOMER file are related (coupled) to records in the
ORDERS file (that is, have the same customer number) and vice versa. Once the files have been coupled,
a single Find command containing descriptors from either file may be constructed, for example:

FIND CUSTOMER WITH NAME = JOHNSON
 AND COUPLED TO ORDERS
 WITH ORDER-MONTH = JANUARY

Physical coupling may be useful for information retrieval systems in which file volatility is very low, or
the additional overhead of the coupling lists is deemed insignificant compared with the ease with which
queries may be formulated. It may also be useful for small files which are primarily query-oriented.

Physical coupling may involve a considerable amount of additional overhead if the files involved are
frequently updated. The coupling lists must be updated if a record in either of the files is added or deleted,
or if the descriptor used as the basis for the coupling is updated in either file.

Physical coupling requires additional disk space for the storage of the coupling indices. The space
required depends on the number of records that are related (coupled). The best case is where the coupling
descriptor is a unique key for one of the files. This means that only a few records in one file will be
coupled to a given record in the other file. The worst case is when a many-to-many relationship exists
between the files. This will result in a large number of records being coupled to other records in both files.

A descriptor used as the basis for coupling should normally be defined with the null suppression option so
that records containing a null value are not included in the coupling indices.

See the Adabas Utilities documentation, the ADAINV utility, for additional information on the use of
coupling.

49

Data Access StrategiesAdabas DBA Tasks

Logical Coupling

A multifile query may also be performed by specifying the field to be used for interfile linkage in the
search criteria. This feature is called logical coupling and does not require the files to be physically
coupled.

Although this technique requires read commands, it is normally more efficient if the coupling descriptor is
volatile because it does not require any physical coupling lists. It should also be noted that the user
program need only specify the search criteria and the field to be used for the soft-coupling link. Adabas
performs all necessary search, read and internal list matching operations.

User-Assigned ISNs
The user has the option of assigning the ISN of each record in a file rather than having this done by
Adabas. This technique permits later data retrieval using the ISN directly rather than using the inverted list
technique. This requires that the user develop his own method for the assigning a unique ISN to each
record. The resulting ISNs must be within the range of the MINISN and MAXISN parameter values
specified by the ADALOD utility when the file is loaded.

Using the ISN as a Descriptor
The user may store the ISN of related records in another record in order to be able to read the related
records directly without using the Inverted Lists.

For example, assume an application which needs to read an order record and then find and read all
customer records for the order. If the ISN of each customer record (for more than one customer per order,
a multiple-value field could be used) were stored in the order record, the customer records could be read
directly since the ISN is available in the order record.

Storing the customer record ISNs avoids having to issue a FIND command to the customer file to
determine the customer records for the order. This technique requires that the field containing the ISNs of
the customer records be established and maintained in the order record, and assumes that the ISN
assignment in the customer file will not be changed by a file unload and reload operation.

ADAM Usage
The Adabas direct access method (ADAM) facility permits the retrieval of records directly from Data
Storage without access to the inverted lists. The Data Storage block number in which a record is located is
calculated using a randomizing algorithm based on the ADAM key of the record. The use of ADAM is
completely transparent to application programs and query and report writer facilities.

The ADAM key of each record must be a unique value. The ISN of a record may also be used as the
ADAM key.

While accessing ADAM files is significantly faster, adding new records to and loading of ADAM files is
slower than for standard files because successive new records will not generally be stored in the same
block.

50

Adabas DBA TasksData Access Strategies

If an ADAM file is to be processed both randomly and in a given logical sequence, the logical sequential
processing may be optimized by using the bit truncation feature of the ADALOD utility. This feature
permits the truncation of a user-specified number of bits from the rightmost portion of each ADAM key
value prior to its usage as input to the randomizing algorithm. This will cause records of keys with similar
leftmost values to be stored in the same Data Storage block.

It is important not to truncate too many bits, however, as this may increase the number of overflow
records and degrade random access performance. The reason is, overflow records which cannot be stored
in the blocks located using the ADAM key are stored elsewhere using the standard inverted list process;
overflow records must also be located using the inverted list. The only other way to minimize overflow is
to specify a relatively large file and padding factor size.

ADAM will generally use an average of 1.2 to 1.5 I/O operations (including an average of overflow
records stored under Associator control in other blocks of the file), rather than the three to four I/O
operations required to retrieve a record using the inverted lists. Overflow records are also retrieved using
normal Associator inverted list references.

The variable factors of an ADAM file that affect performance are, therefore, the amount of disk space
available (the more space available, the fewer the overflow records which need to be located with an
inverted list), the number of bits truncated from the ADAM key, and the amount of record adding and
update activity. The ADAMER utility may be used to determine the average number of I/O operations for
various combinations of disk space and bit truncation. See the Adabas Utilities documentation for
additional information.

51

Data Access StrategiesAdabas DBA Tasks

Disk Space Usage
The efficient use of disk space is especially important in a database environment since

sharing data between several users, possibly concurrently and in different combinations, normally
requires that a large proportion of an organization’s data be stored online; and

some applications require extremely large amounts of data.

Decisions concerning the efficient usage of disk space must be made while considering other objectives of
the system (performance, flexibility, ease of use). This section discusses the techniques and considerations
involved in performing trade-offs between these objectives and the efficient usage of disk space.

This chapter covers the following topics:

Data Compression

Forward Index Compression

Padding Factors

Data Compression
Each field may be defined to Adabas with one of three compression options:

Fixed storage (FI), in which the field is not compressed at all. One-byte fields that are always filled
(for example, "gender" in a personnel record) and alphanumeric or numeric fields with full values
("personnel number") should always be specified as fixed (FI) fields.

Ordinary compression (the default) which causes Adabas to remove trailing blanks from
alphanumeric fields and leading zeros from numeric fields;

Null-value suppression, which includes ordinary compression and in addition suppresses the null
value for a field. Adjacent null value fields are combined into a single value.

The following table illustrates how various values of a five-byte alphanumeric field are stored using each
compression option.

Field Value Fixed Storage Ordinary Compression Null-Value Suppression

ABCbb ABCbb (5 bytes) 4ABC (4 bytes) 4ABC (4 bytes)

ABCDb ABCDb (5 bytes) 5ABCD (5 bytes) 5ABCD (5 bytes)

ABCDE ABCDE (5 bytes) 6ABCDE (6 bytes) 6ABCDE (6 bytes)

bbbbb bbbbb (5 bytes) 2b (2 bytes) * (1 byte)

X X (1 byte) 2X (2 bytes) 2X (2 bytes)

52

Adabas DBA TasksDisk Space Usage

The number preceding each stored value is an inclusive length byte (not used for FI fields). The asterisk
shown under null-value suppression indicates a suppressed field count. This is a one-byte field which
indicates the number of consecutive empty (suppressed) fields present at this point in the record. This field
can represent up to 63 suppressed fields.

The compression options chosen also affect the creation of the inverted list for the field (if it is a
descriptor) and the processing time needed for compression and decompression of the field.

Fixed Storage

Fixed storage indicates that no compression is to be performed on the field. The field is stored according
to its standard length with no length byte. Fixed storage should be specified for small one- or two-byte
fields that are rarely null, and for fields for which little or no compression is possible. Refer to the Adabas
Utilities documentation the ADACMP utility, for restrictions related to the use of FI fields.

Ordinary Compression

Ordinary compression results in the removal of trailing blanks from alphanumeric fields and leading zeros
from numeric fields. Ordinary compression will result in a saving in disk space if at least two bytes of
trailing blanks or leading zeros are removed. For two-byte fields, however, there is no savings, and for
one-byte fields, adding the length byte actually doubles the needed space. Such fields, and fields that
rarely have leading or trailing zeros or blanks, should be defined with the fixed storage (FI) option to
prevent compression.

Null-Value Suppression

If null-value suppression (NU) is specified for a field, and the field value is null, a one-byte empty field
indicator is stored instead of the length byte and the compressed null value (see Data Compression). This
empty field indicator specifies the number of consecutive suppressed fields that contain null values at this
point in the record. It is, therefore, advantageous to physically position fields which are frequently empty
next to one another in the record, and to define each with the null-value suppression option.

An NU field that is also defined as a descriptor is not included in the inverted lists if it contains a null
value. This means that a find command referring to that descriptor will not recognize qualifying descriptor
records that contain a null value.

This applies also to subdescriptors and superdescriptors derived from a field that is defined with
null-value suppression. No entry will be made for a subdescriptor if the bytes of the field from which it is
derived contain a null value and the field is defined with the null-value suppression (NU) option. No entry
will be made for a superdescriptor if any of the fields from which it is derived is an NU field containing a
null value.

Therefore, if there is a need to search on a descriptor for null values, or to read records containing a null
value in descriptor sequence-for example, to control logical sequential reading or sorting-then the
descriptor field should not be defined with the NU option.

Null-value suppression is normally recommended for multiple-value fields and fields within periodic
groups in order to reduce the amount of disk space required and the internal processing requirements of
these types of fields. The updating of such fields varies according to the compression option used.

53

Disk Space UsageAdabas DBA Tasks

If a multiple-value field value defined with the NU option is updated with a null value, all values to the
right are shifted left and the value count is reduced accordingly. If all the fields of a periodic group are
defined with the NU option, and the entire group is updated to a null value, the occurrence count will be
reduced only if the occurrence updated is the highest (last) occurrence. For detailed information on the
updating of multiple-value fields and periodic groups, see the Adabas Utilities documentation ADACMP
utility, and the Adabas Command Reference documentation A1/A4 and N1/N2 commands.

Forward Index Compression
The forward (or ‘front’ or ‘prefix’) index compression feature saves index space by removing redundant
prefix information from index values. The benefits are less disk space used, possibly fewer index levels
used, fewer index I/O operations, and therefore greater overall throughput. The buffer pool becomes more
effective because the same amount of index information occupies less space. Commands such as L3, L9,
or S2, which sequentially traverse the index, become faster and the smaller index size reduces the elapsed
time for Adabas utilities that read or modify the index.

Within one index block, the first value is stored in full length. For all subsequent values, the prefix that is
common with the predecessor is compressed. An index value is represented by

 <l,p,value>

where

p is the number of bytes that are identical to the prefix of the preceding value; and

l is the exclusive length of the remaining value including the p-byte.

For example:

Decompressed Compressed

ABCDE 6 0 ABCDE

ABCDEF 2 5 F

ABCGGG 4 3 GGG

ABCGGH 2 5 H

Index compression is not affected by the format of a descriptor. It functions as well for PE-option and
multiclient descriptors.

The maximum possible length of a compressed index value occurs for an alphanumeric value in a periodic
group:

253 bytes for the proper value if no bytes are compressed
1 byte for the PE index
1 byte for the p-byte.

The total exclusive length can thus be stored in a single byte.

Adabas implements forward index compression at the file level. When loading a file (ADALOD), an
option is provided to compress index values for that file or not. The option can be changed by reordering
the file (ADAORD).

54

Adabas DBA TasksDisk Space Usage

Adabas also provides the option of compressing all index values for a database as a whole. In this case,
specific files can be set differently; the file-level setting overrides the database setting.

The decision to compress index values or not is based on the similarity of index values and the size of the
file:

the more similar the index values, the better the compression results.

small files are not good candidates because the absolute amount of space saved would be small
whereas large files are good candidates for index compression.

Even in a worst case scenario where the index values for a file do not compress well, a compressed index
will not require more index blocks than an uncompressed index.

Padding Factors
A large amount of record update activity may result in a considerable amount of record migration, i.e.,
removal of the record from its current block to another block in which sufficient space for the expanded
record is available. Record migration may be considerably reduced by defining a larger padding factor for
Data Storage for the file when it is loaded. The padding factor represents the percentage of each physical
block which is to be reserved for record expansion.

The padding area is not used during file loading or when adding new records to a file (this is not
applicable for an ADAM file, since the padding factor is used if necessary to store records into their
calculated Data Storage block). A large padding factor should not be used if only a small percentage of the
records is likely to expand, since the padding area of all the blocks in which nonexpanding records are
located would be wasted.

If a large amount of record update/addition is to be performed in which a large number of new values
must be inserted within the current value range of one or more descriptors, a considerable amount of
migration may also occur within the Associator. This may be reduced by assigning a larger padding factor
for the Associator.

The disadvantages of a large padding factor are a larger disk space requirement (fewer records or entries
per block) and possible degradation of sequential processing since more physical blocks will have to be
read.

Padding factors are specified when a file is loaded, but can be changed when executing the ADADBS
MODFCB function or the ADAORD utility for the file or database.

55

Disk Space UsageAdabas DBA Tasks

Adabas Security
This section describes general considerations for database security and introduces the security facilities
provided by Adabas and the Adabas subsystems. Detailed information about the facilities discussed in this
section may be found in other parts of this documentation and in the Adabas Security documentation.

This chapter covers the following topics:

Security Planning

Password Security

Security by Value

Ciphering

Adabas SAF Security

Natural andAdabas Online System Security

Security Planning
Effective security measures must take account of the following:

A system is only as secure as its weakest component. This may be a non-DP area of the system: for
example, failure to properly secure printed listings;

It is rarely possible to design a "foolproof" system. A security system will probably be breached if
the gain from doing so is likely to exceed the cost;

Security can be expensive. Costs include inconvenience, machine resources, and the time required to
coordinate the planning of security measures and monitor their effectiveness.

The cost of security measures is usually much easier to quantify than the risk or cost of a security
violation. The calculation may, however, be complicated by the fact that some security measures offer
benefits outside the area of security. The cost of a security violation depends on the nature of the violation.
Possible types of cost include

loss of time while the violation is being corrected;

penalties under privacy legislation, breach of contracts, and so on;

damage to relationships with customers, suppliers, employees, and so on.

Password Security
Password security allows the DBA to control a user’s use of the database by

56

Adabas DBA TasksAdabas Security

restricting the user to certain files;

specifying for each file whether the user can access and update, or access only;

preventing the user from accessing or updating certain fields while allowing access or update of other
fields in the same file;

restricting the user’s view of the file to records that contain specified field values (for example,
department code).

The DBA can assign a security level to each file and each field within a file. In the following table, x/y
indicates the access/update security level. The value 0/0 indicates no security.

File Fields

1 (2/3) AA (0/0) BB (4/5)

2 (6/7) LL (6/7) MM (6/9)

3 (4/5) XX (4/5) YY (4/5)

4 (0/0) FF (0/0) GG (0/15)

A user must supply an appropriate password to access/update a secured file. In the following table, x/y
indicates the password access/update authorization level.

 Passwords

 ALPHA BETA

File 1 2/3 4/5

File 2 0/0 6/7

File 3 4/5 0/0

Assuming the files, fields, and passwords shown in the above tables, the following statements are true:

Password ALPHA

can access and update field AA in file 1, but not field BB;

can access and update all fields in file 3;

cannot access or update file 2.

Password BETA

can access and update all fields in file 1;

can access all the fields in file 2 and can update field LL, but not field MM;

cannot access or update file 3.

57

Adabas SecurityAdabas DBA Tasks

No password is required to access any field in file 4, or to update field FF.

Field GG in file 4 can be read only. Its update security level is 15 and the highest possible
authorization level is 14.

If password BETA can access a field that password ALPHA cannot, then password BETA can also access
all the fields in the same file that password ALPHA can access. There is no way in which ALPHA can be
authorized to access field AA but not field BB and password BETA to access BB but not AA. The same
restriction applies to update (although not necessarily to the same combinations of fields or to the
advantage of the same password). ALPHA could be permitted to update all the fields which BETA can
update and some others which BETA cannot update.

This restriction does not apply to file-level security. For example, ALPHA can use file 3 but not file 2, and
BETA can use file 2 but not file 3. When a record is being added to a file, Adabas only checks the update
security level on those fields for which the user is supplying values. For example, the password ALPHA
could be used to add a record to file 1 provided that no value was specified for field BB. This could
represent the situation where, for example, a customer record is only to be created with a zero balance. For
record deletion, the password provided must have an authorization level equal to or greater than the
highest update security level present in the file. For example, an update authorization level of 9 is required
to delete a record from file 2, and, it is not possible to delete records from file 4.

Security by Value
It is also possible to limit access/update fields within a file based on the contents of the field in the file.
See the Adabas Security documentation for more information.

Ciphering
Adabas is able to cipher (encrypt) records when they are initially loaded into a file or when records are
being added to a file. Ciphering makes it extremely difficult to read the contents of a copy of the database
obtained from a physical dump of the disk on which the database is contained. Ciphering applies to the
records stored in Data Storage only. No ciphering is performed for the Associator.

Adabas SAF Security
Adabas SAF Security, a selectable unit, can be used with Software AG’s Com-plete and with the
following non-Software AG security environments:

CA-ACF2 (Computer Associates);

CA-Top Secret (Computer Associates);

RACF (IBM Corporation)

For more information about Adabas SAF Security, contact your Software AG representative.

58

Adabas DBA TasksAdabas Security

Natural andAdabas Online System Security
The Natural Security system may also be used to provide extensive security provisions for Adabas/Natural
users. See the Natural Security documentation for additional information.

Access to the DBA facility Adabas Online System (AOS) can also be restricted. AOS Security requires
Natural Security as a prerequisite.

59

Adabas SecurityAdabas DBA Tasks

Recovery/Restart Design
This chapter discusses the design aspects of database recovery/restart. Proper recovery/restart planning is
an important part of the design of the system, particularly in a database environment. Although Adabas
provides facilities to perform both restart and recovery, the functions must be considered separately.

This chapter covers the following topics:

Adabas Recovery

Planning and Incorporating Recoverability

Matching Requirements and Facilities

Transaction Recovery

End Transaction (ET) Command

Close (CL) Command

Reading ET Data

System or Transaction Failure

Limitations of Adabas Transaction Recovery

Adabas Checkpoint Commands

Exclusive File Control

User Restart Data

Adabas Recovery
Recovery of database integrity has the highest priority; if a database transaction fails or must be cancelled,
the effects of the transaction must be removed and the database must be restored to its exact condition
before the transaction began.

The standard Adabas system provides transaction logic (called "ET logic"), extensive checkpoint/logging
facilities, and transaction-reversing "backout" processing to ensure database integrity.

Restarting the database following a system failure means reconstructing the task sequence from a saved
level before the failure, up to and including the step at which the failure occurred-including, if possible,
successfully completing the interrupted operation and then continuing normal database operation. Adabas
provides a recovery aid that reconstructs a recovery job stream to recover the database.

Recoverability is often an implied objective. Everyone assumes that whatever happens, the system can be
systematically recovered and restarted. There are, however, specific facts to be determined about the level
of recovery needed by the various users of the system. Recoverability is an area where the DBA needs to
take the initiative and establish necessary facts. Initially, each potential user of the system should be
questioned concerning his recovery/restart requirements. The most important considerations are

60

Adabas DBA TasksRecovery/Restart Design

how long the user can manage without the system;

how long each phase can be delayed;

what manual procedures, if any, the user has for checking input/output and how long these take;

what special procedures, if any, need to be performed to ensure that data integrity has been
maintained in a recovery/restart situation.

Planning and Incorporating Recoverability
Once the recovery/restart requirements have been established, the DBA can proceed to plan the measures
necessary to meet these requirements. The methodology provided in this section may be used as a basic
guideline.

1. A determination should be made as to the level and degree to which data is shared by the various
users of the system.

2. The recovery parameters for the system should be established. This includes a predicted/actual
breakdown rate, an average delay and items affected, and items subject to security and audit.

3. A determination should be made as to what, if any, auditing procedures are to be included in the
system.

4. An outline containing recovery design points should be prepared. Information in this outline should
include

validation planning. Validation on data should be performed as close as possible to its point of
input to the system. Intermediate updates to data sharing the record with the input will make
recovery more difficult and costly;

dumps (back-up copies) of the database or selected files;

user and Adabas checkpoints;

use of ET logic, exclusive file control, ET data;

audit procedures.

5. Operations personnel should be consulted to determine if all resources required for recovery/restart
can be made available if and when they are needed.

6. The final recovery design should be documented and reviewed with users, operations personnel, and
any others involved with the system.

Matching Requirements and Facilities
Once the general recovery requirements have been designed, the next step is to select the relevant Adabas
and non-Adabas facilities to be used to implement recovery/restart. The following sections describe the
Adabas facilities related to recovery/restart.

61

Recovery/Restart DesignAdabas DBA Tasks

Transaction Recovery
Almost all online update systems and many batch update programs process streams of input transactions
which have the following characteristics:

The transaction requires the program to retrieve and add, update, and/or delete only a few records.
For example, an order entry program may retrieve the customer and product records for each order,
add the order and order item data to the database, and perhaps update the quantity-on-order field of
the product record.

The program needs exclusive control of the records it uses from the start of the transaction to the end,
but can release them for other users to update or delete once the transaction is complete.

A transaction must never be left incomplete; that is, if it requires two records to be updated, either
both or neither must be changed.

End Transaction (ET) Command
The use of the Adabas ET command

ensures that all the adds, updates, and/or deletes performed by a completed transaction are applied to
the database;

ensures that all the effects of a transaction which is interrupted by a total or partial system failure are
removed from the database;

allows the program to store up to 2000 bytes of user-defined restart data (ET data) in an Adabas
system file. This data may be retrieved on restart with the Adabas OP or RE commands. The restart
data can be examined by the program or TP terminal user to decide where to resume operation;

releases all records placed in hold status while processing the transaction.

Close (CL) Command
The Adabas CL command can be used to update the user’s current ET data (for example, to set a
user-defined "job completed" flag). Refer to the section User Restart Data for more information.

Reading ET Data
After a user restart or at the start of a new user or Adabas session, ET data can be retrieved with the OP
command. The OP command requires a user ID, which Adabas uses to locate the ET data, and a command
option to read ET data.

The RE command can also be used to read ET data for the current or a specified user; for example, when
supervising an online update operation.

62

Adabas DBA TasksRecovery/Restart Design

System or Transaction Failure
The autobackout routine is automatically invoked at the beginning of every Adabas session. If a session
terminates abnormally, the autobackout routine removes the effects of all interrupted transactions from the
database up to the most recent ET. If an individual transaction is interrupted, Adabas automatically
removes any changes the transaction has made to the database. Each application program can explicitly
back out its current transaction by issuing the Adabas BT command.

Limitations of Adabas Transaction Recovery
The transaction recovery facility recovers only the contents of the database. It does not recover TP
message sequences, reposition non-Adabas files, or save the status of the user program.

It is not possible to back out the effects of a specific user’s transactions because other users may have
performed subsequent transactions using the records added or updated by the first user.

Adabas Checkpoint Commands
Some programs cannot conveniently use ET commands because

the program would have to hold large numbers of records for the duration of each transaction. This
would increase the possibility of a deadlock situation (Adabas automatically resolves such situations
by backing out the transaction of one of the two users after a user-defined time has elapsed, but a
significant amount of transaction reprocessing could still result), and a very large Adabas hold queue
would have to be established and maintained;

the program may process long lists of records found by complex searches; restarting part of the way
through such a list may be difficult.

Such programs can use the Adabas checkpoint command (C1) to establish a point to which the file or files
the program is updating can be restored if necessary.

Exclusive File Control
A user can request exclusive update control of one or more Adabas files. Exclusive control is requested
with the OP command and will be given only if the file is not currently being updated by another user.
Once exclusive control is assigned to a user, other users may read but not update the file. Programs that
read and/or update long sequences of records, either in logical sequence or as a result of searches, may use
exclusive control to prevent other users from updating the records used. This avoids the need for placing
each record in "hold" status.

Checkpointing Exclusively Controlled Files

Exclusive control users may or may not use ET commands. If ET commands are not used, checkpoints
can be taken by issuing a C1 command.

63

Recovery/Restart DesignAdabas DBA Tasks

System or Program Failure

In the event of a system or program failure, the file or files being updated under exclusive control may be
restored using the BACKOUT function of the ADARES utility. This utility is not automatically invoked
and requires the Adabas data protection log as input. This procedure is not necessary if the user uses ET
commands (see the section Transaction Recovery).

Limitations of Exclusive File Control

The following limitations apply to exclusive file control:

Recovery to the last checkpoint is not automatic, and the data protection log in use when the failure
occurred is required for the recovery process. This does not apply if the user issues ET commands.

In a restart situation following a system failure, Adabas does not check nor prevent other users from
updating files which were being updated under exclusive control at the time of the system
interruption.

User Restart Data
The Adabas ET and CL commands provide an option of storing up to 2000 bytes of user data in an
Adabas system file. One record of user data is maintained for each user. This record is overwritten each
time new user data is provided by the user. The data is maintained from session to session only if the user
provides a user identification (user ID) with the OP command.

The primary purpose of user data is to enable programs to be self-restarting and to check that recovery
procedures have been properly carried out. The type of information which may be useful as user data
includes the following:

The date and time of the original program run and the time of last update. This will permit the
program to send a suitable message to a terminal user, console operator, or printer to allow the user
and/or operator to check that recovery and restart procedures have operated correctly. In particular, it
will allow terminal users to see if any work has to be rerun after a serious overnight failure of which
they were not aware.

The date of collection of the input data.

Batch numbers. This will enable supervisory staff to identify and allocate any work that has to be
reentered from terminals.

Identifying data. This data can be a way for the program to "decide" where to restart. For example, a
program driven by a logical sequential scan needs to know the key value at which to resume.

Transaction number/input record position . This may allow an interactive user or batch program to
locate the starting point with the minimum of effort. Although Adabas returns a transaction sequence
number for each transaction, the user also may want to maintain a sequence number because

after a restart, the Adabas sequence number is reset;

if transactions vary greatly in complexity, there may not be a simple relationship between the
Adabas transaction sequence number and the position of the next input record or document;

64

Adabas DBA TasksRecovery/Restart Design

if a transaction is backed out by the program because of an input error, Adabas does not know
whether the transaction will be reentered immediately (it may have been a simple keying error) or rejected
for later correction (if there was a basic error in the input document or record);

Other descriptive or intermediate data; for example, totals to be carried forward, page numbers and
headings of reports, run statistics.

Job/batch completed flag. The system may fail after all processing has been completed but before the
operator or user has been notified. In this case, the operator should restart the program which will be
able to check this flag without having to run through to the end of the input. The same considerations
apply to batches of documents entered from terminals.

Last job/program name. If several programs must update the database in a fixed sequence, they may
share the same user ID and use user data to check that the sequence is maintained.

A user’s own data can be read with either the OP or RE command. User data for another user can be read
by using the RE command and specifying the other user’s ID. User data for all users can be read in logical
sequential order using the RE command with a command option; in this case, user IDs are not specified.

65

Recovery/Restart DesignAdabas DBA Tasks

The Adabas Recovery Aid
When a system failure disrupts database operation, the Adabas Recovery Aid can create a job stream that
reconstructs the database to the point of failure.

The Recovery Aid combines the protection log (PLOG) and the archived database status from previous
ADASAV operations with its own recovery log (RLOG) information to reconstruct the job sequence. The
result is a reconstructed job statement string (recovery job stream) that is placed in a specially named
output dataset.

The two major parts of the Adabas Recovery Aid are the recovery log (RLOG) and the recovery aid utility
ADARAI. The RLOG is formatted like other Adabas files, using ADAFRM, and then defined with the
ADARAI utility.

