
Natural Optimizer
Compiler

Version 4.1.2 Natural Optimizer Compiler

This document applies to Natural Optimizer Compiler Version 4.1.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective
owners.

Table of Contents
.............. 1Natural Optimizer Compiler - Overview
.............. 1Natural Optimizer Compiler - Overview
................. 2NOC - General Information
................. 2NOC - General Information
................ 2Natural Nucleus Optimization
................. 3Natural Optimizer Compiler
.............. 5Installing the Natural Optimizer Compiler
.............. 5Installing the Natural Optimizer Compiler
.................. 5General Information
................... 5Installation Jobs
............... 5Using System Maintenance Aid
.................... 5Prerequisites
................. 6Installation Tape - OS/390
.................. 6Space Requirements
.............. 6Copying the Tape Contents to Disk
................ 8Installation Tape - VSE/ESA
.............. 8Copying the Tape Contents to Disk
................ 10Installation Tape - BS2000/OSD
.................. 10Space Requirements
.............. 10Copying the Tape Contents to Disk
................ 12Installation Tape - VM/CMS
.................. 12Space Requirements
.............. 12Copying the Tape Contents to Disk
.................. 13Installation Procedure
.................. 14Installation Verification
.............. 15Using the Optimizer Compiler - Overview
.............. 15Using the Optimizer Compiler - Overview
................ 16What is Compiled and What is Not
................ 16What is Compiled and What is Not
................... 17NOCSTAT Command
.................. 17NOCSTAT Command
.................. 18Invoking NOCSTAT
.................. 19Generating Reports
................... 21Report Formats
.................. 21Statement Category
................... 24Statement Type
.................... 25Code Profile
................... 26Batch Execution
.............. 28Displaying the Size of the Machine Code
.............. 28Displaying the Size of the Machine Code
.................. 29Optimizer Usage Examples
................. 29Optimizer Usage Examples
................ 29Example 1 - No Improvement
.............. 30Example 2 - Considerable Improvement
................ 32Examples 3 and 4 - CPU Usage
................ 34Activating the Optimizer Compiler
................ 34Activating the Optimizer Compiler
.................... 34Macro NTOPT
................ 34Dynamic Profile Parameter OPT
................ 35System Command NOCOPT
................ 35Natural Statement OPTIONS
.................... 36Optimizer Options
................... 36Optimizer Options

iCopyright © Software AG 2003

Table of ContentsNatural Optimizer Compiler - Overview

..................... 36List of Options

................ 38Example of INDEX and OVFLW

................. 39Optimum Code Generation

..................... 39PGEN Option

.................... 39Setting PGEN

................ 40Sub-Options of the PGEN Option

................. 40Output of the PGEN Option

................ 41Working with the PGEN Output

................ 43Influence of other Natural Parameters

.................. 44Performance Considerations

.................. 44Performance Considerations

...................... 44Formats

...................... 44Arrays

................... 45Alphanumeric Fields

..................... 45DECIDE ON

.................... 45Numeric Values

.................... 45Rules of Thumb

................... 45Variable Positioning

.................... 45Variable Caching

................ 46Example of Variable Caching

...................... 46NODBG

...................... 47Listing Zaps

...................... 47Listing Zaps

Copyright © Software AG 2003ii

Natural Optimizer Compiler - OverviewTable of Contents

Natural Optimizer Compiler - Overview
This documentation for Natural Optimizer Compiler describes various aspects which should be taken into
consideration when the Natural Optimizer Compiler is installed at your site.

 In the remainder of the Natural Optimizer Compiler documentation the Natural Optimizer Compiler is also
referred to as NOC.

General Information Various aspects of the Natural Optimizer Compiler and how to benefit
most from the Natural Optimizer Compiler.

Installing the Optimizer
Compiler

Installation of the Natural Optimizer Compiler.

Using the Optimizer
Compiler

Statements and programs used for compilation.
Statistical data on programs suitable for processing by the Natural
Optimizer Compiler: NOCSTAT command.
Examples of when to use the Optimizer Compiler.

Activating the Optimizer
Compiler

How to switch on the Natural Optimizer Compiler.

Optimizer Options Various options of the Natural Optimizer Compiler.
How to apply PGEN to output generated code and internal Natural
structures for examination.
Influence by other Natural parameters.

Performance
Considerations

How to achieve best performance considering data formats, arrays, alpha
fields, DECIDE ON and numeric values.

Listing Zaps How to receive an overview of the Zaps that have been applied to the
Natural Optimizer Compiler.

1Copyright © Software AG 2003

Natural Optimizer Compiler - OverviewNatural Optimizer Compiler - Overview

NOC - General Information
This section describes various aspects which should be taken into consideration when the Natural Optimizer
Compiler is installed at your site. The information provided in this documentation helps you to make full use of
the benefits offered by the Natural Optimizer Compiler.

This section covers the following topics:

Natural Nucleus Standard Optimization
Natural Optimizer Compiler

Natural Nucleus Optimization
The Natural nucleus optimizes simple arithmetic, assignment, and comparison statements by translating parts of
them into machine code. All programs are optimized automatically in this way.

The following graphic illustrates how the Natural Optimizer Compiler generates machine code when a Natural
programming object is compiled or executed:

Copyright © Software AG 20032

NOC - General InformationNOC - General Information

Natural Optimizer Compiler
The Natural Optimizer Compiler goes one step further than standard optimization. It compiles not only simple
statements to machine code, but also complex statements and statement sequences.

The compiled code is further optimized as far as array range operations, field concatenation, and optimum base
register assignment are concerned.

3Copyright © Software AG 2003

Natural Optimizer CompilerNOC - General Information

All statements (including arithmetic operations) optimized with NOC provide the same results as the same
statements generated by standard Natural.

To activate the Natural Optimizer Compiler (see the relevant section), use the macro NTOPT in the Natural
parameter module, the dynamic profile parameter OPT, the system command NOCOPT, or the OPTIONS
statement.

All programs that are cataloged (STOW or CATALOG system command) with the Natural Optimizer Compiler
activated are compiled to machine code. This will also result in the object code size of the programs being larger
than usual, depending on how much of the program can be optimized.

A program executed with the RUN system command is compiled to machine code if the Natural Optimizer
Compiler is activated with the system command NOCOPT, the macro NTOPT or the OPTIONS statement for all
or part of the program.

To see if a program is suitable for compilation with the Natural Optimizer Compiler, use the NOCSTAT
command as described in the relevant section.

Note:
The dynamic recatalog feature (RECAT=ON) cannot be used with programs compiled to machine code.

To execute programs that have been compiled with the Natural Optimizer Compiler, it is not necessary that the
Natural Optimizer Compiler is installed.

Copyright © Software AG 20034

NOC - General InformationNatural Optimizer Compiler

Installing the Natural Optimizer Compiler
This section describes how to install the Natural Optimizer Compiler (also referred to as NOC) in the various
environments supported.

General Information
Prerequisites
Installation Tape - OS/390
Installation Tape - VSE/ESA
Installation Tape - BS2000/OSD
Installation Tape - VM/CMS
Installation Procedure
Installation Verification

General Information
Below is information on:

Installation Jobs
Using System Maintenance Aid

Installation Jobs

The installation of Software AG products is performed by installation jobs. These jobs are either created
manually or generated by Software AG’s System Maintenance Aid (SMA).

For each step of the installation procedure described below, the job number of a job performing the
corresponding task is indicated. This job number refers to an installation job generated by SMA.

Using System Maintenance Aid

For information on using SMA for the installation process, refer to the System Maintenance Aid documentation.

Prerequisites
Products and versions are specified in the sections Natural and Other Software AG Products and
Operating/Teleprocessing Systems Required in the current Natural Release Notes for Mainframes.

5Copyright © Software AG 2003

Installing the Natural Optimizer CompilerInstalling the Natural Optimizer Compiler

Installation Tape - OS/390
The installation tape contains the dataset listed in the table below.

Dataset Name Contents

NOCnnn.LOAD This dataset contains the Natural Optimizer Compiler load modules.

The notation nnn in dataset names represents the version number of the product.

For a detailed description of the installation tape refer to the Report of Tape Creation which accompanies the
tape.

Space Requirements

The space the dataset requires on disk is shown in the Report of Tape Creation.

Copying the Tape Contents to Disk

If you are using System Maintenance Aid (SMA), refer to the SMA documentation (included on the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

Copy data set COPY.JOB from tape to disk.
Modify this data set to conform with your local naming conventions.

The JCL in this data set is then used to copy all data sets from tape to disk.

If the datasets for more than one product are delivered on the tape, the dataset COPY.JOB contains the JCL to
unload the datasets for all delivered products from the tape to your disk.

After that, you will have to perform the individual install procedure for each component.

