Running CGI Programs under SMARTS Running CGI Programs under SMARTS

Running CGI Programs under SMARTS

This chapter provides information about running application programs under SMARTS in the supported
environments.

This chapter covers the following topics:
® The SMARTS Server Environment
® The Com-plete Environment
® Natural Considerations
® C Considerations
® COBOL Considerations
® PL/1 Considerations

® S/390 Assembler Considerations

The SMARTS Server Environment

Programs that comply with the HTTP server CGI requirements can use any of the mechanisms available
under the SMARTS server environment to access data.

It is currently possible to access ADABAS, DB2, and VSAM data from this environment.

Refer to the appropriate SMARTS documentation for more information about accessing data from this
environment.

This section provides information about running programs in the SMARTS server environment.

Linking the Program

An application program may only be run in the SMARTS server environment if it is available to the
SMARTS server address space. To make an application program available to the SMARTS server address
space, link the program into a dataset in the COMPLIB concatenation under MVS or MSP, or to one of

the libraries in the VSE search chain. Always link a reentrant module with the ‘RENT’ option.

Sample jobs HIBNCOBC and HIBNPL1C are provided on the HTPvrs.SRCE dataset to do this once an
object module has been created. Creation of the object modules is covered in the appropriate
language-specific section of this chapter.

Note:

Since high-level languages like Natural, COBOL, and PL/1 load the SMARTS-provided CGI extensions,
COBOL and PL/1 programs must be linked into a dataset in the COMPLIB concatenation whereas no
additional processing is required for Natural.

Running CGI Programs under SMARTS The Com-plete Environment

Requirement

All CGI programs must run RMODE=ANY.

The Com-plete Environment

Programs that comply with the HTTP server CGI requirements can use any of the mechanisms available
under Com-plete to access data.

Itis currently possible to access ADABAS, DB2, and VSAM data from this environment.

Refer to the appropriate Com-plete documentation for more information about accessing data from this
environment.

This section provides information about running programs under Com-plete.

Linking the Program for Com-plete

An application program may only be run under Com-plete if it is available to the Com-plete address space.
To make an application program available to the Com-plete address space, link the program into a dataset
in the COMPLIB concatenation under MVS or MSP, or to one of the libraries in the VSE search chain.
Always link a reentrant module with the ‘RENT’ option.

Sample jobs HIBNCOBC and HIBNPL1C are provided on the HTPvrs.JOBS dataset to do this once an
object module has been created. Creation of the object modules is covered in the appropriate
language-specific section of this chapter.

Note:

Since high-level languages like Natural, COBOL, and PL/1 load the SMARTS-provided CGI extensions,
COBOL and PL/1 programs must be linked into a dataset in the COMPLIB concatenation whereas no
additional processing is required for Natural.

Preparing Com-plete for the Application

In general, the user must tell Com-plete about the load module before it will execute successfully in these
environments. This process is called ‘cataloging’ the program and is achieved using the Com-plete ULIB
utility. The ULIB utility is provided with the size of the thread below the line in which the program will

run. If this calculation is incorrect, the application program is unlikely to run correctly. This is discussed

in the next section. Other program-related options may be specified to the ULIB utility as well. Refer to
the Com-plete Utilities Manual for more information.

Calculating the Catalog Size under Com-plete

All applications running under Com-plete have two areas of storage available to them: thread storage
above and below the 16-megabyte line.

e Storage above the line is the same for all threads and is available in its entirety to any program
running in a given thread, regardless of the catalog size specified to the ULIB utility for the
program.

Catalog Size for CGI Programs under Com-plete Running CGI Programs under SMARTS

e Storage below the line is limited and therefore more tightly controlled. The amount available to an
application is controlled by the storage specification set for the program using the ULIB utility.

Note:

The maximum size any given thread can handle is the thread size specified in the Com-plete
configuration parameters minus 4k. Thus 496K is the largest application program catalog size that a 500K
thread can handle.

The catalog size comprises all the storage the program allocates locally as follows:
® The size of the program if it is loaded into the thread.

The program is loaded into the thread if it is not specified as a Com-plete RESIDENTPAGE
program.

® Any working storage allocated by the program.

For languages such as C, C++, COBOL, and PL/1, a table is generally built that indicates the

initial values of storage to be allocated. Software AG recommends that you use the sample table provided
for batch in each case (only the language environment case if all programs are LE-enabled) and modify it
to reflect the storage requirements of the online programs that will run under Com-plete. The
language-related documentation or the language environment (LE) documentation tells you how to
calculate the storage requirement for any given program.

