
Natural for SQL/DS Version 4.1.2   Natural for SQL/DS 



This document applies to Natural for SQL/DS Version 4.1.2 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© Copyright Software AG 1979 - 2003.
All rights reserved.

The name Software AG and/or all Software AG product names are either trademarks or registered trademarks of
Software AG. Other company and product names mentioned herein may be trademarks of their respective 
owners.



Table of Contents
................ 1Natural for SQL/DS - Overview
................ 1Natural for SQL/DS - Overview
................... 2General Information
................... 2General Information
................ 2Accessing an SQL/DS Table
.................. 2Integration with Predict
............. 3Natural System Messages Related to SQL/DS
................. 4Installing Natural for SQL/DS
................. 4Installing Natural for SQL/DS
................... 4Installation Jobs
................ 4Using System Maintenance Aid
.................... 4Prerequisites
.................. 4Installation under CMS
................... 4Installation Tape
................. 5Preparing the Installation
................. 5Installation Procedure
................. 7Installation under VSE/ESA
.................. 8Installation Tape 
.............. 8Copying the Tape Contents to Disk
................. 9Installation Procedure
.................. 11Installation Verification
.............. 11Prepare your SQL/DS Environment
................ 11Online Verification Methods 
............ 12Sample Batch Verification Job - VSE/ESA only 
............. 12Natural Parameter Modification for SQL/DS
.................. 13DB2SIZE Parameter
................... 13NTDB Macro
.......... 13Performance Considerations for the DB2SIZE Parameter 
................ 14Parameter Module NDBPARM
........ 15BTIGN - Ignore Error after late BACKOUT TRANSACTION
.......... 15CONVERS - Allows Conversational Mode under CICS
.................... 15DELIMID
......... 16MAXLOOP - Maximum Number of Nested Database Loops
.................... 16REFRESH
.................... 16RWRDONL
............ 17STATDYN - Allow Static to Dynamic Switch
................... 18Database Management
.................. 18Database Management
................... 18SYSSQL Utility
.................... 19Fixed Mode
.................... 30Free Mode
.............. 33Natural System Commands for SQL/DS
.................. 33LISTSQL Command 
.................. 37SQLERR Command 
................. 38LISTDBRM Command 
.................... 40DDM Generation
.................... 40DDM Generation
.............. 40Natural Data Definition Module - DDM
.................... 40SQL Services
................ 40Select SQL Table from a List 
.............. 41Generate DDM from an SQL Table 
............... 44List Columns of an SQL Table 

iCopyright © Software AG 2003

Table of ContentsNatural for SQL/DS - Overview



................. 45Dynamic and Static SQL Support

................. 45Dynamic and Static SQL Support

................... 46General Information

............... 47Internal Handling of Dynamic Statements

..................... 47NDBIOMO 

.................... 47Statement Table 

............ 48Processing of SQL Statements Issued by Natural 

............. 49Preparing Natural Programs for Static Execution

............ 49Creating a Static SQL/DS Package under VSE/ESA 

............ 50Generation Procedure - CMD CREATE Command 

............ 53Modification Procedure - CMD MODIFY Command 

................ 54Assembler/Natural Cross-References

................ 55Execution of Natural in Static Mode

................. 55Static SQL with Natural Security

.................. 55Mixed Dynamic/Static Mode

................... 56Messages and Codes

................. 59Statements and System Variables

................. 59Statements and System Variables

.................. 59Natural DML Statements

................. 60BACKOUT TRANSACTION 

..................... 60DELETE 

.................. 61END TRANSACTION 

...................... 61FIND 

...................... 63GET 

.................... 63HISTOGRAM 

...................... 64READ 

...................... 65STORE 

..................... 66UPDATE 

................... 69Natural SQL Statements

................. 69Common Syntactical Items 

..................... 72COMMIT

..................... 72DELETE 

..................... 72INSERT 

.................... 73PROCESS SQL 

.................... 73ROLLBACK 

..................... 74SELECT

..................... 74UPDATE

.................. 75Natural System Variables

...................... 75*ISN 

..................... 75*NUMBER 

..................... 75Error Handling

.................... 77Interface Subprograms

................... 77Interface Subprograms

................... 77Natural Subprograms

................. 78The NDBDBRM Subprogram

................. 79The NDBDBR2 Subprogram 

................. 80The NDBERR Subprogram 

................. 80The NDBISQL Subprogram 

................ 82The NDBNOERR Subprogram 

................. 83The NDBNROW Subprogram 

................. 84The NDBSTMP Subprogram 

.................. 85The DB2SERV Interface

.................... 85Function "D"

.................... 87Function "U" 

................ 88Environment-Specific Considerations

................ 88Environment-Specific Considerations

Copyright © Software AG 2003ii

Natural for SQL/DS - OverviewTable of Contents



................. 88Natural for SQL/DS under CICS

.............. 88Natural for SQL/DS in VSE/ESA Batch Mode

iiiCopyright © Software AG 2003

Table of ContentsNatural for SQL/DS - Overview





Natural for SQL/DS - Overview
This documentation describes the various aspects of Natural when used in an SQL/DS environment.

Note:
IBM refers to SQL/DS as DB2 Server for VSE & VM.

Related Documentation
For information on logging SQL statements contained in a Natural program, refer to the DBLOG Utility
documentation in the section Debugging and Montitoring.

General Information Information on how to access SQL/DS tables, on the integration with
Software AG’s Data Dictionary Predict, and on error messages related to
SQL/DS. 

Installing Natural for 
SQL/DS

Installation of the Natural interface to SQL/DS and description of the
Natural for SQL/DS parameter module. 

Database Management Maintenance of SQL/DS tables and other SQL/DS objects with the
SYSSQL utility; Natural system commands for SQL/DS. 

DDM Generation Generation of Natural data definition modules (DDMs) by using the SQL
Services function of the Natural utility SYSDDM. 

Dynamic and Static SQL 
Support

Internal handling of dynamic statements, creation and execution of static
DB access modules (SQL/DS packages) in the various supported
environments, mixed dynamic/static mode. 

Statements and System 
Variables

Special considerations on Natural DML statements, Natural SQL
statements, Natural system variables, and Natural for SQL/DS error
handling. 

Interface Subprograms Several Natural and non-Natural subprograms to be used for various
purposes. 

Environment-Specific 
Considerations

Special considerations on the various environments supported by Natural
for SQL/DS. 

1Copyright © Software AG 2003

Natural for SQL/DS - OverviewNatural for SQL/DS - Overview



General Information
With the Natural interface to SQL/DS, a Natural user can access data in an SQL/DS database. Natural for
SQL/DS is supported in CICS and batch environments under VSE/ESA.

In general, there is no difference between using Natural with SQL/DS and using it with Adabas, DB2 or DL/I.
The Natural interface to SQL/DS allows Natural programs to access SQL/DS data by using the same Natural
DML statements that are available for Adabas, DB2 and DL/I. Therefore, programs written for SQL/DS tables
can also be used to access Adabas, DB2 or DL/I databases. In addition, Natural SQL statements are available.

All operations requiring interaction with SQL/DS are performed by the Natural interface module.

This section covers the following topics: 

Accessing an SQL/DS Table 
Integration with Predict 
Natural System Messages Related to SQL/DS 

Accessing an SQL/DS Table
To be able to access an SQL/DS table with a Natural program, the following steps must be taken: 

1.  Use the SYSSQL utility to define an SQL/DS table. 
2.  Use Predict or the SQL Services function of the Natural utility SYSDDM to create a Natural DDM of the

defined SQL/DS table. 
3.  Once you have defined a DDM for an SQL/DS table, you can access the data stored in this table by using a

Natural program. 

The Natural interface to SQL/DS translates the statements of a Natural program into SQL statements.

Natural automatically provides for the preparation and execution of each statement. In dynamic mode, a
statement is only prepared once (if possible) and can then be executed several times. For this purpose, Natural
internally maintains a table of all prepared statements.

Almost the full range of possibilities offered by the Natural programming language can be used for the
development of Natural applications which access SQL/DS tables. For a number of Natural DML statements,
however, there are certain restrictions and differences as far as their use with SQL/DS is concerned; see Natural
DML Statements. In the Natural Statements documentation, you can find notes on Natural usage with SQL/DS in
the descriptions of the statements concerned.

As there is no SQL/DS equivalent to Adabas ISNs (Internal Sequence Numbers), any Natural features which use
ISNs are not available when accessing SQL/DS tables with Natural.

For SQL-eligible databases, in addition to the Natural DML statements, Natural provides SQL statements; see 
Natural SQL Statements. In the Natural Statements documentation you can find a detailed description of these 
statements.

Integration with Predict
As Predict supports SQL/DS, direct access to the SQL/DS catalog is possible via Predict, and information from
the SQL/DS catalog can be transferred to the Predict dictionary to be integrated with data definitions for other 
environments.

Copyright © Software AG 20032

General InformationGeneral Information



SQL/DS databases, tables and views can be incorporated and compared, new SQL/DS tables and views can be
generated and Natural DDMs can be generated and compared. All SQL/DS-specific data types and the referential
integrity of SQL/DS are supported. See the relevant Predict documentation for details.

In addition, Predict active references support static SQL for SQL/DS.

Natural System Messages Related to SQL/DS
The message number ranges of Natural system messages related to SQL/DS are 3700-3749 4750 - 4799, 6700 -
6799 and 7386-7395.

3Copyright © Software AG 2003

Natural System Messages Related to SQL/DSGeneral Information



Installing Natural for SQL/DS
This section describes step by step how to install the Natural interface to SQL/DS (in the remainder of this
section also referred to as NSQ).

This section covers the following topics: 

Installation Jobs 
Using System Maintenance Aid 
Prerequisites 
Installation under CMS 
Installation under VSE/ESA 
Installation Verification 
Natural Parameter Modification for SQL/DS 
Parameter Module NDBPARM

Installation Jobs
The installation of Software AG products is performed by installation "jobs". These jobs are either created
"manually" or generated by System Maintenance Aid (SMA).

For each step of the installation procedures described later in this section, the job number of a job performing the
respective task is indicated. This job number refers to an installation job generated by SMA. If you are not using
SMA, an example job of the same number is provided in the job library on the NSQ installation tape; you must
adapt this example job to your requirements. That the job numbers on the tape are preceded by a product code
(for example, NSQI070).

Using System Maintenance Aid
For information on using Software AG’s System Maintenance Aid for the installation process, refer to the
System Maintenance Aid documentation.

