
Customizing and Using the HTTP Server
This chapter covers the following topics:

Initializing the HTTP Server

Termination

Operator Commands

Configuration

HTTP Server Parameters

Content Processing

Configurable Tables

Default URL Processing

Resource Usage

Pooled Server Processing

Conversational Processing

Initializing the HTTP Server
The HTTP server is normally initialized by specifying a SERVER statement:

SERVER=(HTTP,HAENSERV,Configuration=<config>)

-where

HTTP
is the name of the SERVER. The name of the server may be any name valid for the
SERVER statement.

HAENSERV
is the name of the HTTP server module. The HTTP server module must always be
specified as HAENSERV.

<config>

is the name of the HTTP server configuration to be used. The configuration statement
may specify any valid load module name. The load module must have been generated
as described in this section; otherwise, the results are unpredictable. The default
configuration name used is HAANCONF.

If inactive for any reason, the HTTP server may also be started using the operator command

SERV,INIT,HTTP,HAENSERV,Configuration=<config>

-where the meaning of the parameters is the same as previously outlined for the SERVER statement.

1

Customizing and Using the HTTP ServerCustomizing and Using the HTTP Server

Notes:

1. 1. It is possible to have more than one HTTP server active within the same SMARTS server
address space at the same time. Each server requires a different server name and a different
configuration to ensure that it does not attempt to use the same port as one of the other servers.

2. 2. The SMARTS environment must be active before any the HTTP server can be activated;
otherwise, the HTTP server initialization fails. This can be achieved by placing any of the HTTP
server SERVER statements after the SERVER statement for the SMARTS environment in the
SMARTS server sysparms input file. When the servers are started using operator commands, the
SMARTS environment must be started first.

3. . The QUIESCE command should normally be issued first to give the server time to stop accepting
new requests and finish processing any old requests.

4. . The first time the command is issued, the listening program attached when the server was
initialized is canceled if it is still active. In this case, the terminate must be requested again as the
HTTP server cannot terminate properly until its associated listening task has terminated.

5. . If the SMARTS environment is terminated, all the HTTP server listening tasks are automatically
canceled.

6. . It is not possible to terminate the SMARTS environment unless all the HTTP servers are first
terminated.

Termination
The HTTP server is terminated automatically when the SMARTS server address space is terminated.
However, it is also possible to cycle the server without bringing the address space down by issuing the
operator commands

SERV,HTTP,QUIESCE
SERV,TERM,HTTP

-where HTTP is the name given to the server at startup.

Notes:

1. . The QUIESCE command should normally be issued first to give the server time to stop accepting
new requests and finish processing any old requests.

2. . The first time the command is issued, the listening program attached when the server was
initialized is canceled if it is still active. In this case, the terminate must be requested again as the
HTTP server cannot terminate properly until its associated listening task has terminated.

3. . If the SMARTS environment is terminated, all the HTTP server listening tasks are automatically
canceled.

4. . It is not possible to terminate the SMARTS environment unless all the HTTP servers are first
terminated.

Operator Commands
In addition to the SMARTS server commands to initialize and terminate the HTTP server, the following
operator commands may be issued to the HTTP server by issuing the SMARTS server operator command

2

TerminationCustomizing and Using the HTTP Server

SERV,HTTP,<command>

-where

HTTP is the name with which the HTTP server was started.

<command> is one of the commands in the following table:

Command Function

CLEARPOOL
Terminates all active HTTP pooled servers. If no pooled servers are in operation, this
command has no effect.

QUIESCE
Causes the HTTP server to stop accepting new requests while enabling existing
requests to continue normally. Software AG recommends issuing this command to the
HTTP server before attempting to terminate it.

TERM Terminates the HTTP server as gracefully as possible.

FORCE
Forcibly terminates the HTTP server. This command should only be used in
emergencies as it may cause integrity problems.

Configuration
The HTTP server is configured by building a load module with the HMANCONF macro delivered with
SMARTS.

Under the SMARTS server, the load module is identified on the SERVER statement or on the operator
command used to start the server.

The load module is specified using the ‘Configuration=’ parameter and defaults to HAANCONF.

Any attempt to use a module that was not generated according to the instructions in this section will cause
unpredictable results.