Step 1 - Copy data set COPY.JOB from tape to disk

The data set COPY.JOB (label 2) contains the JCL to unload all other existing data sets from tape to disk. To
unload COPY.JOB, use the following sample JCL:

//SAGTAPE JOB SAG,CLASS=1,MSGCLASS=X
//* ---------------------------------
//COPY EXEC PGM=IEBGENER
//SYSUT1 DD DSN=COPY.JOB,
// DISP=(OLD,PASS),
// UNIT=(CASS,,DEFER),
// VOL=(,RETAIN,SER= <Tnnnnn>),
// LABEL=(2,SL)
//SYSUT2 DD DSN= <hilev> .COPY.JOB,
// DISP=(NEW,CATLG,DELETE),
// UNIT=3390,VOL=SER= <vvvvvv> ,
// SPACE=(TRK,(1,1),RLSE),
// DCB=*.SYSUT1
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//

Copyright © Software AG 20036

Installing the Natural Optimizer CompilerInstallation Tape - OS/390

Where:

<hilev> is a valid high level qualifier

<Tnnnnn> is the tape number

<vvvvvv> is the desired volser

Step 2 - Modify COPYTAPE.JOB

Modify the COPYTAPE.JOB to conform with your local naming conventions and set the disk space parameters
before submitting this job:

Set HILEV to a valid high level qualifier.
Set LOCATION to a storage location.
Set EXPDT to a valid expiration date.

Step 3 - Submit COPY.JOB

Submit COPY.JOB to unload all other data sets from the tape to your disk.

7Copyright © Software AG 2003

Copying the Tape Contents to DiskInstalling the Natural Optimizer Compiler

Installation Tape - VSE/ESA
The installation tape contains the following dataset:

Dataset Name Contents

NOCnnn.LIBR LIBR backup file.

The notation nnn in dataset names represents the version number of the product.

Copying the Tape Contents to Disk

If you are using System Maintenance Aid (SMA), refer to the SMA documentation (included on the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

Copy data set COPYTAPE.JOB from tape to library.
Modify this member to conform with your local naming conventions.

The JCL in this member is then used to copy all data sets from tape to disk.

If the datasets for more than one product are delivered on the tape, the member COPYTAPE.JOB contains the
JCL to unload the datasets for all delivered products from the tape to your disk, except the datasets that you can
directly install from tape, for example, Natural INPL objects.

After that, you will have to perform the individual install procedure for each component.

Step 1 - Copy data set COPYTAPE.JOB from tape to disk

The data set COPYTAPE.JOB (file 5) contains the JCL to unload all other existing data sets from tape to disk.
To unload COPYTAPE.JOB, use the following sample JCL:

* $$ JOB JNM=LIBRCAT,CLASS=0, +
* $$ DISP=D,LDEST=(*,UID),SYSID=1
* $$ LST CLASS=A,DISP=D
// JOB LIBRCAT
* ***
* CATALOG COPYTAPE.JOB TO LIBRARY
* ***
// ASSGN SYS004, NNN <------ tape address
// MTC REW,SYS004
// MTC FSF,SYS004,4
ASSGN SYSIPT,SYS004
// TLBL IJSYSIN,’COPYTAPE.JOB’
// EXEC LIBR,PARM=’MSHP; ACC S= lib.sublib ’ <------- for catalog
/*
// MTC REW,SYS004
ASSGN SYSIPT,FEC
/*
/&
* $$ EOJ

Where:

Copyright © Software AG 20038

Installing the Natural Optimizer CompilerInstallation Tape - VSE/ESA

NNN is the tape address

lib.sublib is the library and sublibrary of the catalog

Step 2 - Modify COPYTAPE.JOB

Modify COPYTAPE.JOB to conform with your local naming conventions and set the disk space parameters
before submitting this job:

Step 3 - Submit COPYTAPE.JOB

Submit COPYTAPE.JOB to unload all other data sets from the tape to your disk.

9Copyright © Software AG 2003

Copying the Tape Contents to DiskInstalling the Natural Optimizer Compiler

Installation Tape - BS2000/OSD
The installation tape contains the following dataset:

Dataset Name Contents

NOCnnn.PAMS Optimizer Compiler module library.

The notation nnn in dataset names represents the version number of the product. For a detailed description of the
installation tape refer to the Report of Tape Creation which accompanies the tape.

Space Requirements

The space the dataset requires on disk is shown in the Report of Tape Creation.

Copying the Tape Contents to Disk

If you are not using SMA, use the procedure described below. In this procedure, the values specified below must
be supplied.

To copy the datasets from tape to disk, perform the following steps:

1. Copy the Library SRVnnn.LIB from Tape to Disk

This step is not necessary if you have already copied the library SRVnnn.LIB from another Software AG tape.
For more information, refer to the element #READ-ME in this library.

The library SRVnnn.LIB is stored on the tape as the sequential file SRVnnn.LIBS containing LMS commands.
The current version nnn can be obtained from the Report of Tape Creation. To convert this sequential file into
an LMS-library, execute the following commands:

 /IMPORT-FILE SUPPORT=*TAPE(FILE-NAME=SRV nnn .LIBS, -
 / VOLUME= <volser> , DEV-TYPE= <tape-device>)
 /ADD-FILE-LINK LINK-NAME=EDTSAM, FILE-NAME=SRV nnn .LIBS, -
 / SUPPORT=*TAPE(FILE-SEQ=3), ACC-METH=*BY-CAT, -
 / BUF-LEN=*BY-CAT, REC-FORM=*BY-CAT, REC-SIZE=*BY-CAT
 /START-EDT
 @READ ’/’
 @SYSTEM ’REMOVE-FILE-LINK EDTSAM’
 @SYSTEM ’EXPORT-FILE FILE-NAME=SRV nnn .LIBS’
 @WRITE ’SRV nnn .LIBS’
 @HALT
 /ASS-SYSDTA SRV nnn .LIBS
 /MOD-JOB-SW ON=1
 /START-PROG $LMS
 /MOD-JOB-SW OFF=1
 /ASS-SYSDTA *PRIMARY

Where:
<tape-device> is the device-type of the tape, e.g. TAPE-C4
<volser> is the VOLSER of the tape (see Report of Tape Creation)

Copyright © Software AG 200310

Installing the Natural Optimizer CompilerInstallation Tape - BS2000/OSD

2. Copy the Procedure COPY.PROC from Tape to Disk

To copy the procedure COPY.PROC to disk, call the procedure P.COPYTAPE in the library SRVnnn.LIB:

 /CALL-PROCEDURE (SRV nnn .LIB,P.COPYTAPE), -
 / (VSNT=<volser>, DEVT=<tape-device>)

If you use a TAPE-C4 device, you may omit the parameter DEVT.

3. Copy all Product Files from Tape to Disk

To copy all Software AG product files from tape to disk, enter the procedure COPY.PROC:

 /ENTER-PROCEDURE COPY.PROC, DEVT=<tape-device>

If you use a TAPE-C4 device, you may omit the parameter DEVT. The result of this procedure is written to the
file ’L.REPORT.SRV’.

11Copyright © Software AG 2003

Copying the Tape Contents to DiskInstalling the Natural Optimizer Compiler

Installation Tape - VM/CMS
The installation tape contains the dataset listed in the table below.

Dataset Name Contents

NOCnnn.TAPE This dataset contains the Natural Optimizer Compiler load module.

The notation nnn in dataset names represents the version number of the product.

For a detailed description of the installation tape refer to the Report of Tape Creation which accompanies the
tape.

Space Requirements

The space the dataset requires on disk is shown in the Report of Tape Creation.

Copying the Tape Contents to Disk

 To copy the tape contents to disk

1. Position the tape for the TAPE LOAD command by calculating the number of tape marks as follows:
If the sequence number of NOCnnn.TAPE, as shown by the Report of Tape Creation, is n, you must
position over 3n - 2 tape marks (that is, FSF 1 for the first dataset, FSF 4 for the second, etc.)

2. Access the disk that is to contain the Natural installation files as disk A.
3. Ask the system operator to attach a tape drive to your virtual machine at the address X’181’ and mount the

Natural Optimizer Compiler installation tape.
4. When the tape has been attached, enter the following CMS command:

TAPE REW
Position the tape by entering the CMS command:
TAPE FSF n
where n is the number of tape marks and is calculated as described above (3n - 2) .

5. Load the Natural Optimizer Compiler/CMS installation material by entering the CMS command:
TAPE LOAD * * A
Keep the tape drive attached to your virtual machine, because the tape is needed later in the installation
procedure.

Copyright © Software AG 200312

Installing the Natural Optimizer CompilerInstallation Tape - VM/CMS

Installation Procedure
Step 1 - Modify the Natural Parameter Module - Jobs I060, I080

Activate the Natural Optimizer Compiler by adding the following macro to your Natural parameter module
(NATPARM):

NTOPT ON

Assemble and link the parameter module.

Step 2 - Relink all Natural Nuclei - Jobs I060, I080

Adapt the link steps for Natural.

OS/390

Add the following INCLUDE instruction to all links of the Natural nuclei (if you are using a shared
nucleus, then include this statement in the link of the shared part):

INCLUDE NOCLIB(NOCNUC)

Add the corresponding DD statement:

//NOCLIB DD DSN=NOC nnn .LOAD,DISP=SHR
VSE/ESA

Add the following INCLUDE instruction and the corresponding sublibrary for the Natural Optimizer
Compiler in the search chain for the linkage editor:

INCLUDE NOCNUC
BS2000/OSD

Add the following INCLUDE instruction to the element LNATSHAR in NATnnn.JOBS:

INCLUDE NOCNUC,NOCnnn .MOD

Relink your Natural nucleus as described in Step 5: Link the Natural Nucleus in Installing Natural under
BS2000/OSD in the Natural Installation Guide for Mainframes.

