
Version 4.1.2 for Mainframes Operations

This document applies to Natural Version 4.1.2 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
.............. 1Operations for Mainframes - Overview
.............. 1Operations for Mainframes - Overview
................... 2Configuring Natural
................... 2Configuring Natural
............ 3Linking Natural Objects to the Natural Nucleus
............. 3Linking Natural Objects to the Natural Nucleus
..................... 3Benefits
.................. 4ULDOBJ Function
............ 4Using ULDOBJ to Generate an Object Module
........... 5Additional Considerations for Linking Subroutines
........ 5Object Module Generation Depending on the Operating System
......... 6Example of Linking a Natural Object to the Natural Nucleus
............. 9Natural Application Programming Interfaces
............. 9Natural Application Programming Interfaces
.......... 9Purpose of a Natural Application Programming Interface
.......... 9Overview of Natural Application Programming Interfaces
................... 14Natural User Exits
................... 14Natural User Exits
............ 14NATUEX1 - User Exit for Authorization Control
......... 15NATSREX2 and NATSREX3 - User Exits for Sort Processing
.......... 16NATUSKnn - User Exit for Computation of Sort Keys
.............. 17NATPM - User Exit for Inverted Output
................... 17Inversion Logic
................... 17Field User Exit
........... 18Natural User Access Method for Print and Work Files
........... 18Natural User Access Method for Print and Work Files
............... 18NATAMUSR Module Description
............... 18NATAMUSR Module Installation
............... 18Invoking the Third Party Product
.................. 19Natural Scratch-Pad File
.................. 19Natural Scratch-Pad File
.............. 19Purpose of a Natural Scratch-Pad File
................ 19What is it, what does it do?
.................. 19When do I need it?
............... 19How to Define a Scratch-Pad File
.......... 20What is Stored on the Scratch-Pad File and How to Size it
.................... 20Recordings
............... 20Screen Captures - NATPAGE
................ 21Scratch-Pad File Maintenance
.................. 22Natural Text Modules
.................. 22Natural Text Modules
.............. 22Function and Usage of Text Modules
.................. 22NATTEXT Module
................. 22Modifying NATTEXT
............ 23Example of Modifying the NATTEXT Module
.................. 23NATTXT2 Module
............... 23Standard Natural Output Texts
............... 24Natural Termination Messages
................. 25Natural Configuration Tables
................. 25Natural Configuration Tables
.................. 25NATCONFG Module
.......... 26General Overview of Macros Used by NATCONFG
............ 26NTDVCE - Terminal-Device Specification Table

iCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

.................... 27Code Page Support

.................. 27Output Devices Supported

........... 27Sequential Output Devices for Batch, Additional Reports

................ 27Line-Oriented Online Terminals

.............. 28Block-Mode-Oriented Online Terminals

.................. 28Specification of NTDVCE

.................... 28Translation Tables

................. 30Upper-/Lower-Case Translation

.................... 30CMULT Macro

.................... 30Output Translation

.................... 31Input Translation

................. 31Code Translation of DBCS Data

................. 31NTTZ - Time Zone Definitions

.................... 31NTTZ Macro

................... 32NTTZ Macro Syntax

.................. 32NTTZ Macro Parameters

................. 33Restrictions of NTTZ Macro

.................. 33Example of NTTZ Macro

.................. 34Natural Storage Management

.................. 34Natural Storage Management

............... 34Thread and Non-thread Environments

..................... 34Buffer Types

..................... 35Fixed Buffers

.................... 35Variable Buffers

............... 35Customization of Buffer Characteristics

................. 37Profile Parameter Usage - Overview

................ 37Profile Parameter Usage - Overview

.................. 38Natural Parameter Hierarchy

.................. 38Natural Parameter Hierarchy

............... 38Natural Parameter Hierarchy Overview

................ 39Natural Parameter Hierarchy Details

................ 39Natural Standard Parameter Module

................. 39Alternative Parameter Module

................ 39Predefined Dynamic Parameter Sets

................ 40Predefined User Parameter Profiles

.................. 40Dynamic Parameter Entry

.................. 40Natural Security Definitions

.................. 40Session Parameter Settings

................ 40Program/Statement Level Settings

................ 41Development Environment Settings

............... 41Examples of Various Parameter Strings

............... 41Example 1: No dynamic parameters

................ 41Example 2: PARM=ALTPARM

................... 41Example 3: SYS=A

.............. 42Example 4: PARM=ALTPARM,SYS=A

.............. 42Example 5: PARM=ALTPARM,SYS=B

.............. 42Example 6: SYS=A,PROFILE=MYPROF

........... 42Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100

.............. 42Example 8: PROFILE=MYPROF,SYS=A

....... 42Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF,PARM=ALTPARM

................. 43Assignment of Parameter Values

................. 43Assignment of Parameter Values

............... 43Sources for Parameter Value Assignment

............... 44Static Assignment of Parameter Values

.............. 45Dynamic Assignment of Parameter Values

............ 45Specifying Dynamic Parameters under VSE/ESA

Copyright © Software AG 2003ii

Operations for Mainframes - OverviewTable of Contents

......... 46Session Parameters for Runtime Assignment of Parameter Values

............... 47Profile Parameters Grouped by Function

................ 47Profile Parameters Grouped by Function

..................... 47System Files

..................... 48Buffer Sizes

................... 48External Subprograms

................. 49Output Reports and Workfiles

.................... 49Date/Time Settings

....................... 50Limits

................... 50Character Assignments

.................. 51Terminal Communication

..................... 51Buffer Pools

.................... 51Translation Tables

.................. 52Usage of Profile Parameters

...................... 52Debugging

..................... 53Batch Mode

..................... 53TP Monitors

.................... 53Database Access

................... 54Natural with Adabas

............... 54Natural with Other Software AG Products

................ 57Parameters Reserved for Internal Use

................. 57Miscellaneous Profile Parameters

............... 58Session Initialization and Termination

................. 59Using a Natural Parameter Module

................. 59Using a Natural Parameter Module

........... 59Using the Default Natural Parameter Module NATPARM

.............. 59Creating a New Natural Parameter Module

............ 59NTPRM Macro - Create a Natural Parameter Module

.................... 60NTPRM Syntax

............... 60Assembler Macro Coding Conventions

.............. 60Restricting the Use of a Parameter Module

............ 60Using Optional Macros in a Natural Parameter Module

................. 62OS/390 Environment - Overview

................. 62OS/390 Environment - Overview

.................... 63Natural under OS/390

.................... 63Natural under OS/390

.................... 63Natural Subsystem

.................... 63Shared Nucleus

................... 63TP Monitor Interfaces

.............. 64Interfaces to Database Management Systems

................ 64Natural in Batch Mode under OS/390

................. 64Natural as a Server under OS/390

............... 65Authorized-Services Manager under OS/390

............... 65Authorized-Services Manager under OS/390

.................... 65ASM Overview

.................. 66ASM System Requirements

................... 66APF Authorization

..................... 66CF Structure

.................... 67ASM Operation

.................... 67Starting the ASM

............ 68ASM Messages, Condition Codes and Abend Codes

................. 69ASM Operator Commands

............ 70Natural Shared Nucleus under OS/390 and VSE/ESA

............. 70Natural Shared Nucleus under OS/390 and VSE/ESA

................ 70Environment-Independent Nucleus

................ 70Components of the Shared Nucleus

iiiCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

................. 71Linking Additional Modules

................. 71Benefits of a Shared Nucleus

................ 72Disadvantages of a Shared Nucleus

.................. 72Administration Aspects

.................. 73Creating a Shared Nucleus

.................. 73Installing a Shared Nucleus

................ 74Linking Subproducts to the Nucleus

................ 74Single-Environment Shared Nucleus

................. 75Environment-Dependent Nucleus

............... 75Statically Linked Non-Natural Programs

.............. 75Dynamically Called Non-Natural Programs

................. 76Natural Roll Server Functionality

................. 76Natural Roll Server Functionality

................. 76Natural Roll-Server Overview

............... 76Roll Server in a Single OS/390 System

................. 77Roll Server in a Parallel Sysplex

.................... 78Roll File and LRB

.................. 80Natural Roll Server Operation

.................. 80Natural Roll Server Operation

................ 80Roll Server System Requirements

................... 80APF Authorization

.................. 80System Linkage Index

.................... 80Virtual Storage

..................... 81CF Structure

................... 81XCF Signalling Paths

................... 81Formatting the Roll File

................... 82NATRSRFI Output

.......... 84Notes Concerning the Formatting or Resetting of Roll Files

................... 84Starting the Roll Server

........... 86Roll Server Messages, Condition Codes and Abend Codes

................... 86User Abend Codes

........... 87Return Codes and Reason Codes of the Roll Server Request

.................. 87Operating the Roll Server

................. 87Roll Server Performance Tuning

................... 88Roll Server User Exits

.................. 88NATRSU14 User Exit

.................. 89NATRSU24 User Exit

................. 90VSE/ESA Environment - Overview

................. 90VSE/ESA Environment - Overview

................... 91Natural under VSE/ESA

................... 91Natural under VSE/ESA

.................... 91Natural Subsystem

................... 91Natural Shared Nucleus

................... 91TP Monitor Interfaces

.............. 91Interfaces to Database Management Systems

............... 92Natural in Batch Mode under VSE/ESA

............ 93Natural Shared Nucleus under OS/390 and VSE/ESA

............. 93Natural Shared Nucleus under OS/390 and VSE/ESA

................. 94VM/CMS Environment - Overview

................. 94VM/CMS Environment - Overview

................... 95Natural under VM/CMS

................... 95Natural under VM/CMS

............. 95Issuing CP and CMS Commands from Natural

................. 95Reading the CMS Program Stack

.................... 95Hardcopy Function

.................. 96Applying Fixes to Natural

Copyright © Software AG 2003iv

Operations for Mainframes - OverviewTable of Contents

................ 96Natural in Batch Mode under CMS

................. 97Print File and Work File Support

................. 97Print File and Work File Support

................ 97Defining Print Files and Work Files

................... 97Access Method STD

................... 97Access Method CMS

................ 100BS2000/OSD Environment - Overview

................ 100BS2000/OSD Environment - Overview

............... 101Natural Shared Nucleus under BS2000/OSD

............... 101Natural Shared Nucleus under BS2000/OSD

............... 101Rules for Using a Natural Shared Nucleus

.................. 103Refresh of Natural Load Pool

.................. 103Refresh of Natural Load Pool

.................. 103Restrictions/Prerequisites

...................... 103Procedure

............. 104Keyword Parameters for the Program PREFRESH

............ 104NAME - Common Memory Pool and Module Name

................... 104LIBR - Load Library

................. 104LOAD - Module Load Method

............... 105ALNK - Activate AUTOLNK Function

........ 105TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started

....... 105TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

................. 106Optimization of Message Handling

................. 106Optimization of Message Handling

................... 106Screen Output Handling

................. 106Restoring the Screen Content

.............. 107Siemens Terminal Types Supported by Natural

.............. 107Siemens Terminal Types Supported by Natural

...................... 107Type 9748

..................... 107975n Series

..................... 107Type 9763M

............... 108Function Key Support with 9750 Devices

............... 108Function Key Support with 9750 Devices

.................... 108Key Assignment

.................. 108Modes for Key Assignment

................... 109Common Memory Pools

................... 109Common Memory Pools

................. 109Global Common Memory Pools

.................. 109CMPSTART Program

................... 110Operator Commands

................... 111CMPEND Program

................. 112Local Common Memory Pools

................... 112BS2STUB Macro

.................... 112ADDON Macro

.................... 116ADDEND Macro

.............. 116Example of Assembling Macro BS2STUB

........ 117Calling Dynamically Reloadable 3GL Programs in a Natural Application

........ 117Calling Dynamically Reloadable 3GL Programs in a Natural Application

.................. 117Storage Allocation Rule

................... 117Thread-Creation Rule

................. 117Address-Mode Dependencies

................. 119Natural in Batch Mode - Overview

................. 119Natural in Batch Mode - Overview

.................. 120Natural in Batch under OS/390

.................. 120Natural in Batch under OS/390

.......... 120General Information about the Natural OS/390 Batch Interface

vCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

............... 120Natural OS/390 Generation Parameters

................. 120ABEXIT - Abend Processing

............. 121FACOM - Use of FACOM Operating System

............. 121LBPNAME - Sharing of Local Buffer Pools

............. 121LE370 - Use of IBM Language Environment

........... 121SUBPOOL - Storage Subpool for GETMAIN Requests

............ 121USERID - Content of System Variable *INIT-USER

.............. 122Datasets Used by Natural under OS/390 Batch

.............. 122CMEDIT - Software AG Editor Work File

............ 122CMHCOPY - Optional Report Output for Hardcopy

............ 123CMOBJIN - Input for Natural INPUT Statements

........... 123CMPLOG - Dynamic Profile Parameter Report Output

............... 123CMPRINT - Primary Report Output

.............. 123CMPRMIN - Dynamic Parameter Dataset

............... 123CMPRTnn - Additional Reports 01 - 31

................. 123CMSYNIN - Primary Input

........... 124CMTRACE - Optional Report Output for Natural Tracing

................. 124NATRJE - Job Submit Output

............. 124STEPLIB - Load Library for External Modules

................ 124CMWKFnn - Work Files 01-32

................. 125Natural in Batch under VSE/ESA

................. 125Natural in Batch under VSE/ESA

.............. 125NATVSE - Natural VSE/ESA Batch Interface

......... 125NTVSE Macro - Generation Parameters for Natural under VSE/ESA

............... 126NAME - Name of Relocatable Module

............ 126DSECTS - Listing of Operating System DSECTS

................ 126CANCEL - Session Termination

......... 126RJEUSER - User ID for Submission via XPCC Macro Requests

............... 126FILEID - Check of Label Information

.......... 127FILMNGR - Management of Print or Work File in Natural

.............. 127FILSCAN - Scanning of Print or Work Files

............... 127BUFSIZE - Size of Natural I/O Buffer

............. 127LE370 - Use of IBM Language Environment

............. 127LIBRID - Check of DLBL File ID Information

............ 128Natural Datasets Used under a VSE/ESA Batch Session

.............. 128CMEDIT - Software AG Editor Work File

............ 128CMHCOPY - Optional Report Output for Hardcopy

............ 129CMOBJIN - Input for Natural INPUT Statements

.......... 129CMPLOG - Optional Report Output for Dynamic Parameters

............... 129CMPRINT - Primary Report Output

.............. 130CMPRMIN - Dynamic Parameter Dataset

................ 130CMPRTnn - Additional Reports

................. 130CMSYNIN - Primary Input

........... 131CMTRACE - Optional Report Output for Natural Tracing

................ 131CMWKFnn - Work Files 01-32

......... 131NATVSE Print and Work File Support for VSE Library Members

............. 132Debugging Facilities for Natural under VSE/ESA

................ 133UPSI 1XXXXXXX - Dump Flag

................ 133UPSI X1XXXXXX - Trace Flag

.............. 133UPSI XXX1XXXX - Storage Freeze Flag

.............. 134UPSI XXXXX1XX - Session Abend Flag

............... 134UPSI XXXXXX1X - Abend Exit Flag

............ 134UPSI XXXXXXX1 - Formatted Dump-Only Flag

.............. 134Obtaining Documentation for Debugging

................. 135NATVSE Attention Interrupts

Copyright © Software AG 2003vi

Operations for Mainframes - OverviewTable of Contents

.................. 136Natural in Batch under CMS

.................. 136Natural in Batch under CMS

................ 136Running Natural in Batch under CMS

............... 136CMPRINT - Primary Report Output

................. 136CMSYNIN - Primary Input

................ 137Natural in Batch under BS2000/OSD

................ 137Natural in Batch under BS2000/OSD

........... 137Natural Datasets Used under a BS2000/OSD Batch Session

.............. 137CMPRMIN - Dynamic Parameter Dataset

................. 137CMSYNIN - Primary Input

................. 138CMSYNIN - Primary Input

............ 138CMOBJIN - Input for Natural INPUT Statements

............... 138CMPRINT - Primary Report Output

.......... 138CMPLOG - Optional Report Output for Dynamic Parameters

........... 139CMTRACE - Optional Report Output for Natural Tracing

............ 139CMHCOPY - Optional Report Output for Hardcopy

................ 139CMPRTnn - Additional Reports

................ 139CMWKFnn - Natural Work Files

................... 139KEYWORD Parameters

..................... 140ADACOM

..................... 140ADDBUFF

..................... 140APPLNAM

...................... 140CODE

..................... 141DELETE

..................... 141DYNPAR

...................... 142ILCS

....................... 142JV

....................... 142LF

...................... 142LINK

.................. 143LINK2/LINK3/LINK4

..................... 143NUCNAME

..................... 143PARMOD

..................... 144REQMLOC

..................... 144SYSDTA

...................... 145TERM

...................... 145TRACE

..................... 145USERID

...................... 146WRITE

.................. 146BS2000/OSD Job Variables

................ 147Natural in Batch Mode (All Platforms)

................ 147Natural in Batch Mode (All Platforms)

.................... 147Adabas Datasets

..................... 147Sort Datasets

............ 147Subtasking Session Support for Batch Environments

...................... 147Purpose

..................... 148Prerequisites

.................... 148Functionality

.................. 148Starting a Natural Session

................... 149Starting A Subtask

................ 150Accessing the User Parameter Area

................. 151Natural Buffer Pools - Overview

................. 151Natural Buffer Pools - Overview

.................... 152Natural Buffer Pool

.................... 152Natural Buffer Pool

.............. 152Natural Buffer Pool Principle of Operation

.................. 152Objects in the Buffer Pool

viiCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

.................... 152Directory Entries

..................... 153Text Pool

.................. 153Buffer Pool Hash Table

.................. 153Buffer Pool Initialization

................. 153Buffer Pool Search Methods

................. 155Local and Global Buffer Pools

................... 155Buffer Pool Cache

............... 156Buffer-Pool Monitoring and Maintenance

..................... 156Preload List

..................... 157Blacklist

............... 157Propagation of Buffer-Pool Changes

.................. 158Natural Global Buffer Pool

.................. 158Profile Parameters Used

.............. 158Buffer Pool Opening / Closing Procedure

............... 160Natural Global Buffer Pool under OS/390

............... 160Natural Global Buffer Pool under OS/390

................ 160Using a Natural Global Buffer Pool

..................... 160Definition

...................... 160Benefits

............... 160Operating the Natural Global Buffer Pool

............. 161Installing the Natural GBP Operating Program

.............. 161Setting up the Natural Global Buffer Pool

............. 161Starting the Natural GBP Operating Program

............. 161Stopping the Natural GBP Operating Program

................ 162Sample NATGBP41 Execution Jobs

..................... 163Localization

............... 164Natural Global Buffer Pool under VSE/ESA

............... 164Natural Global Buffer Pool under VSE/ESA

................ 164Using a Natural Global Buffer Pool

..................... 164Definition

...................... 164Benefits

..................... 164Prerequisites

............... 165Operating the Natural Global Buffer Pool

............. 165Installing the Natural GBP Operating Program

.............. 165Setting Up the Natural Global Buffer Pool

............. 165Starting the Natural GBP Operating Program

............. 165Stopping the Natural GBP Operating Program

................ 166Sample NATGBP41 Execution Jobs

..................... 166Example 1:

..................... 166Example 2:

..................... 166Example 3:

..................... 167Example 4:

..................... 167Localization

........ 168Common Natural GBP Operating Functions under OS/390 and VSE/ESA

........ 168Common Natural GBP Operating Functions under OS/390 and VSE/ESA

............... 168Global Buffer Pool Operating Functions

......... 168ADDCACHE - Allocate Cache for an existing Global Buffer Pool

............... 168CREATE - Create Global Buffer Pool

........... 168DELCACHE - Release Cache of a Global Buffer Pool

.............. 168FSHUT - Shut Down Global Buffer Pool

............. 169GLOBALS - Show global parameter settings

......... 169LISTCACHE - List all Global Buffer Pool Caches owned by Job

................... 169NOP - No-Operation

............. 169REFRESH - Re-initialize Global Buffer Pool

.............. 169SHOWBP - Show Existing Buffer Pools

............ 169TERMINATE - Terminate GBP Operating Program

Copyright © Software AG 2003viii

Operations for Mainframes - OverviewTable of Contents

............... 169Global Buffer Pool Function Parameters

.............. 170BPNAME - Name of Global Buffer Pool

................ 170BPLIST - Name of Preload List

................ 170BPCSIZE - Buffer Pool Cache Size

................ 170CONFIRM - FSHUT Confirmation

................ 170IDLE - Wait Time before Check

......... 171METHOD - Search algorithm for allocating space in buffer pool

............ 171NATBUFFER - Buffer Size, Mode, Text Block Size

............. 171RESIDENT - Behavior after Function Execution

................ 172SUBSID - Natural Subsystem ID

................. 172TYPE - Type of Buffer Pool

............... 173Examples of NATBUFFER Specifications

.............. 174Natural Global Buffer Pool under BS2000/OSD

.............. 174Natural Global Buffer Pool under BS2000/OSD

........... 174Using a Natural Global Buffer Pool under BS2000/OSD

........... 174Establishing the Global Buffer Pool under BS2000/OSD

........... 175Administering the Global Buffer Pool under BS2000/OSD

.................. 176Natural Swap Pool - Overview

.................. 176Natural Swap Pool - Overview

.................. 177Purpose of a Natural Swap Pool

................. 177Purpose of a Natural Swap Pool

................. 177Purpose of a Natural Swap Pool

............... 177Benefits of Using a Natural Swap Pool

................... 177Swap Pool Structure

................. 178Swap Pool Main Directory

.................... 178Subdirectories

.................... 178Swap Pool Slots

................... 178Logical Swap Pools

.................. 179Natural Swap Pool Operation

.................. 179Natural Swap Pool Operation

............ 179Users are "on their Way" to Natural - no Session Start

................ 179Users are "Returning" from Natural

................. 181Natural Swap Pool Initialization

................. 181Natural Swap Pool Initialization

................. 181Swap Pool Initialization Control

................ 182Swap Pool Initialization Parameters

................. 183Dynamic Swap-Pool Reorganization

................ 183Dynamic Swap-Pool Reorganization

............ 183Requirements for Dynamic Swap-Pool Reorganization

.................... 183Statistics Tables

............... 183Swap-Pool-Reorganization Plus Table

............... 183Swap-Pool-Reorganization Minus Table

............... 184Parameters for Swap-Pool Reorganization

........... 184Checking for the Necessity of Swap-Pool Reorganization

.............. 185Flow of Dynamic Swap-Pool Reorganization

.............. 185Start of Dynamic Swap-Pool Reorganization

.................. 186Defining the Natural Swap Pool

................. 186Defining the Natural Swap Pool

................ 186Environment-Specific Requirements

.............. 186Keyword Parameters of Macro NTSWPRM

............ 186LABEL - Name of Swap-pool Parameter Module

............ 186DSPCONT - Minutes for Data Space Slot Control

........ 187DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space

........... 187SWPFILE - Location of Swap Pool Initialization Data

.............. 187MAXSIZE - Size of Natural User Threads

............ 188SWPFACT - Size of Unit in Reorganization Tables

ixCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

............ 188SWPINIT - Access to Swap-Pool Initialization Data

............. 188SWPLSWP - Number of Logical Swap Pools

............... 188SWPPWRD - Administration Password

............. 189SWPSDIF - Minimum Difference of Slot Sizes

........... 189SWPSLSZ - Number of Logical Swap Pools, Slot Sizes

................. 189SWPTFIX - Fixed Slot Size

............ 190SWPTIM1 - Time Interval for Reorganization Check

.......... 190SWPTIM2 - Lapse of Time Before Start of Reorganization

........... 190SWPUSER - Condition for Swap Pool Reorganization

......... 191NOVPA - Number of Waits for Completed Asynchronous Write

........... 191NOVPW - Number of Waits for Unlocked Swap Pool

............. 191WAITMS - Wait Time for Unlocked Swap Pool

......... 191WRITMS - Wait Time for for Completed Asynchronous Write

................ 192Natural User Area Size Considerations

................ 192Natural User Area Size Considerations

................. 192Using the MAXSIZE Parameter

............. 192Defining the Size of the Individual Natural Buffers

................... 192Possible Error Messages

.............. 192Displaying the Aggregate Size of All Buffers

................. 193Calculating the Maximum Size

.................... 194Swap Pool Data Space

.................... 194Swap Pool Data Space

................ 194Using ESA Data Space in Addition

............... 194ESA Data Space Slot Size Adjustment

............... 195Global Restartable Swap Pool under UTM

............... 195Global Restartable Swap Pool under UTM

............ 195Purpose of a Natural Global Swap Pool under UTM

............. 195Installing a Natural Global Swap Pool under UTM

............. 195Starting a Natural Global Swap Pool under UTM

............ 196Displaying Information about the Global Swap Pool

.............. 197Terminating the Global Swap Pool under UTM

.............. 197Terminating the Global Swap Pool under UTM

............... 197Termination Using Console Commands

................ 197Abnormal Termination with Dump

................... 197Termination by Program

.............. 198Natural 3GL CALLNAT Interface - Overview

.............. 198Natural 3GL CALLNAT Interface - Overview

........ 199Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

......... 199Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

................ 199Purpose of 3GL CALLNAT Interface

..................... 199Availability

..................... 199Prerequisites

................... 200Space Requirements

...................... 200Linking

................. 200Environment Dependencies

..................... 200Restrictions

................ 200Terminating a Natural Subprogram

................ 200Inadmissible Natural Statements

............. 201Parameter Values Passed by the 3GL Program

.................... 201Dynamic Arrays

................ 201TP-Monitor-Specific Restrictions

............ 202Natural 3GL CALLNAT Interface - Usage, Examples

............. 202Natural 3GL CALLNAT Interface - Usage, Examples

....................... 202Usage

..................... 202Overview

.................... 203Call Structure

Copyright © Software AG 2003x

Operations for Mainframes - OverviewTable of Contents

................... 205Parameter Handling

................... 205Sample Environments

................. 206Sample Environment for CICS

............. 207Sample for Any Other Supported Environment

.............. 208Operating the Software AG Editor - Overview

.............. 208Operating the Software AG Editor - Overview

..................... 209Editor Work File

..................... 209Editor Work File

.................. 209Editor Work File Structure

.................... 209Control Record

.................... 210Work Record

................... 210Recovery Records

.......... 210Editor Work File under OS/390, VSE/ESA and BS2000/OSD

................. 210Using the Batch Format Utility

................. 210Formatting during Initialization

.......... 211Maintaining the Editor Work File under OS/390 and VSE/ESA

............ 211Maintaining the Editor Work File under BS2000/OSD

................ 212Editor Work File under VM/CMS

.............. 212Editor Work File under Complete/SMARTS

..................... 213Editor Buffer Pool

.................... 213Editor Buffer Pool

................. 213Purpose of the Editor Buffer Pool

................... 214Obtaining Free Blocks

................ 214Initializing the Editor Buffer Pool

.................. 214Buffer Pool Cold Start

.................. 214Buffer Pool Warm Start

................. 214Restarting the Editor Buffer Pool

................. 214Editor Buffer Pool Parameters

............ 216Buffer Pool Initialization for Multi-User Environments

............... 217Natural Net Data Interface NATNETTO

................ 217Natural Net Data Interface NATNETTO

............. 218Natural Net Data Driver Functional Description

.................. 218General Message Layout

.................... 219Layout of Header

................... 222Format Buffer Layout

..................... 222Base Part

..................... 223Extension 1

................... 224Value Buffer Layout

.................... 225Attribute Buffer

.................. 226Natural as a Server - Overview

.................. 226Natural as a Server - Overview

................. 227Natural as a Server under OS/390

................. 227Natural as a Server under OS/390

..................... 227Functionality

................... 227Natural Server Stub

................... 227Natural Batch Driver

............ 227Natural Nucleus Installation in a Server Environment

....... 228Print and Work File Handling with External Datasets in a Server Environment

................. 230Natural as a Server under CICS

.................. 230Natural as a Server under CICS

..................... 230Functionality

................... 230Natural as a Server

................... 230Natural Server Stub

........... 230Natural CICS Interface Installation in a Server Environment

..................... 231Restrictions

xiCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

............... 232Introduction to the Natural Server Monitor

............... 232Introduction to the Natural Server Monitor

............... 232One Monitor for Different Server Types

................... 233Server Monitor Facility

.................. 233System Management Client

................ 233Monitor Communication Protocol

................... 233Monitor Architecture

................... 235Monitor Client NATMOPI

................... 235Monitor Client NATMOPI

............... 235Prerequisites for NATMOPI Execution

............. 235Monitor Services Running under OS/390 Batch

.............. 235Monitor Services Running under SMARTS

.................. 236Command Interface Syntax

................. 236Command Options Available

.................... 236Monitor Commands

................... 236Directory Commands

................... 237Command Examples

................. 237Execute NATMOPI under TSO

.................. 238Execute NATMOPI in Batch

............... 238Execute NATMOPI under the UNIX Shell

............... 239Natural Execution - Miscellaneous Topics

............... 239Natural Execution - Miscellaneous Topics

................... 240Asynchronous Processing

................... 240Asynchronous Processing

.............. 240Identifying Asynchronous Natural Sessions

............ 240Handling Output of an Asynchronous Natural Session

............... 241Handling Unexpected or Unwanted Input

............... 241Other Profile Parameter Considerations

.................. 242Double-Byte Character Sets

.................. 242Double-Byte Character Sets

.................. 242FACOM Operating System

................ 242Natural Profile Parameters SO and SI

................... 242Internal CALL Features

.................. 243Output Format Specification

.................... 243Window Control

............... 243Parameter Definitions for DBCS Support

.................... 245Input/Output Devices

.................... 245Input/Output Devices

.................... 245Terminal Support

.................... 245Light Pen Support

..................... 246Printer Support

............... 246Printer-Advance Control Characters

................. 247Natural Laser-Printer Support

................... 249Back-End Program Calling

................... 249Back-End Program Calling

............... 249Back-End Program Calling Conventions

................ 249Special Considerations under CICS

.................. 250Sample Back-End Programs

.................. 251Natural 31-Bit Mode Support

.................. 251Natural 31-Bit Mode Support

..................... 252LE Subprograms

..................... 252LE Subprograms

................. 252Support of IBM LE Subprograms

.............. 252Enabling Natural Support of LE Subprograms

.................. 252Passing LE Runtime Options

................... 253LE Abend Handling

Copyright © Software AG 2003xii

Operations for Mainframes - OverviewTable of Contents

..................... 254External SORT

..................... 254External SORT

.................. 254Support of External SORT

................ 254Special Considerations for OS/390

................ 254Special Considerations for VSE/ESA

............... 254Special Considerations for BS2000/OSD

xiiiCopyright © Software AG 2003

Table of ContentsOperations for Mainframes - Overview

Operations for Mainframes - Overview
This document contains information for operating Natural in a mainframe environment under various operating
systems.

The following topics are covered:

Configuring Natural

Profile Parameter Usage

OS/390 Environment

VSE/ESA Environment

VM/CMS Environment

BS2000/OSD Environment

Natural in Batch Mode

Natural Buffer Pools

Natural Swap Pool

Natural 3GL CALLNAT Interface

Operating the Software AG Editor

Natural Net Data Interface NATNETTO

Natural as a Server

Natural Execution - Miscellaneous Topics

Related Documents:

Natural Installation Guide for Mainframes
Messages and Codes
Natural TP Monitor Interfaces
Natural Remote Procedure Call
Natural Utilities
Software AG Editor
Natural Security
Natural for VSAM
Natural for DB2
Natural for DL/I
Natural for SQL/DS

1Copyright © Software AG 2003

Operations for Mainframes - OverviewOperations for Mainframes - Overview

Configuring Natural
This document provides information on Natural configuration.

The following topics are covered:

Linking Natural Objects to the Natural Nucleus

Natural Application Programming Interfaces

Natural User Exits

Natural User Access Method for Print and Work Files

Natural Scratch-Pad File

Natural Text Modules

Natural Configuration Tables

Natural Storage Management

Copyright © Software AG 20032

Configuring NaturalConfiguring Natural

Linking Natural Objects to the Natural
Nucleus
The Natural nucleus is a collection of service programs such as memory administration, string handling,
operating system interfaces, the compiler and the runtime environment which comprise the kernel of Natural. It
is independent of the operating-system and the TP system.

This section describes the advantages of linking Natural objects to the Natural nucleus and provides information
on how to proceed.

The following topics are covered:

Benefits
ULDOBJ Function
Using ULDOBJ to Generate an Object Module
Additional Considerations for Linking Subroutines
Object Module Generation Depending on the Operating System
Example of Linking a Natural Object to the Natural Nucleus

Configuring Natural - Other Topics:
Natural Application Programming Interfaces | Natural User Exits | Natural User Access Method for Print and
Work Files | Natural Scratch-Pad File | Natural Text Modules | Natural Configuration Tables | Natural Storage
Management

Benefits
Linking Natural objects to the Natural nucleus provides the following benefits:

Better Performance

The objects are executed from the nucleus and not from the Natural buffer pool. This saves space in the
buffer pool and also results in fewer database calls. (If Natural cataloged objects are not linked to the
Natural nucleus, they are stored in a database file, for example Adabas, and the actual code must be loaded
from this file into the buffer pool before it can be executed.)

Consistency

As an object which is linked to the Natural nucleus is always executed from the nucleus, there is no effect if
the cataloged object from which it was derived is deleted or changed in the Natural system file. Thus,
during each TP-monitor session, the status of the object remains unchanged. A new version of an object
which is linked to the nucleus can be obtained by unloading it with ULDOBJ, relinking the new version to
the Natural nucleus and refreshing the Natural module. (Refreshing implies that a new copy of a module is
loaded into the TP-monitor region.)

Global Error Handling

If a cataloged object fetches another program to handle errors (for example, by using the Natural system
variable *ERROR-TA), and the error-handling program cannot be loaded into the buffer pool, the original
error might be missed and any subsequent error may mask the first error and lead to confusion. To prevent
this situation, you can link a user-written global error-handling program to the nucleus.

3Copyright © Software AG 2003

Linking Natural Objects to the Natural NucleusLinking Natural Objects to the Natural Nucleus

ULDOBJ Function
You can use the ULDOBJ function to link Natural cataloged objects to the Natural nucleus. With the ULDOBJ
function, you generate an object module from a Natural cataloged object and write it to a Natural work file. The
generated object module is then processed by the linkage editor and linked to the Natural nucleus.

Note:
When a Natural shared nucleus is used (possible under OS/390 and VSE/ESA), the generated object module
has to be linked to the environment-independent part of the nucleus.

Using ULDOBJ to Generate an Object Module
Log on to the library SYSMISC and issue the command ULDOBJ to invoke the ULDOBJ function.

 09:58:19 ***** NATURAL OBJECT MAINTENANCE ***** 2001-01-31
 User: ABC - NATURAL ULDOBJ UTILITY - Library: SYSMISC
 Opsys .. OS/390

 Specify parameters below

 Object ________
 Library SYSMISC_
 OP System ... ________

Specify the following parameters:

Object The name of the cataloged object to be processed. The object can be a program, subprogram,
subroutine, helproutine or map.

Library The name of the library containing the cataloged object.

OP SystemThe name of the operating system for which the object module is to be generated. (Different
operating systems have different rules to which the object module must conform.) The name of the
operating system must be one of the the following:

OS/390 OS/390 systems

VSE/ESA VSE/ESA systems

BS2000 BS2000/OSD systems

FACOM FACOM systems

CMS VM/CMS systems

For each object processed, ULDOBJ displays a report containing the following information:

the name of the cataloged object processed;
the object type (P = program, N = subprogram, S = subroutine, H = helproutine, M = map);
the name of the library containing the cataloged object;
the name of the operating system for which the object deck was generated;

Copyright © Software AG 20034

Linking Natural Objects to the Natural NucleusULDOBJ Function

the size of the cataloged object and optimized code (if applicable);
the Natural version and SM level of the cataloged object;
statistics about the last cataloging of the object, including user and terminal IDs.

ULDOBJ prompts for another object and library after the data from the initial input have been processed. The
operating system is not requested, because it does not make sense to generate object modules for more than one
operating system for the same Natural work file.

After the last cataloged object has been processed, you enter a "." in the first input field (Object) to terminate
ULDOBJ.

The generated object module conforms to the format of the specified operating system. It is in relocatable format
with non-executable code and consists of:

an external symbol directory (ESD),
a relocation dictionary (RLD),
text with the instructions and data corresponding to the program,
an END statement (end-of-module indicator for the load module).

The generated object module is written to a Natural work file, which is used as input to a linkage editor.
(Depending on the operating system, it may be better to use ULDOBJ in batch mode.)

The generated object module must be processed by the linkage editor of the corresponding operating system
before the code is executable as a load module (see the example given below). Each load module is valid once it
is linked to the Natural nucleus and defined by an NTSTAT entry definition in the Natural configuration module
NATCONFG (see Natural Configuration Tables).

Additional Considerations for Linking Subroutines
Once a cataloged object has been unloaded by the ULDOBJ function and linked to the Natural nucleus, the
cataloged object can be deleted from the Natural system file.

However, this is not true for an object of type "subroutine". A subroutine has two names:

the name specified in the PERFORM and DEFINE SUBROUTINE statements and
the name of the object that contains the DEFINE SUBROUTINE statement.

Natural internally associates these two names, but this is possible only if the cataloged object still exists on the
Natural system file. If the cataloged object were deleted, this association would be lost and the subroutine linked
to the nucleus would not be executable.

Object Module Generation Depending on the Operating
System
The object module is generated in different ways, according to the operating system. These differences are listed
below.

5Copyright © Software AG 2003

Additional Considerations for Linking SubroutinesLinking Natural Objects to the Natural Nucleus

Platform: Requirement:

OS/390 A NAME control statement is generated as the last card of the object module. It specifies the
replace function. For example:

NAME TEST (R)

TEST is the name of the cataloged object.

VSE/ESA The object module(s) will be in MAINT format. A CATALR control statement is generated as
the first card and a "/*" as the last card of the object module. For example:

CATALR TEST object module ... /*

TEST is the name of the cataloged object.

When the MAINT utility is executed, assign SYSIPT to the work file written by the ULDOBJ
utility (ASSIGN SYSIPT=work-file-1).

BS2000/OSDThe object module(s) will be in LMR format. An ADD control statement is generated as the first
card and an END statement as the last card of the object module. For example:

ADD OBJMOD=(TEST),SOURCE=SYSDTA object module ... END

When the LMR utility is executed, assign SYSDTA to the work file written by the ULDOBJ
function (SYSFILE SYSDTA=work-file-1). The file name generated is "N22.MOD".

If multiple cataloged objects are unloaded during execution of the utility, the object decks are
appended to each other.

If LMS format is used, the job has to be modified manually.

Example of Linking a Natural Object to the Natural
Nucleus
If, for example, the objects LOGPROG and EDITPROG in the library SYSLIB are to be linked to the Natural
nucleus, the following steps could be taken:

1. Identify the cataloged objects to be linked.

 Object Library
 -------------- --------------
 LOGPROG SYSLIB
 EDITPROG SYSLIB

2. Set up the batch Natural job stream. Assuming an OS/390 environment, include the following cards:

//CMWKF01 DD DSN=ULD.NAT.PGMS,UNIT=SYSDA,DISP=(,KEEP),
 // SPACE=(CYL,(3,1),,RLSE),VOL=SER=VVVVVV,
 // DCB=(RECFM=FB,BLKSIZE=800,LRECL=80)
 //CMSYNIN DD *
 LOGON SYSMISC
 ULDOBJ LOGPROG,SYSLIB,OS
 EDITPROG,SYSLIB
 .
 FIN
 /*

3. Set up the linkage editor job stream.

Copyright © Software AG 20036

Linking Natural Objects to the Natural NucleusExample of Linking a Natural Object to the Natural Nucleus

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
 //*
 //* GENERATE OS LOAD MODULE FROM ULDOBJ UTILITY
 //*
 //LINK1 EXEC PGM=IEWL,PARM=’LIST,LET,XREF,NCAL,RENT,REUS’
 //SYSLMOD DD DSN=Natural.USER.LOAD,DISP=SHR
 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD DSN=NAT.ULD.PGMS,DISP=OLD,UNIT=SYSDA,VOL=SER=VVVVVV
 /*

This step places the load modules LOGPROG and EDITPROG in the Natural.USER.LOAD dataset.

With an additional link-edit job, these modules can be linked together as a single load module before being
linked to the nucleus in Step 5.

//JOBCARD JOB (ACCTING),CLASS=A,MSGCLASS=X
 //*
 //* OPTIONAL JOB TO LINK CATALOGED OBJECTS TOGETHER
 //*
 //LINK2 EXEC PGM=IEWL,PARM=’LIST,LET,XREF,NCAL,RENT,REUS’
 //SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
 //SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
 //SYSPRINT DD SYSOUT=X
 //SYSLIN DD *
 INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
 INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
 NAME XXXXXX(R)
 /*

4. Define the statically linked Natural programs in source module NATCONFG in the NSTATIC table for
linked Natural programs:

NTSTAT INPL,TYPE=W
 NTSTAT INPLLIB,TYPE=W
 NTSTAT AERROR,TYPE=W
 NTSTAT LOGPROG <==== your entries
 NTSTAT EDITPROG <====

"TYPE=W" means that a "weak" external reference to the specified program is generated rather than a
normal one.

5. Review the linkage editor job stream for the Natural nucleus and include the following:

//*
 //* INCLUDE DDNAME AND DSN OF DATASET WHERE OBJECTS RESIDE
 //*
 //SYSLMOD DD DSN=NATURAL.USER.LOAD,DISP=SHR
 //NATLIB DD DSN=NATURAL.V2.USER.LOAD,DISP=SHR//*
 //SYSLIN DD*
 ...
 ... INCLUDE MODULES FOR NUCLEUS
 ...
 INCLUDE NATLIB(NATPARM) NATPARM MODULE
 INCLUDE SYSLMOD(LOGPROG) LOGON NATURAL PGM
 INCLUDE SYSLMOD(EDITPROG) EDITOR NATURAL PGM
 ...
 ... INCLUDE ENTRY AND NAME CARDS
 ...
 /*

7Copyright © Software AG 2003

Example of Linking a Natural Object to the Natural NucleusLinking Natural Objects to the Natural Nucleus

If the cataloged objects were linked together (as done optionally in Step 3, include this load module instead
of the individual load modules in the link of the nucleus.

Copyright © Software AG 20038

Linking Natural Objects to the Natural NucleusExample of Linking a Natural Object to the Natural Nucleus

Natural Application Programming
Interfaces
The following topics are covered:

Purpose of a Natural Application Programming Interface
Overview of Natural Application Programming Interfaces

See also:

Natural Security Application Interfaces
Natural SAF Security Application Interface

Natural Application Programming Interfaces - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural User Exits | Natural User Access Method for Print and
Work Files | Natural Scratch-Pad File | Natural Text Modules | Natural Configuration Tables | Natural Storage
Management

Purpose of a Natural Application Programming Interface
A Natural application programming interface is a programming object that allows the user to access and possibly
modify data or to use services that are specific to Natural, a subcomponent or a subproduct. The purpose of an
application programming interface is to retrieve or modify information or use services that are not accessible by
Natural statements.

Overview of Natural Application Programming Interfaces
The following list is for general information only. For the current state of this list, execute the system command
SYSEXT.

The column Prod. shows the product code of the product wherein the application programming interface is used
(NAT = Natural, NDB = Natural DB2 interface, NVS = Natural VSAM interface, PRD = Predict, RPC = Natural
RPC, etc.).

Interface Purpose Prod.

USR0010N Get ’SYSPROF’ information NAT

USR0011N Information about logical file NAT

USR0020N Read any error text from FNAT / FUSER NAT

USR0040N Get type of last error NAT

USR0050N Get ’SYSPROD’ information NAT

USR0060N Copy LFILE definition from ’FNAT’ to ’FUSER’ NAT

USR0070N Default editor profile ’SYSTEM’ NAT

USR0080N Handle type/name of editor contents NAT

USR0100N Control LRECL NVS

USR0120N Read Natural short error message NAT

9Copyright © Software AG 2003

Natural Application Programming InterfacesNatural Application Programming Interfaces

USR0210N Save, catalog or stow Natural object NAT

USR0220N Read Natural long error message NAT

USR0320N Read user short error message from FNAT or FUSERNAT

USR0330N Read Natural object directory NAT

USR0340N Natural buffer pool interface NAT

USR0341N Natural buffer pool interface NAT

USR0350N Read current recording flags NAT

USR0360N Modify user short error message NAT

USR0400N Number of rows affected by searched UPDATE NDB

USR0420N Read user long error message from FUSER NAT

USR0421N Update user long error message on FUSER NAT

USR0500N Display a string in the title bar of a window NAT

USR0600N Display program level information NAT

USR0610N Display DB error information NAT

USR0620N Translate strings NAT

USR0622N Reset error counter NAT

USR1002N Save and restore Natural environment parameter NAT

USR1005N Information about some Natural system parametersNAT

USR1006N Support skip-sequential processing NVS

USR1007N Display work file and printer file assignments NAT

USR1009N Convert *TIMESTMP to numeric variable NAT

USR1011N Wildcard / asterisk check (short) NAT

USR1012N Read dynamic error part :1: NAT

USR1013N Display current character set NAT

USR1014N *** Line Calculator *** NAT

USR1016N Display error level for copycode NAT

USR1017N Add CATALL call to CATALL control list NAT

USR1018N Dynamic OPEN NVS

USR1019N Get ’SYSBUS’ information NAT

USR1020N Add user short error message to FUSER NAT

USR1021N Wildcard / asterisk check (long) NAT

USR1022N Type of data base NAT

USR1023N Date and time variables conversion NAT

USR1024N Read results of CATALL NAT

USR1025N Handle multiple steplibs NAT

USR1026N Display RETURN information NAT

Copyright © Software AG 200310

Natural Application Programming InterfacesOverview of Natural Application Programming Interfaces

USR1027N Search user short error message NAT

USR1028N Bit/byte conversion NAT

USR1029N Get type of Natural object NAT

USR1030N Language code conversion NAT

USR1031N Check object name NAT

USR1032N List cataloged Natural objects with type NAT

USR1033N Find DBID/FNR of a cataloged DDM NAT

USR1034N Display NTTF file table NAT

USR1035N Maintain objects via the Software AG editor engine NAT

USR1036N Maintain the user profile of the Software AG editor NAT

USR1037N Information about Natural ABEND data NAT

USR1038N Retrieve characteristics of the current platform NAT

USR1040N Get or set the UDB parameter NAT

USR1041N Install error transaction (*ERROR-TA) NAT

USR1042N Get or set the value of the UPDATE command NAT

USR1043N Perform Adabas direct calls NAT

USR1047N Dynamic switch of file name NVS

USR1048N Modify PF-key labels NAT

USR1050N Get or set a work file name NAT

USR1051N Interface to various Predict data PRD

USR1054N List libraries NAT

USR1055N List objects in a library NAT

USR1056N List DDMs on the FDIC file or in a library NAT

USR1057N Read a Natural source into an array NAT

USR1058N Read a DDM source into an array NAT

USR1066N Display the Natural ’Executing ...’ message NAT

USR1067N Check library name NAT

USR1068N Get or reset the value of DBMS calls NAT

USR1070N Issue operator commands to Entire Net-Work NAT

USR1071N RPC: Maintain TOKEN data RPC

USR1072N Get command ID of a retain set NAT

USR1073N Ping or terminate an RPC server RPC

USR2001N Read information about last error NAT

USR2002N Default text strings for Help function NAT

USR2003N Default settings for MAINMENU NAT

USR2004N Information about logical file NAT

11Copyright © Software AG 2003

Overview of Natural Application Programming InterfacesNatural Application Programming Interfaces

USR2005N Access to the internal file translation table NAT

USR2006N Get detailed message information NAT

USR2007N Set/get RPC default server information RPC

USR2008N Dynamic OPEN for VSAM/ISAM datasets NVS

USR2009N Read dynamic error part :1: NAT

USR2010N Display DB error information NAT

USR2011N Get or set a work file name NAT

USR2012N Get value of system variable *NET-USER NAT

USR2013N Get ’SYSPROF’ information NAT

USR2014N Maintain objects via the Software AG editor engine NAT

USR2015N EBCDIC or ASCII translation table for Natural RPC NAT

USR2016N Copy map profile from FNAT to FUSER NAT

USR2017N Activate map profile handling from FUSER NAT

USR2018N Read Natural object directory NAT

USR2019N Read/save Natural source into/from the source areaNAT

USR2020N Perform Adabas direct calls NAT

USR2021N Dynamic dataset allocation NAT

USR2022N Insert GUID into saved data area NAT

USR2023N Type of data base (2 bytes) NAT

USR2026N Get ’TECH’ information NAT

USR2027N Define a wait interval for the session NAT

USR2028N Output the Natural version NAT

USR2029N Dynamic file allocation (BS2000/OSD) NAT

USR2030N Read dynamic error parts :1:,... NAT

USR2031N Get ’SYSPROD’ information NAT

USR2032N Support of commit for CLOSE CONVERSATION RPC

USR2033N Information about PRD List Xref sets PRD

USR2034N Read any error text from everywhere NAT

USR2035N Support of SSL RPC

USR2036N Convert *TIMESTAMP to numeric variable NAT

USR2071N Support of EntireX Security on client side RPC

USR2072N Support of EntireX Security on server side RPC

USR2073N Ping or terminate an RPC server RPC

USR3001N List Roll Server directory entries NAT

USR3002N Delete Roll Server directory entries NAT

USR3005N Process documentation objects PRD

Copyright © Software AG 200312

Natural Application Programming InterfacesOverview of Natural Application Programming Interfaces

USR3013N Get ’SYSPROF’ information NAT

USR3025N Handle multiple steplibs NAT

USR3320N Find user short error message from FNAT or FUSERNAT

USR4001N Set Natural profile parameter PROGRAM dynamicallyNAT

USR4002N Retrieve variables of the current system NAT

USR4003N Retrieve Natural stack information NAT

USR4004N Retrieve Natural dynamic parameters NAT

USR4005N Read all current key settings NAT

USR4007N Get/set current value of profile parameter SYNERRNAT

USR4340N Natural buffer pool interface NAT

USR6002N Get the current values of some internal counters NAT

13Copyright © Software AG 2003

Overview of Natural Application Programming InterfacesNatural Application Programming Interfaces

Natural User Exits
A Natural user exit is a programming object that is invoked by Natural, a subcomponent or a subproduct.
Usually, a sample user exit is delivered in source form. The instructions contained in the user exit have to be
written or adjusted by the user. The purpose of a user exit is to manipulate data or make decisions. Most user
exits take advantage of the Natural programming language; a small subset has to be written in Assembler
language.

This document describes the following Natural user exits:

NATUEX1 - User Exit for Authorization Control
NATSREX2 and NATSREX3 - User Exits for Sort Processing
NATUSKnn - User Exit for Computation of Sort Keys
NATPM - User Exit for Inverted Output

See also:

Application Programming Interfaces in Library SYSEXT
Term Application Programming Interface (in the Glossary)
NATJRE Utility User Exit

Other Natural user exits and application interfaces are described in the relevant places in the Natural
subcomponent or subproduct documentation (Natural RPC, TP monitor interfaces, utilities, add-on products,
etc.).

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Access Method for Print and Work Files | Natural Scratch-Pad File | Natural Text Modules | Natural
Configuration Tables | Natural Storage Management

NATUEX1 - User Exit for Authorization Control
The user exit NATUEX1 is called whenever a user session is activated. It can be used to determine whether or
not the user is authorized to use Natural. The security data used to determine this can be retrieved from the
security system being used (for example, RACF or ACF2).

NATUEX1 is called using standard calling conventions:

Register Contents

15 Entry address of NATUEX1

14 Return address of Natural

13 Address of a save area of 18 words

1 Address of a parameter list

The parameter list contains five addresses:

Copyright © Software AG 200314

Natural User ExitsNatural User Exits

Address Points to an 8-byte field containing the value which is used to fill the Natural system variable

1 *INIT-USER

2 *ETID

3 *INIT-ID

4 *INIT-PROGRAM

5 *USER (Note that this system variable will be overwritten during a Natural Security logon.)

These five values can be modified by the user exit.

For normal completion, the user exit must return control with Register 15 set to "0". If Register 15 does not
contain "0", the Natural session is terminated with the condition code equal to the value in Register 15.

NATUEX1 can be linked to a shared nucleus or to an environment-independent nucleus. It is also possible to
link it to an alternative parameter module, or as a separate module if you are running with profile parameter
RCA.

For CICS: See also NCIUIDEX User ID Exit Interface in the Natural TP Monitor Interfaces documentation.

NATSREX2 and NATSREX3 - User Exits for Sort
Processing
Natural provides two user exits for sort processing: NATSREX2 and NATSREX3.

The two user exits can be used with Natural’s own sort program as well as with an external sort program. The
exits are activated automatically when they are linked to the nucleus and so their addresses get resolved. Since,
under OS/390 and VSE/ESA, many external SORT programs already supply several exit functions, the exits
NATSREX2 and NATSREX3 may especially be used either with Natural’s internal sort program or with
external SORT under BS2000/OSD.

NATSREX2 is always called when Natural passes a record to the sort program. NATSREX3 is called when the
sort program, upon completion of the sort run, passes a record to Natural. The example delivered shows how you
can establish your own collating sequence for a SORT.

When the user exits are activated, the following register conventions must be adhered to:

Register Contents

15 Entry addresses of NATSREX2 and NATSREX3

14 Return address of Natural

13 Address of the 18-word save area

1 Address of the sort record

3 Length of the sort record

The user exits have to secure the Natural registers and restore them upon returning control to Natural.

As the sort exit module is linked to the module NAT2SORT, programming has to be reentrant. The format and
structure of the sort records must not be modified.

15Copyright © Software AG 2003

NATSREX2 and NATSREX3 - User Exits for Sort ProcessingNatural User Exits

NATUSKnn - User Exit for Computation of Sort Keys
Some national languages contain characters which are not sorted in the correct alphabetical order by a sort
program or database system. With the system function SORTKEY you can convert such "incorrectly sorted"
characters into other characters that are "correctly sorted" alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnn will be invoked - nn
being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write a NATUSKnn user exit in any programming language that provides a standard CALL interface.
The character-string specified with SORTKEY will be passed to the user exit. The user exit has to be
programmed so that it converts "incorrectly sorted" characters in this string into corresponding "correctly sorted"
characters. The converted character string is then used in the Natural program for further processing.

For the conversion, NATUSKnn may use the translation table NTUTAB1 of the configuration module
NATCONFG; this means that NTUTAB1 may have to be adjusted accordingly.

NATUSKnn is called using standard calling conventions:

Register Contents

15 Entry address of NATUSKnn

14 Return address of Natural

13 Address of a save area of 18 fullwords

1 Address of a parameter list

The parameter list contains the following addresses:

Offset Address of

+0 The character string passed from Natural.

+4 The length of the character string (fullword).

+8 The character string resulting from the conversion.

+12 The length of the result string (fullword).

+16 The translation table NTUTAB1.

NATUSKnn has to to secure all registers, except 14 and 15, and restore them upon returning control to Natural.

For normal completion, the user exit must return control with Register 15 set to Return Code "0". If Register 15
does not contain "0", a corresponding Natural error will be issued.

A sample user exit, NATUSK01, is provided in source form: It applies to English and converts all English
lower-case letters in the character string to upper-case.

When a shared nucleus is used, NATUSKnn can be linked to the environment-independent part of the nucleus.

It is also possible to link it to an alternative parameter module, or as a separate module if you supply the name(s)
of the invoked NATUSKnn module(s) with the profile parameter RCA.

For linkage and loading conventions, see also the CALL statement in the Natural Statements documentation.

Copyright © Software AG 200316

Natural User ExitsNATUSKnn - User Exit for Computation of Sort Keys

NATPM - User Exit for Inverted Output
The NATPM module is used to support inverse direction terminals. It contains the user exit routine for field and
line conversion which is called by Natural at terminal I/Os if for some fields the print mode (PM parameter) has
been set to "I".

PM=I indicates inverse direction and is used to support languages writing from right to left (for example,
bi-directional languages); see also the description of the PM parameter.

The module NATPM is delivered as a source module and can be modified if required.

Inversion Logic

Natural provides a user-exit routine which is called for each field where the resulting attribute is PM=I and for
each line to be printed via hardcopy, additional report and primary batch output. This exit is called with three
parameters:

the source field to be inverted,
the target field to receive the inverted data,
a length field specifying the length of the source and target fields.

As this user exit routine is available in source code to all users, it might be used as an explicit field exit triggered
by the PM=I attribute. The user is then able to check and modify line contents or field contents.

Field User Exit

The user exit in NATPM will be called for every field where the attribute PM=I is set.

This attribute can be set by the Natural programmer, or is automatically set for numeric fields when the global
print mode is set to PM=I. It does not matter whether the output is generated for the terminal, for hardcopy, for
additional reports or for the primary output in batch.

For printing devices, Natural does not expect automatic inversion from the hardware, but calls NATPM again for
the complete line. This feature can be used in countries where the field inversion is not required to establish
interface logic with Natural based on a field attribute.

17Copyright © Software AG 2003

NATPM - User Exit for Inverted OutputNatural User Exits

Natural User Access Method for Print and
Work Files
The Natural User Access Method is an interface for third party vendor products for Natural print and/or work file
support.

The following topics are covered:

NATAMUSR Module Description
NATAMUSR Module Installation
Invoking the Third Party Product

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Exits | Natural Scratch-Pad File | Natural Text Modules | Natural Configuration Tables | Natural Storage
Management

NATAMUSR Module Description
The NATAMUSR module provides an exit interface (entry point NATAM9EX) for software vendors to handle
Natural print and work files, that is, it actually consists of two parts:

the Natural User Access Method stub NATAMUSR delivered with Natural and
the Natural User Access Method exit NATAM9EX delivered by a software vendor.

NATAMUSR Module Installation
The NATAMUSR module (with the access method exit) may be installed in one of the following ways:

linked to the Natural nucleus,
linked to the Natural driver (when driver and front-end are split),
linked to an alternative Natural parameter module (as loaded via profile parameter PARM),
linked as a separate module; in this case, the following Natural profile parameters are required:
RCA=(NATAM09), RCALIAS=(NATAM09, xxx),
where xxx is the name of the separate module in the load library.

Invoking the Third Party Product
 To invoke the third party product for Natural print and/or work file processing

Specify AM=USER for the relevant files (see also NTPRINT and NTWORK).

For details about the Natural User Access Method exit installation and other information about the third party
exit handler, refer to the documentation of the relevant software vendor.

Copyright © Software AG 200318

Natural User Access Method for Print and Work FilesNatural User Access Method for Print and Work Files

Natural Scratch-Pad File
This section provides information on purpose, use and maintenance of a Natural Scratch-Pad File.

