
Version 6.3.1 System Programming

This document applies to Com-plete Version 6.3.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent
release notes or new editions.

© Copyright Software AG 2003
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered
trademarks of Software AG. Other company and product names mentioned herein may be trademarks of
their respective owners.

Table of Contents
......... 1Overview of the System Programming Documentation
.......... 1Overview of the System Programming Documentation
.................. 2Terminology
................ 4Startup and Initialization
................ 4Startup and Initialization
............ 5Initialization - Com-plete Startup Procedure
............ 5Initialization - Com-plete Startup Procedure
.................. 5z/OS Procedure
................. 5z/OS Job Control
.............. 6z/OS Required DD Statements
............... 8z/OS Symbolic Parameters
........... 9Initialize Com-plete System Intercept (VSE)
................. 9VSE Job Control
............. 10VSE Logical Partition Assignments
................ 10VSE Printer Assignment
................ 10VSE Initialization Files
................ 11Com-plete Subsystems
................ 12Startup Options (Sysparms)
............... 12Startup Options (Sysparms)
............. 48Binary Modifications (APPLYMODS)
............. 48Binary Modifications (APPLYMODS)
............... 59Defining Terminals and Printers
.............. 59Defining Terminals and Printers
................... 59Overview
................ 59How to Code TIBTAB
................ 60TIBSTART Macro
.................. 61TIB Macro
................. 72CMDEVS Macro
................. 73TIBEND Macro
................. 73END Statement
................ 73How to Create TIBTAB
...... 73Dynamic Completion of TIBTAB During Com-plete Initialization
........... 74Printout Spooling TIBTAB Considerations
............... 74Defining Virtual Printers
............... 74Defining Real Printers
.............. 74Batch Output Facility (SYSOUT)
.............. 75Defining JES/POWER Nodes
................. 75Dynamic Routing
................ 75Logical Output Drivers
............. 76Specifying Logical Output Drivers
............. 76Logical Output Driver Interface
.................. 77Return Codes
............. 78Line Printer Daemon (LPD) Protocol
.................. 79Introduction
................... 79Concepts
............. 80Printing via the Local Workstation
.......... 80Printer Definition Using Environment Variables
............... 80Printer Search Sequence

i

Overview of the System Programming DocumentationSystem Programming

............... 81LPD Spool vs. Com-plete Spool

............... 81EBCDIC - ASCII Conversion

................. 81Logical Output Drivers

......... 82Printing via Printer "Boxes" Supporting the LPD Protocol

............. 83Changing Printer Definitions Dynamically

................. 84Multiple Copies of Com-plete

................ 84Multiple Copies of Com-plete

............... 84Multiple Com-pletes in One System

................ 84Installation Considerations

................ 85Sysparm Considerations

............. 86Multiple Com-pletes in a Parallel Sysplex

.................... 86General

.................. 86Shared Datasets

.................. 86Separate Datasets

................ 87COMSYS Data Containers

................ 87Startup JCL Procedure(s)

................. 87Sysparm Considerations

...................... 89Internals

..................... 89Internals

.............. 90Com-plete Files and Associated User Files

............. 90Com-plete Files and Associated User Files

............ 90COMSD - Com-plete Sequential/Direct Dataset

.................. 91Dynamic SD files

.............. 93COMSPL - Com-plete Spool Data Set

.............. 94CAPTURn - Com-plete Capture File(s)

............ 95COMSYSn - Com-plete System Data Containers

............. 95LOAD - Distributed Load Module Library

............. 96USER LOAD - User Load Module Library

................... 97MAP Library

.............. 97PROFILES - Editor Profiles Library

........... 98SOURCE - Com-plete Distributed Source Library

................. 99UDEBUG Profile Library

................ 99UDEBUG Text Card Library

.................. 100Edit Source Libraries

.................... 100Overview

.............. 100Creation of Edit Source Libraries

.............. 102Maintenance of Edit Source Libraries

.................... 102Protection

................ 102Application-Specific Data Sets

.............. 103COMDMP Dump Data Set (VSE only)

................ 104The System Data Infrastructure

................ 104The System Data Infrastructure

.................... 104Introduction

............ 105Sharing Data Among Multiple Com-plete Nuclei

............ 106The System Data Access Method (SDAM) API

................. 106The SDAM Control Block

................... 108SDAM Views

................ 109The Com-plete Task Structure

................ 109The Com-plete Task Structure

................ 109Dispatching (Task Selection)

............... 109Thread Selection and Reservation

ii

System ProgrammingOverview of the System Programming Documentation

.................... 110Relocation

.................. 110The Quiesced State

.............. 111Com-plete Resource Usage and Estimates

.............. 111Com-plete Resource Usage and Estimates

................. 111Virtual and Real Storage

................... 112Real Storage

................ 112Com-plete Savepool Areas

............... 112Com-plete Fixed Buffer Pools

.............. 114Storage Key of Buffer Pool Subpools

............. 114The Com-plete Unit of Work (CUOW)

............... 114Thread Groups and Sub-Groups

................... 115Task Groups

................. 115Virtual Storage Usage

................ 117General Buffer Pool Usage

.................. 117The Roll Subsystem

.............. 118Com-plete Rollout/Rollin Processing

................. 118Com-plete Roll Buffers

............ 119The Maximum Number of Rolled Out Images.

................ 119The Com-plete Spool Data Set

.................. 119Data Set Structure

.................. 119Printout Structure

............. 120The Com-plete Sequential/Direct Data Set

................ 121The UDEBUG Buffer Pool

.................. 122The Roll Buffer

................... 122CPU Usage

................ 123Com-plete Accounting Facility

................ 123Com-plete Accounting Facility

.................... 123Overview

................ 123User ID Accounting Block

................... 123SMF Records

................. 124The ULOG ON Record

.............. 124The Program Termination Record

................. 125The Checkpoint Record

................ 125The ULOG OFF Record

.................. 125The User Record

................. 126SMF Record Contents

............... 126SMF Record Common Portion

............... 128SMF Record Statistics Portion

............... 130Modifications to Com-plete Modules

............... 130Modifications to Com-plete Modules

.................... 130Overview

............... 130Link Editing Com-plete Modules

................. 131Link Edit Return Codes

................. 131Com-plete Support Issues

.................. 131Problem Reporting

............... 132Com-plete Problem Solutions

............... 132Com-plete Maintenance Updates

................ 133Com-plete Capture Processing

................ 133Com-plete Capture Processing

.................. 133Capture Data Sets

................... 134Captured Data

iii

Overview of the System Programming DocumentationSystem Programming

................ 134Capture Records Processing

................... 135Com-plete Servers

................... 135Com-plete Servers

.................... 135Overview

................... 136Server Definition

................. 136Server Main Routine

.................. 136Server Initialization

.................... 137Example:

.................. 137Server Termination

................. 138Server Command Interface

................... 138Server Invocation

................... 139Server DSECTs

................. 140Server Request Routine

................... 142Software Interfaces

................... 142Software Interfaces

..................... 143ACCESS

..................... 143ACCESS

...................... 144Adabas

..................... 144Adabas

................... 144General Usage

.................. 145ADALNK Features

............... 146Application Programming Interface

............... 146Application Programming Interface

...................... 147Batch

...................... 147Batch

................. 147Running Batch Programs

...................... 149VTAM

..................... 149VTAM

............ 149Defining and Activating the VTAM Application

................. 151Generic Resource names

................... 151LOGMODES

.................... 152APPC Interface

................... 152APPC Interface

..................... 152Concepts

................... 153Implementation

................... 153Requirements

.............. 154CICS / Com-plete Transaction Routing

.............. 154CICS / Com-plete Transaction Routing

.................. 154CICS Considerations

................ 155Com-plete Considerations

................. 155Transaction Parameters

................... 156Logon Security

.................. 156Programming Notes

.................... 156TRACES

.................. 157LIBRARIAN (z/OS Only)

................. 157LIBRARIAN (z/OS Only)

................... 161VSE LIBR Service

................... 161VSE LIBR Service

................. 162Using VSAM with Com-plete

................ 162Using VSAM with Com-plete

.................... 162Introduction

iv

System ProgrammingOverview of the System Programming Documentation

............ 164VSAM Record Sharing and Integrity Options

.................... 164Overview

.................... 165Buffers

................. 166Using VSAM Files Online

................... 167VSAM Files

.................. 168Alternate Indices

...................... 170GDDM

..................... 170GDDM

................... 171Installing GDDM

............ 171Com-plete Components for the GDDM Interface

............... 172Adding DFHEAI and DFHEAI0

................. 173VSAM, ADMF, DFHTSD

................ 174Altering the CICS environment

.................... 174TIBTAB

................ 175Com-plete JCL Modifications

................ 175Com-plete Startup Parameters

................. 176UUTIL/ULIB Activities

.................... 176User Calls

.................... 177Execution

................ 177Performance Considerations

.................. 178PANVALET (z/OS only)

................. 178PANVALET (z/OS only)

.................. 178Installation Overview

................ 178Installation Procedure (z/OS)

............. 182Job Entry Subsystem (JES) Interface Modules

............. 182Job Entry Subsystem (JES) Interface Modules

................ 182z/OS JES Interface Modules

... 183JES2/JES3 Server Commands (only for the old interfaces JES2SERV and JES3SERV)

................. 183Extended Console Server

.................... 184Syntax:

.................... 184Example:

............... 185UDVS VSAM SERVICES (VSE Only)

.............. 185UDVS VSAM SERVICES (VSE Only)

................ 185Installation Considerations

................. 185Operation Considerations

.................... 186Security Systems

................... 186Security Systems

.................. 186Modes of Operation

.............. 186External Security System Operation

................ 187Com-plete Security Operation

............... 187External Security with COMSEC

................ 187Interface To Natural Security

................ 187Defining Com-plete to ACF2

................. 188ACF2 v. 5.2 and lower:

................. 188ACF2 v. 6 and above:

................ 188Defining Com-plete to RACF

.............. 188Defining Com-plete to TOP SECRET

............... 189Controlling Program Execution

................... 191The DB2 Interface

................... 191The DB2 Interface

v

Overview of the System Programming DocumentationSystem Programming

...................... 192Natural

..................... 192Natural

............. 192Installing the Natural Buffer Pool Manager

................... 192Natural Batch

........... 193CA-DYNAM from Computer Associates (VSE only)

........... 193CA-DYNAM from Computer Associates (VSE only)

............. 194IBM Language Environment Considerations

............. 194IBM Language Environment Considerations

................. 194Saving Thread Storage

....... 195Receiving IBM Language Environment Runtime Messages and Dumps

.................... 195VSE only:

..................... 196File Transfer

.................... 196File Transfer

..................... 196UEDIT

................. 196IND$FILE (z/OS only).

................ 197Security and User Exit Facilities

................ 197Security and User Exit Facilities

..................... 199Introduction

.................... 199Introduction

................ 199Summary of Available Exits

.................. 201Areas of Exit Usage

.................. 202ULOG ON Security

.................. 203SYSCOM,SYSNAT

.................. 203Batch/TPF User IDs

................... 203ULOGX1 Exit

............... 204Program, SD File, File I/O Security

.................. 204Control Programs

............. 204Message Switching and Printout Spooling

............... 205Utility and Application Security

.................. 205Utility Security

................. 205Application Security

............... 206COM-PASS Security System

.................. 206ACCESS User Exits

.............. 207User Exit Considerations by Type of Exit

.............. 207User Exit Considerations by Type of Exit

.................... 207Batch Exits

.................... 207Thread Exits

................... 208Nucleus Exits

................ 209Creating or Modifying a User Exit

............... 209Creating or Modifying a User Exit

............. 210ACSUUEX1 - ACCESS Write-Intercept Exit

............. 210ACSUUEX1 - ACCESS Write-Intercept Exit

................ 210How to Create ACSUUEX1

................. 210How to Use ACSUUEX1

................. 211ACSUUEX1 Conventions

............. 212ACSUUEX2 - ACCESS Read-Intercept Exit

............. 212ACSUUEX2 - ACCESS Read-Intercept Exit

................ 212How to Create ACSUUEX2

................. 212How to Use ACSUUEX2

................. 212ACSUUEX2 Conventions

vi

System ProgrammingOverview of the System Programming Documentation

.............. 214SDAMSEX1 - SDAM API Security Exit

.............. 214SDAMSEX1 - SDAM API Security Exit

................. 214SDAMSEX1 Conventions

........... 215TUDUEX1 - Select Dumps by User-Defined Criteria

........... 215TUDUEX1 - Select Dumps by User-Defined Criteria

................. 215How To Use TUDUEX1

................. 215TUDUEX1 Conventions

................. 217UCOEX1 - UCOPY User Exit

................ 217UCOEX1 - UCOPY User Exit

.................. 217How to use UCOEX1

................. 217UCOEX1 Conventions

................ 219UDMPX1 - UDUMP Security Exit

............... 219UDMPX1 - UDUMP Security Exit

................. 219How to Use UDMPX1

................. 219UDMPX1 Conventions

.............. 221UDSEX1 - UDS Security Exit (z/OS Only)

............. 221UDSEX1 - UDS Security Exit (z/OS Only)

.................. 221How to Use UDSEX1

................. 221UDSEX1 Conventions

......... 224UDVSX0 - Usage Control of UDS/UDVS VSAM SERVICES

......... 224UDVSX0 - Usage Control of UDS/UDVS VSAM SERVICES

.................. 224How to Use UDVSX0

................. 224UDVSX0 Conventions

.. 226UDYEX1 - Control Dynamic Allocation/Deallocation of Datasets using UDYN (z/OS only)

.. 226UDYEX1 - Control Dynamic Allocation/Deallocation of Datasets using UDYN (z/OS only)

.................. 226How to use UDYEX1

................. 226UDYEX1 Conventions

................ 228UEDTB1 - Library Code Table

................ 228UEDTB1 - Library Code Table

.................. 228How to Use UEDTB1

................. 228The CMEDTB1 Macro

................ 232ULHMX1 - Hello Message Exit

................ 232ULHMX1 - Hello Message Exit

................. 232How to Use ULHMX1

................. 232ULHMX1 Conventions

.............. 234ULMSBTCH - Batch Output User Exit

.............. 234ULMSBTCH - Batch Output User Exit

................. 234How to use ULMSBTCH

................. 234ULMSBTCH conventions

.................. 236Using AFP printers

........... 237ULMSDISK - Dynamic Printer Allocation User Exit

........... 237ULMSDISK - Dynamic Printer Allocation User Exit

................. 237How to Use ULMSDISK

................. 237ULMSDISK Conventions:

.............. 239ULINUSER - Com-plete Initialization Exit

............. 239ULINUSER - Com-plete Initialization Exit

................. 239How to Use ULINUSER

................. 239ULINUSER Conventions

................ 240ULOGX1 - ULOG Security Exit

................ 240ULOGX1 - ULOG Security Exit

................. 240How to Use ULOGX1

vii

Overview of the System Programming DocumentationSystem Programming

................ 240Compatability with ULGEX1

................. 241ULOGX1 Conventions

......... 242Using ULOGX1 with the HTTP Server and the 3270 Bridge

................ 243ULOPADAB - Adabas User Exit

................ 243ULOPADAB - Adabas User Exit

................. 243How to Use ULOPADAB

................. 243ULOPADAB Conventions

............... 245ULSRMPEX - Modify PF Key Codes

............... 245ULSRMPEX - Modify PF Key Codes

............. 246ULSRPSFS - User-Written Service Routine

............. 246ULSRPSFS - User-Written Service Routine

................. 246How to Use ULSRPSFS

................. 247ULSRPSFS Conventions

.............. 251ULSRRJE - Remote Job Entry User Exit

.............. 251ULSRRJE - Remote Job Entry User Exit

................. 251How to Use ULSRRJE

................. 252ULSRRJE Conventions

.............. 254ULSRSEC - User-Written Service Routine

............. 254ULSRSEC - User-Written Service Routine

................. 254Initialization Overview

................. 254Initialization Processing

................. 255How to Use ULSRSEC

................. 257ULSRSEC Conventions

................. 260UMSEX1 - UM Security Exit

................ 260UMSEX1 - UM Security Exit

.................. 260How to use UMSEX1

................. 260UMSEX1 Conventions

................ 263USTKX1 - USTACK User Exit

................ 263USTKX1 - USTACK User Exit

................... 263Using USTKX1

................. 263USTKX1 Conventions

................. 265USTRE1 - USTOR User Exit

................ 265USTRE1 - USTOR User Exit

................. 265How to Create USTRE1

.................. 266How to Use USTRE1

.................. 266USTRE1 Conventions

................. 268UTMEX1 - Timer User Exit

................. 268UTMEX1 - Timer User Exit

.................. 268How to Use UTMEX1

................. 268UTMEX1 Conventions

............... 270UTMEX2 - Timer Monitor User Exit

............... 270UTMEX2 - Timer Monitor User Exit

.................. 270How to Use UTMEX2

................. 270UTMEX2 Conventions

............... 272UTMEX3 - Timer Monitor RJE Exit

............... 272UTMEX3 - Timer Monitor RJE Exit

................. 272How to Use UTMEX3

................. 273UTMEX3 Conventions

................ 275UUEDEX - UED Security Exit

................ 275UUEDEX - UED Security Exit

................. 275How to Use UUEDEX

viii

System ProgrammingOverview of the System Programming Documentation

................. 276UUEDEX Conventions

............... 279UUMAX1 - UMAP Initialization Exit

............... 279UUMAX1 - UMAP Initialization Exit

................. 279How to Use UUMAX1

................. 279UUMAX1 Conventions

............... 281UUMAX2 - UMAP Command Exit

............... 281UUMAX2 - UMAP Command Exit

................. 281How to Use UUMAX2

................. 281UUMAX2 Conventions

............... 283UUMAX3 - UMAP Termination Exit

............... 283UUMAX3 - UMAP Termination Exit

................. 283How to Use UUMAX3

................. 283UUMAX3 Conventions

............. 285UUPDX1 - UPDS Security Exit (z/OS Only)

............. 285UUPDX1 - UPDS Security Exit (z/OS Only)

................. 285How to Use UUPDX1

................. 286UUPDX1 Conventions

................. 288UUQEX1 - UQ Security Exit

................ 288UUQEX1 - UQ Security Exit

................. 288How to Use UUQEX1

................. 289UUQEX1 Conventions

................ 292UUSEX1 - USDLIB Security Exit

............... 292UUSEX1 - USDLIB Security Exit

.................. 292How to Use UUSEX1

................. 292UUSEX1 Conventions

............... 294UUSPL0 - USPOOL Command Exit

............... 294UUSPL0 - USPOOL Command Exit

.................. 294How to Use UUSPL0

.................. 294UUSPL0 Conventions

............. 297UUSVX1 - USERV Security Exit (VSE Only)

............. 297UUSVX1 - USERV Security Exit (VSE Only)

................. 297How to Use UUSVX1

................. 297UUSVX1 Conventions

................ 299UUTEX1 - UUTIL Security Exit

................ 299UUTEX1 - UUTIL Security Exit

.................. 299How to Use UUTEX1

................. 299UUTEX1 Conventions

............... 301UXEEX1 - UEDIT Initialization Exit

............... 301UXEEX1 - UEDIT Initialization Exit

................. 301How to Use UXEEX1

................. 302UXEEX1 Conventions

............ 304UXEEX2 - UEDIT Command/Termination Exit

............ 304UXEEX2 - UEDIT Command/Termination Exit

................. 304How to Use UXEEX2

................. 305UXEEX2 Conventions

................. 307UXEEX3 - UEDIT RJE Exit

................. 307UXEEX3 - UEDIT RJE Exit

................. 307How to Use UXEEX3

................. 308UXEEX3 Conventions

ix

Overview of the System Programming DocumentationSystem Programming

............ 310UXEEX4 - UEDIT LIBRARIAN/PANVALET Exit

........... 310UXEEX4 - UEDIT LIBRARIAN/PANVALET Exit

................. 310How to Use UXEEX4

................. 310UXEEX4 Conventions

.................. 312UXEEX5 - Locate Exit

.................. 312UXEEX5 - Locate Exit

.................. 312How to Use UXEEX5

................. 312UXEEX5 Conventions

.................. 314Batch Utility Programs

.................. 314Batch Utility Programs

............. 315TUBATEST - Batch Interface Test Program

............. 315TUBATEST - Batch Interface Test Program

................. 315How to use TUBATEST

.................. 316Control Card Input

.............. 318TUDUMP - Dump Print Utility Program

.............. 318TUDUMP - Dump Print Utility Program

................. 318How to Use TUDUMP

................... 319Parameter Input

................. 320TUDUMP Conventions

........ 321TUFILE - File Status (ONLN/BTCH) Switching Facility (z/OS only)

........ 321TUFILE - File Status (ONLN/BTCH) Switching Facility (z/OS only)

.................. 321How to Use TUFILE

................... 321Parameter Input

............... 322Condition Codes / Return Codes

............ 323TULIB - Program Catalog Maintenance Utility

............. 323TULIB - Program Catalog Maintenance Utility

.................. 323How to Use TULIB

.................. 324Control Card Input

.................. 324TULIB Conventions

... 326TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

... 326TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

............. 326Additional Details of TUMSUTIL Facilities

................... 327Parameter Input

................. 328How To Use TUMSUTIL

.................. 329Control Card Input

............... 331Description of the Options in Detail

.................... 333Examples

................. 333TUMSUTIL conventions

............ 334TUSACAPT - Capture File Initialization Utility

............ 334TUSACAPT - Capture File Initialization Utility

................. 334How To Use TUSACAPT

................. 334TUSACAPT conventions

.............. 335TUSDUTIL -SD File Maintenance Utility

.............. 335TUSDUTIL -SD File Maintenance Utility

............. 335Initialization of the Com-plete SD Data Set

................... 336Parameters:

............... 337Backup and Restoration of SD Files

.................. 338Parameter Values:

.............. 338DD / DLBL or TLBL Statements:

................... 339Return Codes

x

System ProgrammingOverview of the System Programming Documentation

.............. 340Miscellaneous Tables and Control Blocks

.............. 340Miscellaneous Tables and Control Blocks

................... 341ULOG Info Table

................... 341ULOG Info Table

.............. 343ULSODDT1 - SYSPRINT Routing Table

.............. 343ULSODDT1 - SYSPRINT Routing Table

.................... 343Overview

................. 343How to Code ULSODDT1

.................... 344Example:

............. 345ULPGMTAB - The Permanent Program Table

............. 345ULPGMTAB - The Permanent Program Table

.................. 345Functional Overview

................. 345Building ULPGMTAB

................. 346Activating ULPGMTAB

................. 347Terminal Device Type Codes

................ 347Terminal Device Type Codes

.................. 349UED Edit Control Block

................. 349UED Edit Control Block

................ 351UED Pseudo-Open Control Block

............... 351UED Pseudo-Open Control Block

.................. 352UEDTB1 Entry DSECT

.................. 352UEDTB1 Entry DSECT

............... 353UPDTB1 Information Control Block

............... 353UPDTB1 Information Control Block

.................. 3553101 Terminal Support

.................. 3553101 Terminal Support

.................... 355Operation

................. 355Keyboard Functions

.................. 356Setup Switches

................ 358Programming Considerations

.............. 359System Programming Considerations

................... 360VTAM Logmodes

................... 360VTAM Logmodes

.................. 360MODENT Parameters

............... 363Sample LOGMODE Specifications

xi

Overview of the System Programming DocumentationSystem Programming

Overview of the System Programming
Documentation
This documentation is a guide for system programmers who are maintaining Com-plete.

This documentation discusses maintenance for all operating systems supported by Com-plete. Throughout
this documentation, distinctions will be made on the basis of operating systems. References to z/OS
include OS/390, and VSE will refer to VSE/ESA 2.1 and above. The difference between operating
systems relates to:

Differences in terminology;

Differences in job control;

Differences in implementation;

Facilities not available in all environments.

If you are planning an upgrade to a new release of their operating system, please contact the Customer
Support Center for operating system release-specific considerations.

The System Programming documentation provides the following information:

1

Overview of the System Programming DocumentationSystem Programming

Startup and Initialization A description of the Com-plete startup procedure
Definitions of the initialization parameters
(SYSPARMS) used to tailor Com-plete to an
installation’s requirements.
A description of available system modifications
(APPLYMODS).
How to define terminals and printers.
A description of the use of multiple copies of
Com-plete at an installation.

Internals A description of:
- Com-plete Files and Associated User Files
- the system data infrastructure
- the Com-plete task structure
- resource usage and estimates
- the accounting facility
- modifying Com-plete modules
- capture processing
- Com-plete servers

Software Interfaces A discussion of the considerations when using
Com-plete in various software environments.

Security and User Exits A description of the security and user exit facilities
provided for setting restrictions and controlling the use
of the facilities, programs, and functions of Com-plete.

Batch Utilities Summaries of the batch utility programs available with
Com-plete.

Miscellaneous Tables and
Control Blocks

Illustrates various tables and control blocks for your
reference.

Terminology
Differences in terminology are addressed by defining Com-plete terms and then consistently referring to
the Com-plete terms. For a few frequently used terms, an ’/’ will be used to distinguish between
operating-specific nomenclature.

Bearing this in mind, the following terms are used in this document:

DD/DLBL

for the z/OS DD and the VSE DLBL statements

SYSIN/SYSIPT

for the z/OS SYSIN or the VSE SYSIPT file

SYSPRINT/SYSLST

2

System ProgrammingOverview of the System Programming Documentation

for the z/OS SYSPRINT or VSE SYSLST file

CUU

Refers to the channel and unit of a device. CUU is referred to as a device number in z/OS.

Job Control

Refers to the Job Control Language (JCL) in z/OS and Job Control Statements (JCS) in VSE.

Load Library

Refers to an z/OS partitioned data set containing load modules created by the linkage editor for
loading and execution. Load library refers to a VSE library.

STEPLIB

Refers to the z/OS load library from which programs can be loaded for execution. This
documentation will refer to STEPLIB, JOBLIB, and system link library as STEPLIB, unless
otherwise specifically noted. STEPLIB refers to the VSE libraries defined in the permanent or
temporary LIBDEF search chain.

3

Overview of the System Programming DocumentationSystem Programming

Startup and Initialization
This part of the Com-plete System Programming documentation explains the initialization procedure on
supported platforms and describes the definitions and parameters that determine Com-plete’s behavior
when running.

This information is organized under the following headings:

Initialization - Com-plete Startup Procedure

Startup Options (Sysparms)

Binary Modifications (APPLYMODS)

Defining Terminals and Printers

Multiple Copies of Com-plete

4

System ProgrammingStartup and Initialization

Initialization - Com-plete Startup Procedure
This chapter describes the Com-plete initialization procedure under the following headings:

z/OS Procedure

z/OS Required DD Statements

z/OS Symbolic Parameters

Initialize Com-plete System Intercept (VSE)

VSE Job Control

VSE Logical Partition Assignments

VSE Printer Assignment

VSE Initialization Files

Com-plete Subsystems

z/OS Procedure
For z/OS, initialize or start Com-plete by invoking the procedure COMPLETE. When Com-plete is
initially installed, this procedure is added to the installation’s system procedure library, SYS1.PROCLIB,
or any user-defined procedure library.

The following figure illustrates a typical COMPLETE procedure that might be installed for an z/OS
installation.

z/OS Job Control

During the installation process, you will either alter the supplied COMJCL procedure to suit your
requirements, copy it to an installation procedure library, or use it as the basis for a job to be submitted.
The following is the procedure in question. The illustrated procedure serves as the basis for the various
descriptions and explanations that follow.

//COMPLETE PROC PREFIX=’COM’,
// SYSPARM=SYSPARM,
// OPARM=,
// REG=6000K
//*
//* Com-plete SYSTEM STARTUP PROCEDURE FOR OS.
//*
//* BEFORE STARTING THIS YOU MUST CHANGE THE STARTUP PROGRAM NAME TO
//* THAT OF THE TLINXX MODULE YOU COPIED TO THE APF AUTHORISED LIBRARY
//* IN THE INSTALLATION JOB #1.
//*
//* FOR A SYSPLEX INSTALLATION, ADD THE RLS PARAMETER TO COMSYS1-4
//*
//IEFPROC EXEC PGM=TLINOS, <----- SEE NOTE ABOVE
// PARM=’&OPARM’,

5

Initialization - Com-plete Startup ProcedureSystem Programming

// REGION=®,TIME=1440,DPRTY=(14,14)
//*
//***
//STEPLIB DD DISP=SHR,DSN=AN.APF.AUTHORISED.LIBRARY
//***
//*
//COMPLIB DD DISP=SHR,DSN=&PREFIX..USER.LOAD
// DD DISP=SHR,DSN=&PREFIX..LOAD
// DD DISP=SHR,DSN=&PREFIX..MAPS
// DD DISP=SHR,DSN=APS.LOAD
//* DD DISP=SHR,DSN=THE.CURRENT.ADABAS.SM.LOAD
//*
//COMSYS1 DD DISP=SHR,DSN=&PREFIX..COMSYS.BASE ,RLS=NRI
//COMSYS3 DD DISP=SHR,DSN=&PREFIX..COMSYS.USERDEF ,RLS=NRI
//COMSYS4 DD DISP=SHR,DSN=&PREFIX..COMSYS.CATALOG ,RLS=NRI
//*
//SYSPARM DD DISP=SHR,DSN=&PREFIX..USER.SOURCE(&SYSPARM)
//SYSMAP DD DISP=SHR,DSN=&PREFIX..MAPS
//COMSPL DD DISP=SHR,DSN=&PREFIX..SPOOL
//COMSD DD DISP=SHR,DSN=&PREFIX..SD
//*CAPTUR1 DD DISP=SHR,DSN=&PREFIX..CAPTUR1
//*CAPTUR2 DD DISP=SHR,DSN=&PREFIX..CAPTUR2
//SYSMDUMP DD DISP=OLD,DSN=&PREFIX..SYSMDUMP
//SYSPRINT DD SYSOUT=X
//SYSRDR1 DD SYSOUT=(X,INTRDR

The COMPLETE procedure can be invoked from the operator’s console via an z/OS START command:

S COMPLETE,...

or via an z/OS batch job:

//COMPLETE JOB
//IEFPROC EXEC COMPLETE,...

In either situation, an understanding of the DD statement functions and usage of the available startup
options is required to implement the features of Com-plete.

The following sections use the above example as a basis for defining the Com-plete initialization
procedure for z/OS.

z/OS Required DD Statements
The required and optional DD statements in the above procedure are described in more detail below:

STEPLIB

Required

This identifies the authorized load library on which the Com-plete z/OS startup module
TLINOS resides. No other Com-plete modules need to be available in this library

This data set is only referenced once during initialization and therefore its placement is not an
issue.

6

System ProgrammingInitialization - Com-plete Startup Procedure

COMPLIB

Required

This identifies the PDS library contenation that effectively becomes the STEPLIB for the
duration of the run. This means that all modules loaded during the execution of Com-plete are
loaded from this concatenation.

With applymod 79 or 80 set, this will be a highly accessed and performance-critical data set.
Without these applymods, the activity on this data set will depend on the number of z/OS loads
issued from the installation’s applications.

COMSYSn

Required

This identifies the VSAM data sets containing various system information required by
Com-plete. They will always be highly accessed data sets and should therefore be placed
accordingly.

SYSMDUMP

Optional

If not specified, no support can be provided for any problem, as no diagnostic information is
available. It identifies where the z/OS control program should write a formatted dump in case of
an abend or if Com-plete requests such as dump. You are recommended to specify this instead
of the SYSABEND or SYSUDUMP DD statements, as more information is available for
diagnosis if a problem should occur. You will also note that normally a SYSMDUMP will not
take as long to occur. Estimates for the size of the data set specified by this DD statement must
be made according to the IBM documentation.

CAPTURn

Optional

Each CAPTURn DD name eg. CAPTUR1,CAPTUR2 etc.. must point to a suitably created
VSAM Capture Data Set when capture is being used in the system. When Capture is being used
and these data sets are being accessed, the workload on them depends on the amount of data
being captured. The data sets must also be placed in such a way that one does not interfere with
another, because when one data set is full, it will be unloaded and reinitialized while another
capture data set is in use.

COMSPL

Required

This must be used to point to the VSAM COMSPL data set. Refer to the COMSPL description
in section Com-plete Files and Associated User Files for more details.

COMSD

7

Initialization - Com-plete Startup ProcedureSystem Programming

Required

This must point to the VSAM SD file dataset defined and initialized by TUSDUTIL for this
Com-plete.

SYSPRINT

Optional

At termination, or using the STATS operator command, statistics are printed to this DD. If the
DD is not specified, it will be allocated using dynamic allocation as a sysout data set.

SYSRDRn

Optional

This DD is only necessary if you wish to use the Remote Job Entry (RJE) facilities of
Com-plete. It must be assigned to an JES internal reader as in the above example. Depending on
the level of RJE activity, up to 9 statement can be specified: SYSRDR1, SYSRDR2 etc..

SYSMAP

Required for the UMAP utility.

Identifies the z/OS load library into which UMAP will store maps. This library must also be
specified in COMPLIB, so that maps can be loaded from it.

SYSPARM

Required

Identifies the file or library member in which the desired Com-plete system parameters are to be
found.

If Com-plete is to be periodically stopped and started in order to test various startup options (for
example, number of threads, size of threads, different TIBTAB, etc.), the symbolic parameter
&SYSPARM can be used to identify the member containing the desired options. However, a
short-term test of a specific option can be affected by use of the PARM option at startup time.

The various system parameters available are described in the section Startup Options
(Sysparms).

z/OS Symbolic Parameters
You can modify the COMPLETE procedure, including the format and usage of the symbolic parameters.
However, the symbolic parameters indicated below are generally sufficient to meet the needs of most
installations:

&OPARM

Specifies a character string which is passed to the Com-plete control program via the PARM
sysparm (see the section on the startup options for use of this feature).

8

System ProgrammingInitialization - Com-plete Startup Procedure

&SYSPARM

Specifies the member name in the library identified by the DD name SYSPARM, which
contains the control statements specifying the startup parameters (sysparms).

You can create multiple members to allow tailoring of Com-plete initialization to meet the
specific conditions defined by the control statements.

&PREFIX

Specifies the default high level index (prefix) under which the Com-plete files are cataloged.

Initialize Com-plete System Intercept (VSE)
See the section Startup Procedure in VSE Installation in the Com-plete Installation documentation.

VSE Job Control
For VSE, Com-plete is initialized by running a job that can be left in the POWER reader using a job
disposition of LEAVE (DISP=L). The following figure illustrates a typical Com-plete procedure that
might be used at a VSE installation.

* $$ JOB JNM=JOBCOM63,CLASS=2,DISP=D,LDEST=(,????)
* $$ LST CLASS=A,DISP=H,RBS=1000
// JOB JOBCOM63 STARTUP FOR Com-plete V63
// OPTION PARTDUMP,NOSYSDMP

// ASSGN SYS009,SYSLST
* $$ LST DISP=D,CLASS=M,LST=SYS009,DEST=(,????)
// LIBDEF PHASE,SEARCH=(SAGLIB.COM vrs ,SAGLIB.APS vrs ,SAGLIB.ADA???, *
 SAGLIB.COMUSER, *
 IJSYSRS.SYSLIB,PRD1.BASE,PRD2.PROD),TEMP
// LIBDEF *,CATALOG=SAGLIB.COMUSER
/*
/*
// DLBL COMCAT,’????????’,,VSAM
/*
/* Com-plete COMSYS CONTAINERS
/*
// DLBL COMSYS1,’COM.COMSYS.BASE’,,VSAM,CAT=COMCAT
// DLBL COMSYS3,’COM.COMSYS.USERS’,,VSAM,CAT=COMCAT
// DLBL COMSYS4,’COM.COMSYS.CATALOG’,,VSAM,CAT=COMCAT
/*
/* Com-plete SD-FILE
/*
// DLBL COMSD,’COMPLETE.VSAM.SDFILE’,,VSAM,CAT=COMCAT
/*
/* Com-plete PRINTOUT-SPOOL DATA SET
/*
// DLBL COMSPL,’COM.VSAM.SPOOL’,,VSAM,CAT=COMCAT
/*
/* Com-plete VSAM DUMPFILE
/*
// DLBL COMDMP,’COM.VSAM.DUMPFILE’,,VSAM,CAT=COMCAT
/*
/* Com-plete CAPTURE FILES
/*

9

Initialization - Com-plete Startup ProcedureSystem Programming

/* DLBL CAPTUR1,’COM.VSAM.CAPTURE1’,,VSAM,CAT=COMCAT
/* DLBL CAPTUR2,’COM.VSAM.CAPTURE2’,,VSAM,CAT=COMCAT
/*
// UPSI 00000000
// EXEC TLINSP,SIZE=AUTO
*
* Com-plete SYSTEM INITIALIZATION PARAMETERS
*
/&
* $$ EOJ

The following sections discuss important considerations to be made when initializing Com-plete for VSE.
The initialization parameters are defined in the section Startup Options (Sysparms).

VSE Logical Partition Assignments
You must ensure that a logical partition assignment(s) (VSE LUB) is made for each disk CUU to be used
by the Com-plete utilities USERV, UDD and UDZAP.

VSE Printer Assignment
The USPOOL utility has the ability to route a printout from the Com-plete online spool to a system printer
(controlled by POWER). In order to separate this output from the Com-plete job log, a second printer
definition must be made in the Com-plete startup deck. The following figure illustrates sample JCL,
including the required assignments:

* $$ JOB JNM=COMPLETE,CLASS=2,DISP=L
* $$ LST CLASS=A,DISP=D
// JOB COMPLETE
// OPTION ...
 ...
// ASSGN SYS009,FEF
* $$ LST CLASS=A,DISP=D,LST=SYS009

Note that SYS009 is used by the Com-plete spooling task. All other parameters are installation-dependent.

VSE Initialization Files
The VSE initialization files are summarized in the following table.

File Name File ID LUB Description

CAPTURn
COMPLETE.CAPTURE
(optional)

VSAM Com-plete CAPTURE

COMSPL COMPLETE.SPOOL VSAM Com-plete spool file

COMSD COMPLETE.SD Com-plete SDLIB file

COMSYS1 COMPLETE.BASE VSAM Com-plete System Data Container

COMSYS3 COMPLETE.USERS VSAM Com-plete System Data Container

COMSYS4 COMPLETE.CATALOG VSAM Com-plete System Data Container

COMDMP COMPLETE.DUMP VSAM Com-plete Dump File in case of abend

10

System ProgrammingInitialization - Com-plete Startup Procedure

Com-plete Subsystems
The Com-plete nucleus routines are grouped into functional units, so-called subsystems. A number of
basic subsystems is required to operate Com-plete, others are optional (meaning they are only required
when certain functions within Com-plete are to be used). The following table lists all currently available
subsystems and their attributes:

Subsystem Function Basic/Option Act

ACCESS Host and batch communication Option Yes

CAPTURE Data logging facility Option Yes

COMSEC Com-plete Security extension (add-on product) Option No

DEBUG Application debugging aid Option Yes

MSGPO Message switching / Printout spooling Option Yes

VSAM VSAM file control system Option Yes

VTAM VTAM interface Option Yes

Subsystems with "Yes" in the Act column are active by default. Optional subsystems not active by default
can be enabled with the sysparm SUBSYS-ACTIVATE=. Subsystems active by default can be disabled
with the sysparm SUBSYS-IGNORE=.

Disabling a subsystem affects the operation of Com-plete as follows:

1. Sysparms relevant to the particular subsystem are ignored.

2. Modules for that subsystem are NOT loaded during initialization. Therefore, functions carried out by
the subsystem are not available until Com-plete is restarted with this subsystem active.

3. Main storage requirements decrease because the subsystem’s modules are not loaded.

11

Initialization - Com-plete Startup ProcedureSystem Programming

Startup Options (Sysparms)
The startup options, whether specified as PARM parameters in z/OS or entered as statements read from
SYSPARM/SYSIPT, are available as keyword parameters (socalled "sysparms"). These parameters are
interpreted and processed by the Com-plete PARM-processor module at Com-plete initialization time.
Note that the sysparms must be entered according to established keyword coding conventions.

When read as statements from SYSPARM/SYSIPT, each statement must begin in column one. A
maximum of 80 characters per statement is allowed. More than one sysparm is allowed per statement, but
successive sysparms must be separated by a comma, and the statement itself must be terminated by a
blank. For example:

KEYWORD1=value1,KEYWORD2=value2...,KEYWORD9=value9

Continuation statements are allowed, by the following rules:

1. A parameter list in parentheses may be wrapped after a comma. For example:

KEYWORD1=(value1, comment: continued on the next line
value2)

2. A parameter value enclosed in apostrophes may be wrapped at the end of the line, continuing in the
1st column of the following line. For example:

KEYWORD2=’This is a very very very very very very very very very veryvery very very very very very very very very very very ver y very veryvery very very very long parameter value’

Multiple statements for the same keyword are permissible. Depending on the keyword, specifying the
same keyword again may override a previous specification (example: PATCHAR); or add another
member to a list (example: RESIDENTPAGE).

When entered as PARM parameters in z/OS, standard PARM entry conventions apply. Each keyword
must be entered in its entirety in any given statement in the format:

KEYWORD=value

Software AG recommends that you always use the full spelling, to prevent confusion with future new
parameters.

In the descriptions that follow, the minimum abbreviations required for each sysparm are indicated by an
underscore.

If a keyword option is omitted, the default value takes effect. If column one of any statement contains an
asterisk, that statement is treated as a comment.

ACCESS-FORCE

Optional.

Value YES|NO

Default NO

12

System ProgrammingStartup Options (Sysparms)

Specifies that the sign-on call in initialization will overwrite any existing entry in the Adabas
SVC ID table.

ACCESS-ID

Optional.

Value n

Default None

Specifies the unique node number that identifies the Com-plete system.

ACCESS-LOCAL

Optional.

Value YES|NO

Default YES

Specifies the scope of the ACCESS node (local or global).

ACCESS-NABS

Optional.

Value n

Default ACCESS-NABS=3

Specifies the number of attached buffers to be allocated for cross-memory services.

ACCESS-NCQE

Optional.

Value n

Default ACCESS-NCQE=5

Specifies the maximum number of concurrent commands for which queue space should be
allocated.

ACCESS-SVC

Optional.

Value n

Default None

13

Startup Options (Sysparms)System Programming

Specifies the number of the Adabas ROUTER SVC.

ACCESS-TIME

Optional.

Value n

Default ACCESS-TIME=30

Specifies the number of seconds before the returned response will be timed-out.

ADABAS-BP

Value ((no,key),(no,key)........(no,key))

Where:

no.
Is the number of elements to allocated in the buffer subpool for
this key. This must be greater than 1 and less or equal than 8,192.

key
Is the storage protect key in which the buffer subpool will be
allocated. This may be any number between 1 and 15. For z/OS
and Hitachi systems, only keys 8 to 15 should be specified here.

Default: A subpool is built for keys 8 to 15. 8,192 bytes will be allocated for each subpool and
the number of areas that can exist in each subpool will be dependent on the size of the various
ADALNK areas required.

This keyword is used to define the Adabas buffer pool. This buffer pool is used for Adabas
interface work areas which are acquired outside of the thread but in the key of the thread. This
parameter enables users to determine what key(s) buffer subpools will be built for and how
many buffers will be in each subpool. Refer to the section about Adabas in the Resource Usage
and Estimates section.

Notes:

1. If an error is encountered in an ADABAS-BP system parameter, the whole line is ignored.
Therefore, if there is not a following ADABAS-BP specification in the system parameters,
the defaults will be in effect.

2. A subsequent specification of the ADABAS-BP system parameter totally overwrites a
previous ADABAS-BP specification. Therefore, if the second specification is incorrect, the
defaults will again apply even if the first ADABAS-BP specification is correct.

3. If an Adabas call is issued in a key for which no subpool is built, the Adabas call will fail
as there will be no subpool storage available to satisfy the request.

4. If APPC sessions or file transfer with INDSFILE will be used, the value should be set to
32767 to allow Com-plete to receive the maximum RV size defined in SNA.

5. A general BUFFERPOOL of at least the same size as VTAMBUFFER must also be
specified.

14

System ProgrammingStartup Options (Sysparms)

Example:

ADABAS-BP=((20,9),(50,12),(100,8))

This will cause an Adabas buffer pool to be built with three subpools. The first subpool will be
in key 9 and will have 20 elements, the second subpool will be built in key C(12) and will have 50
elements and the third subpool will be built in key 8 and will have 100 elements.

ADACALLS

Value n|(dbid,n)

Default ADACALLS=10

Specifies the maximum number of Adabas calls that an application can make before the
Com-plete/Adabas interface will force the application to be rolled out. This parameter is ignored
if ADAROLL=NO is specified.

Note that n must be an integer between 1 and 32767.

Note also that dbid defines an Adabas data base ID, indicating that the specified ADACALLS
parameter only applies to calls directed to the specified Adabas data base.

ADADBID

Specifies the default data base ID for Version 6 Adabas (and subsequent versions). This value is
used if the application program does not supply a specific data base ID in the Adabas control
block. Refer to the Adabas Operations documentation for a description of the use of the data
base ID.

Note that n must be an integer between 1 and 32767.

ADALIMIT

Value n|(dbid,n)

Default 4096

Note:
this parameter is ignored for attached programs.

Specifies the maximum number of Adabas calls that may be made by an online transaction
without any intervening terminal I/O. Programs that exceed this limit are cancelled and error
message ZAD0003 is displayed.

Note that n defines the maximum number of Adabas calls permitted before the program is
cancelled. The maximum value that can be specified for n is 32767.

If ADALIMIT=0 is specified, this parameter is ignored (no limit).

Note also that dbid defines an Adabas data base ID, indicating that the specified ADALIMIT
parameter only applies to calls directed to the specified Adabas data base.

15

Startup Options (Sysparms)System Programming

ADAROLL

Value n|ALWAYS|NO|(dbid,n)|(dbid,ALWAYS)|(dbid,NO)

Specifies the amount of time Com-plete will wait on Adabas calls before rolling out the program
making the call.

Default: Com-plete calculates the optimum value for each database dynamically, based on the
statistics for this database. The starting value is ALWAYS, i.e. at the first Adabas call, the
program is always eligible for rollout. Then ADAROLL is calculated based on the average
response time, using the following rule (here, A is the average response time):

A < 0.05 sec ADAROLL=0.1

0.05 sec < A < 0.5 sec ADAROLL=2*A

A > 0.5 sec ADAROLL=ALWAYS

Software AG recommends that you allow this parameter to default.

ADASVC5

Value n|(dbid,n)

Default
ADASVC5=13; the interface to Version 5 (or higher) Adabas
will be disabled. Programs issuing a call to Version 5 (or higher)
Adabas will be abnormally terminated with abend code U0004.

Specifies the decimal SVC number to be used when communicating with Version 5 Adabas (or
higher).

Note that n must be an integer from 201 to 255 for z/OS, and from 1 to 110 for VSE.

Note also that dbid defines an Adabas data base ID, indicating that the specified ADASVC5
parameter only applies to calls directed to the specified Adabas data base.

APPLYMOD

Value n|(n,n,....n)|(m,NO)

Default None

Specifies that the system-wide modifications n is to be included in this session of Com-plete.
For a detailed description of each modification, refer to Binary Modifications (APPLYMODS).

Note that n must be an integer or string of integers between 1 and 128, separated by commas
and enclosed in parentheses.

Note also that (m,NO) indicates the removal of the m modification.

AUTOLOGOFF

16

System ProgrammingStartup Options (Sysparms)

Value NO|n

Default AUTOLOGOFF=NO

Specifies whether terminal users are to be logged off after a defined period of inactivity.

AUTOLOGOFF=NO indicates that users are not to be logged off if inactive.

Note that n is the number of minutes that a terminal user is allowed to be inactive before being
logged off; n must be an integer between 1 and 600.

Specific terminals may be exempted from being logged off for inactivity by specifying
"LOGOFF=NO" in the TIB macro.

Individual users can be exempted from being logged off for inactivity by specifying "YES" in
the EXEMPT FROM AUTOLOGOFF field in the Com-plete user ID maintenance transaction.

BATCHLOGON

Value YES|NO

Default NO

Specifies whether or not this Com-plete will service batch requests. See the section Com-plete
Batch in Migration of the Com-plete Installation documentation for more information. Note
other values than the above may be accepted but cause unusual error messages to appear at
initialization.

BUFFERPOOL

Value (Esize , Eno , Expno , Loc)

These values define the parameters for the building of the General Buffer Pool. For each
correctly specified parameter, a subpool is built in the General Buffer Pool from which all
non-specific buffer pool requests are satisfied. Please refer to the section Com-plete Resource
Usage and Estimates for more details on buffer pools.

Default:

BUFFERPOOL=(64,512,256,ANY)
BUFFERPOOL=(64,64)
BUFFERPOOL=(128,64,16,ANY)
BUFFERPOOL=(128,16)
BUFFERPOOL=(256,64,32,ANY)
BUFFERPOOL=(256,32,16)
BUFFERPOOL=(512,128,128,ANY)
BUFFERPOOL=(512,16,8)
BUFFERPOOL=(1K,32,16,ANY)
BUFFERPOOL=(1K,32,10)
BUFFERPOOL=(2K,16,8,ANY)
BUFFERPOOL=(2K,16,8)
BUFFERPOOL=(4K,8,4,ANY)
BUFFERPOOL=(4K,8,4)
BUFFERPOOL=(8K,8,4,ANY)

17

Startup Options (Sysparms)System Programming

Esize Required
This determines the size of each of the individual elements in this
buffer subpool. The value will be rounded up to the next multiple
of 64.

Eno Required
This determines the number of elements of the specified Esize
that will initially be built in the buffer subpool to be defined.

Expno Optional
This determines the number of elements that the buffer subpool is
expanded by if the primary Eno is not sufficient.
The Expno value is also affected by the amount of space required
for pre-emptive expansion of the subpool. As not all requests can
expand a subpool when it becomes full, Com-plete requires that
the general buffer pool expands pre-emptively. The space
required for pre-emptive expansion is calculated internally. When
the space available in the subpool reaches the size specified for
pre-emptive expansion, the subpool is expanded by one-quarter of
the number of subpool elements, or 10, whichever is lower. The
Expno value must be equal to or higher than the figure used for
pre-emptive subpool expansion. If the specified value is lower, it
will be forced to this figure.

Loc Optional
Values: BELOW
ANY (31 bit capable systems only)
Default: BELOW
This determines where the buffer subpool elements are to be
allocated. BELOW indicates that the storage should be allocated
below the 16 meg line and is the default. ANY indicates that the
storage can be allocated anywhere within the primary address
space and will cause it to be allocated above the 16 meg line
under normal circumstances.

CAPTURE

Value (n,REUSE/NOREUSE)

Default
Capture determines how many capture files are specified in the
job control; NOREUSE

This specifies the number of capture data sets that are available for use.n must be a numeric
between 1 and 9 and a CAPTURn DD statement /DLBL should exist for each capture data set
specified. The REUSE option indicates that capture processing can reuse full data sets when all
other data sets are full. The default, NOREUSE, indicates that the data set must be copied and/or
reinitialized using the TUSACAPT utility.

COM-PASS

18

System ProgrammingStartup Options (Sysparms)

Value YES|NO

Default COM-PASS=NO

Used to specify whether or not COM-PASS is in operation.

COMSECDB*

Value n

Default none

Specifies the data base ID where the Com-plete Security System data base file exists. n is an
integer between 1 and 255.

COMSECFN*

Value n

Default none

Specifies the file number of the Com-plete Security System data base file.n is an integer
between 1 and 255.

COMSECLG*

Value YES/NO

Default NO

Specifies that Com-plete Security violations will be logged via message ZSS0031.

* Only applicable if the Com-plete Security System is installed.

COMSTOR-BUFFERPOOL

Value (Esize , Eno , Expno , Loc)

Default no COMSTOR buffer pool allocated

Refer to The COMSTOR Bufferpool in Resource Usage and Estimates for more information on
specifications for this parameter.

The values have the same meaning as for the BUFFERPOOL parameter, except the default for
Loc : BELOW (Non-XA systems) ANY (All XA capable systems)

DEBUG-BREAKPTS

Value n

Default 100

19

Startup Options (Sysparms)System Programming

Determines the initial number of areas allocated for the setting of UDEBUG breakpoints.As
these areas are allocated using the Com-plete fixed length buffer mechanism, more areas are made
available if required. However, this should be set to reflect the expected usage to avoid expansion and
contraction of the DEBUG buffer pool.

DEBUG-GLOBALSYM

Value n

Default 2000

Determines the initial number of areas allocated for global symbols. Please refer to the section
on UDEBUG in the Com-plete Utilities documentation for details of what global symbols are
and how the number required may be estimated. As these areas are allocated using the
Com-plete fixed length buffer mechanism, more areas are made available if required. However,
this should be set to reflect the expected usage to avoid expansion and contraction of the
DEBUG buffer pool.

If an application program exceeds the CPU time specified for the thread in which it is executing,
the program is abnormally terminated.

DEBUG-LOCALSYM

Value n

Default 100

Determines the number of symbol table entries a user may define for a UDEBUG session. These
are allocated out of the thread in which the UDEBUG session is running and this parameter will
have a direct impact on the catalog size for UDEBUG.

DEBUG-SESSIONS

Value n

Default 20

Determines the initial number of areas allocated to handle users running UDEBUG sessions. As
these areas are allocated using the Com-plete fixed length buffer mechanism, more areas are
made available if required. However, this should be set to reflect the expected usage to avoid
expansion and contraction of the DEBUG buffer pool. A UDEBUG session occurs whenever the
UDEBUG program is invoked. Therefore, if a user has UDEBUG running on three levels, there
are three UDEBUG sessions active and three areas are required.

DEBUG-SVC

Value Between 200 and 255 (VSE: 254)

Default 255

20

System ProgrammingStartup Options (Sysparms)

Determines the SVC number which will be used by UDEBUG to set breakpoints. When a
breakpoint is set, this SVC number replaces the applicable instruction to cause UDEBUG to get control at
the appropriate point. It is a logical SVC in that the SVC must not be installed as control is obtained using
the SVC screening mechanism.

It is recommended that an uninstalled SVC be used where possible, as uninstalled SVC should
never normally be issued. If the SVC is issued and it is found that this is not a UDEBUG breakpoint, the
SVC will be passed on to the operating system. An existing SVC could conceivably be used and would
execute correctly when issued. However, each time the SVC is issued, it would incur the extra overhead of
UDEBUG checking to see if it is a breakpoint and then passing on the request EVERY time the SVC is
issued. For this reason, we recommend that an unused SVC number be chosen, or an SVC which is not
normally issued from the Com-plete address space. The value which can be specified here must be in the
user SVC number range of 200 to 255 (VSE: 254).

DYNALLOC-MSGLEVEL

(z/OS only)
Value

0, 4, 8, or 12

Default 12

This keyword can be used to select a severity level for messages related to dynamic dataset
allocation. Messages with a severity level higher or equal to the value specified will be written
to the system console and to the JES log file. Any value higher than 8 will cause Com-plete to
request no messages at DYNALLOC invocation. This parameter can also be changed
dynamically using UUTIL subfunction TO.

EOJ-VER

Value character string

Default None

Specifies that the indicated character string must be entered as part of the EOJ operator
command when Com-plete is terminated.

Note that the value specified must be a one- to eight-character string.

GLOBAL-MAXENQS

Value between 100 and 32767

Default 1024

This determines the maximum number of ENQs or LOCKs that can be outstanding from user
programs in the Com-plete region or partition.

HARDCOPYKEY

Value NONE/(interrupt key,OVERRIDE)

Default NONE

21

Startup Options (Sysparms)System Programming

Specifies which key is to be used to initiate hardcopy requests. Valid values for interrupt key are
PA1, PA2, PA3, PF01, PF02 PF24, CLR and TREQ. This is the system default and can be overriden
by individual users in their profiles.

The OVERRIDE option only has an effect when the selected key is PA2. If this is specified,
then the application program can specify that PA2 is returned to the program rather than causing a
hardcopy to be taken. If it is NOT specified, the application cannot request the PA2 key as is the case with
all other keys. This option is only provided to be compatible with previous releases.

HELLOMSG

Value YES|NO|dest.code

Default HELLOMSG=NO

Specifies whether or not the Com-plete initialization hello message is to be broadcast.

HELLOMSG=YES causes the hello message to be sent to all terminals except those defined as
ALL=NO in the group argument of the TIB macros.

HELLOMSG=NO suppresses transmission of the hello message.

If dest.code is specified, the initialization message is sent to all terminals defined in the
TIBTAB that have the specified destination code.

INIT-PGM

Value name|(name1, name2, ..., namen)

Default None

Specifies the name(s) of programs to be loaded by Com-plete at the end of initialization. These
programs must reside in the COMPINIT. They will be started in the order n which they are
specified, will execute in the Com-plete address space in Com-plete’s key and will be deleted
after execution.
Note that these programs must not use the MCALL macro.

INSTALLATION

Value character string

Default INSTALLATION=********

Specifies a one- to eight-position character string used as an installation identification name.
Note that a comma (,) cannot be part of this identification name.

The identification name is used by the CAPTUR function for the initial and trailer labels
generated by Com-plete. It is also used in all COM-PASS utility menus.

JUMPCHAR

Value character

22

System ProgrammingStartup Options (Sysparms)

Specifies a character (usually a special character) as system-wide default to be used to suspend
the current session with Com-plete and start the next suspended session. Users must type the character in
an input field and pressENTER.

JUMPKEY

Value key

Specifies a PF or PA key as a system-wide default to be used to suspend the current session with
Com-plete and start the next suspended session. Possible values: PF1-PF24, PA1 or PA2.

LANGUAGE

Value n (1..255)

Default LANGUAGE=1 (English)

Specifies the default language used to build the user’s COM-PASS menu.

LIBRARIAN

Value "’text’"

Default LIBRARIAN=’NOLIST,NOEXEC’ (z/OS only.)

Specifies the parameters that are passed by the Com-plete editor through its interface to
LIBRARIAN during a SAVE command. The values will appear on the "-SEL" card.

Note that text is a character string and must be enclosed within single quotation marks.

MAXENQS

Value n

Default MAXENQS=15

Specifies the maximum number of z/OS ENQs or VSE LOCK that may be outstanding for any
one application program. Each outstanding ENQ/LOCK resource held will occupy 24 bytes plus
the length of RNAME in the general buffer pool while the resource is held (whether it is held as
SHR or EXCLUSIVE).

Note that n represents any integer from 1 to 256.

MAXLIBS

Value n

Default MAXLIBS=40 (VSE only.)

Specifies the maximum number of entries in the VSE file table for keeping track of libraries.
Each entry in the file table occupies 64 bytes.

23

Startup Options (Sysparms)System Programming

Note that n represents any integer from 1 to 200.

MAXPOCOPIES

Value n

Default 255

This keyword can be used to limit the number of copies a user can request when creating a
printout.

n represents any integer from 1 to 255.

MAXPOLINES

Value n

Default MAXPOLINES=65,535

Controls the maximum number of printout spool lines which can be written to an individual
printout. If this number is exceeded, the application is terminated with message MPO0203.

MAXPOQUEUE

Value n (0 .. 32767)

Default MAXPOQUEUE=10

Specifies ther maximum number of printouts that can be queued to a printer before Com-plete
reschedules to the alternative printer.

MAXPRINTOUT

Values n

Default MAXPRINTOUT=512

Specifies the maximum number of printouts that can be held in Com-plete’s printout spool data
set. You must ensure that at least as many blocks are allocated for the COMSPL data set as the
MAXPRINTOUT value, otherwise I/O errors may occur.

Note that the value for n may only be changed with a Com-plete restart in which
MSGSTART=COLD and POSTART=COLD are specified.

MAXTASKS

24

System ProgrammingStartup Options (Sysparms)

Value

n
Where n is the maximum number of tasks within task groups that
will be allocated. The number must be greater than zero and less
than or equal to 26 for VSE (i.e. VSE maximum tasks = 32 less 6
Com-plete system tasks) or or 999 for z/OS.

Default
MAXTASKS=999 (z/OS)
MAXTASKS=26 (VSE)

This keyword is used to define the maximum number of tasks which will be used within a given
Com-plete run.

This parameter should be allowed to default unless there is a valid reason for restricting the
number of tasks to be attached. The only mechanisms for causing tasks to be attached are
through the startup parameters or through the TASKS operator command.

MESSAGE-ID

Value x

Default Patch-character

Com-plete messages have a prefix with the format pppgggnnnn-i, where

ppp Product ID (COM, TPF)

ggg Message Group ID

nnnn Message Number

i System ID

By default, the patch character is used as the system ID (see the PATCHAR sysparm). Specify
MESSAGE-ID=INSTALLATION to append the installation ID instead of the patch character.

MSGEXPIRE

Value n

Default None

The number of days a mailbox message is to be preserved.

MSGSTART

Value COLD|WARM|HOT|NO

Default MSGSTART=NO

Specifies the restart option to be applied at Com-plete initialization time to the COMSPL dataset
for messages not entirely written to their receiving terminals when Com-plete terminates
processing (normally or abnormally). Messages with class codes of 3 will always be restarted.

25

Startup Options (Sysparms)System Programming

MSGSTART=COLD indicates that no messages are to be requeued. In this situation, Com-plete
writes zeros to each message record on the COMSPL dataset. All queued messages will be permanently
lost. Note that messages are not deleted from the message file except during a COLD start or when
overlayed.

MSGSTART=WARM indicates that messages not entirely written to their receiving terminals
will be requeued. In this situation, all requeued messages will be restarted from their beginning except
class 4, 12, 14, or 16 messages.

If a message is sent to a multiple number of terminals and not received at one or more of those
terminals, it is restarted for those terminals from the beginning of the message. If a terminal user was in
the process of recalling a message, it will not be restarted.

Note that when Com-plete is started with the WARM option in effect, the same TIBTAB must
be used.

MSGSTART=HOT indicates that messages not entirely written to their receiving terminals are
to be requeued. Printing for requeued messages is to begin from the last checkpoint taken by Com-plete.

MSGSTART=NO indicates that no messages are to be requeued. Here, none of the message
records in the message queue file are destroyed. In this case, a subsequent WARM or HOT start might
requeue a message originally queued before the time MSGSTART=NO was specified. Message requeuing
causes the next message number to be one.

Messages with class codes 4, 12, or 14 are not requeued, and messages with class code 3 will
always be restarted from the beginning.

Warning:
If a new TIBTAB is being used, you must specify
MSGSTART=COLD or the results may be unpredictable.

Note:
If the MSGSTART parameter is set to NO or COLD, the Mailbox facility will not be effective.

NATSECDB

Value n

Default NONE

Specifies the data base number of the Natural Security file (validates user ID and password
during logon to Com-plete) n must be an integer between 1 and 65535. See the description of
the interface to Natural Security in section Software Interfaces.

NATSECFN

Value n

Default NONE

26

System ProgrammingStartup Options (Sysparms)

Specifies the Natural Security file number (used to validate user ID and password during logon
to Com-plete. n must be an integer between 1 and 65535. See the description of the interface to
Natural Security in section Software Interfaces.

PASSWORD

Value YES|NO

Default PASSWORD=YES

Specifies whether or not a password is required of the terminal user when the ULOG utility
program is invoked with the ON option.

PASSWORD-EXPIRE

Value n (0..999)

Default PASSWORD-EXPIRE=0

n days after the last successfull password alteration, Com-plete will force the user to change the
password again.

A value of 0 advises Com-plete not to force the user to change the password at all.

PASSWORD-RETRIES

Value n (0..255)

Default PASSWORD-RETRIES=3

Specifies the number of attempts a user has to type in the correct password before his User ID is
locked.

PATCHAR

Value <char>

Default "*"

Specifies a character that must, if different from astersik (*), uniquely identify the running
Com-plete within the system. If another Com-plete with the same character is active, Com-plete
will be terminated during initialization. Any valid printable character can be specified as the
patch character.

A patch character of "*" allows multiple Com-pletes with this patch character to be active at the
same time.

This character is of importance in two areas. Firstly, every message sent to the console will have
the patch character of the issuing Com-plete following the message dentifier in brackets eg.
ABS0006 (2) etc. Prior to the sysparms being processed, the default patch character will be
shown in all messages.

27

Startup Options (Sysparms)System Programming

Secondly, data can be added to the profile system as being specific to a certain system. When
the data is read, data relating to the patch character of the running system will be searched for before
taking the global information. In this way, you can customize your sessions differently in different
Com-pletes using the same Com-plete system data set.

PGMLOOKASIDE

Value name

Default None

Specifies the name of a program to be preloaded into storage at Com-plete initialization from a
library in the COMPLIB chain.

The program can be any program except those programs linked with overlay. Programs
specified are accessible by terminal invocation and via the Com-plete functions ATTACH,
COLINK, COLOAD, COXCTL, FETCH, LINK, and LOAD. All attributes such as RG, PV etc.
are taken from Com-plete’s Program Catalog. To load more than one program, multiple
statements can be provided.

Note that programs residing in PDSE load libraries are not eligible for Com-plete’s Fast Load
Facility and are therefore ignored when specified by a PGMLOOKASIDE statement.

POEXPIRE

Value n

Default None

The number of days a printout is to be preserved.

POLDRV

Value "Program Name"

Default none

Specifies a default logical output driver name to be used for all printouts that do not specify a
logical output driver themselves. For more information on logical output drivers, refer to section
Defining Terminals and Printers.

POSTART

Value COLD|WARM|HOT|NO

Default POSTART=NO

Specifies the restart option to be applied at Com-plete initialization time to the spool dataset for
printouts not entirely written to their receiving terminals at the time Com-plete terminates
processing (normally or abnormally).

28

System ProgrammingStartup Options (Sysparms)

POSTART=COLD indicates that no printouts are to be requeued. In this situation, Com-plete
writes zeros to each printout record on the spool dataset. All queued printouts will be permanently lost.
Note that printouts are not deleted from the spool dataset except during a COLD start or when overlayed.

POSTART=WARM indicates that printouts not entirely written to their receiving terminals will
be requeued in their entirety. In this situation, all requeued printouts will be restarted from the beginning.

Note that when Com-plete is started with the WARM option in effect, the same TIBTAB must
be used.

POSTART=HOT indicates that printouts not entirely written to their receiving terminals are to
be requeued. Printing for requeued printouts is to begin from the last checkpoint taken by Com-plete.

POSTART=NO indicates that no printouts are to be requeued; none of the printout records in
the message queue file are destroyed. In this case, a subsequent WARM or HOT start might requeue a
printout queued before that POSTART=NO was specified.

Printouts with class codes 4, 12, or 14 are not requeued, and printouts with class code 3 are
always restarted from the beginning.

Warning:
If a new TIBTAB is being used, you must specify COLD, or the
results may be unpredictable.

PROGRAMISD

Value n

Default PROGRAMISD=40

Specifies the number of In-Storage Directory (ISD) slots to be reserved for Com-plete online
programs.

Each ISD entry contains the disk address of an online program that has been or is executing. For
a given ISD, the entries are dynamically altered to reflect the most current program usage based
upon frequency of use.

Each program ISD entry occupies 128 bytes of page-fixed storage.

Note that n must be an integer from 1 to 16 digits in length. The minimum value is 10.

RECALLCHAR

Value x

Default RECALLCHAR=NO

Specifies whether or not a recall character is available and what that character is. x can be any
character which can be entered at a terminal. If this character is printed as the first character on
ANY screen, it is taken as the recall character and the data is not passed to the application. This
specification is simply the system default. Users can set their own recall characters.

29

Startup Options (Sysparms)System Programming

The specified character, if any, must not be the same as that specified for the suspend character
via the SUSPENDCHAR sysparm.

RESIDENTPAGE

Value program-name

Default None

Specifies the name of a program or map to be loaded and made resident at Com-plete
initialization time.

Note that the program must be fully reentrant. If it is not marked reentrant, a warning message is
issued on the operator’s console at Com-plete initialization time.

The program or map must reside in the COMPLIB of the Com-plete initialization procedure.

The program is subsequently accessible via the COLINK, COLOAD, COXCTL, LINK, LOAD,
and XCTL functions.

Maps are subsequently accessible by online applications by the use of the WRTM or READM
functions.

Multiple statements can be used to load more than one program.

To effectively use UDEBUG, the majority of the UDEBUG nucleus must be loaded into the
Com-plete nuclues via this parameter. A sample member DBUGSAMP is provided on the
distributed source dataset containing the statements for the necessary modules.

RJE

Value ALLOW|DISALLOW

Default ALLOW

Specifies whether or not Com-plete remote job entry requests are to be honored.

The value for this sysparm can be overridden dynamically at any time by use of the Com-plete
operator commands ALLOW and DISALLOW.

ROLL-BUFFERPOOL

Value (Esize,Eno,Expno,Loc)

Default No fixed Roll buffer pool allocated

Please refer to the section Com-plete Resource Usage and Estimates for more information on
specifications for this parameter.

The values have the same meaning as for the BUFFERPOOL parameter, except the values for
Loc:

30

System ProgrammingStartup Options (Sysparms)

Values for Loc BELOW (Non XA capable systems)

ANY (XA capable systems which are not ESA capable)

DS (ESA capable systems)

The following ROLL-BUFFERPOOL SYSPARMs are generated by default:

ROLL-BUFFERPOOL=(064K,number_of_TIBs / 2,number_of_TIBS / 2,DS)
ROLL-BUFFERPOOL=(128K,number_of_TIBs / 4,number_of_TIBS / 4,DS)
ROLL-BUFFERPOOL=(256K,number_of_TIBs / 8,number_of_TIBS / 8,DS)
ROLL-BUFFERPOOL=(512K,number_of_TIBs / 16,number_of_TIBS / 16,DS)
ROLL-BUFFERPOOL=(biggest_THREAD_size + 8K,2,2,DS)

Example:

If the number of TIBs in TIBTAB is 256 and the biggest THREAD size is 1536K (512K below
and THSIZEABOVE=1024), the following ROLL-BUFFERPOOL statements are generated:

ROLL-BUFFERPOOL=(064K,128,128,DS)
ROLL-BUFFERPOOL=(128K,064,064,DS)
ROLL-BUFFERPOOL=(256K,032,032,DS)
ROLL-BUFFERPOOL=(512K,016,016,DS)
ROLL-BUFFERPOOL=(1544K,2,2,DS)

VSE/ESA Considerations

If you allow the roll buffer pool to be built in a data space (the recommended way), you might
nee to adjust your SYSDEF DSPACE definitions as follows:

1. Increase the value of DSIZE by the size of your former ROLLBUFFER value plus the
collective size of your former ROLL datasets.