The DBA must run the Recovery Aid utility, ADARAI, to

define the RLOG and set up the Recovery Aid environment;

display current RLOG information;

create the recovery job stream.

This chapter covers the following topics:

The Recovery Log (RLOG)

Starting the Recovery Aid

The Recovery Log (RLOG)
The recovery log (RLOG) records the essential information that, when combined with the PLOG, is used
by the ADARAI utility’s RECOVER function to rebuild a job stream to recover and restore the database
status up to the point of failure.

The RLOG information is grouped in "generations", where each generation comprises the database
activity between consecutive ADASAV SAVE, RESTORE (database) or RESTORE GCB operations. The
RLOG holds a minimum of four consecutive generations, up to a maximum value specified when the
RLOG is activated; the maximum is 32. If RLOG space is not sufficient to hold the specified number of
generations, the oldest generation is overwritten with the newest in "wraparound" fashion.

The RLOG file is formatted like other database components by running the ADAFRM utility (SIZE
parameter), and then defined using the PREPARE function of the Recovery Aid ADARAI utility (with the
RLOGSIZE parameter). The space required for the RLOG file is approximately 10 cylinders of 3380 or
equivalent device space.

The ADARAI PREPARE function must be performed just before the ADASAV SAVE run that begins the
first generation to be logged. After ADARAI PREPARE is executed, all subsequent nucleus and utility
jobs that update the database must specify the RLOG file. Of course, the RLOG file can be included in
any or all job streams, if desired.

66

Adabas DBA TasksThe Adabas Recovery Aid

The RLOG file job statement should be similar to the following:

//DDRLOGR1 DD DISP=SHR,DSN=... .RLOGR1

Starting the Recovery Aid
The activity of the Recovery Aid and RLOG logging begins when the first ADASAV SAVE/RESTORE
database or RESTORE GCB function is executed following ADARAI PREPARE.

All activity between the first and second ADASAV SAVE/RESTORE database and/or RESTORE GCB
operations following the ADARAI PREPARE operation belongs to the first generation. When viewing
generations with the ADARAI utility’s LIST function, generations are numbered relatively in ascending
order beginning with the oldest generation.

For more detailed information on setting up the Recovery Aid, see Restart and Recovery in the Adabas
Operations documentation and the ADARAI utility description in the Adabas Utilities documentation.

67

The Adabas Recovery AidAdabas DBA Tasks

Multiclient Support
The Adabas multiclient feature stores records for multiple users or groups of users in a single Adabas file.
This feature is specified at the file level. It divides the physical file into multiple logical files by attaching
an owner ID to each record. Each user can access only the subset of records that is associated with the
user’s owner ID. The file is still maintained as a single physical Adabas file.

The Adabas nucleus handles all database requests to multiclient files.

This chapter covers the following topics:

The Owner Concept

Super Users

Program Compatibility

Support for Soft Coupling

Data and Index Structures

Performance Considerations

User Profile Table

Possible Adabas Response Codes

Utility Support for Multiclient Files

The Owner Concept
Each record in a multiclient file has a specific owner, which is identified by an internal owner ID attached
to each record (for any installed external security package such as RACF or CA-Top Secret, a user is still
identified by either Natural ETID or LOGON ID). The owner ID is assigned to a user ID. A user ID can
have only one owner ID, but an owner ID can belong to more than one user.

The following table shows examples of the ETID/owner ID relationship.

ETID Owner
ID

More than one user can use the same owner ID.
Here, USER1, USER2 and USER3 share the same owner
ID and therefore the same records.

USER1 1

USER2 1

USER3 1

. . .

USER4 2

68

Adabas DBA TasksMulticlient Support

The relationship between the user ID and the owner ID is stored in the profile table in the Adabas
checkpoint file. The DBA maintains the profile table using Adabas Online System/Basic Services (AOS),
a prerequisite for the multiclient feature.

The relation between user ID and owner ID is 1:1 or n:1; either a single user or group of users can be
assigned to one owner ID. Record isolation is always performed on the owner ID level.

The owner ID has a fixed length of up to 8 bytes (alphanumeric). The length is defined by the user during
file creation; it can be changed only by unloading and reloading the multiclient file. Each owner ID must
be less than or equal to the length assigned for the file; otherwise, a nonzero response code occurs. To
avoid wasting space, make the owner ID no larger than necessary.

The following tables show an example of owner isolation for a group of eight file records.

ISN Owner ID Record Example for a physical Adabs file with records owned by different users

1 1 .data.

2 2 .data.

3 1 .data.

4 3 .data.

5 2 .data.

6 3 .data.

7 - no data -

8 1 .data.

ISN Record ISN Record

1 .data. 1 - no data -

2 - no data - 2 .data.

3 .data. 3 - no data -

4 - no data - 4 - no data -

5 - no data - 5 .data.

6 - no data - 6 - no data -

7 - no data - 7 - no data -

8 .data. 8 - no data -

File as seen by a user with an owner ID=1 File as seen by a user with an owner ID=2

Super Users
A super-user owner ID provides access to all records in a multiclient file. A super-user owner ID begins
with an asterisk (*). Adabas allows users with such an owner ID to "match" with any other owner ID,
allowing the user to read all records in a file. More than one super-user owner IDs, each beginning with
"*" and allowing identical privileges, can be defined for a multiclient file.

69

Multiclient SupportAdabas DBA Tasks

A super-user owner ID applies only to Lx read commands and nondescriptor search (Sx) commands.
Descriptor search commands by a super user return only the records having the super user’s owner ID.
Data records or index values stored by a super user are labeled with the super user’s owner ID.

Note:
If a super-user issues an L3 or L9 command, the value start option is ignored; that is, Adabas always starts
at the very beginning of the specific descriptor.

Program Compatibility
No changes to an existing application program are needed to use it in a multiclient environment; however,
a user ID must be supplied in the Additions 1 field of the Adabas control block of each open (OP) call
made by a user who addresses a multiclient file. This allows Adabas to retrieve the owner ID from the
checkpoint file. Otherwise, the application program neither "knows nor cares" whether a multiclient file or
a standard Adabas file is being accessed.

Support for Soft Coupling
Multiclient support is provided for soft coupling.

Data and Index Structures
The data and index structures of a multiclient file differ from those of standard Adabas files.

Data Storage

A Data Storage (DATA) record in a standard file has the following structure:

A Data Storage record in a multiclient file has the following structure:

70

Adabas DBA TasksMulticlient Support

Comparison of Normal and Multiclient Record Formats

Associator

Every normal index and upper index value for a multiclient file is prefixed by the owner ID:

Normal Index Element Structure

The tables below illustrate a multiclient index structure. If a single descriptor value points to more than
one Data Storage record, Adabas stores this extended index value only once, followed by the list of ISNs.
If the same descriptor value for different owner IDs is to be stored, then multiple entries are made in the
index.

71

Multiclient SupportAdabas DBA Tasks

ISN Owner ID NAME

1 1 SMITH The field "NAME" is a descriptor.

2 2 SMITH

3 1 SMITH

4 3 JONES

5 2 JONES

6 3 HARRIS

7 - not stored -

8 1 HARRIS

Owner
ID

DE
value

ISN
count

ISN
list

1 HARRIS 1 8 This is the index for the descriptor NAME. The sort sequence
of values is: owner ID | (DE-value)

1 SMITH 2 1,3

2 JONES 1 5

2 SMITH 1 2

3 HARRIS 1 6

3 JONES 1 4

Notes:

1. Every type of descriptor is prefixed by the owner ID: simple descriptors, sub/superdescriptors,
phonetic, and hyperdescriptors. The owner ID prefix is not counted as a parent field for super- and
hyperdescriptors. The maximum number of parent fields is not affected.

2. The maximum length of a descriptor value, including the owner ID, is 253 bytes.
3. A super-user reading index values in L3/L9 sequence gets values in sorting order by owner ID: the

values for the lowest owner ID first, then the values for the next higher owner ID, and so on. Values
for each owner ID are sorted in ascending order.

Performance Considerations
The multiclient feature causes no added processing overhead for find (S1,S2), read-logical (L3) and
histogram (L9) commands. The index structure permits specific record selection, and there is no
postselection procedure in the Data Storage.

If the selection is done on the Data Storage, Adabas must read the record and check the owner ID. If the
record’s owner ID does not match the current user’s owner ID, the record is skipped. This might slow
down a read-physical (L2) and a read-by-ISN (L1 with I option) command or a nondescriptor search
command.

72

Adabas DBA TasksMulticlient Support

User Profile Table
The owner ID is part of the user’s profile record, which is stored in the Adabas profile table. The profile is
maintained using the Adabas Online System. See the Adabas Online System documentation for more
information.

Possible Adabas Response Codes
Calls to multiclient files can result in the following non-zero Adabas response codes, which indicate that
an error has occurred:

Read and Update Operation If a user tries to read or change a multiclient file’s record using
an owner ID that does not apply to the record, Adabas returns
either response code 3 or 113, depending on the type of read or
update operation.

"Add Record" Operation If a user has an owner ID that is either blank or too long for the
owner ID length assigned to the multiclient file, Adabas returns
response code 68 if this owner tries to add a new record.

Blank or Missing Owner IDs A user with a blank or missing owner ID receives response code
3 or 113 when trying to access a multiclient file.

Utility Support for Multiclient Files
In general, multiclient files are transparent to Adabas utility processing. Special functions of the
ADALOD and ADAULD utilities support the migration of an application from a standard to a multiclient
environment.

The ADALOD Utility LOAD Function

Two ADALOD LOAD parameters LOWNERID and ETID support multiclient files. The parameters work
together to define owner IDs and determine whether a file is a multiclient file.

LOWNERID specifies the length of the internal owner ID values assigned to each record for multiclient
files.

Valid length values are 0-8. In combination with the ETID parameter, the LOWNERID parameter can be
used to reload a standard file as a multiclient file, change the length of the owner ID for the file, or remove
the owner ID from the records of a file.

If the LOWNERID parameter is not specified, the length of the owner ID for the input file (if any)
remains the same.

ETID assigns a new owner ID to all records being loaded into a multiclient file, and must be specified if
the input file contains no owner IDs; that is, the input file was not unloaded from a multiclient source file.

The following table illustrates the effects of LOWNERID and ETID settings.

73

Multiclient SupportAdabas DBA Tasks

LOWNERID
Parameter Setting:

Owner ID Length in Input File:

0 2

0 Keep as nonmulticlient file Convert into a
nonmulticlient file

1 Set up multiclient file (ETID) Decrease owner ID length

2 Set up multiclient file (ETID) Keep owner ID length

3 Set up multiclient file (ETID) Increase owner ID length

(LOWNERID not
specified)

Keep as a nonmulticlient file Keep as a multiclient file

Where this table indicates "(ETID)" in the "owner ID length...0" column, the ETID parameter must
specify the user ID identifying the owner of the records being loaded. The owner ID assigned to the
records is taken from the user profile of the specified user ID. In the "owner ID length...2" column the
ETID parameter is optional; if ETID is omitted, the loaded records keep their original owner IDs.

Note:
If the ETID parameter is used, the ADALOD utility requires an active nucleus. The nucleus will translate
the ETID value into the internal owner ID value.

The ADALOD Utility UPDATE Function

When executing the UPDATE function, ADALOD keeps the owner ID length previously defined for the
file being updated. The owner IDs of the records being added are adjusted to the owner ID length defined
for the file. The owner IDs of the loaded records or of any new records must fit into the existing owner ID
space.

Examples:

ADALOD LOAD FILE=20,LOWNERID=2,NUMREC=0

-creates file 20 as a multiclient file. The length of the internal owner ID is two bytes, but no actual owner
ID is specified. No records are actually loaded in the file (NUMREC=0).

ADALOD LOAD FILE=20,LOWNERID=2,ETID=USER1

-creates file 20 as a multiclient file and loads all supplied records for user USER1. The length of the
internal owner ID is two bytes.

ADALOD UPDATE FILE=20,ETID=USER2

-performs a mass update to add records to file 20, a multiclient file. Loads all the new records for USER2.

The ADAULD Utility

The ADAULD utility unloads records from an Adabas file to a sequential output file. This output file can
then be used as input to a subsequent ADALOD operation.

74

Adabas DBA TasksMulticlient Support

If a multiclient file is unloaded, the output file contains all the unloaded records with their owner IDs. This
information can either be retained by the subsequent ADALOD operation, or be overwritten with new
information by the ADALOD ETID parameter. Any differences in LOWNERID parameter values for the
unloaded and newly loaded file are automatically adjusted by ADALOD.

The ETID parameter of ADAULD can be used to restrict UNLOAD processing to only the records owned
by the specified user. If the ETID parameter is omitted, all records are unloaded. If the
SELCRIT/SELVAL parameters are specified for a multiclient file, the ETID parameter must also be
specified.

Example:

ADAULD UNLOAD FILE=20,ETID=USER1

-unloads all records owned by USER1 in physical sequence.

The ADACMP Utility

The ADACMP utility either compresses user data from a sequential input file into the Adabas internal
structure, or decompresses Adabas data to a sequential user file. The COMPRESS function makes no
distinction between standard and multiclient files, processing both in exactly same way. The
DECOMPRESS function can decompress records selectively if the INFILE parameter specifies a
multiclient file and a valid ETID value is specified.

The DECOMPRESS function skips the owner ID, if present. The output of a DECOMPRESS operation
on a multiclient file contains neither owner ID nor any ETID information.

If the INFILE parameter specifies a multiclient file for the DECOMPRESS function, decompression can
be limited to records for a specific user using the ETID parameter. ADACMP then reads and
decompresses records for the specified user. If the ETID parameter is not specified when decompressing a
multiclient file, all records in the file are decompressed.

Example:

ADACMP DECOMPRESS INFILE=20,ETID=USER1

-decompresses records which are owned by USER1 from file 20 to a sequential output file.

75

Multiclient SupportAdabas DBA Tasks

Expanded Files
This chapter covers the following topics:

Overview

Defining Expanded Files

Inserting a Component File

Removing a Component File

Deleting Expanded Files

Inspecting an Expanded File

Expanded Files and the Adabas Nucleus

Expanded Files and Adabas Utilities

Overview
An expanded file is a logical file comprising one or more physical component files. Each component file
contains records numbered by logical instead of physical ISN numbers. These physical component files
must have

identical field definition tables (FDTs); and

different logical ISN ranges defined by the file’s MINISN and MAXISN parameters. The ISN ranges
cannot overlap.

The component files are chained together in sequence according to their ascending ISN ranges. The file
with the lowest ISN range is called the "anchor" file; its file number is the number of the whole expanded
file.

An expanded file can comprise up to 128 component files; it cannot exceed 4,294,967,294 records. An
Adabas component file with 3-byte ISNs can contain a maximum of 16,777,215 records; a component file
with 4-byte ISNs can contain 4,294,967,294 records.

Note:
Now that Adabas supports larger file sizes and a greater number of Adabas physical files and databases,
the need for expanded files has, in most cases, been removed.

Expanded files are supported by the Adabas

command that processes ISN lists, S8.

sort commands S2 and S9. Before using this feature, investigate how it will affect database
performance and impact users.

76

Adabas DBA TasksExpanded Files

prefetch/multifetch functions, which are enhanced for ET/BT support during expanded file
processing.

Defining Expanded Files

Using ADALOD

Expanded files are defined at load time. Each physical component file is loaded separately using the
ADALOD LOAD function. For all but the first component file, the ANCHOR parameter must be
specified to refer to the anchor file. ADALOD LOAD then performs the following tasks:

Compares the FDT of the new file to the FDT of the anchor file to ensure that they are the same.

Checks the new ISN range (MINISN to MAXISN for the new component file) against the ISN ranges
of the anchor and all other component files to ensure that there is no duplication;

Checks for specification of the NOACEXTENSION parameter (Address Converter extensions are
not permitted in component files);

Checks that the MAXRECL parameter of the new component file is equal to that for the existing
anchor file. All component files must have the same MAXRECL value.

Loads the new component file, and;

Links the new component file into the expanded file chain.

Example:

ADALOD LOAD statements define an expanded file (only the relevant parameters are shown):

ADALOD LOAD FILE=11,NOACEXTENSION
ADALOD MINISN=1,MAXISN=16000000
ADALOD ...

ADALOD LOAD FILE=23,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=36000001,MAXISN=50000000
ADALOD ...

ADALOD LOAD FILE=17,NOACEXTENSION
ADALOD ANCHOR=11
ADALOD MINISN=20000001,MAXISN=36000000

This example loads file 11 as an expanded file comprising:

File 11, ISN range: 1-16,000,000

File 17, ISN range: 20,000,001-36,000,000

File 23, ISN range: 36,000,001-50,000,000

77

Expanded FilesAdabas DBA Tasks

Using the Online System

An expanded file can also be defined using the Adabas Online System Define File function. This function
creates a new, empty file that can be specified as an anchor or component file for an expanded file.
Existing files can be chained together using the Expanded File Maintenance function.

Rules for Defining Expanded Files

1. The NOACEXTENSION parameter must be set to prevent any extension of the Address Converter
(i.e., increase to MAXISN) for the specified file.

2. The MINISN parameter must be specified when loading a component file for an expanded file.

3. The file number for the component file can be freely chosen.

4. A single file is loaded as an expanded file when the ANCHOR and FILE parameters specify the same
file number.

5. An existing single file which is to be expanded may be referenced as the anchor file when the second
component file is loaded. ADALOD then sets NOACEXTENSION for the first file, and makes it the
anchor file.

Note:
An anchor file created in this way loses its anchor status when all component files are removed. If
necessary, you can insert the file into itself to reestablish its anchor status.

6. The ISN ranges for the component files cannot overlap, but there may be gaps of unused ISNs
between file ranges.

7. The component files can be loaded in any sequence.

8. If a new component file is loaded that has an ISN range lower than the range of the current anchor
file, the newly loaded file becomes the new anchor file. The ANCHOR parameter of any component
file loaded thereafter must refer to the new anchor file.

Inserting a Component File
Component files can be inserted into an expanded file using the ADALOD LOAD function as described in
Defining Expanded Files or using Adabas Online System.

Using the online system, a new file can be created and inserted into an expanded file using the Define File
function. A file that already exists can be inserted into an expanded file using the Insert Component File
function.

Refer to the section Rules for Defining Expanded Files on page 57 for possible effects of adding a
component file.

78

Adabas DBA TasksExpanded Files

Removing a Component File
A component file may be both removed from the expanded file and deleted using the Adabas Online
System Delete File function. To remove a component file from the expanded file chain without deleting
the file, the Adabas Online System Remove Component File function can be used.

Refer to the section Rules for Defining Expanded Files on page 57 for possible effects of removing a
component file.

Deleting Expanded Files
The Adabas Online System Delete File function also allows you to delete the complete expanded file; that
is, to delete the anchor and all component files. The ADADBS utility’s DELETE function can also be used
to delete the complete expanded file.

Inspecting an Expanded File
In addition to the normal information about individual files, the report produced by the ADAREP utility
shows the component file list for each expanded file in the database. The expanded file information itself
is also available using the Adabas Online System Display File function.

Expanded Files and the Adabas Nucleus
A user call that refers to an expanded file is automatically directed to the appropriate physical component
file by the Adabas nucleus. The user or application receives no indication that the selected file is an
expanded file.

If the file number in the Adabas control block specifies the component file of an expanded file, the call is
interpreted as being for the complete expanded file. Thus, user applications that accessed an existing
component file in the past need not be changed if that file is integrated into an expanded file: the calls
automatically apply to the complete expanded file. However, for convenience Software AG recommends
that calls refer to the anchor file.

If a function performed on an expanded file produces results from more than one component file, those
results are combined to produce a single result. For example, an L2 command (read physical sequential)
for an expanded file is performed on each component file in sequence, beginning with the anchor file.
Upon reaching the end-of-file for a component file, the L2 automatically continues with the next
component file. The results are accumulated sequentially from all files that were read.

On the other hand, an L3 command (read logical sequential by descriptor) is performed as separate
parallel calls to each component file, and the results are merged into a single sequence before they are
returned to the caller.

Recommended Nucleus Changes for Expanded Files

To better accommodate parallel processing of component files for a single command, an increase in the
following ADARUN parameter values is recommended for the nucleus session:

79

Expanded FilesAdabas DBA Tasks

Parameter Description

LI Length of the table of ISNs (TBI)

LQ Length of the table of sequential commands

LWP Length of the Adabas work pool area

LS Length of the search/sort area

NQCID Maximum number of active command IDs (CIDs) allowed per user

Restrictions When Using Expanded Files

The following limitations apply to programs running on an expanded file:

Physical and/or soft coupling is not currently supported for expanded files.

Multiclient support is not provided for expanded files.

Once established, component files of an expanded file cannot be renumbered.

When Adabas Security is used for an expanded file, the following should be the same for all
component files:

protection profile

password

security-by-value profile

cipher code

Expanded Files and Adabas Utilities
Although the expanded file is transparent to the user making Adabas calls, the DBA running the Adabas
utilities must be aware of the existence of an expanded file. Adabas utility functions process expanded
files in one of two ways:

they process the complete expanded file; or

they process component files.

Functions That Process Complete Expanded Files

Utility functions that process the entire expanded file include the following ADADBS, ADARES, and
ADASAV functions:

ADADBS DELETE Function

Deletes a complete expanded file only.

80

Adabas DBA TasksExpanded Files

ADARES REGENERATE and BACKOUT FILE Functions

Process the expanded file as a whole whenever one of the component files is specified in the file list. All
other component files must then also be specified.

ADASAV

RESTORE(file)Function
Processes the expanded file as a whole whenever one of the component files is specified in the file
list. All other component files must then also be specified.

SAVE (file)Function
Processes the expanded file as a whole whenever one of the component files is specified in the file
list. When running the SAVE (file) function while the Adabas nucleus is active, all other component
files must then also be specified.

Functions That Process Component Files

Utility functions that process component files include the following ADADBS, ADAINV, ADALOD,
ADAORD, ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD, and ADASCR functions.

ADAACK, ADADCK, ADAICK, ADAVAL, ADAULD

All functions of these utilities check single component files only.

ADADBS

CHANGE / NEWFIELD Functions. These functions modify the field definition table (FDT) of a
single component file only. The DBA must perform the CHANGE or NEWFIELD function for all
component files in the expanded file. ADADBS prints a message indicating that the specified file is
part of an expanded file, and then completes with condition code 4.

RELEASE Function. Releases the index for a descriptor of a single component file. The DBA must
perform the RELEASE function for all component files in the expanded file. ADADBS prints a
message indicating that the specified file is part of an expanded file, and then completes with
condition code 4.

ADAINV

INVERT Function. Creates the index for a new descriptor of a single component file. The DBA must
perform the INVERT function for all component files in the expanded file. ADAINV prints a
message indicating that the specified file is part of an expanded file, and then completes with
condition code 4.

COUPLE Function. The ADAINV COUPLE function is not available for expanded files.

ADALOD UPDATE Function

Adds records to/deletes records from a single component file. When performing a mass update on some or
all component files, the complete list of ISNs to be deleted from all component files can be supplied.
ADALOD automatically selects only the ISN values from the specified range that are appropriate for the
component file currently being processed. The same is true when adding new records with
USERISN=YES.

81

Expanded FilesAdabas DBA Tasks

When new records are being added with USERISN=NO but no free ISN is found, the loader cannot
allocate a new Address Converter extent since the ISN range cannot be increased (NOACEXTENSION is
active for all component files). Instead, ADALOD creates the index as though end-of-file had been
reached. The remaining records not loaded may be added later to another component file using the
SKIPREC parameter.

ADALOD does not check for unique descriptor values across component file boundaries.

ADAORD REORFILE / REORFASSO / REORDATA Functions

Each reorder the respective areas of a single component file. Since the file is not logically changed, the
functions need not be performed on all component files of an expanded file.

ADASCR (Adabas Security) Functions

Defines security profiles for individual component files only. The protection, password, security-by-value
and cipher code for each component file should be defined the same for all component files in an
expanded file.

82

Adabas DBA TasksExpanded Files

Database Maintenance Tasks
This part of the DBA documentation describes the tasks involved in defining, maintaining and running an
Adabas database.

This information is organized under the following headings:

Defining an Adabas Database

Database Space Management

Database Monitoring and Tuning

Error Handling and Message Buffering

Universal Encoding Support (UES)

Multiple Platform Support

83

Database Maintenance TasksAdabas DBA Tasks

Defining an Adabas Database
This chapter describes the procedure for defining an Adabas database. It is important for the DBA to
understand the information provided for each step before attempting to define a new database.

Defining a new database involves the following steps:

Step 1 : Estimate the Size of the Database

Step 2 : Allocate Space

Step 3 : Format the Space

Step 4 : Define Database Parameters

After you have completed these steps successfully, you can use the ADACMP and ADALOD utilities to
load user files into the database.

Step 1 : Estimate the Size of the Database

Components Required by the Nucleus

The Adabas nucleus requires three database components: Data Storage, an Associator, and a Work area.

Data Storage

The Data Storage component contains the compressed data records of each file in the database.

Associator

The Associator contains elements for each file in the database and for the database as a whole.

For each file in the database, the Associator includes an inverted list, an address converter, and a field
definition table (FDT):

The inverted list, which resolves Adabas search commands and reads records in logical sequence,
comprises the normal index (NI) and as many as 14 upper indexes (UI). All of the values for each
descriptor in the file are contained in the NI along with a count of the records that contain each value
and a list of the ISNs of those records. To increase search efficiency, UI levels are automatically
created by Adabas as required, each level to manage the next lower level index. The first level UI,
like the NI it manages, contains entries for only one descriptor in each index block. All other UI
levels contain entries for all descriptors in each index block. Upper Indexes require a minimal
amount of space (two blocks is the minimum).

The address converter maps the logical identifier of a record (ISN) to the relative Adabas block
number (RABN) of the Data Storage block where the record is stored. It comprises a list of RABNs
in ISN order; for example, the fifteenth entry in the address converter contains the RABN for ISN 15.

84

Adabas DBA TasksDefining an Adabas Database

The field definition table (FDT) defines the logical contents of an Adabas file. It contains the name,
level, length, format, and specified options for each field in the file.

For the database as a whole, the Associator includes storage management tables and coupling lists:

Storage management tables list the Associator and Data Storage blocks that are available for
allocation, along with the amount of unused space in each Data Storage block.

Coupling lists exist for physically coupled files only are used to resolve search commands in which
descriptors from more than one file are used.

Work

The Work area stores information in four parts:

Part 1. Stores data protection information required by the routines for autorestart and autobackout.

Part 2. Stores intermediate results (ISN lists) of search commands.

Part 3. Stores final results (ISN lists) of search commands.

Part 4. Stores data related to distributed transaction processing.

Other Components

Sort and Temp Areas

The Adabas utilities ADAINV, ADALOD, and ADAVAL require two additional datasets, SORT and
TEMP, for sorting and intermediate storage of data.

The sizes of TEMP and SORT vary according to the utility function to be executed. These datasets can be
allocated during the job and then released, or permanent datasets can be allocated and reused.