Sample HAANCONF Member

The HTPvrs.USER.SRCE statement contains a sample HAANCONF member. This may be copied and/or
modified to produce a number of different configuration options, if required. A configuration option can
then be selected by an operator when SMARTS is started.

Assembling the Configuration Member

Once the configuration source member has been created or modified, it must be assembled to produce the
associated load module for use by the system.

It must be linked into a load library in the COMPLIB concatenation of the SMARTS server environment
start-up procedure.

Software AG recommends that the HTPvrs.USER.LOAD dataset contain all configuration modules.

3

Customizing and Using the HTTP ServerConfiguration

The member HJBNACNF on the HTPvrs.USER.SRCE dataset contains sample JCL to compile and link
the delivered HAANCONF member.

HTTP Server Parameters
The following parameters may be specified on the HMANCONF macro:

CGIPARM

Parameter Use Possible Values Default

CGIPARM
A parameter string to be passed to every CGI program
that is started.

1-256 byte parameter
string

none

The string is passed in standard OS/390 or MVS/ESA format where register 1 points to a pointer that
points to a half word length followed by the data.

CGIPARM is used to pass parameters or set runtime options for language environment-enabled programs.

CONTBUFL

Parameter Use
Possible
Values

Default

CONTBUFL
The size of a buffer allocated by the HTTP request processing
program to hold any HTTP content submitted with an HTTP
request.

1-32000 1024

If the content size exceeds the value set in this parameter, the request is rejected.

Changing this size affects the amount of local storage that the request processing program needs to run.

CONV

Parameter Use Possible Values Default

CONV Indicates whether the server supports conversational users. NO | YES NO

If NO, any program request to establish a conversation is rejected with an appropriate return and reason
code.

DEFACEE

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use
Possible
Values

Default

DEFACEE
Indicates whether the server will build a default ACEE for the user
specified in HTTPUSER during initialization and startup.

NO | YES NO

4

HTTP Server ParametersCustomizing and Using the HTTP Server

Value Description

YES A default ACEE is built and associated with any user that does not log on to the system.

NO
Any user that does not log on to the system has the authority associated with the address
space.

DFLTCONT

Parameter Use
Possible
Values

Default

DFLTCONT
The default content type to be assigned to a URL if
the content type cannot be determined through the
dataset name or member type processing mechanism.

HTTP
content type
header

APPLICATION/
OCTET-STREAM

The web browser uses the content type header to determine what to do with data. For example, for content
type TEXT/HTML, the browser interprets the data as an HTML page. For content type IMAGE/GIF, the
browser attempts to interpret the data as a GIF file.

The default value causes the web browser to download as binary data any URLs for which the content
cannot be explicitly determined; that is, such URLs are downloaded as is without any translation.

DFLTURL

Parameter Use Possible Values Default

DFLTURL
The default URL to be returned to a user request
connecting to the HTTP server with no URL information.

default URL for your
installation

none

This circumstance occurs when the following URL is requested from a browser:

http://your.ip.address:port

Refer to the subsection later in this section relating to the specification of a default URL.

HTTPUSER

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use
Possible
Values

Default

HTTPUSER
The user ID with which each HTTP request is identified if
the HTTP request does not contain an authorization
header.

1-8 character
user ID

HTTPUSER

This is effectively the default user ID assigned initially to all requests.

5

Customizing and Using the HTTP ServerDFLTCONT

HTTPLIST

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

HTTPLIST
The user ID assigned to the HTTP task that listens for
requests.

1-8 character user
ID

HTTPLIST

HTTPHCD

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

HTTPHCD
The hardcopy device name associated with any HTTP
users.

1-8 character
name

HTTPHCD

This output device name is used when the program attempts to write output to a SYSOUT/SYSLST type
device. For example, when LE/370 is active and an abend occurs, LE/370 writes a dump to this hardcopy
device name.

Output written to this device may be viewed and/or deleted using USPOOL or printed.

LOGON

Note:
This parameter is only used in a SMARTS server environment.

Parameter Use Possible Values Default

LOGON
Determines the level of security that the
HTTP server will enforce.

ALLOWED | DISALLOWED |
REQUIRED

ALLOWED

The parameter must be used in association with the SMARTS server SECSYS configuration parameter.