VM/CMS

The list of text files to be included in the Natural module or DCSS is contained in REXX program
NAT$LOAD EXEC (variable LOADLIST). To customize your Natural system, modify this EXEC with
XEDIT by changing the LOADLIST as required.

Add the following INCLUDE instruction to the program NAT$LOAD EXEC

LOADLIST = LOADLIST ’NOCNUC’

Relink your Natural nucleus with the procedure NATBLDM.

13Copyright © Software AG 2003

Installation ProcedureInstalling the Natural Optimizer Compiler

Installation Verification
1. Recatalog an existing program or write a new program and then catalog it.
2. Check the directory information for the program you have just cataloged, by using the LIST system

command:
LIST DIR object-name

The directory information for the specified object will be displayed, showing the size of the machine code at the
bottom of the screen.

Copyright © Software AG 200314

Installing the Natural Optimizer CompilerInstallation Verification

Using the Optimizer Compiler - Overview
What is Compiled and What is Not
NOCSTAT Command
Which programs are suitable for compilation
Displaying the Size of the Machine Code
Optimizer Usage Examples

15Copyright © Software AG 2003

Using the Optimizer Compiler - OverviewUsing the Optimizer Compiler - Overview

What is Compiled and What is Not
The Natural Optimizer Compiler is particularly effective for programs that contain a considerable amount of data
manipulation, such as computation, transfer, and logical condition processing.

The Natural Optimizer Compiler compiles the following statements to machine code:

assignment statements (ASSIGN and MOVE)
RESET
arithmetic statements (COMPUTE, ADD, SUBTRACT, MULTIPLY, DIVIDE)
conditional statements (IF, DECIDE)
control statements (FOR, REPEAT)
ESCAPE
COMPRESS
EXAMINE
with the following clauses only:
GIVING NUMBER, GIVING POSITION or GIVING LENGTH (see also the Natural Statements
documentation).
GIVING INDEX is not optimized.
Example:
EXAMINE #TEXT FOR #A GIVING NUMBER #NMB1
EXAMINE #TEXT FOR #A GIVING POSITION #POSEX5
EXAMINE #TEXT FOR #A GIVING LENGTH #LGHEX6

The Natural Optimizer Compiler does not compile the following statements:

I/O statements (DISPLAY, WRITE, READ/WRITE WORK FILE).
complex special statements like SEPARATE.
statements that pass control to another programming object like FETCH, PERFORM, CALLNAT, CALL.
statements that perform database access (READ, FIND, HISTOGRAM, GET, UPDATE, DELETE, END
TRANSACTION, BACKOUT TRANSACTION)

Note:
The options the Natural Optimizer Compiler provides cannot be used for specifying statements to be optimized
as described in the Optimizer Options.

Copyright © Software AG 200316

What is Compiled and What is NotWhat is Compiled and What is Not

NOCSTAT Command
For programs optimized with the Natural Optimizer Compiler, certain statements can be directly converted into
machine code when cataloged. As a result, when executing the optimized objects with Natural at runtime, the
performance can be improved considerably.

The NOCSTAT command analyses cataloged programming objects and provides statistical information to help
decide whether program statements benefit from optimization with the NOC and, if so, to what extent they can
be optimized.

If a program is cataloged (STOW, CATALL), the Natural compiler generates an internal (pseudo) object code
based on the statements in the source program. In most cases, one source statement is transformed into one
pseudo-code instruction. However, for complex statements, such as FOR and REPEAT, several pseudo-code
instructions are generated. The NOCSTAT analyses are based on the generated pseudo-code instructions.
Therefore, the number of statements indicated in the statistical reports may exceed the number of statements in
the source program.

This section covers the following topics:

Invoking NOCSTAT
Generating Reports
Report Formats
Batch Execution

17Copyright © Software AG 2003

NOCSTAT CommandNOCSTAT Command

Invoking NOCSTAT
 To invoke the NOCSTAT command

Enter the direct command NOCSTAT.
The main NOCSTAT screen is displayed:

 14:02:01 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-04

 Name ________
 Library SAGTEST_

 NOCable Objects only .. _

 Output Report X Statement Category
 _ Statement Type
 _ Code Profile

 Output Destination X Screen
 _ CSV to Work File 1
 _ XML to Work File 1
 with XSL ________________________________

 Progress Control X

 Command ===>
 Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
 Help Exit Canc

To obtain field-specific help information, either enter a question mark in the relevant field and press ENTER, or
place the cursor in the field and press PF1. Press PF3 to exit NOCSTAT.

Copyright © Software AG 200318

NOCSTAT CommandInvoking NOCSTAT

Generating Reports
You can generate statistical reports for a single program or a set of programs. If you analyze more than one
program at a time, the reports are produced in series. When you have finished looking at one report, press
ENTER to view the next report.

The main NOCSTAT menu provides the following options:

Field Explanation

Name Enter a name or a range of names to specify the program(s) you want to examine:

 value is any combination of one or more characters.

value Single program.

* All programs.

value* All programs whose names begin with value.

value> All programs whose names are greater/equal value.

value< All programs whose names are less/equal value.

Library Enter the name of a library or specify a range; the same applies as described for the Name field
above.

The current library is the default.

NOCable
Objects only

Mark this option to exclude programs already compiled with the NOC.
Otherwise, the NOCSTAT command selects all Natural programs specified in the Name and
Library fields by default, including NOC-compiled programs.

Output
Report

Mark any of the options to select statements by category, type or code profile.

See Statement Category, Statement Type and Code Profile below.

19Copyright © Software AG 2003

Generating ReportsNOCSTAT Command

Field Explanation

Output
Destination

Mark any of the following options to determine the output format and destination:

Screen Online display.

CSV to
Work File 1

Generates spreadsheets with comma-separated values. Use the file extension
".csv" to write the work file directly to your PC for further processing.

You can only route reports to a PC if Entire Connection is installed.

XML to
Work File 1

Generates XML documents. Use the file extension ".xml" to write the work file
directly to your PC for further processing.

If a value is entered in the field "with XSL", a processing instruction is added at
the top of the XML output document:

<?xml-stylesheet type="text/xsl" href=" value "?>

The value entered should be the absolute or relative URL of the style sheet, for
example, "nocstat.xsl" or "http://natural.software-ag.de/nocstat.xsl".

The processing instruction causes the document to be transformed according to
the given style sheet when it is viewed by an XSLT-capable browser or
transformed by a batch XSLT run. A typical use of this feature is to convert the
output XML to an HTML page.

There are two XSLT style sheets delivered with Natural as text members
NOCSTLS1 and NOCSTLS2 in the Natural library SYSEXUEX on the FNAT
system file.

NOCSTLS1 provides formatting instructions for report type Statement Category,
NOCSTLS2 for report type Statement Type as described below.

Download the style sheets with file extension ".xsl" to the same directory in
which the XML work files are stored.

You can only route reports to a PC if Entire Connection is installed.

See also Progress Control and Batch Execution below.

Progress
Control

Only applies to Work File 1 output destinations.
If this option is marked, a brief message appears online for each program listed in the report
generated.

Copyright © Software AG 200320

NOCSTAT CommandGenerating Reports

Report Formats
You can choose between three output formats described below to display the statistics NOCSTAT provides for
the statements analyzed. Different report layouts are produced for programs already optimized with the NOC and
for programs to be considered for optimization. The example reports below show the difference. Press PF3 to
interrupt report processing and return to the NOCSTAT menu.

Below is information on:

Statement Category
Statement Type
Code Profile

Statement Category

The statistical report generated with the option "Statement Category" lists various categories of statements with
the corresponding number of occurrences and the total number of statements already optimized or suitable for
optimization, depending on whether or not the program was optimized with the NOC.

Example of NOC-Optimized Program:

 14:07:17 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-04
 Library SAGTEST Name NOCTEST1 Type Program

 MCG Options: (ON,OVFLW,INDX,MIX,IO)

 Database Loop: 0
 Database Simple: 0
 SORT / WORK I/O: 29
 FOR / REPEAT: 0
 Screen / Printer: 59
 String Manipulation: 6
 Arith / Logical: 0
 Program Calls: 3
 Control Transfer: 49
 Block Start: 25
 Set Environment: 2
 System Functions: 0
 Miscellaneous: 0

 Total Statements: 949
 NOC optimized: 762 (Ratio: 80 %)
 Longest NOC Run: 180 Statements

21Copyright © Software AG 2003

Report FormatsNOCSTAT Command

Example of Program without NOC Optimization:

 14:13:01 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-04
 Library SAGTEST Name NOCTEST2 Type Program

 No NOC NOCable
 -------- --------
 Database Loop: 0 0
 Database Simple: 0 0
 SORT / WORK I/O: 0 0
 FOR / REPEAT: 0 5
 Screen / Printer: 57 0
 String Manipulation: 4 8
 Arith / Logical: 0 491
 Program Calls: 3 0
 Control Transfer: 19 69
 Block Start: 15 0
 Set Environment: 0 0
 System Functions: 0 0
 Miscellaneous: 0 0

 Total Statements: 672
 NOC optimizable: 573 (Ratio: 85 %)
 Longest NOC Run: 192 Statements

Report Columns and Fields:

Copyright © Software AG 200322

NOCSTAT CommandStatement Category

Column Explanation

No NOC Statements not suitable for optimization.