® Any storage allocated from the thread by the system.
These storage estimates are found in the seReésiourse Usage

® Storage for any other programs (not in the RESIDENTPAGE area) called by the main application
program and the storage they require from the thread area.

When calculating these values, add 5 to 10% for fragmentation of the storage in the thread area.

Catalog Size for CGI Programs under Com-plete

Because a program that runs as a CGI program is not the first program loaded into the thread, its ULIB
definitions are not used to build the thread.

Instead, the ULIB definitions for the PAENSTRT module are used. PAENSTRT must be cataloged large
enough to accommodate itself and the CGI programs that it calls.

The storage used by the HTTP server request processing module is documented in tHeesmtice
Usage, while the storage used by the CGI program may be calculated as documented in the previous
section.

Program Index Entries under Com-plete

To avoid repeating the same load process every time, Com-plete keeps an index of the most used program
names in core. This index maintains information about the program in the load library so that the process
of loading the program is quicker.

Running CGI Programs under SMARTS Running the Program under Com-plete

If the program is relinked, it is generally not found automatically because the index still has a record of the
older version of the program. The ULIB utility is used to inform Com-plete that the information about the
module must be refreshed.

Com-plete also remembers when a module was not found. If a module was not found and is subsequently
added to the load library, you must inform Com-plete that it now exists by refreshing the module in the
same way.

Running the Program under Com-plete

After you have logged on through the VTAM interface, you may run the program from the command line
of the USTACK screen. Alternately, you may invoke the program by issuing a CGI request for the
program to an HTTP server running in the Com-plete environment where the program is available.

Program Options or Functions to Avoid under Com-plete

Compilers offer a number of facilities and options to control the execution of a program. In general,
options or functions that impact the following areas should be avoided:

® Abnormal termination recovery or diagnostics processing can impact the data in any subsequent
dump and render problem resolution even more difficult. Any dumps or diagnostics provided for
support purposes must be generated with these options turned off.

® Use options that load the SMARTS extension modules dynamically at runtime. Otherwise, these
modules must be linked to the application program modules, which may cause problems with
version control and also makes the module larger. When the language’s runtime system loads these
modules, they are found in the RESIDENTPAGE area and shared among all application programs
and languages.

® Use the SMARTS stdio functions to access sequential operating system files when required. Using
I/0O functions to access this data will either fail or impact the integrity of the Com-plete system.

Recommendations for the Com-plete Environment
Refer to the Complete System Programmer’s Manual for information about using LE/370 with Com-plete.

Software AG recommends that you define the following programs as RESIDENTPAGE:

RESIDENTPAGE=CEEBINIT
RESIDENTPAGE=CEEEV005
RESIDENTPAGE=CEEPLPKA
RESIDENTPAGE=IGZCFCC
RESIDENTPAGE=IGZCLNK
RESIDENTPAGE=IGZCPAC
RESIDENTPAGE=IGZCPCO
RESIDENTPAGE=IGZCULE
RESIDENTPAGE=IGZCXFR
RESIDENTPAGE=IGZEINI
RESIDENTPAGE=IGZETRM
RESIDENTPAGE=IGZEVEX

Natural Considerations Running CGI Programs under SMARTS

Recommendations for Cobol Running under Com-plete

Software AG recommends that you use the following parameters:

STACK=(8K,8K,BELOW,KEEP),
STORAGE=(00,NONE,00,8K),

Software AG also recommends that you assemble and link CEEUOPT to the COBOL program.

Natural Considerations

Natural must be installed in the SMARTS server environment before SMARTS functions can be used.

Running Natural Applications

Natural applications that use SMARTS functions are run as normal applications; however, the SMARTS
environment must be active and, to run Natural CGI requests, the HTTP server must be active.

Natural and the SMARTS CGI Extensions

P To use the SMARTS CGl extensions with Natural
1. INPL it into an appropriate Natural environment.

2. include the local data area HNANCGRL in the HTPvrs Natural library (provided as part of the
SMARTS installation materials); and

The HNANCGRL LDA defines the status area and codes that may be returned to the various SMARTS
CGl extensions interface requests.