The following topics are covered:

Purpose of a Natural Scratch-Pad File
How to Define a Scratch-Pad File
What is Stored on the Scratch-Pad File and How to Size it
Scratch-Pad File Maintenance

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Exits | Natural User Access Method for Print and Work Files | Natural Text Modules | Natural Configuration
Tables | Natural Storage Management

Purpose of a Natural Scratch-Pad File

What is it, what does it do?

The scratch-pad file is just another Natural system file like FNAT and FUSER, and has the same physical file
layout. It enables the storage of, for example, saved screen images and other types, data which are not stored
explicitly like Natural sources, objects (SAVE, CATALOG, STOW) and error messages, on a file other than the
FNAT/FUSER system files.

When do I need it?

In contrast to FNAT and FUSER, a scratch-pad file is not mandatory in a Natural session.

However, if you are working with read-only access to system files (profile parameter ROSY=ON), you must
define a scratch-pad file, because otherwise the above mentioned data could not be stored and a corresponding
error message (NAT0106) would be issued instead. The scratch-pad file is excluded from read-only access.

How to Define a Scratch-Pad File
Like all other system files of Software AG products, the scratch-pad file is a logical file. The logical file number
of the scratch-pad file is 212.

Since there is no mnemonic for the scratch-pad file like FNAT and FUSER or FDIC, it has to be defined

either statically by using the NTLFILE macro in NATPARM or
dynamically by using the LFILE profile parameter.

Examples of NTLFILE and LFILE definition:

LFILE Parameter:

LFILE=(212, physical-dbid , physical-fnr , password , cipher-key)

NTLFILE Macro:

NTLFILE 212, physical-dbid , physical-fnr , password , cipher-key

19Copyright © Software AG 2003

Natural Scratch-Pad FileNatural Scratch-Pad File

What is Stored on the Scratch-Pad File and How to Size it
The objects that are stored on the scratch-pad file are:

Recordings
Screen Captures (NATPAGE utility)

As the amount of usage of the Recording utility and the NATPAGE utility cannot be calculated beforehand, a
reasonable estimate about the related storage requirements is hardly possible. However, the scratch-pad file size
required at your site can be estimated with a better understanding of the types of records that are stored on it.

Recordings

The Recording utility is activated using terminal commands as described in the documentation Recording.
Recordings are stored like Natural source programs (or other object types). The size of a recording depends on
how many screen inputs have been done during a recording session. Recordings are like programs related to a
library.

Currently, it is not possible to list recordings on the scratch-pad file by using the Natural LIST system command.
SYSMAIN can be used, though, to list and maintain the recordings stored on the scratch-pad file. To store the
recordings on the FNAT/FUSER file instead of on the scratch-pad file, set the RFILE profile parameter.

Recordings which are being stored on the FNAT/FUSER file are affected (interrupted) by transaction backouts
(BTs) which are issued in the user’s application programs. This is a very common problem encountered by users
of the recording facility and it can be avoided by using the scratch-pad file.

Screen Captures - NATPAGE

The screen paging utility NATPAGE can be used to store screen images (in chronological sequence of their
appearance) on the scratch-pad file. NATPAGE can be activated with the terminal command %P. From the
moment %P is issued, all screens presented to the end user are stored onto the scratch-pad file (if it has been
defined for your session) until the terminal command %O is entered. The captured screens can be displayed
using the terminal command %E.

For each screen image, the current content of the page buffer and the page attribute buffer is stored. This means
that the amount of data being stored depends on the PS/LS settings for the session and, of course, on the number
of screen images. The number of possible screens per user session depends on the PD parameter (default is 50;
valid values are 0-255).

The size of the page buffer can be calculated as:

PS * LS

The size of the page attribute buffer is determined dynamically.

Copyright © Software AG 200320

Natural Scratch-Pad FileWhat is Stored on the Scratch-Pad File and How to Size it

Scratch-Pad File Maintenance
The scratch-pad file does not need any maintenance, provided it is of sufficient size.

Recordings on the scratch-pad file can be deleted, copied, moved and listed by using the utility SYSMAIN.
Captured screens can be deleted by using the %E terminal command.
SETUP records and saved screen images, however, cannot be maintained in Natural at all.

Space on the scratch-pad file can be reclaimed by refreshing it using Adabas utilities in times of non-activity
without affecting subsequent Natural sessions using the scratch-pad file.

21Copyright © Software AG 2003

Scratch-Pad File MaintenanceNatural Scratch-Pad File

Natural Text Modules
This section describes the Natural text modules NATTEXT and NATTXT2. It covers the following topics:

Function and Usage of Text Modules
NATTEXT Module
NATTXT2 Module

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Exits | Natural User Access Method for Print and Work Files | Natural Scratch-Pad File | Natural Configuration
Tables | Natural Storage Management

Function and Usage of Text Modules
All Natural keywords, alternative keywords and standard output text are contained in the modules NATTEXT
and NATTXT2. Natural system commands and alternate system commands are also included as keywords and
alternative keywords respectively in these modules. The modules are contained in source form in the Natural
source library and in load module form in the Natural load library.

If necessary, you can modify Natural keywords, alternative keywords and text contained in these modules. For
example, Natural session termination messages can be changed from English to another language, Natural
keywords can be disabled, or synonyms can be added.

If any modifications are made to a NATTEXT or NATTXT2 module, each modified module must be assembled,
link-edited and included into the executable Natural module, refer to the Natural Installation Guide for
Mainframes.

NATTEXT Module
The NATTEXT module contains NTKEY and NTALT macros for each keyword and alternative keyword to be
recognized by Natural.

Modifying NATTEXT

It is recommended that you modify NATTEXT for very important reasons
only, because once modified, it can no longer be properly maintained by
Software AG personnel.

The following rules apply:

A keyword value for a NTKEY or NTALT macro can be changed by replacing the current keyword value
with the desired value.
A keyword or alternative keyword can be disabled by replacing the keyword value with the character "%".
The position of each NTKEY and NTALT macro within the module is fixed and must not be shifted.
Additional NTKEY and NTALT macros must not be inserted.
Synonyms can be assigned for any keyword or alternative keyword using the NTSYN macro. One or more
NTSYN macros can be inserted after a NTKEY or NTALT macro. The NTSYN macro includes one
parameter, which is the value to be used as the synonym. If the synonym contains embedded blanks, the
entire value must be enclosed in apostrophes.

Copyright © Software AG 200322

Natural Text ModulesNatural Text Modules

Example of Modifying the NATTEXT Module

The following example illustrates how a NATTEXT module is modified. In this example

the synonym RECHERCHE is to be used for the keyword FIND;
the synonym LISEZ is to be used for the alternative keyword BROWSE;
the keywords GET and HISTOGRAM are to be disabled.

NATTEXT before modification:

STATNAM NTKEY FIND
 NTALT BROWSE
 NTALT GET
 NTALT ACCEPT
 NTALT REJECT
 NTALT HISTOGRAM

NATTEXT after modification:

STATNAM NTKEY FIND
 NTSYN RECHERCHE
 NTALT BROWSE
 NTSYN LISEZ
 NTALT %
 NTALT ACCEPT
 NTALT REJECT
 NTALT %

NATTXT2 Module
The NATTXT2 module contains standard Natural output texts and Natural termination messages.

Standard Natural Output Texts

The module NATTXT2 contains the following standard Natural output texts, each of which can also be
displayed in another language if the language code is set accordingly (see also below):

the literal "Page" used in the standard output page header;
the name of each month as used in the Natural system variable *DATG (Gregorian date), date edit masks
(L), and the name of each day as used in date edit masks (N);
the "ENTER INPUT DATA" message and the skeleton error messages for error numbers 1104, 1105 and
1106 (used during online input processing);
the error message used for system file open failure (which cannot be retrieved from the system file); an
error number of the form NAT8xxx (where xxx is the decimal Adabas response code) is added to this error
message by Natural;
the constants "More", "Top" and "Bottom" used in windows for position information to be displayed in text
form;
the table to define reports and report handling for reports greater than 33.

Any values contained in NATTXT2 can be modified by replacing the current text with the desired text. If a
month-name synonym exceeds nine characters, only the first nine positions are used by the system variable
*DATG. The NATTXT2 module contains the macros NTKEYT, NTALTT and NTSYNT.

23Copyright © Software AG 2003

NATTXT2 ModuleNatural Text Modules

NTSYNT macro statements can be added as described for module NATTEXT. However, with NATTXT2, a
second parameter can be specified. This parameter is optional and represents the language indicator to be used
for the synonym. When you specify the language indicator, Natural produces message output resulting from the
use of this synonym in the corresponding language. In addition, if error message texts have been stored in the
Natural system file using a language indicator other than "1" (which is the default and stands for "English"),
error messages are returned in the corresponding language. For information on which language code stands for
which language, refer to the ULANG parameter.

Natural Termination Messages

Apart from standard output texts, NATTXT2 contains the session termination messages issued by Natural. Each
of these messages consists of the message ID and the message text.

The message ID must not be modified; however, you can modify the message text. The overall length of ID and
text can be up to 72 characters.

Apart from the message ID and text, each system termination message also includes one of the following Natural
system return codes:

Code Explanation

0 Normal termination.

4 Error occurred during execution/compilation (batch mode only).

8 Termination due to severe runtime error.

12 Session initialization failure.

16 Abnormal termination due to abend or severe environment failure..

User-written termination messages can be added for all return codes (1 - 255) which can be issued with a
TERMINATE statement and which normally lead to the Natural termination message NAT9987.

For user-written termination messages, a return code must be specified.

Example of a User Termination Message:

NTERMSG ’THIS IS A SAMPLE USER MESSAGE FOR RETURN CODE 77’,77

Copyright © Software AG 200324

Natural Text ModulesNatural Termination Messages

Natural Configuration Tables
This section provides general information on the Natural configuration tables which are contained in the
NATCONFG module.

The following topics are covered:

NATCONFG Module
NTDVCE - Terminal-Device Specification Table
Code Page Support
Output Devices Supported
Specification of NTDVCE
Translation Tables
Upper-/Lower-Case Translation
CMULT Macro
Output Translation
Input Translation
Code Translation of DBCS Data
NTTZ - Time Zone Definitions

See also:

Input/Output Devices Supported

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Exits | Natural User Access Method for Print and Work Files | Natural Scratch-Pad File | Natural Text Modules |
Natural Storage Management

NATCONFG Module
The NATCONFG module contains the Natural configuration tables.

In general, the default specifications in NATCONFG need not and should not
be modified.
In particular, do not modify without prior consultation of Software AG
support any of the tables marked with an asterisk (*) in the list below.

For most of the tables, there are corresponding macros in the Natural parameter module NATPARM as well as
dynamic profile parameters. If you need to modify a NATCONFG table, use the corresponding
parameter-module macro, or dynamic profile parameter, to overwrite the table. (If you made the modifications in
the NATCONFG tables themselves, you would have to modify and reassemble NATCONFG again with
subsequent system maintenance (SM) releases.)

The NATCONFG module uses macros for the definition of the following Natural default configuration tables.

In addition, it uses the following tables:

The default attention identifier table. It defines the physical terminal keys to Natural (*).
Various other tables (*).

25Copyright © Software AG 2003

Natural Configuration TablesNatural Configuration Tables

General Overview of Macros Used by NATCONFG

The following table provides a general overview of the macros used by the NATCONFG module for the
definition of the Natural default configuration tables:

Macro Purpose

NTDVCE Table of terminal types. Used to specify the terminal driver to be used, see description below,
for details.
(* Do not modify an existing NTDVCE macro, rather create a new one).

NTSTAT List of Natural objects that are linked to the Natural nucleus. Any additional object to be linked
to the nucleus must be specified with an NTSTAT macro. When searching for an object,
Natural always scans this list first, regardless of the library specified. For information on how to
link Natural objects to the Natural nucleus, see the ULDOBJ function in Linking Natural
Objects to the Natural Nucleus.

NTTAB Primary output translation table.

NTTAB1
NTTAB2

Secondary output/input translation tables.

NTUTAB1
NTUTAB2

Tables for translation between lower and upper case. These tables have to be modified, for
example, for the German character set.

NTTABA1
NTTABA2

Tables for translation of EBCDIC characters to ASCII characters and vice versa. These tables
are used by the SYSTRANS utility.

NTTABL SYS* translation table. Translates output from programs contained in Natural "SYS" libraries.

NTLANG Language translation table. Contains a list of all available language codes defined to Natural (*).

NTSCTAB Scanner character type table. Determines which characters are lower-case alphabetical,
upper-case alphabetical, numeric and special characters (applies to dynamic profile parameters,
MASK and SCAN options).

NTTZ Time zone definitions. The NTTZ macro enables specifications about zonetime and automatic
switching to and from summertime.

For further details, see also Translation Tables.

NTDVCE - Terminal-Device Specification Table
For each terminal type supported by Natural, a terminal converter routine is provided. The corresponding
terminal drivers are responsible for the actual terminal I/Os. They build the physical data stream from the screen
buffer and the screen attribute buffer and place it in the terminal I/O buffer.

In addition, the telex driver module NATTLX is provided for Con-nect in order to provide faster telex, telefax
and teletex communication from and to the TOPCALL system. NATTLX supports the TOPCALL full-page
protocol.

With the NTDVCE macro, it is possible to add new terminal drivers to Natural to specify modifications of the
terminal-specific input/output or lower-to-upper case translation tables. Other information which can be
specified is the frame character, the position of the message line, whether screen optimization is to be on or off,
as well as various flags in the IOCB. In addition, the terminal specification can be routed to an existing driver by
using other translate tables or can hook into a driver routine.

Copyright © Software AG 200326

Natural Configuration TablesNTDVCE - Terminal-Device Specification Table

The NTDVCE macro is invoked by either the terminal command %T from the Natural command line or the SET
CONTROL statement from within a Natural program. At the start of a Natural session, the translation tables
NTTAB, NTTAB1, NTTAB2, NTUTAB1 and NTUTAB2 are copied from the NATCONFG module into the
user area where they are modified by NTDVCE.

Note that the translation tables can be modified by the same macros dynamically or within the NATPARM
parameter module.

Code Page Support
By using the NTDVCE macro, different code pages can be defined and associated with a specific terminal type
and name. If Natural is then started with PM=C, all terminal I/O is translated on input and retranslated on output.
Thus, as long as the code pages are compatible, a common data representation can still be maintained.

Output Devices Supported
Attribute control variables and formats define attributes to generate a certain representation on the output device.
Natural offers a wide range of possible attributes to allow the end user the best use in designing maps and reports
on the terminal.

Unfortunately not all terminals support all features available with Natural. These features are mostly ignored on
such devices or are simulated via other techniques. Basically there are two data stream definitions in an IBM
environment called standard data stream and extended data stream and a multitude of data stream definitions in
an SNI environment.

The following output devices are supported:

Sequential Output Devices for Batch, Additional Reports
Line-Oriented Online Terminals
Block-Mode-Oriented Online Terminals

Sequential Output Devices for Batch, Additional Reports

The output data contain standard ASA control characters controlling the line advance and page-eject facility of
the given printer. This printer can be either the central printer in the computer center supported by the online or
batch spooling system or the SCS printer used as online terminal printers.

The following devices can be used to print reports generated in this form:

Impact printer Standard central printer hardware

Laser printer High-speed printer, terminal printer

Daisy printer Terminal printer

Inkjet Terminal printer

Line-Oriented Online Terminals

TTY Data sent to TTY devices are generated using the standard formfeed, linefeed, etc. characters.

27Copyright © Software AG 2003

Code Page SupportNatural Configuration Tables

Block-Mode-Oriented Online Terminals

IBM All models and sizes which support standard data stream and/or extended data stream.

SNI All 9750 and compatible monochrome devices and all 9763 and compatible color devices.

Wang All models.

PC All models and sizes which support standard data stream and/or extended data stream.

Specification of NTDVCE
For information on how the NTDVCE macro is specified and for descriptions of the individual parameters, refer
to the NTDVCE macro itself.

Example of NTDVCE Macro:

NTDVCE TYP=EBS2,NAME=BS2CHAR,ENTRY=VC3270,WXTRN=OFF,RTAL=5,
 FLAG1=CM3270,TCIO=(X’C0’,X’FB’,X’6A’,X’4F’,X’D0’,X’FD’,
 X’4A’,X’BB’,X’E0’,X’BC’,X’5A’,X’BD’,X’A1’,X’FF’,X’4F’,
 X’5A’)

This sample macro converts internal SNI code pages to external IBM code pages. This enables you to develop
applications on IBM terminals, which internally work with SNI code pages to, for example, avoid data collision
when migrating from IBM to SNI.

Translation Tables
All data printed, displayed or written by Natural programs are translated by Natural. This guarantees that no
illegal control characters can cause terminal I/O errors or display garbage information on the terminal.

Another feature is the translation to and from character sets different from the Latin definition, especially Arabic,
Cyrillic, Greek and Hebrew characters.

This section describes all features and functions concerning field translations when data are written to external
devices such as CRT (screen terminals) or online and batch spooling systems.

The statements INPUT, DISPLAY, PRINT and WRITE write data to or read data from external devices such as
CRT, TTY or sequential files. All these statements use parameters such as constants, variables, edit masks,
attribute control variables and formats to control the output image and the input representation. Constants and
variables are generated by using their respective values in the output image. The representation of these values is
then controlled by the attribute control variables, formats, edit masks and translation tables.

Natural uses several translation tables and also provides the use of alternative translation tables, all included in
NATCONFG.

The following tables are provided:

Copyright © Software AG 200328

Natural Configuration TablesSpecification of NTDVCE

Macro Table

NTSCTAB The SCAN/MASK character table which defines the properties of each printable character
for the Natural mask definition function. This table can be used to define upper-case
attributes, lower-case attributes, special characters, hexadecimal characters and numeric
characters. It can be modified by the user and the result can be used directly in the Natural
MASK clause. To modify this table, you can use the macro NTSCTAB Macro in the Natural
parameter module or the corresponding dynamic profile parameter SCTAB.

NTTAB The standard (primary) output translation table used for screen or printer output. Basically
this table is used to translate all characters below X’40’, that is from the space character to
the question mark (X’00’ is not translated). This guarantees that all terminal-control
characters are translated before output and no control escape sequences can influence the
screen output. Special characters (X’FE’ and X’FF’) which could influence the screen output
are translated into question marks. If nothing else is specified, all Natural output data are
translated with NTTAB. To modify this table, you can use the macro NTTAB in the Natural
parameter module or the corresponding dynamic profile parameter TAB.

NTTAB1 The alternative (secondary) output translation table for the secondary character set used when
the Natural parameter PM is set to "C". The important aspect is the translation of all possible
terminal-control characters. If PM=C is specified, all Natural output data are translated with
NTTAB1. A possible application of NTTAB1 is to avoid the translation of escape sequences
for printer control. To modify this table, you can use the macro NTTAB1 in the Natural
parameter module or the corresponding dynamic profile parameter TAB1.

NTTAB2 The secondary input translation table used when the Natural parameter PM is set to "C". If
PM=C is specified, all Natural input data are translated with NTTAB2. Conversion between
different languages or code pages can be performed with this table together with NTTAB1.
To modify this table, you can use the macro NTTAB2 in the Natural parameter module or the
corresponding dynamic profile parameter TAB2.

NTTABS This table defines all valid characters that can be used in Natural variable names; it is used
for the Natural syntax processor. It also defines all valid characters that can be used in the
first position of a Natural variable name. In addition, it defines whether the variable is a
global variable, a non-database variable or a source-code variable.

NTUTAB1 The sample user-specific translation table for input translation from lower to upper case. In
addition, this table performs the translation specified with the statement EXAMINE
TRANSLATE INTO UPPER CASE. To modify this table, you can use the macro
NTUTAB1 in the Natural parameter module or the corresponding dynamic profile parameter
UTAB1.

NTUTAB2 The sample user-specific translation table which performs the translation specified with the
statement EXAMINE TRANSLATE INTO LOWER CASE. To modify this table, you can
use the macro NTUTAB2 in the Natural parameter module or the corresponding dynamic
profile parameter UTAB2.

NTLANG The language-code table, which defines which language number is assigned to which
language code in the system variable *LANGUAGE.

NTTABL The SYS* output translation table, which is controlled by the Natural profile parameter TS.
With TS=ON, this table is used to translate output produced by programs located in Natural
SYS* libraries (except modifiable fields) from Latin lower case to upper case. This table
allows the use of all upper- and lower-case characters in Latin oriented countries, but still
allows the use of these applications in countries where the lower-case characters have been
replaced with a native alphabet. To modify this table, you can use the macro NTTABL in the
Natural parameter module or the corresponding dynamic profile parameter TABL.

29Copyright © Software AG 2003

Translation TablesNatural Configuration Tables

Macro Table

WRDFCUC1
WRDFCUC2
WRDFCSP2

The DBCS translation tables used to translate double-byte characters into Latin characters
and vice versa. These tables have to be activated explicitly, for example, for Far East
countries.

Upper-/Lower-Case Translation
For modifiable and input fields, upper- and lower-case translation can be specified. In general, lower-case
translation means that data are taken as they come in; no translation is performed. This even makes it possible in
batch mode, for instance, to read in hexadecimal data without translation.

There are several ways of specifying upper-/lower-case translation:

LC=OFF Lower-case translation is switched off, which means that global upper-case translation is in
effect. This profile parameter can be specified in the Natural parameter module or as
dynamic parameter. (Note that the session parameter LC has a completely different
function.)

%U Upper-case translation is globally on. On the field level, the attribute AD=T or AD=W can
be specified. These attributes only take effect when the global upper-case translation is
deactivated (LC=ON, %L). Then it is possible to control the translation on a field level from
within a Natural program.

EXAMINE
TRANSLATE

Upper-/lower-case translation can also be performed with the EXAMINE TRANSLATE
statement. By default, EXAMINE TRANSLATE translates to upper case via NTUTAB1
and to lower case via NTUTAB2.

CMULT Macro
It is no longer recommended to use the CMULT macro; use the EXAMINE TRANSLATE statement instead (see
above).

Output Translation
All fields, after being formatted by possible edit masks, AL or NL values, filling characters, etc. are translated by
a translation table. This ensures that no data can be sent to the front-end printing device with embedded control
information which is not explicitly generated by Natural. This means that fields can be sent to a CRT device
even containing hexadecimal information identical to internal attributes. These attributes are translated before an
output operation and so Natural guarantees the screen layout as defined by the output statement.

There are several translation tables available. If nothing is explicitly defined, the primary translate table NTTAB
is used.

If PM=C is specified, the secondary translation table NTTAB1 is used. For modifiable fields, PM=C also means
that the incoming data are translated again; that is, translated for output and retranslated for input.

With this translation table logic it is possible, for example, to convert Arabic numerals to Latin numerals. Arabic
numerals have a different hexadecimal representation from the normal Latin numerals on the terminal hardware.
So on output, the Latin numerals can be translated into the Arabic equivalent and on input, the Arabic numerals
can be retranslated into Latin.

Copyright © Software AG 200330

Natural Configuration TablesUpper-/Lower-Case Translation

Special considerations have to be made for the Natural system applications which use Latin lower-case and
upper-case characters. Especially on terminals supporting Arabic, Greek, Cyrillic, etc., the hardware can be
switched to not display lower-case Latin characters, but rather the native characters.

Unfortunately Latin lower-case characters are not very readable when displayed in, for instance, Cyrillic. So
Natural can be used with the parameter TS=ON (translate system output). TS=ON translates "SYS*" libraries
(not including library SYSTEM) and all Natural system commands by a third translation table called NTTABL.
The default for this translation table is an upper-case translation for all lower-case Latin characters. Of course,
only output data are treated this way. So this allows data entry in the native character set even in Natural editors
or system applications.

However, if Natural utilities are used to display data typed in the native character set, this results in an
upper-case translation even for data in, for example, Cyrillic representation. The result would again be
unreadable. So all Natural system utilities can use the format PM=C for fields containing data entered in the
native character set. In this case, neither the NTTABL translation table nor the secondary translation table
NTTAB1 is used. The data are simply translated by the primary translate table NTTAB.

For more information on the parameters PM and TS, see PM, and TS.

Input Translation
The translation table NTUTAB1 is available to control translation from lower to upper case. This might cause
problems in countries where special characters are used which are not set up with the simple logic that just one
bit controls the status of this letter. This especially concerns the German umlauts or the Danish special letters.
This translation can then only be achieved by customizing the NTUTAB1 table, where for each character the
corresponding lower-/ upper-case character can be specified.

If upper-case translation (%U) and PM=C is specified, first upper-case translation (using NTUTAB1) and then
the secondary input translation (using NTTAB2) is performed.

Code Translation of DBCS Data
So that double-byte character set (DBCS) data can be processed the CMMPP code translation program is
provided to translate double-byte characters into Latin characters; for further information, see Support of
Double-Byte Character Sets (DBCS).

NTTZ - Time Zone Definitions
The following topics are covered below:

NTTZ Macro
NTTZ Macro Syntax
Restrictions of NTTZ Macro
Example of NTTZ Macro

NTTZ Macro

The NTTZ macro enables specifications about zonetime and automatic switching to and from summertime.

Time definitions are determined by the system administrator, and the user can reference these definitions by
using the Natural profile parameter TD=zonename. With this parameter, users from different countries and time
zones are able to select their own local time.

31Copyright © Software AG 2003

Input TranslationNatural Configuration Tables

The NTTZ macro can be used on a minimal basis to define a time difference for a timezone. In addition, an
automatic switch to and from summertime can be specified, either as a fixed date or in a more flexible definition
like "first Sunday in April". The automatic switch to and from summertime is processed during a running Natural
session, without requiring any user interactions. Predefined samples of NTTZ macro definitions are shipped with
NATCONFG.

Reference point for automatic switching to and from summertime is the current machine time, which is UTC
(GMT) time. Depending on the time period the current machine time is in, the current local time is determined.
The support for automatic switching to and from summertime is currently for years in the range from 2002 to
2041.
Note:
The Natural profile parameters DD and YD do not have any effect on the automatic switching to and from
summertime, since the switch is done on the basis of the current machine time. It is recommended to avoid
concurrent use of DD or YD with TD=zonename.

NTTZ Macro Syntax

The syntax of NTTZ macro is as follows:

NTTZ ZONE=time zone name , TDON=+/-hh:mm:ss,
 [TDOFF=+/-hh:mm:ss, SWTON=hh:mm:ss,
 SWTOFF=hh:mm:ss,
 DSTON=([{FIRST | SECOND | THIRD | FOURTH | LAST},
 {MONDAY | | SUNDAY},
 {AFTER | BEFORE | IN}],
 {JANUARY | | DECEMBER},
 [,day number]),
 DSTOFF=([{FIRST | SECOND | THIRD | FOURTH | LAST},
 {MONDAY | | SUNDAY}.
 {AFTER | BEFORE | IN}],
 {JANUARY | | DECEMBER}
 [, day number])
]

NTTZ Macro Parameters

Copyright © Software AG 200332

Natural Configuration TablesNTTZ Macro Syntax

<time +/- hh:mm:ss>The basic format is <{+/-} hh:mm:ss> ranging from 00:00:00 through 23:59:59;
abbreviations are also allowed, like: <hh:mm> or simply <hh>. The +-sign is assumed
by default, the ’-’ sign may be necessary with parameters TDON or TDOFF.

time zone name is the Software AG or user-defined time zone name which can be referenced with the
TD-Parameter. The first occurrence of a name will be selected. The maximum length of
a time zone name is 32 characters to allow for nice user defined zones, e.g. the name of
the capital city of a country.

TDON denotes the difference of local daylight saving time (summertime) to UTC time
(formerly GMT). This parameter corresponds to the parameter SWTON.

If only the TDON-parameter is defined, the user gets display of local time as his
zonetime, without any automatic switch to and from summertime.

TDOFF denotes the difference of local zonetime to UTC time (formerly GMT). This parameter
corresponds to the parameter SWTOFF.

SWTON denotes the UTC point of time when daylight saving time (summertime) is switched on.

SWTOFF denotes the UTC point of time when daylight saving time is switched off.

day number is a valid day number for the respective month; the default for day number being 1.

Restrictions of NTTZ Macro

LAST requires BEFORE or IN.
If IN is specified, no day number must be specified.

Note:
In order to have a unique point of reference for the time switch, the NTTZ macro parameters SWTON and
SWTOFF are given in UTC time, whereas the weekday names and day numbers in the NTTZ macro parameters
DSTON and DSTOFF are specifications in local time.

Example of NTTZ Macro

For daylight saving time switching in Western Europe:

NTTZ ZONE=MEZ,
 TDON=2,TDOFF=(+01,00,00),SWTON=(01,00,00),SWTOFF=(01,00,00),
 DSTON=(LAST,SUNDAY,IN,MARCH),
 DSTOFF=(LAST,SUNDAY,IN,OCTOBER)

Other examples for different time zones (North and South America, Asia, etc.) can be found in the Software
AG-delivered NATCONFG.

33Copyright © Software AG 2003

Restrictions of NTTZ MacroNatural Configuration Tables

Natural Storage Management
This section describes how Natural allocates and uses main storage. A piece of storage requested by a Natural
nucleus component is called a "buffer".

The following topics are covered:

Thread and Non-thread Environments
Buffer Types
Fixed Buffers
Variable Buffers
Customization of Buffer Characteristics

Configuring Natural - Other Topics:
Linking Natural Objects to the Natural Nucleus | Natural Application Programming Interfaces | Natural User
Exits | Natural User Access Method for Print and Work Files | Natural Scratch-Pad File | Natural Text Modules |
Natural Configuration Tables

Thread and Non-thread Environments
There are two different types of storage environments:

Thread storage environment (typical for multi-user environments, e.g. CICS)
Non-thread storage environment (typical for single-user environments, e.g. batch)

In a thread environment, a big piece of storage called "thread" is pre-allocated for a session. The thread size must
be predefined by the system administrator. During a session each buffer allocation request (getmain) is satisfied
within its thread by Natural itself. Free space due to release buffer requests (freemain) can be reused.

Upon certain events (terminal I/Os and long waits), the thread storage may be compressed and rolled out (or
swapped out) to external storage (swap pool or roll file). The released thread can be reused by other Natural
sessions. When a suspended session is to be resumed, it is rolled in from external storage into a free thread again.

The place on the swap pool or roll file where the compressed thread storage is stored, is called a "slot". The slot
size has a fixed length and is defined by the system administrator. It must be large enough to contain the largest
compressed thread storage. In the worst case, it may be equal to the thread size.

In a non-thread environment, all storage requests are directly passed to the operating (sub-)system. No
roll-out/roll-in is performed, that is, the buffers for a session are kept until session termination, unless they were
explicitly released before.

Buffer Types
There are 3 different types of buffers:

fixed buffers
variable buffers
physical buffers

Fixed and variable buffers have a 32-byte prefix with a common layout for all environments. The buffer prefix
starts with the buffer name followed by 5 buffer length fields (total, used low-end, max. used, used high-end,
max. used high-end). The used length fields are maintained by the buffer-owning components and are used for

Copyright © Software AG 200334

Natural Storage ManagementNatural Storage Management

thread compression. Each buffer has a unique ID number (1-255) and can exist only once. Some buffers are
allocated during session initialization, others are allocated when required. The BUS command can be used to
show information about all fixed and variable buffers currently allocated. The characteristics of the buffers are
defined in the source module NATCONFG, which can be customized in exceptional cases (see Customization of
Buffer Characteristics below). The size of some buffers can be specified by a profile parameter. For a complete
list of such buffers, see the profile parameter DS.

Physical buffers are allocated outside the thread. They do not have a buffer prefix and they are not unique. They
are used in exceptional cases and temporarily only. Physical buffers are automatically released at the next
terminal I/O. It is possible to define work pools for physical buffers by profile parameter WPSIZE.

Fixed Buffers
In a thread environment, fixed buffers are allocated from the low end of the thread only. In contrast to variable
buffers, fixed buffers cannot be moved relatively to the thread and their size cannot be increased or decreased.

Variable Buffers
In a thread environment, variable buffers are allocated from the high end of the thread. If there is no more space
in the thread, variable buffers are allocated temporarily outside of the thread. Upon thread compression, all
buffer parts used are compressed into the thread. If they do not fit into the thread, the session is terminated
abnormally. This may happen especially when large dynamic variables are used.

After thread decompression, the variable buffers may have been moved to a different place inside or outside of
the thread. Variable buffers can be increased or decreased in size on request by the owning component. Some
variable buffers are defined to be reduced or released automatically during thread compression.

The total amount of storage allocated outside the thread can be limited by profile parameter OVSIZE.

Customization of Buffer Characteristics
All buffers are defined in the source module NATCONFG by the macro NTBUFID.

Please, do not change any buffer characteristics except the minimum and
maximum buffer size settings explained below, because the results may be
unpredictable.

It is possible to change the buffer size limits by the parameters MIN and MAX of the macro NTBUFID. This
makes sense for variable buffers (TYPE=VAR) only. There are limits for all buffers, either by default (0 -
2097151 KB) or by the limits of the corresponding profile parameters, the see profile parameter DS. The limits
of the buffer size profile parameters in the Natural parameter module (NATPARM) are not affected by the MIN
and MAX parameters of NTBUFID, but the limits for the dynamic profile buffer size parameters are overwritten
by MIN and MAX.

Setting the MAX parameter to a value in KB means that the size of this buffer cannot exceed this maximum
during session execution. This may cause runtime errors if more buffer storage is requested for the desired
buffer.

Setting the MIN parameter to a value in KB means that the size of this buffer cannot be less than this value
during session execution. For example, in the case of the 3GL CALLNAT interface (NAT3GCAN), the setting
of a buffer minimum value makes sense for the following buffers, because the sizes of these buffers may not be
increased on a lower Natural program level called by a 3GL program.

35Copyright © Software AG 2003

Fixed BuffersNatural Storage Management

DATSIZE Data areas

GLBTOOL Utility GDA

GLBUSER User GDA

GLBSYS System GDA

AIVDAT AIV area

CONTEXT Context variables

Copyright © Software AG 200336

Natural Storage ManagementCustomization of Buffer Characteristics

Profile Parameter Usage - Overview
This document describes the fundamentals and rules that apply to the use of Natural profile parameters in a
mainframe environment.

The following topics are covered:

Natural Parameter
Hierarchy

provides an overview of the hierarchical structure of the different levels on which
Natural parameters can be set. Examples are provided to illustrate the various
scenarios.

Assignment of
Parameter Values

explains how values can be assigned to profile parameters statically, dynamically
and at runtime.

Profile Parameters
Grouped by Function

provides an overview of the profile parameters available, grouped by function.

Using a Natural
Parameter Module

covers the following topics: assembling a Natural parameter module, using the
NATPARM default Natural parameter module, creating the NTPRM macro,
optional macros used in a Natural parameter module.

For details of the individual profile parameters, see Profile Parameters.

37Copyright © Software AG 2003

Profile Parameter Usage - OverviewProfile Parameter Usage - Overview

Natural Parameter Hierarchy
This document provides an overview of the hierarchical structure of the different levels on which Natural profile
parameters can be set. Various examples are given to illustrate the scenario.

The following topics are covered:

Natural Parameter Hierarchy Overview
Natural Parameter Hierarchy Details
Natural Standard Parameter Module
Alternative Parameter Module
Predefined Dynamic Parameter Sets
Predefined User Parameter Profiles
Dynamic Parameter Entry
Natural Security Definitions
Session Parameter Settings
Program/Statement Level Settings
Development Environment Settings
Examples of Various Parameter Strings

For details of the individual profile parameters, see Profile Parameters.

Profile Parameter Usage - Other Topics:
Assignment of Parameter Values | Profile Parameters Grouped by Function | Using a Natural Parameter Module

Natural Parameter Hierarchy Overview
Natural profile parameters affect the appearance and the response of a Natural user’s working environment.
These parameters are set at different hierarchically organized levels as illustrated in the table below (priority
from high to low).

During Session Development Environment Settings

Program/Statement Level Settings

Session Parameter Settings

Natural Security Definitions

Dynamic during Session Start Dynamic Parameter Entry

Predefined User Parameter Profiles

Predefined Dynamic Parameter Sets

Static Alternative Parameter Module

Natural Standard Parameter Module

The following general rules apply:

Copyright © Software AG 200338

Natural Parameter HierarchyNatural Parameter Hierarchy

A parameter value set on a higer level overwrites the value defined on a lower level
(exceptions: PROFILE, SYS, DYNP and some other parameters that work by adding values).
Dynamic parameters during session start have sequence priority, i.e. they are evaluated from left to right.

Example:

ESIZE=20,DATSIZE=60,ESIZE=100

The resulting value is ESIZE=100.

Not all of the parameters available at a lower level can be defined on a higher level, too.

Natural Parameter Hierarchy Details
The hierarchically organized levels are discussed below, starting from the lowest and ending with the highest
priority.

Natural Standard Parameter Module
Natural parameters are defined in the standard (default) parameter module which is linked to the Natural nucleus.
This module constitutes the bottom level of the Natural parameter hierarchy.

Special Case: If a shared Natural nucleus is used, this parameter module must be linked to the
environment-dependent nucleus module. This parameter module then constitutes the second hierachical level
and overwrites all the parameters of the parameter module which is linked to the shared nucleus (if any).
Exception: the CSTATIC subprograms of the shared nucleus, see Statically Linked Non-Natural Programs.

Alternative Parameter Module
In addition to the Natural standard parameter module, the Natural administrator can define any number of
additional (alternative) parameter modules. Such a module is stored in a TP or operating-system library and can
be used as alternative parameter module by the parameter PARM when Natural is started.

These parameters cause the parameters of the standard parameter module to be completely overwritten.
Exception: CSTATIC entries, see Statically Linked Non-Natural Programs.

Important: PARM=should appear as the first parameter in a dynamic parameter string, because otherwise the
alternative parameter module overwrites all parameter settings previously entered in the dynamic parameter
string.

You can use the macro NTUSER to restrict the use of an alternate parameter module to a certain user or to
several users.

Predefined Dynamic Parameter Sets
The Assembler macro NTSYS can be used to predefine parameter sets which are named in a Natural parameter
module. These sets can be addressed under their names when Natural is invoked, provided that the corresponding
parameter module is active.

When invoked, the predefined parameter sets react in the same way as dynamically entered parameters in that
position.

39Copyright © Software AG 2003

Natural Parameter Hierarchy DetailsNatural Parameter Hierarchy

See also the profile parameter SYS.

Predefined User Parameter Profiles
You can use the Natural utility SYSPARM to create individual profiles which are stored in a system file. Each
profile is given a unique character name. You can set values for any dynamic Natural parameters in such a
profile. The profiles created with the utility SYSPARM are activated by using the parameter PROFILE when
Natural is invoked. You can use the parameter USER to restrict the use of a profile to a certain user or to several
users.
When invoked, the predefined parameter profiles behave in the same way as dynamically entered parameters in
that position.

Dynamic Parameter Entry
Almost all of the parameters can be dynamically overwritten when Natural is started. Dynamic parameters are
evaluated strictly sequential.

This general overwrite facility can, however, be limited generally or for certain parameters through the use of the
profile parameter DYNPARM (only dynamically, for instance in a profile).

You can use the macro NTDYNP in the parameter module NATPARM to make analog settings. This, however,
will prohibit the use of the parameter DYNPARM.

You can use the file CMPRMIN to define dynamic parameters in batch mode under OS/390, BS2000/OSD and
VSE/ESA, or in batch-like systems such as TSO, TIAM, CMS and BMP environments under IMS/TM.

The advantage of this method is that you need not modify the JCL when you wish to change Natural settings. In
addition, it overcomes the length limitation of the parameter string (for example, 100 characters under OS/390).

Natural Security Definitions
Apart from protecting the libraries, files and commands, Natural Security enables the setting of certain
session-relevant profile parameters. The definitions apply to the current library of the user. The users can also
define settings for their private or default libraries. The current security settings (session parameters) can be
displayed using the Natural system command PROFILE. The Natural Security parameter definitions are
evaluated after the regular profile parameters, i.e. they can overwrite them.

Session Parameter Settings
The Natural system command GLOBALS or the Natural statement SET GLOBALS can be used to display and
to set (modify) certain session-relevant profile parameters within and for the duration of a Natural session. These
definitions apply to the command mode and to all programs that are executed during the current session. See
also Runtime Assignment of Parameter Values or SET GLOBALS (in the Natural Statements documentation).

Program/Statement Level Settings
The Natural statement FORMAT can be used in a program to set parameter values which are valid for that
specific program. In addition, it is possible to set certain parameters at statement level by a terminal command.

Copyright © Software AG 200340

Natural Parameter HierarchyPredefined User Parameter Profiles

Development Environment Settings
You can use the Natural Main Menu option Development Environment Settings to invoke a submenu which
enables selection of the tools that are available for monitoring and setting up the Natural development
environment.

Examples of Various Parameter Strings
The examples below are based on the following parameter settings:

Parameter Param. Module,
Shared Nucleus
(special case)

Param. Module
Front-End

Alternative
Param. Module
ALTPARM

User Profile
MYPROF

DATSIZE 32 (default) 40 50 60

DSIZE 4 6 2 (default) Not specified

ESIZE 20 28 (default)

NTSYS A: 40
NTSYS B: 50

NTSYS A: 60 80

The following examples show the results for various dynamic parameter strings.

Example 1: No dynamic parameters

Resulting Values Origin

DATSIZE 40 Front-End Module

DSIZE 6 Front-End Module

ESIZE 28 Front-End Module

Others Default Front-End Module

Example 2: PARM=ALTPARM

Resulting Values Origin

DATSIZE 50 ALTPARM

Others Default ALTPARM

Example 3: SYS=A

Resulting Values Origin

DATSIZE 40 Front-End Module

DSIZE 6 Front-End Module

ESIZE 40 NTSYS Front-End Module

41Copyright © Software AG 2003

Development Environment SettingsNatural Parameter Hierarchy

Example 4: PARM=ALTPARM,SYS=A

Resulting Values Origin

DATSIZE 50 ALTPARM

DSIZE 2 ALTPARM

ESIZE 60 NTSYS
ALTPARM

Example 5: PARM=ALTPARM,SYS=B

Resulting Values Origin

Error ALTPARM does not have a NTSYS B specification

Example 6: SYS=A,PROFILE=MYPROF

Resulting Values Origin

DATSIZE 60 MYPROF

DSIZE 6 Front-End Module

ESIZE 80 MYPROF

Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100

Resulting Values Origin

DATSIZE 60 MYPROF

DSIZE 6 Front-End Module

ESIZE 100 Dynamic Parameter

Example 8: PROFILE=MYPROF,SYS=A

Resulting Values Origin

DATSIZE 60 MYPROF

DSIZE 6 Front-End Module

ESIZE 40 NTSYS Front-End Module

Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF,PARM=ALTPARM

Resulting Values Origin

DATSIZE 50 ALTPARM

Others Default ALTPARM

Copyright © Software AG 200342

Natural Parameter HierarchyExample 4: PARM=ALTPARM,SYS=A

Assignment of Parameter Values
This document provides information on how values are assigned to profile parameters statically, dynamically
and at runtime.

Sources for Parameter Value Assignment
Static Assignment of Parameter Values
Dynamic Assignment of Parameter Values
Session Parameters for Runtime Assignment of Parameter Values

For details of the individual profile parameters, see Profile Parameters.

Profile Parameter Usage - Other Topics:
Natural Parameter Hierarchy | Profile Parameters Grouped by Function | Using a Natural Parameter Module

Sources for Parameter Value Assignment
The values for profile parameters are taken from three sources:

1. Static assignments
Profile parameters specified by the macro NTPRM and other macros in the Natural parameter source module
(NATPARM). These macros are then assembled and linked with the Natural nucleus. All parameters not
specified are assigned their default values.

2. Dynamic assignments
Parameters specified for the Natural session execution. These parameters override the static assignments and are
valid for the current Natural session. Dynamic parameters can be passed by a front-end program, the parameter
dataset (CMPRMIN), session-initialization JCL, terminal input or Natural Security. In addition, it is possible to
overwrite certain parameters by Natural program statements.

3. Session parameters
Parameters specified with the system command GLOBALS (or a SET GLOBALS statement) within the current
Natural session. The parameters override static and dynamic assignments.

Illustration of the Natural Parameter Assignment:

43Copyright © Software AG 2003

Assignment of Parameter ValuesAssignment of Parameter Values

Static Assignment of Parameter Values
The Natural parameter module (NATPARM) is used for the static assignment of profile parameters for all
Natural environments.

In the parameter module, you use the macro NTPRM, and several other macros, to specify the parameters.

All parameter settings (except the parameter CSTATIC) made in the parameter module can be overwritten
dynamically at the start of a Natural session.

Due to technical reasons, for some profile parameters a corresponding macro is used for static assignment in the
parameter module. Consequently, the syntax of the static and dynamic specifications differs slightly, taking the
following general form:

Static: MACRO-NAME KEYWORD1=value1 ,KEYWORD2=value2 ,...

Dynamic: PARAMETER-NAME=(KEYWORD1=value1 ,KEYWORD2=value 2,...)

Example:

Macro in the Parameter Module: NTSORT WRKSIZE=500,EXT=ON

Equivalent Dynamic Profile Parameters: SORT=(WRKSIZE=500,EXT=ON)

If there is a corresponding macro for a profile parameter, this is indicated in the parameter description.

Copyright © Software AG 200344

Assignment of Parameter ValuesStatic Assignment of Parameter Values

For more details on static assignment, see Assembling a Natural Parameter Module.

Some Natural subproducts (for example, Natural for DL/I or Natural for DB2) use additional parameter modules.
These are described in the corresponding documentation of these subproducts.

Dynamic Assignment of Parameter Values
You can specify profile parameters dynamically at the start of a Natural session to override - for the duration of a
single Natural session - individual profile parameter settings of the Natural parameter module (NATPARM).

Example:

NUCNAME=’NATNUC#5’,IM=D,INTENS=1,DU=OFF,FUSER=(10,32),PROGRAM=’ ’,

WORK=((1),AM=STD,DEST=WORK1,OPEN=INIT),PS=60,LS=120

All profile parameters can be specified dynamically - except CSTATIC which can be specified statically in the
Natural parameter module only:

The dynamic parameter assignments are separated by (one or more) commas or blanks. If the value for a
dynamic parameter contains non-alphanumeric or special characters, the value must be specified enclosed in
apostrophes. Which characters are special characters is defined in the character table macro NTSCTAB of
NATCONFG; see Natural Configuration Tables.

The use of dynamic parameters can be enabled/disabled by the macro NTDYNP or the corresponding dynamic
profile parameter DYNPARM.

For a more comfortable specification of sets of dynamic parameters, you can use the PROFILE or the SYS
parameter. In addition, it is possible to set a number of dynamic parameters in Natural Security.

It is possible to insert comment strings within dynamic parameters. A comment starts with /* and ends with */ .
If the comment string end delimiter is missing, an error message is issued during session initialization.

Example:

PARM=MYPARMS /* my comment */ ADANAME=ADALNKR,PROFILE=MYPROF

The dynamic parameter settings are passed to Natural when the session is started. The method used for passing
the parameter values to Natural varies depending on the environment.

Example for OS/390 in batch mode:

The values are specified by the PARM keyword in the EXEC job control statement that initiates Natural.
In addition, dynamic parameters can be specified in the dataset CMPRMIN.
Moreover, it is possible to write a front-end program which passes control to Natural with dynamic
parameters for the session according to OS/390 standards.

Specifying Dynamic Parameters under VSE/ESA

The dynamic parameters can either be passed directly with a PARM specification in the JCL EXEC statement:

// EXEC NATBATCH,PARM=’dynamic parameters...’,SIZE=...

Or you can specify PARM=’SYSRDR’ to cause Natural to read the dynamic parameters from SYSRDR:

45Copyright © Software AG 2003

Dynamic Assignment of Parameter ValuesAssignment of Parameter Values

// EXEC NATBATCH,SIZE=...,PARM=’SYSRDR’
dynamic parameters
...
/* END OF DYNAMIC PARAMETERS

If the PARM keyword is not specified in the JCL EXEC statement, the SYSPARM parameter of the JCL
OPTION statement is checked for compatibility reasons:

...
// OPTION SYSPARM=’SYSRDR’
// EXEC NATBATCH,SIZE=...
dynamic parameters
...
/* END OF DYNAMIC PARAMETERS

Session Parameters for Runtime Assignment of Parameter
Values
To some profile parameters a value can be assigned within a Natural session at runtime, using a corresponding
session parameter. The session parameter value will override the profile parameter value.

If a corresponding session parameter exists for a profile parameter, this is indicated in the description of the
profile parameter.

Session parameters are specified with the system command GLOBALS. Session parameters are described in the
Parameter Reference documentation. Further details on system commands can be found in the System Command
Reference documentation.

Example:

GLOBALS SA=ON,IM=D

In reporting mode, session parameters can also be specified with the SET GLOBALS statement in a program.

Some profile parameters can also be overridden within a Natural session by a terminal command. If a
corresponding terminal command exists for a profile parameter, this is indicated in the description of the profile
parameter. Terminal commands are described in the Terminal Commands documentation.

Example:

SET CONTROL ’T=3279’

The value of the profile parameter TTYPE is overwritten.

Copyright © Software AG 200346

Assignment of Parameter ValuesSession Parameters for Runtime Assignment of Parameter Values

Profile Parameters Grouped by Function
To assist you as a Natural administrator in determining which parameters are applicable for your site, this section
provides an overview of the profile parameters that are available to you. The parameters are grouped according
to their functions:

System Files
Buffer Sizes
External Subprograms
Output Reports and Workfiles
Date/Time Settings
Limits
Character Assignments
Terminal Communication
Buffer Pools
Translation Tables
Usage of Profile Parameters
Debugging
Batch Mode
TP Monitors
Database Access
Natural with Adabas
Natural with Other Software AG Products
Parameters Reserved for Internal Use
Miscellaneous Other Profile Parameters
Session Initialization and Termination

For details of the individual profile parameters, see Profile Parameters.

Profile Parameter Usage - Other Topics:
Natural Parameter Hierarchy | Assignment of Parameter Values | Using a Natural Parameter Module

System Files
Natural system files are used for the storage of various data and programs as follows:

File Used to store

Natural System File for
System Programs

Natural system programs, Natural help texts/programs, Natural error-message texts,
Natural source and object programs, Natural internal data.

Natural System File for
User Programs

user-written Natural source and object programs.

Predict System File dictionary data as required by Predict. It is also used to store Natural data definition
modules (DDMs).

Natural Security System
File

security data as required by Natural Security.

Natural Advanced
Facilities Spool File

spool data as required by Natural Advanced Facilities. This file must be a separate
system file; it must not be the same as any of the other system files.

47Copyright © Software AG 2003

Profile Parameters Grouped by FunctionProfile Parameters Grouped by Function

The following profile parameters apply to all system files:

Parameter Function

DBID Default Database ID of Natural System Files

FNR Default File Number of Natural System Files

SYSPSW Default Password for Natural System Files

SYSCIP Default Cipher Key for Natural System Files

ROSY Read-Only Access to System Files (FNAT, FUSER and FSEC only)

The values of the above parameters apply to all system files by default. With the following parameters, you can
override these defaults for individual system files:

Parameter Function

FNAT Natural System File for System Programs

FUSER Natural System File for User Programs

FDIC Predict System File

FSEC Natural Security System File

FSPOOL Natural Advanced Facilities Spool File

Buffer Sizes
Natural uses several buffer areas to store programs and data. You may need to adjust the size of one or more of
these areas in order to achieve maximum buffer efficiency. If the specified space is not available, the size of the
requested buffer is set to zero.

Parameter Function

DATSIZE Size of Buffer for Local Data

DSIZE Size of Debug Buffer Area

ESIZE Size of User Buffer Extension Area

ISIZE Size of Initialization Buffer

MONSIZE Size of SYSTP Monitor Buffer

RDCSIZE Size of Buffer for the Natural Data Collector

RJESIZE Initial Size of NATRJE Buffer

RUNSIZE Size of Runtime Buffer

WPSIZE Sizes of Natural Work Pools

External Subprograms
The following parameters affect the dynamic loading and deletion of non-Natural programs:

Copyright © Software AG 200348

Profile Parameters Grouped by FunctionBuffer Sizes

Parameter Function

CDYNAM Dynamic Loading of Non-Natural Programs

CSTATIC Programs Statically Linked to Natural

DELETE Deletion of Dynamically Loaded Non-Natural Programs

LIBNAM Name of External Program Load Library (BS2000/OSD, OS/390, TSO only)

RCA Resolve Addresses of Static Non-Natural Programs

RCALIAS External Name Definition for Non-Natural Programs

Output Reports and Workfiles
The following parameters control various standard attributes used during creation of Natural reports:

Parameter Function

EJ Page Eject

FAMSTD FAMSTD - Overwriting of Print and Work File Access Method Assignments

HCAM Hardcopy Access Method

HCDEST Hardcopy Output Destination

INTENS Printing of Intensified Fields

KAPRI Kanji Printing

LS Line Size for Natural Records

MAINPR Override Default Output Report Number

MP Maximum Number of Pages of a Report

PCNTRL Print Control Characters

PM Print Mode

PRINT Printer Assignments

PS Page Size for Natural Reports

SF Spacing Factor

TQ Translate Quotation Marks

TS Translate Output from Programs in System Libraries

WORK Work File Assignments

ZP Zero Printing

Date/Time Settings
The following parameters affect the handling of date and time values by Natural as well as the internal date/time
used by Natural:

49Copyright © Software AG 2003

Output Reports and WorkfilesProfile Parameters Grouped by Function

Parameter Function

DD Day Differential

DFOUT Date Format for Output

DFSTACK Date Format for Stack

DFTITLE Date Format in Default Page Title

DTFORM Date Format

TD Time Differential

YD Year Differential

YSLW Year Sliding Window

Limits
The following parameters can be used to prevent a single program from consuming an excessive amount of
internal resources:

Parameter Function

LE Reaction when Limit for Processing Loop Exceeded

LT Limit for Processing Loops

MADIO Maximum DBMS Calls between Screen I/O Operations

MAXCL Maximum Number of Program Calls

MT Maximum CPU Time

PD Number of Pages captured by NATPAGE

Character Assignments
The following parameters can be used to change default character assignments:

Parameter Function

CVMIN Control Variable Modified at Input

FC Filler Character for INPUT Statement

FCDP Filler Character for Dynamically Protected Input Fields

CF Character for Terminal Commands

DC Decimal Character

HI Help Character

IA Input Assign Character

ID Input Delimiter Character

Copyright © Software AG 200350

Profile Parameters Grouped by FunctionLimits

Terminal Communication
The following parameters affect the usage of Natural on video terminals:

Parameter Function

ATTN Attention Key Interrupt Support

CLEAR Processing of CLEAR Key in NEXT Mode

DSC Data Stream Compression (for 3270-Type Terminals)

ESCAPE Ignore Terminal Commands "%%" and "%."

IKEY Processing of PA Keys and PF Keys

IM Input Mode

KEY Value Assignments to PA, PF, CLEAR Keys

LC Lower- to Upper-Case Translation

ML Position of Message Line

RM Retransmit Modified Fields

SA Sound Terminal Alarm

TTYPE Terminal Type

Buffer Pools
The following parameters affect the Natural buffer pools:

Parameter Function

BPCSIZE Cache Size for Natural Buffer Pool

BPC64 Cache Size for Natural Buffer Pool

BPI Buffer Pool Initialization

BPLIST Name of Preload List for Natural Buffer Pool

BPMETH Buffer Pool Space Search Algorithm

BPNAME Name of Natural Global Buffer Pool

BPPROP Global Buffer Pool Propagation

BPSFI Object Search First in Buffer Pool

BPSIZE Size of Natural Local Buffer Pool

BPTEXT Size of Text Segments in Natural Buffer Pool

Translation Tables
The following parameters can be used to overwrite various character translation tables used by Natural:

51Copyright © Software AG 2003

Terminal CommunicationProfile Parameters Grouped by Function

Parameter Function

CCTAB Printer Escape-Sequence Control Character

CP Code Page

SCTAB Scanner Character Type Table

TAB Standard Output Translation Table

TABA1 EBCDIC to ASCII Translation Table

TABA2 ASCII to EBCDIC Translation Table

TABL Translation Table for Output from "SYS" Libraries

TAB1 Alternative Output Translation Table

TAB2 Alternative Input Translation Table

UTAB1 Translation Table for Lower to Upper Case

UTAB2 Translation Table for Upper to Lower Case

Usage of Profile Parameters
The following parameters affect the usage of Natural profile parameters:

Parameter Function

DYNPARM Control Use of Dynamic Parameters

PARM Alternative Parameter Module

PLOG Logging of Dynamic Parameters

PROFILE Activate Dynamic Parameter Profile

SYS Activate Set of Dynamic Profile Parameters

USER Restrict the Use of Profile Parameters

Debugging
The following parameters can be used for debugging purposes:

Parameter Function

CANCEL Session Cancellation with Dump

DU Dump Generation

ETRACE External Trace Function

ITRACE Internal Trace Function

RELO Storage Thread Relocation

TRACE Define Components to be Traced

Copyright © Software AG 200352

Profile Parameters Grouped by FunctionUsage of Profile Parameters

Batch Mode
The following parameters apply if Natural is used in batch mode:

Parameter Function

CC Error Processing in Batch Mode

ECHO Control Printing of Input Data

OBJIN Use of CMOBJIN as Natural Input File

READER System Logical Units for Input (VSE/ESA only)

TP Monitors
The following parameters apply if Natural is used with a TP monitor (Com-plete, CICS, CMS, IMS/TM, UTM):

Parameter Function

ASYNNAM Output System ID for Asynchronous Processing (UTM)

OUTDEST Output Destination for Asynchronous Processing (CICS, Com-plete, UTM)

PSEUDO Pseudo-Conversational Mode (CICS)

SENDER Screen Output Destination for Asynchronous Processing (CICS, Com-plete, IMS/TM, UTM)

SKEY Storage Protection Key

SUBSID Subsystem ID

Database Access
The following parameters affect the handling of database accesses by Natural:

53Copyright © Software AG 2003

Batch ModeProfile Parameters Grouped by Function

Parameter Function

DB Database Types and Options

DBCLOSE Database Close at Session End

DBOPEN Database Open Without ETID

DBROLL Database Calls Before Roll-Out

DBUPD Database Updating

ENDBT Issue BACKOUT TRANSACTION at Session End

ET Execution of END/BACKOUT TRANSACTION Statements

ETDB Database for Transaction Data

ETEOP Issue END TRANSACTION at End of Program

ETIO Issue END TRANSACTION upon Terminal I/O

LFILE Dynamic Specification of Logical File

OPRB Database Open/Close Processing

RCFIND Handling of Response Code 113 for FIND Statement

RCGET Handling of Response Code 113 for GET Statement

TF Translation of Databas ID/File Number

UDB User Database ID

Natural with Adabas
The following parameters apply if Natural is used with Adabas:

Parameter Function

ADANAME Name of Adabas Link Routine

ADAMODE Adabas Interface Mode

ADAPRM Review/DB Support

ADASBV Adabas Security By Value

ETID Adabas User Identification

RI Release ISNs

WH Wait for Record in Hold Status

Natural with Other Software AG Products
Adabas Text Retrieval

TSIZE Size of Buffer Area for Adabas Text Retrieval

Copyright © Software AG 200354

Profile Parameters Grouped by FunctionNatural with Adabas

Con-nect

Parameter Function

CSIZE Size of Con-nect Buffer Area

EntireX Broker

Parameter Function

BSIZE Size of EntireX Broker Buffer

Entire DB

Parameter Function

ZSIZE Size of Entire DB Buffer Area

Entire System Server

Parameter Function

ASIZE Entire System Server Auxiliary Buffer

Entire Transaction Propagator

Parameter Function

ETPSIZE Size of Entire Transaction Propagator Buffer

Natural Advanced Facilities

The following parameters appy if you are using Natural Advanced Facilities:

Parameter Function

NAFSIZE Size of Buffer for Natural Advanced Facilities

NAFUPF Natural Advanced Facilities User Profile

55Copyright © Software AG 2003

Natural with Other Software AG ProductsProfile Parameters Grouped by Function

Natural Connection

The following parameters appy if you are using Natural Connection:

Parameter Function

PC Control of Personal Computer Access Method (Natural Connection)

XSIZE Size of Buffer for User Subsystem

Natural Database Interfaces

The following parameters appy if you are using the database interfaces listed below:

Parameter Function

DB2SIZE Size of Buffer Area for Natural DB2 or SQL/DS interface

DLISIZE Size of Buffer Area for Natural DL/I interface

VSIZE Size of Buffer Area for Natural VSAM interface

Natural Expert

Parameter Function

EXCSIZE Size of Buffer for Natural Expert C Interface

EXRSIZE Size of Buffer for Natural Expert Rule Tables

Natural Optimizer Compiler

The following parameters appy if you are using the Natural Optimizer Compiler:

Parameter Function

OPT Control of Natural Optimizer Compiler

Natural Workstation Interface

Parameter Function

WSISIZE Buffer for Natural Workstation Interface

Copyright © Software AG 200356

Profile Parameters Grouped by FunctionNatural with Other Software AG Products

Software AG Editor

Parameter Function

EDPSIZE Size of Software AG Editor Auxiliary Buffer Pool

SSIZE Size of Buffer for the Software AG Editor

Parameters Reserved for Internal Use
The values of the following parameters must not be changed!