Prerequisites
Base Natural must be installed first; you cannot install Natural and Natural for SQL/DS at the same time. 
The Software AG Editor must be installed (as described in the Natural Installation Guide for Mainframes). 

Further product/version dependencies are specified under Natural and Other Software AG Products and 
Operating/Teleprocessing Systems Required in the current Natural Release Notes for Mainframes.

Installation under CMS
This section only applies to the installation of NSQ under CMS.

Installation Tape

The installation tape was created under OS/390; it has standard OS/390 labels and headers. It contains the
datasets listed in the table below. The sequence of the datasets is shown in the Report of Tape Creation which
accompanies the installation tape. 

Copyright © Software AG 20034

Installing Natural for SQL/DSInstalling Natural for SQL/DS



Dataset Name Contents 

NSQnnn.TAPE NSQ source modules, load modules and installation EXECs.
This dataset is in TAPE DUMP format and must be loaded onto the installation minidisk. 

NSQnnn.INPL NSQ utility programs in INPL format. 

NSQnnn.ERRN NSQ error messages. 

The notation nnn in dataset names represents the version number of the product. 

Copying the Tape Contents to Disk

The tape file NSQnnn.TAPE was created with the CMS TAPE DUMP facility. Load the contents of the tape to
your A-disk. The free space should be at least 450 4-KB blocks; for example, 3 cylinders on 3350 or 3380 disks. 

Ask the system operator to attach a tape drive to your virtual machine at address X’181’ and mount the NSQ
installation tape. 

To position the tape for the TAPE LOAD command, calculate the number of tape marks as follows: If the
sequence number of NSQnnn.TAPE - as shown by the Report of Tape Creation - is n, you must position over 
3n-2 tape marks; that is, FSF 1 for the first dataset, FSF 4 for the second, etc. 

Position the tape by issuing the CMS command: 

TAPE FSF fsfs 

where fsfs is calculated as described above. 

Load the NSQ installation material by issuing the CMS command: 

TAPE LOAD * * A 

You may wish to keep the tape drive attached to your virtual machine, because the tape is still needed in Step 7
of the installation procedure. 

Preparing the Installation

Perform the following steps to prepare the installation of NSQ: 

1.  Ensure that the required SQL/DS database machine is activated in multiple- user mode and that the user
machine for this installation is properly configured and initialized to access the SQL/DS database machine. 

2.  All precompilations as well as NSQ itself take advantage of the implicit CONNECT mechanism provided
by VM. Therefore, ensure that the VM user ID is authorized for SQL/DS. 

3.  Ensure that your user machine has access to the following minidisks:
the SQL/DS production minidisk,
the Natural installation minidisk. 

4.  Ensure that the Adabas environment for your user machine is set up.

Concerning the following installation steps, also refer to the section Installing Natural under VM/CMS in the
Natural Installation Guide for Mainframes. 

Installation Procedure

Perform the following steps to install NSQ: 

5Copyright © Software AG 2003

Preparing the InstallationInstalling Natural for SQL/DS



Step 1: Generate the NSQ I/O module NDBIOMO

Generate NDBIOMO by using the command: 

GENIOMO SQL/DS n 

GENIOMO generates the assembly source for NDBIOMO from the existing source NDBIOTM. It prompts you
for the Natural/CMS batch module and invokes the Natural program NDBGENI, which is loaded with INPL
during the base Natural installation. 

GENIOMO is invoked with the following two parameters: 

the DB-environment parameter, which must be set to SQL/DS, 
the parameter "n" to specify the number of statements for dynamic access; the default value is 10. 

NDBIOMO performs the dynamic access to SQL/DS and contains all necessary EXEC SQL statements. In
addition, it contains some special SQL statements which cannot be executed in dynamic mode. 

An output report is created by this job and should be checked for successful completion. In addition, a condition
code of 0 indicates normal completion. 

Step 2: Precompile and assemble NDBIOMO 

Precompile and assemble NDBIOMO using the command: 

NDBIOMO 

Note:
Since no precompiler options are specified, the default SQL/DS isolation level "Repeatable Read" may lead to
locking problems, because all SQL/DS locks are held until the end of the transaction. Thus, depending on your
application, it may be necessary to specify a different isolation level. 

Step 3: Modify and assemble the NSQ parameter module NDBPARM

Assemble NDBPARM using the command: 

NDBPARM 

The NSQ parameter module contains the macro NDBPRM, which contains parameters specific to the Natural
interface to SQL/DS. 

You can generally use the default values for all parameters. Modify only the values of the parameters whose
default values do not suit your requirements. 

The individual parameters are described in the section Parameter Module NDBPARM.

Step 4: Modify NATPARM

Adapt your Natural parameter module NATPARM by adding parameters specific to Natural for SQL/DS as
described in the section Natural Parameter Modification for SQL/DS.

Step 5: Modify NAT$LOAD LOADLIST

Edit the member NAT$LOAD EXEC provided on the Natural/CMS installation tape and add the following line
to the existing LOADLIST statements: 

Copyright © Software AG 20036

Installing Natural for SQL/DSInstallation Procedure



LOADLIST = LOADLIST ’NDBNUC NDBNSQ NDBPARM NDBIOMO ARIRVSTC’

Step 6: Generate a Natural module

Generate the Natural/CMS load module using the command: 

NATBLDM 

NATBLDM is provided on the Natural CMS/installation tape and prompts you for the name of the Natural
nucleus and generates the executable Natural module. 

Step 7: Load Natural objects and error messages into system file 

In this step, the NSQ system programs, maps and DDMs (dataset NSQnnn.INPL) and the NSQ error messages
file (dataset NSQnnn.ERRN) are loaded into the Natural system file. 

If the tape drive used when copying the contents of the installation tape to disk was detached from your virtual
machine, ask the system operator to attach a tape drive to your virtual machine at address X’181’ and mount the
Natural installation tape. 

Issue the following command: 

NSQINPL 

You are prompted for the name of the command to invoke Natural. Enter the name of the Natural module
generated in Step 6. 

NSQINPL then positions the tape and loads the Natural objects and error messages. 

The INPL job loads objects into the libraries SYSDDM, SYSTEM and SYSSQL.

The ERRLODUS job loads error messages into the library SYSERR. 

The NSQ system programs and error messages must be loaded into the Natural 3.1. FNAT system file

Warning:
Ensure that your newly created SYSSQL library contains all necessary Predict interface
programs, which are loaded into SYSSQL when installing Predict (see the relevant Predict 
documentation). 

Installation under VSE/ESA
Under VSE/ESA, Natural for SQL/DS basically consists of two parts: 

1.  An environment-independent nucleus, which can be linked to a shared Natural nucleus and loaded in the
shared virtual area (SVA) of the operating system. 

2.  Environment-dependent components, which must be linked to the appropriate Natural
environment-dependent interface. 

This section covers the following topics: 

Installation Tape 
Installation Procedure

7Copyright © Software AG 2003

Installation under VSE/ESAInstalling Natural for SQL/DS



Installation Tape 

The installation tape contains the datasets listed in the table below. The sequence of the datasets is shown in the
Report of Tape Creation which accompanies the installation tape.

Dataset Name Contents 

NSQnnn.LIBR LIBR backup file. 

NSQnnn.INPL NSQ utility programs in INPL format. 

NSQnnn.ERRN NSQ error messages. 

The notation nnn in dataset names represents the version number of the product.

Copying the Tape Contents to Disk

If you are using System Maintenance Aid (SMA), refer to the SMA documentation (included on the current
edition of the Natural documentation CD).

If you are not using SMA, follow the instructions below.

This section explains how to:

Copy data set COPYTAPE.JOB from tape to library. 
Modify this member to conform with your local naming conventions.

The JCL in this member is then used to copy all data sets from tape to disk.

If the datasets for more than one product are delivered on the tape, the member COPYTAPE.JOB contains the
JCL to unload the datasets for all delivered products from the tape to your disk, except the datasets that you can
directly install from tape, for example, Natural INPL objects.

After that, you will have to perform the individual install procedure for each component.

Step 1 - Copy data set COPYTAPE.JOB from tape to disk

The data set COPYTAPE.JOB (file 5) contains the JCL to unload all other existing data sets from tape to disk.
To unload COPYTAPE.JOB, use the following sample JCL:

* $$ JOB JNM=LIBRCAT,CLASS=0,                                          + 
* $$ DISP=D,LDEST=(*,UID),SYSID=1                                       
* $$ LST CLASS=A,DISP=D                                                  
// JOB LIBRCAT                                                           
* *****************************************                              
*     CATALOG COPYTAPE.JOB TO LIBRARY                                    
* *****************************************                              
// ASSGN SYS004, NNN                                <------  tape address 
// MTC REW,SYS004                                                        
// MTC FSF,SYS004,4                                                      
ASSGN SYSIPT,SYS004                                                      
// TLBL IJSYSIN,’COPYTAPE.JOB’                                           
// EXEC LIBR,PARM=’MSHP; ACC S= lib.sublib ’         <------- for catalog
/*
// MTC REW,SYS004                                                                       
ASSGN SYSIPT,FEC                                                         
/*                                                                       
/&                                                                      
* $$ EOJ                                                                 

Copyright © Software AG 20038

Installing Natural for SQL/DSInstallation Tape



Where: 

NNN is the tape address 

lib.sublib is the library and sublibrary of the catalog 

Step 2 - Modify COPYTAPE.JOB

Modify COPYTAPE.JOB to conform with your local naming conventions and set the disk space parameters
before submitting this job:

Step 3 - Submit COPYTAPE.JOB

Submit COPYTAPE.JOB to unload all other data sets from the tape to your disk.

Installation Procedure

The following steps describe the procedure for installing the components of NSQ.

Step 1: Generate the NSQ I/O Module NDBIOMO - Job I055, Step 1600

By executing a standard Natural batch job, this step generates the assembly source for NDBIOMO from the
member NDBIOTM.

This batch job invokes the Natural program NDBGENI, which is loaded INPL during the base Natural
installation. NDBGENI contains the following two parameters, which can be modified to meet your specific
requirements: 

the DB-environment parameter, which must be set to SQL/DS, 
the parameter to specify the number of statements for dynamic access. 

NDBIOMO performs the dynamic access to SQL/DS and contains all necessary EXEC SQL statements (see
further information on NDBIOMO in the section Internal Handling of Dynamic Statements). In addition, it
contains some special SQL statements which cannot be executed in dynamic mode.

An output report is created by this job and should be checked for successful completion. In addition, a condition
code of 0 indicates normal completion.