2. Since each base subpool and each subpool expansion of the roll buffer pool is allocated in a
separate data space, you should consider increasing the value of PARTMAX (default is
16).

Example:

Include the following SYSDEF statement in the ASIPROC for BG:

SYSDEF DSPACE,DSIZE=32M,PARTMAX=64

SAVEPOOL

Value n>=100

Default 100

Specifies the number of "savepool" entries to be allocated for Com-plete. This is a critical
parameter as these areas are used as base level save areas and can therefore not be expanded. If
they are filled, Com-plete will terminate abnormally. Please refer to the section Com-plete
Resource Usage and Estimates for more information.

31

Startup Options (Sysparms)System Programming

SAVEPOOL-ANY

Value n>=100

Default 100

This specifies the number of "savepool" entries which Com-plete should allocate above the 16
meg line. The value specified for this parameter must be carefully reviewed based on the usage
of the system. When these areas run out, the system can continue to run using savepool entries
allocated below the line, however, this is a waste of a valuable resource.

SDLEVEL

Value NO|YES|userid

This parameter is supported only for sites that were using it in a previous version of Com-plete.
You are strongly recommended to use or omit this parameter as you did before.

SD-PREFIX

Value dsname

Default none

This parameter, when specified, indicates that each SD file is to be allocated as a separate
VSAM dataset with a dataset name starting with this prefix. Please refer to Com-plete Files and
Associated User Files for the rules describing how the resulting dataset name is built.

dsname must adhere to the operating system rules for valid dataset names. Its length must not
exceed 28 characters. The last character must not be a dot (’.’).

SD-RLS

Value YES|NO

Default NO

This parameter takes effect only for dynamic SD files, i.e., when SD-PREFIX is also specified,
and if DFSMS version 1.4 or higher is active on the system.

SD-RLS=YES causes Com-plete to access dynamic SD files using VSAM RLS, i.e., the dataset
is allocated with parameter RLS=NRI and the ACB is opened with MACRF=RLS.

The SMS dataclass specified with SD-SMSCLASS must allow for use of RLS access by means
of the parameter LOG(NONE). Note that the LOG parameter of a dataclass does not exist in
DFSMS versions prior to 1.4., therefore SD-RLS is ignored if DFSMS version 1.4 or higher is
not active on the system.

SD-SMSCLASS

32

System ProgrammingStartup Options (Sysparms)

Value (dataclass,storageclass,managementclass)

Default none

This parameter takes effect only when SD-PREFIX is also specified. It defines the SMS classes
Com-plete uses for creating dynamic SD files.

Each subparameter correspondents to a DYNALLOC parameter. Com-plete does not define any
default values for these parameters, i.e., when you omit a subparameter, Com-plete omits the
corresponding DYNALLOC parameter causing system defaults, if any exist, to take effect.

SDSIZE

Value n

Default SDSIZE=1500

Specifies the size of the initial SD file that is allocated by the Com-plete utilities UED and
UEDIT.

Note that n represents the number of records of a member being edited. Here, n must be an
integer between 10 and 9999.

SECDEFAULT

Value ALLOW|DISALLOW

Default SECDEFAULT=DISALLOW (z/OS only.)

Specifies whether or not Com-plete will honor all password-protected file requests. This
parameter is checked in module ULSRSEC, the password protection routine.

SECSYS

Value
NO|RACF|ACF2|TOPSECRET|
COMSEC,R|A|T

Default SECSYS=NO

Specifies an alternate security system to be used. This subsystem is used to validate user IDs
and passwords during logon and is interrogated in order to determine data set access authority
during utility processing.

SECSYS-APPL

Value name

Default SECSYS-APPL=COMPLETE

Specifies the Application Name to be used for uniquely identifying this Com-plete nucleus to
the External Security System (see SECSYS). "SECSYS-APPL=&VTAMAPPL" tells Com-plete
to copy the name from the SYSPARM VTAMAPPL.

33

Startup Options (Sysparms)System Programming

SECSYS-EXECUTIONCONTROL

Value (class_name,resource_name)

Default None

Specifies the name of a SAF class and the name of a resource (key) to be used by Com-plete for
checking users’ permissions to execute application programs.

See section Controlling Program Execution in Software Interfaces for information on how to
setup this SAF class and resource.

If this parameter is not specified, then no SAF checks are performed for program execution, and
only the traditional security means take effect.

SERVER

Value (serv-id , init-mod , p1 , p2 pn)

Default none

serv-id the ID for this server (1-8 chars)

init-mod the name of the initialization/termination routine.

p1...pn parameters to be passed to the init-routines

This will cause Com-plete to build a Server Directory Entry (SDE) for the specific Server and
pass control to the initialization routine specified to cause the Server to be initialized. Refer to
section Com-plete Servers for more information.

SMFCHECKPOINT

Value n|nT

Default SMFCHECKPOINT=15

Specifies the time in minutes or transactions, allowed to elapse before an SMF checkpoint
record is written for a terminal user.

n specifies an integer from 1 to 32767 as the number of minutes to elapse before the checkpoint
record is to be written.

Note that nT specifies the number of transactions (i.e., program dispatches from the ready-to-run
queue commonly called a called a ROLLIN) to be executed before the checkpoint record is to be
written, where n is an integer from 1 to 256, and T is a constant.

SMFLOG

Value (r1,r2,r3,r4)

Default SMFLOG=(LOG,NO,NO,LOG)

34

System ProgrammingStartup Options (Sysparms)

Specifies the logging action to be taken for the various SMF records written by Com-plete. The
four positional parameters represent the following SMF records:

r1 ULOG ON record

r2 program termination record

r3 checkpoint record

r4 ULOG OFF record

Each positional parameter must be replaced with one of the following values:

NO the corresponding record is not to be logged.

LOG the corresponding record is to be logged to the operating system logging device
(WTL/SYSLST logging device)

OPERATOR the corresponding record is to be logged to the operator’s console (SYSLST)

SMFRECORDS

Value (r1,r2,r3,r4,r5)

Default SMFRECORDS=(0,0,0,0,0)

Specifies the user SMF record numbers, if any, to be assigned to the corresponding Com-plete
accounting records. The five positional parameters represent the following SMF records:

r1 ULOG ON record

r2 program termination record

r3 checkpoint record

r4 ULOG OFF record

r5 User-defined SMF record

Each positional parameter must be replaced with either the number 0 or an integer from 128 to
255.

Note that 0 (zero) specifies that the corresponding record is not to be written.

Valid user SMF record numbers are 128 through 255. Replacing a parameter with a number
from this range causes the corresponding accounting record to be written to the SMF file using
the designated number.

In VSE, the SMF accounting records are written to the the Com-plete capture data set(s).

STACKMAXIMUM

Value n

Default STACKMAXIMUM=9

35

Startup Options (Sysparms)System Programming

Specifies the maximum number of suspended transactions a COM-PASS user may have.

Here, n must be an integer from one to nine.

STARTUPPGM

Value name|(name1,name2,...,namen)|‘name parmstring’

Default None

Specifies the name(s) of programs to be invoked by Com-plete at the end of initialization. The
programs specified can be any Com-plete application programs. They will be started in the order
in which they are specified and will execute as attached tasks under Com-plete’s user ID.

Note that there must be sufficient batch or free TIBs in Com-plete’s TIBTAB to accommodate
the number of programs specified.

A parmstring, if present, is passed to the program in the same way as it would when the program
is invoked with parameters from a terminal. The program can access the parameters using the
API function READ.

Note:
For VSE, STARTUPPGM=U2SPIT is required in order to build the LIBRARY TABLE. Failure
to do so will result in abnormal conditions for the utilities USERV, UED, and UEDIT.

SUBSYS-ACTIVATE

Value subsystem name

Default none

Activates a subsystem not active by default. Refer to the section Com-plete Subsystems for more
information.

SUBSYS-IGNORE

Value subsystem name

Default none

Deactivates a subsystem active by default. Refer to the section Com-plete Subsystems for more
information.

SUSPENDCHAR

Value "x"

Default SUSPENDCHAR=NO

Specifies whether or not a suspend character will be available and what that character is. x can
be any character which can be entered at a terminal. Entering this character without data has the
same effect as pressing the suspend key.

36

System ProgrammingStartup Options (Sysparms)

If this character is entered as the first character on ANY screen, it will be taken as the suspend
character and the data is not passed to the application. This value is simply the system default. Users can
set their own suspend characters.

The specified character, if any, cannot be the same as that specified for the recall character via
the RECALLCHAR keyword.

SUSPENDKEY

Value NONE|interrupt key

Default SUSPENDKEY=NONE

Specifies which key is to be used to suspend a COM-PASS level. Valid values for interrupt key
are PA1, PA2, PA3, PF01, PF02 PF24, CLR and TREQ. This is the system default and can
be overriden by individual users in their profiles.

If SUSPENDKEY is set to any value, SUSPENDCHAR must also be set.

TASK-GROUP

Value (grp,no.,priority,maxq)

Default TASK-GROUP=(DEFAULT,1)

This keyword is used to define the task groups, each containing one or more tasks, which will be
available when Com-plete is started.

Where:

grp Is the name of the task group being defined.

no
Is required and indicates the number of tasks to be allocated in
the task group. This value must be greater than 1 and less than
1000 (z/OS) or 26 (VSE).

priority

Default: 248 is the operating system priority to be assigned to the
operating system task which is attached for z/OS and Hitachi
systems only. This parameter will be accepted under VSE but will
have no meaning. The value specified must be between 0 and 255
inclusive. Note that the highest priority which can be assigned is
the priority at which the task dependent service processor task is
running. Without HPE, this will be 250 therefore, while 255 will
be accepted, the task will in fact only be given a priority of 250.

maxq

Default: 16 Specifies the maximum number of TIBs which are
expected to be on this task groups work queue at the same time.
Under normal circumstances, the default should be perfectly
adequate. When there are problems and it is not, a secondary Last
In First Out (LIFO) queue will be used so that no work is lost.
The normal queue is First In First Out (FIFO) which insures that
work is done in the order in which it is received which is why the
LIFO queue is only used as a secondary backup.

37

Startup Options (Sysparms)System Programming

Notes:

1. A maximum of 8 task groups may be defined.
2. Task group names will be upper cased prior to being processed, therefore, entering the

parameter in lower case will be treated as, and appear in, upper case letters.
3. Where more than one specification appears for a task group, the last valid specification will

be used.
4. The task group DEFAULT must always exist in the system. If it is not explicitly defined by

the installation, the task group will be built by the system with the default values.
5. The total number of tasks to be attached must not exceed the MAXTASKS specification.

This is not checked until the task groups are being built and exceeding the value will
therefore lead to task group allocation errors as against parameter errors.

6. DB2 supports only one connection per TCB at a time. Therefore, if you are running
applications in Com-plete that access DB2, make sure you define the appropriate task
group to hold as many tasks as you expect DB2 users at any one time.

Examples:

TASK-GROUP=(DEFAULT,4)

This will cause the DEFAULT task group to be allocated with four attached tasks and the
default priority and maximum queue size specification.

TASK-GROUP=(DEFAULT,4,200)
TASK-GROUP=(TASK-GRP,4,150)

This will cause the DEFAULT task group to be allocated with four attached tasks with a priority
of 200 and the default maximum queue size specification. A second group called TASK-GRP
will also be allocated with three attached tasks, a priority of 150 and the default maximum
queue size specification.

TELNETPORT

Value n (1....65535)

Default none

This keyword is used to activate the TELNET (th3270) server in Com-plete. n specifies a valid
TCP/IP port number available to Com-plete. This port number can then be used in a terminal
emulation to connect to Com-plete.

THREAD-GROUP

Value (grp,(sub,size,no,cpu,real,key),...,(sub,size,no,cpu,real,key))

Default THREAD-GROUP=(DEFAULT,($DEFAULT,128,2))

This keyword is used to define the thread groups, each containing one or more thread
sub-groups and threads, which will be available when Com-plete is started.

38

System ProgrammingStartup Options (Sysparms)

Where:

grp Is the name of the thread group being defined.

sub

Is the name of the sub-group being defined. If a sub-group name
is specified more than once for the same group, the last valid
specification will be used when parameter processing has been
completed.

size

Is required and indicates the amount of storage in Kbytes which
will be allocated for each thread below the line. This value must
be 8k or greater and less than 1 megabyte. Each sub-group in a
thread group must have a different size.

no.
Is required and indicates the number of threads to be allocated in
the thread sub-group. This value must be greater than 1 and less
than 4,096.

cpu

Default: 2.00 seconds
Is the CPU time in seconds which a user program can use in the
thread sub-group for one Com-plete transaction. This value may
be entered as an integer or to a level of hundredths of seconds
using the n.nn syntax. If a 0 is provided as the CPUTIME for a
thread sub-group, there will be no CPU limit placed upon
programs running in the associated threads.

real

Default: 3.00 Seconds
Specifies the elapse time in seconds for the thread sub-group after
which, a message will be issued to the console if the user program
has not given up control of it’s thread. This value may be entered
as an integer or to a level of hundredths of seconds using the n.nn
syntax. If 0 is specified, no elapsed time checking will be done
for the thread sub-group.

key

Default: M
This defines the key in which the threads within the sub-groups
will be allocated. If ’M’ is specified, the thread keys will be a
mixture of user keys excluding the key in which Com-plete is
running. If ’N’ is specified, no storage protection will be
implemented and all threads will run in the same key as
Com-plete. The user may also explicitly specify a value in the
range 1 to 15 inclusive which will cause each thread to be
allocated that key explicitly.

Notes:

A maximum of 8 thread groups may be defined.

A maximum of eight sub-groups can be allocated per thread group. The thread sub-groups may
be defined on one line or may be defined on different lines. When a second THREAD-GROUP statement
is used, the same group name must be specified to relate the sub-group entries.

39

Startup Options (Sysparms)System Programming

Thread group and sub-group names will be upper cased prior to being processed, therefore,
entering the parameter in lower case will be treated as, and appear in, upper case letters.

Where more than one specification appears for a thread sub-group for a thread group, the last
valid specification will be used.

The amount of storage specified on the THSIZEABOVE System Parameter will be allocated
above the line for each thread defined as a result of the THREAD-GROUP System Parameter.

The thread group DEFAULT must always exist in the system. If it is not explicitly defined by
the installation, the thread group will be built by the system with the default values. If it is defined, the
system insures that a thread sub-group with a thread size at least as large as that required by default is
allocated. If not, the system will allocate an additional sub-group for the group. If too many sub-groups
have been defined, the last one defined will be overwritten to allow for the default specification.

The keyword data is processed from left to right. If more than one thread sub-group is defined
on the one line and the line contains an error, even if an error message is issued for the line, any
sub-groups processed up to the error will still have been accepted. That is to say, if the first sub-group is
correct and the second is not, an error message will be issued but the first thread sub-group will be defined
while the second and subsequent specifications in the same statement will be ignored.

Examples:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3),(BIGUTIL,300,2,5,9,15))

This will cause the DEFAULT thread group to be allocated with two sub-groups. The first
sub-group will be called SMALUTIL, will contain three threads with 84K below the line and
will take the defaults for CPUTIME, REALTIME and the protectkey to be allocated to the
thread. The second sub-group will be called BIGUTIL, will contain two threads with 304K
below the line, will have a maximum of CPUTIME of 5 CPU seconds, a REALTIME value of 9
seconds and each thread will have a storage protectkey of 15.

The following sets of System Parameters would cause exactly the same thread sub-groups to be
defined:

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))
THREAD-GROUP=(DEFAULT,(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,40,8))
THREAD-GROUP=(DEFAULT,(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))

The following sets of System Parameters would cause exactly the same thread sub-groups to be
defined in two thread groups, one called DEFAULT and the other called EXTRAGRP

THREAD-GROUP=(DEFAULT,(SMALUTIL,80,3))
THREAD-GROUP=(EXTRAGRP,(BIGUTIL,300,2,5,9,15))
THREAD-GROUP=(EXTRAGRP,(SMALUTIL,80,3))
THREAD-GROUP=(DEFAULT,(BIGUTIL,300,2,5,9,15))

THSIZEABOVE

Value n

Default None

40

System ProgrammingStartup Options (Sysparms)

Specifies the amount of storage above the 16 MB line, in multiples of 1024 bytes, to be
allocated to each thread.

TIBTAB

Value name|DYNnnnnn|ANYnnnnn

Default TIBTAB=DYN00050

Specifies the name of the terminal definition table to be loaded when Com-plete is initialized. A
TIBTAB’s load module’s RMODE attribute is honored.

TIBTAB=DYN00050 indicates that a TIBTAB is to be built at initialization containing 50 free
TIBs.

TIBTAB=ANY01000 indicates that a TIBTAB containing 1000 free TIBs is to be built above
the 16 MB line.

TRACECLASS

Value class|(class,OFF)

Default NONE

Specifies that the indicated class of trace event is to be included in, or excluded from, the
Com-plete trace table.

Note that class is the name of a valid trace class, as follows:

GENERIC Used for support purposes

QTIB TIB queue management

OP Application program requests

FIXBPOOL Fixed-length buffer pool operations

VTAM VTAM operations

ROLL Roll processing events

ACCESS ACCESS terminal support

SDFILE SD File processing

RESOURCEResource manager get/free

DISPATCH Dispatcher events

PRINT Printout transmission

Note also that (class,OFF) indicates exclusion of the specified class.

TRACEOPTION

41

Startup Options (Sysparms)System Programming

Value option

Default No options active

Specifies that the indicated option is to be either in effect or not in effect for this execution of
Com-plete.

Note that option is the name of a valid trace option, as follows:

ABEND the trace will continue to run during Com-plete abnormal termination. (Normally
the trace will stop recording at the first indication of abnormal termination.)

CAPTURE The trace data will be written to the capture data set. For this option to have any
effect, capture processing must be active. Please be aware that this option can
cause a huge increase in the activity on and amount of data written to the capture
data sets depending on the classes being traced.

EXTENDED Specifies that trace processing is to use the extended form of the trace record. This
should only be used where requested by support personnel where specific
information must be found as it decreases the amount of trace records that can be
held in a trace buffer.

Note:
TRACEOPTION=ABEND should only be set when requested by Com-plete support personnel.

TRACETABLE

Value n|nK

Default TRACETABLE=8K

Specifies the size of the Com-plete trace table, which is used to trace events occurring within the
Com-plete system.

Note that use of the TRACETABLE sysparm can be a valuable tool for problem resolution.

The minimum size of the trace table is 8K.

TRACETABLE=0 indicates that no tracing is performed.

ULOGM

Value *|password

Default ULOGM=*

Specifies an override password for access to the Com-plete online maintenance utilities (for user
ID maintenance, global PF key maintenance etc.). This should only be used in an emergency
when the current password cannot be established. When "*" is specified, as is the normal case,
the current password must be used. password can be a 1 to 12 character string (excluding
commas) which will then become the current password only for the current Com-plete run. The
current password should immediately be changed during such a run so that this parameter can be
set back to "*".

42

System ProgrammingStartup Options (Sysparms)

The default SYSPARM member provided on the distributed source specifies PASSWORD as
the current password. You must set a current password online and remove this specification as soon as
possible after the installation is finished.

UQDEFAULT

Value YES|NO

Default UQDEFAULT=YES

Specifies the access restriction option to be exercised by the UQ utility program against terminal
users when viewing SYSOUT/SYSLST data sets.

UQDEFAULT=YES specifies that all terminal users are allowed to view all SYSOUT/SYSLST
files for any job that does not contain UQ authorization control statements.

UQDEFAULT=NO specifies that no terminal user can view any sysout files for any job unless
the job contains proper UQ authorization control statements.

The UQ functions affected by this sysparm are the S, H, C, and R commands and the DE and
OC keywords.

For more information concerning UQ authorization control statements, see UQ - System Job
Queue Display Utility in the Com-plete Utilities documentation.

UQWRITER

Value YES|NO

Default UQWRITER=NO

If this parameter is set to YES, UQ Q displays the WRITER instead of FLASH (JES2)

VSAMBUFFERS

Value
NO|(size=n)|(sizeK=n)|
(size=n,sizeK=n,size=n)

Default VSAMBUFFERS=NO

Specifies the configuration of the VSAM local shared resource buffer pool, SHRPOOL=0.

VSAMBUFFERS=NO specifies that no VSAM LSR pool is to be built.

Here, size indicates the size of an individual buffer. Note that size specified without the K option
indicates the amount of storage, in bytes, to be reserved; size specified with the K option
indicates the amount of storage, in multiples of 1024 bytes, to be reserved. If size is specified
without the K option, the permissible values are 512, 1024, 2048, and 4096, or any other
number that is a multiple of 4K (4096), up to a maximum of 32K. If size is specified with the K
option, the permissible values are 1K, 2K, and 4K, or any number that is a multiple of 4K.

43

Startup Options (Sysparms)System Programming

Note that n specifies how many buffers are to be allocated. Permissible values for n range from
3 to 32000.

VSAMDS

Value n

Default 4

Specifies the initial number of ACBs in the Com-plete VSAM ACB pool. If necessary during
processing, this pool will be expanded dynamically by the same number of ACBs.

n must be numeric.

VSAMFIX

Value BUFFERS|IOBS

Default VSAMFIX=NONE

Specifies which VSAM areas, if any, are to be page-fixed in virtual storage.

VSAMFIX=BUFFERS and VSAMFIX=IOBS cause the appropriate parts of the VSAM local
shared resource pool to be page-fixed. These values have effect only if a local shared resource
pool is established using the VSAMBUFFERS sysparm.

VSAMHIPERSPACE

Value NO|(size=n)|(sizeK=n)|(size=n,sizeK=n,...size=n)

Default NO

This parameter is valid for z/OS ESA systems only.

Specifies the sizes and numbers of buffers in hiperspace to be allocated for the VSAM LSR pool
defined by sysparm VSAMBUFFERS. Here, size indicates the size of an individual buffer in
bytes (when specified without the K option) or in Kbytes. Permissible values are 4096 / 4K and
multiples thereof, up to a maximum of 32768 / 32K.

n specifies the number of buffers of the appropriate size to be allocated.

Note:
If you specify VSAMHIPERSPACE, VSAMBUFFERS must also be specified. Moreover, for
each size requested for hiperspace buffers, you must also specify buffers in VSAMBUFFERS.

VSAMRPL

Value n

Default
The number specified or defaulted for sys-parm VSAMDS
multiplied by the number of threads defined.

44

System ProgrammingStartup Options (Sysparms)

1. If a VSAM LSR pool is established using the VSAMBUFFERS sysparm, the VSAMRPL
value is used for the STRNO parameter of the VSAM BLDVRP macro when building the
local shared resource pool, that is, it specifies the maximum number of requests
concurrently active for all data sets sharing the LSR pool. If this value is exceeded, VSAM
denies additional requests.

2. It specifies the initial number of VSAM RPLs in the Com-plete VSAM RPL pool. If
neccessary during processing, this pool will be expanded dynamically by the same number
of RPLs.

n must be numeric.

VTAMAPPL

Value name

Default VTAMAPPL=COMPLETE

Specifies the name that Com-plete is to use as the application ID with VTAM.

For more information concerning VTAM definitions, see Software Interfaces.

VTAMBUFFER

Value n

Default VTAMBUFFER=3584

Specifies the size of the VTAM RECEIVE ANY buffer.

Note that n should be set to a value equal to or greater than the size of the largest incoming data.
The minimum size is 128 and the maximum is 32767 bytes. If an incoming RU length exceeds
the specified buffer size, the message ZVT4010 is logged and the RU is ignored. If the buffer
size is too large, storage is wasted.

Note:

VTAMGENERIC

Value name

Default None

Specifies the name used by Com-plete to identify itself to VTAM as a generic resource. It is
used in Parallel Sysplex installations to achieve system-independence and workload-balancing.
For more details and restrictions of generic resource names refer to the section on VTAM
interface in Software Interfaces.

VTAMPASSWORD

Value password

Default None

45

Startup Options (Sysparms)System Programming

Specifies the password to be used when the VTAM ACB is opened.

VTAMSIMLQ

Value YES|NO

Default VTAMSIMLQ=YES

Specifies whether or not the SIMLOGON performed for each LU to be acquired is queued. For
more information, see the description of the SIMLOGON in theIBM VTAM Macro Language
Reference documentation.

VTAMSIMLQ=YES indicates that the SIMLOGON done for each acquired LU is to be queued.

VTAMSIMLQ=NO indicates that the SIMLOGON is not to be queued.

VTAMSIMLREL

Value YES|NO

Default VTAMSIMLREL=YES

Specifies whether or not the SIMLOGON performed for each LU to be acquired will include
OPTCD=RELREQ. This OPTCD causes VTAM to ask the current owner (if any) to release the
LU.

VTAMSIMLREL=YES indicates that the SIMLOGON for each acquired LU will include
OPTCD=RELREQ. If YES is indicated, the VTAMSIMLO startup option must be YES.

VTAMSIMLREL=NO indicates that the SIMLOGON for each acquired LU will not include the
OPTCD=RELREQ.

VTAMSTART

Value YES|NO

Default VTAMSTART=YES

Specifies whether or not VTAM processing is to begin when Com-plete is started. (VTAM can
be stopped or started using the Com-plete operator commands VTAM START and VTAM
STOP.)

VTAMSTART=YES indicates that VTAM processing will begin when Com-plete is started.

VTAMSTART=NO indicates that VTAM processing will not begin when Com-plete is started.

WTOBUFFERS

Value n|(n,BELOW)|(n,ANY)

Default WTOBUFFERS=0

46

System ProgrammingStartup Options (Sysparms)

Specifies the number of messages written by Com-plete to the operators console that are to be
retained in storage. These messages can be displayed by the MO function of UUTIL (subfunction CM).

Note:
Each buffer requires approximately 140 bytes of storage. Buffers will be allocated above the
line for XA and later systems. To allocate buffers below the line, use the notation (n,BELOW).

47

Startup Options (Sysparms)System Programming

Binary Modifications (APPLYMODS)
The following is a list of the system modifications available for Com-plete. The modifications are
implemented using the APPLYMOD parameter during Com-plete initialization.

Most applymods can be changed online by control users who have entered the correct system maintenance
password for the UUTIL utility.

1 When a hardcopy request is issued from Com-plete either via the
"*UCOPY" command or the hardcopy program function key, a page
eject will normally occur BEFORE each hardcopy. Specify
APPLYMOD=1 to avoid the page eject BEFORE each hardcopy.

2 When a hardcopy request is issued from Com-plete either via the
"*UCOPY" command or the hardcopy program function key, a page
eject will normally NOT occur AFTER each hardcopy. Specify
APPLYMOD=2 to force a page eject AFTER each hardcopy.

3 Com-plete calls the user exit ULSRPSFS to perform security
validation each time an application program requests a Com-plete
function. Specify APPLYMOD=3 if your installation wants Com-plete
to call ULSRPSFS for each internal Com-plete operation and for any
SVC that Com-plete traps.

Note:
This modification has serious performance implications. Before
installing this modification, consult your Software AG technical
representative.

4 The Com-plete utility UEDIT will delete its SD file when the terminal
operator terminates a UEDIT session. Specify APPLYMOD=4 to
instruct UEDIT not to delete its SD file during termination.

5 By default, Com-plete transmits the hello message to the terminals on
the network without the date or time of day displayed. Specify
APPLYMOD=5 to force Com-plete to display the date and time on the
hello message.

6 The *UQ utility and the MO function of *UUTIL only allow control
terminals to issue operator commands. Specify APPLYMOD=6 to
allow non-control users to issue operator commands.

7 The *UM utility only allows control terminals to issue the TID
functions. Specify APPLYMOD=7 to allow non-control terminals to
issue the TID functions.

8 By default, unused parts of a thread are always cleared when a new
program is being started or rolled in. This is for security reasons, to
ensure no data is left behind from the application that last used the
thread. When your security policy allows it, you can gain slightly
better performance with this applymod set.

48

System ProgrammingBinary Modifications (APPLYMODS)

9 By default, only those parts of a thread are dumped which are actually
in use by the application running. This applymod can help determine
problems caused by a destroyed free area chain. Running with this
applymod set causes bigger thread dump sizes and, consequently,
possibly fewer dumps fitting into the dump dataset.

10 By default, UQ uses its own security mechanizm. Set this Applymod
to make UQ use the definitions in the SAF classes JESJOBS and
JESSPOOL instead.

11 The *ULOG utility will suppress display of the account number on the
logon screen (ULGO) when a user logs on to Com-plete. Specify
APPLYMOD=11 to force display of the account number.

12 The *UQ utility passes the first "//*UQ user ..." card image to the user
exit UUQEX1. Specify APPLYMOD=12 to force the *UQ utility to
pass the first of any "//*UQ ..." cards (except the //*UQ ALLOW card)
to UUQEX1.

13 The Com-plete mapping system will not rewrite the constant fields of
a map to the terminal if the screen has been changed by non-mapping
write requests. Specify APPLYMOD=13 to cause the mapping system
to always rewrite the constant fields of a map.

Note:
There is a mapping TCC code to force this same result for a particular
map. It is advisable to use the new TCC code rather than this
modification.

14 Com-plete does not allow batch programs to send priority messages
(class=2) to terminal users. Specify APPLYMOD=14 to allow priority
messages to be sent from batch programs.

15 If Com-plete gets an I/O error while trying to send a message or a
printout to a terminal, Com-plete will put the current MSG/PO in hold
and continue with the next MSG/PO in the queue. Specify
APPLYMOD=15 to prevent transmission of MSG/POs to a terminal if
a MSG/PO gets an I/O error. For Com-plete to retry sending the
queued messages, use the *UM utility to reset the terminal.

16 The UEDIT utility saves the current member when the SUBMIT
command is entered. Specify APPLYMOD=16 to change the default
to NOSAVE. Then, to save the current member, specify SAVE with
the SUBMIT command.

17 The Com-plete utility *UEDIT fetches *UQ after each SUBMIT
command. Specify APPLYMOD=17 to force *UEDIT not to fetch
*UQ when a SUBMIT command is issued.

18 Currently no function is assigned to this applymod.

19 Currently no function is assigned to this applymod.

49

Binary Modifications (APPLYMODS)System Programming

20 If an application program does an MCALL WRTS for a TTY device,
Com-plete will not append carriage return and line feed control
characters to the output message. Specify APPLYMOD=20 for
Com-plete to append carriage return and line feed control characters to
the output message.

21 This modification applies to TTY devices only. Installations that have
an auto speed front-end require that the mainframe issue a PREPARE
CCW (instead of a WRITE CCW) immediately following the
ENABLE CCW. Specify APPLYMOD=21 to issue a PREPARE CCW
immediately following the ENABLE CCW.

22/23 This modification applies to TTY devices only. Specify
APPLYMOD=22 to not write the characters "-BREAK-" to a TTY
whenever output is terminated via the break or interrupt key. Specify
APPLYMOD=23 to write the characters -BREAK- to a TTY when
input is terminated via the break or interrupt key.

24 The ULOG utility allows a logged-on user to change the password
currently assigned to that user. Specify APPLYMOD=24 if the user is
not to be allowed to change the password.

Note:
If APPLYMOD=24 is specified, the NEWPASSWORD parameter for
ULOG is invalid.

25 This modification influences the format of the date returned by the
DATE / DATEJ API functions. APPLYMOD=25 causes a century
indication to be returned: Function//without Applymod 25//with
Applymod 25 DATE//X’0mmddyyF’//X’cmmddyyF’
DATEJ//X’00yydddF’//X’0cyydddF’ where ’c’ is the century minus
19 (0 for 19, 1 for 20, ...). See the Application Programming
documentation for more details.

26 This modification applies to TTY devices only. When the break key is
pressed, Com-plete will receive input from a TTY device. Specify
APPLYMOD=26 to cause Com-plete to ignore input from a TTY
when terminated via the break key.

27 Com-plete normally handles a session with any device as one bracket.
Specify applymod 27 to allow an application to request sending of End
Bracket and FM-Headers.

28 Set ATTN as SUSPENDKEY.

29 For VTAM terminals only to set the line length and the number of
lines according to the PSERVICE values instead of using the default
Model 2.

30 Some TTY interface hardware/software requires that the output data
stream end in an ETX character (X’03’). Specify APPLYMOD=30 to
have Com-plete add the ETX character to the output data stream.

50

System ProgrammingBinary Modifications (APPLYMODS)

31 The user-written routine ULSRPSFS is called twice during program
"FETCH" functions. Specify APPLYMOD=31 to prevent the 0
(program initialization) call to ULSRPSFS during FETCH function
processing and only pass the 12 (FETCH) call.

32 APPLYMOD=30 adds an ETX to the output buffer for all types of
writes to TTY devices. Specify APPLYMOD=32 to add the ETX only
on WRTC and WRTD writes.

33 Some TTY interface hardware/software does not support the DC1
character (x’11’). Specify APPLYMOD=33 to not add a DC1 to the
output data stream.

34 The regular hello message can fill up small buffers on large networks.
Specify APPLYMOD=34 to send the short hello message (normally
sent to TTYs and printers) to all terminals.

35 By default, UPCBs (user program control blocks) are located above
the 16 MB line in this version. Use Applymod 35 to build UPCBs
below the 16 MB if this is required. Note that this Applymod cannot
be changed for the running Com-plete.

36 TLAMTTY issues halt I/O for "prepare channel program". Specify
APPLYMOD=36 to eliminate halt I/O.

37 Currently no function is assigned to this applymod.

38 Com-plete normally forces an "End Bracket" after each printout to
allow the controller to insert local hardcopies. However, some
controllers simply ignore the "EB", causing the session to stay "In
Brackets". The next "BB" is then rejected with SENSE 0813 (Bracket
Bid Reject). Specify applymod 38 to suppress the "EB" at end of
printouts. This will cause all queued printouts to be sent in one
Bracket.

Important:
Static Printers should always be defined with OPT=SHARE to force a
CLSDST after the last printout.

39 During printing of a spooled printout, Com-plete records the number
of printout copies in storage. If Com-plete is terminated before
completion of all copies of the printout, the printout will be restarted
and all copies will be printed again. Specify APPLYMOD=39 to force
Com-plete to decrement the number of copies in the restart
information.

40 COM-PASS users receive a ULOG menu screen when ENTER is
pressed and no user is logged onto the TID. Specify APPLYMOD=40
to eliminate this screen.

41 Class 2 messages destroy the current screen display. This results in the
loss of all screen updates since the last pressing of the key. Specify
APPLYMOD=41 to use class 5 as the urgent message class. Messages
will then be sent after the key is pressed and all screen data are read.
User IDs and TIBTAB entries must be changed to receive class 5
messages. Class 2 message support remains unchanged.

51

Binary Modifications (APPLYMODS)System Programming

42 Hold printouts not closed if a program abends. When a program
terminates under Com-plete either normally or abnormally, any open
printouts are closed and scheduled. If this applymod is on, when a
program terminates abnormally, the open printouts will be closed,
however, they will be flagged as "held". It will then be up to you to
manually release the printout to be printed or to purge it.

43 Normally you can send messages from application programs using
MESGSW to any user, irrespective if he is logged on or not. Specify
APPLYMOD=43, if you want to send messages only to users who are
currently logged on.

44 UQ S assumes that printouts in the JES spool created without a
RECFM parameter in the DCB contain an ASA carriage control
character in each first column. Specify APPLYMOD=44, if the output
contains only data and you want Com-plete to insert an additional
blank into each row, when such a printout is transferred with UQ S
DC= into the Com-plete spool data set.

45 Normally the logical output driver is deleted from storage, when the
usecount gets zero. Specify APPLYMOD=45 to cause the driver
module to stay in storage.

46 When figures are being displayed, "." is used to denote a decimal point
and "," is used to punctuate integers e.g. 100,300.54 is one hundred
thousand three hundred point fifty four. In some countries, the use of
"," and "." is reversed. Specify APPLYMOD=46 to cause figures to be
displayed in this reversed way (the above example appears as
100.300,54 with applymod 46 on).

47 Currently no function is assigned to this applymod.

48 Whenever possible, Com-plete uses Exception Response to
communicate with Terminals and Printers. However, some printers -
especially when connected to a LAN - might lose parts of the output
when using this protocol and require Definite Response. Specify
Applymod 48 to force use of Definite Response for Printers.

49 Currently no function is assigned to this applymod.

50 Messages ZUS0001 through ZUS0004 are written to the console when
the USTOR AM function is invoked. Specify APPLYMOD=50 to
inhibit the writing of these messages to the operator console.

51 Normally the record format for a BDAM file is hardcoded to be fixed.
Specify APPLYMOD=51 to take the record format from the JCL
specification.

52 Com-plete ignores any data passed on the VTAM logon. Specify
APPLYMOD=52 to have the VTAM interface interpret the data and
initiate a logon. Please refer to the VTAM section in Software
Interfaces for more information.

52

System ProgrammingBinary Modifications (APPLYMODS)

53 At Com-plete logoff from a VTAM terminal, the terminal will be
disconnected from Com-plete and returned to VTAM. Specify
APPLYMOD=53 to cause VTAM terminals to remain connected to
Com-plete after logoff. A new logon will still be required.

54 At Com-plete logoff from a dialup terminal, the terminal will be
disconnected from Com-plete and the line will be "hung up". Specify
APPLYMOD=54 to cause dialup terminals to remain connected to
Com-plete after logoff. A new logon will still be required.

55 Com-plete will accept logon from any VTAM terminal. Specify
APPLYMOD=55 to cause Com-plete to only accept logon from
VTAM terminals that are defined in Com-plete’s TIBTAB.

56 Currently no function is assigned to this applymod.

57 Com-plete only accepts logons from user IDs that are defined to
Com-plete or, if the Natural Security interface has been installed, if the
user ID is defined to Natural Security. Specify APPLYMOD=57 to
accept logon from any user ID not defined to Com-plete or Natural
Security. The password entered is ignored unless an external security
system is active. Logon is then subject to the external security system.
See section Software Interfaces for more information.

58 Currently no function is assigned to this applymod.

59 Normally, Com-plete maps display in both upper and lowercase.
Specify APPLYMOD=59 to cause all constant text fields in Com-plete
system maps to be converted to uppercase.

60 Normally, Com-plete will scan the LPA or SVA in order to find a
module. Specify APPLYMOD=60 to not scan the LPA or SVA on
Com-plete COLINK’s and COLOAD’s (in order to reduce overhead
for performance reasons).

61 Normally, Com-plete system maps display the date in American
format, e.g., MM/DD/YY. Specify APPLYMOD=61 to cause
Com-plete system maps to display the date in European format, e.g.,
DD.MM.YY.

62 Currently no function is assigned to this applymod.

63 Currently no function is assigned to this applymod.

64 Currently no function is assigned to this applymod.

65 The mapping subsystem of Com-plete normally only accepts positive
numbers in a field defined to be zoned in the map. Specify
APPLYMOD=65 to force the mapping subsystem to accept negative
values in zoned fields on maps.

66 When a user program does not request that to should be indicated to
the program, Com-plete assigns default Com-plete paging commands
to them. Specify APPLYMOD=66 to force Com-plete not to assign
defaults to the PF keys when the user program does not request that
they be returned.

53

Binary Modifications (APPLYMODS)System Programming

67 The UQ function to display a copy of what is on the console (that is,
UQ M) normally displays the outstanding WTOR requests in the first
lines of the screen followed by the WTOs. Specify APPLYMOD=67
to avoid the display of the outstanding WTORs at the start of the UQ
M screen.

68 For the UQ print out spooling functions "PT" and "DC", the output is
not translated. Specify APPLYMOD=68 to force the output created by
these two commands to be translated.

69 If APPLYMOD=29 is specified and therefore Com-plete is taking the
screen size from the VTAM bind image, the terminal will by default
be set to use the alternate screen sizes specified in the VTAM bind
image. Specify APPLYMOD=69 to force Com-plete to set the
terminal to use the primary screen sizes specified in the VTAM bind
image. Note that if the terminal has been defined in the TIBTAB, the
setting of OPT=ALTE|NOALTE will override this applymod.

70 For a hardcopy request, Com-plete simply prints a hardcopy of the
screen currently displayed at the user’s terminal. Specify
APPLYMOD=70 to cause the hardcopy to be printed with header
information containing the initiating user ID, the TIB name, the TIB
number, the installation ID of the Com-plete, the date and the time of
the hardcopy request.

71 For a printout spool request, Com-plete simply prints the first page of
the printout according to the control character specified when the
printout was created. Specify APPLYMOD=71 to get Com-plete to
force a form feed at the start of every printout printed. Please note that
when applymods 71 and 87 are specified, applymod 87 takes
precedence. Note that a hardcopy request is also seen as a "printout"
and is therefore also affected by this applymod.

72 For a printout spool request, when a printout ends, Com-plete starts the
next printout directly afterwards. If there is no form feed in the
following printout, this printout will directly follow the previous
printout on the paper. Specify APPLYMOD=72 to get Com-plete to
force a form feed at the end of every printout printed. Please note, a
hardcopy request is also seen as a "printout" and will therefore also be
effected by this applymod.

73 When an abend occurs in Com-plete, recovery will be performed by
Com-plete and the application will receive control back if abend exits
have been set or the application program will be abended if not.
Specify APPLYMOD=73 to force Com-plete to request an operating
system dump prior to recovery. This will cause the standard ABE
messages to be printed and a dump to be taken according to the
installation dump options set for the operating system. Please note, this
applymod is required to produce additional diagnostics in a situation
where a thread dump does not suffice. The installation could suffer
severe performance problems if this applymod is set for any length of
time and therefore it should only be set at the request of your support
representative.

54

System ProgrammingBinary Modifications (APPLYMODS)

74 Currently no function is assigned to this applymod.

75 When an abend occurs in Com-plete for a system task (e.g. TAM), or
when a thread abend occurs within recovery processing for a user
program, Com-plete writes various ABE messages to the console,
takes an operating system dump, and then attempts recovery. Specify
APPLYMOD=75 to force Com-plete to simply issue a minimum
number of ABE messages to the console and attempt recovery without
taking an operating system dump. Please note, this applymod is
available to assist in a situation where abends are seriously impacting
the system performance while the problem is being investigated. It
should only be set on the advice of support personnel as any problems
that may occur with this applymod on cannot be investigated as there
will be no diagnostic information available.

76 Currently no function is assigned to this applymod.

77 For a user request, the parameters passed are normally verified as to
whether the areas exist and as to their location. Specify
APPLYMOD=77 to avoid this checking. Com-plete then assumes that
all areas are correct. This applymod is intended as a performance
enhancement for a production system where things change very
infrequently. You are recommended to set this applymod only in very
stable environments, and that it can easily be turned off if problems
arise.

78 With this applymod, Com-plete will load a reentrant load module
requested to be executed or loaded as part of an application as if it was
specified using the RESIDENTPAGE sysparm.

79 Programs ATTACHed or FETCHed in a thread (including initial
program invocation) must normally be cataloged by ULIB only if
special parameters such as region size, thread lock are required.
Programs that do not require such parameters or use values defined by
$DEFAULT need not be cataloged. Specify APPLYMOD=79 to force
Com-plete to ATTACH and FETCH only programs cataloged by
ULIB. Programs not cataloged cause return codes or error messages to
be issued as if they did not exist.

80 Normally, a program must be cataloged by ULIB only if it is intended
to be initially invoked in a thread (ATTACH/FETCH), and therefore
requires special parameters such as region size and thread lock.
Programs loaded by other programs only, and programs that need no
special parameters or use values defined by $DEFAULT need not be
cataloged. Specify APPLYMOD=80 to force Com-plete to load only
programs cataloged by ULIB. Programs not cataloged cause return
codes or error messages to be issued as if the program did not exist.
Note that the loading of maps is not affected by this applymod. When
APPLYMOD=80 is specified, you must first run a TULIB batch job
using CATAPM80 from the Com-plete source library as input,
otherwise Com-plete will not function properly

55

Binary Modifications (APPLYMODS)System Programming

81 When a request is made against a System Data Container, SDAM
searches for "global data only" by default.. Specify APPLYMOD=81
to force SDAM to search for a "local" copy (that is, the data relating to
the current patch character) before using the global copy. Note that in
a worst-case scenario, this may nearly double access rates against the
System Data Container(s).

82 Setting this Applymod helps avoid ROL0009 errors which occur under
certain circumstances when running Natural 2.2 and above.

83 If an external security system is specified via the SECSYS Com-plete
sysparm, when a user logs on, the password entered is encrypted and
saved in a Com-plete control block. It is encrypted in such a way that
it can be decyphered again if the "actual" password is required for any
reason, for example, job submission in a RACF environment. Specify
APPLYMOD=83 to force Com-plete not to save the password in a
Com-plete control block that is, Com-plete does not save the password
anywhere. Please note that due to early verify techniques for job
submission from TOP SECRET and ACF2, this applymod can be
specified for these two external security systems. However, this is not
possible with RACF, as it can lead to job submission errors.

84 When a print request is issued via the Com-plete utility program
U2PRINT as is the case with all Com-plete utilities and Natural, a map
is presented with the selected options which can then be changed by
the user. Specify APPLYMOD=84 to avoid the display of this
map.U2PRINT simply prints the data using the values initially
supplied.

85 When a printer is allocated dynamically via the key in U2PRINT, it is
allocated with no alternate device and as an active printer. Specify
APPLYMOD=85 to cause dynamic printers to be allocated with the
SYSOUT printer as the alternate device and DEL=YES.

86 When Com-plete comes up normally, it uses a standard operating
system mechanism to set the address space non-swappable for
performance reasons. Specify APPLYMOD=86 to avoid this call so
that Com-plete is left as a swappable address space. This applymod is
primarily designed for test or other systems that should not impact the
general performance of the machine. If ACCESS is specified, this
applymod has no effect because Com-plete becomes a cross-memory
service as soon as it signs on to the Adabas router; to be a
cross-memory service, the address space must be non-swappable.

Note:
This applymod is valid for z/OS systems only.

56

System ProgrammingBinary Modifications (APPLYMODS)

87 For a printout spool request, Com-plete simply prints the first page of
the printout according to the control character specified when the
printout was created. Specify APPLYMOD=87 to get Com-plete to
force NO form feed at the start of every printout IF the printout
specifies that a form feed should occur. This means that if the control
character in column 1 is "1", it will be changed to blank if this
applymod is on. Note that a hardcopy request is also seen as a
"printout" and will therefore also be effected by this applymod.

88 Currently no function is assigned to this applymod.

89 When external security checking is active, informational messages can
be returned by the external security during logon. Specify this
applymod to cause these messages to be displayed at the user terminal
before the Com-plete message ULG0003 Logon Successful .

90 Normally VTAM terminal line-/page-size are extracted from the BIND
image. Specify Applymod 90 to force the extraction of the terminal’s
ls/ps from the WSF QUERY reply instead of the BIND image.

91 Use the OS SNAP function to take a dump. When an error occurs
within Com-plete other than an application program error, a dump will
normally be scheduled by Com-plete’s recovery processing. This will
cause a dump to be written to the SYSUDUMP, SYSABEND or
SYSMDUMP DD statement as per normal OS rules. When this
applymod is specified, an output dataset will be allocated and opened
and the OS SNAP function will be used to take a dump to that DD
statement. This is a very slow method of taking a dump and it is
recommended that this applymod NOT be set for z/OS systems.

92 Use the OS SDUMP function to take a dump When an error occurs
within Com-plete other than an application program error, a dump will
normally be scheduled by Com-plete’s recovery processing. This will
cause a dump to be written to the SYSUDUMP, SYSABEND or
SYSMDUMP DD statement as per normal OS rules. When this
applymod is specified, Com-plete will use the OS SDUMP function to
take a dump. This will result in a unformatted dump being written to
the SYS1.DUMP dataset(s) which can be formatted at some later
stage. This method of taking a dump is as quick as taking a dump to
the SYSMDUMP DD statement, however, it will cause the entire z/OS
system to stop for a number of seconds while certain control blocks are
copied.

93 Translate all messages to upper case.

95 Always append a "new line" character at the end of a printout. This
serves printers that require the new line to reset the print head to the
correct position.

57

Binary Modifications (APPLYMODS)System Programming

96 Always send the message ULG0007 Logoff Successful after logoff.
Com-plete normally only sends this message to terminals which
require that it be sent such as BSC terminals or ACCESS terminals. It
is normally not required for SNA terminals as they will normally be
presented with the Unformatted System Services map when the
VTAM CLSDST is issued. There are VTAM SNA devices however,
that have a dependency on this message being sent due to procedures
being run there by Entire Connection or other emulation tools. Setting
this applymod will ensure that the message is always sent to the
terminal.

97 Ignore any forms specifications for printouts with a logical output
driver specified. When a printout is printed with a form specified, the
printout will not be printed by Com-plete until the same form is
mounted at the printer. Many of today’s intelligent printers can have
forms mounted via escape sequences or the form may be "flashed" by
the printer itself. As many users would use a logical output driver for
this purpose, this applymod will insure that users can specify the form
in the appropriate field in the application, Com-plete will schedule the
printout regardless of the logical form mounted according to
Com-plete, and the logical output driver can cause this form to be
"mounted" on the printer.

98 Always allocate the UAB/STCK control block below the 16 MB line.
Com-plete will allocate any User Accounting Blocks and Stack
Control blocks above the line normally. Some user exits and
applications will not be able to handle this, therefore, specifying this
applymod will force Com-plete to get these control blocks below the
16 MB line. This applymod is being provided to assist users in
migrating their exits and applications to 4.6. It is recommended that all
exits and applications are changed to support the control blocks above
the line as this applymod will disappear at some point in the future.

99 This applymod is related to the printout menu which apperas when you
invoke a print function from some Com-plete utilities or from Natural.
By default, if the printer you specify is not defined in the TIBTAB,
you have to press PF5 to have the printer allocated dynamically. With
this applymod, pressing ENTER has the same effect as PF5.

100 This applymod is related to the Printout Menu which appears when
you invoke a PRINT function from some Com-plete utilities or from
Natural. By default, you can enter a printer name or a TIB number into
the destination field. If your site uses only dynamic printers, specifying
TIB numbers makes no sense. It even can cause printouts to be
misrouted to the wrong printer or to someone’s terminal. With this
applymod set, Com-plete rejects numeric printout destinations.

58

System ProgrammingBinary Modifications (APPLYMODS)

Defining Terminals and Printers
This chapter describes Com-plete’s Terminal Information Block Table (TIBTAB).

In the vast majority of environments it is preferable to have Com-plete build the TIBTAB dynamically
during startup. All required information about terminals and printers connected using the VTAM access
method can be obtained by Com-plete directly from VTAM during LOGON / SIMLOGON.

TCP/IP based connections (Telnet tn3270 sessions and connections to LPD print servers) are supported
using dynamically allocated TIBs only, not for TIBs hard-coded in a TIBTAB.

The information in this section applies to those installations only which still must maintain and assemble a
coded TIBTAB for whatever reason.

This chapter covers the following topics:

Overview

How to Code TIBTAB

How to Create TIBTAB

Printout Spooling TIBTAB Considerations

Batch Output Facility (SYSOUT)

Logical Output Drivers

Line Printer Daemon (LPD) Protocol

Overview
The Terminal Information Block Table (TIBTAB) defines the terminals and lines to be used by
Com-plete. TIBTAB resides as a load module in the load library, and is loaded by the Com-plete control
program during initialization.

Since the TIBTAB exists as a member of the load library/core image, the maximum number of characters
that can be used to make up the name is eight. Multiple copies under separate names can exist.

When you create a new TIBTAB, it is recommended that the module name used be different from the
module name of the current working TIBTAB. If the two module names are the same and an undetected
error exists in the newly created TIBTAB, Com-plete initialization will fail.

How to Code TIBTAB
The TIBTAB is coded as an Assembler language module using the following macros and compiler
instructions:

59

Defining Terminals and PrintersSystem Programming

TIBSTART

TIB

Translation Table Definitions

CMDEVS

TIBEND

END

These instructions are combined to create a non-executable module, which is nothing more than a table.

A sample TIBTAB is supplied in the source library (member TIBTAB).

TIBSTART Macro

The TIBSTART macro defines the number of Terminal Information Block (TIB) entries to be generated.

A TIB entry is required for each terminal in the network. In addition, a TIB entry is required for each
simultaneously-executing batch job that uses a Com-plete function, as well as for each
simultaneously-executing online program invoked by the ATTACH function of Com-plete.

The format for using the TIBSTART macro is:

name TIBSTART NOTIBS=n
 [,SMC=(c1,c2,...,cn)]
 [,RMC=(c1,c2,...,cn)]
 [,VAL={YES|NO}]

The arguments are:

name

Required.

Specifies the TIBTAB name.

NOTIBS=n

Required.

Specifies the number of TIB entries to be generated. This number also specifies the largest
number allowed when specifying a TID number (TIB macro).

Note that the value specified for NOTIBS must be at least as large as the total number of TIB
macros defined in TIBTAB and all the dynamically-allocated ACCESS terminals in the
network. If no batch TIBS are specifically defined, then NOTIBS should also be large enough to
allow one or more undefined TIB entries to exist.

SMC=(c1,c2,...,cn)

60

System ProgrammingDefining Terminals and Printers

Optional.

Default SMC=(1)

Specifies the default authorization-sending message class codes to be assigned to all defined
printer TIBs without an SMC argument assigned. Authorization message class codes are fully described in
the Com-plete Utilities documentation.

RMC=(c1,c2,...,cn)

Optional.

Default RMC=(1,2,4)

Specifies the default authorization receiving message class codes to be assigned to all defined
printer TIBs without an RMC argument assigned. Authorization message class codes are fully
described in the Com-plete Utilities documentation.

VAL=[YES|NO]

Optional.

Default VAL=YES

Specifies whether or not the TIB parameters are validated. Note that assembly of the TIBTAB is
faster if validation of the parameters is bypassed. Care must be taken, however, to ensure that
the parameters are correct.

VAL=YES indicates that the parameters are validated.

VAL=NO indicates that the parameters are not validated.

TIB Macro

The TIB macro defines a terminal and its characteristics.

Batch jobs and attached online programs that use Com-plete functions also require use of a TIB entry. TIB
entries for batch jobs and attached online programs can be defined explicitly by use of the batch device
specification defined below, or are defaulted by specifying a NOTIBS value that is larger than the total
number of TIB and LGCB macros defined.

The format for using the TIB macro is:

[name] TIB tid,{VTAM|ACCESS},device
[,ALTTID=tid]
[,CTLTIB={YES|NO}]
[,DEL={YES|NO}
[,FORMAT=n]
[,GROUP=ALL=NO]
[,HC={YES|NO}]
[,LEN=n]
[,LINES=n]
[,LOGOFF={YES|NO}]

61

Defining Terminals and PrintersSystem Programming

[,LOWER={YES|NO}]
[,MAXRU=]
[NAME=name]
[,NODEID=node]
[,OPT= ({ALTE|NOALTE}
 , {PAD|NOPAD}
 , {MOD3|NOMOD3}
 , {EBCDIC|BCDIC|EBCDIC,ADD|BCDIC,ADD}
 , {CR|NOCR}
 , {EM3270|NOEM3270}
 , {SHARE|NOSHARE}
 , {ACQUIRE|NOACQUIRE}
 , {COMP|NOCOMP}
 {SCS|NOSCS}
 {IBM|HITACHI})]
[,PRI=x0|1|2|3|z]
[,RMC=(c1,c2,...,cn)]
[,SCHC=tid]
[,SMC=(c1,c2,...,cn)]
[,STALL={YES|NO}]
[,TRTABS=trantab]
[,VAL={YES|NO}]

The arguments are:

name

Optional.

Specifies the TIB name; for assembly listing purposes only.

The name can be any character string that is valid as an Assembler label.

tid

Required.

Specifies the Terminal Identification number of the terminal being defined. This value must be
an integer from 1 to 9999, and must be less than the value for NOTIBS as specified in the
TIBSTART macro.

VTAM or ACCESS

Required.

Specifies the access method used for the device.

device

Required.

Specifies the device type of the terminal being defined. This value must be one of the values
defined in the terminal device type table in Terminal Device Type Codes.

If the NOTIBS argument of the TIBSTART macro specifies a value larger than the total number
of TIB, the excess TIBs are reserved for programs invoked by the ATTACH function, and
VTAM terminals.

62

System ProgrammingDefining Terminals and Printers

ALTTID=tid

Optional.

Default None

Specifies the TID number of the terminal to receive messages when the terminal being defined
is inoperative, or when more than 10 messages are queued for the terminal being defined.

CTLTIB={YES|NO}

Optional.

Default CTLTIB=NO

Specifies whether or not the terminal being defined is to be assigned control status. Control
terminals have privileged status and are allowed to execute Com-plete utility programs and
certain functions reserved for the control user.

Note that at least one terminal must be defined as having control status. This should be the
terminal with a TID value of one.

CTLTIB=YES indicates that the terminal being defined has control status.

CTLTIB=NO indicates that the terminal being defined has non-control status.

DEL={YES|NO}

Optional.

Default DEL=NO

Specifies whether the terminal being defined is to be brought up deleted when Com-plete is
initialized.

DEL=NO specifies that the terminal is to be available for use when Com-plete is initialized.

Since Com-plete allows any VTAM terminal to log on regardless of whether it is in the
TIBTAB or not, in order to disallow logon from a VTAM terminal, that terminal must be
included in the TIBTAB with DEL=YES specified.

FORMAT=n

Optional.

Default
Depends upon the device type as specified in Terminal Device
Type Codes

Specifies the format to be used for CRT devices.

63

Defining Terminals and PrintersSystem Programming

Here, n must be specified as one of the following:

240(6x40)

480(12x40)

960(12x80)

1920(24x80)

2560(32x80)

3440(43x80)

3564(27x132)

The arguments LINES and LEN are automatically set by the value given for the FORMAT
argument as described by the numbers in the parentheses.

Note that if the FORMAT argument is specified in a TIB, LINES and LEN cannot be specified.

GROUP=ALL=NO

Optional.

Default The associated TID will reside in the ALL grouping.

ALL=NO indicates that this TID will not be considered part of the ALL grouping by message
switching. This includes CALL MESGSW, the hello message, and *UM. The ALL grouping
can also be used in operator commands.

HC={YES|NO}

Optional.

Default:
HC=YES for all devices except 3270-type terminals; HC=NO for 3270-type terminals.

Specifies whether or not the terminal being defined is a hardcopy device.

HC=YES indicates that the terminal is a hard copy device. NO indicates that the terminal is not
a hardcopy device.

LEN=n

Optional.

Default
The minimum and maximum values will depend upon the device
type.

Specifies the length of the line to be used.

64

System ProgrammingDefining Terminals and Printers

Note:
Do not specify if FORMAT is specified.
Here, n must specify a decimal value.

LINES=n

Optional.

Default
The minimum and maximum values will depend upon the device
type.

Specifies the maximum number of lines to be used in a display or output.

Note:
Do not specify if FORMAT is specified. Here, n must specify a decimal value.

LOGOFF={YES|NO}

Optional.

Default LOGOFF=YES

Specifies whether or not this terminal will be logged off after the period of inactivity defined by
the AUTOLOGOFF sysparm.

LOGOFF=YES indicates that the terminal will be logged off for inactivity.

LOGOFF=NO indicates that the terminal will not be logged off for inactivity.

LOWER={YES|NO}

Optional.

Default LOWER=NO

Specifies whether or not lower-case characters will be accepted from the device as input.

LOWER=YES indicates that all characters will be accepted in lower-case format.

LOWER=NO indicates that only upper-case characters are supported. For input, lower-case
characters are translated to upper-case.

MAXRU=n

Optional.

Default None

Specifies an override RUSIZE for a VTAM device.

65

Defining Terminals and PrintersSystem Programming

NAME=name

Optional.

Default
CL8’TIB0nnnn’ where nnnn is the four-digit TID number padded
with leading zeros if necessary.

Specifies a one- to eight-character name to be associated with this TIB. If VTAM is the access
method being used, the name must specify the name of the VTAM node (LU) to which
Com-plete is to connect (see the ACQ keyword).

Here, name is also used in group name searches. TIB name entries will be searched before
searching for a group name. The first TIB name will satisfy the search, and the TID of the TIB
with that name will be used. If duplicate TIB names are defined, only the first will be found. If a
duplicate TIB name and group name are defined, only the first TIB name will be found.

NODEID=node

Optional.

Default None

Specifies the ACCESS node number. This value must be an integer between 1 and 65536. Valid
only if ACCESS is specified for the CUU parameter.

Specifies the optional features to be assigned to a terminal.

OPT=value

Format (default is underlined):

OPT=({MOD3|NOMOD3},{PAD|NOPAD},{ALTE|NOALTE},
 {EBCDIC|BCDIC|EBCDIC,ADD|BCDIC,ADD},{CR|NOCR},
 {EM3270,NOEM3270},{SHARE|NOSHARE},{ACQUIRE|NOACQUIRE},
 {COMP|NOCOMP},{SCS|NOSCS},{IBM|HITACHI})

Meaning of the values:

MOD3|NOMOD3

Optional.

Default OPT=NOMOD3

Specifies whether or not the IBM 3275 terminal being defined has an IBM 3284
model 3 printer attached.

OPT=MOD3 indicates that the IBM 3275 terminal has an IBM 3284 model 3 printer
attached.

66

System ProgrammingDefining Terminals and Printers

OPT=NOMOD3 indicates that the IBM 3275 terminal does not have an IBM 3284
model 3 printer attached.

PAD|NOPAD

Optional.

Note:
This operand is ignored if the terminal being defined is not a TTY device.

Default OPT=NOPAD

Specifies whether padding (idle) characters should be added to the line protocol output
in order to allow for mechanical motion (e.g., carriage return). Because most terminals
have internal buffering to account for mechanical motion so that padding is not
required, OPT=NOPAD is normally specified.

OPT=PAD indicates that idle characters should be added to the line protocol.

OPT=NOPAD indicates that no idle characters will be added.

ALTE|NOALTE

Optional.

Default

If LINES=24 and LEN=80 or LINES=12 and
LEN=40 are specified, NOALTE; for any other
combination of LINES and LEN, ALTE; for 328x
printers, OPT=NOALTE.

Is applicable to terminals that support alternate screen sizes.

Specifies whether the alternate or standard erase write is used. Use of the alternate
erase write generally results in a larger device buffer size.

OPT=ALTE indicates that the alternate erase write is used.

OPT=NOALTE indicates that the standard erase write is used.

EBCDIC|BCDIC|EBCDIC,ADD|BCDIC,ADD

Optional.

Note:
This option applies only to IBM 2740 model 1 terminals, and will be ignored if
another terminal type is specified.

Default OPT=EBCDIC

Specifies the type of keyboard being used.

67

Defining Terminals and PrintersSystem Programming

OPT=EBCDIC indicates an EBCDIC keyboard.

OPT=BCDIC indicates a BCDIC keyboard.

OPT=EBCDIC,ADD indicates an EBCDIC keyboard with an adding machine.

OPT=BCDIC,ADD indicates a BCDIC keyboard with an adding machine.

CR|NOCR

Optional.

Default OPT=NOCR

Specifies whether or not the carriage return is supported by the device being defined.

OPT=CR indicates that the carriage return is a supported feature.

OPT=NOCR indicates that the carriage return is not a supported feature.

EM3270|NOEM3270

Optional.

(Applies to TTY TIDs only.)

Default OPT=NOEM3270

Specifies that the TID should use 3270 emulation for a 3101 device. Refer to 3101
Terminal Support for further details.

SHARE|NOSHARE

Optional.

(Applies to VTAM printers only.)

Default OPT=NOSHARE

Specifies whether or not a printer can be shared among local copy functions,
Com-plete, and other VTAM applications.

OPT=SHARE indicates a VTAM printer-shared mode. When a printer is identified as
shared, Com-plete issues a CLSDST for the printer when there is no more output from
the application program. The printer is then free to handle any local copy requests that
may have been queued while the device was bound to Com-plete. When output is
again available for the printer, Com-plete will reacquire the device via a SIMLOGON,
print the data, and again issue a CLSDST for the device.

Note:
OPT=ACQUIRE must also be specified if OPT=SHARE is used.

68

System ProgrammingDefining Terminals and Printers

OPT=NOSHARE indicates that a VTAM printer is not available for local copy
requests.

ACQUIRE|NOACQUIRE

Optional.

(Applies to VTAM terminals only.)

Default OPT=ACQUIRE

Specifies whether or not the VTAM terminal is to be acquired when Com-plete
VTAM startup options are initialized or when VTAM support is started with the
VTAM START OC command.

OPT=ACQUIRE indicates that the terminal is acquired when Com-plete VTAM
support is started (using the VTAM macro SIMLOGON). For additional information
on required sysparm operands, see the VTAM startup options in section Initialization
- Com-plete Startup Procedure.

OPT=NOACQUIRE indicates that the terminal is not acquired when Com-plete
VTAM support is started.

COMP|NOCOMP

Optional.

Default OPT=COMP

Specifies whether or not data streams being sent to 3270-type terminals (incl. printers)
are to be compressed by replacing repeated characters with a repeat-to-address order,
thereby reducing the amount of data transferred to the terminal.

Most 3270 and compatible terminals support this compression.

OPT=COMP indicates that compression is to be performed.

OPT=NOCOMP indicates that compression is not to be performed.

SCS|NOSCS

Optional.

Default OPT=NOSCS

Specifies whether or not the printer is an SCS device. OPT=SCS specifies an SCS
printer. OPT=NOSCS specifies a normal printer.

Note that this option is only valid for ACCESS printers. Printers acquired via
Com-plete VTAM will have this option overwritten by the information obtained from
the bind during acquisition of the device.

69

Defining Terminals and PrintersSystem Programming

IBM|HITACHI

Optional

Default OPT=IBM

In general, all terminals use the same 3270 command codes. However, some 3270
terminals use a proprietary set of codes. For terminals using Hitachi command codes
specify HITACHI.

PRI={0|1|2|3}

Optional.

Default PRI=1

Specifies the dispatching priority to be assigned to the terminal being defined. The priority
specified can be 0, 1, 2, or 3, where 0 is the lowest priority.

Attached terminals are automatically assigned a priority of 0, forcing them to have lowest
priority.

RMC=(c1,c2,...,cn)

Default
The RMC value, if any, assigned in the TIBSTART macro;
otherwise, RMC=(1,2,4).

Specifies the authorization receiving message class codes to be assigned to this terminal.

Note that if a terminal user logs on to Com-plete, the RMC value assigned to the user ID will
override the value specifed in the TIB macro.

SCHC=tid

Optional.

(Valid for 3270-type terminals only.)

Default None

Specifies the TID number of the terminal to be designated as the hardcopy device for the
terminal being defined.

This keyword operand provides support for the screen-to-hardcopy function of Com-plete,
which is available for 3270-type terminals. Details on the use of this function can be found in
the Com-plete Utilities documentation.

SMC=(c1,c2,...,cn)

70

System ProgrammingDefining Terminals and Printers

Optional.

Default
The SMC value, if any, assigned in the TIBSTART macro;
otherwise, SMC=(1).

Specifies the authorization sending message class codes to be assigned to the terminal being
defined.

Note that if a terminal user logs on to Com-plete, the SMC value assigned to the user ID will
override the value specified in the TIB macro.

STALL={YES|NO}

Optional.

Default STALL=NO

Specifies whether or not the TIB is stalled when Com-plete is started. No input is accepted from
a stalled terminal, but Com-plete does poll the terminal and handles attention interupts.

STALL=YES indicates that the terminal is stalled when Com-plete is initialized.

STALL=NO indicates that the terminal is unstalled when Com-plete is initialized.

The terminal can be stalled using the STALL operator command or unstalled using the
UNSTALL operator command.

TRTABS=trantab

Optional.

Default None.

Specifies the name of a load module containing the TIB depending translate tables. See
copybook CCTR3270 for an example. This copybook maps the system-wide translate tables,
which can be modified for general translation, which means CCTR3270 is the default translate
table for all TIDs that have no TRTABS specified.

VAL={YES|NO}

Optional.

Default
The VAL coded on the TIBSTART macro, if specified;
otherwise, VAL=YES.

Specifies whether or not the TIB macro parameters are validated.

Note that assembly of the TIBTAB is faster if validation of the parameters is bypassed. Care
must be taken, however, to ensure that the parameters are correct.

71

Defining Terminals and PrintersSystem Programming

VAL=YES indicates that the parameters are validated.

VAL=NO indicates that the parameters are not validated.

CMDEVS Macro

The CMDEVS macro is an optional macro used internally by Com-plete and by the user to force an entry
to be created in the device type table for a certain type of device. When a device type code is used in a
TIB macro, a device type table entry is created automatically by the TIBEND macro.

In a VTAM environment, a TIB can be created for a VTAM LU that logs on to Com-plete. For the device
to be operational, a device table entry must exist for that device. If no TIBs are defined with that device
type, no entry exists in the device type table. The CMDEVS macro allows the user to force the entry to be
created.

Note:
The CMDEVS macro must be defined before the TIBEND macro.

The format for using the CMDEVS macro is:

[name] CMDEVS GEN,TYPE=xxx

The arguments are:

name

Optional.

Specifies the CMDEVS statement name; for assembly listing purposes only.

Note that name can be any character string that is a valid Assembler tag symbol.

GEN

Required.

Indicates that the device type specified by the TYPE argument is to be added to the
generation/definition of the TIBTAB.

TYPE=xxx

Required.

Specifies the type of device to be included in the TIBEND generation.

Here, xxx must specify a device type code as listed in Terminal Device Type Codes.

Note:
The TIBSTART macro automatically defines the following device types:
3270L, 3278L, 3284L, 3286L, 3287L, 3288L, TTY, BATCH, LU62S, LU62C, FSP.
This means that the CMDEVS macro need not be specified.

72

System ProgrammingDefining Terminals and Printers

TIBEND Macro

The TIBEND macro defines the end of the TIBTAB.

Note:
TIBEND must immediately follow all TIB macro statements and (if any exist) all CMDEVS macro
statements.

The TIBEND macro has several functions. Its primary function is to generate a device table entry for each
device type that has been defined in a TIB macro. (Additional device types can be defined using the
CMDEVS macro.)