Once HNANCGRL has been included, the Natural program may simply issue calls as follows:

CALL ‘HAANUPR’ HTPCGI-status function parml parm2 < .. > parmn

The following calls may also be issued but are only included for compatibility with previous releases. The
HAANUPR interface module implements the recommended interface: the following interface requests
will not be enhanced:

CALL ‘HAANCGIG' HTPCGI-status field value lengthCALL ‘HAANCGIL’ HTPCGI-status token entries name-length
namel value-lengthl valuel typel
name2 value-length2 value2 type2
<.>
namen value-lengthn valuen typen
CALL ‘HAANCGIP' HTPCGI-status data length
CALL ‘HAANCGIT' HTPCGI-status data length

The parameters required by these interfaces are described in the SBABTS CGI ExtensionsThe
Natural format required for the other parameters is as follows:

Running CGI Programs under SMARTS Natural Script

Name Natural Format Description

field A<length> Must be an alpha field ending in a blank character
variable |A<length> Must be an alpha field ending in a blank character
value A<length> Must be an alpha field of length ‘length’

length 12 Must be a two-byte binary field containing a length
data no defined format | The start of an area (normally alpha) of length ‘length’

Natural Script

Using SMARTS and the Natural ISPF macro facility, you have the option to generate dynamic HTML
using the Natural language. The process is known as macro expansion, where the text (or HTML in this
case) is generated. This can also consist of variable substitution, repeating blocks, conditionally generated
text, along with file 1/Os.

The macro facility is an extension of the Natural language and comprises two types of statements:
processing statements and text lines. Both are identified by the macro character that is defined by the
Natural ISPF administrator.

Processing Statements

Processing statements are executed during the macro expansion. The statements must be preceded by the
macro character and followed by a blank. The full power of the Natural language is available for
processing statements.

Text Lines

Text lines are copied to the generated output of the macro. They can contain variables or text. A variable
must be preceded by the macro character in order to be interpreted during expansion.

Example

In the following example, the macro character is . Lines 0010, 0020, and 0040 are processing statements;
line 0030 is a text line. Note that the » character is in front of the #NAME text line variable without a
space between.

Example:
0010 » MOVE ‘DAVE’ TO #NAME
0020 ~ IF #NAME EQ ‘DAVE’ THEN

0030 "#NAME
0040 ~ END-IF

When the example above is expanded, the generated output is as follows:

 DAVE

Natural Script Running CGI Programs under SMARTS

How It All Works with SMARTS

Although its use is not required, the Natural ISPF macro facility provides a way to simplify the
programming of dynamic HTML generation.

Using Natural CGl, you can execute Natural objects directly from the browser. Within the Natural object,
calls can be included to get variables from the HTML page the call was initiated from and also to put
output back to the browser.

To start, an object of type macro must be created. This object type is only available within Natural ISPF.
After the macro is created, Natural code can be added for dynamic generation. The macro objects reside in
Natural libraries. When using Natural CGl, all objects must reside in the NATCGI library. Once a Natural
ISPF macro is stowed, it can be executed outside of Natural ISPF. When a macro is executed within
Natural ISPF, the output is written to the workpool (a Natural ISPF facility). When a macro object is
executed in native Natural, the output is written to the editor source area.

To put it all together, the HTML and Natural code are added to the macro object. Once the object has been
tested, it is stowed. Within the macro is a call to the HNANCGIP program that uses a Natural routine to
read the editor source area and write the lines back to the browser.

Macro Object Example:

0010 ~ DEFINE DATA LOCAL

0020 ~ 01 #TITLE (A10)

0030 » END-DEFINE

0040 N ASSIGN #TITLE = ‘This is a Natural Script test’

0050 <HTML>

0060 <HEAD>

0070 <TITLE> ™TITLE </TITLE>

0080 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=is0-8859-1">
0090 <META NAME="AUTHOR" CONTENT="A.N. Other">

0100 <META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">

0110 <META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
0120 </HEAD>

0130 <BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
0140 ALINK="#FF0000">

0150

0160 <P>

0170 <IMG ISMAP SRC="../images/BARMENU.gif"
0180 BORDER=0 HEIGHT=28 WIDTH=378></P>

0190

0200 <H2>This is a test </H2>

0210 </BODY>

0220 </HTML>

0230 * FETCH RETURN ‘HNANCGIP’

The only Natural lines in this example are on 0010, 0020, 0030, 0040, and 0230. These are all processing
statements. The rest of the lines are all text lines. Note that the variable #TITLE is preceded by the macro
character on line 0070. During the macro expansion, this variable is substituted with the actual value of
the variable.