Step 2: Precompile and Assemble NDBIOMO - Job I055, Steps 1610 and 1620

Precompile (using the SQL precompiler) and assemble NDBIOMO. Ensure that an appropriate SQL/DS user ID
and password is specified for precompiling.

Note:
Since no precompiler options are specified, the default SQL/DS isolation level "Repeatable Read" may lead to
locking problems, because all SQL/DS locks are held until the end of the transaction. Thus, depending on your
application, it may be necessary to specify a different isolation level.

Step 3: Modify and Assemble the NSQ Parameter Module NDBPARM - Job I055, Step 
1640

The NSQ parameter module contains the macro NDBPRM with parameters specific to the Natural interface to 
SQL/DS.

You can generally use the default values for all parameters. Modify only the values of the parameters whose
default values do not suit your requirements.

9Copyright © Software AG 2003

Installation ProcedureInstalling Natural for SQL/DS



The individual parameters are described in the section Parameter Module NDBPARM.

Step 4: Modify and Reassemble NATPARM

Adapt your Natural parameter module NATPARM by adding parameters specific to Natural for SQL/DS and
reassemble NATPARM.

Step 5: Relink your Natural Nucleus

Modify the JCL used to link your Natural nucleus by adding the following INCLUDE cards and the
corresponding DLBL statements:

INCLUDE NDBNUC Environment-independent NSQ nucleus 

INCLUDE NDBNSQ Environment-independent SQL/DS interface 

INCLUDE NDBPARM NSQ parameter module created in Step 3 

INCLUDE NDBIOMO NSQ I/O module created in Step 1 

INCLUDE xxxxxxx Environment-dependent SQL/DS interface (see below) 

Depending on your environment(s), INCLUDE the appropriate environment-specific language interface 
"xxxxxxxx" as shown in the following table:

Interface Environment 

ARIPRDID In batch mode 

ARIRRTED Under CICS 

Note:
If you want to use NSQ in both environments, repeat this step for each of these environments.

Instead of link-editing your Natural nucleus in the way described above, you have the following alternatives: 

1.  If you use a shared Natural nucleus, only include NDBNUC and NDBNSQ in the link-edit of this nucleus.
All other modules must be included in the link-edit of your Natural environment-dependent nucleus. 

2.  Remove NDBNUC and NDBNSQ from the link-edit of the Natural nucleus and link-edit them as a separate
module with the mandatory entry name NATGWDB2. The name of the resulting phase is arbitrary.
However, if you use a name different from NATGWDB2, this name must be specified as an alias name in
an NTALIAS macro entry of the Natural parameter module. This way of link-editing only applies if the
Natural Resolve CSTATIC Addresses feature (RCA) is used. 

3.  Include all modules in the link-edit job of a separate Natural parameter module with the mandatory entry
name CMPRMTB. The name of the resulting phase is arbitrary. This way of link-editing only applies if an
alternative parameter module (PARM profile parameter) is used. 

4.  If link-editing is done in this way, you can install NDB without having to modify your Natural nucleus or
driver. 

If link-editing is done according to number 2. or 3., the following applies:

Under CICS:
the resulting module must be defined via a PPT entry or RDO:

DFHPPT TYPE=ENTRY,PROGRAM=module-name,PGMLANG=ASSEMBLER

Copyright © Software AG 200310

Installing Natural for SQL/DSInstallation Procedure



Step 6: Load Natural Objects Into System File - Job I061, Step 1600

In this step, the NSQ system programs, maps and DDMs are loaded into the Natural system files. The INPL job
loads objects into the libraries SYSDDM, SYSTEM and SYSSQL.

The NSQ system programs must be loaded into the Natural 3.1 FNAT system file.

Warning:
Ensure that your newly created SYSSQL library contains all necessary Predict interface
programs, which are loaded into SYSSQL when installing Predict (see the relevant Predict 
documentation). 

Step 7: Load Natural Error Messages into System File - Job I061, Step 1620

This step executes a batch Natural job that runs an error load program using the NSQnnn.ERRN dataset as input.
The ERRLODUS job loads error messages into the library SYSERR on the FNAT system file.

The NSQ error messages must be loaded into the Natural FNAT system file. 

Installation Verification
This section covers the following topics: 

Prepare your SQL/DS Environment 
Online Verification Methods 
Sample Batch Verification Job - VSE/ESA only

Prepare your SQL/DS Environment

As all dynamic access to SQL/DS is performed by NDBIOMO, all NSQ users must have RUN privilege on 
NDBIOMO.

Online Verification Methods 

To verify the installation of the Natural interface to SQL/DS online, you can use either of the following methods: 

SQL Services 
DEM* Sample Programs 

SQL Services

Perform the following steps to verify and check the installation of NSQ using the SQL Services of the Natural
utility SYSDDM. 

1.  Invoke Natural. 
2.  Invoke SYSDDM.

On the SYSDDM main menu enter function code "B" to invoke the SQL Services function. 
Enter function code "S" and specify SQL system "SQL/DS" to select all SQL/DS tables. 
The communication between Natural and SQL/DS works if all existing SQL/DS tables are displayed. 

3.  For one of the tables, generate a Natural DDM as described in the section Generate DDM from an SQL 
Table. 
To enable SYSDDM to generate a DDM, the Natural administrator requires access to the following
SQL/DS tables:

11Copyright © Software AG 2003

Installation VerificationInstalling Natural for SQL/DS



SYSTEM.SYSCATALOG 

SYSTEM.SYSCOLUMNS 

SYSTEM.SYSINDEXES 

SYSTEM.SYSVIEWS 

SYSTEM.SYSSYNONYMS 

SYSTEM.SYSUSAGE 

4.  After you have generated a DDM, access the corresponding SQL/DS table with a simple Natural program: 

Example: 

FIND view-name WITH field  = value
   DISPLAY  field
  LOOP
  END

5.  If you receive the message SYSFUL 3700, enter the command SQLERR to display the corresponding SQL
return code. See the description of the SQLERR command.

DEM2* Sample Programs

To verify and test your installation you can also use the sample programs DEM2* in the library SYSSQL
provided on the installation tape.

Using these sample programs, you can create an SQL/DS table using DEM2CREA and create the corresponding
DDM via SYSDDM. You can then store data in the created table using DEM2STOR and retrieve data from the
table using DEM2FIND or DEM2SEL. You can also drop the table using program DEM2DROP.

Sample Batch Verification Job - VSE/ESA only 

To verify the installation of the Natural interface to SQL/DS, a sample batch verification job (Job I065) is
provided. This step contains sample JCL and sample programs to test Natural with NSQ in batch mode.

The sample program DEM2CONN performs the connection to the database, which is required before you can
run a Natural program that accesses SQL/DS. DEM2CONN calls the DB2SERV module with function code "U"
which in turn calls the database connect services.

Sample program DEM2JOIN performs a JOIN combining information from SQL/DS SYSTEM.SYSDBSPACE
and SYSTEM.SYSCATALOG.

Natural Parameter Modification for SQL/DS
This section covers the following topics: 

DB2SIZE Parameter 
NTDB Macro 
Performance Considerations for the DB2SIZE Parameter

Copyright © Software AG 200312

Installing Natural for SQL/DSNatural Parameter Modification for SQL/DS



DB2SIZE Parameter

Add the following Natural profile parameter to your NATPARM module:

DB2SIZE=nn

The DB2SIZE parameter can also be specified dynamically. It indicates the size of the SQL/DS buffer area,
which should be set to at least 6 KB.

The setting of DB2SIZE can be calculated according to the following formula:

((808 + n1 * 40 + n2 * 100) + 1023) / 1024 KB

The variables n1 and n2 correspond to:

n1 the number of statements for dynamic access as specified as the second parameter in job I055, step 1600
(under VSE/ESA). 

n2 the maximum number of nested database loops as specified with the MAXLOOP parameter in NDBPARM. 

Note:
Ensure that you have also added the Natural parameters required for the Software AG Editor (see Installing the
Software AG Editor in the Natural Installation Guide for Mainframes).

Since DB2SIZE applies to Natural for SQL/DS and Natural for DB2, it should be set to the maximum value if
you run more than one of these environments. 

NTDB Macro

Add an NTDB macro for database type SQL specifying the list of logical database numbers that relate to
SQL/DS tables. All Natural DDMs that refer to an SQL/DS table must be cataloged with a DBID from this list.

DBIDs can be any number from 1 to 254; a maximum of 254 entries can be specified. For most user
environments, one entry is sufficient.

Note:
Ensure that all NSQ DDMs used when cataloging a given program have a valid SQL/DS DBID. Also
ensure that the DBIDs selected in the NTDB macro for SQL/DS do not conflict with DBIDs selected for
other database systems.

The DBID for SQL/DS used when cataloging a Natural program does not have to be in the NTDB list of
DBIDs used when executing this program. Therefore, when executing existing Natural programs, DBID
250 is not mandatory.

Two sample NTDB macros follow:

NTDB SQL,250
NTDB SQL,(200,250,251)

Performance Considerations for the DB2SIZE Parameter 

During execution of an SQL statement, storage is allocated dynamically to build the SQLDA for passing the host
variables to SQL/DS.

In previous Natural for SQL/DS versions, this storage was always obtained from the TP monitor or operating
system. For performance reasons, it is now first attempted to meet the storage requirements by free space in the
Natural for SQL/DS buffer (DB2SIZE). Only if there is not enough space available in this buffer, the TP monitor
or operating system is invoked.

13Copyright © Software AG 2003

DB2SIZE ParameterInstalling Natural for SQL/DS



To take advantage of this performance enhancement, you must specify your DB2SIZE larger than calculated
according to the formula. The additional storage requirements (in bytes) can be calculated as follows: 

With sending fields: 
64 + n * 56 
where "n" is the number of sending fields in an SQL statement. 
The storage is freed immediately after the execution of the SQL statement. 
With receiving fields (that is, with variables of the INTO list of a SELECT statement): 
64 + n * 56 + 24 + n * 2 
where "n" is the number of receiving fields in an SQL statement. 
The storage remains allocated until the loop is terminated. 

Example: 

If you use the default value 10 for both variables (n1 and n2), the calculated DB2SIZE will be 2200 bytes.
However, if you specify a DB2SIZE of 20 KB, the available space for dynamically allocated storage will be
18272 bytes, which means enough space for up to either 325 sending fields or 313 receiving fields.

As space for receiving fields remains allocated until a database loop is terminated, the number of fields that can
be used inside such a loop is reduced accordingly: for example, if you retrieve 200 fields, you can update about
110 fields inside the loop. 