There are no operands are specified for the TIBEND macro.

The format for using the TIBEND macro is:

TIBEND

END Statement

The END statement is an Assembler instruction that identifies the end of the source module definition.

Note:
The END statement must immediately follow the TIBEND macro statement.

The format for using the END statement is:

END

How to Create TIBTAB
After coding the desired TIBTAB, the table must be assembled and link edited into a Com-plete
STEPLIB. It is recommended that the TIBTAB be page-aligned for the purpose of clarity during problem
determination. To achieve this, use the PAGE linkage editor option.

The new TIBTAB will be available for use the next time Com-plete is initialized.

Note:
The TIBTAB being created must be expressly requested at initialization time by use of the sysparm
TIBTAB.

Dynamic Completion of TIBTAB During Com-plete Initialization

VTAM and ACCESS terminals need not necessarily be defined in the TIBTAB load module. Instead, you
can maintain a table of TIB definitions which is used by Com-plete during initialization to dynamically
create or complete the TIBTAB. In this table, you can define TIBs with unique names, with or without
fixed TIB numbers (TIDs). You can specify all parameters described for the TIB macro in this section.
For details about the appropriate maintenance utility, refer to the description of UUTIL, function TT in the
Com-plete Utilities documentation.

73

Defining Terminals and PrintersSystem Programming

During initialization, depending on sysparm TIBTAB, either the TIBTAB load module is loaded or an
empty TIBTAB is created. Afterwards, the TIBTAB is completed dynamically using this TIB definition
table. At the first step, all TIBs defined with fixed TIDs are built, if the appropriate TIDs are still free.
Override takes place only if TIB name and TID match, otherwise the dynamic TIB definition is skipped.
At the second step, TIBs defined without a fixed TID are allocated using free TIBTAB entries. If a TIB
with the same name already exists, it is overridden by the dynamic definition.

Printout Spooling TIBTAB Considerations
This section discusses printout spooling TIBTAB considerations.

Defining Virtual Printers

Use of the printout spooling facilites may require that TIB entries be inserted in the Com-plete TIBTAB
for virtual printers. The following example shows the recommended structure of such entries:

TIB 131,VTAM,3288L,NAME=VIRTPRI1,DEL=YES,GROUP=(ALL=NO)

where:

VTAM is used to define a dummy TIB.

VIRTPRI1 is a sample printer name that can be used to access this virtual printer.

DEL=YES must be coded for virtual printers.

Defining Real Printers

Since all output processed for a given form (that is, virtual printer) is routed to a real printer after the
appropriate form has been mounted, care should be taken that no message output interrupts the print
process of the queue. It is recommended that a TIBTAB entry for a real printer for which the printout
spooling facility is to be used be defined as follows:

TIB ...RMC=1,GROUP=(ALL=NO)

Note that the TID should not be defined as a "screen-to-hardcopy" TID.

Printouts can be send to any VTAM printer without being specified in the Com-plete TIBTAB as long as
an unique destination ID (no group ID) is provided during PSOPEN or when using print functions from
the Com-plete utilities. In this case TIB entries are acquired dynamically and released after successful
printing.

Batch Output Facility (SYSOUT)
This section provides an overview of the extended batch output facilities provided by Com-plete via
printout spooling.

During initialization, Com-plete dynamically creates a TIB entry named SYSOUT (if it does not already
exist). All printout routed to this terminal will be automatically spooled to the JES/POWER output queue.
The output will be separated using the DYNALLOC/SEGMENT facility.

74

System ProgrammingDefining Terminals and Printers

For example, a printout spool destination of SYSOUT=X causes the printout to be routed to JES/POWER
in CLASS=X.

Defining JES/POWER Nodes

Defining TIB entries with DEL=YES and ALTTIB=nnn (where nnn is the SYSOUT terminal ID) results
in routing all printout for these destinations to the JES/POWER queues as described above. However, the
NODE name generated for the DYNALLOC/SEGMENT is the TIBNAME of the original terminal. Using
this method, printout can be routed directly to any specific JES/POWER node.

Note that setting applymod 85 will cause dynamically generated printers to be allocated with these
attributes.

Dynamic Routing

The user exit ULMSBTCH can also influence the JES/POWER routing parameters.

For example, ULMSBTCH could request that printout be spooled to a JES/POWER queue by modifying
the parameter ULSTNODE to contain NODE01 and ULSTUSER to contain USER01. Com-plete then
issues a DYNALLOC/SEGMENT with the modified parameters and the printout is routed to the specified
node/user ID.

Note:
The SEGMENT statement provides a POWER listname as well as a $$ LSTcard where the different
keyword parameters are supplied as below.

* $$ LST DISP=d,CLASS=c,FNO=ffff,DEST=(node,userid)

The SEGMENT expression in this description refers to this $$ LST card. For more information on the
ULMSBTCH exit, see Security and User Exit Facilities.

Logical Output Drivers
This section explains the logical output driver facility available in Com-plete’s printout spooling system.

What is a Logical Output Driver?

A logical output driver is a user-written routine that allows modification, extension and/or translation of
output data at the time the printout is routed to the physical printer.

The output driver runs under control of Com-plete’s MSGPO task and is loaded dynamically from the
COMPLIB dataset(s). It is deleted as soon as its use counter is zero. All operating system functions
(OPEN, CLOSE, SVCs, etc.) are available for use. The output driver routine has to be serially reusable
since it can be invoked for multiple printouts in parallel.

Note:
The Com-plete functions (MCALL) as described in the Com-plete Application Programming
documentation are NOT available to the logical driver facility.

The driver can be used for the following:

75

Defining Terminals and PrintersSystem Programming

Precede the output data with printer-specific escape sequences;

Add graphics to the printout;

Translate pseudo-commands from the application to printer-specific commands.

The source library supplied with the installation tape contains 2 examples of logical output drivers
(LDRVSAMP and IPDSDRV).

One of the major benefits in adding printer-specific commands and/or escape sequences using a logical
output driver is that when your site changes its hardware, only the output driver routine requires
modification: all user applications that create printouts can remain unchanged.

Specifying Logical Output Drivers

The name of the output driver associated with a printout can be supplied via the LDRIV keyword of the
PSCB used for PSOPEN processing, and it can be changed or added using the functions of the USPOOL
utility. Installations wanting to use a general output driver can use the POLDRV sysparm specification.
The driver specified in the POLDRV sysparm will be used for all those printouts which have no driver
defined explicitly.

Logical Output Driver Interface

The communication area between the MSGPO task and the output driver is mapped by the CMLDRVW
macro from the supplied source library, which is passed via register 1 (R1) on entry. Each output driver
must have specified the appropriate definition:

name CMLDRVW TYPE=USER.

The interface area consist of a fixed header (DRVBUFF-DRVPARM) followed by a variable area, the size
of which is dependent on the number of lines and the linelength specified for this printer:

varlength = No.lines * linelength

The total length of the passed area is provided in the field DRVPARML. None of the fields in the fixed
part of the interface area should be used as working fields for the output driver routine.

This interface area will remain active until the end of the printout, or until the driver returns an
end-of-work condition (RC=16), and can therefore be used to keep status information for the individual
printout.

The driver routine is invoked for each record in the printout, and the following register settings are passed
:

R1 address of the workarea (CMLDRVW TYPE=USER)

R2 COMREG

RD 18 word savearea

RE return address

RF entry point.

76

System ProgrammingDefining Terminals and Printers

The field DRVPARMA contains the address of the current record; the length of this record is in field
DRVRECL. These fields are set by Com-plete on entry and must be set by the output driver prior to return
to the calling module.

On entry, DRVPARMA points to DRVREC within the communication area. However, the output driver
must always use the address passed in DRVRECA and not rely on the contents of DRVREC. The
individual output line is passed to the output driver prior to any translation of linefeed and/or formfeed
characters in the same format as provided by the application that created the printout. The ASA control
characters are converted to the appropriate printer control orders after the output driver is invoked.

Return Codes

77

Defining Terminals and PrintersSystem Programming

Code Meaning

0 unmodified
The line is added to the output buffer unchanged. Com-plete does not
check for any values supplied in DRVRECA and DRVRECL.

4 record modified
The output driver must provide the address of the modified record in
DRVRECA and the length of the new record in DRVRECL. The data
is added to the output buffer.

8 insert record
The output driver must provide the address of the new record in
DRVRECA and its length in DRVRECL. The data is added to the
output buffer. The original record from the printout is passed to the
output driver again on the next invocation.

12 delete record
The current record from the printout is skipped.

16 terminate driver
The current record is added unchanged to the output buffer. The work
area is freed and the use counter of the driver routine is decreased, and
if zero, the driver is deleted from virtual storage. Any remaining
records in the printout are passed to the printer as if no logical output
driver were specified.

20 send data asis
The normal output buffering used for printouts cannot take account of
data that has to be sent within a single output request: Com-plete’s
buffering always adds up output lines until the buffer (the size of
which is determined by the line length and number of lines) is full. On
the other hand, creating bar codes using Intellegent Printer Data
Stream (IPDS) commands requires that all data for a page is passed on
a single output request. The data pointed to by DRVRECA with the
length contained in DRVRECL will be send to the printer without any
further modifications by Com-plete.
Same as code 8 (insert record) above, but Com-plete will send the data
unmodified, including the first byte (not treating it as an ASA control
character).
Note that this response has no effect on the positioning within the
current printout, that is, the next time the logical output driver is
called, the same printout record will be provided. It is the
responsibility of the output driver to ignore this record (if required)
with a delete record response.

Line Printer Daemon (LPD) Protocol
The LPD Protocol is described under the folliwng headings:

Introduction

78

System ProgrammingDefining Terminals and Printers

Concepts

Printing via the Local Workstation

Printer Definition Using Environment Variables

Printer Search Sequence

LPD Spool vs. Com-plete Spool

EBCDIC - ASCII Conversion

Logical Output Drivers

Printing via Printer "Boxes" Supporting the LPD Protocol

Changing Printer Definitions Dynamically

Introduction

The LPD protocol is a print server protocol widely used in UNIX networks. In detail, this protocol is
described by RFC 1179 which can be found on the Internet, for example at
http://www.faqs.org/rfcs/rfc1179.html.

LPD server software is available from many different vendors for UNIX and Windows platforms.

Com-plete implements the client part of this protocol, allowing you to route printouts to an LPD print
queue instead of the Com-plete spool. From the application programs’ point of view, it makes no
difference where the printout is routed, the API remains unchanged. This implies that any existing
application which create printouts under Com-plete can be used unchanged for printing to LPD print
servers. There is one limitation, though: Destination lists with more than one destination are not supported
through this interface.

Concepts

An LPD print server usually is a (UNIX or Windows NT) computer with printers connected to it. Each
printer is represented on the server by means of one or more print queues. The printer drivers are installed
on this server. Different queues for the same printer can be used, for example, to use different fonts or
formats like landscape orientation.

From the above follows that it takes two parameters to unequivocally address a printer:

the IP address of the LPD server, and

the name of the queue on this server.

In Com-plete, a printer is known by an 8-character name, or a number. Two different ways are available to
map these printer names or numbers to LPD printers:

1. You can setup a central table for Com-plete (a list of environment variables) in which you define
each of the printer names or numbers to be used in Com-plete, and specify the corresponding LPD
server and queue name for it, like printer=server/queue (see section Printer Definition Using
Environment Variables).

79

Defining Terminals and PrintersSystem Programming

2. In UUTIL UD (personal defaults), every user can specify an LPD server in the field labeled "Server".
If this is value is set, then every printout created by this user will be routed to this server, and any printer
name this user enters in Com-plete will be interpreted as a print queue name on this server.

Printing via the Local Workstation

When a user connects to Com-plete using Com-plete’s individual Telnet tn3270 port, then Com-plete
knows the current IP address of this user’s workstation. If there is an LPD server active on this
workstation, then it is possible to route printouts to this LPD server using the current IP address from the
Telnet session. This is useful especially in networks with dynamically assigned IP addresses. To make use
of this feature, the user must enter an asterisk ("*") in the Server field in UUTIL UD.

Printer Definition Using Environment Variables

The POSIX layer now available in Com-plete supports the concept of environment variables. See
SMARTS Installation and Operations documentation for details. A convenient way of setting environment
variables is to define ENVIRONMENT_VARIABLES=DD:CONFIG in the POSIX parameters (POSIX
parameters can be concatenated with the Com-plete SYSPARMs). This tells Com-plete that in your
Com-plete JCL procedure there is a statement like this:

//CONFIG DD DISP=SHR,DSN=MY.SOURCE(ENVIRON)

where MY.SOURCE(ENVIRON) contains the environment variables.

The environment variable setting for an LPD printer must look like this:

SAG_APS_LPD_printer=server/queue

Where

printer is the name or number of the printer as used in Com-plete,

server is the name or IP address of the LPD server, and

queue is a printer queue on this server. If the queue is omitted, Com-plete
uses the default "LPT1".

Example:

SAG_APS_LPD_32=my.lpd.server/queue1
SAG_APS_LPD_PRINTER1=my.lpd.server/queuexyz
SAG_APS_LPD_PRINTER2=111.222.333.444
SAG_APS_LPD_PRINTER3=111.222.333.444/lpt3

Printer Search Sequence

In general, you can print to both LPD and VTAM printers from the same Com-plete. Com-plete will try to
resolve the printer name or number entered in the following order:

1. If the user has an LPD server set in his personal defaults, then every printout created by this user will
be routed to this server, and any printer name this user enters in Com-plete will be interpreted as a
print queue name on this server.

80

System ProgrammingDefining Terminals and Printers

2. If the printer name or number is mapped by means of an environment variable (see section Printer
Definition Using Environment Variables), then the server and queue name from this environment
variable will be used.

3. Otherwise, the printout will be written to the Com-plete spool, and Com-plete will then
asynchronuously try to route the printout in the traditional way, using the definitions in the TIBTAB,
VTAM, etc.

LPD Spool vs. Com-plete Spool

Since an LPD print server includes a spool of its own, printouts routed to an LPD print server are not
spooled in Com-plete. This also means that if the printout cannot be delivered to the server (for example
because the queue name specified does not exist), then it is discarded by Com-plete. If the printout cannot
be delivered due to a situation that is likely to exist only temporarily, then Com-plete will retry a
reasonable number of times before discarding the printout. When Com-plete terminates, all LPD printouts
not delivered are lost.

Copying or moving printouts from the Com-plete spool to an LPD print server or vice versa is not
supported in this version of Com-plete.

EBCDIC - ASCII Conversion

All data supplied through the API function PSPUT must be in EBCDIC encoding, and is converted to
ASCII by Com-plete. Line breaks are converted into CR LF (carriage return + line feed) as expected by
most LPD print servers. An ASA control character ’1’ ("new page") on the first line of a printout is
removed, and every printout is terminated by an ASCII FF (form feed). Applymods 71, 72, 87, and 95 are
ignored for printouts to LPD print servers.

SCS printer control data is not supported through this interface in this version of Com-plete.

Logical Output Drivers

Logical output drivers are supported for printouts to LPD print servers, however, in most cases the task
that used to be solved by a logical output driver can be solved in a more convenient way by simply using
different queues on the LPD server.

If this is not possible, then most likely your logical output drivers need to be adopted, because the
requirements to these programs are stronger than they used to be for traditional logical output drivers:

1. A logical output driver is automatically loaded as a Com-plete-resident program when called for the
first time for a printout being sent to an LPD print server, therefore, it must be re-entrant. Traditional
logical output drivers ran only under control of the Com-plete MSGPO task. When called for a
printout being sent to an LPD print server, the logical output driver runs in the same task as the
program creating the printout. This means, it can be called by more than one program at the same
time.

2. Logical output drivers must be able to run in AMODE 31, and return to the calling program in its
proper AMODE.

3. Traditional logical output drivers used to insert escape strings designated for mainframe-oriented
print servers. These print servers are bypassed when printing via an LPD print server. Therefore, the
logical output driver must now supply the original escape strings as expected and understood by the

81

Defining Terminals and PrintersSystem Programming

printer. In addition, you’ll have to setup the LPD queue accordingly ("raw mode") so it will let these
strings through to the printer unmodified. Note that the logical output driver still must supply EBCDIC
data.

Printing via Printer "Boxes" Supporting the LPD Protocol

Many printer network "boxes" support the LPD protocol directly, so you might be tempted to send
printouts from Com-plete directly to the printer. This is possible, but doing so you lose the features
provided by an LPD server, mainly the possibility to install a printer driver, and the advantages of a spool.
Therefore, Software AG recommends that you use real LPD server.

It is unlikely that printer manufacturers will develop printer drivers for Com-plete, so if you want to send
printouts directly to the printer, you’ll have to provide control information (so called "escape strings") to
the printer in order to select a font, formatting, etc. The printer definition environment variables (see
above) can be used to provide an escape string to be sent to the printer before the printout, and another one
to be sent after the printout:

SAG_APS_LPD_printer=server/queue/escape1/escape2

If you use this notation, then "escape1" will be sent before each printout, and "escape2" afterwards.

A number of options exists how to define these escape strings:

1. You can enter escape strings directly into the printer definition. Any period (".") will be translated
into the ASCII escape character <ESC>.

Example:

SAG_APS_LPD_PRINTER1= my.lpd.server/queuexyz/.&a6L.(s0p12H/.E

2. You can define escape strings using separate environment variables starting SAG_APS_ESC_ .
These variables can then be referenced in printer definitions.

Example:

SAG_APS_ESC_myescape=.&a6L.(s0p12H
SAG_APS_LPD_PRINTER1= my.lpd.server/queuexyz/myescape
SAG_APS_LPD_PRINTER2=111.222.333.444//myescape

3. You can define default escape strings to be used with every printer whose definition doesn’t specify
escape strings explicitly. To do so, assign the default escape strings to the following environment
variables:

SAG_APS_ESC_DEFAULT_START=
SAG_APS_ESC_DEFAULT_END=

4. If a starting escape string is effective for a printer (in any of the 3 ways described above), but no
ending escape string, then Com-plete automatically sends the escape string <ESC>E, which is the
PCL5 "reset".

82

System ProgrammingDefining Terminals and Printers

Changing Printer Definitions Dynamically

The environment variables described above are read once during Com-plete (or POSIX, to be exact)
startup. There are plans for the future to provide a global tool for changing the values of environment
variables dynamically, without having to restart POSIX, however, this tool was not available yet when this
version of Com-plete was released.

As a temporary solution, a utility program UPRTDEF is available in Com-plete, which allows you to
change these values, and also to add new variables. Here’s a few notes on how to use it:

Simply edit the data on the screen and press PF5 to apply your changes.

Overwriting a variable name adds a new variable without deleting the old one.

Existing variables cannot be deleted physically. To delete a variable logically, clear its value.

Note that this utility operates only on the active settings in the Com-plete address space, it does not
update the file where your original definitions are stored. This means, all dynamic changes you make
will be lost after Com-plete is restarted, unless you apply the same changes to the file manually.

83

Defining Terminals and PrintersSystem Programming

Multiple Copies of Com-plete
Thischapterdescribes the use of multiple copies of Com-plete at an installation.

This chapter covers the following topics:

Multiple Com-pletes in One System

Multiple Com-pletes in a Parallel Sysplex

Multiple Com-pletes in One System
More than one copy of Com-plete can run on the same system at one time. Running multiple copies of
Com-plete simultaneously allows:

Separation of data and functions by department or agency;

Isolation within large application systems;

Isolation of Com-plete batch support;

Greater data integrity and privacy;

Easy conversion from one release or version of Com-plete to another.

Each copy of Com-plete must have its own SD dataset and spool dataset, thus enabling each copy of
Com-plete to function independently. For example, a test version of Com-plete with a new feature or fix
can be started without affecting production work on other Com-plete systems, or an entirely new release
or version of Com-plete can run concurrently with an older production release, greatly facilitating the
conversion.

Installation Considerations

Sysparm Considerations

Installation Considerations

Because nearly all the modules can be shared among multiple copies of Com-plete, a full installation of
Com-plete is not necessary for each copy. Only those files and modules containing information unique to
each Com-plete system must be duplicated.

The Com-plete system files such as the SD dataset contain information that is unique to each copy of
Com-plete, and, therefore, cannot be shared. One set of the following Com-plete files must be allocated,
initialized, and loaded for each Com-plete system.

File Description

COMPLETE.SPOOL Disk-resident queue for messages and printout spooling data.

COMPLETE.SD Online text editing and SD storage data set.

84

System ProgrammingMultiple Copies of Com-plete

For more information on initializing and loading these files, see the Com-plete Installation documentation
and the sections dealing with the TUMSUTIL, and TUSDUTIL utilities in this documentation.

The Com-plete load libraries can be shared among all Com-plete systems. When compressing these data
sets, however, it is necessary to stop all Com-plete systems that use the load libraries. All other Com-plete
files can be shared by multiple Com-plete systems.

For information on sharing the system data containers COMSYSn, see The System Data Infrastructure.

Sysparm Considerations

The following sysparms require special attention when running multiple copies of Com-plete:

ACCESS-ID

This parameter must be unique amongst all users of the same Adabas router SVC number within
the same machine, and if NET-WORK is active in the machine and ACCESS-LOCAL is not set
to YES, then it must be unique within the network itself.

INSTALLATION

This parameter must be unique on the system, so that it can tell users which Com-plete they are
using. However, no check is made that this is in fact unique within the machine.

PATCHAR

This parameter must be unique, as it identifies the Com-plete uniquely within the machine. If
more than one Com-plete is started with the same patch character, the second is terminated with
a message to the effect that the patch character is already in use.

SMFRECORDS

It is no longer necessary to have a seperate SMF record number for each different record type,
as the records are now identified within the prefix as to what they were written for, for example,
LOGON, LOGOFF and which Com-plete they have come from. Refer to Com-plete Accounting
Facility for more information.

VTAMAPPL

This parameter must be unique because VTAM fails any attempt for a second OPEN to the same
ACB name.

VTAMSIMLQ and VTAMSIMLREL

To maintain a flexible system, these sysparms must both be set to YES to ensure that any
particular Com-plete for which printers are specified releases them on request from another
VTAM application (for example, another Com-plete).

85

Multiple Copies of Com-pleteSystem Programming

Multiple Com-pletes in a Parallel Sysplex
General

Shared Datasets

Separate Datasets

COMSYS Data Containers

Startup JCL Procedure(s)

Sysparm Considerations

General

Parallel Sysplex technology provides a number of advantages, the most important of which are high
system availability and workload balancing. This version of Com-plete can be installed as a cluster of two
or more instances running on different systems in a Parallel Sysplex and known to VTAM as a generic
resource . Users log on to the generic resource name, and the sessions are distributed by VTAM equally
among the Com-pletes sharing this generic resource name.

From the installation point of view, in contrast to a single-system installation, the following requirements
must be met for a Parallel Sysplex installation:

VSAM Record Level Sharing (RLS) must be used for the Com-plete system datasets and SD files so they
can be shared between multiple Com-plete instances.

A VTAM Generic Resource name must be defined and specified by means of the VTAMGENERIC
sysparm for all peer Com-pletes in the cluster. Users log on to this generic name instead of the unique
VTAM APPL-ID of a single Com-plete. See section VTAM in Software Interfaces for more details.

Shared Datasets

The following datasets must be shared between all peer instances of Com-plete:

all load libraries in the STEPLIB, COMPINIT, and COMPLIB chains,

the SYSMAP map library (if any is used),

the three System Data Containers (COMSYSn),

dynamic SD files. See Com-plete Files and Associated User Files for details and the Com-plete
Installation documentation for conversion issues.

Separate Datasets

Of the following datasets, a unique copy is required for each of the instances of Com-plete:

the spool dataset (COMSPL),

86

System ProgrammingMultiple Copies of Com-plete

the COMSD dataset, but it must be used for online dumps only (see Com-plete Files and Associated
User Files for details about dynamic SD files),

the CAPTURn datasets (if any are used).

COMSYS Data Containers

When sharing the COMSYS data containers, Com-plete must access them using VSAM RLS (record level
sharing). In order for this to work, LOG(NONE) must be specified for each of the COMSYS VSAM
clusters. Depending on the rules in effect on your system, other parameters like STORAGECLASS may
also require different values.

In your Com-plete JCL procedure, add the parameter RLS=NRI to each of the four COMSYSn DD
statements.

Startup JCL Procedure(s)

Though some of the required datasets cannot be shared, a single JCL procedure can still be used for all
Com-plete instances in a cluster. These datasets should be named in a way so that, e.g., the &SYSTEM or
&SYSCLONE system variables can be used to refer to different datasets on different systems in the
sysplex.

Example:

If the value of &SYSCLONE is ’SA’ on system A and ’SB’ on SYSTEM B in the sysplex, and your spool
datasets are named COM.SA.SPOOL and COM.SB.SPOOL, then the COMSPL DD statement in your
Com-plete startup procedure could look like this:

COMSPL DD DISP=SHR,DSN=COM.&SYSCLONE..SPOOL

The advantages of using a single JCL procedure are maximum consistency and minimum maintenance
effort.

Sysparm Considerations

Sysparm Members

With a few exceptions (see below), all sysparms will have the same values for all Com-plete instances in
the cluster. Therefore, to keep maintenance effort low, it is a good idea to define the common sysparms in
a shared sysparm member and only the system-dependent sysparms in separate members for each
instance. All these sysparm members can reside in one shared PDS. In the shared JCL procedure, this
could look like in the following example:

SYSPARM DD DISP=SHR,DSN=COM.CONTROL(PARM_ALL)
 DD DISP=SHR,DSN=COM.CONTROL(PARM_&SYSCLONE)

Members in COM.CONTROL: PARM_ALL:

PARM_SA
PARM_SB

87

Multiple Copies of Com-pleteSystem Programming

Sysparms which are likely to have different values for different Com-pletes in a cluster

INSTALLATION (not necessarily)

PATCHAR (not necessarily)

VTAMAPPL (required by VTAM to be different)

88

System ProgrammingMultiple Copies of Com-plete

Internals
This part of the Com-plete System Programming documentation provides information concerning the
internal organization of Com-plete.

This information is organized under the following headings:

Com-plete Files and Associated User Files

The System Data Infrastructure

The Com-plete Task Structure

Com-plete Resource Usage and Estimates

Com-plete Accounting Facility

Modifications to Com-plete Modules

Com-plete Capture Processing

Com-plete Servers

89

InternalsSystem Programming

Com-plete Files and Associated User Files
Maintenance of the Com-plete system requires knowledge of the files distributed with Com-plete, the files
created during Com-plete installation, and user files associated with Com-plete. This chapter describes the
functions of file allocation, file backup/recovery, and file compression relocation.

You should write off entire disk packs at periodic intervals so that specific files can be restored as needed.
Restoring files to their original location preserves the validity of the VTOC and catalog entries.
Depending on the specific requirements of your installation, additional backup/restore procedures may be
necessary.

Standard operating system backup and recovery techniques can be used for VSAM, ISAM, and BDAM
files.

This chapter covers the following topics:

COMSD - Com-plete Sequential/Direct Dataset

Dynamic SD files

COMSPL - Com-plete Spool Data Set

CAPTURn - Com-plete Capture File(s)

COMSYSn - Com-plete System Data Containers

LOAD - Distributed Load Module Library

USER LOAD - User Load Module Library

MAP Library

PROFILES - Editor Profiles Library

SOURCE - Com-plete Distributed Source Library

UDEBUG Profile Library

UDEBUG Text Card Library

Edit Source Libraries

Application-Specific Data Sets

COMDMP Dump Data Set (VSE only)

COMSD - Com-plete Sequential/Direct Dataset
Use of COMSD, the Com-plete sequential/direct dataset is required.

90

System ProgrammingCom-plete Files and Associated User Files

DD/DLBL COMSD

File name COM.SD

Description

The Com-plete sequential/direct (SD) dataset is internally split into two sections - one for
application SD files and paging files, and one for Com-plete online dumps. Separate directories
exist for these two sections. The first record of the dataset containes central information about
the dataset and its two sections.

As an alternative to allocating SD files within the COMSD dataset, you can choose the option to
dynamically allocate each SD file as a separate VSAM relative record dataset. See the section
Dynamic SD Files.

Allocation

This dataset must be allocated as a VSAM Relative Record Dataset and initialized using the
Com-plete BATCH utility TUSDUTIL before it can be used. When deciding on the size of this
dataset, you must consider the maximum number and sizes of application SD and paging files
that will be allocated and the space required for online dumps. For detailed information about
allocation and initialization parameters, refer to the description of BATCH utility TUSDUTIL in
this documentation.

A sample allocation and initialization job is provided on the installation tape. You can use this
job as a model (see the Com-plete Installation documentation).

Compression

Free space is reused, therefore no compression is necessary.

Backup/Restore

Backup and restoration of the entire SD dataset using VSAM utilities is possible only when
Com-plete is not active. Selective restoration of SD files from this kind of BACKUP is not
supported. TUSDUTIL can be used to backup SD files with optional deletion of "old" SD files
and for full or selective restoration of SD files.

Backup and restore of SD files using this utility can be performed only while Com-plete is
active with SYSPARM ACCESS=YES. TUSDUTIL supports restoration of SD files from V44
and V45 BACKUP datasets written by the former Com-plete BATCH utility TUSRSDCM.

Reallocation

There are no restrictions on reallocation of the SD dataset.

Dynamic SD files
Requires DFSMS 1.3 or higher.

91

Com-plete Files and Associated User FilesSystem Programming

As an alternative to allocating SD files within the COMSD dataset, you can choose the option to
dynamically allocate each SD file as a separate VSAM relative record dataset. If you opt to do so,
COMSD is still required, but is used for online dumps only. In this case, in order to avoid wasting disk
space, SDFILES=0 should be specified when initializing COMSD.

DD name: SYSnnnnn (generated dynamically during allocation)

File name:

prefix.$. tempname .T tid for temporary SD files,

prefix.STIMER. &sysname for Com-plete’s UTIMER SD file,

prefix. name .T tid in all other cases.

Where:

prefix is the dataset name prefix specified by SYSPARM SDPREFIX,

tempname is the name of the temporary SD file with the leading ’&&’ omitted,

tid is the value of the TID parameter of the SDOPEN function, converted
into a fixed-length five character presentation (SHR is represented as
00000),

&sysname is the value of the system variable &sysname,

name is the value of the NAME parameter of the SDOPEN function.

Description

SD files are allocated dynamically as separate VSAM datasets when the SYSPARM SDPREFIX
is present, otherwise COMSD will be used.

The advantages of dynamic SD files are:

the ability to share SD files between multiple instances of Com-plete, e.g., in a Parallel Sysplex.
The COMSD dataset cannot be shared between multiple instances of Com-plete.

The ability to use standard SMS features for backup, migration, restore, etc. of each single SD
file.

Special caution is required when running multiple Com-pletes using the same SDPREFIX value,
for two reasons:

1. Applications sharing SD files might require changes in the serialization mechanism they
use, e.g., the scope of an ENQ might have to be changed from ’step’ into ’systems’.

2. Applications (e.g., Com-plete’s editor UEDIT) might not expect the same SD file to be
opened more than once at a time. Unpredictable results including abnormal program
termination and loss of data may occur when the same userID invokes multiple instances of
such an application at the same time from different systems. The only secure way to use
this configuration is when all Com-pletes sharing an SD file prefix are entered through the
same Generic VTAM Resource name, thus ensuring uniqueness of each session.

92

System ProgrammingCom-plete Files and Associated User Files

Allocation

You don’t have to allocate dynamic SD files, they are allocated automatically by Com-plete
during execution of an SDOPEN function and deleted during execution of an SDDEL function.

The parameters Com-plete uses when allocating an SD file depend on the following:

The values of the RECORDS and RECLEN parameters of the SDOPEN function. These values
are used to calculate the amount of space required.

The DFSMS DATACLASS, STORAGECLASS, and MANAGEMENTCLASS specified for
SYSPARM SDSMSCLASS. You might wish to create extra classes to be used for SD files.
Software AG recommends that you define only the absolute minimum of parameters for
DATACLASS and STORAGECLASS, allowing DFSMS to choose optimum values for
CONTROLINTERVALSIZE, etc.

To minimize system affinity in a Parallel Sysplex, SD file access should make use of the Record
Level Sharing (RLS) option. To enable Com-plete to exploit this feature, LOG=NONE must be
specified for the STORAGECLASS and Com-plete SYSPARM SDRLS=YES must be
specified. Note that the LOG parameter of the STORAGECLASS is available only starting from
DFSMS 1.4. For DFSMS 1.3, the DATACLASS parameter SHAREOPTIONS=(3,3) or (4,3)
should be specified instead, and SYSPARM SDRLS should be omitted.

Backup/Restore/Reallocation

Com-plete does not provide any special utilities for nor does it put any restrictions on backup,
restore, and reallocation of dynamic SD files.

Security considerations

Dynamic SD files are always created, opened, and deleted with Com-plete’s ACEE in effect,
never with the ACEE of the user. Therefore, authorization should be defined similar to other
Com-plete datasets.

COMSPL - Com-plete Spool Data Set
Use of COMSPL, the Com-plete message switching/printout spooling file, is required.

DD/DLBL COMSPL

File Name COM.SPOOL

Description

The Com-plete spool data set contains messages and printout spool files written by Com-plete or
by user applications.

Allocation

You must allocate the data set as a VSAM Relative Record Data Set ("RRDS"). Due to VSAM
restrictions, the record size must be 7 bytes smaller than the CISIZE of the VSAM dataset. The
minimum CISIZE for this data set is 512 (record size 505) and the maximum size is 8192

93

Com-plete Files and Associated User FilesSystem Programming

(record size 8185). When deciding on the size of this data set, you must consider the general
size of the printouts that will be written to it: the larger the printouts, the larger the record size should be.
It must then be initialized with the INIT function of the TUMSUTIL utility with the number of records
that it should contain. See the description of the TUMSUTIL utility in section Batch Utility
Programs for more information.

The size of the spool data set is highly dependent on your installation’s usage of message
switching and printout spooling. The standard installation job allocates a 5-cylinder 3380 data set, but you
will probably need to enlarge this. Please be aware that the spool data set must contain AT LEAST as
many records as the value specified for the maximum printout sysparm MAXPRINTOUT (see the
description of this parameter). A sample allocation and initialization job is provided on the installation
tape. You can use this job as a model (see the Com-plete Installation documentation).

Compression

Free space is reused. No utility is therefore necessary for the compression of the data set.

Backup / Restore

The entire spool data set can be backed up and restored using standard IDCAMS utilities. The
TUMSUTIL utility enables the installation to backup and restore printouts to the data set on a
selective basis.

Reallocation

The Com-plete spool data set can be reallocated and moved at will without affecting other
Com-plete data sets.

CAPTURn - Com-plete Capture File(s)
Use of the Com-plete capture file(s) is optional.

DD/DLBL CAPTURn

File Name COM.CAPTUR

Description

The Com-plete capture data sets are where Com-plete writes all its capture information. Only
one data set is in use at any one time: when this data set is full, Capture will begin using another
data set, and the full data set is freed for use.

You can define up to nine Capture data sets to Com-plete: CAPTUR1,
CAPTUR2.....CAPTUR9. To enable the Capture facility, the sysparm CAPTURE must also be
specified (see Startup and Initialization for more information).

Allocation

Capture data sets are allocated as VSAM Entry Sequenced Data Sets (ESDS) with a variable
record size of between 32 and 4096 bytes. Prior to use, the Capture data sets must also be
initialized using the TUSACAPT utility. This utility is described in section Batch Utility
Programs. A sample job to allocate two capture data sets is provided on the distributed source
data set (see the Com-plete Installation documentation).

94

System ProgrammingCom-plete Files and Associated User Files

Compression

No compression of the Capture data sets is necessary, as the data is normally written to the data
set and copied off, or overwritten by more recent Capture data.

Backup/Restore

It is not necessary to backup or restore Capture data sets in the normal way, because these data
sets are normally copied and reinitialized. You can use standard IDCAMS utilities to copy the
data from these data sets and reinitialize them using TUSACAPT.

COMSYSn - Com-plete System Data Containers
Use of COMSYSn, the Com-plete System Data Set, is required.

DD/DLBL COMSYS1 File name COM.VSAM.SYSTEM.BASE

 COMSYS3 COM.VSAM.SYSTEM.USERDEF

 COMSYS4 COM.VSAM.SYSTEM.CATALOG

Description

The Com-plete System Data Containers hold most of the information describing the
environment of one or more Com-plete’s. Examples are the Com-plete system messages, the
User ID definitions (logon definition plus user profiles, PF keys etc.).

Allocation

Allocate COMSYSn via the VSAM utility IDCAMS function DEFINE. Some initial data is
loaded from the distribution tape via IDCAMS REPRO. These data sets are allocated and
initialized during the standard installation process. You must review the size of these files based
on the amount of installation data that exists on the files. A sample job is supplied on the
distributed source data set to allocate and initialize these data sets. Please refer to the Com-plete
Installation documentation for more details.

Compression, Backup/Restore

Standard VSAM methods (using IDCAMS) can be used for these purposes; therefore, no
Com-plete utility is provided for these functions.

Reallocation

Can also be done via IDCAMS as required.

LOAD - Distributed Load Module Library
Use of LOAD, Com-plete’s distributed load module library, is required.

DD/DLBL COMPLIB/In LIBDEF PHASE,SEARCH=

File Name COM.LOAD

95

Com-plete Files and Associated User FilesSystem Programming

Description

The Com-plete distributed load library contains the executable load modules, tables, and maps,
including the Com-plete nucleus. This file should be the second file in the VSE LIBDEF
SEARCH string. Please refer to Initialization - Com-plete Startup Procedure for the data set
order under z/OS.

Allocation

The Com-plete load library is a standard z/OS load module library or a standard VSE library.
Please refer to the Com-plete Installation documentation for the necessary space allocation for
this data set.

In z/OS, the load library contains all single CSECTS required to relink any Com-plete program,
as well as all programs dynamically loaded during initialization.

In VSE, this library contains all modules with MEMBERTYPE PHASE and OBJ required to
relink any Com-plete program, as well as all programs loaded dynamically during initialization.

Compression, Backup/Restore

Use standard operating system utilities to backup and restore these libraries.

Reallocation

There are no restrictions on reallocation of the load library.

USER LOAD - User Load Module Library
Use of USER LOAD, Com-plete’s distributed user load module library, is optional, depending on whether
installation-specific load modules are required.

DD/DLBL COMPLIB/In LIBDEF PHASE,SEARCH=
and LIBDEF PHASE,CATALOG=

File Name COM.USER.LOAD

Description

The Com-plete user load library is allocated as an empty library during installation. The user
load library should contain the executable load modules, user exits, tables, and maps, including
the Com-plete control program that has been specifically tailored for your installation. This file
should be the first file in the VSE LIBDEF SEARCH string or the z/OS COMPLIB
concatenation.

In VSE, this is the designated map library for UMAP.

Allocation

The Com-plete user load library is a standard z/OS load module library or a standard VSE
library. During standard installation, a data set of 10 3380-type cylinders is allocated. This
should be reviewed based on installation usage.

96

System ProgrammingCom-plete Files and Associated User Files

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the distributed user load module library.

MAP Library
Use of the Com-plete map library is required for the UMAP utility.

DD SYSMAP: VSE LIBDEF PHASE,CATALOG=

File Name COM.MAPS

Description

The UMAP online utility saves and retrieves maps from the map library.

The Com-plete map library is allocated as an empty library during installation.

In z/OS, the map library must also be in the COMPLIB concatenation so that maps created by
UMAP can be used by programs.

Allocation

The standard installation allocates 2 cylinders of 3380-type devices for maps.

z/OS The MAP library is a standard z/OS load module library.

VSE The maps are placed in the user load library.

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the map library.

PROFILES - Editor Profiles Library
Use of Com-plete’s editor profiles library is optional.

Description

The User Profiles used by the editor are created and maintained in the Profile library.

The Profile library is the first source statement library found in either the terminal operator’s
library ID table or the Com-plete UEDTB1 table that is defined with "$$" as the two-character
ID. No library is specifically allocated during installation.

97

Com-plete Files and Associated User FilesSystem Programming

Allocation

The Profile library is a standard z/OS library with LRECL=80, or a standard VSE library.
Because the library is opened each time a Profile is accessed/updated, secondary allocation is
allowed.

Each Profile member is roughly 1 to 35 card images. Be sure to provide sufficient directory
entries for the users who are expected to use the editor.

In z/OS, allocate with RECFM=FB, DSORG=PO, and LRECL=80.

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the editor profiles library.

SOURCE - Com-plete Distributed Source Library

DD/DLBL Not applicable

File Name COM.SOURCE

Description

The Com-plete distributed source library is a standard z/OS source library, or a standard VSE
library. You are recommended to leave the members on this library unchanged for reference
purposes. When a member must be changed, it can be copied to the user source. The library
contains:

Macros and/or VSE Edecks necessary to assemble user exits or Assembler applications;

COBOL COPY code and PL/I %INCLUDE code necessary to compile applications in
COBOL and PL/I;

Macros and/or VSE Edecks required to assemble TIBTAB;

Sample job control and data required to perform Com-plete system maintenance and
establish the desired user-written security routines;

The CMOSTYPE macro/Edeck required by some Com-plete macros.

Allocation

The source library is a standard z/OS library with LRECL=80, or a standard VSE library.
Secondary allocation is allowed.

This data set is allocated during standard installation, see the Com-plete Installation
documentation for more information.

98

System ProgrammingCom-plete Files and Associated User Files

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the distributed source library.

UDEBUG Profile Library
The use of the UDEBUG facility is optional.

DLBL SAGLIB - SUBLIB=COMDBPRF

DD COMDBPRF

File Name Not applicable

Description

This dataset contains UDEBUG profiles which can contain UDEBUG commands to enable
users to customize their UDEBUG session and which are read when the PROFILE command is
issued and at startup for each individual user.

This DD name must point to a Partitioned Dataset with a fixed block record format. It must have
a logical record length of 80 and can have any blocksize which is a multiple of 80. The
blocksize of the dataset will have a direct impact on the catalog size for UDEBUG and therefore
should be taken into account.

Allocation

The source library is a standard z/OS library with LRECL=80, or a standard VSE library.
Secondary allocation is allowed.

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the distributed source library.

UDEBUG Text Card Library
The use of the UDEBUG facility is optional.

DLBL SAGLIB - SUBLIB=COMDBTXT

DD COMDBTXT

File Name Not applicable

99

Com-plete Files and Associated User FilesSystem Programming

Description

This dataset contains text cards generated by the assembler option TEST which can be
subsequently read by the UDEBUG READ command to build symbols.

This DD name must point to a Partitioned Dataset with a fixed block record format. If must have
a logical record length of 80 and can have any blocksize which is a multiple of 80. The
blocksize of the dataset will have a direct impact on the catalog size for UDEBUG and therefore
should be taken into account.

Allocation

The source library is a standard z/OS library with LRECL=80, or a standard VSE library.
Secondary allocation is allowed.

Compression, Backup/Restore

Use standard operating system backup/restore utilities for this library.

Reallocation

There are no restrictions on reallocation of the distributed source library.

Edit Source Libraries
Edit source libraries are standard operating system libraries, but their use by Com-plete requires special
considerations and the creation of proper interfaces. This section describes the maintenance considerations
of these libraries from a Com-plete point of view and explains how to create additional libraries and
define the required interfaces.

Overview

Since edit source libraries are standard operating system libraries, their creation and maintenance has
much in common with other operating system libraries not used with Com-plete. There are, however,
additional considerations due to the implementation of an online environment and the requirements of
Com-plete.

Com-plete is distributed with two online text editors:

UED, the text editor designed for use with hard copy terminals;

UEDIT, the text editor designed for use with 3270-type terminals or compatible devices.

The files to be edited by each of these text editors are not necessarily the same. Considerations for each
editor are summarized in the following text. Additional details about each editor can be found in the
Com-plete Utilities documentation.

Creation of Edit Source Libraries

The creation and implementation of edit source libraries consists of:

100

System ProgrammingCom-plete Files and Associated User Files

Allocation of the libraries;

Adding a UEDTB1 entry or using the UL function of the UUTIL utility.

Allocation

Edit source libraries are standard operating system libraries. In z/OS, the allocation of these
libraries limits which Com-plete text editor can be used. The possibilities are:

UEDIT - Partitioned files, sequential files, LIBRARIAN libraries, and PANVALET
libraries

RECFM=F or RECFM=FB
LRECL larger than 80
LRECL less than 256

UED - Partitioned or sequential files

RECFM=F or RECFM=FB
LRECL larger than 2
LRECL less than 247

In either situation, the BLKSIZE of the files is restricted only by the thread size in which the
respective text editor is to execute. If a large BLKSIZE is specified for a given edit file, it may
be necessary to modify the catalog entry for the text editor in use to a larger region size. For the
UEDIT utility, this means modifying the catalog entry for the modules UEBP and UEPDIN; for
UED, the catalog entry for UED itself should also be modified.

In VSE, editor source libraries are allocated and formatted with LIBR.

Note that space allocations must be contiguous.

UEDTB1

Source libraries edited by UED and UEDIT can be referenced by name or by a two-character
library identification code. UEDTB1 is a module of non-executable code used to define the
two-character identification codes assigned to edit libraries. This module is loaded by both UED
and UEDIT, and used only when a two-character library identification code is entered to
reference a given library. This module is also loaded and used by the utility program
UPDS/USERV. If a two-character code is referenced that is not in this table, an invalid request
results. UEDTB1 is system-wide in scope and is shared by all Com-plete users.

A full description of the use, creation, and maintenance of the UEDTB1 module is given in the
section Security and User Exit Facilities.

DD/DLBL statements are not used to allocate edit libraries except in VSE. All edit libraries are
allocated dynamically when they are read and when a SAVE or SUBMIT request is issued. In
VSE, the library may be allocated with a DLBL and EXTENT, or Com-plete will optionally
construct a DLBL and EXTENT from information provided in UEDTB1 or UUTIL-UL.

Note:
A VSAM VSE library must be defined via UEDTB1 or UUTIL-UL.

101

Com-plete Files and Associated User FilesSystem Programming

UUTIL-UL

Each Com-plete user can define up to 24 personal two-character library identification codes
using the online utility UUTIL, function UL. Note that each user’s library definitions are
searched before the system-wide UEDTB1 definitions.

Note:
A VSAM VSE library must be defined via UEDTB1 or UUTIL.

For more information, refer to UUTIL - User Environment Definition Utility in the Com-plete
Utilities documentation.

Maintenance of Edit Source Libraries

Since edit source libraries are standard operating system files, their maintenance consists of standard
techniques used to maintain source libraries: compression for partitioned files, and reallocation/expansion
for sequential files. For example, the z/OS utility program IEBCOPY can be used to compress a
partitioned file either in place or with an unload followed by a compression in place.

Protection

The utility programs UED and UEDIT perform a DYNALLOC on any source library into which a
SAVE/READ function is being performed. This causes an ENQ to be obtained on the queue name
SYSDSN. If the operation is a SAVE, then the ENQ is established as with DISP=OLD. For a READ
function, the ENQ is established as with DISP=SHR. If another terminal user is actively reading or writing
the same source library to which a SAVE or READ operation has been directed, a warning message is
given, and the terminal operator has the option of waiting, terminating, or retrying. This same convention
exists if a batch job that accesses the library being edited is executing; the terminal operator will be
prevented from performing a SAVE operation in a library being accessed by another user.

Note:
In z/OS, protection as provided by the TSO/ISPF Editor via the queue name ISPEDIT is not supported.

Application-Specific Data Sets
Application programs running with Com-plete can access VSAM data sets as described in section
Software Interfaces. In z/OS, BDAM and ISAM data sets can be accessed using special Com-plete
functions.

Declaration to Com-plete

Application programs refer to DD/DLBL names. All DD/DLBL names referenced by
application programs must be declared ("cataloged") to Com-plete using the FM function of
online utility UUTIL. This declaration includes the data set name, disposition (z/OS only), the
name of the VSAM user catalog (VSE only), and other information.

For a detailed description of the FM function of the UUTIL utility, refer to the Com-plete
Utilities documentation.

Allocation / Deallocation

102

System ProgrammingCom-plete Files and Associated User Files

The data set is allocated to Com-plete dynamically when an OPEN request is issued against the
appropriate DD/DLBL name. The data set is deallocated when it is closed explicitly using the CLOSE or
BATCH subfunctions of UUTIL-FM.

Compared to permanent allocation of data sets to Com-plete, this mechanism provides
maximum flexibility of data set access by BATCH jobs and for data set maintenance (backup, restore,
reallocation, rename, etc.), without needing to restart Com-plete.

For compatibility reasons, it is also possible to allocate data sets to Com-plete permanently by
specifying DD/DLBL statements in the startup JCL procedure.

Note:
(z/OS only): While Com-plete is active, permanently allocated data sets are available for access
by BATCH jobs and for maintenance only with the restrictions defined by the JCL DISP parameter and by
the SHAREOPTIONS attribute. Setting a permanently allocated dataset to BATCH status closes the
dataset and disables online access, but neither deallocates the dataset, nor frees the SYSDSN ENQ held.

COMDMP Dump Data Set (VSE only)
The use of COMDMP, the Com-plete dump data set, is required.

DLBL COMDMP

File COM.VSAM.DUMPFILE

Description

The Com-plete dump data set contains a dump of all relevant storage areas in case of a
Com-plete abend.

Allocation

The dump data set is VSAM RRDS (relative record dataset) with a required record length of
4080 bytes. The size depends on the size of the Com-plete partition. At least 30 cylinders are
required for a 16M partition.

A sample job to allocate a dump data set is provided on the distributed source data set.

Compression

No compression of the dump data set is necessary, as the data is normally written to the data set
and copied off, or overwritten by more recent dumps.

Backup/Restore

You can backup and restore the data set using standard IDCAMS functions.

Reallocation

The Com-plete dump data set can be reallocated and moved without any restrictions.

103

Com-plete Files and Associated User FilesSystem Programming

The System Data Infrastructure
This chapter describes how Com-plete system data are organized. It covers the following topics:

Introduction

Sharing Data Among Multiple Com-plete Nuclei

The System Data Access Method (SDAM) API

The SDAM Control Block

SDAM Views

Introduction
Com-plete and user profile data are stored on System Data Containers (SDCs) that are VSAM (KSDS)
clusters accessed through the System Data Access Method (SDAM) API. Com-plete currently uses the
following four SDCs:

Internal Data
Set ID

VSAM
DDname

Record
Size

Nr. of
Records

Contents

BASE COMSYS1 4089 58 Vital Com-plete data

USERDEF COMSYS3 2041 150
User profiles (User ID,
menu,..)

CATALOG COMSYS4 313 80
Com-plete program / file
catalog

Notes:

1. The Nr. of Records is the approximate number of records added to the SDCs during the installation
process and may differ from SM to SM.

2. The SDCs, especially USERDEF, can be heavily accessed data sets, depending on the number of
users logged on and the type of work they carry out. You are therefore recommended to monitor
access against those data sets and place them on a low-contention volume / disk pack to guarantee
optimum performance.

3. The space required for the USERDEF SDC is dependent mainly on the number of User IDs defined.
As this tends to be the least "static" SDC, its VSAM allocation status should be reviewed with
IDCAMS LISTCAT even more often than for the other SDCs. When the report shows many extents,
the primary allocation should be increased. With a high number of CI/CA splits, reorganization of the
file should be considered as soon as possible.

SDC data records are structured as follows:

104

System ProgrammingThe System Data Infrastructure

Position 1 to 16 The key, consisting of

-Physical Record ID (binary halfword)

-System ID (one byte alphanumeric) with a value of x’00’ (global
record) or the local ID (patch character).

-Object ID (twelve bytes alphanumeric), e.g. the User ID, message id,
..)

-Subrecord ID (one byte binary) serves as a sequence number, should
there be more than one record for an object ID be required.

Position 17 to
57

Various SDAM control information

Position 58 to
nn

where nn represents the maximum record size depending on type of
data and the Data Container it is kept on. Only this portion of the
record is transferred from/to the requestor of a SDAM function.

Sharing Data Among Multiple Com-plete Nuclei
The SDCs can be shared among two or more Com-pletes. However, the VSAM shareoptions must be
changed from the installation default value of (2 3) to (3 3) to allow concurrent updates from all
Com-pletes.

The System ID, described in the table above, controls the individual data record’s scope. The patch
character (set by sysparm PATCHAR) defines the local system ID for every Com-plete nucleus. Switch
Applymod 81 on to force Com-plete to look for local data ahead of global records. With Applymod 81 off,
local data will be ignored. Note that having Applymod 81 switched on will approximately double access
rates to the SDCs, as Com-plete will try to find a local copy of every record read before considering the
global one.

This allows users and the system administrator to choose between common environment definitions for all
Com-pletes and different profile definitions on one or more systems. Using shared data allows
installations with the need to operate more than one copy of Com-plete to greatly reduce administration
effort as well as disk space, and reduces data redundancy.

When opting to share the data set(s) please take the following into consideration when choosing the
VSAM shareoption:

Shareoption 3 induces additional VSAM overhead to the system compared to SHR(2), but on the
other hand does not fully guarantee data integrity. This should only be used when maintenance is
applied to the SDC(s) from a central location (that is, a specific Com-plete).

Shareoption 4 guarantees full data integrity on the cost of even more VSAM overhead. Nevertheless,
this should preferrably be used to be 100 % proof. Additionally, note that VSAM will NOT allocate
additional extents for a component defined with SHR(4) when one fills. You are strongly encouraged
to reserve a number of spare blocks to accommodate unavoidable additions to the SDC(s), again
especially the USERDEF dataset.

105

The System Data InfrastructureSystem Programming

The System Data Access Method (SDAM) API
The calling sequence is:

SDAM (SACB,i/o_area)

The SACB (SDAM Control Block) is mapped by CMSACB (BAL), COBSACB (COBOL), and
PLISACB (PL/I).

The SDAM Control Block

Field Usage and possible value(s)

SACRCOD Return code. See the Messages and Codes documentation for
SDAMnnnn messages, where nnnn is the SDAM return code.

SACFDBK Feedback information. When non-zero, describes the error
(SACRCOD) further (that is, VSAM returncode/feedback, Adabas
return code, ..).

SACMESS Message as seen in the Messages and Codes documentation.

SACWORK Work area for Software AG internal use

SACSYST The System ID (patch character). Low-value means global, otherwise
local to the system specified here.

SACOBID Object ID (that is, item name). This actually describes the specific item
within the group (SACSYST / SACVIEW), for example, the message
ID, User ID, ...

SACSUBI Sub-identification. For items spanning more than one record or groups
of records for the same object (SACOBID), this specifies the actual
item within the group of items.

SACVIEW A View name that is required to access data through the SDAM API.
More than one logical record can be held within one physical record.
This allows related data to be kept independently but tightly coupled.
Every view can be manipulated independent of other data held in the
same physical record, but nevertheless results in performance gains
when, for example, more than one view is accessed in a program due to
the fact that the underlying physical record has to be read only once and
the problem program receives just the logical part it requested.
However, a view name can be assigned to entire records as well. A list
of available views can be found at the end of this section.

106

System ProgrammingThe System Data Infrastructure

Field Usage and possible value(s)

SACOPER Operation Code.

OPEN Set up the environment, allocate workareas etc.

CLOSE Clean up the environment, free workareas etc.

READ Retrieve a record

WRITE Store a new record

UPDATE Replace an existing record

DELETE Remove an item from COMSYS

POINT Specify starting point for sequential retrieval

ENDREQ Terminate sequential processing

SACFLG1 Processing Option(s), an array of 8 elements.

SYSOK Retrieve data for SACSYST only, ignore applymod
81 / 82.

NEWCOPY When the current call (either logical or physical)
results in access to the same physical record as
manipulated with the last call, the request will
normally be satisfied from internal buffers and will
not result in a physical read to the storage media.
NEWCOPY will force a physical read.

FULLKEY For sequential operations with a non-zero
SACGENL specifies that positioning is to be
performed using the full key and not the partial key
as specified by SACGENL.

SACTSTM When reading a record this will contain the record’s time stamp. This
field is input only.

SACARLN Length of the area specified as the second input parameter to SDAM,
the record area.

SACOCCR For tabular items specifies the index of the specific item to be accessed
(for example, a message record contains the text for various languages,
the language is the index into this array).

SACGENL For sequential retrieval specifies the generic key length. When the (part
of) the key specified via SACVIEW, SACOBID, etc, does not / no
longer matches the key of a record retrieved by the access method,
logical EOF will be signalled.

107

The System Data InfrastructureSystem Programming

SDAM Views
The Com-plete distribution source library contains macros describing the record layout for the various
records accessible through the SDAM API. The macro names are SDAVxxxx, where xxxx represents the
hexadecimal physical record ID behind the VIEW definitions. The following table gives an overview of
the views currently available:

View Name Physical ID Purpose

USERID x0080 Com-plete user definition record

USERPROF x0080 Com-plete user profile record

USERLAST x0080 Com-plete user’s last defaults for UQ, UEDIT, ...

CUSTDATA xF000 For your use to store site-specific data

108

System ProgrammingThe System Data Infrastructure

The Com-plete Task Structure
When a program is to be initialized, a Com-plete Unit of Work Control Block (CUOW) is allocated and
checks are made to insure that the user is allowed to run the particular program. Once this has been done,
the work is dispatched as described in this chapter.

This chapter covers the following topics:

Dispatching (Task Selection)

Thread Selection and Reservation

Relocation

The Quiesced State

Dispatching (Task Selection)
Task selection must first determine which task group to use for the work. If no task group is explicitly
assigned to the program in its catalog entry, the DEFAULT task group will be used. Dispatching is
achieved by ENQuing and DEQuing the Terminal Information Block (TIB) from queue to queue. The
Processor Group Control Block (PGCB) has four queues associated with it, one for each possible TIB
priority. The TIB is ENQued to the appropriate PGCB queue. If the system is active, it is likely that the
TIB will be selected from a queue by one of the active tasks. If this is not the case, the first available task
is found by searching the chain of Processor Control Blocks (PRCB) and posting its appropriate task
active. The PRCB running the unit of work reserves the required thread and runs the work.

There are cases where the use of certain system functions can cause a program to have affinities to certain
operating system tasks. When this occurs, the work is ENQued directly to a PRCB related queue for the
task in question. If and when the condition for the affinity no longer exists, the TIB can once again be
ENQued to the PGCB queue where it can be processed by any of the tasks in the task group. Work with an
affinity is totally dependent on one task and must wait for that task to complete any other work it might be
doing. For this reason, affinities should be avoided at all costs.

For OS type systems currently, the only reason a task will have an affinity to a task is when that task
issues an OPEN. This is due to the fact that the equivalent CLOSE must be issued on the same operating
system task. It is also possible to indicate in a program’s catalog entry that it must run with affinity where
it would not be possible for Com-plete to internally detect that this is necessary.

Thread Selection and Reservation
Thread selection first involves finding the thread group within which the program will run. If no thread
group is explicitly assigned in the program’s catalog entry, the DEFAULT thread group will be used.
Once the thread group has been found, an eligible thread sub-group must be selected for the work. The
first sub-group found that provides the required amount of storage below the line will be the sub-group
where the work will run. The sub-groups are searched from the one with the smallest amount available
below the line to the one with the largest amount available. Once the sub-group is selected, an attempt will
be made to reserve a free thread within that sub-group. If this is successful, the program starts executing.
Otherwise, the program is queued to the thread sub-group and will start executing as soon as a thread of

109

The Com-plete Task StructureSystem Programming

this sub-group becomes available.

While competition for threads should be avoided where possible by allocating sufficient threads in the
system, it can still occur. When a non-relocatible program is about to continue its execution after it was
rolled out of its thread, it must be rolled back into the same thread. For this reason, once a unit of work has
been selected by a task, it must reserve the thread where the work will be carried out. If the thread is busy,
the work will be queued to the thread and will only be carried out when the previous work in the thread
has finished.

In this case, the task which originally dequeued the TIB is free to go and do other work once the CUOW
has been queued to the thread. If the CUOW in question has an affinity to the task, it must not only wait
for the thread to become free, but also for it’s associated task to become free again at the same time. In a
busy system, programs running with affinity could suffer relatively long delays waiting for both its thread
and task to be available.

Relocation
Relocation is only important if there are an insufficient number of threads to service the maximum number
of users who will be concurrently active. The logic here has not changed in that the thread will be
prepared for relocation on rollout and the connection with the thread broken. When they are to be rolled in
again, the thread selection takes place in the same way as described earlier.

The Quiesced State
The primary purpose of the QUIESCE state is to enable users currently working to finish what they are
doing in an orderly fashion but preventing new work from being started. When the system has been
quiesced using the QUIESCE operator command, the following will occur:

VTAM will accept no more requests to start sessions with the Com-plete in question. VTAM sessions
started before the QUIESCE command was issued will be unaffected.

Attempts to start new sessions via access, be they from batch or some other source will be rejected with an
Adabas response code 148 to indicate that the requested node is not active. Access sessions started before
the QUIESCE command was issued will be unaffected.

Users already logged on can continue working. However, they will receive a warning message each time
they return to their COM-PASS-pass menu indicating that the system is quiescing and that they should
finish their work and log off

Once a QUIESCE has occurred, Com-plete must be terminated before normal service can be resumed.

110

System ProgrammingThe Com-plete Task Structure

Com-plete Resource Usage and Estimates
This section gives an overview of how Com-plete uses the various system resources and shows how you
can estimate the amount used, based on Com-plete’s needs and other factors at your installation.
Depending on the type of resource, a shortage of that resource will under normal circumstances be
handled by Com-plete. In some cases, resource shortage does not affect the operation of Com-plete;
however, in others, it can mean that certain functions cannot be performed until sufficient storage
becomes available. This is discussed in more detail at the start of each section.

Note:
The storage estimates given in this section refer to the base level of Com-plete 5.1. Future maintenance
may cause these estimates to change. Please refer to the relevant documentation updates issued with each
maintenance level.

This chapter covers the following topics:

Virtual and Real Storage

The Roll Subsystem

The Com-plete Spool Data Set

The Com-plete Sequential/Direct Data Set

The UDEBUG Buffer Pool

Virtual and Real Storage
A number of mechanisms exist in Com-plete for managing storage. Each is described here, together with
the various uses they are put to. This will give you an idea of how to utilize your available storage better
and help you understand some of the performance issues and integrity problems associated with the
storage management under Com-plete.

Real Storage

Com-plete Savepool Areas

Com-plete Fixed Buffer Pools

Storage Key of Buffer Pool Subpools

The Com-plete Unit of Work (CUOW)

Thread Groups and Sub-Groups

Task Groups

Virtual Storage Usage

111

Com-plete Resource Usage and EstimatesSystem Programming

General Buffer Pool Usage

Real Storage

It is possible for Com-plete to be swappable. This is achieved by setting applymod 86 at the startup of
Com-plete. This can be useful to avoid test systems from having a detrimental effect on the system. Please
note that as soon as ACCESS is started, Com-plete is made non-swappable and will remain
non-swappable until the job is terminated. This is because Com-plete becomes a Cross Memory Server
and to do this, it must be non-swappable. Stopping and starting ACCESS will not affect this, because the
Cross Memory environment is never actually shut down when this is done.

Com-plete Savepool Areas

The lowest level of storage used under Com-plete is the Savepool element. These are elements used as
saveareas for nucleus modules. For this reason, these must be allocated correctly from the start, because if
they run out, depending on which part is affected by the failure, Com-plete is likely to go down
immediately or at least in the following time. This is because it is not possible to expand this Com-plete
resource as they are at such a basic level.

Savepool areas can be acquired by Com-plete routines with very little overhead. They are of a fixed length
and use the same techniques as the Fixed Buffer Pool Manager to get and free the buffers. They are
accountable in that usually, if an abend occurs to a task which has acquired a savepool area, the area can
be returned to the available pool and will not be lost.

They can be allocated above and below the line based on the SAVEPOOL and SAVEPOOL-ANY
sysparms. When it is possible, a savepool area from the pool which exists above the line will be used.
When no such savepool is allocated or the allocated pool is empty, the system will allocate a savepool
entry from the pool allocated below the line. When this is exhausted, unpredictable errors may occur
depending on what point in Com-plete’s processing the failure occurs. For this reason, great care must be
taken in allocating the savepool areas.

Due to the transient nature of SAVEPOOL usage, it is impossible to estimate the exact amount of
SAVEPOOL entries that will be required for a given installation. The safest recommendation that can be
given would be that 5 savepool areas be allocated above and below the line for each active Com-plete task
in the system (including system tasks).

It is possible to monitor the usage of the savepool areas using the UUTIL MO subfunction SP. These
should be monitored over the normal span of activity for the installation. For some, this will be every
week, for others it may be every month. Once a full set of figures is available, the worst possible figures
can be used as a guideline. Of course, an increase in the workload will again change this. It is therefore
always wise to leave a little room for movement and monitor the performance of the savepool areas on a
weekly basis.

Com-plete Fixed Buffer Pools

The current version of Com-plete uses a fixed length buffer pool mechanism to manage the most
commonly used Com-plete buffers. This opens up new scope for 24-hour operation, as well as improving
the availability of Com-plete, as fragmentation cannot exist as it can with variable type buffer pools.

This mechanism enables the allocation of buffer subpools below the 16M line, above the 16M line and in
ESA Data Spaces.

112

System ProgrammingCom-plete Resource Usage and Estimates

When a requested size does not exist in a subpool because the size is greater than the largest subpool
element size, the logic causes a new buffer subpool to be allocated with the required size to satisfy the
request. This facility can be deactivated on a buffer-by-buffer basis: no new buffer subpool is then created
and the request rejected.

For each buffer pool allocated, a chain of buffer subpools will exist for that specific buffer pool. Each
subpool represents one specific size / location combination. For example, a subpool can exist with size 1k
below the line and above the line, satisfying two logically different types of request. Error handling is as
described above with expansion of subpools, subject to storage availability provided for all buffer pools.

The COMSTOR Buffer Pool

When the Com-plete COMSTOR function is used, it generally means that many areas of the same size are
allocated in COMSTOR storage depending on the application usage profile. As such, it made sense to use
a fixed length buffer pool to handle these requests, as the buffer pool could then be tailored to meet the
demands of the various COMSTOR area sizes required.

This provides the following advantages:

COMSTOR no longer becomes fragmented, which previously called for an over allocation of
COMSTOR to ensure that requests were not eventually failed.

COMSTOR can take advantage of the expansion and contraction capability of the fixed buffer pool
manager. This means that even where too little storage has been allocated, the storage can still be
made available if there is enough space in the Com-plete region. Both of these factors ensure that
COMSTOR need never be a consideration and will never make it necessary to stop and restart
Com-plete.

Storage can be located based on the usage of the applications. Some old applications require that the
COMSTOR storage areas allocated for them be below the line due to ECBs being located there. This
can be handled by allocating a COMSTOR subpool below the line for these applications. Newer
applications can then take advantage of COMSTOR areas above the 16M line and even in ESA data
spaces where the COMSTOR area is not being used to contain ECBs.

The COMSTOR buffer pool is built using the COMSTOR-BUFFERPOOL sysparm. The size of the
element for each subpool defined determines the largest COMSTOR area size which can be provided from
that subpool. Of course, should a smaller size be requested and no smaller subpool is available to handle
that size, it too can be satisfied. The number of elements for the subpool determines how many
COMSTOR areas are to be initially allocated. Should you wish to limit it to that, you must simply specify
"0" for the number of elements by which it should expand if necessary. Otherwise, the subpool will be
expanded as necessary to cope with the demands placed upon it. However, no new bufferpool is created if
you request a larger COMSTOR area size than the biggest one defined in the sysparms

The location of the subpool storage will depend very much on the usage to which the allocated
COMSTOR areas will be put. Where an application program has an ECB within the COMSTOR area and
it runs in 24 bit mode, the area must be below the 16M line. When the application runs in 31 bit mode, the
COMSTOR area can reside above the 16M line. When the application program does not have an ECB in
its COMSTOR area, the subpool from where it will be gotten can be allocated in a data space on ESA
capable systems.

113

Com-plete Resource Usage and EstimatesSystem Programming

Note that for the COMSTOR buffer pool, an element size can only exist for one subpool regardless of the
variations in the location of the subpool. This is the case simply because the COMSTOR facility will
always allocate the COMSTOR area in the most widely available storage subpool. This means that a
subpool built in a data space will be used before one built above the line and so on. Therefore, if a second
subpool of the same element size were built in a different location, it would probably never be used.

Apart from the COMSTOR subpools which are built for application program usage, COMSTOR also
builds a subpool for the control of the COMSTOR facility in general. This is built based on the total
number of elements allocated based on the provided COMSTOR-BUFFERPOOL parameters. Where a
subpool with similar attributes to that required by COMSTOR is explicitly allocated by the user (i.e.,
LOC=ANY, ESIZE=72), this subpools element count will simply be increased by the number of entries
which COMSTOR expects to use.

Storage Key of Buffer Pool Subpools

A facility has been introduced to enable the allocation of fixed buffer pool manager subpools in a storage
protect key other than that used by Com-plete. Effectively this is another distinguishing factor for a
subpool, therefore, a number of subpools can now exist within the same buffer pool with the same element
size and location, however, each with a different storage protect key.

The default for the majority of Com-plete’s fixed buffer pools is to allocate the subpool storage in
Com-plete’s key, however, the Adabas Interface requires storage which exists outside of the thread in the
thread’s key, in order to roll a user program out over an Adabas call. For this reason, the Adabas interface
builds a buffer pool with a number of storage subpools in different storage keys. Refer to the discussion
about the Adabas interface for more information. It is possible that other Com-plete subsystems may build
storage subpools with different storage protect keys in the future.

The Com-plete Unit of Work (CUOW)

The primary descriptor for work in the Com-plete system is the Com-plete Unit of Work control block or
CUOW. This control block is built in a buffer in the General buffer pool when a user program is started
and exists until the user program terminates. The CUOW contains all information related to the user
program.

Thread Groups and Sub-Groups

A user program can be catalogued to run in a specific thread group which must be defined at start up in
the sysparms. If a program is not allocated or it has no thread group associated with it, it will run in the
DEFAULT thread group if a thread sub-group exists within the group large enough to run the program.