Logs

Adabas has the following optional logs:

The command log (CLOG) records information from the control block of each Adabas command that
is issued. The CLOG provides an audit trail and can be used for debugging and for monitoring usage
of resources. Single, dual, or multiple (2-8) datasets can be used (multiple datasets are recommended
).

The protection log (PLOG) records before-images and after-images of records and other elements
when changes are made to the database. It is used to recover the database (up to the last ET) after
restart. Single, dual, or multiple (2-8) datasets can be used (multiple datasets are recommended).

The recovery log (RLOG) records additional information that the Adabas Recovery Aid uses to
construct a recovery job stream.

Note:
Each CLOG, PLOG, and RLOG dataset is limited to 16,777,215 (x’FFFFFF’) blocks/RABNs.

85

Defining an Adabas DatabaseAdabas DBA Tasks

General Space Requirements

The space requirements for the Associator (NI, UI, and AC) and Data Storage are calculated automatically
for each file by the ADALOD utility and the ADACMP utility, respectively. If you want to allocate a
specific amount of space to a file or estimate the space needed for a file without actually executing these
utilities, you can use the formulas provided in this chapter.

If the number and size of the files that will eventually be loaded into the database are not known at the
time that the database is established, it is not necessary to allocate a large amount of extra space to the
Associator and/or Data Storage, since the space may be increased subsequently by using the ADD or
INCREASE function of the ADADBS utility.

The initial allocation for Associator and Data Storage should, however, allow for the loading of all
currently planned files in addition to a reasonable amount of database expansion (adding new files or
updating existing files).

When estimating the Associator space, the following requirements for the database as a whole must be
added to the estimates calculated for each file within the database (normal index, upper indexes, and
address converter):

The first 30 Associator blocks are used by Adabas for storing internal control information. Note that
the physical block sizes for Associator, Data Storage, and Work vary from one Adabas component to
another and according to the device type on which each component is located.

Associator blocks equalling five times the value specified by the MAXFILES parameter are reserved
by Adabas for file control information. The MAXFILES parameter is set when running the ADADEF
utility.

General Procedure for Estimating Space

1. Estimate the following requirements for each file; then add the estimates together for an estimate for
the whole database:

Associator (normal index, upper indexes, address converter)

Data Storage

2. Step 2. Estimate the following requirements for the database as a whole:

Associator (space reserved by Adabas)

First 30 blocks for internal control information;

(MAXFILES � 5) blocks for file control information (the ADADEF parameter
MAXFILES specifies the maximum number of files that can be loaded into the database);

Work area; sort area; temp area; logs

86

Adabas DBA TasksDefining an Adabas Database

Estimation Formulas

The following sections provide formulas for estimating the space that should be allocated to each
component.

Associator, in terms of

normal index (NI)

upper index (UI)

address converter (AC)

Data Storage

Work, in terms of

part 1 (data protection information)

part 2 (intermediate results of search commands)

part 3 (ISN lists from search commands)

part 4 (data related to two-phase commit processing)

sort space

Rules of Precedence in the Formulas

The formulas follow the normal rules of precedence; that is, expressions are evaluated in the following
order:

1. Elements in parentheses;

2. Multiplication and division operations;

3. Addition and subtraction operations;

4. Left to right (when elements have the same precedence level, the one on the left is evaluated first).

Normal Index (NI)

Use the following formula to estimate the normal index space required for each descriptor in the file:

NIRBYTES = ISNSIZE * AVUQVAL * RECORDS + DESCVALS * (AVLENG + 2)

where

87

Defining an Adabas DatabaseAdabas DBA Tasks

NIRBYTES is the space requirement for normal index, in bytes.

ISNSIZE is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by the
ADALOD parameter ISNSIZE.

AVUQVAL is the average number of unique values for the descriptor in each record.

RECORDS is the number of records to be contained in the file, which is specified by the
ADALOD parameter MAXISN.

DESCVALS is the number of unique values for the descriptor in the file.

AVLENG is the average length of the values for the descriptor.

AVUQVAL

AVUQVAL is less than or equal to 1 unless the descriptor is a multiple-value field (MU) or part of a
periodic group (PE).

If the descriptor is defined with the NU (null suppression) option, AVUQVAL equals the average number
of values per record minus the percentage of records that contain a null value (the field is empty). For
example, if each record has one value for the descriptor and 20 per cent of the values are null

AVUQVAL = 1 - 0.2 = 0.8

Similarly, if an MU field has an average of 10 values per record and 20% of the values are null

AVUQVAL = 10 - 2 = 8

AVLENG

If the descriptor field is not defined with the FI (fixed length) option, AVLENG equals the average
compressed length of the field, including the length byte. If the descriptor is defined with the FI option,
AVLENG equals the standard length of the field.

ISNSIZE * AVUQVAL * RECORDS

ISNSIZE * AVUQVAL * RECORDS represents the space required to store the ISNs. It is the important
factor for descriptors that have many duplicate values.

DESCVALS * (AVLENG + 2)

DESCVALS * (AVLENG + 2) represents the space required to store the descriptor values. It is the
important factor for descriptors that have a large proportion of unique values.

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

 NIRBLOCKS = NIRBYTES / (ASSOBLKSIZE * (1 - PADFACTOR / 100))

where

88

Adabas DBA TasksDefining an Adabas Database

NIRBLOCKS is the NI space requirement, in blocks.

NIRBYTES is the NI space requirement, in bytes (from the NIRBYTES formula).

ASSOBLKSIZE is the ASSOR1 block length (see Adabas Device types and Block Sizes).

PADFACTOR is the ASSOR1 block padding factor, which is a percentage of the block length
expressed as a value between 1-90.

Examples

The following examples assume that ASSOR1 is stored on a 3380 device.

Example 1:

Descriptor AA has one value per record and no null values. There are 50 different values for AA in the
file. The average compressed length for the values is 3 bytes.

ISNSIZE=3
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES = 3 * 1 * 20,000 + 50 * (3 + 2)
 = 60,000 + 250
 = 60,250 bytes

NIRBLOCKS = 60,250 / (2004 * (1 - 0.1))
 = 33.41
 = 34 blocks

Example 2:

Descriptor BB has one value per record and no null values. There are 20,000 different values for BB in the
file. The average compressed length for the values is 10 bytes.

ISNSIZE=4
MAXISN=20000
PADFACTOR=10 (%)

NIRBYTES = 4 * 1 * 20,000 + 20,000 * (10 + 2)
 = 80,000 + 240,000
 = 320,000 bytes

NIRBLOCKS = 320,000 / (2004 * (1 - 0.1))
 = 177.42
 = 178 blocks

Example 3:

Descriptor CC is a null-suppressed multiple-value (MU) field with an average of 10 occurrences and 3
null values per record. There are approximately 300 different values for CC in the file. The average
compressed length for the values is 4 bytes.

ISNSIZE=3
MAXISN=10000
PADFACTOR=5 (%)

89

Defining an Adabas DatabaseAdabas DBA Tasks

NIRBYTES = 3 * 7 * 10,000 + 300 * (4 + 2)
 = 210,000 + 1,800
 = 211,800 bytes

NIRBLOCKS = 211,800 / (2004 * (1 - 0.05))
 = 111.25
 = 112

Example 4:

Descriptor DD is a null-suppressed field contained within a periodic group. DD contains an average of 5
values per record; there is an average of 3 null values per record. There are 10 different values for DD in
the file. The average compressed length for the values is 5 bytes.

ISNSIZE=4
MAXISN=10000
PADFACTOR=5 (%)

NIRBYTES = 4 * 2 * 10,000 + 10 * (5 + 2)
 = 80,000 + 70
 = 80,070 bytes

NIRBLOCKS = 80,070 / (2004 * (1 - 0.05))
 = 42.06
 = 43

Upper Index (UI)

Use the following formula to estimate the UI space required for each descriptor in the file:

UIRBYTES = NIRBLOCKS * (AVDESCLEN + ISNSIZE + RABNSIZE + 1)

where

UIRBYTES is the UI space requirement, in bytes.

NIRBLOCKS is the NI space requirement, in blocks (from the NIRBLOCKS formula).

AVDESCLEN is the average compressed length of the values for the descriptor.

ISNSIZE is the length of ISNs in the file (3 or 4 bytes). The ISN length is specified by the
ADALOD parameter ISNSIZE.

RABNSIZE is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is specified
for all files in a database when the database is defined.

Note:
RABNSIZE refers only to the length of the relative Adabas block number. It does
not refer to the block size.

Convert Bytes to Blocks

Use the following formula to convert bytes to blocks. Round the result up to the next block.

90

Adabas DBA TasksDefining an Adabas Database

UIRBLOCKS = UIRBYTES / (ASSOBLKSIZE * (1 - PADFACTOR / 100))

where

UIRBLOCKS is the UI space requirement, in blocks.

UIRBYTES is the UI space requirement, in bytes (from the UIRBYTES formula).

ASSOBLKSIZE is the ASSOR1 block length (see Adabas Device Types and Block Sizes).

PADFACTOR is the ASSOR1 block padding factor, which is a percentage of the block length
expressed as a value between 1-90.

Example

This example assumes that the Associator is stored on a 3380 DASD; therefore, ASSOR1 has 2004 bytes
per block.

The NI block requirement for this file is estimated to be 45 blocks. The average compressed length of the
values for the descriptor is 3 bytes. The database has 3-byte (24-bit) RABNs; the file has 3-byte ISNs. The
ASSOR1 block padding factor is 5 (%).

UIRBYTES = 45 * (3 + 3 + 3 + 1)
 = 450

UIRBLOCKS = 450 / (2004 * (1 - 0.05))
 = 450 / 1903.8
 = 0.24
 = 1 block (a minimum of 2 blocks can be allocated for the UI)

Address Converter (AC)

Use the following formula to estimate the address converter space required for the file. Round the result
up to the next whole block.

ACBLOCKS = (MAXISN +!) * RABNSIZE / ASSOBLKSIZE

where

ACBLOCKS is the space requirement for the address converter, in blocks.

MAXISN is the MAXISN setting for the file.

RABNSIZE is the length of RABNs in the database (3 or 4 bytes). The RABNSIZE is specified
for all files in a database when the database is defined.

Note:
RABNSIZE refers only to the length of the relative Adabas block number. It does
not refer to the block size.

ASSOBLKSIZE is the Associator block size (see Adabas Device types and Block Sizes).

91

Defining an Adabas DatabaseAdabas DBA Tasks

Examples

The following examples assume that the Associator is stored on a 3380 DASD; ASSOR1 has 2004 bytes
per block.

Example 1:

MAXISN=2000000
RABNSIZE=3

ACBLOCKS = (2,000,000 * 3) / 2004
 = 6,000,000 / 2004
 = 2994.01
 = 2995 blocks

Example 2:

MAXISN=2000000
RABNSIZE=4

ACBLOCKS = (2,000,000 * 4) / 2004
 = 8,000,000 / 2004
 = 3992.02
 = 3993 blocks

Data Storage

Use the following formula to estimate the space required for Data Storage. Round the result up to the next
whole block.

DATASTORAGE = MAXISN / ((DSBLKSIZE * (1 - (PADFACTOR / 100))) / AVRECLEN)

where

DATASTORAGE is the space requirement for Data Storage, in blocks.

MAXISN is the MAXISN setting for the file.

DSBLKSIZE is the Data Storage block size, rounded down to the next integer (see Adabas
Device types and Block Sizes).

PADFACTOR is the Data Storage block padding factor, which is a percentage of the block length
expressed as a value between 1-90.

AVRECLEN is the average compressed record length.

Example

MAXISN = 1000000
Average compressed record length = 50
Model 3380 blocksize for DATA = 4820
Data Storage block padding factor = 5 (%)

92

Adabas DBA TasksDefining an Adabas Database

DATASTORAGE = 1,000,000 / ((4820 * (1 - 0.05)) / 50)
 = 1,000,000 / (4579 / 50)
 = 1,000,000 / 91
 = 10,989.01
 = 10,990 blocks

How Adabas Allocates Work Space

When you allocate the Work dataset, allocate enough space for all four parts. The minimum allowable
Work space is 300 blocks. Three ADARUN parameters break up the space into parts 1-4 as follows:

The ADARUN LP parameter specifies the size of Work part 1. The default setting is 1000 blocks; the
minimum is 200. A database with little or no updating needs 500-1000 blocks. Work part 1 begins
with RABN 1; the last RABN is the value of LP.

The ADARUN LWKP2 parameter specifies the size of Work part 2. If LWKP2=0 (the default),
Adabas calculates the size automatically, using the formula described in Work Part 2: Intermediate
Search Results .

Work part 2 begins in the block following the last block of Work part 1; thus, the first RABN of part 2 is
given by

1 + LP

The ADARUN LDTP parameter specifies the size of Work part 4 when ADARUN DTP=RM. If
LDTP=0 (the default), the length of Work part 4 is equivalent to the length of Work part 1
(ADARUN LP). If a non-zero value is specified, it must be greater than the value specified for LP. If
a smaller value is specified, Adabas changes it to equal the LP value.

Work part 4 begins in the block following the last block of Work part 2; thus, the first RABN of part 4 is
given by

1 + LP + LWKP2

After allocating parts 1, 2, and possibly 4, Adabas allocates the remaining blocks to Work part 3. It is
important that you allocate enough space to the Work dataset to leave at least 50 blocks for part 3.

Work Part 1: Data Protection Information

The data protection area for all transactions running in parallel must fit into 1/4 of the Work part 1 (that is,
LP) area. Following are general guidelines for determining the proper size for Work part 1:

1. The total Work part 1 size should be four times the estimated size required for a single average
transaction in bytes times the maximum number of transactions that run in parallel. This value is then
divided by the Work block size (in bytes) minus 200 to convert bytes to blocks.

2. If some transactions are very long, then those transactions alone plus all short transactions executed
in parallel should be used to determine the size of a single average transaction.

3. The size of a single average transaction is determined by estimating the average number of updates
(modifications, additions, and deletions) per transaction and multiplying that number by the
estimated bytes required per update. To this is added space for ET data and for the ET record in
bytes.

93

Defining an Adabas DatabaseAdabas DBA Tasks

4. The size required per update is determined by the average compressed record length in bytes times 4
(before image, after image, and DVT space for each) plus 100 bytes for each protection record header
(that is, 100 times 4).

A formula that expresses these guidelines is

WK1= (4 * TASIZE * TAP) / (BLKSIZE - 200)

where

WK1 is size of Work part 1 in blocks

TASIZE is the size of a single average transaction in bytes

TAP is the maximum number of transactions actually executed in parallel

BLKSIZE is the Work block size in bytes

TASIZE= (((4 * AVCRL) + 400) * UPDTA) + ETDATA + 100

where

AVCRL is the average compessed record length in bytes

UPDTA is the average number of updates per transaction

ETDATA is the average length of ET data in bytes

Example

If AVCRL = 300 bytes, UPDTA = 4, and ETDATA = 200 bytes, then

TASIZE= (((4 * 300) + 400) * 4)+ 200 + 100 = 6700 bytes

If TAP = 100 and BLKSIZE = 5492, then

WK1 = (4 * 6700 * 100) / (5492 - 200) = 506.46 blocks

Work Part 2: Intermediate Search Results

Use the following formula to estimate the space required for the Work part 2 area. Round the result up to
the next whole block.

WORK2 = 22 + 2 * ((4 * RECORDS) / (BLKSIZE - 16))

where

94

Adabas DBA TasksDefining an Adabas Database

WORK2 is the Work part 2 space requirement, in blocks.

RECORDS is the number of records in the file with the most records. This number
equals

TOPISN - MINISN + 1

where:

TOPISN is the highest ISN currently used in the file.

MINISN is the lowest ISN used in the file.

The MINISN value is specified with the ADACMP/ADALOD parameter
MINISN; 1 is the default. You can use the ADAREP utility to display the
TOPISN and MINISN values for the files in a database.

BLKSIZE is the block size of the device where the Work dataset is stored, (see Adabas
Device types and Block Sizes).

Note:
An Adabas internal table requires one byte of storage for each Work part 2 block.

Example

The number of records in the largest file in the database is 500,000. The Work dataset is stored on a 3380
device.

WORK2 = 22 + 2 * ((4 * 500,000) / (5492 - 16))
 = 752.46
 = 753 blocks

Work Part 3: ISN Lists from Search Commands

Adabas allocates to Work part 3 (resultant ISN lists) the Work space remaining after the allocation of the
part 1 (data protection information) and part 2 (intermediate results) areas.

The minimum requirement for this area is 50 blocks.

If insufficient space is provided for this area, Adabas may be unable to execute additional search
commands until the space currently occupied by ISN lists has been released. Consider the following
factors when estimating the space needed for the Work part 3 area:

The number of concurrent search commands to be processed (each ISN list is stored in a separate
block), and the expected size of the resulting ISN lists (each ISN is stored as 4 bytes, regardless of
the ISNSIZE specified for the file);

The number of saved ISN lists resulting from previous search commands with the SAVE ISN LIST
option which will be held concurrently;

The amount of memory which will be required by Adabas as a result (each block allocated to this
area requires 4 bytes of memory).

95

Defining an Adabas DatabaseAdabas DBA Tasks

Example

A maximum of 100 search commands with an average of 25 resulting ISNs per command are to be
processed concurrently during the session.

Adabas will need 100 blocks in the Work part 3 area.

Work Part 4: Data Related to Distributed Transaction Processing

Work part 4 maintains some of the global transactions involved in distributed processing. For example,
during phase one, a global transaction’s protection data may be copied from Work part 1 to Work part 4 to
free space on Work part 1.

If an overflow of Work part 4 is pending, the nucleus can force a transaction termination. This clears
Work part 4 except for transaction IDs (XIDs) and local transaction status information.

The space allocated for Work part 4 must be at least that allocated for Work part 1:

LDTP>=LP

Whether a larger size is needed for Work part 4 depends on the applications running against the database
and on the system load.

Because the information maintained in Work part 4 cannot currently be moved to a different area, you can
alter the size of Work part 4 between sessions only as follows:

you can decrease the size of Work part 4 if it was not used at all in the previous session.

you can increase the size of Work part 4 if it was used in the previous session.

Sort

The following formulas estimate the sort dataset space used for sorting all values of a single descriptor.
Multiple descriptors are sorted successively: all values are sorted for the first descriptor, then all values for
the second descriptor, and so on. Therefore, estimate the space for the largest possible descriptor sort; that
will be enough for all descriptors.

Use the following formula to estimate the space required for the sort area:

DESCSPACE = (AVDESCLEN + (1 + ISNSIZE)) * NUMRECS * AVPEOCCUR * AVMVOCCUR

where

96

Adabas DBA TasksDefining an Adabas Database

DESCSPACE is the total descriptor space required, in bytes.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

NUMRECS is the number of records.

AVPEOCCUR is the average number of periodic group occurrences, if the descriptor is in a periodic
group. Otherwise, set this value to 1.

AVMVOCCUR is the average number of multiple-value field occurrences, if the descriptor is a
multiple-value field. Otherwise, set this value to 1.

Work Pool Size

Use the following formula to estimate the space required for the work pool:

LWPAVAIL = LWPSIZE - 1216 - (32 * SORTDEVTRKS) - SORTDEVBSIZ

where

LWPAVAIL is the available part of the work pool space, in bytes.

LWPSIZE is the total work pool size, in bytes (the utility’s LWP parameter value).

SORTDEVTRKS is the number of sort device tracks per cylinder (see Adabas Device types and
Block Sizes).

SORTDEVBSIZ is the sort device block size, in bytes.

Sorted Partial Sequences

To determine the space required for sorted partial sequences, use one of the following calculations. The
one to use depends on the AVDESCLEN value (average descriptor length) used to calculate the
DESCSPACE value (total descriptor space required).

If AVDESCLEN is less than 12

LENGSEQ = (LWPAVAIL * (AVDESCLEN + (1 + ISNSIZE))) / 2

where

LENGSEQ is the length of sorted partial sequences.

LWPAVAIL is the available Work pool space.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

If AVDESCLEN is equal to or greater than 12

LENGSEQ = (LWPAVAIL * 2) / 3

97

Defining an Adabas DatabaseAdabas DBA Tasks

where

LENGSEQ is the length of sorted partial sequences.

LWPAVAIL is the available Work pool space.

Device Surfaces

Use the following formula to calculate the number of device surfaces rounded up to the next integer:

SURFACES = (DESCSPACE / LENGSEQ) / SORTDEVTRK

where

SURFACES is the number of surfaces required for sort space, rounded up to the next integer.

DESCSPACE is the total descriptor space required, in bytes.

LENGSEQ is the length of sorted partial sequences.

SORTDEVTRKS is the number of sort device tracks per cylinder (see Adabas Device types and
Block Sizes).

Estimated Sort Size

Using the intermediate values calculated for LENGSEQ and SURFACES, compute the estimated sort size
as follows:

SORTSIZE = (SURFACES * SORTDEVTRKS * LENGSEQ * 2) / (SORTDEVBSIZ - 4)

where

SORTSIZE is the estimated sort area size, in blocks. This value should be rounded up to the
next full cylinder.

SURFACES is the number of surfaces required for sort space, calculated earlier and rounded
up.

SORTDEVTRKS is the number of sort device tracks per cylinder (see Adabas Device types and
Block Sizes).

LENGSEQ is the length of sorted partial sequences.

SORTDEVBSIZ is the sort device block size, in bytes.

Number of Descriptors Sorted

Use the following formula to estimate the number of descriptors that can be sorted in the SORTSIZE
space calculated in the previous formula (assuming the same descriptor definition that was used when
calculating DESCSPACE):

DESCOUNT = SURFACES * SORTDEVTRKS * LENGSEQ / (AVDESCLEN + (1 + ISNSIZE))

98

Adabas DBA TasksDefining an Adabas Database

where

DESCOUNT is the number of descriptors defined in the earlier DESCSPACE calculation that
can be held in the SORTSIZE space calculated above.

SURFACES is the number of surfaces required for sort space, calculated earlier and rounded up.

SORTDEVTRKS is the number of sort device tracks per cylinder (see Adabas Device types and
Block Sizes).

LENGSEQ is the length of sorted partial sequences.

AVDESCLEN is the average compressed descriptor length, in bytes.

ISNSIZE is the size of the ISN being used (either 3 or 4).

Step 2 : Allocate Space
1. Use standard operating-system procedures to allocate datasets for the following Adabas components:

Required by the Adabas nucleus:

Associator (ASSO)

Data Storage (DATA)

Work area (WORK)

Required by some Adabas utilities:

sort area (SORT)

temp area (TEMP)

Optional (but recommended) logs:

dual or multiple command log (CLOG)

dual or multiple protection log (PLOG)

recovery log (RLOG)

Normally, ASSO, DATA, and WORK are each allocated as a single operating system dataset.
However, you can allocate the Associator and Data Storage on up to five separate datasets each;
the datasets can be allocated on the same or different device types.

2. To minimize contention and distribute I/O activity more evenly across hardware channels, place the
ASSO, DATA, WORK, PLOG, and RLOG datasets on different physical volumes. If only two
volumes are available, place ASSO on one volume and DATA and WORK on the second.

The WORK and PLOG datasets should be on different volumes, since a PLOG I/O operation is
always followed by a WORK I/O operation.

99

Defining an Adabas DatabaseAdabas DBA Tasks

The RLOG dataset should always be placed on a separate device of the same type.

Disk access time may be considerably reduced by separating TEMP from DATA, and SORT from
ASSO. When loading files containing 100,000 records or more, splitting SORT across two volumes
reduces disk arm movement.

3. Specify the disk space allocation in the job control (JCL/JCS or VM CONTROL minidisk) of the
format utility (ADAFRM). See the Adabas Utilities documentation for specific information and job
examples.

Examples

Example 1 : Database Allocation Using Two Volumes

Volume 1 Volume 2

ASSO DATA

TEMP WORK

PLOG1 SORT

PLOG2

Example 2 : Database Allocation Using Three Volumes

Volume 1 Volume 2 Volume 3

ASSO DATA WORK

PLOG1 SORT TEMP

 PLOG2

Example 3 : Database Allocation When Loading a Large File

Volume 1 Volume 2 Volume 3 Volume 4 Volume 5

ASSO DATA DATA DATA SORT (2nd half)

 PLOG1 PLOG2 SORT (1st Half) WORK

 TEMP

Performance Note

Software AG does not recommend using hardware compression (IDRC) for protection log files. The
ADARES utility BACKOUT function will run at least twice as long under OS/390 or z/OS when
processing compressed data. Also, the BACKOUT function is not supported for compressed data on
VSE/ESA, VM/ESA, or z/VM systems.

100

Adabas DBA TasksDefining an Adabas Database

Step 3 : Format the Space
Before loading the first file into the database, use the ADAFRM utility to format the ASSO, DATA, and
WORK datasets. Refer to the Adabas Utilities documentation for information about the ADAFRM utility.

Format TEMP and SORT before using any Adabas utility that requires them. You can allocate and format
temporary datasets and delete them after executing the utility, or allocate and format permanent datasets
for repeated use.

Note:
When using the Recovery Aid (including the RLOG), you must catalog all temporary datasets. When
running with the Recovery Aid, the general rule is to catalog temporary datasets in jobs that require the
Associator datasets.

Format the CLOG, PLOG, and RLOG datasets before starting the first session in which the logging is to
be performed.

Step 4 : Define Database Parameters
Once all database components have been physically allocated and formatted, use the ADADEF utility to
define database parameters such as database identification, maximum number of files, system file
assignment, and so on.

The sizes of the ASSO, DATA, and WORK datasets must be defined with ADADEF DEFINE parameters.
Note that defining the sizes to Adabas is different from allocating the space; the datasets must be allocated
and formatted before you can define them to Adabas. The sizes of the other datasets are defined to Adabas
as follows:

TEMP and SORT: when you execute the utility that uses them;

CLOG and PLOG: at the start of a nucleus session, with ADARUN parameters;

RLOG: when logging begins, using the PREPARE function of the ADARAI utility.

Note:
Each log dataset (CLOG, PLOG, or RLOG) is limited to 16,777,215 (x’FFFFFF’) blocks/RABNs.

101

Defining an Adabas DatabaseAdabas DBA Tasks

Database Space Management
This chapter provides the DBA with all pertinent information related to database space management.
Information is provided about

Adabas physical and logical extents;

Adabas relative block number (RABN);

the role of the Adabas nucleus and utilities in allocating/deallocating space;

using the database status report to monitor database space usage;

potential space utilization problems and recommended action.

This information is organized under the following headings:

Adabas Physical Extents

Relative Adabas Block Number (RABN)

Adabas Logical Extents

Adabas Space Allocation and Deallocation

Using the Database Status Report to Control Space Use

Potential Space Use Problems and Recommended Actions

Adabas Physical Extents
An Adabas physical extent is a collection of physical blocks assigned to a given database component
(Associator, Data Storage, Work) during the definition of the database (see the ADADEF utility,
ASSOSIZE, DATASIZE and WORKSIZE parameters).

The space for a physical extent is allocated using the standard allocation procedures of the operating
system in use.

An Adabas physical extent may be allocated within a single operating system extent which consists of a
primary extent only, or may be allocated as a primary extent together with one or more secondary extents.
The secondary extents need not be contiguous to the primary extent or to each other.