These parameters are reserved for internal use by Natural.

Parameter Function

ASPSIZE (Internal Use)

CFWSIZE (Internal Use)

LOG (Internal Use)

NISN (Internal Use)

TPF (Internal Use)

USERBUF (Internal Use)

Miscellaneous Profile Parameters

57Copyright © Software AG 2003

Parameters Reserved for Internal UseProfile Parameters Grouped by Function

Parameter Function

CM Command Mode

CMPO Compilation Options

ETA Error Transaction Program

FS Default Format/Length Setting for User-Defined Variables

MAXROLL Number of CMROLL Calls Before Roll-Out

MSGSF Display System Error Messages in Full

NC Use of Natural System Commands

OPF Overwriting of Protected Fields by Helproutines

POS22 Version 2.2 Algorithm for POS System Function

RDCEXIT Define Natural Data Collector User Exits

RECAT Dynamic Recataloging

REINP Issue Internal REINPUT Statement for Invalid Data

RFILE File for Recordings

RPC Remote Procedure-Call Settings

SI Shift-In Code for Double-Byte Character Set

SL Source-Line Length

SM Programming in Structured Mode

SO Shift-Out Code for Double-Byte Character Set

SORT Control of Sort Program

SYNERR Control of Syntax Errors

ULANG User Language

XREF Activate Cross-Reference Feature

ZD Zero-Division Check

Session Initialization and Termination

Parameter Function

AUTO Automatic Logon

ENDMSG Display of Session-End Message

IMSG Session Initialization Error Messages

ITERM Session Termination in Case of Initialization Error

MENU Menu Mode

NUCNAME Name of Shared Nucleus

PROGRAM Program to Receive Control after Natural Session

STACK Place Data/Commands on the Stack

STEPLIB Default Steplib Library

Copyright © Software AG 200358

Profile Parameters Grouped by FunctionSession Initialization and Termination

Using a Natural Parameter Module
This document provides information on how to assemble a Natural parameter module.

The following topics are covered:

Using the Default Natural Parameter Module NATPARM
Creating a New Natural Parameter Module
NTPRM Macro - Create a Natural Parameter Module
Restricting the Use of a Parameter Module
Using Optional Macros in a Natural Parameter Module

For details of the individual profile parameters, see Profile Parameters.

Profile Parameter Usage - Other Topics:
Natural Parameter Hierarchy | Assignment of Parameter Values | Profile Parameters Grouped by Function

Using the Default Natural Parameter Module NATPARM
The default Natural parameter module NATPARM contains a set of predefined parameters that are sufficient for
most environments. The module is delivered in source form to enable you to change it according to your
requirements.

Creating a New Natural Parameter Module
Instead of using or modifying the default Natural parameter module, you can create one or several alternative
Natural parameter modules for various purposes which can be loaded as appropriate using the Natural profile
parameter PARM and whose use can be restricted to certain users.

 To create a new (alternative) Natural parameter module

1. Assemble the macro NTPRM (see also Assembler Macro Coding Conventions below).
2. Add one or more of the optional parameter macros (see below).

If more than one parameter macro is specified, the NTPRM macro must be specified first; any other macros after
the NTPRM macro can be specified in any order.

Note:
It is not necessary to create separate parameter modules for batch and teleprocessing modes of operation.
Those parameters which are not applicable to the environment in which Natural is executed are ignored.

NTPRM Macro - Create a Natural Parameter Module
The NTPRM macro must be assembled in order to create a Natural parameter module.

Generally, you can use the default values of the profile parameters in the NTPRM macro. If any of the default
values do not suit your requirements, you can overwrite them with your own values.

For a description of the individual profile parameters, refer to Profile Parameters.

59Copyright © Software AG 2003

Using a Natural Parameter ModuleUsing a Natural Parameter Module

NTPRM Syntax

The syntax for this macro is:

NTPRM parameter =value ,...

Assembler Macro Coding Conventions

Assembler macro coding conventions must be adhered to when changing parameter values, for example,

the first entry must begin in Column 2 or beyond and cannot extend beyond Column 71;
continuation to another line is accomplished by placing a comma after the last entry, inserting a non-blank
character in Column 72 and continuing the entry on the next line starting in Column 16;
a parameter and its value must always be entered on the same line.

Restricting the Use of a Parameter Module
You can add the macro NTUSER to a parameter module to restrict its use to certain users.

 To restrict the use of a parameter module

1. Add the macro NTUSER to the parameter module.
2. In this macro, define the IDs of those users who are to be enabled to use that parameter module.

Only these users will be allowed to specify the name of that parameter module with the profile parameter
PARM.

Using Optional Macros in a Natural Parameter Module
A Natural parameter module contains the macro NTPRM in first place. In addition, you can specify the
following optional macros in any order.

Copyright © Software AG 200360

Using a Natural Parameter ModuleRestricting the Use of a Parameter Module

Macro Function

NTALIAS External names of non-Natural programs.

NTBPI Buffer pool initialization.

NTCCTAB Printer escape sequence definition.

NTCMPO Compilation options.

NTCSTAT Programs statically linked to Natural.

NTDB Database types and options.

NTDS Define size of storage buffer

NTDYNP Control use of dynamic parameters.

NTEDBP Software AG editor buffer pool definitions

NTFILE See NTLFILE > Old NTFILE Macro Syntax

NTKAPRI Kanji printing.

NTLFILE Specification of logical files.

NTOPRB Database open/close processing.

NTOPT Control of Natural Optimizer Compiler.

NTPRINT Print file assignments.

NTPRM Create a Natural Parameter Module

NTRPC Handling of remote procedure calls.

NTSCTAB Scanner characters.

NTSORT Control of sort program.

NTSYS Define and activate a set of dynamic profile parameters.

NTTAB Standard output character translation.

NTTABA1 EBCDIC-ASCII translation.

NTTABA2 ASCII-EBCDIC translation.

NTTABL SYS library output translation.

NTTAB1 Alternative output translation.

NTTAB2 Alternative input translation.

NTTF Translation of database ID/file number.

NTTRACE Define components to be traced.

NTUSER Restrict use of profile parameter strings and modules.

NTUTAB1 Lower-case/upper-case translation.

NTUTAB2 Upper-case/lower-case translation.

NTWORK Work files assignments.

61Copyright © Software AG 2003

Using Optional Macros in a Natural Parameter ModuleUsing a Natural Parameter Module

OS/390 Environment - Overview
This document contains information about Natural under the operating system OS/390.

The following topics are covered:

Natural under OS/390 contains an overview of special considerations that apply when you are
running Natural under OS/390 online or in batch mode.

Authorized-Services Manager describes the functionality and operation of the Authorized-Services
Manager (ASM) which is available under OS/390.

Shared Natural Nucleus explains the function and the use of the Shared Natural nucleus.

Natural Roll Server Functionalityexplains the functions of the Natural roll server in general, its use in a
single OS/390 system and in a parallel Sysplex environment.

Natural Roll Server Operation provides information on the roll server system requirements, operation,
performance tuning and restartability.

Note:
The codes that Natural may receive when the Roll Server is used during a Natural session runtime are output by
the corresponding teleprocessing interfaces (Natural CICS or Natural IMS interface). For a list of these codes,
refer to the Return Codes and Reason Codes of the Roll Server Request (in the Messages and Codes
documentation).

Copyright © Software AG 200362

OS/390 Environment - OverviewOS/390 Environment - Overview

Natural under OS/390
This section contains an overview of special considerations that apply when you are running Natural under
OS/390.

Natural Subsystem
Shared Nucleus
TP Monitor Interfaces
Interfaces to Database Management Systems
Natural in Batch Mode under OS/390
Natural as a Server under OS/390

OS/390 Environment - Other Topics
Authorized-Services Manager | Shared Natural Nucleus | Natural Roll Server Functionality | Natural Roll Server
Operation

Natural Subsystem
A Natural subsystem under OS/390 consists of the following components:

one or more Global Buffer Pools,
an Authorized-Services Manager,
a Roll Server.

The Natural subsystem is identified by the Natural profile parameter SUBSID and by corresponding startup
parameters for the components mentioned above. The default subsystem name is "NAT4".

Via the Natural subsystem technique, multiple roll servers can be used simultaneously and multiple independent
sets of global buffer pools can be created - in fact, multiple Natural runtime environments can be created which
will be totally independent of one another.

Shared Nucleus
The advantages of a Natural shared nucleus are explained in the section Natural Shared Nucleus under OS/390
and VSE/ESA.

TP Monitor Interfaces
The following TP monitor interfaces are available with Natural under OS/390:

Natural Com-plete Interface
Natural CICS Interface
Natural TSO Interface
Natural IMS/TM Interface

These topics are included in the Natural TP Monitor Interfaces documentation.

63Copyright © Software AG 2003

Natural under OS/390Natural under OS/390

Interfaces to Database Management Systems
Except for Software AG’s database management system Adabas, all operations requiring database interaction are
performed by a corresponding Natural interface module.

The following database interfaces are available with Natural under OS/390:

Natural for DB/2
Natural for VSAM
Natural for DL/I

These interfaces are add-on units which are described in separate documents.

Natural in Batch Mode under OS/390
For information on using Natural in batch mode, refer to the corresponding general section and in particular to
subsection Running Natural in Batch under OS/390.

Natural as a Server under OS/390
Besides being a programming language, Natural can also act as a server in a client/server environment. For
detailed information, refer to the section Natural as a Server under OS/390.

Copyright © Software AG 200364

Natural under OS/390Interfaces to Database Management Systems

Authorized-Services Manager under
OS/390
This document describes functionality and operation of the Authorized-Services Manager (ASM) which is
available with Natural under OS/390. It covers the following topics:

ASM Overview
ASM System Requirements
ASM Operation

OS/390 Environment - Other Topics
Natural under OS/390 | Shared Natural Nucleus | Natural Roll Server Functionality | Natural Roll Server
Operation

ASM Overview
The Authorized-Services Manager (ASM) provides authorized operating system functions to Natural. These
functions include writing SMF records and Parallel Sysplex communication through the Coupling Facility (CF).
The ASM provides its functions via PC routines and runs in its own address space.

The following authorized functions are provided:

communicating Natural buffer pool administration messages,
writing SMF records;
holding Natural session information in the Session Information Pool (SIP).

The first two functions are always available, whereas the SIP is optional and can be made available via startup
parameter. For more information on starting the ASM see Starting the ASM.

You must use the ASM in the following cases:

The Natural profile parameter BPPROP is set to PLEX or GLOBAL or GPLEX (buffer pool propagation is
used);
Natural under CICS is used in a Parallel Sysplex (with the SIP function);
Natural under IMS/TM is used in terminal-oriented, non-conversational mode (with the SIP function);
Natural under IMS/TM is used, with the Accounting function writing SMF records.

The Session Information Pool (SIP) holds the Natural session information records. In terminal-oriented
non-conversational mode, the NCI and NII interfaces need these records to continue a Natural session after a
terminal I/O. When running in a Parallel Sysplex, the SIP is created in the CF and a data space is used as an
intermediate buffer to avoid unnecessary access to the CF. Otherwise, the SIP is created in a data space.

If the ASM is used in a Parallel Sysplex, one ASM instance must be started in each participating OS/390 image.

Note concerning Natural/CICS: The CICS System Recovery Table should include the OS/390 system
abend code 0D6.

Note concerning the non-conversational Natural IMS/TM Interface:
If you want to use the Natural IMS/TM Interface Version 4.1 together with the Natural IMS/TM interface
3.1 in the same IMS/TM MPP environment, you must use the Authorized Services Manager Version 4.1 for
storing the simulated SPA. The following steps are required after you have installed base Natural Version
4.1:

65Copyright © Software AG 2003

Authorized-Services Manager under OS/390Authorized-Services Manager under OS/390

Copy the module NATAU31B to the APF authorized library used by the Authorized Services
Manager.
Start the Authorized Services Manager for the subsystem identified by the Natural/IMS profile
paramter SPATID.

The Authorized Services Manager will issue a message to indicate that the service is also established for a
version prior to Natural Version 4.1.

Please keep in mind that all non-conversational Natural sessions in the same IMS/TM environment must
use the same value for SPATID.

ASM System Requirements
APF Authorization
System Linkage Index (System LX)
CF Structure
XCF Signalling Paths

APF Authorization

Link the modules NATASM41 and NATBPMGR to an Authorized Program Facility (APF) library, specifying
IEWL parameter AC(1). Refer to Installation Procedure for Natural under OS/390, Step 1.

If you use the non-conversational Natural IMS/TM Interface, also copy module NATAU31B to this library
(Please refer to the Note concerning the non-conversational Natural IMS/TM Interface, above).

System Linkage Index

As the ASM reserves one system linkage index (System LX), check whether there is a high enough value of
NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

Note:
If you terminate the ASM, the address space ID is no longer available because a System LX has been used.
It becomes available again with the next IPL.

CF Structure

A CF structure is only used if you run the SIP in a Parallel Sysplex. The space required can be calculated using
the following formula:

30 KB + (SIP slot size in bytes + 165) * (number of SIP slots + 8)

For 500 SIP slots of 512 bytes each, define:

STRUCTURE NAME(NATASM) SIZE(380) PREFLIST(CF1)

XCF Signalling Paths

To propagate buffer pool administration messages in a Parallel Sysplex, the XCF Signalling Services are used.
The minimum message is 64 bytes long, the maximum is 2048 bytes. How often messages are sent depends on
how often Natural objects are manipulated (with the CATALOG, STOW or DELETE system command).

Copyright © Software AG 200366

Authorized-Services Manager under OS/390ASM System Requirements

ASM Operation
Starting the ASM
ASM Messages, Condition Codes and Abend Codes
ASM Operator Commands

Starting the ASM

You start the ASM either as a batch job or as a started task by executing module NATASM41. On the JCL
EXEC statement, specify as PARM the following parameters:

subsystem-id , XCF-group-name , CF-structure-name , number-of-SIP-slots , SIP-slot-size

All parameters are positional and must be separated by a comma; they are explained in the table below:

Parameter Possible
Values

Default Comment

subsystem-id 4-byte
non-blank
string

NAT4 The specified value must match the value of the Natural
profile parameter SUBSID.
Note: With Natural under CICS, refer to the CICSPLX
parameter in the NCMDIR macro for setting the appropriate
subsystem ID.

XCF-group-name any valid XCF
group name

none The name of the XCF group for signalling services.

CF-structure-name any valid CF
structure name

none Optional, only needed if SIP is used. The name of the CF
structure used for the SIP function.

number-of-SIP-slots 1 - 32767 none Optional, only needed if SIP is used. The number of slots to be
allocated if the CF structure has not yet been allocated. If
omitted or specified as 0, the entire structure will be used for
as many slots as it can hold.

SIP-slot-size 256, 512,
1024, 2048,
4096

1024 The specified value is ignored if a CF structure has already
been allocated.

Examples:

//ASM EXEC PGM=NATASM41,PARM=’NAT4,NATXCF,CFSIP,1500,512’

The subsystem ID is NAT4, the message group for buffer pool communication is NATXCF, the structure for the
Session Information Pool is CFSIP. 1500 SIP slots are to be used, each having a size of 512 bytes.

//ASM EXEC PGM=NATASM41,PARM=’NAT4,NATXCF,CFSIP’

Same as above, except SIP slots:

The ASM will use as many SIP slots as the CFSIP structure can hold, each having a size of 1024 bytes.

//ASM EXEC PGM=NATASM41,PARM=’NAT4,NATXCF,,500,512’

The SIP service is not to use the Coupling Facility, but to build 500 SIP slots in storage, each having a size of
512 bytes.

67Copyright © Software AG 2003

ASM OperationAuthorized-Services Manager under OS/390

//ASM EXEC PGM=NATASM41,PARM=’NAT4,NATXCF’

The SIP service will not be available.

ASM Messages, Condition Codes and Abend Codes

The ASM writes informational and error messages to JESMSGLG using the WTO macro (ROUTCDE=11). The
messages are preceded by a message identifier and the ASMŸs job name, for example:

ASM0005 FBASM41 : Authorized Services Manager Version 411 is active

The following condition codes are used:

0 Normal completion

12 Wrong parameter input

16 Runtime error has occurred

20 Subtask has failed

24 Abend has occurred

>100 Working storage could not be allocated

The following user abend codes are used:

Abend
Code

Reason Comment

100 IXCJOIN failed. Abend Register 14 contains the reason
code.

101 IXCQUERY failed. Abend Register 14 contains the reason
code.

103 Active member list full. Contact Software AG Support.

104 IXCMSGI failed. Abend Register 14 contains the reason
code.

105 Message Exit could not obtain a Purge Task Request
Block.

Contact Software AG Support.

106 Work Space for IXLCONN could not be obtained. Contact Software AG Support.

2xx DSPSERV CREATE failed. xx is the reason code.

3xx ALESERV ADD failed. xx is the reason code.

4xx ALESERV ADD failed. xx is the reason code.

5xx IXLCONN failed. xx is the reason code.

6xx IXLLIST WRITE failed. xx is the reason code.

To find a description of reason codes, refer to Programming: Sysplex Services Reference (IBM
documentation). If the error was environment-specific, and it is not clear what the reason was, contact Software
AG Support.

Copyright © Software AG 200368

Authorized-Services Manager under OS/390ASM Messages, Condition Codes and Abend Codes

ASM Operator Commands

The following commands can be passed to the ASM using the MODIFY command:

Command Description

TERM Terminates the ASM.

TRSTART Debugging function, only to be used at Software AG’s advice. Activates the Trace Task. If the
GTF is started and enabled for User Records 202, the trace records are written to the GTF.

TRSTOP Deactivates the Trace Task.

SNAP Debugging function. The ASM’s address space is dumped to SYSUDUMP.

For a list of return codes and reason codes of the SIP Service, refer to SIP Service Return Codes and Reason
Codes (in the Messages and Codes documentation).

69Copyright © Software AG 2003

ASM Operator CommandsAuthorized-Services Manager under OS/390

Natural Shared Nucleus under OS/390 and
VSE/ESA
The following section refers to the Natural shared nucleus under OS/390 and VSE/ESA only.

Environment-Independent Nucleus
Creating a Shared Nucleus
Installing a Shared Nucleus
Linking Subproducts to the Nucleus
Single-Environment Shared Nucleus
Environment-Dependent Nucleus
Statically Linked Non-Natural Programs
Dynamically Called Non-Natural Programs

OS/390 Environment - Other Topics
Natural under OS/390 | Authorized-Services Manager | Natural Roll Server Functionality | Natural Roll Server
Operation

Environment-Independent Nucleus
Natural can be split into two functional parts: an environment-independent nucleus and an
environment-dependent nucleus.

The environment-independent part of the shared nucleus can reside in the shared area of the operating system;
that is,

in OS/390 environments: the link pack area (LPA) or extended link pack area (ELPA),
in VSE/ESA environments: the shared virtual area (SVA).

By executing from these special areas of the operating system, the independent nucleus can be commonly
accessed (shared) by multiple address spaces (that is, regions or partitions), for example, CICS, Com-plete, TSO
and batch, within the same operating system.

Components of the Shared Nucleus

The following modules must be linked together to build the independent (shared) Natural nucleus:

Copyright © Software AG 200370

Natural Shared Nucleus under OS/390 and VSE/ESANatural Shared Nucleus under OS/390 and VSE/ESA

Module Function

NATSTUB Natural Stub Module

NATURAL Natural Programming Language

NATCONFG Natural Configuration Module

NATCMOD Bundling Module of "C" Routines (server calls)

NATBPMGR Natural Buffer Pool Manager

NAT2SORT Natural Sort for all systems (if you wish to use a sort program, either Natural’s internal one or
an external one). It is also possible to place NAT2SORT in a load library from where it can be
loaded dynamically at runtime; this requires that "NAT2SORT" is specified with the profile
parameter RCA.

NATRPC Natural RPC runtime

NATEDIT Natural Editor

NATTEXT Natural Syntax

NATTXT2 Natural Keywords

NATPM Natural Print Mode

INPL INPL Module

NATTTY Natural Teletype Support

NAT3270 3270 Terminal Support

NAT3279 3279 Terminal Support

NATBTCH Natural Batch Module

NATEDT Software AG Editor Module

NATSWPMG Swap Manager for Natural/CICS, optional

NATLAST Final Include

Linking Additional Modules

Linking of additional modules may be required, for example, common user exits or user-defined programs used
by all Natural regions. The entry name of the linked module must be CMSTUB.

Benefits of a Shared Nucleus

The benefits of a shared nucleus are:

virtual storage relief;
less paging activity, as there is only one copy of the nucleus in the system;
less maintenance, as ZAPs must be applied only once.

By removing the environment-independent parts of Natural and placing them in the shared nucleus, you achieve
a significant reduction of the size of the environment-dependent nucleus, since only the environment-dependent
part is loaded into the batch or TP-monitor address space, and the shared nucleus is accessed from the operating
system’s link pack area.

Since less storage is required by a Natural batch job, this results in less paging and better overall performance of
the operating system. The more batch jobs that concurrently access the shared nucleus, the greater the savings.

71Copyright © Software AG 2003

Linking Additional ModulesNatural Shared Nucleus under OS/390 and VSE/ESA

As is the case with batch environments, Natural running in an online environment can also access the same
common nucleus. In production environments which, for example, run Natural under multiple CICS regions, the
savings in virtual storage can be substantial.

There are also benefits when you apply corrective fixes to the Natural nucleus, since you only need to apply
these ZAPs once to the shared nucleus, which is then accessed by the multiple environments (for example, CICS,
Com-plete, TSO and batch).

Additional benefits are possible if you use products such as Natural for VSAM, Natural for DB2, Natural for
DL/I or Natural Advanced Facilities, since these products are all eligible to execute from the shared nucleus.
When installing these products, you would simply place the INCLUDE statements specific to these products into
the link-edit of the shared nucleus.

Disadvantages of a Shared Nucleus

There are, however, also certain disadvantages when you are using a Natural shared nucleus:

ZAPs cannot be applied online;
the shared nucleus cannot be reloaded without an IPL.

To circumvent these disadvantages, a shared nucleus can be loaded into the Natural region in problem situations
or for test purposes.

Since a system IPL is required to "refresh" the nucleus in the LPA, it is recommended that ZAPs be first applied
to a copy of the shared nucleus accessible by the various local TP-environments. In this way you can verify that
you have applied the ZAP(s) correctly before your next IPL takes place. After a period of time, you can then
delete your "test" copy of the shared nucleus from your local TP-environments and perform an IPL so that once
again you would access the common shared nucleus.

Techniques for accessing "test" copies of the shared nucleus in batch mode and under CICS, Com-plete and TSO
are described in the following section.

Administration Aspects

As is the case with any module installed in the LPA/ELPA or SVA, new copies of the shared nucleus cannot be
accessed unless you IPL the operating system, which loads a fresh copy of the shared nucleus into the shared
area.

This fact is an important consideration when you determine how to apply and test corrective fixes (that is, source
changes or ZAPs) to Natural, or when you plan to add Natural selectable units to the shared nucleus. To
circumvent this restriction, it is recommended that you use an alternative method which can be adapted to suit
your site-dependent needs:

Copyright © Software AG 200372

Natural Shared Nucleus under OS/390 and VSE/ESADisadvantages of a Shared Nucleus

Environment: Requirement:

Batch Mode Link-edit the shared nucleus to a load library which you add to the STEPLIB concatenation.
The operating system will access this copy of the shared nucleus instead of the copy in the
shared area.

CICS Link-edit the shared nucleus to a load library which you add to the DFHRPL concatenation in
the CICS startup procedure. This allows CICS to load the shared nucleus from your DFHRPL
library instead of from the shared area.

You need to modify the ALT (alternate load table) entry for the shared nucleus to read
"SHR=NO" so that CICS will access the DFHRPL libraries instead of the shared area.

Users of CICS Version 3.3.0 and above make this change to the PPT entry for the shared
nucleus instead, since the ALT has been eliminated in these releases of CICS.

Com-plete/TPFLink the shared nucleus to your Com-plete user program library and add the shared nucleus to
the list of RESIDENTPAGE programs in your Com-plete SYSPARMs or load the shared
nucleus dynamically as RESIDENTPAGE.

TSO Link-edit the shared nucleus to the same load library that contains the TP-dependent nucleus
for Natural under TSO. When the CLIST is executed, the operating system will access this
copy of the shared nucleus instead of the copy in the shared area.

IMS/TM Link-edit the shared nucleus to a load library which you add to the STEPLIB concatenation in
your procedure used for executing the IMS/TM application region. When Natural is started,
the operating system will access the shared nucleus from STEPLIB instead of from the shared
area.

Creating a Shared Nucleus
The shared nucleus is created via the linkage editor in the SMA job NATI060 as an optional part of the base
Natural installation.

When setting up the linkage editor INCLUDE statements for the shared nucleus, it is important to carefully
follow the installation instructions outlined in the Natural Installation Guide for Mainframes.

A common error is to omit or add link-edit INCLUDE statements to the shared and/or non-shared nucleus, which
can cause unpredictable results when you attempt to start a Natural session. If this happens, please review the
installation instructions and if necessary, call Software AG support for assistance.

Installing a Shared Nucleus
The installation of the shared nucleus is documented in the Natural Installation Guide for Mainframes in the
installation sections for the various Natural TP monitor interfaces included in the Natural TP Monitor Interfaces
documentation. The following points should be noted in general:

The shared nucleus is created by an additional link step. The target library for this link can be any library, in
which the operating system loader searches for executable modules. For test purposes, it may be easier to
first link the shared nucleus in one of the libraries in your STEPLIB (or SEARCH chain) and later into an
LPA (or SVA) library for production. To avoid confusion, you should delete the module in the STEPLIB
library when linking it into the LPA library.
The name of the shared nucleus to be used is specified with the profile parameter NUCNAME in the
Natural parameter module when installing the environment-dependent part. It is possible to specify
NUCNAME as a dynamic parameter in the primary parameter input, but not in the PROFILE or SYS
parameter strings.

73Copyright © Software AG 2003

Creating a Shared NucleusNatural Shared Nucleus under OS/390 and VSE/ESA

Linking Subproducts to the Nucleus
Most Software AG subproducts can be linked either to the environment-independent Natural nucleus or to the
environment-dependent part. Refer to the installation instructions of your subproducts.

The following Natural subproduct, however, must be linked to the environment-dependent part and cannot be
linked to the shared nucleus:

The Adabas link routine (ADALNK or ADAUSER)

For a few other products, separate portions need to be linked to the shared nucleus as well as to the
environment-dependent part. This is documented in detail with the respective subproducts.

Single-Environment Shared Nucleus
Some subproducts of Natural require that TP-specific modules be included in the Natural nucleus. In this case,
you need to create one "Single-Environment Shared Nucleus" for each operating environment (for example, one
for batch mode, one for TSO and one for CICS.) The advantage is still that all batch regions or all TSO users
share their own Natural nucleus.

The following diagram shows an example for this situation:

As this concept of "Single-Environment Shared Nuclei" can always be installed, Software AG’s System
Maintenance Aid (SMA) generates this type of shared nucleus if the parameter SHARED-NUC is set to "Y".

If all your single-environment shared nuclei are identical and do not contain TP-monitor-specific modules, you
can then go from a single-environment shared nucleus to a multi-environment shared nucleus.

Copyright © Software AG 200374

Natural Shared Nucleus under OS/390 and VSE/ESALinking Subproducts to the Nucleus

Environment-Dependent Nucleus
In addition to the environment-independent part of the shared Natural nucleus, every single Natural region runs
one or more environment-dependent module(s), which differ(s) according to the actual environment; that is,
Com-plete, CICS, IMS/TM, TSO, or batch mode. The environment-dependent part receives control at the
beginning of a session and checks whether the Natural nucleus is linked. If not, the shared nucleus is loaded or
located and communication is established.

The following modules must be linked together to build the dependent part of Natural specific to each
environment:

the Natural environment-specific interface (that is, NCFNUC, NATCICS, NATIMS, NATTSO or
NATOS/NATVSE) together with other interface-related modules;
the environment-specific Natural parameter module NATPARM;
Natural subproduct modules with entries defined in the internal CSTATIC list via macro NTINV, or
specified as CSTATIC in the Natural parameter module;
non-Natural programs defined as CSTATIC in the Natural parameter module.
work-file and print-file modules for Com-plete, TSO or batch mode.

Statically Linked Non-Natural Programs
The Natural parameter module (NATPARM) contains the list of all non-Natural programs to be statically linked.
This list consists of an internal part defined by the macro NTINV and an external part defined by the CSTATIC
parameter. Each entry of the list consists of a program name and a V-constant which must be resolved by linking
the corresponding module to the Natural parameter module.

The internal list is permanently present in the NATCONFG module of the independent nucleus and is used if no
parameter module is linked to the independent module. If there are non-Natural programs statically linked to the
independent nucleus, a parameter module must be linked, too, where all these programs are defined.

Optionally, an alternative parameter module can be specified via the PARM parameter. An alternative parameter
module has precedence over a linked parameter module. At session initialization time, up to three lists of
statically linked programs are merged together. The base list for this merge is that of the actual parameter
module, which means that only its entries are used. V-constants not resolved in this list are tried to be satisfied
by the environment parameter module if an alternative parameter module is used. V-constants not resolved in the
environment parameter module are tried to be satisfied by the environment-independent nucleus.

If a non-Natural program is to be statically linked to the independent nucleus, it must be specified in a parameter
module linked to the independent nucleus as well as in the parameter module actually used for the session.

Additionally, "dynamic" linking of non-Natural programs defined for being statically linked is possible during
initialization of a Natural session. Refer to the description of the RCA profile parameter for further details.

Dynamically Called Non-Natural Programs
Instead of statically linking a non-Natural program, you can also call it dynamically at execution time by using
the Natural CALL statement. In this case, however, the program must not be defined as statically linked.

When the CALL statement is executed, Natural tries a dynamic load and call operation with the help of the
environment (sub)system (for example, with EXEC CICS LINK under CICS).

75Copyright © Software AG 2003

Environment-Dependent NucleusNatural Shared Nucleus under OS/390 and VSE/ESA

Natural Roll Server Functionality
This document covers the following topics:

Natural Roll Server Overview
Roll Server in a Single OS/390 System
Roll Server in a Parallel Sysplex
Roll File and LRB

OS/390 Environment - Other Topics
Natural under OS/390 | Authorized-Services Manager | Shared Natural Nucleus | Natural Roll Server Operation

Natural Roll-Server Overview
With the Natural Roll Server, Natural can execute in a multiple-address-space system like CICS or IMS/TM;
these address spaces may be located in multiple OS/390 images (Parallel Sysplex). You can, of course, also use
the Roll Server if you are running a single OS/390 system.

When Natural performs terminal I/O, it must save the applicationŸs context data (the thread): Before the
terminal I/O is started, the thread is given to the Roll Server which keeps it in its Local Roll Buffer, or in the Roll
File. When the terminal I/O is completed, Natural requests the thread from the Roll Server, and continues the
application. In a Parallel Sysplex, the Roll Server keeps information about the threads (the Roll File Directory) in
a data structure in the Coupling Facility. Thus, it is possible for a Natural application to execute in different
OS/390 systems at different times: A thread can be given to the Roll Server on one system, and requested back
from another system.

The Roll Server runs in its own address space. It provides its services as PC routines. In a Parallel Sysplex, one
instance of the Roll Server must be started in each participating OS/390 image.

A list of applied Roll Server zaps is displayed by the Natural command DUMP ZAPS. In addition, the list of
applied zaps is written to JESMSGLG during Roll Server startup.

Note concerning Natural/CICS: The CICS System Recovery Table should include the OS/390 system
abend code 0D6.

Roll Server in a Single OS/390 System
When the Roll Server receives a thread through a write request (before terminal output), it checks whether
enough space is available in the local roll buffer (LRB). If there is, the thread is copied to the LRB. If not, the
thread is written to the roll file. The thread is also written to the roll file if it is larger than the LRB slot size. If
the thread is larger than the roll file slot size, an error is generated and the requesting Natural session terminates
abnormally.

When the Roll Server receives a read request for the thread (after terminal input), it tries to locate the thread in
the LRB. If the thread is found, it is copied from the LRB to the requestor’s address space. If not, the thread is
read from the roll file and copied to the requestor’s address space.

To ensure that the system performs well and that there is always enough space in the LRB, there are "water
marks". If the LRB’s high water mark is reached, the staging task is activated and copies the LRB content to the
roll file until the low water mark is reached. Where the high water mark and the low water mark are placed is
therefore an important issue of performance tuning. For more information on performance tuning, see the section
Roll Server Performance Tuning.

Copyright © Software AG 200376

Natural Roll Server FunctionalityNatural Roll Server Functionality

Illustration of the Roll Server in a Single OS/390 System:

Roll Server in a Parallel Sysplex
In a Parallel Sysplex, the Roll Servers in the participating OS/390 images communicate through the Coupling
Facility’s (CF) XCF Signaling Services, and the Roll File Directory resides in a XES data structure.

When the Roll Server receives a thread through a write request (before terminal output), it checks whether
enough space is available in the local roll buffer (LRB). If there is enough space, the thread is copied to the LRB,
and written asynchronously from the LRB to the roll file. If there is not enough space in the LRB, the thread is
written directly to the roll file. The Roll File Directory in the CF structure is updated accordingly.

When the Roll Server receives a read request for a thread (after terminal input), and the last write request was
issued in the same OS/390 image, the Roll Server copies the thread directly from the LRB into the requestorŸs
address space. If the last write request did not come from the same OS/390 image, the thread is read from the roll
file and then copied into the requestor’s address space.

Illustration of Roll Servers in a Parallel Sysplex:

77Copyright © Software AG 2003

Roll Server in a Parallel SysplexNatural Roll Server Functionality

Roll File and LRB
The roll file is a BDAM file logically subdivided into a directory and fixed-length slots. The slot size is a
parameter of the roll-file formatting routine NATRSRFI. Slots must be larger than the largest compressed
Natural thread expected.

The Roll File Directory contains one entry for each active Natural session, together with a timestamp of its last
write request. In a single OS/390 system, the directory resides in the Roll ServerŸs address space. In a Parallel
Sysplex, it resides in the Coupling Facility. The directory is written back to the roll file only when the Roll
Server terminates or de-allocates its resources (Refer to Roll Server Operation, DEAL and TERM commands).

The local roll buffer is contained in a data space or z/OS memory object and subdivided into fixed-length slots.
LRB slots may be smaller than roll-file slots. When a thread is larger than the LRB slot size, it is written directly
to the roll file. The number of LRB slots and their size are Roll Server startup parameters; they are important
factors in system performance.

The Roll Server can run with up to five different roll files. Each of these roll files is logically connected to one
local roll buffer. If there are five roll files, there are five corresponding LRBs. Each roll file is accessed by its
own dedicated read, write, and staging tasks. Thus, if the roll files are created on different disks on different
channels, the roll files can be accessed simultaneously.

Copyright © Software AG 200378

Natural Roll Server FunctionalityRoll File and LRB

Natural users are allocated to roll files according to the following algorithm:

RN := (first four bytes of roll-server-user-id interpreted as positive integer) modulo number of roll files + 1
ALLOCNUM := 0
FOR I = RN TO number of allocated roll files
 IF ROLLFILE(I) is not full THEN
 ALLOCNUM := I
 ESCAPE BOTTOM
 END-IF
END-FOR
IF ALLOCNUM = 0 THEN
 FOR I = 1 TO RN-1
 IF ROLLFILE(I) is not full
 ALLOCNUM := I
 ESCAPE BOTTOM
 END-IF
 END-FOR
END-IF
IF ALLOCNUM = 0 THEN
 Return ’roll file full’ error
ELSE
 Allocate userid to roll file number ALLOCNUM
END-IF

where roll-server-user-id is a 16-byte, unique string provided by the Natural interface; for more information, see
the corresponding TP monitor interface section in this documentation.

Example:

There are five roll files and the roll-server-user-id is "UF". Roll File 2 is full, but Roll File 3 has free slots
available:

E4C64040 - 80000000 = 64C64040
64C64040 modulo 5 = 1

Roll File 2 is the first file to be checked for a free slot. Since the check fails, Roll File 3 is tried next, and a free
slot is found.

User "UF" is therefore allocated to Roll File 3.

If this algorithm does not guarantee that your user IDs are evenly distributed among the roll files, the Roll
Server’s user exit NATRSU14 will help. This is especially relevant in server environments (see Natural as a
Server under OS/390), because the first eight bytes of the roll server user ID are filled with the name of the
server. For more information on this user exit, see Natural Roll Server Operation, NATRSU14 User Exit.

To see how evenly your user IDs are distributed, display the Roll-Server statistics using the Natural command
SYSTP, selection "R".

79Copyright © Software AG 2003

Roll File and LRBNatural Roll Server Functionality

Natural Roll Server Operation
This section covers the following topics:

Roll Server System Requirements
Formatting the Roll File
Starting the Roll Server
Roll Server Messages, Condition Codes and Abend Codes
Return Codes and Reason Codes of the Roll Server Request
Operating the Roll Server
Roll Server Performance Tuning
Roll Server User Exits

OS/390 Environment - Other Topics
Natural under OS/390 | Authorized-Services Manager | Shared Natural Nucleus | Natural Roll Server
Functionality

Roll Server System Requirements
This section describes the roll server system requirements. The following topics are covered:

APF Authorization
System Linkage Index
Virtual Storage
CF Structure
XCF Signalling Paths

APF Authorization

Copy module NATRSM41 to an APF-authorized library. NATRSM41 is shipped with AC=1.

System Linkage Index

As the Roll Server reserves one system linkage index (System LX), check whether there is a high enough value
of NSYSLX in member IEASYSxx of library SYS1.PARMLIB.

When the Roll Server terminates, its address space ID is no longer available because a System LX has been used.
It becomes available again with the next IPL.

To avoid this, deactivate the Roll Server with the DEAL operator command and restart it afterwards.

Once a System LX has been reserved, it is reused with every restart of the Roll Server until the next IPL.

Virtual Storage

Copyright © Software AG 200380

Natural Roll Server OperationNatural Roll Server Operation

ECSA 84 bytes

Private program storage 30 KB above

Fixed subpool storage (incl. ELSQA):10 KB below, 50 KB above

LRB directory:

100 slots per roll file 4 KB above

Every additional roll file 30 KB above

Working storage depending on load, about 1 MB above

CF Structure

The space required is calculated using the following formula:

24 KB + (RFN + 1) * 1 KB + (RFS + 8) * 160 bytes

where RFN denotes the number of roll files and RFS denotes the total number of roll-file slots in all roll files.

Example:

There are five roll files with 1000 slots each.

24 KB + 6KB + 5008 * 160 bytes = 24 KB + 6 KB + 783 KB = 813 KB

The CF structure should thus be defined with 820 KB:

STRUCTURE NAME(NATROLLS) SIZE(820) PREFLIST(CF1)

XCF Signalling Paths

In a Parallel Sysplex, the Roll Servers communicate via the XCF Signalling Services. As the default XCF group
name, the leftmost eight bytes of the CF structure name are used.

If you want to specify your own XCF groupname, use the NATRSU24 user exit. For more information on this
user exit, see NATRSU24 User Exit.

Formatting the Roll File
To format the roll file, proceed as follows:

1. Allocate it as a physical, sequential dataset with a fixed-record format.
2. Format it using module NATRSRFI.

During formatting, the roll file is converted to BDAM format with a device-dependent block size.

To format, enter the following parameter string under the DD name RFIPARMS, or as PARM on the JCL EXEC
statement:

function , dd-name , slot-size , number-of-slots

81Copyright © Software AG 2003

Formatting the Roll FileNatural Roll Server Operation

All parameters are positional; they are explained in the table below:

Parameter Description

function FORMAT Œ Format the roll file.

RESET - All roll file slots are reset (marked as free). You can only use this parameter value if
the roll file has already been formatted. The only other parameter allowed is dd-name.

LIST Œ Print a list of session-IDs contained in the roll file and their last activity. The only
other parameter allowed is DD-name.

dd-name The name of the DD statement under which the roll file has been specified.

slot-size The size of a roll file slot in bytes. This size is rounded to the next higher multiple of the
block size used.

It is recommended to initially use a slot size equal to the size of the Natural thread. Then look
at the Roll Server statistics. They also show the largest occurrence of a thread size. Use this
value to reduce the slot size, if necessary.

number-of-slotsThe number of roll file slots to be allocated. This number is the maximum number of
concurrently active users. This parameter is optional. If omitted, the entire roll file, as
allocated, will be formatted.

Note: For compatibility with Version 3.1, the old formatting function CINIT is still supported. Please refer to the
Natural Version 3.1.x for Mainframes documentation.

To calculate the required disk space in cylinders (SPACE parameter of the DD statement), use the following
formula:

number-of-cylinders = ceiling (slot-size / 30*block-size)

or

number-of-tracks = ceiling (slot-size / 2*block-size)

The block size used is:

23476 for 3380 DASD

27998 for 3390 DASD

22928 for 9345 DASD

In addition, space is needed for the roll file directory header (40 bytes) and one directory entry for each roll file
slot (24 bytes). Thus, one additional block is needed for roughly 976 slots on 3380, 1164 slots on 3390, or 953
slots on 9345 DASD.

NATRSRFI Output

If DD-name RFIPRINT is specified, NATRSRFI directs its output to this dataset. When RFIPRINT is omitted,
output is written to JESMSGLG using the WTO macro (ROUTDCE=11). Note that RFIPRINT must be specified
for the LIST function.

NATRSRFI Conditon and Abend Codes

Copyright © Software AG 200382

Natural Roll Server OperationNATRSRFI Output

The following condition codes are used:

0 Normal completion.

4 Number of slots formatted is less than requested.

20 Parameter error.

The following user abend codes are used:

Abend Code Cause

U0100 Open for RFIPARMS or RFIPRINT failed.

U0101 Open for Roll File failed.

Example 1:

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI
//STEPLIB DD DISP=SHR,DSN=NATURAL.NAT41.LOAD
//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1
//RF2 DD DISP=SHR,DSN=FB.SYSF.ROLLF2
//RFIPARMS DD *
FORMAT,RF1,200000,1000
FORMAT,RF2,200000
/*

Exerpt from resulting JESMSGLG:
+FBRUNRFI: FORMAT,RF1,200000,1000
+FBRUNRFI: RF1: FB.SYSF.ROLLF1
+FBRUNRFI: Creation date: 2001/06/13 Volume: ADA002(3390)
IEC031I D37-04,IFG0554P,FBRUNRFI,FORMAT,RF1,305B,ADA002,FB.SYSF.ROLLF1
+FBRUNRFI: Not enough space for 1000 slots.
+FBRUNRFI: 60 Blocks written. Block size is 27998.
+FBRUNRFI: 1 Directory block.
+FBRUNRFI: 8 Blocks per slot. Slot size is 223984.
+FBRUNRFI: 7 Slots initialized. Roll file version 411.
+FBRUNRFI: 3 Blocks unused.
+FBRUNRFI: FORMAT,RF2,200000
+FBRUNRFI: RF2: FB.SYSF.ROLLF2
+FBRUNRFI: Creation date: 2001/06/08 Volume: USRF08(3380)
IEC031I D37-04,IFG0554P,FBRUNRFI,FORMAT,RF2,020F,USRF08,FB.SYSF.ROLLF2
+FBRUNRFI: 60 Blocks written. Block size is 23476.
+FBRUNRFI: 1 Directory block.
+FBRUNRFI: 9 Blocks per slot. Slot size is 211284.
+FBRUNRFI: 6 Slots initialized. Roll file version 411.
+FBRUNRFI: 5 Blocks unused.

Example 2:

//FBRUNRFI JOB (FB,218),FB,CLASS=K,MSGCLASS=X,NOTIFY=FB
//FORMAT EXEC PGM=NATRSRFI,PARM=’FORMAT,RF1,200000’
//STEPLIB DD DISP=SHR,DSN=NATURAL.NAT41.LOAD
//RF1 DD DISP=SHR,DSN=FB.SYSF.ROLLF1
//RFIPRINT DD SYSOUT=X

Resulting RFIPRINT:

83Copyright © Software AG 2003

NATRSRFI OutputNatural Roll Server Operation

Natural Roll Server - Roll File Utility Version 411
FORMAT,RF1,200000
RF1: FB.SYSF.ROLLF1
Creation date: 2001/06/13 Volume: ADA002(3390)
60 Blocks written. Block size is 27998.
1 Directory block.
8 Blocks per slot. Slot size is 223984.
7 Slots initialized. Roll file version 411.
3 Blocks unused.

Notes Concerning the Formatting or Resetting of Roll Files

You can format or reset several roll files at once by specifying several parameter lines in RFIPARMS.
You cannot format or reset a roll file while the roll server is active.
When the roll file is formatted in a Parallel Sysplex, the roll server Coupling Facility structure must also be
cleared using the SETXCF operator command, for example:
SETXCF FORCE,STR,STRNAME=NATROLL1

Starting the Roll Server
You start the Roll Server either as a batch job or as a started task by executing module NATRSM41. The roll
file(s) must be defined as DD-names ROLLF1 to ROLLF5.

On the JCL EXEC statement, specify as PARM the following parameters:

subsystem-id , number-of-roll-files , number-of-LRB-slots , LRB-slot-size ,
 CF-structure-name , low-water-mark , high-water-mark

All parameters are positional and must be separated by a comma. They are explained in the table below:

Copyright © Software AG 200384

Natural Roll Server OperationStarting the Roll Server

Parameter Possible
Values

Default Comment

subsystem-id 4-byte
non-blank
string

NAT4 The specified value must match the value of the Natural profile
parameter SUBSID.
Note: With Natural under CICS, refer to the ROLLSRV
parameter in the NCMDIR macro for setting the appropriate
subsystem ID.

number-of-roll-files 0 - 5 1 In a non-Parallel Sysplex, the Roll Server can operate without
a roll file, using only the in-storage Local Roll Buffer.

number-of-LRB-slots1 - 32767 none The number of LRB slots multiplied by the slot size must not
exceed 2 GB.

The same number of LRB slots is assigned for each LRB, i.e.
for each roll file used. The total number of LRB slots is
calculated by the formula:

number-of-roll-files * number-of-LRB-slots

LRB-slot-size any numeric
value

roll file
slot size

Value in number of bytes. This parameter must be specified if
no roll file is used.

CF-structure-name any valid
structure
name

none If you specify less than 16 characters, blanks are appended.
Only specify this parameter if you use the Coupling Facility
(with Parallel Sysplex).

low-water-mark 1 - 9 7 Specifies the low water mark in steps of ten percent of the
number of LRB slots. Only specify this parameter if you do not
use the CF.

high-water-mark 1 - 10 8 Analogous to low-water-mark parameter. Value "10" means
that the staging task will never be activated. It is only
recommended to specify "10" if the LRB is large enough to
serve all simultaneously active Natural sessions.

Note: From z/OS V1.2 on, the Local Roll Buffer resides in a Memory Object "above the bar". Use the
MEMLIMIT parameter on the EXEC statement to ensure enough memory can be allocated "above the bar".

Examples for Starting the Roll Server as a Batch Job

// EXEC PGM=NATRSM41,PARM=NA41,,1000
//ROLLF1 DD DSN=SYSF.ROLLFILE

The subsystem ID is NA41, one roll file is used (default), and the Local Roll Buffer has 1000 slots. The slot size
used is identical with the roll file’s slot size. The low water mark is 70% (default), the high water mark is 80%
(default).

// EXEC PGM=NATRSM41,PARM=,5,1000,150000,NATROLL1,MEMLIMIT=800M
//ROLLF1 DD DSN=DASD1.ROLLFILE
//ROLLF2 DD DSN=DASD2.ROLLFILE
//ROLLF3 DD DSN=DASD3.ROLLFILE
//ROLLF4 DD DSN=DASD4.ROLLFILE
//ROLLF5 DD DSN=DASD5.ROLLFILE

The subsystem ID is NAT4 (default), five roll files are used, and each of the five Local Roll Buffers has 1000
slots. The LRB slot size is 150000 bytes. The roll file directory resides in the Coupling Facility structure
NATROLL1. Low and high water marks are ignored, because every thread is written to the roll file (see Natural
Roll Server Functionality). Since this job is intended for z/OS, the MEMLIMIT option specifies 800 Megabytes
for the Local Roll Buffers.

85Copyright © Software AG 2003

Starting the Roll ServerNatural Roll Server Operation

Note: The Roll Server will not start if:

Another Roll Server is running with the same subsystem-id.
Another Roll Server is accessing a Roll File specified in its JCL
A Roll File has been reformatted without resetting the CF structure, using the SETXCF FORCE command.

Roll Server Messages, Condition Codes and Abend Codes
The Roll Server writes informational and error messages to JESMSGLG using the WTO macro
(ROUTCDE=11). The messages are preceded by a message identifier and the Roll ServerŸs job name, for
example:

RSM0019 FBRSM41 : Roll Server Version 411 is active

The following condition codes are used:

0 Normal completion

12 Wrong parameter input

16 Runtime error

20 Abend has occurred

>100 Initialization error

User Abend Codes

When an unexpected return code is issued by an XCF or XES Service Call, an abend with a dump is forced.
Register 14 of the abend register contains the reason code. To find a description of the reason, refer to
Programming: Sysplex Services Reference (IBM documentation). If the error was not environment-specific, send
the dump to Software AG support.

The following user abend codes are used:

Abend Code Cause

U0200 IXLCONN failed

U0201 IXLFORCE failed

U0202 IXLLIST failed

U0203 IXLDISC failed

U0204 IXCLEAVE failed

U0301 IXLLIST failed

U0302 IXCMSGO failed

U0401 IXLLIST failed

U0501 IXLLIST failed

Copyright © Software AG 200386

Natural Roll Server OperationRoll Server Messages, Condition Codes and Abend Codes

Return Codes and Reason Codes of the Roll Server
Request
These are codes that Natural may receive from the Roll Server’s PC services routines. They are reported by the
respective teleprocessing interfaces (Natural CICS or Natural IMS interface). For a list of these codes, refer to
the Return Codes and Reason Codes of the Roll Server Request (in the Messages and Codes documentation).

Operating the Roll Server
The following commands can be passed to the Roll Server via the MODIFY operator command:

Command Description

TERM Stops the Roll Server. The roll file directory and all modified LRB slots are written to the
roll file and the address space is terminated. The address space ID is no longer available
until the next IPL.

DEAL The Roll Server is stopped, but the address space is not terminated. The roll file directory
and all modified LRB slots are written to the roll file. In a de-allocated status, the Roll
Server can be restarted with new parameters and the old address space ID. The roll files
can be reformatted in de-allocated status. If you do that, however, currently active Natural
sessions are no longer restartable.

SNAP Debugging function. The Roll Server’s address space is dumped to SYSUDUMP.

TRSTART Debugging function, only to be used at Software AG’s advice. Activates the Trace Task.
If the General Trace Facility (GTF) is started and enabled for user records of Type 200,
trace records are written to the GTF.

TRSTOP Deactivates the Trace Task.

START,parmstring Reactivates the Roll Server with the specified parameters. You can only use this
command in deactivated status.

Roll Server Performance Tuning
As a general rule for Roll Server performance tuning, give the Roll Server a higher dispatching priority than the
address spaces where Natural runs.

To find out where the weaknesses in performance are, analyze system performance with the Roll-Server
Statistics function of the SYSTP utility.

When looking at Roll-Server Statistics, keep an eye especially on the following values:

The number of direct writes.
"Direct write" means that the Natural thread that was received was written to the roll file directly. There are
two possible reasons:
1. No LRB slot available. Increase the LRB.
2. The compressed thread was larger than a single LRB slot. Increase the LRB slot size.

The number of direct reads.
"Direct read" means that the requested thread was no longer in the LRB and had to be read directly from the
roll file.
If the ratio of direct reads to the total number of reads is very high in a single OS/390 system, the LRB is
too small (increase it).
If the ratio of direct reads to the total number of reads is very high in a Parallel Sysplex OS/390 system, this

87Copyright © Software AG 2003

Return Codes and Reason Codes of the Roll Server RequestNatural Roll Server Operation

may also mean that there are many inter-system activities, which in turn means that a Natural session
changes OS/390 images quite frequently during its lifetime.

The number of staging waits (in a single OS/390 environment).
A "staging wait" is a situation where a write request had to wait until the Staging Task had written the LRB
slot to the roll file. If the ratio of staging waits to the total number of write requests is very high, this
indicates that the high and low water marks are set inappropriately or that there is a bottleneck on the roll
file device/roll file channel.
Based on experience with stress tests, the following is recommended:
If the ratio of maximal number of active users to number of LRB slots is very small, increase the high water
mark. If not, decrease the high water mark.
The difference between high water mark and low water mark should not be larger than three (30%).
Ideally, if the number of LRB slots is definitely larger than the maximum number of concurrent users, the
high water mark should be set to 10.

Roll Server User Exits
The roll server has two user exits.

NATRSU14
NATRSU24

Sample source modules are delivered for these.

NATRSU14 User Exit

Specifies the roll file number to be used.

Entry calling conventions:

Register 1 addresses the parameter list that is described by the following DSECT:

PLIST DSECT
PLRSVER DS CL4 Roll server version (= ’411’)
PLNRF DS H Number of roll files
PLUID DS CL16 Userid
PLTSNUM1 DS H Total number of slots Roll file 1
PLUSNUM1 DS H Number of slots in use Roll file 1
PLTSNUM2 DS H Total number of slots Roll file 2
PLUSNUM2 DS H Number of slots in use Roll file 2
PLTSNUM3 DS H Total number of slots Roll file 3
PLUSNUM3 DS H Number of slots in use Roll file 3
PLTSNUM4 DS H Total number of slots Roll file 4
PLUSNUM4 DS H Number of slots in use Roll file 4
PLTSNUM5 DS H Total number of slots Roll file 5
PLUSNUM5 DS H Number of slots in use Roll file 5
PLISTL EQU *-PLIST

Register 13 points to a 36-fullword save area.
Register 14 contains the return address.
Register 15 contains the entry address of NATRSU14.

Return calling convention:

Register 15 contains the number of the roll file in binary format.

Copyright © Software AG 200388

Natural Roll Server OperationRoll Server User Exits

Note:
If access registers are modified within this user exit, these access registers must be saved and restored on return.
This user exit is called in primary addressing mode with PSW Key 8. Since it runs in cross-memory mode, no
SVC except SVC 13 may be used.

NATRSU24 User Exit

Specifies the XCF group name to be used.

Entry calling conventions:

Register 1 points to an 8-byte area in which the group name must be generated.
Register 13 points to an 18-fullword save area.
Register 14 contains the return address.
Register 15 contains the entry address of NATRSU24.

As a group name default, the Roll Server will use the leftmost 8 bytes of the CF structure name.

This user exit is called in primary mode, PSW key 8 and in task mode.

89Copyright © Software AG 2003

NATRSU24 User ExitNatural Roll Server Operation

VSE/ESA Environment - Overview
This document contains information about Natural under the VSE/ESA operating system.

The following topics are covered:

Natural under VSE/ESA contains special considerations that apply when you are running Natural
under VSE/ESA online or in batch mode.

Shared Natural Nucleus
under VSE/ESA

explains the function and the use of the Shared Natural nucleus.

Copyright © Software AG 200390

VSE/ESA Environment - OverviewVSE/ESA Environment - Overview

Natural under VSE/ESA
This section contains an overview of special considerations that apply when you are running Natural under
VSE/ESA.

Natural Subsystem
Natural Shared Nucleus
TP Monitor Interfaces
Interfaces to Database Management Systems
Natural in Batch Mode under VSE/ESA

VSE/ESA Environment - Other Topics:
Shared Natural Nucleus under VSE/ESA

Natural Subsystem
A Natural subsystem under VSE/ESA consists of the following components:

one or more global buffer pools.

The Natural subsystem is identified by the Natural profile parameter SUBSID and by corresponding startup
parameters for the components mentioned above. The default subsystem name is "NAT4".

Natural Shared Nucleus
The advantages of a Natural shared nucleus are explained in the section Natural Shared Nucleus under OS/390
and VSE/ESA.

TP Monitor Interfaces
For information on using Natural under VSE/ESA with TP Monitors, refer to the relevant Natural TP Monitor
Interfaces documentation:

Natural Com-plete Interface
Natural CICS Interface

Interfaces to Database Management Systems
Except for Software AG’s database management system Adabas, all operations requiring database interaction are
performed by a corresponding Natural interface module.

The following database interfaces are available with Natural under VSE/ESA:

Natural for DB/2
Natural for VSAM
Natural for DL/I

These interfaces are add-on units which are described in separate documents.