Note:
When using VARCHAR fields (that is, fields with either an accompanying L@ field in the Natural view or an
explicit LINDICATOR clause), additional storage is allocated dynamically if the L@ or LINDICATOR field is
not specified directly in front of the corresponding base field. Therefore, always specify these fields in front of
their base fields. 

Parameter Module NDBPARM
The NDBPARM source module contains Natural parameters specific to an SQL/DS environment. The parameter
default values can be modified to meet site-specific requirements (see Step 3 of the installation procedures).

The individual parameters are described below. Their values cannot be dynamically overwritten.

NDBPARM contains the following parameters:

Parameter Function 

BTIGN Ignores errors which result from BACKOUT TRANSACTION statements that are issued too
late. 

CONVERS Allows conversational mode under CICS. 

DELIMID Escape character for delimited identifiers. 

MAXLOOP Specifies the maximum number of nested program loops. 

REFRESH Refresh connection to DB2 Server. 

RWRDONL Generate delimited identifiers for reserved words only. 

STATDYN Allows dynamic execution of statically generated SQL statements if the static execution returns
an error. 

Copyright © Software AG 200314

Installing Natural for SQL/DSParameter Module NDBPARM



BTIGN - Ignore Error after late BACKOUT TRANSACTION

This parameter is relevant in CICS environments only.

This parameter is used to ignore the error which occurs after a BACKOUT TRANSACTION statement that
came too late to backout the current transaction, because of an implicit Syncpoint issued by the TP monitor.

Possible Value Default Value Explanation 

ON ON The error after a late BACKOUT TRANSACTION is ignored. 

OFF  The error after a late BACKOUT TRANSACTION is not ignored. 

CONVERS - Allows Conversational Mode under CICS

This parameter is used to allow conversational mode in CICS environments.

Possible valueDefault value Explanation 

ON ON Conversational mode is allowed. 

OFF  Conversational mode is not allowed. 

If this parameter is set to OFF, you cannot continue database loops across terminal I/Os; if so, the SQL codes
-501, 504, 507, 514 or 518 may occur.

If you use the SYSDDM SQL services in a CICS environment, specify CONVERS=ON, otherwise the above
mentioned errors could occur. See also the section SQL Services.

DELIMID

Possible ValuesExplanation Default Value 

" Double quotation mark   

’ Single quotation mark   

 No value:
Delimited identifiers are not enabled.

No value 

This parameter determines the escape character to be used for generating delimited SQL identifiers for the
column names and table names in SQL statements. A delimited identifier is a sequences of one or more
characters enclosed in escape characters. You must specify a delimited identifier if you use SQL-reserved words
for column names and tables names, as demonstrated in the Example of DELIMID below.

To enable generation of delimited identifiers, DELIMID must be set to double quotation mark (") or single
quotation mark (’). 

The escape character specified for DELIMID and the SQL STRING DELIMITER are mutually exclusive.This
implies that the mark (double or single quotation) used to enclose alphanumeric strings in SQL statements must
be different from the value specified for DELIMID. If you enable delimited identifiers, ensure that the value
specified for DELIMID also complies with the SQL STRING DELIMITER value of your DB2 installation.

See also the RWRDONL parameter to determine which delimited identifiers are generated in the SQL string.

Example of DELIMID:

15Copyright © Software AG 2003

BTIGN - Ignore Error after late BACKOUT TRANSACTIONInstalling Natural for SQL/DS



In the following example, a double quotation mark (") has been specified as the escape character for the
delimited identifier:

Natural statement:

SELECT FUNCTION INTO #FUNCTION FROM XYZ-T1000

Generated SQL string:

SELECT "FUNCTION" FROM XYZ.T1000

MAXLOOP - Maximum Number of Nested Database Loops

This parameter specifies the maximum possible number of nested database loops.

Possible valuesDefault value 

1 - 99 10 

REFRESH

Possible ValuesDefault Value 

ON/OFF OFF 

This parameter is used to automatically connect to the DB2 server that was active when the last transaction was
exectuted. 

To refresh the server connection, use the following SQL statement of DB2:

CONNECT ? IDENTIFIED BY ? TO ?

Value Explanation 

OFF No automatic refresh is performed. 

ON An automatic refresh is performed every time before a database transaction starts. 

RWRDONL

Possible ValuesDefault Value 

ON/OFF ON 

This parameter determines which identifiers are generated as delimited identifier in an SQL string. RWRDONL
only takes effect if the setting of the DELIMID  parameter allows delimited identifiers. 

If RWRDONL is set to ON, only identifiers that are reserved words are generated as delimited identifiers. The
list of reserved words is contained in the NDBPARM macro. This list has been merged from the lists of reserved
words for DB2 for z/OS, DB2 for VSE/VM, DB2 UDB for LINUX, OS/2, Windows and UNIX, and ISO/ANSI 
SQL99.

If RWRDONL is set to OFF, all identifiers are generated as delimited identifiers.

Copyright © Software AG 200316

Installing Natural for SQL/DSMAXLOOP - Maximum Number of Nested Database Loops



STATDYN - Allow Static to Dynamic Switch

This parameter is used to allow dynamic execution of statically generated SQL statements if static execution
returns an error.

PossibleValue Default value Explanation 

NEVER NEVER Dynamic execution is never allowed. 

ALWAYS  Dynamic execution is always allowed after an error. 

SPECIAL  Dynamic execution is allowed after special errors only.
These special errors are:

NAT3706   Load module not found. 

SQL -805 SQL/DS package does not exist. 

SQL -818 Mismatch of timestamps. 

17Copyright © Software AG 2003

STATDYN - Allow Static to Dynamic SwitchInstalling Natural for SQL/DS



Database Management
This section covers the following topics: 

SYSSQL Utility 
Natural System Commands for SQL/DS 

SYSSQL Utility
The Natural interactive catalog utility SYSSQL allows you to do SQL/DS database management without leaving
your development environment.

With SYSSQL you can maintain SQL/DS tables and other SQL/DS objects.

The SYSSQL utility incorporates an SQL generator that automatically generates from your input the SQL code
required to maintain the desired SQL/DS object. You can display, modify, save and retrieve the generated SQL 
code.

The DDL/DCL definitions are stored in the library SYSSQL on the FDIC system file.

The SYSSQL utility offers two modes of operation: Fixed Mode and Free Mode. To switch between the two
modes, you press PF4. 

Fixed Mode 
Free Mode 

Copyright © Software AG 200318

Database ManagementDatabase Management



Fixed Mode

In fixed mode, input screens with syntax graphs help you to specify correct SQL code. You simply enter the
required data on input screens, and the data are automatically checked to ensure that they comply with the SQL
syntax of SQL/DS. Then, SQL members are generated from the entered data. The members can be executed
directly by pressing PF5. But you can also switch to free mode, where the generated SQL code can be modified.

For each field where a window can be invoked, you can specify an "S". When you press ENTER, the window
appears and you can select or enter the necessary information. If such a selection is required, an "S" is already
preset when the corresponding screen is invoked.

When you press ENTER again, the window closes and if data have been entered, the field is marked with "X"
instead of "S". If not, the field is left blank or marked with "S" again.

This continues each time you press ENTER until no "S" remains. To redisplay a window where data have been
entered, you change its "X" mark back to "S".

If another letter or character is used, an appropriate error message appears on the screen. The wrong character is
automatically replaced by an "S" and if you press ENTER again, the corresponding window appears.

In fields where keywords are to be entered, you have to enter one of the keywords displayed beneath the field.
Default keywords are highlighted.

19Copyright © Software AG 2003

Fixed ModeDatabase Management



Creating an SQL/DS Table

The following example illustrates how to use the SYSSQL utility to create an SQL/DS table in fixed mode.

When you log on to library SYSSQL and issue the command MENU, the SYSSQL Main Menu appears:

  14:41:38                   **** SYSSQL Utility ****                 1999-09-29
                                   - Main Menu -                                 
                                                                                 
      +---------- Maintenance ---------+   +--------- Authorizations -------+    
      !   x CREATE                     !   !   _ GRANT                      !    
      !   _ ACQUIRE DBSPACE            !   !   _ REVOKE                     !    
      !   _ ALTER                      !   !   _ LOCK TABLE                 !    
      !   _ DROP                       !   !   _ CONNECT                    !    
      !   _ UPDATE STATISTICS          !   !                                !    
      +--------------------------------+   +--------------------------------+    
                        +-------- Descriptions ----------+                       
                        !   _ EXPLAIN                    !                       
                        !   _ COMMENT ON                 !                       
                        +--------------------------------+                       
                                                                                 
      +---------------------------- Comments -------------------------------+    
      !  Enter ? for HELP or press PF1                                      !    
      !  Enter . to QUIT or press PF12                                      !    
      !  Press PF4 to enter Free-Mode                                       !    
      +---------------------------------------------------------------------+    
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help              Free                                            Exit   
  SYSSQL4776 Please mark your choice.

Copyright © Software AG 200320

Database ManagementFixed Mode



When you select the CREATE function, a window is invoked which shows you a list of all available objects, and
you are prompted for the type of object to be created, in this case a table:

  14:41:39                   **** SYSSQL Utility ****                 1999-09-29
                                   - Main Menu -                                 
                                                                                 
      +---------- M +------------------+    +--------- Authorizations -------+    
      !   x  CREATE  !    _ INDEX       !    !   _ GRANT                      !    
      !   _ ACQUIRE !    _ SYNONYM     !    !   _ REVOKE                     !    
      !   _ ALTER   !    x TABLE       !    !   _ LOCK TABLE                 !    
      !   _ DROP    !    _ VIEW        !    !   _ CONNECT                    !    
      !   _ UPDATE  !                  !    !                                !    
      +------------ +------------------+    +--------------------------------+    
                        +-------- Descriptions ----------+                       
                        !   _ EXPLAIN                    !                       
                        !   _ COMMENT ON                 !                       
                        +--------------------------------+                       
                                                                                 
      +---------------------------- Comments -------------------------------+    
      !  Enter ? for HELP or press PF1                                      !    
      !  Enter . to QUIT or press PF12                                      !    
      !  Press PF4 to enter Free-Mode                                       !    
      +---------------------------------------------------------------------+    
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help              Free                                            Exit   
  SYSSQL4776 Please mark your choice.