For each thread group, one area is required for the Thread Group Control Block (TGCB) while one Thread
Subgroup Control Block (TSCB) is built for each sub-group. Each thread within the sub-group is
described by a Thread Control Block (THCB) as in previous releases of Com-plete.

It should be noted that the above control blocks (i.e. TGCB, TSCBs, and THCBs) are acquired from the
General buffer pool. Previously THCBs were linked with the Com-plete nucleus and followed the system
THCBs. The system THCBs remain where they always were but thread THCBs are no longer linked into
the nucleus nor will they be allocated beside each other. It should also be noted that these changes include
provision for the dynamic reconfiguration of the system which will give sites the ability to add or delete
threads and/or thread sub-groups. This means that in the future, THCBs may disappear during the lifetime
of a Com-plete run.

114

System ProgrammingCom-plete Resource Usage and Estimates

Task Groups

In some cases in the documentation, tasks and task groups will be referred to as processors or processor
groups. You will also notice that UUTIL MO functions and operator commands related to tasks start with
the letter ’P’. The reason that the task related control blocks are often referred to as processors in the
documentation is a simple one of naming conventions. When function names and operator commands
were being created, the T in ’thread’ and the T in ’task’ frequently caused the same name to be generated.
For this reason, any task related function or control block is prefixed with ’P’ which stands for processor.
Generally speaking, where the term ’processor’ is used, it can be substituted with ’task’.

Much like the thread groups, one or more task groups is allocated at Com-plete start-up. If a program has
a task group associated with it in it’s catalogue entry, the program will run in that task group if it exists. If
the program is not catalogued, or has no task group associated with it, it will run in the DEFAULT task
group.

For each task group, a Task Group Control Block (TGCB) which for each task within the task group, a
Task (Processor) Control Block (PRCB) is allocated. These control blocks are chained from the PRCB.
Both PRCBs and the PGCB are allocated from the general buffer pool.

It is possible to add and delete tasks while the system is running through the TASKS operator command.
It should be noted that for performance reasons, when a PRCB has been allocated for a task and the task is
subsequently deleted, the PRCB is not actually freed. This can only occur when the task group itself is
deleted which occurs at EOJ. These so called dormant control blocks can subsequently be reused if more
tasks are added to a task group at some future point in the life of Com-plete.

Virtual Storage Usage

The following gives an overview of the major virtual storage areas in the Com-plete address space /
region. These are the areas to consider, e.g., when planning for the number of threads to allocate.
Experience shows, it is still hard to calculate the exact amount of storage that will be used. E.g., it may be
difficult to tell how many I/O buffers are allocated for each of the datasets when they are opened, you
don’t know in advance which bufferpools will expand, etc. Software AG recommends that you do a rough
estimate and start with a configuration that leaves 20-30% of your region below the 16M line free. Then,
while Com-plete is running and the maximum number of users is active, use USTOR function ASU to
determine the real address space utilization. If you then find that there is a good reserve, you can increase
the number of threads in one or more sub-groups.

Thread Storage

Typically, the biggest part of all storage in the Com-plete address space is used by the threads.
Each thread in a given sub-group occupies the same amount of storage below the line, as
specified by sysparm THREAD-GROUP. Each thread, independently of thread group and
sub-group, occupies the same amount of storage above the line if specified by sysparm
THSIZEABOVE.

Storage Occupied by Load Modules

Com-plete nucleus modules;

Com-plete server modules;

115

Com-plete Resource Usage and EstimatesSystem Programming

RESIDENTPAGE modules;

PGMLOOKASIDE modules.

The location of the modules is defined by their RMODE attribute, except for
PGMLOOKASIDE programs, which are always loaded above the line where possible.

Terminal Table (TIBTAB) Storage

The TIBTAB can be assembled and linked, from which the size of the TIBTAB can easily be
seen, or it can be dynamically generated for which the amount of storage used must be
calculated. The size of each TIB is currently 192 bytes. This version of Com-plete allows the
TIBTAB to reside above the 16M line, controlled by means of the load module’s RMODE
attribute or the sysparm TIBTAB=ANYnnnnn.

Savepool Storage

The size of one savepool element is currently 208 bytes.

Storage for Fixed Buffer Pools

The amount of storage used is the actual buffer storage itself, plus some storage for control
blocks. Once successfully initialized, Com-plete wherever possible obtains storage already
allocated from the buffer pools. Of course, if a buffer pool must be expanded, this storage is
again requested from the operating system.

I/O Buffers and Control Blocks

for Com-plete’s own datasets;

for VSAM and other datasets used by application programs.

Usually, control blocks and buffers for VSAM files are located above the 16M line, those for all
other files below the line.

Natural Buffer Pool Manager

The Natural buffer pool manager simply allocates storage as specified in the sysparms. A
message is issued indicating how much storage has been used and where it was obtained. Unless
forced below the line via a sysparm, the Natural buffer pool storage is obtained above the line.

Control Blocks of the Operating System and Other Software products

TCBs, RBs, etc.;

RACF/ACF2 related control blocks, e.g. one ACEE per user;

etc.

116

System ProgrammingCom-plete Resource Usage and Estimates

General Buffer Pool Usage

After initialization, apart from the storage requirements that are specifically allocated at startup, all
Com-plete requests for storage are resolved from this buffer pool. This includes:

Short term working storage requests;

Medium term requests; this storage is held for the duration of a transaction;

Long term requests.

There are many different types of working storage areas obtained. Size, number, and location of these
areas heavily depend on various factors, making it almost impossible to calculate them exactly. Instead,
you are recommended to start with a general buffer pool configuration with a basic number of buffers of
64 bytes, 128 bytes, 256 bytes, 512 bytes, 1 Kbyte, 2 Kbytes, 4 Kbytes, and 6 Kbytes, below and above
the line, where applicable, for all of these sizes. For the basic numbers of buffers, reasonable values to
start with can be either your values from the previous version of Com-plete (if you are upgrading to a
higher version), or you can start with a configuration shown in the following example:

BUFFERPOOL=(64,100,100,ANY) (*)
BUFFERPOOL=(64,100,100)
BUFFERPOOL=(128,100,100,ANY)
BUFFERPOOL=(128,100,100)
BUFFERPOOL=(256,100,100,ANY)
BUFFERPOOL=(256,100,100)
BUFFERPOOL=(512,100,100,ANY)
BUFFERPOOL=(512,100,100)
BUFFERPOOL=(1K,100,100,ANY) (*)
BUFFERPOOL=(1K,100,100) (*)
BUFFERPOOL=(2K,10,10,ANY)
BUFFERPOOL=(2K,10,10)
BUFFERPOOL=(4K,10,10,ANY)
BUFFERPOOL=(4K,10,10)
BUFFERPOOL=(6K,10,10,ANY)
BUFFERPOOL=(6K,10,10)

Since they are related to other sysparms, the allocation parameters for the buffer pools marked with (*)
may be changed internally during startup.

If you then monitor the buffer pool statistics, you can easily determine the buffers that should be increased
or decreased in size or number.

The Roll Subsystem
While this version of COMPLETE removes the limit of a maximum of 16 threads, the number of threads
is still limited by the amount of storage available in the address space. In general, the number of users will
exceed the number of threads, so threads have to be shared between users.

When a user program has reached a certain point in its processing, for example a conversational terminal
write, it no longer needs to reside in the thread, as the conversational write will take a relatively long
period of time to complete. In this case, another user can use the thread. However, the current user’s data
must be saved somewhere. This section gives a definition of the terms used to describe the Com-plete
method of doing this.

117

Com-plete Resource Usage and EstimatesSystem Programming

Com-plete Rollout/Rollin Processing

Com-plete Roll Buffers

The Maximum Number of Rolled Out Images.

Com-plete Rollout/Rollin Processing

Currently Com-plete can save the image in a thread buffer called the "roll buffer". This saving of data is
known as a "rollout".

When the user responds to the conversational write, the program copy must be found and moved back to
the thread to continue execution. Again the image is copied from the roll buffer back into the thread. This
process is referred to as a "rollin".

Com-plete Roll Buffers

In many installations, the sizes of the thread images which are rolled out from thread tend to be very
consistent in a production environment. This means that with the provision of a few subpools of the
required sizes, a roll buffer pool can be provided which will satisfy the vast majority of rolouts from
thread. When a roll buffer pool can be used in this way, there are a number of advantages.

The allocation and freeing of the buffer is infinitely quicker than for the variable buffer pool which
can have a major performance impact where a lot of rolling is taking place.

No fragmentation takes place, thus providing 24*7 functionality.

The subpools can reside in a data space, thus freeing up more of the Com-plete region for other
storage.

The fixed roll buffer pool is allocated based on the ROLL-BUFFERPOOL sysparm. The element size is
the amount of storage available in a given subpool into which the roll subsystem can copy a thread image.
This can best be determined by the second roll activities screen (PF11) in UCTRL which provides a map
of the sizes of the thread images which are being rolled out. If the load is consistent over a run of
Com-plete, this could be used to estimate the most appropriate subpool sizes which should be used for the
fixed Roll buffer pool.

The number of elements for a subpool indicate how many thread images the subpool can accept and again,
once the number to expand by is not set to 0, it will expand to handle the load. If the subpool is allocated
in a data space, this should not pose a major problem. However, if the subpool is allocated in the primary
region, due to the element sizes involved, the Com-plete region may fill very quickly.

As the location of these subpools is of no concern to users of the system, they should be allocated in the
most available area which is the default. This means that on ESA capable systems, they will be allocated
in a data space while on non-ESA capable but XA capable systems, they will be allocated above the 16M
line.

Gets and Frees from this buffer pool are extremely efficient using 370 instructions to serialize access to
the storage. By definition, it will never be fragmented so that it will still have the same potential to be used
after two weeks of operation, as it would have had after being brought up. Lastly, the storage where the
image is held can be allocated in a data space on ESA capable machines freeing up a large part of the
primary address space for other work.

118

System ProgrammingCom-plete Resource Usage and Estimates

The Maximum Number of Rolled Out Images.

The maximum number of rolled out images can simply be calculated as follows.

Maximum Logged on Users * (Maximum No. of Stack Levels +1) +

This is a theoretical maximum: some users will not use or will be disallowed from using the maximum
number of Stack Levels.

The Com-plete Spool Data Set
The Com-plete spool data set is a VSAM data set and contains the data for all print out spools in the
system and all messages that exist on disk.

Data Set Structure

Printout Structure

Data Set Structure

The MAXPO sysparm indicates the maximum number of printouts and/or messages that can exist in the
system. Com-plete reserves this number of blocks at the start of the message data set to hold the control
information for a printout. The printout data set must contain at least this number of blocks or Com-plete
initialization will fail. If more blocks are available than the MAXPO specification, these blocks will be
used for printouts whose data cannot fit in the first record along with the control data.

Printout Structure

During initialization, Com-plete interrogates the directory information (contained in the first n blocks of
the spool data set) and constructs an in-store Message Core Queue (MCQ) for each printout requeued.
This MCQ information is supplemented by the information contained in the control record on disk. The
control record can point to more than one data block, Com-plete also maintains a list of index blocks
which are used for free space management within the spool data set, and possible positioning of the
printout via USPOOL commands.

Receiver list

When a printout or message is sent, it is sent to a receiver or a list of receivers. The processing is
different depending on whether a list of recievers or a single receiver is specified. When a single
receiver is specified, the receiver is remembered by name and therefore the printout or message
can be restarted in an environment with a dynamic TIBTAB defined. In the same environment,
using lists may result in restart problems, as the list will be remembered using TIB numbers
causing unpredictable results with the restart. When the TIBTAB is defined, the restart can
normally proceed without problems, as unless the TIBTAB has changed, the various TIB
numbers will still relate to the original terminal.

Spool Data Set "Data"

The data written to the spool data set is compressed using repeat to address (RTA) type
commands, thus saving space. Lines are written into the data areas until the data area is
exhausted, then a new data block is allocated and the next line is started in there. To avoid large
searches when positioning printouts, index blocks are built. There will be one index block

119

Com-plete Resource Usage and EstimatesSystem Programming

describing multiple data blocks. The index maintains the page and line number that each data
block begins with, along with the data block number. Therefore for large printouts, no time is wasted
reading from the start of the data blocks to the end of the data in searching for a specific line number.

Spool Data Set Space Calculations

You must first estimate the maximum number of printouts and messages that you expect to see
in a system. Once this is done, estimate the average size of the printouts. For small printouts, the
space available in the control record sometimes is sufficient so that no extra data blocks area
available. However, for installations who have large "receive" lists and/or large printouts,
additional index and data blocks must be allowed for over and above the blocks allocated for the
message data MAXPO index blocks.

The Com-plete Sequential/Direct Data Set
The Com-plete sequential/direct (SD) dataset contains application SD files, terminal paging files, and
Com-plete online dumps.

Data Set Structure

The space of this data set is split into two sections when it is initialized - one for application SD
and paging files and the other one for Com-plete online dumps. The first record of the data set
containes central information about the data set and its two sections.

Structure Of SD File Space

The SD file directory starts from the second record. The number of records used for this
directory depends on the maximum number of SD files as indicated at initialization time and can
be changed only by reinitialization of the data set. Each directory entry is 64 bytes long. Each
directory record contains an integer number of entries. When an SD files is added, the entire
directory is expanded and an entry is inserted at the appropriate place in ascending order by SD
file name and TID number. For paging files, no directory entries exist; all information about
paging files is held in-storage only.

The SD file directory records are followed by the space where SD and paging files are built.
These records are used as a pool of unique-length blocks. 12 bytes of every block are required
for internal use, so the resulting blocksize is VSAM RECORDSIZE - 12.

Every SD file consists of index blocks and data blocks. Blocks for both index and data are
allocated dynamically from the pool when new records are written. When an SD file is deleted,
all blocks assigned to it are freed and returned to the pool. A paging file is automatically deleted
when the creating application program terminates; its blocks are returned to the pool.

The index of an SD file is partitioned into blocks on fullword boundaries. The structure of data
blocks can be described as follows:

For Com-plete internal use, 1 byte is added to each SD file record. Depending on their length,
records are blocked or split to the blocksize mentioned above.
In case of blocking, an integer number of records is written to each block. The last bytes of each
block remain unused, if the blocksize is not an integer multiple of recordsize+1.
If recordsize+1 > blocksize, records are split. In this case, each record starts on a block
boundary. Thus, the last block of each record may remain partially unused.

120

System ProgrammingCom-plete Resource Usage and Estimates

Dump Space Size And Structure

The second part of the SD dataset is used for Com-plete online dumps. The first record(s) of it
contain(s) a dump directory of 32 entries. When 32 dumps exist and another one has to be
written, the oldest existing dump will be deleted and its directory entry and space will be reused.

The dump directory is followed by the dump space. Its size is defined when the SD dataset is
initialized using TUSDUTIL. When deciding on the size of this space, you must consider the
size of the largest thread as specified in the THREADS= startup option. It is recommended to
assign space for 32 dumps of this size. If insufficient space is available to add another online
dump, Com-plete will delete the oldest existing dump(s) and reuse this space to write the new
one. This results in fewer than 32 dumps being held online.

The UDEBUG Buffer Pool
This buffer pool contains two subpools which in turn can contain three UDEBUG control block types.

The first is the Com-plete Control Block (DBCCB) which is a control block required by a UDEBUG
session which must always be available, that is, not rolled out with the UDEBUG session. It contains
elements with a length of 56 bytes from which the Com-plete Control Block areas and the Global
Symbol entries are allocated. The allocation and usage of this pool can be managed using the FB
function of UCTRL and the virtual storage required for can be determined using estimates for fixed
length buffer pools described in the section Storage for Fixed Buffer Pools.

The second control block is for UDEBUG breakpoints (DBBP). It contains elements with a length of
184 bytes from which the UDEBUG breakpoint areas are allocated. The allocation and usage of this
pool can be managed using the FB function of UCTRL and the virtual storage required for can be
determined using estimates for fixed length buffer pools described in the section Storage for Fixed
Buffer Pools.

The third is for UDEBUG global symbol entries which must be available to all users.

When a user starts a UDEBUG session, a DBCCB is allocated and when the session terminates, either
normally or abnormally, the DBCCB is freed. This means that the number of DBCCBs allocated will be in
direct proportion to the number of UDEBUG sessions.

Breakpoint buffers are gotten but never actually freed back to the buffer pool, they are logically freed by
UDEBUG to make them available for other breakpoint requests. This was necessary to reduce the cost of
serialization. It also means that once the breakpoint subpool has expanded, it will never be contracted. The
following discussion therefore relates to the logical getting and freeing of breakpoint buffers.

Breakpoint buffers are obtained implicitly and explicitly. An explicit "get" occurs when the user sets a
breakpoint successfully. The freeing of this buffer is a little more complex. Generally speaking, the
breakpoint is deleted explicitly by the user or when the UDEBUG session terminates. However, this does
not mean that the buffer can be freed. The buffer can only be freed when it can be determined that firstly,
the breakpoint is inactive, and secondly, that the breakpoint is not activated while it is being deleted. This
generally applies to a situation where the TIB being debugged is different to the TIB on which UDEBUG
is running. To avoid costly serialization, these DBBP buffers can only be freed by the debugged terminal.

Even then, it is unlikely that the buffer can be freed. For example, if the breakpoint is for a program which
resides in the thread, this cannot be deleted until this user is active in thread again. In the case, the buffer
can therefore only be freed once this user has become active and the breakpoint actually reset.

121

Com-plete Resource Usage and EstimatesSystem Programming

The Roll Buffer

To enable the UDEBUG session to access storage from the user program which is being debugged, the
debugged user will be forced to roll out over a BP, as opposed to the normal situation, in which the user is
only rolled out when someone else needs the thread. Also, the user must be rolled out to the roll buffer,
otherwise the storage will not be accessible by the UDEBUG session. Lastly, no compression of the free
queue elements in a thread will be done to ensure that the thread layout is identifiable to the user. This
means that the full catalog size of the program being debugged will always be rolled out.

Once the user is successfully rolled out to buffer, the system will ensure that this image is never staged out
to ensure that it remains available to the debugging user. This means that the rollbuffer size must be
chosen carefully to ensure firstly, that the thread of the program being debugged can always be rolled into
the buffer, and that the impact of doing this does not impact the general performance of the Com-plete
system.

CPU Usage

As UDEBUG is a debugging tool, the main purpose is to provide functionality with CPU usage a
secondary consideration, as this functionality will only be used when testing programs. For this reason, the
usage of UDEBUG in a system, particularly through the setting of breakpoints, can significantly affect the
CPU usage within Com-plete, even for users who are not debugging or being debugged. Therefore the use
of UDEBUG in a production environment must be strictly controlled.

This section gives an overview of how Com-plete uses the various system resources and shows how you
can estimate the amount used, based on Com-plete’s needs and other factors at your installation.
Depending on the type of resource, a shortage of that resource will under normal circumstances be
handled by Com-plete. In some cases, resource shortage does not affect the operation of Com-plete;
however, in others, it can mean that certain functions cannot be performed until sufficient storage
becomes available. This is discussed in more detail at the start of each section.

Note:
The storage estimates given in this section refer to the base level of Com-plete 6.1. Future maintenance
may cause these estimates to change. Please refer to the relevant documentation updates issued with each
maintenance level.

122

System ProgrammingCom-plete Resource Usage and Estimates

Com-plete Accounting Facility
This section describes the Com-plete accounting facility.

This chapter covers the following topics:

Overview

User ID Accounting Block

SMF Records

SMF Record Contents

Overview
The Com-plete accounting facility provides data that can be used to distribute the costs of the
teleprocessing system back to the user (terminal user, department, etc.).

Com-plete accumulates user resource utilization information on a user-by- user basis and writes this
information to the System Management Facilities (SMF) file. All records are optional. You must specify
which records to create and/or not to create by using the SMFRECORDS sysparm.

User ID Accounting Block
The user ID accounting control block is created immediately after a user ID successfully logs onto
Com-plete. The information from the logon information block is used to initially create this block.

The user ID account control block is maintained for the duration of the user ID’s logon cycle (until
*ULOG OFF). Information from this control block is used to create the SMF accounting control records.

Please refer to thedeliverd Com-plete source copy book CCUAB for details of the contents of this control
block and the offsets of the various fields.

SMF Records
The SMF accounting control records contain information about the resources used by a user ID during the
life of the user ID cycle from *ULOG ON to *ULOG OFF. The information in each control block is
initially taken from the user ID accounting control block.

Five types of resource utilization records can be written to the SMF file:

The ULOG ON Record

The Program Termination Record

The Checkpoint Record

123

Com-plete Accounting FacilitySystem Programming

The ULOG OFF Record

The User Record

For assembler programs, the accounting records are mapped by member CCCSMF in the distribution
source library.

The ULOG ON Record

This record is written after each successful ULOG ON operation. It contains the standard SMF prefix and
the following information:

Terminal Identification number;

User ID;

Account number;

Control status;

Authorization code;

Message and printout spooling class codes.

The Program Termination Record

This record is written each time an application program or Com-plete utility program terminates. It
contains the standard SMF prefix and the following information:

Terminal Identification number;

Thread number;

User ID;

Account number;

Control status;

Privileged program indicator;

Abnormal termination indicator;

Time program was invoked;

Program name;

Total CPU time since ULOG ON;

Total thread occupancy time;

Total number of EXCPs since ULOG ON. For z/OS systems, the SMF record contains the number of
SIOs instead of the number of EXCPs. The number of SIOs is the number of times the z/OS channel
scheduler was entered;

124

System ProgrammingCom-plete Accounting Facility

Total count of data, in bytes, transferred to and from the terminal since ULOG ON;

Total count of data in bytes, sent via message switching or printout spooling since ULOG ON;

Total number of transactions for the session (number of times in the thread) including the use of the
rollout function.

The Checkpoint Record

This record is written once every n minutes for each user logged onto Com-plete, unless a program
termination record has been written in the last n minutes or no activity has occurred for the user ID in the
last n minutes. The checkpoint record contains the same information as the program termination record.

The checkpoint interval n is an installation variable defined at Com-plete initialization time using the
SMFsysparm.

COM-PASS also produces a checkpoint record whenever a program is suspended. The checkpoint record
can be examined at offset 63 (decimal). A "blank" (X’40’) indicates a normal checkpoint. An "S" (X’E2’)
indicates a COM-PASS suspend record.

The ULOG OFF Record

This record is written after a user issues a ULOG OFF. The ULOG OFF record contains the same
information as the program termination record.

The User Record

This record contains the standard SMF prefix followed by a freely definable area available for your use.
The first half-word of this area must contain the length of this user-specific area (incl. length field).

In order to write the user SMF record, you must call (via TCALL) entry point ALSRBSMF (in
COMREG) with the following registers:

Register

0 User SMF record (will be appended to common part before being
written).

1 4 (user record indicator).

2 COMREG.

4 THCB.

5 TIB.

13 18-F/W save area.

14 Return address.

15 Entry point.

125

Com-plete Accounting FacilitySystem Programming

SMF Record Contents
This section describes the fields and their contents that are written in the Com-plete SMF records. The
offsets of the fields in the record can be determined from the DSECT produced by the CCCSMF
copybook.

SMF Record Common Portion

SMF Record Statistics Portion

SMF Record Common Portion

The following fields are found in all SMF records written by Com-plete.

Field Name Description of Contents

SFCRDWL Contains the length of this record in binary format.

SFCSYSI Contains the system ID. The following equates are available in the
CCCSMF copybook and can be compared to the contents of this field
to determine the operating system.

SFCMVS z/OS SYSTEM

SFCVSE VSE SYSTEM

SFCESA z/OS SYSTEM

SFCTYPE SMF record number as provided in the Com-plete sysparms in binary
format.

SFCTIME Time the record was written as a binary value representing the number
1/100ths of seconds since the start of the day.

SFCDATE As a packed decimal value representing the date in Julian format when
the record was written (i.e. 00YYDDDS).

SFCESYSI Contains the 4 byte character SMF system ID.

SFCUSERI Contains the 8 byte Com-plete user ID of the user for whom the record
was generated.

SFCACCT Contains the twelve byte account number related to the user.

SFCAUTH Contains the user’s authorisation code as a binary number.

SFCCNTL Contains an indicator as to the control status of the user. The following
values are possible:

C Control user

N Noncontrol user

126

System ProgrammingCom-plete Accounting Facility

Field Name Description of Contents

SFCSNEWF Contains an indicator to determine whether the record is of the newer
type written by Com-plete 4.5 and subsequent releases or not. When it
contains x’ff’, the record has been written by Com-plete 4.5 or a
subsequent release. Otherwise it has been written by a pre 4.5 release.

SFCSMC Contains the class codes in numeric format (i.e. 1, 2 etc.) which this
user is allowed to send.

SFCRMC Contains the class codes in numeric format (i.e. 1, 2, etc.) which this
user is allowed to receive.

SFCCTYPE Contains an indicator as to the type of Com-plete SMF record being
dealt with. The CCCSMF copybook contains the following equates
which can be used with this field to determine the record type.

SFCTLOGO Logon type record

SFCTTERM Program termination

SFCTCHKP Check point type record

SFCTSUSP Suspend type record

SFCTLOGF Logoff type record

SFCTUSER User SMF record.

SFCSUSER Contains an indicator as to the user type. The CCCSMF copybook
contains the following equates which can be used to determine the user
type.

SFCMATT Attached user

SFCMSCHD Scheduled user

SFCMNORM Logged on or "normal" user

SFCLUNAM Contains the terminal name of the terminal on
which the user was running. For VTAM
terminals, this is the VTAM LU name, for batch
users, this is the name of the batch job.

SFCPATCH The patch character for the Com-plete where this
user was running.

SFCVRM Contains the Version, release and SM level
respectively of the Com-plete from which the
record was written.

SFCTID Contains the terminal number in binary of the
terminal on which this user was running.

127

Com-plete Accounting FacilitySystem Programming

SMF Record Statistics Portion

The following fields are only found in the program termination, checkpoint and logoff records

Field Name Description of Contents

SFTPROG Contains the eight byte alpha-numeric name of the last program the
user ran. This is not applicable in the logoff record.

SFTPRIV Contains the privileged status of the program (except in the logoff
record). It can contain the following values.

P Program was privileged

N Program was not privileged

SFTABEND Contains the termination status of the program. It can have the
following values.

A Program abended

N Normal termination

S Program suspended in COM-PASS

SFTTHRN Contains the number of the thread in binary format where the program
ran.

SFTTRANS Contains the number of times the user has been marked as being
eligible to roll out. This is not necessarily the number of user rollouts
as a user program is only rolled out if another user program needs to
use the thread.

SFTCPU Contains the total amount of CPU used by the user in 1/100ths of
seconds.

SFTCPUTU Contains the total amount of CPU used by the user in machine timer
units.

SFTELAP Contains the total length of time the user spent in a Com-plete thread
1/100ths of seconds.

SFTEXCP Contains the total number of I/Os issued by or on behalf of the user.

SFTDATA Contains the total amount of data in bytes which was sent to and
received from the terminal.

SFTMESG Contains the total amount of data in bytes which was spooled by this
user using the Com-plete printout spooling facilities.

SFTLFTIM Contains the time that this program was started either directly via
Com-plete or via a FETCH. It is a binary number which represents the
number of 1/100ths of seconds since the start of the day (i.e. time
’00:00’).

128

System ProgrammingCom-plete Accounting Facility

Field Name Description of Contents

SFTUSER This field is copied from the UAB field available to users called
UABUSER.

SFTTRAN# Contains the number assign to this program when it was started. When
a program is started in Com-plete via a Com-plete or using a fetch, it is
assigned a unique number which starts with one for the first program
started.

SFTRTIME This contains the total of all response times for this user. A "response
time" is the time between when Com-plete has associated an incoming
user data stream with a terminal (i.e. when the user presses ENTER)
and the time when Com-plete determines that the output has been
provided back to the user.

SFTRTIM# This contains a count of the number of "response times" which
Com-plete has seen for this user. This number is basically the number
of times this user has pressed ENTER at the terminal.

SFTADAC Contains the total number of Adabas calls that this user has issued.

SFTADATR Contains the total number of times a screen interaction has included
adabas calls. This figure will always be equal or less to SFTRTIM#
depending on whether the user runs applications that generate no
Adabas calls between screen I/Os.

SFTOPCNT Contains the total number of Com-plete operations which this user has
issued. A Com-plete operation is a MCALL or other operating system
function which Com-plete has satisfied internally. An example of an
operating system function which Com-plete will satisfy is a LOAD
request from a user application program.

SFTADAET Contains the total amount of time that the user has been within the
Adabas link routine ADALCO. This represents the total elapse time
between when the call was issued to Adabas and when the response
was received back from Adabas. This number represents the time in
milli seconds (1/1000ths).

SFTADATD Contains the total amount of time the user has spent in Adabas. This
field is accumulated from the ACBDUR field in the Adabas ACB for
each Adabas call issued. Please refer to your Adabas documentation
for more information on what the ACBDUR field represents and its
format.

SFTTQTIM Contains the total amount of time this user spent on the Com-plete
ready-to-run queue in milli seconds (1/1000ths).

SFTTQCNT Contains the number of times that this user was enqued to the
Com-plete ready-to-run queue.

129

Com-plete Accounting FacilitySystem Programming

Modifications to Com-plete Modules
This chapter summarizes maintenance procedures for Com-plete modules under the following headings:

Overview

Link Editing Com-plete Modules

Link Edit Return Codes

Com-plete Support Issues

Overview
Alterations to the Com-plete modules must be performed in a consistent and documented manner to
ensure the stability of the product.

Com-plete modules may need to be altered with fixes supplied by SOFTWARE AG. In addition,
system-wide modifications can be implemented to customize the operation of the Com-plete nucleus and
its utility programs to the needs of the installation. The following types of customizations are acceptable:

Using the APPLYMOD sysparm that alters the functioning of Com-plete;

Adding user exit routines to Com-plete and utility programs for security and customization;

Modification of maps to present terminal users with an organization’s specific screen.

Link Editing Com-plete Modules
As all user exits are now loaded as standard, there should be no reason to relink Com-plete modules.
However, for reasons of compatibility, exits that were previously documented as being linked with
Com-plete can still be linked. This facility will be dropped in a future release of Com-plete. If a Com-plete
module needs to be linked with a user-written module, the resultant load module must be stored in a user
data set so that the original is still available. If a problem is not reproducible with the supplied Com-plete
modules, then it will not be accepted as a product problem.

Normally you will get a new load module when a bug has been fixed for z/OS. In urgent cases or when a
correction can only be tested in your Com-plete environment, you can also get a zap from support. You
are recommended to copy the applicable module from the Com-plete distribution library to a Com-plete
zap library and zap it there.

Note:
Newly linkedited utilities may or may not become available in the system immediately due to a fixed
number of BLDL/LOAD list entries held for the most recently used modules while Com-plete is active.
Use the ULIB REFRESH command to ensure a newly linkedited module becomes available immediately.

130

System ProgrammingModifications to Com-plete Modules

Link Edit Return Codes
In most cases, the link-edits for Com-plete should have a return code of 00, otherwise the results of
executing the newly linked module are unpredicatable. The following are the link edits that can be
expected to finish with a return code of 04. Anything higher is again an error and execution of this module
causes unpredictable results.

TUDUMP
TUMSUTIL
TUSACAPT
TUSDUTIL
UED
UPWD

Com-plete Support Issues
Problem Reporting

Com-plete Problem Solutions

Com-plete Maintenance Updates

Problem Reporting

To ensure a fast turnaround time when reporting a problem, the following information must be provided,
depending on the type of problem.

1. Version, release, SM level and patch level of the Com-plete in which the problem occurred;

2. 2. Version, release SM level and patch level of the APS libraries used.

3. Type and level of operating system under which the Com-plete is running;

4. Version, release and SM level of products related to the problem (eg. Natural, Adabas);

5. Message numbers where applicable;

6. System log for a period of time before the actual event;

7. Sequence of actions used to cause the problem if available;

8. Name and offset in module where an abend occurred if applicable.

On the basis of the above information, a search can be made within the system. If this does not lead to a
solution, the above information must be supplemented with the following.

1. Dump resulting from the problem if applicable;

2. Output from the job where the problem occurred;

131

Modifications to Com-plete ModulesSystem Programming

3. Any other information that may be requested by the support personnel.

Where practical information can be sent (for example, thread dumps), this is recommended. For
region/partition dumps, an IPCS readable dump (z/OS) or a IDCAMS REPRO of the COMDMP dataset
(VSE) should be sent to support. However, you should consult with support personnel as to what they
require.

Com-plete Problem Solutions

When a problem is identified and a correction of some nature is required, the correction may take any of
the following formats.

1. A zap (hotfix) which must be applied to various Com-plete modules;

2. A source update which indicates the source member on the distribution to be changed and what
should be changed there;

3. A library with an updated module;

4. A new patch level of the product;

5. An acceptance of the request as a change enhancement request to be included in a future release of
Com-plete.

The normal situation is a library with an updated module (z/OS) or a hotfix zap (VSE). Situations where a
source update is required can sometimes be corrected with a description of what needs to be changed.
However, if the changes are so great that the possibility of errors exists, the updated source will be
distributed by tape.

In the case where a correction is so complex that it involves changes to various modules, if the problem is
not a major one, the request will be treated as a change enhancement request. If the problem causes major
problems which are fixed in a patch level, the user will be requested to go to that particular level. If it is
not fixed, the correction will be distributed with replacement modules and source members as necessary.

Com-plete Maintenance Updates

All available corrections since the first availability of the current COM release will be collected in patch
levels. These are cumulative, so that PLn+1 includes all corrections delivered with PLn. These patch
levels are delivered as load libaries (plus source libraries if required).

132

System ProgrammingModifications to Com-plete Modules

Com-plete Capture Processing
Com-plete capture processing is a mechanism for the "capturing" and saving of data of any type for later
use. The data is captured to socalled CAPTURE data sets which must be allocated and initialized before
Com-plete is initialized. As well as capturing system data, such as the trace records, installation-specific
data can also be captured.

This chapter covers the following topics:

Capture Data Sets

Captured Data

Capture Records Processing

Capture Data Sets
The Capture data sets are VSAM data sets allocated as specified in the section Com-plete Files and
Associated User Files. They must then be included in the Com-plete job control with the DDname/DLBL
name CAPTURn, where n is a number from 1 to 9. At initialization, capture processing either uses the
number of Capture data sets as specified in the CAPTURE sysparm, or determines the number of data sets
specified in the job control dynamically.

Note:
To disable Capture, you must specify SUBSYS-IGNORE=CAPTURE in the Com-plete sysparms.

By default, the capture data sets are non-reusable. This means that when they are filled, they cannot be
used again until they have been copied and/or reset by the TUSACAPT utility. To enable the capture
subsystem to reuse the data sets when they are filled, specify CAPTURE=(n,REUSE) in the sysparms.

After initialization, Capture opens the first available data set and uses it to capture data. The capture data
currently in use is always clearly visible from the COMCA... messages issued to the operator console.
When a data set fills, the capture subsystem informs the operator and attempts to find another data set that
can be used. If the REUSE option is specified on the CAPTURE sysparm, the next data set is selected,
opened and used (in round robin fashion, from CAPTUR1 to CAPTUR9), regardless of whether it already
contains data or not.

If the REUSE option is not specified, and the current data set fills, the next data set is checked for data. If
data exists, the following data set is checked, and so on, until a data set without data is found. In the event
that all data sets contain capture data, a message goes out to the operator, informing him/her to clear a data
set for use, otherwise capture processing cannot continue. Com-plete then waits until the operator replies
that one or more data sets have been cleared before checking again for an ’empty’ data set. For this
reason, it is recommended that you build a procedure to unload and initialize Capture data sets as soon as
they are filled.

133

Com-plete Capture ProcessingSystem Programming

Captured Data
When a Capture data set is opened, either for the first time or after it has been unloaded and initialized, a
header record is written as the first record to the Capture data set. This contains details of times, dates,
software levels etc. of when the data set was opened. The exact contents and format of this header record
can be found in the CAPLAB macro supplied on the distributed Com-plete source data set.

Following this header, system and/or user capture records can be found. Each record has a prefix to
identify the type and format of the following record along with the date and time it was written, followed
by the actual data itself. Refer to the CCCAPT copy book supplied on the Com-plete distributed source for
details of the layout of this area.

Capture Records Processing
Com-plete provides no utilities to process these records, as the contents of the records is purely up to the
user. In the case of system records, a utility will be supplied in a future release to format the Com-plete
trace records that are written.

134

System ProgrammingCom-plete Capture Processing

Com-plete Servers
This chapter covers the following topics:

Overview

Server Definition

Server Initialization

Server Termination

Server Command Interface

Server Invocation

Server DSECTs

Server Request Routine

Overview
The modifications to Com-plete required for the implementation of the DB2 interface has resulted in the
introduction of a new independent server facility to Com-plete. This facility enables Com-plete to support
products which require their own subtask(s) and/or special invocation during startup and termination.

In addition to the DB2 interface, other SOFTWARE AG products such as the Natural Bufferpool
Manager, the SAG EDITOR and the Com-plete JES and CONSOLE interfaces have been adapted to use
this facility.

3rd party products such as TableBase (Data Connetics) and TABEX (BOI) can also use this feature.

In general, the functions to be provided by user-defined servers have no restrictions. Com-plete provides a
basic framework of facilities, consisting of the following:

Definition

Initialization

Termination

Command Interface

Invocation

These are described in more detail in the following sections. This section also illustrates server DSECTs,
and provides information on the server request routine.

135

Com-plete ServersSystem Programming

Server Definition
You can define servers using the SERVER sysparm:

SERVER=(serv-id,init-mod,p1,p2 ... pn)

where:

serv-id is the ID for this server (1-8 characters).

init-mod is the name of the initialization/termination routine.

p1,p2...pn are parameters to be passed to the initialization routines.

Com-plete builds a server directory dynamically and provides a Server Directory Entry (SDE) for each
server. Note that user-defined servers must be defined after the Com-plete servers.

The layout of the SDE is illustrated in the section Server DSECTs. It is mapped by the macro

CMSRVD DDIR,LIST=YES

provided on the distributed source library.

Server Main Routine

The server initialization/termination routine specified in the SERVER sysparm entry is loaded
dynamically at Com-plete startup time and called in the key of Com-plete. In z/OS and VSE
environments, the program is called according to the AMODE and RMODE options from the linkage
editor and must return with the AMODE indicated in RE on entry (BSM instruction).

The main routine executes under control of the main Com-plete task (OC).

All operating system functions are available, except Com-plete operations (MCALLs), which are not
allowed.

Registers upon entry (all calls):

R1 parameter list pointer (see individual function).

R2 COMREG

RD 18F save area

RE return address (high order bit contains AMODE of caller)

RF entry point

Server Initialization
The server initialization takes place after activation of any Com-plete subtasks (TAM, MSGPO,
THREADn). If the user-defined server attaches any further subtask(s), you must consider the priority
carefully, since the default from the ATTACH SVC will put this subtask immediately behind OC,
meaning that the later activation of TAM, MSGPO etc. will put these Com-plete tasks behind the server
task(s). A value of minus 2 (-2) or less for DPMOD on the ATTACH is recommended.

136

System ProgrammingCom-plete Servers

Parameter list for initialization:

P1 address of function code "INIT".

P2 address of the Server Directory Entry.

P3 address of the parameter string from the SERVER sysparm.

The parameter string from the SERVER sysparm definitions is constructed in the following way:

(LL(P1...........,Pn))

where:

LL 2 bytes containing the total length of all parameters (not counting LL
field itself).

P1,..Pn parameter value(s).

Example:
SERVER=(TEST,TLINTEST,aaa,bbb,r=17)

The data pointed to by R1 will look like this:

X’000C’,C’aaa,bbb,r=17’

After successfull completion of the server initialization, the fields SRVEMCB and SRVESERV must be
set in the SDE. The meaning of these fields is as follows:

SRVEMCB The content and meaning of this field is up to the individual server.
However, the initialization routine must ensure that this field contains
a non-zero value, otherwise the server is considered to be not active.

SRVESERV Contains the entry-point for server calls via the
ALLOCATE/DEALLOC SERVER function (see below). The
high-order bit of this address is used to set the AMODE in XA/ESA
environments.

Server Termination
Since the termination process is basically a reverse initialization, this request is also passed to the
main-routine (see above).

Termination calls are triggered either by Com-plete termination or using the operator command

SERV TERM,serv-id

The server routine is responsible to free all obtained storage, DETACH the activated subtask(s) and to
CLOSE any open datasets.

137

Com-plete ServersSystem Programming

Parameter list for termination:

P1 address of function code "TERM"

P2 address of the Server Directory Entry

The server routine has to ensure that the SRVEMCB field is set to zero.

Server Command Interface
Various requests can be passed to the individual server using the Com-plete operator command

SERV serv-id,request data

Parameter list for operator interface:

P1 address of function code "CMND"

P2 address of the Server Directory Entry

P3 address of request data string from the command (for format, see the
section on server initialization above.)

Server Invocation
The invocation of a user-defined server can be achieved in 2 different ways.

1. The server directory entry for a given SERVER-ID can be found by using the
following macro:

CMSRVD QUERY,NAME=’serv-id’

This function needs addressability to COMREG (any register) and will return the address of the
directory entry in R1 if this server is up (R15=0), otherwise R15 will be non-zero and the contents of
R1 are undefined. For a description of the server diretory entry SDE see the section Server DSECTs.

The value in the SRVEMCB field can be used to obtain the address of the specific service routine.

2. If a user-defined server requires something like session control, you can use the ALLOCATE and
DEALLOCATE functions of the CMSRVD macro. These functions branch to the SRVESERV entry
point of the user-defined service routine. The expected funtionality of this routine is described in the
section Server Request Routine.

This alternative ensures that Com-plete performs an invocation in cases where the application ends
(normal or abnormal) and still has a pending session with a server.

To acquire a session with a server use the macro:

CMSRVD ALLOCATE,NAME=’serv-id’

138

System ProgrammingCom-plete Servers

After successfull execution (RF=0), this macro returns the address of the RQE in R1 (see the section
Server DSECTs).

R15 > 0 indicates that the request could not be satisfied and the contents of R1 are unpredictible.

To free a session with a server, use

CMSRVD DEALLO,NAME=’serv-id’, AREA=

The AREA keyword specifies a register or storage location which contains the address of the RQE
provided by the ALLOCATE function.

The corresponding branch interface function is

SERVER,(retcode,serv-id,function,area)

where:

retcode required A fullword where Com-plete places the returncode upon
completion of the request.

serv-id required An eight-byte character field containing the servername
(as stored in SRVENAME)

function required An eight-byte character field containing QUERY,
ALLOCATE or DEALLO

area required only for function DEALLO A fullword containing the
address of the RQE provided by the ALLOCATE function

More about the requirements of the branch interface can be found in Application Programming
Interface in the Application Programming documentation.

Server DSECTs
The server directory entry (SDE) is mapped in the DSRVE DSECT, which is generated by the following
macro:

CMSRVD DDIR,LIST=YES|NO

DSRVE DSECT, SERVER ENTRY
SRVENAME DS CL8 NAME
SRVEINIT DS CL8 NAME INIT ROUTINE
SRVEINEP DS A EP INIT/TERM ROUTINE

SERVER DIRECTORY available for server

SRVEMCB DS A A(SERVER CONTROL BLOCK)
 ZERO INDICATES NOT UP
SRVESERV DS A A(SERVICE ROUTINE)
 DS A ** RESERVED **

SRVELEN# EQU *-DSRVE LEN OF ENTRY

139

Com-plete ServersSystem Programming

The server request entry (RQE) is mapped in the DSRVE DSECT, which is
generated by the following macro:

CMSRVD DRQE,LIST=YES|NO

DSRVR DSECT,
SRVRNAME DS CL8 ID
SRVRLEN DS F len of control block
SRVRNSRV DS A A(next request element)
 maintained by Com-plete

SRVRREQE DS A A(SERVICE ROUTINE)
SRVRSVFE DS A A(entry for ALLOCATE, DEALLO,
 and EOJ function)
 DS 2A ** RESERVED **

The default for the LIST keyword is the setting of &CCPRNT (CCGLOBS).

Server Request Routine
The server request routine is provided in the field SRVESERV of the SDE. The routine is invoked using
ALLOCATE, DEALLOC requests via the CMSRVD macro and during EOJ processing for a user session.

Registers upon entry (all calls):

R1 server directory entry (SDE)

R2 COMREG

R7 address of option (ALLOCATE, DEALLOC, EOJ)

R8 AREA from DEALLOC

RD 18F save area

RE return addr (high order bit contains AMODE of caller)

RF entry point

ALLOCATE Request

The server must allocate a RQE outside the thread. Other server specific functions may also be
performed during ALLOCATE processing. If the request was successfully processed R15 must
be set to 0 and R1 must contain the address of the RQE.

DEALLOCATE Request

Deallocate processing must be used to free all user-related resources or whatever may be
necessary for the server. After return from the server request routine, Com-plete will remove the
RQE from its internal chain. This will prevent any cleanup call at session end.

EOJ Request

If an active server session is pending at EOJ processing for a transaction, Com-plete invokes the
server request routine for cleanup processing (SRVRSVFE).

140

System ProgrammingCom-plete Servers

The option pointed to by R7 on entry indicates the type of transaction end:

EOJNORM normal end of transaction

EOJABEND transaction abended

141

Com-plete ServersSystem Programming

Software Interfaces
This part of the Com-plete System Programming documentation discusses the considerations when using
Com-plete in various software environments.

This information is organized under the following headings:

ACCESS

Adabas

Application Programming Interface

Batch

VTAM

APPC Interface

CICS / Com-plete Transaction Routing

LIBRARIAN (z/OS Only)

VSE LIBR Service

Using VSAM with Com-plete

GDDM

PANVALET (z/OS only)

Job Entry Subsystem (JES) Interface Modules

UDVS VSAM SERVICES (VSE Only)

Security Systems

The DB2 Interface

Natural

CA-DYNAM from Computer Associates (VSE only)

IBM Language Environment Considerations

File Transfer

142

System ProgrammingSoftware Interfaces

ACCESS
ACCESS is the term given to the Com-plete access method: communication is performed via the Adabas
router interface.

This is used, for example, to provide communication with other TP-monitors in the Adabas TPF
environment. It is also used in Com-plete Batch support to provide the basic communication between the
Batch job and the Com-plete Batch interface utility UBATCH.

Communication with the Adabas router is provided by modules supplied on the Adabas load library.
These modules are loaded during initialization from the Adabas load library.

Com-plete issues the appropriate calls to sign onto and initiate communication with the Adabas router
using the parameters supplied during Com-plete initialization.

Sysparm Considerations

Sysparm ACCESS-NCQE defines the number of command queue elements which are allocated by the
Adabas router. This restricts the maximum number of concurrent Com-plete transactions. Note that this is
not the same as the number of logged on users: this is normally higher and is only restricted by the
availability of TIBTAB entries.

Sysparm ACCESS-NABS defines the number of attached buffers which are allocated by the Adabas
router for cross-memory services. The Adabas router acquires storage for the attached buffers during
ACCESS initialization, the size of this acquired area is approximately (NABS * 4 Kbytes). This restricts
the amount of data which can be transmitted. Adabas TPF requires approximately 7K of attached buffers
per active transaction (see ACCESS-NCQEs).

Sysparm ACCESS-ID defines the (pseudo-)data base ID with which the server Com-plete signs on to the
Adabas V5 router.

Sysparm ACCESS-SVC defines the router SVC number. Note that this SVC need not be the same as for
normal data base communication.

143

ACCESSSystem Programming

Adabas
The Com-plete Application Programming documentation describes the call interface to Adabas. This call
interface provided by Com-plete deals exclusively with Com-plete timing, rolling and statistics. The
Adabas linkage is provided by separate ADALNK modules.

This chapter covers the following topics:

General Usage

ADALNK Features

General Usage
All Adabas calls are issued in the key of the thread itself. As there is a requirement to sometimes roll out a
user over an Adabas call, the Adabas interface requires that it can get its UB area and a certain amount of
its workarea outside of the thread and in the same key as the thread. For this reason, an Adabas buffer pool
is built with subpools of the same size but in different storage protect keys.

The size of the Adabas workarea is dependent on the various lengths set in the ADALCO module when it
is assembled. It is possible to have a user length and a Review length included in the calculation for the
Adabas workarea in this way. The total amount of the Adabas workarea should be rounded up to a good
binary figure such as 512 or 1024. This is because the buffer subpools must be page aligned and without a
value such as one of these, storage will be wasted.

If no Adabas buffer pool is specified by the user, Com-plete allocates a buffer pool with a subpool in each
user storage protect key possible with 8k available in each. The number of Adabas work areas that can be
allocated from each will be dependent on it’s total length. It is not possible for Com-plete to make a more
intelligent guess than this as their usage totally depends on the number of Adabas calls which will be
issued concurrently in a given storage protect key.

It is recommended that users calculate their Adabas usage and build their Adabas buffer pool accordingly.
You must build a buffer pool with a subpool available in every key in which an Adabas call will be issued.
If an Adabas call is issued in a key for which no subpool exists, the subpool will be created but this in
itself is an additional overhead. Software AG recommend that a subpool be created for each key in which
an Adabas call can be issued in the Com-plete region.

You must now determine how many Adabas work areas will be required at the same time in each subpool.
Software AG recommend that the resultant figure be increased by 20% to allow for peaks and future use.
If the subpool fills, it will expand if the virtual storage is available but again, this is an overhead. If the
subpools are well allocated and their usage monitored closely, it should be possible to increase or decrease
the specification as required.

The Adabas work areas will be allocated above the line when the following conditions are satisfied. If one
of the following is not satisfied, the Adabas buffer subpools will be allocated below the line.

ADALCO must be linked with AMODE=31.

144

System ProgrammingAdabas

If ULOPADAB exists it must be linked with AMODE=31.

ADALNK Features
The V5 ADALNK features of user exits and data passing are supported by the Com-plete interface:

User exits
If required, you can link the UEXITB and UEXITA routines with the supplied ADALNK module.
The ADALNK routine is called in the AMODE in which the MCALL Adabas was issued, this also
applies to UEXITB and UEXITA. You must ensure that the return is made in the correct mode, that
is, in the mode in which he was entered. Please note that parameters passed from Natural can reside
above the 16 MB line.

Data passing
The ADALNK module is also supplied in source so that you can re-assemble the module providing a
value for LUINFO, the UB extention length. This length is added to the basic length of the workarea
(approx. 512 bytes) and the total is the size of the area obtained by the Com-plete nucleus from the
buffer pool. This means that careful adjustment of the BUFFERPOOL sysparm may be necessary to
prevent inefficient use of storage.

A full description of these features is contained in the Adabas documentation.

145

AdabasSystem Programming

Application Programming Interface
The application programming interface is now what is termed "storage key sensitive". This means that the
API routines determine the key of the storage to which they are going to write and switch their PSW key
to that key prior to writing to the storage. This avoids the overhead of changing the entire thread to
Com-plete’s key during an API call and back again once the call has been processed. It also means that the
path length through an API routine is exactly the same if the thread is defined with Com-plete’s storage
protect key or a different protect key i.e. using the storage protection feature should be no more expensive
for most applications.

Note that some emulated operating system SVCs cause the key of the thread to be changed due to internal
operating system requirements. For this reason, operating system specific functions should be avoided
whenever possible and the appropriate Com-plete API function used instead.

Due to the requirement to support SVC entry to the nucleus, there is a slight additional overhead required
in the thread. This is primarily an 18F savearea which is used by the internal bridging mechanism to enter
the standard API routines. Where COLINK, or OS type link requests are used, an additional 18F savearea
is acquired per link request which is freed on return from the link.

146

System ProgrammingApplication Programming Interface

Batch
Batch applications which require Com-plete services use ACCESS to communicate with the target
Com-plete system. As the mechanism used to communicate with the Com-plete region is the Adabas
router mechanism, this method of batch support can take advantage of the networking features provided
by the Adabas router mechanism.

As each server Com-plete signs on to the router with a different data base ID (which is also unique within
the network), several Com-plete regions can offer batch support, allowing a distribution of the batch
workload between multiple address spaces.

For further information on how to install ACCESS, see the description of the ACCESS interface. For
further information on how to install Natural Batch, see the description of the Natural interface.

Running Batch Programs
1. Batch applications must be linked to the module COMPBTCH supplied on the Com-plete load

library, which contains entry points for all Com-plete functions allowed from a batch environment.

2. COMPBTCH loads modules TUBATCH and TUBCONN to perform the required function. These
load modules must therefore be contained in the STEPLIB concatenation of the batch job.

3. On the first call, TUBATCH will attempt to establish communication with the target Com-plete. To
do this, TUBATCH requires two pieces of information: the NODEID of the target node and the SVC
number of the Network Router (Adabas SVC) on which this node is established.

This information can be obtained in one of the following ways:

ACSTAB.
TUBATCH attempts to load a table ACSTAB and, if found, will search this for the entry named
BATCH, the values for NODEID and SVC are then taken from this entry.
A sample ACSTAB is delivered on the Com-plete source dataset. This member must be
modified to suit the installation requirements, assembled and linked to an appropriate data set
during installation of Com-plete. This library can then be included in the STEPLIB
concatenation of batch jobs.

COMBTCH JCL statement.
In addition to the above procedure, TUBATCH will always attempt to find the NODEID and
SVC from JCL DD card COMBTCH.

COMBTCH DD DSN=NODEnnnn.SVCsss,DISP=.......
or: COMBTCH DD DSN=NODnnnnn.SVCsss,DISP=.......

The values obtained will overwrite the values contained in the ACSTAB to allow individual
jobs to override values specified in the ACSTAB.

Note:
The value of NODEID in the ACSTAB may be 1 - 65535. To allow for 5-digit values,
NODnnnnn is also supported

147

BatchSystem Programming

a combination of both. This method allows you to define multiple Com-pletes in one ACSTAB.
You define ACSTAB entries using any names you like (e.g., jobname or installation ID or whatever)
instead of or along with the "BATCH" entry. To select an entry, use a COMBTCH DD statement like this:

COMBTCH DD DSN=[any_prefix.]TARGET.target[.any_suffix],DISP=...

where target is the entry name associated with the COMPLETE you want the BATCH job to
connect to. If this notation is used and NODEnnnn and/or SVCsss are also specified, then the
latter are ignored.

4. The batch interface modules supply a default user name of BATCHCOM at logon to the target
system, except when the job is submitted in an environment which is protected by an external
security system; in this case, the user ID under which the job is submitted (taken from the ACEE) is
passed to the target system.

Note:
The target Com-plete node must be started with BATCH=YES specified in the system parameters.

148

System ProgrammingBatch

VTAM
The VTAM interface is the Com-plete communication channel to the SNA network. It maps the terminal
I/O requests to the SNA protocol corresponding to a specific device (LU) type. LU0, LU1, LU2, LU3 and
LU6.2 protocols are supported. On activating the VTAM Interface, Com-plete becomes a VTAM
application LU known in the network by it’s ACBNAME.

The VTAM interface is described under the following headings:

Defining and Activating the VTAM Application

Generic Resource names

LOGMODES

Defining and Activating the VTAM Application
Before the VTAM interface can be activated, the application must be defined (in SYS1.VTAMLST) and
activated (VARY NET ACT,ID=acbname):

name APPL APPC=YES/NO
 ,AUTH=(ACQ,PASS)
 ,ACBNAME= acbname
 ,PARSESS=YES
 ,MODETAB= mode_table
 ,SECACPT=ALREADYV
 ,DSESLIM=
 ,DMINWML=1
 ,DMINWMR=

where:

name specifies the network-unique name. If you do not code the
ACBNAME parameter the network-unique name is used as
ACBNAME. It must be identical to the name specified in the
VTAMAPPL sysparm.

acbname specifies the minor node name assigned to this application
program. This name must be unique within the domain in which
the application program resides. If you do not code this operand,
the network-unique name (the name of the APPL definition
statement) is used as the ACBNAME.

149

VTAMSystem Programming

mode_table specifies the name of a logon mode table to be used to associate
each logon mode name with a set of session parameters. If you do
not supply a logon mode table on the MODETAB operand, an
IBM-supplied default logon mode table (ISTINCLM) is used. If
you specify a table, both the table you specify and the default
table are used. It is recommended to create a new mode table
when new logon mode names are created or parameters on
existing logmodes from the default table are changed.

APPC=YES is required to activate the LU6.2 (APPC) support.

AUTH=ACQ determines that Com-plete either the OPNDST macroinstruction
with the ACQUIRE option or the SIMLOGON macroinstruction.
(These macroinstructions enable Com-plete to initiate a session
with a particular logical unit, e.g. a printer). If you code
APPC=YES, this parameter defaults to ACQ and can be
ommitted. If you code APPC=YES and AUTH=NOACQ, VTAM
supplies an override of ACQ and issues a warning message.

AUTH=PASS is required if the PASS option of the ULOG utility is used,
allowing VTAM to pass the session to another application.
Otherwise the request will be rejectded with RC=20 (X’14’)
FDBK2=94(X’5E’).

PARSESS=YES allows Com-plete to have multiple LU-LU sessions with the same
session partner. PARSESS defaults to YES when APPC=YES.
This option is required (explicitly or by default) when ULOG
PASS is to be used or when Com-plete is used in conjunction
with a session manager (as NET-PASS) in order to reduce the
number of ACBs.

SECACPT=ALREADYV tells VTAM to build a BIND RESPONSE in order to allow
"security"+"already verified" bits on incoming ATTACH
requests.

DSESLIM maximum number of sessions between local and remote LU
(default=2). must be > = DMINWML+DMINWMR.

DMINWML minimum number of sessions where the local LU is guaranteed
contention winner.

DMINWMR minimum number of sessions where the remote LU is guaranted
contention winner.

Notes:

1. Check the NET-PASS sample exit NPEXIT07 on the distributed NET-PASS source library if
NET-PASS is to provide the real LU-name of the terminal to Com-plete. The counterpart of this exit
in Com-plete is activated automatically.

2. SONSCIP=NO (default) should always be in effect, otherwise Com-plete will not be able to detect
session failures and perform the termination processing for that user. Further attempts to re-logon to
Com-plete will be rejected (user already logged on).

3. See the description of APPLYMODs 29, 52, 53 and 69 for parameters affecting the VTAM Interface.
4. Mode modename must be defined in a mode table before Transaction Routing to Com-plete is

activated. CICS only uses its internal session characteristics (that may differ from those defined in

150

System ProgrammingVTAM

the logmode table) instead of the VTAM mode definitions but they are required by Com-plete.
5. Due to length differences between CICS transaction codes (4 bytes) and Com-plete program names

(8 bytes), it is necessary to create a cross-reference table in Com-plete (see Com-plete Considerations) to
match the transaction name trnm as known in CICS with the true Com-plete program name.

6. The CICS CRTE transaction is also supported thus allowing CICS users to invoke Com-plete
applications that do not have a TRANSACTION definition. However, corresponding URTETB entries
must be coded also for these transaction names.

Generic Resource names
Any VTAM application program running on a VTAM that is connected to the z/OS coupling facility can
use a generic resource name. VTAM keeps a map of the application programs that are members of each
generic resource name. VTAM distributes incoming sessions that are initiated using a generic resource
name among all members mapped to that name. A generic resource name may be specified by means of
the VTAMGENERIC sysparm.

The following restrictions apply to generic resource names:

An application program can use one generic resource name at a time.

Generic resource members using the same generic resource name must have the same
networkidentifier (NETID).

Generic resource names must be unique within a single network. If your network has multiple
sysplexes, generic resource names must be unique throughout all sysplexes.

A USERVAR and a generic resource name cannot have the same name.

An ALIAS application program and a generic resource name cannot have the same name.

A name that is being used as an application program network name cannot be used as a generic
resource name.

LOGMODES
Session parameters for the different device types or LU6.2 sessions are read directly from VTAM or it’s
libraries, eliminating redundant specifications and possible inconsistencies between specifications. This
requires correct and entire specification of the parameters in the logmode entries, since these override the
specifications in TIBTAB.

151

VTAMSystem Programming

APPC Interface
The APPC Interface is described under the following headings:

Concepts

Implementation

Requirements

Concepts
APPC is a communication protocol specifically designed for distributed processing. While 3270-based
communications are hierarchical (controlled by the host), APPC is peer-to-peer, meaning that programs
communicate as equals. APPC-based applications send and receive data directly, without using 3270
screens. In APPC, the communication between two programs is called a conversation. The program that
initiates the conversation is called the client, and the program that responds to the client is called the
server. A distributed application is an application that requires programming from different places. A
transaction program (TP) is one of the programs in a distributed application. A transaction is a business
deal cooperatively completed by two or more transaction programs.

An APPC application can be designed to provide the functions of a 3270-based application, but without
the same performance and reliability problems associated with 3270 communications. APPC programs
can communicate with each other no matter which API is used by either side.

APPC data transfers are not restricted by screen size. Applications can send up to 32 kbytes of data in a
single send. This alone greatly increases the performance of APPC over 3270. Additionally, APPC
automatically buffers the data that is sent to the partner program. Buffering is performed to optimize
network data flow for client/server applications. If a number of records are sent using several send calls,
the data can be sent as a single network flow.

Because APPC is a peer-to-peer protocol, both APPC applications must agree on which communication
flows will be used for the conversation. The communications flow includes who will start the
conversation, what each side will say, when and how they will say it, and who will end the conversation.
With APPC, any supported platform can have applications that function as either the client or the server.

APPC does not assume that applications will provide data in a specific format, since APPC can transport
data in any format. When communicating between platforms, APPC does not perform data conversions.
Although data conversion routines are simple to code, the fact that conversion may be needed is often
overlooked when first developing APPC applications. The developer needs to include the ability to
convert character, integer and floating point data when sending data between platforms.

Similarly, binary data must be handled differently in APPC. 3270 applications do not have to deal with
binary data, since all data is expanded to text format for the 3270 screens. When migrating a 3270
application to APPC, it is often necessary to expand the binary data to text before sending it to the partner
platform. Since different platforms store binary data in different formats, sending binary data in its native
format across platforms can cause application errors.

152

System ProgrammingAPPC Interface

There are several ways to ensure that both partners can correctly handle transported data:

An organization can define a standard for all data that is exchanged, so an application can convert
between the standard and the format for the platform on which the application is running.

All numbers can be sent in character form rather than binary.

Use system and language tools that help translate data to be sent to other machines.

Implementation
Com-pletes APPC Interface allows online programs to act as servers in an APPC conversation. In general
the server program running under Com-plete does not know or does not need to know wether it is
communicating with a terminal or an APPC partner. The data transformation is done later in the
corresponding device modules according to TIB specifications. Existing 3270 application programs might
work correctly as APPC server TPs. Clients must of course be to understand the existing logic of data
flow. No 3270 control data is sent unless the TP inserts it manually (Write Special).

Requirements
To enable the Com-plete APPC Interface , the APPC=YES parameter must be present on the APPL
definition of Com-plete and LOGMODE entries for SNASVCMG and a user LOGMODE must have been
included in an active logmode table.

A buffer pool with an element size of 32K, location ANY must be specified in SYSPARMS for the APPC
Receive Buffers.

The TP name length for servers running under Com-plete is restricted to 8 characters. TP names longer
than 8 characters are truncated to 8.

ULOG is invoked prior to attaching the requested TP. A valid userID/PASSWORD combination must be
present in the security fields of the ATTACH request. If logon fails the ATTACH is rejected with the
corresponding sense code. On normal or abnormal termination of the requested TP the standard logoff
procedures are invoked before the conversation is deallocated.

Com-plete fully supports BASIC and MAPPED conversations with Synclevel=None.
Synclevel=CONFIRM is currently supported by the interface but API support is not yet available.
CONFIRMD requests are generated automatically by the interface when appropriate.

Application Data GDS(12FF) is expected after the ATTACH FMH-5. If a User Control Data GDS (12F2)
is found Com-plete assumes this is a CICS Transaction Routing Request and activates the supplied
transaction URTE. UserID/PASSWORD in the security fields are then ignored. They will be taken from
CICS input data.

153

APPC InterfaceSystem Programming

CICS / Com-plete Transaction Routing
Com-plete may act as a CICS Application Owning Region (AOR) for CICS Transaction Routing. This
allows terminals defined and connected to a CICS system to run with applications defined and executed in
Com-plete. CICS users may acquire an ISC APPC-Type link to Com-plete and execute Com-plete
applications from a CICS terminal. Com-plete behaves toward the CICS system as another CICS. The
implementation of Transaction routing to Com-plete on a CICS system is no different from implementing
CICS-to-CICS Transaction Routing. CICS versions 2.1 to 4.1 are supported.

This chapter covers the following topics:

CICS Considerations

Transaction Parameters

Logon Security

Programming Notes

TRACES

CICS Considerations
CONNECTION, SESSION, TRANSACTION and PROFILE definitions must be coded in the CICS
system. Recommended specifications :

CONNECTION
....
Netname : ==> Com-plete ACBNAME
.....
ACcessmethod : ==> VTAM
PRotocol : ==> APPC
SInglesess : ==> No
DAtastream : ==> User
RECordformat : ==> U
........
SESSION
......
MOdename : ==> modename (1)
Protocol : ==> APPC
......
TRANSACTION (3)
......
REMOTEName : ==> trnm (2)

Notes:

1. Mode modename must be defined in a mode table before Transaction Routing to Com-plete is
activated. CICS only uses its internal session characteristics (that may differ from those defined in
the logmode table) instead of the VTAM mode definitions but they are required by Com-plete.

2. Due to length differences between CICS transaction codes (4 bytes) and Com-plete program names
(8 bytes), it is necessary to create a cross-reference table in Com-plete (see Com-plete
Considerations) to match the transaction name trnm as known in CICS with the true Com-plete

154

System ProgrammingCICS / Com-plete Transaction Routing

program name.
3. The CICS CRTE transaction is also supported thus allowing CICS users to invoke Com-plete

applications that do not have a TRANSACTION definition. However, corresponding URTETB entries
must be coded also for these transaction names.

Terminals to be used in Transaction Routing may be autoinstall-type terminals or TERMINAL definitions.
Com-plete allways requests CICS to ship the terminal definitions so all terminals must be defined as
shippable:

TYPETERM
 SHIppable : ==>Yes
....

Com-plete Considerations

Before Transaction Routing can be activated, a conversion table (module URTETB) must be assembled
and link-edited in the Com-plete load library. URTETB is loaded at Transaction Routing initialization and
referenced for each new transaction. The Com-plete Transaction Routing Program (URTE) searches this
table for the CICS transaction name and gets the Com-plete application program name to be started. If the
CICS remote transaction name is not found in URTETB, or URTETB has not been loaded Com-plete
returns an error to the CICS user and drops the session.

The basic format of URTETB is 1 CMROUTE TYPE=START macro call followed by any number of
CMROUTE TYPE=ENTRY macro calls that specify the CICS transaction name (trnm) and the
corresponding Com-plete program name (pgmname).

URTETB CSECT
 CMROUTE TYPE=START
 CMROUTE TYPE=ENTRY,CICSTRAN= trnm ,COMPROG=pgmname
 .
 .
 CMROUTE TYPE=END
 END

Notes:

1. CMROUTE macro and a sample URTETB module are included in the distribution SOURCE data
set.

2. trnm can be equal to pgmname.
3. pgmname can further specify program parameters after the program name:

CMROUTE TYPE=ENTRY,CICSTRAN=UQQ,COMPROG=’UQ Q,JB=COM’

Transaction Parameters
When a CICS transaction is routed to Com-plete, the Com-plete program, as determined by URTETB, can
also have parameters passed to it. There are 2 ways of specifying these parameters:

Static (hardcoded) in the COMPROG parameter of the CMROUTE macro (see note 3 above)

Dynamically entered in CICS after the remote transaction name in the standard CICS manner. These
override eventual hardcoded parameters specified by method 1.

155

CICS / Com-plete Transaction RoutingSystem Programming

Logon Security
The CICS userID may be passed to Com-plete as basis for logon. If this user is invalid to Com-plete,
ULOG asks for a valid userid/password before the requested transaction is started.

Programming Notes
Some Com-plete applications dependent on attention interrupt to terminate multiple writes (a loop of
Write Returns to periodically refresh a screen) are not supported neither for native APPC nor for
Transaction Routing. The partner transaction can only flag an interrupt when it gets the Send Token (sent
by a Write Conversational), what never occurs. Examples are

UQ M,RR=n

USTOR LOOP

Com-plete can currently act only as SERVER in APPC sessions; it can only start local transactions
attached from external clients. Programs running in Com-plete are not able to attach remote applications
yet.

Indirect routing to Com-plete a routing path where other CICS systems are connected between the primary
(CICS) and the secondary (Com-plete) systems) is not supported. Similarly, Com-plete cannot be used as
an "indirect" system to enable routing between 2 CICS systems.

TRACES
To aid in problem determination the VTAM Interface provides various trace facilities:

1. snTIB Trace - retains the last 12 entries in the TIB. The interpreted entries can be seen in UUTIL MO
TS together with the RPL entering PF11.

2. VTAM in-core trace - a wraparound table that contains basically the same entries as the TIB trace.
Normally entries from all TIBs are stored, but it can be restricted for 1 specific TIB. This trace can be
accessed only with USTOR. It resides after module TLAMTRAC, addressed by label ALAMTRAC
in COMREG.

3. Extended Trace: This trace, available only for the APPC Interface and Transaction Routing
Application is written to an external file defined by the SYSTRACE DD statement in the startup
procedure. In general it points to SYSOUT. The file can be opened and closed online. Entries can be
restricted to a specific TIB. The extended trace is an important part of the documentation when
reporting problems of the APPC Interface to Software AG.

The VTAM In-core and Extended Traces are normally deactivated. To activate the In-core Trace use
UUTIL TO (trace options) and type ’Y’ for VTAM trace. To activate the Extended Trace, VTAM trace
must also be set to ’Y’ and the options ’OPEN EXTENDED TRACE’ and ’PRINT BUFFERS AND
DATA AREAS’ also be set to ’Y’. For more details about traces refer to the UUTIL section in the
Com-plete Utilities documentation.

156

System ProgrammingCICS / Com-plete Transaction Routing

LIBRARIAN (z/OS Only)
The Com-plete LIBRARIAN interface, distributed as a feature of the Com-plete online editor utility in
z/OS only, allows Com-plete’s online editor to access files stored within ADR’s (Applied Data
Research’s) LIBRARIAN. However, before this interface can be used to access and modify LIBRARIAN
members, the following installation procedures must be performed.