91Copyright © Software AG 2003

Natural under VSE/ESANatural under VSE/ESA

Natural in Batch Mode under VSE/ESA
For information on using Natural in batch mode, refer to the corresponding general section and in particular to
the subsection Running Natural in Batch under VSE/ESA.

Copyright © Software AG 200392

Natural under VSE/ESANatural in Batch Mode under VSE/ESA

Natural Shared Nucleus under OS/390 and
VSE/ESA
The function and the use of the shared nucleus are almost identical under the operating systems OS/390 and
VSE/ESA. To avoid redundant descriptions, reference is made to the corresponding document for the OS/390
environment. There, the following topics are covered:

Environment-Independent Nucleus
Creating a Shared Nucleus
Installing a Shared Nucleus
Linking Subproducts to the Nucleus
Single-Environment Shared Nucleus
Environment-Dependent Nucleus
Statically Linked Non-Natural Programs
Dynamically Called Non-Natural Program

VSE/ESA Environment - Other Topics:
Natural under VSE/ESA

93Copyright © Software AG 2003

Natural Shared Nucleus under OS/390 and VSE/ESANatural Shared Nucleus under OS/390 and VSE/ESA

VM/CMS Environment - Overview
This document contains information about Natural in a VM/CMS environment.

The following topics are covered:

Natural under
VM/CMS

explains topics such as issuing CP and CMS commands from Natural, reading the CMS
program stack, hardcopy function and applying fixes to Natural. In addition, links are
available to topics that apply when you are using Natural under CMS in batch mode.

Print File and
Work File
Support

provides information on how to define print files and work files in the Natural parameter
module.

Copyright © Software AG 200394

VM/CMS Environment - OverviewVM/CMS Environment - Overview

Natural under VM/CMS
This section contains special considerations that apply when running Natural under VM/CMS. The following
topics are covered:

Issuing CP and CMS Commands from Natural
Reading the CMS Program Stack
Hardcopy Function
Applying Fixes to Natural
Natural in Batch Mode under CMS

VM/CMS Environment - Other Topics:
Print File and Work File Support with Natural under VM/CMS

Issuing CP and CMS Commands from Natural
You can use the Natural system command "CMS" to issue CP and CMS commands; for example, "CMS FLIST
* DATA B" or "CMS CP SPOOL PRT *".

If you enter "CMS" without parameters, a menu prompts you for a CP/CMS command. To exit from the menu
enter a period (.) in the first position.

To issue CP or CMS commands from within a Natural program, code the following statement:

CALL ’CMS’ command rc

where command is either an alphanumeric variable or a constant, and rc is a variable (format/length I4) which
receives the return code from the CP or CMS command. The second parameter (rc) is optional. Full command
resolution is provided just as in normal CMS interactive command mode.

Reading the CMS Program Stack
To read a line from the CMS program stack into a Natural variable, code the following:

CALL ’CMSREAD’ line

where line is an alphanumeric variable. The line read from the program stack is either truncated or padded with
blanks to fit the length of the variable. If the program stack is empty, CMSREAD returns the character string
"*EOD*".

Hardcopy Function
The hardcopy function of the Natural CMS Interface is enabled by specifying parameter

HCAM=CMS

either in NATPARM ASSEMBLE, or dynamically when invoking Natural.

The Natural terminal command %H sends output to your virtual printer. Specifying %HL produces a file called
NATURAL LISTING A.

95Copyright © Software AG 2003

Natural under VM/CMSNatural under VM/CMS

Applying Fixes to Natural
Software AG provides fixes in the form of zaps to remedy problems which are discovered after your Natural
installation tape was shipped.

Before applying the zaps, ensure that you have made backup copies of the files.
Use the NATZAP facility to apply these zaps to your Natural TEXT files.
After applying the zaps, the Natural module and DCSS must be built anew. Use the NATBLDM and
NATBLDS commands respectively to do this.

For more information about NATZAP, type "HELP NATZAP" in the Natural installation user ID.

Natural in Batch Mode under CMS
For information on using Natural in batch mode, refer to the corresponding general section and in particular to
the subsection Running Natural in Batch under CMS.

Copyright © Software AG 200396

Natural under VM/CMSApplying Fixes to Natural

Print File and Work File Support
This document describes special considerations on how to use print files and work files in Natural for VM/CMS.

The following topics are covered:

Defining Print Files and Work Files
Access Method STD
Access Method CMS

VM/CMS Environment - Other Topics:
Natural under VM/CMS

Defining Print Files and Work Files
Print files and work files are defined in the Natural parameter module with the macros NTPRINT and
NTWORK. The corresponding dynamic parameters are PRINT and WORK. These macros offer much greater
flexibility in defining print files and work files than was the case with Natural Version 2.2.

For a detailed description of the subparameters of these macros, see NTWORK Macro and NTPRINT Macro.

In the following, the AM (access method) and DEST (destination) subparameters are described: They are
common to both NTPRINT and NTWORK.

For compatibility with Natural/CMS Version 2.2, code the subparameter:

CLOSE=CMD

For both print and work files, Natural/CMS version 2.3 provides two access methods: STD and CMS.

Access Method STD
(AM=STD)

This access method uses the CMS simulation of the OS/390 QSAM access method. Specify AM=STD if you
want to read or write TAPE or spool (RDR, PRT, PUN) files, or if you want to read work files from
OS/390-formatted disks.

A FILEDEF command must be issued before the corresponding print or work file is opened. The DD name to be
used in the FILEDEF command is the name specified in the DEST subparameter.

Access Method CMS
(AM=CMS)

This access method uses the standard CMS file system to read and write CMS files on accessed mini disks and
SFS directories.

The file names of the resulting CMS files are:

97Copyright © Software AG 2003

Print File and Work File SupportPrint File and Work File Support

CMPRTnn for print files,
CMWKFnn for work files

where nn denotes the number of the file.

Their file type is the same as the name specified in the DEST subparameter. The filemode is always A1.

Special Destination Names for AM=CMS

DEST=FD Destination FD allows greater flexibility in assigning a CMS file to a Natural print or work
file. When Natural opens a print or work file with destination FD, it searches for a
FILEDEF for the DD name CMPRTnn or CMWKFnn, respectively (where nn denotes the
print or work file number). It then uses the CMS file ID given in the FILEDEF command.

DEST=LISTING This DEST setting applies to print files only.
When specifying this destination, the print file is written to the CMS disk that has the most
free space available. The CMS file ID is CMPRTnn LISTING m where "m" denotes the
filemode of the mini disk that had the most free space.When the printer is closed, the print
file is printed on the virtual printer and subsequently deleted.

DEST=UEXxxxxx This DEST setting applies to print files only.
If you specify a destination that starts with "UEX", the print file is treated as if LISTING
had been specified. In addition, a CMS command of this name is issued by Natural when
the printer is closed. The CMS command (for example, a REXX procedure) receives the
CMS file ID of the print file as parameter.

Examples:

Assuming that the FILEDEFs are in effect:

FILEDEF CMWKF05 CLEAR
FILEDEF CMPRT01 DISK MY REPORT D
FILEDEF CMPRT04 DISK MY REPORT A

If the NATPARM settings are as follows:

NTWORK (1,5,6),AM=CMS,CLOSE=CMD
NTWORK (1),DEST=FRED
NTWORK (5),DEST=FD
NTWORK (6),DEST=PAUL

the following CMS files are produced:

CMWKF01 FRED A1
FILE CMWKF05 A1
CMWKF06 PAUL A1

If the NATPARM settings are as follows:

NTPRINT (1,2,4,5),AM=CMS,CLOSE=CMD
NTPRINT (1,4),DEST=FD
NTPRINT (2),DEST=LISTING
NTPRINT (5),DEST=PAUL

MY REPORT D1
MY REPORT A1
CMWKF05 PAUL A1

Copyright © Software AG 200398

Print File and Work File SupportAccess Method CMS

The temporary file CMPRT02 LISTING m is printed and subsequently deleted ("m" denotes the filemode of the
minidisk that had the most free space).

NTPRINT (1),AM=CMS,CLOSE=CMD,DEST=UEXLOCAL

produces the CMS file:

CMPRT01 UEXLOCAL m

and the CMS command UEXLOCAL is issued with the file ID as parameter. If, for example, a REXX procedure
of this name exists, it can determine for which printer it was invoked by using "arg fn ft fm".

99Copyright © Software AG 2003

Access Method CMSPrint File and Work File Support

BS2000/OSD Environment - Overview
This document contains special considerations that apply when running Natural under the operating system
BS2000/OSD.

The following topics are covered:

Natural Shared Nucleus under BS2000/OSDexplains the use of a common shared Natural nucleus,
which is possible batch mode and under the TP monitors
TIAM and UTM.

Refresh of Natural Load Pool explains the applicability and the use of the load-pool
refresh program.

Optimization of Message Handling describes the screen output optimization method used by
Natural and the facilities to restore the most recent
terminal screen content.

Siemens Terminal Types Supported provides information on the various types of Siemens
terminals that are supported by Natural under
BS2000/OSD

Function Key Support with 9750 Devices describes the specific Natural function key assignments
that are supported for 9750 Siemens devices.

Common Memory Pools provides information on the global and local common
memory pools

Calling Dynamically Reloadable 3GL Programsdefines rules for address mode selection when calling
dynamically reloadable 3GL programs in a Natural
application.

Related Topics

Using Natural with TP Monitors
Natural under UTM
Natural under TIAM
Natural in Batch Mode under BS2000/OSD

Other Natural Functions for BS2000/OSD-Specific Purposes

Natural provides the following functions for BS2000/OSD-specific purposes:

P-Key utility

Supports the loading of programmable P keys on Siemens 975X terminals (under UTM and TIAM).

Swap Pool Manager

Controls the use of the Natural swap pool (under UTM and under CICS).

These functions are part of the Natural utility SYSTP as described in the section Debugging and Monitoring.

Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Optimization of Message Handling
| Siemens Terminal Types Supported | Function Key Support with 9750 Devices | Common Memory Pools |
Calling Dynamically Reloadable 3GL Programs

Copyright © Software AG 2003100

BS2000/OSD Environment - OverviewBS2000/OSD Environment - Overview

Natural Shared Nucleus under BS2000/OSD
This document contains the rules that apply when you use a Natural shared nucleus, which is possible in Batch
mode, under TIAM and/or UTM.

The following topic is covered:

Rules for Using a Natural Shared Nucleus

Concerning UTM, see also Several Applications with one Common Natural in the Natural Teleprocessing
Monitors documentation.

BS2000/OSD Environment - Other Topics:
Refresh of Natural Load Pool | Optimization of Message Handling | Siemens Terminal Types Supported |
Function Key Support with 9750 Devices | Common Memory Pools | Calling Dynamically Reloadable 3GL
Programs

Rules for Using a Natural Shared Nucleus
With a Natural shared nucleus under BS2000/OSD, the rules given below apply.

1. The shared Natural nucleus is linked without the corresponding reentrant parts of the batch, TIAM and
UTM drivers (these modules must be linked to the front-end part of the corresponding application).
Example: The name of the shared Natural nucleus is NATSHARE.

/EXEC $TSOSLNK
 MOD NATSHARE,XREF=YES,MAP=Y,XDSEC=Y,SORT=Y
 LINK-SYMBOLS *KEEP
 INCLUDE NATINV,libname
 .
 .
 INCLUDE NATURAL,libname
 .
 .
 INCLUDE NATLAST,libname
 BIND
 /SETSW ON=1
 LIB NATURAL.USER.MOD,BOTH
 PAR O=Y
 ADDR *OMF
 END
 /SETSW OFF=1

2. Batch, TIAM and UTM application-specific Natural parameter modules are also linked to the front-end part
of the corresponding application. In addition, the shared Natural nucleus can contain a common Natural
parameter module, e.g. for CSTATIC entries. The name chosen for the linked Natural nucleus is also
identical with the name of the global common memory pool into which Natural is loaded. This name is to
be used as operand for the following keyword parameters:

NUCNAME in the macros NAMBS2, NAMTIAM and NATUTM

NAME in CMPSTART and ADDON (BS2STUB)

101Copyright © Software AG 2003

Natural Shared Nucleus under BS2000/OSDNatural Shared Nucleus under BS2000/OSD

Example:

NRTSTART NAMTIAM CODE=FRONT,
 NUCNAME=NATSHARE
 PARMODE=(31,ABOVE),
 .
 .
 NUTFRONT NATUTM APPLNAM=NATUTM,
 .
 .
 NUCNAME=NATSHARE
 PARMODE=(31,ABOVE)

3. The shared Natural nucleus is started by the program CMPSTART.
Example:

/EXEC (CMPSTART,NATURAL.MOD)
 NAME=NATSHARE,SIZE=2MB,POSI=ABOVE,ADDR=250,SCOP=GLOBAL
 PFIX=YES,LIBR=NATURAL.USER.MOD

4. The link to the shared Natural nucleus is created in the batch, TIAM or UTM applications through the
generation of the macro BS2STUB; refer to CMPSTART Program.
Example:

NRTSTUB BS2STUB PARMOD=31,PROGMOD=ANY
 ADDON NAME=NATSHARE,
 STAT=GLOBAL
 NUTSTUB BS2STUB PARMOD=31,PROGMOD=ANY
 ADDON NAME=NATSHARE,
 STAT=GLOBAL

5. The front-end part of the applications must contain the reentrant part of the corresponding driver (NAMBS2
CODE=RENT, NAMTIAM CODE=RENT or NURENT).
Example:

/EXEC $TSOSLNK /* Front-part of
 NAMTIAM
 PROG NATURAL,LOADPT=X’1000000’,XREF=YES
 TRAITS RMODE=ANY,AMODE=31
 INCLUDE NRTSTART,libname /* Front part of
 NAMTIAM
 INCLUDE NRTRENT,libname /* Reentrant part of
 NAMTIAM
 INCLUDE NRTSTUB,libname /* BS2STUB
 INCLUDE NRTPARM,libname /* Natural Parameter
 Module

 /EXEC $TSOSLNK /* UTM Front-end
 part
 PROG
 NUT234,FILENAM=NATUTM,LOADPT=X’1000000’,XREF=YES
 TRAITS RMODE=ANY,AMODE=31
 INCLUDE KDCNUT,libname /* UTM KDCROOT
 INCLUDE NUTSTART,libname /* NATUTM
 INCLUDE NUTRENT,libname /* NURENT
 INCLUDE NUTSTUB,libname /* BS2STUB
 INCLUDE NUTPARM,libname /* Natural Parameter
 Module
 INCLUDE SWPPARM,libname /* Swap Pool
 Parameter Module

Copyright © Software AG 2003102

Natural Shared Nucleus under BS2000/OSDRules for Using a Natural Shared Nucleus

Refresh of Natural Load Pool
The following topics are covered:

Restrictions/Prerequisites
Procedure
Keyword Parameters for the Program PREFRESH

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Optimization of Message Handling | Siemens Terminal Types
Supported | Function Key Support with 9750 Devices | Common Memory Pools | Calling Dynamically
Reloadable 3GL Programs

Restrictions/Prerequisites
A Natural load pool which is also used by batch applications must not be refreshed while the Natural batch
applications are in operation. A refresh is admissible only with TIAM and UTM applications.
A new Natural nucleus can be loaded only into a global common memory pool.
The Natural load pool must have been started with the keyword parameter ACCS=WRITE using the
program CMPSTART.

Procedure
When a new Natural nucleus is to be loaded into the common memory pool, the name of the linked
(reentrant) nucleus must be identical with the existing name. The name of the Natural nucleus is equal to the
name of the global common memory pool.
Example:
The existing Natural nucleus was started with the following parameters using the program CMPSTART:

/EXEC (CMPSTART,NATURAL.MOD)
 NAME=NATSHARE,POSI=ABOVE,ADDR=250,PFIX=YES,SIZE=2MB,ALNK=NO
 ACCS=WRITE,LIBR=NATURAL.USER.MOD.A

The newly linked Natural nucleus is to be loaded from the library NATURAL.USER.MOD.B into the
global common memory pool.
This is accomplished with the program PREFRESH.
Example:

/.PREFRESH LOGON
 /OPTION DUMP=YES
 /SYSFILE SYSOUT=LST.PREFRESH.NATSHARE
 /SYSFILE SYSDTA=(SYSCMD)
 /EXEC (PREFRESH,NATURAL.MOD)
 NAME=NATSHARE,LIBR=NATURAL.USER.MOD.B
 /LOGOFF N

or:

103Copyright © Software AG 2003

Refresh of Natural Load PoolRefresh of Natural Load Pool

/load (prefresh,natural.mod) <enter>
 % BLS0517 MODULE ’PREFRESH’ LOADED
 /r <enter>
 *name=natshare,libr=natural.user.mod.b <enter>
 * <enter>
 REFR050: LOAD POOL NATSHARE IS SUCCESSFULLY REFRESHED
 /

The successful loading of the new Natural nucleus is confirmed by the message:

REFR050: LOAD POOL name IS SUCCESSFULLY REFRESHED

Keyword Parameters for the Program PREFRESH
The program PREFRESH has the following keyword parameters:

NAME | LIBR | LOAD | ALNK | TIM1 | TIM2

The program PREFRESH has the following syntax (If available, default values are shown.):

REFRESH NAME=name,LIBR=library,ALNK=NO,TIM1=10,TIM2=20

NAME - Common Memory Pool and Module Name

This parameter determines the name of the module and the name of the common memory pool. The name must
be specified. No default value exists.

NAME=xxxxxxxx xxxxxxxx: valid module and common memory pool name. The name must be identical with
the existing module/common memory pool name. The maximum number of characters is 8.

LIBR - Load Library

This parameter determines from where the defined module is to be loaded. The name must be specified. No
default value exists.

LIBR=library library is the name of the load library.

LOAD - Module Load Method

This parameter determines which macro shall be used for loading a module into a common memory pool.

LOAD=ASHARE The macro ASHARE will be used.

LOAD=BIND By default, the macro BIND will be used.

Attention:
When LOAD=ASHARE is defined, for the start of the common memory load pool (with program CMPSTART)
LOAD=ASHARE also must be defined.

Copyright © Software AG 2003104

Refresh of Natural Load PoolKeyword Parameters for the Program PREFRESH

ALNK - Activate AUTOLNK Function

This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL) is activated.

ALNK=YES The AUTOLNK function is activated.

ALNK=NO By default, the AUTOLNK function is deactivated.

TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started

This parameter determines the waiting time in seconds before the new Natural nucleus is loaded. It serves to
synchronize Natural sessions which are currently active in the nucleus.

TIM1=xx xx must be in the range from 1 up to 99.

TIM1=10 The default value is 10 seconds.

TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

This parameter determines the waiting time in seconds after the loading of the new Natural nucleus is complete
until the serialization identification for the corresponding application has been enabled. It serves to synchronize
the relativizing of all address constants in the newly loaded nucleus.

TIM2=xx xx must be in the range from 1 up to 99.

TIM1=20 The default value is 20 seconds.

105Copyright © Software AG 2003

ALNK - Activate AUTOLNK FunctionRefresh of Natural Load Pool

Optimization of Message Handling
The following topics are covered:

Screen Output Handling
Restoring the Screen Content

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Siemens Terminal Types
Supported | Function Key Support with 9750 Devices | Common Memory Pools | Calling Dynamically
Reloadable 3GL Programs

Screen Output Handling
Natural provides an extensive message optimization capability. Prior to sending an output screen, Natural
determines which portion of the screen has been modified; only data which have actually been modified are sent.

This is to be considered when, between two successive terminal outputs, portions or the entire terminal contents
are changed

by using the CLEAR key or
by intervening dialog steps at system level (K2 interruption or similar interruption).

This is particularly true if a subprogram called from Natural by an external CALL interface produces dialogue
output.

Restoring the Screen Content
In the above-mentioned cases, you can use one of the following methods to cause Natural to restore the most
recent terminal screen contents.

Issue the terminal command %R.
Use the statement SET CONTROL ’R’

Copyright © Software AG 2003106

Optimization of Message HandlingOptimization of Message Handling

Siemens Terminal Types Supported by
Natural
Natural supports the following Siemens terminal types:

974n
975n
976n
telex devices

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Optimization of Message Handling
| Function Key Support with 9750 Devices | Common Memory Pools | Calling Dynamically Reloadable 3GL
Programs

Type 9748
At present, there are significantly different data stations of the type 9748. Depending on the age of the device,
better support can be provided in 9750, 9755 or 9756 mode. Devices from older series of this type should be
defined as 9750 because of the limited number of fields per line.

As various terminal types which were all defined as 9750 in PDN are often found in networks, the terminal type
can also be modified during a Natural session with the terminal command %T= and thereby be made consistent
with the device type currently in use.

975n Series
The various devices of the 975n series differ considerably (for example, possible number of field separation
characters per line, default brightness for protected blank lines, standard arrangement of display characteristics to
field properties, etc.).

Four terminal driver routines are provided which support these devices. This permits optimum support of
black/white devices of the type 9755 or 9756 with respect to their varying display characteristics. The different
devices can be generated in PDN as 975n.

Some device types cannot be distinguished by an operating system inquiry (SVC 70). Therefore, Natural permits
these "logical terminal types" to be associated with various physical device types during generation.

Under TIAM, this is done with the parameter T975X.
Under UTM, the parameter TERMN in the PTERM statement for the KDCDEF application generation is
used for this purpose.

Type 9763M
Terminals of type 9763M (monochrome) are treated like 9756-type terminals.

107Copyright © Software AG 2003

Siemens Terminal Types Supported by NaturalSiemens Terminal Types Supported by Natural

Function Key Support with 9750 Devices
The following topics are covered:

Key Assignment
Modes for Key Assignment

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Optimization of Message Handling
| Siemens Terminal Types Supported | Common Memory Pools | Calling Dynamically Reloadable 3GL Programs

Key Assignment
In Natural, function keys serve to transfer data together with specific command/execution information to a
program.

As current Siemens terminal device types only support the keys F1 to F5, the programmable P keys (P1 to P20)
are used for this purpose. This means that these keys are assigned the function key values PF1 to PF20 (in 3270
terminology).

The identification of the key pressed is made from Natural-loaded key assignments in connection with the
send-key code F5. This allows the distinction of similar data types which were sent using DUE1. Using F5,
Natural recognizes the function-key resolution and interprets the P-key value as a code. In the other instance the
data are transferred to the executing program.

The loading of keys is controlled by terminal commands or from the executing program using SET CONTROL
statements.

Modes for Key Assignment
There are three types of modes for key assignment:

KN For terminal types 974n, 9750 - 9755, the literals "%K1" to "%K20" are assigned to the keys (terminal
command %KN or statement SET CONTROL ’KN’).
For terminal types 9756, 9758, 976n, send-key codes "F1" to "F20" are loaded to the keys P1 to P20.

KO The literals "01" to "20" and the send-key code "F5" are assigned to the keys (terminal command %KO or
statement SET CONTROL ’KO’).

KS The literals "A" to "T" as well as the send-key code "F5" are assigned to the keys (terminal command
%KS or statement SET CONTROL ’KS’).

In KS mode, a dummy field is generated in the last two terminal positions of each output message. This field is
used for receiving and transferring the key value. Prior to data transfer the cursor is moved in this field using the
movement functions assigned to the keys.

If an "N" is specified after the respective terminal command (that is, %KNN, %KON or KSN), only the
corresponding function-key mode is activated, but no values are loaded to the P keys.

For all modes, cursor-position-dependent key processing, according to current assignment, can lead to differing
results. For example, the help key, dependent on field assignment, can invoke either the global or local help
processing for a particular field. Such functions should be controlled using PF21 to PF23 interpreted keys (F1 to
F3).

Copyright © Software AG 2003108

Function Key Support with 9750 DevicesFunction Key Support with 9750 Devices

Common Memory Pools
The following topics are covered:

Global Common Memory Pools
Local Common Memory Pools

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Optimization of Message Handling
| Siemens Terminal Types Supported | Function Key Support with 9750 Devices | Calling Dynamically
Reloadable 3GL Programs

Global Common Memory Pools
The following programs are provided to start and stop global common memory pools in Natural under
BS2000/OSD:

CMPSTART
CMPEND

CMPSTART Program

Program CMPSTART does the following:

It starts global common memory pools with its own start task.
It loads a defined module into a global common memory pool.
It initializes a global common memory pool.

The keyword parameters TXTSIZE and BPLIST (see below) are only valid for program CMPSTART and when
starting a Natural global buffer pool.

The keyword parameters JV and JVSUFX (see below) are only valid for program CMPSTART when starting a
global common memory pool.

All other keyword parameters are identical with the keyword parameters for the macro ADDON used for
generating the module BS2STUB.

The following keyword parameters are available: TXTSIZE | BPLIST | JV | JVSUFX

TXTSIZE - Buffer-Pool Text-Record Size

This keyword parameter defines the Natural buffer-pool text-record size in KB.

TXTSIZE=xx Possible values for xx are: 1, 2, 4, 8, 12, 16.

TXTSIZE=4 By default, the Natural buffer pool has a text-record size of 4 KB.

BPLIST - Preload List For Global Buffer Pool

This keyword parameter defines the name of a preload list for a Natural global buffer pool. The defined Natural
programs of the preload list will be loaded into the Natural global buffer pool when the first user logs on.

109Copyright © Software AG 2003

Common Memory PoolsCommon Memory Pools

BPLIST=name See the Natural profile parameter BPLIST.

JV - Create a Job Variable

This keyword parameter defines whether a job variable shall be created. This job variable enables the status of
the common memory pool to be controlled in the job control language.

Value 0 The common memory pool is not ready (in creation mode).

Value 1 The common memory pool is ready (successfully enabled and initialized).

The name of the job variable has 2 parts:

Part 1 is the name of the common memory pool (operand of keyword parameter NAME)
Part 2 is the operand of keyword parameter JVSUFX (see below).

Logic of Job Variable Navigation:

When the program CMPSTART has started, a check is made whether the job variable is available. If so, the
value of the job variable is set to 0. If not, the job variable is cataloged and its value is set to 0. When the
common memory pool was successfully enabled and initialized, the value of the job variable is set to 1. When
the global common memory pool is terminated, the job variable is erased.

JV=YES A job variable shall be created.

JV=NO By default, no job variable will be used.

JVSUFX - Suffix of the Job Variable Name

This keyword parameter defines the second part of the job variable name.

JVSUFX=xxxxxxxx Maximally 8 characters for the second part of the job variable name.

JVSUFX=.SAG.JV This is the default value.

Example:

NAME=EDT410GA,TYPE=EDT,JV=YES,JVSUFX=.SAG##JV

The Jobvariable name is EDT410GA.SAG##JV.

Operator Commands

These operator commands terminate a global common memory pool:

/INTR tsn ,STOP

or:

/INTR tsn ,END

This operator command displays the global common memory pool’s name, position, address, size and activation
time on the console:

/INTR tsn ,DPRM

Copyright © Software AG 2003110

Common Memory PoolsOperator Commands

This operator command terminates the global common memory pool’s start task with a dump:

/INTR tsn ,DUMP

Examples:

To start a global load pool (shared nucleus):

/.NATSHRE LOGON
 /OPTION DUMP=YES
 /SYSFILE SYSDTA=(SYSCMD)
 /SYSFILE SYSOUT=LST.NATSHARE
 /EXEC (CMPSTART,NAT310.MOD)
 NAME=NATSHARE,SIZE=2MB,POSI=ABOVE,ADDR=250,SCOP=GLOBAL
 PFIX=YES,ALNK=NO,LIBR=NAT310.USER.MOD
 /SYSFILE SYSDTA=(PRIMARY)
 /LOGOFF
 /* NATSHARE IS THE NAME OF THE LINKED NATURAL REENTRANT MODULE. IT IS ALSO THE
 /* NAME OF THE COMMON MEMORY POOL. THE ADDRESS OF THE GLOBAL NATURAL LOAD POOL
 /* MUST BE DEFINED. THE ADDRESS MUST BE FIXED (PFIX=YES).

To start a Natural global buffer pool:

/.BP310GA LOGON
 /OPTION DUMP=YES
 /SYSFILE SYSDTA=(SYSCMD)
 /SYSFILE SYSOUT=LST.BP310GA
 /EXEC (CMPSTART,NAT310.MOD)
 NAME=BP310GA,TYPE=NAT,POSI=ABOVE,SIZE=2048KB,SCOP=GLOBAL
 /SYSFILE SYSDTA=(PRIMARY)
 /LOGOFF
 /* FOR A NATURAL BUFFER POOL, THE OPERAND OF PARAMETER "TYPE" MUST BE DEFINED
 /* AS ’NAT’.

To start a Natural global buffer pool with ESA data space

/.BP314GA LOGON
 /OPTION DUMP=YES
 /SYSFILE SYSOUT=LST.BP314GA
 /SYSFILE SYSDTA=(SYSCMD)
 /EXEC (CMPSTART,NAT314.BS2.MOD)
 NAME=BP314GA,TYPE=NAT,POSI=ABOVE,SIZE=10MB,ADDR=260,DESA=YES
 DATA=32MB
 /SYSFILE SYSDATA=(PRIMARY)
 /LOGOFF N

CMPEND Program

Program CMPEND terminates the start tasks for all global common memory pools. The input for CMPEND are
the names of the global common memory pools.

Example:

/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NAT310.MOD)
NATSHARE,BP310GA
/* THE DELIMITER FOR THE DEFINED NAMES IS ’ ’ OR ’,’.

111Copyright © Software AG 2003

CMPEND ProgramCommon Memory Pools

Local Common Memory Pools
The following macros enable you to define local (or global) common memory pools in Natural under
BS2000/OSD:

BS2STUB
ADDON
ADDEND
Example of Assembling Macro BS2STUB

BS2STUB Macro

The macro BS2STUB does the following:

Starts local common memory pools.
Connects to a defined global common memory pool.
Loads a defined module into a local common memory pool.
Loads dynamically called 3GL programs.

The BS2STUB macro has the following parameters:

name BS2STUB PARMOD=nn,PROGMOD=xxx

name - CSECT Name

name Specifies the CSECT name. The first three characters must not contain the value "NAT".

name BS2STUB This is the default name.

PARMOD - 24/31 Bit Addressing Mode

This parameter specifies whether 24 or 31 bit addressing mode is to be used.

PARMOD=nn Possible values for nn: 24 or 31 (bit).

PARMOD=31 By default, the address mode setting is 31 bit.

PROGMOD - Loading above or below the 16-MB Line

This parameter specifies whether dynamically loaded programs are to be loaded above or below the 16-MB line.

PROGMOD=ANY ANY means that the module is loaded above or below the 16-MB line. This is the default
setting.

PROGMOD=24 24 means that the module is loaded below the 16-MB line.

ADDON Macro

The macro ADDON defines a common memory pool in the ADDON table of program BS2STUB. It contains the
following keyword parameters which are also applicable to program CMPSTART:

Copyright © Software AG 2003112

Common Memory PoolsLocal Common Memory Pools

ACCS | ADDR | ALNK | DATA | DESA | LIBR | LOAD | NAME | PFIX | POSI | SCOP | SIZE | STAT | TYPE |
WAIT

ACCS - Access To Common Memory Pool

This parameter determines how the common memory pool can be accessed.

ACCS=READ This means the access is read-only (write-protected).
To be able to set ACCS=READ, the user ID must be authorized for the BS2000/OSD
CSTMP macro in the user catalog (JOIN command with C-M=YES).

ACCS=WRITE By default, the common memory pool is write-enabled.

ADDR - Size of Common Memory Pool Address

This parameter determines the number of megabytes for the defined address of the common memory pool. The
size must be specified. No default value exists.

ADDR=number number must be >=0.

ALNK - Activate AUTOLNK Function

This parameter determines whether the AUTOLNK function of the dynamic binder loader (DBL) is activated.

ALNK=NO The AUTOLNK function is deactivated.

ALNK=YES By default, the AUTOLNK function is activated.

DATA - Size of Data Space Area

This parameter can be specified in conjunction with the DESA parameter and defines the size of the data space
area for the buffer pool or swap pool to be started.
The following settings are possible:

DATA=nnnMB Specifies the size of the data space area in Megabytes.

DATA=nnnKB Specifies the size of the data space area in Kilobytes.

Using the DATA parameter in the ADDON macro:

To start a Natural local buffer pool you specify DESA=YES and use this parameter to determine the size of
the data space area in Megabytes/Kilobytes. The size must be specified, because no default value exists.
To connect a Natural global buffer pool or a global swap pool, you specify DESA=YES and omit the
DATA parameter, because it has been specified for the CMPSTART Program.

Using the DATA parameter for the CMPSTART program:

To start a Natural global buffer pool you specify DESA=YES and use this parameter to determine the size of
the data space area in Megabytes/Kilobytes. The size must be specified, because no default value exists.

DESA - ESA Data Space Area

This parameter must be specified to determine whether or not an ESA data space area is to be created for a
Natural buffer pool or a Natural swap pool.

113Copyright © Software AG 2003

ADDON MacroCommon Memory Pools

DESA=YES An ESA data space area is to be created.

DESA=NO By default, no ESA data space area is to be created.

An ESA data space is only supported for buffer pools of TYPE=NAT or TYPE=SWP.
The parameter DESA=YES is relevant only if a global common memory pool (CMPSTART having its own
start task) with ESA data space or a local common memory pool (BS2STUB/ADDON) with ESA data
space is to be created.
For the connection (BS2STUB/ADDON) to an existing global common memoty pool, the parameter DESA
has no significance.

Attention:
An ESA data space should be created only for one global common memory pool which has its own start task.
The ESA data space will no longer be available when the task that created the ESA data space terminates
normally or abnormally.

LIBR - Load Library

This parameter determines from where the defined module is to be loaded. No default value exists. If the operand
of parameter LIBR is not defined, only a common memory pool will be enabled (ENAMP+REQMP).

LIBR=library library is the name of the load library.

LIBR=BLSLIB The libraries with the link names BLSLIB and BLSLIB01 to BLSLIB99 are to be used.

LIBR=CLASS-4 Module is loaded as subsystem in class 4 memory.

LOAD - Method for Loading a Module into a Common Memory Pool

This parameter determines which macro shall be used for loading a module into a common memory pool.

LOAD=ASHARE The macro ASHARE will be used.
If ASHARE is defined, the operand of parameter PFIX must be YES.

LOAD=BIND By default, the macro BIND will be used..

NAME - Common Memory Pool/Module Name

This parameter determines the name of the module and/or the name of the common memory pool. The name
must be specified. No default value exists.

NAME=name name is a valid name of common memory pool or module.

The maximum number of characters in a name is:

8 characters Module name (name of common memory pool); Natural buffer pool.

16 charactersAll other common memory pools.

PFIX - Fixed Address

This parameter determines whether or not the common memory pool’s address should be fixed.

PFIX=YES The common memory pool’s address should be fixed.

PFIX=NO By default, the common memory pool’s address should not be fixed.

Copyright © Software AG 2003114

Common Memory PoolsADDON Macro

For a global Natural load pool, this parameter must be set to YES.

POSI - Position Relative to 16-MB Line

This parameter determines the position of the common memory pool, which can be above or below the 16-MB
line.

POSI=ABOVE The common memory pool is to be located above the 16-MB line.

POSI=BELOW By default, the common memory pool is to be located below the 16-MB line.

SCOP - Scope of Common Memory Pool

This parameter determines the scope of the common memory pool.

SCOP=LOCAL
SCOP=GROUP
SCOP=GLOBAL

For information on the scopes of a common memory pool, see the description of the
ENAMP macro in the BS2000/OSD documentation.

SCOP=GLOBAL This is the default setting.

SIZE - Size of Common Memory Pool

This parameter specifies the size of the common memory pool in Megabytes/Kilobytes.

SIZE=nKB
SIZE=nMB

Specifies the size of the common memory pool in n Kilobytes
or n Megabytes.

SIZE=1MB By default, the common memory pool has a size of 1 Megabyte.

STAT - Status of Common Memory Pool

This parameter determines the status of the common memory pool.

STAT=GLOBAL The status of the common memory pool is GLOBAL (started by CMPSTART).

STAT=LOCAL The status of the common memory pool is LOCAL (started by BS2STUB).
By default, the status of the common memory pool is LOCAL.

Note:
The STAT parameter will be ignored when the program CMPSTART runs.

TYPE - Type of Common Memory Pool

This parameter determines the type of the common memory pool. The type must be specified. No default value
exists.

115Copyright © Software AG 2003

ADDON MacroCommon Memory Pools

TYPE=COM Natural DCOM pool

TYPE=EDT Editor buffer pool

TYPE=MON Natural monitor pool (SYSMON)

TYPE=NAT Natural buffer pool

TYPE=SRT Sort buffer pool

TYPE=SWP Natural swap pool

TYPE=USR User buffer pool

WAIT - Enabling or Waiting of Common Memory Pool During Application Startup

This parameter determines during startup of an application whether the common memory pool is to be enabled at
once or whether the common memory pool is to wait for a request from Natural and is enabled then.

WAIT=YES The common memory pool is to wait for a request from Natural and is enabled then.

WAIT=NO By default, the common memory pool is to be enabled at once.

Note:
The WAIT parameter will be ignored when the program CMPSTART runs.

ADDEND Macro

The macro ADDEND defines the end of macro ADDON’s definitions. There are no parameters for ADDEND.

Example of Assembling Macro BS2STUB

 BS2STUBA BS2STUB PARMOD=31,PROGMOD=24 31-BIT ADDRESSING MODE,
 * LOAD 3GL PROGRAMS BELOW
 * +--+
 * I Define the Natural global load pool with Name NATSHARE
 * +--+
 ADDON NAME=NATSHARE,STAT=GLOBAL
 * +--+
 * I Define the Natural local swap pool
 * +--+
 ADDON NAME=SWAP410LA,TYPE=SWP,SIZE=16MB,STAT=LOCAL,POSI=ABOVE
 * +--+
 * I Connecting a Natural global buffer pool with ESA data space
 * +--+
 ADDON NAME=BP410GA,TYPE=NAT,STAT=GLOBAL
 * +--+
 * I Creating/Connecting a Natural local buffer pool with ESA data space
 * +--+
 ADDON NAME=BP410LA,TYPE=NAT,POSI=ABOVE,SIZE=10MB,
 STAT=LOCAL,SCOP=LOCAL,DESA=YES,DATA=32MB
 ADDEND
 END

Copyright © Software AG 2003116

Common Memory PoolsADDEND Macro

Calling Dynamically Reloadable 3GL
Programs in a Natural Application
This document contains rules for address mode selection that apply when dynamically reloadable 3GL programs
are called in a Natural application.

Storage Allocation Rule
Thread-Creation Rule
Address-Mode Dependencies

BS2000/OSD Environment - Other Topics:
Natural Shared Nucleus under BS2000/OSD | Refresh of Natural Load Pool | Optimization of Message Handling
| Siemens Terminal Types Supported | Function Key Support with 9750 Devices | Common Memory Pools

Storage Allocation Rule
Whether a dynamically reloadable 3GL program is loaded above or below the 16 MB line depends on the
keyword parameter PROGMOD for macro BS2STUB.

Parameter Explanation

PROGMOD=ANY The program is loaded above or below the 16 MB line. This depends on the application’s
address mode and on the possible existence of AMODE or RMODE statements in the 3GL
program to be loaded.

PROGMOD=24 The 3GL program is always loaded below the 16 MB line.

Thread-Creation Rule
Whether the Natural user thread is created above or below the 16 MB line depends on the keyword parameters
NUAADDR for macro NATUTM and on REQMLOC for the macros NAMTIAM and NAMBS2.

Address-Mode Dependencies
The following paragraphs give you an overview of which address mode is used in which generation
configuration to call dynamically reloadable 3GL programs.

1. Calling a 3GL program using the ILCS or CRTE interface
2. Calling of 3GL programs without using the ILCS or CRTE interface
3. Calling of UTM partial programs which are not 31-bit enabled from Natural/UTM driver via PEND PR

1. Calling a 3GL program using the ILCS or CRTE interface (’ILCS=YES’ or
’ILCS=CRTE’)

Case The application was generated with The 3GL program is called with

1 PARMOD=31 or PARMOD=(31,ABOVE)AMODE=31.

2 PARMOD=24 AMODE=24.

117Copyright © Software AG 2003

Calling Dynamically Reloadable 3GL Programs in a Natural ApplicationCalling Dynamically Reloadable 3GL Programs in a Natural Application

2. Calling of 3GL programs without using the ILCS or CRTE interface (’ILCS=NO’)

Case The application was generated with The 3GL program
is called with

1 PARMOD=31.
The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line.

AMODE=31

2 PARMOD=31.
The Natural user thread and the 3GL program are located below the 16 MB line.

AMODE=24

3 PARMOD=(31,ABOVE).
The Natural user thread is located above the 16 MB line and the 3GL program is
loaded above or below the 16 MB line

AMODE=31

4 PARMOD=(31,ABOVE).
The Natural user thread is located below the 16 MB line and the 3GL program is
loaded below the 16 MB line.
1. The module BS2GLUE must be located in the same library as the loaded 3GL
program, or the load module library for module BS2GLUE must be defined as
BLSLIB in the STARTJOB.
2. If such a configuration exists in the case of a Natural/UTM application, the
keyword parameter KB has to be defined as KB=NO.

AMODE=24

5 A Natural/UTM application was generated using PARMOD=31.
The Natural user thread is located below or above the 16 MB line and keyword
parameter CALLM31 for macro NURENT is defined as CALLM31=YES.

AMODE=31

3. Calling of UTM partial programs which are not 31-bit enabled from Natural/UTM
driver via PEND PR

The application was generated using PARMOD=31 and the keyword parameter SWAMODE for macro NATUM
is defined as SWAMODE=YES:

Prior to each calling of the UTM KDCS interface, Natural switches back to the 24-bit address mode, and when
control is returned to the UTM driver, a switch-back occurs to the 31-bit address mode.

Copyright © Software AG 2003118

Calling Dynamically Reloadable 3GL Programs in a Natural ApplicationAddress-Mode Dependencies

Natural in Batch Mode - Overview
This document contains considerations that apply when running Natural in batch mode.

The following topics are covered:

Natural in Batch under OS/390 provides special considerations that refer to Natural in batch
mode under the operating system OS/390.

Natural in Batch under VSE/ESA provides special considerations that refer to Natural in batch
mode under the operating system VSE/ESA.

Natural in Batch under CMS provides special considerations that refer to Natural in batch
mode under CMS.

Natural in Batch under BS2000/OSD provides special considerations that refer to Natural in batch
mode under the operating system BS2000/OSD.

Natural in Batch Mode (all environments)contains general considerations that apply when running Natural
in batch: Adabas datasets, sort datasets, subtasking session
support for batch environments.

119Copyright © Software AG 2003

Natural in Batch Mode - OverviewNatural in Batch Mode - Overview

Natural in Batch under OS/390
This document contains special considerations that refer to Natural in batch under the operating system OS/390.

The following topics are covered:

General Information about the Natural OS/390 Batch Interface
Natural OS/390 Generation Parameters
Datasets Used by Natural under OS/390 Batch

For considerations that refer to Natural in batch generally, see also:

Adabas Datasets
Sort Datasets
Subtasking Session Support for Batch Environments

Natural in Batch Mode - Other Topics:
Natural in Batch Mode (all platforms) | Natural in Batch under VSE/ESA | Natural in Batch under CMS | Natural
in Batch under BS2000/OSD

General Information about the Natural OS/390 Batch
Interface
The Natural OS/390 batch interface (NATOS) consists of a number of service routines interfacing with the
OS/390 operating system.

NATOS is supplied as a source module and can be customized to meet your requirements; see also Installing
Natural under OS/390 (described in the Natural Installation Guide for Mainframes). You can either assemble and
link NATOS to the Natural nucleus or you can run it separately, connecting with a shared nucleus.

NATOS is fully reentrant and can run above the 16 MB line. Multiple Natural sessions can be started in parallel
within one batch region; see Subtasking Session Support for Batch Environments.

Natural OS/390 Generation Parameters
The NTOS macro contains several generation parameters to change Natural for OS/390 batch interface’s internal
defaults.

These parameters are: ABEXIT | FACOM | LBPNAME | LE370 | SUBPOOL | USERID

ABEXIT - Abend Processing

This parameter specifies the mode of abend processing within Natural.

ABEXIT=ESTAE
Natural intercepts all abends and issues the appropriate error messages. This is the default
value.

ABEXIT=SPIE Only program checks (S0Cx abends) are intercepted as they used to be with Natural
Version 2.1.

ABEXIT=NONE
Natural does not intercept any abends or program checks at all. This value corresponds to
profile parameter DU=FORCE.

Copyright © Software AG 2003120

Natural in Batch under OS/390Natural in Batch under OS/390

FACOM - Use of FACOM Operating System

This parameter specifies whether the FACOM operating system is to be used.

FACOM=NO FACOM is not used. This is the default value.

FACOM=YES FACOM is to be used. Specific code is generated to support FACOM.

LBPNAME - Sharing of Local Buffer Pools

This parameter controls the sharing of the local buffer pools. It defines the name of the shared buffer pool
environment and is used to locate and synchronize the local buffer pools.

LBPNAME= name name can be 1-8 characters long.

LBPNAME= The default value is none, that is, the local buffer pools are not shared.

When running multiple Natural sessions under OS/390 in a batch or TSO environment concurrently, for
example, when running a Natural RPC server, each session allocates storage for separate local buffer pools.
Except for the Natural OS/390 batch server, the local buffer pools are not shared per default, that is, if the
different sessions use the same Natural objects, these have to be loaded once for each session separately. If name
is specified, all local buffer pools will be shared by the different Natural sessions.

LE370 - Use of IBM Language Environment

This parameter specifies whether Natural is to run in the IBM Language Environment (LE).

LE370=YES You can call external subprograms according to the IBM calling conventions.

LE370=NO
You can only call main programs of the Language Environment. This is the default value.
This means a new LE enclave is created and terminated for each CALL statement.

LE370=POSIX You can call external subprograms according to the LE calling conventions with POSIX
semantics, i.e. LE is initialized with runtime option POSIX(ON).

For more information about Natural running with the IBM Language Environment, refer to Miscellaneous > LE
Subprograms (in the Natural Operations Manual).

SUBPOOL - Storage Subpool for GETMAIN Requests

This parameter defines the storage subpool for GETMAIN requests.

SUBPOOL=nnn Possible value for nnn: 0 to 127. The default value is 0.

USERID - Content of System Variable *INIT-USER

This parameter specifies the content of the system variable *INIT-USER.

USERID=YES The variable is set to either the user ID from the security access control block (ACEE) if a
security package (as RACF or ACF2) is involved or the user parameter from the job card.

USERID=NO The user ID is the job name. This is the default value.

121Copyright © Software AG 2003

FACOM - Use of FACOM Operating SystemNatural in Batch under OS/390

The content of *INIT-USER can be changed by the user ID exit NATUEX1 during session initialization. For
more information, see Natural User Exits > NATUEX1 - User Exit for Authorization Control.

Datasets Used by Natural under OS/390 Batch
The following datasets are required if certain functions are used during a Natural OS/390 batch session:

CMEDIT Software AG Editor Work File

CMHCOPY Hardcopy Print Output

CMOBJIN Input for Natural INPUT Statements

CMPLOG Dynamic Profile Parameter Report Output

CMPRINT Primary Report Output

CMPRMIN Dynamic Profile Parameter Input

CMPRTnn Additional Reports 01-31

CMSYNIN Primary Command Input

CMTRACE External Trace Output

NATRJE Job Submit Output

STEPLIB Load Library for External Modules

CMWKFnn Work Files 01-32

These datasets are described below.

Unless otherwise stated below, the default DCB RECFM/LRECL information is as follows:

RECFM=FB and LRECL=80 for sequential input datasets
RECFM=FBA and LRECL=133 for sequential output datasets

CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM dataset is required if a local or global Software AG editor buffer pool
is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of profile
parameter EDBP or parameter macro NTEDBP is used by Natural to do the dynamic allocation for the Editor
work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool, which doesn’t
require an editor work file. For more information about the installation of the Software AG editor, please refer to
Installing the Software AG Editor (in the Natural Installation for Mainframes documentation).

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output dataset is CMHCOPY. It can be changed by one of the following:

the subparameter DEST of profile parameter PRINT for Print File 0,
the profile parameter HCDEST, which is an equivalent of PRINT=((0),DEST=...),
the setting of the system variable *HARDCOPY during the session,
the terminal command %H during the session.

Copyright © Software AG 2003122

Natural in Batch under OS/390Datasets Used by Natural under OS/390 Batch

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default values for
the hardcopy dataset. The default dataset name CMHCOPY implies CLOSE=FIN for the hardcopy print dataset,
that is, after the dataset has been opened for output, any subsequent change of the hardcopy print output dataset
name will not be honored. If a different name is defined at open time, the hardcopy dataset will be closed
according to subparameter CLOSE of profile parameter PRINT for Print File 0.

During the session, the hardcopy dataset can be released and reallocated (before open or after close) by the by
dynamic allocation (see Natural Application Programming Interface USR2021).

CMOBJIN - Input for Natural INPUT Statements

This dataset can be used to read data by the Natural INPUT statement rather than from the primary input dataset
CMSYNIN.

The usage of CMOBJIN is controlled by the profile parameter OBJIN. The input record data length for Natural
is determined by profile parameter SL. The maximum record length (LRECL) supported is 255. The record
format (RECFM) can be fixed or variable.

CMPLOG - Dynamic Profile Parameter Report Output

If profile parameter PLOG=ON is set and dataset CMPLOG is available, the evaluated dynamic profile
parameters are written to this dataset during session initialization. If dataset CMPLOG is not available, the
evaluated dynamic profile parameters are written to CMPRINT.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements in a
Natural program.

If not defined in JCL, CMPRINT will be allocated dynamically as

//CMPRINT DD SYSOUT=*

when the first record is to be written.

CMPRMIN - Dynamic Parameter Dataset

If available, this dataset is read during session initialization to get dynamic profile parameters. Only the first 72
positions of each record are used to build a dynamic profile parameter string.

Any other profile parameters, which are passed directly for the start of the Natural nucleus by the PARM
keyword of the JCL EXEC statement, are concatenated at the end of the parameter string which is built from the
input of CMPRMIN, that is, these can be used to overwrite the parameters from CMPRMIN.

CMPRTnn - Additional Reports 01 - 31

These datasets can be used by Natural print file statements like WRITE (nn). If no DCB information (e.g.
RECFM, LRECL, BLKSIZE) is available, the defaults are defined by the PRINT profile parameter or the
NTPRINT macro in the Natural parameter module. The print file names can be overwritten by subparameter
DEST.

CMSYNIN - Primary Input

This dataset is used to read command input and data requested by the Natural INPUT statement. The latter is
controlled by the profile parameter OBJIN (see also CMOBJIN).

123Copyright © Software AG 2003

CMOBJIN - Input for Natural INPUT StatementsNatural in Batch under OS/390

The input record data length for Natural is determined by profile parameter SL. The maximum record length
(LRECL) supported is 255. The record format (RECFM) can be fixed or variariable.

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE=ON is set or the equivalent terminal command %TRE+ was issued, any Natural
trace output during the session is written to the CMTRACE dataset. To define the Natural components that are to
be traced, the profile parameter TRACE is required.

If dataset CMTRACE is not available, it will be allocated dynamically as

//CMTRACE DD SYSOUT=*

when the first trace record is to be written.

NATRJE - Job Submit Output

This dataset is used for the Natural job submitting utility. If it is not defined, it will be allocated dynamically as

//NATRJE DD SYSOUT=(A,INTRDR)

when the first job is submitted.

STEPLIB - Load Library for External Modules

STEPLIB is the default load library name for loading external modules, for example:

the shared nucleus (profile parameter NUCNAME),
a separate Adabas link routine module (profile parameter ADANAME),
the session back-end program (profile parameter PROGRAM),
any external subprograms not linked to the Natural parameter module.

The load library name can be changed by profile parameter LIBNAM . The specified load library name must be
defined by a DD statement in the JCL.

CMWKF nn - Work Files 01-32

These datasets can be used by Natural work file statements like READ WORK nn and WRITE WORK nn.

If no DCB information (RECFM, LRECL, BLKSIZE, etc.) is available in the JCL or in the VTOC entry for the
dataset, the defaults are defined by the WORK profile parameter or the NTWORK macro in the Natural
parameter module.

The work file dataset names can be overwritten by subparameter DEST.

Copyright © Software AG 2003124

Natural in Batch under OS/390CMTRACE - Optional Report Output for Natural Tracing

Natural in Batch under VSE/ESA
This document contains special considerations that refer to Natural in batch under the operating systems
VSE/ESA.

The following topics are covered:

NATVSE - Natural VSE/ESA Batch Interface
NTVSE Macro - Generation Parameters for Natural under VSE/ESA
Natural Datasets Used under a VSE/ESA Batch Session
NATVSE Print and Work File Support for VSE Library Members
Debugging Facilities for Natural under VSE/ESA
NATVSE Attention Interrupts

For considerations that refer to Natural in batch generally, see also:

Adabas Datasets
Sort Datasets
Subtasking Session Support for Batch Environments

Natural in Batch Mode - Other Topics:
Natural in Batch Mode (all platforms) | Natural in Batch under OS/390 | Natural in Batch under CMS | Natural in
Batch under BS2000/OSD

NATVSE - Natural VSE/ESA Batch Interface
The Natural VSE/ESA batch interface (NATVSE) consists of a number of service routines interfacing with the
VSE/ESA operating system.

NATVSE is supplied as a source module and can be customized to meet your requirements; see also Installing
Natural under VSE/ESA (described in the Natural Installation Guide for Mainframes), where you can set the
generation parameters). You can either assemble and link it to the Natural nucleus or you can run it separately,
connecting with a shared nucleus.

NATVSE must run below the 16 MB line. Multiple sessions can be started in parallel within one batch region;
see Subtasking Session Support for Batch Environments.

NTVSE Macro - Generation Parameters for Natural under
VSE/ESA
The NTVSE macro contains several generation parameters (to be set in the NATVSE copy book) to change the
NATVSE internal defaults.

These parameters are:

NAME | DSECTS | CANCEL | RJEUSER | FILEID | FILMNGR | FILSCAN | BUFSIZE | LE370 | LIBRID

125Copyright © Software AG 2003

Natural in Batch under VSE/ESANatural in Batch under VSE/ESA

NAME - Name of Relocatable Module

NAME specifies the name of the relocatable module to be created by the given assembly. Possible values:

NAME=xxxxxx xxxxxx = name of the relocatable module to be created. Maximum length: 8 characters.

NAME=NATVSE This is the default value. NATVSE always terminates with RETURN or EOJ macros with a
set return code (the same effect is achieved when you set the Session Abend Flag UPSI
XXXXX1XX).

DSECTS - Listing of Operating System DSECTS

DSECTS specifies whether operating system DSECTS are to be listed. Possible values:

DSECTS=YES Listing of operating system DSECTS takes place.

DSECTS=NO This is the default value. Operating system DSECTS are not to be listed.

CANCEL - Session Termination

CANCEL specifies how the Natural VSE/ESA interface is to proceed at session termination. Possible values:

CANCEL=YES This is the default value. The job is cancelled by CANCEL or JDUMP macros, unless either
Natural terminated normally or the session was terminated by the Natural TERMINATE
statement.

CANCEL=NO NATVSE always terminates with RETURN or EOJ macros with a set return code (the same
effect is achieved when you set the Session Abend Flag UPSI XXXXX1XX).

RJEUSER - User ID for Submission via XPCC Macro Requests

RJEUSER defines which user ID is to be set for submission via XPCC macro requests. Possible values:

RJEUSER=YES or
RJEUSER=(YES,VSE)

This is the default value. The system variable *INIT-USER is used as the mandatory
submission user ID.

RJEUSER=(YES,NAT)The system variable *USER is used as the mandatory submission user ID.

RJEUSER=NO The user ID "R000" is used.

FILEID - Check of Label Information

FILEID specifies a string of up to 8 characters which is checked against the start of a DLBL or TLBL file ID. If
it matches, this label information is ignored. Possible values:

FILEID=xxxxxxxx xxxxxxxx = any character string which must be enclosed in apostrophes if it contains
special characters.

FILEID=’IGNORE’ This is the default value.

This is particularly helpful when DLBL or TLBL statements for CMWKFnn* and/or CMPRTnn* are supplied in
the (partition) standard labels, but should not be used.

Copyright © Software AG 2003126

Natural in Batch under VSE/ESANAME - Name of Relocatable Module

If, for example, a // DLBL CMPRT01, ’...’ statement is found, it is not possible to direct a WRITE(1) output to a
printer SPOOL. To do so, use the JCS statement // DLBL CMPRT01, ’IGNORE’ and a suitable printer
assignment of the relevant SYSnnn.

FILMNGR - Management of Print or Work File in Natural

FILMNGR specifies how a print or a work file is to be managed in Natural. Possible values:

FILMNGR=YES This is the default value. The fact that there is label information for a print or a work file and
the fact that LABEL=OFF/ON is specified for an unlabelled work file indicates to Natural
that this file is available. In particular, this is relevant if the Natural print and work files are
to be managed by a file management system.

FILMNGR=NO The logical unit number of the Natural print or work file must be assigned to the appropriate
device type.

FILSCAN - Scanning of Print or Work Files

FILSCAN specifies whether print or work files are to be scanned. Possible values:

FILSCAN=YES This is the default value. The Natural interface for VSE/ESA scans the VSE/ESA label area
for all Natural print and work files for which no specific file access method has been defined
via Natural session parameters, as this may cause overhead.

FILSCAN=NO Access to all Natural print and work files must be specified explicitly via session parameters
in order to be "available". This concentrates all file access efforts on the defined files.

BUFSIZE - Size of Natural I/O Buffer

BUFSIZE specifies the size of the Natural I/O buffer which is used for all input and output operations.

BUFSIZE=nnnn nnnn specifies the size of the Natural I/O buffer in bytes. Minimum value: 8192 (KB).

BUFSIZE=8192 This is the default value.

LE370 - Use of IBM Language Environment

LE370 specifies whether Natural is to run in the IBM Language Environment. Possible values:

LE370=YES The IBM Language Environment runtime environment is initialized on the initialization of the
Natural session. You must specify YES if IBM Language Environment subroutine programs
(dynamic or static) are to be called via Natural.

LE370=NO This is the default value. The IBM Language Environment runtime environment is not initialized
on the initialization of the Natural session.

LIBRID - Check of DLBL File ID Information

LIBRID specifies a string of up to 8 characters which is checked against the start of a DLBL file ID. If it
matches, the remaining portion of that file ID is scanned for information specifying a library member in a VSE
library or library chain. Possible values:

127Copyright © Software AG 2003

FILMNGR - Management of Print or Work File in NaturalNatural in Batch under VSE/ESA

LIBRID=xxxxxxxx xxxxxxxx = any character string of 8 characters length; must be enclosed in quotes if it
contains any special characters.

LIBRID=’LIBR:’ This is the default value.