The line 0230 is calling a Natural program called HNANCGIP. As mentioned earlier, the output is written
to the editor source area when macros are executed outside of Natural ISPF. HNANCGIP reads all lines in
the editor source area and puts them back to the browser. It is that easy to create dynamic HTML. When
you want to change the HTML, you can create new HTML using a tool such as FrontPage and then just
cut and paste it into the macro. Then insert the Natural code for dynamic generation, stow the object, and

Running CGI Programs under SMARTS Additional Notes on Natural

test it.

After the macro is expanded, the output written to the editor source area looks like the following:

0010 <HTML>

0020 <HEAD>

0030 <TITLE> This is a Natural Script test </TITLE>

0040 <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
0050 <META NAME="AUTHOR" CONTENT="A.N. Other">

0060 <META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">

0070 <META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
0080 </HEAD>

0090 <BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
0100 ALINK="#FF0000">

0110

0120 <P>

0130 <IMG ISMAP SRC="../[images/BARMENU.gif"
0140 BORDER=0 HEIGHT=28 WIDTH=378></P>

0150

0160 <H2>This is a test </H2>

0170 </BODY>

0180 </HTML>

Note that the actual value of #TITLE was substituted on line 0030. When the output is in the editor source
area, HNANCGIP reads all lines and puts them to the browser.

The output written to the browser looks like the following:

<HTML>

<HEAD>

<TITLE> This is a Natural Script test </TITLE>

<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<META NAME="AUTHOR" CONTENT="A.N. Other">

<META NAME="FORMATTER" CONTENT="Microsoft FrontPage 2.0">

<META NAME="GENERATOR" CONTENT="Mozilla/3.01Gold (WinNT; I) [Netscape]">
</HEAD>

<BODY TEXT="#000000" BGCOLOR="#FFFFFF" LINK="#0000EE" VLIINK="#551A8B"
ALINK="#FF0000">

<P>

<IMG ISMAP SRC="..[images/BARMENU.gif"
BORDER=0 HEIGHT=28 WIDTH=378></P>

<H2>This is a test </H2>
</BODY>
</HTML>

Additional Notes on Natural

The following additional hints and tips may prevent problems while using the SMARTS CGl extensions
with Natural:

1. Do not present the first element of a Natural data area structure as a parameter to these routines.
Natural will present each element of the structure as a single parameter rather than simply passing
a pointer to the structure. Allocate the entire area, redefine the field, and name the main variable as
the parameter to the function.

C Considerations Running CGI Programs under SMARTS

2. Certain functions can result in system ABENDs that terminate the Natural session. Normally, this
only happens when certain functions are used in an invalid fashion but are not trapped by Natural
abnormal termination routines.

C Considerations

The SMARTS Software Developer Kit (SDK) is required to support CGI programs based on C.
Compiling and Linking C Applications

C application programs must be linked using the standard process that would be used to compile a batch
program for the operating system where the program will run. The one difference is that the
APSvrs.SRCE dataset provided with the SMARTS SDK must be specified instead of the C header library
provided with the compiler or operating system.

As SMARTS SDK does not provide or support all of the 800 or so UNIX function interfaces available at
present, there may be occasions when it is possible to use the header files and implementation provided
with the operating system. Whether this works depends on the function and how closely it interacts with
the operating system. Software AG recommends that you first write and run a small program under
SMARTS SDK to determine if the functionality will cause a problem.

Itis intended that SMARTS SDK will support most if not all of these interfaces in the future. If you need
support for a function interface that is not currently supported, contact your Software AG technical
support representative for information about when and how the function will be supported. Refer to the
SMARTS SDK Programmer’s Reference Manual for information about the functions that are currently
supported.

Supplied C Sample Programs and Jobs

The C samples for HTTP processing that are provided on the HTPvrs.SRCE dataset are described in the
following table.

Member This is a sample ...

C program to accept a simple CGlI request and return some data to the user. When
compiled and linked, it may be used in conjunction with the source members
HCANSAMP|HHANCGET or HHANCPUT, which contain HTML and are provided on the

HTPvrs.SRCE dataset. Note: PJIBSCC and associated link jobs may be used to|compile
and link this sample if required.