An Adabas physical extent may be contained on a single physical volume or may extend across multiple
volumes. The Associator and Data Storage components may each contain up to five Adabas physical
extents.

102

Adabas DBA TasksDatabase Space Management

Relative Adabas Block Number (RABN)
Adabas information is stored in space allocated in "blocks". A block’s size depends on

the physical device on which the block is located; and

the Adabas component to which the block is assigned.

For example, the default device type used by Adabas is the IBM 3380 disk. This device is assumed in
many utility and operating parameters as the device type unless another is specified.

When 3380 space is allocated for Adabas, it must be designated as Associator (ASSO), Data Storage
(DATA), the Work area (WORK), logging area (PLOG, CLOG, RLOG), sort area, or temp area. A 3380
block allocated to ASSO contains 2004 bytes, but a 3380 block allocated to DATA contains 4820 bytes.
Block sizes are predefined for each device type and Adabas component; Adabas Device types and Block
Sizes lists block sizes by device type and component.

Adabas block sizes are not fixed by hardware; however, they are referred to as "physical" blocks to
coincide with the level of description used for physical block (FBA) devices. Software AG tries to
maintain consistent block definitions, by device type, from release to release. However, in some cases the
block size for a component type may change to accommodate expanded Adabas facilities. Thus, a specific
Adabas component (PLOG, ASSO, etc.) may need to be reformatted before you can run a new Adabas
release.

Adabas identifies and addresses each physical block within a database component by its "relative Adabas
block number" (RABN) , which indicates the block’s position relative to the beginning of the component.
RABNs are assigned in ascending sequence in Data Storage, Associator, or Work, starting with 1 for the
first physical block in the first Adabas physical extent (the first track of the first extent is not used). If
multiple physical extents are used, the RABN assignment continues across the physical extents.

The number of RABNs that can be assigned to ASSO and DATA depends on the RABNSIZE parameter,
which is specified when the database is defined. RABNSIZE specifies the length of relative Adabas block
numbers in the database (not the length of the block itself).

If RABNSIZE=3 (block number is 24 bits or three bytes), the maximum number of RABNs is
16,777,215.

If RABNSIZE=4 (block number is 31 bits or four bytes), the maximum number of RABNs is
2,147,483,646.

See Relative Adabas Block Number (RABN) Calculation in the Adabas Operations documentation for
more information about RABNs.

Adabas Logical Extents
An Adabas logical extent is a group of consecutive RABNs allocated by the Adabas nucleus or an Adabas
utility.

For each file loaded into the database, a minimum of one of each of the following types of Adabas logical
extents is allocated to the file:

103

Database Space ManagementAdabas DBA Tasks

Logical Extent Allocated from the physical extent . . .

Data Storage Data Storage

address converter Associator

normal index Associator

upper index Associator

Additional logical extents are allocated by the Adabas nucleus or an Adabas utility when additional space
is needed as a result of file updating.

The Associator and Data Storage components may each contain up to five Adabas logical extents;
however, the component physical files comprising Adabas expanded logical files are limited to one
address converter logical extent only.

Adabas Space Allocation and Deallocation
This section provides an overview of Adabas space allocation and deallocation procedures. A full
understanding of these procedures will help ensure correct and efficient database space management.

Free Space Table

All space available for allocation is stored in the free space table (FST). This table contains all RABN
extents that are currently available for an allocation to any file.

Space Allocation by the Adabas Nucleus

When processing an add or update record command, the Adabas nucleus may need to allocate an
additional extent to any of the following file components:

address converter

normal index

upper index

Data Storage

Address Converter (AC)

The size of the address converter is initially defined by the MAXISN parameter in the ADALOD utility.
The actual "highest expected" ISN is slightly higher because the address converter is stored in entire
blocks.

Example:

If RABNSIZE=3, MAXISN=5000 on a model 3380 with 668 entries per block (2004/3) results in 8
blocks. The highest ISN expected (before further expansion) is therefore 5343 (668 � 8 - 1).

104

Adabas DBA TasksDatabase Space Management

If RABNSIZE=4, MAXISN=5000 on a model 3380 with 501 entries per block (2004/4) results in 10
blocks. The highest ISN expected is therefore 5009 (501 � 10 - 1).

If the Adabas nucleus requires an additional extent for a file when executing N1 commands, the allocation
routine attempts to locate a new extent of 25% of the current size:

If an unused extent between 25% and 28% can be found using the free space table (FST), that space
is taken immediately;

If only longer extents are available in the FST, a new extent of exactly 25% is taken;

If only smaller extents are available in the FST, the longest available extent is taken;

If an additional AC extent is required, and the maximum has already been assigned, Adabas will
return an appropriate response code to the calling program;

If a file has the attribute "one AC extent only" (e.g., if the file is an expanded file), an attempt to
allocate a second AC extent will cause a response code.

Normal Index (NI), Upper Index (UI), Data Storage (DS)

For the purpose of allocating a new extent, the following formulas are used:

where

B number of blocks currently allocated.

E highest ISN expected.

U highest ISN currently allocated.

If an extent found in the FST is contiguous with the end of a previous extent, it is allocated for a
maximum of "Z" blocks.

If no such extent can be found in the FST

but an extent between Z and 9 * Z/8 is found, it is allocated.

but an extent with more than 9 * Z/8 blocks is found, then a new extent is allocated with exactly "Z"
blocks.

the longest extent in the FST is allocated as the new extent.

Additionally, if the MAXNI, MAXUI, or MAXDS parameter is specified for the current file, the nucleus
allocates no more than the specified maximum number of blocks for the NI, UI, or DS, respectively.

105

Database Space ManagementAdabas DBA Tasks

Space Allocation with the ADADBS Utility

ADD/INCREASE Associator, Data Storage

If the physical extent for the Associator or Data Storage has been exhausted, the ADD or
INCREASE function (using Adabas Online System or the ADADBS utility) may be used to
provide additional physical space.

The ADD function requires the allocation of an additional dataset to the Associator or Data
Storage. The new dataset may be located on the same or a different device type than those
currently in use. Both the Associator and Data Storage may consist of no more than five datasets
each.

The INCREASE function results in the physical extension of an existing dataset. The new space
must, however, first be formatted using the ADAFRM utility. There is no restriction on the
number of times the INCREASE function may be used.

Following an ADD function, the new dataset must be formatted using the ADAFRM utility
before it can be used, and the appropriate changes must be made to all Adabas job control as
described in the Adabas Operations documentation.

After increasing Data Storage four times, it may be necessary to run the REORASSO function
of the ADAORD utility to reorder the Data Storage space table (DSST) to a single extent and
allow four more increases in Data Storage.

To permit formatting or reordering, the nucleus session terminates automatically following an
ADADBS ADD or INCREASE operation.

ALLOCATE Function

The ALLOCATE function (Adabas Online System or ADADBS utility) may be used to allocate
an extent of a specific size for any of the following file components:

Data Storage

address converter

normal index

upper index

It is also possible to specify where the extent is to be allocated by specifying a starting RABN.

Using this function, the DBA may, based on knowledge of the projected size of a file, allocate
extents of a specific size, rather than having Adabas perform the assignment. This may avoid
having Adabas allocate an extent which is too small or too large (see ADALOD utility).
MAXNI/MAXUI and MAXDS values in effect for the accessed file are not checked.

DEALLOCATE Function

The DEALLOCATE function (Adabas Online System or ADADBS utility) may be used to
deallocate an extent allocated for any of the following file components:

106

Adabas DBA TasksDatabase Space Management

Data Storage

address converter

normal index

upper index

It is also possible to specify where deallocation is to begin by specifying a starting RABN. The
deallocated space is returned to the free space table (FST).

DELETE Function

The DELETE function (Adabas Online System or ADADBS utility) causes an existing file to be
deleted from the database. All space which was assigned to the file is returned to the free space
table and is available for reuse. DELETE can delete complete expanded files only.

RECOVER Function

The RECOVER function (Adabas Online System or ADADBS utility) may be used to recover
space which was allocated during an execution of the ADAINV or ADALOD utility which
terminated abnormally. The recovered space is returned to the free space table and is available
for reuse.

REFRESH Function

The REFRESH function (Adabas Online System or ADADBS utility) results in the setting of a
file status to 0 records loaded and 1 extent allocated to each file component. Any additional
extents other than the first extent are returned to the free space table.

RELEASE and UNCOUPLE Functions

The RELEASE and UNCOUPLE functions (Adabas Online System or ADADBS utility) results
in the deletion of an inverted list or physical coupling lists. The space used for the list can be
recovered only by using ADAORD. When releasing a descriptor for an expanded file, each
component file must be released individually. ADADBS displays a message whenever a
descriptor of an expanded file is being released.

Space Allocation with the ADAINV Utility

COUPLE/INVERT Functions

The COUPLE and INVERT functions (Adabas Online System or ADAINV utility) may result in the
assignment of additional blocks for the NISIZE file component (but not DSSIZE or MAXISN). This
occurs if the available space becomes full during processing of the input data.

In such a case, if there are any index blocks freed during deletion by the nucleus, these blocks are reused.
Then, if available, a range of blocks in the free space table whose size is within the range M1 through M2
will be taken.

M1 and M2 are computed as follows:

107

Database Space ManagementAdabas DBA Tasks

M2 = M1 + M1/8
M1 = MAX (A2, NIB/4 + KZ)

where

KZ zappable value (default = 10)

NIB number of NI blocks in use

and

A2 = MIN (A1, NIB * 2)
A1 = IUN * NIB/IUS

where

IUN number of unused ISNs

IUS number of used ISNs

When inverting a descriptor for an expanded file, each component file must be individually inverted.
ADAINV displays a message whenever a descriptor of an expanded file is being inverted.

Space Allocation with the ADALOD Utility

LOAD Function

The LOAD function of the ADALOD utility is used to load a file into a database.

DSSIZE Parameter

The number of blocks or cylinders specified with the DSSIZE parameter is allocated and assigned to the
first DS extent at the beginning of ADALOD execution.

The DSRABN and/or DSDEV parameters may be used to force the allocation to a specific RABN and/or
device.

If during processing of the input data, this first allocated extent becomes full, a search is made for a range
of free blocks in the free space table whose size is within the range M1 through M2.

M1 and M2 are computed as follows:

M2 = M1 + M1/8
M1 = MAX (A2, DSB/4 + KZ)

where

KZ zappable value (default = 10)

DSB number of DS blocks in use

and

108

Adabas DBA TasksDatabase Space Management

A2 = MIN (A1, DSB * 2)
A1 = IUN * DSB/IUS

where

IUN number of unused ISNs

IUS number of used ISNs

If enough space is found in the free space table and that space follows immediately an already allocated
extent, this space is added to the end of the extent. In this case no new extent is allocated.

If a new extent is needed, the free space table is scanned and the number of blocks needed to satisfy the
size of M1 through M2 is taken for the new extent. Up to five extents are possible. If space is not
available, ADALOD ends with an error message.

MAXISN Parameter

The MAXISN value is converted into a number of blocks and rounded up to a full block boundary. This
range of blocks is allocated at the beginning of ADALOD execution and is assigned to the first address
converter extent for the file.

The ACRABN parameter may be used to force the allocation to begin at a specific location.

If during processing of the input data, this first allocated extent becomes full, ADALOD tries to allocate
another AC extent whose size is 25% of the sum of all currently existing AC extent sizes.

If an unused range of blocks is available in the free space table in the range of 25% through 28% of
the size currently in use, this range is immediately allocated as a new AC extent for the file;

If only longer free ranges are available, a new AC extent of 25% is taken from the smallest free range
of blocks;

If only smaller free ranges are available, the largest available is taken.

NISIZE/UISIZE Parameters

At the beginning of its execution, ADALOD allocates and assigns the blocks or cylinders specified by the
NISIZE and UISIZE parameters to the first NI and UI extents, respectively.

The NIRABN and UIRABN parameters can be used to force extent allocation to begin at a specific
RABN.

If you omit the NISIZE or UISIZE parameters, ADALOD does not initially allocate NI and UI space.
Instead, ADALOD waits until all incoming descriptor values have been written to the Temp dataset, and
then estimates NISIZE and UISIZE values as follows:

If no input records were processed:

NISIZE = Number of descriptors +1
UISIZE = 2 blocks

109

Database Space ManagementAdabas DBA Tasks

If input records were processed:

For each descriptor in the file, up to 16 temp dataset blocks are selected and read. The contents of
these blocks are sorted and estimated to the total amount of temp blocks used for this descriptor.

The chosen algorithm returns the NISIZE and UISIZE values for each descriptor, which ADALOD
adds together and then multiplies by the factor "K", which is

K = (MAXISN - MINISN + 1) / number of records loaded

If, during operation, ADALOD determines that the resulting value is not enough, ADALOD allocates
subsequent extents during its run. The sizes of these extents are computed in the same way as for
additional DSSIZE extents, as described above.

UPDATE Function

The UPDATE function of the ADALOD utility performs a mass add/delete of records to/from an existing
file, reorganizes and (if necessary) expands the Associator and/or Data Storage space.

The ADALOD UPDATE functions allocates additional AC space if the MAXISN parameter specifies a
new, higher maximum ISN value-even if the restructuring of the AC, NI and UI performed by UPDATE
results in more unused current space. ADALOD UPDATE adds Data Storage space if the current Data
Storage space cannot hold the new records.

MAXISN Parameter

If a MAXISN value is specified for the UPDATE operation that is greater than the current value for the
file, the difference between the old and the new MAXISN setting is computed. The number of AC blocks
to satisfy this amount is then allocated from the free space table as an additional extent. The ACRABN
parameter may be used to force the allocation to begin at a specific location.

If during processing of the input data the current AC and/or Data Storage extent becomes full, ADALOD
tries to allocate another AC and/or Data Storage extent whose size is 25% of the sum of all currently
existing AC and/or Data Storage extent sizes.

If an unused range of blocks is available in the free space table in the range of 25% through 28% of
the size currently in use, this range is immediately allocated as a new AC extent for the file;

If only longer free ranges are available a new AC extent of 25% is taken from the smallest free range
of blocks;

If only smaller free ranges are available, the largest available is taken.

Space Allocation by the ADAORD Utility

ADAORD reorders the respective Adabas Associator component (AC, NI/UI, DSST) and Data Storage to
reclaim unusable space for reuse. Although ADAORD functions affect only the selected component files
of an Adabas expanded file, there is no change to the logical consistency of an expanded file; therefore,
ADAORD does not have to be performed on each component file of an expanded file, unless desired.

110

Adabas DBA TasksDatabase Space Management

Function Accessed Table Types

REORFASSO AC, NI, UI

REORASSO AC, NI, UI, DSST

REORFDATA,
REORDATA

DS

REORFILE, REORDB AC, NI, UI, DS

For each accessed file and for each accessed table type (depending on the function), the following action
is taken:

All used space is returned to the free space table.

All tables with a specific location (ACRABN, DSRABN, NIRABN, UIRABN) are allocated and
assigned as a first extent. The sizes used are either supplied (MAXISN, DSSIZE, NISIZE, UISIZE)
or taken from the original file.

All tables without a specific location are allocated and assigned as a first extent.

If one of the extents become full, the same action is taken as described for the ADALOD (UPDATE)
utility (see the previous section).

Space Allocation by ADASAV (RESTORE FILES Function)

If a file to be restored is already present in the database (OVERWRITE parameter must be specified) the
space used by all these files is returned to the free space table. If a component file of an expanded file is
specified, then all related component files must also be specified.

RESTORE FILE=...

For each file to be restored, the original RABNs must be available. ADASAV tries to allocate the
required extents at their original position with their original size. If one of these allocations fails,
ADASAV will terminate with ERROR-060.

RESTORE FMOVE=...

For each file to be restored, at least the amount of original space used will be allocated. The
allocation of the first extent for each file table can be forced to a specific location by using one of the
optional parameters ACRABN, DSRABN, NIRABN, UIRABN. The sizes of these tables may be
increased using MAXISN, DSSIZE, NISIZE, UISIZE.

If space is available, multiple input extents may be compressed in a new single extent. If there is not
enough contiguous free space available, ADASAV will split the tables over several new extents (up to
five for each table). If such space is not available, ADASAV will terminate with ERROR-060.

Using the Database Status Report to Control Space Use
Database space utilization information can be obtained directly from the database status report produced
by executing the ADAREP utility or using Adabas Online System.

111

Database Space ManagementAdabas DBA Tasks

In addition to a file allocation map and a block allocation map, this report lists the number of blocks

used (and unused) for the Associator physical extent (or extents);

used (and unused) for the Data Storage physical extent (or extents);

allocated for the Work physical extent;

used (and unused) for each file for the address converter, normal index, upper index, and Data
Storage logical extent (or extents).

See the ADAREP chapter in the Adabas Utilities documentation for a detailed explanation of the
information provided on this report.

The DBA should frequently review this report to identify potential space utilization problems.

The next section contains guidelines on problems which may be detected using the status report, and
recommendations as to what action should be taken to prevent and/or resolve each problem.

Potential Space Use Problems and Recommended Actions
This section provides a summary of the problems most often encountered concerning database space
utilization, and the recommended corrective action to be taken to prevent and/or correct problems.

Full Physical Extents

1. The Associator physical extent is nearly or completely full.

The physical extent may be increased (see ADADBS utility, INCREASE function);

A new physical extent may be added (see ADADBS utility, ADD function);

The Associator may be reordered using the ADAORD utility. This will be of benefit only if a
large amount of Associator space fragmentation exists;

Unused file extents can be release using the ADADBS DEALLOCATE function;

Any Adabas files no longer required may be deleted (see the ADADBS utility; DELETE
function);

Any file coupling lists no longer needed may be deleted (see the ADADBS utility, UNCOUPLE
function);

2. The Data Storage physical extent is nearly or completely full.

The physical extent may be extended (see the ADADBS utility, INCREASE function);

A new physical extent may be added (see the ADADBS utility, ADD function); this is
recommended only when the new extent is on a new device type.

Data Storage may be reordered (see the ADAORD utility, REORDATA function). This will be
of benefit only if a large amount of Data Storage space fragmentation exists, or the Data Storage
padding factor is decreased;

112

Adabas DBA TasksDatabase Space Management

A given file may be reordered (see the ADAORD utility, REORFILE function);

Any Adabas files no longer required may be deleted (see the ADADBS utility, DELETE
function).

Maximum Physical Extents Reached

1. The maximum of five Associator physical extents has been reached.

The last extent can be increased using the ADADBS INCREASE function;

The Associator can be reordered by executing the ADAORD REORASSO function;

All files can be unloaded using the ADAORD RESTRUCTURE function and then reloaded into
a larger database using ADAORD STORE.

2. The maximum of five Data Storage physical extents has been reached.

The last extent can be increased using the ADADBS INCREASE function;

Data Storage can be reordered (see the ADAORD utility, REORDATA function). This will
result in the elimination of Data Storage space fragmentation;

All files can be unloaded using the ADAULD utility and then reloaded into a larger database.

Maximum Logical Extents Reached

1. The maximum logical extents for the address converter, normal index, or upper index for a file has
been reached.

The REORFILE or REORFASSO function of the ADAORD utility can be executed to reorder
all Associator entries for the file.

ISN reusage can be invoked using the ADADBS utility.

The file can be unloaded, deleted, and reloaded.

2. The maximum logical extents limit for either Data Storage or the Data Storage space table for a file
has been reached.

The file (and all other files) can be reordered using the REORFDATA or REORFILE function
of the ADAORD utility. This condenses multiple Data Storage extents into fewer extents.

The file can be unloaded, deleted, and reloaded.

113

Database Space ManagementAdabas DBA Tasks

Database Monitoring and Tuning
The DBA’s tasks in the area of monitoring and tuning are

Monitoring Resource Use

Reporting on Resource Use

Monitoring Database Controls

Performance Management, Statistics, and Tuning

Adabas Session Statistics

Command Logging

Monitoring Resource Use
The DBA is responsible for monitoring the database environment on a continuing basis to ensure that an
efficient level of service is provided while maintaining database integrity.

The DBA should implement a set of procedures designed to foresee degradation before the event and to
adjust the operation or design of the database in an orderly and controlled way. This set of procedures
includes

identifying potential sources of degradation;

establishing tools for monitoring database performance; and

controlling the implementation of adjustments.

Reporting on Resource Use
The DBA should report regularly on database use and performance to both data processing and user
management. The reports should be factual, but should also include recommendations for tuning the
database environment. It should be remembered that tuning, while benefiting the organization as a whole,
may adversely affect the service received by one or more users. Any decision on tuning should, therefore,
be made by all affected users.

Monitoring Database Controls
The DBA should establish appropriate controls and monitor them to ensure the integrity of the database.

Computer-generated control totals can be checked and cross-footed between computer processing runs or
generated reports. Batch responses (or inquiries) may include such information as the exact run time,
search parameters, time of last update of data, and the primary parameter controls. This increases the
confidence level and helps to ensure the integrity of the database.

114

Adabas DBA TasksDatabase Monitoring and Tuning

The problem of control totals takes different forms at different installations. Although hard and fast rules
are not possible in this area, some general guidelines can be given.

The DBA needs to ensure that proper consideration is given to the following areas in the design of each
application system that will use the database:

What controls can be checked on every batch update run? For example, record counts, additions,
deletions, updates.

What controls require a full file pass to check them? For example, value field hash totals.

What input transactions, Adabas logs, etc., should be retained in order to be able to recover when
control totals are found to be wrong at the end of a given period?

Are "localized" control totals (that is, by branch, product group) of any use in identifying the areas
affected by a file control total error?

Performance Management, Statistics, and Tuning
The following table illustrates some of the monitoring statistics that may be used and what adjustments to
(or tuning of) the database environment may result.

Changes in.... May require tuning of

database
structure

access method
used

hardware or
software
configuration

processing
priority

disk storage
allocation

terminal and
line traffic

 Y Y Y Y

response times
(application
performance)

Y Y Y Y Y

access totals by
user and
descriptor

Y Y Y

database size Y Y Y Y

database
growth rate

Y Y Y Y

When any alteration is made to a production database, care must be taken to ensure a continued high level
of reliability and integrity. Whatever the change, the DBA must make sure that the decision is the right
one and that it is properly and accurately implemented. He should retain absolute control over the tuning
process and ensure that it follows the formal acceptance procedures.

The DBA must be careful not to overreact to changes in the items listed in the table. A sudden change in
line traffic, response times, etc., may only be temporary. It is important to determine whether the change
represents a permanent trend or a temporary disturbance to the normal way of operating.

115

Database Monitoring and TuningAdabas DBA Tasks

The table can be used to determine what tuning may be necessary when a new project will cause a
significant change in terminal and line traffic, response times, etc. The DBA can then act in advance to
minimize these effects before the new application system is implemented.

Adabas Session Statistics
The statistics printed at the end of each Adabas session may be used to monitor Adabas performance.
Specifically, the session statistics comprise

input/output (I/O) statistics;

command statistics; and

pool/queue usage statistics.

Input/Output Statistics

The following I/O statistics are provided:

I/O Counts (Including Initialization)

 Reads Writes

ASSO 50 21

DATA 2388 2184

WORK 9 1385

PLOG 9 1603

CLOG 0 0

TOTAL: 2456 5193

LOG. READS 33899

BUFFER EFF. 13.9

The input/output (I/O) counts represent the number of physical I/Os executed during the session to the
Associator (ASSO), Data Storage (DATA), Work (WORK), the data protection log (PLOG), and the
command log (CLOG).

Also provided are the number of logical reads issued for the buffer pool (LOG. READS) and the buffer
efficiency (BUFFER EFF.) which is the number of logical reads divided by the number of Associator and
Data Storage reads. The higher the value for buffer efficiency, the more efficient is buffer pool usage. If
the value is less than 10, the DBA may wish to increase the size of the Adabas buffer pool (see the Adabas
Operations documentation, the ADARUN LBP parameter description).

Distribution of ASSO/DATA I/Os by VOL-SER Number (Excluding Initialization)

116

Adabas DBA TasksDatabase Monitoring and Tuning

VOL-SER HIGH RABN COUNT

ADA003 (ASSO: 894) 38

ADA003 (ASSO: 2544) 6

ADA003 (DATA: 894) 0

ADA003 (DATA: 1344) 4572

TOTAL: 4616

The distribution of I/Os for the Associator and Data Storage per physical volume is also provided. The
data provided are the highest RABN accessed/updated (HIGH RABN) and the number of I/Os (COUNT).
The DBA can use this data to determine if any adjustments are necessary to the buffer pool parameters
and/or to the physical allocation of the database.

Command Statistics

In the following example, command statistics are provided for a session in which Adabas executed 12,687
calls in five threads.

Distribution of Commands by Source

The following table shows the source of commands for the session: either from the same environment
(local) or from a remote environment across a network:

Source Number

REMOTE LOGICAL 0

REMOTE PHYSICAL 0

LOCAL LOGICAL 0

LOCAL PHYSICAL 12,686

Distribution of Commands by Thread

The following table shows the thread activity for the session:

Thread Number

1 7,328

2 2,728

3 1,240

4 814

5 541

TOTAL: 12,651

117

Database Monitoring and TuningAdabas DBA Tasks

If the thread with the highest number has an activity count greater than zero it can be assumed that the
Adabas nucleus would be able to process a larger number of commands if the number of threads were
increased. Increasing the number of threads would prevent commands from waiting in the command
queue for selection.

Distribution of Commands by File

The following table shows the distribution of commands by file:

File Number

0 4,247

1 8,404

TOTAL: 12,651

Commands that are not file-related (e.g. BT, ET) are counted against file 0.

Distribution of Commands by Type

The following table shows the distribution of commands by command type:

Command Type Number

A1/4 4,198

ET 4,191

L1/4 4,242

OP 56

TOTAL: 12,687

The command type UC indicates "privileged call" issued by Adabas utilities.

Note:
The command type REST indicates commands such as C1, C5, RI and HI.

Additional Session Statistics
THERE WERE 56 USERS PARTICIPATING
MOST CALLS (57) INITIATED BY USER user ID
MOST I/O-S (14) INITIATED BY USER user ID
MOST THR.-TIME (04:16:32) WAS USED BY USER user ID

28 Formats had to be translated

0 Formats had to be overwritten

0 Autorestarts were done

20 Throw-backs due to ISN problem

16 Throw-backs due to space problem

186 Buffer-flushes were done

118

Adabas DBA TasksDatabase Monitoring and Tuning

Formats Translated/Overwritten

Adabas read and update commands require a Format Buffer that specifies the fields to be read or updated.
This Format Buffer is interpreted and converted into an internal Format Buffer by Adabas, which enters
each resulting internal Format Buffer into the internal Format Buffer pool. Each internal Format Buffer is
identified by a combination of user and command IDs.

For each new read/update command, Adabas looks to see if a user ID/command ID entry is already
present in the format buffer pool. If not, Adabas translates the command’s new format buffer and enters it
into the pool. Once the format buffer pool becomes full, an existing entry must be overwritten to
accommodate a new entry.

The format translation process is CPU intensive. Therefore, the DBA should ensure that an excessive
number of format overwrites are not occurring by doing the following:

1. Ensure that user programs are making correct use of command IDs; that is, using non-blank
command IDs when appropriate and releasing command IDs when no longer needed. For further
information on command ID use, refer to the Adabas Command Reference documentation.