Natural Datasets Used under a VSE/ESA Batch Session
The following datasets are required if certain functions are used during a Natural VSE/ESA batch session:

CMEDIT Software AG Editor Work File

CMHCOPY Hardcopy Print Output

CMOBJIN Input for Natural INPUT Statements

CMPLOG Dynamic Profile Parameter Report Output

CMPRINT Primary Report Output

CMPRMIN Dynamic Profile Parameter Input

CMPRTnn Additional Reports 01-31

CMSYNIN Primary Command Input

CMTRACE External Trace Output

CMWKFnn Work Files 01-32

These datasets are described below.

CMEDIT - Software AG Editor Work File

The Software AG Editor work file VSAM dataset is required if a local or global Software AG editor buffer pool
is to be used.

If not defined in the JCL, the name of the Editor work file specified by subparameter DSNAME of profile
parameter EDBP or parameter macro NTEDBP is used by Natural to do the dynamic allocation for the Editor
work file.

Alternatively, profile parameter EDPSIZE can be used to run with an auxiliary editor buffer pool, which doesn’t
require an editor work file. For more information about the installation of the Software AG editor, please refer to
Installing the Software AG Editor (in the Natural Installation for Mainframes documentation).

CMHCOPY - Optional Report Output for Hardcopy

The default name of the hardcopy print output dataset is CMHCOPY. It can be changed by one of the following:

the subparameter DEST of profile parameter PRINT for Print File 0,
the profile parameter HCDEST, which is an equivalent of PRINT=((0),DEST=...),
the setting of the system variable *HARDCOPY during the session,
the terminal command %H during the session.

The subparameters of the profile parameter PRINT for Print File 0 can be used to change the default values for
the hardcopy dataset. The default dataset name CMHCOPY implies CLOSE=FIN for the hardcopy print dataset,
that is, after the dataset has been opened for output, any subsequent change of the hardcopy print output dataset
name will not be honored. If a different name is defined at open time, the hardcopy dataset will be closed
according to subparameter CLOSE of profile parameter PRINT for Print File 0.

Copyright © Software AG 2003128

Natural in Batch under VSE/ESANatural Datasets Used under a VSE/ESA Batch Session

By default, the CMHCOPY file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMHCOPY, the print output may also be routed to
disk or tape by using the VSE/ESA macro DTFSD or DTFMT respectively, with
RECFORM=FIXUNB,BLKSIZE=133.

When routed to a VSE library, the record format is fix, the record length is 80 and the default member type is
PRINT.

CMOBJIN - Input for Natural INPUT Statements

CMOBJIN is used for data intended to be read by Natural INPUT statements. This type of data can alternatively
be placed in the CMSYNIN input stream immediately following the relevant source program or the relevant
RUN or EXEC command.

When the setting for the profile parameter OBJIN is "N", Natural reads input from CMSYNIN. When OBJIN is
set to "Y", Natural reads input from CMOBJIN.
When OBJIN is set to "R", Natural determines which option has been selected for a particular session depending
upon the presence or absence of a CMOBJIN label information.

By default, the CMOBJIN input file is assigned to SYSIPT. By using the READER profile parameter, it can be
assigned to SYSRDR.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER) reader file.
In that case, you must supply appropriate label information for file name CMOBJIN.

Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

You must supply appropriate label information; for assignment, you have to use file names CMSYNIN and /or
CMOBJIN.

CMPLOG - Optional Report Output for Dynamic Parameters

If profile parameter PLOG=ON is set and dataset CMPLOG is available, the evaluated dynamic profile
parameters are written to this dataset during session initialization. If dataset CMPLOG is not available, the
evaluated dynamic profile parameters are written to CMPRINT.

By default, the CMPLOG file is assigned to SYSLST and is processed with the macro DTFPR.

If appropriate label information is supplied for the file name CMPLOG, the print output may also be routed to
disk or tape by using the VSE/ESA macros DTFSD or DTFMT respectively, with
RECFORM=FIXUNB,BLKSIZE=133.

When routed to a VSE library, the record format is fix, the record length is 80 and the default member type is
PRINT.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements in a
Natural program.

By default, the CMPRINT file is assigned to SYSLST and is processed via the macro DTFPR.

129Copyright © Software AG 2003

CMOBJIN - Input for Natural INPUT StatementsNatural in Batch under VSE/ESA

If appropriate label information is supplied for the file name CMPRINT, the print output may also be routed to
disk or tape by using the VSE/ESA macro DTFSD or DTFMT respectively, with
RECFORM=FIXUNB,BLKSIZE=133.

When routed to a VSE library, the record format is fix, the record length is 80 and the default file type is PRINT.

CMPRMIN - Dynamic Parameter Dataset
CMPRMIN can be used as a dynamic parameter dataset to overcome the length restriction for the character
string in the job control PARM keyword of the EXEC statement.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72 positions of each
CMPRMIN record are significant. Trailing blanks at the end of each record are truncated; no commas are
inserted.

Additional dynamic parameters from the job-control PARM keyword can be supplied. They are concatenated
after the parameters from CMPRMIN, which means that the PARM character string can be used to overwrite
dynamic parameters specified in the CMPRMIN dataset.

CMPRMIN is a sequential disk or a labelled tape dataset. Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

CMPRTnn - Additional Reports

CMPRTnn is used for each additional report referenced by any Natural program compiled or executed during the
session. "nn" must be a two-digit decimal number in the range 01-31 corresponding to the report number used in
a DISPLAY, PRINT or WRITE statement.

Instead of CMPRTnn, another file name may be used by setting the DEST subparameter of profile parameter
PRINT to an appropriate value, for example:

PRINT=((nn),...,DEST=PRNTFIL)

When supplying label information with file name CMPRTnn, the print output can be written to a disk or tape.
Natural treats this print file like an unblocked fixed-length work file. When "printing" to disk or tape, the same
logic as for work files applies (see below).

When mapped to a VSE library member, the record format is fix, the record length is 80 and the default file type
for these files is PRINT.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source programs, and
(optionally) data to be read by INPUT statements during the execution of Natural programs.

By default, the CMSYININ input file is assigned to SYSRDR. By using the READER profile parameter, it may
be assigned to SYSIPT.

Alternatively, a sequential disk or labeled tape file may be used rather than a real/logical (POWER) reader file.
In that case, you must supply appropriate label information for file name SMSYNIN. Supported file formats are:

DTFSD/DTFMT: RECFORM=FIXUNB,RECSIZE=81
DTFSD/DTFMT: RECFORM=FIXUNB/FIXBLK,RECSIZE=80
LIBR: RECFORM=FIX,RECSIZE=80 , default member type CARD

Copyright © Software AG 2003130

Natural in Batch under VSE/ESACMPRMIN - Dynamic Parameter Dataset

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE=ON is set or the equivalent terminal command %TRE+ was issued, any Natural
trace output during the session is written to the CMTRACE dataset. To define the Natural components that are to
be traced, the profile parameter TRACE is required.

By default, the CMTRACE file is assigned to SYSLST and is processed via the macro DTFPR.

If appropriate label information is supplied for the file name CMTRACE, the print output may also be routed to
disk or tape by using the VSE/ESA macro DTFSD or DTFMT respectively, with
RECFORM=FIXUNB,BLKSIZE=133.

When routed to a VSE library, the record format is fix, the record length is 80 and the default member type is
PRINT.

CMWKF nn - Work Files 01-32

CMWKFnn is used for each Natural work file referenced by any Natural program compiled or executed during
the session. "nn" must be a two-digit decimal number in the range 01 - 32 corresponding to the number used in a
READ WORK FILE or WRITE WORK FILE statement.

Instead of CMWKFnn, another file name may be used by setting the DEST subparameter of profile parameter
WORK to an appropriate value.

If the Natural VSE/ESA generation parameter FILMNGR=YES is specified and there is label information for a
work file - or if "NO" or "NOTM" is specified for the LABEL subparameter of parameter WORK for an
unlabeled work file - Natural knows the file is available. Otherwise, the Natural work-file logical-unit number
must be assigned to the correct device type.

When mapped to a VSE library member, the record format is fix, the record length is 80 and the default member
type for these files is WORK.

If a Natural printer or work file is assigned "IGN", all I/O requests for these files are treated as dummy and no
Natural error is generated. However, if there is no assignment or the printer/work file is assigned "UA", any
attempt to use this file is treated as an error.

NATVSE Print and Work File Support for VSE Library
Members
NATVSE supports access to VSE library members for input and/or output for all Natural datasets. When a VSE
library member is accessed, only "card image format" is supported, that is, a record length of 80 bytes.

The access to a VSE library member is triggered via the file ID of an associated DLBL statement. A special
string (see LIBRID in NTVSE Generation Parameters) at the start of the file ID field in the DLBL statement
signals that the Natural dataset actually is a VSE library member which is specified in the remainder of the file
ID field.

The following specifications are possible:

C=chain Specifies a library concatenation chain defined in JCL.

S=library.sublib Specifies a specific sublibrary in a specific library.

M=mbrname.mbrtypeSpecifies a library member name and its type.

131Copyright © Software AG 2003

NATVSE Print and Work File Support for VSE Library MembersNatural in Batch under VSE/ESA

The following rules apply:

All these possible specifications are optional.
Each parameter may be specified only once.
The parameters are separated by one ore more commas or blanks.
Chain (C=) and sublibrary (S=) specifications are optional, but mutually exclusive when specified.
If neither a chain (C=) nor a sublibrary (S=) is specified, a default of C=SOURCE is taken.
If a library member (M=) is not specified, a default of M=filename.type is taken, where
filename is the file name of the DLBL statement and
type indicates the Natural file class, namely WORK for Natural work files, PRINT for Natural print files
and CARD for the Natural input files CMPRMIN, CMSYNIN and CMOBJIN (the relevant default member
type for every Natural dataset is mentioned below).
An asterisk specified for any sub-parameter of the library member specification signals the default to be
taken;
hence a specification of M=*.* has the same effect as omitting this parameter.
Omitting the member type subparameter also means the default to be taken.

Example:

// LIBDEF PROC,SEARCH=(...)
// LIBDEF SOURCE,SEARCH=(...)
// DLBL CMWKF01,’LIBR:M=FILE1.TEST S=SAGLIB.USRLIB’
// DLBL CMWKF02,’LIBR: S=SAGLIB.USRLIB’ -> M=CMWKF02.WORK
// DLBL CMWKF03,’LIBR: M=TEST C=PROC’ -> M=TEST.WORK
// DLBL CMPRT04,’LIBR:M=*.LISTING,S=SAGLIB.USRLIB’ -> M=CMPRT01.LISTING
// DLBL CMPRT05,’LIBR:’ -> M=CMPRT05.PRINT,C=SOURCE
// DLBL CMPRT06,’LIBR:M=WORK’ -> M=WORK.PRINT,C=SOURCE
// DLBL CMWKF07,’LIBR: M=*.DATA’ -> M=CMWKF07.DATA,C=SOURCE
// DLBL CMPRMIN,’LIBR:M=*.*’ -> M=CMPRMIN.CARD,C=SOURCE

Notes:

1. When a chain is specified or defaulted for an output file, the output is written into the first sublibrary
specified in the chain.

2. If a member with the same name and type already exists in a target sublibrary of a Natural output file, this
member is replaced unconditionally.

3. The file ID field of a DLBL statement is just 44 characters in length, which is not enough to specify all
(sub)parameters in their full length. Therefore it is recommended to take advantage of the defaults.
Regarding the member name, there is also the option to specify the file name via the DEST subparameter of
the Natural PRINT or WORK profile parameter.

Debugging Facilities for Natural under VSE/ESA
The Natural VSE/ESA batch interface contains some debugging facilities which can help you to track down
problems.

These facilities are controlled by the UPSI settings in the JCL.

Additionally, the UPSI settings may also be specified as a Natural session parameter (UPSI=1XXXXXXX, for
example). This is useful if UPSI settings in JCL have produced side effects in the sense that they have a different
meaning for other programs such as for front-end Natural or for programs called by Natural.

There may be the following UPSI settings:

UPSI 1XXXXXXX - Dump Flag
UPSI X1XXXXXX - Trace Flag
UPSI XXX1XXXX - Storage Freeze Flag
UPSI XXXXX1XX - Session Abend Flag

Copyright © Software AG 2003132

Natural in Batch under VSE/ESADebugging Facilities for Natural under VSE/ESA

UPSI XXXXXX1X - Abend Exit Flag
UPSI XXXXXXX1 - Formatted Dump-Only Flag

These settings are listed below. In addition, a sample job is given to show you how to obtain documentation for
debugging.

UPSI 1XXXXXXX - Dump Flag

When Natural encounters a problem, the corresponding job usually cancels without a dump, unless an abend
actually occurred. When this UPSI flag is set, a dump is always created at the end of the job when an error
occurs, that is, when the Natural session termination message is other than NAT9995.

UPSI X1XXXXXX - Trace Flag

When this flag is set, snapshots are taken of the register save area at some strategic points in Natural.

Note: Depending on the product sample output, setting this flag can lead to large output.

On entry of all NATVSE service routines, the name of this routine and the general registers 0 to 15 (GRG) are
displayed.

Note: You can identify the caller from Register 14.

On exit of all NATVSE service routines, the name of this routine, the current general registers (GRG) and
Registers 0 to 15 of the currently assigned save area (CSA) are displayed.

Notes:
The contents of the CSA are returned to the caller of the service routine, except the Register 15 return
code which is taken from the general registers.
The contents of the HSA are returned to the caller, which means that this save area contains the return
code in Register 15 if a return code was set at all.

Whenever the GRG registers are set, the debugging trace program tries to determine the name of the calling
routine and the offset of the call from the beginning of the routine.

The SYSnnn number for the debugging trace print output is SYS040, as long as this SYSnnn number is assigned
to a printer device; otherwise SYSLST is used. This is of particular interest if debugging trace output and other
Natural print output are to be separated; to do so, assign SYS040 appropriately and supply a POWER * $$ LST
statement for this logical print unit.

UPSI XXX1XXXX - Storage Freeze Flag

On normal or abnormal session termination, Natural, by default, releases all its resources including storage.
Despite the setting of UPSI 1, a dump may be useless, because all relevant storage has already been released
during Natural termination. When this flag is set, no GETVIS storage acquired earlier is ever released within this
job; this applies to all external subroutine programs called by Natural including the Natural nucleus (if not linked
to NATVSE) and RCA=ON subproducts.

This flag should be handled carefully, because more partition GETVIS storage
is used, but jobs may still cancel due to failed GETVIS requests if the
operating system storage requests cannot be satisfied.

133Copyright © Software AG 2003

UPSI 1XXXXXXX - Dump FlagNatural in Batch under VSE/ESA

UPSI XXXXX1XX - Session Abend Flag

By default, a Natural session is cancelled if crucial errors have occurred (NAT9nnn termination messages except
NAT9995 and NAT9987). When this flag is set, Natural does not cancel, but terminates "normally" just passing
the Natural return code to the job control.

UPSI XXXXXX1X - Abend Exit Flag

This flag may be helpful in the case of recurrent abends.

In batch mode, Natural usually has a check abend exit for active programs (STXIT PC) to recover from program
checks (NAT095n error messages). When DU=ON is specified, this exit creates a snap dump and passes control
to Natural for a clean session termination.

When this flag is set, the Natural session runs without any abend exit for active programs, which means that all
program checks are handled directly by the operating system.

If this flag is set, the dump flag, the storage freeze flag, the session abend flag and the formatted dump-only flag
are ignored.

UPSI XXXXXXX1 - Formatted Dump-Only Flag

With DU=ON, the NATVSE abend exit routine creates a snap dump of the Natural session when a program
check abend occurs (and the UPSI XXXXXX1X flag is not set).

The failed instruction, the program check code (S0Cn), the general registers, the currently active routine,
the offset of the failed instruction within this routine and the absolute (PSW) address are displayed together
with Registers 0 to 15 of the currently assigned save area (CSA).
In addition, the non-reentrant Natural VSE/ESA driver, all areas GETMAINed by Natural and all Natural
programs in the buffer pool are dumped.
Then control is passed to Natural for a clean session termination.
Finally the job terminates via a VSE JDUMP macro resulting in a dump containing the whole partition.

Since in many cases the dynamic Natural session areas are relevant for debugging only, the dump of the static
session areas can be suppressed by setting this UPSI flag.

Obtaining Documentation for Debugging

If a problem has to be analyzed, any information which might be relevant is important, in particular, the executed
JCS and the corresponding console log.

The following sample job is intended to show you how to obtain comprehensive documentation:

Copyright © Software AG 2003134

Natural in Batch under VSE/ESAUPSI XXXXX1XX - Session Abend Flag

// JOB sampljob
// OPTION LOG,PARTDUMP to see JCL on printer
/* Library Definitions: labels and LIBDEFs
...
/* ADARUN Parameter Input Definition
// ASSGN SYS000,SYSRDR
/* Natural Work File Definitions
// DLBL CMWKF nn,’...’,... disk work file
// EXTENT SYS nnn ,volser,,, nn, mm
// ASSGN SYS nnn ,DISK,VOL=volser,SHR
// TLBL CMWKF nn,’...’,... labelled tape work file
// ASSGN SYS nnn , cuu assignment to tape unit
/* Natural Print File Definitions
// ASSGN SYS nnn , cuu assignment to print UR unit
// DLBL CMPRT nn,’...’,... print file on disk
// EXTENT SYS nnn ,volser,,, nn, mm
// ASSGN SYS nnn ,DISK,VOL=volser,SHR
// TLBL CMPRT nn,’...’,... print file on labelled tape
// ASSGN SYS nnn , cuu assignment to tape unit
/* Debugging Options
// ASSGN SYS040,SYSLST debugging trace unit
// UPSI 1 xxx 00xx flags as discussed above
// EXEC Natural,SIZE=...
... dynamic parameters
/* end of dynamic parameters
... ADARUN parameters
/* end of ADARUN parameters
... Natural input
/* end of Natural input
// EXEC LISTLOG print console messages
/& end of job

NATVSE Attention Interrupts
The Natural VSE/ESA batch interface (NATVSE) supports attention interrupts via the console command MSG
xx, where xx is the VSE partition ID a console operator can force on a NAT1016 attention interrupt event.

This special functionality is controlled by the Natural profile parameter ATTN.

135Copyright © Software AG 2003

NATVSE Attention InterruptsNatural in Batch under VSE/ESA

Natural in Batch under CMS
This document contains special considerations that refer to Natural in batch under the operating system CMS.

Running Natural in Batch under CMS

For considerations that refer to Natural in batch generally, see:

Adabas Datasets
Sort Datasets

Natural in Batch Mode - Other Topics:
Natural in Batch Mode (all platforms) | Natural in Batch under OS/390 | Natural in Batch under VSE/ESA |
Natural in Batch under BS2000/OSD

Running Natural in Batch under CMS
If you invoke Natural with the dynamic parameter BATCH, batch mode is entered.

Natural does not communicate with the terminal, but takes its input from the dataset whose DD name is
CMSYNIN and sends its output to the dataset whose DD name is CMPRINT. These datasets are described
below.

FILEDEF commands for these DD names must be issued before invoking Natural in batch mode.

If BATCH is specified in combination with other dynamic parameters, BATCH must be the first parameter as
shown in the example below:

FILEDEF CMPRINT PRINTER
FILEDEF CMSYNIN DISK BATCH INPUT A
NAT41 BATCH,FNAT=(10,13),FUSER=(132,12)

For more examples, see NATBATCH EXEC and NATINPL EXEC.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements in a
Natural program.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source programs, and
(optionally) data to be read by INPUT statements during the execution of Natural programs.

The number of characters actually processed per line is determined by the current setting of the profile parameter
SL. This setting applies for both source statement and execution time input data. This enables identification or
sequence numbers to be placed in the rightmost columns of every record if desired.

Copyright © Software AG 2003136

Natural in Batch under CMSNatural in Batch under CMS

Natural in Batch under BS2000/OSD
This document contains special considerations that refer to Natural in batch under the operating system
BS2000/OSD.

The following topics are covered:

Natural Datasets Used under a BS2000/OSD Batch Session
KEYWORD Parameters
BS2000/OSD Job Variables

See also Natural under BS2000/OSD Batch Error Messages.

For considerations that refer to Natural in batch generally, see:

Adabas Datasets
Sort Datasets
Subtasking Session Support for Batch Environments

Natural in Batch Mode - Other Topics:
Natural in Batch Mode (all platforms) | Natural in Batch under OS/390 | Natural in Batch under VSE/ESA |
Natural in Batch under CMS

Natural Datasets Used under a BS2000/OSD Batch Session
The following optional sequential datasets are used during a Natural under BS2000/OSD batch session:

CMPRMIN | CMSYNIN | CMOBJIN | CMPRINT | CMPLOG | CMTRACE | CMHCOPY | CMPRT | CMWKF |

CMPRMIN - Dynamic Parameter Dataset

CMPRMIN can be used as dynamic parameter dataset to overcome the length restriction for the character string
in the job control PARM keyword of the EXEC statement.

All input records from CMPRMIN are concatenated into one parameter string. Only the first 72 positions of each
CMPRMIN record are significant. Trailing blanks at the end of each record are truncated; no commas are
inserted.

Additional dynamic parameters from the job-control PARM keyword can be supplied. They are concatenated
after the parameters from CMPRMIN, which means that the PARM character string can be used to overwrite
dynamic parameters specified in the CMPRMIN dataset.

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source programs, and
(optionally) data to be read by INPUT statements during the execution of Natural programs.

The number of characters actually processed per line is determined by the current setting of the profile parameter
SL. This setting applies for both source statement and execution time input data. This enables identification or
sequence numbers to be placed in the rightmost columns of every record if desired.

137Copyright © Software AG 2003

Natural in Batch under BS2000/OSDNatural in Batch under BS2000/OSD

For more information on reading dynamic parameters, see the keyword parameter DYNPAR=FILE for macro
NAMBS2 (see DYNPAR).

CMSYNIN - Primary Input

CMSYNIN is used for the primary input file that contains Natural commands, Natural source programs, and
(optionally) data to be read by INPUT statements during the execution of Natural programs.

The number of characters actually processed per line is determined by the current setting of the profile parameter
SL. This setting applies for both source statement and execution time input data. This enables identification or
sequence numbers to be placed in the rightmost columns of every record if desired.

/SYSFILE SYSDTA=file.

CMOBJIN - Input for Natural INPUT Statements

CMOBJIN is used for data intended to be read by Natural INPUT statements. This type of data can alternatively
be placed in the CMSYNIN dataset immediately following the relevant source program or the relevant RUN or
EXEC command.

When the setting for the profile parameter OBJIN is "N", Natural reads input from CMSYNIN. When OBJIN is
set to "Y", Natural reads input from CMOBJIN.
When OBJIN is set to "R", Natural determines which option has been selected for a particular session depending
upon the presence or absence of a CMOBJIN DD statement.

DCB considerations for CMOBJIN are the same as for CMSYNIN. The record read is interpreted up to the
number of characters as specified with the parameter SL. If an error occurs, Natural reacts according to the
setting of the parameter CC.

/SYSFILE SYSDTA=file

/SYSFILE SYSIPT=file must be set to enable reading of dynamic session parameters. A maximum of 3 lines per
file is read as dynamic session parameters.

CMPRINT - Primary Report Output

CMPRINT is used for the primary output report resulting from DISPLAY, PRINT and WRITE statements in a
Natural program.

/SYSFILE SYSOUT=file or
/SYSFILE SYSLST=file

depending on the value of the GLOBAL SET parameter &WRITE.

CMPLOG - Optional Report Output for Dynamic Parameters

If profile parameter PLOG is set to ON, all dynamic profile parameters are written to this dataset during session
initialization. If CMPLOG is not defined, CMPRINT is used instead.

/SYSFILE SYSOUT=file or
/SYSFILE SYSLST=file

depending on the value of the GLOBAL SET parameter &WRITE.

Copyright © Software AG 2003138

Natural in Batch under BS2000/OSDCMSYNIN - Primary Input

CMTRACE - Optional Report Output for Natural Tracing

If profile parameter ETRACE is set to ON, all trace output is written to this dataset during the session.

/SYSFILE SYSOUT=file or
/SYSFILE SYSLST=file

depending on the value of the GLOBAL SET parameter &WRITE.

CMHCOPY - Optional Report Output for Hardcopy

Hardcopy output destination. This dataset’s name can be changed with the HCDEST profile parameter and with
terminal command %H.

/SYSFILE SYSOUT=file or
/SYSFILE SYSLST=file

depending on the value of the GLOBAL SET parameter &WRITE.

CMPRTnn - Additional Reports

CMPRTnn is used for each additional report referenced by any Natural program compiled or executed during the
session. "nn" must be a two-digit decimal number in the range 01-31 corresponding to the report number used in
a DISPLAY, PRINT or WRITE statement.

Instead of CMPRTnn, another file name may be used by setting the DEST subparameter of profile parameter
PRINT to an appropriate value, for example:

PRINT=((nn),...,DEST=PRINTFIL).

DCB information is optional. If omitted, it is supplied with the PRINT profile parameter, subparameters
RECFM, LRECL and BLKSIZE. If RECFM is not supplied, it is set to value VBA. If no DCB information is
supplied, the following rules apply:

/FILE file, LINK=P nn.

CMWKF nn - Natural Work Files

CMWKFnn is used for each Natural work file referenced by any Natural program compiled or executed during
the session. "nn" must be a two-digit decimal number in the range 01 - 32 corresponding to the number used in a
READ WORK FILE or WRITE WORK FILE statement.

Instead of CMWKFnn, another file name may be used by setting the DEST subparameter of profile parameter
WORK to an appropriate value.

DCB information is optional for output files. If omitted, it is supplied in the WORK profile parameter,
subparameters RECFM, LRECL and BLKSIZE. If no DCB information is supplied, the following applies:

/FILE file,LINK=Wnn

KEYWORD Parameters
The Natural BS2000/OSD batch driver is generated by assembling the macro NAMBS2. For the control of
conditional assembly of the driver modules, the following KEYWORD parameters are available.

139Copyright © Software AG 2003

KEYWORD ParametersNatural in Batch under BS2000/OSD

The parameters are sorted in alphabetical order by their names.

ADACOM

Possible values:ADAUSER/ADABAS/ADALNK

Default value: ADALNK

This parameter applies to the generation of the front-end part. It determines which Adabas link module is to be
used.

ADACOM=ADAUSER The module ADAUSER is linked to the front-end part (Adabas versions lower than
7.1).

ADACOM=ADABAS The modules ADAUSER and SSFB2C are linked to the front-end part (Adabas
Version 7.1 and higher).

ADACOM=ADALNK The module ADALNK is linked to the front-end part (Adabas versions lower than
7.1) or the modules ADALNK, ADAL2P and SSFB2C are linked to the front-end
part (Adabas Version 7.1 and higher).

ADDBUFF

Possible values:1 to 8

Default value: None

This parameter applies to the generation of the front-end part.

It determines the additional number of pages (4-KB units) for the terminal I/O buffer.

APPLNAM

Possible values:name

Default value: NATBS2

This parameter applies to the generation of the front-end part.

name is the name (maximum 8 characters) of the Natural batch application. This name is part of the serialization
ID when the Natural batch task is initialized.

CODE

Possible values:FRONT/RENT

Default value: FRONT

This parameter applies to the generation of both the front-end and reentrant parts.

It determines which part of the Natural BS2000/OSD interface is to be generated.

Copyright © Software AG 2003140

Natural in Batch under BS2000/OSDADACOM

CODE=FRONT indicates the generation/assembly of the front-end part.

CODE=RENT indicates the generation/assembly of the reentrant part.

DELETE

Possible values:ON/OFF

Default value: ON

This parameter applies to the generation of the reentrant part.

DELETE=ON The setting of the profile parameter DELETE in the Natural parameter module determines
whether dynamically loaded non-Natural programs are unloaded at the end of the Natural
program in which they are loaded or whether they are unloaded when command mode is
entered.

DELETE=OFF A dynamically loaded non-Natural program once loaded is kept for the duration of the whole
Natural session.

DYNPAR

Possible values:SYSDTA/SYSIPT/FILE/NO

Default value: NO

This parameter applies to the generation of the front-end part.

DYNPAR=NO No dynamic parameters are read.

DYNPAR=SYSDTA The dynamic parameters are read from SYSDTA. If SYSDTA is assigned to SYSCMD,
at least an /EOF card must follow the /EXEC Natural card.

Example:

/LOGON
/SYSFILE SYSDTA=(SYSCMD)
/EXEC NATBAT
/EOF * Null dynamic parameters
LOGON SYSEXTP
L * *
FIN
/LOGOFF

DYNPAR=SYSIPT The dynamic parameters are read from SYSIPT.

DYNPAR=FILE The dynamic parameters are read from a sequential file. The input of this SAM file is
interpreted as one single text string, which means that the individual entries must be
separated from each other by a comma, even at the end of a line. Such a parameter file
must be defined with a FILE command by using the LINK parameter CMPRMIN.

Example: /FILE NAT.PARAMS,LINK=CMPRMIN

141Copyright © Software AG 2003

DELETENatural in Batch under BS2000/OSD

ILCS

Possible values:YES/NO/CRTE

Default value: NO

This parameter applies to the generation of the reentrant part.

ILCS=CRTE 3GL subprograms are invoked with common runtime environment convention. For this to be
possible, the ILCS initialization routine IT0SL# must be linked to the Natural front-end:

INCLUDE IT0SL#,SYSLNK.CRTE.010
RESOLVE,SYSLNK.CRTE.010

ILCS=YES 3GL subprograms are invoked with enhanced ILCS linkage convention. For this to be possible,
the ILCS initialization routine IT0INITS must be linked to the Natural front-end:

INCLUDE IT0INITS,SYSLNK.ILCS
RESOLVE,SYSLNK.ILCS

ILCS=NO Standard processing applies.

JV

Possible values:ON/OFF

Default value: OFF

This parameter applies to the generation of the front-end part.

JV=ON The condition code created when the Natural session is terminated is passed to a job variable if one
has been declared with the link name *NATB2JV.

JV=OFF If your BS2000/OSD installation does not include the Siemens product "Job Variables", this
parameter must be set to OFF; otherwise assembly errors in the NAMBS2 compilation occur.

LF

Possible values:X’ zz’

Default value: X’25’

This parameter applies to the generation of the front-end part.

With this parameter, you specify the control character to be used for line advance when printing on the local
printer.

LINK

Possible values:name
(name,name,...)

Default value: none

Copyright © Software AG 2003142

Natural in Batch under BS2000/OSDILCS

This parameter applies to the generation of the front-end part.

The name(s) of programs and modules that are called from Natural programs and linked with the non-reentrant
part must be specified with this parameter. Conversely, the programs and modules whose names are specified
must be linked with the non-reentrant part, otherwise the application is put into status SYSTEMERROR and all
users are rejected with an error message.

A "TABLE" macro call is performed for the specified programs and modules, which enters their load addresses
into the dynamic loader’s link table. It is therefore not necessary to dynamically load these programs when they
are called by Natural programs. For dynamically loaded programs, only the load library needs to be defined in
the Natural parameter module.

Example:

LINK=PROG1
LINK=(PROG1,PROG2,MODUL111)

LINK2/LINK3/LINK4

Possible values:name
(name,name,...)

Default value: none

These parameters apply to the generation of the front-end part.

The parameters LINK2, LINK3 and LINK4 are an extension of the LINK parameter. Since an operand definition
cannot be longer than 127 characters (including parentheses), these parameters are provided for cases where the
operand of parameter LINK would be too long. The syntax is analogous to that of LINK.

Examples:

NAMBS2 LINK=(PROG1,PROG2,...),
LINK2=(PROG54,...)
NAMBS2 LINK=(PROG1,PROG2,PROG3,PROG4)

NUCNAME

Possible values:name

Default value: NB2RENT

This parameter applies to the generation of the front-end part.

With this parameter, you specify the name of the bounded, reentrant Natural module. You must use this name for
the Natural pool and load information in macro ADDON (macro ADDON assembles BS2STUB).

PARMOD

Possible values:(nn,loc)
nn: 24/31
loc: BELOW/ABOVE

Default values: (31,ABOVE)

143Copyright © Software AG 2003

LINK2/LINK3/LINK4Natural in Batch under BS2000/OSD

This parameter applies to the generation of both the front-end and reentrant parts.

The first part of this parameter (nn) is used to define an addressing mode (24-bit or 31-bit mode) for the Natural
BS2000/OSD application.

31-bit mode is required if the Natural buffer pool, the reentrant part of the Natural BS2000/OSD application,
Adabas or the Adabas Fast Path pool is located above 16 MB.

The second part of this parameter (loc) is used to define the front-end part location of the Natural BS2000/OSD
application. If you load the front-end part of the application above 16 MB, this must be defined in the front-end
part’s link procedure as follows:

LOADPT=*XS or
 LOADPT=X’ address ’

Example:

/EXEC TSOLINK
PROG NAT230,FILENAM=NAT230,LOADPT=*XS,...
TRAITS RMODE=ANY,AMODE=31
INCLUDE....
/* PARMOD=(nn, loc) MUST BE IDENTICAL IN THE FRONT-END AND REENTRANT PARTS

REQMLOC

Possible values:RES/BELOW/ABOVE

Default value: RES

This parameter applies to the generation of both the front-end and reentrant parts in 31-bit mode
(PARMOD=31).

This parameter determines where the requested Natural work areas are to be allocated by the system using
request memory.

REQMLOC=BELOW All areas are requested below 16 MB.

REQMLOC=ABOVE All areas are requested above 16 MB.

REQMLOC=RES All areas are requested depending on the location of the reentrant part.

The REQMLOC parameter corresponds to the LOC parameter of the BS2000/OSD system macro REQM.

SYSDTA

Possible values:PRIMARY/SYSCMD

Default value: PRIMARY

This parameter applies for the generation of the front-end part.

SYSDTA=PRIMARY After reading of dynamic parameters from SYSDTA, SYSDTA is set to SYSFILE
SYSDTA=(PRIMARY).

SYSDTA=SYSCMD After reading of dynamic parameters from SYSDTA, SYSDTA is set to SYSFILE
SYSDTA=(SYSCMD).

Copyright © Software AG 2003144

Natural in Batch under BS2000/OSDREQMLOC

TERM

Possible values:PRGR/STEP

Default value: PRGR

This parameter applies to the generation of the front-end part.

TERM=PRGR The Natural batch application will be terminated.

TERM=STEP The system additionally executes the next SET-JOB-STEP command.

TRACE

Possible values:nn,ll
nn: 01 to 99
ll : 71 to 132

Default value: 99,71

This parameter applies to the generation of the reentrant part.

With this parameter, you specify the number of a trace file and the maximum length of a trace print record. nn is
the number for the SYSLSTnn trace file and ll is the maximal length in characters of a trace print record.

If any external Natural trace function is active, the trace records will be written to SYSLSTnn. In this case, the
Natural batch driver creates the following trace file:

Example:

NATURAL.TRACE.BTCH.TTTT,SPACE=(30,3)
SYSFILE SYSLST nn=Natural.TRACE.BTCH. TTTT
/* TTTT is the task sequence number

Before the Natural batch session is terminated, the trace file will be closed as follows:

SYSFILE SYSLST nn=(PRIMARY)

USERID

Possible values:YES/SYSTEM/NO/USER

Default value: USER

This parameter applies to the generation of the front-end part.

USERID=SYSTEM
or
USERID=YES

The Natural user ID is created by using the BS2000/OSD user ID.

USERID=USER
or
USERID=NO

The Natural user ID is created by using the job name; that is, the "/.JOBNAME" of the
LOGON command. If no BS2000/OSD job name has been specified with the LOGON
command, the Natural user ID is created as with USERID=SYSTEM or YES.

145Copyright © Software AG 2003

TERMNatural in Batch under BS2000/OSD

WRITE

Possible values:SYSOUT/SYSLST

Default value: SYSLST

This parameter applies to the generation of both the front-end and reentrant parts.

This parameter controls whether output produced by Natural is written to SYSOUT or SYSLST.

BS2000/OSD Job Variables
The Natural batch driver uses the BS2000/OSD facility "Job Variables" to pass return codes to the user or to
subsequent jobs (steps). The return codes are created either by Natural itself (in the range 1 to 31) or by the
Natural application if a TERMINATE statement is used with the condition-code option (the range to be used is
32 to 256).

The job variable which is to contain the return code has to be declared using the link name *NATB2JV. The
support of job variables depends on the setting of the SET parameter "&JV" in the Natural BS2000/OSD batch
driver NATBS2.

Example:

/LOGON
/DCLJV NATBJV,LINK=*NATB2JV
/EXEC NATnnnB
*TERMCC
/LOGOFF

To assign Return Code 36 to NATBJV, the Natural program TERMCC could be coded as follows:

ASSIGN CC(N8) = 36
TERMINATE CC
END

Copyright © Software AG 2003146

Natural in Batch under BS2000/OSDBS2000/OSD Job Variables

Natural in Batch Mode (All Platforms)
This document contains general considerations that apply when running Natural in batch mode.

The following topics are covered:

Adabas Datasets
Sort Datasets
Subtasking Session Support for Batch Environments

Natural in Batch Mode - Other Topics:
Natural in Batch under OS/390 | Natural in Batch under VSE/ESA | Natural in Batch under CMS | Natural in
Batch under BS2000/OSD

Adabas Datasets
Adabas datasets must be specified only in single-user mode. They are identical to those required for the
execution of any normal application program using Adabas. See the relevant Adabas documentation for detailed
information on Adabas datasets.

Sort Datasets
Sort datasets must be specified if a Natural program containing a SORT statement is to be executed during the
Natural session.

The requirements are identical to those for execution of a normal COBOL or PL/1 application program that
invokes the operating system sort program and can vary according to the sort program in use.

Natural does not require the intermediate datasets SORTIN and SORTOUT, but communicates with the sort
program via the E15 and E35 user-exit routine interfaces.

Subtasking Session Support for Batch Environments
Purpose
Prerequisites
Functionality
Starting A Natural Session
Starting A Subtask
Accessing the User Parameter Area

Note:
With Natural for CMS, subtasking is not supported.

Purpose

With subtasking support, you can run multiple Natural batch sessions within one address space. This allows
parallel processing within one address space, rather than executing subsequent job steps, and can increase
throughput dramatically.

147Copyright © Software AG 2003

Natural in Batch Mode (All Platforms)Natural in Batch Mode (All Platforms)

Typically, client-server applications and products would take advantage of this functionality, for example, the
Natural remote procedure call. Multiple server subtasks can be started to communicate with remote clients.

Prerequisites

If you wish to restart the Natural nucleus, it must be linked as a reentrant module (linkage editor option RENT).

The Adabas link routine (ADALNK) must be generated with reentrancy support.

Functionality

You start a subtask by issuing a CALL statement from a Natural program. The new Natural session ("subtask") is
started with an extended front-end parameter list. This list contains up to three parameter sets:

dynamic Natural profile parameters,
startup parameters,
user parameters.

Variable names for standard I/O datasets (for example CMPRINT) and other parameters for the batch interface
startup can be passed from the starting program in the startup parameter area. Standard I/O datasets can be
undefined or dummy datasets; they can be owned by one session or shared by multiple sessions.

Furthermore, a CALL interface is provided for reading the user parameter area with a Natural program.

Starting a Natural Session

Extended Parameter List
Startup Parameter Area
User Parameter Area

Extended Parameter List

The Natural batch interface without extended parameter list gets initial control from the operating system using
standard linkage call. Register 1 points to an address with high-order bit on as the last address indicator. This
address points to a halfword field containing the length of the following parameter area.

The extended parameter list contains up to three parameter addresses. This is indicated by the high-order bit in
the last address which can be the first, second or third address. All parameter addresses point to a halfword field
containing the parameter length of the following parameter area. Zero length indicates that there is no parameter
area.

The first parameter area contains the dynamic profile parameters for the Natural session.
The second contains special startup parameters for the initialization of the batch interface.
The third contains a user parameter area which can be accessed during the Natural session.

Startup Parameter Area

The startup parameter area is a name table with 16-byte fixed-length entries. One entry contains an 8-byte
keyword followed by the 8-byte assigned value. Keywords and values must be padded with trailing blanks, if
necessary. The following keywords are valid:

Copyright © Software AG 2003148

Natural in Batch Mode (All Platforms)Prerequisites

CMHCOPY Permanent hardcopy destination

CMSYNIN Command input dataset name

CMOBJIN Object input dataset name

CMPRINT Standard output dataset name

CMPRMIN Dynamic parameter input dataset name

CMPLOG Dynamic parameter output dataset name

CMTRACE Trace output dataset name

INITID Job step name (system variable *INIT-ID)

MSGCLASS Spool class for dynamic allocation of CMPRINT and CMTRACE

NATRJE Job submission dataset name

STEPLIB Program load library name (see also profile parameter LIBNAM , Name of Load Library,
OS/390 only)

SUBPOOL OS/390 storage subpool (0 - 127, right justified)

USERID Initial user identification (system variable *INIT-USER)

The usage of these entries is optional and no particular sequence is required. A blank value for a dataset means
that this dataset is not available or is empty.

Platform: Requirement:

VSE/ESA By default, all print output (that is, the one resulting from CMPRINT, CMHCOPY, CMTRACE
and CMPLOG) is routed to SYSLST. An overwrite specification for these files starting with "SYS"
is considered a VSE/ESA system number overwrite. Possible format is SYSnnn where nnn is a
three-digit number in the range from 000 to 099; if you specify an invalid number nnn, it is ignored.

User Parameter Area

The format of the user parameter area is free. It can be accessed from any Natural program by a special CALL
interface see Accessing the User Parameter Area.

Starting A Subtask

The following call interface is supplied to be used by Natural programs to start a subtask in the same address
space.

PGMNAME Natural nucleus name getting control (mandatory). To restart with the same nucleus, an asterisk
can be specified as the first character. The actual nucleus name is passed back in this field.

NATPARML Natural dynamic parameter area

STRPARML Startup parameter area

USRPARML User parameter area

All parameter areas must start with the length of the following parameters. The following example illustrates the
usage of CMTASK.

Example:

149Copyright © Software AG 2003

Starting A SubtaskNatural in Batch Mode (All Platforms)

DEFINE DATA LOCAL
01 PGMNAME (A8) INIT <’*’>
01 PARM1
02 NATPARML (I2) INIT <30>
02 NATPARMS (A30) INIT <’INTENS=1,IM=D,STACK=MYPROG’>
01 PARM2
02 STRPARML (I2) INIT <32>
02 STRPARM1 (A16) INIT <’CMPRINT SYSPRINT’>
02 STRPARM2 (A16) INIT <’CMPRMIN MYPARMS’>
01 PARM3
02 USRPARML (I2) INIT <80>
02 USRPARMS (A80) INIT <’special user parameters’>
END-DEFINE
CALL ’CMTASK’ PGMNAME NATPARML STRPARML USRPARML
END

A sample program, ASYNBAT, can be found in library SYSEXTP.

Accessing the User Parameter Area

The user parameter area passed during startup can be read from any Natural program with the following CALL
statement:

CALL ’CMUPARM’ USRPARML USRPARMS

USRPARML is the length (I2) of the USRPARMS area (before the call) and the length of the data returned (after
the call). USRPARMS is the parameter data area.

If the length of the data to be returned is greater than the area length, the data is truncated to the area length. The
following return codes are possible:

0 Data successfully moved

4 Data moved but truncated

8 No data available

12 Length value not positive

16 Insufficient number of parameters

A sample program, GETUPARM, can be found in library SYSEXTP.

Copyright © Software AG 2003150

Natural in Batch Mode (All Platforms)Accessing the User Parameter Area

Natural Buffer Pools - Overview
This document contains information about the various storage management functions that are available to a
Natural administrator under the operating systems OS/390, VSE/ESA and BS2000/OSD.

The following topics are covered:

Natural Buffer Pool

Natural Global Buffer Pool under OS/390

Natural Global Buffer Pool under VSE/ESA

Common GBP Operating Functions under OS/390 and VSE/ESA

Natural Global Buffer Pool under BS2000/OSD

151Copyright © Software AG 2003

Natural Buffer Pools - OverviewNatural Buffer Pools - Overview

Natural Buffer Pool
The buffer pool is a storage area into which Natural programs are placed in preparation for their execution.
Programs are moved into and out of the buffer pool as Natural users request Natural objects. Conceptually, it
serves a function similar to that of an operating system in loading programs in and out of a reentrant area. The
Natural buffer pool is an integral part of Natural in all supported environments.

The following topics are covered:

Natural Buffer Pool Principle of Operation
Buffer-Pool Monitoring and Maintenance
Natural Global Buffer Pool

Natural Buffer Pools - Other Topics
Natural Global Buffer Pool under OS/390 | Natural Global Buffer Pool under VSE/ESA | Common GBP
Operating Functions under OS/390 and VSE/ESA | Natural Global Buffer Pool under BS2000/OSD

Natural Buffer Pool Principle of Operation
Natural generates reentrant Natural object code. A compiled program is loaded into the buffer pool and executed
from the buffer pool. Thus, it is possible that a single copy of a Natural program can be executed by more than
one user at the same time.

This section covers the following topics:

Objects in the Buffer Pool
Directory Entries
Text Pool
Buffer Pool Hash Table
Buffer Pool Initialization
Buffer Pool Search Methods
Local and Global Buffer Pools
Buffer Pool Cache

Objects in the Buffer Pool

Objects in the buffer pool can be programs, subprograms, maps and global data areas. Global data areas are
placed in the buffer pool only for compilation. In this case, two objects with the same name are loaded in the
buffer pool: the GDA itself and the corresponding symbol table.

Directory Entries

When a Natural object is loaded into the buffer pool, a control block called a directory entry is allocated to this
object.

A directory entry contains such information as the name of the object, what library it belongs to, what database
ID and Natural system file number the object was retrieved from, and some statistical information (for example,
the number of users who are concurrently executing the program at a given point in time).

When a user executes a program, Natural checks the directory entries to see if the program has already been
loaded into the buffer pool. If it is not already in the buffer pool, a copy of the program is retrieved from the
appropriate Natural system file and loaded into the buffer pool.

Copyright © Software AG 2003152

Natural Buffer PoolNatural Buffer Pool

When an object is loaded in the buffer pool, one or more other Natural objects which are currently not being
executed may be deleted from the buffer pool in order to make room for the newly loaded object. When the new
object is loaded, a new directory entry is created in order to identify this object.

When an object is deleted from the system file, it will also be deleted from the buffer pool as soon as it is no
longer being used. When an object is newly cataloged or stowed, its old version will also be deleted from the
buffer pool as soon as it is no longer being used; when it is requested for execution again, the new version will
then be loaded from the system file into the buffer pool.

Text Pool

The actual object code of a program that is loaded into the buffer pool is placed into an area called the text pool
and must be allocated as a contiguous piece of memory within this text pool. This text pool is divided into a
number of 4 KB buffers. This is an arbitrary size and can be changed at the Natural administrator’s discretion.
When an object is loaded, one or more text buffers that are contiguous to each other are allocated to store the
object code of the object.

Buffer Pool Hash Table

This section applies to buffer pools of TYPE=NAT only.

To speed up the search time for looking up an object in the buffer pool directory, a hash table is used. The
number of entries in the hash table is twice the number of directory entries, rounded up to the next prime
number. This will ensure that only half of the table is filled at any point in time and that the probability of
collisions is near zero. As a consequence, the average number of tests to find an existing object in the hash table
is theoretically less than 2.

The hash criterion is the eight character long program name. If more than one program name is hashed to the
same location in the hash table, an overflow technique resolves the collisions.

The storage required for the hash table is roughly 16 bytes per text block. Thus, the available storage in the text
pool is reduced by between 1.6% (1 KB text blocks) and 0.1% (16 KB text blocks).

Buffer Pool Initialization

The initialization time of the buffer pool varies depending on the environment. In batch mode, for example,
initialization occurs when you begin the execution of the batch Natural nucleus.

Initialization in a TP monitor generally occurs when the TP monitor is started or, in some cases, when the first
user invokes Natural under this TP monitor.

Buffer Pool Search Methods

As mentioned earlier and explained below, there are different search methods for allocating space in the buffer
pool.

 To select a search method, use

The Natural profile parameters BPMETH and BPI.
Or the macro NTBPI in the Natural parameter module.
Or the function parameter METHOD of the global buffer pool.

For a description of these parameters and the macro NTBPI refer to the Natural Parameter Reference
documentation.

153Copyright © Software AG 2003

Text PoolNatural Buffer Pool

Below is information on the search methods:

METHOD=S
METHOD=N
Choosing Search Methods

METHOD=S

METHOD=S indicates that a selection process is used as search algorithm for allocating storage in the buffer
pool in order to obtain the space required to accomplish a new load.

The selection process used is a combination of search Algorithms 1 and Algorithm 2:

Algorithm 1
Search Algorithm 1 attempts to find storage in the buffer pool that is either free space or space occupied by
an unused (active but not used) object.
If free space of the exact object size required is found, the selection process ends immediately. Otherwise,
the search continues by browsing the buffer pool from top to bottom and comparing the entries in the buffer
pool for best size fit. Additionally, in the case of unused objects, the search also considers the last attached
time of the object, that is, the time the object was last referenced at a load or locate.
When the selection process has finished, either free space or the space of an unused object with a size
greater than or equal to the size requested is selected.
The rule of precedence that applies to the search is: free space is taken first and space of unused objects
next. In the case of unused objects, the oldest objects are removed first.
If the selection process of Algorithm 1 was not successful, Algorithm 2 is invoked.
Algorithm 2
Search Algorithm 2 starts if Algorithm 1 fails. Algorithm 2 starts searching from a position in the buffer
pool which is passed by Algorithm 1 and attempts to combine two or more entities (free storage and/or
space occupied by unused objects) in order to obtain the necessary storage for a new load. However, the age
of the object is not taken into account.
Algorithm 2 continues processing to the bottom of the text record section and, if necessary, wraps around to
the top of the text record section to make one final pass from top to bottom. If space is still unavailable,
Algorithm 2 fails, the object cannot be loaded and Natural issues a corresponding error message.

METHOD=N

METHOD=N indicates that the next available free or unused space is used in order to obtain the space required
to accomplish a new load. Unused space is space that is occupied by an active but not used object.

The search for the next available space starts from a pointer that moves through the buffer pool in a wrap-around
fashion. Any next available buffer pool entries that are free or contain unused objects can be used and possibly
chained together to obtain the amount of storage requested.

If the bottom of the buffer pool is reached during an allocation request, the pointer is wrapped around to the top
of the buffer pool and one final search is performed through the buffer pool from top to bottom. If the bottom of
the buffer pool is reached again and the object cannot be loaded, the load fails and Natural issues a
corresponding error message.

METHOD=N can especially be considered for large buffer pools in combination with the buffer pool cache
function. For details, see also Choosing Search Methods below.

Choosing Search Methods

By default, METHOD=S is used. The advantage of this method is, that a diligent search is performed to allocate
space, taking into account the size and the age of objects and guaranteeing that the most dispensable unused
objects are removed from the buffer pool to provide space for a new load.

Copyright © Software AG 2003154

Natural Buffer PoolBuffer Pool Search Methods

A disadvantage of METHOD=S can be the high CPU time that is consumed by the selection process when
browsing the buffer pool from top to bottom.

The advantage of METHOD=N is the short selection process and, usually, little browsing that require less CPU
time for allocating space. This can be significant to large buffer pools.

The disadvantage of METHOD=N is that objects are selected less carefully for removal from the buffer pool. To
avoid an increase in Adabas I/Os for reloading removed objects, we recommend that you use METHOD=N in
combination with the buffer pool cache function.

Local and Global Buffer Pools

Local Buffer Pool

Using Natural as supplied on the installation tape, you are running a local buffer pool. This is a buffer pool area
that is allocated in the same partition (or region or address space) of the particular environment in use.

For example, in a batch TSO or CMS environment, each user has his/her own local buffer pool. In a TP monitor
environment such as Com-plete, CICS or IMS/TM, there is one buffer pool per TP monitor from which all TP
users execute.

Global Buffer Pool

In an OS/390 environment, a global buffer pool is allocated from CSA or ECSA storage. In such an
environment, all TSO users, batch users and TP monitor users could be executing from one common global area.

In a VSE/ESA environment, a global buffer pool is allocated from System GETVIS Area (below or above). In
such an environment, all batch users and TP monitor users could be executing from one common global area.

In a VM/CMS environment, a global buffer pool can be installed as a writeable Discontiguous Shared Segment
that is dynamically attached to the user’s virtual machine when Natural/CMS is invoked; see also the sections
Installing Natural under CMS and Preparing the VM System for Natural (in the Natural Installation Guide for
Mainframes).

In a BS2000/OSD environment, a global buffer pool is a common memory pool, see Natural Global Buffer Pool
under BS2000/OSD.

For further information on the global buffer pool, see Natural Global Buffer Pool.

Buffer Pool Cache

This section applies to global buffer pools of TYPE=NAT and local buffer pools of TYPE=NAT or
TYPE=SWAP.

The buffer pool cache is available in conjunction with global and local buffer pools. It is not available with
VM/ESA. It is used only for Natural programming objects (programs, subprograms, maps, etc.), whereas it is not
used for example for objects generated by Natural for DL/I.

When a buffer pool is not large enough to take up all objects requested by the different users, special overload
strategies are used to replace existing objects with requested objects. The number of overload situations has a
direct relation to the efficiency of the buffer pool. The best and most efficient way to reduce the disliked
overloads, hence to improve the buffer pool performance, is simply to increase its size.

However, this choice is not applicable at most customer sites, due to a lack of available storage in the primary
address space and/or the OS/390 (E)CSA, VSE/ESA system GETVIS area or BS2000/OSD Common Memory
Pool.

155Copyright © Software AG 2003

Local and Global Buffer PoolsNatural Buffer Pool

In order to improve the situation described above, a buffer pool cache is used. The main purpose of this
mechanism is to prevent a loss of all objects which were deleted from the buffer pool due to
"short-on-buffer-pool-storage" situations. This means, that an object delete results in a "swap out to buffer pool
cache". The intended benefit of this feature is a reduction of database calls used for object loading and
consequently a performance improvement.

Note for Global Buffer Pools:
The buffer pool cache area is allocated in a data space. When a data space is created for a buffer pool (BPCSIZE
profile parameter specified for OS/390 or VSE/ESA, or DATA parameter specified for BS2000/OSD), the
ownership is assigned to the creator task. If this task terminates, the system automatically deletes the data space.
Therefore, the creator task will stay alive in this case, regardless of whether RESIDENT=Y has been set or not.

Note for Local Buffer Pools: (OS/390 and VSE/ESA only, not for Com-plete and not for IMS/TM)
The buffer pool cache is allocated in a data space or in a memory object "above the bar", that is, in 64-bit
memory (z/OS only).
When a data space or memory object is created for a buffer pool (see profile parameters BPCSIZE and BPC64),
the ownership is assigned to the creator task. If this task terminates, the system automatically deletes the data
space or the memory object.

Buffer-Pool Monitoring and Maintenance
The Natural utility SYSBPM (described in the Natural Utilities documentation) provides statistical information
on the current status of the buffer pool. SYSBPM also allows you to adjust the buffer pool to your requirements.

The following topics are covered below:

Preload List
Blacklist
Propagation of Buffer-Pool Changes

Preload List

A preload list is a list of objects that will be loaded into the buffer pool and remain there as resident. When a user
requests such an object for execution, it is always already in the buffer pool and need not be loaded from the
system file.

This may improve performance, may avoid buffer pool fragmentation, or may be useful to ensure that central
error transactions are always available, even if the database containing the system file is not active.

At the start of the Natural session, Natural checks which of the objects on the preload list are already in the
buffer pool. Those which are not will then be loaded from the system file into the buffer pool. This checking and
loading is also performed whenever the buffer pool is connected, re-connected and re-initialized using the
SYSBPM utility. If a global buffer pool is re-initialized by a REFRESH command, no checking takes place for
existing Natural sessions. That is, as long as no new Natural session is started that accesses this buffer pool, the
objects on the preload list are not loaded.

The load of the preload list is not serialized. That means, if multiple Natural sessions start concurrently, each
session tries to load all objects named in the preload list into the buffer pool. This may lead to duplicate entries
of the same Natural object in the buffer pool (see also hint below).

A preload list is identified by name, and is attached to a specific buffer pool by specifying its name as startup
parameter (for a global buffer pool) or in the NTBPI macro (for a local buffer pool). Thus, a different preload list
may be defined for each buffer pool; or the same preload list may be used for different buffer pools.

Copyright © Software AG 2003156

Natural Buffer PoolBuffer-Pool Monitoring and Maintenance

If the specified preload list cannot be located, or if objects contained on the preload list cannot be loaded, Natural
will issue a corresponding warning message at session initialization. In either case, the preloading will be
repeated for each subsequent session initialization.

As the objects on the preload list are the first to be loaded, they are located at the beginning of the buffer pool
(except if the initial preloading could not load all objects, in which case the objects may be located anywhere in
the buffer pool).

To maintain preload lists, you use the SYSBPM utility (described in the Natural Utilities documentation).

Tip: To avoid problems with the load of the objects on a preload list by user sessions the following procedure is
recommended:

For a global buffer pool:
Immediately after the allocation or refresh of the global buffer pool, start a batch Natural session that
accesses the global buffer pool and that executes a FIN.
For a local buffer pool under CICS and Com-plete:
During startup of the TP system, start an asynchroneous Natural session that access the local buffer pool,
and put a FIN on the Natural stack. Ensure that this Natural session references the name of the preload list
in its NTBPI macro.

Blacklist

To prevent a Natural object from being executed, you can put it on a so-called "blacklist": the object can then not
be loaded into the buffer pool; and if it is already in the buffer pool, it cannot be executed. A user requesting
such an object to be executed will then receive an appropriate error message.

You can put not only individual objects on the blacklist, but also entire libraries.

Examples:

The blacklist may be useful, when you upgrade a Natural application and do not wish users to continue to
work with that application until you have finished the upgrade.
Without the blacklist, a user might execute a new module which in turn would invoke an old module -
which might lead to an abnormal termination of the Natural session.
With the blacklist, the user can will receive a message that the requested object can currently not be
executed, and can then continue his/her Natural session.
Performance aspects may be another reason for using the blacklist to prevent certain resource-consuming
objects from being executed in a specific environment.
You may use the blacklist to prevent the execution of test programs in a production environment.

To maintain the blacklist, you use the SYSBPM utility (described in the Natural Utilities documentation).

Propagation of Buffer-Pool Changes

Note:Under OS/390, the propagation of buffer-pool changes is always restricted to the Natural subsystem in
which the change has occurred (for details on the Natural subsystem, see Natural Subsystem (OS/390) or Natural
Subsystem (VSE/ESA). Thus, "all global buffer pools" in this context means "all global buffer pools within the
same subsystem".

In some environments, it is important that changes which occur in one (local or global) buffer pool are also
propagated to all other global buffer pools - that is, the same changes are also automatically made in the other
global buffer pool - so as to ensure the consistency of the buffer pools and the Natural applications being used.
This is particularly important in a Sysplex environment.