Step 1: Link edit and zap the LIBRARIAN module.

Two load modules containing the LIBRARIAN access routines must be placed on the
Com-plete STEPLIB library. The FAIR (File Access Interface Routine) load module is used for
retrievals only; COMLIB is used for updating LIBRARIAN members. Proceed as follows:

1. Copy the FAIR load module.
Using the IEBCOPY batch utility, copy the FAIR load module from the LIBRARIAN local
library to the Com-plete STEPLIB library COM.USER.LOAD. (FAIR is provided by ADR
as part of LIBRARIAN.) This routine is used as distributed by ADR by UEDIT to retrieve
members from LIBRARIAN libraries.

2. Link edit COMLIB.
Use the following linkage editor example to link edit the COMLIB load module into
COM.USER.LOAD. COMLIB is used by UEDIT to update a LIBRARIAN member when
a SAVE command is entered to UEDIT.

//COMLIB EXEC PGM=IEWL,PARM=’XREF,LIST,LET,NCAL’
//SYSLIB DD DSN=lbrarian,DISP=SHR LIBRARIAN LOAD LIBRARY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=COM.USER.LOAD,DISP=SHR
//SYSLIN DD *
 INCLUDE SYSLIB(librarian)
 ENTRY BEGIN
 NAME COMLIB(R)
/*

3. Zap the COMLIB load module.
Zap the COMLIB load module produced in pint 2 above to change the DD names from
SYSIN and SYSPRINT to LIBIN and LIBPRINT, respectively. To do this, use the linkage
editor output from point 1 above to find the displacement of the references to "CARD" and
"PRINTER". The external reference location is the beginning of the DCB for SYSIN and
SYSPRINT. Add decimal 40 to these displacements in order to locate the DD names. Then,
using the following superzap control statements, change the first three characters of the DD
names from SYS to LIB.

NAME COMLIB CS1500
VER XXXX E2E8E2 SYS SYSPRINT DD name
REP XXXX D3C9C2 LIB
VER YYYY E2E8E2 SYS SYSIN DD name
REP YYYY D3C9C2 LIB

where:

157

LIBRARIAN (z/OS Only)System Programming

XXXX is the displacement of the external reference to "PRINTER"
plus decimal 40.

YYYY is the displacement of the external reference to "CARD" plus
decimal 40.

Step 2: Modify the Com-plete sysparms

The Com-plete sysparms must be modified, causing Com-plete to include FAIR and COMLIB
as resident programs. Do this by adding the following statements to the SYSPARM member
used to set Com-plete options:

RESIDENTPAGE=FAIR
RESIDENTPAGE=COMLIB

In addition, the LIBRARIAN sysparm must be specified. See section Initialization - Com-plete
Startup Procedure for more information on the sysparms used in the Com-plete startup
procedure.

Warning:
Do not modify the COMLIB load module used by Com-plete
while Com-plete is running. During normal use of the
LIBRARIAN interface by UEDIT, these modules are refreshed
in the Com-plete resident program area. Increasing the amount
of storage required by these modules can have catastrophic
results.

Step 3: Set the spooling and printing options.

All error and informational messages issued by LIBRARIAN while processing a member are
spooled to the TID defined in the TIBTAB as the hardcopy device for the terminal using
LIBRARIAN. If no hard copy device is defined, the messages are spooled to the user’s terminal.

By using superzap, the spooling of messages can be changed. To do this, obtain a linkage editor
output for UEBP (or if a link edit was not done, use the HMBLIST batch utility to obtain a map
of the UEBP load module). Using this map, find the entry point named "OPTION" in the
CSECT U2EDCLIB. Using this displacement, use the following superzap control statements to
set the desired spooling options.

NAME UEBP U2EDCLIB
VER XXXX 88 Default spool settings
REP XXXX NN Desired spool settings

where XXXX is the displacement within the U2EDCLIB CSECT to the entry named OPTION.

XXXX is the displacement within the U2EDCLIB CSECT to the entry named
OPTION.

158

System ProgrammingLIBRARIAN (z/OS Only)

Option Value Function

x’80’ 1... Spool all messages.

x’40’ .1.. Spool only error messages.

x’08’ 1... Spool to hard copy TID.

x’04’1.. Spool to user’s TID.

Step 4: Modify the Com-plete job stream JCL.

The two LIBRARIAN load modules made resident within Com-plete require additional storage
from within the Com-plete region. You must therefore increase the REGION parameter for the
Com-plete job step. In the case of VS1, the size of the partition in which Com-plete runs must
be increased. The increase in size should be the combined sizes of the two load modules.

The Com-plete execution procedure must be modified to include DD statements for the files
required by LIBRARIAN and also for each LIBRARIAN library to be accessed by UEDIT.

LIBRARIAN requires two files. The first is a sequential file (LIBIN) used to pass LIBRARIAN
control statements and modified source statements to the LIBRARIAN interface module
(COMLIB). This must be defined as an 80-byte fixed block file and must be large enough to
contain the maximum number of control statements that will be passed to COMLIB.

The second sequential file (LIBPRINT) is used by COMLIB to pass informational and error
messages back to UEDIT. This file must be defined as a 133-byte fixed block file with the first
character of each record used for ANSI carriage control.

Either of the required files can be temporary files. The LIBPRINT file can be a dummy if no
messages are desired. Note that LIBPRINT can not be defined as a SYSOUT file.

Examples of LIBIN and LIBPRINT DD statements are:

//LIBIN DD UNIT=SYSDA,SPACE=(CYL,5),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//LIBPRINT DD UNIT=SYSDA,SPACE=(CYL,5),
// DCB=(RECFM=FB,LRECL=133,BLKSIZE=2660)

or:

//LIBPRINT DD DUMMY

Each LIBRARIAN library to be used by UEDIT must be defined in the Com-plete job stream
JCL and identified in the UEDIT table of library IDs and corresponding file names (UEDTB1).
For LIBRARIAN files in the UEDTB1 table, the file name field specifies the corresponding DD
name in the Com-plete job stream JCL, not the file name.

An example set of UEDTB1 entries and JCL DD statements follows:

In the Com-plete JCL, add the DD statement:

//MYLIBLIB DD DSN=USER.LIB.MYLIB,DISP=SHR

159

LIBRARIAN (z/OS Only)System Programming

the corresponding UEDTB1 entry would be:

CMEDTB1 ID=ML,DSN=MYLIBLIB,ACM=LIBRARIAN

Step 5: Name the user exit (optional)

An optional user exit is available that allows you to enforce installation standards for the
LIBRARIAN -SEL and -ADD control statements. This user exit must be named UXEEX4.
Control is passed when the SAVE operation is started to inspect the -SEL or -ADD control
statement.

See Security and User Exit Facilities for more information about the coding and installation of
UXEEX4. In addition, an example of UXEEX4 is provided in the COM.SOURCE distributed
library.

160

System ProgrammingLIBRARIAN (z/OS Only)

VSE LIBR Service
The interface between Com-plete and LIBRARIAN is performed by the module TLSRLIBR.

TLSRLIBR, which handles the LIBRARIAN interface for both VSAM and non-VSAM libraries, was
implemented using IBM-documented macros to access and update requests.

Since the LIBRARIAN interface uses the FILE-NAME as a means to relate a library to a
DLBL/EXTENT, it is necessary to build and keep a FILE TABLE to maintain the DLBL/EXTENT
information about the libraries to be accessed when using the Com-plete utilities. The FILE TABLE is
built with information from the LABEL AREA and information from UEDTB1 initially; it is then
expanded when a Com-plete utility attempts to access a library that does not have information in the
LABEL AREA or UEDTB1.

The program U2SPIT, which must be specified in the sysparms (STARTUPPGM=U2SPIT), allocates
storage for the FILE TABLE based on the number specified in the sysparm MAXLIBS, and anchors the
address of the table in a field within COMREG.

Note:
The specification of STARTUPPGM=U2SPIT is required for VSE.

U2SPIT will call U2SPLA to build the FILE TABLE at initialization of Com-plete. U2SPLA does the
following:

Processes the STANDARD LABEL AREA, searching for labels defined as SD (in the DLBL). Note
that tape labels and VSAM labels are ignored.

Determines if the selected file is a library using the LIBRARIAN macros.

Builds one entry in the FILE TABLE for each library defined in the STANDARD LABEL AREA.
This entry maintains the following information: FILE-ID, FILE-NAME, and VOLUME SERIAL
NUMBER.

Repeats the above process for the PARTITION STANDARD LABEL AREA and the PARTITION
TEMPORARY LABEL AREA.

Processes UEDTB1 and builds new entries for files that were not in any of the LABEL AREAs.

The program U2SPLA is called during Com-plete execution by utilities requiring that a FILE-NAME be
related to both a FILE-ID and VOLUME SERIAL, which are specified by the user (via utilities such as
USERV, UEDIT, and UED). If the FILE-ID is not in the FILE TABLE, U2SPLA will add a LABEL to
the PARTITION TEMPORARY LABEL AREA and build a new entry in the FILE TABLE (after
verifying that the FILE-ID specified belongs to a valid library).

Note:
In order to access VSAM libraries, it is necessary to have them defined by either UEDTB1 or function UL
of UUTIL.

161

VSE LIBR ServiceSystem Programming

Using VSAM with Com-plete
This chapter covers the following topics:

Introduction

VSAM Record Sharing and Integrity Options

Using VSAM Files Online

Introduction
VSAM is an IBM access method that provides three file types, secondary indexing capabilities, and a
useful utility referred to as Access Method Services (better known as IDCAMS).

The three file types, or clusters in VSAM terms, are:

KSDS Key Sequenced Data Sets;

ESDS Entry Sequenced Data Sets;

RRDS Relative Record Data Sets.

The Key Sequential data sets are indexed data sets whose key is some variable or combination of variables
in a file. The file is composed of two parts (actually two subfiles):

Index component;

Data component.

The index component contains the keys and a pointer to the associated data record. This pointer is often
referred to as an RBA or Relative Byte Address. The data component contains the data record associated
with the key. Note that the primary key must be unique within the file; however, any secondary keys (or
alternate indices in VSAM terms) may have duplicates. KSDSs can be addressed either sequentially,
randomly, or skip sequentially.

The ESDSs are sequential files; they may be addressed randomly through a Relative Byte Address (RBA)
from the beginning of the file.

The key for a RRDS is the Relative Record Number, much like an Adabas ISN. In other words, if you
want the third record in the file, the key would be three.

All VSAM files are divided up into logical units referred to as control intervals and control areas. A
control interval consists of what could be considered a blocked record, i.e., one with multiple records per
control interval. A control area is nothing more than a block of control intervals. Records may be variable
or fixed lengths and may span control intervals.

VSAM has a much more efficient record storage concept for its KSDS than for other indexed access
methods. It automatically builds multiple levels for its index components, and also handles new insertions,
which cause other records to be shifted in an efficient manner.

162

System ProgrammingUsing VSAM with Com-plete

The buffering services and sharing of control blocks are of great use in a multi-region/environment.

One of the capabilities of VSAM is its record sharing capabilities, which must be taken into consideration
when using VSAM in an online environment. These capabilities and restrictions are discussed below.

From the application standpoint, the use of VSAM with Com-plete is a very easy task. The application
programmer writes standard OS/VS COBOL VSAM I/O statements to access any VSAM files - just like
writing batch programs using COBOL. The only special processing the application programmer must be
concerned with is the checking of VSAM status codes and the writing of Com-plete screen I/O calls.

Important:

The file status codes must be checked after every VSAM I/O. For instance, if you do not check the VSAM
status code after an OPEN statement and a bad open was encountered, you will get a "0C4" completion
code when you try to reference the I/O area. This completion code indicates that addressability to the I/O
area is not established until a valid open has been accomplished.

VSAM can provide data integrity at the control interval level (that is, VSAM reserves a control interval
for one user and does not let any other users access this control interval until the first user releases this
control interval). The types of integrity that VSAM provides are based on the share options specified at
the time the clusters are defined. If a record is currently held by a user, a "93" status code is returned and
the I/O call should be reissued. VSAM does not queue I/O calls that cannot be serviced. In other words, if
a record is held by another task, VSAM will tell you about it, but it will not wait for that record to be freed
before returning to you.

Normally, the procedure would be to issue a Com-plete rollout function (i.e., wait) and then reissue the
call. If after several tries (a maximum of 10 times) the record is still not free, return a message to the
screen indicating that the record is currently held and an attempt should be made later.

As an alternative, you can request Com-plete to serialize I/O requests for a file, thus avoiding a record not
being available due to its being held by another user of the same Com-plete. For details, please refer to the
description of the UUTIL online utility in the Com-plete Utilities documentation.The status codes and
reasons that are most often returned are listed in the following table:

Status Code Reason Action

90 Bad OPEN: File was not closed
properly by a previous user.

Run an IDCAMS VERIFY

93 Record or resource is not available
Either another user has the record or
the file is being used by another
task in another region. On an
OPEN, there is not enough virtual
storage in Com-plete’s region.

Ensure no other job is using the file.
Use the FM function of UUTIL to
check if the file is open online.
Ascertain if it may be useful to
request I/O serialization by
Com-plete.

95 Logic error in I/O call. Usually your
FD in COBOL coes not match that
defined in the VSAM cluster
definition.

96 The file is not defined correctly in
Com-plete.

Use the FM function of UUTIL to
define the file.

163

Using VSAM with Com-pleteSystem Programming

The COBOL Programmers’s Guide provides a more detailed description of VSAM status codes and
should be consulted. In addition, be aware that COBOL status codes have a different meaning based on
the request type, that is, Open, Read, Write, etc. The COBOL Programmer’s Guide also contains a table
indicating the associated VSAM error codes and includes definitions of the codes.

There are several considerations to be made in cataloging a VSAM "DDN" to Com-plete. They include:

Locally shared vs. non-shared resources;

COBOL use of VSAM string processing;

Defining buffer areas of VSAM files;

Defining share options in the VSAM cluster definition.

VSAM Record Sharing and Integrity Options
Overview

Buffers

Overview

The VSAM record sharing options are defined in the SHARE OPTIONS parameter when defining a
cluster. Although VSAM allows sharing options for both across-region and across-system, only
across-region options are discussed below. Com-plete users in different threads fall into the across-region
category.

The share option "1,3" provides Com-plete read/write data integrity, that is, multiple users can access a
data set for read processing while another user has it for update processing. Under this option, a "read"
user cannot process a control interval that is currently being updated (read integrity). No two users can
access the same control interval for update, thus providing write integrity; however, they can
simultaneously update data in different control intervals.

The share option "2,3" is very similar to the "1,3" option, but it does not provide read integrity. In other
words, it is possible for a read user to access the same control interval that another user is updating, thus
losing read integrity. There is no problem in updating with this option because VSAM ensures that only
one user has a control interval for update.

Note:
If you specify options "2,3" but access the data in a shared resources environment (that is, the Com-plete
DDN is cataloged with LSR instead of NSR), VSAM forces share options "1,3". So if you want a "2,3"
option, you must catalog the DDN with NSR, non-shared resources.

You are recommended to use VSAM option "2,3" if you want to read a file in a batch program while the
file is still online.

There are two other options: "3,3" and "4,3". Neither one of these provide read or write integrity. It is up
to you to provide this integrity (which requires Assembler level coding). You are not recommended to use
these options unless it is absolutely necessary.

164

System ProgrammingUsing VSAM with Com-plete

Note also that a control interval is not released from an update held status until the update user either
accesses another control interval, issues a ENDREQ assembler macro, or closes the file. This can lead to
problems where a record is read for update and sent to the screen. The control interval is tied up until the
user finally responds, unless the program closed the file before returning to the screen. There are two
options:

Opening and closing a file on every scheduling of an update (never do this on a read-only program);

Allowing the records in a control interval to be tied up until the user responds.

If you choose to use the second approach, inform the user that the records were held and that an attempt
should be made later.

Buffers

Another important factor in the performace of VSAM processing is the use of buffers. VSAM
automatically allocates one index buffer and two data component buffers for each string of a KSDS. (A
string is a unique access path to a portion of a file.) Each string requires that VSAM maintain the position
in the file. The amount of space required for a buffer is determined by the control interval size. So the
larger the control interval size, the larger the buffer space. This also means that you have more records
available. If the user is using sequential processing, then performance can be increased by using more data
component buffers. If a user is using direct processing, then performance can be increased by using more
index buffers. More index buffers are required when direct processing is used because VSAM accesses the
index component for every request and refreshes the data component on every request. Thus, the more
index control intervals kept in memory, the fewer I/Os needed to access records. Under sequential
processing, VSAM does not access the whole index on every request but will instead use the horizontal
pointers in the sequence set (the lowest level of an index) to access the next record. VSAM can use
additional data buffers to do read-ahead functions and thus have data available for future requests. Note
that sequential processing does not refresh its data component buffers on every request.

A complete discussion on optimizing performance and VSAM buffering techniques is available in the
VSAM Programmer’s Guide and should be consulted. This information is extremely important when you
define the size and number of buffers to allocate when using the LSR (Locally Shared Resources) option.
One difficulty encountered in using COBOL, Com-plete, and VSAM is the consistency and meaning of
terminologies used in the different documentations involved. The following information should aid you in
resolving this problem.

COBOL does not support skip sequential processing, so there is no need to specify the SKP option
when cataloging a DDN to Com-plete.

The way COBOL determines whether you are going to update, or simply read a file is based on how
a file is opened, that is, I/O=update, INPUT=read-only, OUTPUT=update.

COBOL does not support addressed processing, but does support key processing.

COBOL does not support multiple string processing. However, multiple strings to a data set are
acceptable because of the concurrent running of programs accessing the same file from different
threads.

There is one RPL (Request Parameter List) for sequential processing and a second RPL for direct
processing.

165

Using VSAM with Com-pleteSystem Programming

The definitions of the option codes you specify when cataloging a VSAM DDN to Com-plete are
explained in the VSAM Programmer’s Guide.

You must consult the following documentations when using VSAM, COBOL, and Com-plete:

Access Method Services

VSAM Programmer’s Guide

VSAM Programmer’s Guide for Advanced Applications

OS/VS COBOL Compiler and Library Programmer’s Guide

OS/VS COBOL documentation

Com-plete Application Programming documentation

Com-plete System Programming documentation

Com-plete Utilities documentation (particularly ULIB)

The following table relates some COBOL terms to VSAM terms.

COBOL Term Associated COBOL Verbs/Clauses VSAM Term

Random processing
ACCESS IS RANDOM or
ACCESS IS DYNAMIC, READ, WRITE,
REWRITE, DELETE

Direct processing

Sequential
processing

ACCESS IS SEQUENTIAL or
ACCESS IS DYNAMIC, READ NEXT,
START, WRITE, REWRITE, DELETE

Sequential
processing

File status code
FILE STATUS IS (COBOL interprets the
VSAM codes and returns its own codes)

Return Code

Current record
pointer

N/A Position within file

READ READ GET macro

WRITE WRITE PUT macro

REWRITE REWRITE
PUT macro with
update

DELETE DELETE ERASE macro

Using VSAM Files Online
The following sections contains notes on using VSAM files online.

VSAM Files

166

System ProgrammingUsing VSAM with Com-plete

Alternate Indices

VSAM Files

1. If the file is to be updated, use MACR = (..NDF..). This slows down performance but ensures data
integrity.

2. Make any file known to Com-plete reusable unless you are going to define an alternate for it. But
remember that whenever that file is opened for output, the file is automatically emptied.

3. Make the data CI size small (1024,2048,4096), index CI = 512.

4. Avoid CA and CI splits by using FREESPACE for a volatile file.

5. Use spanned records with variable length records where only a few records are very large.

6. Avoid files where the records are deleted from the bottom and added to the top.

7. Do not specify ERASE unless the data is sensitive and all traces of it must be zeroed out.

8. STATUS-KEY = 96 (COBOL) and ONCODE = 1027 (PL/1) mean that the record specified is being
held by another program that has the file opened as I/O.

9. ONCODE = 1028 (PL/1) means that after the file was opened by your program, someone else put the
file in batch status and your program then tried to read the file.

10. Do not use IDCAMS to verify files owned by Com-plete while Com-plete is running. Set them to
BTCH status first.

11. Use SHAREOPTIONS (2,3) when defining a cluster in order to avoid problems with one program
trying to access a file as I/O while another program has that file accessed as input.

12. The application programmer is responsible for VSAM file backup and recovery. The best method to
backup a file is to use a tape. The second best is to REPRO the file to another disk pack. It is not a
good idea to back up a VSAM file to the same pack since a head crash or other disk pack error could
wipe out both the real file and the backup file. It is also better to use REPRO instead of
IMPORT/EXPORT to back up a file, because REPRO can reorganize the file at the same time (to
reorganize the file, you must REPRO it back).

13. Use the appropriate VSAM prefix for that pack when naming a VSAM file (VSAM2. for MVS002).
The second level name should be the valid prefix for that department. Should you need to change the
name of any VSAM file, use the ALTER command of IDCAMS. Name the data and index
components as well as the cluster.

14. Do not issue terminal I/O while holding any VSAM resources, for example, between GET for update
and UPDATE, or in the middle of sequential VSAM processing.

15. Name both the data and index component as well as the cluster. This makes it much easier if you
have to perform an ALTER on the VSAM file.

16. Thread-lock all programs using the same file(s) to the same thread, or request I/O serialization by
Com-plete.

167

Using VSAM with Com-pleteSystem Programming

17. If you get an ONCODE = 92 when you open the VSAM file and the accompanying message says
"DATA SET UNAVAILABLE", the file is probably offline (batch status). Another reason may be that the
DDN is not defined to Com-plete.

18. If you get an ONCODE = 92 and the accompanying message says "DATA SET NOT PROPERLY
CLOSED", it means that a job went down in the middle of VSAM processing and left the file open. To
avoid this, include an IDCAMS verify step in the Com-plete initialization procedure, specifying all
VSAM data sets that may be affected. Com-plete closes all VSAM files in use during termination
processing, irrespective of whether it is terminating normally or due to an ABEND or CANCEL.

Alternate Indices

1. Use SHAREOPTIONS (2,3) for both the base cluster and the alternate index.

2. When using a generic key, you may want to add a high value record to the file to avoid end-of-file
problems (particularly if you get an ONCODE = 1026).

3. A base cluster cannot be reusable.

4. The base cluster’s DDN must be five characters long and each alternate index built upon that base
cluster must use those same five characters plus a single digit.

5. In both the base cluster’s DDN definition and the alternate index’s DDN definition, use
MACR=(..NSR..).

6. Make sure you define the path to Com-plete, not the alternate index. If you read the file using the
path, the data is put in the base cluster. If you read the file using the alternate index, however, all the
keys of the base cluster contain that alternate index key.

7. The recordsize (RECSZ) of the alternate index cluster is determined by the number of non-unique
keys expected. The data consists of five bytes used by VSAM, the alternate key, and all of the base
cluster keys that have this alternate key. Watch for any one alternate key having a large number of
non-unique occurrences (the alternate KEY = blanks or zeros, etc.); this determines the maximum
value of the record size.

8. In building the alternate index, IDCAMS performs an internal sort. If you have a large number of
records in the base cluster, you must give IDCAMS a larger region and some additional JCL in order
to build the indexes.

 //BUILDALT JOB (990030,1,1,0),TIM,CLASS=C
//BUILD EXEC PGM=IDCAMS,REGION=600K
//SYSPRINT DD SYSOUT=A
//STEPCAT DD DISP=SHR,DSN=CATALOG.VIPORES
//IDCUT1 DD DISP=OLD,AMP=’AMORG’,VOL=SER=IPORES,UNIT=3375
//IDCUT2 DD DISP=OLD,AMP=’AMORG’,VOL=SER=IPORES,UNIT=3375
//SYSIN DD *
BLDINDEX
 INDATASET(VSAMIPOR.SYS1.TESTINDX)
 OUTDATASET(VSAMIPOR.SYS1.TESTALT)
 CATALOG(CATALOG.VIPORES/PWUPDATE)

9. Whenever you delete the base cluster, IDCAMS automatically deletes any and all paths to that base
cluster.

168

System ProgrammingUsing VSAM with Com-plete

10. When using the alternate index to look at the data, changing the alternate key by means of the base
cluster, and then trying to look at the old alternate index key again, watch for this potential problem:
VSAM looks at the data in the buffers (in this case the alternate index) first and use it without actually
doing another read of the file. Your program then tries to read the file using the old alternate key and fails
because that record is no longer there. The solution is to flush the buffers. One way is to have a high value
record in your file and read it by means of the alternate key which will change the buffers of the alternate
index. (Note that the above problem will give you an ONCODE = 1030.)

11. Freespace can also be defined for an alternate index and should be used if any records are to be added
to the base cluster. CI and CA splits seem to cause problems for alternate indices.

12. When the alternate index is built (by IDCAMS), the records are in base cluster key order. However,
any adds to the file after the base cluster is built are added to the end of the alternate index and are not in
base cluster key order.

13. In Pl/1, there is a built-in function called "SAMEKEY", which can be used if a VSAM file is being
accessed by an alternate index that has non-unique keys. If any further records exist with the same key, it
returns a "1"B.

14. Under Pl/1, it is possible to define one alternate index path as forward and another path as backward.
This would allow the user to not only page forward from any given key but also to page backward. One
constraint is that a file declared as backward can not also be declared as GENKEY. You are therefore
required to use the full key for the starting point of the backward read.

15. If you try to read past the end of the file using the alternate index, an ONCODE = 1030 is issued.

169

Using VSAM with Com-pleteSystem Programming

GDDM
This chapter describes how to install the Com-plete/GDDM interface that will enable Com-plete to use
color graphics capabilities. Other documentation relevant to the installation of this interface is the GDDM
Release 4 Installation and System Management (Publication Number SC33-0152)*, hereafter referred to
as the GDDM Installation Guide. For the installation described in this section, you should be familiar with
the GDDM documentation and refer to this section for clarification of the differences in the way GDDM
interfaces to Com-plete and CICS. Com-plete and CICS are similar in that they are both teleprocessing
monitors. This is the reason that Com-plete uses the same interface to GDDM as CICS. For this
installation, then, generally follow the instructions concerning the installation of GDDM under CICS as
described in the GDDM Installation Guide. This section supplies specific information for the Com-plete
environment.

* Current name and number of documentation - these are subject to change.

Having finished the installation process, your installation will have the ability to run the various GDDM
editors supplied with the various components of GDDM that you have licensed.

Note:
You need GGDM to install Natural GRAPHICS under Com-plete. See Adding DFHEAI and DFHEAI0
below.

This chapter covers the following topics:

Installing GDDM

Com-plete Components for the GDDM Interface

Adding DFHEAI and DFHEAI0

VSAM, ADMF, DFHTSD

Altering the CICS environment

TIBTAB

Com-plete JCL Modifications

Com-plete Startup Parameters

UUTIL/ULIB Activities

User Calls

Execution

Performance Considerations

170

System ProgrammingGDDM

Installing GDDM
The first step is to install GDDM/PGF according to the installation procedures in the GDDM Installation
Guide. This will result in the creation of four libraries (z/OS):

GDDMLIB non-executable load modules;

GDDMSAM sample applications, macros, JCL;

GDDMSYM sample symbol sets;

GDDMLOAD executable load modules.

or it will create an equivalent set of VSE libraries if VSE is the operating system.

The reentrant code supplied for GDDM/PGF is approximately two megabytes. You must decide where
this is to reside, and allocate the space required for it. To help you determine the best place for GDDM,
refer to the GDDM Installation Guide.

The main consideration when deciding where to place the GDDM code is whether or not there is another
subsystem (TSO, CICS, etc.) in your installation that will be using GDDM. If this is the case, you should
consider putting GDDM in LPA (z/OS) or other common system storage. If there is no other subsystem, it
is probably better to place GDDM in Com-plete’S region or partition.

Once you have determined where GDDM is to reside, install it according to the procedures in the GDDM
Installation Guide. In theGDDM Installation Guide, you will find a section on installing GDDM with
CICS for z/OS and information on how to install GDDM with CICS for VSE. Particular attention should
be paid to the sections concerning the adding of the CICS command level stubs DFHEAI and DFHEAI0
(seeAdding DFHEAI and DFHEAI0 below).

Com-plete Components for the GDDM Interface
The following table decribes the Com-plete components of the GDDM interface, and how they are defined
within Com-plete. During standard installation all DD names are with default values; however, these may
have to be reviewed based on the usage of GDDM and for performance reasons. A sample list of
programs which must be residentpaged is contained in member GDDMSAMP on the distributed source
data set. This must be reviewed, particularly in relation to new GDDM releases, as new modules may have
been included which can also be residentpaged.

171

GDDMSystem Programming

Component Description Definition

ADMC The Com-plete application program to invoke the GDDM
Interactive Chart Utility.

ULIB CAT

ADMI The Com-plete application program to invoke the GDDM
Image Symbol Set Editor.

ULIB CAT

ADMV The Com-plete application program to invoke the GDDM
Vector Symbol Set Editor.

ULIB CAT

ADMP The Com-plete application program to invoke the GDDM
print utility.

ULIB CAT

TLCIINIT Com-plete/GDDM initialization processing RESIDENTPAGE

TLCIMAIN Com-plete/GDDM control processing RESIDENTPAGE

TLCISTG Com-plete/GDDM storage processing RESIDENTPAGE

TLCIPRGM Com-plete/GDDM program processing RESIDENTPAGE

TLCIICP Com-plete/GDDM "interval control" processing RESIDENTPAGE

TLCITERM Com-plete/GDDM terminal I/O processing RESIDENTPAGE

TLCIFILE Com-plete/GDDM file I/O processing RESIDENTPAGE

TLCITRND Com-plete/GDDM "transient data" processing RESIDENTPAGE

TLCITEMP Com-plete/GDDM "temporay stg" processing RESIDENTPAGE

TLCITRAC Com-plete/GDDM trace processing RESIDENTPAGE

TLCIFC Com-plete/GDDM file processing

DFHEAI Com-plete/GDDM interface stub 1. Linked with various
mods

DFHEAI0 Com-plete/GDDM interface stub 2. Linked with various
mods

ADMI GDDM Symbol Set File DD name UUTIL FM

DFHTSD Com-plete/GDDM "Temporary Storage" data set DD nameUUTIL FM

Adding DFHEAI and DFHEAI0
Com-plete supplies you with two modules called DFHEAI and DFHEAI0. These modules are direct
replacements for the CICS modules of the same name. Therefore, the section in the GDDM Installation
documentationentitled Link-edit with DFHEAIandDFHEAI0 in Tailoring GDDM step-by-step for CICS
must be repeated or initially done using the Com-plete replacement modules.

Take the sample job stream described in this section for linking GDDM with DFHEAI and DFHEAI0 and
change the loadlib from which the modules are linked to point at the Com-plete load library. This will
cause the Com-plete replacement modules to be included.

172

System ProgrammingGDDM

Be careful, however, that the various GDDM modules have not already been linked with the CICS
modules, as a second include will simply make the module bigger and use the previously included
modules. Example job streams are also provided for GDDM-PGF, GDDM-IMD and GDDM-IVU in the
source library. Repeat the same procedure for each of these if this is applicable for your installation. If a
sample GDDM job is not available, a sample job called GDDMLINK is supplied on the distributed source
data set.

Please note that Natural GRAPHICS uses the system programmer’s interface (module ADMASPC) to
GDDM, which requires the modules DFHEAI and DFHEAI0. These modules must be taken from the
Com-plete load library.

VSAM, ADMF, DFHTSD
Prepare your VSAM files as stated in the GDDM Installation Guide. You can use ADMF and other
similar VSAM files under Com-plete, just as the function GDDM ESLIB describes.

You must create an additional VSAM file required by Com-plete’s GDDM Interface. Its DDN to
Com-plete must be DFHTSD. A sample z/OS job stream to create it follows below:

//jobname JOB (JOB card information)
//JOBCAT DD DSNAME=usercat,DISP=SHR
//ALLOCEXEC PGM=IDCAMS
//dd1DD UNIT=SYSDA,VOL=SER=volser,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(index.DFHTSD) FILE(dd1) -
 UNIQUE -
 VOLUMES(volser) -
 SHAREOPTIONS(3 3) -
 RECSZ(400 3000) -
 CONTROLINTERVALSIZE(4096) -
 KEYS(10 0)) -
 DATA -
 (RECORDS(300 100)) -
 CATALOG (usercat)
/*

After defining this file, it must be initialized. A sample job stream to initialize it would be:

//jobname JOB (JOB card information)
//VSAM EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//DD1DD DSN=index.DFHTSD,DISP=SHR
//STEPCAT DD DSN=usercat,DISP=SHR
//DATAD DD *
FIRSTONE THIS IS THE FIRST RECORD TO CREATE IT
/*
//DD3 DD UNIT=SYSDA,DISP=OLD,VOL=SER=VOLSER
//SYSIN DD *
 REPRO INFILE(DATAD) -
 OUTFILE(DD1)
/

// JOB GDDMTSDDEFINE DFHTSD
// DLBL UOUT,’FIRST.RECORD’,0,SD
// EXTENT SYS005,xxxxxx,1,0,nnnnn,1<======
// ASSGN SYS005,DISK,VOL=xxxxxx,SHR <======

173

GDDMSystem Programming

// ASSGN SYS004,SYSIPT
// EXEC OBJMAINT
./ CARD DLM=
./ COPY
FIRSTONE THIS IS THE FIRST RECORD TO CREATE IT
/*
// OPTION LOG
// DLBL IJSYSUC,’vsamusercatalog’,,VSAM<======
// DLBL DFHTSD,’GDDM.DFHTSD’,,VSAM <======
// ASSGN SYS007,DISK,VOL=xxxxxx,SHR<======
// DLBL INFILE,’FIRST.RECORD’,0,SD
// EXTENT SYS007,xxxxxx
// DLBL DFHTSD,’GDDM.DFHTSD’,,VSAM
// EXEC IDCAMS,SIZE=AUTO
 DEFINE CLUSTER -
 (NAME(GDDM.DFHTSD) -
 VOLUMES(xxxxxx) - <======
 SHAREOPTIONS(3 3) -
 RECSZ(400 3000) -
 CONTROLINTERVALSIZE(4096) -
 KEYS(10 0)) -
 DATA -
 (RECORDS(300 100)) -
 CATALOG (vsamusercatalog)<======
 REPRO INFILE(INFILE ENV(BLKSZ(80) RECFM(FIXUNB) RECSZ(80))) -
 OUTFILE(DFHTSD)
/*
/&

All VSAM files must be defined to Com-plete using the FM function of online utility UUTIL. If you
specify the files’ data set names there, there is no need to include the DD statements in the Com-plete
JCL.

Altering the CICS environment
The headings in the GDDM Installation Guide regarding the modification of CICS tables is of no interest
to users of GDDM under Com-plete. CICS uses a series of tables to keep track of the files it uses and the
destinations for certain terminal requests. Com-plete uses several different mechanisms for the same
functions. For instance, Com-plete users catalog the VSAM files they use online with UUTIL FM. You
can therefore ignore the sections in the GDDM documentation which describe the altering of CICS tables.
The only CICS-like table Com-plete maintains is a file control table which is referenced internally by the
Com-plete/GDDM interface. If you wish to define additional VSAM files for use with symbol sets,
Com-plete will dynamically add entries into this internal table, thus freeing you from such table
maintenance.

TIBTAB
The philosophy behind this is to reduce the amount of maintenance for the system programmer to an
absolute minimum. Therefore, rather than having to define the attributes of different devices in different
places (eg. LOGMODE and CICS TCT), Com-plete takes the LOGMODE for a device to indicate exactly
what that device is.

Therefore, once all the device types are defined in the COMPLETE TIBTAB, when a terminal or its
capabilities change, the only change necessary is an update of the LOGMODE for the device. Care must
be taken with logmodes for devices to ensure that they indicate what the device can actually do. In this

174

System ProgrammingGDDM

case, the relevant indicator is an indicator that the device can support a Read-Partitioned-Query command.
Once this is possible, the software can work out the rest. IBM supply various examples of LOGMODES
for various device types.

In general, VDUs need not be specified in the TIBTAB as they can be allocated dynamically. Printers can
also be allocated dynamically. However, it is sometimes better to define them in the TIBTAB to avoid
having to reallocate them after a restart of Com-plete, unless a fully dynamic TIBTAB is specified (via
TIBTAB=DYNnnnnn in the Com-plete sysparms). A sample TIBTAB follows. This defines two printers
PRT1 and PRT2. A maximum of 100 terminals are available with this TIBTAB.

TIBTAB TIBSTART NOTIBS=100
PRT1 TIB 1,VTAM,3287L,NAME=PRT1,OPT=(ACQUIRE,SHARE)
PRT2 TIB 2,VTAM,3287L,NAME=PRT2,OPT=(ACQUIRE,SHARE)
 TIBEND

Note:
Terminals defined in the TIBTAB can be changed if information given in the LOGMODE conflicts with
that specified in the TIBTAB.

Com-plete JCL Modifications
Com-plete must be able to find the various GDDM and Com-plete/GDDM interface modules. To make
the GDDM modules available, the GDDM load library must be included in the Com-plete COMPLIB
concatenation AFTER the library where the newly linked CICS/Com-plete-dependent modules reside
(that is, the modules that are linked with DFHEAI and DFHEAI0).

To make the Com-plete/GDDM interface modules available, the Com-plete distributed load library must
also be in the COMPLIB concatenation. However, you have the option of copying the relevant modules to
a library which is already in the concatenation if the inclusion of the Com-plete distributed load library in
the COMPLIB concatenation is not desirable.

Com-plete Startup Parameters
GDDM/PGF requires a considerable amount of work area. This will be allocated in the thread. Load as
much of the code as possible outside of the thread to allow more room for the work area. The size of the
thread to allocate will depend on the amount and type of work done. In a lot of cases this will be trial and
error, so you are advised to start with the Software AG supplied default listed below. You must therefore
review thread sizes to ensure that at least one is available that is big enough to run the various programs.

To reduce thread and catalog sizes, as much of the GDDM nucleus and code as possible should reside
outside the thread. If GDDM is installed in the LPA, Com-plete can use these modules. However, if this is
not the case, Com-plete can load them into its own nucleus via the RESIDENTPAGE sysparm. All
eligible residentpage modules should be included using this parameter. A module is eligible when it is
Reentrant and Reusable which, in fact, a large part of the GDDM nucleus is. The best thing to do is to
look at the modules required to be defined in the CICS PPT. Take this list and delete any module not
residentpage-eligible. The result is a list of modules which you must include in the Com-plete nucleus via
the RESIDENTPAGE sysparm. A sample set of RESIDENTPAGE parameters is supplied in the
GDDMSAMP member of the distributed source data set.

175

GDDMSystem Programming

To enable the Com-plete VSAM interface to function, the VSAMDS sysparm must be specified. A
starting value for this could be VSAMDS=2 indicating that a maximum of two VSAM files will be used
for the duration of the Com-plete session. This is the current minimum that the Com-plete/GDDM
interface requires to function. This can be increased as the need for more VSAM files arise. Please see the
subsection Performance Considerations below concerning more VSAM parameters.

UUTIL/ULIB Activities
This subsection describes the various default parameters for the GDDM/Com-plete components for
UUTIL FM and ULIB. If you have used the standard Com-plete installation procedure, these entries
already exist. However, you may wish to change them for performance reasons.

Define the VSAM files to Com-plete using the FM subfunction of UUTIL. You must specify the
following options:

For ADMF and
DFHTSD:

Retrieval
Update
Add
STRNO=2
MACRF=(DIR,NSR,NDF,SEQ)

The following are the ULIB CAT parameters for the programs:

ADMI IMAGE SYMBOL SET EDITOR 768K
ADMP printer utility 768k
ADMV vector symbol set editor 768k
ADMC chart utility 768k
TLCIFC VSAM file control table (no size need be specified)

User Calls
The WRTSF function of Com-plete is available to users of graphics. See the Com-plete Application
Programming documentation for details. It is strictly for use with extended function 3270’s:

CALL WRTSF|D|C|R| to perform a write structured field
 to a specified TIB.

This CALL has the same structure as all the other writes. It is for performing write structured field
commands. If you wish to perform a Read-Partition-Query, since this generates an input interrupt, use the
WRTSFC option. You will get the results of this read in the input buffer. Be sure to use the READS form
of the read CALL.

For loading symbol sets, use the WRTSFR option, as you do not need to wait for any input to occur.
Alternatively, you can load programmed symbols using the UMAP utility LOAD PROGRAMMED
SYMBOLS function (see the Com-plete Application Programming documentation).

The WRTSFD option is used when you want to set something and exit. For more information about the
Write Structured Field command, consult the IBM 3270 Information Display System documentation
(Publication Number GA23-0060) and the3274 Control Unit Description and Programmer’s Guide
(publication number GA23-0061).

176

System ProgrammingGDDM

When you use this form of the WRITE, Com-plete does NOT check for data to be output. The user
program must ensure that the data being sent is valid for the WRF terminal command.

Execution
When executing GDDM/PGF in the Com-plete environment, use the CICS instructions in the GDDM and
PGF documentations. Some differences exist, and these are discussed below.

CICS abends with alpha abend codes, that is, GDDM will ask for an abend G000. Com-plete converts that
to abend 7000. If GDDM has issued an abend code that is alpha, Com-plete changes the zones to "F" and
continues as though it was numeric.

Com-plete’s interface abend codes are:

922 function not supported.

923 unrecoverable terminal write error.

924 no storage available in the thread

925 error in the ask time routine

926 error in ENQ or DEQ

927 error in loading or releasing programs.

928 error in initializing the graphics environment.

Performance Considerations
GDDM is resource-intensive, but some tuning can be done. Firstly, review the CPUTIME and
REALTIME sysparms for Com-plete. These will avoid superfluous abends and messages if they are
specified correctly.

GDDM makes quite heavy use of its VSAM files and therefore allocation of buffers to these data sets
should be carefully reviewed with the expected usage in mind. VSAM itself handles buffer usage and
therefore the only control you have is to allocate more or less buffers. This can be done on an individual
file basis or the files can be grouped into a VSAM Local Share Resources pool (LSR). This is the most
efficent in that all buffers are available for use for all files (given the restrictions of VSAM LSR, see the
relevant VSAM documentation) as opposed to individual buffers which use storage even when the file is
not in use. See the section Using VSAM with Com-plete and the Com-plete sysparms VSAMBUFFERS
and VSAMRPL.

177

GDDMSystem Programming

PANVALET (z/OS only)
The Com-plete PANVALET interface allows a Com-plete terminal user to edit PANVALET library
members up to Release 14 using the Com-plete online editor, UEDIT.

This chapter covers the following topics:

Installation Overview

Installation Procedure (z/OS)

Installation Overview
Before a PANVALET library can be accessed, two load modules must be created using the linkage editor.
These modules are standard PANVALET routines provided by Pansophic Systems with additional
modules added by the linkage editor. These modules provide compatability with the Com-plete online
environment and allow the Com-plete printout spooling facility to be used for spooling the PANVALET
reports.

The PANVALET libraries to be accessed by UEDIT must be defined in the UEDTB1 table described in
Com-plete Files and Associated User Files, and in UEDTB1 Entry DSECT.

Installation Procedure (z/OS)
Step 1: Link edit and zap the PANVALET modules.

The member PANLNK contains an inline procedure to link edit the PANVALET modules. This
procedure must be modified to use the load module library that contains the PANVALET
modules at your installation. Do this by modifying the keyword parameter PANLIB default
value in the PANLNK PROC.

Proceed as follows:

1. Link edit FGPAN23.
The PAN23 step is used to link edit FGPAN23, creating a load module on the Com-plete
user load module library defined in the PANLNK PROC as LLIB. FGPAN23 is a module
accessed by PANVALET during the processing of abnormal conditions. The execution of
this link edit step prevents an abend of UEDIT (S806) from occurring because
PANVALET could not find FGPAN23.

2. Link edit COMPAM.
The COMPAM step is used to link edit COMPAM, the load module used by UEDIT for
read-access to the PANVALET libraries. COMPAM is identical to the PANVALET access
method module PAM provided by Pansophic Systems.

3. Link edit COMPAN
The COMPAN step is used to link edit COMPAN, the load module used by UEDIT for
write-access to the PANVALET libraries. COMPAN is identical to the PANVALET
module PAN#1.

178

System ProgrammingPANVALET (z/OS only)

4. Link edit PVPVLAMS
The PVPVL step is used to link edit PVPVLAMS, PANVALET’s general access module.
PVPVLAMS is comprised of PVPVLAMS and Com-plete’s PANVALET interface exit $USTIMER. You
must place this module in an APF-authorized library.

$USTIMER functions as an interval timer routine that will do a ROLLOUT (if Com-plete),
or a STIMER SVC (if TSO). The timer interval is currently set at two seconds.

The $USTIMER module is supplied is source format. If this requires changes to the time
interval, the module must be modified and reassembled.

5. Alter the print options
IMBLIST can be used to determine the offsets of the individual entry points in the module
and the options modified as required. The zap has the format:

 NAME COMPAN COMPAN
 VER xxx yy <-- old value
 RER xxx zz <-- new value

The entry point names and the functions of the five bytes are listed in the following table:

Entry Name Function

OPTION A switch used to control the printing of reports. Bit settings
are as follows:

X’80’ Output all reports to the PANPRNT data set.

X’40’ Output no reports to the PANPRNT data set.

X’20’ Output only reports selected by the user code
to the PANPRNT data set.

X’08’ Output all reports to the selected terminal.

X’04’ Output no reports to the selected terminal.

X’02’ Output only reports selected by the user code
to the selected terminal.

X’01’ Select a user terminal for reports (otherwise,
the terminal assigned as the
screen-to-hardcopy terminal is selected).

SPPOS Offset in the PANVALET user code to be tested for the X’02’
option selected above.

SPCHAR Value of the report selection code for the X’02’ option
selected above.

PRPOS Offset in the PANVALET user code to be tested for the X’20’
option selected above.

PRCHAR Value of the report selection code for the X’20’ option
selected above.

179

PANVALET (z/OS only)System Programming

Step 2: Modify the Com-plete job stream JCL

The Com-plete execution procedure must be modified to include the data definition statements
for the files required by PANVALET, as well as for each PANVALET library to be accessed by
UEDIT.

PANVALET requires that four data sets be identified by the JCL in addition to the libraries to
be accessed by UEDIT. The first required data set is used to pass the PANVALET control
statements to the routine COMPAN (PAN#1). This data set must be defined as an 80-byte fixed
block sequential file, and must be large enough to hold the maximum number of control
statements that will be required by PAN#1. This control statement file, identified by the name
PANSEQ, serves the same function as the usual SYSIN DD statement used by PAN#1.

The other required statements are used for output of reports generated by PAN#1. These data
sets must be defined as 133-byte fixed block data sets and identified by the names PANPRNT,
PANDD2, and SYSPUNCH. The first character of each record is used for ANSI carriage
control. Note that if these data sets are not defined as SYSOUT data sets, they should be defined
with DISP=MOD and be large enough to contain all the reports generated by PANVALET.

All the required files can be temporary files. Examples of the PANSEQ and PANPRNT DD
statements are as follows:

//PANSEQ DD DSN=&&X,UNIT=SYSDA,SPACE=(CYL,5),DISP=(,DELETE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=4000)
//PANPRNT DD DSN=COM.PAN.REPORTS,UNIT=SYSDA,
// DISP=(MOD,KEEP),
// DCB=(RECFM=FB,LRECL=133,BLKSIZE=2660)
 or
//PANPRNT DD SYSOUT=A

PANDD2 and SYSPUNCH are specified similarly to PANPRNT.

Each PANVALET library identified in the JCL must also be identified to UEDIT by adding a
statement to the UEDTB1 table. An example of such a set of definitions follows.

In the Com-plete JCL for a PANVALET library identified by:

//MYPANLIB DD DSN=USER.PAN.MYLIB,DISP=SHR

the corresponding UEDTB1 table entry would be:

CMEDTB1 ID=MP,DSN=MYPANLIB,ACM=PANVALET

Note that the ID is the two-character value assigned by the user, and the DSN is the DD name,
not the data set name.

The two PANVALET load modules made resident within Com-plete will require additional
storage from within the Com-plete region. It will therefore be necessary to increase the
REGION parameter for the Com-plete job step. In the case of VS1, the size of the partition in
which Com-plete runs must be increased. The increase in size should be the combined sizes of
the two load modules.

Step 3: Modify the Com-plete sysparms

180

System ProgrammingPANVALET (z/OS only)

The Com-plete sysparms must be modified in order to cause Com-plete to include COMPAM
and COMPAN as resident programs. Do this by adding the following statements to the SYSPARM
member used to set Com-plete options:

RESIDENTPAGE=COMPAM
RESIDENTPAGE=COMPAN

Warning:
Do not modify the COMPAN or COMPAN load modules used
by Com-plete while Com-plete is running. During normal use of
the PANVALET interface by UEDIT, these modules are
refreshed in the Com-plete resident program area. Changing the
attributes of these modules while Com-plete is active can have
catastrophic results.

Step 4: Add the PANVALET modules to MLPA (z/OS and XA only)

Add PVPVLAMS, FGPAN23, and PVEXTUSR to the MLPA list, and IPL if necessary.

Step 5: Name the user exit (optional)

An optional user exit is available that allows users to enforce installation standards for the
PANVALET ++ADD and ++UPDATE statements. This exit must be named UXEEX4. Control
is passed to UXEEX4 for each of these statements generated by UEDIT or explicitly inserted by
the UEDIT user. This routine may be included in the link edit of the UEDIT subprogram UEBP,
as the operating system or Com-plete resident program, or in the Com-plete program library.
Note that if it is present as a resident program, UXEEX4 must be reentrant.

An example of this exit is provided in the distributed source library COM.SOURCE. See
Security and User Exit Facilities for more information on the coding and installation of
UXEEX4.

181

PANVALET (z/OS only)System Programming

Job Entry Subsystem (JES) Interface
Modules
The Com-plete Remote Job Entry (RJE) functions and online utility UQ require an interface with the
operating system’s Job Entry Subsystem (JES) in order to submit jobs and retrieve job queue information.
In order to provide modularity and JES independence, all RJE and UQ functions requiring interface with
the installation’s JES pass through the Com-plete JES Interface Module (JIM). The JIM is a collection of
routines used by Com-plete and its utilities to accomplish functions that are dependent upon the
installation’s JES. A JIM exists for each JES or spooling system supported by Com-plete. Some of the
JIMs are distributed in source and load module form, while others are in load module form only.

The Com-plete JIMs, along with the JES systems and operating systems in which they are supported, are
listed below.

System JES2 JES3 VSE/Power OS

z/OS JESCSERVJESCSERV
OS/390 2.9 and higher, z/OS 1.1 and
higher

OS/390 JES2SERVJES3SERV up to OS/390 2.10

VSE/ESA
TTJIPOW2/
TTJIPOW3

VSE/ESA 2.1 - 2.4
VSE/ESA 2.5 - 2.6

This chapter covers the following topics:

z/OS JES Interface Modules

Extended Console Server

z/OS JES Interface Modules
SOFTWARE AG recommends to use the common interface module JESCSERV. Access to JES is done
by the internally called Entire System Server JES interface XCOMJESC. This one exploits the OS/390
z/OS Subsystem Interface functions 79 (SYSOUT API) and 80 (Extended Status) and accesses OS and
JES2 dependant controlblocks. It addresses the life-of-job subsystem, i.e.the primary or alternate JES
subsystem were Com-plete was initiated. Whenever you are upgrading your OS and/or JES environment
please ask SAG support about necessary updates to XCOMJESC. XCOMJESC issues SAF checks for
class JESSPOOL. Applymod 10 has no influence on these checks.

The common interface module JESCSERV is delivered as load module. There are no OS or JES
dependencies, so you don’t need to assemble it. JES dependancies have been moved to the TTJ2MVS
(JES2) and TTJ3MVS (JES3). These modules together with TTJIMVS create the UQ A display.
Whenever you upgrade your JES, you have to reassemble them using the new JES MACLIBs.

If your OS version doesn’t met the prerequisites to use this interface, you can still used the old interfaces
JES2SERV/JES3SERV delivered on the source library. For more information see the Com-plete
Installation documentation.

182

System ProgrammingJob Entry Subsystem (JES) Interface Modules

JES2/JES3 Server Commands (only for the old interfaces JES2SERV and
JES3SERV)

Commands can be passed to the JES2/JES3 servers using the SERV operator command of Com-plete. The
format for operator commands to the JES subsystems is:

SERV server-id,cccc,oooo,oooo

where:

SERV is the Com-plete operator command

server-id is the JES2/JES3 server name

cccc is the command to be issued (see below)

oooo are the optional parameters for the issued command

Available commands are:

STRT,j1,j2...jn causes the server to initialize control blocks for the JES2/JES3
subsystem(s) as specified in the option parameters j1-jn. Example: SERV
JES2,STRT,JES2

STOP,j1,j2...jn causes the server to terminate the Com-plete server environments of the
JES2/JES3 subsystems as specified by option parameters j1-jn. Example:
SERV JES2,STOP,JES2

REFR,j1,j2...jn causes the server to refresh the Com-plete server environments of the
JES2/JES3 subsystems as specified by option parameters j1-jn. A refresh
causes the JES2/JES3 server to update the server view of the JES
environment. This includes closing and deallocating spool datasets which
JES no longer uses, and allocating and opening new spool datasets added
dynamically to the JES environment. Example: SERV JES2,REFR,JES2

STAT causes a one-line message to be issued, indicating the status of each of the
JES2/JES3 susbystems which this server has initialized. Example: SERV
JES2,STAT

Extended Console Server
On systems that support Extended Console the Com-plete Console Server should be used to receive the
Console messages. If running in a Sysplex environment this is the only way to receive Console messages
since there is no CRWTOTAB any more. The console messages are stored in a table an can be displayed
with the UQ M (console display) function. Messages from 1, 2, 3 or all systems in a sysplex may be
received according to the server configuration. Also the number of stored messages can be configured
(default=512 messages). The Console Server is started automatically at Com-plete startup if a SERVER
statement (see below) is encountered in the SYSPARM member. It can also be activated/deactivated
dynamically using the SERVER statement in UCTRL.

183

Job Entry Subsystem (JES) Interface ModulesSystem Programming

Syntax:
SERVER=(name,TLINCONS,slots,consname,hcset,automsgs,scope1 ,scope2 ,scope3)

where:

name is a unique server name within each copy of Com-plete.

TLINCONS is the name of the server initialization program.

slots specifies the number of messages held in the incore table.

consname is the console name for MCSOPER Macro. It must be unique in the
sysplex.

hcset (Y/N) specifies whether the hardcopy set is to be received by this console.

automsgs (Y/N) specifies whether messages that can be automated are to be
enqueued to this console.

scope1 specifies the name of the first system from which messages are to be
received or ALL to receive messages from all systems in the Sysplex. If not
specified, only messages from the local system will be received.

scope2,scope3specifies a second or third system from which messages are to be received.
Do not code if scope1 is ALL.

Example:
SERVER=(CONSOLE,TLINCONS,2000,COMP51A,Y,Y,DAEF,DAEY)

Note:
Hcset=Y is required if outstanding replies are to be displayed. Note that only outstanding replies that
arrived after the console was activated can be displayed.
If Automsgs=N is specified, users will not see the system replies to their operator commands.

184

System ProgrammingJob Entry Subsystem (JES) Interface Modules

UDVS VSAM SERVICES (VSE Only)
This section discusses installation and operation considerations for the UDVS VSAM SERVICES. Note
that this is relevant for VSE only.

Installation Considerations

Operation Considerations

Installation Considerations
UDVS invokes IBM’s IDCAMS utility program for VSAM SERVICES. The size of IDCAMS with its
required subroutines is approximately 300K. Note that this may exceed the normal thread size where
UDVS is executing. In addition, it takes a considerable amount of time to load these large programs from
an VSE load library.

Since IDCAMS and its subroutines are reentrant, they may be placed in the VSE SVA. Note that this may
decrease your private address space area. If this is not possible, you must put the modules in Com-plete’s
RESIDENTPAGE area. The required control statements for Com-plete’s sysparm RESIDENTPAGE are
included in the following table.

Statement Approximate Size

RESIDENTPAGE=IDCAMS 30K

Operation Considerations
As a multi-user address space, the Com-plete online environment places some restrictions on the use of
the IDCAMS utility program. Since Com-plete controls VSAM I/O operations, it is not possible to access
VSAM data sets that are not connected to Com-plete with the REPRO and PRINT commands. In general,
however, performance of all LISTCAT, DEFINE, DELETE, and ALTER operations is possible.

185

UDVS VSAM SERVICES (VSE Only)System Programming

Security Systems
This chapter covers the interfaces to the various Security Systems on the market as well as how they
interface with the Com-plete Security System. A good understanding of the relevant system is essential as
we can only discuss the Com-plete side of the interfaces here. For the purposes of this description, ACF2,
RACF and TOP SECRET are known as "external security systems" and Com-plete Security is known as
COMSEC. Com-plete also has an interface to the Natural Security system for logon validation.

This information is provided under the following headings:

Modes of Operation

External Security System Operation

Com-plete Security Operation

External Security with COMSEC

Interface To Natural Security

Defining Com-plete to ACF2

Defining Com-plete to RACF

Defining Com-plete to TOP SECRET

Controlling Program Execution

Modes of Operation
Through the SECSYS sysparm, you can choose which security system is to be used. The currently
available choices are RACF, ACF2, and TOP SECRET, and/or COMSEC.

External Security System Operation
Com-plete uses the System Authorization Facility (SAF) to interface to the external security system. All
logons and logoffs are verified/notified via the external security system and access to data sets is also
verified through the specified security system via the SAF interface. Com-plete uses this interface as it is
common to all systems, therefore, except for a few small exceptions, the sysparm specification is only
used where it is necessary to identify the external security system name.

Com-plete identifies itself as the caller via the SUBSYS keyword on the RACROUTE call. The format of
the ID is as follows...

SAGCOMvr

where "vr" is the current Com-plete version release level. This has implications for the various external
security systems which are discussed later.

186

System ProgrammingSecurity Systems

As various users will run within the same address space, the external security system must be aware of
that fact (for example, ACF2 must know the Com-plete address space as Multiple User Address Space
"MUSASS") otherwise, requests will be given the authority of the actual address space which is normally
too high for the general user.

The Com-plete module issuing the SAF requests runs with AMODE=31 and RMODE=ANY. This means
that the ACEEs built by the security can exist above the 16 MB line if the external security system
supports this.

Com-plete Security Operation
Com-plete Security holds all information on an Adabas file. When the security system is loaded, the data
is stored in tables within the address space to be queried as to the access that a user may have to various
resources. Refer to the Com-plete Security documentation for more details on defining access rules.

External Security with COMSEC
The only current duplication between these two is access to data sets and system entry validation. The
access calls that are made are made to an internal security routine which then calls the various exits or
products installed. The application therefore gets no indication of who fails the request, it simply knows
that it failed. In the case where both are specified, one OR the other has the chance to fail the request. To
avoid unnecessary duplication, you should allow anybody running under that Com-plete have access to
the data sets, while using the other system to actually validate the access.

If an external security system is installed, you will have all user IDs defined there. Therefore, the logon
request is ignored by Com-plete Security and issued through the external security system.

Interface To Natural Security
An interface is also available to the Natural Security System. In this case, if the user ID is not defined to
Com-plete, Com-plete checks the user ID and password against the Natural Security System file. If found,
the user is logged on with the entered user ID and with a model user ID of "SYSNAT" from the
Com-plete user ID file. If the user ID exists, but the password check fails and an external security system
has been specified at startup, the password violation is ignored and the password is verified via the
external security system.

To use this feature of Com-plete, the following steps must be taken.

1. Add a model user ID SYSNAT using the Com-plete user ID maintenance utility.

2. Specify the Com-plete sysparms NATSECDB and NATSECFN to identify the Natural Security
System file to be used.

Defining Com-plete to ACF2
As stated previously, Com-plete uses the SAF facility. Therefore, the ACF2 SAF exit must be installed
and active on the system. This can be checked by entering the command T C(GSO) followed by LIST
OPTS in the TSO ACF command. Options SAF and STC must be specified (they are not specified by
default). Please refer to the ACF2 documentation for more information. The user ID assigned to the
Com-plete must be defined with the following privileges.

187

Security SystemsSystem Programming

JOBFROM MUSASS NO-SMC STC

For Job Submission, Com-plete inserts the /*JOBFROM control card in the second line to ensure that the
Com-plete supplied card is seen first by ACF2. This means that the user does not need to supply a user ID
and password in the JCL and it also means that Com-plete does not have to remember the password to
insert it for the user.

ACF2 v. 5.2 and lower:

Assuming that most installations run as advised by the ACF2 installation documentation, the "SAFSAFE"
record lets all SAF requests through without checking, as with the following "SAFSAFE" definition.

CLASSES(-) CNTLPTS(-) SUBSYS(-)

the following "SAFPROT" definition is required for Com-plete:

CLASSES(-) CNTLPTS(THREAD-) SUBSYS(SAGCOMvr)

Where "vr" is the current version release for Com-plete.

ACF2 v. 6 and above:

The SAF interface in ACF2 has changed. You must use ACF2 conversion facilities to switch your old
definitions to match the new version (the old definitions can remain, but will be ignored). The following
SAFDEF definition is an example of what is required for Com-plete:

SAFDEF COMvr LAST CHANGED BY BHD ON 23/9/97-15:51
 FUNCRET(4) FUNCRSN(0) ID (COMvr) MODE(GLOBAL)
 RACROUTE(SUBSYS=SAGCOMvr REQSTOR=-) RETCODE(4)

Defining Com-plete to RACF
As stated previously, Com-plete uses the SAF facility. Standard RACF installation results in the
installation of the RACF SAF routines.

No changes to the RACF definition are necessary for Com-plete.

For Job Submission, when the USERID and PASSWORD cards are not provided on the Job Card,
Com-plete supplies both cards to identify the job submitter. However, this means that Com-plete must
remember the password to insert it for the user, therefore applymod 83 is incompatible with the use of
RACF on a system.

Defining Com-plete to TOP SECRET
The following describes the steps required to define Com-plete to a CA-TOP SECRET security system.
For the sake of clarity, the following examples do not take advantage of techniques such as the defining of
profiles, etc. Where examples are given, you are also referred to the relevant CA-TOP SECRET
documentation where you will find more information.

Com-plete is defined as a system facility by CA-TOP SECRET by default. This is described in the TOP
SECRET documentation CA-TOP SECRET Implementation: Other Interfaces Guide, section Com-plete.
The modifications described in the subsection Required Modifications are no longer necessary, as
Com-plete interfaces with TOP-SECRET via the SAF interface as described above. To avoid confusion,

188

System ProgrammingSecurity Systems

an update request for this section has been issued.

You must change this facility definition using the TSS MODIFY FACILITY command to set the
following options:

NOABEND TENV

For more information, see the CA-TOP SECRET z/OS Control Options Guide.

You now must create an ACID to identify this Com-plete release and link this ACID to the Facility. The
name we have chosen for this ACID is the same as that used for the subsystem name we use on the
RACROUTE calls documented previously. This is simply as a naming convention and is not necessary for
the operation of this interface. You can choose your own names if you so wish. For our example, the
ACID we use is SAGCOMvr (where "vr" is the Com-plete Version and Release). The ACID is created
with a TSS command as follows:

TSS CREATE(SAGCOMvr) TYPE(USER) NAME(’COMPLETE vr’)
 DEPT(RDDEPT) PASS(NOPW) FAC(ALL) MASTFAC(COMPLETE)

For more information, see the CA-TOP SECRET z/OS Implementation documentation.

Each Com-plete startup procedure must use the relevant ACID. The ACID that should be used can be
identified with the following TSS command:

TSS ADD(STC) PROC(pppppppp) ACID(SAGCOMvr)

where pppppppp is the procedure name.

For more information see the CA-TOP SECRET z/OS Implementation documentation.

Users must then be authorized to logon to Com-plete. This can be done with the following TSS command:

TSS ADD(uuuuuuuu) FAC(COMPLETE)

where uuuuu is the user ID.

For more information see the CA-TOP SECRET z/OS Implementation documentation.

For Job Submission, Com-plete inserts the constant "x’FF’,c’TSS’" followed by the address of the user’s
ACEE in columns 73-80 of the Job Card. In this way, the user does not have to supply a user ID and
password in the JCL and it also means that Com-plete does not have to remember the password to insert it
for the user.

Controlling Program Execution
Unfortunately, the program execution permissions defined in the standard SAF class PROGRAM are not
effective under Com-plete, as this class is always checked against the user ID associated with the
Com-plete address space, and not against the user ID associated with the subtask at the moment when a
program is invoked.

To overcome this limitation, you can either define a separate SAF class, or you can define a special
resource dedicated to Com-plete within the PROGRAM class. You then declare both the class name and
the resource name to Com-plete, using the sysparm

189

Security SystemsSystem Programming

SECSYS-EXECUTIONCONTROL=(class_name,resource_name)

If this sysparm is present, Com-plete calls SAF for each application invocation, verifying the permissions
of the current user in regard to the application being invoked, using the class and resource names as
specified.

Verification is performed in the following situations:

1. Thread initialization. A thread is initialized in the following situations:

a user’s startup program is invoked;

a program is invoked from the Com-pass menu or Com-plete command prompt;

a program is invoked by another program using one of the Com-plete API functions ATTACH
or FETCH.

2. Start of a CGI program via the HTTP server.

Note:
No verification is performed when one program loads or calls another program.

Example:

Class definition:

NODE / CLASMAP.COMPROG
 ENTITYLN(0) MUSID() RESOURCE(COMPROG) RSRCTYPE(COP)

NODE / SAFDEF.COMPROG
 FUNCRET(4) FUNCRSN(0) ID(COMPROG) MODE(GLOBAL)
 RACROUTE(REQUEST=AUTH CLASS=COMPROG) RETCODE(4)

Resource definition:

$KEY(PROGRAM) TYPE(COP)
*__ HTML utilities: only JIM and JOE may use them
 W- UID(****************JIM) SERVICE(READ) ALLOW
 W- UID(****************JOE) SERVICE(READ) ALLOW
*___anyone else: no permission
 - UID(-) SERVICE(READ) PREVENT

Sysparm:

SECSYS-EXECUTIONCONTROL=(COMPROG,PROGRAM)

190

System ProgrammingSecurity Systems

The DB2 Interface
The Com-plete/DB2 interface uses the Call Attachment Facilty (CAF) of DB2.

With the new dispatcher of Com-plete 5 and above, the internal structure of the DB2 Interface has
changed. All CAF processing now runs under control of the same task as the application (usually, Natural)
as opposed to the special subtasks used in previous versions of Com-plete.

Since DB2 does not support more than one session per subtask, Software AG recommends that you
allocate a separate task group (see sysparm TASK-GROUP in Startup Options (Sysparms)) with a
sufficient number of subtasks in it and run your DB2 applications on this task group.

Note that the number of subtasks in a task group can be changed dynamically using Com-plete operator
command TASKS.

During startup, Com-plete is connected to DB2. The DB2 load-library (DSNLOAD) must be concatenated
to the COMPINIT/COMPLIB datasets, since all relevant modules will be loaded dynamically.

SYSPARM Considerations

The DB2 interface implementation requires the following SYSPARM definitions:

RESIDENTPAGE=DB2COMRE

SERVER=(DB2,TLINDB2,ssid,plan)

where:

ssid The DB2 subsystem ID for the CAF CONNECT call.

plan The default plan name if the application does not use an explicit open.

DB2 services for the application are provided via a standard CAF call function:

 CALL DSNALI and/or CALL DSNHLI

This entry point will be resolved by including the module DB2COM from the distributed load library
during link edit.

The user application can issue explicit CAF opens by issuing an OPEN call that provides the plan name to
be used. The Com-plete/DB2 interface will issue implicit opens, with the plan-name specified in the
SERVER sysparm definitions, if the first call for DB2 is not an OPEN call.

191

The DB2 InterfaceSystem Programming

Natural
The Natural interface is described under the following headings:

Installing the Natural Buffer Pool Manager

Natural Batch

Installing the Natural Buffer Pool Manager
The buffer pool initialization is performed via SERVER definitions in the Com-plete system parameter
file (see also the Natural documentation). These definitions must look like this:

SERVER=(NATBPSxx,NCFBPSxx,....) for V2.3 and 3.1 buffer pools

The server modules must be linked using the following linkage editor commands:

INCLUDE NATLIB(NCFBPSnn)
INCLUDE COMLIB(TLINNSRV)
NAME NCFBPSnn(R)

where:

NATLIB is the Natural distribution library.

COMLIB is the Com-plete release load library.

Linkage editor commands for VSE:

// LIBDEF OBJ,SEARCH=(SAGLIB.NATvrs,SAGLIB.COMvrs)
// LIBDEF PHASE,CATALOG=SAGLIB.COMUSER
// OPTION CATAL
 PHASE NCFBPSnn,S
 INCLUDE NCFBPSnn
 INCLUDE TLINNSRV
 ENTRY NCFBPSnn
/*
// EXEC LNKEDT,PARM=’AMODE=31’
/*

The Natural buffer pool initialization modules are loaded dynamically during Com-plete initialization.
The linked module must therefore be placed in a load library contained in the COMPLIB concatenation.

Note that the Natural 2.2 buffer pool manager requires COMSTOR to be defined. Failure to do so will
result in a user 255 abend when trying to initialize the Natural 2.2 nucleus.

Natural Batch
Natural Batch users who require direct access Com-plete functions (for example, RJE,MESGSW), must
define these functions as CSTATIC and link the module COMPBTCH (the Com-plete Batch interface
module) to the Natural nucleus. This stops Natural loading the individual modules at runtime (which are
typically those for the online environment).

192

System ProgrammingNatural

CA-DYNAM from Computer Associates
(VSE only)
The CA-DYNAM products use a SYSTEM ADAPTER to trap and analyze the SVCs.

This SYSTEM ADAPTER is normally started via CASAUTIL in the prodedure $0jcl... for the BG
partition after IPL.

The CA SYSTEM ADAPTER must be started before our own system interface is initialized by running
COMSIP.