2. Consider increasing the size of the internal format buffer pool (with the ADARUN LFP parameter,
described in the Adabas Operations documentation).

The Adabas nucleus produces statistics on format translations and format overwrites at the conclusion of
each session. The Adabas operator command DSTAT may also be used to obtain this information.

Autorestarts

The number of Autorestarts performed during the session.

Command Throwbacks

The number of times a command could not be executed because the Adabas nucleus was waiting for

an available ISN; or

Adabas work pool space.

In such an event, the command is "thrown back" into the command queue for processing at a later point in
time.

If either of these numbers is greater than zero:

1. adjust the ratio between the ADARUN LWP (work pool size) and LS (sort work area) parameters;

2. increase the size of the Adabas work pool (ADARUN LWP parameter);

3. evaluate ADARUN TT (transaction time limit) parameter;

4. check application program hold logic;

5. increase the Adabas hold queue size (ADARUN NH parameter); and

119

Database Monitoring and TuningAdabas DBA Tasks

6. use superdescriptors to reduce complexity of search commands.

The ADARUN parameters are described in the Adabas Operations documentation.

Buffer Flushes

The number of buffer flushes performed during the session.

The Adabas buffer pool represents a virtual database that is shared by all active users. It contains the most
frequently used Associator and Data Storage blocks, and its purpose is to minimize physical I/O activity.

The size of the buffer pool is determined by the ADARUN LBP parameter. LBP should be set as large as
possible with the restriction that setting too large a value may cause excessive paging by the operating
system.

Buffer and Queue Statistics

Session statistics include the maximum buffer and queue use during the session. These statistics are
presented for all buffers and queues (except the buffer pool) for which "high-water marks" can be
computed. The following table shows high-water marks for a sample session:

Pool Area ADARUN Parameter High-Water Mark %

AB NAB = 10 12032 29

CQ NC = 20 3648 95

DUQ LDEUQP = 5000 500 10

FI LFP= 12000 1760 14

HQ NH = 100 552 23

SC LCP= 10000 0 0

TBI LI = 10000 0 0

TBS LQ = 10000 0 0

UQ NU = 20 4880 86

UQF NU = 20

WORK LWP = 14000 70464 50

XID XID = 0 0 0

Note:
The UQF is the user queue extension that holds the file list. The size of its pool is computed using the UQ
pool size.

The high-water marks are provided together with the applicable ADARUN parameter setting that was in
effect for the session.

The DBA should monitor each high-water mark and, if necessary, make adjustments to the appropriate
ADARUN parameters.

120

Adabas DBA TasksDatabase Monitoring and Tuning

Command Logging
Adabas command logging may be used to generate information on all the commands issued by users to
Adabas. Some of the information provided is

user identification;

time of day;

the command used;

the file accessed;

the record accessed;

the Adabas response code received;

the time required for the command to perform.

Command logging is controlled by the ADARUN parameter LOGGING.

121

Database Monitoring and TuningAdabas DBA Tasks

Error Handling and Message Buffering
This chapter covers the following topics:

Overview

Range of Operations

Recovery or Plug-In (PIN) Routines

PIN Routine User Exit

Overview
The error handling and message buffering facility helps implement 24X7 operations by analyzing and
recovering from certain types of errors automatically with little or no DBA intervention. It also generates
additional information so that the error can be diagnosed by the user and by Software AG.

The ADARUN SMGT parameter is set to activate the facility; if message buffering is to be used, the
ADARUN MSGBUF parameter is used to size the buffer. The wrap-around message buffer collects
Adabas messages for later review by Adabas Online System in case online access to the console or to
DDPRINT messages becomes unavailable. The buffer aids problem analysis and performance tuning.

The error handling functions of the facility are implemented as operands of the operator command SMGT
and can be invoked from the operator console or from Adabas Online System. See the Adabas Operations
documentation for detailed information.

The current implementation of the facility makes it possible for the nucleus to protect itself or provide
additional error recovery information for

a parameter error 31 : autorestart error;

a parameter error 73 : checkpoint file is full during initialization;

non-response codes by capturing pertinent areas of storage to aid in the diagnosis; and

program interruptions by providing additional dump areas.

Range of Operations

User Exit Failures

User exits and hyperexits that are essential to the operation of the Adabas nucleus can be marked as
critical (the default) or not using one of the operands of the SMGT operator command:

If a user exit is defined as critical, is is not affected by the error handling and message buffering
facility: an abnormal termination in it causes the Adabas nucleus to terminate abnormally as well.

122

Adabas DBA TasksError Handling and Message Buffering

If the user exit is defined as notcritical and an abnormal termination occurs in it, the facility
maintains an active Adabas nucleus, optionally refrains from invoking that exit, takes a dump of the
nucleus at the point when the exit failed, and issues messages to the system log to inform the DBA of the
problem. The DBA can then examine the diagnostic information, use it to fix the problem, then load and
reactivate the corrected exit using operands of the SMGT operator command.

Note:
If an Adabas exit attaches a subtask, the subtask is not protected by the error handling and message
buffering facility.

Recovery or Plug-In (PIN) Routines
The extensions (plug-in routines or "PINs") are designed to analyze and, in some cases, determine the
cause of an ABEND while allowing the nucleus to continue processing. The PIN determines whether it is
safe to allow the nucleus to continue processing and prints appropriate messages to notify the DBA when
this is the case.

The PIN routine user exit ADASMXIT can be used to obtain additional information about response codes
and ABENDs. The user exit allows you to specify particular response codes or response code/subcode
combinations to be monitored. Once you have modified the user exit, you can reload it and make your
changes effective without bringing the database down.

Each plug-in (PIN) service routine handles a predefined condition when encountered, allowing the Adabas
nucleus to

remain active when it otherwise would terminate abnormally; or

print extended error diagnostics as an aid to error recovery.

Based on its execution, a PIN module can either transfer control to the Adabas nucleus so that it can
resume normal processing-usually with a response code-or it can return control to the error handling and
message buffering facility, allowing the Adabas nucleus to terminate abnormally.

While the PIN is executing, most Adabas functionality is available to the PIN as the registers at the time
of the abnormal event are available. The PIN decides whether the nucleus should remain active.

A PIN can also be used to format an intelligent dump in a number of circumstances to help debug a
particular response or ABEND code.

If the PIN determines that the nucleus is to remain active, the PIN sets a response code.

PIN Processing

In the event of an abnormal termination or nonzero response code, the error handling and message
buffering facility looks for a PIN routine first for the specific condition and location detected, then for the
specific condition, and finally for the location (any condition). If an appropriate PIN is found, it is
invoked; otherwise, the nucleus is terminated.

If a PIN routine is invoked and it

123

Error Handling and Message BufferingAdabas DBA Tasks

handles the condition, processing then continues with no further intervention from the error handling
facility.

cannot handle the condition, the PIN returns control to the error handling facility and the nucleus is
terminated.

For a response code error, the error handling facility first determines whether the response code is one that
it monitors.

If the answer is no, the PIN returns control to the nucleus and the response code is returned to the
user normally.

Otherwise, the appropriate PIN is invoked to print additional information about the response code
that to help resolve the problem. The PIN then returns control to the nucleus and the response code is
returned to the user normally.

Once the PIN has processed the response code, it returns control to the error handling facility so that
normal response code processing can continue.

Default PIN Module ADAMXY

The ADAMXY module is the default PIN module comprising the PIN routines that are distributed with
Adabas and automatically installed during initialization.

Note:
It is possible to disable the default PIN ADAMXY using the SMGT,DELPIN or SMGT,DEACTPIN
operator commands.

The following table describes the interrupts that are handled by the PIN routines in ADAMXY. For each
interrupt, extended dump formating is provided to aid in error analysis:

124

Adabas DBA TasksError Handling and Message Buffering

Code Exception
Type

The processor . . .

01 Operation is about to execute an instruction that has an invalid operation
code.

02 Privileged
Operation

attempts to execute a supervisory instruction while in problem
state.

03 Execute interrupts a program deliberately to aid problem diagnosis.

04 Protection
(also
Segment and
Page)

attempts to alter system or hardware storage; access fetch
protected system or hardware storage; or access or modify
storage that is not allocated. Requires record/file-level locking
with user notification in job log. Note that code 16 (segment
exception) and code 17 (page exception) are also presented to
the error handling facility as code 04.

05 Addressing encounters a reference to an invalid read address.

06 Specification attempts to either set or branch to an old address or an
instruction that required a field to be aligned but did not have
an aligned argument.

07 Data encounters a corrupted data record, probably a field that
should be packed decimal is not.

08 Fixed Point a high-order carry occurs; or high-order significant bits are
lost in a fixed-point add, subtract, shift, or sign-control
operation.

09,
11,
15

Divide encounters a zero divisor in a division instruction; probably a
corrupted record. Code 9 is for binary; code 11 is for packed
decimal; and code 15 is for floating point arithmetic.

The message

*****DEFAULT PIN OUTPUT************

is generated whenever the default PIN ADAMXY is invoked. This is followed by all output concerning
the program interrupt processing of ADAMXY. The message

*****END OF DEFAULT PIN OUTPUT*****

-is generated whenever ADAMXY is completed.

Additional PIN Modules Provided

Some of the PIN modules discussed in this section are delivered with selectable units of Adabas. They are
established automatically when the relevant server component initializes at nucleus startup:

PINAFP
PINATM
PINAVI
PINCOR
PINSAF

125

Error Handling and Message BufferingAdabas DBA Tasks

The remaining PIN modules discussed in this section are included with Adabas but are not part of
ADAMXY and are not automatically installed at Adabas initialization:

PINAUTOR
PINOPRSP
PINRSP
PINUES

PINRSP and PINUES are installed using the SMGT,ADDPIN=module-name command when the nucleus
is active. Because PINAUTOR and PINOPRSP are invoked during system initialization when operator
commands are not available, they are activated by renaming a particular module in the Adabas load
library:

renaming NOOPRSP to PINOPRSP activates that PIN;

renaming NOAUTOR to PINAUTOR activates that PIN.

See the Adabas Installation documentation for more information about installing PIN modules.

PINAFP

PINAFP is delivered with the selectable unit Adabas Fastpath. It is established automatically when the
Adabas Fastpath server component initializes at nucleus startup (ADARUN FASTPATH=YES).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY) in the
Adabas Fastpath server component, control is passed to PINAFP, which formats and prints the main
memory areas used by the component. These diagnostics are written to the DDPRINT dataset with the
title

ADABAS FASTPATH - memory-area-name : SNAP BY PINAFP

PINAFP then returns control to the error handling and message buffering facility so that Adabas can
terminate abnormally.

If necessary, PINAFP can be activated and deactivated. However, after PINAFP is reactivated, it will not
be reestablished until the next nucleus session.

PINATM

PINATM is delivered with the selectable unit Adabas Transaction Manager (ATM). It is established
automatically when the ATM job initializes (ADARUN DTP=TM).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY) in the
ATM logic, control may be passed to PINATM, which formats and prints the main memory areas used by
ATM. These diagnostics are written to the DDPRINT dataset with the title

ADABAS TRANSACTION MANAGER - memory-area-name : SNAP BY PINATM

PINATM then returns control to the error handling and message buffering facility so that Adabas can
terminate abnormally.

If necessary, PINATM can be activated and deactivated. However, after PINATM is reactivated, it will
not be reestablished until the next ATM session.

126

Adabas DBA TasksError Handling and Message Buffering

PINAUTOR

If NOAUTOR has been renamed to PINAUTOR in the Adabas load library and a parameter error 31
occurs during autorestart, PINAUTOR acquires control. PINAUTOR attempts to identify the file that is in
error and exclude it from autorestart if possible.

Before excluding a file from autorestart processing, PINAUTOR checks that

the file is not the security or checkpoint file; and

the response code is not 9, 65, 72, 88, 97, 99, 148, or 151 as these are not valid for the exclusion
process.

Additionally, PINAUTOR checks whether certain files or particular response codes for a particular
database are designated as ineligible for exclusion. For example, it may be senseless to start a database
without the particular file on which it depends. You can customize ADASMXIT to include the files and
the response codes that cannot be excluded. You can also specify the maximum number of autorestarts
with exclusions that can be attempted.

The AREXCLUDE procedure is automatically invoked to exclude a file. See the Adabas Operations
documentation, ADARUN parameter AREXCLUDE for more information. Note that excluded files may
become inconsistent and need to be restored from backup using ADASAV RESTORE.

If a file is excluded from autorestart, an SM-PINAUTOR2 message is generated followed by an ADAN50
message, both indicating the file number of the excluded file.

Whenever PINAUTOR is invoked, the message PINAUTOR OUTPUT is generated followed by
messages pertaining to the specific PINAUTOR situation as described in the Adabas Messages and Codes
documentation. To indicate that PINAUTOR processing is completed, the message END PINAUTOR
OUTPUT is generated.

PINAVI

PINAVI is delivered with the selectable unit Adabas Vista. It is established automatically when the
Adabas Vista server component initializes at nucleus startup (ADARUN VISTA=YES).

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY) in the
Adabas Vista server component, control is passed to PINAVI, which formats and prints the main memory
areas used by the component. These diagnostics are written to the DDPRINT dataset with the title

ADABAS VISTA - memory-area-name : SNAP BY PINAVI

PINAVI then disables the program in which the interrupt occurred and returns control to Adabas so that
Adabas can continue. Disabling the program does not disrupt the Adabas service; however, access to
Adabas Vista files may be restricted. In this case, a nonzero response code returned to the user identifies
the restrictions.

If necessary, PINAVI can be activated and deactivated. However, after PINAVI is reactivated, it will not
be reestablished until the next nucleus session.

127

Error Handling and Message BufferingAdabas DBA Tasks

PINCOR

PINCOR is delivered with System Coordinator for Adabas Options. It is established automatically when
the System Coordinator server component (ADAPOP) initializes at nucleus startup.

If a program interrupt occurs in the System Coordinator server component, control is passed to PINCOR,
which formats and prints the main memory areas used by the component.

These diagnostics are written to the DDPRINT dataset with the title

COMMON RUNTIME - memory-area-name : SNAP BY SMGT

PINCOR then returns control to the error handling and message buffering facility so that Adabas can
terminate abnormally.

PINOPRSP

Warning:
PINOPRSP makes it possible to initialize a database and operate it
without writing checkpoints. If database recovery procedures become
necessary, the missing checkpoint information can result in critical
errors. To prevent this, you must reorder the checkpoint file
immediately after PINOPRSP is invoked and be able to account for
all changes in the status of the database between initialization and the
reordering of the checkpoint file.

If NOOPRSP has been renamed to PINOPRSP in the Adabas load library and a parameter error 73 occurs
during system initialization indicating a checkpoint overflow condition, PINOPRSP is invoked.

The message "PINOPRSP OUTPUT" is generated indicating that PINOPRSP has been invoked.
PINOPRSP then generates a message warning the DBA that Adabas will activate even though the
checkpoint file is full:

response code INTERCEPTED BY PINOPRSP BECAUSE THE CHECKPOINT FILE IS
FULL. THE ADABAS NUCLEUS WILL ACTIVATE BUT THE CHECKPOINT FILE NEEDS
TO BE REORDERED AS SOON AS POSSIBLE.

The "response code" is either 75 or 77 in this case. No checkpoint is written but the nucleus activates.
Corrective action needs to be taken as soon as possible. The message "END PINOPRSP OUTPUT" is then
generated to indicate that PINOPRSP processing is completed.

PINRSP

The SMGT,ADDPIN=PINRSP operator command activates PINRSP, which provides extended
information to aid in diagnosing a response code.

Note:
Only response codes set by Adabas can be logged. A response code such as 22 (invalid command code),
which is set by the Adabas SVC before it reaches Adabas, is not logged.

If PINRSP is installed without modifying the Adabas PIN routine user exit ADASMXIT, all response
codes are logged. You can customize ADASMXIT to

128

Adabas DBA TasksError Handling and Message Buffering

include specific response codes or response code/subcode combinations;

indicate the number of times a particular response code can be monitored.

When a nonzero response code is encountered, PINRSP acquires control. The message "PINRSP
OUTPUT" is generated to indicate that PINRSP has control. Depending on the response code
encountered, different areas are logged.

With respect to areas logged, five categories of response codes are described:

1. Basic response code logging includes

the active thread

the FCB if possible

the areas that have been GETMAINed and are currently in use

2. Index-related response codes such as 177

basic response code logging

the index structure from the thread

active CQEs

buffer pool headers

3. Response codes such as 40 where additional IUB areas may be pertinent

basic repsonse code logging

IUBs

active CQEs

4. Response codes such as 255 where additional attached buffer information may be necessary

basic reponse code logging

active CQEs

attached buffer information

5. Response codes such as 72 where the user queue may be helpful

basic response code logging

active CQEs

user queue

129

Error Handling and Message BufferingAdabas DBA Tasks

Example:

Rather than obtain a CLOG when you need additional information to diagnose a particular response code,
you can modify ADASMXIT to capture the response code, reassemble it, and load it while the nucleus is
up. The information is then logged the next time the response code is encountered.

Once you have the information, you can modify ADASMXIT to remove the response code and reload it
so that information is no longer captured. Alternatively, you can set ADASMXIT initially to log the
information only ‘n’ number of times.

You can also use PINRSP in conjunction with ADASMXIT to suppress the ADAN77 message that is
generated for response codes 201, 202, or 203. This may be useful in situations where a new application
receives enough security errors to fill the SYSLOG. Although Software AG does not recommend this
action, you may temporarily modify ADASMXIT to suppress N77 messages and activate PINRSP with
response codes 201, 202 and 203 indicated in ADASMXIT.

If message suppression is activated, the ADAN77 message "Message suppression in effect" is generated
and the PINRSP output providing format information related to the response code is suppressed.

Once PINRSP has completed processing, the message END PINRSP OUTPUT is generated.

PINSAF

PINSAF is delivered with the selectable unit Adabas SAF Security (ADASAF). It is invoked
automatically when the ADASAF initializes at nucleus startup.

In the event of a program interrupt (see the table in the section Default PIN Module ADAMXY) in
ADASAF, control is passed to PINSAF, which formats and prints the main memory areas used by
ADASAF. These diagnostics are written to a dataset with the title

ADABAS SAF INTERFACE - control-block-name : SNAP BY SMGT

PINSAF then returns to the error handling facility so that Adabas can terminate abnormally.

Note:
For security reasons, PINSAF does not allow Adabas to continue after an ABEND in ADASAF.

Like other PIN routines, PINSAF can be activated and deactivated. However, after PINSAF is reactivated,
ADASAF itself must be restarted before PINSAF will function correctly. Refer to the Adabas SAF
Security documentation for more information.

PINUES

PINUES handles Adabas response codes in the context of the universal encoding support (UES) system.
PINUES captures input/output errors when trying to

load an encoding object that does not exist; or

convert invalid data.

Note:

130

Adabas DBA TasksError Handling and Message Buffering

When used with other PIN routines that handle the same error conditions, the PIN loaded last is called to
handle the error. For example:

F NUC227,SMGT,ADDPIN=PINRSP
F NUC227,SMGT,ADDPIN=PINUES

In this example, PINUES is loaded after PINRSP and therefore handles the error conditions it can handle
(response codes 17, 48, and 55). All other response codes are processed by PINRSP.

The message PINUES OUTPUT is generated to show that PINUES has acquired control. The message
END PINUES OUTPUT is generated when PINUES processing is completed.

Error Conditions Handled

Response codes 17 and 48 may occur on an OP command if the ECS objects are not available that
are needed to determine the data conversion between user and Adabas file. In this case, PINUES calls
ADAMXF with the options IUB and UQE to obtain diagnostic output.

Response code 55 may occur if ECS returns a response indicating that the conversion or moving of
text failed. In this case, the conversion parameters and buffers are snapped to obtain diagnostic
output.

Output Produced

Whenever PINUES writes diagnostic information, the following lines are printed on the console:

 ******** P I N U E S OUTPUT ********’

 ADANX1 dbid COMMAND cmd COMMAND ID hex-cid FNR file-number
 RESPONSE adabas-response-code SUBCODE adabas-subcode FLD
 field-name’
 TID hex-internal-user-id UID open-userid JOB job-name’
 ****** END P I N U E S OUTPUT ******’

Session Snapshots

18:17:37 ADAN19 00227 BUFFERFLUSH IS A S Y N C H R O N O U S
18:17:37 ADAN01 00227 A D A B A S V7.1.0 IS ACTIVE
18:17:37 ADAN01 00227 MODE = MULTI
18:17:37 ADAN01 00227 RUNNING WITHOUT RECOVERY-LOG
18:18:04 ADAI29 OPER CMD: SMGT,ADDPIN=PINUES
18:18:04 ADANTG 00227 PIN MODULE PINUES LOADED
18:18:04 ADANO2 00227 SMGT COMMAND PROCESSED
18:18:04 ADAN41 00227 1999-01-00 18:18:03 FUNCTION COMPLETED

18:36:33 ADAN7A 00227 ECS ERROR -2 IN FUNCTION GETHANDL
18:37:21
18:37:21 ******** P I N U E S OUTPUT ********
18:37:21 ADANX1 00227 COMMAND OP COMMAND ID 00000000 FNR 00014
18:37:21 RESPONSE 017 SUBCODE 023
18:37:21 TID 00000013 UID BLAUTOPF JOB TXG.....
18:37:21 ADAH51 00227 DUMP FORMAT CALLED

The following output is produced by the ADAMXF module:

131

Error Handling and Message BufferingAdabas DBA Tasks

18:37:22 ADAH52 00227 DUMP FORMAT COMPLETED
18:37:22 ****** END P I N U E S OUTPUT ******
18:37:22
18:49:45 ADAN7A 00227 ECS ERROR 54 IN FUNCTION CVFTXTX
18:49:45
18:49:45 ******** P I N U E S OUTPUT ********
18:49:45 ADANX1 00227 COMMAND A1 COMMAND ID 00000000 FNR 00014
18:49:45 RESPONSE 055 SUBCODE 004
18:49:45 TID 00000017 UID ANDECHS. JOB TXG.....

 ECS CONVERSION PARAMETERS

 0C190BE0+0000 00106570 00000080 00000200 00000000 *................*
 0C190BF0+0010 00000004 0C10ACB4 00000004 0010A6E0 *..............w.*
 0C190C00+0020 00004000 0C190BEC 0000020C 00000000 *................*
 0C190C10+0030 001065AD 0C190BE4 00000000 00000000 *.......U........*

 ECSE FROM ENCODING 3026 TO ENCODING 3035

 00106570+0000 02000002 00000BD2 00000BDB 00000004 *.......K........*
 00106580+0010 00000000 001062C8 00106350 001064E8 *.......H.......Y*
 00106590+0020 0000BD20 0000BDB0 0000000C 00000000 *................*
 001065A0+0030 001065AD 0004362C 40000000 00FEFE00 *................*
 001065B0+0040 00000340 40000000 04404000 00000000 *................*
 001065C0+0050 00000000 00000000 00000000 00000000 *................*
 001065D0+0060 00000000 00000000 00000000 00000000 *................*
 001065E0+0070 00000000 00000000 00000000 00000000 *................*
 001065F0+0080 00000000 00000000 02000001 00000BDB *................*

 ECONV INPUT AREA

 0C10ACB4+0000 4141F1F2 40404040 40404040 40404040 *..12............*

 ECONV OUTPUT AREA

 0010A6E0+0000 414150C2 50C350C4 50C550C6 50C750C8 *...B.C.D.E.F.G.H*
 0010A6F0+0010 50C150C2 50C350C4 50C550C6 50C750C8 *.A.B.C.D.E.F.G.H*
 LINES 0010A700 TO 0010A7C0 SAME AS ABOVE
 0010A7D0+00F0 50C150C2 50C350C4 50C550C6 00000000 *.A.B.C.D.E.F....*
 0010A7E0+0100 00000000 00000000 00000000 00000000 *................*
 LINES 0010A7F0 TO 0010E6D0 SAME AS ABOVE

18:49:45 ****** END P I N U E S OUTPUT ******

PIN Routine User Exit
The PIN routine user exit (entry name ADASMXIT) can be used to

supply parameters to the various PINs. If the exit is not installed, the parameters are set to the default
values.

examine a condition when it is encountered before the PIN routine is invoked so that recovery actions
other than those provided by Adabas can be implemented.

The ADASMXIT load module must be located so that it can be loaded by the nucleus, either in the load
library concatenation or in a system call library such as the MVS system link list. If you are running either
ADASMP or Adaplex+ on OS/390 MVS, the ADASMXIT module must be placed in an authorized load
library.

132

Adabas DBA TasksError Handling and Message Buffering

The PIN routine user exit is written in Assembler.

User Exit Inputs

The exit is entered with the following registers set:

R13 Adabas PIN routine save area

R14 Return address / AMODE

R15 Entry point address

R0 Function code:

1 - nucleus initialization

2 - ABEND

4 - response code

5 - nucleus termination

R1 Parameter list

+0 address of two user words

+4 address of condition description block (CDB) for functions 2, 4

User Exit Outputs

There are no outputs. Return codes are ignored and all registers other than 15 must be returned unchanged.

Condition Description Block

For each program check, abnormal termination, or response code error, a control block called the
condition description block (CDB) is generated that describes the event that occurred, where it occurred,
and what the registers and machine state were when it occurred. The CDB is passed to the error handling
and message buffering facility for use in determining whether a PIN routine is to be called or whether an
Adabas user exit is to be terminated. A PIN routine uses the CDB to obtain information about the
occurrence of the condition.

Modifying and Reloading the Exit

The PIN routine user exit may be modified, reassembled, and reloaded with the nucleus active. To load a
newly reassembled exit, issue the console operator command

SMGT,XD=SXnn to deactivate the PIN routine user exit

SMGT,XLOAD=SXnn to load the modified version of the exit

SMGT,XA=SXnn to activate the exit

133

Error Handling and Message BufferingAdabas DBA Tasks

See the Adabas Online System documentation for another way to accomplish this task.

Using the Exit with PINAUTOR

If PINAUTOR is enabled

without the PIN routine user exit, the maximum number of files that can be excluded from autorestart
is 10 (the default) and all files except the checkpoint and security (system) files are eligible for
exclusion. All response codes are eligible for exclusion except those that Adabas disallows as a
general rule.

with the PIN routine user exit, you can modify its AUTOPARM to change the maximum number of
files that can be excluded from autorestart and prevent specific files and/or response codes from ever
being excluded.

AUTOPARM Example

AUTOPARM DS 0D
MAXARPIN DC F’6’ Maximum of 6 files can be excluded from autorestart
BADRSPS DC XL1’48’ Response code 72 cannot be excluded from autorestart
 DC XL29’00’ 28 more entries are possible
NOTFILE DC XL2’0041’ File number 65 cannot be excluded from autorestart
 DC XL48’00’ 23 more entries are possible

Using the Exit with PINRSP

If PINRSP is enabled

without the PIN routine user exit, all response codes are monitored with no specific subcode
checking. Each response code is monitored a maximum of ten times. The ADAN77 message is not
suppressed.

with the PIN routine user exit, you can modify the response code to indicate the specific response
codes and subcodes that are to be monitored and the maximum number of times each response code
is to be monitored. You can set ‘N77MSG’ to YES in conjunction with response code 201/202/203
monitoring to suppress message ADAN77.