157Copyright © Software AG 2003

BlacklistNatural Buffer Pool

For example, if a Natural program is newly cataloged in one OS/390 image, the propagation will cause the
program to be deleted from all other global buffer pools in the Sysplex, so that its new version has to be loaded
from the system file when the program is to be executed again.

The following changes are propagated:

an object is deleted from the buffer pool,
the buffer pool’s blacklist is modified,
the buffer pool is re-initialized.

Changes can be propagated to all other global buffer pools within the current OS/390 image, or within the entire
Sysplex, or all other global buffer pools of the same name within the Sysplex.

The propagation does not affect those objects in another global buffer pool which are defined as resident in that
buffer pool.

The propagation is activated and its scope controlled by the Natural profile parameter BPPROP.

Attention: As the propagation is performed asynchronously and an object is only deleted from a buffer pool
when it is not longer being used, it may take some time until the current version of an object is available in all
buffer pools.

Propagation to other local buffer pools is not possible.

Natural Global Buffer Pool
The Natural global buffer pool is an optional Natural component.

It is available for the following operating systems

OS/390 (refer to Global Buffer Pool under OS/390)
VSE/ESA (refer to Global Buffer Pool under VSE/ESA)
BS2000/OSD (refer to Global Buffer Pool under BS2000/OSD).

Profile Parameters Used

The following Natural profile parameters are used to establish a global buffer pool:

BPNAME Specifies the name of the global buffer pool (see BPNAME).
BPNAME=’ ’ (blank) is used to establish a connection to the local buffer pool.

SUBSID Specifies the ID of the Natural subsystem to be used (see SUBSID; applies only under OS/390 and
VSE/ESA).

During Natural startup, Natural attempts to locate the global buffer pool using these parameters.

Buffer Pool Opening / Closing Procedure

With the NTBPI macro of the Natural parameter module or the corresponding profile parameter BPI, you can
define more than one buffer pool.

At session initialization, Natural attempts to establish a connection to the first buffer pool defined. If this fails,
Natural attempts to establish a connection to the second buffer pool defined. If that fails, too, it tries the next
buffer pool defined, etc. Whenever an attempt to establish a connection to a buffer pool fails, Natural will issue a
corresponding message.

Copyright © Software AG 2003158

Natural Buffer PoolNatural Global Buffer Pool

The same procedure applies when a buffer pool is stopped: if you close the currently connected buffer pool while
a Natural session is still active, Natural attempts to connect to another buffer pool (in the order in which they are
defined) and continue the session. Thus, it is possible for the Natural administrator to close a global buffer pool
without having to terminate all active Natural sessions.

159Copyright © Software AG 2003

Buffer Pool Opening / Closing ProcedureNatural Buffer Pool

Natural Global Buffer Pool under OS/390
This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the operating system
OS/390.

The following topics are covered:

Using a Natural Global Buffer Pool
Operating the Natural Global Buffer Pool
Sample NATGBP41 Execution Jobs
Localization

Certain parts of the Natural global buffer pool are identical under OS/390 and VSE/ESA.
These parts are concentrated in a separate section (see Common GBP Operating Functions under OS/390 and
VSE/ESA) which covers the following topics:

Global Buffer Pool Operating Functions
Global Buffer Pool Function Parameters
Examples of NATBUFFER Specifications

See also:

Natural Global Buffer Pool Manager Messages (in the Natural Messages and Codes documentation)

Natural Buffer Pools - Other Topics
Natural Buffer Pool | Natural Global Buffer Pool under VSE/ESA | Common GBP Operating Functions under
OS/390 and VSE/ESA | Natural Global Buffer Pool under BS2000/OSD

Using a Natural Global Buffer Pool

Definition

The Natural global buffer pool is a segment of storage assigned from the OS/390 extended common system area
(ECSA) above 16 MB (or from CSA storage below, if requested), used by Natural to load and execute Natural
programs.

Benefits

Using a global buffer pool, multiple Natural sessions under different TP monitors (multiple copies of CICS,
TSO, IMS/TM, etc.) and/or in multiple batch sessions share the same area - thus requiring less storage than
would be required for a local buffer pool in each environment.

Operating the Natural Global Buffer Pool
The following topics are covered below:

Installing the Natural GBP Operating Program
Setting up the Natural Global Buffer Pool
Starting the Natural GBP Operating Program
Stopping the Natural GBP Operating Program

Copyright © Software AG 2003160

Natural Global Buffer Pool under OS/390Natural Global Buffer Pool under OS/390

Installing the Natural GBP Operating Program

The global buffer pool is operated by the program NATGBP41 which must be executed from an authorized
library.

During the installation of Natural, the modules NATGBP41 is linked into an APF-authorized library.

Setting up the Natural Global Buffer Pool

The functions available from NATGBP41 are activated in that they are

provided by a parameter card (PARM=),
read from a file (see below)
or supplied by the MODIFY operator command unless NATGBP41 has not been terminated.

NATGBP41 expects the first command in the parameter field (PARM=) of the EXEC statement.

You may enter:

one of the functions (described in the section Common GBP Operating Functions under OS/390 and
VSE/ESA)
or a reference to an input file with "CF=<dd-name>", where <dd-name> represents a DD name defined in
the JCL. Only "card image" files are supported, that is, RECFM=F,LRECL=80, and only the first 72 bytes
of the input record are honoured. Every record included from the input file represents a command. Blank
records or records prefixed with an asterisk ("*") are ignored. A file is processed until End-Of-File (EOF).

Example: PARM=’CF=SYSIN1’

If the parameter field is not supplied or blank, the commands will be read from file SYSIN by default.

It is only possible to enter one function at a time at the console or one function per line using the command file,
otherwise an error message will be returned.

Each command received, from the parameter card, from file input or from operator console input is shown on the
operator console.

Starting the Natural GBP Operating Program

To start program NATGBP41, either start a started task or submit a job, which executes NATGBP41.

Important:
To ensure that the global buffer pool is retained after a system failure, the
global buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, NATGBP41 terminates, unless

RESIDENT=Y was specified
or a buffer pool with a cache was created.

NATGBP41 will return one of the following condition codes:

0 All functions executed successfully.

20 An error has occurred; see the message log for details.

161Copyright © Software AG 2003

Installing the Natural GBP Operating ProgramNatural Global Buffer Pool under OS/390

Sample NATGBP41 Execution Jobs
The following examples show sample batch jobs for creating and terminating a global buffer pool.

Example 1:

 //GBPSTART JOB
 //*
 //* Starts a global buffer pool with the name NAT41GBP, a size of 1 MB and
 //* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
 //* The subsystem used is NAT4.
 //* After the allocation, the job GBPSTART terminates.
 //*
 //STEP EXEC PGM=NATGBP41,PARM=’BPN=NAT41GBP,N=(1M)’
 //SETPLIB DD DISP=SHR,DSN=USER.APF.LINKLIB

Example 2:

 //GBPRES JOB
 //*
 //* Starts a global buffer pool with the name GBP, a default size of
 //* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
 //* below 16 MB. The subsystem used is SAGS.
 //* After the allocation, the job GBPRES will wait for further commands.
 //* Further commands may be entered using the MODIFY operator command:
 //* F GBPRES,command-string
 //*
 //STEP EXEC PGM=NATGBP41,PARM=’BPN=GBP,N=(,BL,1),S=SAGS,R=Y’

Example 3:

 //GBPSTOP
 //*
 //* Stops the global buffer pool GPB if it contains no active objects. If it
 //* does contain active objects, the operator console will prompt for a reply.
 //* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
 //* The subsystem used is NAT4.
 //*
 //STEP EXEC PGM=NATGBP41,PARM=’FSHUT,BPN=GPB’

Example 4:

 //GBPSTRT2
 //* Read commands from SYSIN1:
 //*
 //* Start 3 global buffer pools (subsystem id N41x) with name
 //* NATGBP1 - size=1024KB and a cache with size 2048KB
 //* NATGBP2 - size=2048KB without cache
 //* Display all buffer pools of subsystem id "N41x".
 //*
 //* Note: The job does not terminate by itself, but stays resident and waits
 //* for operator commands, because it owns the data space allocated for
 //* buffer pool NATGBP1.
 //*
 //* If the buffer pools should shut down, send operator command MODIFY with
 //* parameter "CF=SYSIN2" to execute the corresponding FSHUTs.
 //*
 //STEP EXEC PGM=NATGBP41,PARM=’CF=SYSIN1’
 //SYSIN1 DD *
 CREATE,BPN=NATGBP1,S=N41x,N=(1M),BPC=2M
 CREATE,BPN=NATGBP2,S=N41x,N=(2M)

Copyright © Software AG 2003162

Natural Global Buffer Pool under OS/390Sample NATGBP41 Execution Jobs

 SHOWBP S=N41x
 //SYSIN2 DD *
 FSHUT,BPN=NATGBP1,S=N41x
 FSHUT,BPN=NATGBP2,S=N41x
 SHOWBP S=N41x
 //*

where x is the System Maintenance Level of the Natural Version, for example: 411

Localization
The module NATGBPTX is delivered in source form. It contains all error messages in English. The messages
can be translated into other languages as required. In this case, the "new" NATGBPTX source module has to be
assembled and NATGBP41 has to be newly link-edited using the following JCL:

//SYSLIN DD *
 SETCODE AC(1)
 SETOPT PARM(REUS=RENT)
 INCLUDE NATLIB(NATGBPMG)
 INCLUDE SMALIB(NATGBPTX)
 INCLUDE NATLIB(NATBPMGR)
 NAME NATGBP41(R)
/*

163Copyright © Software AG 2003

LocalizationNatural Global Buffer Pool under OS/390

Natural Global Buffer Pool under VSE/ESA
This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the operating system
VSE/ESA.

The following topics are covered:

Using a Natural Global Buffer Pool
Operating the Natural Global Buffer Pool
Sample NATGBP41 Execution Jobs
Localization

Certain parts of the Natural global buffer pool are identical under VSE/ESA and OS/390.
These parts are concentrated in a separate section (see Common GBP Operating Functions under OS/390 and
VSE/ESA) which covers the following topics:

Global Buffer Pool Operating Functions
Global Buffer Pool Function Parameters
Examples of NATBUFFER Specifications

See also:

Natural Global Buffer Pool Manager Messages (in the Natural Messages and Codes documentation)

Natural Buffer Pools - Other Topics
Natural Buffer Pool | Natural Global Buffer Pool under OS/390 | Common GBP Operating Functions under
OS/390 and VSE/ESA | Natural Global Buffer Pool under BS2000/OSD

Using a Natural Global Buffer Pool

Definition

The Natural global buffer pool is a segment of storage assigned from the VSE/ESA system GETVIS storage
above 16 MB (or from storage below, if requested), used by Natural to load and execute Natural programs.

Benefits

Using a global buffer pool, multiple Natural sessions under different TP monitors (multiple copies of CICS,
Com-plete, etc.) and/or in multiple batch sessions share the same area - thus requiring less storage than would be
required for a local buffer pool in each environment.

Prerequisites

A Natural global buffer pool under VSE/ESA requires the subsystem storage protection facility of an ESA/390
or compatible processor. Consequently, it also requires a minimum operating system level of VSE/ESA Version
2 Release 4 for support of this hardware feature.

Copyright © Software AG 2003164

Natural Global Buffer Pool under VSE/ESANatural Global Buffer Pool under VSE/ESA

Operating the Natural Global Buffer Pool

Installing the Natural GBP Operating Program

No installation procedure required. The global buffer pool is operated by program NATGBP41 which is
contained in and executed from the Natural load library.

Setting Up the Natural Global Buffer Pool

The functions available from NATGBP41 are activated in that they are

provided by a parameter card (PARM=),
read from a file (see below)
or supplied by the operator (AR command MSG xx with xx being the VSE partition ID) unless NATGBP41
has not been terminated.

NATGBP41 expects the first command in the parameter field (PARM=) of the EXEC job control statement.

You may enter:

one of the functions (described in the section Common GBP Operating Functions under OS/390 and
VSE/ESA)
or a reference to an input file with "CF=<dlbl-name>", where <dlbl-name> represents a DLBL name
defined in the JCL or the VSE/ESA (partition) standard labels. Only "card image" files are supported, that
is, RECFM=F,LRECL=80, and only the first 72 bytes of the input record are honoured. Every record
included from the input file represents a command. Blank records or records prefixed with an asterisk "*"
are ignored. An asterisk ("*") for <dlbl-name> indicates to NATGBP41 that input has to be read from
SYSIPT. A file is processed until End-Of-File (EOF).

Example: PARM=’CF=SYSIN1’

If the parameter field is not supplied or is blank, the commands will be read from SYSIPT by default.

It is only possible to enter one function at a time at the console or one function per line using the command file,
otherwise an error message will be returned.

Each command received from the parameter card, from file input or from operator console input is shown on the
operator console and is logged to SYSLST.

Starting the Natural GBP Operating Program

To start program NATGBP41 submit a job that executes NATGBP41.

Important:
To ensure that the global buffer pool is retained after a system failure, the
global buffer pool should be started automatically during machine IPL.

Stopping the Natural GBP Operating Program

After all commands are processed, NATGBP41 terminates unless

RESIDENT=Y was specified or
a buffer pool with a cache was created.

165Copyright © Software AG 2003

Operating the Natural Global Buffer PoolNatural Global Buffer Pool under VSE/ESA

NATGBP41 will return one of the following condition codes:

0 All functions executed successfully.

20 An error has occurred; see the message log for details.

Sample NATGBP41 Execution Jobs
The following examples show sample batch jobs for creating and terminating a global buffer pool.

Example 1:
 // JOB GBPSTART
 /*
 /* Starts a global buffer pool with the name NAT41GBP, a size of 1 MB and
 /* a text block size of 4 KB. The global buffer pool is allocated above 16 MB.
 /* The subsystem used is NAT4.
 /* After the allocation, the job GBPSTART terminates.
 /*
 // LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
 // EXEC NATGBP41,SIZE=NATGBP41,PARM=’BPN=NAT41GBP,N=(1000)’ /*
 // EXEC LISTLOG
 /&

Example 2:
 // JOB GBPRES
 /*
 /* Starts a global buffer pool with the name GBP, a default size of
 /* 100 KB and a text block size of 1 KB. The global buffer pool is allocated
 /* below 16 MB. The subsystem used is SAGS.
 /* After the allocation, the job GBPRES will wait for further commands.
 /* Further commands may be entered using AR command MSG partition-id:
 /* the job GBPRES will then prompt for console input .
 /*
 // LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
 // EXEC NATGBP41,SIZE=NATGBP41,PARM=’BPN=GBP,N=(,BL,1),S=SAGS,R=Y’
 /*
 // EXEC LISTLOG
 /&

Example 3:
 // JOB GBPSTOP
 /*
 /* Stops the global buffer pool GPB if it contains no active objects. If it
 /* does contain active objects, the operator console will prompt for a reply.
 /* Depending on the reply, the shutdown will be forced (Y) or aborted (N).
 /* The subsystem used is NAT4.
 /*
 // LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
 // EXEC NATGBP41,SIZE=NATGBP41,PARM=’FSHUT,BPN=GBP’
 /*
 // EXEC LISTLOG
 /&

Copyright © Software AG 2003166

Natural Global Buffer Pool under VSE/ESASample NATGBP41 Execution Jobs

Example 4:
 // JOB GBPSTRT2
 /* Read commands from SYSIPT:
 /*
 /* Start 3 global buffer pools (subsystem id N41 x) with name
 /* NATGBP1 - size=1024KB and a cache with size 2048KB
 /* NATGBP2 - size=2048KB without cache
 /* Display all buffer pools of subsystem id "N41 x".
 /*
 /* Note: The job does not terminate by itself, but stays resident and waits
 /* for operator commands, because it owns the data space allocated for
 /* buffer pool NATGBP1.
 /*
 /* If the buffer pools should shut down, wake up sleeping job by MSG partition-id
 /* and enter parameter "CF=*" to execute the corresponding FSHUTs.
 /*
 // LIBDEF PHASE,SEARCH=SAGLIB.NATLIB
 // EXEC NATGBP41,SIZE=NATGBP41
 CREATE,BPN=NATGBP1,S=N41x,N=(1M),BPC=2M
 CREATE,BPN=NATGBP2,S=N41x,N=(2M)
 SHOWBP S=N41x
 /*
 FSHUT,BPN=NATGBP1,S=N41 x
 FSHUT,BPN=NATGBP2,S=N41 x
 SHOWBP S=N41x
 /*

where x is the SM level of the Natural Version, for example: 411

Localization
The module NATGBPTX is delivered in source form. It contains all error messages in English. The messages
can be translated into other languages as required; in this case, the "new" NATGBPTX source module has to be
assembled and NATGBP41 has to be re-linked using the following JCL:

// OPTION CATAL,LIST
 ACTION NOAUTO,SMAP
 PHASE NATGBP41,*
 INCLUDE NATGBPMG
 INCLUDE NATGBPTX
 INCLUDE NATBPMGR
 ENTRY CMSTART
/*

167Copyright © Software AG 2003

LocalizationNatural Global Buffer Pool under VSE/ESA

Common Natural GBP Operating
Functions under OS/390 and VSE/ESA
This section provides a summary of those operating functions of the Natural global buffer pool which are
identical under OS/390 and VSE/ESA.

The following topics are covered:

Global Buffer Pool Operating Functions
Global Buffer Pool Function Parameters
Examples of NATBUFFER Specifications

Natural Buffer Pools - Other Topics
Natural Buffer Pool | Natural Global Buffer Pool under OS/390 | Natural Global Buffer Pool under VSE/ESA |
Natural Global Buffer Pool under BS2000/OSD

Global Buffer Pool Operating Functions
The following functions are available:

ADDCACHE | CREATE | DELCACHE | FSHUT | GLOBALS | LISTCACHE | NOP | REFRESH | SHOWBP |
TERMINATE

Note:
If no function is specified, CREATE is assumed when the profile parameter BPNAME is specified,
otherwise NOP is assumed.

ADDCACHE - Allocate Cache for an existing Global Buffer Pool

This function adds cache storage to an existing global buffer pool.

CREATE - Create Global Buffer Pool

This function creates a global buffer pool with the specified parameters.

DELCACHE - Release Cache of a Global Buffer Pool

This function removes the cache storage of a global buffer pool without shutting down the buffer pool itself.

FSHUT - Shut Down Global Buffer Pool

The global buffer pool is shut down, and the storage area is released.

If there are no active objects in the buffer pool, FSHUT is executed immediately.

If there are still active objects in the buffer, this will be indicated to the operator. Depending on the setting of the
parameter CONFIRM, the operator is asked for a confirmation or FSHUT is executed immediately.

Copyright © Software AG 2003168

Common Natural GBP Operating Functions under OS/390 and VSE/ESACommon Natural GBP Operating Functions under OS/390 and VSE/ESA

GLOBALS - Show global parameter settings

This function shows all global parameter settings, i.e. parameters which do not only apply to the statement for
which they have been specified.

In addition, the storage key of the global buffer pool(s) is shown.

LISTCACHE - List all Global Buffer Pool Caches owned by Job

This function lists all global buffer pool caches currently owned by the job.

NOP - No-Operation

This function code particularly can be used to set global parameters.

REFRESH - Re-initialize Global Buffer Pool

With the REFRESH command it is possible to re-initialize an already active buffer pool. As no storage allocation
takes place, the buffer pool size and location (above or below 16 MB) remain unchanged. However, it is possible
to change the text-block size (see NATBUFFER parameter).

You should use this function only if the Current Use Count (see Fields for Buffer Pool Objects in SYSBPM
Directory Information) is equal to zero (see Warning below) or if the buffer pool has been destroyed.

Warning:
If you re-initialize the buffer pool while Natural objects are being executed by
active sessions in this buffer pool, the results of the active sessions are
unpredictable and Natural may even abend.

SHOWBP - Show Existing Buffer Pools

Displays all buffer pools currently existing.

TERMINATE - Terminate GBP Operating Program

The GBP operating program is terminated. This termination does not affect any active global buffer pool.

Global Buffer Pool Function Parameters
The functions of the Natural GBP operating program can be controlled with the aid of parameters. These
parameters can be specified in any sequence. They can be abbreviated so that they are still unique.

Note:
If you like to start multiple global buffer pools with an associated cache, you are recommended to use a
single job or (under OS/390 only) a single started task and to supply the different CREATE commands in an
input dataset.
See Example 4 in the section Natural Global Buffer Pool under OS/390.
See Example 4 in the section Natural Global Buffer Pool under VSE/ESA.

The following parameters are available:

BPNAME | BPLIST | BPCSIZE | CONFIRM | IDLE | METHOD | NATBUFFER | RESIDENT | SUBSID |
TYPE

169Copyright © Software AG 2003

Global Buffer Pool Function ParametersCommon Natural GBP Operating Functions under OS/390 and VSE/ESA

BPNAME - Name of Global Buffer Pool

This parameter is mandatory (except for the TERMINATE function). It specifies the name of the global buffer
pool to be created.

BPNAME=name name is the 8-byte name of the global buffer pool. If the specified name is shorter than 8
bytes, blanks will be appended to it.

For the functions DELCACHE and FSHUT, you may supply a value of "*" to process all buffer pools for the
specified Natural subsystem.

BPLIST - Name of Preload List

This parameter specifies the name of the preload list.

BPLIST=name
name is the 8-byte name of the preload list. If the specified name is shorter than 8 bytes, blanks
will be appended to it.

BPCSIZE - Buffer Pool Cache Size

This parameter specifies the amount of storage (in KB) used to allocate a data space for the buffer pool cache.

BPCSIZE=size size is the amount of storage (in KB) used to allocate a data space for the buffer pool cache.
The valid range is 100 - 2097148.

Thecache size can also be specified in units of MB or GB, e.g. by specifying 10M for 10 MB.
If the BPCSIZE parameter is omitted (or set to zero), the buffer pool is not supplied with a
cache.
Note: A cache is only supported for buffer pools of TYPE=NAT.

CONFIRM - FSHUT Confirmation

This parameter controls the FSHUT behavior if there are still active objects in the buffer pool.

CONFIRM=Y A confirmation for the FSHUT function is required from the operator. The operator can decide
to abort or to force the FSHUT function.
This is the default value.

CONFIRM=N FSHUT is forced without interaction with the operator.

This parameter is only valid for the FSHUT command it has been specified with, that is, CONFIRM has to be
specified with each FSHUT parameter, and it does not apply to subsequent FSHUT commands.

IDLE - Wait Time before Check

This parameter is ignored when the task does not own a buffer pool cache.

IDLE=nn nn is the number of seconds to elapse before the GBP operating program checks for each buffer pool
cache if its associated buffer pool is still active; if not that buffer pool cache is released; when the
last buffer pool cache owned by the task has been released, the task terminates, unless
RESIDENT=Y has been specified.
The default setting is 60 seconds.

Copyright © Software AG 2003170

Common Natural GBP Operating Functions under OS/390 and VSE/ESABPNAME - Name of Global Buffer Pool

IDLE is a "global" parameter, i.e. once specified, IDLE will also apply to subsequent commands, without your
having to specify it again.

Note:
Under OS/390, the GBP operating program also checks the specified IDLE time value against the job’s
timeout value: the specified IDLE time value internally may reduce IDLE to prevent timeout abends (S322).

METHOD - Search algorithm for allocating space in buffer pool

This parameter controls which algorithm is to be used for allocating storage in the Natural buffer pool.

METHOD=S Indicates that a selection process is to be used for allocating storage. The selection process
consists of browsing the whole buffer pool directory and comparing different entries in order to
find a most suitable entry. This method was formerly known as algorithm 1+2.

This is the default value.

METHOD=N Indicates that the next available unused or free space is to be used. The search for the next
available space is done from a pointer to directory entries which moves in a wrap-around
fashion. This method may be used in combination with a buffer pool cache.

This parameter is only valid for the CREATE function. If you want to change the allocation method, restart the
buffer pool.

NATBUFFER - Buffer Size, Mode, Text Block Size

This parameter specifies the size and the mode of the buffer pool, and the text block size.

NATBUFFER=(size,mode,tsize)size is the amount of storage (in KB) to be allocated.
The default is 100 KB; this is also the minimum possible size.

The pool size can also be specified in units of MB or GB, e.g. by
specifying 10M for 10 MB.

mode determines if the global buffer pool is to be allocated above or below
16 MB.
Possible values are: XA = above (default), BL = below.

tsize determines the text block size (in KB).
Possible values are: 1, 2, 4 ,8, 12, and 16. The default is 4.

size, mode and tsize have to be specified in the sequence shown above.

If NATBUFFER is not specified, the default values will be used. See also Examples of NATBUFFER
Specifications below.

RESIDENT - Behavior after Function Execution

This parameter specifies the behavior of the GBP operating program after the specified function has been
executed. The following values are possible:

171Copyright © Software AG 2003

METHOD - Search algorithm for allocating space in buffer poolCommon Natural GBP Operating Functions under OS/390 and VSE/ESA

RESIDENT=Y The GBP operating program will remain active after executing the specified function and
await further commands.
Once specified, RESIDENT=Y will also apply to subsequent commands, without your having
to specify it again.
(To stop the GBP operating program, you use the TERMINATE function.).

RESIDENT=N The GBP operating program will terminate after executing the specified function, if no further
command is available.
If the task owns a buffer pool cache, RESIDENT=N is ignored and the task is not terminated.

RESIDENT=A The GBP operating program automatically decides how to behave after having processed all
commands. It will terminate if

no further command is available and
no buffer pool with an associated cache exists that was created by this task.

In other words: If no buffer pool cache is owned by the task, RESIDENT=A works in the same
way as RESIDENT=N. When the task owns a buffer pool cache, RESIDENT=A works the
same way as RESIDENT=Y, but switches automatically to RESIDENT=N, when the last
buffer pool whose associated buffer pool cache was owned by this task has terminated.

This is the default setting.

RESIDENT is a "global" parameter, i.e. once specified, RESIDENT will also apply to subsequent commands
until explicitely specified/overwritten.

SUBSID - Natural Subsystem ID

This parameter specifies the ID of the Natural subsystem.

SUBSID=id id is the 4-byte ID of the Natural subsystem.
Once specified, SUBSID will also apply to subsequent commands, without your having to specify
it again.

The default value is "NAT4".

SUBSID is a "global" parameter, i.e. once specified, SUBSID will also apply to subsequent commands until
explicitely specified/overwritten.

For the functions DELCACHE, FSHUT and SHOWBP, you may supply a value of "*" to process all buffer
pools for the specified Natural subsystem.

For further information on the Natural subsystem, see Natural Subsystem (OS/390) or Natural Subsystem
(VSE/ESA).

TYPE - Type of Buffer Pool

This parameter specifies the type of the buffer pool. Possible values are:

Copyright © Software AG 2003172

Common Natural GBP Operating Functions under OS/390 and VSE/ESASUBSID - Natural Subsystem ID

TYPE=NAT Natural buffer pool (this is the default).

TYPE=SORT Sort buffer pool.

TYPE=DLI DL/I buffer pool.

TYPE=EDIT Editor buffer pool.

TYPE=MON Monitor buffer pool.

TYPE=RNM Review Natural Monitor buffer pool.

Examples of NATBUFFER Specifications
To allocate a global buffer pool above 16 MB, with a size of 1 MB and a text block size of 1 KB, you
specify:
N=(1000,,1) or N=(1M,,1)
To allocate a global buffer pool above 16 MB, with a size of 10 MB and a text block size of 4 KB, you
specify:
N=(10000) or N=(10M)
To allocate a global buffer pool above 16 MB, with a size of 100 KB and a text block size of 4 KB, you
specify:
N=(,,)

The third example is equivalent to omitting the NATBUFFER parameter altogether, as it causes the default
values to apply.

173Copyright © Software AG 2003

Examples of NATBUFFER SpecificationsCommon Natural GBP Operating Functions under OS/390 and VSE/ESA

Natural Global Buffer Pool under
BS2000/OSD
This document describes purpose and usage of a Natural Global Buffer Pool (GBP) under the operating system
BS2000/OSD.

The following topics are covered:

Using a Natural Global Buffer Pool under BS2000/OSD
Establishing the Global Buffer Pool under BS2000/OSD
Administering the Global Buffer Pool under BS2000/OSD

Natural Buffer Pools - Other Topics
Natural Buffer Pool | Natural Global Buffer Pool under OS/390 | Natural Global Buffer Pool under VSE/ESA |
Natural Global Buffer Pool under BS2000/OSD

Using a Natural Global Buffer Pool under BS2000/OSD
The Natural global buffer pool is a common memory pool that can be used with BS2000 Version 10.0 and
above.

On XS31 computers, it can be located either below 16 MB or in the extended address space above 16 MB. On
non-XS31 computers, it can be located in the user address space below Class 4 storage (whose size depends on
how the operating system was generated).

The global buffer pool can be used by several Natural/TIAM, Natural/UTM and batch applications
simultaneously. It is possible to have more than one global buffer pool per operating system.

The global buffer pool has to be activated before the first Natural application is started. It can remain active as
long as the operating system is active, even after the last Natural session has been terminated. This means that
the global buffer pool’s contents are still available when a new session is started and need not be loaded into the
buffer pool again.

Establishing the Global Buffer Pool under BS2000/OSD
The global buffer pool is established by executing a batch job which starts the program CMPSTART. The global
buffer pool’s name, size, virtual address, etc. are determined by parameters specified in this job.

Example of CMPSTART Job:

/SYSFILE SYSOUT.LST.BP310GA
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPSTART,$NAT310.NAT310.BS2.MOD)
NAME=BP310GA,TYPE=NAT,POSI=ABOVE,SIZE=2MB,ADDR=260,PFIX=NO,SCOP=GLOBAL
/SYSFILE SYSDTA=(PRIMARY)

If the parameter values are invalid or do not match the BS2000/OSD environment, the buffer pool task is
terminated with an error message. The error message contains the reason for the termination and (if applicable)
the SVC return code. All error messages are output on SYSOUT. In the case of grave errors, they are also
displayed on the operator console.

Copyright © Software AG 2003174

Natural Global Buffer Pool under BS2000/OSDNatural Global Buffer Pool under BS2000/OSD

Administering the Global Buffer Pool under BS2000/OSD
Once global buffer pool is active, it is administered via the operator console.

The following BS2000/OSD console commands are available (where tsn is the TSN of the buffer pool task):

Command Function

/INTR tsn,DPRM Displays the current parameters settings and the start time of the global buffer pool.

/INTR tsn,SHUT
/INTR tsn,STOP

Terminates the buffer pool task normally.

/INTR tsn,DUMP Terminates the buffer pool task abnormally and produces a dump.

The termination of the buffer pool task does not necessarily mean the termination of the global buffer pool, as
the common memory pool remains active until the end of the last Natural application.

So that you can terminate global buffer pools via a program, too, the program CMPEND is provided:

Example:

/PROC C
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (CMPEND,NAT310.MOD)
name /* name of the global buffer pool
/SYSFILE SYSDTA=(PRIMARY)
/ENDP

175Copyright © Software AG 2003

Administering the Global Buffer Pool under BS2000/OSDNatural Global Buffer Pool under BS2000/OSD

Natural Swap Pool - Overview
This document provides information on the Natural swap pool which is available when you are using one of the
following TP monitors:

CICS (where the Natural swap pool is optional)
UTM (where the Natural swap pool is necessary)

The behavior and the functionality of the Natural swap pool is to a large extent identical in these environments.
However, differences or TP-monitor-specific features exist. These are marked accordingly in the following texts.

The following topics are covered:

Purpose of a Natural Swap Pool

Natural Swap Pool Operation

Swap Pool Initialization

Dynamic Swap-Pool Reorganization

Defining the Natural Swap Pool

Natural User Area Size Considerations

Swap Pool Data Space

Global Restartable Swap Pool under UTM

Terminating the Global Swap Pool

Related Topics:

Natural Swap Pool under CICS (in the Natural TP Monitor Interfaces documentation)
Using the Natural Swap Pool under CICS (in the Natural TP Monitor Interfaces documentation)
Natural Swap Pool under UTM (in the Natural TP Monitor Interfaces documentation)
Error Messages from the Natural Swap Pool Manager Valid under CICS and UTM (in the Messages and
Codes documentation for Mainframes).

Copyright © Software AG 2003176

Natural Swap Pool - OverviewNatural Swap Pool - Overview

Purpose of a Natural Swap Pool
The following topics are covered:

Purpose of a Natural Swap Pool
Benefits of Using a Natural Swap Pool
Swap Pool Structure

Natural Swap Pool - Other Topics:
Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool Reorganization | Defining the
Natural Swap Pool | Natural User Area Size Considerations | Swap Pool Data Space | Global Restartable Swap
Pool under UTM | Terminating the Global Swap Pool

Purpose of a Natural Swap Pool
A Natural user work area is required for each online Natural user. (The size of this work area is determined by
the parameter MAXSIZE in the macro NTSWPRM.) The user work area must be in the computer’s main storage
whenever the user initiates any form of dialog transaction.

In order to reduce the frequency with which the user work area is rolled out to the swap file (or roll facility under
CICS) and rolled in again, it is possible to set up a Natural swap pool.

For more details, refer to Natural Swap Pool Theory of Operation.

Benefits of Using a Natural Swap Pool
The user work areas are held in the Natural swap pool in compressed form as much as possible. The amount by
which disk swapping is reduced depends upon the size of the swap pool, the size of each compressed Natural
user work area and the number of online users.

If the user work areas of all the online users can be kept resident in the swap pool, no disk swapping takes place.

TP
Monitor:

Comment:

CICS The size, name and cache size of the swap pool are specified using profile parameter BPI or the
corresponding macro NTBPI in the Natural parameter module NATPARM, that is, the (NT)BPI
settings in effect for the Natural session initializing the NCI environment are taken.

UTM The size of the Natural swap pool is specified with the keyword parameter SIZE in the macro
ADDON or by program CMPSTART (see also the keyword parameters DATA and DESA for the
generation of swap pool data space).

Swap Pool Structure
The physical swap pool is made up of the following parts:

Main directory
Logical swap pools with

Subdirectories
Swap pool slots

177Copyright © Software AG 2003

Purpose of a Natural Swap PoolPurpose of a Natural Swap Pool

Swap Pool Main Directory

The swap pool main directory refers to the entire swap pool. Up to 15 logical swap pools can be defined.

Subdirectories

Each logical swap pool has its own subdirectory.

Swap Pool Slots

In the swap pool slots, the Natural user work areas are held in compressed form.

For the first initialization of the swap pool, the number of logical swap pools and the size of their slots can be
defined with the parameter SWPSLSZ in the macro NTSWPRM to generate the swap pool parameter module.

Logical Swap Pools

Each logical swap pool contains a subdirectory and a guest table.

Each swap pool directory entry used is chained to its predecessor entry and successor entry. This is also true for
the entries in the guest table. In this way, the most recent and the oldest swap pool users/guests are always
known.

To define a guest in a logical swap pool, proceed as in the following example:

There is a swap pool with three logical swap pools (LSPs).

LSP 1 has a slot size of 62 KB.
LSP 2 has a slot size of 72 KB.
LSP 3 has a slot size of 82 KB.

The size of the compressed Natural user work area is 60 KB and therefore, this user work area should be
compressed into a slot of the logical swap pool 1. If LSP 1 is currently full (which is the case in the above
example) and LSP 2 contains a free slot, the user work area will be compressed into LSP 2; if it is full, and LSP
3 contains a free slot, the user work area will be compressed into LSP 3. A user work area in LSP 2 or 3 is a
guest in these LSPs because its own LSP was full.

TP
Monitor:

Comment:

CICS The Natural swap pool is optional under CICS. Due to CICS command-level overhead, swapping
into or from the swap pool is faster than expensive roll I/Os. Nevertheless, if virtual storage is a
bottleneck, the installation of a swap pool may lead to performance degradations due to paging
overhead; see also Natural Swap Pool under CICS and Using the Natural Swap Pool under CICS
(described in the Natural TP Monitor Interfaces documentation).

UTM The Natural swap pool is necessary under UTM. See also Natural Swap Pool under UTM

Copyright © Software AG 2003178

Purpose of a Natural Swap PoolSwap Pool Main Directory

Natural Swap Pool Operation
The following situations are explained:

Users are "on their Way" to Natural - no Session Start
Users are "Returning" from Natural

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Swap Pool Initialization | Dynamic Swap-Pool Reorganization | Defining the
Natural Swap Pool | Natural User Area Size Considerations | Swap Pool Data Space | Global Restartable Swap
Pool under UTM | Terminating the Global Swap Pool

Users are "on their Way" to Natural - no Session Start
If the user’s work area is held in the swap pool, the corresponding slot is read and decompressed into the Natural
user thread. The corresponding swap pool directory entry is unlinked from the directory chain and declared as a
free entry. If it was a guest, the guest table will be updated.

If the user’s work area is not held in the swap pool, it is read and decompressed from the Data Space or from the
swap file (or roll facility under CICS) into the Natural user thread.

Natural is activated.

Users are "Returning" from Natural
Natural checks whether the compressed length of the user work area exceeds the highest slot size of the logical
swap pools.

If it exceeds the highest slot size, the user work area is compressed and written asynchronously to the swap file
(or rolled to the roll facility, which is associated with the session under CICS).

If it does not exceed the highest slot size, Natural finds out whether there is a free slot in the user work area’s
own swap pool:

If there is a free slot, the user work area is compressed into this slot. The corresponding directory entry is
linked into the directory chain as latest entry.
If there is no free slot, Natural finds out whether there are guests in the user work area’s own logical swap
pool.
If there are one or more guests, a slot is made available: The oldest guest-table entry is unlinked from the
guest table and the until then second oldest is made oldest guest. The adequate directory entry is unlinked
from the directory chain.
If there are no guests, a slot is made available: The oldest directory entry is unlinked from the directory
chain and the until then second oldest is made oldest.
If ESA Data Space is generated and there is a free slot available, this slot will be used before a thread will
be rolled out into a swap file.

The compressed user area of the unlinked user is transferred to the write buffer and written asynchronously to the
swap file (or rolled synchronously to the roll facility, which is associated with the session under CICS). The
current user’s work area is compressed into the slot which has become available. The corresponding directory
entry is linked to the directory chain as latest entry.

179Copyright © Software AG 2003

Natural Swap Pool OperationNatural Swap Pool Operation

The statistics tables for swap pool reorganization and slot size calculation are updated.

Copyright © Software AG 2003180

Natural Swap Pool OperationUsers are "Returning" from Natural

Natural Swap Pool Initialization
The following topics are covered:

Swap Pool Initialization Control
Swap Pool Initialization Parameters

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Dynamic Swap-Pool Reorganization | Defining
the Natural Swap Pool | Natural User Area Size Considerations | Swap Pool Data Space | Global Restartable
Swap Pool under UTM | Terminating the Global Swap Pool

Swap Pool Initialization Control
The parameter SWPINIT in the macro NTSWPRM controls the initialization of the swap pool.

If You Set SWPINIT=AUTO

The swap pool manager tries to read the swap pool initialization data with the swap pool name as key from
the Natural system file FNAT or FUSER (see keyword parameters SWPFILE of macro NTSWPRM). If it
finds data, they are used and the corresponding parameters in the macro NTSWPRM are ignored. If it does
not find data, the operand(s) of the keyword parameter SWPSLSZ in the macro NTSWPRM will be used
for initializing the swap pool.
If the parameter SWPSLSZ contains only one slot size definition, the swap pool is initialized with one
logical swap pool. In the specified time interval (see parameter SWPTIM1 in the macro NTSWPRM), the
swap pool manager controls whether the swap pool needs to be reorganized or optimized (see also the
section Dynamic Swap-Pool Reorganization). If the swap pool was reorganized, the newly calculated
initialization data for the swap pool are stored in the Natural system file for the next initialization. If the
swap pool’s reorganization has resulted in more than one logical swap pool, there will be no further
dynamic swap pool reorganization.
Dynamic swap pool reorganization is not possible when the swap pool contains more than one logical swap
pool.
Further swap pool optimizations can be explicitly initialized with the following Natural SYSTP utility
functions:

Slot Size Calculation,
Swap Pool Parameter Service (modification of the swap pool initialization data in the Natural system
file),
Deactivate the Swap Pool and Activate the Swap Pool.

The maximum number of logical swap pools for dynamically reorganizing or optimizing the swap pool can
be defined in the operand of the keyword parameter SWPLSWP in macro NTSWPRM.

If You Set SWPINIT=

No swap pool initialization data in the Natural system file will be read or stored. The operand(s) of the
keyword parameter SWPSLSZ in the macro NTSWPRM will be used for initializing the swap pool.
The rules for dynamically reorganizing or optimizing the swap pool are the same as described under
SWPINIT=AUTO above, except that no initialization data will be stored in the Natural system file.

181Copyright © Software AG 2003

Natural Swap Pool InitializationNatural Swap Pool Initialization

Swap Pool Initialization Parameters

Parameter Explanation

SWPSLSZ Defines the number of logical swap pools, their slot sizes and the numerical relation between slot
number and logical swap pools.

SWPINIT Defines the access to the swap pool initialization data through the Natural system file.

SWPLSWP Defines the maximum number of logical swap pools for reorganizing swap pools dynamically.

SWPSDIF Defines the even-numbered minimum difference between the slot sizes of the different logical
swap pools. This value will be controlled during slot-size calculation and dynamic swap-pool
reorganization.

The following TP-monitor-specific requirements apply:

Under UTM:
The size of the swap pool must be specified in the operand of keyword parameter SIZE for macro ADDON
or program CMPSTART.
Under CICS:
The size, name and cache size of the swap pool are specified using profile parameter BPI or the
corresponding macro NTBPI in the Natural parameter module NATPARM, that is, the (NT)BPI settings in
effect for the Natural session initializing the NCI environment are taken.

Copyright © Software AG 2003182

Natural Swap Pool InitializationSwap Pool Initialization Parameters

Dynamic Swap-Pool Reorganization
The following topics are covered:

Requirements for Dynamic Swap-Pool Reorganization
Swap-Pool-Reorganization Plus Table
Swap-Pool-Reorganization Minus Table
Parameters for Swap-Pool Reorganization
Checking for the Necessity of Swap-Pool Reorganization
Flow of Dynamic Swap-Pool Reorganization
Start of Dynamic Swap-Pool Reorganization

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Defining the Natural
Swap Pool | Natural User Area Size Considerations | Swap Pool Data Space | Global Restartable Swap Pool
under UTM | Terminating the Global Swap Pool

Requirements for Dynamic Swap-Pool Reorganization
Dynamic swap pool reorganization is only possible when the physical swap pool contains only one logical swap
pool. In this case, the swap pool slots are all of the same size. If necessary, the number of logical swap pools and
the slot sizes can be adjusted to meet the requirements. Slot sizes are adjusted by reorganizing the swap pool
dynamically.

Statistics Tables
The statistical area of the swap pool directory contains two statistics tables which are used for swap pool
reorganization:

swap-pool-reorganization plus table
swap-pool-reorganization minus table

Swap-Pool-Reorganization Plus Table
The swap-pool-reorganization plus table contains information on the Natural user areas which could not be
placed into the swap pool because their compressed length exceeded the swap-pool slot size.

The table contains 11 entries:

The first 9 entries count the number of user areas whose length exceeded the slot size by 1 to 9 units.
The 10th entry counts the number of user areas whose length exceeded the slot size by more than 9 units.
The 11th entry contains the average length of those user areas counted by the 10th entry.

Swap-Pool-Reorganization Minus Table
The swap-pool-reorganization minus table contains information on the Natural user areas whose compressed
length was smaller than the swap-pool slot size.

183Copyright © Software AG 2003

Dynamic Swap-Pool ReorganizationDynamic Swap-Pool Reorganization

The table contains 11 entries:

The first 9 entries count the number of user areas whose length was smaller than the slot size by 1 to 9
"units".
The 10th entry counts the number of user areas whose length was smaller than the slot size by more than 9
units.
The 11th entry contains the average length of those user areas counted by the 10th entry.

The size of a "unit" is defined with the keyword parameter SWPFACT.

Parameters for Swap-Pool Reorganization
Dynamic swap-pool reorganization is controlled via the following keyword parameters in the macro
NTSWPRM.

Parameter Specifies

SWPSLSZ the slot size for the first initialization of the swap pool. The default size is 62 KB.

SWPTFIX if the slot size is to be fixed or dynamic. With fixed slot size, there is no dynamic swap pool
reorganization. If the slot size is defined as not fixed, the swap pool is dynamically reorganized
when necessary (this is the default).

SWPTIM1 the time interval at which a check is to be performed to ascertain whether a swap pool
reorganization is necessary. By default, the check is performed every 30 minutes.

SWPTIM2 the time to elapse after the check for the necessity of a swap pool reorganization is performed and
before the reorganization is to be started. By default, a reorganization is started 2 minutes after a
check has proved a reorganization to be necessary.

SWPUSER the rate of compressed user threads (in percent) which are too long for the actual SWP slot length.
If this value is reached and the physical SWP contains only one logical swap pool, an SWP
reorganization will be announced.

SWPFACT the factor for a "unit" in the swap pool reorganization plus table and minus table.

There is no need to change the default values for any of these parameters (unless you feel that slot size
optimization is not performed efficiently enough).

For testing and optimizing, you can dynamically change the values for these parameters online using the Natural
Swap Pool Manager, which is part of the Natural utility SYSTP.

Checking for the Necessity of Swap-Pool Reorganization
The check is based on:

the overall number of dialog steps during the time between two checks;
the percentage defined with the SWPUSER parameter;
the maximum number of logical swap pools defined with the SWPLSWP parameter;
the minimum difference of slot sizes for different logical swap pools;
the values of the swap-pool reorganization plus and minus tables (these tables are influenced by the setting
of the SWPFACT parameter);
the total size of the physical swap pool.

The number of necessary logical swap pools with the corresponding slot sizes will be computed if the number of
user areas whose compressed length was greater or smaller (by at least one unit) than the current slot size is more
than n percent of the number of dialog steps (n being the value of the SWPUSER parameter).

Copyright © Software AG 2003184

Dynamic Swap-Pool ReorganizationParameters for Swap-Pool Reorganization

When the swap pool is reorganized, the new logical swap pools are used. If the physical swap pool contains
more than one logical swap pool after the reorganization, there will be no further dynamic swap-pool
reorganization.

Flow of Dynamic Swap-Pool Reorganization
Natural will only check whether the swap pool needs to be reorganized if the physical swap pool contains no
more than one logical swap pool.

Once the time specified with the SWPTIM1 parameter has elapsed, a check is performed to determine whether a
swap-pool reorganization is necessary.

If swap-pool reorganization is not necessary, the timer set with the SWPTIM1 parameter (time interval
between checks) is activated again.
If swap-pool reorganization is found necessary, the timer set with the SWPTIM2 parameter (time interval
between end of check and start of reorganization) is activated: no further user areas can be placed in the
swap pool; user areas held in the swap pool can still be used and read into the user thread. Once this second
time interval has elapsed, swap-pool reorganization is started.

Start of Dynamic Swap-Pool Reorganization
After the time specified with the SWPTIM2 parameter has elapsed, the swap pool is reorganized while the
current online session continues:

1. The compressed user areas which are still held in the swap pool are written to the swap file (or roll facility
under CICS).

2. The contents of the swap-pool-reorganization statistics tables are written to SYSLST and then deleted from
the tables.

3. The swap-pool is re-initialized with the newly computed values.
4. The timer set with the SWPTIM1 parameter (time interval between checks) is activated again.

The Natural swap-pool manager, which is part of the Natural utility SYSTP (see the Natural Utilities
documentation), can be used to obtain information on swap pool statistical data, sizes of Natural buffers and user
threads.

185Copyright © Software AG 2003

Flow of Dynamic Swap-Pool ReorganizationDynamic Swap-Pool Reorganization

Defining the Natural Swap Pool
The following topics are covered:

Environment-Specific Requirements
Keyword Parameters of Macro NTSWPRM

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool
Reorganization | Natural User Area Size Considerations | Swap Pool Data Space | Global Restartable Swap Pool
under UTM | Terminating the Global Swap Pool

Environment-Specific Requirements
The following environment-specific requirements apply:

Under UTM:
The Natural swap pool is defined by specifying macro NTSWPRM for assembling the Natural swap-pool
parameter module.
Under CICS:
The Natural swap pool is defined by specifying NTSWPRM in the NCISCPCB environment definition
module.

Keyword Parameters of Macro NTSWPRM
The following keyword parameters can be used to define the Natural swap pool details:

LABEL | DSPCONT | DSPLIFE | SWPFILE | MAXSIZE | SWPFACT | SWPINIT | SWPLSWP | SWPPWRD |
SWPSDIF | SWPSLSZ | SWPTFIX | SWPTIM1 | SWPTIM2 | SWPUSER | NOVPA | NOVPW | WAITMS |
WRITMS |

LABEL - Name of Swap-pool Parameter Module

This parameter defines the CSECT name of the swap-pool parameter module.

LABEL=nnnnnnnn The name nnnnnnnn may be 8 characters at maximum.

LABEL=NATSWPRM The default setting is the name of macro NTSWPRM.

DSPCONT - Minutes for Data Space Slot Control

This parameter defines the time (in minutes) after which data space control takes place when the ESA Data
Space area is full. When this time has elapsed, the slots in the Data Space are checked for whether their threads’
life time has expired. If so, the compressed Natural user thread of each affected slot is rolled out into the roll file.

DSPCONT=nnn nnn must be in the range of 1 to 480.

DSPCONT=10 The default value is 10 (minutes).

Copyright © Software AG 2003186

Defining the Natural Swap PoolDefining the Natural Swap Pool

DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space

This parameter defines the life time for a compressed Natural user thread in a slot of the ESA Data Space. When
the data space slots control logic becomes active, the thread is rolled out if its life time has elapsed. The life time
of a thread starts when the thread is written to the ESA Data Space.

DSPLIFE=nn nn must be in the range of 1 to 60.

DSPCONT=5 The default value is 5 (minutes).

SWPFILE - Location of Swap Pool Initialization Data

This parameter defines whether the swap-pool initialization data are stored in the Natural system file FNAT or
FUSER when the function SWPINIT=AUTO is used.

SWPFILE=FNAT/FUSERFile definition for the swap pool initialization data.

SWPFILE=FNAT The default value is FNAT.

MAXSIZE - Size of Natural User Threads

This parameter defines the size nnn of the Natural user threads in KB. For information on how to determine this
size, see Using the MAXSIZE Parameter.

MAXSIZE=nnn nnn must be in the range of 1 to 32768.

MAXSIZE=400 The default setting is 400 KB.

Under CICS, this parameter specification is ignored, because the Natural/CICS interface will automatically take
the size of the largest thread for this parameter.

187Copyright © Software AG 2003

DSPLIFE - Life Time in Minutes for a Thread in the ESA Data SpaceDefining the Natural Swap Pool

SWPFACT - Size of Unit in Reorganization Tables

The factor n you specify with this parameter determines the size of a "unit" in the swap-pool reorganization plus
tables and minus tables.

SWPFACT=n Possible values for n are 0 to 4. n determines the size of a "unit" as follows:

0 corresponds to 2 KB.
1 corresponds to 4 KB.
2 corresponds to 8 KB.
3 corresponds to 16 KB.
4 corresponds to 32 KB.

SWPFACT=1 The default setting is 4 KB.

These tables are used to calculate slot sizes, to dynamically reorganize the swap pool and to get swap-pool
statistics see Dynamic Swap-Pool Reorganization.

SWPINIT - Access to Swap-Pool Initialization Data

This parameter specifies the access to the swap-pool initialization data through the Natural system file.

SWPINIT= Blank, as described above under the heading "Swap Pool Initialization", see If You Set
SWPINIT=.

SWPINIT=AUTO This is the default setting. The swap-pool initialization data are to be read from/stored in
the Natural system file. See also "Swap Pool Initialization", If You Set SWPINIT=AUTO.

 For more information on how to use this parameter, see Swap Pool Initialization.

SWPLSWP - Number of Logical Swap Pools

This parameter defines the maximum number n of logical swap pools to be used.

SWPLSWP=n Possible values for n are 0 to 15.

SWPLSWP=0 See Note 3 below.

Notes:

1. The minimum size of a logical swap pool is 64 KB.
2. The value defined must not be smaller than the number of slot sizes defined in the parameter SWPSLSZ.
3. If the default value "0" is used, the swap-pool manager will compute the maximum number of logical swap

pools.
4. This parameter will be ignored if the swap-pool initialization data could be read from the Natural system

file.

SWPPWRD - Administration Password

With this parameter, you specify the password for the administration of the swap-pool reorganization control
data and the Buffer Usage Statistics in the swap-pool manager subsystem of the Natural utility SYSTP.

SWPPWRD=password The password can be up to 4 characters long.

SWPPWRD=ADMI This is the default value.

Copyright © Software AG 2003188

Defining the Natural Swap PoolSWPFACT - Size of Unit in Reorganization Tables

SWPSDIF - Minimum Difference of Slot Sizes

With this parameter, you specify the minimum difference of the slot sizes in the logical swap pools.

SWPSDIF=nn nn must be an even number and specifies the number of kilobytes (KB).

SWPSDIF=8 The default value is 8 KB.

Note:
This parameter will be ignored if the swap-pool initialization data could be read from the Natural system
file.

SWPSLSZ - Number of Logical Swap Pools, Slot Sizes

This parameter determines the number of logical swap pools, the slot sizes and the relation of slot numbers
between the different logical swap pools. Possible values are:

SWPSLSZ=(nn,f(,nn,f...))
SWPSLSZ=(nn(,nn...),f(,f...))
SWPSLSZ=(nn(,nn...))

nn Determines the slot size of a logical swap pool in kilobytes (must be an even
number).

f Determines the relation in terms of a numerical factor between the slot
numbers of the different logical swap pools.

SWPSLSZ=(62,1) The default slot size is 62 KB. The default relation is 1.

Examples:

SWPLSZ=(44,1,62,2)
/* SWAP POOL SIZE IS 2048 KB
/* THERE WILL BE TWO LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:2
/* 1 LOGICAL SWAP POOL WITH 12 (1) 44-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 24 (2) 62-KB SLOTS

SWPLSZ=(64,80,96)
/* SWAP POOL SIZE IS 8 MB
/* THERE WILL BE THREE LOGICAL SWAP POOLS, RELATION BETWEEN THEM IS 1:1:1
/* 1 LOGICAL SWAP POOL WITH 34 (1) 64-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 34 (1) 80-KB SLOTS
/* 1 LOGICAL SWAP POOL WITH 34 (1) 96-KB SLOTS

This parameter will be ignored if the swap-pool initialization data could be read from the Natural system file.

SWPTFIX - Fixed Slot Size

This parameter determines if the size of the swap pool slots is to be fixed or not. Possible values are:

SWPTFIX=Y The slot size defined with the SWPSLSZ parameter (see above) is taken as a fixed size and no
reorganization of the swap pool takes place.

SWPTFIX=N This is the default value. The slot size defined with the SWPSLSZ parameter (see above) is not
taken as a fixed size and the swap pool is reorganized when necessary; that is, the size of the
slots is dynamically adjusted to meet the actual requirements.

Note:
This parameter will be ignored if the physical swap pool contains more than one logical swap pool.

189Copyright © Software AG 2003

SWPSDIF - Minimum Difference of Slot SizesDefining the Natural Swap Pool

SWPTIM1 - Time Interval for Reorganization Check

With this parameter, you specify the time interval nnn at which a check is to be performed to ascertain whether a
swap-pool reorganization is necessary. Possible values are:

SWPTIM1=nnn nnn must be in the range from 1 to 540 (minutes).

SWPTIM1=(nnn,RESET) The contents of the swap-pool-reorganization statistics tables are deleted after the
check (normally, they are only deleted after a swap-pool reorganization).

SWPTIM1=30 The default value is 30 (minutes).

For details on how the check and a possible swap pool reorganization are performed, see Dynamic Swap-Pool
Reorganization.

Attention:
If the parameter SWPTFIX is set to "Y" or if the physical swap pool contains more than than one logical
swap pool, the SWPTIM1 parameter does not apply.

SWPTIM2 - Lapse of Time Before Start of Reorganization

With this parameter, you can specify the time nn to elapse after the check for the necessity of a swap-pool
reorganization is performed and before the actual reorganization is to be started.

SWPTIM2=nn nn must be in the range from 1 to 99 (minutes)

SWPTIM2=2 The default value is 2 (minutes).

During this time, no further user areas can be placed in the swap pool, while user areas still held in the swap pool
can still be used and read in the Natural user thread.

For details on how the check and a possible swap-pool reorganization are performed, see Dynamic Swap-Pool
Reorganization.

If the parameter SWPTFIX is set to "Y" or if the physical swap pool contains more than than one logical swap
pool, the SWPTIM2 parameter does not apply.

SWPUSER - Condition for Swap Pool Reorganization

With this parameter you can define which condition has to be met for a swap-pool reorganization to take place.

SWPUSER=nn nn must be in the range from 1 to 99.

SWPUSER=20 The default value is 20 (percent).

You can define a percentage value nn which determines the percentage of dialog steps of all users where the
length of the compressed user areas was 1 or more units larger (or 1 or more units smaller) than the current slot
size. If a check establishes that this percentage is reached, a swap-pool reorganization takes place.

For details on how the check is performed, see Dynamic Swap-Pool Reorganization.

If the parameter SWPTFIX is set to "Y" or if the physical swap pool contains more than than one logical swap
pool, the SWPUSER parameter does not apply.

Copyright © Software AG 2003190

Defining the Natural Swap PoolSWPTIM1 - Time Interval for Reorganization Check

NOVPA - Number of Waits for Completed Asynchronous Write

This parameter determines the number of waits for a completed asynchronous write.

NOVPA=nnn nnn must be in the range of 1 to 999

NOVPA=20 The default value is 20 (waits).

NOVPW - Number of Waits for Unlocked Swap Pool

This parameter determines the number of waits for an unlocked swap pool.

NOVWP=nnn nnn must be in the range of 1 to 999

NOVWP=15 The default value is 15 (waits).

WAITMS - Wait Time for Unlocked Swap Pool

This parameter determines the number of milliseconds for one wait of an unlocked swap pool.

WAITMS=nnn nnn must be in the range of 1 to 999

WAITMS=5 The default value is 5 (milliseconds).

WRITMS - Wait Time for for Completed Asynchronous Write

This parameter determines the number of milliseconds for one wait of a completed asynchronous write.

WRITMS=nnn nnn must be in the range of 1 to 999

WRITMS=10 The default value is 10 (milliseconds).

191Copyright © Software AG 2003

NOVPA - Number of Waits for Completed Asynchronous WriteDefining the Natural Swap Pool

Natural User Area Size Considerations
The following topics are covered:

Using the MAXSIZE Parameter
Defining the Size of the Individual Natural Buffers
Possible Error Messages
Displaying the Aggregate Size of All Buffers
Calculating the Maximum Buffer Size

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool
Reorganization | Defining the Natural Swap Pool | Swap Pool Data Space | Global Restartable Swap Pool under
UTM | Terminating the Global Swap Pool

Using the MAXSIZE Parameter
The overall size of the Natural user area is determined by the MAXSIZE parameter in the swap-pool parameter
module. Therefore the MAXSIZE must be set large enough to contain the aggregate size of all buffers that are
required by Natural and also by possibly used subsystems (Con-nect, TRS, etc.). The buffer requirements of
Natural and subsystems are met by the TP driver. When a Natural application is started, a user thread with a size
of MAXSIZE is created. This is done by a physical request memory to the operating system.