Refer to the chapter on Security for more information about this parameter.

MSGCASE

Parameter Use Possible Values Default

MSGCASE The case in which messages are to be issued. MIXED | UPPER MIXED

6

HTTPLISTCustomizing and Using the HTTP Server

NATLIB

Parameter Use
Possible
Values

Default

NATLIB
Name of the default library where Natural CGI requests to the
HTTP server are directed.

1-8 character
name

NATCGI

If no library is provided on the CGI request, the program specified on the Natural CGI request to this
server must be cataloged in this library.

NATPARM

Parameter Use Possible Values Default

NATPARM
Parameter string to be provided as override parameters to
Natural for all Natural CGI requests.

1-256 byte
parameter string

none

Note:
The contents of this field are not validated in any way and may cause problems if invalid. Any string
should be thoroughly tested before being set in this parameter.

The ‘STACK’ override parameter is ignored if specified in this string.

NATTHRD

Parameter Use
Possible
Values

Default

NATTHRD
Under the SMARTS server environment, the name of the
thread-resident portion of Natural as created for the SMARTS
server environment TP monitor.

1-8
character
name

NATCOM

See Installing Natural CGI.

PORT

Parameter Use
Possible
Values

Default

PORT
The sockets port on which the HTTP server server should listen
for incoming HTTP requests.

1-32000 80

RECVBUFL

Parameter Use
Possible
Values

Default

RECVBUFL
The length of the buffer used for receiving input data from the
network.

1-32000 4096

7

Customizing and Using the HTTP ServerNATLIB

When conversations are being supported, this buffer must be set to the highest incoming data size
expected for one incoming conversational HTTP request; otherwise, data may be lost.

When conversations are not being supported, this buffer is reused to read the entire incoming data stream.

Changing this size affects the amount of local storage the request processing program needs to run.

SEND

Parameter Use Possible Values Default

SEND
Determines how HTTP sends data in response
to a request.

IMMEDIATE |
BUFFERED

IMMEDIATE

Value Description

IMMEDIATE
Sends data as soon as it is available. Although it is more resource intensive, this option
is useful where requests are failing: the web user receives whatever data has been
created to the point of the failure.

BUFFERED

Buffers all data in the buffer created by the SENDBUFL parameter. If failures occur,
the end user may see no response data at all as the data is being buffered; however,
this is less resource and Entire Net-Work intensive. Because the BUFFERED setting
greatly increases the performance of the server, Software AG recommends that use it
in a production environment.

Note:
The SENDBUFL parameter must still be specified with SEND=IMMEDIATE as the data must be copied
and translated in some instances prior to being sent.

SENDBUFL

Parameter Use
Possible
Values

Default

SENDBUFL
The length of the buffer used for sending output data to the
network.

1-32000 4096

Changing this size affects the amount of local storage the request processing program needs in order to
run.

SERVNAME

Parameter Use Possible Values Default

SERVNAME Name to identify the system. 1-8 character name none

This name is included in all messages (except some start-up and termination messages) issued to the
operator during the execution of the HTTP server.

8

SENDCustomizing and Using the HTTP Server

The name may be used in the future by the HTTP server system to uniquely identify itself within a
machine.

SERVPOOL

Parameter Use
Possible
Values

Default

SERVPOOL
Indicates whether the HTTP server maintains a pool of
previously started HTTP servers.

NO | YES NO

Value Description

NO Pooled servers are not maintained and a new server is started for each HTTP request.

YES
The HTTP server reuses previously started servers, which can significantly enhance
performance.

TRACE

Parameter Use Possible ValuesDefault

TRACE
Turns on tracing to the DD statement identified by the
TRACEDD keyword.

HEADER |
DATA

none

One or both options may be specified. The options must be specified in parentheses. For example, the
following turns both traces on:

TRACE=(HEADER,DATA)

Value Description

HEADER
Dumps all HTTP headers and their associated data to the DD once they have all been read
and processed.

DATA

Traces all HTTP input data as it is read and all data being sent in response to the request
prior to it being sent. The data is printed in both character and hex formats. The hex
represents what is actually sent in ASCII. The character output is translated to EBCDIC so
that it can be read.