21Copyright © Software AG 2003

Fixed ModeDatabase Management



The first Create Table syntax input screen is displayed. You can enter the creator and table names on this screen,
as well as the individual column names, formats and lengths, as shown below:

  11:41:52                 **** SYSSQL/DS Utility ****               1999-08-28
                                 - Create Table -                     Page: 01   
                                                                                 
  >>---- CREATE TABLE ----- SAG_____ . PERSONNEL_________ ---------------------->
                              <creator.>table-name                               
                                                                                 
  >- PERS-NO___________  DECIMAL________ ( 8____ ) NN -- _ -- _ -- _ -( S_ - A + 
  +- NAME______________  CHAR___________ ( 25___ ) NN -- _ -- _ -- _ -- __ - _ + 
  +- FIRST-NAME________  CHAR___________ ( 25___ ) NN -- _ -- _ -- _ -- __ - _ + 
  +- AGE_______________  DECIMAL________ ( 2____ ) NN -- _ -- _ -- _ -- __ - _ + 
  +- SALARY____________  DECIMAL________ ( 5,2__ ) __ -- _ -- _ -- _ -- __ - _ + 
  +- FUNCTION__________  INTEGER________ ( _____ ) __ -- _ -- _ -- _ -- __ - _ + 
  +- EMPL_SINCE________  DATE___________ ( _____ ) NN -- _ -- _ -- _ -- __ - _ + 
  +- __________________  _______________ ( _____ ) __ -- _ -- _ -- _ -- __ - _ ) 
         column-name         format        length  NN    S  field CCS  PRIMARY ! 
                                                   NU    M  proc  ID   KEY A/D ! 
                                                   NP    B     +---------------+ 
                                                               +- PCTFREE=  __ ->
                                                                             0-99
                                                                                 
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help  Next        Free  Exec  Top   Bwd   Fwd   Bot         Error Menu

Note:
Since the specification of any special characters as part of a Natural field or DDM name does not comply with
Natural naming conventions, any special characters allowed within SQL/DS should be avoided. The same
applies to SQL/DS delimited identifiers, which are not supported by Natural.

In addition, various attributes can be specified for each column. 

In the NN/NU/NP field you can specify: 
NN (NOT NULL) if the column may not contain null values, 
NP (NOT NULL PRIMARY KEY) if the column is the primary key 
NU (NOT NULL UNIQUE) if the column is a unique key 

In the S/M/B field you can specify the following for character columns: 
S (FOR SBCS DATA) 
B (FOR BIT DATA) 
M (FOR MIXED DATA) 

You can mark the field "fieldproc" to display a window where you can specify a field procedure which has
to be executed for that column. 
For character and graphic columns you can mark the CCSID to display a window where you can specify a
CCSID to be used for that column. 

Copyright © Software AG 200322

Database ManagementFixed Mode



You can also specify which columns are to be part of a primary key if the primary key is comprised of multiple
columns. To do so enter an "S" or the positional number in the first column of the field PRIMARY KEY.

A primary key is a set of column values that enforce referential integrity. Only one primary key definition is
allowed per table. Primary key values must be unique and must be defined as NOT NULL.

If a column is to be part of a primary key, you also have to specify whether the values from this column are to be
arranged in ascending ("A") or descending order ("D"), where "A" (Asc) is the default value. In addition, you
can specify the percentage of space within each index page for later insertions and updates of the primary key
(the default value is 10%).

If  a letter or character other than those mentioned above is used, an appropriate error message appears on the
screen and the wrong character is automatically replaced by the appropriate one.

Windows like the one below may help you in making a valid selection. They are invoked by entering the help
character "?" in the appropriate field on the screen:

  16:50:09                   **** SYSSQL Utility ****                1999-09-29
                                  - Create Table -                     Page: 01  
                                                                                 
    >>--- CREATE TABLE ----- SAG_____ . PERSONNEL_________ --------------------> 
                              <creator.>table-na +-----------------------------+  
                                                 ! Please mark your choice:    !  
   >-( PERS-NO___________ - DECIMAL________ ( 8_ !  _ INTEGER                  !  
   >-- NAME______________ - CHAR___________ ( 25 !  _ SMALLINT                 !  
   >-- FIRST-NAME________ - CHAR___________ ( 25 !  _ FLOAT(integer,integer)   !  
   >-- AGE_______________ - DECIMAL________ ( 25 !  _ DECIMAL(integer,integer) !  
   >-- SALARY____________ - DECIMAL________ ( 2_ !  _ CHAR(integer)            !  
   >-- FUNCTION__________ - INTEGER________ ( 5, !  _ VARCHAR(integer)         !  
   >-- EMPL-SINCE________ - DATE___________ ( __ !  _ LONG VARCHAR             !  
   >-- __________________ - ?______________ ( __ !  _ GRAPHIC(integer)         !  
         column-name           format       ( __ !  _ VARGRAPHIC(integer)      !  
                                            ( __ !  _ LONG VARGRAPHIC          !  
                                                 !  _ DATE                     !  
                                                 !  _ TIME                     !  
                                                 !  _ TIMESTAMP                !  
                                                 ! Valid abbreviations:        !  
                                                 ! I,S,F,DE,C,VARC,L VARC,G,   !  
   Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7 ! VARG,L VARG,DA,TIME,TIMES   !  
         Help  Next        Free  Exec  Top   Bwd !                             !  
                                                 +-----------------------------+

Press ENTER to close the window again.

As you can see on the above screen, the beginning of the syntax specification for an SQL statement is always
indicated by ">>".

In the case of complex SQL statements, more than one input screen may be required. If so, you can switch to the
following screen by pressing PF2 (Next).

23Copyright © Software AG 2003

Fixed ModeDatabase Management



If you press PF2 (Next), the next Create Table input screen screen is displayed, where you can specify up to 16
foreign keys for the current table together with their corresponding parent table and up to 16 unique keys.

  16:52:52                 **** SYSSQL/DS Utility ****               1999-08-28
                                  - Create Table -                     Page: 01  
                                                                                 
  >-+-+-------------------------------------------------------------------+-+-)->
     ! +- , - FOREIGN KEY --- AUTO-NAME_________ --- ( --- X --- ) ---->   ! !   
     !                        <constraint-name>       column-names         ! !   
     !                                                                     ! !   
     !  >---- REFERENCES ---->                                             ! !   
     !  >--- SAG_____ . AUTOMOBILES_______ - ON DELETE -+- _ - RESTRICT -+-+ !   
     !       <creator>     table-name                   +- _ - CASCADE --+   !   
     !                                                  +- S - SET NULL -+   !   
     +----------------------------------<------------------------------------+   
                                                                                 
  >-+-+-------------------------------------------------------------------+-+-)->
     ! !                                                                     !   
     ! +- , - UNIQUE -------- __________________ --- ( --- _ --- ) ---->     !   
     !                       <constraint-name>        column-names           !   
     !  >---- PCTFREE= ------ __                                             !   
     !                       0-99                                            !   
     +----------------------------------<------------------------------------+   
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help  Next  Prev  Free  Exec  Top   Bwd   Fwd   Bot         Error Menu

On this screen, you can specify a referential constraint to another table. To do so, enter an "S" in the first
"column names" field. A list of all columns available in the current table (dependent table) is displayed, where
you can select the column(s) to comprise the foreign key related to another table (parent table). You can also
specify a name for the constraint. If not, the constraint name is derived from the first column of the foreign key.

A foreign key consists of one or more columns in a dependent table that together must take on a value that exists
in the primary key of the related parent table.

In the REFERENCES part, you must specify the table name (with an optional creator name) of the parent table
which is to be affected by the specified constraint. In addition, you must specify the action to be taken when a
row in the referenced parent table is deleted. You have three options available: 

RESTRICT prevents the deletion of the parent row until all dependent rows are deleted (this is the default
value). 
CASCADE deletes all dependent rows, too. 
SET NULL sets to null all columns of the foreign key in each dependent row that can contain null values. 

You can also specify a unique key for that table. To do so, enter an "S" in the second Column Names field. A list
of all columns available in the current table is displayed, where you can select the column(s) to comprise the key.
All selected columns must have been defined with the NOT NULL attribute. If this is not the case, a window is
displayed where you can set NOT NULL for this column. You can also specify a name for the constraint. If you
do not, the constraint name is derived from the first column of the unique key.

Copyright © Software AG 200324

Database ManagementFixed Mode



You can specify up to 16 constraint blocks. In each block you can define a foreign key and a unique key. In the
top right-hand corner of the screen, the index of the currently displayed referential constraint block (1) is
displayed. You can page forward and backward through the contraint blocks by pressing PF7 and PF8.

When you have entered all information, you can press either PF3 (Prev) to return to the previous screen, or PF2
(Next) to go to the last screen as shown below:

  17:05:38                 **** SYSSQL/DS Utility ****               1999-08-28
                                  - Create Table -                     Page: 01  
                                                                                 
                                                                                 
                                                                                 
                                                                                 
  >------------+------------------------------------------------------+--------><
               !                                                      !          
               +-------- IN -- SAG_____ . DEMO______________ ---------+          
                                  <owner.>dbspace-name                           
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help        Prev  Free  Exec                                Error Menu

On this screen, you can specify the dbspace where the table is to be created.

As you can see on the above screen, the end of the syntax specification for an SQL statement is always indicated
by "><".

If you press PF2 (Prev) on this screen, you return to the previous screen.

When all information has been entered, you can either switch to free mode (PF4) or submit the created member
directly to SQL/DS for execution (PF5). If execution is successful, you receive the message:

Statement(s) successful, SQLCODE = 0

If not, an error code is returned.

Once a table has been created, the data type of its columns cannot be changed and columns cannot be deleted.
However, new columns can be added using the ALTER TABLE function as described in the following section.

25Copyright © Software AG 2003

Fixed ModeDatabase Management



Altering an SQL/DS Table

With the ALTER TABLE function you can add single columns to an existing table. You can also add, drop,
activate or deactivate primary and foreign keys.

The following example illustrates how to use the SYSSQL utility to alter an SQL/DS table in fixed mode.

When you mark the ALTER function in the SYSSQL Main Menu and press ENTER, a window prompts you for
the type of object to be altered - in this case a TABLE:

  17:05:33                   **** SYSSQL Utility ****                 1999-09-29
                                   - Main Menu -                                 
                                                                                 
      +---------- Maintenance ---------+   +--------- Authorizations -------+    
      !   _ CREATE                     !   !   _ GRANT                      !    
      !   _ ACQUIRE +------------------+    !   _ REVOKE                     !    
      !   x  ALTER   !    _ DBSPACE     !    !   _ LOCK TABLE                 !    
      !   _ DROP    !    x TABLE       !    !   _ CONNECT                    !    
      !   _ UPDATE  !                  !    !                                !    
      +------------ +-----------------++    +--------------------------------+    
                        +-------- Descriptions ----------+                       
                        !   _ EXPLAIN                    !                       
                        !   _ COMMENT ON                 !                       
                        +--------------------------------+                       
                                                                                 
      +---------------------------- Comments -------------------------------+    
      !  Enter ? for HELP or press PF1                                      !    
      !  Enter . to QUIT or press PF12                                      !    
      !  Press PF4 to enter Free-Mode                                       !    
      +---------------------------------------------------------------------+    
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help              Free                                            Exit   
  SYSSQL4776 Please mark your choice.