NOCable Statements suitable for optimization.

Field

Database Loop The number of database statements that generate a processing loop, such as FIND and
READ.

Database Simple Database statements that do not generate a processing loop, such as STORE, UPDATE,
DELETE and GET.

SORT / WORK I/OSORT and WORK file statements.

FOR / REPEAT Statements generating loops.

Screen / Printer Screen and printer I/O, such as WRITE, DISPLAY and INPUT.

String
Manipulation

String statements, such as EXAMINE and COMPRESS.

Arith / Logical Arithmetic and logical statements, such as MOVE, COMPUTE and IF.

Program Calls Transfer of control to a subroutine or subprogram, such as PERFORM, CALLNAT and
FETCH.

Control Transfer Jumps within the program, such as ESCAPE BOTTOM, FOR and REPEAT loops.

Block Start Non-executed statements that demarcate code blocks, such as DEFINE SUBROUTINE
and AT END. These statements are never optimized because they are never executed.

Set Environment Statements that set the environment, such as SET CONTROL, SET GLOBALS and SET
KEY.

System Functions Statements, such as TOTAL, SUM, COUNT, MAX, MIN and *COUNT.

Miscellaneous Pseudo-code statements not relevant for optimization and, therefore, ignored by the NOC.

Totals

Total Statements The total number of statements found in the program. This number may not correspond to
the actual source statements as described in the introduction to NOCSTAT Command
above.

NOC optimized For an optimized program, these are the actual pseudo-code statements (as described in the
introduction to NOCSTAT Command above) that have been NOC-optimized to machine
code.

NOC optimizable For non-optimized programs, this is the possible number of statements that could be
optimized. The figure may be slightly higher than the actual number, since certain factors
are not considered in the NOCSTAT program. For example, a SUBSTRING statement that
has more than four arrays will be indicated as "optimizable" though it will not be
optimized.

Ratio Relation between Total Statements and NOC-optimized statements or Total Statements
and NOC-optimizable statements in percent.

Longest NOC Run NOC-optimized program:
The number of contiguous optimized statements - the fewer fragment sequences, the better
the performance.

Non-optimized program:
The number of contiguous statements to be expected if the program were optimized.

23Copyright © Software AG 2003

Statement CategoryNOCSTAT Command

Statement Type

The statistical report generated with the option "Statement Type" lists single statements with the corresponding
number of occurrences and the NOC coding generated for optimized objects.

Example of NOC-Optimized Program:

09:21:45 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-06
 Library SAGTEST Name NOCTEST1 Type Program

 Statement Number
 ------------------------ --------
 DB AT CONDITION 6
 READ/WRITE WORK FILE 29
 EXAMINE 6
 WRITE 51
 INPUT 3
 NEWPAGE 2
 REINPUT 3
 FIND 1
 READ 2
 NOC CODE 760
 BLOCK START 18
 ON ERROR 1
 END 1
 STOP 2
 RETURN 3
 RETURN INLINE 15
 ESCAPE ROUTINE 3
 ESCAPE ROUTINE IMMEDIATE 1
 MORE

Example of Program without NOC Optimization:

09:23:15 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-06
 Library SAGTEST Name NOCTEST2 Type Program

 Statement No NOC NOCable
 ------------------------ -------- --------
 DB AT CONDITION 6 0
 MOVE/COMPUTE/ASSIGN 0 371
 EXAMINE 4 0
 COMPRESS 0 7
 WRITE 47 0
 INPUT 2 0
 NEWPAGE 2 0
 REINPUT 6 0
 FIND 1 0
 READ 1 0
 HISTOGRAM 1 0
 ELSE/CLOSE LOOP 0 55
 LOOPEND FOR/REPEAT 0 5
 BLOCK START 8 0
 ON ERROR 1 0
 END 1 0
 STOP 2 0
 RETURN 2 0
 MORE

Copyright © Software AG 200324

NOCSTAT CommandStatement Type

Code Profile

The statistical report generated with the option "Code Profile" displays contiguous sequences of statements
grouped by categories in a source program suitable for optimization, or lists the NOC coding generated for an
optimized program. Occurrences are highlighted.

Example of NOC-Optimized Program:

09:59:04 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-06
 Library SAGTEST Name NOCTEST1 Type Program

 Line Statement
 ----- -------------------------
 0000 ON ERROR
 0000 MCG OPTIONS
 0045 MCG OPTIONS
 0050 NOC CODE
 0050 NOC CODE
 0050 NOC CODE
 0050 NOC CODE
 1110 SET KEY
 1140 NOC CODE
 1140 NOC CODE
 1145 NOC CODE
 1145 NOC CODE
 1150 NOC CODE
 1150 NOC CODE
 1155 NOC CODE
 1155 NOC CODE
 1160 NOC CODE
 1160 NOC CODE
 MORE

Example of Program without NOC Optimization:

10:01:36 ***** NATURAL NOCSTAT COMMAND ***** 2000-09-06
 Library SAGTEST Name NOCTEST2 Type Program

 Line Statement
 ----- -------------------------
 0000 ON ERROR
 0000 MCG OPTIONS
 0100 MOVE/COMPUTE/ASSIGN <-- NOCable
 0100 MOVE/COMPUTE/ASSIGN <-- NOCable
 0100 MOVE/COMPUTE/ASSIGN <-- NOCable
 1920 MOVE/COMPUTE/ASSIGN <-- NOCable
 1920 FOR <-- NOCable
 1920 MOVE/COMPUTE/ASSIGN <-- NOCable
 1920 FOR/REPEAT IF <-- NOCable
 1930 COMPRESS <-- NOCable
 1940 LOOPEND FOR/REPEAT <-- NOCable
 1960 MOVE/COMPUTE/ASSIGN <-- NOCable
 1960 MOVE/COMPUTE/ASSIGN <-- NOCable
 1970 MOVE/COMPUTE/ASSIGN <-- NOCable
 1970 MOVE/COMPUTE/ASSIGN <-- NOCable
 1980 MOVE/COMPUTE/ASSIGN <-- NOCable
 1980 MOVE/COMPUTE/ASSIGN <-- NOCable
 1990 MOVE/COMPUTE/ASSIGN <-- NOCable
 MORE

25Copyright © Software AG 2003

Code ProfileNOCSTAT Command

Batch Execution
Below are job examples for processing NOCSTAT reports in batch mode. After job execution, the work files
generated can be transferred from host to PC for further processing with standard transfer tools.

Example Job OS/390:

 //NOCBATCH JOB (NOC,,,30),CLASS=K,MSGCLASS=X 00000100
 //NATEX EXEC PGM=NATBAT31,REGION=6200K,PARM=(’IM=D’) 00000200
 //STEPLIB DD DISP=SHR,DSN=TESTNAT.LOAD 00000300
 //CMPRINT DD SYSOUT=X 00000400
 //CMWKF01 DD DSN=’NOC.NOCSTAT.OUT’,DISP=(NEW,CATLG), 00000500
 SPACE=(CYL,(1,1)),UNIT=SYSDA,VOL=SER=SAG001 00000600
 //SYSOUT DD SYSOUT=X 00000700
 //CMSYNIN DD * 00000800
 NOCSTAT 00000900
 *,library,X,,,X 00001000
 . 00001100
 FIN 00001200
 /* 00001300

Example Job VSE/ESA:

 * $$ JOB JNM=NOCTST,CLASS=5,DISP=D
 * $$ LST CLASS=Q,DISP=D
 // JOB NOCTST
 // ASSGN SYS001,DISK,VOL=xxxxxx,SHR
 // DLBL CMWKF01,’NOCSTAT.FILE.ONE’,0
 // EXTENT SYS001,xxxxxx,1,0,1,150
 // EXEC NAT234BA,SIZE=NAT314BA,PARM=’SYSRDR’
 IM=D,OBJIN=R
 /*
 ADARUN DBID=185
 /*
 NOCSTAT
 *;library;X; ; ; ;X;
 .
 FIN
 /*
 /&

Copyright © Software AG 200326

NOCSTAT CommandBatch Execution

Example Job BS2000/OSD:

 /.BAT234 LOGON NAT,1
 / SYSFILE SYSOUT=NAT314.OUT
 / SYSFILE SYSLST=NAT314.LST
 /SKIP .NOP000
 ==
 NAME : E.NAT314 S T A R T B A T C H N A T U R A L
 ==
 /.NOP000 REMARK
 / OPTION DUMP=YES,MSG=FL
 / FILE NOCSTAT.OUT,LINK=W01
 / FILE ADAUSER ,LINK=DDCARD
 / FILE $SAG.ADA623.MOD ,LINK=BLSLIB00
 / SYSFILE TASKLIB=MOD234
 / SYSFILE SYSDTA=(SYSCMD)
 / FILE NAT314.CMPRMIN,LINK=CMPRMIN
 / DCLJV NATJV1,LINK=*NATB2JV
 / FILE $NAT.ADALNK.PARMS,LINK=DDLNKPAR
 / REMARK %%%%%%%%%% BATCH-PHASE %%%%%%%%%%%%%%
 / EXEC NAT314
 NOCSTAT
 *,ADE,X, , , ,X, , ,X
 .
 FIN

27Copyright © Software AG 2003

Batch ExecutionNOCSTAT Command

Displaying the Size of the Machine Code
With the Natural system command LIST, you can see whether a program has been compiled to machine code
and also the size of the machine code.