Response Table Entry Example

Note:
There is one entry per response code up to 255.

XL5’000A000000’
.
.... subcodes (up to 3; specified in hexadecimal)
.
.... maximum number of times to invoke PINRSP for response code (default=10)
.
.... 00 don’t log, 01 log

Example:

The ninth entry in the table corresponds to response code 9.

134

Adabas DBA TasksError Handling and Message Buffering

The entry X’0105020311’ indicates that response code 9, subcodes 2, 3, and 16 are logged. Response code
9 is logged a maximum of 5 times.

135

Error Handling and Message BufferingAdabas DBA Tasks

Universal Encoding Support (UES)
Note:
UES support requires that you use a version 7 or above Adabas SVC or router.

This chapter covers the following topics:

Overview

Wide-Character Encodings

Wide-Character Data Support

Overview
The Universal Encoding Support (UES) is a database option that enables Adabas to

perform data conversions;

handle wide character encodings;

set the basis for internationalization tasks such as collation sequences.

Data conversion needs arise when communicating with different systems, i.e., conversion between
different code pages for alphanumeric data or conversion of numerical data due to different machine
architectures (see also section Multiple Platform Support).

Wide character encodings are used in Asian language environments. Due to the need for a large number of
different characters, non-single-byte character sets have been defined. In addition, Unicode, a "Universal
Character Set", is more frequently used (see also section Wide Character Encodings).

A frequently listed internationalization task is searching and sorting data in a language specific order
rather than binary order as defined by the encoding (see also section Collation Descriptor Exits in User
Exits.

Wide-Character Encodings
In most cases, an Asian text character cannot be encoded using a single byte. For example, Japanese with
more than 10,000 characters in its set is encoded using two or more bytes per character. Because of the
encoding required, these are called double-byte character sets (DBCS) or multiple-byte character sets
(MBCS) as opposed to the single-byte character sets (SBCS) characteristic of most Western languages.

Previous versions of Adabas have stored DBCS-encoded data in alphanumeric fields. Problems with this
solution include the following:

the default ’blank’ of alphanumeric fields may be different from the blank required for double- or
multiple-byte character fields;

136

Adabas DBA TasksUniversal Encoding Support (UES)

field truncations caused by length overwrites can result in changed or invalid characters because the
string is cut off at a byte boundary rather than at a character boundary.

client/server applications are difficult to implement when client and server use different encodings
for their double- or multiple-byte character sets.

Although version 7 of Adabas continues to support the storage of DBCS-encoded data in alphanumeric
fields, it introduces a wide-character (W) field format to store data with a well defined encoding and
character set.

The default encoding for Wide format is Unicode for both storage and user. This default can be changed
on user and storage level to the encoding appropriate for the intended usage.

In the figure below, the Japanese kana (first two) and kanji (second two) characters are encoded in
mainframe modal (mixed) and non-modal (pure)

DBCS for use on EBCDIC-based machines

JIS for use on ASCII-based machines

and in Unicode, a fixed 2-byte encoding that is more universal than the other encodings and is used as the
default encoding in Adabas.

Wide-Character Encoding Example

Modal encodings shift back and forth between single- and double-byte character encodings. Mixed DBCS
strings always start and end in single-byte mode.

Double-byte character only field lengths must be an even number of bytes.

For EBCDIC encodings, the padding or blank character is X’40’ or X’4040’. On Hitachi machines, the
wide space is X’A1A1’ and the single byte space is X’40’. Adabas allows a single byte space to appear in
double-byte mode without a mode switch.

137

Universal Encoding Support (UES)Adabas DBA Tasks

Wide-Character Data Support
Adabas supports wide-character data with

extended alphanumeric format fields; and

wide-character format fields.

For an existing database or file, the encoding is assigned to alpha or wide fields using the ADADBS utility
without an unload/reload. The field-level option NV (pass a field unconverted to/from a caller) is
available.

Extended Alphanumeric Fields

Adabas extends alphanumeric fields to support wide-character data by defining encoding keys on both the
database and file levels: the file level encoding takes precedence over the database encoding. The
encoding specifies the format in which the data is to be stored. It is also used as the default format in
which data is exchanged with a local user.

The encoding must be compatible with EBCDIC; that is, the space character must be X’40’. For internal
processing reasons, only one of the following encoding "families" is supported for a given file:

EBCDIC (single-byte character set)

mixed host-DBCS

host-DBCS with DBCS-only option

Advantages and Disadvantages

The advantages of using extended alphanumeric fields include

immediate support of existing databases that contain DBCS data;

applications such as Natural continue running without changes; and

no logic changes in the Adabas nucleus for calls from the same encoding/architecture since
alphanumeric fields do not define an internal coding.

The disadvantage is that DBCS is not a "universal" encoding and unlike Unicode, it does not support all
characters used in the world’s languages.

Limitations

For an application, all alphanumeric fields have the same encoding. It is not possible to use different
encodings for different fields in the same session.

Conversion Considerations

When converting from pure single-byte character encodings, the field length of variable fields may change
requiring a shift of the converted record.

138

Adabas DBA TasksUniversal Encoding Support (UES)

Wide-Character Fields

Adabas defines a wide-character (W) format for fields. W format fields are similar to alphanumeric (A)
format fields in that encoding keys are defined on both the database and file levels: the file encoding takes
precedence over the database encoding. It differs from A field encoding in that

if no encoding is specified, the default Unicode encoding is used.

the "internal" encoding specifies the format in which the data is stored.

the "user" encoding specifies the default format for data presented to the user.

A descriptor is stored (and sorted) with internal encoding.

Advantages and Disadvantages

The advantages of using wide-character (W) fields include the following:

round-trip problems are avoided because the character set of the local encoding can be a superset of
all character sets of user and special encodings;

space is saved because internal encodings allow the use of UTF-8 when supported by ECS; and

native Unicode (the user encoding), the standard Java text encoding, can be directly stored and
retrieved.

The disadvantages are that

Natural and other products do not immediately support the new format; and

support for W format fields currently has the limitations listed in the next section, some of which
may be resolved in future releases of Adabas.

Limitations

For an application, all wide-character (W) fields have the same encoding. It is not possible to use
different encodings for different fields in the same session.

A W field cannot be the source for a phonetic descriptor or hyperdescriptor.

Format conversions are not possible from numbers (U, P, B, F, G) to W format.

A W field cannot be part of a coupled field, physical or soft.

A W field cannot be part of a format selection criterion (conditional format). This limitation is due
primarily to the single-byte character encoding of the criteria input (format buffer, search buffer, and
utility).

A W field cannot be part of a security-by-value criterion.

A W field cannot be used with an edit mask.

139

Universal Encoding Support (UES)Adabas DBA Tasks

Format buffer literals are handled as unconvertible single-byte character strings.

Special DBCS Format Conversion Rules

To ensure a smooth transition from existing applications that use mixed-DBCS and DBCS-only data,
special format conversion rules have been defined:

1. A modal DBCS encoding comprising the superset of single-byte and double-byte characters is treated
as "mixed-DBCS" encoding for alphanumeric fields and as "DBCS-only" encoding for
wide-character fields.

2. When converting from wide-character "DBCS-only" to the user’s alphanumeric "mixed-DBCS"
encoding, the encoding difference is ignored.

For example, if the user encoding for both alpha and wide formats is defined as "DBCS" and in the FDT,
field AA is defined as alpha and field WW is defined as wide:

Format
Buffer

Value in User
Buffer

AA[,A] mixed-DBCS

AA,W DBCS-only

WW,A DBCS-only

WW[,W] DBCS-only

140

Adabas DBA TasksUniversal Encoding Support (UES)

Multiple Platform Support
This chapter covers the following topics:

Overview

Encodings

ADACOX Conversion Exit

Conversion of High Value in Value Buffer

Data Translation Restrictions

Platform Considerations

Overview
Prior to Adabas version 7, converting data for Adabas buffers between different machine architectures
(ASCII, EBCDIC) was handled by Entire Net-Work. With the increasing use of applications where clients
and servers (that is, the databases) have different encodings, it has become necessary to expand the data
transfer and conversion capabilities of Adabas itself. To this end, Entire Net-Work determines whether the
target database has translation capabilities, and if so, passes the unconverted data on to the database for
conversion there.

An additional advantage of translating data within Adabas is that other transport mechanisms can now be
supported. For UES-enabled databases, Adabas version 7 supports Entire Net-Work access to the OS/390
or z/OS mainframe database through the TCP/IP protocol from web-based applications or from PC-based
applications such as Software AG’s Jadabas. See the ADARUN parameters TCP and TCPURL in the
Adabas Operations documentation for more information.

Adabas data translation occurs as follows:

The client application can specify a special encoding and communicate it to the Adabas nucleus at
session open (OP command).

The LNKUES/ADALNK converts Adabas buffer data depending on the architecture of the caller.

A number of utilities provide for special encoding and architecture settings.

EBCDIC to ASCII and ASCII to EBCDIC translation tables are located in the Adabas Installation
documentation. A table listing the encoding keys provided with Adabas version 7 is located in the Adabas
Command Reference documentation and the Adabas Utilities documentation.

Encodings
Adabas recognizes four types of encodings that can be specified in parallel:

141

Multiple Platform SupportAdabas DBA Tasks

Encoding Character string encoding ...

File is stored and processed internally

Default
User

is used as the default for Adabas local call interface requests and for
ADACMP DDEBAND.

User overrides the "default user" encoding for a user session or an ADACMP
execution. This is used to adapt to the special needs of a client program.

Collation is in acceptable sort order. The collation can be defined by language and
country standards commonly identified with a "locale" definition.

Since user data does not require conversion, Adabas equates the local "default user" and "file" encoding to
increase processing speed. Remote requests with ASCII architecture are converted using the database
"default ASCII user" encoding.

Double-byte character sets are converted using the native mainframe EBCDIC architecture encoding: host
DBCS from IBM, Fujitsu, or Hitachi.

Special applications or remote clients select a specific "user" encoding that fits their processing
environment at session open.

To ensure round-trip compatibility between architectures and encodings, Adabas uses a file encoding that
holds the superset of all characters defined in the "default user" and any specific "user" encodings. For
wide-character fields, such a file encoding defaults to the universal character set encoding Unicode.

Collation encoding is defined for a descriptor field. Values for this encoding are obtained algorithmically
by calling a collation exit programmed to produce culturally correct sorted keys; that is, a character
dictionary. Collation encoding may be defined for both alphanumeric and wide-character fields; the
collation encoding/exit is defined on the file level for alpha and/or wide descriptor fields.

ADACOX Conversion Exit
With ADABAS 7.4.2 the new conversion exit ADACOX is available. ADACOX supports
context-sensitive conversion between Windows-1256 and EBCIDIC Arabic or EBCDIC Farsi code page
with UES enabled databases.

While Arabic characters are unshaped in Windows-1256, the supported EBCDIC encodings use shaped
forms depending on previous or following characters. In addition, for certain consecutive characters the
combined form is used e.g. LAM-ALEF ligature.

Currently, no support is included for conversion from logical to visual order and vice versa, or symmetric
character conversion.

The conversion exit will always be loaded for UES enabled databases.

When a new conversion between two encodings is first used, the exit is queried whether it supports the
conversion. If it does, the exit will be called for any such conversion; if it does not, Adabas and/or Entire
Conversion Services will do the conversion.

142

Adabas DBA TasksMultiple Platform Support

However, the conversions defined in ADACOX need to be backed by corresponding ECS objects; for
example, for the conversion 420 to 1256 the character set properties are determined by the ECS objects.

Conversion of High Value in Value Buffer
When performing searches using the S operator, the high value is usually a sequence of X’FF’ bytes.

With UES=YES, the source and target code pages control the conversion of data. The conversion of the
character X’FF’ depends on its mapping to the target code page. It is therefore possible that the X’FF’ will
not remain the X’FF’ in the converted value.

For example, when converting from 819 (ISO 8859-1 Latin1) to 37 (EBCDIC), the Latin small letter ’y’
with diaeresis is mapped from X’FF’ to X’DF’. As a result, searches find fewer or even no records.

Adabas version 7.4 solves this problem as follows: with UES=YES and Alpha (or Wide) conversion, all
FROM-TO Search/Logical Read Criteria are handled in such a way that in the TO criterion the high value
characters at the value end:

are preserved when converted into the internal search value, and

are excluded from value conversion.

Note:
This solution is not implemented for the value operators (EQ, GT, GE, LE, and LT). It is limited to the TO
value of FROM-TO search criteria (S operator). This applies to alpha and wide-format fields and to the
Alpha/Wide format parts of Super and Sub Descriptors.

Data Translation Restrictions
The following restrictions of Entire Net-work are continued with Adabas translation:

compressed records (FB=C) are not converted.

text literals are not converted and are passed as is. When reading records, a literal is returned
unchanged (for example, FB AA, ‘-do not convert-’,BB).

prefetch option P is not supported in conversion.

ET data is not converted. When reading, ET data is padded with EBCDIC blanks.

Additional restrictions imposed by Adabas include the following:

for all C‘Xn’ command codes used by CSCI, only the control block is converted; not the buffers.
This applies only for Adabas version 7 servers.

Entire System Server (NPR) / XCOM applications are not included in the scope of Adabas
translation. Those applications need to do their own translation.

OS/2 unpacked numbers sign X‘Dn’ is not used and therefore, is not supported.

143

Multiple Platform SupportAdabas DBA Tasks

Adabas does not provide user translation exits for field-level translation. Such exits are provided by
Entire Net-work.

Platform Considerations
Although differences between Adabas versions running on various platforms are gradually being reduced,
the following considerations apply when porting applications:

 Mainframe Open
Systems

OpenVMS

Fixpoint field length 2 and 4
only

1,2,4,8 1,2,4,8

Binary superdescriptor format default is U
(unpacked)

No Yes Yes

Signed binary superdescriptor Yes No No

Binary superdescriptor format conversion Yes No No

Superdescriptor with MU and PE fields Yes No No

Superfields and subfields Yes No No

Superdescriptor with floating-point format
parents

No Yes Yes

Maximum length of unpacked fields 29 29 27

Maximum length of packed fields 15 15 14

Prefetch option for read and ET/BT
commands

Yes No No

Long alpha (LA) field option Yes No No

Field arithmetic update option in format bufferNo Yes Yes

MC command No Yes Yes

Hyperfield value generation from value bufferNo Yes Yes

Additionally, user data provided in mainframe ADALNK user exits is not sent to ASCII machines.

144

Adabas DBA TasksMultiple Platform Support

Adabas Online System Demo Version
A demo version of Adabas Online System (AOS) and access to the online services for selected other
Adabas products and facilities is included with Adabas as shown in the following diagram:

AOS Demo Version

This part of the DBA tasks documentation describes the operation and use of the AOS demo version. The
use of the online services for the other Adabas products and facilities is described in the manuals for those
products and facilities. AOS Security is described in the Adabas Security documentation.

This information is organized under the following headings:

Overview

Main Menu Functions

Session Monitoring

List Checkpoints

File Maintenance

Database Maintenance

System Operator Command Functions

Database Report

145

Adabas Online System Demo VersionAdabas DBA Tasks

Overview
The AOS demo version includes the following functions that are comparable to Adabas operator
commands and utilities and are used for Adabas database analysis and control:

Overview of the AOS Demo Version

See the Adabas Installation documentation for information about installing the demo version of AOS.

The selectable unit AOS includes services that correspond to additional utility functions and operator
commands. See the Adabas Online System documentation. for information.

This chapter covers the following topics:

What You Can Do with the AOS Demo Version

What You Can Do with the AOS Demo Version
The DBA can use the AOS demo version to monitor aspects of an Adabas database while an Adabas
session is active. Using menu options, the DBA can view resource and hold queue status; display space
allocation; display file and database parameters; create new FDTs; and stop a current Adabas session.

146

Adabas DBA TasksOverview

For analyzing performance and monitoring database operation, the AOS demo version displays the system
from the viewpoint of either a user or a particular system resource. For example, you can

check hold queue status;

view nucleus parameters;

monitor command and file usage and system performance information;

list file layout and extent status; and

list file distribution of the database by VOLSER.

For controlling the overall Adabas session, the AOS demo version can be used to

create new FDTs; and

terminate an Adabas nucleus session (ADAEND).

147

OverviewAdabas DBA Tasks

Main Menu Functions
To enter the AOS demo version, log on to the Natural application SYSAOS and enter DBMENU at the
NEXT prompt, if one appears.

Note:
If the full version AOS is installed on your system, enter MENU instead. See the Adabas Online System
documentation for more information.

14:40:37 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Main Menu - PMAIN02

 Code Basic Services Code Other Services
 ---- ---------------------- ---- ---------------------
 A Session monitoring 1 Adabas Cache Facility
 C Checkpoint maintenance 2 Delta Save Facility
 F File maintenance * Trigger Maintenance
 M Database maintenance 4 AOS Security
 O Session opercoms 5 Transaction Manager
 R Database report 6 Adabas Statistics
 * Space calculation 7 Vista
 ? Help 8 Fastpath
 . Exit 9 SAF Security
 ---- ---------------------- ---- ---------------------

 Code _
 Database ... 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit

The Main Menu displays the functions available with Adabas Online System. AOS functions that are not
not available with the demo version are marked with an asterisk (*) on the screen.

From the Main Menu, you can access available "basic services" functions or one of the "other services"
installed on your system. Other services installed at your site are highlighted.

The Main Menu indicates the main DBA tasks in the demo version:

148

Adabas DBA TasksMain Menu Functions

Code Function

A Session monitoring allows you to display nucleus parameters, session and
thread status information, ISNs in the hold queue, and maintenance levels for
nucleus modules

C Checkpoint maintenance allows you to list checkpoint information

F File maintenance allows you to define a new FDT for a new file

M Database maintenance is not active for the demo version

O Session opercoms allows you to add or delete PIN modules used by the
extended error recovery facilities; display currently loaded PIN routines and
activate or deactivate them, display locked files, and terminate a session
normally (ADAEND)

R Database report allows you to view general database layout information,
tables of database files, and detailed information for any file

Subsequent sections in this chapter describe the major functions of the AOS demo version and
menu/screen structures in the order that they appear on the Main Menu.

This chapter covers the following topics:

Specifying the AOS Demo Version Database

Using Program Function (PF) Keys

Selecting a Menu Option

Getting Help

AOS Demo Version Messages

Specifying the AOS Demo Version Database
The database on which the AOS demo version is installed becomes the default database for demo version
functions. However, you can specify the database of any active Adabas nucleus session. Subsequent AOS
demo version functions refer to that database until you specify another database or exit the AOS demo
version.

Using Program Function (PF) Keys
Available PF keys and their functions are listed at the bottom of each screen. The following program
function (PF) keys appear on all screens within the AOS demo version; other navigation keys appear on
some screens:

PF1 Help

PF3 Exit to previous screen

PF12 Return to the Main Menu

149

Main Menu FunctionsAdabas DBA Tasks

Selecting a Menu Option
To select a function or option, enter the option code in the Code field.

Selecting a Main Menu function displays a menu of choices for that function.

Getting Help
From any AOS demo version menu, you can use PF1 to display a brief comment about the current menu.
See Using Program Function (PF) Keys .

AOS Demo Version Messages
The AOS demo version issues a message confirming each completed function. If an error occurs, a
message appears containing a reference number and describing the error.

Before analyzing an error, try reviewing the help information (PF1) for the last step you performed to see
if any requirements were overlooked; then retry the operation.

Response code 22 is returned if the Adabas session is terminated and restarted while the AOS demo
version is active. In this case, the application should be stopped and restarted.

150

Adabas DBA TasksMain Menu Functions

Session Monitoring
Adabas session monitoring functions display major Adabas resources. These functions are most useful
when analyzing system performance or seeking the cause of performance problems.

14:38:19 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Session Monitoring - PAC0002

 Code Service Code Service
 ---- -------------------------- ---- ----------------------------
 * Display cluster members * Refresh nucleus statistics
 * Maintain user profiles * Current session statistics
 D Display parameters * Maintain TCP/IP URL
 * Modify parameters U Display session utilization
 Q Display queues Z Display maintenance levels
 ? Help
 . Exit
 ---- -------------------------- ---- ----------------------------

 Code _
 Database ID .. 1955 (WIS1955) NucID .. 1022

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

You can use the Session Monitoring environment to monitor the Adabas nuclei in a multiprocessing
(Parallel Services or Cluster Services) environment. When the DBID of a Parallel or Cluster Services
database is entered on the Session Monitoring menu, subsequent screens include a field to specify the ID
of the nucleus in the cluster that you want to monitor.

Each of the functions on the Session Monitoring menu is discussed in the following sections:

Code Function

D Display Adabas nucleus (ADARUN) parameters

Q Display the contents of the hold queue

U Display session status and thread usage

Z Display Adabas nucleus modules: maintenance levels and ZAPs applied

This chapter covers the following topics:

Display ADARUN Parameters

Display Hold Queue

Display System Status and Thread Usage

151

Session MonitoringAdabas DBA Tasks

Display Maintenance Levels

Display ADARUN Parameters
You can view Adabas nucleus (ADARUN) parameters.

To view the parameters, select option D from the Session Monitoring menu.

Three screens are used for displaying parameters:

16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display Parameters - PACP002

 Modify parameters below, as required:
 -------------- Pools --------------- ----------- Queues ------------------
 Sort Area (LS) .. 19968 Command Queue (NC) .. 100
 Int. User Buffer (LU) .. 65535 Hold Queue (NH) .. 9000
 Buffer Pool (LBP) .. 127936 User Queue (NU) .. 700
 Format Pool (LFP) .. 12000 ---------- Time Windows -------------
 ISN List Table (LI) .. 10000 Transaction Time (TT) .. 300
 Seq. Cmd. Table (LQ) .. 2500 Max Transaction Time (MXTT) .. 3600
 Work Pool (LWP) .. 500000 Nonactivity ACC-User (TNAA) .. 300
 Attached Buffer (NAB) .. 35 Nonactivity ET-User (TNAE) .. 300
 Security Pool (LCP) .. 10000 Nonactivity EXU-User (TNAX) .. 300
 UQ-DE Pool (LDEUQP) .. 5000 Max Nonactivity Time(MXTNA) .. 3600
 Flush I/O Pool (LFIOP) .. 125000 Time Limit Sx-Cmds (TLSCMD) .. 286
 Err. Recovery(SMGTBUFF) .. 0 Max Time for Sx-Cmds(MXTSX) .. 3600
 Command Time (CT) .. 9000
 SYNS60 Interval (INTNAS) .. 3600

 Page 1 of 3
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit + Menu

16:33:03 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display Parameters - PACP002

 Modify parameters below, as required:
 --------- Miscellaneous ----------- -------- User Specific Limits ---------
 ReadOnly session (READONLY) .. NO Hold Queue Limit (NISNHQ) .. 2200
 UTI only session (UTIONLY) .. NO CIDs per User (NQCID) .. 75
 OPEN required (OPENRQ) .. NO ISNs / TBI Element (NSISN) .. 51
 Ignore DIB Entry (IGNDIB) .. NO ------------ Buffer Pool --------------
 Local nucleus (LOCAL) .. NO Bufferflush Dur. (TFLUSH) .. 1
 Number of Threads (NT) .. 4 Parallel LFIOP I/O (FMXIO) .. 60
 Non DE Search (NONDES) .. YES Async. by Vol-Ser (ASYTVS) .. YES
 Log AOS/DBS Update (AOSLOG) .. NO
 Batch Support (BATCH) .. NO
 Data Protection Area (LP) .. 500
 Ignore Work Part 4 (IGNTPC) .. NO
 WORK-Part-4 Area (LTPC) .. 0
 WORK-Part-2 Area (LWKP2) .. 0
 Page 2 of 3

152

Adabas DBA TasksSession Monitoring

Modify parameters below, as required:
 ---- Command Logging ---- ---------- Protection Logging -----------
 Command Logging .. NO PLOG required (PLOGRQ) .. NO
 LOGCB NO DUAL PLOG Size (DUALPLS) .. 0
 LOGFB NO DUAL PLOG Device (DUALPLD) .. 0
 LOGRB NO ------------ Other Services -------------
 LOGSB NO Triggers and Procedures (SPT) .. NO
 LOGVB NO Delta Save Facility (DSF) .. NO
 LOGIB NO Cache Facility (CACHE) .. NO
 LOGIO NO Transaction Manager (ATM) .. NO
 LOGUX NO TCP/IP Support (TCPIP) .. NO
 LOGSIZE 8904 Ext. Error Recovery (SMGT) .. NO
 DUAL CLOG Size ... 0 2 Phase Commit Support (TPC) .. NO
 DUAL CLOG Dev. ... 0 Review Support (REVIEW) .. NO

 Page 3 of 3
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit

Display Hold Queue
Selecting Queue displays (option Q) from the Session Monitoring menu displays the following menu:

09:00:20 ***** A D A B A S BASIC SERVICES ***** 1997-01-29
 - Queue Displays - PACQ002

 Code Service
 ---- ---------------------------
 * Display User Queue Elements
 * Display Command Queue
 H Display Hold Queue
 ? Help
 . Exit
 ---- ----------------------------
 Code _
 Max No. Elements ... 100
 Last Activity 0 (elapsed time in seconds)
 Selection Criteria
 ET-ID (User-ID) .. ________ User Type ... ___
 Job Name ________
 Terminal ID ________
 Database ID 105 (RD-105)
 Command ==>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Clear UID Menu

Option H displays a list of the ISNs currently in hold status.

If the queue is currently empty, an appropriate message appears.

Display System Status and Thread Usage
Selecting Resource utilization (option U) from the Session Monitoring menu invokes the Resource
Utilization menu:

153

Session MonitoringAdabas DBA Tasks

11:44:10 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
 - Resource Utilization - PACU002

 Code Service
 ---- -------------------------------
 * Command usage
 * File usage
 * High water marks (pools/queues)
 * Workpool (LWP) usage
 * PLOG status
 S System status
 T Thread usage
 * WORK status
 ? Help
 . Exit
 -------- -------------------------------
 Code _
 File Number .. 0
 Database ID .. 105 (RD-MPM105)

 Command ==>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

Each option allows you to refresh (PF4) the displayed values, a convenience for long-term monitoring of
Adabas system functions.

System Status

System status (option S) displays I/O counts for the ASSO, DATA, WORK, and PLOG datasets; remote
and local call distribution; and other current session status information.

16:44:13 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - System Status - PACUS02

 Physical
 Reads Writes Call Distribution
 ------------------------- ---------------------------------------
 ASSO 132 29 Remote Logical 0
 DATA 3 9 Remote Physical 0
 WORK 4 29 Local Logical 145
 PLOG 0 Local Physical 0
 Logical Reads 194 Logical Reads (binary) 000000C2
 Buffer Efficiency 1.4 No. of HQEs active 0
 No. of UQEs in User Queue .. 2
 Format Translations .. 0 No. of CQEs waiting in CQ .. 0
 Format Overwrites 0
 Total intern. Autorestarts . 0
 Throw Backs for ISN .. 0 No. of PLOG switches 0
 Throw Backs for Space. 0 No. of Bufferflushes 8

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Refresh Menu

154

Adabas DBA TasksSession Monitoring

Thread Usage

Thread usage (option T) displays a table of all defined Adabas threads, the status of each, the command
type currently in process in each active thread, and the number of commands processed by each thread in
the current session.