TRACEDD

Parameter Use Possible Values Default

TRACEDD
Name of the DD to which all HTTP trace data is
written.

1-8 character
name

HTPTRCE

If the DD name is not specified in the SMARTS start-up procedure, it is automatically allocated as a
SYSOUT dataset.

9

Customizing and Using the HTTP ServerSERVPOOL

URLPBUFL

Parameter Use
Possible
Values

Default

URLPBUFL
Length of the buffer used for holding parameters passed on any
given URL request (that is, any data following ? in the URL).

1-32000 256

Depending on the nature of the requests in use, the length could be increased or decreased; however, if
there is insufficient space in this buffer, the request is rejected.

Changing this size affects the amount of local storage the request processing program needs in order to
run.

Content Processing
One of the most important pieces of information that the HTTP server provides to the web browser in
response to a HTTP request is the ‘content type’. This is the HTTP header that the browser uses to
interpret the data sent in response to the request. The HTTP server has a number of ways to determine
what the content type is.

Member Type Processing

When a member type is specified on a URL request, even though the mainframe operating system has no
concept of types as such, the HTTP server uses this type to look up a user configuration table
HAANTYPT to determine whether it can identify the content type of the URL.

The source for the table HAANTYPT is delivered in HTPvrs.SRCE and copied during installation to the
HTPvrs.USER.SRCE datasets for modification by the user. The table is built using the HMANTYPT
macro which has two parameters:

TYPE 1-8 character member type.

CONTENT

The content type to be returned to the browser when a member of this type is requested
on a URL. The HTTP server does not validate content types: any type may be specified
and new types are constantly being created. The sample HAANTYPT member contains
examples of commonly used content types.

Note:
The values specified for the above parameters are case-sensitive; for example, HTML and html are
different ‘TYPE’s.

Once modified, the HAANTYPT table must be reassembled into a load library in the SMARTS server
environment COMPLIB concatenation.

Software AG recommends that you use the HTPvrs.USER.LOAD dataset for this. Member HJBNTYPT in
the HTPvrs.USER.SRCE dataset contains sample JCL to assemble and link the HAANTYPT table.

If a match cannot be found for the type specified on the URL, or no type is specified on the URL, the
HTTP server attempts to determine the content type from the last level of the URL provided.

10

Content ProcessingCustomizing and Using the HTTP Server

Dataset Name Processing

The HTTP server breaks down the URL provided by the user into

a dataset name component; and

optionally a member and member type component

/this/is/a/pds/member.type is THIS.IS.A.PDS(MEMBER)

-or

/this/is/a/seq/file/ is THIS.IS.A.SEQFILE

On OS/390 or MVS/ESA systems, the HTTP server assumes that the last level of the resulting dataset
name indicates the sort of data contained in a given dataset. In the above examples, ‘PDS’ and ‘FILE’ are
the last levels.

Once the last level is determined, the HTTP server checks a second user-configurable table HAANDSNT
to determine if the last level can be used to map the URL to a content type. The HAANDSNT member is
provided on the HTPvrs.SRCE dataset and copied by the installation to the HTPvrs.USER.SRCE for
modification. HAANDSNT is built using the HMANDSNT macro which has the following parameters:

LASTDSNL The last level of the dataset name resulting from the interpretation of the URL.

CONTENT

The content type to be returned to the browser when a member from this dataset (or the
dataset itself, if sequential) is requested on a URL. The HTTP server does not validate
these content types: any type may be specified and new types are being created daily.
The sample HAANDSNT member contains examples of commonly used content types.

Note:
The values specified for the above parameters are case-sensitive; for example, HTML and html are
different ‘LASTLEVL’s. At present, all LASTLEVL specifications should be in uppercase as there is no
support for lowercase dataset names.

Once modified, the HAANDSNT table must be reassembled into a load library in the SMARTS server
COMPLIB concatenation.

Software AG recommends that you use the HTPvrs.USER.LOAD dataset for this. Member HJBNDSNT
in the HTPvrs.USER.SRCE dataset contains sample JCL to assemble and link the HAANDSNT table.

If a match cannot be found in the HAANDSNT table, the HTTP server uses the default as specified by the
DFLTCONT configuration parameter.