 To list compiled programs

Enter in the command line: LIST DIR object-name

The directory information for the specified object will be displayed, showing at the bottom of the screen the size
of the machine code, the OPT parameters used for the compilation and the NOC version under which the
program was cataloged.

Details of the LIST command are provided in the Natural System Command Reference documentation.

Copyright © Software AG 200328

Displaying the Size of the Machine CodeDisplaying the Size of the Machine Code

Optimizer Usage Examples
The examples below illustrate when to use the Natural Optimizer Compiler to the best advantage and to give an
indication of its power:

Example 1 - No Improvement through Optimization
Example 2 - Considerable Improvement through Optimization
Examples 3 and 4 - CPU Usage depending on the NOC Options set

Example 1 - No Improvement
Nothing would be gained by using the Natural Optimizer Compiler for the following program:

DEFINE DATA LOCAL
 1 EMPLOYEES VIEW OF EMPLOYEES
 2 JOB-TITLE
 2 BIRTH
 2 NAME
 END-DEFINE
 FIND EMPLOYEES WITH JOB-TITLE = ’PROGRAMMER’ OR = ’ANALYST’
 OR = ’PROGRAMMER/ANALYST’
 OR = ’SYSTEM ANALYST’
 DISPLAY JOB-TITLE BIRTH NAME
 END-FIND
 END

29Copyright © Software AG 2003

Optimizer Usage ExamplesOptimizer Usage Examples

Example 2 - Considerable Improvement
If the following program is compiled with the Natural Optimizer Compiler, you will see a performance
improvement of approximately 30 % (that is a 30 % reduction in CPU load). The program performs a statistical
analysis of the age of IT-employees. Optimized statements are indicated in boldface.

In this example, NOC increases the object size by 20.5 %, due to 952 bytes of additional machine code:

 Size in Buffer Pool Size of Machine Code
generated by NOC

OPT=NODBG 5768 952

OPT=OFF 4784 0

 DEFINE DATA
 LOCAL
 1 EMPLOY VIEW OF EMPLOYEES
 2 JOB-TITLE (A25)
 2 BIRTH (D)
 1 I (I1) INIT <1>
 1 CDATE (D)
 1 NUMB (N4)
 1 SUMM (P7.2)
 1 SQUARE (F8)
 1 DEVI (F8)
 1 DEVIATION (N3.4)
 1 MEAN (P2.3)
 1 AGEDIS (F8/1:70)
 1 AGEMAX (F8)
 1 AGEH (P3)
 1 AGE (P3)
 1 AGEDAYS (P15)
 1 LINE (A71/1:20)
 1 REDEFINE LINE
 2 POINTS (A1/1:20,0:70)
 END-DEFINE
 *
 MOVE *DATX TO CDATE
 *
 FIND EMPLOY WITH JOB-TITLE = ’PROGRAMMER’ OR = ’ANALYST’
 OR = ’PROGRAMMER/ANALYST’ OR = ’SYSTEM ANALYST’
 AGEDAYS:= CDATE - BIRTH
 AGE:=AGEDAYS / 365
 ADD 1 TO AGEDIS(AGE) /* DISTRIBUTION
 ADD 1 TO NUMB
 ADD AGE TO SUMM
 COMPUTE SQUARE = SQUARE + AGE * AGE
 END-FIND
 *

 * COMPUTE ESTIMATES

 *
 COMPUTE DEVI = NUMB * SQUARE / (SUMM * SUMM) - 1
 COMPUTE DEVIATION = SQRT(DEVI)
 COMPUTE MEAN = SUMM / NUMB
 *

 * GRAPHIC DISPLAY

Copyright © Software AG 200330

Optimizer Usage ExamplesExample 2 - Considerable Improvement

 *
 FOR I 1 70
 IF AGEDIS(I) > AGEMAX MOVE AGEDIS(I) TO AGEMAX
 END-IF
 END-FOR
 FOR I 1 70
 COMPUTE AGEDIS(I) = AGEDIS(I) * 20 / AGEMAX
 END-FOR
 FOR I 1 70
 COMPUTE AGEH = 21 - AGEDIS(I)
 IF AGEH < 21 MOVE ’*’ TO POINTS(AGEH:20,I)
 END-IF
 END-FOR
 *

 * COMPLETE GRAPHIC DISPLAY

 *
 MOVE ’!’ TO POINTS(*,0)
 WRITE TITLE LEFT
 AGEMAX(EM=999) 20X ’DISTRIBUTION OF IT-EMPLOYEES BY AGE’
 WRITE NOTITLE NOHDR
 LINE(*) /
 ’0--------10--------20--------30--------40--------50--------60--------’
 / ’MEAN=’ MEAN 10X ’DEVIATION=’ DEVIATION
 END

31Copyright © Software AG 2003

Example 2 - Considerable ImprovementOptimizer Usage Examples

Examples 3 and 4 - CPU Usage
The following program illustrates the difference in CPU usage, depending on the options you select when
compiling the program. The table below lists the CPU usage in seconds and percent. The figures provided in the
table were determined during a test run in an IBM OS/390 environment. They can only serve as general
orientation, since absolute values vary depending on the hardware applied.

 DEFINE DATA LOCAL
 1 #I1 (I4) INIT <1>
 1 #I2 (I4) INIT <2>
 1 #J1 (I4) INIT <3>
 1 #J2 (I4) INIT <4>
 1 #F (I4)
 1 #ARR1 (N7/10,5)
 1 #ARR2 (N5/10,5)
 END-DEFINE
 *
 FOR #F = 1 TO 1000000
 MOVE #ARR1(#I1,#I2) TO #ARR2(#J1,#J2)
 END-FOR
 *
 END

Option CPU secondsCPU percentage

OFF 8.78 100

ON 0.63 7.18

INDX 0.85 9.68

OVFLW 1.71 19.48

INDX,OVFLW 2.00 22.78

INDX,OVFLW,NODBG 1.61 18.34

INDX,OVFLW,NODBG,NOSGNTR 1.61 18.34

NODBG 0.44 5.01

NOSGNTR 0.63 7.18

NODBG,NOSGNTR 0.44 5.01

Copyright © Software AG 200332

Optimizer Usage ExamplesExamples 3 and 4 - CPU Usage

 DEFINE DATA LOCAL
 1 #I1 (P7) INIT <1>
 1 #I2 (P7) INIT <2>
 1 #J1 (N7) INIT <3>
 1 #J2 (N7) INIT <4>
 1 #K1 (I4) INIT <5>
 1 #K2 (I4) INIT <6>
 1 #F (I4)
 1 #FIELD1 (P5)
 1 #FIELD2 (N5)
 1 #FIELD3 (I2)
 END-DEFINE
 *
 FOR #F = 1 TO 500000
 *
 #FIELD1:= #I1 - #I2 + (13 * 10 / 5)
 #FIELD2:= #J1 - #J2 + (13 * 10 / 5)
 #FIELD3:= #K1 - #K2 + (13 * 10 / 5)
 *
 END-FOR
 *
 END

Option CPU secondsCPU percentage

OFF 18.61 100.00

ON 4.95 26.60

INDX 4.95 26.60

OVFLW 5.38 28.91

INDX,OVFLW 5.38 28.91

INDX,OVFLW,NODBG 5.26 28.26

INDX,OVFLW,NODBG,NOSGNTR 5.09 27.35

NODBG 4.79 25.74

NOSGNTR 4.81 25.85

NODBG,NOSGNTR 4.63 24.88

NODBG,NOSGNTR,ZD=OFF 4.51 24.23

NODBG,NOSGNTR,ZD=OFF,SIGNCHCK=OFF 4.41 23.70

33Copyright © Software AG 2003

Examples 3 and 4 - CPU UsageOptimizer Usage Examples

Activating the Optimizer Compiler
To activate the Natural Optimizer Compiler, use one of the following:

Macro NTOPT
Dynamic Profile Parameter OPT
System Command NOCOPT
Natural Statement OPTIONS

where the first alternative is the most static one and the last alternative the most dynamic one.

All alternatives use the Optimizer options as described in the section Optimizer Options. Using these options you
can control how and when machine code is generated, what tracing options are to be used and what the target
architecture will be. The Optimizer options are the only control mechanism for the Natural Optimizer Compiler.

Macro NTOPT
With the macro NTOPT in the Natural Parameter Module, you can activate the Natural Optimizer Compiler
statically for a linked Natural nucleus. Every time this Natural nucleus is started, the same Optimizer options are
used again.

Example 1:

NTOPT ’INDX,OVFLW,ZD=OFF’

Example 2:

NTOPT ’INDX,OVFLW,ZD=OFF,TRGPT’, -
 ’TRSTMT,OPTLEV03’

Note the continuation character "-" in column 72.

See the section Optimizer Options for an explanation of the options setting used.