11:47:18 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
 DBID 105 - Thread Status - PACUT02

 Nr. I Thread Status I Command Type I Nr. CMDs I

 1 I Active I Simple Cmd. I 18992 I
 2 I Not active I I 109 I
 3 I Not active I I 0 I
 4 I Not active I I 0 I
 5 I Not active I I 0 I
 I I I I

Display Maintenance Levels
Selecting Display maintenance levels (option Z) from the Session Monitoring menu displays information
about the Adabas nucleus modules:

13:43:09 ***** A D A B A S BASIC SERVICES ***** 1999-06-09
 DBID 105 - Display Maintenance Levels - DPACZ02

 Select Module Name: ________

 ADARUN RUNMVS Date 1998-10-27, Version 7.1. 0, Zap Base AO10000
 RUNIND Date 1998-10-27, Version 7.1. 0, Zap Base AI10000
 ADATSP Date 1998-10-30, SM Level 00, Zap Level 0000
 Zaps 0034 0040 0043 0083 0084 0099
 ADATCP Date 1998-10-30, SM Level 00, Zap Level 0000
 Zaps 0136
 ADAMSG Date 1998-10-30, SM Level 00, Zap Level 0000
 ADAIOR Date 1998-10-29, SM Level 00, Zap Level 0000
 ADAIOS Date 1998-10-29, SM Level 00, Zap Level 0000
 Zaps 0001 0003 0004 0005 0007
 ADANC0 Date 1998-11-01, SM Level 00, Zap Level 0000
 Zaps 0036

 Command ===>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit -- - + Menu

Maintenance levels for each module are displayed. Any ZAPs that are applied to the module are also
listed.

The list of modules can be limited by entering a specific module name in the Select Module Name field at
the top of the screen. A starting value may also be used. For example, specifying ADANC3 displays
information for the ADANC3 module only. Specifying ADANC* lists all modules with names that begin
with ADANC.

155

Session MonitoringAdabas DBA Tasks

List Checkpoints
Selecting Checkpoint maintenance (option C) from the Main Menu invokes the Checkpoint Maintenance
menu:

14:41:59 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Checkpoint Maintenance - PCP0002

 Code Service
 ---- -----------------------
 C List checkpoints
 * Delete checkpoints
 ? Help
 . Exit
 ---- -----------------------

 Code _
 Date(YYYY-MM-DD) . 0000-00-00
 Ext. CP-list N
 Checkpoint Name .. ALL
 Database ID 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Option C lists checkpoints currently in the checkpoint file.

The result can be either a basic or an extended list, depending on the setting of the "External CP-list" field,
which can be used to override the CPEXLIST operating control parameter.

You can start the list of checkpoints on a particular day by entering the date in the Date field in exactly the
format shown.

You can specify the database for which the checkpoint list is to be written.

You can restrict the list to a particular type of checkpoint by changing the ALL designation in the
Checkpoint Type field to one of the following:

156

Adabas DBA TasksList Checkpoints

SYNC nucleus initialization

SYNF user open EXF

SYNP utility without NUC

SYNS ADARES

SYNV volume ID change

SYNX utility

SYN1 ADASAV DB begin

SYN2 ADASAV DB begin

SYN4 ADASAV file begin

SYN5 ADASAV file begin

For more information about checkpoint types, see ADAREP in the Adabas Utilities documentation .

The following screen displays a normal checkpoint list:

15:12:22 ***** A D A B A S Basic Services ***** 1997-01-30
 DBID 105 - List Checkpoints - PCPC002

 CP CP Date Time PLOG Block Vol/Ser User Job Name
 Name Type Number Number Number Type
 ---- ---- ---------- -------- ------ ---------- -------- ---- --------
 SYNC 01 1996-04-01 00:29:41 MPM105
 SYNS 60 1996-04-01 02:00:37 ADABAS
 SYNP 06 1996-04-01 02:43:55 PMS105SS
 SYNV 0A 1996-04-01 02:59:51 PMS105SS
 SYNV 0A 1996-04-01 02:59:51 PMS105SS
 SYNV 0A 1996-04-01 02:59:51 PMS105SS
 SYNV 0A 1996-04-01 02:59:51 PMS105SS
 SYNC 01 1996-04-01 03:12:30 MPM105
 SYNS 60 1996-04-01 04:34:43 ADABAS

This screen illustrates an extended checkpoint list providing additional information about each checkpoint:

12:58:49 ***** A D A B A S Basic Services ***** 1997-01-31
 DBID 105 - List Checkpoints - PCPC002

 CP CP Date Time PLOG Block Vol/Ser User Job Name
 Name Type Number Number Number Type
 ---- ---- ---------- -------- ------ ---------- -------- ---- --------
 SYNC 01 1996-04-01 00:29:41 MPM235
 SESSION OPEN IGNDIB = N , FORCE = N
 SYNS 60 1996-04-01 02:00:37 ADABAS
 STATISTIC RECORD
 SYNP 06 1996-04-01 02:43:55 PMS235SS
 SAVE DB
 SYNV 0A 1996-04-01 02:59:51 PMS235SS
 SAVE DB VOL-SER = 502461 SESSION = 933
 SYNV 0A 1996-04-01 02:59:51 PMS235SS
 SAVE DB VOL-SER = SESSION = 933
 SYNV 0A 1996-04-01 02:59:51 PMS235SS
 SAVE DB VOL-SER = 502215 SESSION = 933

157

List CheckpointsAdabas DBA Tasks

File Maintenance
Selecting option F from the Main Menu invokes the File Maintenance menu:

14:42:25 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - File Maintenance - PFL0002
 Code Service
 ---- ------------------------------
 C Define/modify FDT
 * Release descriptor
 * Delete existing file
 * Define new file
 * Modify file parameters
 * Reorder file online
 * Refresh file to empty status
 * Allocate/deallocate file space
 * Maintain expanded files
 ? Help
 . Exit
 ---- ------------------------------
 Code _
 File No 0 Descriptor Name .. __
 Database ID .. 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

From the File Maintenance menu, option C displays the FDT/SDT Definition / Modification menu:

15:34:30 ***** A D A B A S BASIC SERVICES ***** 1998-07-30
 - FDT/SDT Definition / Modification - PFLC002

 Code Service
 ---- -------------------
 * Add new field(s)
 * Change field length
 D Define new FDT
 * Online invert
 * Define/add SDT
 ? Help
 . Exit
 ---- -------------------

 Code _
 File No. 50
 Field Name ... __
 Database ID .. 105 (RD-MPM105)

 Command ==>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Def. File Exit Menu

From the FDT/SDT Definition / Modification menu, option D displays the Define FDT screen, which can
be used to define a new FDT for a new file:

158

Adabas DBA TasksFile Maintenance

5:13:34 ***** A D A B A S BASIC SERVICES ***** 1997-02-12
 DBID 105 - Define FDT - PFLCD02

 File Number ... 200 New FDT ... Y
 Enter Field Description(s) :

 I Level I Name I Length I Format I Options I
 I---
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I
 I __ I __ I ___ I _ I __ __ __ __ __ I

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

FDTs for existing files cannot be redefined with this option.

This function corresponds to the Adabas utility function ADACMP COMPRESS.

159

File MaintenanceAdabas DBA Tasks

Database Maintenance
Selecting option M from the Main Menu invokes the Database Maintenance menu:

14:42:42 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Database Maintenance - PDM0002

 Code Service
 ---- ----------------------------
 * Add new dataset to ASSO/DATA
 * Increase/decrease ASSO/DATA
 * List/reset DIB block entries
 * Recover unused space
 * Uncouple two ADABAS files
 ? Help
 . Exit
 ---- ----------------------------

 Code _
 File No. 0
 Coupled File .. 0
 Database ID ... 1955 (WIS1955)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

None of the Database Maintenance functions are active for the demo version.

160

Adabas DBA TasksDatabase Maintenance

System Operator Command Functions
Selecting Session opercoms (option O) from the Main Menu displays the following menu:

14:43:03 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Session Opercoms - PACI002

 Code Service Code Service
 ---- ------------------------------ ---- ------------------------------
 * Allocate/Deallocate CLOG/PLOG S Stop user(s)
 E Extended Error Recovery T Termination Commands
 * Force Dual CLOG or PLOG switch * Manage Online Utilities
 L Lock or unlock files * User Table Maintenance
 * Reset ONLINE-DUMP-Status
 ? Help
 . Exit
 ---- ------------------------------ ---- ------------------------------
 Code _
 Userid(ETID) ... ________
 CLOG/PLOG Ind .. _ Global.. _
 Database ID 1955 (WIS1955) NucID .. 1022

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

The following functions are available to the AOS demo version:

Code Function

E Add or delete PIN modules used by the extended error recovery facilities;
display, activate or deactivate current PIN routines

L Display locked files

S Stop a specific user, all users of a specific file or job, or all inactive users

T Terminate a session normally (ADAEND)

This chapter covers the following topics:

Extended Error Recovery

Display Locked Files

Stop User(s)

Terminate a Session Normally (ADAEND)

161

System Operator Command FunctionsAdabas DBA Tasks

Extended Error Recovery
Selecting option E (extended error recovery) from the Session Opercoms menu displays the Extended
Error Recovery menu:

14:44:35 ***** A D A B A S BASIC SERVICES ***** 1999-05-12
 - Extended Error Recovery - DPACIE2

 Code Service
 ---- ----------------------------------
 * Display message buffer
 * Display/modify environment
 * Display/modify Exit routines
 M Add/Delete PIN modules
 P Display/modify PIN routines
 * Refresh threshold and alert exits
 * SNAP a nucleus dump
 ? Help
 . Exit
 ------ ----------------------------------

 Code _
 Start Address .. End Address ...
 Database ID 823 (RD-CK-823)

 Command ==>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

From this menu you can

add or delete PIN modules;

display, activate, or deactivate specific PIN routines.

Add / Delete PIN Modules

Selecting option M (add/delete PIN modules) from the Extended Error Recovery menu displays a list of
currently available PIN modules:

13:42:45 ***** A D A B A S BASIC SERVICES ***** 1999-06-18
 DBID 823 - Add/Delete PIN Modules - PACIEM2

 Mark entries with ’A’ to Add or ’D’ to Delete:

 M Module Description Message
 - -------- ------------------------------ -------
 _ ADAMXY Standard Nucleus PIN Routines
 PINAAF SAF Security
 PINAFP Adabas Fastpath
 PINATM Adabas Transaction Manager
 PINAVI Adabas Vista
 _ PINRSP Adabas Response Code Handler
 _ PINUES Universal Encoding Support

162

Adabas DBA TasksSystem Operator Command Functions

To load a PIN module into memory, enter ‘A’ in the M column next to the module name.

This command is successful only if the exit module exists in a library accessible to the Adabas nucleus.

To remove a PIN module from memory, enter a ‘D’ in the M column next to the module name.

When deleting a PIN module from memory, all related PIN routines are also removed.

These functions are the same as the extended error recovery operator commands

SMGT,{ADDPIN | DELPIN}=module-name

Display/Modify PIN Routines

Selecting option P (display/modify PIN routines) from the Extended Error Recovery menu displays a list
of PINs currently loaded in memory:

13:08:49 ***** A D A B A S BASIC SERVICES ***** 1999-06-16
 DBID 105 - List/Modify PIN Routines - PACIEP2

 Mark entries with ’A’ Activate, or ’D’ Deactivate: Total Pins: 012

 M Condition Error Location Status Uses Module Message
 - --------- ---------------------------- ------- ---- -------- -----------
 _ 000C1000 All Locations Active 0 ADAMXY
 _ 000C2000 All Locations Active 0 ADAMXY
 _ 000C3000 All Locations Not Act 0 ADAMXY
 _ 000C4000 All Locations Active 0 ADAMXY
 _ 000C5000 All Locations Active 0 ADAMXY
 _ 000C6000 All Locations Active 0 ADAMXY
 _ 000C7000 All Locations Not Act 0 ADAMXY
 _ 000C8000 All Locations Active 0 ADAMXY
 _ 000C9000 All Locations Active 0 ADAMXY
 _ 000CB000 All Locations Active 0 ADAMXY
 _ 000CF000 All Locations Active 0 ADAMXY
 _ 00047000 All Locations Active 0 ADAMXY

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Refr -- - + Menu

For all PIN routines on the list, the screen indicatess the conditions that cause them to be executed, the
current status, the number of times they have been used, and the module in which they are located.

To change the status of the PINs from this screen, enter in the M column next to the PIN number

A to activate a PIN

D to deactivate a PIN

After changes have been made, use PF4 to refresh the screen.

These functions are the same as the extended error recovery operator commands

SMGT,DISPLAY=PINS
 SMGT,{ACTPIN | DEACTPIN}=pin-number

163

System Operator Command FunctionsAdabas DBA Tasks

Display Locked Files
Selecting option L from the Session Opercoms menu displays the following:

16:02:10 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 - Lock / Unlock Files - PACIL02

 Code Service
 ---- ----------------------------------
 D Display locked files
 * Lock file for all users
 * Advance lock file
 * Lock file except for UTI/EXF users
 * Unlock file from general lock
 * Release an advance lock
 * Unlock file from UTI/EXF lock
 ? Help
 . Exit
 ---- -----------------------------------
 Code _
 File Number .. 30
 UTI/EXF Ind .. U
 Database ID .. 105 (RD-105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Option D from this menu displays the Display Locked Files screen:

10:57:45 ***** A D A B A S BASIC SERVICES ***** 1998-07-31
 DBID 105 - Display Locked Files - PACID02

 M Fnr. Lock Status M Fnr. Lock Status
 - ----- ------------------------- - ----- -------------------------
 1 Locked for ALL users
 35 Locked except for UTI
 50 Locked except for EXU/EXF
 55 Locked for ALL users
 60 Locked for ALL users

PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit -- - + Menu

164

Adabas DBA TasksSystem Operator Command Functions

Stop User(s)
Selecting option S (stop users) from the Session Opercoms menu displays the Stop Users menu:

18:26:02 ***** A D A B A S BASIC SERVICES ***** 1999-07-29
 - Stop Users - PACIS02

 Code Service
 ---- -----------------------
 * Stop users using file
 * Stop inactive users
 * Stop users by jobname
 * Stop a selected user
 ? Help
 . Exit
 ---- -----------------------
 Code _
 File Number _____
 Last Activity ________ (elapsed time in seconds)
 Job Name ________
 Purge UQE(s) N
 Selected Userid ..
 Database ID 105 (RD-105)

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Disp UQ Exit Clear UID Menu

None of the Stop Users functions are active for the demo version.

Terminate a Session Normally (ADAEND)
Selecting option T from the Session Opercoms menu invokes the Session Termination menu from which
you can terminate a session normally (ADAEND).

165

System Operator Command FunctionsAdabas DBA Tasks

11:43:00 ***** A D A B A S BASIC SERVICES ***** 1997-01-30
 - Session Termination - PACT002

 Code Service
 ---- -----------------------------------
 A Normal session termination (ADAEND)
 * Cancel session immediately (CANCEL)
 * Stop session (HALT)
 ? Help
 . Exit
 -------- -----------------------------------
 Code _
 Database ID .. 105 (RD-MPM105)
 Current nr. of users in User Queue ... 9
 Nr. of users with open transactions .. 0

 Command ==>
 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

You are prompted to confirm your termination request before the action is taken.

166

Adabas DBA TasksSystem Operator Command Functions

Database Report
Database Report functions, which correspond to selected functions of the Adabas ADAREP utility,
provide both general and specific information in either table or report format.

14:43:26 ***** A D A B A S BASIC SERVICES ***** 2002-05-29
 - Database Report - PDR0002

 Code Service
 ---- -------------------------------------
 * List files with crit. no. of extents
 * Display field description table (FDT)
 F Display file(s)
 G General database layout
 * List VOLSER distribution of database
 * Display ASSO/DATA block (RABN)
 * Display unused storage
 ? Help
 . Exit
 ---- -------------------------------------
 Code _
 File No 0_____ Password ..
 Database ID .. 1955 (WIS1955)
 VOLSER ______

Command ==>
PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
Help Exit Menu

Options available to the AOS demo version allow you to view database-level general information and
tables of database files, and file-specific information for any file:

Code Function

F Display file(s), either a list of all files in the specified database or detailed
information about a specific file.

G Display the general layout of the specified database.

This chapter covers the following topics:

Display Files

Display General Database Layout

Display Files
If no particular file is specified, option F lists all files in the specified database. If a file is specified, option
F provides detailed layout information for the file. Physical device and file layout information is available
only for a specific file.

167

Database ReportAdabas DBA Tasks

Display a List of Files in the Specified Database

When no file number or "0" (zero) is specified in the File No field on the Database Report menu, a list of
the files in the specified database is displayed:

09:24:38 ***** A D A B A S BASIC SERVICES ***** 1997-02-20
 DBID 105 - Display Files - PDRF002

 Fnr File Name Loaded Top-ISN Max-ISN Ext. Pad % Ind. %Used
 NUAD A D ACISEXU A D
 ---- ---------------- ---------- ---------- ---------- ---- -- -- ------- -----
 1 EMPLOYEES 1993-06-15 1110 5511 1111 3 3 NNISNNN 68 88
 2 MISCELLANEOUS 1993-06-15 1779 5511 1111 3 3 NNISNNN 32 88
 4 AUTOMOBILES 1993-06-15 1000 5511 1111 3 3 NNISNNN 34 36
 5 PERSONNEL 1993-06-15 1000 5511 1111 3 3 NNISNNN 38 52
 6 FINANCE 1993-06-15 1000 5511 1111 3 3 NNISNNN 52 52
 7 GDMUSIC 1992-05-01 3292 16535 1111 3 3 NNNSNNN 81 95
 8 SAMPC-REV311DATA 1992-05-01 44679 100593 1111 3 3 NNNSNNN 79 99
 9 RD-NAT217-FUSER 1993-09-23 163272 175005 1111 3 3 NNISNNN 76 99
 10 RD-PRD314-FDIC 1992-05-01 60016 63387 1111 3 3 NNNSNNN 73 90
 11 REV320-DBFILE 1992-05-01 4442 11023 1111 10 10 NNNSNNN 42 82
 12 REV340-DBFILE 1993-02-15 52008 63387 1111 10 10 NNNSNNN 6 13
 13 SASRM-ZAP-TEST 1992-05-01 11 1377 1111 3 3 NNNSNNN 93 4
 14 SASRM-ZAPSYS 1992-05-01 5 1377 1111 3 3 NNNSNNN 28 4
 16 SAGDT-PRD-FDIC 1992-05-01 25649 30315 1111 3 3 NNISNNN 57 85

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Repos Exit -- - + Menu

The PF2 (Reposition) key displays a window in which you can enter a new starting value for the file list.
When you enter a file number, the Display Files list begins with that file.

The Display Files screen provides the following information for each file:

file number and file name;

date the file was loaded into the database;

highest ISN currently in use in the file and the highest ISN allowed in the file;

number of logical extents currently assigned: by Associator (N ormal index; U pper index; A ddress
converter) and D ata Storage. A maximum of five logical extents may be allocated to a file.

block padding factor percentage defined for the Associator and for Data Storage;

indicators as follows:

168

Adabas DBA TasksDatabase Report

A ADAM option: A = ADAM ISN- or descriptor-selected
file; N = non-ADAM file.

C coupled (C) or non-coupled (N) file.

I ISNs are reusable (I) or not (N).

S Data Storage blocks are reusable (S) or not (N).
E data files are ciphered/encrypted (E) or not (N).
X files are expanded (X) or normal (N).
U USERISN option: U = option is in effect for the file; N =

option is not in effect.

percentage of allocated space currently used by the file in the Associator and in Data Storage.

Display Information for a Specific File

When a valid system file number is specified on the Database Report menu, the following Display File
Layout information is displayed for that file:

18:27:37 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display File Layout - PDRF012

 * File 75 * UES-FILE

 Records loaded 1107 Date loaded 1999-01-26 12:18:17
 Top ISN 1107
 Max ISN expected ... 1502 Max Compr Rec Lngth .. 4816
 Minimum ISN 1 Asso/Data Padding 3%/3%
 Size of ISN 3 Bytes Highest Index Level .. 3
 Number of Updates .. 0
 ISN Reusage NO USERISN NO
 Space Reusage YES MIXDSDEV NO
 ADAM File NO PGMREFRESH NO
 Ciphered File NO NOACEXTENSION NO
 Coupled Files NONE Universal Encoding ... YES
 Blk per DS Extent .. 0
 Blk per UI Extent .. 0
 Blk per NI Extent .. 0 Length of Owner ID ... 0

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Refresh Menu

The information for the file can be refreshed by pressing PF4 .

You can display additional information about space allocations by pressing ENTER .

The Display File Layout screen displays the following information for the file:

the file number and name;

the number of records currently contained in the file;

169

Database ReportAdabas DBA Tasks

ISN information: the highest ISN currently used in the file; the highest ISN planned for the file (see
the ADALOD utility’s MAXISN parameter); the lowest ISN that can be assigned to a record in the file
(see the ADALOD utility’s MINISN parameter); whether 3- or 4-byte ISNs are used for the file; and
whether ISNs can be reused.

the total number of updates since the file was last loaded;

other file option settings: whether Data Storage space can be reused; whether the file was loaded with
the ADAM option, the cipher option, the USERISN option; whether the file is physically coupled to
another file; whether Data Storage extents can be on different device types; whether the file can be
refreshed using the E1 command; whether the file permits the MAXISN setting to be increased.

the number of blocks allowed per Data Storage, upper index, and normal index extent;

the date and time the file was last loaded;

the maximum compressed record length permitted for the file (see the ADALOD utility’s
MAXRECL parameter);

the padding factor for the Associator and for Data Storage;

the highest index level currently active for the file;

the total number of blocks in the file that have been changed by updates since the file was last
loaded;

the length of the owner ID for multiclient files.

whether universal encoding support (UES) is being used.

Pressing ENTER from the initial Display File Layout screen displays the following space allocation and
usage information:

18:33:41 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display File Layout - PDRF022

 File 75

 IDeviceIListI Space allocated I From To I Unused I
 I Type ITypeI Blocks / Cyls. I RABN RABN I Blocks / Cyls.I
 -----I------I----I-------------------I --------------------I----------------I
 I I I I I I
 ASSO I 3380 I AC I 3 0 I 724 - 726 I 0 0 I
 I 3380 I UI I 15 0 I 747 - 761 I 0 0 I
 I 3380 I NI I 20 0 I 727 - 746 I 0 0 I
 I 3380 I NI I 56 0 I 762 - 817 I 2 0 I
 I I I I I I
 DATA I 3380 I DS I 116 0 I 216 - 331 I 29 0 I

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Refresh Menu

170

Adabas DBA TasksDatabase Report

Display General Database Layout
Option G displays general database information on the Display General DB-Layout screen:

18:43:07 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display General DB-Layout - PDRG002

 Isolated
 Database Name RD-105
 Database Number 105
 Database Version 7.1
 Database Load Date 1998-10-21 14:40:47
 System Files 19 , 0 , 0 , 0 , 0 , 0 , 0 , 0
 Maximum Number of Files .. 100
 Number of Files Loaded ... 5
 Highest File Loaded 75
 Trigger File Number 14
 Size of RABN 4 Bytes
 Current Log Tape Number .. 5
 Delta Save Facility Inactive
 Recovery Aid Facility Inactive
 Universal Encoding Sup. .. Yes

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

You can display additional information about UES codes, coupling, and space allocations by pressing
ENTER.

The Display General DB Layout screen displays the following information for the file:

the name and number of the database;

the version level of the Adabas database software;

the date and time the database was loaded;

the numbers of Adabas system files allocated to the database;

the maximum number of files permitted for the database; the total number of files currently loaded;
and the highest file number currently in use;

whether 3- or 4-byte RABNs are being used for the file;

the number of the most recent data protection log tape for the database;

whether the Adabas Delta Save Facility and/or the Adabas Recovery Aid (ADARAI) are active or
inactive for the database.

whether universal encoding support (UES) is being used.

171

Database ReportAdabas DBA Tasks

When universal encoding support (UES) is being used, pressing ENTER from the initial Display File
Layout screen lists the current code values:

18:51:22 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display General DB-Layout - PDRG002

 Universal Encoding Support Enabled

 UES Encoding Keys:

 Alpha File Encoding 37
 Wide File Encoding 4095
 Alpha ASCII Encoding 437
 Wide User Encoding 4095

In any case, pressing ENTER from the initial Display File Layout screen displays the following space
allocation and usage information:

18:52:01 ***** A D A B A S BASIC SERVICES ***** 1999-01-28
 DBID 105 - Display General DB-Layout - PDRG002

 IDeviceI Total Number of I Extents in Block I DD-Names I
 I Type I Blocks / Cyls. I From To I I
 ------I------I----------------------I -------------------------I----------I
 I I I I I
 ASSO I 3380 I 14231 50 I 1 14231 I DDASSOR1 I
 I I I I I
 DATA I 3380 I 6741 50 I 1 6741 I DDDATAR1 I
 I I I I I
 WORK I 3380 I 3592 30 I 1 3592 I DDWORKR1 I

 PF1----- PF2------ PF3------ PF4------ PF6----- PF7----- PF8----- PF12-----
 Help Exit Menu

172

Adabas DBA TasksDatabase Report

Command Log Formats
This document provides the two command log formats that Adabas supports.

The first format (invoked by CLOGLAYOUT=4) has been in use since Adabas version 4.

The second format (invoked by CLOGLAYOUT=5) is supported only in versions 5.2 and above and is the
default format. It includes additional information.

The tables in this appendix refer to the following command types:

Update A1/A4, E1/E4, N1/N2

Simple All non-update commands with a single search argument.

Complex All non-update commands with more than one search argument.

The command type field may contain other information that is unrelated to commands. The flags should
therefore be tested with a binary mask

B’xxxx xusc’

where "u" is the update flag bit, "s" is the simple flag bit, and "c" is the complex flag bit.