CGI Request Output Processing

Any CGI program, whether it is written in Natural, C, COBOL, or PL/1, may write a CONTENT-TYPE
header to the output stream to indicate the content it is going to send. If the HTTP server detects that no
CONTENT-TYPE header is sent by the CGI program, it sends a CONTENT-TYPE header using the
default content type for the system as specified by the DFLTCONT configuration parameter.

11

Customizing and Using the HTTP ServerDataset Name Processing

Configurable Tables
A number of translation tables are supplied with the HTTP server in source format.

Do not modify these tables, as incorrect modification may cause server problems for the server.

If you find errors in these tables, contact Software AG so that corrections can be made generally available.

HAANEUTT

The HAANEUTT table translates from EBCDIC to uppercase EBCDIC.

HAANIPTT

The HAANIPTT table translates from ASCII to EBCDIC.

HAANIUTT

The HAANIUTT table translates from ASCII to uppercase EBCDIC.

HAANOPTT

The HAANOPTT table translates from EBCDIC to ASCII.

HAANTOTT

The HAANTOTT table translates trace character output to ensure valid output data.

Default URL Processing
Care must be taken with the default URL specified for the HTTP server. If a file containing an HTML
page is set as the default, this file must not contain any relative URLs as any attempt to reference these
relative URLs from a page accessed as the default URL will fail.

The reason for this is that the browser sends a request for the dataset named ‘/’ which causes the HTTP
server to use the default URL specified in the configuration parameters. If this is a dataset, it will have the
form

/a/b/c/member.type

-and ‘member’ will be returned to the caller.

Any relative URLs in that member are relative to /a/b/c/; however, the browser does not know this and
assumes that they are relative to ‘/’, which is how it originally found it.

The browser translates the URL ‘./graphics/my.gif’ to be ‘/graphics/my.gif’ when, in fact, the URL should
be ‘/a/b/c/graphics/my.gif’.

As the HTTP server knows nothing about a dataset called simply ‘graphics’ with a member of ‘my’, the
request fails.

12

Configurable TablesCustomizing and Using the HTTP Server

There are two ways to avoid this problem:

In the default URL, specify absolute URLs only. This must only be done for one HTML file and as
such should not be a major problem to maintain.

Specify a CGI program as the default URL which either directs the web user to the correct URL or
rejects the request depending on how secure the server should be.

Resource Usage
The HTTP server itself uses a combination of local storage and global storage acquired explicitly by direct
requests for the storage and implicitly by using the SMARTS API requests.

The following sections outline the use of HTTP server storage.

Global Storage

The following storage areas used by the HTTP server are allocated in global storage above the 16
megabyte line in all environments:

Storage Area Size in Bytes

HTTP main control block (HMCB) 2048

Server storage stack 4096

Storage for pool server processing
<no of pooled
servers>*64

Storage for conversational users
<no of
conversations>*64

Storage for data pipe between processes. This is relatively short term as it is
allocated, written, read, and freed.

<max of RECVBUFL>
*<concurrent pipes>

HAANLIST Storage

The HAANLIST program listens on the specified port for HTTP requests and is fully reentrant. The
following storage areas are allocated for its processing needs:

Storage Area Size in Bytes

Working storage 256

Storage required for 2 sockets see the SMARTS environment estimates

Various working storage areas 1024

HAANRQST Storage

This program actually processes the HTTP request and is fully reentrant. The following storage areas are
allocated for its processing needs:

13

Customizing and Using the HTTP ServerResource Usage

Storage Area Size in Bytes

Working storage 256

Storage required for 1 socket see the SMARTS environment estimates

Various working storage areas 1024

Storage for the HTTP request processing block 4096

Storage for the receive buffer RECVBUFL specification

Storage for send buffer SENDBUFL specification

URL parameter buffer URLPBUFL specification

Content buffer length CONTBUFL specification

For each request header received:
32+1+request header name
and header value

Additional Storage Used for CGI Requests

When a CGI request is processed, all of the headers must be set up as environment variables for the CGI
program; therefore, the following additional storage is allocated:

Storage Area Size in Bytes

Environment variable overhead see the SMARTS environment estimates

Additional data per variable HTTP request header length + data length + 1

Com-plete Considerations

Any additional storage required by the CGI program must be considered when calculating the thread size
and ULIB catalog size required by a given CGI program (in this case, the PAENSTRT program) to
function.