Dynamic Profile Parameter OPT
When starting a Natural session, you can dynamically activate the Optimizer Compiler by specifying the Natural
profile parameter OPT. As a synonym for OPT, you can use MCG. The specification of the parameter module is
overwritten. The options are only valid for the current session.

Example:

OPT=(INDX,OVFLW,ZD=OFF)

or

MCG=(INDX,OVFLW,ZD=OFF)

See the section Optimizer Options for an explanation of the option setting used.

Copyright © Software AG 200334

Activating the Optimizer CompilerActivating the Optimizer Compiler

System Command NOCOPT
When you have started a Natural session, you can invoke the Optimizer command screen with the Natural
system command NOCOPT. The screen monitors the current setting of the Natural Optimizer Compiler options
as they were specified during Natural startup. You can now modify the setting online.

The updated parameter setting is only valid for the current session.

Natural Statement OPTIONS
The MCG parameter of the Natural compiler statement OPTIONS provides the most flexible and powerful
control over machine code generation, since different options can be set for individual statements in a program.
So, within one Natural program, the Optimizer can be activated and deactivated several times to enclose ranges
of statements with different options settings.

Example

OPTIONS MCG=(OVFLW,INDX,ZD=OFF)

or

OPTIONS MCG=OVFLW,INDX,ZD=OFF

The options string of the MCG parameter may start with a plus (+) or minus (-) sign, indicating that the values of
options not mentioned should be left unaltered, and only the options present should be set (+) or reset (-), for
example:

Example:

 OPTIONS MCG=+PGEN /* turns tracing on

 (statements to be traced)

 OPTIONS MCG=-PGEN /* turns tracing off

If the string starts with anything other than "+" or "-", all options are reset before the string is parsed.

Note that the Natural statement OPTIONS also provides other Natural compiler parameters than MCG.

See the section Optimizer Options and for an explanation of the options setting used.

35Copyright © Software AG 2003

System Command NOCOPTActivating the Optimizer Compiler

Optimizer Options
When the Natural Optimizer has been activated, you can specify checks by setting the options explained in this
section.

The options cannot be used for specifying statements to be optimized.

This section covers the following topics:

List of Options
PGEN Option
Influence of other Natural Parameters

List of Options
The following table lists and describes NOC options. Default values are underlined (this is the value that will be
assumed if the option is not present).

A NOC option consists of a string surrounded by brackets or single quotation marks (except in the Natural
OPTIONS statement), with options separated by commas. Some options have values, while the very existence of
some options in the option string is sufficient to modify the environment.

Optional clauses are surrounded by square brackets [], choices are surrounded by curly braces { } and each
choice is separated by vertical lines "|". Only one of these choices can be specified; ON is equivalent to Y (Yes),
OFF to N (No). Options specified without the optional clause ON or OFF (if applicable), or their equivalent
values, are interpreted as set to ON. For example, OVFLW is identical to OVFLW=ON. Except for the option
OFF, any specified option switches on optimizing (as if ON was specified) and the default values apply. For
example, INDEX is identical to ON,INDEX.

Option Explanation

ABEND Forces the Natural Optimizer Compiler to generate code which causes Natural
to be abnormally terminated immediately when the ABEND option is
encountered by the Natural Optimizer Compiler during compilation. The
option must appear by itself or it will be ignored. Other parameters are not
changed or reset by this option. This option can be useful for debugging
purposes.

CACHE[={ON|OFF|Y|N}] Switches variable caching on or off. See also Variable Caching in the section
Performance Considerations.

CPU=/370 Specifies the target architecture. The /370 option is valid for IBM and
Siemens.

DIGTCHCK[={ON|OFF|Y|N}] Specifies whether the digits of packed and unpacked numeric fields (Formats
P and N) are to be checked when moving to another variable of the same type
and precision. For example, if DIGTCHCK is ON and an unpacked numeric
variable (Format N) contains an invalid digit, such as X’FA’, moving to
another unpacked numeric variable with the same precision will generate a
S0C7 (or NAT0954) error. If DIGTCHCK is OFF, no error is generated but
the generated code is much faster.

ERRDUMP[={ON|OFF|Y|N}] Specifies whether NOC should abend if an error condition is detected during
the compile phase. This is useful for debugging the Natural Optimizer
Compiler itself.

Copyright © Software AG 200336

Optimizer OptionsOptimizer Options

Option Explanation

INDEX[={ON|OFF|Y|N}] Specifies whether array indexes will be checked for out-of-bound values in
the optimized code. See also the Warning below.

INDX[={ON| OFF|Y|N}] Specifies whether array indexes will be checked for out-of-bound values in
the optimized code.
Additionally, RANGE will be set on. Therefore, this option is equivalent to
INDEX=ON,RANGE=ON.
See also the Warning below.

IO[={ON|OFF|Y|N}] Reserved for future use.

LOOPS[={ON|OFF|Y|N}] Provided for compatibility reasons only. No effect.

MIX[={ON| OFF|Y|N}] Provided for compatibility reasons only. No effect.

NODBG[={ON|OFF|Y|N}] If NODBG=OFF/N (default), the Natural Debugger can be used to debug
optimized code (then, additional code is generated to check whether TEST
mode has been set on).
If NODBG=ON/Y, it is not possible to use the Natural Debugger to debug
optimized programs. The program will also run faster and consume less CPU
time.

NODBG is also in effect if you specify the options INDEX, RANGE or
OVFLW.

See also NODBG in the section Performance Considerations.

NOSGNTR[={ON|OFF|Y|N}] Applies to packed numbers only.

If NOSGNTR=OFF (default), signs of positive packed numbers which are the
result of an arithmetic operation or the target of an assignment are set
according to the COMPOPT parameter PSIGNF. If NOSGNTR=ON, the
signs resulting from execution of the generated machine instruction are left
unchanged. See also the section Influence of other Natural Parameters.

ON Switches on optimizing. If no additional option is specified, the default value
defined for each option is in effect. As indicated in the Warning below, this
may cause unintended results, in particular regarding the options INDEX,
INDX, OVFLW, and RANGE.

OFF Switches off optimizing.

OPTLEV={2|3} Specifies optimization level - roughly equivalent to the number of passes
through the program.
OPTLEV=3 is useful when PGEN is specified, since some branch targets
cannot be determined during the first pass and PGEN output is made during
the last pass. Thus, some values may be shown improperly.

OVFLW[={ON|OFF|Y|N}] Specifies whether checks for overflow in arithmetic operations or assignments
will be included in the optimized code.
See also the Warning below.

PGEN[={ON|OFF|Y|N}] Specifies whether a disassembly of the optimized code should be output. This
option also enables all other tracing options. See also PGEN Option below.

RANGE[={ON|OFF|Y|N}] Specifies whether range checks will be performed in operations with arrays.
This ensures that array ranges will have an equal number of elements in
corresponding dimensions of all operands.
See also the Warning below.

37Copyright © Software AG 2003

List of OptionsOptimizer Options

Option Explanation

SIGNCHCK[={ON|OFF|Y|N}] Specifies whether the result of a multiplication with a packed or unpacked
numeric multiplier should be checked for a negative zero. If zero is multiplied
by a negative number, the MP machine instruction generates a negative zero
result. If SIGNCHCK is on, this negative zero is converted to a positive zero.
The check for a negative zero is done for every multiplication with a packed
or unpacked numeric multiplier.

TRENTRY For internal use by Software AG only. Do not change the setting of this
parameter.

ZD[={ ON|OFF|Y|N}] Specifies whether divisors should be checked for zero. If this option is
specified, then code is inserted, so that the program behaves according to the
ZD profile parameter of Natural, that is, Natural error NAT1302 is issued or
the result is zero. If this option is not specified, Natural error NAT0954 occurs
if the divisor is zero. See also ZD - Zero-Division Check in the section Profile
Parameters in the Natural Parameter Reference documentation.

Warning for INDEX, INDX, OVFLW, and RANGE:
Apply values OFF and N with care. Suppressing overflow checking or array index checking
may allow incorrect programs to lead to unpredictable results, storage corruption, or
abnormal terminating.

See also the Example of INDEX and OVFLW below which demonstrates the impact of
INDEX and OVFLW.

Below is information on:

Example of INDEX and OVFLW
Optimum Code Generation

Example of INDEX and OVFLW
DEFINE DATA LOCAL
...
1 P1 (P1/9)
...
1 P3 (P3/9)
...
1 I (I4)
1 J (I4)
1 K (I4)
1 L (I4)
END-DEFINE
...
P1(I:J) := P3(K:L)
...
END

Explanation of Example

With INDX=ON or INDEX=ON set, code is generated to verify that I , J, K and L are within the ranges defined
for P1 and P3 respectively.

With INDX=ON or RANGE=ON set, code is generated to verify that I:J and K:L denote ranges of the same
length.

Copyright © Software AG 200338

Optimizer OptionsExample of INDEX and OVFLW

With OVFLW=ON set, code is generated to verify that the value of P3 fits into the corresponding P1 variable.
For example: Value 100 would cause an overflow here.

Example Error Situation:
If one of the occurrences of P3 contains the value 100, with OVFLW=OFF set, the value assigned to the
corresponding P1 occurrence will be zero. If the index variable I is zero or greater than 9, with INDX=OFF set,
storage areas that do not belong to Array P1 will be corrupted. If these options (OVFLW and INDX) are set to
ON, a Natural error occurs like it does in standard Natural runtime.