CLOGLAYOUT=4

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 binary x ’0000’

4 4 1 binary record type (see note 1):

x ’00’ basic record only

x ’01’ includes control block

x ’02’ includes format buffer

x ’04’ includes record buffer

x ’08’ includes search buffer

x ’10’ includes value buffer

x ’20’ includes ISN buffer

x ’40’ includes I/O list

173

Command Log FormatsAdabas DBA Tasks

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

5 5 1 binary user priority (from operating system)

6 6 1 binary command type flags (simple, complex, update):

x ’01’ simple command

x ’02’ complex command

x ’04’ update command

7 7 1 binary number of posted ECBs in command queue

8 8 1 binary reserved

9 9 1 binary thread number

A 10 2 binary number of descriptors updated

C 12 8 alphanumericjob name

14 20 4 binary user ID (see note 2)

18 24 4 binary wall clock time (STCK-format) at the point the
command processing is completed by the nucleus

1C 28 4 binary duration (in units of 16 microseconds)

20 32 8
(4 *
2)

binary ASSO/DATA/WORK I/O counts for this command
(except blocked ET command I/Os to WORK)

28 40 4 binary Additions 2 field after command execution (can
contain response subcodes)

2C 44 2 alphanumericcommand option 1 and 2 fields

2E 46 2 alphanumericcommand code

30 48 4 binary command ID

34 52 2 binary file number

36 54 2 binary response code

38 56 4 binary ISN

3C 60 end of basic
record

 64 alpha./binaryRest of control block starting with ISN lower limit

 2 binary
alphanumeric

format buffer length (inclusive)
format buffer

 2 binary
alphanumeric

record buffer length (inclusive)
record buffer

174

Adabas DBA TasksCommand Log Formats

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

 2 binary
alphanumeric

search buffer length (inclusive)
search buffer

 2 binary
alphanumeric

value buffer length (inclusive)
value buffer

 2 binary
alphanumeric

ISN buffer length (inclusive)
ISN buffer

 2 binary I/O list length (inclusive)

 (n x
4)

binary I/O list for this command; 4 or 5 bytes are used for
each I/O operation, depending on the RABN length
used in the database (RABNSIZE):

 If RABNSIZE=3, byte 1 contains:

01 = Associator read

02 = Associator write

03 = Data read

04 = Data write

05 = Work read

06 = Work write

Bytes 2-4 contain the 3-byte RABN that is read or
updated.

 If RABNSIZE = 4, byte 1 contains:

81 = Associator read

82 = Associator write

83 = Data read

84 = Data write

85 = Work read

86 = Work write

Bytes 2-5 contain the 4-byte RABN that is read or
updated.

175

Command Log FormatsAdabas DBA Tasks

Notes:

1. The value in the record type field (offset +4) determines which parts of the record mentioned above
are present.

2. For CICS, Shadow, and Westi TP monitor users, Adabas version 5 does not provide a unique ID
value in this field. Users of these TP monitors must revise programs requiring a unique ID value to
obtain it from the command queue element’s (CQE’s) CQEUID field. User exit 4 provides the CQE
address at location 12(R1).

CLOGLAYOUT=5

Explanation of Log Record Types

Command log layout 5 comprises two log record types:

the basic log record type (x’0001’) is produced for all commands processed on noncluster nuclei and
for those that arrive from a remote nucleus and run under internal command queue elements (ICQEs).

the asynchronous request log record type (x’0002’) is created on a nucleus that sends a command to
another nucleus. This record type is used in Adabas nucleus cluster environments only.

Fields with Alternate Interpretations

The following fields have alternate interpretations for each log record type:

for the basic log record type (x’0001’):

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

46 70 2 binary Associator I/O operation count

48 72 2 binary Data I/O operation count

4A 74 2 binary Work I/O operation count

for the asynchronous request log record type (x’0002’):

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

46 70 2 binary number of internucleus destinations

48 72 2 binary internucleus messaging return code

4A 74 2 binary internucleus messaging reason code

Remote Nucleus ID Field

A field has been added at offset 4C for both log record types:

176

Adabas DBA TasksCommand Log Formats

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

4C 76 2 binary the ID of the remote nucleus

For the basic log record type (x’0001’) where the command originates in another nucleus, this field
contains the ID of the nucleus that sent the command. It remains zero for locally-executed commands
and noncluster nuclei.

For the asynchronous request log record type (x’0002’), this field contains the ID of the nucleus to
which the command is sent. It is zero for implicit broadcasts (GLOBAL and SYSTEM) and contains
the ID of the first destination for explicit broadcasts (list of destinations). The CLOG record contains
the Adabas control block and buffers related to the first (or only) destination, and the job name and
communications ID of the initiator of the request.

Command-Executing Nucleus ID Field

A field has been added at offset 58 for both log record types:

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

58 88 2 binary the ID of the nucleus executing the command

60 90 2 - reserved (x’0000 0000’)

For both log record types, this field provides the ID of the nucleus executing the command. In a cluster
environment, the nucleus ID is either the SMPID or the PLXID; in a noncluster environment, the nucleus
ID is zero (0).

Adabas Basic Log Record Type (x’0001’)

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 - reserved (x ’0000’)

4 4 2 binary og record type:

 x ’0001’: Adabas basic log record

6 6 2 - reserved (x ’0000’)

8 8 8 binary time in store clock (STCK) format when request was
logged

177

Command Log FormatsAdabas DBA Tasks

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

10 16 1 binary buffer types:

x ’00’ basic record only

x’01’ includes Adabas control block

x ’02’ includes format buffer

x ’04’ includes record buffer

x ’08’ includes search buffer

x ’10’ includes value buffer

x ’20’ includes ISN buffer

x ’40’ includes I/O list

x ’80’ includes user exit B data

11 17 1 binary dispatching priority (from operating system)

12 18 1 binary command type (simple, complex, update - see
note):

x ’01’ simple command

x ’02’ complex command

x ’04’ update command

13 19 1 binary number of posted ECBs in command queue

14 20 1 binary thread number

15 21 1 binary user buffer (UB) flag (see DSECT "UB")

16 22 2 binary number of descriptors updated

18 24 8 alphanumeric job name

20 32 28 binary communication ID

3C 60 4 binary elapsed time for request in command queue (in units of
16 microseconds)

40 64 4 binary unique command sequence number

44 68 2 binary database ID

46 70 2 binary Associator I/O operation count

48 72 2 binary Data I/O operation count

178

Adabas DBA TasksCommand Log Formats

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

4A 74 2 binary Work I/O operation count

4C 76 2 binary ID of the remote nucleus that sent the command

4E 78 1 binary architecture byte of caller (reserved)

4F 79 5 - reserved (x’0000 0000 00’)

54 84 4 binary Adabas Review

58 88 2 binary ID of the nucleus executing the command

60 90 2 - reserved (x’0000 0000’)

(Beginning of Adabas control block log area:)

5C 92 2 - reserved (x’0000’)

5E 94 2 alphanumericcommand code

60 96 4 alphanumericcommand ID

64 100 2 binary file number

66 102 2 binary response code

68 104 4 binary ISN

6C 108 4 binary ISN lower limit

70 112 4 binary ISN quantity

74 116 2 binary format buffer length

76 118 2 binary record buffer length

78 120 2 binary search buffer length

7A 122 2 binary value buffer length

7C 124 2 binary ISN buffer length

7E 126 1 alphanumericcommand option 1

7F 127 1 alphanumericcommand option 2

80 128 8 alphanumericadditions 1 field

88 136 4 alphanumericadditions 2 field (returned lengths and response
subcodes)

8C 140 8 alphanumericadditions 3 field (password)

94 148 8 alphanumericadditions 4 field (cipher code)

9C 156 8 alphanumericadditions 5 field (global format ID/OPEN: timeout
values)

A4 164 4 binary command time in thread (in units of 16 microseconds)

A8 168 4 binary user area

(Beginning of optional log record area:)

179

Command Log FormatsAdabas DBA Tasks

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

AC 172 2 binary
alphanumeric

format buffer length (inclusive)

AE 174 2 binary
alphanumeric

record buffer length (inclusive)

B0 176 2 binary
alphanumeric

search buffer length (inclusive)

B2 178 2 binary
alphanumeric

value buffer length (inclusive)

B4 180 2 binary
alphanumeric

ISN buffer length (inclusive)

B6... 182.. 2 binary I/O list length (inclusive)

 (n x
4)

binary I/O list for this command; 4 or 5 bytes are used for
each I/O operation, depending on the RABN length
used in the database (RABNSIZE):

 If RABNSIZE = 3, byte 1 contains

01 = Associator read

02 = Associator write

03 = Data read

04 = Data write

05 = Work read

06 = Work write

Bytes 2-4 contain the 3-byte RABN that is read or
updated.

 If RABNSIZE = 4, byte 1 contains

81 = Associator read

82 = Associator write

83 = Data read

84 = Data write

85 = Work read

86 = Work write

180

Adabas DBA TasksCommand Log Formats

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

 Bytes 2-5 contain the 4-byte RABN that is read or
updated.

Asynchronous Request Log Record Type (x’0002’)

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

0 0 2 binary record length (inclusive)

2 2 2 - reserved (x ’0000’)

4 4 2 binary log record type:

 x ’0002’: asynchronous request log record

6 6 2 - reserved (x ’0000’)

8 8 8 binary time in store clock (STCK) format when request was
logged

10 16 1 binary buffer types:

x ’00’ basic record only

x’01’ includes Adabas control block

x ’02’ includes format buffer

x ’04’ includes record buffer

x ’08’ includes search buffer

x ’10’ includes value buffer

x ’20’ includes ISN buffer

x ’40’ includes I/O list

x ’80’ includes user exit B data

11 17 1 binary dispatching priority (from operating system)

12 18 1 binary command type (simple, complex, update - see
note):

x ’01’ simple command

x ’02’ complex command

x ’04’ update command

181

Command Log FormatsAdabas DBA Tasks

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

13 19 1 binary number of posted ECBs in command queue

14 20 1 binary thread number

15 21 1 binary user buffer (UB) flag (see DSECT "UB")

16 22 2 binary number of descriptors updated

18 24 8 alphanumeric job name

20 32 28 binary communication ID

3C 60 4 binary elapsed time for request in command queue (in units of
16 microseconds)

40 64 4 binary unique command sequence number

44 68 2 binary database ID

46 70 2 binary number of internucleus destinations

48 72 2 binary internucleus messaging return code

4A 74 2 binary internucleus messaging reason code

4C 76 2 binary ID of the remote nucleus to which the command is sent

4E 78 1 binary architecture byte of caller (reserved)

4F 79 5 - reserved (x’0000 0000 00’)

54 84 4 binary Adabas Review

58 88 2 binary ID of the nucleus executing the command

60 90 2 - reserved (x’0000 0000’)

(Beginning of Adabas control block log area:)

5C 92 2 - reserved (x’0000’)

5E 94 2 alphanumericcommand code

60 96 4 alphanumericcommand ID

64 100 2 binary file number

66 102 2 binary response code

68 104 4 binary ISN

6C 108 4 binary ISN lower limit

70 112 4 binary ISN quantity

74 116 2 binary format buffer length

76 118 2 binary record buffer length

78 120 2 binary search buffer length

7A 122 2 binary value buffer length

182

Adabas DBA TasksCommand Log Formats

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

7C 124 2 binary ISN buffer length

7E 126 1 alphanumericcommand option 1

7F 127 1 alphanumericcommand option 2

80 128 8 alphanumericadditions 1 field

88 136 4 alphanumericadditions 2 field (returned lengths and response
subcodes)

8C 140 8 alphanumericadditions 3 field (password)

94 148 8 alphanumericadditions 4 field (cipher code)

9C 156 8 alphanumericadditions 5 field (global format ID/OPEN: timeout
values)

A4 164 4 binary command time in thread (in units of 16 microseconds)

A8 168 4 binary user area

(Beginning of optional log record area:)

AC 172 2 binary
alphanumeric

format buffer length (inclusive)

AE 174 2 binary
alphanumeric

record buffer length (inclusive)

B0 176 2 binary
alphanumeric

search buffer length (inclusive)

B2 178 2 binary
alphanumeric

value buffer length (inclusive)

B4 180 2 binary
alphanumeric

ISN buffer length (inclusive)

B6... 182.. 2 binary I/O list length (inclusive)

 (n x
4)

binary I/O list for this command; 4 or 5 bytes are used for
each I/O operation, depending on the RABN length
used in the database (RABNSIZE):

183

Command Log FormatsAdabas DBA Tasks

Offset Item Length/Format/Description

Hex. Dec. Bytes Format Explanation

 If RABNSIZE = 3, byte 1 contains:

01 = Associator read

02 = Associator write

03 = Data read

04 = Data write

05 = Work read

06 = Work write

Bytes 2-4 contain the 3-byte RABN that is read or
updated.

 If RABNSIZE = 4, byte 1 contains:

81 = Associator read

82 = Associator write

83 = Data read

84 = Data write

85 = Work read

86 = Work write

 Bytes 2-5 contain the 4-byte RABN that is read or
updated.

184

Adabas DBA TasksCommand Log Formats

Supplied UES Encodings
The tables in this document list the encodings available with universal encoding support (UES) when
executing Adabas utilities or issuing Adabas commands. Encodings represent single-byte character sets
(Latin-1 or not) or double-/multiple-character sets. If encodings

have a character set in common with other encodings so that conversion between them is
accomplished without loss of data, they are "interoperable".

are not interoperable, they are "coexistent" with other encodings.

Columns used in the following tables are described as follows:

Key ADAECS key number in decimal and hexadecimal

CS character set as identified by IBM

CP code page usually identical to the "key". It is not identical when

CP does not fit into the ECS key number range 1-4095; or

the encoding is constructed from two or more code pages.

Size F encoding uses all allocated graphical character space

M maximum for given ESID

S subset

ESID encoding scheme identifier with the following entries:

 1100 EBCDIC fixed 1

1301 EBCDIC mixed DBCS modal

2100 IBM PC data fixed 1

2200 IBM PC data DBCS only

2300 IBM PC data mixed DBCS nonmodal

4100 ISO-8 fixed 1

4105 ISO-8 fixed 1 graphic characters in the range x’80’- x‘9F’
reserved for control codes

Fill the hexadecimal value representing the fill character used in the encoding.

Sub the hexadecimal value representing the substitution character used in the
encoding.

185

Supplied UES EncodingsAdabas DBA Tasks

Encodings are categorized as follows:

Interoperable Encodings

Coexistent Encodings

Interoperable Encodings

Single-Byte Character Sets (Latin-1)

186

Adabas DBA TasksSupplied UES Encodings

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

37 025 697 37 F 190 1100 40 3F CECP: USA, Canada (ESA*),
Netherlands, Portugal, Brazil, Australia,
New Zealand

273 111 697 273 F 190 1100 40 3F CECP: Austria, Germany, de_deu

277 115 697 277 F 190 1100 40 3F CECP: Denmark, Norway

278 116 697 278 F 190 1100 40 3F CECP: Finland, Sweden

280 118 697 280 F 190 1100 40 3F CECP: Italy, it_ita

284 11C 697 284 F 190 1100 40 3F CECP: Spain, Latin America (Spanish),
es_esp

285 11D 697 285 F 190 1100 40 3F CECP: United Kingdom, en_gbr

297 129 697 297 F 190 1100 40 3F CECP: France, fr_fra

500 1F4 697 500 F 190 1100 40 3F CECP: Belgium, Canada (AS/400*),
Switzerland, international Latin-1

819 333 697 819 F 190 4100 20 1A ISO 8859-1: Latin alphabet, Latin-1

871 367 697 871 F 190 1100 40 3F CECP: Iceland, is_ISL

923 39B ** 923 F 190 4100 20 1A ISO 8859-15 with euro sign

924 39C ** 924 F 190 1100 40 3F IBM EBCDIC with same char. set as
923.

1140 474 ** 1140 F 190 1100 40 3F IBM EBCDIC 37 with euro sign

1141 475 ** 1141 F 190 1100 40 3F IBM EBCDIC 273 with euro sign

1142 476 ** 1142 F 190 1100 40 3F IBM EBCDIC 277 with euro sign

1143 477 ** 1143 F 190 1100 40 3F IBM EBCDIC 278 with euro sign

1144 478 ** 1144 F 190 1100 40 3F IBM EBCDIC 280 with euro sign

1145 479 ** 1145 F 190 1100 40 3F IBM EBCDIC 284 with euro sign

1146 47A ** 1146 F 190 1100 40 3F IBM EBCDIC 285 with euro sign

1147 47B ** 1147 F 190 1100 40 3F IBM EBCDIC 297 with euro sign

1148 47C ** 1148 F 190 1100 40 3F IBM EBCDIC 285 with euro sign

1149 47D ** 1149 F 190 1100 40 3F IBM EBCDIC 871 with euro sign

*3946 F6A 697 850 S 190 2100 20 7F PC data-190: Latin alphabet, Latin-1
(CCSID=4946)

* This code page is not yet available but may be at a later time.

187

Supplied UES EncodingsAdabas DBA Tasks

** This information is not yet available.

Single-Byte Character Sets (Non-Latin-1)

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

420 1A4 235 420 M 181 1100 40 3F IBM, Arabic (all presentation shapes)

424 1A8 941 424 M 152 1100 40 3F IBM, Hebrew, iw_isr

813 32D 925 813 M 183 4100 20 1A ISO 8859-7: Greek/Latin, el_GRC

870 366 959 870 F 190 1100 40 3F IBM, Latin-2

875 36B 925 875 M 184 1100 40 3F IBM, Greek, el_GRC

912 390 959 912 F 190 4100 20 1A ISO 8859-2: Latin-2

914 392 914 F 190 4100 20 1A ISO 8859-4

915 393 1150 915 F 190 4100 20 1A ISO 8859-5: Cyrillic, 8-bit

916 394 941 916 M 152 4100 20 1A ISO 8859-8: Hebrew, iw_ISR

918 396 1160 918 F 190 1100 40 3F IBM, Urdu

919 397 919 F190 4100 20 1A ISO 8859-10

920 398 1152 920 F 190 4100 20 1A ISO 8859-9 Latin-5 (ECMA-128,
Turkey TS-5881), tr_TUR

921 399 1305 921 F 190 4100 20 1A IBM, Baltic, 8-bit

922 39A 1307 922 F 190 4100 20 1A IBM, Estonia, 8-bit

1006 3EE 1160 1006 F 190 4100 20 1A IBM, Urdu

1025 401 1150 1025 F 190 1100 40 3F IBM, Cyrillic multilingual

1026 402 1152 1026 F 190 1100 40 3F IBM, Turkey Latin-5, tr_TUR

1112 458 1307 1112 F 190 1100 40 3F IBM, Baltic, multilingual (EBCDIC)

1122 462 1307 1122 F 190 1100 40 3F IBM, Estonia (EBCDIC)

Double- and Multiple-Byte Character Sets

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

290 122 1172 290 M
162

1100 40 3F Japanese Katakana host
extended SBCS, ja_JPN

836 344 1174 836 M 99 1100 40 3F Simplified Chinese host
extended SBCS (EBCDIC),
zh_CHN

188

Adabas DBA TasksSupplied UES Encodings

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

1027 403 1172 1027 M
162

1100 40 3F IBM, Japanese Latin host
extended SBCS, ja_JPN

1041 411 1172 1041 S 162 2100 20 1A IBM, Japanese PC data
extended SBCS, ja_JPN

1043 413 1175 1043 M 97 2100 20 1A IBM, traditional Chinese PC
data extended SBCS, zh_TWN

1115 45B 1174 1115 M 99 2100 20 1A IBM, simplified Chinese PC
data single-byte (IBM GB)
including 5 SAA SB
characters, zh_CHN

1380 564 937 1380 M
9355

2200 A1A1 FEFE IBM, simplified Chinese
DBCS PC (IBM GB) including
1880 UDC and 31
IBM-selected, zh_CHN

1381 565 1174937 11151380 M
9454

2300 20
A1A1

1A
FEFE

IBM, simplified Chinese PC
data mixed (IBM GB)
including 1880 UDC, 31
IBM-selected and 5 SAA SB
characters, zh_CHN

3026 BD2 1172370 290
300

S
9306

1301 40
4040

3F
FEFE

IBM CCSID 5026, Japanese
Katakana-Kanji host mixed
including 1880 UDC, extended
SBCS, ja_JPN

3035 BDB 1172
370

1027
300

S
9306

1301 40
4040

3F
FEFE

IBM CCSID 5035, Japanese
Latin-Kanji host mixed
including 1880 UDC, extended
SBCS, ja_JPN

3396 D44 370 300 S
9144

1200 4040 FEFE IBM, CCSID 4396, Japanese
host double-byte including
1880 UDC, ja_JPN

3709 E7D 1175 3709 S 97 1100 40 3F IBM CCSID 28709: traditional
Chinese host extended SBCS
(EBCDIC), zh_TWN

4091 FFB F
63456

 0020 001A UTF-8: with user/compatibility
area; without surrogates

Coexistent Encodings

189

Supplied UES EncodingsAdabas DBA Tasks

Single-Byte Character Sets

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

3 3 103 367 F 94 5100 20 1A US-ASCII

6 6 F 190 4100 20 1A ISO 8859-3, Latin-3, Afrikaans,
Catalan, Dutch, English, German,
Italian, Maltese, Spanish, Turkish

9 9 M
145

4100 20 1A ISO 8859-6, Arabic

437 1B5 697 437 F 222 2100 20 1A Microsoft MSDOS US, en_USA

720 F 223 2100 20 1F Microsoft Windows OEM Codepage
720, Arabic

737 F 223 2100 20 1F Microsoft Windows OEM Codepage
737, Greek

775 F 223 2100 20 1F Microsoft Windows OEM Codepage
775, Baltic

850 350 1106 950 F 223 2100 20 1A Microsoft multilingual code page 850,
Latin-1

852 F 223 2100 20 1F Microsoft Windows OEM Codepage
852, cp852_DOSLating2

857 F 223 2100 20 1F Microsoft Windows OEM Codepage
857, Turkish

858 350 1106 950 F 222 2100 20 1A Microsoft multilingual code page 850,
Latin-1, euro-ready

862 F 223 2100 20 1F Microsoft Windows OEM Codepage
862, Hebrew

866 F 223 2100 20 1F Microsoft Windows OEM Codepage
866, Cyrillic

874 F 223 2100 20 1F Microsoft Windows OEM Codepage
874, Thai

1047 697 F 190 1100 40 3F IBM Latin-1 Open Systems EBCDIC

1250 4E2 1400 1250 M
217

4105 20 1A Microsoft, Windows ANSI, Latin-2,
euro-ready

1251 4E3 1401 1251 M
220

4105 20 1A Microsoft, Windows ANSI, Cyrillic,
euro-ready

1252 4E4 1402 1252 M
215

4105 20 1A Microsoft, Windows ANSI, Latin-1,
euro-ready

190

Adabas DBA TasksSupplied UES Encodings

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

1253 4E5 1403 1253 M
206

4105 20 1A Microsoft, Windows ANSI, Greek,
euro-ready

1254 4E6 1404 1254 M
215

4105 20 1A Microsoft, Windows ANSI, Turkey,
euro-ready

1255 4E7 1405 1255 M
194

4105 20 1A Microsoft, Windows ANSI, Hebrew,
euro-ready

1256 4E8 1406 1256 M
214

4105 20 1A Microsoft, Windows ANSI, Arabic,
euro-ready

1257 4E9 1407 1257 M
203

4105 20 1A Microsoft, Windows ANSI, Baltic rim,
euro-ready

2084 948 878 F 222 4105 20 1F KO18-R

2087 813 775 S 222 2100 20 1F MS-DOS Baltic PC-Data

2258 1408 1258 S 212 4105 20 1F Microsoft, Windows-1258, Vietnam

3585 E01 646 S 95 1100 40 3F BS2000 DF.03 International
CCSN:EDF03IRV

3586 E02 265 S 95 1100 40 3F BS2000 DF.03 CCSN:EDF03 Austria,
Germany (EBCDIC) - with Dollar

3586 E03 S 95 1100 40 3F BS2000 DF.03 CCSN´:EDF03 Austria,
Germany (EBDIC) - with International
Currency Sign

3588 E04 697 F 190 1100 40 3F BS2000 DF.04-DR V LATIN 1,
CCSN:EDEF04DR Austria, Germany
(EBCDIC)

3589 E05 697 F 190 1100 40 3F BS2000 DF.04-1 LATIN 1,
CCSN:EDF041IRV International
(EBDIC)

4092 FFC 3 - 20 A1 Software AG, used for ECS internally

4093 FFD 4100 20 1A Software AG, old TS default, ASCII

4094 FFE - - 1100 40 3F Software AG, old TS default, EBCDIC

4095 FFF - 7200 0020 001A Unicode

Double- and Multiple-Byte Character Sets

191

Supplied UES EncodingsAdabas DBA Tasks

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

18 12 103
1061
1121
1062

367
952
896
953

S
13102

4403 20
8140

1A IBM CCSID 1350, EUC-JP,
ja_JPN composed of US-ASCII,
JIS-X-0208, HW Katakana, and
JIS-X-0212-90

36 24 5404 20 1A ISO-2022-JP, US-ASCII,
JIS-Roman, JIS-0208-1983,
JIS_C_6226-1978

300 12C 1001 300 M
11634

1200 4040 FEFE IBM Japanese Latin host
double-byte including 4370 UDC,
ja_JPN

301 12D 370 301 M
9144

2200 8140 FCFC IBM Japanese PC double-byte
including 1880 UDC, SJIS, ja_JPN

835 343 935 835 M
20263

1200 4040 FEFE IBM traditional Chinese host
double-byte including 6204 UDC
(EBCDIC) zh_TWN

837 345 937 837 M
9355

1200 4040 FEFE Simplified Chinese host
double-byte including 1880 UDC
(EBCDIC), zh_CHN

927 39F 935 927 M
20263

2200 8140 FCFC IBM traditional Chinese PC data
double-byte including 6204 UDC,
zh_TWN

932 3A4 1122370 897
301

M
9301

2300 20
8140

1A Microsoft, JIS Roman, JIS-X-208,
half-width Katakana, ja_JPN

935 3A7 1174
937

836
837

M
9454

1301 40
4040

3F
FEFE

Simplified Chinese host mixed
including 1880 UDC, extended
SBCS (EBCDIC), zh_CHN

936 3A8 1185
937

1185

937
M
9449

2300 20
1A1A

1A Microsoft, GB Roman, GB
2312-80, zh_CHN

937 3A9 1175
935

903
937

S
20360

1301 40
4040

3F
FEFE

IBM traditional Chinese host
mixed including 6204 UDC,
extended SBCS (EBCDIC),
zh_TWN

942 3AE 1172
370

1041

301
M
9306

2300 20
8140

1A
FCFC

IBM, Japanese PC data mixed
including 1880 UDC, extended
SBCS, ja_JPN

948 3B4 1175
935

948 M
20360

2300 20
8140

1A
FCFC

IBM, traditional Chinese PC data
mixed including 6204 UDC,
extended SBCS, zh_TWN

192

Adabas DBA TasksSupplied UES Encodings

Key CS CP F/M/S
Size

ESID Fill Sub Description

Dec Hex

949 3B5 1278
1050

949 M
10197

2300 20
A1A1

1A
AFFE

IBM, Korean IBM KS code - PC
data mixed including 1880 UDC,
ko_KOR

950 3B6 103
935

950 M
20357

2300 20
A140

1A Microsoft, Big Five, zh_TWN

951 3B7 1050 951 M
10103

2200 A1A1 AFFE IBM, Korean IBM KS code - PC
data double-byte including 1880
UDC, ko_KOR

3001 10001 3001 20
8140

1A MAC Japanese, JIS-Roman,
JIS-X-208, HW Katakana, ja_JPN

4037 1175 S
20360

1301 40
4040

3F
FEFE

Same as EDD 937 Chinese
EBCDIC, with code point X’5F’
mapped to Unicode U+005E and
X’B0’ to U+00AC

193

Supplied UES EncodingsAdabas DBA Tasks