Before starting Com-plete, the CA SYSTEM ADAPTER must be disabled for the Com-plete partition.
This can be done using

// UPSI 00000001
// EXEC CASAUTIL
DISABLE nn ALL --> where nn is the partition id
/*

After Com-plete shutdown, the SYSTEM ADAPTER must be re-enabled:

// UPSI 00000001
// EXEC CASAUTIL
ENABLE nn --> where nn is the partition id
/*

The job control to disable and enable the CA SYSTEM ADAPTER can be included in the Com-plete start
job.

193

CA-DYNAM from Computer Associates (VSE only)System Programming

IBM Language Environment Considerations
This chapter covers the following topics:

Saving Thread Storage

Receiving IBM Language Environment Runtime Messages and Dumps

Saving Thread Storage
When using IBM Language Environment with programs running under Com-plete, place the following
statements in the Com-plete SYSPARMs in order to save thread storage:

RESIDENTPAGE=CEEBINIT
RESIDENTPAGE=CEEBLIBM
RESIDENTPAGE=CEEBLRR
RESIDENTPAGE=CEEEV005
RESIDENTPAGE=CEELRRIN
RESIDENTPAGE=CEELRRTR
RESIDENTPAGE=CEEMENU3
RESIDENTPAGE=CEEPLPKA
RESIDENTPAGE=IGZCLNK
RESIDENTPAGE=IGZCMGEN
RESIDENTPAGE=IGZCPAC
RESIDENTPAGE=IGZCPCO
RESIDENTPAGE=IGZEINI
RESIDENTPAGE=IGZETRM

Depending on the type of applications running, other routines may be loaded into thread which you also
might want to define as resident modules. After running your applications, use UCTRL subfunction OP to
find out if there are such routines being loaded, their size and frequency of use.

If your application programs are reentrant, they, too, are candidates for becoming resident.

The IBM Language Environment runtime tends to require approx. 200 Kbytes of working storage in the
Com-plete thread below the 16 MB line when the default LE runtime options are in effect. For most
applications, this size can be reduced significantly by explicitly changing some of the LE runtime options.
Successful tests have been run in threads with just 50 Kbytes below the line for many COBOL programs
with the following runtime options in effect (set in CEEUOPT):

ALL31=(ON),
BELOWHEAP=(1K,4K,FREE),
NONONIPTSTACK=(4K,4K,ANYWHERE,KEEP),
STACK=(32K,32K,ANYWHERE,KEEP),
STORAGE=(00,NONE,00,8K)

Similar options exist for other programming languages in the IBM Language Environment. For more
information, please refer to the appropriate IBM documentation. While these settings are likely to work
for other applications as well, Software AG cannot guarantee that your applications will run correctly with
the same options or in the same thread size. In any case, the resulting thread region size required for each
application must be set accordingly in ULIB.

194

System ProgrammingIBM Language Environment Considerations

Receiving IBM Language Environment Runtime Messages
and Dumps
Each user can choose from three different ways to handle SYSOUT output. The choice is defined by
means of the Com-plete user’s hardcopy destination:

1. If the hardcopy destination is the name of an existing printer, the output is routed to this printer.

2. If the hardcopy destination is a dummy printer (any name which is not the name of any printer in the
network), the output remains in Com-plete’s spool file and can be viewed and/or selectively printed
using USPOOL. Make sure you have a big spool file and/or specify a short printout expiration time if
you choose this option.

3. If a user has no hardcopy destination defined, his output is routed to his terminal after termination of
the application.

Under certain circumstances, like abnormal program termination while running with STAE / TRAP(ON)
option, IBM Language Environment provides additional problem related information which it tries to
write to a file described by DD/DLBL name CEEDUMP.

To get this information when running under Com-plete, add the DD/DLBL name CEEDUMP to the
source module ULSODDT1 and re-assemble this module. CEEDUMP output will then be handled for
each user individually, in the same way and at the same destination as standard SYSOUT output.

VSE only:

LE/VSE programs can only run in a THREAD-GROUP running in the partition key:

THREAD-GROUP=(aaa,(bbb,nnn,nn,nn,nn,N))

195

IBM Language Environment ConsiderationsSystem Programming

File Transfer
Com-plete supports 2 methods of file up/downloading from/to PCs:

UEDIT

IND$FILE (z/OS only).

UEDIT
READ from / SAVE to Library ’PC’ in UEDIT. This method (applicable to SOURCE and OBJECT files)
requires ENTIRE CONNECTION to be active on the PC. SOURCE files are converted to ASCII on
download and to EBCDIC on upload. Object modules are encrypted on download. These files are
unusable in ASCII format but may be sent to a different site via diskette or email. On upload it is
decrypted; the original file is restored. A checksum ensures data integrity.

IND$FILE (z/OS only).
This method requires IBM’s file transfer program IND$FILE for TSO and corresponding support on the
PC (terminal emulator). In order to make IND$FILE executable under Com-plete, proceed as follows:

Link-edit module COM$FILE (supplied in the LOAD distribution data set) with IBM’s IND$FILE
program for TSO. Use the following sample JOB:

//COMLINK JOB ...
//COMLKD PROC N=,RENT=,NCAL=NCAL
//LKED EXEC PGM=HEWL,
// PARM=’LET,&NCAL,&RENT,AMODE=24,RMODE=24’
//SYSPRINT DD SYSOUT=*
//COMPLIB DD DSN=COM.LOAD,DISP=SHR
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=COM.USER.LOAD(&N),DISP=SHR
//SYSLIN DD DDNAME=SYSIN
// PEND
//IND$FILE EXEC COMLKD,N=IND$FILE,RENT=NORENT
 INCLUDE COMPLIB(COM$FILE)
 INCLUDE LINKLIB(IND$FILE)
 ENTRY COM$FILE
/*

Catalogue IND$FILE using ULIB, specify the options RG=80K and PV. IND$FILE may not release the
thread for the duration of the file transfer, therefore it may make sense to allocate a separate thread group
and a separate task group for it in order to avaoid delays for other users.

Note:
IND$FILE may be called only from the COM-PASS menu.

For details on IND$FILE usage refer to your emulator documentation (file transfer).

196

System ProgrammingFile Transfer

Security and User Exit Facilities
This part of the Com-plete System Programming documentation describes the security and user exits
available with Com-plete.

This information is organized under the following headings:

Introduction

User Exit Considerations by Type of Exit

Creating or Modifying a User Exit

ACSUUEX1 - ACCESS Write-Intercept Exit

ACSUUEX2 - ACCESS Read-Intercept Exit

SDAMSEX1 - SDAM API Security Exit

TUDUEX1 - Select Dumps by User-Defined Criteria

UCOEX1 - UCOPY User Exit

UDMPX1 - UDUMP Security Exit

UDSEX1 - UDS Security Exit (z/OS Only)

UDVSX0 - Usage Control of UDS/UDVS VSAM SERVICES

UDYEX1 - Control Dynamic Allocation/Deallocation of Datasets using UDYN
(z/OS only)

UEDTB1 - Library Code Table

ULHMX1 - Hello Message Exit

ULMSBTCH - Batch Output User Exit

ULMSDISK - Dynamic Printer Allocation User Exit

ULINUSER - Com-plete Initialization Exit

ULOGX1 - ULOG Security Exit

ULOPADAB - Adabas User Exit

ULSRMPEX - Modify PF Key Codes

ULSRPSFS - User-Written Service Routine

ULSRRJE - Remote Job Entry User Exit

ULSRSEC - User-Written Service Routine

UMSEX1 - UM Security Exit

USTKX1 - USTACK User Exit

USTRE1 - USTOR User Exit

UTMEX1 - Timer User Exit

UTMEX2 - Timer Monitor User Exit

197

Security and User Exit FacilitiesSystem Programming

UTMEX3 - Timer Monitor RJE Exit

UUEDEX - UED Security Exit

UUMAX1 - UMAP Initialization Exit

UUMAX2 - UMAP Command Exit

UUMAX3 - UMAP Termination Exit

UUPDX1 - UPDS Security Exit (z/OS Only)

UUQEX1 - UQ Security Exit

UUSEX1 - USDLIB Security Exit

UUSPL0 - USPOOL Command Exit

UUSVX1 - USERV Security Exit (VSE Only)

UUTEX1 - UUTIL Security Exit

UXEEX1 - UEDIT Initialization Exit

UXEEX2 - UEDIT Command/Termination Exit

UXEEX3 - UEDIT RJE Exit

UXEEX4 - UEDIT LIBRARIAN/PANVALET Exit

UXEEX5 - Locate Exit

198

System ProgrammingSecurity and User Exit Facilities

Introduction
This chapter covers the following topics:

Summary of Available Exits

Areas of Exit Usage

ULOG ON Security

SYSCOM,SYSNAT

Batch/TPF User IDs

ULOGX1 Exit

Program, SD File, File I/O Security

Control Programs

Message Switching and Printout Spooling

Utility and Application Security

ACCESS User Exits

Summary of Available Exits
The following table summarizes Com-plete’s security and user exit facilities. Each of the facilities listed
below is discussed later in this section.

Facility Summary

ACSUUEX1 Intercepts all screen data that would normally be sent to the user’s terminal
for manipulation.*

ACSUUEX2 Passes data on to the target system.*

SDAMSEX1 Controls the use of SDAM API functions.

TUDUEX1 Allows user-defined tests and restrictions for use of the TUDUMP program.

UCOEX1 UCOPY exit. Allows user alteration of the destination supplied.

UDMPX1 Defines security restrictions on the use of UDUMP to control the access of
dumps in the online dump library.

UDSEX1 Defines security restrictions on the use of UDS (z/OS only).

UDVSX0 Controls/restricts the use of UDS/UDVS VSAM SERVICES.

UDYEX1 Control dynamic allocation/Deallocation of datasets using UDYN (z/OS
only).

UEDTB1 Defines the library identification codes used to refer to user libraries.

199

IntroductionSystem Programming

Facility Summary

ULHMX1 Allows user alteration or suppression of Com-plete’s hello message, based
on TID.

ULMSBTCH Allows modification of parameters used by batch spool output routines to
generate DYNALLOC/SEGMENT calls.

ULMSDISK Allows modification of a dynamically allocated printer TIB entry by a user.

ULINUSER Allows user processing during Com-plete initialization.

ULOGX1 Defines security restrictions on the use of ULOG prior to various events.

ULOPADAB Allows user examinaton and/or alteration of Adabas call parameters.

ULSRMPEX Allows modification of PF key codes in a MRCB.

ULSRSEC Controls use of specific application functions, programs, modules, and
Com-plete utility programs.

ULSRRJE Examines and/or modifies the (RJE) input data submitted for background
processing via the RJE function call.

ULSRSEC Controls access to files.

UMSEX1 Controls the use of the message switching functions.

USTKX1

USTRE1 Defines security restrictions on the use of operator command functions.

UTMEX1 Examines each new timer request to be added to the timer SD file by
UTIMER.

UTMEX2 Is a timer monitor exit called every minute and for each request that is to be
served.

UTMEX3 Is a timer monitor exit called at RJE job submission.

UUEDEX Defines security restrictions on the use of UED.

UUMAX1 Defines security restrictions on the use of UMAP, and allows user
modification of the global defaults to UMAP.

UUMAX2 Defines security restrictions on the use of the UMAP command functions.

UUMAX3 Defines security restrictions on the use of UMAP, forces the cleanup of SD
files, and controls the termination of UMAP.

UUPDX1 Defines security restrictions on the use of UPDS (z/OS only).

UUQEX1 Defines security restrictions on the use of UQ.

UUSEX1 Defines security restrictions on the use of USDLIB to control the access of
SD files.

UUSPL0 Is the USPOOL command exit.

UUSVX1 Defines security restrictions on the use of USER (VSE only).

UTMEX1 Defines security restrictions on the use of UUTIL functions.

200

System ProgrammingIntroduction

Facility Summary

UXEEX1 Defines security restrictions on the use of UEDIT and user ID access to
specific libraries or members.

UXEEX2 Defines security restrictions on the use of UEDIT commands and UEDIT
termination.

UXEEX3 Defines security restrictions on the use of UEDIT, and controls the job
control conventions for submitted jobs from UEDIT and UPDS. (It is
recommended that ULSRRJE be used for this function.)

UXEEX4 Defines security restrictions on the use of UEDIT and the interfaces to
PANVALET and LIBRARIAN.

UXEEX5 Examines each LOCATE request to catalog management and allows the
recall of migrated data sets.

* These exits only exist on the "host" side of an access request, for example the CICS from which the user
is accessing.

Areas of Exit Usage
The Com-plete security and user exit facilities allow you to set restrictions on individuals or groups of
individuals (departments) for accessing the various facilities, programs, and functions of Com-plete.
Restrictions that can be imposed include:

Requiring a password in order to gain access to the system;

Disallowing specific users or groups from using certain application programs or Com-plete utilities;

Disallowing specific users or groups from using various functions within an application program,
while simultaneously allowing the use of other functions within the same program (for example,
allowing the display of records for an application file, but disallowing updates);

Disallowing specific users or groups from using certain control functions provided by some of the
Com-plete online utility programs (for example, the K function of the UQ utility program);

Restricting usage of the UQ functions H, R, C, DE, and S to terminal users who have submitted the
specific job being accessed or to users who belong to a specific department;

Disallowing specific users or groups from viewing certain messages or printout spooling data sets.

In addition to the security checks that can be imposed, an installation can also restrict program execution
to specific threads based upon their thread-lock number. For example, if a program is thread-locked to
thread two, the installation may choose to force execution to thread one without recataloging the program.
This restriction can be forced by program name, thread number, or both.

The areas where security can be defined in order to accomplish these objectives include:

ULOG ON security;

201

IntroductionSystem Programming

Program security;

SD file security;

File I/O security;

Thread-scheduling control;

Program timing (z/OS only);

Control user IDs;

Message switching security;

Printout spooling security;

Utility security;

Application security;

Data manipulation using ACCESS.

Many of these security areas allow you to define and write subroutines to meet the needs of your
installation. Their general purpose and function is presented in the following sections.

ULOG ON Security
Before accessing any application program or Com-plete utility, a terminal operator can be required to
enter a "*ULOG ON" request as identification to Com-plete security and accounting routines. This logon
requirement is an optional feature of Com-plete selected at initialization time (see the ACCOUNTING and
PASSWORD sysparms).

When a user logs on, a user ID and a password, must be supplied. Com-plete verifies the information by
invoking an external security package (for example, RACF) via the SAF interface, or by accessing the
Com-plete system data set, which contains user ID information. For each user allowed to access the
Com-plete system, this information consists of the following:

A unique user ID that identifies the user;

The account number (or group number) with which the user ID is associated;

The password for the user ID;

The control status to be assigned to the user ID. This status is used by various Com-plete utilities to
restrict the use of certain privileged functions (e.g., the K function of the UQ utility);

The authorization code for the user ID;

The sending and receiving message and printout class codes for the user ID.

Each time a "*ULOG ON" request is entered, the user ID is accessed in the system data set and the
password, if required, is validated. If the user ID is not found, or if the password is not verified, the ULOG
ON request is aborted.

202

System ProgrammingIntroduction

If the user ID is found and the password is verified, a control block for the user containing information
from the user ID record is created, plus additional room for keeping track of the resources to be assigned
to the user ID. This control block is called the user accounting block (UAB), see also the section
Com-plete Accounting Facility.

If an external security system such as RACF, ACF2 or TOP SECRET is installed and specified in the
Com-plete startup procedure, the user ID/password combination must pass the external security system
verification rules. If the user ID/password combination is unknown, the request is rejected with the
message returned from the security system.

SYSCOM,SYSNAT
If the user ID is not defined on the Com-plete system data set and the NATURAL Security Interface is
active (sysparms with prefix NATSEC), the user ID and password combination is verified against the
NATURAL Security File. If the user ID exists and the password is correct, the user ID is logged on with
the entered user ID, and the Com-plete required information retrieved using the user ID model SYSNAT.

If the user ID is not defined to the Com-plete system data set, and the NATURAL Security interface is
either not installed or rejects the logon, and APPLYMOD 57 is specified, the user ID is logged on
irrespective of the specified password and given the Com-plete required information from the user ID
model SYSCOM.

In both cases the model user ID must be defined to Com-plete. If an external security system is present,
then the model user ID is also validated with the security system.

If the model user ID is defined, then the logon is allowed using the authorization obtained for the model
user ID.

If the model user ID is not defined, then the logon is still allowed but no authorization is supplied, that is,
any attempted access to items which would normally be protected by the external security system will fail.

Batch/TPF User IDs
For Batch and TPF users, a model user ID is always supplied by the host system in the logon data
(SYSBAT and SYSTPF respectively). The logon then proceeds as above, the user IDs SYSBAT and
SYSTPF must be defined on the Com-plete system data set and can also be defined to an external security
system.

ULOGX1 Exit
In addition to Com-plete security, a user-written security exit, ULOGX1, is called to allow the installation
to perform further security checking against passwords, time-of-day, etc. This routine can also change
some items in the Logon Information Block that is assigned to the user ID. These items include:

Control status ;

Authorization code;

203

IntroductionSystem Programming

Account number;

Message class codes;

COM-PASS model.

The ULOGX1 security exit is discussed later in this section.

Program, SD File, File I/O Security
The user-written security routine ULSRPSFS is called to allow security checks to be issued for any or all
Com-plete application functions.

ULSRPSFS either allows or disallows the request by setting a return code. If the request is disallowed, the
application program is abnormally terminated.

Control Programs
Some of the functions afforded by the Com-plete utilities are restricted to user IDs that are assigned
control status. These functions are listed in the following table:

Utility unction

UDD All commands

UDZAP All commands

ULIB CAT and DEL commands for PV programs

UM SCLASS command RCLASS command PURGE command, using TID
parameter* DELETE command, using TID parameter* ALT command,
using TID parameter* RESET command, using TID parameter*

UQ K command (see APPLYMOD=6 in Binary Modifications (APPLYMODS)

USTOR All functions

UUTIL For authorizations of UUTIL functions, see the Com-plete Utilities
documentation

* See APPLYMOD=7 in Binary Modifications (APPLYMODS)

These utility programs and their privileged functions are discussed in more detail in the Com-plete
Utilities documentation.

Message Switching and Printout Spooling
Each time an application program or Com-plete utility program makes a request to send a message or
printout, Com-plete performs a security check to see if the class codes assigned to the message or printout
correspond to the class codes assigned to the user ID using the sending terminal. If not, the message
switch or printout request is aborted.

204

System ProgrammingIntroduction

Com-plete also checks the class codes for the user ID of the receiving terminal. If they do not match the
class codes of the message or printout, the message or printout is aborted.

If an attempt is made to send a message or printout to a terminal not in use, the default class codes for that
terminal are used. This allows for sending messages and printouts to terminals to which no one has logged
on (e.g., a 3286 line printer).

Default message switching and printout spooling class codes are normally set when TIBTAB is created
and/or the user ID is defined. The creation of TIBTAB is defined in the section entitled Defining
Terminals and Printers. User IDs are defined using the UUTIL utility program, which is described in the
Com-plete Utilities documentation.

Utility and Application Security

Utility Security

Most of the Com-plete utilities described in the Com-plete Utilities documentation contain at least one
exit point for exiting to a user-written routine. Each of these routines’ functions and linkage conventions is
discussed later in this section. These routines allow you to define your own security restrictions on the use
of the utility programs.

In addition, the UQ utility program recognizes certain job control comment cards that can be used to
restrict usage of the UQ functions H, R, C, DE, and S. These statements are:

xxxUQ USER ID restricts user IDs

xxxUQ
ACCOUNT

restricts account numbers

xxxUQ
AUTHORIZE

restricts authorization codes

xxxUQ
DISALLOW

restricts all access

xxxUQ ALLOW removes access restrictions

xxxUQ USER passes information to the exit

where xxx is "//*" in z/OS, and "* *" in VSE.

Note that these job control comment statements must exist in the job stream preceding the first EXEC
statement. Further information on their usage can be found in the Com-plete Utilities documentation.

Generally, if more than one of the comment statements are present, only one condition must be met to
pass security checking. If none are present, UQ either disallows everyone using the indicated functions or
allow everyone, depending upon the default Com-plete sysparm UQDEFAULT.

Application Security

If an application program needs to restrict some but not all of its functions, the GETCHR function can be
used to establish the required authorization.

205

IntroductionSystem Programming

The GETCHR function enables the program to determine the user ID, account number, authorization
code, and control status of the terminal user. This way, some functions can be restricted to certain user
IDs.

The GETCHR function is fully described in the Com-plete Application Programming documentation.

COM-PASS Security System

All or parts of utility and application security can be accomplished through the use of the COM-PASS
security system.

COM-PASS users are defined by a User Profile. A part of this profile is the User Transaction Profile.
Every access the user attempts to make to a transaction is checked by COM-PASS. If the user is not
allowed to use the transaction, either of the following messages are displayed:

OVL0007 (-) - ACCESS TO REQUESTED PROGRAM DISALLOWED
UMP0023 - SECURITY VIOLATION - ACCESS TO PROGRAM DISALLOWED

The COM-PASS User Profile is determined by:

The COM-PASS security indicator. This defines the user to be checked by COM-PASS for
transaction security within Com-plete.

The COM-PASS menu transactions (A through I). These are the transactions that are defined for the
user, which appear on the COM-PASS main menu as service programs.

The COM-PASS startup program. This can be set to any valid COM-PASS, Com-plete, or user
transaction program. To have the main menu appear first, set this parameter to USTACK.

The user is not allowed to change the transaction authority. When the security switch is set, the user is
only allowed to use the defined transaction programs that appear on his/her main menu as service
programs.

ACCESS User Exits
ACCESS provides user exits that enable user-written routines to be called by the ACCESS transaction.
These user exit routines can examine and alter data at the following times:

Before writing the data from the target node to the host terminal;

Before the terminal input is sent to the target node.

Note:
All references to "target node" refer (currently) to a Com-plete system.

The names of these exits are ACSUUEX1 (writing) and ACSUUEX2 (reading). Each one is explained
later in this section

206

System ProgrammingIntroduction

User Exit Considerations by Type of Exit
Each Com-plete user exit is classified as a batch, thread, or nucleus exit. Each type of exit has unique
attributes and considerations. The conventions table for each exit specifies the type of exit.

This chapter covers the following topics:

Batch Exits

Thread Exits

Nucleus Exits

Batch Exits
Batch exits are called from Com-plete batch utility programs. The exit can perform most operation system
functions available to a batch program. Note that batch exits should not perform any input/output
functions on files defined for that utility.

Note:
z/OS linkage editor overlays are not permitted.

Abnormal termination within a batch exit will cause the Com-plete batch utility to terminate abnormally.

Thread Exits
Thread exits, called from Com-plete online utilities, execute as extensions of these utilities. The exit is
restricted to using storage defined when the online utilities were cataloged to Com-plete. Thread exits are
called in the PSW-protect key of the thread.

Note:
z/OS linkage editor overlays are not permitted.

Thread exits can use Com-plete functions defined in the Com-plete Application Programming
documentation. Storage can be acquired only from the region of the thread defined when the online utility
was cataloged. GETMAIN/GETVIS requests are satisfied from the thread’s region. The online utility may
need to be recataloged with a larger region size.

If the exit is thread locked, its caller must also be thread locked.

A thread exit can also be used by specifying the RESIDENTPAGE sysparm.

Note that exits placed in either resident area must be reentrant.

When exits are specified as being RESIDENTPAGE, the exit is entered in the AMODE it was linked with
for the operating systems. In this way, thread exits can be run in 31 bit mode and can also reside above the
16 MB line. This means they can be linked with RMODE=ANY. Exits must always return to the caller in
the addressing mode they were called in. When the exit is called, register 14 will have the caller’s
AMODE set as standard.

207

User Exit Considerations by Type of ExitSystem Programming

Abnormal terminations within a thread exit cause the online utility to terminate abnormally.

Nucleus Exits
Nucleus exits, called from the Com-plete nucleus, execute as an extension of that nucleus.
GETMAIN/GETVIS requests are satisfied from the Com-plete partition/address space, not from the
thread. The nucleus exits execute in the PSW-protect key of Com-plete and in supervisor state. If the exit
must refer to areas within a thread, those areas will be in the protect key of the thread during the time the
exit has control.

Note that nucleus exits must be reentrant.

Note:
z/OS linkage editor overlays are not permitted.

Nucleus exits must not use any Com-plete function defined in the Com-plete Application Programming
documentation.

Nucleus exits are loaded dynamically. Refer to the description of each nucleus exit in the following
sections for additional information.

As nucleus exists are now loaded using standard z/OS / VSE loads, on XA and ESA systems the modules
are loaded and entered according to their AMODE and RMODE specification. Please note that exits must
return to the caller in the caller’s AMODE. This is set as standard in the high-order byte of register 14
when the exit is initially called. Return is correct if the following instruction is used:

BSM R0,R14

This tells the machine to return to the address in R14 while setting AMODE 31 if the high-order bit is on,
or AMODE 24 if the high-order bit is off. This will have been set by the caller of the exit.

Abnormal terminations withinin a nucleus exit cause the Com-plete nucleus to terminate abnormally.

Note that when a nucleus exit routine gets control, the storage key of the user program area of the thread
may be in a different key to Com-plete’s key. If the exit needs to change the contents of any fields in the
user program area, they must do this bearing this fact in mind. The various nucleus exits which may be
affected by this have appropriate notes in the Considerations sections of their individual description in this
section.

208

System ProgrammingUser Exit Considerations by Type of Exit

Creating or Modifying a User Exit
To create or modify a user exit, follow the procedure below:

Step 1

Ensure that a backup copy is made of the exit and of Com-plete or the affected utility. (Errors in
user exits may render Com-plete or the utility unusable.)

Step 2

Modify the current source of exit or the sample in the distributed source library.

Step 3

Assemble and link edit the user exit as follows:.

z/OS Assemble and link edit the user exit into COM.USER.LOAD. If the exit is to be link
edited with a utility, then link edit the affected routines using the portion of JCL in
$LINKxx for those routines, where xx represents z/OS.

VSE: Assemble and catalog the user exit into SAGLIB.COMUSER. If the exit is to be link
edited with a utility, then link edit the affected routines using the portion of job control in
JCLLINKS.J for those routines. If the exit is loaded dynamically, link edit the user exit
into SAGLIB.COMUSER.

Step 4

Make the user exit/utility available to the terminal user by either:

refreshing the user exit with ULIB if the user exit is loaded dynamically and Com-plete is
currently active. Note that the region size parameter of the utility may need to be increased
using ULIB in order to accommodate the exit. If the thread is too small to contain the
online utility and the exit, an abnormal termination will result; or:

refreshing the utility with ULIB if the user exit is linkedited with the online utility and
Com-plete is currently active. Note that the region size parameter of the utility may need to
be increased; or:

adding the user exit with the RESIDENTPAGE sysparm. RESIDENTPAGE routines save
storage that would be needed if the user exit executed in the thread. Note that
RESIDENTPAGE routines must be reentrant.

Note:
If the exit is a nucleus exit, Com-plete must be terminated and then reactivated.

Step 5

Test the function of the exit.

209

Creating or Modifying a User ExitSystem Programming

ACSUUEX1 - ACCESS Write-Intercept Exit
ACSUUEX1 is a user-written routine that can intercept all screen data that would normally be sent to the
user’s terminal and modify or delete it as required. It can also generate additional screen data. If a screen
is deleted (this means that the data prepared by the target system is not sent to the host terminal), the
user-exit routine ACSUUEX1 can invoke the target system’s read routine as if the user had viewed the
screen, typed in data, and pressed ENTER.

This chapter covers the following topics:

How to Create ACSUUEX1

How to Use ACSUUEX1

ACSUUEX1 Conventions

How to Create ACSUUEX1
To create an ACSUUEX1 routine, the following steps are required:

Step 1

Code the ACSUUEX1 routine entry of ACSEXITS (A.ACSEXITS for VSE, or ACSEXITS
ASSEMBLE for CMS).

Step 2

Assemble and link ACSEXITS (A.ACSEXITS for VSE) into the ACCESS load library (relo
library for VSE). Refer to the ACCESS source library during the assemblies for z/OS and VSE
environments. Or for CMS only, assemble ACSEXITS with the ACCESS macro library
referenced.

Step 3

Link edit ACSEXITS (A.ACSEXITS for VSE) to the ACCESS driver for the host Adabas TPF,
CICS, or TSO systems. Member JCLLINKA (A.JCLLINKA for VSE) in the ACCESS source
library contains the link edit JCL for all TP monitors supported. Or for CMS only, execute the
EXEC GENACS.

How to Use ACSUUEX1
Members CCACSWK and CCACSPFX in the distributed source library are DSECTs referred to in the
main ACCESS routine. These areas are addressable in the ACSUUEX1 exit. A sample entry routine is
provided in member ACSEXITS (A.ACSEXITS for VSE) of the ACCESS source library.

210

System ProgrammingACSUUEX1 - ACCESS Write-Intercept Exit

ACSUUEX1 Conventions
The following table summarizes the ACSUUEX1 linkage conventions.

Feature Convention

Attributes None required.

Size Restricted to the ACS driver region.

Registers
atEntry

Register 2 Output length (halfword)

Register 3 Address of the output area

Register 6 Address of the ACCESS prefix

Register 9 Address of the ACCESS work area

Register 10 Main ACCESS driver base address

Register 13 Address of an 18-fullword save area

Register 14 Return address within the ACS driver

Register 15 Entry address within ACSUUEX1

Registers at
Return

Registers must be restored, except register 15, which must contain a
return code.

Return Codes 0 Continue with write.

4 Write message and read normally.

8 No write and read. Return.

Considerations Must be assembled and link edited with the ACS driver.

211

ACSUUEX1 - ACCESS Write-Intercept ExitSystem Programming

ACSUUEX2 - ACCESS Read-Intercept Exit
ACSUUEX2 is a user-written routine that normally passes the data on to the target system; it can,
however, also bypass the target system and invoke ACSUUEX1, the write-intercept exit, in order to
produce a response to the user’s input. The routine ACSUUEX2 can also be used to initiate commands to
the host operating system, for example, CMS/CP commands.

This chapter covers the following topics:

How to Create ACSUUEX2

How to Use ACSUUEX2

ACSUUEX2 Conventions

How to Create ACSUUEX2
To create a ACSUUEX2 routine, the following steps are required:

Step 1

Code the ACSUUEX2 routine entry of ACSEXITS (A.ACSEXITS for VSE, or ACSEXITS
ASSEMBLE for CMS).

Step 2

Assemble and link ACSEXITS (A.ACSEXITS for VSE) into the ACCESS load library (relo
library for VSE). For z/OS and VSE, have the ACCESS source library referred to during
assemblies. Or for CMS only, assemble ACSEXITS with the ACCESS macro library
referenced.

Step 3

Link edit ACSEXITS (A.ACSEXITS for VSE) to the ACCESS driver for the host Adabas TPF,
CICS, or TSO system. Member JCLLINKA (A.JCLLINKA for VSE) in the ACCESS source
library contains the link edit JCL for all TP monitors supported. Or for CMS only, execute the
EXEC GENACS.

How to Use ACSUUEX2
Members CCACSWK and CCACSPFX in the distributed source library are DSECTS referred to in the
main ACCESS routine. These areas are addressable in the ACSUUEX2 exit. A skeleton entry is provided
in member ACSEXITS (A.ACSEXITS for VSE) of the ACCESS source library.

ACSUUEX2 Conventions
The following table summarizes the ACSUUEX2 linkage conventions.

212

System ProgrammingACSUUEX2 - ACCESS Read-Intercept Exit

Feature Convention

Attributes None required.

Size Restricted to the ACS driver region.

Registers at Entry Register 0 Input length.

Register 1 Address of the input area

Register 6 Address of the ACCESS prefix

Register 9 Address of the ACCESS work area

Register
10

Main ACCESS driver base address

Register
13

Address of an 18-fullword save area

Register
15

Entry address within ACSUUEX2

Registers at return All registers must be restored.

Return Codes 0 Continue with read.

4 Tell target node to rewrite the screen.

Considerations Must be assembled and link edited with the ACS driver.

213

ACSUUEX2 - ACCESS Read-Intercept ExitSystem Programming

SDAMSEX1 - SDAM API Security Exit
SDAMSEX1 is a user-written routine called by the SDAM API before a request is passed to SDAM. The
exit can be used to impose security restrictions on the use of SDAM functions and resources, over and
above those defined in Com-plete.

This chapter covers the following topics:

SDAMSEX1 Conventions

SDAMSEX1 Conventions
The following table summarizes the SDAMSEX1 linkage conventions:

Feature Convention

Registers at Return Registers 12 through 14 must not be modified.

Parameters Register 1: Points to the SACB (SDAM control block)

Return Codes 0 Allow the function

4 Disallow the function.

Considerations a Called by SDAM

b Linkage is dynamic, with COLOAD

214

System ProgrammingSDAMSEX1 - SDAM API Security Exit

TUDUEX1 - Select Dumps by User-Defined
Criteria
In addition to being able to define the JCL PARM string, you can also define your own criteria to select
dumps from the dump SD-file for print by using the TUDUEX1 exit.

TUDUEX1 is a user-written service routine that can be used to implement user-defined tests and
restrictions when printing dumps out of the Com-plete dump file.

When Com-plete is initially installed, a dummy TUDUEX1 module exists as a member of the distribution
source library to serve as a guide. This routine must be coded, assembled, and link edited with the
Com-plete batch utility TUDUMP. The initial TUDUMP program contains a dummy TUDUEX1 routine
that loads register 3, resets register F to zero, and expands the name of the dumped program.

This chapter covers the following topics:

How To Use TUDUEX1

TUDUEX1 Conventions

How To Use TUDUEX1
TUDUEX1 is called after each dump header record is read by TUDUMP and checked according to the
key values input with the JCL PARM string. This record contains the UPCB of the dumped program.
When TUDUEX1 gets control, register 1 points to the UPCB. An LR R3,R1 instruction is performed at
start of TUDUEX1, using R3 as base register for the UPCB DSECT. RF is set to zero, and a branch to
subroutine NAMEXP is made in order to expand the name of the dumped program. Your tests and
restrictions referring to the UPCB data can now be inserted. For the layout of this DSECT, see CCUPCB
in the distributed source library.

TUDUEX1 can provide return code 0 to allow printing of dump, return code 4 to disallow the dump to be
printed, or can abend to terminate TUDUMP.

TUDUEX1 Conventions
The following table summarizes the TUDUEX1 linkage conventions.

215

TUDUEX1 - Select Dumps by User-Defined CriteriaSystem Programming

Feature Convention

Attributes None required.

Type Batch.

Size No restriction .

Registers at
Entry

Register 1 Points to the UPCB of the dumped program
selected for print

Register 13 Address of an 18-word z/OS-compatible save area

Register 14 Return address

Register 15 Entry point address

Registers at
Return

Registers must be unchanged except register 15, which contains the
return code.

Return Codes 0 Print this dump.

4 Skip this dump; continue processing with the
next dump.

Considerations Must be link edited with TUDUMP.

216

System ProgrammingTUDUEX1 - Select Dumps by User-Defined Criteria

UCOEX1 - UCOPY User Exit
UCOEX1 is a user-written routine called by UCOPY, the Com-plete screen to hard-copy utility, before
writing the screen-data to the printout spooling system. Possible uses of this exit are:

Rejection of the request;

Providing a default hardcopy destination..

This chapter covers the following topics:

How to use UCOEX1

UCOEX1 Conventions

How to use UCOEX1
Upon entry to UCOEX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1.

Word one of this parameter list contains the address of a full-word to be initialized by the exit; a value of
0 allows access, a value of 4 disallows access.

Word two of this parameter list contains the address of a eight byte field where the exit can supply a valid
destination. This value must be in a format acceptable to a PSOPEN call (see the Com-plete Application
Programming documentation). If this value is set to blanks, the standard default is taken.

Word three of this parameter list contains the address of the buffer containing the screen-data. The exit
must only examine this data, any attempt to modify the contents will result in undefined errors.

UCOEX1 Conventions
The following table summarizes the UCOEX1 linkage conventions.

217

UCOEX1 - UCOPY User ExitSystem Programming

Feature Convention

Attributes None required

Registers Entry Register 0

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword savearea

Register 14 Return address.

Register 15 Entry address.

Registers at
Return

All registers must remain unchanged

Return Codes 0 Allow access

4 Disallow access

218

System ProgrammingUCOEX1 - UCOPY User Exit

UDMPX1 - UDUMP Security Exit
UDMPX1 is a user-written routine called by the UDUMP utility program after syntax checking the
terminal user’s request but before calling the utility itself. This routine allows the user to define security
restrictions on the access of dumps in the online dump library.

Because the UDMPX1 module is only loaded once per invocation of UDUMP, internal switches can be
set and referenced.

A sample UDMPX1 module is distributed with the Com-plete system as a member of the distribution
source library and the distribution load library.

Note:
No security exists for UDUMP functions, unless it is established by you.

This chapter covers the following topics:

How to Use UDMPX1

UDMPX1 Conventions

How to Use UDMPX1
Upon entry to UDMPX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 contains the address of the program name for the dump being accessed. Word 2 of the
parameter list contains the address of a return code area in which the status of the request is to be
indicated.

To define security, check the program name being passed, establish the desired level of authorization, and
set the return code to indicate acceptance or rejection.

Upon return from UDMPX1, the return code area is examined by UDUMP. If the return code is not zero,
the operation is aborted and a security violation message is issued.

UDMPX1 Conventions
The following table summarizes the UDMPX1 linkage conventions.

219

UDMPX1 - UDUMP Security ExitSystem Programming

Feature Convention

Attributes None required.

Type Thread.

Size Restricted to UDUMP region size.

Registers at Entry Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UDMPX1

Registers at Return All registers must be unchanged.

Parameters Word 1 Address of the six-byte program name

Word 2 Address of a return code halfword

Return Codes 0 Allow the request.

4 Security violation.

Considerations a Is loaded once per call of UDUMP.

b Is loaded before invoking utility functions.

220

System ProgrammingUDMPX1 - UDUMP Security Exit

UDSEX1 - UDS Security Exit (z/OS Only)
UDSEX1 is a user-written routine called by the UDS utility program before any command entered by the
terminal operator is executed. This module allows you to define security restrictions on the use of the
various functions.

The UDS utility program is written as a set of logically related modules, each of which services a specific
function. Each function requested by a terminal operator is logically processed by a separate module. In
turn, each of these modules issues a call to UDSEX1 before servicing the requested function.
Consequently, you can restrict, permit, or eliminate any or all of the UDS functions.

Because the UDSEX1 module is only loaded once per invocation of UDS, internal switches can be set and
subsequently referenced. Each new invocation of UDS will load a new version of UDSEX1, causing the
switches to be reset.

A dummy UDSEX1 module is distributed with the Com-plete system as a member of the distribution
source library and the distribution load library.

Note:
No security exists for UDS functions unless established by you.

This chapter covers the following topics:

How to Use UDSEX1

UDSEX1 Conventions

How to Use UDSEX1
Upon entry to UDSEX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of the 4-byte operation initiating the request.
Word 2 contains the address of the file upon which the function will be performed.

Word 3 contains the address of a parameter list that identifies the volume(s) on which the file being
processed is located. This parameter list is normally 14 bytes long. If the file resides on more than one
volume, however, the parameter list will have its last 12 bytes repeated once for each applicable volume.
(The first two bytes of the list indicate the number of volume entries in the list.) If an allocation request is
made, word 4 contains the address of the partially completed Job File Control Block (JFCB).

Define security for a specific function by testing for the existence of the appropriate function, establishing
the desired level of authorization, and setting the return code in register 15 to indicate either acceptance or
rejection.

The use of UDS is oriented toward files. Reference files are identified by fully qualified file names.

UDSEX1 Conventions
The following table summarizes the UDSEX1 linkage conventions.

221

UDSEX1 - UDS Security Exit (z/OS Only)System Programming

Feature Convention

Attributes Reentrant, if in a resident area.

Type Thread.

Size Restricted to the UDS thread region.

Registers at Entry Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UDSEX1

Registers at ReturnRegisters 2 through 13 must be unchanged. Register 15 must
contain a return code.

222

System ProgrammingUDSEX1 - UDS Security Exit (z/OS Only)

Feature Convention

Parameters Word 1 Address of a four-byte field containing the
operation requested.

Word 2 Address of a 44-byte field containing the file
name entered.

Word 3 Address of a field with the format:

0 VOLNUM Halfword indicating
the number of 12-byte
entries that follow
(CODE, VOLUME,
SEQ).

2 CODE Four-byte device code
for the first volume.
This code is the same
as that in the UCBTYP
field of the UCB.

6 VOLUME Six-byte volume name.

12 SEQ Two-byte sequence
number. Note that the
fields identified by
offsets 2 through 12
may be repeated once
per volume.

Word 4 Address of a partially completed JFCB, if the
ALLOCATE function was requested;
otherwise, binary zeros.

Return Codes 0 Allow the request.

4 Disallow the request.

Considerations a Is loaded once per call of UDS.

b Can be link edited, or loaded dynamically.

223

UDSEX1 - UDS Security Exit (z/OS Only)System Programming

UDVSX0 - Usage Control of UDS/UDVS
VSAM SERVICES
UDVSX0 is a user-written service routine that can be used to control and/or restrict the use of
UDS/UDVS VSAM SERVICES.

When Com-plete is initially installed, no UDVSX0 module is available. This routine must be coded with
the standard Com-plete exit requirements and must be link edited with the UDS/UDVS load module.

Note:
UDVSX0 is called for each VSAM SERVICES operation.

This chapter covers the following topics:

How to Use UDVSX0

UDVSX0 Conventions

How to Use UDVSX0
At the time UDVSX0 is called, register 1 points to the IDCAMS control statement that will be executed.
The control statement area has a contiguous length of 280 bytes. It will be presented to IDCAMS as 4
lines with 70 bytes each. A ZERO return code of 0 (zero) in register 15 will allow the operation. A
non-zero return code in register 15 disallows the operation.

Note that the exit can modify the control statement area.

UDVSX0 Conventions
The following table summarizes the UDVSX0 linkage conventions.

224

System ProgrammingUDVSX0 - Usage Control of UDS/UDVS VSAM SERVICES

Feature Convention

Attributes None required.

Type Online.

Size No restrictions.

Registers at
Entry

Register 1 Points to the control statement area, contiguous, 4
lines at 70 bytes each

Register 13 Address of the 18-fullword z/OS-compatible save
area

Register 14 Return address

Register 15 Entry point address

Registers at
Return

Registers must be unchanged except register 15, which contains the
return code.

Return Codes 0 Allow operation

non-zero Disallow operation

Considerations Must be link edited with UDS.

225

UDVSX0 - Usage Control of UDS/UDVS VSAM SERVICESSystem Programming

UDYEX1 - Control Dynamic
Allocation/Deallocation of Datasets using
UDYN (z/OS only)
UDYEX1 is a user-written exit which can control allocation and deallocation of datasets using the utility
UDYN. A default exit is provided on the distributed source and load datasest which only allows control
users to allocate and deallocate datasets.

This chapter covers the following topics:

How to use UDYEX1

UDYEX1 Conventions

How to use UDYEX1
When called, R1 points to a parameter list which contains the address of three parameters as follows:

Parm1
->

One byte code indicating the function to be performed: A: Dataset allocation D: Dataset
deallocation

Parm2
->

44 byte field containing the name of the dataset being allocated or deallocated.

Parm3
->

6 byte field containing the volser of the dataset being allocated or deallocated if provided by the
user. Please note that for a deallocate request, this is not required and therefore may not be
filled out.

Based on the above information, the exit can decide whether this request should be allowed or not. To
allow the request, the user must simply return "0" in RF; to disallow the request return "4" in RF.

UDYEX1 Conventions
The following table summarises the UDYEX1 linkage conventions:

226

System ProgrammingUDYEX1 - Control Dynamic Allocation/Deallocation of Datasets using UDYN (z/OS only)

Feature Convention

Attributes None required

Type Online

Registers at
entry

R1 points to the parameter list as described above

RD points to a 18F savearea which can be used by the exit

Registers at
return

All registers must be returned unchanged with the exception of RF
which contains the return code.

Return codes 0 Allow request

4 Disallow request

Considerations Must be link-edited with UDYN

227

UDYEX1 - Control Dynamic Allocation/Deallocation of Datasets using UDYN (z/OS only)System Programming

UEDTB1 - Library Code Table
UEDTB1 is a user-written module that defines the two-character library identification codes used to refer
to Com-plete source libraries. The module is loaded by the utility programs UED, UEDIT, and
UPDS/USERV, and contains no executable logic.

The user-written table UEDTB1 can be link edited as part of the utility programs themselves, depending
upon performance considerations. In the case of UEDIT, UEDTB1 is not link edited into the UEDIT
module itself, but is instead link edited as part of the UEBP, UEPDIN, and UEPROF. If the table is not
link edited as part of the utilities, the table is loaded at program invocation time. It can also be made
resident in Com-plete’s storage by specifying sysparm RESIDENTPAGE=UEDTB1.

UEDTB1 is a set of macro statements, each of which defines a specific library and its assigned
two-character code. Library security cannot be defined within UEDTB1, but a library code can be
restricted to read-only status. If library security is desired, the ULSRSEC routine must be modified, or the
appropriate user-written exit routine for the accessing program (e.g., UEDIT) must be written. All
Com-plete utility programs that enable libraries to be accessed (e.g., UED, UEDIT, USERV, and UPDS)
call the user-written exit ULSRSEC for this purpose. In addition, since these programs also load module
UEDTB1, security can be established for entries in UEDTB1 in a generalized fashion without specific
knowledge of the contents of the module (UEDTB1).

Dummy UEDTB1 modules are distributed with the Com-plete system as members of the distribution
source library and the distribution load library.

This chapter covers the following topics:

How to Use UEDTB1

The CMEDTB1 Macro

How to Use UEDTB1
The library identification table UEDTB1 consists of three types of statements:

TITLE;

CMEDTB1;

END.

The TITLE and END statements are standard Assembler language statements and are not discussed here.

The CMEDTB1 Macro
The CMDETB1 statement is a macro instruction, distributed in the Com-plete distribution source library,
with the format:

228

System ProgrammingUEDTB1 - Library Code Table

CMEDTB1 ID=xx,DSN=library
 [,VSECAT=ccccccc]
 [,VSELIB=type]
 [,VSESUB=ssssssss]
 [,VOL=dddddd]
 [,OUTPUT=type]
 [,ACM=acm]
 [,USRDIS=YES|NO]
 [,STOW=YES|NO]

The arguments are:

ID=xx

Required.

Specifies the two-character library identification code to be assigned to the library being
defined.

Here, xx is any two alphanumeric characters, the first of which must be alphabetic.

DSN=library

Required.

Specifies the name of the library identified by the two-character library code.

Note that library must be the same as the fully qualified cataloged library name. If the library is
not cataloged, the optional argument VOL must be specified.

For LIBRARIAN and PANVALET libraries, library is the DD name associated with the
LIBRARIAN or PANVALET file in the Com-plete initialization procedure.

Note:
LIBRARIAN and PANVALET libraries must be allocated by a job control allocation statement
in the Com-plete initialization procedure. The DD name used must be specified by the DSN
keyword argument.

For the PC access method, library can be used as a comment field.

VSECAT=ccccccc

Is used only for VSE; ignored for others.

Default: VSECAT=IJSYSCT

Specifies the file name for the VSAM Catalog for the specified library. The file name must be
from one to seven characters and must be present in either standard-, partition-, or
temporary-label before Com-plete startup.

VSELIB=type

Required for VSE; ignored for z/OS.

229

UEDTB1 - Library Code TableSystem Programming

Default: VSELIB=NO

Specifies the type of VSE library to be defined in this entry. Possible values are:

AL -VSAM library

BL -non-VSAM library

Note:
In a VSE environment, the user must define a VSAM (AL) library to be accessed by Com-plete
in either UEDTB1 or in an online definition by the UL function of UUTIL. If the library is not defined in
UEDTB1 or via ULIB, it cannot be accessed via USERV, UMAP, UEDIT, or UED.

VSESUB=ssssssss

Is used only for VSE; ignored for others.

Default: *

Specifies the VSE sublibrary for the specified library. This value is a one- to eight-character
sublibrary name.

VOL=dddddd

Optional

Specifies the volume serial number of the disk volume on which the library is to be found.

Default: If VOL is omitted, the system catalog is used to locate the file accessed.

Note:
Use this argument only if the library is not cataloged.

Note for VSE: Do not specify this argument if the library resides in VSAM space.

OUTPUT=type

Optional.

Default: OUTPUT=YES

Specifies whether or not the library being defined is read-only. type may be specified as YES or
NO.

OUTPUT=YES indicates that the library is to be both input and output (that is, a SAVE
operation can be performed).

OUTPUT=NO indicates that the library is to be input only (that is, the library cannot be
modified).

ACM=acm

230

System ProgrammingUEDTB1 - Library Code Table

Optional.

Default: ACM=PO

Specifies the type of access method to be used to access the library being defined. Here, acm
can be specified as PO, PS, PANVALET, LIBRARIAN, or PC.

ACM=PO indicates that the library is a partitioned file and the partitioned file access method is
to be used.

ACM=PS indicates that the library is a sequential file and the sequential access method is to be
used.

ACM=PANVALET indicates that the library is a PANVALET library and the PAN access
method is to be used.

ACM=LIBRARIAN indicates that the library is a LIBRARIAN library and the LIBRARIAN
access method is to be used.

ACM=PC indicates that the logical library is contained in a personal computer disk file and the
PC access method is to be used.

USRDIS=YES|NO

Optional

Default: USRDIS=YES

USRDIS=NO prevents the display of STOW user data information.

STOW=YES|NO

Optional. (z/OS only.)

Default: STOW=YES

STOW=NO causes all STOWs from UED or UEDIT not to write Com-plete’s user data.

Note:
The first statement in this assembly must be COPY CCGLOBS to set the correct operating system.

231

UEDTB1 - Library Code TableSystem Programming

ULHMX1 - Hello Message Exit
ULHMX1 is a user-written routine called by Com-plete’s hello message transient, TTOCHM, before the
hello message is sent to a terminal.

ULHMX1 not only allows you to modify the contents of the hello message before sending it to a terminal,
but it can also indicate that no hello message is to be sent to a specific terminal.

ULHMX1 is entered once for each terminal that is to receive a hello message, either during Com-plete
initialization if sysparm HELLOMESSAGE=YES is specified, or during processing of the HMSG
operator command. ULHMX1 is link edited with the Com-plete nucleus.

This chapter covers the following topics:

How to Use ULHMX1

ULHMX1 Conventions

How to Use ULHMX1
Upon entry to ULHMX1, a set of parameters is provided to supply the exit with the information necessary
to perform its function. The first parameter is the address of a message switching control block, as built by
MCALL MESGCB, specifying the message class codes and other data for the hello message. The second
parameter is the address of the message text to be sent. The third parameter is the address of a halfword
containing the length of the message to be sent.

The fourth parameter is the address of the TID number to receive the message. The TID number is in the
form of an eight-character, printable number. For example, TID 178 would be "00000178". The fifth
parameter is the address of a halfword containing the number of terminals to receive the message. This
halfword is always one (1). The sixth parameter is the address of the installation ID and is used to identify
the originator of the message. The installation ID is eight characters long.

The addresses in the parameter list can be changed to specify different messages and lengths. Note that the
locations pointed to by the parameter list must not be modified.

ULHMX1 Conventions
The following table summarizes the ULHMX1 linkage conventions.

232

System ProgrammingULHMX1 - Hello Message Exit

Feature Convention

Attributes None required.

Type Nucleus.

Size No restriction.

Registers at Entry Register 1 Address of the parameter list

Register 2 Address of the Com-plete COMREG

Register 13 Address of an 18-word save area

Register 14 Address of the return point in TTOCHM

Register 15 Address of the ULHMX1 entry point

Registers at Return Registers 2 through 13 must be unchanged.

Parameters Word 1 Address of the MESGCB

Word 2 Address of the message text

Word 3 Address of a halfword message length

Word 4 Address of the TID

Word 5 Address of the halfword terminal count (1)

Word 6 Address of the installation ID

Return Codes 0 Send message.

4 Do not send message.

Considerations a Executes in supervisor state, and key of
Com-plete.

b Cannot issue Com-plete user functions.

233

ULHMX1 - Hello Message ExitSystem Programming

ULMSBTCH - Batch Output User Exit
ULMSBTCH is a user-written routine used to examine and/or modify the parameters which the Com-plete
batch spool output routines subsequently use to generate a DYNALLOC/SEGMENT call during batch
printout spooling.

ULMSBTCH is dynamically loaded during Com-plete initialization. The module is invoked with service
routine status (that is, it is in Com-plete’s protect key). This means that if an abend occurs in the exit, all
of Com-plete terminates abnormally.

This chapter covers the following topics:

How to use ULMSBTCH

ULMSBTCH conventions

How to use ULMSBTCH
On entry to ULMSBTCH, a set of parameters is received in the form of a fullword pointed to by register
1. On return from the exit, the response in register 15 will be examined and processed.

ULMSBTCH conventions
Registers on entry

Register 1: Address of parameter area

Register 13:18-fullword save area

Registers at return

Register 15:Response code

All other registers must be unchanged.

Parameters

234

System ProgrammingULMSBTCH - Batch Output User Exit

ULSTNAME DS CL8 Printout name (X)

ULSTNUM DS AL2 Printout number

ULSTCOPY DS AL2 Printout copies (X)

ULSTFORM DS CL4 Printout form (X)

ULSTHEAD DS XL1
Nr. of header pages to be
generated (0=none,
2=default)

(X)

ULSTCLAS DS CL1 Output Class (X)

ULSTOTID DS AL2 Original TID number

ULSTNODE DS CL8 Output node (X)

ULSTUSER DS CL8 Userid (X)

ULSTOUSR DS CL8 Originating userid

ULSTFLG1 DS XL1 Flag byte (X)

ULSTMNOS EQU X’80’
When on, no separators will
be printed (that is, no skip to
channel will be issued.

ULSTHDR1 First header line (X)

ULSTHDR2 Second header line (X)

ULSTHDR3 Third header line (X)

Note that macro CMULST now generates the appropriate DSECT. This must be used to remain
compatible with future releases of Com-plete.

(X) indicates that the field can be modified by the user exit.

The header generated by the Batch output facility consists of three blocked lines of output:

ULSTOUSR
ULSTNAME
ULSTOUSR

These fields may be modified to suit your installation requirements.

Return codes

0 Com-plete issues the DYNALLOC/SEGMENT using the parameters specified.

4 Com-plete assumes that the user exit has issued a valid DYNALLOC/SEGMENT call. The user exit is
responsible for issuing and validating the DYNALLOC/SEGMENT call.

8 Com-plete rejects the printout request.

235

ULMSBTCH - Batch Output User ExitSystem Programming

Using AFP printers

You can use ULMSBTCH to setup an output descriptor for, e.g., AFP printers and tell Com-plete to use
this output descriptor at the DYNALLOC macro for SYSOUT. To achieve this, proceed as follows:

1. Create the output descriptor using the IBM macro OUTADD. Specify PAGEDEF and FORMDEF
based on the contents of ULSTFORM using your own relation table and/or algorithm.

2. Put the name of the output descriptor into ULSTNAME and switch on the x’40’ bit (ULSTMOUD)
in ULSTFLG1 to indicate there is an output descriptor.

3. ULMSBTCH itself is responsible for maintaining information about the output descriptors it already
added, issuing OUTDEL macros when/if necessary, etc.

236

System ProgrammingULMSBTCH - Batch Output User Exit

ULMSDISK - Dynamic Printer Allocation
User Exit
ULMSDISK is a user-written routine called by the Com-plete printout spooling system immediately
before and after allocation of terminal information control block (TIB) for a dynamically acquired printer
device. Possible uses of this exits are:

Test for valid printer name;

Modification of the TIB entry for this printer. Specifically, this enables you to overwrite the
TIBNAME field and so re-route the printout onto an alternative printer. This is useful when there is
no rigid relationship between logical printer definitions (for example, in NATURAL) and the
physical printer itself (that is, VTAM LU definition).

This chapter covers the following topics:

How to Use ULMSDISK

ULMSDISK Conventions:

How to Use ULMSDISK
Upon entry to ULMSDISK the following registers are set:

Register 5 contains the address of the filled TIB entry, or 0 if the call to ULMSDISK is before dynamic
allocation. If register 5 is 0, Register 1 contains the address of the printer name.

ULMSDISK Conventions:
The following table summarizes the ULMSDISK linkage conventions.

237

ULMSDISK - Dynamic Printer Allocation User ExitSystem Programming

Feature Convention

Attributes Reentrant.

Type Nucleus.

Registers at Entry Register 1 Address of the printer name if Register 5 is 0.

Register 5 Address of the TIB entry, or 0 if the call is
before dynamic allocation.

Register 13 Address of an 18-fullword savearea

Register 14 Return address.

Register 15 Entry address.

Registers at ReturnBefore allocation:

Register 15 Returncode; all others must remain unchanged.

After allocation: all registers must remain unchanged.

Parameters None.

Return Codes Before allocation:

0 Dynamic allocation allowed.

4 Dynamic allocation disallowed.

After allocation: none

Considerations a Executes in supervisor state and Com-plete
key.

b Cannot issue COM-LETE user functions.

c Called in Com-plete’s key.

d Active thread will generally be in a different
key to Com-plete’s key.

238

System ProgrammingULMSDISK - Dynamic Printer Allocation User Exit

ULINUSER - Com-plete Initialization Exit
ULINUSER is a user-written routine that is loaded during Com-plete initialization and termination
processing.

This chapter covers the following topics:

How to Use ULINUSER

ULINUSER Conventions

How to Use ULINUSER
The ULINUSER routine can execute any SVC except the Com-plete SVC or the MCALL SVC. The
routine is given the address of Com-plete’s communications region in register 2, and the address of an
18-word register-save area in register 13. Note that registers must be saved and restored. The routine is
given control in problem state in Com-plete’s protect key and is run in the main task.

ULINUSER Conventions
The following table summarizes the ULINUSER linkage conventions.

Feature Convention

Attributes Need not be reentrant or reusable.

Type Nucleus.

Size No size limitation.

Registers at Entry Register 1 at initialization call: points to a 4-byte constant
’INIT’ at termination call: points to a 4-byte
constant ’TERM’

Register 2 Points to Com-plete’s communications region
(see the COMREG member in the distributed
source library).

Register 13 Points to an 18-word save area.

Registers at
Return

All registers must be saved and restored.

Parameters None.

Return Codes None.

Considerations Executes in supervisor state, key of Com-plete.

239

ULINUSER - Com-plete Initialization ExitSystem Programming

ULOGX1 - ULOG Security Exit
ULOGX1 is a user-written routine called by the Com-plete ULOG utility program prior to various events,
which are listed below.

When a terminal user logs onto Com-plete via the ULOG ON request, a ULOG Info Table (CCUIT) is
created for the user before passing control to ULOGX1. This info table contains information taken from
the user ID accounting block for the user ID, the data entered at the terminal, and miscellaneous
information. For more information on the user ID accounting block, see section Com-plete Accounting
Facility

ULOGX1 allows the installation to modify the contents of the CCUIT block before the construction of the
user ID accounting block. It also enables secondary levels of user-defined security checking.

This chapter covers the following topics:

How to Use ULOGX1

Compatability with ULGEX1

ULOGX1 Conventions

Using ULOGX1 with the HTTP Server and the 3270 Bridge

How to Use ULOGX1
Upon entry to ULOGX1, register 1 points to a parameter list. The first word points to the Com-plete
ULOG Info Table (CCUIT), whose DSECT is listed in ULOG Info Table. The halfword UITCODE
contains the function code, which corresponds to the ULOG message ’ULGnnnn’, where nnnn = function
code.

The second word, where applicable, points to the message(s) returned by the external security system.

The third word points to a halfword containing the number of 80-character messages in the area pointed to
by word two.

The exit is activated in Com-plete’s key.

Compatability with ULGEX1
Previous versions of Com-plete delivered an example ULOGX1 module serving as an interface to the old
ULGEX1 exit routine. From version 4.5 onwards, Com-plete no longer supports this "link". If you still use
an old ULGEX1 with Com-plete version 4.4, you must rewrite ULOGX1 to take over responsibility of
your ULGEX1.

240

System ProgrammingULOGX1 - ULOG Security Exit

ULOGX1 Conventions
The following table summarizes the ULOGX1 linkage conventions.

Feature Convention

Attributes None required.

Type No restrictions.

Size No restrictions.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address within ULOG

Register 15 Entry address within ULOGX1

Registers at
Return

Registers 12 through 14 must be unmodified.

Parameters Word 1 Address of the ULOG Info Table

Word 2 Address of External Security message(s), zero if
none.

Word 3 Address of a halfword containing the number of
External Security message(s).

Return Codes 0 Allow the function.

4 Disallow the function.

Considerations a Called by ULOG.

b Linkage is dynamic, with COLOAD.

A description of some important UITCODEs and the function ULOGX1 may perform at the respective
calls is given below:

241

ULOGX1 - ULOG Security ExitSystem Programming

Code Function to be performed by ULOGX1

0003 Logon processing is complete. The ’ULG0003 logon successful...’
message can be suppressed by setting UITWRTM=N, UITNBROD=N
inhibits ULOG showing broadcast information to the user.

0004 This is your last chance to modify UIT fields before the UAB is built.

0005 Logoff processing starts, time to perform site-specific user
disconnection.

0006 This user is already logged on. If you wish to allow multiple sessions
with the same user ID, set UITALLW to C’Y’. UITADTIB contains
the address of the TIB of the user’s other session.

0008 When required, modify UITUID now before user ID and User profile
definition records are retrieved from the System Data Container

0013 External security system messages are now ready to be processed.
ULOGX1 may

-""- a set UITSAFIM=N to suppress message display at all

b modify / edit the message(s)

c change the number of messages to be displayed by
modifying the halfword third parameter passed to the exit.

0038 Modify UITCMOD now when either no model name is available so
far but one is required, or the model currently set does not suit your
needs.

Using ULOGX1 with the HTTP Server and the 3270 Bridge
The following limitations apply when ULOGX1 is used with the HTTP server:

ULOGX1 is not called during user’s log-in to the HTTP server, but only when the first application is
invoked using the 3270 bridge.

ULOGX1 must not perform any terminal output functions (WRT*) or FETCH.

No log-out calls take place to neither ULOG nor ULOGX1.

The following flag in the TIB can be checked for distinguishing between 3270 bridge users and terminal
users:

TM TIBSNTAM,TIBMNTAM HTTP user?
BO ISHTTP branch if HTTP user

242

System ProgrammingULOGX1 - ULOG Security Exit

ULOPADAB - Adabas User Exit
ULOPADAB is a user-written routine called by Com-plete’s Adabas interface routine, TLOPADAB,
before processing an Adabas command from a Com-plete application program.

ULOPADAB, which allows the installation to examine and/or modify the contents of the Adabas
parameters, is entered once for each Adabas command issued by a Com-plete program.

Note:
Com-plete user program functions are not available to ULOPADAB.

This chapter covers the following topics:

How to Use ULOPADAB

ULOPADAB Conventions

How to Use ULOPADAB
Upon entry to ULOPADAB, the Adabas parameter list is provided. Each parameter is documented in the
Adabas Operations documentation.

The data provided by the parameter list can be examined and/or altered, as required, by ULOPADAB.

ULOPADAB Conventions
The following table summarizes the ULOPADAB linkage conventions.

243

ULOPADAB - Adabas User ExitSystem Programming

Feature Convention

Attributes Reentrant.

Type Nucleus.

Size No restriction.

Registers at Entry Register 1 Zero

Register 2 Address of the Com-plete COMREG

Register 3 Address of the Com-plete UPCB for the caller

Register 4 Address of the Com-plete THCB for the caller

Rgeister 5 Adresss of the Com-plete TIB for the caller

Register 6 Address of the caller’s Adabas parameter list

Register 13 Address of an 18-word save area

Register 14 Address of the return point in TLOPADAB

Register 15 Address of the ULOPADAB entry point

Registers at ReturnAll registers must be returned unchanged.

Parameters Refer to the Adabas Operations documentation.

Return Codes None.

Considerations a Executes in supervisor state, and key of the
user (thread).

b Cannot issue the Com-plete user function
(MCALL).

c Called in the protect key in which the user is
running.

d Adabas control block (ACB) and user block
(UB) will be in the key of the user.

e Other areas pointed to by the Adabas
parameter list may

244

System ProgrammingULOPADAB - Adabas User Exit

ULSRMPEX - Modify PF Key Codes
You can provide user exit ULSRMPEX to make the required modifications. The exit will loaded during
Com-plete initialization and be called with the following register conventions:

R1 address of parmlist (explained below)

R2 COMREG

R5 TIB

RD standard save area

RE return addr

RF entry point

All registers have to be restored before return.

The program will be called according to its RMODE specification and has to return via B COMRETRN
(in COMREG). Since it will be executed under control of thread-task it has to be reentrant and can’t use
any Com-plete OP-Codes (MCALL).

The parmlist contains 4 parms:

P1 address of a halfword function code x’0010’ called after AID/MRCBECDE translation

P2 address of mapname (CL6)

P3 and P4 are dependent on the function code (P1).

For X’0010’ they have the following meaning:

P3 address of the AID in the input buffer (CL1)

P4 address of the enter code (MRCBECDE) in the MRCB (CL2)

The exit can set the MRCBECDE according to your needs. It should be noted that all Com-plete utilities
and the related maps (prefix = C’U’) are dependent on the standard MRCBECDE values of Com-plete and
will not work properly if any translation is performed.

245

ULSRMPEX - Modify PF Key CodesSystem Programming

ULSRPSFS - User-Written Service Routine
ULSRPSFS is a user-written service routine that can be used to authorize the use of specific application
functions, programs, modules, or Com-plete utility programs.

Note:
Because security afforded by this service routine is system-wide, thorough design and analysis is
recommended before implementation in order to ensure minimal impact on performance.

When Com-plete is initially installed, a dummy ULSRPSFS module exists as a member of the distribution
source library to serve as a guide to the user. This routine must be coded and assembled and can either be
link edited as a routine in the Com-plete control program, or loaded dynamically during initialization. The
initial Com-plete control program contains a dummy ULSRPSFS service routine that performs no security
checking.

Since ULSRPSFS executes as a service routine of Com-plete, it will be dispatched in supervisor state
using the key assigned to Com-plete. Consequently, if an abnormal termination occurs while ULSRPSFS
is executing, Com-plete also abends.

Note that because ULSRPSFS is entered frequently, it is not advisable for it to perform any I/O functions.
Tables and any referenced subroutines should be made part of the service routine.

This chapter covers the following topics:

How to Use ULSRPSFS

ULSRPSFS Conventions

How to Use ULSRPSFS
At entry to ULSRPSFS, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of the return code indicating the security
status. Word 2 contains the address of the user ID accounting block. This control block is created for each
user at successful logon to Com-plete. If a user ID requests a function protected by ULSRPSFS, a call is
made to ULSRPSFS.

Words 3 and 4 of the parameter list identify the function requested by a program, and word 6 identifies the
program making the request. Since authorization for access to most functions is restricted on a user ID
basis rather than on a program basis, it is necessary to also identify the terminal and/or batch user making
the request. This is accomplished by passing the required information through words 2 and 5 of the
parameter list. Word 7 points to two status bytes; the first indicates whether or not a program has been
attached, and the second indicates whether or not an Adabas call exists at the time of entry to the
ULSRPSFS.

Security violations are indicated in ULSRPSFS by setting a return code. The physical location of the
return code is in the routine that passes control to ULSRPSFS. The address of the return code is passed as
word 1 of the parameter list. If the function requested is not to be allowed, the return code must be set to
4; otherwise, the return code must be set to 0. At entry to ULSRPSFS, the return code is always initialized
to 0.

246

System ProgrammingULSRPSFS - User-Written Service Routine

ULSRPSFS Conventions
The following summarizes the ULSRPSFS linkage conventions.

Attributes

Reentrant.

Type

Nucleus.

Size

No restrictions.

Registers at Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within ULSRPSFS

Registers at Return

Registers 2 through 13 must be unchanged.

Parameters

Word 1 Address of a return code halfword

Word 2 Address of the user ID accounting block

Word 3 Address of a request-type halfword:

247

ULSRPSFS - User-Written Service RoutineSystem Programming

 0 Program call (terminal).

4 LOAD request.

8 LOADT request.

12 FETCH request.

16 SDOPEN request.

32 ATTACH request, where
R3 points to the UPCB.
R3+12 contains the address of a parameter list:
Parm 1 is the address of the eight-character program
name of the program being attached.
Parm 2 (optional) is the address of the data area being
passed.
Parm 3 (optional) is the length of the data area being
passed.

36 LINK, LOAD, XCTL, COLINK, COLOAD, COXCTL
request, where
R3 points to the UPCB.
R3+8 is R0 at the time of request.
R3+12 is R1 at the time of request.
R3+68 is RF at the time of request.
R3+12 is the address of the user parameter list.
The first parameter in the parameter list points to an
eight-character program name.
For LINK, LOAD, and XCTL; R0, R1, and RF are as
expanded by z/OS LINK, LOAD, and XCTL.

40 Indicates that word 8 points to an eight-byte location
containing the error message ID in character format (e.g.,
ZSR0006).

44 Catch-all code; indicates that the parameter list is
extended by three additional fullwords (words 9, 10, and
11) used to identify the operation code or SVC being
requested that does not fall within the range of other
operation codes.
Com-plete OP codes are found in member CCTOP in
COM.SOURCE. These records are only written if
APPLYMOD 3 is specified.

100 Logoff.

Word 4 Address of the requested eight-character name padded with blanks.
This is the name of the program being loaded, the name of the SD
file being opened, etc.

248

System ProgrammingULSRPSFS - User-Written Service Routine

Word 5 Address of a halfword containing the TID. If a batch program, the
high-order byte of the halfword is an X’FF’.

Word 6 Address of the requesting program name (job name for batch, except
request types 0 and 100.

Word 7 Address of the two status bytes:

Byte
1

A = Attached program sp = Non-attached program

Byte
2

A = Open to Adabas at
entry

sp = Not open to Adabas

Word 8 Not used.