For the NOC option specified above, additional code is generated. However, this is well compensated for by the
advantage of a check that, for example, protects against hard-to-debug errors. Undetected errors can, of course,
lead to unpredictable results.

Optimum Code Generation

To assure that the least amount of code is generated and thus achieve optimum performance, use
OPT=’NODBG,NOSGNTR,SIGNCHCK=OFF,ZD=OFF’. However, only apply this setting to programming
objects that have been thoroughly debugged: see also the Warning below.

PGEN Option
The PGEN option causes the Natural Optimizer Compiler to output the generated code and internal Natural
structures. Thus, code and structures can be examined, for example, for bug fixing, performance review and
support issues.

An understanding of IBM’s /370 assembler is required to interpret the results produced by the PGEN option.

We recommend that you use this option with the assistance of your local Software AG representative.

Below is information on:

Setting PGEN
Sub-Options of the PGEN Option
Output of the PGEN Option
Working with the PGEN Output

Setting PGEN

To use the PGEN facility, set the PGEN option when activating on the Optimizer Compiler.

Since the buffer is kept in memory, it is possible that the user thread will not be big enough to hold the trace
information. In this case, try setting PGEN on only for the portion of the program which is to be traced, for
example:

OPTIONS MCG=(PGEN=ON,TRGPT=ON)
or
OPTIONS MCG=+PGEN,TRGPT

Turns tracing on, including tracing of the GPT entries

OPTIONS MCG=(PGEN=OFF)
or
OPTIONS MCG=-PGEN

Turns tracing off

Various options affect the content of the output. The basic PGEN option causes a formatted listing of Natural
source lines and a disassembly of the corresponding code to be generated and kept in memory for extraction by
the NOCSHOW utility as described below, under Output of the PGEN Option.

39Copyright © Software AG 2003

PGEN OptionOptimizer Options

The TRSTMT, TRGPT, TRMPT and TRVDT options cause hex dumps of internal data structures associated
with each line to be output.

The TRBASES and TRCACHE options cause information on base registers and cache variables to be printed
out.

Sub-Options of the PGEN Option

The following table describes the options when PGEN=ON. For an explanation of the syntax used see the
introduction to List of Options above.

Option Explanation

LPP={5|..|55|..|255} Lines-per-page for the trace output, only used when TREXT=ON.

NOSRCE[={ON|OFF|Y|N}] If NOSRCE=OFF, the Natural source statement is included in the output.

TRACELEV={0|..|255} Specifies the trace level. Each bit in this one byte value specifies a buffer type
to trace; these bits can be set on by using the TRxxx options as well.

TRBASES[={ON|OFF|Y|N}] Specifies whether base register allocations are traced.

TRCACHE[={ON|OFF|Y|N}] Specifies whether CACHE entries are traced.

TREXT[={ON|OFF|Y|N}] If TREXT=ON, trace is directed to the user exit NOCPRINT as described
below.

TRGPT[={ON|OFF|Y|N}] Specifies whether GPT entries are traced.

TRMPT[=ON|OFF|Y|N}] Specifies whether MPT entries are traced.

TRSTMT[={ON|OFF|Y|N}] Specifies whether STMT entries are traced.

TRVDT[={ON|OFF|Y|N}] Specifies whether VDT entries are traced.

See also the examples below.

Output of the PGEN Option

There are two places to where the Natural Optimizer Compiler can direct the output of PGEN:

Internal Buffer
User Exit NOCPRINT

Internal Buffer

The contents of this buffer is overwritten each time a CHECK, CAT, STOW or RUN command is executed. A
system utility NOCSHOW is provided whereby the contents of this buffer can be viewed, searched or printed.

 To invoke the NOCSHOW utility

Enter the direct command NOCSHOW
after a CHECK, STOW, CAT or RUN where the Natural Optimizer Compiler has been active.

The following PF keys are available on the screen:

Copyright © Software AG 200340

Optimizer OptionsSub-Options of the PGEN Option

Key Function

PF2 Position to top of output

PF4 Position one line backward

PF5 Position one line forward

PF6 Print to Natural printer support No.1

PF7 Position one page backward

PF8 Position one page forward

PF10 Scan for text string

PF11 Repeat scan

User Exit NOCPRINT

If TREXT=ON is specified, the Natural Optimizer Compiler passes every output line to the user exit
NOCPRINT instead of adding it to the trace buffer.

NOCPRINT is invoked following normal OS register conventions. Register 1 points to a full word containing the
address of the 81 byte print line with ANSI carriage control characters in position 1. Register 13 points to an area
of 18*4 bytes which may be used as a save area. Register 14 contains the return address and Register 15 contains
the entry address of NOCPRINT.

The user exit NOCPRINT can be written in any language which supports the register conventions described
above. It must be linked to the Natural nucleus together with the Natural Optimizer Compiler nucleus.

Working with the PGEN Output

This section provides hints and explanations on how to interpret the output created with the PGEN option.

At the top of the PGEN output are some disassembled lines which do not appear to belong to any source
line. These are the instructions which make up the prologue, which is executed whenever control passes
from non-optimized to optimized code. Permanent base registers are loaded and control is passed to the
correct point in the prologue.
See Example Section A below.
Sometimes a lot of source lines are printed without any code. This is because the Natural compiler puts a
single line number in the object of statements which may span more than one line.
See Example Section B below.
If the NODBG=OFF (default) has been specified, a sequence of instructions is generated at the start of each
Natural statement:

BALR R9,R11
DC X’....’

This sequence sets the line number (in case of error) and checks whether the TEST mode is switched ON.
Without this sequence, debugging of NOC-compiled statements by the Natural Debugger is not possible.
See Example Section C below.

Sometimes there is a line break between disassembled lines. This break indicates an internal statement
separation. It happens because often a single Natural statement will generate multiple internal
(pseudo-code) statements.

Example Section A:

41Copyright © Software AG 2003

Working with the PGEN OutputOptimizer Options

 000000 5880 D354 L R8,RTADR+4
 000004 5870 D370 L R7,RTADR+32
 000008 4810 6006 LH R1,6(,R6)
 00000C 1F60 SLR R6,R0
 00000E 47F1 A000 BC 15,0(R1,R10)

Example Section B:

 0010 OPTIONS MCG=(PGEN=ON,TRGPT=ON)
 0020 DEFINE DATA LOCAL
 0030 1 I(I4)
 0040 1 P(P7.2)
 0050 1 T(P7.2)
 0060 END-DEFINE
 0070 *

 0080 SETTIME
 0090 *

 000012 45E0 B040 BAL R14,RETH
 000016 0036 DC X’0036’

 0100 FOR I=1 TO 100000

Example Section C:

 000018 059B BALR R9,R11
 00001A 003E DC X’003E’
 00001C D203 7000 833B MVC I,#VAR033B

 000022 059B BALR R9,R11
 000024 004C DC X’004C’
 000026 47F0 A040 BC 15,64(,R10)

 00002A 059B BALR R9,R11
 00002C 005A DC X’005A’
 00002E BFFF 8343 ICM R15,15,#VAR0343
 000032 BF0F 7000 ICM R0,15,I
 000036 1A0F AR R0,R15
 000038 BE0F 7000 STCM R0,15,I

 00003C 059B BALR R9,R11
 00003E 006C DC X’006C’
 000040 BFFF 833F ICM R15,15,#VAR033F
 000044 BF0F 7000 ICM R0,15,I
 000048 190F CR R0,R15
 00004A 4720 A066 BC 2,102(,R10)

 0110 ADD 1.00 TO P

 00004E 059B BALR R9,R11
 000050 0082 DC X’0082’
 000052 FA41 7004 8347 AP P,#VAR0347
 000058 DC00 7008 B488 TR P+4(1),PSGNTR

 0120 END-FOR
 0130 *

 00005E 059B BALR R9,R11
 000060 0094 DC X’0094’
 000062 47F0 A02A BC 15,42(,R10)

Copyright © Software AG 200342

Optimizer OptionsWorking with the PGEN Output

 0140 T:=*TIMD(0080)

 000066 059B BALR R9,R11
 000068 009C DC X’009C’
 00006A 45E0 B0D8 BAL R14,SYSFUNC
 00006E 0330 B881 DC X’0330B881’

 000072 F246 7009 8330 PACK T,#VAR0330
 000078 F040 7009 0002 SRP T,2,0
 00007E DC00 700D B488 TR T+4(1),PSGNTR

 0150 T:=T / 10
 0160 *

 000084 059B BALR R9,R11
 000086 00AE DC X’00AE’
 000088 F864 D100 7009 ZAP OP1(7),T
 00008E F811 D130 8349 ZAP WORK2(2),#VAR0349
 000094 45E0 B104 BAL R14,ZDCHECK
 000098 F240 7009 B355 PACK T,ZEROZ
 00009E 47F0 E01C BC 15,28(,R14)
 0000A2 FD61 D100 8349 DP OP1(7),#VAR0349
 0000A8 D204 7009 D100 MVC T,OP1
 0000AE DC00 700D B488 TR T+4(1),PSGNTR

 0170 DISPLAY ’ELAPSED TIME (S)’ T

 0000B4 45E0 B040 BAL R14,RETH
 0000B8 00C0 DC X’00C0’

 0180 END

Influence of other Natural Parameters
The global parameter ZD influences the behavior of the NOC compiler. See the description of the ZD option as
described under List of Options above.