The buffer requests of Natural to the TP driver cause only "logical" GETMAINs; that is, the Natural user thread
is then divided into "logical" units: the Natural buffers.

Defining the Size of the Individual Natural Buffers
The size of the individual Natural buffers is either explicitly defined in the Natural parameter module (with the
parameters ESIZE, CSIZE, etc.) or is implicitly determined by the definitions of the parameters PS, LS, etc.

The maximum sizes of the Natural buffers can be displayed with the function "Buffer Usage Statistics" of the
Natural utility SYSTP. SYSTP also offers functions for ascertaining for all users of a specific application the
overall maximum Natural buffer sizes used.

Possible Error Messages
When the Natural error message "NOT ENOUGH MEMORY" or "BUFFER SIZES EXCEED MAXSIZE"
appears, this indicates that the MAXSIZE has not been defined large enough.

Displaying the Aggregate Size of All Buffers
The aggregate size of all buffers requested by Natural (that is, the amount of MAXSIZE actually used by the
users of an application) can be obtained via the Natural swap-pool manager function of the SYSTP utility.

Copyright © Software AG 2003192

Natural User Area Size ConsiderationsNatural User Area Size Considerations

Calculating the Maximum Size
A standard way of calculating the MAXSIZE is:

Add all explicitly defined buffer sizes (for example, ESIZE) and 40 KB (the sum of the internal Natural buffer
sizes).

This gives you roughly the required size for MAXSIZE.

193Copyright © Software AG 2003

Calculating the Maximum SizeNatural User Area Size Considerations

Swap Pool Data Space
The following topics are covered:

Using ESA Data Space in Addition
ESA Data Space Slot Size Adjustment

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool
Reorganization | Defining the Natural Swap Pool | Natural User Area Size Considerations | Global Restartable
Swap Pool under UTM | Terminating the Global Swap Pool

Using ESA Data Space in Addition
To achieve a further reduction of the swap I/O operations, you can use the keyword parameters DATA and
DESA of the CMPSTART program to extend the Natural Swap Pool capacity by generating ESA Data Space.
This Data Space will be available to store compressed Natural user threads whenever the Swap Pool runs out of
space.

When this Data Space has been also consumed, a check occurs whether it is necessary to write user threads from
the Data Space to the roll file, because their life time has ended (see the keyword parameters DSPCONT and
DSPLIFE of macro NTSWPRM).

If there is no free storage space in the Data Space, the swap pool logic will cause the oldest inactive user thread
to be written from the swap pool to the roll file.

ESA Data Space Slot Size Adjustment
The generated ESA Data Space is divided into slots of equal size.

If you are using the TP monitor UTM, you can define the slot size by setting the NATUTM macro keyword
parameter ROLLTSZ adequately.
If you are using the TP monior CICS, the Data Space slot size will automatically take the size of the longest
thread.

The size, name and cache size of the swap pool are specified using profile parameter BPI or the corresponding
macro NTBPI in the Natural parameter module NATPARM, that is, the (NT)BPI settings in effect for the
Natural session initializing the NCI environment are taken.

Copyright © Software AG 2003194

Swap Pool Data SpaceSwap Pool Data Space

Global Restartable Swap Pool under UTM
The following topics are covered:

Purpose of a Natural Global Swap Pool under UTM
Installing a Natural Global Swap Pool under UTM
Starting a Natural Global Swap Pool under UTM
Displaying Information about the Global Swap Pool

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool
Reorganization | Defining the Natural Swap Pool | Natural User Area Size Considerations | Swap Pool Data
Space | Terminating the Global Swap Pool

Purpose of a Natural Global Swap Pool under UTM
If all tasks of a Natural under UTM application are terminated abnormally, the contents of a local Natural swap
pool are deleted. Consequently, when a task is started again, a new swap pool is initialized and all users affected
by the abnormal termination must start their Natural sessions again.

To avoid this situation, a global (that is, restartable) swap pool can be used: after an abnormal termination of the
Natural under UTM application, when the users log on to the application again, the last screen displayed before
the termination is sent again and the users can resume their session at the point where they were interrupted.

Installing a Natural Global Swap Pool under UTM
The following prerequisites are required for the installation of a global swap pool:

If a global swap pool is to be used, a global buffer pool must also be used. Before the restart of a Natural under
UTM application, the global buffer pool must have been initialized; that is, at least one user must have used this
buffer pool by normally starting a new Natural session.

If a new global buffer pool is started before an abnormally terminated Natural under UTM application is
restarted, a new global swap pool must also be started. However, if a new global swap pool is started, a new
global buffer pool need not be started as well.

The relation between the swap pool and the swap file is as follows: When the first UTM task uses a newly
started swap pool, the swap file is opened with OPEN ’OUTIN’, which means that the contents of the swap file
are deleted. When a subsequent UTM task uses an already used (initialized) swap pool, the swap file is opened
with OPEN ’INOUT’, which means that the contents of the swap file can still be used.

Starting a Natural Global Swap Pool under UTM
A Natural global swap pool must be started with program CMPSTART. It can be used from a maximum of five
Natural under UTM applications.

195Copyright © Software AG 2003

Global Restartable Swap Pool under UTMGlobal Restartable Swap Pool under UTM

Displaying Information about the Global Swap Pool
To obtain information on the current parameters settings of the global swap pool, as well as the date and time of
its start,

Issue the console command:

/INTR tsn ,DPR

Copyright © Software AG 2003196

Global Restartable Swap Pool under UTMDisplaying Information about the Global Swap Pool

Terminating the Global Swap Pool under
UTM
There are multiple ways of terminating a Natural global swap pool under UTM. These are explained below:

Termination Using Console Commands
Abnormal Termination with Dump
Termination by Program CMPEND

Before the swap pool is terminated, the Natural under UTM application that
uses it must be terminated.

Natural Swap Pool - Other Topics:
Purpose of a Natural Swap Pool | Natural Swap Pool Operation | Swap Pool Initialization | Dynamic Swap-Pool
Reorganization | Defining the Natural Swap Pool | Natural User Area Size Considerations | Swap Pool Data
Space | Global Restartable Swap Pool under UTM |

Termination Using Console Commands
 To terminate the global swap pool normally

Issue the console command:

/INTR tsn ,STOP

or issue the console command:

/INTR tsn ,END

Abnormal Termination with Dump
 To terminate the global swap pool abnormally, producing a dump

Issue the console command:

/INTR tsn ,DUMP

The swap pool is terminated abnormally and a dump is produced.

Termination by Program
 To terminate the global swap pool normally, using the program CMPEND

Issue the following command:

/SYSFILE SYSDTA=(SYSCMD)
 /EXEC (CMPEND,NAT230,MOD)
 name

197Copyright © Software AG 2003

Terminating the Global Swap Pool under UTMTerminating the Global Swap Pool under UTM

Natural 3GL CALLNAT Interface -
Overview
This document contains information about the Natural 3GL CALLNAT Interface with which Natural enables
3GL programs to invoke and execute Natural subprograms.

The following topics are covered:

Natural 3GL CALLNAT Interface - Purpose, Prerequistes, Restrictions

Natural 3GL CALLNAT Interface - Usage, Examples

Copyright © Software AG 2003198

Natural 3GL CALLNAT Interface - OverviewNatural 3GL CALLNAT Interface - Overview

Natural 3GL CALLNAT Interface -
Purpose, Prerequisites, Restrictions
This document describes the purpose of the 3GL CALLNAT interface and its prerequisites and restrictions.

The following topics are covered:

Purpose
Prerequisites
Restrictions

Natural 3GL CALLNAT Interface - Other Topics: Natural 3GL CALLNAT Interface - Usage, Examples

Purpose of 3GL CALLNAT Interface
With the 3GL CALLNAT interface, Natural enables 3GL programs to invoke and execute Natural subprograms.

The 3GL can be any programming language which supports the standard linkage call interface. In most cases this
will be a COBOL program, but the functionality can also be used by, for example, PL/1, FORTRAN, C or
Assembler programs.

Availability

The interface is available in batch mode under the following operating systems:

OS/390,
VSE/ESA,
VM/CMS,
BS2000/OSD;

and for the following TP-monitor environments:

CICS,
Com-plete,
IMS/TM,
TIAM,
TSO,
UTM.

Prerequisites
This section describes the prerequisites to execute a Natural subprogram from a 3GL program, using an internal
CALLNAT statement To achieve the desired functionality, a Natural environment must be set up before you
execute the CALLNAT interface from your 3GL program.

199Copyright © Software AG 2003

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, RestrictionsNatural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Space Requirements

The mechanism of parameter addressing in a Natural program requires that the parameters passed reside in an
area allocated by Natural, i.e., in any of its sizes. The 3GL program, however, allocates the storage for its
variables somewhere in the address space of the task. To make addressing still successful, a "call-by-value"
mechanism is used for those variables which do not already reside in a Natural area. This means that, prior to
invoking the Natural subprogram, the parameters to be passed are transferred into a Natural area, namely the
DATSIZE buffer.

In addition to the storage used for the contents of the variables, additional storage will be needed depending on
the number of parameters. The total amount of space required is approximately the same as the space that would
be needed in the DATSIZE buffer if the subprogram-invoking program were coded in Natural.

Linking

To invoke the Natural subprogram, the 3GL program must call the CALLNAT interface. Depending on the
power and functionality of the call interface of the 3GL programming language, the CALLNAT interface can be
either placed in an accessible load library for dynamic loading or linked to the 3GL program. In most cases, it is
neccessary to link the 3GL program to the interface module (for example, NATXCAL; see below).

Note: Check with the responsible system programmer for the best solution in your environment.

Environment Dependencies

The foreign 3GL module can be either linked to Natural as a CSTATIC module and then invoked via a branch
and link instruction, or loaded dynamically and invoked via a TP-dependent link method.

In the latter case, the 3GL module is written in a TP-specific way and the CALLNAT interface must be adapted
accordingly. For this purpose, multiple TP-specific interface modules are provided:

NATXCAL To be used if the 3GL module is either linked to Natural or loaded dynamically and then
invoked by a branch and link instruction (Batch, CMS, Com-plete, IMS/TM, TIAM, TSO,
UTM).

NCIXCALL To be used in a CICS environment if the 3GL module has been invoked using EXEC CICS
LINK; NCIXCALL is delivered in source code to be compiled with your CICS macros. See also
Installing the Natural CICS Interface in the Natural Installation Guide for Mainframes.

NCIXCPRM To be used in a CICS environment to build the parameter address list used as COMMAREA for
the subsequent EXEC CICS LINK command.

Restrictions

Terminating a Natural Subprogram

The invoked Natural subprogram should be terminated with a return to the calling program.

Inadmissible Natural Statements

The following statements must not be used.

FETCH
RUN
STOP
TERMINATE

Copyright © Software AG 2003200

Natural 3GL CALLNAT Interface - Purpose, Prerequisites, RestrictionsRestrictions

When used in the invoked Natural subprogram they will bring about an appropriate Natural runtime error
(NAT0967).

Parameter Values Passed by the 3GL Program

The parameter values passed by the 3GL program must not reside in a write-protected storage area.

Dynamic Arrays

Arrays with dynamic ranges are not possible.

TP-Monitor-Specific Restrictions

Under CICS
For CICS environments, the 3GL program that uses the Natural 3GL CALLNAT interface must be written
for conversational mode. The 3GL program runs on the second CICS program level and
pseudo-conversational program technique can therefore not be used.

Under IMS/TM and UTM
IMS/TM and UTM environments running Natural can use the 3GL CALLNAT interface only if both the
3GL program and the Natural subprogram do not issue any terminal I/O; when DISPLAY, INPUT and
WRITE are used in the invoked Natural subprogram they will bring about an appropriate Natural runtime
error (NAT0967).

201Copyright © Software AG 2003

Parameter Values Passed by the 3GL ProgramNatural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions

Natural 3GL CALLNAT Interface - Usage,
Examples
This section describes the usage of the 3GL CALLNAT interface and describes a number of sample 3GL
CALLNAT environments.

The following topics are covered:

Usage
Sample Environments

Natural 3GL CALLNAT Interface - Other Topics: Natural 3GL CALLNAT Interface - Purpose, Prerequistes,
Restrictions

Usage
The following topics are covered:

Overview
Call Structure
Parameter Handling

Overview

To invoke a Natural subprogram from a 3GL program, it is required that a Natural session be active, i.e. the 3GL
program itself must be called by Natural.

Therefore you must take special precautions if you do not want the Natural layer to show up. The following
figure is intended to give you an overview of how an application using the Natural 3GL CALLNAT interface
may be designed in such a case:

Copyright © Software AG 2003202

Natural 3GL CALLNAT Interface - Usage, ExamplesNatural 3GL CALLNAT Interface - Usage, Examples

The necessary environment is established by first invoking a Natural start-up program. By using the Natural
CALL statement, this start-up program can then invoke a 3GL program from where you can invoke the
CALLNAT interface.

Call Structure

The Natural main program is very simple; it only calls, for example, a COBOL program:

.....
 CALL ’ cobpgm’
 END

The CALL statement of the 3GL programming language (for example, COBOL) must have access to the Natural
3GL CALLNAT interface, which then invokes the Natural subprogram:

.....
 CALL ’ interface ’ USING natpgm p1 ... pn

The parameter "interface" is environment-dependent (for example, NATXCAL) and linked to the calling
program. The parameter "natpgm" must be an alphanumeric variable of 8 bytes that contains the name of the
Natural subprogram to be invoked. The parameters "p1 ... pn" are passed to the Natural subprogram.

Example (all environments except CICS):

The COBOL program cobpgm could contain coding similar to the following one:

.....
 MOVE ’FINDNPGM’ TO natpgm
 CALL ’ interface ’ USING natpgm number name
 IF natpgm NE ’FINDNPGM’
 THEN GOTO error_handling_1

203Copyright © Software AG 2003

Call StructureNatural 3GL CALLNAT Interface - Usage, Examples

The invoked Natural subprogram natpgm calculates the number of persons in the file EMPLOYEES
with name equal to a value passed from the COBOL program:

DEFINE DATA
PARAMETER
1 pnumber (P10)
1 pname (A20)
LOCAL
1 emp VIEW OF employees
END-DEFINE
*
RESET presp
FIND NUMBER emp WITH name = pname
MOVE *NUMBER TO pnumber
ESCAPE ROUTINE

If an error occurs while the subprogram is executed, information about this error will be returned
in the variable natpgm in the form "*NATnnnn", where nnnn is the corresponding Natural error number.

Copyright © Software AG 2003204

Natural 3GL CALLNAT Interface - Usage, ExamplesCall Structure

Example (CICS only):

Under CICS, the call of a Natural subroutine from, for example, COBOL should be as follows:

...
 WORKING STORAGE SECTION
 ...
 01 PARM-LIST PIC X(132).
 01 NATPGM PIC X(8).
 01 NUMBER PIC 9(10) comp-3.
 01 NAME PIC X(20).
 ...
 PROCEDURE DIVISION
 ...
 MOVE ’FINDNPGM’ TO NATPGM
 CALL ’NCIXCPRM’ USING PARM-LIST NATPGM NUMBER NAME ...
 EXEC CICS LINK PROGRAM(’NCIXCALL’)
 COMMAREA(PARM-LIST) LENGTH(132) END-EXEC.
 ...

The called subroutine NCIXCPRM builds the parameter address list used as COMMAREA in the
subsequent EXEC CICS LINK command.

Parameter Handling

There is no format and length checking. It is the caller’s responsibility to pass a correct parameter list. The
number, format and length of the parameters are defined by the invoked Natural subprogram.

When you are passing parameters, group arrays should not be passed, since they are resolved as individual
arrays:

Example of Invalid Syntax:

.....
 01 GROUP (1:2)
 02 F1
 02 F2

 CALL F1 F2

Example of Valid Syntax:

.....
 01 F1 (1:2)
 01 F2 (1:2)

 CALL F1 F2

Arrays with dynamic ranges are not possible.

Sample Environments
The objective for the sample 3GL CALLNAT environments below is to demonstrate how a COBOL routine can
call a Natural subprogram under specific TP-monitor systems or in batch mode, and to give system-specific
instructions to create such environments.

205Copyright © Software AG 2003

Sample EnvironmentsNatural 3GL CALLNAT Interface - Usage, Examples

The following topics are covered:

Sample Environment for CICS
Sample for Any Other Supported Environment

Sample Environment for CICS

Perform the following steps to create a sample Natural 3GL CALLNAT environment under CICS:

Step 1: Create the Environment Initialization

Set up the front-end program that initializes the 3GL CALLNAT environment.
Use the COBOL front-end XNCIFRCX in the Natural/CICS source library. It starts Natural, stacks LOGON
YOURLIB and executes the program TSTCOB, which initializes the Natural 3GL CALLNAT environment.
Locate the string"NC41" in the source code and replace it with the valid transaction and program ID for
Natural.
Compile and link-edit the COBOL program and define program to CICS via CEDA DEFINE PROGRAM.

Step 2: Install the Sample COBOL Call

Provided in the Natural/CICS source library NCI.SRCE is the sample member XNCI3GC1, which contains a
default call to the Natural subprogram MYPROG.

For test purposes, create the following program in the library SYSTEM and stow it as:

WRITE ’BEFORE PGM EXECUTION’
CALL ’COBNAT’
WRITE ’AFTER PGM EXECUTION’
END

Look at the XNCI3GC1 source and review the CALL and XCTL. Compile and link as COBNAT with the
following CICS INCLUDE directives or use Step 2 of the Sample Job NCTI070:

INCLUDE CICSLIB(DFHECI)
INCLUDE XNCI3GC1 <= output from translator and compiler
INCLUDE NCILIB(NCIXCPRM)
ENTRY XNCI3GC1
NAME COBNAT(R)

Step 3: Create a Sample Natural Subprogram

By default, the source member XNCI3GC1 is set up to call the Natural subprogram MYPROG in the library
YOURLIB. The program TSTCOB, as mentioned above, starts up the process by calling COBNAT that contains
the actual call to the Natural subprogram MYPROG.

Create the subprogram MYPROG to demonstrate the executing Natural subprogram.

DEFINE DATA PARAMETER
 01 PARM1 (A18)
 01 PARM2 (A18)
 01 PARM3 (A18)
 END-DEFINE
 *
 MOVE ’PARAM01’ TO PARM1
 MOVE ’PARAM02’ TO PARM2
 MOVE ’PARAM03’ TO PARM3

Copyright © Software AG 2003206

Natural 3GL CALLNAT Interface - Usage, ExamplesSample Environment for CICS

Step 4: Verify the CICS Resources

Use the job NCII005 for a guide to defining the CICS resources (PPT and PCT).
Define the required CICS resources (PPT and PCT).

Step 5: Test the Environment

Test the environment by using the NCYC default transaction. Use CEDF to monitor the program control and
observe the data areas in use.

Important: Since Natural is at the top of the CICS program hierarchy, any COBOL subprogram issuing terminal
I/Os must run in conversational mode. Pseudo-conversational programs would need to be modified, and any new
development using the Natural 3GL CALLNAT interface should be done in conversational mode.

Sample for Any Other Supported Environment

Perform the following steps to create a sample Natural 3GL CALLNAT:

Step 1: Assemble and Link ASMNAT

The sample Assembler routine XNAT3GA1 contains a basic example to access the CALLNAT interface. The
register calling conventions are in the source of this program.

Link NATXCAL with XNAT3GA1 with entry point ASMNAT.

Step 2: Start the Natural Session

Start a Natural session stacking a program that calls the ASMNAT program which in turn calls the Natural
subroutine ASMNAT.

207Copyright © Software AG 2003

Sample for Any Other Supported EnvironmentNatural 3GL CALLNAT Interface - Usage, Examples

Operating the Software AG Editor -
Overview
This document contains information on how to operate the Software AG Editor. The Software AG Editor is a
feature that represents basic functionality within Natural, exclusively used by several Natural subproducts and
other Software AG products.

The following topics are covered:

Editor Work File

Editor Buffer Pool

See also:

SYSEDT Utility (described in the Natural Utilities documentation).
Installing the Software AG Editor (described in the Natural Installation Guide for Mainframes
documentation).
Software AG Editor reference documentation (describes the functionality and the usage of the Software AG
Editor).

Copyright © Software AG 2003208

Operating the Software AG Editor - OverviewOperating the Software AG Editor - Overview

Editor Work File
This document describes structure, use and maintenance of the editor work file under the various operating
systems. The following topics are covered:

Editor Work File Structure
Editor Work File under OS/390, VSE/ESA and BS2000/OSD
Using the Batch Format Utility
Formatting during Initialization
Maintaining the Editor Work File under OS/390 and VSE/ESA
Maintaining the Editor Work File under BS2000/OSD
Editor Work File under VM/CMS
Editor Work File under Com-plete/SMARTS

See also:

SYSEDT Utility (described in the Natural Utilities documentation).
Installing the Software AG Editor (described in the Natural Installation Guide for Mainframes
documentation).
EDBP - SAG Editor Buffer Pool Definitions (described in the Natural Parameter Reference documentation)
Software AG Editor reference documentation (describes the functionality and the usage of the Software AG
Editor).

Operating the Software AG Editor - Other Topics: Editor Buffer Pool

Editor Work File Structure
The editor work file is a relative record dataset with fixed length records. It is divided into three parts:

Control Record
Work Record
Recovery Records

Note:
If you use an editor auxiliary buffer pool defined by the profile parameter EDPSIZE, no editor work file is
required.

Control Record

The control record contains buffer pool control information including the buffer pool parameters.

During the first initialization of the work file or during a buffer pool cold start (triggered by editor buffer pool
subparameter COLD), the values defined in the editor buffer pool parameter EDBP and/or in the corresponding
macro NTEDBP are saved in the work file control record.

You can modify the control record by using the Generation Parameters function of the SYSEDT Utility (see the
Natural Utilities documentation).

For buffer pool warm restarts, the parameters are read from the control record.

209Copyright © Software AG 2003

Editor Work FileEditor Work File

Work Record

The work records contain logical file records which have been moved out of the buffer pool due to a lack of free
buffer pool blocks.

Logical work file records are lost during a restart of the buffer pool or if a timeout occurs for the logical file.

Recovery Records

The recovery records hold checkpoint information of editor sessions. If the system terminates abnormally, this
information can be used by the editor recovery facility to recover logical files. Recovery records are lost during a
cold restart of the buffer pool.

The recovery facility is used by Natural ISPF only. If you do not intend to use this product, you can run without
the recovery part by defining the editor buffer pool subparameter PWORK=100.

Editor Work File under OS/390, VSE/ESA and
BS2000/OSD
One editor work file corresponds to one Editor Buffer Pool. If you intend to use a global editor buffer pool
(OS/390 and BS2000/OSD only), the editor work file must be shared by all users using the same global editor
buffer pool.

The editor work file must be large enough to contain the editor sessions of all users. A minimum number of 100
records per editor user is recommended. The record length of the work file must be fixed, can be defined from
504 to 16384 bytes, and must be a multiple of 8.

The size of a work file record is specified either when allocating the editor work file (under OS/390 and
VSE/ESA; default size is 4088) or by definition in the buffer pool parameter macro (under BS2000/OSD; default
size is 4096).

The total number of editor work file records depends on the allocated dataset space for the editor work file.

There are two alternative ways of formatting the editor work file:

offline by using the batch format utility,
online during buffer pool initialization.

Using the Batch Format Utility
This method is to be preferred, because no online user has to wait until formatting is finished. Optionally, the
Natural parameter module may be assembled and linked to the batch format utility to specify editor buffer pool
parameters by means of macro NTEDBP. Otherwise, the default parameter values apply.

During reformatting, however, the work file must not be in use, which means that the system(s) using the
corresponding buffer pool have been terminated before reformatting.

Formatting during Initialization
When the editor buffer pool is in uninitialized or terminated state, then during the first session which uses the
Software AG editor, a "buffer pool cold start" is performed on one of the following conditions:

Copyright © Software AG 2003210

Editor Work FileEditor Work File under OS/390, VSE/ESA and BS2000/OSD

1. if the work file has not been formatted yet,
2. if the control record indicates "cold start" (which can also be specified by using the Editor Buffer Pool

Services utility SYSEDT),
3. if the buffer pool subparameter COLD=ON was specified.

Otherwise, a "buffer pool warm start" is performed if a valid control record is found during buffer pool
initialization. In this case, all buffer pool parameters are taken from the work file control record and no records
are formatted.

Maintaining the Editor Work File under OS/390 and
VSE/ESA
If you want to change the size of the editor work file (for example, because it is too small), the COPY function of
the Editor Work File Batch Utility can be used to avoid a buffer pool cold start; that is, the loss of the recovery
records.

To copy an existing editor work file, perform the following steps:

1. Modify any buffer pool parameters by using the SYSEDT Utility (see the Natural Utilities documentation):
for example, PWORK if you want to change the percentage of work records in the file.

2. Terminate the editor buffer pool by using the System Administration Facilities of the SYSEDT Utility (see
the Natural Utilities documentation) and ensure that no Natural session is using the editor after the buffer
pool termination.

3. Close (if necessary) and deallocate the editor work file.
4. Rename the editor work file by using the VSAM utility IDCAMS (ALTER command).
5. Define a new editor work file with the original name and possibly a different size, but with the same record

length.
6. Run the Editor Work File Batch Utility with the new file after having added:

PARM=COPY

in the EXEC JCL card and a

//CMCOPY DD... under OS/390 or
 //DLBL CMCOPY... under VSE/ESA

card for the renamed editor work file "CMCOPY" to be copied into the new work file "CMEDIT".

7. Check the job log for potential errors.
8. Reallocate and (if necessary) reopen the editor work file.
9. Use the SYSEDT Utility (see the Natural Utilities documentation) to check if the buffer pool and the work

file have been restarted successfully.

Important: All Natural sessions must be restarted if you want them to use the editor after the buffer pool restart.

Maintaining the Editor Work File under BS2000/OSD
If you want to change the size of the editor work file, format a new editor work file and copy the recovery
records from the old work file into the new one as follows:

1. Shutdown all systems that use the editor.
2. Terminate the editor buffer pool.
3. Rename the current editor work file.
4. Create a new editor work file with the original name.
5. Execute the editor work file formatting program

211Copyright © Software AG 2003

Maintaining the Editor Work File under OS/390 and VSE/ESAEditor Work File

(see also Installing the Software AG Editor in the Natural Installation Guide for Mainframes
documentation)
with the COPY instead of the FORMAT function after having added:

Example:

/CAT NATEDT.WORKFILE,NATEDT.COPYFILE
/FILE NATEDT.WORKFILE,LINK=CMEDIT,SPACE= nnn
/LOGON
/FILE NATEDT.COPYFILE,LINK=CMCOPY
/FILE NATEDT.WORKFILE,LINK=CMEDIT
/SYSFILE SYSLST=LST.NATEDFM2
/SYSFILE SYSDTA=(SYSCMD)
/EXEC (NATEDFM2,NAT230.MOD)
COPY
/LOGOFF N

Editor Work File under VM/CMS
One editor work file corresponds to one VM/CMS user. A work file is created during the first editor initialization
and has the default name CMEDIT DATA A1.

It must be large enough to contain the editor sessions of the VM/CMS user. Name, size and number of work file
records are specified in the editor buffer pool parameter EDBP or by macro NTEDBP in the Natural parameter
module NATPARM. For optimum performance, a multiple of 800 is recommended.

Editor Work File under Complete/SMARTS
SMARTS work files are located in the SMARTS Portable File System. The path must be specified with the
SMARTS environment variable $NAT_WORK_ROOT. The name of the editor work file is specified with the
EDBP subparameter DDNAME.

Formatting of an editor work file is only possible during buffer pool initialization (online). There is currently no
tool under SMARTS to format an editor work file offline.

Copyright © Software AG 2003212

Editor Work FileEditor Work File under VM/CMS

Editor Buffer Pool
This document describes purpose, use and operation of the Editor Buffer Pool which is an intermediate main
storage area used by the Software AG Editor.

The following topics are covered:

Purpose of the Editor Buffer Pool
Obtaining Free Blocks
Initializing the Editor Buffer Pool
Restarting the Editor Buffer Pool
Editor Buffer Pool Parameters
Buffer Pool Initialization for Multi-User Environments

Operating the Software AG Editor - Other Topics: Editor Work File

Purpose of the Editor Buffer Pool
The editor buffer pool can be seen as an extension of the editor buffer (SSIZE). It is an intermediate main storage
area used by the Software AG Editor to maintain its logical files.

A logical file consists of one or more logical records and contains the data of an object (for example, a file
member) maintained by the editor. As a user can work with more than one object at the same time, several
logical files can exist concurrently for each user.

The number of logical files (as well as the percentage of recovery records in the Editor Work File is defined in
the buffer pool parameter macro.

The editor buffer pool can be defined as a local or a global (OS/390 and BS2000/OSD only) or an auxiliary
(EDPSIZE) buffer pool. In multi-user environments (CICS, IMS/TM, UTM), the editor buffer pool is shared by
all editor users of either the same region (local pool) or more than one region (global pool). Under CMS, the
buffer pool is always a local one. A global buffer pool cannot be shared by Com-plete and other regions due to
the separate SD editor work file under Com-plete.

The editor buffer pool contains various control tables and a number of data blocks:

Area Size

Main control block 500 bytes

Logical file table 20 bytes per logical file

Work file table 4 bytes per record

Recovery file table 16 bytes per record

Buffer pool block table28 bytes per block

Buffer pool blocks see text below

As the size of a buffer pool block is equal to the size of a work file record, one buffer pool block can contain one
logical file record.

213Copyright © Software AG 2003

Editor Buffer PoolEditor Buffer Pool

The buffer pool is initialized by the first editor user. During warm start buffer pool initialization, all recovery
records are checked to build the recovery file table.

Several functions are provided to access the buffer pool (for example, functions to allocate, read, write or delete
a record).

Obtaining Free Blocks
If the buffer pool becomes full, buffer pool blocks have to be moved to an external dataset, the editor work file,
to obtain free blocks.

In such a situation, the editor checks all logical files for their timeout value and deletes any logical file which has
not been accessed within the specified time. This means that all its buffer pool blocks and work file records are
freed, and the logical file is lost.

If there is still no buffer pool block available, the editor moves the oldest block to the work file, according to the
specified timeout parameter values (see the Generation Parameters function of the SYSEDT Utility (see the
Natural Utilities documentation).

Initializing the Editor Buffer Pool
An uninitialized editor buffer pool is initialized when the Software AG editor is called for the first time. Then the
various control blocks are created. There are two different modes of buffer pool and work file initialization:
"cold start" and "warm start".

Buffer Pool Cold Start

A buffer pool cold start can be triggered by the editor buffer pool subparameter COLD or by the Editor Buffer
Pool Services utility SYSEDT or automatically (if the editor work file is unformatted).

During a buffer pool cold start, the values of the editor buffer pool parameter EDBP or the corresponding macro
NTEDBP are stored into the work file control record and all work file recovery records are cleared.

Buffer Pool Warm Start

During a buffer pool warm start, the buffer pool parameters are read from the work file control record and all
work file recovery records are read to build the recovery file table in the buffer pool.

Restarting the Editor Buffer Pool
The SYSEDT Utility (see the Natural Utilities documentation) can be used to terminate the editor buffer pool,
that is, to set it to the unitialized state. This avoids the restart of the TP system or of the global buffer pool.

If SYSEDT is not available due to buffer-pool problems, the program BPTERM can be used to terminate the
buffer pool.

Important: All Natural sessions must be restored if you want them to use the editor after buffer-pool restart.

Editor Buffer Pool Parameters
The editor buffer pool parameter EDBP or the corresponding macro NTEDBP in the Natural parameter module
NATPRM is required to define parameters for the operation of the editor buffer pool.

Copyright © Software AG 2003214

Editor Buffer PoolObtaining Free Blocks

When the editor work file is formatted, these parameters are stored into the work file control record while all
other records are cleared. Thus, reformatting a work file that has been previously used, means that all editor
checkpoint and recovery information is lost.

Some of these parameters can be modified dynamically during execution of the buffer pool by using the Editor
Buffer Pool Services utility SYSEDT.

215Copyright © Software AG 2003

Editor Buffer Pool ParametersEditor Buffer Pool

Buffer Pool Initialization for Multi-User Environments
During the buffer pool initialization, all recovery records are read from the editor work file. Therefore, the first
users have to wait for a long time or even receive a timeout message until the editor buffer pool initialization is
finished.

For this reason, a special Natural program has been supplied to trigger the buffer pool initialization before the
first user becomes active. This program can be activated either during the startup of the TP monitor, or by a
batch job if a global buffer pool is used.

The session must then be started with the session parameter:

STACK=(LOGON SYSEDT,user , password ;BPINIT;FIN)

Under CICS:
If the session runs asynchronously, SENDER=CONSOLE must be specified to obtain any error messages issued
during initialization. The source program FRONTPLT is supplied as a sample program to show you how to start
an asynchronous Natural session during CICS startup via PLTPI.

Copyright © Software AG 2003216

Editor Buffer PoolBuffer Pool Initialization for Multi-User Environments

Natural Net Data Interface NATNETTO
This section provides information on the Natural Net Data Interface and the net data protocol definition.

It covers the following topics:

Natural Net Data Driver Functional Description
General Message Layout
Layout of Header
Format Buffer Layout
Value Buffer Layout
Attribute Buffer

See also Installing the Natural Net Data Interface.

217Copyright © Software AG 2003

Natural Net Data Interface NATNETTONatural Net Data Interface NATNETTO

Natural Net Data Driver Functional Description
The Natural Net Data Driver NATNETTO is a component that was introduced with Natural 3.1.3 to support the
EntireX CICS 3270 Bridge and similar client-server solutions in message oriented server environments, i.e. TP
monitors.

NATNETTO implements a protocol driver, which allows program-to-program communication with Natural
(legacy) applications from client applications, using a net-data protocol. One typical scenario is a desktop client
(e.g. built with Natural NT or VBA) accessing a Natural application that runs under a TP monitor such as CICS,
IMS/TM or UTM.

"Net data" means, that the protocol neither contains format data such as text constants nor any device-dependent
control sequences. All data is communicated in printable format. This implies that eventually necessary
marshaling and unmarshaling of non-alpha fields has to be done by the clients.

Basically, the protocol consists of two parts:

A header or control block and a value buffer which contains the raw net data. This part is mandatory.
The header contains control, environment and session information and maintains pointers to the other parts
of the data buffer.
The value buffer contains the actual net data which is to be exchanged between client and server.
In addition, optional variable parts are available: format buffer and/or attribute buffer.
The optional format buffer has an entry with descriptive data for each field in the value buffer.
The attribute buffer consists of one byte with a preset value of 0 for each field in the value buffer. The client
has to switch this value to 1 for each modified field, if the appropriate option is set, thus emulating the
setting of mdt bits.

Header, value buffer and attribute buffer are parts of outbound and inbound messages; only the format buffer
may occur in the outbound message only. The header maintains a transaction number which has to be mirrored
by the client for flow-control purposes. Since legacy applications are mostly designed to be driven from block
mode terminals, the protocol supports 3270 like functionality such as PF keys and cursor position.

General Message Layout
The following parts of the general message layout are mandatory:

Header (the first two rows in the table below)
Value buffer

The following parts are optional:

Format buffer
Attribute buffer

"FSCB" Value Buffer Offset Format Buffer Offset ...

 Attribute Buffer Offset Aid Char. Cursor Pos. ...

Value Buffer

Format Buffer

Attribute Buffer

For detailed information on the layout parts, refer to Table 1.

Copyright © Software AG 2003218

Natural Net Data Interface NATNETTONatural Net Data Driver Functional Description

Layout of Header
Table 1: Control Block - Fixed Part

Field Format Scope Meaning

Eyecatcher A4 FSCB Eyecatcher

Product code A3 - Product identification

Protocol version N2 01 Œ 99 Version for specific product

Value buffer offset N10 calculated Value buffer offset from start of message

Format buffer offset N10 calculated Format buffer offset from start of message

Total message lengthN10 calculated Cumulated length of all buffers

Message number N6 incremented by 1 every callEchoed by communication partner

Block number N5 01 - 99 (normaly 01) For block splitting within one message

Number of parametersN5 calculated Number of parameters in VB

Session token A32 Security token

Message format A1 see Table 2 Mode of field separation within value buffer

Delimiter character A1 -

Architecture A2 see Table 3 Archictecture of sending partner

Call type A2 see Table 4 Type of current call

Response code N4 0001 Œ 9999 Response code from client

Block status A1 L or N Block is last one of msg or a next one follows

Server name / TAC A8 - TP transaction code or name of server

Aid character A2 see Table 6 Aid character depressed or generated on client

Cursor line N3 1 - max phys. line on clientCursor line or 000 *)

Cursor column N3 1 - max phys. col. on clientCursor column or cursor field number *)

Attribute buffer offset N10 calculated AB offset from start of message

Timestamp A16 generic Store clock value: map stow time hex printable

DBID N5 1 Œ 32767 DBID of FNAT on server

File number N5 1 Œ 32767 File number of FNAT on server

Date form A1 I, G, E, U Date format according to Natural

Decimal character A1 - Natural delimiter character on server

Input delimiter char. A1 - Natural input delimiter character (server)

Control character A1 - Natural control character (server)

Language code N2 01- 99 Natural language code (server)

Application ID A8 - Natural application ID

Program name / map A8 - Program in execution / map or format name

Error number N5 00001 Œ 99999 Natural error number

219Copyright © Software AG 2003

Layout of HeaderNatural Net Data Interface NATNETTO

Field Format Scope Meaning

Line number N4 0001 Œ 9999 Line number of current IO statement

Error state A1 - Status byte

Error program A8 - Object causing an error

Error level N2 01 Œ 15 Subroutine level of object in error

Message type A1 see Table 7 Type of message

Option flag 1 A1 see Table 8 Control flag

Option flag 2 A1 see Table 8 Control flag

Option flag 3 A1 see Table 8 Control flag

Option flag 4 A1 see Table 8 Control flag

Option flag 5 A1 see Table 8 Control flag

Option flag 6 A1 see Table 8 Control flag

Option flag 7 A1 see Table 8 Control flag

Option flag 8 A1 see Table 8 Control flag

*) If the cursor field number notation is set in NATCONFG, the cursor line will always be 000 and the cursor
column will contain the absolute number of the field, where the cursor shall be placed (outbound) or was located
at send time (inbound).

Note:
Not all header fields are currently used!

Table 2: Modes of Field Separation

Format A1

Value Meaning

D Delimited mode

F Fixed format mode

L Length field precedes field (N3)

Table 3: Architecture of Sending Partner According to CSCI Definitions

Mask in Format A2

Value Meaning

- 1 Mask for low order byte first (Vax)

- 2 Unused

- 4 Mask for EBCDIC architecture

- 8 Mask for ASCII 8 architecture

1 - Mask for float representation VAX

2 - Mask for float representation IEEE

Copyright © Software AG 2003220

Natural Net Data Interface NATNETTOLayout of Header

Table 4: Call Type

Format A2

Type of Communication Value Meaning

Natural net data/3GL MD Map data (net data using format)

 ND Net data

 CM Command mode (server)

 FD Map- format download

 IP Normal input statement

 CS Close session termination message

Table 6: Aid Character Table

Format A2

Aid Char. PF Key

EN Enter

CL Clear

P1 PA1

P2 PA2

P3 PA3

01 PF1

02 PF2

03 PF3

.

47 PF47

48 PF48

CS Close Session

Note:
CS - Close Session - allows clients to enforce an immediate close of the server session. Therefore, it is in
fact not a real PF key, but a command code for the server.

Table 7: Message Type

Value Meaning

D Dialog message

A Async. message

P Printout message

221Copyright © Software AG 2003

Layout of HeaderNatural Net Data Interface NATNETTO

Table 8: Option Flags for Natural Net-Data Communication

All flags are of format A1.

Flag Values Meaning

Option 1 F Message includes format buffer (fb-option).

Option 2 S Net data is generated from screen buffer.

 P Net data is generated from page buffer.

Option 3 A Message includes attribute buffer (ab-option).

Option 4 P Data in VB is in presentation format (printable).

 I Data in VB is in internal format of sender.

 A Data is in internal format converted to alpha.

Option 5 M Outbound message contains overlay part.

Option 6 1 Extended format buffer option 1.

 2 Extended format buffer option 2.

Option 7 For future use.

Option 8 For future use.

Format Buffer Layout

Base Part

Each format buffer entry is a variable length string consisting of four elements:

Identifier
Protection indicator
Format indicator
Printable field length

Table 9: Format Buffer Entry

Element Value Meaning

Identifier F Field

 S Subfield

Protection M Modifiable field

 O Output only field, protected field

Format A Alpha

 N Numeric

Field length L Œ LLL,L Length specification according to Natural standard

Copyright © Software AG 2003222

Natural Net Data Interface NATNETTOFormat Buffer Layout

Examples:

FMA20 Field, modifiable, format aplha 20

SMN12,4 Subfield, modifiable, format numeric 12.4

O Output only field, protected field

Note:
The precision part of a numeric length is always separated by ",", regardless of the current values of
delimiter and decimal character profile parameters! For alpha type fields the precision part is omitted.

Subfields are used to determine fields which had been separated out of a base field using the Natural dynamic
attribute facility. If a field is dynamically divided into various subfields, this is marked as follows:

The first subfield is marked with identifier "F" as usual, all other subfields are identified by "S".

Extension 1

The following figure shows a part of a dsect, which describes layout of the Natural internal screen attribute
buffer. If the format buffer extension option 1 is set, for each field those attribute bytes (PATTR1 Œ PATTR4)
will be brought into printable format and added to the approriate fields format buffer entry. The extension is
separated by a "/" (slash) from the base format entry.

PATTR1 DS X ATTRIBUTE BYTE 1

P1TMP EQU X’80’ 1000 0000 TEMPORARY PROTECTED (ONLY PAGE)

P1EXTLNG EQU X’80’ 1000 0000 EXTENDED LENGTH (ONLY SCREEN)

P1RPA EQU X’40’ 0100 0000 FIELD CAN BE REPEATED

P1PROT EQU X’20’ 0010 0000 FIELD IS PROTECTED

P1NUM EQU X’10’ 0001 0000 FIELD IS NUMERIC

P1SKIP EQU P1PROT+P1NUM
 (X’30’)

 FIELD WILL BE SKIPPED AUTOMATICALLY

P1HIGH EQU X’08’ 0000 1000 FIELD IS HIGHLIGHTED

P1BLINK EQU X’04’ 0000 0100 FIELD IS BLINKING

P1NOND EQU P1HIGH+P1BLINK
 (X’0C’)

 FIELD IS NON-DISPLAY

P1NHC EQU X’02’ 0000 0010 FIELD MAY NOT BE PRINTED

P1CURS EQU X’01’ 0000 0001 SET CURSOR HERE (ONLY UNPROT)

 SPACE

PATTR2 DS X ATTRIBUTE BYTE 2

P2ITAL EQU X’80’ 1000 0000 ITALIC/CURSIVE

P2MAND EQU X’40’ 0100 0000 INPUT MANDATORY

P2MFILL EQU X’20’ 0010 0000 MANDATORY FILL

P2LC EQU X’10’ 0001 0000 DO NOT TRANSLATE (LOWER CASE)

P2CS2 EQU X’08’ 0000 1000 SECOND CHARACTER SET

P2UL EQU X’04’ 0000 0100 UNDERLINED

P2RVID EQU X’02’ 0000 0010 REVERSED VIDEO

223Copyright © Software AG 2003

Extension 1Natural Net Data Interface NATNETTO

P2RL EQU X’01’ 0000 0001 RIGHT-LEFT

 SPACE

PATTR3 DS X COLOR ATTRIBUTE ATTRIBUTE BYTE 3

P3TP EQU X’80’ 1000 0000 TERMINAL PROGRAM AVAILABLE

P3PFK EQU X’40’ 0100 0000 *COM FIELD

P3NUM EQU X’20’ 0010 0000 NUMERIC FIELDS

P3HELPR EQU X’10’ 0001 0000 HELP ROUTINE AVAILABLE

P3FRAME EQU X’08’ 0000 1000 FRAME ATTRIBUTE

P3NEUTR EQU X’07’ 0000 0111 NEUTRAL

P3YELL EQU X’06’ 0000 0110 YELLOW

P3TURQ EQU X’05’ 0000 0101 TURQUOISE

P3GREEN EQU X’04’ 0000 0100 GREEN

P3PINK EQU X’03’ 0000 0011 PINK

P3RED EQU X’02’ 0000 0010 RED

P3BLUE EQU X’01’ 0000 0001 BLUE

* FBI (DB) (FIELD PROCESSING INFORMATION)

 SPACE

PATTR4 DS X INTERNAL PROCESSING ATTRIBUTES

P4TEXT EQU X’80’ 1000 0000 FIELD IS TEXT CONSTANT

P4SAME EQU X’40’ 0100 0000 SAME ATTRIBUTE AS BEFORE

P4NATTR EQU X’20’ 0010 0000 FIELD NEW ATTRIBUTE

* PAGE BUFFER, DYNAMIC ATTRIBUTE

P4OVL EQU X’10’ 0001 0000 FIELD BELONGS TO OVERLAY BUFFER

P4MDT EQU X’08’ 0000 1000 FIELD HAS BEEN MODIFIED

P4MDTH EQU X’04’ 0000 0100 UPDATE FROM HELP (PAGE BUFFER)

P4NFLD EQU X’04’ 0000 0100 FIELD NEW ON SCREEN

* IF SET FOR OVL, NEW LINE

P4CONT EQU X’02’ 0000 0010 FIELD IS CONT OF BEFORE

P4LAST EQU X’01’ 0000 0001 LAST ATTRIBUTE IN BUFFER

**P4HELP EQU P4TEXT+P4MDT HELP REQUEST FOR THIS FIELD

Example:

An extended format buffer entry 18820300 means, the field is numeric and shall be presented highlighted italic
in reversed video mode. The color of the field is pink!

Value Buffer Layout
Three modes of value buffer structure are possible:

Copyright © Software AG 2003224

Natural Net Data Interface NATNETTOValue Buffer Layout

Fixed Format
All parameters are simply concatenated without any delimitation. This means, that the single parameters
have to be separated either according to the format description in the format buffer or by covering them
with a C-structure, a data area or a dsect.
Delimited Format
The parameters are separated by an configurable delimiter character.
Length Preceded Format
Each parameter is preceded by a length field of format N3. The length notation is explicit.

Attribute Buffer
The attribute buffer is optional. It consists of a one-byte entry for each parameter field, which represents the mdt
flag. The mdt has to be set by the client for each modified field. The value of this flag is 0 or 1. A value of 1
means the mdt is set.

Example:

This example shows the screen image of a 3270 format in Figure 1 and the generated net-data stream for the
same format in Figure 2. The name of the Natural map is NETM002.

 TESTMAP NWI

 AL20.0 ABCDEFGHIJKLMNOPQRST
 NL20.0 1234567890
 NL10.4 0000001234.5678
 AL20C AAAAABBBBBCCCCDDDDDZ
 N20.0 999999999999999999

 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12-
 Help - + %%

Figure 1: NETM002 on a 3270 Device

 FSCBNAT010000000206000000038000000004710000120000100006
 F 04MD0000LNAT310XSEN0000010000000465B3E0C25A1A1DE4000000000000I.,%01NETT
 O NETM002 000000170 D FSAP 1 ABCDEFGHIJKLMNOPQRST1234567890
 0000001234.5678AAAAABBBBBCCCCDDDDDZ999999999999999999
 FMA20/08100024FOA20/
 38102024FMA15/08102024FOA20/38101624FOA20/38102024FOA79/70000035.000000

Figure 2: Net-Data Stream Generated from NETM002 Execution

Configuration Settings: Fixed format, format buffer + extended format buffer, attribute buffer option, cursor
position represented as field number.

225Copyright © Software AG 2003

Attribute BufferNatural Net Data Interface NATNETTO

Natural as a Server - Overview
This documentation describes the use of Natural as a Server and the Natural Server Monitor.

The following topics are covered:

Natural as a Server
under OS/390

explains how Natural can act as a server in a client/server environment under OS/390.

Natural as a Server
under CICS

explains how Natural can act as a server in a client/server environment under the TP
monitor CICS; describes the functionality and the installation of the Natural CICS
interface in a server environment and informs about restrictions that apply in such an
environment.

Introduction to the
Natural Server
Monitor

explains the features that are available with the Natural Server Monitor: the server
monitor facility, the system management client, the monitor communication protocol
and the monitor system architecture.

Monitor Client
NATMOPI

provides information on the usage of the NATMOPI Monitor Client which can be
executed in batch mode, under TSO and under the OS/390 UNIX shell.

Copyright © Software AG 2003226

Natural as a Server - OverviewNatural as a Server - Overview

Natural as a Server under OS/390
This section applies under OS/390 only. It covers the following topics:

Functionality
Natural Nucleus Installation in a Server Environment
Print and Work File Handling with External Datasets in a Server Environment

Natural as a Server - Other Topics: Natural as a Server under CICS | Introduction to the Natural Server Monitor
| Monitor Client NATMOPI

Functionality
Besides being a programming language, Natural can also act as a server in a client/server environment. It can
provide services, such as the execution of Natural subprograms. Part of the server functionality is the enhanced
batch driver. There are a lot of underlying protocols for the client/server communication, such as the execution
of stored procedures for DB2 and the execution of remote procedure calls (see Natural RPC).

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example for DB2 stored
procedures. To run Natural as a server, a service-specific server stub is required. This server stub is supplied as
part of the server product. It controls all service requests and is the only interface to the Natural server frontend.

There are different server stubs for DB2, for RPC and for others.

Natural Batch Driver

The Natural batch driver (that is, for example, NATOS under OS/390) has been enhanced to act as the
environment-specific interface component which maintains the Natural server sessions and supplies
environment-specific services to Natural. It can be linked to the server stub module or loaded by the server stub
as a separate module.

The batch driver is able to create and to control multiple sessions by using storage threads including functionality
for thread storage compression, decompression and rollout to external storage devices.

When the batch driver is called by the server stub for the first time (during server initialization), the storage
threads are created in main storage. The number and size of the storage threads is determined by the server stub.
Then a static Natural session is initialized. This includes profile parameter evaluation and the allocation of static
storage buffers. The resulting pre-initialized storage thread is saved in main storage separately. For every new
Natural session, this initial ’session clone’ is copied into the thread.

When decided by the server stub, a session can be rolled out to be resumed at a later point of time. The Natural
roll server is used by the driver to save the compressed thread storage of a session. As an alternative, main
storage can be used to save the compressed thread storage. In this case, the number of sessions in rolled-out state
is limited by the region size.

Natural Nucleus Installation in a Server Environment
The Natural nucleus and its batch driver are designed to support both, server and non-server environments. For
the server-specific definitions and requirements, please refer to the specific documentation (for example to the
Natural RPC documentation or to the Natural for DB2 documentation).

227Copyright © Software AG 2003

Natural as a Server under OS/390Natural as a Server under OS/390

If the number of sessions is not limited to a small number and if the server type supports session rollout, the
Natural roll server must be installed and be started before the server initializes. To do this, ensure that the
SUBSID parameter in the Natural parameter module is set to the correct value. For the server, the Adabas link
interface (ADALNK) must be generated so that ADALNK is also reentrant, in addition to the server.

You can use a local or a global Natural buffer pool. If you define a local buffer pool, it will be shared by all
sessions within the server region.

If a logical print or work file number is to be used for processing within any server session, it must be associated
with an access method at session start time. This can be done in NATPARM with the macros NTWORK and
NTPRINT, as in the following example, if you want to allow the full range of all print and work file numbers
possible:

 NTPRINT (1-31),AM=STD,OPEN=ACC,DEST=*
 NTWORK (1-32),AM=STD,OPEN=ACC,DEST=*

The subparameter DEST=* defines generic DD name generation during the first DEFINE WORK FILE or
DEFINE PRINTER statement, OUTPUT clause (see below). Subparameter OPEN=ACC avoids pre-opening of
the files at program start time. The open is issued upon the first access of the file.

Print and Work File Handling with External Datasets in a
Server Environment
When running many concurrent sessions in one region, there may be resource conflicts with external print and
work files. The logical names (DD names) for print and work files are defined by the DEST subparameter of
macro NTPRINT, respectively NTWORK or its dynamic equivalents, PRINT or WORK (defaults CMPRTnn
and CMWKFnn). For normal Natural batch processing, these files are defined in JCL by a logical (DD) and a
physical dataset name.

However, DD names are reserved by the operating system for exclusive use by one task, respectively session,
that is, if CMWKF01 is opened by one session for processing, no other session could use this file until it is
closed again. Other sessions would get an error if they would try to open it.

In a server environment, all print and work file requests are handled by a dedicated I/O subtask. This ensures
dataset integrity and avoids resource contention. It enables the shared usage of print and work files accross
Natural session boundaries, that is, multiple sessions can access the same file concurrently.

For exclusive usage of print and work files, Natural offers the following two features to support print and
workfiles in a server environment (both require a special implementation within the Natural application
programs for the server environment):

DEFINE WORK FILE or DEFINE PRINTER statements, OUTPUT clause and
dynamic dataset allocation (User exit USR2021).

The DEFINE WORK FILE and the DEFINE PRINTER statement, OUTPUT clause can be used

to define the logical DD name for a work or print file, or
to define the physical dataset name, or
to define an output spool class.

If a DD name is specified, the access method checks whether the dataset is allocated. If not, an error is issued.
The dataset can be allocated by any Natural program using the USR2021 subprogram supplied in library
SYSEXT.

Copyright © Software AG 2003228

Natural as a Server under OS/390Print and Work File Handling with External Datasets in a Server Environment

If a physical dataset name or a spool file class is specified, the access method itself allocates the dataset
dynamically during the execution of the DEFINE ... statement. To ensure an unique DD name name is used,
DEST=* should be predefined in the NATPARM file. This avoids any DD name conflicts.

If the application is using the user exit USR2021, it may specify an asterisk value for the DD name variable to
get back a unique DD name from the access method. This DD name can be used for a subsequent DEFINE ...
statement.

229Copyright © Software AG 2003

Print and Work File Handling with External Datasets in a Server EnvironmentNatural as a Server under OS/390

Natural as a Server under CICS
This section applies under CICS only. It covers the following topics:

Functionality
Natural CICS Interface Installation in a Server Environment
Restrictions

See also:

Natural under CICS
Natural RPC

Natural as a Server - Other Topics: Natural as a Server under OS/390 | Introduction to the Natural Server
Monitor | Monitor Client NATMOPI

Functionality

Natural as a Server

Besides being a programming language, Natural can also act as a server in a client/server environment. It can
provide services, such as the execution of Natural subprograms. There are a lot of underlying protocols for the
client/server communication, such as the execution of stored procedures for DB2 and the execution of remote
procedure calls (see Natural RPC).

Natural Server Stub

Natural as a server runs in a separate region or within the server subsystem region, for example for DB2 stored
procedures. To run Natural as a server, a service-specific server stub is required. This server stub is supplied as
part of the server product. It controls all service requests and is the only interface to the Natural server frontend.

There are different server stubs for DB2, for RPC and for others.

Natural CICS Interface Installation in a Server
Environment
There is nothing specific to define when installing the Natural CICS interface in order to serve as a Natural
server envionment. There are no requirements on
thread type or type of rolling (CICS roll facilities or roll server).

Actually, Natural server sessions may share a Natural under CICS environment with "normal", for example,
terminal bound Natural sessions. The difference is that, in case of a Natural server session, the Natural CICS
interface does not deal with a principal facility, such as a terminal or printer, but with a server stub. In terms of
CICS, a Natural server session is a series of asynchronous CICS tasks, and the session context (session restart
data) is maintained by the server stub using a unique 8-byte session ID.

Copyright © Software AG 2003230

Natural as a Server under CICSNatural as a Server under CICS

Restrictions
The following restrictions apply when Natural is used as a server under CICS:

1. Natural server sessions under CICS can only run in pseudo-conversational mode. A Natural server session
cannot run in conversational mode, as the Natural CICS interface always has to pass control back to the
server stub; therefore PSEUDO=ON is forced for Natural server sessions under CICS. Because of the same
reason RELO=ON is forced for Natural server sessions using TYPE=GETM threads.

2. Consequently "conversational I/Os", that is terminal I/Os by Natural programs called via Natural’s 3GL
CALLNAT interface are not supported in this scenario.

3. 3GL programs called by Natural should be aware of the fact that Natural server sessions are running
asynchronously in CICS, that is no CICS terminal is available.

4. The ADAMODE profile parameter should be set to 1 or 2, otherwise Adabas may build a different UQE ID
for each dialog step of the Natural server session.

5. Profile parameter PROGRAM or equivalend backend program settings by Natural are not honored, as the
logic flow at session termination from the Natural CICS interface to the server stub must not be interrupted
and/or falsified by a potential backend program.

6. Care should be taken when using the NCIPARM &TID terminal ID variable in the file name setting for
Natural print and work files:
As a Natural server session runs asynchronously, there is no (unique) terminal ID or other unique
four-character session identifier to insert. In CICS/TS 1.3 and above, the CICS interface internally uses the
QNAME option when dealing with CICS temporary storage for such Natural print and work files, that is
internally a 16-byte temporary storage queue name is used (the 8-byte unique server session ID is appended
to the file’s DEST specification). This means on the other hand that such CICS temporary storage queues
can only be accessed by the originating session.

231Copyright © Software AG 2003

RestrictionsNatural as a Server under CICS

Introduction to the Natural Server Monitor
This document describes the purpose and the structure of the Natural server monitor.

Currently, the Natural server monitor is available only for use in conjunction
with the Natural Development Server which is part of Natural’s Single Point
of Development.

The following topics are covered:

One Monitor for Different Server Types
Server Monitor Facility
System Management Client
Monitor Communication Protocol
Monitor Architecture

Natural as a Server - Other Topics: Natural as a Server under OS/390 | Monitor Client NATMOPI

One Monitor for Different Server Types
The Natural Server Monitor is intended as a common monitoring facility for the various server types that can be
used in a mainframe Natural server environment:

Natural Development Server (monitoring already implemented)
Natural RPC Server (monitoring planned)
Natural for DB2 Stored Procedures Server (monitoring planned)

Each of these servers has its own individual communication protocol for the client/server communication.
However, independent of the server type, there is a common requirement to observe and probably to steer such a
server process.

Therefore, each server offers a universal server monitor facility. This facility follows a standard monitor
communication protocol which is independent of the server type. Thus, it is possible to use one system
management client to monitor different server types.