Word 9 Address of a one-byte area:

X’FF’ SVC issued

X’00’ Com-plete OP issued

This entry exists only if word 3 points to a halfword 44 and only if
OP trapping is enabled.

Word A Address of the halfword SVC or OP. This entry exists only if word 3
points to a halfword 44.

Word B Address of the UPCB. This entry exists only if word 3 points to a
halfword 44.

Return Codes

0 Allow the request.

4 Disallow the request.

Considerations

249

ULSRPSFS - User-Written Service RoutineSystem Programming

a Runs as a portion of the Com-plete nucleus; it is there fore advisable to
maintain a backup either of this module or of the entire Com-plete
control program.

b Tables and reference routines must be made part of the service routine.

c I/O must be avoided.

d MCALL is not permitted.

e Com-plete functions are not permitted.

f Overlays cannot be used.

g GETMAINs must be used for storage.

h GETMAINs are from the Com-plete region, not thread.

i Called in Com-plete’s key.

j All control blocks and areas passed for the use of the exit will be in
Com-plete’s key.

k Active thread will generally be in a different key to Com-plete’s key.

250

System ProgrammingULSRPSFS - User-Written Service Routine

ULSRRJE - Remote Job Entry User Exit
ULSRRJE is a user-written routine used to examine and/or modify the RJE input data submitted for
background processing via the RJE function call. This exit is similar in capability and function to the
UEDIT RJE exit UUEEX3. ULSRRJE, however, has the advantage of being able to process RJE requests
from any source, not just the editor. Possible uses for this exit include:

To syntax-check JCL;

To enforce installation standards;

To insert UQ security statements into the input stream.

ULSRRJE is loaded dynamically at Com-plete initialization. The address of the module is found in
COMREG, field AUSRRJE. It is given control via call from TLSRRJE before RJE begins: once before
each card image is passed to the operating system, and at the end of the data.

The module is invoked with service-routine status (that is, it is in Com-plete’s protect key, and all
Com-plete and supervisor calls are valid). Note that if an abend occurs in the exit, Com-plete terminates
abnormally. The exit routine must be reentrant to allow for multiple thread access.

Com-plete user program functions (MCALL) are not available to the exit. Any environmental data (user
ID, TID, etc.) must be obtained from the standard Com-plete control blocks passed to the exit.

This chapter covers the following topics:

How to Use ULSRRJE

ULSRRJE Conventions

How to Use ULSRRJE
Upon entry to ULSRRJE, registers are set according to the Com-plete convention (R2=COMREG,
R3=UPCB, R4=THCB, R5=TIB, R13=18-fullword save area, R14=return address, R15=entry point).

R1 contains the address of a parameter list. Word 1 of the parameter list contains the address of a return
code halfword that has been initialized to zero. Word 2 of the parameter list contains the address of the
requesting RJE parameter list. Word 3 of the parameter list contains the address of the call-type flag byte
(character). Word 4 of the parameter list contains the address of the statement being submitted.

Note that the last parameter address is not valid if the call-type byte is S.

Upon return from the exit, the return code halfword is examined and processed.

At the end of the job stream, the call-type is set to E and ULSRRJE is called repeatedly until a return code
of 0 or 12 is given.

A statement can be modified by ULSRRJE by simply changing it in the data area addressed by the fourth
word and returning with return code 0.

251

ULSRRJE - Remote Job Entry User ExitSystem Programming

Once a return code of 12 or more is returned by ULSRRJE, no further calls are made to the exit.

ULSRRJE Conventions
The following table summarizes the linkage conventions of ULSRRJE.

Feature Convention

Attributes None required.

Type Nucleus.

Size No restrictions.

Registers at
Entry

Register 1 Address of the parameter list

Register 2 Address of the COMREG

Register 3 Address of the UPCB

Register 4 Address of the THCB

Register 5 Address of the TIB

Register 13 18-fullword save area

Registers at
Return

All registers must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the requesting RJE parameter list

Word 3 Address of a flag byte indicating the type of call:

S start of the job submission before the
first statement

sp (space) statement being submitted

E end of the submission following the
last statement

Word 4 Address of the statement being submitted

252

System ProgrammingULSRRJE - Remote Job Entry User Exit

Feature Convention

Return
Codes

0 Normal return. Process the next statement unless end-of-file.

4 Delete the current statement. Valid only if the call-type=space.

8 Insert statement before the current card image. Statement to be
inserted was placed in the data area pointed to by word 4 of the
parameter list. After inserting the statement, TLSRRJE will
again call ULSRRJE with the original card image until a
different return code is received. A return code of 8 is valid
only for call-types of space and E.

12 Abort the submission, passing return code 12 to the application
program.

16 Abort the submission, terminating the application program. An
online dump is taken.

Considerations a Is given control when called from TLSRRJE before RJE begins
: once before each card image is sent to the z/OS, and at
end-of-data.

b Must be reentrant in order to allow multiple thread access.

c Is invoked with service-routine status in Com-plete’s protect
key. All supervision calls are valid.

d Com-plete user program functions are not available to the exit.

e Environment data must be obtained from the standard
Com-plete control blocks passed to the exit.

f Called in Com-plete’s key.

g All control blocks and areas passed for the use of the exit will
be in Com-plete’s key.

h Active thread will generally be in a different key to
Com-plete’s key.

253

ULSRRJE - Remote Job Entry User ExitSystem Programming

ULSRSEC - User-Written Service Routine
Note:
Because security afforded by this service routine is system-wide in scope, thorough design and analysis
are recommended before implementation in order to ensure minimal impact upon performance.

This module is to be used as a single routine to service security check requests. It will eventually replace
ULSRPSFS as the user security exit for all Com-plete functions and is intended to replace file security
functions currently available in utility program user exits. The utility program user exit interfaces are still
supported, but do not need to be related to file security.

This section is to be used as a guide to modifying the ULSRSEC member in the distribution source
library. It also refers to the security control area that is described in detail in the distribution source
member CCSCA.

This chapter covers the following topics:

Initialization Overview

Initialization Processing

How to Use ULSRSEC

ULSRSEC Conventions

Initialization Overview
When Com-plete is initially installed, a dummy ULSRSEC module exists in the distribution source library
to serve as a guide. This routine must be coded, assembled, and link edited. The initial Com-plete control
program contains a ULSRSEC routine that enforces standard z/OS password protection for the UPDS,
UED, UMAP, UEDIT, UDS, and ULIB utility programs.

Since ULSRSEC executes as a service routine of Com-plete, it is dispatched in supervisor state and in the
key of Com-plete. Consequently, if an abend occurs while ULSRSEC is executing, Com-plete terminates
abnormally.

Because ULSRSEC is entered frequently, any required tables should be loaded during initialization. The
work area passed to ULSRSEC can be expanded if more space is needed.

Initialization Processing
ULSRSEC is given control once during Com-plete initialization, so this portion of ULSRSEC need not be
reentrant. If a large routine is required, it could be coded in a routine called by ULSRSEC.

Suggested uses for the initialization routine are:

To set the value of the CSEWORK field in the Com-plete communication region. This HW field
contains a value from 0 to 8000; this is the amount of work space to be obtained by calling routines
as a work area for this module. Refer to the label DWORK in the ULSRSEC example.

254

System ProgrammingULSRSEC - User-Written Service Routine

To load security tables.

To set up interfaces with security packages.*

* This applies only to security packages which do not support the SAF interface. Com-plete provides data
set protection via this facility as standard. See section Software Interfaces for more information.

The register conventions for the initialization functions are as documented for security checks, and the
SCAFUNC field is set to INIT.

A mainline routine is provided to process security check requests. Note that this routine must be reentrant.
A save area is provided and already pointed to by register 13. Work areas can be appended to the SCA,
but the CSEWORK field must have been set to the proper value. Refer to label DWORK in the ULSRSEC
example. Note also that any z/OS/VSE SVC can be issued, but no MCALL functions are allowed.

How to Use ULSRSEC
Refer to member CCSCA in the distributed source library for the format and field names of the SCA
referred to in this section. The SCA is used to pass the description of user requests to ULSRSEC from the
Com-plete nucleus and utility programs. The SCAFUNC field describes the type of request. The
SCARDESC field describes the type of resource, and the SCARRES field actually names the resource
(DSN, PGMNAME, etc.). Note that for the current version of Com-plete, only the values DSN, ULIB, and
USR are passed to ULSRSEC in the SCARDESC field.

By examining the SCA, access can be limited to any described resource by setting a return code before
returning control to Com-plete.

The following tables summarize the SCA field values upon entry to ULSRSEC by utility or file I/O
operation. Note that the SCAFUNC value INIT is not documented in the tables, because it does not relate
to any particular utility.

SCA Field Value UPDS Utility Command

SCARDESC ’DSN’ -

SCARDSN File Name -

SCARVOL Volume Serial Number -

SCAFUNC ’INQ’ LIST

SCAFUNC ’READ’ DISPLAY

SCAFUNC ’READ’ PRINT

SCAFUNC ’READ’ COPY

SCAFUNC ’WRIT’ SCRATCH

SCAFUNC ’WRIT’ RENAME

SCAFUNC ’WRIT’ ALIAS

SCAFUNC ’WRIT’ ZAP

255

ULSRSEC - User-Written Service RoutineSystem Programming

SCA Field Value UPDS Utility Command

SCARDESC ’DSN’ -

SCARDSN File Name -

SCARVOL Volser -

SCAFUNC ’INQ’ DISPLAY

SCAFUNC ’INQ’ FIND

SCAFUNC ’INQ’ LIST

SCAFUNC ’CATL’ RECATLOG

SCAFUNC ’CATL’ CATALOG

SCAFUNC ’CATL’ UNCATALOG

SCAFUNC ’CATL’ RENAME

SCAFUNC ’CATL’ BLDA

SCAFUNC ’CATL’ BLDG

SCAFUNC ’CATL’ BLDX

SCAFUNC ’CATL’ DLTA

SCAFUNC ’CATL’ DLTX

SCAFUNC ’CATL’ CONNECT

SCAFUNC ’CATL’ RELEASE

SCAFUNC ’ALLO’ PURGE

SCAFUNC ’ALLO’ SCRATCH

SCAFUNC ’ALLO’ ALLOCATE

SCA Field Value UMAP Utility Command

SCARDESC ’DSN’ -

SCARDSN File Name -

SCARVOL Volser -

SCAFUNC ’WRIT’ Any effort to SAVE the map in the load library

SCAFUNC ’READ’ All operations on temporary maps in the SDfile

256

System ProgrammingULSRSEC - User-Written Service Routine

SCA Field Value UEDIT/UED Utility Command

SCARDESC ’DSN’ -

SCARDSN
File
Name

-

SCARVOL Volser -

SCAFUNC ’WRIT’ Any SAVE, RSAVE, or FILE that writes to the library

SCAFUNC ’READ’
Any operation other than SAVE, RSAVE, and FILE that does not
write to the library

SCA Field Value ULIB Utility Command

SCARDESC ’ULIB’ -

SCARDSN - -

SCARVOL - -

SCARULTP ’PGM’ -

SCAFUNC ’WRIT’ CAT

SCAFUNC ’WRIT’ DEL

SCAFUNC ’INQ’ DISPLAY

SCA Field Value User VSAM/BDAM/ISAM Requests Utility Command

SCARDESC ’DSN’ -

SCARDSN File Name -

SCAFUNC ’READ’ READ

SCAFUNC ’WRIT’ WRITE

SCAFUNC ’WRIT’ UPDATE

ULSRSEC Conventions
The following table summarizes the ULSRSEC linkage conventions.

Feature Convention

Attributes Reentrant.

Type Nucleus.

Size No restriction.

257

ULSRSEC - User-Written Service RoutineSystem Programming

Feature Convention

Registers at
Entry

Register 0 Available

Register 1 Available

Register 2 Com-plete Communications Region (COMREG)

Register 3 User Program Control Block (UPCB)*

Register 4 Thread Control Block (THCB)

Register 5 Terminal Information Block (TIB)*

Register 6 Reserved for future expansion

Register 7 Available

Register 8 Available

Register 9 Available

Register A Available

Register B Base 2

Register C Base 1

Register D Save area and SCA address

Register E Available

Register F Available

Registers at
Return

Registers must be restored, except register 15, which must contain a
return code.

Return Codes 0 Security passed.

4 Security check failed due to lack of or incorrect
information. The SCARC field must be set to the
following values :

0 password failed

4 unexpired file

8 to
16

reserved

8 Security failed.

12 SCA invalid.

258

System ProgrammingULSRSEC - User-Written Service Routine

Feature Convention

Considerations a Referenced tables must be loaded during initialization.

b Registers must be saved and restored.

c The module must be reentrant, except for the
initialization routine.

d The module runs as a portion of the Com-plete nucleus; it
is therefore advisable to maintain a backup copy of this
module or a backup of the entire Com-plete control
program.

e Called in Com-plete’s key

f All control blocks and areas passed for the use of the exit
will be in Com-plete’s key.

g Active thread will generally be in a different key to
Com-plete’s key.

* Not for the INIT call.

259

ULSRSEC - User-Written Service RoutineSystem Programming

UMSEX1 - UM Security Exit
UMSEX1 is a user-written routine called by UM:

during UM initialization;

after input from the main menu;

before actually scheduling a message switching request.

UMSEX1 can be used to impose security restrictions on the use of certain UM functions or destinations.

The UMSEX1 module is loaded during UM initialization; therefore, internal switches can be set and
referenced later on.

A dummy UMSEX1 module is distributed with the Com-plete system as a member of the source and load
libraries.

Note:
No security exists for UM functions unless established by you.

This chapter covers the following topics:

How to use UMSEX1

UMSEX1 Conventions

How to use UMSEX1
Upon entry to UMSEX1, a set of parameters is received in the form of 5 fullword addresses. For the
meaning of the words see the parameters in the table below.

Upon return from UMSEX1 to UM, the return code area is checked. If the return code is not zero, the
requested operation is aborted and an error message is displayed on the main menu screen.

UMSEX1 Conventions
The following table summarizes the UMSEX1 linkage conventions:

260

System ProgrammingUMSEX1 - UM Security Exit

Feature Convention

Attributes Reentrant if in resident area

Type Thread

Siz Restricted to the UM thread region size

Registers at
entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UMSEX1

Registers at
return

All registers except R15 must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of a four byte function code

Word 3 Address of the UM00 map area

Word 4 Address of the destination list (100 entries, 10
bytes per entry)

Word 5 Address of a halfword showing the number of
already selected destinations

Return Codes 0 Allow the request

4 Disallow the request

Function codes passed via word 2:

F’0’ Initialization

F’4’ After main menu input

F’8’ About to schedule the message

Data area passed via word 3:

261

UMSEX1 - UM Security ExitSystem Programming

UM00D DSECT LAYOUT OF MAP UM00

UM00FUNC DS CL2FUNCTION CODE (SM,SG,...)

UM00MSGS DS CL132 MESSAGE TEXT

UM00MSGM DS CL1 ’MORE TEXT’ INDICATOR

UM00DEST DS 7CL8 7 DESTINATIONS

UM00CLAS DS CL20 CLASS CODES

UM00DL EQU*-UM00D LENGTH OF THIS DSECT

262

System ProgrammingUMSEX1 - UM Security Exit

USTKX1 - USTACK User Exit
USTKX1 is a user-written routine called before writing the screen and after reading the screen. This
means that you can use this exit to perform their own screen I/Os.

In the exit, you can modify the screen buffer and thus build your own map for USTACK. If the exit is
called after read processing, the input can be analyzed by the exit; if the exit returns a return code 4, the
screen buffer is rebuilt. A DSECT which describes the screen buffer is given to you in the CMUSTK
macro.

Because of the heavy use made of USTACK in a running Com-plete system, you must take great care
when writing this exit.

This chapter covers the following topics:

Using USTKX1

USTKX1 Conventions

Using USTKX1
When calling the exit before write processing:

The write operation is indicated by a value of 0 in register 0. Register 1 points to the screen buffer
described in macro CMUSTK. The exit-call register 15 is then checked for the return code. A return code
of 0 means normal write/read processing continues. A return code of 4 means read/write processing is
performed by the user exit. The exit is called again with the value of 4 in register 0 to indicate read
operation.

When calling the exit after read/write processing:

The read operation is indicated by a value of 4 in register 0. Register 1 points to the screen buffer. The
exit-call register 15 is then checked for the return code. A return code of 0 means normal analyzing of the
input is performed by USTACK. A return code of 4 means input analysis is skipped, and the screen buffer
is rebuilt.

USTKX1 Conventions

263

USTKX1 - USTACK User ExitSystem Programming

Feature Convention

Attributes Size none required.

Registers at
entry

Register 0 indicates operation:

 0 write operation

4 read operation

Register 1 points to screen buffer

Register 13 address of an 18-fullword save area

Register 14 return address in the calling module

Register 15 entry address within USTKX1

Registers at
return

Register 15 must have the return code

Register 2
thru’ 13

must be unchanged.

Return Codes Register 15

0 normal processing, read/write processing, input
analysis performed by USTACK

4 read/write processing performed by user exit,
input analysis performed by user exit.

264

System ProgrammingUSTKX1 - USTACK User Exit

USTRE1 - USTOR User Exit
USTRE1 is a user-written routine called by the USTOR utility program before the execution of any
command function requested by the terminal operator. This routine allows you to define security
restrictions on the use of the various functions.

Each time the terminal operator issues a new command or presses theENTER key, a call is made to
USTRE1 before the requested function is serviced. Consequently, the installation may restrict, permit, or
eliminate any or all of the USTOR functions.

USTRE1 can issue any Com-plete function in the process of determining the security restrictions to be
imposed upon the terminal user. Sample functions include:

COLOAD Loads a table containing security information.

COLINK Invokes another user-written program.

GETCHR Obtains information about the terminal user.

WRTC Requests additional information.

READ Obtains the requested information.

MESGSW Logs a security violation.

Because the USTRE1 module is only loaded once per invocation of USTOR, internal switches can be set
and subsequently referred to. Note that each new invocation of USTOR loads a new version of USTRE1,
thus causing the switches to be reset.

A dummy USTRE1 is distributed with the Com-plete system as a member of the distribution source
library and the distribution load library.

Note:
No additional security exist for USTOR functions unless it is established by you.

This chapter covers the following topics:

How to Create USTRE1

How to Use USTRE1

USTRE1 Conventions

How to Create USTRE1
To create a new USTRE1 exit routine, proceed as follows:

Step 1

265

USTRE1 - USTOR User ExitSystem Programming

Code the desired module using the member USTRE1 in the distribution source library as a
guide.

Step 2

Assemble and link the new module into the user load library.

Step 3

Delete the old USTRE1 from the program library.

Step 4

Catalog the new USTRE1 to the program library.

Step 5

Test the new exit by invoking USTOR.

If an error exists in the new USTRE1 exit routine, USTOR may terminate abnormally. It is
therefore recommended that precautions be taken to retain a usable copy of USTRE1 in order to
ensure continued reliable service.

USTRE1 can optionally be link edited as part of the USTOR utility for performance reasons. If
not link edited with USTOR, USTRE1 is loaded once during the initialization of USTOR.

Size restrictions are not imposed on USTRE1. Size is a consideration, however, because not
only must the exit fit into the same thread in which USTOR executes, but the cataloged region
size of USTOR must also consider the size of USTRE1. Note that if there is insufficient storage
to load USTRE1, an error will result.

How to Use USTRE1
Upon entry to USTRE1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of Com-plete’s COMREG. Word 2 contains
the address of the current UPCB. Word 3 contains the address of the current THCB. Word 4 contains the
address of the current TIB. Word 5 contains the address of the USTOR command just provided by the
terminal user. Word 6 contains the address of a halfword to be used by USTRE1 to pass a return code
back to USTOR.

Security is provided by determining if the current user or TIB is permitted to execute the requested
USTOR function and setting the return code accordingly.

USTRE1 Conventions
The following table summarizes the USTRE1 linkage conventions.

266

System ProgrammingUSTRE1 - USTOR User Exit

Feature Convention

Attributes None required

Size Limited only by the USTOR thread size.

Registers at Entry Register 1 Address of the parameter list

Register 13 Address of an 18-word save area

Register 14 Return address in USTOR

Register 15 Entry point address in USTRE1

Registers at ReturnRegisters 2 through 13 must be unchanged.

Parameters Word 1 Address of the COMREG

Word 2 Address of the UPCB

Word 3 Address of the THCB

Word 4 Address of the TIB

Word 5 Address of the USTOR function

Word 6 Address of a return code halfword

Return Codes 0 Allow the request.

4 Disallow the request.

8 Disallow the request, and terminate USTOR.

Considerations a Is loaded once per invocation of USTOR.

b Can be link edited, or loaded dynamically.

267

USTRE1 - USTOR User ExitSystem Programming

UTMEX1 - Timer User Exit
UTMEX1 is a user-written routine that examines each new timer request that is to be added to the timer
SD file by UTIMER.

A request can be rejected by the exit. If this occurs, a 40-byte disallow message must be passed back to
the calling routine.

A dummy UTMEX1 module is distributed with the Com-plete system as a member of the distribution and
load libraries.

This chapter covers the following topics:

How to Use UTMEX1

UTMEX1 Conventions

How to Use UTMEX1
Upon entry to UTMEX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of a return code halfword. Word 2 of the
parameter list contains the address of a timer record in the format of a DSECT defined by the TIMRSD
macro. Word 3 of the parameter list contains the address of 40 bytes used by UTMEX1 to pass a return
code back to UTIMER.

UTMEX1 Conventions
The following table summarizes the UTMEX1 linkage conventions.

268

System ProgrammingUTMEX1 - Timer User Exit

Feature Convention

Attributes None required.

Type Thread.

Size No restrictions.

Registers at Entry Register 1 Address of the parameter list

Register
13

Address of the caller’s 18-fullword save area

Register
14

Return address in the calling module

Register
15

Entry point address

Registers at Return Registers 14 through 12 must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the timer record

Word 3 Address of the return code

Return Codes 0 Normal return. Allow log service in the timer
SD file.

4 Do not allow log service in the timer SD file.

Considerations a Is loaded by UTIMER.

b Linkage is dynamic, with COLOAD.

269

UTMEX1 - Timer User ExitSystem Programming

UTMEX2 - Timer Monitor User Exit
UTMEX2 is a user-written routine called by UTIMRM both:

Every minute;

For each request that is to be served.

If it is an ’every minute’ request, the exit may perform whatever functions it desires, including internal
functions, after which flow may continue (return code = 0), or return again to UTMEX2 (return code = 4).

If it is a serve request, the exit may perform any internal functions, modify the request record, and allow
or disallow serving.

A dummy UTMEX2 module is distributed with the Com-plete system as a member of the distribution and
load libraries.

This chapter covers the following topics:

How to Use UTMEX2

UTMEX2 Conventions

How to Use UTMEX2
Upon entry to UTMEX2, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of a return code halfword. Word 2 of the
parameter list contains the address of a timer record in the format of a DSECT defined by the TIMRSD
macro. Word 3 of the parameter list contains the address of a halfword containing the TIDs of the terminal
that is to be logged off by the automatic loggoff function.

Note:
If the contents of the areas pointed by word 2 and word 3 are both binary zero, it is considered to be an
’every minute’ exit call. In this case, any service can be filled into the timer record.

UTMEX2 Conventions
The following table summarizes the UTMEX2 linkage conventions.

270

System ProgrammingUTMEX2 - Timer Monitor User Exit

Feature Convention

Attributes Reentrant.

Type Thread.

Size No restrictions.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of the caller’s 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry point address

Registers at
Return

Registers 14 through 12 must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the timer record

Word 3 TID of a terminal to be logged off by the
automatic logoff function

Return Codes For serve request/TIB auto logoffs:

0 Allow serving request/TIB auto logoff.

4 Do not allow serving request/TIB auto logoff.

For "every minute" calls:

0 Serve request if it exists; then continue.

4 Serve request if it exists; then return to
UTMEX2.

Considerations a Is called by UTIMER.

b Linkage is dynamic, with COLOAD.

271

UTMEX2 - Timer Monitor User ExitSystem Programming

UTMEX3 - Timer Monitor RJE Exit
UTMEX3 is a user-written routine called by UTIMRM at RJE job submission.

This exit has the same parameters and behaves in the same way as UXEEX3 , except that word 2 of the
parameter list points to UTMSCOM, the timer common region, instead of UEPDCOM.

A dummy UTMEX3 module is distributed with the Com-plete system as a member of the distribution and
load libraries.

This chapter covers the following topics:

How to Use UTMEX3

UTMEX3 Conventions

How to Use UTMEX3
Upon entry to UTMEX3, a set of parameters is received in the form of fullword addresses in register 1.
Word 1 of the parameter list contains the address of a return code area in which the status of the request is
to be indicated. Word 2 of the parameter list contains the address of the UTMSCOM data area.

Word 3 of the parameter list contains the address of the "call-type" byte being passed to UTMEX3; valid
character values are:

S start of job submission before the first statement.

sp (space) standard call.

E end of the submission following the last statement.

Note:
If the contents of the areas pointed to by word 2 and word 3 are both binary zero, it is considered to be an
’every minute’ exit call. In this case, any service can be filled into the timer record.

Word 4 of the parameter list contains the address of the card image. Word 5 of the parameter list contains
the address of the area to be used when inserting statements (return code = 8).

Note that the last two parameters are valid only if the call-type byte is a space.

Upon return to the loading module from UTMEX3, the return code halfword is examined and processed
as follows:

0 Normal return; the next statement is processed, unless the final statement has been processed.

4 Delete the current statement. This return code is valid only if the call-type byte is a space.

8 Insert a statement before the current card image statement. The statement to be inserted must be in an
area pointed to by the fifth parameter in the parameter list (+16). This return code is valid only for
the call-type byte values space and E.

12 Abort the RJE submission.

272

System ProgrammingUTMEX3 - Timer Monitor RJE Exit

At the end of the job stream, the call type is set to E. UTMEX3 is called repeatedly until a return code of
either 0 or 12 is given.

This allows for the insertion of multiple statements at the end of the job stream.

To modify a statement, place it in the statement work area addressed by the fourth parameter in the
parameter list (+12), modify the statement there, and return with a return code 0.

UTMEX3 Conventions
The following table summarizes the UTMEX3 linkage conventions.

Feature Convention

Attributes Reentrant.

Type Thread.

Size No restrictions.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UTMEX3

Registers at
Return

Registers 12 through 14 must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the UTMSCOM data area

Word 3 Address of a flag byte indicating the type of call:

S Start of job submission (before first
statement)

sp (space) standard call

E end of the submission (following the last
statement)

Word 4 Address of the card image.

Word 5 Address of the area to be used when inserting
statements (return code = 8)

273

UTMEX3 - Timer Monitor RJE ExitSystem Programming

Feature Convention

Return
Codes

0 Normal return. Process the next statement unless
end-of-file.

4 Delete the current statement (valid only if
call-type =space).

8 Insert a statement before the current card image.
Statement to be inserted must be in an area
pointed to by word 5 of the parameter area . This
return code is valid only for call-types E and sp
(space).

12 Abort the submission (HASP only).

Considerations a Is called by U2TSUB, a subroutine of UTIMRM .

b Linkage is dynamic, with COLOAD.

274

System ProgrammingUTMEX3 - Timer Monitor RJE Exit

UUEDEX - UED Security Exit
UUEDEX is a user-written routine called by the UED utility program before the execution of certain
commands entered by the terminal operator. This module allows you to define security restrictions on the
use of the various functions. (See word 2 in the UUEDEX conventions table.)

The UED utility program is a set of logically related modules, each of which services a specific function.
Each function requested by a terminal operator is logically processed by a separate module. Each of these
modules issues a call to the user-written exit routine UUEDEX before servicing the requested function.
Consequently, you can restrict, permit, or eliminate any or all UED functions.

When UED is initially invoked by the terminal operator, the GETCHR function is executed and the
information obtained is passed to the user-written exit routine UUEDEX in the form of an address
constant passed in the parameter list.

The UUEDEX module is only loaded once per invocation of UED. This implies that internal switches can
be set and subsequently referenced. Note, however, that each new invocation of UED loads a new version
of UUEDEX, causing the switches to be reset.

A dummy UUEDEX module is distributed with the Com-plete system as a member of the distribution
source library and the distribution load library.

Note:
If no additional security is established by the user, only z/OS password protection security exists for UED
functions.

This chapter covers the following topics:

How to Use UUEDEX

UUEDEX Conventions

How to Use UUEDEX
Upon entry to UUEDEX, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of a return code halfword initialized to zero.
Word 2 contains the address of the halfword entry code that identifies the primary function being
performed. Word 3 contains the address of the GETCHR information area. Word 4 contains the address of
the two-character library code table entry, if any, as it exists in the UEDTB1 module (see UEDTB1 Entry
DSECT). The UEDTB1 module is described earlier in this section.

Additional parameters passed via register 1 are the address of a pseudo-open control block (XOPNCB) for
the file being accessed, the address of the UED edit control block (EDITCB), the address of a submit
buffer where each statement of a submitted job stream is placed before being submitted, and the address of
an insert buffer where a statement is to be placed to enable insertion of statements in a job stream being
submitted.

XOPNCB, the pseudo-open control block, provides information such as the name of the file being edited,
member name, volume sequence number identifier, etc. The format and contents of this control block are
described in UED Pseudo-Open Control Block.

275

UUEDEX - UED Security ExitSystem Programming

EDITCB, the UED edit control block, provides information such as the command table address, the
command buffer address, a pointer to the current command or operand, the address of the SD buffer, etc.
The format and contents of this control block are described in UED Edit Control Block.

During processing of the SUBMIT function, UUEDEX is invoked multiple times for the purpose of JCL
interrogation and modification. Word 7 of the parameter list points to a submit buffer that contains the
current JCL statement for submission. Note that UUEDEX can modify the contents of this buffer.

Word 8 of the parameter list points to an insert buffer used for JCL statement insertion. Upon entry to
UUEDEX, byte one of the insert buffer contains a call-type flag to indicate the timing of the call.

During processing of the SUBMIT function, return codes in the first parameter indicate the action to be
taken. If a return code 8 is returned, UUEDEX will be called again to allow multiple insertions before any
given statement in the submit buffer. Note that a return code 8 is valid only for the call-type values of
space and E.

To define security for a specific function, test for the existence of the appropriate function, establish the
desired level of authorization, and set the return code in word 1 of the parameter list to indicate acceptance
or rejection. This return code is also used to indicate to the SUBMIT function the action to be taken (insert
a statement, delete a statement, permit a statement).

UUEDEX Conventions
The following table summarizes the UUEDEX linkage conventions.

Feature Convention

Attributes None required.

Type Thread.

Size Restricted to the UED thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within UUEDEX

Registers at
Return

Registers 2 through 13 must be unchanged.

276

System ProgrammingUUEDEX - UED Security Exit

Feature Convention

Parameters Word 1 Address of a return code halfword for indicating
the status of the request.

Return codes are indicated in the return code
entry of this table.

Word 2 Address of a halfword entry code:

0 UED initialization requested.

4 READ requested.

8 SAVE requested.

12 SUBMIT requested.

20 UED termination requested.

Word 3 Address of the storage area containing GETCHR
information.

Word 4 Address of a table entry in UEDTB1 for the
two-character code for the library being edited.
This address is zero if no code is used.

Word 5 Address of the pseudo-open DCB (XOPNCB).

Word 6 Address of the UED Edit Control Block
(EDITCB).

Word 7 Address of the card image being submitted.

Word 8 Address of the card image insert buffer, byte 1 of
which contains a call-type flag:

S Start of job submission prior to first
statement

sp Space (statement being submitted)

E End of submission following last
statement

277

UUEDEX - UED Security ExitSystem Programming

Feature Convention

Return Codes SUBMIT processing only:

0 Submit from the SUBMIT buffer.

4 Delete card from the SUBMIT buffer.

8 Submit from the insert buffer.

12 Abort the submission. Other functions :

Other functions:

0 Allow the function.

4 Disallow the function.

Considerations a. References:

DSECT XOPNCB OPEN DCB

DSECT CMEDTB1 Library Codes

DSECT TMGETCHR GETCHR Table

b. First character of insert buffer:

S = Start of job submission prior to first statement

sp = Space (statement being submitted)

E = End of submission following last statement

c. Must be link edited with UED

278

System ProgrammingUUEDEX - UED Security Exit

UUMAX1 - UMAP Initialization Exit
UUMAX1 is a user-written routine called by the UMAP utility program before the user receives the
UMAP menu. This module allows the user to modify global defaults to UMAP and restrict UMAP
execution by user ID.

This chapter covers the following topics:

How to Use UUMAX1

UUMAX1 Conventions

How to Use UUMAX1
Upon entry to UUMAX1, a set of parameters is received in the form of fullword addresses in register 1.

UUMAX1 can issue any Com-plete function in the process of determining the security restrictions to be
imposed upon a terminal user. Sample functions include:

COLOAD Load a table containing security information;

COLINK Invoke another user-written module;

GETCHR Obtain information about the terminal user;

WRTC Request additional information;

READ Obtain the requested additional information.

UUMAX1 Conventions
The following table summarizes the linkage conventions of UUMAX1.

279

UUMAX1 - UMAP Initialization ExitSystem Programming

Feature Convention

Attributes None required.

Type Thread.

Size Restricted to the UMAP thread region

Registers at Entry Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUMAX1

Registers at ReturnRegisters 2 through 13 remain unchanged. Register 15 contains the
return code.

Parameters Word 1 Address of the eight-byte user ID.

Word 2 Address of the two-byte TID.

Word 3 Address of the 44-byte designated map library
file name.

Word 4 Address of the six-byte volume serial number.

Word 5 Address of the eight-byte user exit
communications area. This area is passed to all
user exits and is neither modified nor checked by
UMAP.

Word 6 Address of a two-byte area containing the default
constant and variable field indicators.

Return Codes 0 Allow the request.

4 Disallow the request.

Considerations Can be link edited, or loaded dynamically.

280

System ProgrammingUUMAX1 - UMAP Initialization Exit

UUMAX2 - UMAP Command Exit
UUMAX2 is a user-written routine called by the UMAP utility program before servicing a UMAP option.
This module allows the user to modify global defaults to UMAP and restrict UMAP execution by user ID.

This chapter covers the following topics:

How to Use UUMAX2

UUMAX2 Conventions

How to Use UUMAX2
Upon entry to UUMAX2, a set of parameters is received in the form of fullword addresses in register 1.

UUMAX2 Conventions
The following table summarizes the linkage conventions of UUMAX2.

281

UUMAX2 - UMAP Command ExitSystem Programming

Feature Convention

Attributes Reentrant if in a resident area

Type Thread

Size Restricted to the UMAP thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUMAX2

Registers at
Return

Registers 2 through 13 remain unchanged. Register 15 contains the
return code.

Parameters Word 1 Address of the eight-byte user ID.

Word 2 Address of the two-byte TID.

Word 3 Address of a one-byte UMAP option code:

Return Codes 0 Allow the request.

4 Disallow the request.

Considerations Can be link edited, or loaded dynamically.

282

System ProgrammingUUMAX2 - UMAP Command Exit

UUMAX3 - UMAP Termination Exit
UUMAX3 is a user-written routine called by the UMAP utility program before exiting UMAP. This
module allows you to force cleanup of SD files, and to control the termination of UMAP.

This chapter covers the following topics:

How to Use UUMAX3

UUMAX3 Conventions

How to Use UUMAX3
Upon entry to UUMAX3, a set of parameters is received in the form of fullword addresses pointed to by
register 1.

UUMAX3 Conventions
The following table summarizes the linkage conventions of UUMAX3.

283

UUMAX3 - UMAP Termination ExitSystem Programming

Feature Convention

Attributes None required.

Type Thread.

Size Restricted to the UMAP thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUMAX3

Registers at
Return

Registers 2 through 13 remain unchanged. Register 15 is ignored.

Parameters Word 1 Address of the eight-byte user ID.

Word 2 Address of the two-byte TID.

Word 3 List of the five eight-byte SD file name fields. If
less than five names are in the list, the list of valid
names will be terminated with a HEX ’00’.

Word 4 Address of the eight-byte user exit communications
area. This area is passed to all user exits and is
neither modified nor accessed by UMAP.

Return Codes Ignored.

Considerations Can be link edited, or loaded dynamically.

284

System ProgrammingUUMAX3 - UMAP Termination Exit

UUPDX1 - UPDS Security Exit (z/OS Only)
UUPDX1 is a user-written routine called by the UPDS utility program before the execution of any
command entered by the terminal operator. This module allows you to define security restrictions on the
use of the various functions.

The UPDS utility program is a set of logically related modules, each of which services a specific function.
Therefore, each function requested by a terminal operator is logically processed by a separate module.
Each of these modules issues a call to the user-written exit routine UUPDX1 before servicing the
requested function. Consequently, you can restrict, permit, or eliminate any or all UPDS functions.

When UPDS is initially invoked by the terminal operator, the GETCHR function is executed. The
information obtained is passed to the user-written exit routine UUPDX1 in the form of a parameter list
address. This information can be further referenced in order to place additional restrictions on the use of
UPDS.

Because the UUPDX1 module is only loaded once per invocation of UPDS, internal switches can be set
and subsequently referenced. Note, however, that each new invocation of UPDS loads a new version of
UUPDX1, causing the switches to be reset.

A dummy UUPDX1 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

Note:
Only z/OS password security exists for UPDS functions if you do not establish any. Obviously,
SCRATCH and RENAME functions cannot be performed in read-only libraries.

This chapter covers the following topics:

How to Use UUPDX1

UUPDX1 Conventions

How to Use UUPDX1
Upon entry to UUPDX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of a return code halfword initialized to zero.
Word 2 contains the address of an area containing the UPDTB1 information table. This table, which
passes information to the user-written exit, is described by the UPDTB1 macro (assemble sample
UUPDX1 to see the layout of this area) and illustrated in UPDTB1 Information Control Block. Word 3
contains the address of the GETCHR information table. Word 4 contains the address of the library code
entry in module UEDTB1, if a two-character library code was used to make the request (see UEDTB1
Entry DSECT). If no library code was entered however, the corresponding field in UEDTB1 contain
binary zeros, and the address given in the parameter list must not be used.

To define security for a specific function, test for the existence of the appropriate function, establish the
desired level of authorization, and set the return code pointed to by word 1 of the parameter list to indicate
acceptance or rejection.

285

UUPDX1 - UPDS Security Exit (z/OS Only)System Programming

If a UPDS command has been entered that performs a modification to a file (for example, SCRATCH,
RENAME), an attempt is made to allocate the file with a disposition of OLD. If this attempt is
unsuccessful, an allocation of SHR is attempted. The ENQ of DISP=OLD or DISP=SHR is obtained on
the queue element names of SYSDSN and SYSIEWLP; the function requested is only executed if the
ENQs are successful.

UUPDX1 Conventions
The following table summarizes the UUPDX1 linkage conventions.

286

System ProgrammingUUPDX1 - UPDS Security Exit (z/OS Only)

Feature Convention

Attributes None required.

Type Thread.

Size Restricted by the UPDS thread region size

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUPDX1

Registers at
Return

Registers 2 through 13 must be unchanged.

Parameters Word 1 Address of a return code halfword for indicating
the status of the request.

0 Allow the request.

4 Disallow the request.

Word 2 Address of the UPDTB1 table

Word 3 Address of the GETCHR information table

Word 4 Address of the UEDTB1 entry, if any; otherwise,
binary zeros

Return Codes 0 Allow the request.

4 Disallow the request.

Considerations a Is loaded once per call of UPDS.

b Can be link edited with UPDS.

c Can be link edited, or dynamically loaded.

287

UUPDX1 - UPDS Security Exit (z/OS Only)System Programming

UUQEX1 - UQ Security Exit
UUQEX1 is a user-written routine called by the UQ utility program before processing UQ functions
requested by the terminal operator. This module defines security restrictions on the use of the various
functions.

The UQ utility program is a set of logically related modules, each of which services a specific function (H,
R, T, M, O, etc.). Each function requested by a terminal operator is logically processed by a separate
module. Each of these modules issues a call to the user-written exit routine UUQEX1 before servicing the
requested function. Consequently, you can restrict, permit, or eliminate any or all the UQ functions.

Because the UUQEX1 module is only loaded once per invocation of UQ, internal switches can be set and
subsequently referenced. Each new invocation of UQ will load a new version of UUQEX1, causing the
switches to be reset.

A dummy UUQEX1 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

Note:
No security exists for UQ functions unless it is established by you..

This chapter covers the following topics:

How to Use UUQEX1

UUQEX1 Conventions

How to Use UUQEX1
At entry to UUQEX1, a set of parameters is received in the form of fullword addresses in register 1. Word
1 of the parameter list contains the address of a return code area in which the status of the request is to be
indicated. Word 2 of the parameter list contains the address of a code indicating the nature of the function
being requested.

To define security for a specific function, test for the existence of the appropriate function code, establish
the desired level of authorization, and set the return code to indicate acceptance or rejection.

In some cases, if a function is rejected, no security violation is posted at the terminal; the function is
simply suppressed. For example, if a user ID is restricted to viewing only SYSOUT in output class A, a
request for the Q function of UQ will display only SYSOUT in class A.

As described in the Com-plete Utilities documentation, the UQ utility program recognizes well-defined
comment cards as part of the input job stream in order to further define security. One of the comment
cards can be used to pass information to UUQEX1, providing additional security criteria at the user level.
This comment statement is in the format:

//*UQ USER ...xxx... (z/OS)
* *UQ USER ...xxx... (VSE)

288

System ProgrammingUUQEX1 - UQ Security Exit

where xxx can contain any desired information consisting of a maximum of 60 characters. This
information is passed to UUQEX1 for all functions issued for the specific job containing the comment
statement. With this special JCL comment statement, an installation can impose security not supported by
the standard UUQEX1 conventions.

For example, if a password is required for a certain job’s SYSOUT/SYSLST to be displayed using the S
function of UQ, the user comment statement could be used in order to communicate the password to the
exit routine. The exit routine could then prompt the terminal operator for the password and disallow the
request if it is not correctly entered.

UUQEX1 Conventions
The following summarizes the UUQEX1 linkage conventions.

Attributes

None required.

Type

Thread.

Size

Restricted to the UQ thread region.

Registers at Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within UUQEX1

Registers at Return

Registers 2 through 13 must be unchanged.

Parameters

Word 1 Address of a return code halfword. The return code is preset
according to the security check on the JCL cards before the exit is
called. Possible codes:

0 Security check passed.

4 Security check failed. This allows the user exit to override
the previous security check by resetting return code 4 to 0.

Word 2 Address of a UQ function code:

289

UUQEX1 - UQ Security ExitSystem Programming

 A Active display

C Cancel request

D DASD unit display

DE Destination routing request

H Hold request

K Console command request

M Console messages display

O Opertor reply ID display

OC Output class alteration

Q Generalized job queue display (once per display request)

QL Specific job queue display (once per displayed job)

R Release request

S Spool display request

T Tape display request

V DASD volume space display

Word 3 Address of the job name (not applicable for the A, D, K, M, O, Q, T,
V, C, W and R functions).

Word 4 Address of the job number; 32-bit unsigned, binary (not applicable
for the A, D, K, M, O, Q, T, V, C, W and R functions).

Word 5 Address of the job class code (QL function only). Gives message
class in JES2, execution class in JES3.

Word 6 Address of the job queue code (QL function only):

 I Input queue

O Output queue

X Executing (HASP and JES2 systems only)

P Purge active (HASP and JES2 only)

Word 7 Address of the destination code; eight characters, left justified (H, R,
C, DE, and QL functions only).

Word 8 Address of the spool ID request type (S function only):

290

System ProgrammingUUQEX1 - UQ Security Exit

 CC Condition Code

JL JCL on input queue

SI Sysin file

SM System message file

SO Sysout file

Word 9 Address of the 60-byte area containing data from the UQ statement
(S, H, R, C and DE functions only):

//*UQ USER ... (z/OS)
* *UQ USER ... (VSE)

The statement must precede all other UQ comment statements in
order to be valid

Return Codes

0 Allow the request.

4 Security violation.

Considerations

a Is loaded once per call execution of UQ.

b Can be link edited or loaded dynamically.

291

UUQEX1 - UQ Security ExitSystem Programming

UUSEX1 - USDLIB Security Exit
UUSEX1 is a user-written routine called by the USDLIB utility program each time before contents of a
single SD file are displayed or zapped, or an SD file is deleted.This routine allows you to define security
restrictions on the access of SD files. Possible uses include:

To MESGSW a record recording the access of an SD data set;

To restrict access to SD files that may contain sensitive information;

To restrict use of subfunctions, for example, zap or delete.

Because the UUSEX1 module is only loaded once per invocation of USDLIB, internal switches can be set
and referred to.

A dummy UUSEX1 module is distributed with the Com-plete system as a member of the distribution
source library and the distribution load library.

Note:
No security exists for USDLIB functions unless it is established by you.

This chapter covers the following topics:

How to Use UUSEX1

UUSEX1 Conventions

How to Use UUSEX1
Upon entry to UUSEX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 contains the address of a halfword return code to be initialized in the exit. A value of 0
allows access; a value of 4 disallows access. Word 2 of the parameter list contains the address of a
six-byte field containing the name of the SD file being accessed. Word 3 of the parameter list contains the
address of a two-byte field containing the TID number of the SD file A value of binary zeros means that
the SD file was created with SHR status. Word 4 of the parameter list containes the address of an one-byte
field containing the USDLIB subfunction code.

To define security, check which SD file is being accessed, check the subfunction being executed, and set
the return code to indicate acceptance or rejection.

Upon return from UUSEX1, the return code area is examined by USDLIB. If the return code is not zero,
the operation is aborted and a security violation message is issued.

UUSEX1 Conventions
The following table summarizes the UUSEX1 linkage conventions.

292

System ProgrammingUUSEX1 - USDLIB Security Exit

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Maximum of 2048 bytes

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUSEX1

Registers at
Return

All registers must be unchanged.

Parameters Word 1 Address of a halfword return code

Word 2 Address of the eight-byte file name

Word 3 Address of the two-byte TID for the file; a TID
value of 0 indicates that the file has SHR status

Word 4 Address of the one-byte subfunction code:

S Show records of the SD file

Z Zap a record of the SD file

D Delete the SD file

Return Codes 0 Allow the request.

4 Security violation.

Considerations a Is loaded once per call of USDLIB.

b Is loaded before invoking the display request.

293

UUSEX1 - USDLIB Security ExitSystem Programming

UUSPL0 - USPOOL Command Exit
UUSPL0 is a user-written routine called by USPOOL after the terminal user has issued a valid command.
UUSPL0 defines security restrictions pertaining to the use of all USPOOL functions and can also be used
to restrict access to specific printers.

The UUSPL0 module is loaded once per invocation of USPOOL. This means that internal switches can be
set and subsequently referred to. Note, however, that each new invocation of USPOOL causes a new copy
of UUSPL0 to be loaded, thereby causing all switches in UUSPL0 to be reset.

A dummy UUSPL0 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

Note:
No security exists for USPOOL functions, unless it is established by you or restricted via Com-plete
Security System definitions.

This chapter covers the following topics:

How to Use UUSPL0

UUSPL0 Conventions

How to Use UUSPL0
Upon entry to UUSPL0, a set of parameters is received in the form of 5 fullword addresses. For the
meaning of the words, see the parameters in the description of the UUSEX1 exit.

Upon return from UUSPL0 to USPOOL, the return code area is checked. If the return code is not zero, the
requested operation is aborted and an error message is displayed on the main menu screen.

UUSPL0 Conventions
The following table summarizes the UUSPL0 linkage conventions:

294

System ProgrammingUUSPL0 - USPOOL Command Exit

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the USPOOL thread region size

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUSPL0

Registers at
Return

All registers except R15 must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of a four byte function code

Word 3 Address of the requestors specifications

Word 4 Address of the listqueue entry definitions or
address of the printername

Word 5 Optional for listqueue update functions, address
of the old listqueue entry definitions

Return Codes 0 Allow the request.

4 Disallow the request.

Function Codes passed via word 2:

PO Printer overview

LQ Listqueue overview

MOx Modify Q-Entry x = U update M move C copy P purge

DP Display printout in screen

OPx Operate printer x = S start R reset H halt

Data Area passed via word 3:

295

UUSPL0 - USPOOL Command ExitSystem Programming

USRXP DSECT ,

USRXUID DS CL8 User name

USRXACC DS CL12 Account

USRXAUT DS AL2 Authorization code

USRXCTL DS CL2 Control/Noncontrol

USRXPL EQU *-USRXP Length of element

Data Area passed via word 4 (and word 5):

OLQLINE DSECT ,

OLQNAME DS CL8 List name

OLQNUM DS AL2 Number

OLQFORM DS CL4 Form

OLQSTAT DS C Status

OLQLINS DS AL2 Number of lines

OLQCOPY DS AL2 Number of copies

OLQPRIO DS AL2 Priority

OLQUSER DS CL8 Originator

OLQLDRV DS CL8 Logical output driver

OLQDEST DS CL8 Destination

OLQLINEL EQU *-OLQLINE Length of element

296

System ProgrammingUUSPL0 - USPOOL Command Exit

UUSVX1 - USERV Security Exit (VSE Only)
UUSVX1 is a user-written routine called by the USERV utility program before the execution of any
command entered by the terminal operator. This module allows you to define security restrictions on the
use of the various functions.

When USERV is initially invoked by the terminal operator, the GETCHR function is executed and the
information obtained is passed to the user-written exit routine UUSVX1 in the form of a parameter list
address. This information can be further referenced to place additional restrictions on the use of USERV.

Because the UUSVX1 module is only loaded once per invocation of USERV, internal switches can be set
and subsequently referenced. Note that each invocation of USERV loads a new version of UUSVX1,
causing the switches to be reset.

A dummy UUSVX1 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

This chapter covers the following topics:

How to Use UUSVX1

UUSVX1 Conventions

How to Use UUSVX1
Upon entry to UUSVX1, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 of the parameter list contains the address of a return code halfword initialized to zero.
Word 2 contains the address of an area containing the UPDTB1 information table. This table passes
information to the user-written exit. It is described by the UPDTB1 macro (assemble sample UUPDX1 to
see the layout of this area) and illustrated in UPDTB1 Information Control Block. Word 3 contains the
address of the GETCHR information table. Word 4 contains the address of the library code entry in
module UEDTB1 if a two-character library code was used to make the request (see UEDTB1 Entry
DSECT). If no library code was entered, the corresponding field in UEDTB1 contains binary zeros and the
address given in the parameter list must not be used.

To define security for a specific function, test for the existence of the appropriate function, thereby
establishing the desired level of authorization, and set the return code pointed to by Word 1 of the
parameter list to indicate acceptance or rejection.

Size restrictions are not imposed on UUSVX1. Size is a consideration, however, since the exit must fit
into the same thread in which USERV executes. Because USERV is not threadlocked, it is invoked in one
of any available threads. If the thread is too small to contain both USERV and the exit routine UUSVX1
(which is loaded), an error will result.

UUSVX1 Conventions
The following table summarizes the linkage conventions of UUSVX1.

297

UUSVX1 - USERV Security Exit (VSE Only)System Programming

Feature Convention

Attributes Reentrant if in a resident area

Type Thread

Size Restricted by the USERV thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UUSVX1

Registers at
Return

Registers 2 through 13 must be unchanged.

Parameters Word 1 Address of a return code halfword for indicating
the status of the request:

0 Allow the request.

4 Disallow the request.

Word 2 Address of the UPDTB1 table

Word 3 Address of the GETCHR information table

Word 4 Address of the UEDTB1 entry, if any; otherwise
binary zeros

Return Codes 0 Allow the request.

4 Disallow the request.

Considerations a Is loaded once per call of USERV.

b Is loaded dynamically.

298

System ProgrammingUUSVX1 - USERV Security Exit (VSE Only)

UUTEX1 - UUTIL Security Exit
UUTEX1 is a user-written routine called by UUTIL before a function processor is called. The exit can be
used to impose security restrictions on the use of certain UUTIL functions, over and above those already
defined by Com-plete.

By default, certain functions of the UUTIL maintenance utility are only open to "Super Users". Control
users can access "Super User" functions by either specifying the maintenance password when invoking
UUTIL or, alternatively pressPF10 on the UUTIL main menu. This promptsd for the maintenance
password and, when confirmed, will bring up an additional number of utilities usually restricted to the
administrator.

This chapter covers the following topics:

How to Use UUTEX1

UUTEX1 Conventions

How to Use UUTEX1
The first function of UUTEX1 (function code 0) allows the UUTEX1 user exit to override this password
protection and allow a control user to automatically receive the full functionality when invoking UUTIL.

The second function of UUTEX1 (function code 4) allows the exit to control the use of the individual
subfunctions of UUTIL.

UUTEX1 Conventions

299

UUTEX1 - UUTIL Security ExitSystem Programming

Feature Convention

Registers at
Return

Registers 12 through 14 must be unchanged.

Parameters Word 1 Address of a halfword function code:

0 Check if the maintenance password is
required for control users to enter
"super-user" status.

4 Check if UUTIL function should be
allowed for the current user.

Word 2 Points to the two-character UUTIL function
code.

Return Codes For fct. 0 0 - Password
required

4 - Password not
required

For fct. 4 0 - Allow the
request

4 - Disallow the request

Considerations a Called by UUTIL.

b Linkage is dynamic, with COLOAD.

300

System ProgrammingUUTEX1 - UUTIL Security Exit

UXEEX1 - UEDIT Initialization Exit
Note:
A familiarity with the functional design of the UEDIT utility program is necessary for a full understanding
of this section.

UXEEX1 defines security restrictions on the use of the various UEDIT functions and restricts user ID
access to specific libraries or members. UXEEX1 can be used to:

Check a user ID for authorization to access the source library being edited;

MESGSW a record identifying the access of the library or member;

Use the CAPTUR function to provide an audit trail of the edit operation;

Exit to an alternative access method routine in order to perform the requested operation;

Alter the DSN, library code, VOLSER, and/or the file organization.

The UXEEX1 module is only loaded once per invocation of UEDIT. This means that internal switches
can be set and subsequently referenced. Remember, however, that each new invocation of UEDIT will
load a new version of UXEEX1, causing the switches to be reset.

A dummy UXEEX1 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

Note:
No security exists for UEDIT functions unless it is established by you.

This chapter covers the following topics:

How to Use UXEEX1

UXEEX1 Conventions

How to Use UXEEX1
UXEEX1 is a user-written routine called by the UEDIT initialization routine (UEDIT) in one of three
ways:

Upon a direct UEDIT entry call request;

To set the menu default characteristics;

After syntax checking the request, but before calling UEBP to perform the requested operation on the
source library.

Upon entry to UXEEX1, a set of parameters is received in the form of fullword addresses in register 1.
Word 1 of the parameter list contains the address of a return code area in which the status of the request is
to be indicated. Word 2 of the parameter list contains the address of the UEPDCOM data area.

301

UXEEX1 - UEDIT Initialization ExitSystem Programming

Word 3 of the parameter list contains the address of a one-character code that identifies the origin of the
call request being issued for UXEEX1. An X’80’ in the high-order byte of the address indicates that this is
the last parameter being passed (via register 1) to UXEEX1. The character addressed by the third
parameter can be one of the following:

D UXEEX1 is being entered directly with a non-menu invocation of UEDIT and before processing
input information "library ID", "option", and "member".

M UXEEX1 is being entered before generating the UEDIT output menu.

E UXEEX1 is being entered before fetching UEBP to perform I/O on the source library. In this
situation, the BPCODE field within UEPDCOM is valid, and can be tested or altered. During this
call, if the library code passed is spaces, the UEDIT system will not use UEDTB1 but will use the
DSN and VOLSER fields in UEPDCOM to access the data set.

To define security, proceed as follows:

Examine the third parameter to determine the origin of the call request;

Test for the existence of the desired function (via information passed in UEPDCOM);

Establish the desired level of authorization;

Set the return code to indicate either acceptance or rejection.

Upon return to the UEDIT module from UXEEX1, the return code area is examined. If the return code is
not zero, the edit operation is aborted and the menu page is output with an error message.

UXEEX1 Conventions
The following table summarizes the UXEEX1 linkage conventions.

302

System ProgrammingUXEEX1 - UEDIT Initialization Exit

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the UEDIT thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within UXEEX1

Registers at
Return

All registers must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the UEPDCOM data area

Word 3 Address of a one-character call code:

D Non-menu invocation of UEDIT

M Menu invocation of UEDIT

E Prior to UEBP I/O functions

Return Codes 0 Allow the request.

4 Security violation.

Considerations a Is loaded once per call execution of UEDIT.

b Is loaded before invoking UEBP. c. May be link
edited, or dynamically loaded.

303

UXEEX1 - UEDIT Initialization ExitSystem Programming

UXEEX2 - UEDIT Command/Termination
Exit
Note:
A familiarity with the functional design of the UEDIT utility program is necessary for a full understanding
of this section.

UXEEX2 is a user-written routine loaded during full-screen edit initialization by the module UEPDMN,
and is given control whenever the terminal user enters a UEDIT command or requests edit termination by
pressingCLEAR. When a UEDIT command is entered, the exit is called after UEPDMN has determined
that a command has been entered but before the command is identified and processed.

The primary function of this routine is to define security restrictions on the use of the various UEDIT
commands and to logically intercept control at UEDIT termination. UXEEX2 can be used to:

Check a user ID for authorization to issue certain UEDIT commands;

Extend the UEDIT command language with commands written by the user;

Pass control to another program or routine upon UEDIT termination.

Because the UXEEX2 module is loaded once per entry to UEPDMN, internal switches cannot be set and
subsequently referred to.

A dummy UXEEX2 module is distributed with the Com-plete system as a member of the distribution
source library and the distribution load library.

Note:
No security exists for UEDIT functions unless it is established by you.

This chapter covers the following topics:

How to Use UXEEX2

UXEEX2 Conventions

How to Use UXEEX2
UXEEX2 receives control before UEPDMN identifies or validates the command. Upon entry to
UXEEX2, a set of parameters is received in the form of fullword addresses pointed to by register 1. Word
1 of the parameter list contains the address of a return code area in which the status of the request is to be
indicated. Word 2 of the parameter list contains the address of the UEPDCOM data area.

Word 3 of the parameter list contains the address of the "call-type" byte being passed to UXEEX2: if a
command has been entered, this field contains a C; otherwise, this field contains an E. When a command
is entered, additional fullword parameters (words 4 through 7) give further details about the type of
command and its arguments. Word 7 of the parameter list contains an X’80’ in the high-order byte of the
address, indicating that this is the last parameter in the list.

304

System ProgrammingUXEEX2 - UEDIT Command/Termination Exit

To define security, test for the existence of the desired command, establish the desired level of
authorization, and set the return code to indicate either acceptance or rejection. If the command is
acceptable, a return code of 0 will enable execution of the command. Setting the return code to 4 causes
the command to be ignored. A return code of 8 invokes the error message "COMMAND NOT
PERMITTED".

UXEEX2 Conventions
The following table summarizes the UXEEX2 linkage conventions.

305

UXEEX2 - UEDIT Command/Termination ExitSystem Programming

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the UEPDMN thread region.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UXEEX2

Registers at
Return

All registers must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the UEPDCOM data area

Word 3 Address of a flag byte indicating the type of call:
C command E termination

Word 4 Address of the command verb (valid with
command calls only)

Word 5 Address of a halfword containing the length of
the command verb

Word 6 Address of the command operands

Word 7 Address of a halfword containing the length of
the command operands (0 = no operands)

Return Codes 0 Execute the command.

4 Ignore the command.

8 Issue ’command not permitted’ diagnostic.

Considerations a Is given control for every UEDIT command.

b Can be link edited, or dynamically loaded.

306

System ProgrammingUXEEX2 - UEDIT Command/Termination Exit

UXEEX3 - UEDIT RJE Exit
Note:
A familiarity with the functional design of the UEDIT utility program is necessary for a full understanding
of this section.

This exit provides security for the UEDIT utility only. The same function is provided by ULSRRJE on a
system-wide basis.

UXEEX3 is a user-written routine loaded during RJE initialization by the module UERJE. It is given
control before RJE begins, once for each card image sent to RJE, and after RJE terminates. UXEEX3 can
examine, modify, insert, and delete card images in the RJE input stream, as well as abort the JOB
submission altogether.

The primary function of this routine is to modify submitted job control statements and, in general,
establish control over JCL conventions for submitted jobs. UUEEX3 can be used to:

Syntax-check JCL;

Enforce installation standards;

Insert UQ security statements into the input stream.

Note that any dynamic storage that needs to be acquired by UXEEX3 must be acquired during the first
call to the exit, since UEDIT’s RJE processor will get and use all available thread storage after the first
call.

The UXEEX3 module is loaded once per submit request. This means that internal switches can only be set
and subsequently referred to during a single submit request.

A dummy UXEEX3 module is distributed with the Com-plete system as a member of the distribution
source and load libraries.

Note:
No security exists for UEDIT functions, unless it is established by you.

This chapter covers the following topics:

How to Use UXEEX3

UXEEX3 Conventions

How to Use UXEEX3
Upon entry to UXEEX3, a set of parameters is received in the form of fullword addresses in register 1.
Word 1 of the parameter list contains the address of a return code area in which the status of the request is
to be indicated. Word 2 of the parameter list contains the address of the UEPDCOM data area.

Word 3 of the parameter list contains the address of the "call-type" byte being passed to UXEEX3; valid
character values are:

307

UXEEX3 - UEDIT RJE ExitSystem Programming

S start of job submission before the first statement.

sp space (statement being submitted).

E end of the submission following the last statement.

Word 4 of the parameter list contains the address of the statement being submitted. Word 5 of the
parameter list contains the address of the area to be used when inserting statements (return code = 8).

Note that the last two parameters are valid only if the call-type byte is a space.

Upon return to UERJE from UXEEX3, the return code halfword is examined and processed as follows:

0 Normal return; the next statement is processed, unless the final statement has been processed.

4 Delete the current statement. This return code is valid only if the call-type byte is a space.

8 Insert a statement before the current card image statement. The statement to be inserted must be in an
area pointed to by the fifth parameter in the parameter list (+16). This return code is valid only for
the call-type byte values space and E.

12 Abort the RJE submission.

At the end of the job stream, the call type is set to E. UXEEX3 is called repeatedly until a return code of
either 0 or 12 is given.

This allows for the insertion of multiple statements at the end of the job stream.

To modify a statement, place it in the statement work area addressed by the fourth parameter in the
parameter list (+12), modify the statement there, and return with a return code 0.

Once a return code of 12 is given by UXEEX3, UXEEX3 is not called again. Return is to the UEDIT
menu page with the error message "SUBMIT ABORTED".

UXEEX3 Conventions
The following table summarizes the UXEEX3 linkage conventions.

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the UERJE thread region

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address of UXEEX3

308

System ProgrammingUXEEX3 - UEDIT RJE Exit

Feature Convention

Registers at
Return

All registers must be unchanged.

Parameters Word 1 Address of a return code halfword

Word 2 Address of the UEPDCOM data area

Word 3 Address of a flag byte indicating the type of
call:

S start of job submission (before first
statement)

sp (space) statement being submitted

E end of the submission (following the
last statement)

Word 4 Address of the statement being submitted.

Word 5 Address of the area to be used when inserting
statements (return code = 8)

Return
Codes

0 Normal return. Process the next statement unless
end-of-file.

4 Delete the current statement (valid only if
call-type = space).

8 Insert a statement before the current card image.
State-ment to be inserted must be in an area
pointed to by word 5 of the parameter area . This
return code is valid only for call-types E and sp
(space).

12 Abort the submission.

Considerations a Is loaded once per RJE initialization by UERJE.

b Is called before the RJE begins for each card
image sent to RJE, and after the RJE is finished.

c Can be link edited, or loaded dynamically.

309

UXEEX3 - UEDIT RJE ExitSystem Programming

UXEEX4 - UEDIT
LIBRARIAN/PANVALET Exit
Note:
A familiarity with the functional design of the UEDIT utility program is necessary for a full understanding
of this section.

UXEEX4 is a user-written routine that allows you to enforce installation standards for the LIBRARIAN
"-SEL" and "-ADD" statements and the PANVALET "++ADD" and "++UPDATE" statements. When the
UEDIT SAVE operation is executed, control is passed to UXEEX4 for each of these statements existing
in a member. This routine can be included:

In the link edit of the UEDIT subprogram UEBP;

As an operating system or Com-plete-resident program;

On the Com-plete program library.

If it is present as a resident program, UXEEX4 must be reentrant. An example of this exit is provided on
the distributed source library COM.SOURCE.

This chapter covers the following topics:

How to Use UXEEX4

UXEEX4 Conventions

How to Use UXEEX4
Upon entry to UXEEX4, a set of parameters is received in the form of fullword addresses pointed to by
register 1. Word 1 contains the address of a halfword return code area where the status of the request is
placed. Word 2 contains the address of the UEPDCOM data area. Word 3 contains the address of an
80-byte "++ADD", "++UPDATE", "-ADD", or "-SEL" statement that can be examined and modified.
Word 4 contains the address of the Edit Control Block (CMEDCB) data area. Word 5 contains the address
of a storage area containing GETCHR information.

Upon return from UXEEX4, the return code halfword is examined and processed as follows:

0 The SAVE operation continues.

4 The SAVE operation is aborted, and an error message is output on the UEDIT menu display.

UXEEX4 Conventions
The following table summarizes the UXEEX4 linkage conventions.

310

System ProgrammingUXEEX4 - UEDIT LIBRARIAN/PANVALET Exit

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the UEBP thread region.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within UXEEX4

Registers All registers must remain unchanged. at Return

Parameters Word 1 Address of a return code halfword

Word 2 Address of the UEPDCOM data area

Word 3 Address of the 80-byte "++ADD",
"++UPDATE", "-SEL", or "-ADD" control
statement

Word 4 Address of the EDCB data area

Word 5 Address of the UEDTMGET data area (GETCHR
information)

Return Codes 0 Execute the SAVE command.

4 Abort the SAVE command.

Considerations a Is given control for each SAVE command issued
when saving to a LIBRARIAN or PANVALET
library.

b Can be link edited, or loaded dynamically.

311

UXEEX4 - UEDIT LIBRARIAN/PANVALET ExitSystem Programming

UXEEX5 - Locate Exit
UXEEX5 is a user-written routine that enables users to allow an automatic recall of a library that has been
migrated by Hierarchical Storage Manager. When UEDIT or UPDS issue a LOCATE macro, control is
passed to UXEEX5, which can then interrogate the volser returned from the catalog and issue the recall
SVC if required. An example of this exit is provided on the distribution source library.

This chapter covers the following topics:

How to Use UXEEX5

UXEEX5 Conventions

How to Use UXEEX5
Upon entry, a set of parameters is received in the form of fullword addresses pointed to by register 1.
Words 1 and 3 are unused. Word 2 contains the address of the data set name (DSN) and word 4 contains
the address of the volser returned by the LOCATE macro.

UXEEX5 Conventions
The following table summarizes the UXEEX5 conventions.

312

System ProgrammingUXEEX5 - Locate Exit

Feature Convention

Attributes Reentrant if in a resident area.

Type Thread.

Size Restricted to the region area.

Registers at
Entry

Register 1 Address of the parameter list

Register 13 Address of an 18-fullword save area

Register 14 Return address in the calling module

Register 15 Entry address within UXEEX5

Registers at
Return

All registers must remain unchanged.

Parameters Word 1 Unused

Word 2 Address of the DSN

Word 3 Unused

Word 4 Address of a data area. Volser is at +6 in this data
area.

313

UXEEX5 - Locate ExitSystem Programming

Batch Utility Programs
Com-plete’s batch utilities enable the system programmer to monitor, operate, and maintain the Com-plete
system. This part of the Com-plete System Programming documentation describes the use of the batch
utilities, and provides the following information:

A description of how to use the utility and the job control required for execution

The control card input, if applicable

The PARM/SYSPARM input, if applicable

A DD/DLBL name table describing the DD/DLBL statements used

A conventions table summarizing the required coding conventions for the utility

The following table summarizes Com-plete’s batch utilities.

TUBATEST Provides the means to test the Com-plete Batch interface functions.

TUDUMP Provides the means to obtain hard copy printouts of dump entries in the
online dump file of the COMSD data set.

TUFILE Enables the switching of a user file from ONLN to BTCH or vice versa
(z/OS only).

TULIB Enables the ULIB CATALOG and DELETE commands to be performed
in a batch environment.

TUMSUTIL Enables the printing, backup, restoration and information display of
selected printout spool files.

TUSACAPT Capture file initialization routine.

TUSDUTIL Enables initialization of the SD data set, backup and restoration of SD
files.

314

System ProgrammingBatch Utility Programs

TUBATEST - Batch Interface Test Program
The batch utility program TUBATEST allows the functions available via the Com-plete Batch interface to
be tested individually.