The COMPOPT parameter PSIGNF (see also the system command COMPOPT in the Natural System Command
Reference documentation) influences the behavior by forcing the signs of positive packed decimal numbers to F
if ON, and to C if OFF. The parameter is applied if NOSGNTR=OFF is specified.

See the chart below for packed data (Type P):

NOSGNTR=OFFand PSIGNF=ON All signs are normalized to F (default).

NOSGNTR=OFFand PSIGNF=OFFAll signs are normalized to C.

NOSGNTR=ON All signs are left as they were generated by the last operation.

For numeric data (Type N) the signs are always normalized to F, regardless of the settings of NOSGNTR and
PSIGNF.

43Copyright © Software AG 2003

Influence of other Natural ParametersOptimizer Options

Performance Considerations
This section covers the following topics:

Formats
Arrays
Alphanumeric Fields
DECIDE ON
Numeric Values
Variable Positioning
Variable Caching
NODBG

Formats
Best performance is achieved when you use the data formats packed numeric (P) and integer (I4) in arithmetic
operations.

Avoid converting data between the formats packed numeric (P), unpacked numeric (N), integer (I), and floating
point (F), as this causes processing overhead even with optimized code.

As there is no interpretation overhead with optimized code, the differences between the various data formats
become much more prominent: with optimized code the performance improvement gained by using Format P
instead of N, for example, is even higher than with normal code.

Example:

A = A + 1

In the above numeric calculation

with non-optimized code, Format P executes approximately 13 % faster than Format N.
with optimized code, however, Format P executes approximately 56 % faster than Format N.

The performance gain which would be achieved by applying the Natural Optimizer Compiler to this simple
statement is

with unpacked operands (N): 8 times faster
with packed operands (P): 15 times faster

Arrays
Array range operations, such as

MOVE A(*) TO B(*)

are executed more efficiently than if the same function were programmed using a FOR statement processing
loop. This is also true for optimized code.

When indexes are used, integer Format I4 should be used to achieve optimum performance.

Copyright © Software AG 200344

Performance ConsiderationsPerformance Considerations

Alphanumeric Fields
We recommend that you adjust the length of the alphanumeric constant to the length of the variable, when
moving an alphanumeric constant to an alphanumeric variable (Format A), or when comparing an alphanumeric
variable with an alphanumeric constant. This will significantly speed up operation, for example:

A(A5):=’XYZAB’...
IF A = ’ABC ’ THEN ...

is faster than

IF A = ’ABC’ THEN ...

DECIDE ON
When using DECIDE ON with a system variable, array or parameter operand1, it is more efficient to move the
value to a scalar variable of the same type and length defined in the LOCAL storage section.

Numeric Values
When using numeric constants in assignments or arithmetic operations, try to force the constants to have the
same type as the operation.

Rules of Thumb

Any numeric constant with or without a decimal but without an exponent is compiled to a packed number
having the minimum length and precision to represent the value, unless the constant is an array index or
substring starting position or length, in which case it becomes a four-byte integer (I4). This rule applies
irrespective of the variable types participating in the operation.
Operations containing floating point will be executed in floating point. Add E00 to numeric values to force
them to be floating point, for example:

ADD 1E00 to F(F8)

Operations not containing floating point, but containing packed numeric, unpacked numeric, date or time
variables will be executed in packed decimal. For ADD, SUBTRACT and IF, force numeric constants to
have the same number of decimal places as the variable with the highest precision by adding a decimal
place and trailing zeros, for example:

ADD 1.00 TO P(P7.2)

This technique is unnecessary for MULTIPLY and DIVIDE.

Variable Positioning
To ease the optimization process, try to keep all scalar references at the front of the data section and all array
references at the end of the data section.

Variable Caching
The Natural Optimizer Compiler contains an algorithm to enhance the performance even further. In terms of
performance, a statement will differ depending on the types of operands. The statement will execute more
slowely if one or more of the operands is a parameter, array or scalar field of Type N (numeric) or combinations

45Copyright © Software AG 2003

Alphanumeric FieldsPerformance Considerations

of these operands. The NOC analyzes the program flow and determines which variables with one or more of
these characteristics are read two or more times without being written to. It then moves the value of each variable
to a temporary cache area where it can be accessed quickly under the following conditions:

The variable is accessed often but seldom modified and
The variable is an array of any type or a scalar field of Type N (numeric).

Most suitable for variable caching are programs with long sequences that repeatedly access the same variable, in
particular if the variable is an array. Variable caching then avoids complex and recurring address computation.

Example of Variable Caching

The example program displayed below demonstrates the advantage of variable caching. Cataloged with NODBG
(see below) and CACHE=ON, executing this program in a test environment took 47 % of the time required to
execute the program with NODBG and CACHE=OFF. Cataloging the program with CACHE=ON, reduces the
code generated by the NOC from 856 bytes to 376 bytes.

DEFINE DATA LOCAL
1 ARR(N2/10,10,10)
1 I(I4) INIT <5>
1 J(I4) INIT <6>
1 K(I4) INIT <7>
END-DEFINE
DECIDE ON EVERY ARR(I,J,K)
 VALUE 10 IGNORE
 VALUE 20 IGNORE
 VALUE 30 IGNORE
 VALUE 40 IGNORE
 VALUE 50 IGNORE
 VALUE 60 IGNORE
 VALUE 70 IGNORE
 VALUE 80 IGNORE
 VALUE 90 IGNORE
 NONE IGNORE
END-DECIDE

Warning:
If the content of a cached variable is modified with the command MODIFY VARIABLE of the
Natural Debugger, only the content of the original variable is modified. The cached value (which
may still be used in subsequent statements) remains unchanged. Therefore, variable caching should
be used with great care if the Natural Debugger is used. See also the Natural Debugger
documentation.

NODBG
Once a program has been thoroughly tested and put into production, you should catalog the program with the
NODBG option as described in the section Optimizer Options. Without debug code, the optimized statements
will execute from 10% to 30% faster.

The code to facilitate debugging is removed when this option is specified, even with INDX or OVFLW options
turned on.

Copyright © Software AG 200346

Performance Considerations NODBG

Listing Zaps
If you want to have an overview of the Zaps that have been applied to the Natural Optimizer Compiler at your
site, use the DUMP system command.

 To obtain a Zap overview

In the command line, enter
DUMP ZAPS NOC.
A list of the Zaps that have been applied is displayed.

If no Zaps have been applied to the Natural Optimizer Compiler, you will receive the appropriate message.

47Copyright © Software AG 2003

Listing ZapsListing Zaps

	Cover Page
	page 2

	Table of Contents
	Natural Optimizer Compiler - Overview
	NOC - General Information
	Natural Nucleus Optimization
	Natural Optimizer Compiler

	Installing the Natural Optimizer Compiler
	General Information
	Installation Jobs
	Using System Maintenance Aid

	Prerequisites
	Installation Tape - OS/390
	Space Requirements
	Copying the Tape Contents to Disk
	Step 1 - Copy data set COPY.JOB from tape to disk
	Step 2 - Modify COPYTAPE.JOB
	Step 3 - Submit COPY.JOB

	Installation Tape - VSE/ESA
	Copying the Tape Contents to Disk
	Step 1 - Copy data set COPYTAPE.JOB from tape to disk
	Step 2 - Modify COPYTAPE.JOB
	Step 3 - Submit COPYTAPE.JOB

	Installation Tape - BS2000/OSD
	Space Requirements
	Copying the Tape Contents to Disk
	1. Copy the Library SRVnnn.LIB from Tape to Disk
	2. Copy the Procedure COPY.PROC from Tape to Disk
	3. Copy all Product Files from Tape to Disk

	Installation Tape - VM/CMS
	Space Requirements
	Copying the Tape Contents to Disk

	Installation Procedure
	Installation Verification

	Using the Optimizer Compiler - Overview
	What is Compiled and What is Not
	NOCSTAT Command
	Invoking NOCSTAT
	Generating Reports
	Report Formats
	Statement Category
	Statement Type
	Code Profile

	Batch Execution

	Displaying the Size of the Machine Code
	Optimizer Usage Examples
	Example 1 - No Improvement
	Example 2 - Considerable Improvement
	Examples 3 and 4 - CPU Usage

	Activating the Optimizer Compiler
	Macro NTOPT
	Dynamic Profile Parameter OPT
	System Command NOCOPT
	Natural Statement OPTIONS

	Optimizer Options
	List of Options
	Example of INDEX and OVFLW
	Optimum Code Generation

	PGEN Option
	Setting PGEN
	Sub-Options of the PGEN Option
	Output of the PGEN Option
	Internal Buffer
	User Exit NOCPRINT

	Working with the PGEN Output

	Influence of other Natural Parameters

	Performance Considerations
	Formats
	Arrays
	Alphanumeric Fields
	DECIDE ON
	Numeric Values
	Rules of Thumb

	Variable Positioning
	Variable Caching
	Example of Variable Caching

	 NODBG

	Listing Zaps