Copyright © Software AG 200326

Database ManagementFixed Mode



When you press ENTER again, the first Alter Table input screen is displayed:

  17:07:04                  **** SYSSQL/DS Utility *                 1999-08-28
                                   - Alter Table -                               
                                                                                 
    >>--- ALTER TABLE ---------- ________ . __________________ ----------------->
                                  <creator.>table-name                           
                                                                                 
    >-+-- ADD -- __________________  _______________ ( _____ ) -- _ -- _ -- _-+->
      !              column-name          format       length     S  field CCS ! 
      !                                                           M  proc  ID  ! 
      !                                                           B            ! 
      !                                                                        ! 
      +--+-------+-- PRIMARY KEY --- ( --- _ --- ) ---- PCTFREE= --  __   -----+ 
      !  +- ADD -+                    column-names                  0-99       ! 
      !                                                                        ! 
      +-- DROP --+-- PRIMARY KEY --- _ ----------------------------------------+ 
                 !                                                             ! 
                 +-- FOREIGN KEY --- __________________ -----------------------+ 
                 !                    constraint-name                          ! 
                 +-- UNIQUE KEY  --- __________________ -----------------------+ 
                                      constraint-name                            
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help  Next        Free  Exec                                Error Menu

You can enter the creator and table names on this screen, as well as the name, format and length of an additional 
column.

In addition, you can define a primary key as described in the section Creating an SQL/DS Table. You can also
drop an already existing primary key, thereby removing all referential constraints in which the current table is a
parent table.

You can also drop any already existing foreign key or unique key by specifying its constraint name. If a foreign
key is dropped the corresponding referential constraint is removed.

27Copyright © Software AG 2003

Fixed ModeDatabase Management



Once you have entered all necessary information, press PF2 (Next) to display the next Alter Table input screen,
where you can add or drop foreign keys and unique keys.

  17:07:56                   **** SYSSQL/DS Utility *                 1999-08-28
                                   - Alter Table -                               
                                                                                 
                                                                                 
                                                                                 
   +>>----+-------+- FOREIGN KEY --- __________________ --- ( --- _ --- ) ---+-> 
          +- ADD -+                    constraint-name       column-names        
                                                                                 
         >---- REFERENCES ---------- ________ . __________________ ------------> 
                                     <creator.> table-name                       
         >---- ON DELETE -+- S - RESTRICT -+-+-------------------------------->< 
                          +- _ - CASCADE --+                                     
                          +- _ - SET NULL -+                                     
                                                                                 
                                                                                 
   +>>----+-------+- UNIQUE KEY ---- __________________ --- ( --- _ --- ) -----> 
          +- ADD -+                  constraint-name         column-names        
                                                                                 
         >---------- PCTFREE= ------ __ -------------------------------------->< 
                                    0-99                                         
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help  Next  Prev  Free  Exec                                Error Menu

A foreign key or unique key is added as described in the section Creating an SQL/DS Table.

When you have entered all information you can press either PF3 (Prev) to return to the previous screen, or PF2
(Next) to go to the last screen as shown below:

  17:08:40                   **** SYSSQL/DS Utility ****              1999-08-28
                                   - Alter Table -                               
                                                                                 
   >--- ACTIVATE ---+---- _ --- ALL ----------------------------------------+->< 
                    !                                                       !    
                    +---- _ --- PRIMARY KEY --------------------------------+    
                    !                                                       !    
                    +---------- FOREIGN KEY -- __________________ ----------+    
                    !                            constraint-name            !    
                    +---------- UNIQUE kEY --- __________________ ----------+    
                                                 constraint-name                 
                                                                                 
   >--- DEACTIVATE -+---- _ --- ALL -----------------------------------------+-><
                    !                                                        !   
                    +---- _ --- PRIMARY KEY----------------------------------+   
                    !                                                        !   
                    +---------  FOREIGN KEY -- __________________ -----------+   
                    !                            constraint-name             !   
                    +---------  UNIQUE KEY --- __________________ -----------+   
                                                 constraint-name                 
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help        Prev  Free  Exec                                Error Menu

Copyright © Software AG 200328

Database ManagementFixed Mode



In the ACTIVATE part you have three options available. You can activate: 

ALL, which automatically enforces all the referential constraints defined for a primary key. 
PRIMARY KEY, which automatically enforces the primary key. 
FOREIGN KEY constraint-name, which automatically enforces the specified referential constraint. 

In the DEACTIVATE part you have three options available. You can deactivate: 

ALL, which deactivates the primary key and all active foreign keys in the table. 
PRIMARY KEY, which drops the primary key index from the table and implicitly deactivates all active
dependent foreign keys. 
FOREIGN KEY constraint-name, which deactivates the specified referential constraint. 

By specifying any of these options, the restrictions imposed by the referential constraints are suspended and the
parent and dependent tables involved in a referential constraint are made unavailable to users other than the DBA
and the owner of the table.

Press PF2 (Prev) to return to the previous screen.

29Copyright © Software AG 2003

Fixed ModeDatabase Management



Free Mode

When free mode is invoked from fixed mode, the data that were entered in fixed mode are shown as generated
SQL code, which can be saved for later use or modification. The editor provided is an adapted version of the
Natural program editor.

If you modify an SQL member in free mode, this has no effect on the fixed-mode version of the member. You
can save your modified code in free mode, but when you return to fixed mode, the original data appear again.
Thus, both original and modified data are available. 

In free mode you can execute the member currently in the source area by pressing PF5 (as in fixed mode).

If you switch to free mode after you have created an SQL/DS table in fixed mode as described in the section 
Creating an SQL/DS Table, the free-mode editor displays the generated SQL code as in the following sample 
screen:

  15:13:39                   **** SYSSQL Utility ****                 1999-09-29
                                   - Free Mode -             Member:             
                                                                                 
     Command:                                                                    
     +--------------------------------------------------------------------------+
     ! CREATE TABLE SAG.PERSONNEL                                               !
     !   (PERS-NO              DECIMAL(8)             NOT NULL,                 !
     !    NAME                 CHAR(25)               NOT NULL,                 !
     !    FIRST-NAME           CHAR(25)               NOT NULL,                 !
     !    AGE                  DECIMAL(2)             NOT NULL,                 !
     !    SALARY               DECIMAL(5,2),                                    !
     !    FUNCTION             INTEGER,                                         !
     !    EMPL-SINCE           DATE                   NOT NULL,                 !
     !   PRIMARY KEY (PERS-NO),                                                 !
     !   FOREIGN KEY  AUTO-NAME (NAME)                                          !
     !     REFERENCES SAG.AUTOMOBILES                                           !
     !     ON DELETE SET NULL                                                   !
     !   )                                                                      !
     !   IN SAG.DEMO                                                            !
     +--------------------------------------------------------------------------+
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help              Fix   Exec  Top   Bwd   Fwd   Bot         Error Menu

Copyright © Software AG 200330

Database ManagementFree Mode



The Free-Mode Editor

The free-mode editor available is almost identical to the Natural program editor and allows you to edit the
generated SQL code. All program editor line commands and the following editor commands are available:

Command Function 

ADD dnf Adds n empty lines. 

CHANGE Scans for the value entered as scandata and replaces each such value found with the
value entered as replacedata. The syntax for this command is:
CHANGE ’scandata’ ’ replacedata’ 

CLEAR Clears the editor source area (including the line markers "X" and "Y"). 

DX, DY, DX-Y Deletes the X-marked line or the Y-marked line or the block of lines delimited by "X"
and "Y". 

EX, EY, EX-Y Deletes source lines from the top of the source area to - but not including - the X-marked
line, or from the source line following the Y-marked line to the bottom of the source
area, or all source lines in the source area excluding the block of lines delimited by "X"
and "Y". 

LET Undoes all modifications made to the current screen since the last time ENTER was
pressed, including all line commands already entered but not yet executed. 

POINT Positions the line in which the line command ".N" was entered to the top of the current
screen. 

RESET Deletes the current X and/or Y line markers and any marker previously set with the line
command ".N". 

SCAN [’scan-value’] Scans for the string scan-value in the source area. 

SCAN = [+|-] Scans forwards (+) or backwards (-) for the next occurrence of the scan value. 

SHIFT [-|+nn] Shifts the block of source lines delimited by the X and Y markers to the left (-) or right
(+). "nn" represents the number of characters the source line is to be shifted. 

For further details, refer to Program Editor in the Natural Editors documentation.

31Copyright © Software AG 2003

Free ModeDatabase Management



In addition, the following SQL code maintenance commands are available:

Command Function 

INSERT member-name Saves the code in the source area as a member. If you press PF5, the code in the
source area can also be executed as in fixed mode. 

SELECT member-name Reads the specified member into the source area. 

DELETE member-name Deletes the specified member. 

LIST QUERY member-nameDisplays a list of members on the screen using asterisk notation (*). For
example, "L Q A*" would display a list of all SQL code members beginning
with "A". 

Member names must correspond to the naming conventions for Natural objects, which means they can be up to
eight characters long and must start with a letter.

You can also always refer to the SYSSQL help system, which is invoked via PF1.

Copyright © Software AG 200332

Database ManagementFree Mode



Natural System Commands for SQL/DS
This section describes special Natural system commands for the use with SQL/DS. There are three Natural
system commands which perform SQL/DS-specific functions: 

LISTSQL Command
Lists Natural DML statements and their corresponding SQL statements. 
SQLERR Command
Provides diagnostic information about an SQL/DS error 
LISTDBRM Command
Displays either a list of packages for a particular Natural program or a list of Natural programs that
reference a particular package. 

Note:
LISTDBRM has to be issued from library SYSSQL, which means you have to LOGON to SYSSQL first
and then enter the command LISTDBRM.

LISTSQL Command 

LISTSQL   [ object-name ] 

The LISTSQL command lists the Natural statements in the source code of a programming object that are
associated with a database access, and the corresponding SQL statements into which they have been translated.
LISTSQL is issued from the Natural NEXT prompt.