HTML page that drives the HCANSAMP C program using a form and the HTTP [GET
method. It may be referenced using the following URL. Refer to the installation
verification procedure for information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancget.htm

HHANCGET

HTML page that drives the HCANSAMP C program using a form and the HTTP
POST method. It may be referenced using the following URL. Refer to the installation
verification procedure for information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancput.htm

HHANCPUT

Running CGI Programs under SMARTS

COBOL Considerations

SMARTS and stdin, stdout, and stderr

The standard /O files are all supported by SMARTS as follows:

explicitly in the SMARTS procedure ol
by default as a spool file.

File |Standard Processing CGI Processing
When the request was generated using the PO$T
stdin stdin is empty and any attempt to acc¢ method, stdin contains the content data for the CGI
it sets the end-of-file condition. request. When the GET method is used, stdin is
empty and returns end-of-file, if accessed.
Output to stdout is written to the ‘stdol
stdout DD/DLBL which is allocated either Output to stdout is taken as response data to the
explicitly in the SMARTS procedure ot CGI request and passed on to the requesting client.
by default as a spool file.
Output to stderr is written to the ‘stder
DD/DLBL which is allocated either .
stderr Same as for standard processing

C and the SMARTS CGI Extensions

The SMARTS CGI extensions were designed with non-C applications in mind It is not envisaged that C
application programs will use these extensions.

COBOL Considerations

COBOL programs must be compiled and linked as if for the batch environment on the operating system
where they will run. Once compiled and available to the SMARTS address space or partition, COBOL
programs may simply be run as documented earlier in this manual.

Sample Programs and Jobs

The following table describes the various HTTP server COBOL samples that are provided on the
HTPvrs.SRCE dataset.

Member This is a sample ...

HHANCOBT

HTML page that drives the HOANSAMP COBOL program using a form and the
HTTP GET method. It may be referenced using the following URL. Refer to the
installation verification procedure for more information about interpreting this UR
http://lyour.ip.address:port/htpvrs/srce/hhancobt.htm

HJIJBNCOBC

JCL member to compile and link the sample COBOL CGI program HOANSAMR.

HOANCONV

COBOL program that uses the conversational features of the HTTP server to enable it
to converse with a WWW browser over a series of HTML pages. It may be start
using the following URL. Refer to the installation verification procedure for more
information about interpreting this URL. http://ip-addr:port/cgi/hoanconv

ed

HOANSAMP

COBOL CGI program that is driven by the HHANCOBT HTML page.

10

PL/1 Considerations Running CGI Programs under SMARTS

COBOL and the SMARTS CGI Extensions

COBOL programs may use the SMARTS CGlI extensions by issuing a call to the appropriate extension
module as follows:

call ' HAANUPR’ using HTPCGI-STATUS, function, parm1, parm2, <..>, parmn.

The following calls may also be issued but are only included for compatibility with previous releases. The
HAANUPR interface module implements the recommended interface; the following interface requests
will not be enhanced:

call ' HAANCGIG’ using HTPCGI-STATUS, field, length, value.
call ‘'HAANCGIL' using HTPCGI-status, token entries, name-length,
namel, value-lengthl, valuel, typel,
name2, value-length2, value2, type2,
<>
namen, value-lengthn, valuen, type2.
call ‘'HAANCGIP’ using HTPCGI-STATUS, data, length.
call ‘'HAANCGIT' using HTPCGI-STATUS, data, length.

The parameters required by these interfaces are descriB&ARTS CGI Extensions

The HTPCGI-status must be defined as follows in COBOL:

01 HTPCGI-STATUS.
03 HTPCGI-RETURN-CODE pic 9(4)COMP.
03 HTPCGI-REASON-CODE pic 9(4)COMP.

The following describes the COBOL format required for the other parameters:

Name COBOL Format Description

field pic x(<length>) Must be an alpha field ending in a blank character
variable |pic x(<length>) Must be an alpha field ending in a blank character
value pic x(<length>) Must be an alpha field of length ‘length’

length pic 9(4) COMP Must be a two-byte binary field containing a length
data no defined format | The start of an area (normally alpha) of length ‘length’

PL/1 Considerations

PL/1 programs must be compiled and linked as if for the batch environment on the operating system
where they will be running. Once compiled and available to the SMARTS address space or partition, PL/1
programs may be run as documented earlier in this manual.

Sample Programs and Jobs

The following table describes the HTTP server PL/1 samples that are provided on the HTPvrs.SRCE
dataset.