Pooled Server Processing
The HTTP server implements pooled server processing dynamically.

When a request is received, the HTTP server checks the pooled server queue to determine if any pool
servers are available. For the first request, no pool server is found so the system starts a server to process
the request. When the request is processed, the server puts itself on the pooled server processing queue.
When the next request arrives, the pooled server is found on the queue and is used to process the request.

Advantages of Pooled Servers

Using a pooled server rather than starting a new server saves the cost of starting and initializing a
new thread of control and terminating the request processing logic. Significant resources are thus
saved.

14

Pooled Server ProcessingCustomizing and Using the HTTP Server

The system creates pooled servers until a steady state is reached where a pooled server is always
available to process an incoming request.

If a pool server ABENDs for some reason, only the user being processed is affected. If insufficient
pooled servers are available, the HTTP server attaches more users.

Pooled servers are dormant while on the pooled server queue. They use no CPU. In Com-plete
environments, pooled servers are eligible for rollout so they do not occupy a thread.

The CLEARPOOL operator command makes it possible to clear the pooled server queue and
terminate all active pooled servers.

Considerations when Using Pooled Servers

A pooled server can process any type of request. For example, the first request it services may be a static
HTML deliver request, the second may be a COBOL program CGI request, the third may be a Natural
program CGI request.

The amount of storage available in the pooled server’s thread must be carefully considered to
ensure that sufficient unfragmented storage is available to run whatever request may arrive. To that
end, it may be advisable to have a separate HTTP server processing Natural requests only.

Because a pooled server instance never really terminates, CGI programs must clean up after
processing to avoid a negative impact on following requests.

Natural Considerations

When a Natural CGI request is issued and a new thread must be started, the Natural interface is started
and, using an internal inverted call mechanism, Natural CGI programs are driven.

Using the inverted mechanism to call Natural means that the Natural environment is only started once per
pooled server so that the next time a Natural CGI request is handled by the same pooled server, no Natural
initialization/termination is required.

In this way, a significant savings is realized in both CPU and wall clock time required to process Natural
CGI requests.

Conversational Processing
Instead of maintaining a generic queue of active user threads, a more specific queue is maintained for
conversational processing.

A conversation is maintained by sending a session-specific cookie to the browser with the output from the
CGI program. The cookie is returned with the next request that enables the HTTP server to match the
incoming request with the active request on the conversational request queue.

The incoming data is piped to the program in conversation and the conversational program is dispatched
again to process the request from the user with whom it is in conversation.

If a conversational program terminates due to a timeout or an ABEND, the next time the user attempts to
converse with the other user in the conversation, a message is issued to indicate that the conversation no
longer exists.

15

Customizing and Using the HTTP ServerConversational Processing

	Customizing and Using the HTTP Server
	Initializing the HTTP Server
	Termination
	Operator Commands
	Configuration
	Sample HAANCONF Member
	Assembling the Configuration Member

	HTTP Server Parameters
	CGIPARM
	CONTBUFL
	CONV
	DEFACEE
	DFLTCONT
	DFLTURL
	HTTPUSER
	HTTPLIST
	HTTPHCD
	LOGON
	MSGCASE
	NATLIB
	NATPARM
	NATTHRD
	PORT
	RECVBUFL
	SEND
	SENDBUFL
	SERVNAME
	SERVPOOL
	TRACE
	TRACEDD
	URLPBUFL

	Content Processing
	Member Type Processing
	Dataset Name Processing
	CGI Request Output Processing

	Configurable Tables
	HAANEUTT
	HAANIPTT
	HAANIUTT
	HAANOPTT
	HAANTOTT

	Default URL Processing
	Resource Usage
	Global Storage
	HAANLIST Storage
	HAANRQST Storage
	Additional Storage Used for CGI Requests
	Com-plete Considerations

	Pooled Server Processing
	Advantages of Pooled Servers
	Considerations when Using Pooled Servers
	Natural Considerations

	Conversational Processing