Thus, before executing a Natural program which accesses an SQL/DS table, you can view the generated SQL
code by using the command LISTSQL.

If a valid object name is specified, the object to be displayed must be stored in the library to which you are
currently logged on.

If no object name is specified, LISTSQL refers to the object currently in the Natural source area.

The generated SQL statements contained in the specified object are listed one per page. 

33Copyright © Software AG 2003

Natural System Commands for SQL/DSDatabase Management



Sample LISTSQL Screen:

  13:55:18               * * * NATURAL Tools for SQL * * *            1999-08-29
   Member N2PIGDDM                    LISTSQL                    Library SYSSQL  
                                                                                 
   NATURAL statement  at line 3820                                 Stmt   4 / 4  
                                                                                 
     FIND SYSTEM-SYSCOLUMNS WITH TNAME EQ TABLE-NAME AND                         
       CREATOR = ICREATOR SORTED BY COLNO                                        
       IF NO RECORDS FOUND DO                                                    
                                                                                 
   Generated SQL statement   Mode : dynamic  DBRM :                Line   1 / 5  
                                                                                 
     SELECT  COLNO, CNAME, COLTYPE, SYSLENGTH, NULLS, REMARKS, REMARKS,          
             CLABEL, LENGTH                                                      
     FROM    SYSTEM.SYSCOLUMNS                                                   
     WHERE   TNAME = ? AND CREATOR = ?                                           
     ORDER BY COLNO                                                              
                                                                                 
                                                                                 
                                                                                 
                                                                                 
  Command ===>                                       Queryno for EXPLAIN 1____   
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
              Error Exit  Expl        Parms  -     +          Prev  Next  Canc

Within the listed results, you can go from one listed SQL statement to another by pressing PF10 (Prev) or PF11
(Next). If a single SQL statement does not fit on the screen, you can scroll backwards or forwards by pressing
PF7 or PF8, respectively.

If a static DBRM has been generated, the name of this DBRM is displayed in the DBRM field of the LISTSQL
screen; otherwise, the DBRM field remains empty.

If an error occurs, PF2 (Error), which executes the SQLERR command, can be used to provide information about
SQL/DS errors.

With PF4 (Expl), a SQL/DS EXPLAIN command can be executed for the SQL statement currently listed. The
query number (Queryno) for the EXPLAIN command is set to "1" by default, but you can overwrite this default.

Copyright © Software AG 200334

Database ManagementLISTSQL Command



With PF6 (Parms), a further screen is displayed which lists all parameters from the SQLDA for the currently
displayed SQL statement:

  14:04:25               * * * NATURAL Tools for SQL * * *            1999-08-29
   Member N2PIGDDM                    LISTSQL                    Library SYSSQL  
                                                                                 
           Mode : dynamic   DBRM :           Contoken :                          
                                                                                 
           static parms : (1st)                                                  
                          (2nd)                                                  
           SQLDA                                                                 
                                     DBID : 250  FNR :   3  CMD : S2 3820 08     
       Nr  Type   Length                                                         
        1. SMALLINT    2             0F5C C0C2 0002 01F5 0000 0000 0901 0000     
        2. CHAR       18             0F5E 0012 0012 01C5 0000 0000 0D01 0000     
        3. CHAR        8             0F70 0008 0008 01C5 0000 0000 0901 0000     
        4. SMALLINT    2             0F78 C0C2 0002 01F5 0000 0000 0901 0000     
        5. CHAR        1             0F7A 0001 0001 01C5 0000 0000 0901 0000     
        6. VARCHAR   127             002A 00FE 007F 01C1 0000 0000 0901 0000     
        7. VARCHAR   127             0038 00FE 007F 01C1 0000 0000 0901 0000     
        8. CHAR       30             1079 001E 001E 01C5 0000 0000 0901 0000     
        9. CHAR        7             1097 0007 0007 01C5 0000 0000 0801 0000     
                                                                                 
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
                    Exit                     -     +                      Canc

In static mode, static information is also displayed, which includes the static DBRM name, the SQL/DS
consistency token and some internal static parameters.

35Copyright © Software AG 2003

LISTSQL CommandDatabase Management



EXPLAIN Command

LISTSQL enables you to use the SQL/DS command EXPLAIN, which provides information on the SQL/DS
optimizer’s choice of strategy for executing SQL statements.

Natural executes the EXPLAIN command for the SQL statement that is displayed on the LISTSQL screen.

The information determined by the SQL/DS optimizer is written into your PLAN_TABLE. Natural then reads
the table and displays the contents.

  14:05:42               * * * NATURAL Tools for SQL * * *            1999-08-29
  Queryno 1                      EXPLAIN Result                      Row  1 / 1  
                                                                                 
                       Estimated cost :    16.3  timerons                        
                                                                                 
             Qblockno                  Table                                     
                   Planno Method Tabno creator     Tablename                     
               ---  ---   ------  ---  -------- ------------------               
               1    1             1    SYSTEM   SYSCOLUMNS                       
                                                                                 
                                                                                 
                                                                                 
                                                                                 
            Access  Access                                                       
             type   creator      Accessname      sort_new sort_comp              
             ----   --------  ------------------ -------- ---------              
              I     SYSTEM    ICOL                  Y          N                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
                    Exit        Del          -     +                      Canc

The Query Number is set to "1" by default, but you can overwrite this default.

Copyright © Software AG 200336

Database ManagementLISTSQL Command



SQLERR Command 

The SQLERR command is used to obtain diagnostic information about an SQL/DS error.

When an SQL/DS error occurs, Natural issues an appropriate error message. When you enter the SQLERR
command, the following information on the most recent SQL/DS error is displayed: 

the Natural error message number; 
the corresponding reason code (if applicable); 
the variable SQLCODE returned by SQL/DS; 
the SQL/DS error message. 

The SQLERR command can be issued either from the Natural NEXT prompt or from within a Natural program
(by using the FETCH statement).

Sample SQLERR Diagnostic Information Screen:

                     *** SQLERR Diagnostic Information ***
    ----------------------- NATURAL SQL Interface Codes -------------------------
    Return Code: 3700              Reason Code: 0               SQL code : -204  
    -------------------------------- SQLCA --------------------------------------
    SQLERRP (Adabas SQL Subroutine where error occurred)       :  ARIXOCA        
    SQLERRD (Adabas SQL Internal State)                                          
            RDS Return Code                                    :            100  
            DBSS Return Code                                   :              0  
            Number of Rows Processed                           :              0  
            Estimated Cost                                     :              1.0
            Syntax error on PREPARE or EXECUTE IMMEDIATE       :              0  
            Buffer Manager ERROR Code                          :              0  
    SQLWARN (Warning Flags)                                                      
            Data truncated                                                       
            Null Values ignored(AVG,SUM,MAX,MIN)               :                 
            No. of columns greater than no. of host variables  :                 
            UPDATE/DELETE without WHERE clause                 :                 
            SQL statement causes a performance degradation     :                 
            Adjustment to DATE/TIMESTAMP Variable made         :                 
    SQL/DS Error Message :                                                       
    SAG.SYSTABLES  not found in system catalog

37Copyright © Software AG 2003

SQLERR CommandDatabase Management



LISTDBRM Command 

The LISTDBRM command is used to display either existing packages of Natural programs or Natural programs
referencing a given package.

Since LISTDBRM has to be issued from the library SYSSQL, first LOGON to SYSSQL and then enter the
command LISTDBRM. The following menu is displayed:

  16:53:20                 * * * LISDBRM Command * * *                1999-09-29
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                                                                                 
                         Code Function                                           
                         ---- -------------------------------                    
                          D   Display DBRMs of Programs                          
                          R   List Programs Referencing DBRM                     
                          ?   Help                                               
                          .   Exit                                               
                         ---- --------------------------------                   
                  Code .. _   Library .. EXAMPLE_                                
                              Member  .. ________                                
                              DBRM ..... ________                                
                                                                                 
                                                                                 
                                                                                 
  Command ===>                                                                   
  Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
        Help        Exit                                                  Canc

The following functions are available:

Code Description 

D This function displays programs with SQL/DS access and their corresponding package (DBRM). If no
package name is shown, the corresponding program uses dynamic SQL. 

R This function lists all programs that use a given package (DBRM). If no package name is specified, all
programs that use dynamic SQL are listed. 

Copyright © Software AG 200338

Database ManagementLISTDBRM Command



The following parameters apply:

Parameter Description 

Library Specifies the name of a Natural library. Library names beginning with "SYS" are not permitted. 
This parameter must be specified. 

Member Specifies the name of the Natural program (member) to be displayed. 
This parameter is optional and can be used to limit the output. If a value is specified followed by
an asterisk (*), all members in the specified library with names beginning with this value are 
listed.
If this field is left blank, or if an asterisk is specified only, all members in the specified library are
listed. 

DBRM Specifies a valid package name. If left blank, programs that run dynamically are referenced.
This parameter applies to function code "R" only. 

Sample LISTDBRM Result Screen:

  16:53:20                * * * LISTDBRM Command * * *                1999-04-26
                                                                                 
                                                                                 
        Library  Name     Type         DBRM       User ID  Date     Time         
        -------- -------- -----------  --------   -------- -------- --------     
        EXAMPLE  PROG1    Program      PACK1      SAG      93-07-17 11:10:43     
        EXAMPLE  PROG2    Program      PACK1      SAG      93-07-17 11:10:48     
        EXAMPLE  PROG3    Program      PACK2      SAG      93-07-17 11:11:04     
        EXAMPLE  PROG4    Program                 SAG      93-07-17 11:11:07

39Copyright © Software AG 2003

LISTDBRM CommandDatabase Management



DDM Generation
This section covers the following topics: 

Natural Data Definition Module - DDM 
SQL Services 

Natural Data Definition Module - DDM
To enable Natural to access an SQL/DS table, a Natural DDM of the table must be generated. This is done either
with Predict (see the relevant Predict documentation for details) or with the Natural utility SYSDDM.

If you do not have Predict installed, use the SYSDDM function "SQL Services" to generate Natural DDMs from
SQL/DS tables. This function is invoked from the main menu of SYSDDM and is described below.

SQL Services
If you are using SYSDDM SQL Services in a CICS environment, you should have specified CONVERS=ON in
the NDBPARM module.

The SQL Services offer a number of functions related to SQL/DS tables. If you enter function code "B" for
"SQL Services" on the main menu of the SYSDDM utility, a menu is displayed, which offers you the following
functions: 

Select SQL Table from a List 
Generate DDM from an SQL Table 
List Columns of an SQL Table 

The input field "SQL system" contains the name of the SQL system actually in use. If Natural for SQL/DS is the
only SQL interface installed, the field is write-protected and contains "SQL/DS"; if not, enter "SQL/DS".