11

Running CGI Programs under SMARTS PL/1 and External Module Names

Member This is a sample ...

HTML page that drives the HPANSAMP PL/1 program using a form and the HT|TP
GET method. It may be referenced using the following URL. Refer to the installation
verification procedure for more information about interpreting this URL.
http://ip-addr:port/htpvrs/srce/hhancget.htm

HJBNPLIC |JCL to compile and link the sample PL/1 CGI program HPANSAMP.
HPANSAMP | PL/1 CGI program that is driven by the HHANPL1T HTML page.

HHANTPL1T

PL/1 and External Module Names

Because PL/1 cannot support external names longer than seven (7) characters, aliases are required for the
SMARTS extension interfaces. All future interface names will be at most seven (7) characters long.

Aliases are created by changing the first four (4) characters of any extension module name to PL1. Users
must create these aliases themselves if they wish to use the functionality.

The following table provides a cross reference between the extension program name as documented in the
SMARTS SDK Programmer’s Guide and what must be used by PL/1.:

PAANATOE PL1ATOE
PAANETOA PL1ETOA

These external modules must also be declared to the PL/1 program as follows:
DCL PAANHLL EXTERNAL ENTRY OPTIONS(ASM INTER);
DCL PL1ATOE EXTERNAL ENTRY OPTIONS(ASM INTER);

DCL PL1IETOA EXTERNAL ENTRY OPTIONS(ASM INTER);
DCL HAANUPR EXTERNAL ENTRY OPTIONS(ASM INTER);

Finally, for PL/1 to load these program dynamically, the following statements must be included:
FETCH PAANHLL;
FETCH PL1ATOE;

FETCH PL1ETOA,;
FETCH HAANUPR;

If these statements are not included, the PL/1 compiler expects them to be linked with the application
program, which is not recommended.

PL/1 and the SMARTS CGI Extensions

PL/1 programs may use the SMARTS CGlI extensions by issuing a call to the appropriate extension
module as follows:

CALL ‘HAANUPR'’ using HTPCGI-status, function, parml, parm2, <..>, parmn.

The calls documented in the other sections have not be included here as no PL/1 applications have been
created with older versions of SMARTS.

12

S/390 Assembler Considerations Running CGI Programs under SMARTS

The parameters required by this interface is described in the sBMIBRTS CGI Extensions

The HTPCGI-status must be defined as follows in PL/1;
DCL 1 HTPCGI-STATUS,

2 HTPCGI-RETURN-CODE FIXED BINARY(15),
2 HTPCGI-REASON-CODE FIXED BINARY(15);

The following describes the PL/1 format required for the other parameters:

Name PL/1 Format Description

field CHAR(<length>) Must be an alpha field ending in a blank character
variable |CHAR(<length>) Must be an alpha field ending in a blank character
value CHAR(<length>) Must be an alpha field of length ‘length’

length | FIXED BINARY(15) Must be a two-byte binary field containing a length

data no defined format The start of an area (normally alpha) of length ‘length’

S/390 Assembler Considerations
Assembler and the SMARTS CGI Extensions

Software AG recommends that Assembler programs use the standard SMARTS API to handle CGI
requests.

13

	Running CGI Programs under SMARTS
	The SMARTS Server Environment
	Linking the Program
	Requirement

	The Com-plete Environment
	Linking the Program for Com-plete
	Preparing Com-plete for the Application
	Calculating the Catalog Size under Com-plete
	Catalog Size for CGI Programs under Com-plete
	Program Index Entries under Com-plete
	Running the Program under Com-plete
	Program Options or Functions to Avoid under Com-plete
	Recommendations for the Com-plete Environment
	Recommendations for Cobol Running under Com-plete

	Natural Considerations
	Running Natural Applications
	Natural and the SMARTS CGI Extensions
	Natural Script
	Processing Statements
	Text Lines
	Example
	How It All Works with SMARTS

	Additional Notes on Natural

	C Considerations
	Compiling and Linking C Applications
	Supplied C Sample Programs and Jobs
	SMARTS and stdin, stdout, and stderr
	C and the SMARTS CGI Extensions

	COBOL Considerations
	Sample Programs and Jobs
	COBOL and the SMARTS CGI Extensions

	PL/1 Considerations
	Sample Programs and Jobs
	PL/1 and External Module Names
	PL/1 and the SMARTS CGI Extensions

	S/390 Assembler Considerations
	Assembler and the SMARTS CGI Extensions