How to use TUBATEST

Control Card Input

How to use TUBATEST
Sample job control can be found in the Com-plete distribution source library in member JCLTUBAT, and
looks as follows:

z/OS:

//JOBTUBA JOB.... JOB CARD INFORMATION ..
//*
//* THIS IS A SAMPLE JOB TO RUN THE TUBATEST UTILITY
//* TO PERFORM TEST FUNCTIONS FOR COMPLETE BATCH FUNCTIONS.
//*
//* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
//*
//* 1. INSERT A VALID JOBCARD.
//* 2. CHECK THE STEPLIB DATASET NAMES.
//*
//* NOTE:-
//* THE FOLLOWING ONLY REQUIRED IF YOU REQUIRE TO OVERRIDE ACSTAB
//* OR IF AN ACSTAB MODULE DOES NOT EXIST IN THE USER.LOAD DATASET.
//*
//* 3. CHANGE nnnn AND sss TO THE ACCESS NODE-ID AND ADABAS ROUTER SVC
//* IDENTIFYING THE TARGET SYSTEM.
//*
//BATCH PROC
//BATCH EXEC PGM=TUBATEST
//STEPLIB DD DSN=COM.LOAD,DISP=SHR
// DD DSN=COM.USER.LOAD,DISP=SHR <- FOR ACSTAB
// DD DSN=ADABAS.LOAD,DISP=SHR <- FOR ADALNK
//SYSPRINT DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//*COMBTCH DD DSN=NODEnnnn.SVCsss,DISP=(NEW,DELETE),UNIT=SYSDA,
//* SPACE=(TRK,(1,0,0))
// PEND
//T1 EXEC BATCH
//BATCH.SYSIN DD *
 < control cards >
/*

VSE:

* $$ JOB JNM=JOBTUBA,DISP=D,CLASS=0
* $$ LST DISP=D,CLASS=A
//JOBTUBATEST JOB.... JOB CARD INFORMATION ..
/*
/* THIS IS A SAMPLE JOB TO RUN THE TUBATEST UTILITY
/* TO PERFORM TEST FUNCTIONS FOR COMPLETE BATCH FUNCTIONS.
/*

315

TUBATEST - Batch Interface Test ProgramSystem Programming

/* THE FOLLOWING CHANGES HAVE TO BE PERFORMED BEFORE RUNNING THIS JOB:-
/*
/* 1. INSERT A VALID JOBCARD.
/* 2. CHECK THE LIBDEF STATEMENTS.
/*
/* NOTE:-
/* THE FOLLOWING ONLY REQUIRED IF YOU REQUIRE TO OVERRIDE ACSTAB
/* OR IF AN ACSTAB MODULE DOES NOT EXIST IN THE USER.LOAD DATASET.
/*
/* 3. CHANGE nnnn AND sss TO THE ACCESS NODE-ID AND ADABAS ROUTER SVC
/* IDENTIFYING THE TARGET SYSTEM.
/*
// LIBDEF *,SEARCH=(SAGLIB.COMUSER,SAGLIB.COMvrs,SAGLIB.ADAvrs)
/* DLBL COMBTCH,’NODEnnnn.SVCsss’
// EXEC PGM=TUBATEST
 GETCHR
/*
/&
* $$ EOJ

Control Card Input
The control statements used as input from the SYSIN file determine which functions TUBATEST
performs.

The control statement cards are free format . However, the whole of an individual statement must fit onto
one 80 character input string.

The general format of the control cards is as follows:

 <function> <operand1> <operand2> <operandn>

The number of operands which can be supplied is dependent on the function to be performed. A
description of the functions and operands supported is given below:

ABEND

The batch job is terminated with a S007 abend, the online transaction in the target Com-plete is
terminated normally.

CAPTUR

GETCHR

EOJ

The online transaction in the target Com-plete is terminated normally, the batch job continues,
and if other input cards are available, the requested functions are performed.

Note:
If the TUBATEST is terminated without issuing an EOJ, the on-line transaction will remain in
session in the target Com-plete until other action is taken (e.g. Autologoff or operator action).

316

System ProgrammingTUBATEST - Batch Interface Test Program

MESGSW <destination> <message text>

Default destination is VIRTP1. Only one destination can be specified. Text length is 80 bytes.
Default text is blanks. Message class is always 1.

PSOPEN <destination>

Default destination is VIRTP1. Only one destination can be specified. Listname is always
ZUBATEST Form is always blanks. Length is always 81.

PSPUT <printout text>

Text length is 80 bytes. Carriage control is ’ ’.

PSCLOS

RJE <option> <jcl card text>

Use option H for hold, any other value will release the JCL to the internal reader.

SDOPEN <SD file name>

Default SD filename is ZUBATEST Tibname is always SHR. Number of records is 100. Record
length is always 6 Kbytes.

SDCLOS

SD filename is ZUBATEST. Tibname is always SHR.

SDDEL

SD filename is ZUBATEST. Tibname is always SHR.

SDWRT <record text>

SD filename is ZUBATEST. Tibname is always SHR. The SD file is written sequentially.

SDREAD

SD filename is ZUBATEST. Tibname is always SHR. The SD file is read sequentially from the
beginning.

After calling the Batch function TUBATEST will, where appropriate, print a display of any
relevant control blocks and/or data areas and also display the response code returned from the
batch interface routine.

317

TUBATEST - Batch Interface Test ProgramSystem Programming

TUDUMP - Dump Print Utility Program
The batch utility program TUDUMP provides the means to obtain hard copy printouts of dump entries in
the online dump file of the COMSD data set. Sample execution job control is given in the Com-plete
distribution source library in member JCLTUDUM.

When an online program abnormally terminates, it generates a dump entry in the online dump file of the
COMSD data set. These dump entries may be reviewed interactively by use of the utility program
UDUMP. To obtain a printout of one or more specific dump entries, execute the batch program
TUDUMP, or use the PRINT option of UDUMP.

How to Use TUDUMP

Parameter Input

TUDUMP Conventions

How to Use TUDUMP
The job control required to execute program TUDUMP is illustrated below:

//TUDUMP JOB ... job-card information ...
//TUDUMP EXEC PGM=TUDUMP,REGION=512K,
// PARM=’D=mmdd1-mmdd2,I=tid,N=nn1-nn2,P=xxxxxx,L=nn,
// T=hhmmss1-hhmmss2,SHORT’
//STEPLIB DD DSN=COM.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=X
//SYSUDUMP DD SYSOUT=X
//COMSD DD DSN=COM.SD,DISP=SHR

* $$ JOB JNM=TUDUMP,DISP=D,CLASS=? POWER JOB CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB TUDUMP JOB CARD INFORMATION
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs <---- Note 1
// DLBL COMCAT,’????????’,,VSAM <---- Note 2
// DLBL COMSD,’COM.VSAM.SDFILE’,,VSAM,CAT=COMCAT
// EXEC TUDUMP,SIZE=AUTO,PARM=’D=mmdd1-mmdd2,I=tid,N=nn1-nn2, *
 P=xxxxxx,L=nn,T=hhmmss1-hhmmss2,SHORT,
/*
/&
* $$ EOJ

1. vrs in these cases relates to the Version, Release and SM level of the Com-plete being installed.

2. Change ???????? to the required catalog file name.

Descriptions of the DD/DLBL statements used in the preceding job control are given in the table in the
next section.

318

System ProgrammingTUDUMP - Dump Print Utility Program

Parameter Input
The specific dump entry in the online dump file for which a printout is desired is identified to TUDUMP
via parameter information. The format of the parameter information is:

D=mmdd1-mmdd2,I=tid,L=nn,N=nn1-nn2,P=xxxxxx,T=hhmmss1-hhmmss2,
SHORT

All parameters are optional, as is their sequence. No parameter input means print the entire dump file.

The arguments are:

D=mmdd1-mmdd2Default: D=0101-1231

 Specifies a range (mmdd1 through mmdd2) of the date a dump entry
was generated. The date is the date as it appears in the UDUMP ALL
display. Note that mmdd1 and mmdd2 are three- to four-digit numbers
in the form month (one- to two-digits), day (two digits).

I=tid Default: I=ALL

 Specifies the tid of the terminal causing the dump entry to be
generated. Note that tid is a one- to three-digit number.

LINECNT=nn Default: L=55

 Specifies the number of lines to be printed on each page of output.
Note that nn must be between 1 and 99.

N=nn1-nn2 Default: N=001-032

 Specifies the number range (nn1 through nn2) of the dumps as they
exist in the online dump file. Either a range or a specific dump number
may be specified.

P=xxxxxx Default: P=ALL

 Specifies the name of the online program that abnormally terminated,
causing the dump entry to be generated. The name xxxxxx is the name
of the program as it appears in the UDUMP ALL display. To print all
programs, specify ALL. To print only programs starting with a "U",
specify UTI. To print all programs without "U" in the first position of
their name, specify NOUTI.

T=hhmmss1- Default: T=000000-235959hhmmss2

 Specifies a range (hhmmss1 through hhmmss2) of time when a dump
entry has been generated. The time is the time as it appears in the
UDUMP ALL display. Note that hhmmss1 and hhmmss2 are five- to
six-digit numbers in the form hour (one- to two-digits), minutes (two
digits), seconds (two digits).

SHORT Indicates that only the regs page(s) is to be printed.

The following table summarizes the TUDUMP DD/DLBL names.

319

TUDUMP - Dump Print Utility ProgramSystem Programming

DD/DLBL Description

SYSPRINT/SYSLSTOutput file for error messages and for generating the printout of the
dump z/OS Default DCB: RECFM=FA, LRECL=133,
BLKSIZE=133
VSE DEVADDR=SYSLST.

COMSD SD library
z/OS Default DCB: None.

TUDUMP Conventions
The following table summarizes the TUDUMP coding conventions.

Feature Convention

SYSIN/SYSIPT None

PARM/SYSPARM Format:
"D=mmdd1-mmdd2,I=tid,L=nn,N=nn1-nn2,
P=xxxxxx,T=hhmmss1-hhmmss2,SHORT"

 D=mmdd1-mmdd2 Range of date

I=tid Terminal ID

L=nn Number of lines per page (1 to 99)

N=nn1-nn2 Range of online dump numbers

P=xxxxxx Program name

T=hhmmss1-hhmmss2 Range of time

SHORT Indicator: print regs page(s) only

User Exits TUDUEX1

Return Codes 00 Normal completion

04 Dump not found

320

System ProgrammingTUDUMP - Dump Print Utility Program

TUFILE - File Status (ONLN/BTCH)
Switching Facility (z/OS only)
TUFILE enables you to switch the status of a user file in a currently running Com-plete from ONLN to
BTCH or vice versa. Please refer to the description of online utility UUTIL FM for details about switching
a file’s status.

How to Use TUFILE

Parameter Input

Condition Codes / Return Codes

How to Use TUFILE
TUFILE can be invoked in two different ways:

Directly as a BATCH job step using JCL illustrated in sample source library member JCLTUFIL.

Load and call TUFILE from any other BATCH program. In this case, the calling program must
provide parameters in the same format as the operating system does provide them to a program called
from a JCL EXEC statement: Register 1 contains the address of a fullword which, in turn, contains
the address of a length halfword. This halfword contains the length of the parameter string which is
located immediately following this halfword:

R1 contains address of APARM

APARM DC - A(PARM)

PARM DC - H’length’DC - CL(length)’parameters’

TUFILE is serially reusable, so even if you call it multiple times, it needs to be loaded only once.

Parameter Input
TUFILE expects 3 parameters, which must be separated by commas:

The name of the target Com-plete as defined in your ACSTAB (DEST= parameter of an
ACSTABLE statement). If you omit this parameter (if the parameter string starts with a comma), the
standard rules for defining the target Com-plete take effect as described in the description of Batch.

The desired file status, ONLN or BTCH;

The DD name of the file.

Example:

321

TUFILE - File Status (ONLN/BTCH) Switching Facility (z/OS only)System Programming

PARM=’COMPLETE,BTCH,MYFILE1’

Condition Codes / Return Codes

0 Function executed succesfully.

4 Connected to Com-plete, but function failed.

8 An error occurred while connecting to Com-plete.

16 Parameter(s) invalid or missing.

If your job contains a SYSPRINT DD statement, all messages recieved from Com-plete will be logged to
SYSPRINT.

322

System ProgrammingTUFILE - File Status (ONLN/BTCH) Switching Facility (z/OS only)

TULIB - Program Catalog Maintenance
Utility
The purpose of batch utility program TULIB is to enable mass sequential invocation of ULIB commands.
It enables three of the functions of the online utility program ULIB to be performed in a batch
environment:

CAT

DEL

REF

Note that the remaining functions of ULIB are not supported by TULIB. Sample execution job control is
given in the distribution Com-plete source library in member JCLTULIB.

Note:
To use this utility, Com-plete must be active with sysparm SUBSYS-ACTIVATE=ACCESS and defined
in ACSTAB.

How to Use TULIB

Control Card Input

TULIB Conventions

How to Use TULIB
The job control required to execute program TULIB is illustrated below:

//TULIB JOB job-card information
//TULIB EXEC PGM=TULIB
//STEPLIB DD DSN=COM.USER.LOAD,DISP=SHR
// DD DSN=COM.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DEL,PGMA
CAT,PGMA,RG=24K,TG=THREADSX,PG=TASKY
/*

* $$ JOB JNM=TULIB,DISP=D,CLASS=? POWER JOB CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB TULIB JOB CARD INFORMATION
/*
/* ==
/*
/* Com-plete MUST BE ACTIVE WITH ACCESS SUPPORT
/*
/* ==
/*
// LIBDEF PHASE,SEARCH=(SAGLIB.COMUSER, /* load ACSTAB */ *
 SAGLIB.COMvrs, <---- Note 1 *

323

TULIB - Program Catalog Maintenance UtilitySystem Programming

 SAGLIB.CADAvrs),temp <---- Note 1
// EXEC TULIB,SIZE=AUTO
CAT,DEMO,RG=8K
DEL,RMPGMA
/*
/&
* $$ EOJ

vrs in these cases relates to the Version, Release and SM level of the Com-plete being installed.

Descriptions of the DD/DLBL statements used in the preceding job control are given on the next page.

Control Card Input
The control statements used as input by the SYSIN/SYSIPT file define which function to perform and the
programs on which to perform that function.

The format of the control cards used as input to TULIB is exactly the same as for the ULIB, CAT, and
DEL commands:

Column 1 CAT, DEL or REF

Column 5 Name of program followed by the desired information as described in
the Com-plete Utilities documentation

Note that control statements may not be continued, and that there must be only one function specified per
control statement. An unlimited number of control statements may be used.

The following table summarizes the TULIB DD/DLBL names.

DD/DLBL Description

SYSPRINT/SYSLST Listing file
z/OS Default DCB: RECFM=FBA, LRECL=133
VSE DEVADDR=SYSLST

SYSIN/SYSIPT Sequential input file for control statements
z/OS Default DCB: None.
VSE DEVADDR=SYSIPT

TULIB Conventions
The following table summarizes the TULIB coding conventions.

324

System ProgrammingTULIB - Program Catalog Maintenance Utility

Feature Convention

SYSIN/SYSIPT Sequential input statements:
Column 1: CAT, DEL or REF
Column 5: Program name, parameters

PARM SYSPARM None

User Exits None

Return Codes 00 Normal completion.

04 One or more catalog requests failed

08 Node/SVC wrong

16 Error in Access-Interface

325

TULIB - Program Catalog Maintenance UtilitySystem Programming

TUMSUTIL - Printout Spool Files Print
Utility, COMSPL, Backup And Restore
Utility
The batch utility TUMSUTIL provides the following facilities:

Print of selected printout spool files on the system printer;

Backup of selected printout spool files onto any sequential data set BACKUP;

Restore of selected printout spool files from the BACKUP data set into COMSPL;

List and additional information of selected printout spool files in the COMSPL on the system printer;

List and additional information of selected printout spool files in the BACKUP data set on the system
printer.

Initialization of COMSPL.

TUMSUTIL can be run in parallel with the Com-plete nucleus for print, backup and list requests (for the
restore request there is a restriction). Any printout spool file which is stored in COMSPL according to the
data organization of the COMSPL may be processed.

Any printout spool file may be selected using the SYSIN control file. However, in the case of print,
backup and restore requests, the request will be terminated for the erroneous part of the printout spool file.

Additional Details of TUMSUTIL Facilities

Parameter Input

How To Use TUMSUTIL

Control Card Input

Description of the Options in Detail

Examples

TUMSUTIL conventions

Additional Details of TUMSUTIL Facilities
The list directories on the COMSPL and BACKUP data sets provide the following information:

List name

Form

326

System ProgrammingTUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

Disposition

Account of lines

Account of copies

Sender (user ID)

Output formatting routine (logical driver)

Printer’s logical name or its terminal ID

Date printout was created

Time printout was created

Print of printout spool files from COMSPL: each request is separated by a header page for easy
identification of the beginning and end of each printout spool file being printed.

Parameter Input
If the header is not to be printed, PARM="NHDR" must be specified in the TUMSUTIL EXEC statement.

With PARM="SCAN", it is possible to check the syntax of the SYSIN control statements against the
syntax description of this document for all requests.

The following table summarizes the TUMSUTIL DD/DLBL/TLBL names:

Note:
It is not possible to restore a backup of a spool file with a record size of "n" to a spool dataset with a
record size of less than "n".

327

TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore UtilitySystem Programming

DD/DLBL/TLBL Description

SYSLST Listing file for the printing of the TUMSUTIL control statements and
messages
z/OS default DCB: None
VSE DEVADDR=SYSLST

SYSPRINT/SYS003Printer file for the printing of the printout spool files
z/OS default DCB: RECFM=FBA,LRECL=133
VSE DEVADDR=SYS003

COMSPL COMSPL file
z/OS default DCB: none

SYSIN/SYSIPT Sequential file used for the TUMSUTIL control statements
z/OS default DCB: LRECL=80
VSE DEVADDR=SYSIPT

BACKUP Sequential file onto which printout spool files are backed-up.
z/OS default DCB: LRECL=n*,RECFM=FB
VSE DEVADDR=SYS002,RECSIZE=n*

RESTORE Sequential file from which printout spool files are restored.
z/OS default DCB: LRECL=n*
VSE DEVADDR=SYS001,RECSIZE=n*

* "n" represents the record size of the Com-plete spool data set +4.

How To Use TUMSUTIL
The job control language required to execute TUMSUTIL is illustrated below:

//TUMSUTIL JOB ...job card information...
//TUMSUTIL EXEC PGM=TUMSUTIL,
// PARM=’SCAN,NHDR’
//STEPLIB DD DSN=COM.LOAD,DISP=SHR
//SYSLST DD SYSOUT=A,DCB(BLKSIZE=133)
//COMSPL DD DSN=COM.SPOOL,DISP=SHR
//BACKUP DD DSN=...,DCB=(LRECL=n)
//RESTORE DD DSN=...,DCB=(LRECL=n)
//SYSIN DD *
 control card input
/*
 (TUMSUTIL Sample VSE Job Control)
* $$ JOB JNM=TUMSUTIL,CLASS=...,DISP=D,LDEST=(,...),PDEST=(,...)
* $$ LST CLASS=...,DISP=D
// JOB TUMSUTIL PO UTILITY
// OPTION SYSPARM=’PARM’
*
* *** TLBL or DLBL for RESTORE
*
// DLBL RESTORE,’...’,0,SD
// EXTENT SYS001,...,1,0,...,...
// ASSGN SYS001,DISK,VOL=...,SHR ASSIGN FOR RESTORE
*
// TLBL RESTORE,’...’
// ASSGN SYS001,TAPE,... ASSIGN FOR RESTORE
*

328

System ProgrammingTUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

* *** TLBL or DLBL for BACKUP
*
// DLBL BACKUP,’...’,0,SD
// EXTENT SYS002,...,1,0,...,...
// ASSGN SYS002,DISK,VOL=...,SHR ASSIGN FOR BACKUP
*
// TLBL BACKUP,’...’
// ASSGN SYS002,TAPE,... ASSIGN FOR BACKUP
*
* *** ASSGN statement for SYSPRINT
* (second printer of the partition or SYSLST)
// ASSGN SYS003,... ASSIGN FOR SYSPRINT
* $$ LST DISP=D,CLASS=A,LST=SYS003
*
* *** DLBL for Com-plete SPOOL DATASET
* (see Com-plete installation specifications)
// DLBL COMSPL,’...’,,VSAM
*
*
// EXEC TUMSUTIL,PARM=’...’
 control card input
/*
/*
/&
* $$ EOJ

A description of the DD/DLBL/TLBL statements is given in the preceding section Parameter Input for
TUMSUTIL .

Control Card Input
The control card statements used as input from the SYSIN file select the printout spool files to be
processed.

Control statement input is required.

The format of each control statement is:

Command, option(s)

Six commands can be used on the control cards to generate the desired request:

INIT to initialize the Com-plete spool data set.

PRINT to print the printout spool files in the COMSPL that meet the selection
criteria specified by the options.

LDIR to print a list of the printout spool files in the COMSPL that meet the
selection criteria specified by the options.

B to backup the printout spool files in the COMSPL that meet the
selection criteria specified by the options.

LBKP to print a list of the printout spool files in the BACKUP data set that
meet the selection criteria specified by the options.

R to restore the printout spool files in the BACKUP data set that meet the
selection criteria specified by the options.

329

TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore UtilitySystem Programming

Note:
When Com-plete is active without batch support, restore is impossible.

The INIT command is used to initialize a Com-plete spool data set. No options may be supplied with the
INIT command, instead the number of records to be written is specified via the RECS keyword on the
INIT statement itself for example:

INIT RECS=1500

The RECS keyword should specify the total number of records which can be written to the dataset, this is
given by (HI-ALLOC-RBA / CISIZE), these values can be obtained from an IDCAMS list of message
dataset after allocation.

During initialization, TUMSUTIL will set all records in the message dataset to zero and write a control
record containing information about the dataset. This information contains, for instance, the maximum
number of printouts which can be contained in the dataset. This is currently set to be the number of
records in the dataset divided by 8.

If it is required to change this value then the MAXPO parameter in the Com-plete sysparms must be
changed to the required value and a Com-plete PO and MSG COLD-START performed.

The options for other commands may be specified in any combination except that a list number never
appears in a list backup request (see description of LNUM option); also there is a restriction on the date
and time option (see description of DAT1/2 and TIM1/2 options).

At least one option must be specified.

The format of the options specified in the TUMSUTIL control statements is illustrated below (default
values are underlined):

COMP MULTI, SINGLE

LNAM cccccccc (8 characters)

LNUM nnnnnnnn (8 digits)

FORM cccc (4 characters)

DISP D,L,H, <blank>

SUID cccccccc (8 characters)

LDRV cccccccc (8 characters)

DEST cccccccc (8 characters)

DAT1 dd.mm.yy (European), "from" date

mm/dd/yy (American), "to" date

DAT2 dd.mm.yy (European), "from" date

mm/dd/yy (American), "to" date

Tim1 hh:mm, "from" time

Tim2 hh:mm, "to" time

330

System ProgrammingTUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

Description of the Options in Detail
COMP=MULTI, SINGLE

This option is not used for LBKP requests.
"MULTI" indicates that Com-plete is active and "SINGLE" that Com-plete is not active.
Note that if Com-plete is active and has batch support, COMP="MULTI" is mandatory.

LNAM=cccccccc

Selects a specific printout spool file with this list name.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "cccccccc" is the 1 - 8 byte alphanumerical name that the user assigned to the printout
spool file when it was created.

LNUM=nnnnnnnn

Selects a specific printout spool file with this list number.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified. LNUM is never specified on a list backup request.
Note that "nnnnnnnn" is the 1 - 8 digit number that Com-plete assigned to the printout spool file
when it was created.

FORM=cccc

Selects a specific printout spool file with this form name.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "cccc" is a 1 - 4 byte alphanumerical form name.

DISP=D,L,H, <blank>

Selects a specific printout spool file with this disposition.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "D,L,H,<blank>" is a 1 byte disposition status, where:

D delete and print

L print and keep

H hold

<blank> not specified

SUID=cccccccc

Selects a specific printout spool file with this sender(ID).
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "cccccccc" is the 1 - 8 byte alphanumerical name that is the Com-plete user ID.

331

TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore UtilitySystem Programming

LDRV=cccccccc

Selects a specific printout spool file with this output formatting routine.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "cccccccc" is the 1 - 8 byte alphanumerical name of the output formatting routine the
user assigned to the printout spool file when it was created.

DEST=cccccccc

Selects a specific printout spool file with this logical printer name or terminal ID.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "cccccccc" is the 1 - 8 byte alphanumerical logical printer name to which the user sent
the printout spool file when it was created.

DAT1=dd.mm.yy,mm/dd/yy

Selects a specific printout spool file with exactly this creation date.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "dd.mm.yy" (or "mm/dd/yy") is the 8 byte alphanumerical date assigned to the
printout spool file when it was created.

DAT2=dd.mm.yy,mm/dd/yy

Selects a specific printout spool file with exactly this creation date.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "dd.mm.yy" (or "mm/dd/yy") is the 8 byte alphanumerical date assigned to the
printout spool file when it was created.

If both date options are specified, they no longer describe these dates explicitly: they describe a
date interval with DAT1 =/< DAT2.

TIM1=hh:mm

Selects a specific printout spool file with exactly this creation time.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "hh:mm" is the 5 byte time value assigned to the printout spool file when it was
created.

TIM2=hh:mm

Selects a specific printout spool file with exactly this creation time.
If this option is omitted, the printout spool file data will be scanned for records meeting the
other selection criteria specified.
Note that "hh:mm" is the 5 byte time value assigned to the printout spool file when it was
created.

332

System ProgrammingTUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore Utility

If both time options are specified, they no longer specify exact times: they describe a time
interval with TIM1 =/< TIM2.

Examples
The following examples illustrate how the control statements can be used to select the desired options
(printout spool files). To print a specific printout spool file, you may specify:

PRINT,LNAM=NG1

To backup all printout spool files that were sent to printer ="Hugo" on February 29, 1988, specify:

B,DEST=HUGO,DAT1=29.02.88
or:
B,DEST=HUGO,DAT1=02/29/88

To restore all printout spool files that were sent from user ID ="Emma" in the period from January 4, 1988
to February 3, 1988, you may specify:

R,SUID=EMMA,DAT1=04.01.88,DAT2=03.02.88

You may also write the control statements in more than one line:

 R,
 SUID=EMMA,
 DAT1=04.01.88,
DAT2=03.02.88.

TUMSUTIL conventions
The following table summarizes the TUMSUTIL coding conventions.

Feature Convention

SYSIN/SYSIPT Control statements in the format:

command,option(s)

PARM/SYSPARM Format: "SCAN","NHDR"

 SCAN only perform syntax checking

NHDR no header requested (PRINT request only)

User Exits None

Return Codes 00 Normal completion

08 No core available, I/O error on data set

333

TUMSUTIL - Printout Spool Files Print Utility, COMSPL, Backup And Restore UtilitySystem Programming

TUSACAPT - Capture File Initialization
Utility
When the Capture files have first been allocated or they have been filled and emptied again, this utility
must be used to reinitialize them for use. It simply allocates the number of specified records in the actual
Capture data set(s) specified.

TUSACAPT is described under the following headings:

How To Use TUSACAPT

TUSACAPT conventions

How To Use TUSACAPT
The following example shows the job control required to initialize capture datasets.

//TUSACAPT JOB job-card information
//INIT EXEC PGM=TUSACAPT
//STEPLIB DD DSN=COM.LOAD,DISP=SHR
//CAPTURn DD DSN=COM.CAPTURn,DISP=SHR

* $$ JOB JNM=TUSACAPT,CLASS=A,DISP=D
* $$ LST CLASS=A,DISP=D
// JOB TUSACAPT
// OPTION PARTDUMP
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs
// ASSGN SYS0001,DISK,VOL=......,SHR Assign for Capture dataset
// DLBL CAPTURn,’COM.CAPTURn’
// EXEC TUSACAPT
/*
/&

DD/DLBL Description

CAPTURn One or more Capture data sets to be initialised.

TUSACAPT conventions
The following table summarizes the TUSACAPT coding conventions.

Feature Convention

User exits None

Return Codes 00 Normal Completion

334

System ProgrammingTUSACAPT - Capture File Initialization Utility

TUSDUTIL -SD File Maintenance Utility
The batch utility TUSDUTIL provides the following facilities:

Initialization of VSAM COMSD dataset;

Backup all SD files with optional deletion of SD files that have not been opened in the last n days;

List contents of backup dataset;

Restore SD files (selective or all) from backup dataset to COMSD data set.

TUSDUTIL is described under the following headings:

Initialization of the Com-plete SD Data Set

Backup and Restoration of SD Files

Initialization of the Com-plete SD Data Set
Sample execution job control for allocation and initialization of this data set is given in the distribution
Com-plete source library in member JCLINSTE. For more information on structure and allocation of the
SD dataset, refer to Com-plete Files and Associated User Files and to The Com-plete Task Structure.

The job control required to allocate and initialize a Com-plete SD data set is illustrated below:

z/OS:

//TUSDINIT JOB ... job-card information ...
//ALLOC EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DELETE COM.SD
 DEFINE CLUSTER -
 (NAME (COM.SD) -
 NUMBERED -
 SHAREOPTIONS (2) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.SD.DATA) -
 CISZ (c) -
 RECORDSIZE (r r) -
 VOLUMES (vvvvvv) -
 CYLINDERS (ss))
/*
//INIT EXEC PGM=TUSDUTIL,
// PARM=’INIT,RECORDS=x,SDFILES=y,DMPSPAC=z’
//*
//STEPLIB DD DSN=COM.LOAD,DISP=SHR
//COMSD DD DSN=COM.SD,DISP=OLD
//SYSPRINT DD SYSOUT=A

VSE:

335

TUSDUTIL -SD File Maintenance UtilitySystem Programming

* $$ JOB JNM=TUSDINIT,DISP=D,CLASS=? POWER JOB CARD INFORMATION
 * $$ LST DISP=D,CLASS=A
 // JOB TUSDINIT JOB CARD INFORMATION
 // EXEC IDCAMS,SIZE=AUTO
 /* DELETE (COM.SD) CLUSTER - */
 /* CATALOG (catalog-file-name) */
 /* */
 DEFINE CLUSTER -
 (NAME (COM.SD) -
 NUMBERED -
 SHAREOPTIONS (2) -
 SPEED REUSE) -
 DATA -
 (NAME (COM.SD.DATA) -
 CISZ (c) -
 RECORDSIZE (r r) -
 VOLUMES (vvvvvv) -
 CYLINDERS (ss)) -
 CATALOG (catalog-file-name)
/*
// LIBDEF PHASE,SEARCH=SAGLIB.COMvrs,TEMP <---- Note 1
// DLBL COMSD,’COM.SD’,,VSAM,CAT=COMCAT
// DLBL COMCAT,’catalog-file-name’,,VSAM
/*
// EXEC TUSDUTIL,SIZE=AUTO,PARM=’INIT,RECORDS=x,SDFILES=y,DMPSPAC=z’
/*
/&
* $$ EOJ

1. vrs in these cases relates to the Version, Release and SM level of the Com-plete being
installed.

Parameters:

CISZ (c) VSAM control interval size. This value influences utilization rate
of disk space and the size of buffers allocated by Com-plete for
access to the data set.

RECORDSIZE (r r) VSAM record size (must be specified twice). Minimum value is
512. This is the "blocksize", into which Com-plete will block or
split the logical records of all SD files. It should be as high as
possible, must be greater than half CI size and must not exceed
CISZ-12.

RECORDS=x Number of VSAM records that are to be initialized. This
parameter is useful only if you want to allocate a data set of more
than 1 extent.Default: Maximum number of records that can be
written to the extent(s) currently allocated for the data set.

SDFILES=y Defines the size of the SD file directory (maximum number of SD
files).Default: 500

DMPSPAC=z Specifies the amount of space in Mbytes, that are to be assigned
for thread dumps. The rest of the dataset will be used for SD
files.Default: 50% of the dataset100% if SDFILES=0 is specified
explicitly.

336

System ProgrammingTUSDUTIL -SD File Maintenance Utility

Backup and Restoration of SD Files
Contents of the Com-plete SD data set (including online dumps) can be backed up and restored using
standard VSAM utilities. This is possible only when Com-plete is not active, and no selective backup and
restoration of SD files is possible using these features.

Experience shows that, conditioned by the work file nature of most SD files, in time directory and SD file
space of the data set become exhausted. This is mostly caused by application programs not deleting their
work files when they become obsolete. To avoid abnormal program terminations caused by exhausted SD
file directory or space, it is recommendet periodically to run a BATCH backup job using the option to
delete all SD files that have not been opened within a given number of days.

The job control required for backup and restoration of SD files is illustrated below:

z/OS:

//TUSDUTIL JOB ... job-card information ...
// EXEC PGM=TUSDUTIL,PARM=’parm’
//STEPLIB DD DSN=COM.USER.LOAD,DISP=SHR
// DD DSN=COM.LOAD,DISP=SHR
// DD DSN=ADABAS.LOAD,DISP=SHR
//BACKUP DD DSN=COM.SD.BACKUP,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
control card input for selective restoration of SD files
/*

VSE:

* $$ JOB JNM=TUSDUTIL,DISP=D,CLASS=? POWER JOB CARD INFORMATION
* $$ LST DISP=D,CLASS=A
// JOB TUSDUTIL JOB CARD INFORMATION
/*
/* ==
/*
/* Com-plete MUST BE ACTIVE WITH ACCESS SUPPORT
/*
/* ==
/*
// LIBDEF PHASE,SEARCH=(SAGLIB.COMUSER, /* load ACSTAB */ *
 SAGLIB.COMvrs, <---- Note 1 *
 SAGLIB.CADAvrs),temp <---- Note 1
/*
/* ==
/* DLBL and EXTENT information for backup on DISK
/* ==
// DLBL BACKUP,’COM.SC.BACKUP’,10,SD
// EXTENT SYS002,vvvvvv,1,0,tttttt,nnnn <---- Note 2
/*
/* ==
/* TLBL information for backup on TAPE
/* ==
/* TLBL BACKUP,’COM.SC.BACKUP’
/* ASSGN SYS002,cuu <---- Note 3
/*
/* ==
/* DLBL and EXTENT information for restore from DISK
/* ==
// DLBL RESTORE,’COM.SC.BACKUP’,10,SD

337

TUSDUTIL -SD File Maintenance UtilitySystem Programming

// EXTENT SYS001,vvvvvv,1,0,tttttt,nnnn <---- Note 2
/*
/* ==
/* TLBL information for restore from TAPE
/* ==
/* TLBL RESTORE,’COM.SC.BACKUP’
// ASSGN SYS001,cuu <---- Note 3
/*
// EXEC TUSDUTIL,SIZE=AUTO,PARM=’parm’
control card input for selective restoration of SD files
/*
/&
 * $$ EOJ

1. vrs in these cases relates to the Version, Release and SM level of the Com-plete being
installed.

2. Change vvvvvv to the required VOLSER; change tttttt to the required TRACK and change
nnnn to the required NUMBER of TRACKS.

3. Change cuu to the required TAPE unit address.

Parameter Values:

BACKUP All SD files are written to the sequential data set defined by the DD /
DLBL or TLBL statement BACKUP.

,DELAGE=n (Allowed only if BACKUP is specified as first parameter) All SD
files that have not been opened in the last n days are deleted from
COMSD data set after they have been written to BACKUP.

RESTORE SD files are restored from the sequential data set defined by the DD /
DLBL or TLBL statement BACKUP. If a SYSIN DD (SYSIPT)
statement is specified and SYSIN is not empty, selective restore will
be performed.Default: All SD files are restored.

Note:
SD files existing in the COMSD data set are never overridden.

LIST Contents of the dataset defined by DD / DLBL or TLBL statement
BACKUP are listed on SYSPRIN/SYSLIST.

DD / DLBL or TLBL Statements:

338

System ProgrammingTUSDUTIL -SD File Maintenance Utility

BACKUP With PARM option BACKUP: Sequential output data set to which
the SD files are copied.Default DCB parameters:
RECFM=VB,BLKSIZE=15000

RESTORE With PARM option RESTORE / LIST:Sequential data set
containing the unloaded SD files written by TUSDUTIL or by the
TUSRSDCM utility of previous versions of Com-plete.

SYSPRINT/SYSLIST Listing file

SYSIN/SYSIPT Contains control cards for selective restoration of SD files.The
format of the control cards is as follows:

Columns
1-8

The SD file name (last two bytes must be blanks
in Com-plete 4.5).

Columns
9-13

The TID number of the SD file. Must be en-
tered as a five-digit number with leading zeros, if
necessary. If the SD file was created with SHR,
then ’SHR’ should be entered beginning in
column nine.

If more than one SD file is being selectively restored, one control
statement must exist for each SD file. In addition, the control
statements must be arranged in sequential, ascending order, by file
name and TID number.

Sample execution job control for SD file backup and restoration is given in the distribution Com-plete
source library in member JCLTUSDU.

Return Codes

0 Function executed successfully.

4 Check output for further error information

16 Parameter error.

If your job contains a SYSPRINT DD statement, all messages recieved from Com-plete will be logged to
SYSPRINT.

Note:
Com-plete must be active with sysparm SUBSYS-ACTIVATE=ACCESS and defined in ACSTAB when
this utility is used with PARM options BACKUP or RESTORE.

For detailed information on ACCESS, refer to Software Interfaces and to the Com-plete Installation
documentation.

339

TUSDUTIL -SD File Maintenance UtilitySystem Programming

Miscellaneous Tables and Control Blocks
This part of the Com-plete System Programming documentation presents tables and control blocks for
your reference.

This information is organized under the following headings:

ULOG Info Table

ULSODDT1 - SYSPRINT Routing Table

ULPGMTAB - The Permanent Program Table

Terminal Device Type Codes

UED Edit Control Block

UED Pseudo-Open Control Block

UEDTB1 Entry DSECT

UPDTB1 Information Control Block

3101 Terminal Support

VTAM Logmodes

340

System ProgrammingMiscellaneous Tables and Control Blocks

ULOG Info Table
UITAREA DS OD

UITCODE DC H’0’
Function Code; corresponds to a "ULGnnnn" message,
where nnnn=function code (See the Com-plete Messages
and Codes documentation.)

UITCANC DC C’ ’ Reserved

UITWRTM* DC C’ ’
Write logon screen:
N - no map wanted

UITPWDR* DC C’ ’
Password required?:
N - no

UITNBROD* DC C’ ’
Broadcast message:
non-blank - no broadcast

UITUID DC CL8’ ’ Entered User ID

UITPWD DC CL12’ ’ Entered password

UITNPWD DC CL12’ ’ Entered new password

UITGRP DC CL8’ ’ Entered groupname

UITCMOD* DC CL8’ ’ Com-plete User ID model

UITTID DC H’0’ Com-plete TID number

UITACC* DC CL12’ ’ Account number, from User ID block

UITAC* DC H’0’ Authorization code

UITCTRL* DC C’ ’
Control status:
C - control
N - non-control

UITPRTY* DC C’ ’ TIB priority; possible values: C’0’ to C’3’

UITUSER* DC F’0’ User field; used by ULOGX1 and ULSRPSFS

UITNEX1 DC H’0’ Number of times ULOGX1 was entered

UITPVNUM DC H’0’
Number of password violations since Com-plete startup
time

UITNAT* DC X’00’ Special flag

UITNATN EQU X’80’ X’80’ - NATURAL UID

UITNATC
EQU

DC
X’40’
X’00’

X’40’ - NO Com-plete UID
Available

UITSMC* DC X’00’ Send Message classes

UITRMC* DC X’00’
Receive Message classes
Rightmost bit class 1
Leftmost bit class 8

341

ULOG Info TableSystem Programming

UITEMSG* DC CL80’ ’
Error message text; contains a "ULGnnnn" message (See
the Com-plete Messages and Codes documentation.)

UITMAPNM* DC CL6’ ’ Map name for ULOG

UITLCAS* DC C’ ’

Upper/lower case
’ ’ - no modification
L - lower case
U - upper case

UITHC* DC CL8’ ’ Hard copy device

UITNDBID* DC X’00’ NATURAL SECURITY File DBID

UITNFNR* DC X’00’ NATURAL SECURITY File FNR

UITPASS DC A(0)
Address of CCPASS describing optional ULOG PASS
parameters.

UITL EQU *-UITAREA Length of CCUIT

The Com-plete ULOG Info Table (CCUIT) is created by the ULOG utility program before control is
passed to the user-written exit routine ULOGX1. The information in this control block is used to initialize
the user ID accounting block.

The ULOGX1 user-written exit may modify any of the fields marked with an "*" below in this control
block.

342

System ProgrammingULOG Info Table

ULSODDT1 - SYSPRINT Routing Table
This chapter describes the SYSPRINT capture table, which defines the DD/DLBL names for sequential
SYSOUT type files.

This chapter covers the following topics:

Overview

How to Code ULSODDT1

Overview
ULSODDT1 is a customizable table of DD names of SYSOUT (z/OS) or SYSLST (VSE)-type files.

The purpose of this table is to provide a means of separating output data streams of different programs and
/ or different users directed to the same DD name, and to re-direct these output streams.

For each of the DD names specified in ULSODDT1, Com-plete internally converts every
OPEN-PUT-CLOSE sequence into a PSOPEN-PSPUT-PSCLOSE sequence, creating a separate printout
in Com-plete’s printout spool.

It is possible to define a fixed destination (a printer or a SYSOUT class) for each of the DD names in
ULSODDT1.

If, for any given DD name, no destination is defined in ULSODDT1, then the terminal user’s hardcopy
printer will be used. If the user has no hardcopy printer defined, then the output stream will be directed to
the user’s terminal, being displayed when the CLEAR key is pressed.

Note that some programs may test for the existence of the DD name before attempting an OPEN.

In this case, it may be necessary to add the appropriate DD statements to the Com-plete JCL.

How to Code ULSODDT1
ULSODDT1 is coded as an Assembler language module. It consists of a header and one line per DD
name. Each of these lines consists of the 8-byte DD name, followed by the 8-byte destination. If you

Specify a non-blank destination, the output streams of all users for this DD name will be routed to this
destination, no matter what the users’ hardcopy destinations are.

Software AG recommends that you code your ULSODDT1 exactly as shown in the example or in the
sample member provided in the Com-plete source library.

You can change the DD names and the destinations, add or remove lines between the lines labeled FIRST
and FREE.

343

ULSODDT1 - SYSPRINT Routing TableSystem Programming

Example:
ULSODDT1 CSECT ,
ULSODDT1 AMODE 31
ULSODDT1 RMODE ANY
 DC CL8’ULSODDT1’
 DC A((FREE-FIRST)/16) NUMBER OF DDNAMES
 DC A(0)
FIRST DC CL8’SYSOUT ’,CL8’ ’
 DC CL8’SYSPRINT’,CL8’ ’
 DC CL8’SYSDBOUT’,CL8’ ’
 DC CL8’CEEDUMP ’,CL8’CEEDUMP ’ FOR LE/370
 DC CL8’SOMEDDN ’,CL8’SYSOUT=X’
FREE DC CL8’ ’,CL8’ ’ ZAP ROOM
 END

Note:
The format of ULSODDT1 used in previous versions of Com-plete is also supported further.

344

System ProgrammingULSODDT1 - SYSPRINT Routing Table

ULPGMTAB - The Permanent Program
Table
In many systems, there are programs which must always be active, as they monitor some critical part of
the system. In a TP system, it is sometimes difficult to ensure that a program stays permanently active.
Com-plete provides a mechanism that ensures that a particular user program remains active and if it is not,
Com-plete will reattach it as a user.

This chapter covers the following topics:

Functional Overview

Building ULPGMTAB

Activating ULPGMTAB

Functional Overview
The application program must issue an OS ENQ for a particular major and minor name as soon as it is
started. This ENQ must then be identified in the permanent program table, and Com-plete will check to
see if this ENQ is available every 60 seconds. If the ENQ is available, it indicates that the program is not
active and therefore Com-plete will restart the program whose name is associated with the ENQ in the
table. Note that is the user’s responsibility to ensure that the ENQs are unique within the system and that
the correct program uses the correct ENQ. In general, ENQs with a major name of COMPLETE and/or
ADATPFE are reserved for internal use.

Building ULPGMTAB
The table is built using the CMPGMTAB macro. The syntax is as follows:

CMPPGMT <function>,
PGM=<program>,
ENQARG=<enq list form expansion>

where:

<function>

Possible options:

GENTAB Starts the generation of a table. This must be the first CMPPGMT entry
in the program.

TABEND Ends the generation of a table. This must be the last CMPPGMT entry in
the program. ’ ’ : for an entry in the table.

<program>

345

ULPGMTAB - The Permanent Program TableSystem Programming

is only valid for an entry in the table and is the name of the program to be started should the
ENQ be found to be available.

<Enq list...>

is only valid for an entry in the table and is the address of the list form of the ENQ macro which
is the ENQ that will be used to test whether or not the applicable program is active. This
expansion must be generated as within the permanent program table module.

The ULPGMTAB supplied on the Com-plete distribution source data set is an example which shows how
the Com-plete UTIMRM utility is defined.

Activating ULPGMTAB
To cause the permanent program table to be activated, it must be defined as a resident program. The
module can have any CSECT name, the module name and therefore the resident program name must be
ULPGMTAB.

346

System ProgrammingULPGMTAB - The Permanent Program Table

Terminal Device Type Codes
The terminal device type codes listed in the following figure are used exclusively in the creation of
TIBTAB. The columns abbreviated SS, LL, and LD represent:

Default SS Screen Size, in characters

Default LL Line Length

Default LD Line Depth (number of lines)

The values listed for these items can be changed within the TIBTAB by specifying the keyword
arguments FORMAT, LEN, and LINES when coding the TIB.

347

Terminal Device Type CodesSystem Programming

Terminal Terminal Type SS LL LD

Device Code

BATCH (Indicates that TIB may be used by batch)

TTY TELETYPE - 80 26

TTYD
TELETYPE
(DIAL)

- 80 26

3270 L
IBM 3270
LOCAL

1920 80 24

3270 R
IBM 3270
REMOTE

1920 80 24

3275 R
IBM 3275
REMOTE

1920 80 24

3278 L
IBM 3278
LOCAL

1920 80 24

3278 R
IBM 3278
REMOTE

1920 80 24

3279 L
IBM 3279
LOCAL

2560 80 32

3279 R
IBM 3279
REMOTE

2560 80 32

3284 L
IBM 3284
LOCAL

- 120 20

3284 R
IBM 3284
REMOTE

- 120 20

3286 L
IBM 3286
LOCAL

- 120 20

3286 R
IBM 3286
REMOTE

- 120 20

3287 L
IBM 3287
LOCAL

- 132 18

3287 R
IBM 3287
REMOTE

- 132 18

3288 L
IBM 3288
LOCAL

- 132 18

3288 R
IBM 3288
REMOTE

- 132 18

348

System ProgrammingTerminal Device Type Codes

UED Edit Control Block
The UED edit control block is addressed by the parameter list passed to the user-written exit UUEDEX.
The portion of the edit control block listed here is a partial listing and includes that portion of the edit
control block preceding the GETCHR information area.

Location Length Format Contents

Dec Hex

0 0 16 Binary Com-plete registers 2 through 5.

16 10 4 Binary Address of the command table.

20 14 4 Binary Current command table entry.

24 18 4 Binary Address of the command buffer.

28 1C 4 Binary Buffer address for the communication line.

32 20 4 Binary Buffer address for the repeat command.

36 24 4 Binary Address of the current CMD/operand.

40 28 4 Binary Address of the next command (or 0).

44 2C 4 Binary Address of the next operand (or 0).

48 30 4 Binary Address of the output buffer.

52 34 4 Binary Current position in the output buffer.

56 38 4 Binary Address of the SD buffer.

60 3C 4 Binary Address of the first macro buffer.

64 40 4 Binary Address of the current macro processor save area.

68 44 4 Binary Address of the ’HALT X’ exit routine.

Additional entries in the UED edit control block do exist. They can be obtained by referring to the
expansion of the CMEDTB1 macro.

The terminal device type codes listed in the following figure are used exclusively in the creation of
TIBTAB. The columns abbreviated SS, LL, and LD represent:

SS Screen Size, in characters

LL Line Length

LD Line Depth (number of lines)

The values listed for these items may be changed within the TIBTAB by specifications of the keyword
arguments FORMAT, LEN, and LINES when coding the TIB and LGCB macros.

349

UED Edit Control BlockSystem Programming

Terminal Terminal Type SS LL LD

Device Code

BATCH (Indicates that TIB may be used by batch)

TTY TELETYPE - 80 26

TTYD TELETYPE (DIAL) - 80 26

3270 L IBM 3270 LOCAL 1920 80 24

3270 R IBM 3270 REMOTE 1920 80 24

3275 R IBM 3275 REMOTE 1920 80 24

3279 L IBM 3279 LOCAL 2560 80 32

3279 R IBM 3279 REMOTE 2560 80 32

3284 L IBM 3284 LOCAL - 120 20

3284 R IBM 3284 REMOTE - 120 20

3286 L IBM 3286 LOCAL - 120 20

3286 R IBM 3286 REMOTE - 120 20

3287 L IBM 3287 LOCAL - 132 18

3287 R IBM 3287 REMOTE - 132 18

3288 L IBM 3288 LOCAL - 132 18

3288 R IBM 3288 REMOTE - 132 18

350

System ProgrammingUED Edit Control Block

UED Pseudo-Open Control Block
The UED pseudo-open control block is addressed by the parameter list passed to the user-written exit
UUEDEX. The data in this control block is used to identify the file being edited and to provide additional
information about that file.

Location Length Format Contents

Dec Hex

0 0 44 Character File name

44 2C 8 Character Member name

52 34 6 Character Volume serial number

58 3A 2 Character Two-character library identification

60 3C 4 Binary Address of I/O control blocks

64 40 4 Binary DSCB address

68 44 4 Binary DCB address

72 48 4 Binary DEB address

76 4C 4 Binary IOB address

80 50 4 Binary UCB address

84 54 4 Binary Buffer address

88 58 4 Binary Address of library table entry

92 5C 2 Binary DSORG indicator

94 5E 1

Binary
1.......
.1......
..1.....
...1....
....1...

Flag byte 1:
Open for output
Output, only shared ENQ
Open completed
Error call for U2EDXCLS
Dev permanently resident

95 5F 1

Binary
1.......
.1......
..1.....
...1....
....1...
.....1..

Flag byte 2:
Freemain I/O control blocks
Dequeue SYSDSN
Dequeue SYSIEWLP
Deallocate UCB
Freemain format 3 DSCB
Freemain buffer

96 60 2 Binary Additional flags

351

UED Pseudo-Open Control BlockSystem Programming

UEDTB1 Entry DSECT
The UEDTB1 module is a table of two-character library codes and information about the associated
libraries. At invocation time, the utility programs UED, UEDIT, USERV, and UPDS load module
UEDTB1. Each of these utility programs passes to its respective user-written exit routine a pointer to an
entry in this module, if a two-character library code was used when accessing a library.

The following DSECT summarizes the format of each entry.

Location Length Format Contents

Dec Hex

0 0 2 Binary Length of this entry (includes user data field)

2 2 2 CharacterLibrary code

4 4 6 Character Volume serial number, unless cataloged

10 A 2 Binary
Sequence number columns:
First byte - Start column
Second byte - End column

12 C 2 Binary
Tag number columns:
First byte - Start column
Second byte - End column

14 E 10 Binary
Paired bytes indicating start and end columns for the UED list
function

24 18 10 Binary UED tab stop columns

34 22 1 Binary

Access method:
x’8x’ - no user data display
x’4x’ - no user data stow
x’2x’ - input only
x’x0’ - LIBRARIAN
x’x1’ - Sequential
x’x2’ - PANVALET
x’x3’ - LIBRARIAN

35 23 1 Binary DSN length, minus one

36 24 xx Binary
User data field
xx = maximum of 176

aa bb 44 Character
File name
aa = 36 + xx
bb = aa in hexadecimal

352

System ProgrammingUEDTB1 Entry DSECT

UPDTB1 Information Control Block
The UPDTB1 information control block is used by UPDS and USERV in order to control access to each
reference file. This control block contains information about the file being accessed and the command
request being given. The address of this control block is passed to the user-written exit UUPDX1 as the
second argument in the parameter list. This table is also described by the UPDTB1 macro. Assemble the
sample UUPDX1 to see the layout of this area.

Note:
Fields not expressly noted in the following control block are reserved.

353

UPDTB1 Information Control BlockSystem Programming

Location Length Format Contents

Dec Hex

1608 648 44 Character File name

1652 674 6 Character Volume serial number

1658 67A 1 Character DOS sub-library type

1659 67B 2 Character Two-character library identification code, or spaces

1667 683 8 Character Member name

1717 6B5 8 Character Printout spool code

1725 6BD 8 Character Default destination code

1735 6CD 8 Character UPDS/USERV command

1756 6DC 1 Binary DSN length, minus 1

1764 6E4 1

Binary
1.......
.1......
..1.....
...1....
....1...
.....1..

Flag 1:
SYSDSN enqueued
SYSIEWLP enqueued
UCB allocated
Only shared ENQ on SYSDSN
UCB permanently resident
File is a PDS

1765 6E5 1 Binary
Open status:
1 - Open for input
2 - Open for output

1702 6A6 1

Binary
1.......
.00.....
.11.....
.01.....
...1....
....1...
.....1..
......1.
.......1

Flag 2:
Reserved
Character display
HEX display
Interpretive HEX
Member entered in command
Formattable device
Buffer too small for block
Position parm with no keyword
Reserved

1703 6A7 1

Binary
1.......
.1......
..1.....
...1....

Flag 3:
User data option Y
User data option X
Reserved
User data option T

354

System ProgrammingUPDTB1 Information Control Block

3101 Terminal Support
The 3101 is supported by Com-plete either as a standard TTY device or in 3270-emulation mode. The
mode is defined in Com-plete’s terminal table. In emulation mode, the 3101 appears to the application
program as a 3270. Com-plete translates the application program’s 3270 data stream to 3101 format and
then translate the 3101 data stream to 3270 format for the application program.

Note:
There are some device-dependent differences of which the application programmer should be aware.
These differences are explained in section Programming Considerations.

This chapter covers the following topics:

Operation

Programming Considerations

System Programming Considerations

Operation
This section explains the use of the 3101 keyboard and the use of the 3101 setup switches. Since
Com-plete begins the data stream with a LOCK ORDER and end it with an UNLOCK ORDER, a
transmission error may result in a locked keyboard. This condition can be cleared by toggling the
NORMAL/TEST key. It can also be cleared by use of the BREAK key. In 3270 emulation mode,
however, the BREAK key will result in an emulated CLEAR key (end-of-job).

Keyboard Functions

355

3101 Terminal SupportSystem Programming

SEND KEY Is used as the equivalent to the 3270 ENTER key. In emulation
mode, SEND performs the 3101 SEND-PAGE operation.

NEW LINE KEY Moves the cursor to the next line, but does not TAB to the first field
on that line as does the 3270 RETURN key.

CLEAR KEY Causes the screen to be erased, but does not transfer data to the host.
To emulate the 3270 CLEAR function, use the BREAK key or the
CLEAR key; then type in *EOJ, and press the SEND key.

SEND MSG Sends data up to the cursor location. This key can be used when the
screen is not formatted.

SEND LINE Sends one line of data. This key is most useful in TTY mode and
should be avoided in emulation mode.

ERASE EOS
KEY

Clears all unprotected data from the screen starting at the cursor
location to the end of the screen.

ERASE EOF
KEY

Clears all unprotected data from the cursor location to the end of the
field. This key is the same as the 3270 ERASE EOF key.

ERASE INPUT
KEY

Causes all unprotected data to be erased from the screen. This key is
equivalent to the 3270 ERASE INPUT key.

TAB AND These keys cause the cursor to move from one BACK-TAB KEYS
adjacent field to another. They function the same way as the 3270
TAB keys. Unlike the 3270, the 3101 has static TAB locations in the
first and last screen locations. In addition, the 3101 does not
automatically skip to the next field when the current field fills with
data; therefore, the TAB key must be used for each field.

PF KEYS There are only eight PF keys on the 3101. They do not cause data to
be transmitted to the host. Com-plete translates the 3101 PF keys as
follows:
a.PF1 through PF6 are translated as PF1 through PF6.
b.PF7 and PF8 are translated as PA1 and PA2.

Setup Switches

Com-plete requires that some of the 3101 setup switches be set in a certain manner, while others are either
optional or dependent on the hardware in use. The following table summarizes the setup switches. The
switch name is preceded by (X,Y), where X is the group number of the switch and Y is the number of the
switch within the group.

Switch Description

(1,1)
BLOCK/CHAR

Sets the 3101 transmission mode. Com-plete 3270 emulation requires
the BLOCK (ON) setting.

(1,2) HDX/FD Indicates half- or full-duplex. BLOCK assumes HDX (ON).

(1,3) MODEM
TYPE

Setting is dependent on the modem type. The normal setting is (ON).

356

System Programming3101 Terminal Support

Switch Description

(1,4)
PRTS/CRTS

Controls the request to send status. This is normally set to (ON).

(1,5) REVERSE
CH

Specifies whether or not a REVERSE CHANNEL ON/OFF is in use.
It is normally set to (OFF).

(1,6/7)
EOT/ETX/

Selects the line turnaround characters. CR/XOFF Com-plete requires
that the setting be CR (ON,OFF).

(1,8)
DUAL/MONO

Sets the character set mode. It is normally set to MONO (OFF).

(2,1)
STOP1/STOP2

Sets the number of stop bits used in the line protocol. The number of
bits is usually dependent on the line speed. This is normally set to
STOP1 (ON).

(2,2/3)
ODD/EVEN/

Controls the line protocol parity type. The MARK/SPACE Com-plete
default is SPACE (OFF,OFF).

(2,4) SEND
LINE

Is used to change the function of the SEND key from SEND-PAGE to
SEND-LINE. Com-plete 3270 emulation requires that this key be set
to SEND-PAGE (OFF).

(2,6) NULL
SUPP

Controls the suppression of the transmission of the trailing NULL
characters. Com-plete emulation requires NULL SUPP (ON).

(2,7/8) NO OF
TIME

Controls the number of TIME-FILL characters FILL CHARS used for
the print data stream. This should be set to (OFF,OFF).

(3,1) AUTO NL When (ON), automatically moves the cursor to the ON/OFF first
character position in the next line. This is assumed to be (ON) when in
BLOCK mode.

(3,2) AUTO LF Controls the positioning of the cursor when the CR ON/OFF character
is received. Com-plete emulation requires the (ON) setting.

(3,3) CR/CR LF Controls the characters generated by the NL key. It can generate CR,
or CR and LF. This is not applicable in BLOCK mode, but is normally
set to CR (ON).

(3,4) SCROLL
ON/OFF

Controls the scrolling mode of the 3101. Com-plete emulation requires
no scrolling, that is, SCROLL (OFF).

(3,7) REVERSE
VIDEO

Controls the use of the reverse video display feature. This setting is
optional.

(3,8) BLINK
CURSOR

Makes the cursor blink. This setting is optional.

(4,1-4) LINE
SPEED

Is set according to the speed of line in use. The following table
contains the appropriate settings. (1=ON,0=OFF)

357

3101 Terminal SupportSystem Programming

Switch Description

 BPS Switches

150 0001

200 0010

300 0011

600 0100

1200 0101

1800 0110

2400 0111

4800 1000

9600 1001

 (4,5-8) Controls the transmission speed to the printer. See the above LINE
SPEED table for the equivalent settings.

Example

The following table contains a setup switch example. (1=ON,0=OFF)

1 2 3 4

11010010 10000100 11100000 01010101

BLOCK MODE STOP1 CR.LF 1200 BPS

HDX SPACE SCROLL OFF 1200 BPS

CL/422 SEND PAGE VIDEO

PRTS SUPP NULLS NON-BLANK

REV. CH. OFF 0 TIME-FILL

CR

MONO

Programming Considerations
The 3101 appears to the Com-plete application programmer like a 3270 model 2. The following
differences between the 3101 and the 3270 should be kept in mind, however.

The cursor location is not returned by the 3101 SEND operation; therefore, the cursor address
returned in the emulated 3270 buffer is always the highest screen location.

358

System Programming3101 Terminal Support

The 3101 does not have a numeric attribute; therefore, the terminal operator is not limited to entering
numeric characters in fields defined as numeric in the 3270 output.

There is no equivalent to the 3270 ERASE-TO-ADDRESS order. Com-plete emulation ignores this
order, unless the address in the order is the end of the screen. In that case, it generates the 3101 EOS
function.

The 3101 does not allow a "wraparound" field. In other words, it does not allow an attribute byte in
the last screen position to define a field that begins in the first screen position. If Com-plete emulation
encounters a situation where data wraps the screen, it will copy the last attribute byte encountered into the
first screen location, thereby destroying the first screen location byte.

The 3101 does not have the equivalent of the 3270 PT order. Com-plete emulation replaces the PT
with the 3101 HT, which does not perform the ERASE EOF function before skipping to the next field.
Because of this limitation, the Com-plete full-screen editor UEDIT will blank-fill fields instead of
performing the PT.

The Com-plete GETCHR function returns a device type of 327E. The PF Keys on the 3101 do not
transmit data. Therefore, programs dependent on this 3270 feature will not work on the 3101. See the
section entitled Keyboard Functions for PF emulation.

The only WCC functions emulated by Com-plete are the SOUND ALARM and RESET
KEYBOARD functions.

System Programming Considerations
In order to emulate a 3270 with the 3101, you must define the 3101 as a TTY device and specify
OPT=EM3270. Other TIB parameters are coded just as they would be for normal TTY devices.

359

3101 Terminal SupportSystem Programming

VTAM Logmodes
This chapter discusses some MODEENT parameters relevant for Com-plete to set up correct TIB
information for the various partner LU types. The LOGMODE specifications override any static TIBTAB
definitions.

This chapter covers the following topics:

MODENT Parameters

Sample LOGMODE Specifications

MODENT Parameters
The format of a LOGMODE specification is:

name MODEENT LOGMODE=modename *
 TYPE= type, *
 FMPROF=fmprof, Function Management Profile*
 TSPROF=tsprof, Transport Services Profile*
 COMPROT=comprot, Common protocol *
 PRIPROT=priprot, PLU protocol*
 SECPROT=secprot, SLU protocol*
 RUSIZES=rusizes, Rusize=1K*
 PSERVIC=pservic

where:

360

System ProgrammingVTAM Logmodes

type must be (negotiable) for LU6.2 sessions and 1 for all other types (default).

fmprof
(1)

X’03’ for SNA terminals/printers
X’02’ for non-SNA terminals printers
X’13’ for LU6.2 sessions

tsprof (1) X’03’ for SNA terminals/printers X’02’ for non-SNA terminals/printers
X’07’ for LU6.2 sessions

comprot 2-Byte hexadecimal value

Byte 1 1000 0000 the sending node does not accept receipt of segments
(reserved for nonextended non-LU 6.2

0100 0000 FM Headers allowed (only value defined for LU 6.2)

00x0 0000 - 1 Brackets are used and reset state is BETB (in
brackets)
This bit should be 0 for LU6.2 sessions
(FMPROF=X’13’)

000x 0000 - 1 Conditional Bracket termination (only value defined
for LU6.2)

0 Unconditional termination

Byte 2 xx00 0000 - Normal-flow send/receive mode selection: 00 - full-duplex 01 -
half-duplex contention 10 - half-duplex flip-flop (only value defined for
LU6.2) 0010 0000 - Symmetric responsibility for recovery (only value for
LU6.2) 0001 0000 - Primary is contention winner, secondary is contention
loser 0000 0010 - Control vectors are included after SLU name 0000 0001 -
HDX-FF reset state is SEND for primary and RECEIVE for secondary.

priprot 1000 0000 - multiple-RU chains allowed (only value defined for LU6.2)
0x00 0000 - 1= delayed request mode 0= immediate request mode (only
value for LU6.2) 0000 xx00 - Chain response protocol used by primary LU:
00 = no response 01 = exception response 10 = definite response 11 =
definite or exception response (only value for LU6.2) 0000 000x - 1=
primary may send EB (End Bracket) 0= primary may not send EB (only
value for LU6.2)

secprot bits have the same meaning as for priprot but applicable to SLU

rusizes Maximum RU sizes sent by primary and secondary half sessions. If bit 0 is
set to 1 (only value defined for LU6.2) the Byte is interpreted as X’ab’ =
a*2**b.

pservic is a 12 Byte Hexadecimal field returned to the application in the INQUIRE
macro: Byte 0 : LU-Type (0, 1, 2, 3 and 6 are supported).

361

VTAM LogmodesSystem Programming

For LU6.2:

Bytes
1-8

PS Usage Field. the only value defined is X’0200000000000000’

Byte 9 Must be X’00’ for Transaction Routing Sessions and SNASVCMG.
Access security will not be accepted on incoming FMH-5s. X’10’ for
native user Sessions: Access security will be accepted on incoming
FMH-5s. Already-Verified will not be accepted.

Byte
10

Should be X’2F’: - Synclevel=CONFIRM - either PLU or SLU may
reinitiate sessions - parallel sessions are supported - CNOS GDS
variables are supported

For LU-types 2 and 3:

Byte 1 bit 0 (X’80’) indicates this is a Queriable Device . TIBSQRY is set in
the TIB entry and Com-plete will issue a READ-PARTITION-QUERY
just after OPNDST to check support and values for: extended
highlighting color load program symbol

Bytes 2
to 5

Reserved X’00000000’

Byte 6 Default number of lines(2)

Byte 7 Default line length(2)

Byte 8 Aternate number of lines(2)

Byte 9 Alternate line length (2)

Byte 10 Screen size: Screen sizes can be specified in Byte 10 or Byte 10 can
refer to bytes 6 to 9. If the base of SNA data streams is used, byte 10
may specify only X’00’, X’01’ or X’02’. X’00’ permits either 480 or
1920 screen size. If X’03’ is specified (LU Type 2 only), the default
screen size is 1920 and the alternate size is specified in the Query
Reply structured field. If X’7E’ is specified, the screen size specified
(bytes 6 and 7) is static.When in this mode, an Erase/Write Alternate
command may be rejected with sense X’1003’. If X’7F’(dynamic
screen size switching) is specified, an alternate screen size may be
specified in byte 8 and 9.

Byte 11: Reserved (X’00’)

For LU Type 1:

Byte 1 FM Header set

Bytes 2-6 Primary half session usage

Bytes 2
and 3

FM Header flags

Byte 4 Data Stream Flags:

362

System ProgrammingVTAM Logmodes

Notes:

1. Some devices as gateways may require different values. Please refer to the device documentation.
2. Default and alternate screen sizes may be overwritten as result of the READ-PARTITION-QUERY.
3. Refer to the IBM documentation SNA - Sessions Between Logical Units for more information.

Sample LOGMODE Specifications
*
*LOGMODE for 3278 Model 5 Terminal
*
M3278S5 MODEENT LOGMODE=M3278S5, *
 FMPROF=X’03’, Function Management Profile *
 TSPROF=X’03’, Transport Services Profile *
 COMPROT=X’3080’, Common protocol *
 PRIPROT=X’B1’, PLU protocol *
 SECPROT=X’90’, SLU protocol *
 RUSIZES=X’8787’, *
 PSERVIC=X’02800000000018501B847F00’
 0 1 2 3 4 5 6 7 8 9 1011
*
* LOGMODE for SCS Printer
*
SCS MODEENT LOGMODE=SCS, *
 FMPROF=X’03’, Function Management Profile *
 TSPROF=X’03’, Transport Services Profile *
 COMPROT=X’3080’, Common protocol *
 PRIPROT=X’B1’, PLU protocol *
 SECPROT=X’90’, SLU protocol *
 RUSIZES=X’8787’, *
 SRCVPAC=1, SLU: Receive Pacing Count *
 PSNDPAC=1, PLU: Send Pacing Count *
 PSERVIC=X’01000000E100000000000000’
 0 1 2 3 4 5 6 7 8 9 10 11
*
* LOGMODE for SCS Printer on SAA Gateway
*
SCSSAA MODEENT LOGMODE=SCSSAA, *
 FMPROF=X’03’, Function Management Profile *
 TSPROF=X’03’, Transport Services Profile *
 COMPROT=X’3080’, Common protocol *

 PRIPROT=X’B1’, PLU protocol *
 SECPROT=X’90’, SLU protocol *
 RUSIZES=X’8787’, *
 SRCVPAC=1, SLU: Receive Pacing Count *
 PSNDPAC=1, PLU: Send Pacing Count *
 PSERVIC=X’014000010000000001000000’
 0 1 2 3 4 5 6 7 8 9 10 11
*

* LOGMODE for SNA Printer
*
DSC2K MODEENT LOGMODE=DSC2K, *
 TYPE=1, Nonnegotiable Bind *
 FMPROF=X’00’, Function Management Profile *
 TSPROF=X’07’, Transport Services Profile *
 COMPROT=X’3080’, Common protocol *
 PRIPROT=X’B1’, PLU protocol *
 SECPROT=X’90’, SLU protocol *

363

VTAM LogmodesSystem Programming

 RUSIZES=X’8787’, *
 PSERVIC=X’030000000000185018507F00’
 0 1 2 3 4 5 6 7 8 9 1011
*
*LOGMODE for SNA Service Manager Sessions - Mandatory for LU6.2 parallel sessions
*
SNASVCMG MODEENT LOGMODE=SNASVCMG, *
 TYPE=0, Negotiable Bind *
 FMPROF=X’13’, Function Management Profile *
 TSPROF=X’07’, Transport Services Profile *
 COMPROT=X’50B1’, Common protocol *

 PRIPROT=X’B0’, PLU protocol *
 SECPROT=X’B0’, SLU protocol *
 RUSIZES=X’8787’, Rusize=1K *
 SRCVPAC=0, SLU: Receive Pacing Count *
 SSNDPAC=0, SLU: Send Pacing Count *
 ENCR=0, No encryption, *
 PSERVIC=X’060200000000000000002F00’
 0 1 2 3 4 5 6 7 8 9 1011
*
* LOGMODE for LU6.2 parallel sessions (no security)
*
LU62P MODEENT LOGMODE=LU62P, *
 TYPE=0, Negotiable Bind *
 FMPROF=X’13’, Function Management Profile *
 TSPROF=X’07’, Transport Services Profile *
 COMPROT=X’50B1’, Common protocol *
 PRIPROT=X’B0’, PLU protocol *
 SECPROT=X’B0’, SLU protocol *
 RUSIZES=X’8787’, Rusize=1K *
 SRCVPAC=0, SLU: Receive Pacing Count *
 SSNDPAC=0, SLU: Send Pacing Count *
 ENCR=0, No encryption, *
 PSERVIC=X’060200000000000000002F00’
 0 1 2 3 4 5 6 7 8 9 1011
*

* LOGMODE for LU6.2 parallel sessions (Security)
*
LU62PS MODEENT LOGMODE=LU62PS, *
 TYPE=0, Negotiable Bind *
 FMPROF=X’13’, Function Management Profile *
 TSPROF=X’07’, Transport Services Profile *
 COMPROT=X’50B1’, Common protocol *
 PRIPROT=X’B0’, PLU protocol *
 SECPROT=X’B0’, SLU protocol *
 RUSIZES=X’8787’, *
 RCVPAC=0, SLU: Receive Pacing Count *
 SSNDPAC=0, SLU: Send Pacing Count *
 ENCR=0, No encryption, *
 PSERVIC=X’060200000000000000102F00’
 0 1 2 3 4 5 6 7 8 9 1011

364

System ProgrammingVTAM Logmodes