A typical scenario is shown in the diagram below.

Copyright © Software AG 2003232

Introduction to the Natural Server MonitorIntroduction to the Natural Server Monitor

NDV = Natural Development Server.

Server Monitor Facility
The server monitor comprises:

A server implementation standard
Each server has to launch a subtask that listens for incoming monitor requests. It executes the request and
replies the result.
A server directory (one per node)
Each server must register/unregister at the server directory at server initialization/termination. The server
directory does not validate the server entries. The system management client cannot observe servers that do
not register at the directory. And if a server terminates without unregistering at the server directory a stuck
entry remains in the directory.
A client/server protocol
Used to transmit monitor command/reply between the system management client and the server monitor
task.

The server directory access and the inter process communication is implemented by a common application
programming interface NATMONI. NATMONI is a load module delivered on every server distribution tape.
NATMONI must be accessible for server and system management client.

System Management Client
The system management client is a user front-end that enables you to browse through the server directory and to
communicate with particular server processes that are registered in the directory.

The system management client is available:

as a System Management Hub Agent to use the Web Browser as a GUI front-end,
as a command line interface (NATMOPI) that can be executed in batch, in TSO or under the OS/390 UNIX
shell.

Monitor Communication Protocol
The monitor communication protocol determines the protocol layout and defines that a server must reply for
each monitor command received from the system management client.

Furthermore, each server has to implement the commands Ping and Help.

Ping replies a server version information string.
Help replies a brief documentation about all further commands available for that particular server type.

Additional monitor commands (referenced by the Help command) are avaialble depending on the server type.

Monitor Architecture
The diagram below shows the architecture of the monitoring system for any given server.

233Copyright © Software AG 2003

Server Monitor FacilityIntroduction to the Natural Server Monitor

Copyright © Software AG 2003234

Introduction to the Natural Server MonitorMonitor Architecture

Monitor Client NATMOPI
The Monitor Client NATMOPI is a character-based command interface for monitoring the various types of
servers that can be implemented in a mainframe Natural environment.

Currently, the Monitor Client NATMOPI is available only for use in
conjunction with the Natural Development Server which is part of Natural
Single Point of Development.

The following topics are covered:

Prerequisites for NATMOPI Execution
Command Interface Syntax
Command Options Available
Monitor Commands
Directory Commands
Command Examples
Execute NATMOPI under TSO
Execute NATMOPI in Batch
Execute NATMOPI under the UNIX Shell

Natural as a Server - Other Topics: Natural as a Server under OS/390 | Introduction to the Natural Server
Monitor

Prerequisites for NATMOPI Execution
Monitor Services Running under OS/390 Batch
Monitor Services Running under SMARTS

Monitor Services Running under OS/390 Batch

NATMOPI can be executed in batch, under TSO and under the OS/390 UNIX shell. The user who executes
NATMOPI must be defined in the OS/390 UNIX System Services.

Monitor Services Running under SMARTS

Execute NATMOPI with the SMARTS console command.

VSE: <msg-id> NATMOPI <mopi command> ,
where msg-id is the message identifier assigned to the SMARTS partition.
Example: 141 NATMOPI -dls .

OS/390: /F <SMARTS-region> ,NATMOPI <mopi command> ,
where SMARTS-region is the name of your SMARTS started task.
Example: /F SMARTS62,NATMOPI -dls .

Note: A server to be monitored must be running in the same partition as NATMOPI.

235Copyright © Software AG 2003

Monitor Client NATMOPIMonitor Client NATMOPI

Command Interface Syntax
Basically the syntax of the command interface consists of a list of options where each option can/must have a
value. For example:

-s server-id -c help

where -s and -c are options and server-id and help are the option values.

It is possible to specify multiple options, but each option can have only one value assigned.

The command options available are listed below.

Command Options Available
Words enclosed in <> are user supplied values and words enclosed in [] are optional.

Command Option Action

-s <server-id> Specify a server-id for sending a monitor command.
If the server-id is not unique in the server directory NATMOPI prompts the user to
select a server.

-c <monitor command> Specify a monitor command to be sent to the server id defined with the -s option

-d <directory command>Specify a directory command to be executed.

-a Suppress prompting for ambiguous server-id. Process all servers which apply to the
specified server-id.

-h Print NATMOPI help.

Monitor Commands
These are commands that are sent to a server for execution. The monitor commands available depend on the type
of server, however, each server must be able to support at least the commands terminate and help. For further
commands, refer to the corresponding server documentation.

Directory Commands
Directory commands are not executed by a server but directly by the monitor client NATMOPI.

You can use the directory commands to browse through the existing server entries and to remove stuck entries.

The following directory commands are available. Words enclosed in <> are user supplied values and words
enclosed in [] are optional.

Copyright © Software AG 2003236

Monitor Client NATMOPICommand Interface Syntax

Directory Command Action

ls [<server-id>] List all servers from the server directory that are apply to the specified server-id.
The server list is in short form.

ll [<server-id>] Same as ls but the server list contains extended server information.

rs [<server-id>] Remove server entries from server directory.
Note: If you remove the entry of an active server you will loose the ability to monitor
this server process.

cl [<server-id>] Clean up server directory. This command pings the specified server.
If the server does not respond its entry is removed from the directory.

ds Dump the content of the server directory.

lm List pending IPC messages.

Command Examples

natmopi -dls List all servers registered at the directory in
short format.

natmopi -dcl TST -ls TST Clean up all servers with id TST* (ping server
and remove if not responding), and list all
servers with id TST* after cleanup.

natmopi -sSRV1 -cping -sSRV2 -sSRV3 -cterminate Send command ping to SRV1. Send command
terminate to SRV2 and SRV3.

natmopi -cterminate -sSRV1 -cping -sSRV2 -sSRV3 Is equivalent to the example above. That is
NATMOPI send the command following the
-s option to the server. If no -c option follows
the -s the first -c option from the command
line is used.

natmopi -sSRV1 -cterminate -a Send command terminate to SRV1. If SRV1
is ambiguous in the server directory send the
command to all SRV1 servers without
prompting for selection.

Execute NATMOPI under TSO
Sample TSO CLIST to execute NATMOPI

PROC 0
CONTROL NOFLUSH ASIS LIST CONLIST
ALLOC FILE(STDOUT) DA(*)
ALLOC FILE(STDERR) DA(*)
ALLOC FILE(STDIN) DA(*)
ISPEXEC LIBDEF ISPLLIB DATASET ID(’the natural load dataset’)
CALL ’the natural load dataset’(natmopi)’ +
 ’-sSRV1 -sSRV2 -cping +
 ’ ASIS

Note:
The ASIS keyword at the end of the CALL parameters is required to instruct TSO to pass the command line in
mixed case. The ’natural load dataset’ must contain the modules NATMOPI and NATMONI.

237Copyright © Software AG 2003

Command ExamplesMonitor Client NATMOPI

Execute NATMOPI in Batch
The following is a sample JCL to execute NATMOPI in batch.

//NATMOPI JOB CLASS=K,MSGCLASS=X
//*
//RUN EXEC PGM=NATMOPI,PARM=’-SSERVER1 -SSERVER2 -Cping
// -sNvdSrv1 -clist sessions’//*
//STEPLIB DD DISP=SHR,DSN=the natural load dataset
//SYSPRINT DD SYSOUT=*
/*

Note:
If you are prompted in batch to select an ambiguous server, NATMOPI writes the prompt to the operator
console. You have to reply to the prompt using the following operator command:

F jobname APPL=index

Execute NATMOPI under the UNIX Shell
Since the UNIX shell does not support the execution of modules which reside in a PDS, it is neccessary to link
NATMOPI to the UNIX HFS.

The following is a sample JCL to link NATMOPI to the HFS.

//NATLNK JOB CLASS=K,MSGCLASS=X
//LKXMON EXEC PGM=IEWL,
// PARM=’RENT,XREF,LIST,LET,REUS,SIZE=(300K,64K),CASE=MIXED’
//SYSUT1 DD UNIT=(SYSDA),SPACE=(TRK,(10,4))
//SYSLMOD DD PATH=’/tmp’,
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=(SIRWXG,SIRWXU)
//SYSPRINT DD SYSOUT=X
//NATLOAD DD DISP=SHR,DSN= the natural load dataset
//SYSLIN DD *
 INCLUDE NATLOAD(NATMOPI)
 NAME natmopi(R)
/*

The following is a sample shell command to execute NATMOPI.

> export STEPLIB=the natural load dataset:$STEPLIB
> /tmp/natmopi -dls -sSRV1 -cping

Note:
The environment variable STEPLIB must contain the Natural load dataset to enable NATMOPI to load the
module NATMONI dynamically.

Copyright © Software AG 2003238

Monitor Client NATMOPIExecute NATMOPI in Batch

Natural Execution - Miscellaneous Topics
This document provides general information on Natural execution.

The following topics are covered:

Asynchronous Processing

Double-Byte Character Sets

Input/Output Devices

Back-End Program Calling Conventions

Natural 31-Bit Mode Support

LE Subprograms

External SORT

For an explanation of the terms used in this document, see the Glossary.

239Copyright © Software AG 2003

Natural Execution - Miscellaneous TopicsNatural Execution - Miscellaneous Topics

Asynchronous Processing
Asynchronous Natural processing is available under all TP monitors supported by Natural.

An asynchronous Natural session is a session which is not associated with any terminal and therefore cannot
interact with a terminal user. It can be used to execute a time-consuming task "in the background" without the
user having to wait for the task to finish.

The following topics are covered:

Identifying Asynchronous Natural Sessions
Handling Output of an Asynchronous Natural Session
Handling Unexpected or Unwanted Input
Other Profile Parameter Considerations

Related Topics:

Asynchronous Natural Processing under CICS
Asynchronous Transaction Processing under UTM

Natural Execution - Miscellaneous - Other Topics:
Double-Byte Character Sets | Input/Output Devices | Back-End Program Calling Conventions | Natural 31-Bit
Mode Support | LE Subprograms | External SORT

Identifying Asynchronous Natural Sessions
To identify a session as being asynchronous, the Natural system variable *DEVICE is assigned with the value
"ASYNCH".

Note:
The value of *DEVICE is modified by any SET CONTROL ’T=xxxx’ or PC=ON specification; refer also to the
description of the %T= terminal command or of the PC profile parameter. Therefore, an asynchronous Natural
session should be started with PC=OFF. Moreover, *DEVICE can be set by the profile parameter TTYPE.

Handling Output of an Asynchronous Natural Session
As an asynchronous session is a session that is not associated with any terminal, this means that any output
produced by the session cannot simply be displayed on the screen; instead, you have to explicitly specify an
output destination. You specify this destination with the Natural profile parameter SENDER when invoking
Natural. The SENDER destination applies to hardcopy output and primary reports; any additional reports are
sent to the destinations specified with the DEFINE PRINTER statement, just as in a synchronous online session.

As an asynchronous session can also cause a Natural error, the destination to which any Natural error message is
to be sent must also be specified; this is done with the Natural profile parameter OUTDEST. This parameter also
provides an option to have error messages sent to the operator console. After an error message has been sent,
Natural terminates the asynchronous session.

The profile parameters SENDER and OUTDEST should be set accordingly to be prepared for unexpected output
by the asynchronous Natural session; otherwise, a session may abend in such a scenario.

Copyright © Software AG 2003240

Asynchronous ProcessingAsynchronous Processing

Handling Unexpected or Unwanted Input
To prevent error loop situations, by default the CLEAR-key indicator is passed back to Natural on an INPUT
request. To pass the ENTER-key indicator back, you can issue a SET CONTROL ’N’ statement prior to the
INPUT statement.

When and how output and error messages are output depends on the TP monitor in use.

Other Profile Parameter Considerations
The following Natural profile Parameters should be considered in the case of an asynchronous Natural session:

Profile
Parameter

Comment

AUTO Asynchronous sessions may have non-alphabetical user IDs. In this case, AUTO=ON will fail.

MENU Asynchronous sessions only have the Natural stack for command inputs; therefore, it is
recommended to specify MENU=OFF and to navigate through Natural by using direct
commands.

ENDMSG The NAT9995 (normal termination message) can be suppressed by specifying
ENDMSG=OFF.

IMSG Natural initialization error messages and warnings can be suppressed by specifying
IMSG=OFF.

PROGRAM If a standard backend program/transaction is defined in your installation, it should be checked
if this program can run asynchronously or if it is desired to deal with terminal-bound sessions
only. Specifying PROGRAM=0 bypasses the backend logic.

241Copyright © Software AG 2003

Handling Unexpected or Unwanted InputAsynchronous Processing

Double-Byte Character Sets
This section is only relevant for Asian countries which use double-byte character sets. It describes all features
implemented in Natural to support DBCS terminals and printers and covers the following topics:

FACOM Operating System
Natural Profile Parameters SO and SI
Internal CALL Features
Output Format Specification
Window Control
Parameter Definitions for DBCS Support

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Input/Output Devices | Back-End Program Calling Conventions | Natural 31-Bit
Mode Support | LE Subprograms | External SORT

FACOM Operating System
Because of the different environments where DBCS is supported, Natural distinguishes between standard IBM
support and FACOM support. This implies that the Natural system variable *OPSYS contains the value
"FACOM’" when the corresponding flag is set, and that the values "TSS" and "AIM/DC" can be set for the
system variable *TPSYS. It is the task of the FACOM drivers to set the flags accordingly.

Natural Profile Parameters SO and SI
To support DBCS in mixed fields, two delimiter parameters (shift codes) are available in the Natural parameter
module and also as dynamic profile parameters. All DBCS fields are embedded in these delimiters called SI
(shift-in) and SO (shift-out). They can be used to pass the values of the shift-in and shift-out codes used in the
current environment to Natural.

Both parameters accept a two-byte hexadecimal value, for example, "SO=0E, SI=0F". They can be used to
establish either the IBM or the Fujitsu shift codes.

Remember that it is strongly recommended to use the IBM characters "0F" and "0E" internally. With this
technique, all applications and data can be handled in a compatible manner, which means that a network
supporting different mainframe types can still use the same Natural applications and process the same data.

For detailed information on these parameters, see SI and SO.

Internal CALL Features
The following callable features have been implemented in Natural to support DBCS handling:

 CALL ’CMMPP’ ’SOSI’ ’ x ’ field

where "x" can be:

Copyright © Software AG 2003242

Double-Byte Character SetsDouble-Byte Character Sets

T which indicates that a normal Latin string is converted into the corresponding DBCS string;

F which indicates that a DBCS string that contains Latin data only is converted to a single-byte string;

+ which indicates that the current shift codes are added at the beginning and at the end of the data in the
parameter field, whereby it is guaranteed that the number of bytes enclosed is an even number;

- which means that leading and trailing shift codes are removed from the data in the parameter field.

The last two functions can be used to either produce native DBCS strings or generate mixed-mode data out of
native DBCS strings.

Output Format Specification
The Natural print mode specification "PM=D" is used to define native DBCS fields; that is, DBCS fields without
shift codes (SO/SI). The fields with this format are enclosed with special attributes, depending on the
environment.

For IBM terminals, the attribute X’43F8’ is added to identify a "PM=D" field. For Fujitsu, the required SO/SI
codes are added at the beginning and at the end of the data.

Window Control
One of the frequently-used features of Natural is the window technique for pop-up helps and information
windows. These windows might destroy DBCS data already on the screen or might contain DBCS data which
are truncated because of the window size.

Especially for cases in which fields are truncated in a way that the leading SO character is still present, but the
terminating SI character is missing, a feature has been implemented in Natural which always sorts the generated
window into the existing screen image. This allows Natural to control all data in the screen buffer.

With the DBCS flag set, an additional routine is activated which analyzes and adapts or corrects invalid DBCS
data. The following checks are performed:

PM=D If the PM session parameter is set to "D", the field length is checked for an even number of bytes. In
the case of an odd number of bytes, the illegal byte is replaced with a dummy attribute, depending on
whether the truncation has occurred at the front or at the end of the field.

SO/SI With alphanumeric (non-repeatable) fields, the data are scanned for SO and SI characters. If a leading
SO character is found but no terminating SI character, the last or the last but one character is replaced
by the SI character or the SI character plus a blank character respectively, depending on an odd or even
number of characters. If an SI character is found before an SO character has been encountered, a
leading SO character or a leading blank character plus an SO character is written at the beginning of
that field, depending on the number of bytes in the enclosed DBCS field.

Parameter Definitions for DBCS Support
The following parameters must be specified in the setup for Natural for the support of double-byte character sets:

243Copyright © Software AG 2003

Output Format SpecificationDouble-Byte Character Sets

Parameter Explanation

TS=ON If Latin lower-case characters are not available, this parameter translates all Natural system output
using the translation table defined by the macro NTTABL in NATCONFG.

TQ=OFF Does not translate double quotes into single quotes.

 If TQ is not set to OFF and the Natural syntax checker processes a Natural program, Natural
translates all hexadecimal X’7F’ codes into X’7D’ codes, even if these codes appear in DBCS
strings.

SI=0F/29 Is the definition of the DBCS shift-in value as used from the current terminal.

SO=0E/28 Is the definition of the DBCS shift-out value as used from the current terminal.

LC=ON Does not translate all input data to uppercase, which again would destroy possible DBCS input
data.

Copyright © Software AG 2003244

Double-Byte Character SetsParameter Definitions for DBCS Support

Input/Output Devices
This section provides some additional information on input/output devices supported by Natural.

The following topics are covered:

Terminal Support
Light Pen Support
Printer Support

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Double-Byte Character Sets | Back-End Program Calling Conventions | Natural
31-Bit Mode Support | LE Subprograms | External SORT

Terminal Support
Natural supports a wide variety of terminal types for the use with IBM and Siemens mainframe computers. In TP
monitor environments in which the terminal type information is not supplied automatically to Natural, you can
use the Natural profile parameter TTYPE so that Natural can activate the appropriate converter routine to operate
a specific type of terminal.

Light Pen Support
The support of light pens has been enhanced by the terminal command %RM. This command causes all
light-pen-sensitive fields on the screen to be made write-protected; that is, the user can select them with a light
pen, but cannot overwrite their contents.

For a field to be light-pen sensitive, it must be displayed intensified (session parameter AD=I) or blinking
(AD=B), and the first character of the field must be a light-pen designator character (see below). Selecting a field
with a light pen causes the designator character to be changed; therefore, you can make the processing of fields
selected with a light pen dependent on the values of the designator characters.

The following designator characters are available:

Character Meaning

? You can select multiple fields before pressing ENTER.

> It was selected and if it is selected again, it becomes a question mark (?); the characters "?" and ">"
will toggle.

& You can select only one field and it will be as an ENTER for both the field and the MDT (modified
data tag).

’ ’ (blank) You can select only one field and you will only see the MDT.

As designator characters, you have to distinguish selection fields ("?", ">") and attention fields ("&", blank or
null). Selection fields do not start an immediate data transmission, so you are able to select more than one field.
Attention fields result in an immediate action.

The SELECT CURSOR key emulates a light-pen selection. If you move the cursor to the field you want to select
and press SELECT CURSOR, this field will be selected.

245Copyright © Software AG 2003

Input/Output DevicesInput/Output Devices

Sample Natural Program for Light Pen Usage

RESET #FIELD-1 (A8)
 #FIELD-2 (A8) #FIELD-3 (A8) #CV-1 (C) #CV-2 (C) #CV-3 (C)
SET KEY ALL
/* SET CONTROL ’RM’ IS A TOGGLE. AFTER IT IS EXECUTED ONCE MAKE IT A
/* COMMENT, SO THAT YOU DO NOT TOGGLE IT ’OFF’.
**SET CONTROL ’RM’
REPEAT
 IF *PF-KEY NOT = ’ENTR’ AND *PF-KEY NOT = ’PEN’ ESCAPE BOTTOM
 MOVE (AD=I CD=YE) TO #CV-1
 MOVE (AD=I CD=RE) TO #CV-2
 MOVE (AD=I CD=BL) TO #CV-3
 MOVE ’ FIELD-1’ TO #FIELD-1
 MOVE ’&FIELD-2’ TO #FIELD-2
 MOVE ’?FIELD-3’ TO #FIELD-3
 INPUT (SG=OFF IP=OFF)
 01/01 #FIELD-1 (CV=#CV-1 AD=M)
 03/01 #FIELD-2 (CV=#CV-2 AD=M)
 05/01 #FIELD-3 (CV=#CV-3 AD=M)
 WRITE ’PF-KEY =’ *PF-KEY
 IF #CV-1 MODIFIED WRITE ’#CV-1 MODIFIED’ #FIELD-1
 IF #CV-2 MODIFIED WRITE ’#CV-2 MODIFIED’ #FIELD-2
 IF #CV-3 MODIFIED WRITE ’#CV-3 MODIFIED’ #FIELD-3
LOOP
END

Printer Support
The following topics are covered:

Printer-Advance Control Characters
Natural Laser-Printer Support

Printer-Advance Control Characters

Printer-advance control characters can be generated within a Natural program by using the DEFINE PRINTER
statement as follows:

.... DEFINE PRINTER (n) OUTPUT ’ name’ DEFINE PRINTER (n+1) OUTPUT
’CCONTROL’

Both DEFINE PRINTER statements work together so that all Natural output for the printer (n) follows the
normal Natural report-output rules and all Natural output for the printer (n+1) is also written to the printer (n).
Natural does not generate a printer-advance control character for this report. Therefore, the first character in the
output variable is the control character.

With this method, it is possible to merge control characters for laser-printer systems and channel-advance
characters for line printers in a normal Natural output report.

Copyright © Software AG 2003246

Input/Output DevicesPrinter Support

Sample Natural Program for Printer-Advance Control Character

....
DEFINE PRINTER (1) OUTPUT ’CMPRT01’
DEFINE PRINTER (2) OUTPUT ’CCONTROL’
WRITE (1) ’TEST ’
WRITE (2) NOTITLE ’+TEST’
MOVE H’5A’ TO A(A1) WRITE (2) A (PM=C) ’....’
....

The corresponding hexadecimal data in the spool file starting from column 0 are:

I..I..I..I..I..I..I..I..I..I..I..I..I..I..I
F1 E3 C5 E2 E3
1 T E S T
4E E3 C5 E2 E3
+ T E S T 5A
..
Ü . . .

CCONTROL is the name of a special printer control table associated to the printer "n-1"; it must not be
modified.

Natural Laser-Printer Support

Natural supports IBM 3800 laser-printer systems.

The DEFINE PRINTER statement is used to control and allocate a report for the 3800 printer system. With this
statement, you can specify that the Natural print output for report 1 is routed to a 3800 printer system.

DEFINE PRINTER (1) OUTPUT ’LAS3800’
 I I => 1-31 for CMPRT01 to CMPRT31
....

Depending on the setting of the INTENS parameter, Natural repeats each line up to four times and recognizes the
Natural attributes "AD=D", "AD=I", "AD=C" and "AD=V".

The first line contains the ASA control code in the first column and the 3800-font control character (hexadecimal
"F0") for the first font in the second column. The columns 2 to nnn contain the print data which are not flagged
with the attribute "AD=I", "AD=C" or "AD=V".

The second line contains the ASA control code "+" (for printing without line advance) in the first column and the
3800-font control character (hexadecimal "F1") for the second font in the second column. The columns 2 to nnn
contain the print data which are flagged with "AD=I".

The third line contains the ASA control code "+" (for printing without line advance) in the first column and the
3800-font control character (hexadecimal "F2") for the third font in the second column. The columns 2 to nnn
contain the print data which are flagged with AD=C.

The fourth line contains the ASA control code "+" (for printing without line advance) in the first column and the
3800-font control character (hexadecimal "F3") for the fourth font in the second column. The columns 2 to nnn
contain the print data which are flagged with "AD=V".

If INTENS is specified with a value less than 4, all non-supported fonts are printed with hexadecimal "F0".

247Copyright © Software AG 2003

Natural Laser-Printer SupportInput/Output Devices

Sample Natural Program for Laser Printer Usage

....
DEFINE PRINTER (1) OUTPUT ’LAS3800’
WRITE (1) ’FIRST’ ’SECOND’ (AD=I) ’THIRD’ (AD=C) ’FOURTH’ (AD=V)
....

The corresponding hexadecimal data in the spool file starting from column 0 are:

I..I
40 F0 C6 C9 D9 E2 E3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 (hex)
 0 F I R S T
4E F1 40 40 40 40 40 40 E2 C5 C3 E4 D5 C4 C4 40 40 40 40 40 40 40 (hex)
+ 1 S E C O N D
4E F2 40 40 40 40 40 40 40 40 40 40 40 40 40 E3 C8 C9 D9 D4 40 40 (hex)
+ 2 T H I R D
4E F3 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 C5 (hex)
+ 3 F

Sample JCL for Laser Printer Usage

....
// xxxx JOB xxxxx ,....
.
// xxxxx EXEC PGM=XXXXXX;......
.
// PARM=’INTENS=4, XXXX,.......
.
.
//OUT1 OUTPUT PAGEDEF=XXXX,FORMDEF=XXXX,TRC=ON
. I I
. I I => 3800 form definition
. I
. I => 3800 page definition
.
//CMPRT01 DD SYSOUT=Y
// DCB=(RECFM=FBA,LRECL=133),OUTPUT=*,OUT1
// CHARS=(WWWW, XXXX, YYYY, ZZZZ)
 I
 I => IBM font names
...

Copyright © Software AG 2003248

Input/Output DevicesNatural Laser-Printer Support

Back-End Program Calling
This section describes the conventions that apply to invoking a back-end program.

Note: This section does not apply to BS2000/OSD; refer to Calling Non-Natural Programs and Calling UTM
Chained Partial Programs (described in the Natural TP Monitor Interfaces documentation; see Natural under
UTM).

The following topics are covered:

Back-End Program Calling Conventions
Special Considerations under CICS
Sample Back-End Programs

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Double-Byte Character Sets | Input/Output Devices | Natural 31-Bit Mode Support |
LE Subprograms | External SORT

Back-End Program Calling Conventions
If the profile parameter PROGRAM is specified (or set dynamically during a Natural session by calling the
subprogram CMPGMSET in the library SYSEXTP), a back-end program is invoked, regardless of whether the
session terminated normally or abnormally.

If a back-end program is available, Natural does not issue any session termination messages. Non-zero user
return codes, specified via operand1 of the Natural TERMINATE statement, are indicated by the Natural error
message NAT9987.

A parameter area containing the following information is passed to the back-end program:

a fullword that holds the Natural system or user return code,
a Natural termination message of 72 characters,
a fullword that holds the length of the Natural termination data (or zero),
the termination data passed by operand2 of the TERMINATE statement (if any).

The back-end program parameter area is at least 80 bytes long. The macro NAMBCKP, which contains a
DSECT layout of the back-end program parameter area, is supplied in the Natural source library and can be used
by Assembler back-end programs.

Special Considerations under CICS
Under CICS, the back-end program parameter data are passed in the COMMAREA and in the TWA. In the
TWA, only 80 bytes are passed, containing return code and message, while the length field contains an address
that points to the full back-end program parameter area. The same TWA is also provided if Natural has been
invoked via EXEC CICS LINK; see also Front-End Invoked via LINK (Natural under CICS in the Natural TP
Monitor Interfaces documentation).

If parameter COMAMSG=NO is set in the Natural/CICS generation macro (NCIPARM), only the termination
data are passed in the COMMAREA.

249Copyright © Software AG 2003

Back-End Program CallingBack-End Program Calling

Sample Back-End Programs
The following table contains a number of sample programs:

Sample Back-end Program for Batch and TSO Environments in COBOL:

LINKAGE SECTION
 01 BACKEND-PARM-AREA.
 02 TERMINATION-RETURN-CODE PIC S9(8) COMP.
 02 TERMINATION-MESSAGE PIC X(72).
 02 TERMINATION-DATA-LENGTH PIC S9(8) COMP.
 02 TERMINATION-DATA PIC X(100)
...
PROCEDURE DIVISION USING BACKEND-PARM-AREA

Sample Back-end Program for Batch and TSO Environments in Assembler:

BACKPROG CSECT
 SAVE (14,12)
 LR 11,15
 USING BACKPROG,11
 L 2,0(1)
 USING BCKPARM,2
...
 RETURN (14,12)
BCKPARM NAMBCKP
 END

Sample Back-end Program for CICS in Assembler:

L 2,DFHEICAP
USING BCKPARM,2
...
BCKPARM NAMBCKP
 END

Sample Back-end Program XNATBACK for Batch Mode (OS/390 and VSE/ESA):

A sample program for batch mode is supplied as XNATBACK in the Natural source library. This program
issues the Natural termination message on both SYSPRINT (OS/390) / SYSLST (VSE/ESA) and the operator
console; potential termination data are printed on SYSPRINT/SYSLST in dump format.

Copyright © Software AG 2003250

Back-End Program CallingSample Back-End Programs

Natural 31-Bit Mode Support
In general, Natural runs with the following settings:

AMODE=31

RMODE=ANY

Exceptions to this are described with the corresponding environment documentation.

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Double-Byte Character Sets | Input/Output Devices | Back-End Program Calling
Conventions | LE Subprograms | External SORT

251Copyright © Software AG 2003

Natural 31-Bit Mode SupportNatural 31-Bit Mode Support

LE Subprograms
This section applies under OS/390 batch, VSE/ESA batch, IMS/TM and TSO. It provides information on how
Natural supports IBM Language Environment (LE) subprograms.

The following topics are covered:

Support of IBM LE Subprograms
Enabling Natural Support of LE Subprograms
Passing LE Runtime Options
LE Abend Handling

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Double-Byte Character Sets | Input/Output Devices | Back-End Program Calling
Conventions | Natural 31-Bit Mode Support | External SORT

Support of IBM LE Subprograms
To support IBM Language Environment (LE) subprograms, Natural must be prepared for the CALL statement to
be able to call LE subprograms. LE subprograms can be static (CSTATIC and RCA profile parameters) or
dynamic subprograms of Natural.

Dynamic subprograms of Natural (LE and non-LE) are loaded via LE services (CEEFETCH or CEELOAD
macro). All dynamic subprograms loaded during a Natural session are deleted upon LE environment termination,
i.e. during termination of the Natural session. That is, the DELETE profile parameter does not have any effect.

Enabling Natural Support of LE Subprograms
The following is required to be able to call LE subprograms from Natural:

1. When installing Natural, the corresponding driver must be generated with option LE370=YES.
2. The IBM LE runtime modules must automatically be included from the IBM LE library during the linkage

editor step. There must not be any unresolved externals starting with "CEE". Do not set the linkage editor
option NCAL for OS/390 or NOAUTO for VSE/ESA.

3. Under OS/390 batch, IMS/TM and TSO, Natural can also call LE main programs, but only as dynamic
subprograms. If an LE main program is to be called dynamically, this has to be indicated by specifying SET
CONTROL ’P=L’ before the CALL statement. Otherwise, the LE environment created by Natural will be
terminated by the LE main program.

Passing LE Runtime Options
Under OS/390 Batch and TSO and VSE/ESA Batch

You can pass LE run-time options by using the PARM= parameter in your JCL. The following applies:

The run-time options that are passed to the main routine must be followed by a slash (/) to separate them
from the Natural parameters.
If you want to use a slash within your Natural parameters, then your Natural parameters must begin with a
slash.

Copyright © Software AG 2003252

LE SubprogramsLE Subprograms

Example:

PARM=’/ID=/,...’

Under IMS/TM

You can pass LE run-time options by providing the region-specific run-time options load module CEEROPT in
your STEPLIB concatenation. In addition, the LE library routine retention initialization routine CEELRRIN
must be present on the PREINIT list of your region JCL.

The following is a sample definition of a CEEROPT load modul that allows the execution of AMODE(24)
subprograms:

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY
 CEEXOPT ALL31=((OFF),OVR), X
 STACK=((128K,128K,BELOW,KEEP,512K,128K),OVR)
 END CEEROPT

LE Abend Handling
Natural supports the LE-specific user error handling, that is, if an LE subprogram has defined a user error
handler, this handler gets control when an abend, a program check or any other LE error condition occurs in the
subprogram. If no LE user error handler has been defined, Natural reacts according to the setting of the DU
profile parameter.

In this case, a special error message (NAT0950 if DU=OFF or NAT9967 if DU=ON) is issued which indicates
the LE error number. In addition, the corresponding LE error message is issued on CEEMSG and an LE snap
dump is written to CEEDUMP according to LE run-time option TERMTHDACT.

253Copyright © Software AG 2003

LE Abend HandlingLE Subprograms

External SORT
This section provides information on using external SORT programs with Natural. It covers the following topics:

Support of External SORT
Special Considerations for OS/390
Special Considerations for VSE/ESA
Special Considerations for BS2000/OSD

Natural Execution - Miscellaneous - Other Topics:
Asynchronous Processing | Double-Byte Character Sets | Input/Output Devices | Back-End Program Calling
Conventions | Natural 31-Bit Mode Support | LE Subprograms

Support of External SORT
The Natural SORT statement may optionally invoke an external SORT program that carries out the actual
sorting. An external SORT program is used if the keyword subparameter EXT of the macro NTSORT is set to
ON.

Natural supports all external SORT programs that comply with the SORT interface documented in the relevant
IBM manuals (for OS/390, VSE/ESA and CMS) and Siemens manuals (for BS2000/OSD).

The requirements (e.g. space and datasets) are identical to those for the execution of a 3GL (e.g. COBOL, PL/I)
application program that invokes the operating system SORT program and can vary according to the external
SORT program in use.

The communication with the external SORT program is via the E15 and E35 user-exit routines. As a
consequence, Natural does not require the datasets SORTIN and SORTOUT.

Special Considerations for OS/390
All external SORT programs supporting the extended parameter list can be used.

Special Considerations for VSE/ESA
The external SORT program is loaded into the partition program area. For this reason, you must add round about
200 KB additional storage to the size requirements of the Natural batch nucleus specified in the SIZE parameter
of the EXEC statement.

Example:

// EXEC <natural> ,SIZE(<natural> ,200K)

where <natural> is the name of your Natural phase.

Special Considerations for BS2000/OSD
The external SORT program is called using the level 1 interface. That is, Natural passes all SORT control
statements to the external SORT program and dataset SYSDTA is not used for input.

Copyright © Software AG 2003254

External SORTExternal SORT

The external SORT program is searched for in the following libraries:

User TASKLIB concatenated with the BLSLIB chain, if a User TASKLIB was specified,
System TASKLIB ($TSOS.TASKLIB) concatenated with the BLSLIB chain.

255Copyright © Software AG 2003

Special Considerations for BS2000/OSDExternal SORT

	Cover Page
	page 2

	Table of Contents
	Operations for Mainframes - Overview
	Configuring Natural
	Linking Natural Objects to the Natural Nucleus
	Benefits
	ULDOBJ Function
	Using ULDOBJ to Generate an Object Module
	Additional Considerations for Linking Subroutines
	Object Module Generation Depending on the Operating System
	Example of Linking a Natural Object to the Natural Nucleus

	Natural Application Programming Interfaces
	Purpose of a Natural Application Programming Interface
	Overview of Natural Application Programming Interfaces

	Natural User Exits
	NATUEX1 - User Exit for Authorization Control
	NATSREX2 and NATSREX3 - User Exits for Sort Processing
	NATUSKnn - User Exit for Computation of Sort Keys
	NATPM - User Exit for Inverted Output
	Inversion Logic
	Field User Exit

	Natural User Access Method for Print and Work Files
	NATAMUSR Module Description
	NATAMUSR Module Installation
	Invoking the Third Party Product

	Natural Scratch-Pad File
	Purpose of a Natural Scratch-Pad File
	What is it, what does it do?
	When do I need it?

	How to Define a Scratch-Pad File
	What is Stored on the Scratch-Pad File and How to Size it
	Recordings
	Screen Captures - NATPAGE

	Scratch-Pad File Maintenance

	Natural Text Modules
	Function and Usage of Text Modules
	NATTEXT Module
	Modifying NATTEXT
	Example of Modifying the NATTEXT Module

	NATTXT2 Module
	Standard Natural Output Texts
	Natural Termination Messages

	Natural Configuration Tables
	NATCONFG Module
	General Overview of Macros Used by NATCONFG

	NTDVCE - Terminal-Device Specification Table
	Code Page Support
	Output Devices Supported
	Sequential Output Devices for Batch, Additional Reports
	Line-Oriented Online Terminals
	Block-Mode-Oriented Online Terminals

	Specification of NTDVCE
	Translation Tables
	Upper-/Lower-Case Translation
	CMULT Macro
	Output Translation
	Input Translation
	Code Translation of DBCS Data
	NTTZ - Time Zone Definitions
	NTTZ Macro
	NTTZ Macro Syntax
	NTTZ Macro Parameters
	Restrictions of NTTZ Macro
	Example of NTTZ Macro

	Natural Storage Management
	Thread and Non-thread Environments
	Buffer Types
	Fixed Buffers
	Variable Buffers
	Customization of Buffer Characteristics

	Profile Parameter Usage - Overview
	Natural Parameter Hierarchy
	Natural Parameter Hierarchy Overview
	Natural Parameter Hierarchy Details
	Natural Standard Parameter Module
	Alternative Parameter Module
	Predefined Dynamic Parameter Sets
	Predefined User Parameter Profiles
	Dynamic Parameter Entry
	Natural Security Definitions
	Session Parameter Settings
	Program/Statement Level Settings
	Development Environment Settings
	Examples of Various Parameter Strings
	Example 1: No dynamic parameters
	Example 2: PARM=ALTPARM
	Example 3: SYS=A
	Example 4: PARM=ALTPARM,SYS=A
	Example 5: PARM=ALTPARM,SYS=B
	Example 6: SYS=A,PROFILE=MYPROF
	Example 7: SYS=A,PROFILE=MYPROF,ESIZE=100
	Example 8: PROFILE=MYPROF,SYS=A
	Example 9: DSIZE=8,SYS=A,PROFILE=MYPROF,PARM=ALTPARM

	Assignment of Parameter Values
	Sources for Parameter Value Assignment
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Specifying Dynamic Parameters under VSE/ESA

	Session Parameters for Runtime Assignment of Parameter Values

	Profile Parameters Grouped by Function
	System Files
	Buffer Sizes
	External Subprograms
	Output Reports and Workfiles
	Date/Time Settings
	Limits
	Character Assignments
	Terminal Communication
	Buffer Pools
	Translation Tables
	Usage of Profile Parameters
	Debugging
	Batch Mode
	TP Monitors
	Database Access
	Natural with Adabas
	Natural with Other Software AG Products
	
	Adabas Text Retrieval
	Con-nect
	EntireX Broker
	Entire DB
	Entire System Server
	Entire Transaction Propagator
	Natural Advanced Facilities
	Natural Connection
	Natural Database Interfaces
	Natural Expert
	Natural Optimizer Compiler
	Natural Workstation Interface
	Software AG Editor

	Parameters Reserved for Internal Use
	Miscellaneous Profile Parameters
	Session Initialization and Termination

	Using a Natural Parameter Module
	Using the Default Natural Parameter Module NATPARM
	Creating a New Natural Parameter Module
	NTPRM Macro - Create a Natural Parameter Module
	NTPRM Syntax
	Assembler Macro Coding Conventions

	Restricting the Use of a Parameter Module
	Using Optional Macros in a Natural Parameter Module

	OS/390 Environment - Overview
	Natural under OS/390
	Natural Subsystem
	Shared Nucleus
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under OS/390
	Natural as a Server under OS/390

	Authorized-Services Manager under OS/390
	ASM Overview
	ASM System Requirements
	APF Authorization
	System Linkage Index

	CF Structure
	XCF Signalling Paths

	ASM Operation
	Starting the ASM
	ASM Messages, Condition Codes and Abend Codes
	ASM Operator Commands

	Natural Shared Nucleus under OS/390 and VSE/ESA
	Environment-Independent Nucleus
	Components of the Shared Nucleus
	Linking Additional Modules
	Benefits of a Shared Nucleus
	Disadvantages of a Shared Nucleus
	Administration Aspects

	Creating a Shared Nucleus
	Installing a Shared Nucleus
	Linking Subproducts to the Nucleus
	Single-Environment Shared Nucleus
	Environment-Dependent Nucleus
	Statically Linked Non-Natural Programs
	Dynamically Called Non-Natural Programs

	Natural Roll Server Functionality
	Natural Roll-Server Overview
	Roll Server in a Single OS/390 System
	
	Illustration of the Roll Server in a Single OS/390 System:

	Roll Server in a Parallel Sysplex
	Roll File and LRB

	Natural Roll Server Operation
	Roll Server System Requirements
	APF Authorization
	System Linkage Index
	Virtual Storage
	CF Structure
	XCF Signalling Paths

	Formatting the Roll File
	NATRSRFI Output
	Notes Concerning the Formatting or Resetting of Roll Files

	Starting the Roll Server
	
	Examples for Starting the Roll Server as a Batch Job

	Roll Server Messages, Condition Codes and Abend Codes
	User Abend Codes

	Return Codes and Reason Codes of the Roll Server Request
	Operating the Roll Server
	Roll Server Performance Tuning
	Roll Server User Exits
	NATRSU14 User Exit
	NATRSU24 User Exit

	VSE/ESA Environment - Overview
	Natural under VSE/ESA
	Natural Subsystem
	Natural Shared Nucleus
	TP Monitor Interfaces
	Interfaces to Database Management Systems
	Natural in Batch Mode under VSE/ESA

	Natural Shared Nucleus under OS/390 and VSE/ESA
	VM/CMS Environment - Overview
	Natural under VM/CMS
	Issuing CP and CMS Commands from Natural
	Reading the CMS Program Stack
	Hardcopy Function
	Applying Fixes to Natural
	Natural in Batch Mode under CMS

	Print File and Work File Support
	Defining Print Files and Work Files
	Access Method STD
	Access Method CMS
	
	Special Destination Names for AM=CMS
	Examples:

	BS2000/OSD Environment - Overview
	
	
	Related Topics
	Other Natural Functions for BS2000/OSD-Specific Purposes

	Natural Shared Nucleus under BS2000/OSD
	Rules for Using a Natural Shared Nucleus

	Refresh of Natural Load Pool
	Restrictions/Prerequisites
	Procedure
	Keyword Parameters for the Program PREFRESH
	NAME - Common Memory Pool and Module Name
	LIBR - Load Library
	LOAD - Module Load Method
	ALNK - Activate AUTOLNK Function
	TIM1 - Wait Time in Seconds before the Load Pool Refresh is Started
	TIM2 - Wait Time in Seconds after the New Natural Nucleus was Loaded

	Optimization of Message Handling
	Screen Output Handling
	Restoring the Screen Content

	Siemens Terminal Types Supported by Natural
	Type 9748
	975n Series
	Type 9763M

	Function Key Support with 9750 Devices
	Key Assignment
	Modes for Key Assignment

	Common Memory Pools
	Global Common Memory Pools
	CMPSTART Program
	TXTSIZE - Buffer-Pool Text-Record Size
	BPLIST - Preload List For Global Buffer Pool
	JV - Create a Job Variable
	JVSUFX - Suffix of the Job Variable Name

	Operator Commands
	CMPEND Program

	Local Common Memory Pools
	BS2STUB Macro
	name - CSECT Name
	PARMOD - 24/31 Bit Addressing Mode
	PROGMOD - Loading above or below the 16-MB Line

	ADDON Macro
	ACCS - Access To Common Memory Pool
	ADDR - Size of Common Memory Pool Address
	ALNK - Activate AUTOLNK Function
	DATA - Size of Data Space Area
	DESA - ESA Data Space Area
	LIBR - Load Library
	LOAD - Method for Loading a Module into a Common Memory Pool
	NAME - Common Memory Pool/Module Name
	PFIX - Fixed Address
	POSI - Position Relative to 16-MB Line
	SCOP - Scope of Common Memory Pool
	SIZE - Size of Common Memory Pool
	STAT - Status of Common Memory Pool
	TYPE - Type of Common Memory Pool
	WAIT - Enabling or Waiting of Common Memory Pool During Application Startup

	ADDEND Macro
	 Example of Assembling Macro BS2STUB

	Calling Dynamically Reloadable 3GL Programs in a Natural Application
	Storage Allocation Rule
	Thread-Creation Rule
	Address-Mode Dependencies
	
	1. Calling a 3GL program using the ILCS or CRTE interface †'ILCS=YES' or 'ILCS=CRTE'‡
	2. Calling of 3GL programs without using the ILCS or CRTE interface †'ILCS=NO'‡
	3. Calling of UTM partial programs which are not 31-bit enabled from Natural/UTM driver via PEND PR

	Natural in Batch Mode - Overview
	Natural in Batch under OS/390
	General Information about the Natural OS/390 Batch Interface
	Natural OS/390 Generation Parameters
	ABEXIT - Abend Processing
	FACOM - Use of FACOM Operating System
	LBPNAME - Sharing of Local Buffer Pools
	LE370 -€ Use of IBM Language Environment
	SUBPOOL - Storage Subpool for GETMAIN Requests
	USERID - Content of System Variable *INIT-USER

	Datasets Used by Natural under OS/390 Batch
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Dynamic Profile Parameter Report Output
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Dataset
	CMPRTnn - Additional Reports 01 - 31
	CMSYNIN - Primary Input
	CMTRACE - Optional Report Output for Natural Tracing
	NATRJE - Job Submit Output
	STEPLIB - Load Library for External Modules
	CMWKFnn - Work Files 01-32

	Natural in Batch under VSE/ESA
	NATVSE - Natural VSE/ESA Batch Interface
	NTVSE Macro - Generation Parameters for Natural under VSE/ESA
	NAME - Name of Relocatable Module
	DSECTS - Listing of Operating System DSECTS
	CANCEL - Session Termination
	RJEUSER - User ID for Submission via XPCC Macro Requests
	FILEID - Check of Label Information
	FILMNGR - Management of Print or Work File in Natural
	FILSCAN - Scanning of Print or Work Files
	BUFSIZE - Size of Natural I/O Buffer
	LE370 - Use of IBM Language Environment
	LIBRID - Check of DLBL File ID Information

	Natural Datasets Used under a VSE/ESA Batch Session
	CMEDIT - Software AG Editor Work File
	CMHCOPY - Optional Report Output for Hardcopy
	CMOBJIN - Input for Natural INPUT Statements
	CMPLOG - Optional Report Output for Dynamic Parameters
	CMPRINT - Primary Report Output
	CMPRMIN - Dynamic Parameter Dataset
	CMPRTnn - Additional Reports
	CMSYNIN - Primary Input
	CMTRACE - Optional Report Output for Natural Tracing
	CMWKFnn - Work Files 01-32

	NATVSE Print and Work File Support for VSE Library Members
	Debugging Facilities for Natural under VSE/ESA
	UPSI 1XXXXXXX - Dump Flag
	UPSI X1XXXXXX - Trace Flag
	UPSI XXX1XXXX - Storage Freeze Flag
	UPSI XXXXX1XX - Session Abend Flag
	UPSI XXXXXX1X - Abend Exit Flag
	UPSI XXXXXXX1 - Formatted Dump-Only Flag
	Obtaining Documentation for Debugging

	NATVSE Attention Interrupts

	Natural in Batch under CMS
	Running Natural in Batch under CMS
	CMPRINT - Primary Report Output
	CMSYNIN - Primary Input

	Natural in Batch under BS2000/OSD
	Natural Datasets Used under a BS2000/OSD Batch Session
	CMPRMIN - Dynamic Parameter Dataset
	CMSYNIN - Primary Input
	CMSYNIN - Primary Input
	CMOBJIN - Input for Natural INPUT Statements
	CMPRINT - Primary Report Output
	CMPLOG - Optional Report Output for Dynamic Parameters
	CMTRACE - Optional Report Output for Natural Tracing
	CMHCOPY - Optional Report Output for Hardcopy
	CMPRTnn - Additional Reports
	CMWKFnn - Natural Work Files

	KEYWORD Parameters
	ADACOM
	ADDBUFF
	APPLNAM
	CODE
	DELETE
	DYNPAR
	ILCS
	JV
	LF
	LINK
	LINK2/LINK3/LINK4
	NUCNAME
	PARMOD
	REQMLOC
	SYSDTA
	TERM
	TRACE
	USERID
	WRITE

	BS2000/OSD Job Variables

	Natural in Batch Mode †All Platforms‡
	Adabas Datasets
	Sort Datasets
	Subtasking Session Support for Batch Environments
	Purpose
	Prerequisites
	Functionality
	Starting a Natural Session
	Extended Parameter List
	Startup Parameter Area
	User Parameter Area

	Starting A Subtask
	Accessing the User Parameter Area

	Natural Buffer Pools - Overview
	Natural Buffer Pool
	Natural Buffer Pool Principle of Operation
	Objects in the Buffer Pool
	Directory Entries
	Text Pool
	Buffer Pool Hash Table
	Buffer Pool Initialization
	Buffer Pool Search Methods
	METHOD=S
	METHOD=N
	Choosing Search Methods

	Local and Global Buffer Pools
	Local Buffer Pool
	Global Buffer Pool

	Buffer Pool Cache

	Buffer-Pool Monitoring and Maintenance
	Preload List
	Blacklist
	Propagation of Buffer-Pool Changes

	Natural Global Buffer Pool
	Profile Parameters Used
	Buffer Pool Opening / Closing Procedure

	Natural Global Buffer Pool under OS/390
	Using a Natural Global Buffer Pool
	Definition
	Benefits

	Operating the Natural Global Buffer Pool
	Installing the Natural GBP Operating Program
	Setting up the Natural Global Buffer Pool
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBP41 Execution Jobs
	
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization

	Natural Global Buffer Pool under VSE/ESA
	Using a Natural Global Buffer Pool
	Definition
	Benefits
	Prerequisites

	Operating the Natural Global Buffer Pool
	Installing the Natural GBP Operating Program
	Setting Up the Natural Global Buffer Pool
	Starting the Natural GBP Operating Program
	Stopping the Natural GBP Operating Program

	Sample NATGBP41 Execution Jobs
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Localization

	Common Natural GBP Operating Functions under OS/390 and VSE/ESA
	Global Buffer Pool Operating Functions
	ADDCACHE - Allocate Cache for an existing Global Buffer Pool
	CREATE - Create Global Buffer Pool
	DELCACHE - Release Cache of a Global Buffer Pool
	FSHUT -€ Shut Down Global Buffer Pool
	GLOBALS - Show global parameter settings
	LISTCACHE - List all Global Buffer Pool Caches owned by Job
	NOP - No-Operation
	REFRESH - Re-initialize Global Buffer Pool
	SHOWBP - Show Existing Buffer Pools
	TERMINATE - Terminate GBP Operating Program

	Global Buffer Pool Function Parameters
	BPNAME - Name of Global Buffer Pool
	BPLIST - Name of Preload List
	BPCSIZE - Buffer Pool Cache Size
	CONFIRM - FSHUT Confirmation
	IDLE - Wait Time before Check
	METHOD - Search algorithm for allocating space in buffer pool
	NATBUFFER - Buffer Size, Mode, Text Block Size
	RESIDENT - Behavior after Function Execution
	SUBSID - Natural Subsystem ID
	TYPE - Type of Buffer Pool

	Examples of NATBUFFER Specifications

	Natural Global Buffer Pool under BS2000/OSD
	Using a Natural Global Buffer Pool under BS2000/OSD
	Establishing the Global Buffer Pool under BS2000/OSD
	Administering the Global Buffer Pool under BS2000/OSD

	Natural Swap Pool - Overview
	Purpose of a Natural Swap Pool
	Purpose of a Natural Swap Pool
	Benefits of Using a Natural Swap Pool
	Swap Pool Structure
	Swap Pool Main Directory
	Subdirectories
	Swap Pool Slots
	Logical Swap Pools

	Natural Swap Pool Operation
	Users are "on their Way" to Natural - no Session Start
	Users are "Returning" from Natural

	Natural Swap Pool Initialization
	Swap Pool Initialization Control
	
	If You Set SWPINIT=AUTO
	If You Set SWPINIT=

	Swap Pool Initialization Parameters

	Dynamic Swap-Pool Reorganization
	Requirements for Dynamic Swap-Pool Reorganization
	Statistics Tables
	Swap-Pool-Reorganization Plus Table
	Swap-Pool-Reorganization Minus Table
	Parameters for Swap-Pool Reorganization
	Checking for the Necessity of Swap-Pool Reorganization
	Flow of Dynamic Swap-Pool Reorganization
	Start of Dynamic Swap-Pool Reorganization

	Defining the Natural Swap Pool
	Environment-Specific Requirements
	Keyword Parameters of Macro NTSWPRM
	LABEL - Name of Swap-pool Parameter Module
	DSPCONT - Minutes for Data Space Slot Control
	DSPLIFE - Life Time in Minutes for a Thread in the ESA Data Space
	SWPFILE - Location of Swap Pool Initialization Data
	MAXSIZE - Size of Natural User Threads
	SWPFACT - Size of Unit in Reorganization Tables
	SWPINIT - Access to Swap-Pool Initialization Data
	SWPLSWP - Number of Logical Swap Pools
	SWPPWRD - Administration Password
	SWPSDIF - Minimum Difference of Slot Sizes
	SWPSLSZ - Number of Logical Swap Pools, Slot Sizes
	Examples:

	SWPTFIX - Fixed Slot Size
	SWPTIM1 - Time Interval for Reorganization Check
	SWPTIM2 - Lapse of Time Before Start of Reorganization
	SWPUSER - Condition for Swap Pool Reorganization
	NOVPA - Number of Waits for Completed Asynchronous Write
	NOVPW - Number of Waits for Unlocked Swap Pool
	WAITMS - Wait Time for Unlocked Swap Pool
	WRITMS - Wait Time for for Completed Asynchronous Write

	Natural User Area Size Considerations
	Using the MAXSIZE Parameter
	Defining the Size of the Individual Natural Buffers
	Possible Error Messages
	Displaying the Aggregate Size of All Buffers
	Calculating the Maximum Size

	Swap Pool Data Space
	Using ESA Data Space in Addition
	ESA Data Space Slot Size Adjustment

	Global Restartable Swap Pool under UTM
	Purpose of a Natural Global Swap Pool under UTM
	Installing a Natural Global Swap Pool under UTM
	Starting a Natural Global Swap Pool under UTM
	Displaying Information about the Global Swap Pool

	Terminating the Global Swap Pool under UTM
	Termination Using Console Commands
	Abnormal Termination with Dump
	Termination by Program

	Natural 3GL CALLNAT Interface - Overview
	Natural 3GL CALLNAT Interface - Purpose, Prerequisites, Restrictions
	Purpose of 3GL CALLNAT Interface
	Availability

	Prerequisites
	Space Requirements
	Linking
	Environment Dependencies

	Restrictions
	Terminating a Natural Subprogram
	Inadmissible Natural Statements
	Parameter Values Passed by the 3GL Program
	Dynamic Arrays
	TP-Monitor-Specific Restrictions

	Natural 3GL CALLNAT Interface - Usage, Examples
	Usage
	Overview
	Call Structure
	Parameter Handling

	Sample Environments
	Sample Environment for CICS
	Step 1: Create the Environment Initialization
	Step 2: Install the Sample COBOL Call
	Step 3: Create a Sample Natural Subprogram
	Step 4: Verify the CICS Resources
	Step 5: Test the Environment

	Sample for Any Other Supported Environment
	Step 1: Assemble and Link ASMNAT
	Step 2: Start the Natural Session

	Operating the Software AG Editor - Overview
	Editor Work File
	Editor Work File Structure
	Control Record
	Work Record
	Recovery Records

	Editor Work File under OS/390, VSE/ESA and BS2000/OSD
	Using the Batch Format Utility
	Formatting during Initialization
	Maintaining the Editor Work File under OS/390 and VSE/ESA
	Maintaining the Editor Work File under BS2000/OSD
	Editor Work File under VM/CMS
	Editor Work File under Complete/SMARTS

	Editor Buffer Pool
	Purpose of the Editor Buffer Pool
	Obtaining Free Blocks
	Initializing the Editor Buffer Pool
	Buffer Pool Cold Start
	Buffer Pool Warm Start

	Restarting the Editor Buffer Pool
	Editor Buffer Pool Parameters
	Buffer Pool Initialization for Multi-User Environments

	Natural Net Data Interface NATNETTO
	Natural Net Data Driver Functional Description
	General Message Layout
	Layout of Header
	
	Table 1: Control Block - Fixed Part
	Table 2: Modes of Field Separation
	Table 3: Architecture of Sending Partner According to CSCI Definitions
	Table 4: Call Type
	Table 6: Aid Character Table
	Table 7: Message Type
	Table 8: Option Flags for Natural Net-Data Communication

	Format Buffer Layout
	Base Part
	Table 9: Format Buffer Entry
	Examples:

	Extension 1
	Example:

	Value Buffer Layout
	Attribute Buffer
	
	Example:

	Natural as a Server - Overview
	Natural as a Server under OS/390
	Functionality
	Natural Server Stub
	Natural Batch Driver

	Natural Nucleus Installation in a Server Environment
	Print and Work File Handling with External Datasets in a Server Environment

	Natural as a Server under CICS
	Functionality
	Natural as a Server
	Natural Server Stub

	Natural CICS Interface Installation in a Server Environment
	Restrictions

	Introduction to the Natural Server Monitor
	One Monitor for Different Server Types
	Server Monitor Facility
	System Management Client
	Monitor Communication Protocol
	Monitor Architecture

	Monitor Client NATMOPI
	Prerequisites for NATMOPI Execution
	Monitor Services Running under OS/390 Batch
	Monitor Services Running under SMARTS

	Command Interface Syntax
	Command Options Available
	Monitor Commands
	Directory Commands
	Command Examples
	Execute NATMOPI under TSO
	Execute NATMOPI in Batch
	Execute NATMOPI under the UNIX Shell

	Natural Execution - Miscellaneous Topics
	Asynchronous Processing
	Identifying Asynchronous Natural Sessions
	Handling Output of an Asynchronous Natural Session
	Handling Unexpected or Unwanted Input
	Other Profile Parameter Considerations

	Double-Byte Character Sets
	FACOM Operating System
	Natural Profile Parameters SO and SI
	Internal CALL Features
	Output Format Specification
	Window Control
	Parameter Definitions for DBCS Support

	Input/Output Devices
	Terminal Support
	Light Pen Support
	
	Sample Natural Program for Light Pen Usage

	Printer Support
	Printer-Advance Control Characters
	Sample Natural Program for Printer-Advance Control Character

	Natural Laser-Printer Support
	Sample Natural Program for Laser Printer Usage
	Sample JCL for Laser Printer Usage

	Back-End Program Calling
	Back-End Program Calling Conventions
	Special Considerations under CICS
	Sample Back-End Programs

	Natural 31-Bit Mode Support
	LE Subprograms
	Support of IBM LE Subprograms
	Enabling Natural Support of LE Subprograms
	Passing LE Runtime Options
	LE Abend Handling

	External SORT
	Support of External SORT
	Special Considerations for OS/390
	Special Considerations for VSE/ESA
	Special Considerations for BS2000/OSD