The individual functions are described below.

Select SQL Table from a List 

This function is used to select an SQL/DS table from a list for further processing.

To invoke the function, enter function code "S" on the SQL Services Menu. If you enter the function code only,
you obtain a list of all tables defined to the SQL/DS catalog.

If you do not want a list of all tables but would like only a certain range of tables to be listed, you can, in
addition to the function code, specify a start value in the Table Name and/or Creator fields. You can also use
asterisk notation (*) for the start value.

When you invoke the function, the "Select SQL Table from a List" screen is invoked displaying a list of all
SQL/DS tables requested.

On the list you can mark an SQL/DS table with either "G" for "Generate DDM from an SQL Table" or "L" for
"List Columns of an SQL Table". Then the corresponding function is invoked for the marked table.

Copyright © Software AG 200340

DDM GenerationDDM Generation



Generate DDM from an SQL Table 

This function is used to generate a Natural DDM from an SQL/DS table, based on the definitions in the SQL/DS 
catalog.

To invoke the function, enter function code "G" on the SQL Services Menu along with the name and creator of
the table for which you wish a DDM to be generated. If you do not know the table name/creator, you can use the
function "Select SQL Table from a List" to choose the table you want.

If you do not want the creator of the table to be part of the DDM name, enter a "N" in the field "DDM Name
with Creator" when you invoke the Generate function (default is "Y").

Note:
Since the specification of any special characters as part of a field or DDM name does not comply with
Natural naming conventions, any special characters allowed within SQL/DS must be avoided.
SQL/DS delimited identifiers must be avoided, too.

If you wish to generate a DDM for a table for which a DDM already exists and you want the existing one to be
replaced by the newly generated one, enter a "Y" in the Replace field when you invoke the Generate function.

By default, Replace is set to "N" to prevent an existing DDM from being replaced accidentally. If Replace is
"N", you cannot generate another DDM for a table for which a DDM has already been generated.

DBID/FNR Assignment

When the "Generate DDM from an SQL Table" function is invoked for a table for which a DDM is to be
generated for the first time, the DBID/FNR Assignment screen is displayed. If a DDM is to be generated for a
table for which a DDM already exists, the existing DBID and FNR are used and the DBID/FNR Assignment
screen is suppressed.

On the DBID/FNR Assignment screen, enter one of the database IDs (DBIDs) chosen at Natural installation time
and the file number (FNR) to be assigned to the SQL/DS table. Natural requires these specifications for
identification purposes only.

The range of DBIDs which are reserved for SQL/DS tables is specified in the NTDB macro of the Natural
parameter module (see the relevant section in the Natural Parameter Reference documentation) in combination
with the NDBID macro of the parameter module NDBPARM. Any DBID not within this range is not accepted.
The FNR can be any valid number between 1 and 255.

After a valid DBID and FNR have been assigned, a DDM is automatically generated from the specified table.

Long Field Redefinition

The maximum field length supported by Natural is 253 bytes. If an SQL/DS table contains a column which is
longer than 253 bytes, this column has to be redefined as a one-dimensional array; otherwise the column is
truncated and only the first 253 bytes are considered.

When redefined as an array, this array is represented in the DDM as a multiple-value field. Arrays are defined on
the Long Field Redefinition screen, which is automatically invoked for each column over 253 bytes in length.

On the Long Field Redefinition screen you specify the element length of the array, which means the length of the
occurrences. The number of occurrences depends on the length you specify.

If, for example, an SQL/DS column has a length of 2000 bytes, you can specify an array element length of 200
bytes, and you receive a multiple-value field with 10 occurrences, each occurrence with a length of 200 bytes.

41Copyright © Software AG 2003

Generate DDM from an SQL TableDDM Generation



Since redefined long fields are no multiple-value fields in the sense of Natural, the Natural C* notation cannot be
applied to those fields.

When such a redefined long field is defined in a Natural view for being referenced by Natural SQL statements
(that is, by host variables which represent multiple-value fields), both when defined and when referenced, the
specified range of occurrences (index range) must always start with occurrence 1. If not, a Natural syntax error is 
returned.

Example: 

UPDATE table SET varchar = #arr(*)
SELECT ... INTO #arr(1:5)

Note:
When such a redefined long field is updated with the Natural DML UPDATE statement, care must be taken to
update each occurrence appropriately.

Length Indicator for Variable Length Fields - VARCHAR, LONG VARCHAR,
VARGRAPHIC, LONG VARGRAPHIC 

For each variable length column, an additional length indicator field (format/length I2) is generated in the DDM.
The length is always measured in number of characters, not in bytes. To obtain the number of bytes of a
VARGRAPHIC or LONG VARGRAPHIC field, the length must be multiplied by 2.

The name of a length indicator field begins with "L@" followed by the name of the corresponding field. The
value of the length indicator field can be checked or updated by a Natural program.

If the length indicator field is not part of the Natural view and if the corresponding field is a redefined long field,
the length of this field with UPDATE and STORE operations is calculated without trailing blanks.

Null Values

With Natural, it is possible to distinguish between a null value and the actual value "0" (or "blank") in an
SQL/DS column.

When a DDM is generated from the SQL/DS catalog, an additional null indicator field is generated for each
column which can be NULL; that is, which has neither "NOT NULL" nor "NOT NULL WITH DEFAULT" 
specified.

The name of the null indicator field begins with "N@" followed by the name of the corresponding field.

When the column is read from the database, the corresponding indicator field contains either "0" (if the column
contains a value, including the value "0" or "blank") or "-1" (if the column contains no value).

Example:

The column "NULLCOL CHAR(6)" in an SQL/DS table definition would result in the following DDM fields:

NULLCOL A 6.0

N@NULLCOL I 2.0

When the field NULLCOL is read from the database, the additional field N@NULLCOL contains: 

"0" if NULLCOL contains a value (including the values "0" and "blank"); 
"-1" if NULLCOL contains no value. 

Copyright © Software AG 200342

DDM GenerationGenerate DDM from an SQL Table



A null value can be stored in a database field by providing "-1" as input for the corresponding null indicator 
field.

Note:
If a column is NULL, an implicit RESET is performed on the corresponding Natural field.

43Copyright © Software AG 2003

Generate DDM from an SQL TableDDM Generation



List Columns of an SQL Table 

This function lists all columns of a specific SQL/DS table.

To invoke this function, enter function code "L" on the SQL Services Menu along with the name and creator of
the table whose columns you wish to be listed.

The List Columns screen for this table is invoked, which lists all columns of the specified table and displays the
following information for each column:

Variable Content 

Name The SQL/DS name of the column. 

Type The column type. 

Length The length (or precision if Type is DECIMAL) of the column as defined in the SQL/DS catalog. 

Scale The decimal scale of the column (only applicable if Type is DECIMAL). 

Update Y  The column can be updated. 

N The column cannot be updated. 

Nulls Y  The column can contain null values. 

N The column cannot contain null values. 

Not A column which is of a scale length or type not supported by Natural is marked with an asterisk (*).
For such a column, a view field cannot be generated. The maximum scale length supported is 7 
bytes.

Types supported are:

CHAR, VARCHAR, LONG VARCHAR, GRAPHIC, 
VARGRAPHIC,LONG VARGRAPHIC, DECIMAL, INTEGER, SMALLINT, DATE,TIME,
TIMESTAMP and FLOAT. 

The data types DATE, TIME, TIMESTAMP and FLOAT are converted into numeric or alphanumeric fields of
various lengths: DATE is converted into A10, TIME into A8, TIMESTAMP into A26 and FLOAT into F8.

For SQL/DS, Natural provides an SQL/DS TIMESTAMP column as an alphanumeric field (A26) of the format 
"YYYY-MM-DD-HH.SS.MMMMMM". 

Since Natural does not yet support computations with such fields, a Natural subprogram called NDBSTMP is
provided to enable this kind of functionality.

Copyright © Software AG 200344

DDM GenerationList Columns of an SQL Table



Dynamic and Static SQL Support
This section covers the following topics: 

General Information 
Internal Handling of Dynamic Statements 
Preparing Natural Programs for Static Execution 
Assembler/Natural Cross-References 
Execution of Natural in Static Mode 
Static SQL with Natural Security 
Mixed Dynamic/Static Mode 
Messages and Codes 

45Copyright © Software AG 2003

Dynamic and Static SQL SupportDynamic and Static SQL Support



General Information
The SQL support of Natural combines the flexibility of dynamic SQL support with the high performance of
static SQL support.

In contrast to static SQL support, Natural dynamic SQL support does not require any special considerations with
regard to the operation of the SQL interface. All SQL statements required to execute an application request are
generated automatically and can be executed immediately with the Natural system command RUN. Before
executing a program, you can look at the generated SQL code, using the LISTSQL command.

Access to SQL/DS through Natural has the same form whether dynamic or static SQL support is used. Thus,
with static SQL support, the same SQL statements in a Natural program can be executed in either dynamic or
static mode. An SQL statement can be coded within a Natural program and, for testing purposes, it can be
executed using dynamic SQL. If the test is successful, the SQL statement remains unchanged and static SQL for
this program can be generated.

Thus, during application development, the programmer works in dynamic mode and all SQL statements are
executed dynamically, whereas static SQL is only created for applications that have been transferred to
production status.

Copyright © Software AG 200346

Dynamic and Static SQL SupportGeneral Information



Internal Handling of Dynamic Statements
Natural automatically provides for the preparation and execution of each SQL statement and handles the opening
and closing of cursors used for scanning a table. 

This section covers the following topics: 

NDBIOMO 
Statement Table 
Processing of SQL Statements Issued by Natural

NDBIOMO 

As each dynamic execution of an SQL statement requires a statically defined DECLARE STATEMENT and
DECLARE CURSOR statement, a special I/O module (NDBIOMO) is provided which contains a fixed number
of these STATEMENTs and CURSORs. This number is specified during the generation of NDBIOMO.

Statement Table 

If possible, an SQL statement is only prepared once and can then be executed several times if required. For this
purpose, Natural internally maintains a table of all SQL statements that have been prepared and assigns each of
these statements to a DECLAREd STATEMENT in NDBIOMO. In addition, this table maintains the cursors
used by the SQL statements SELECT, FETCH, UPDATE (positioned) and DELETE (positioned).

Each SQL statement is uniquely identified by: 

the name of the Natural program that contains this SQL statement, 
the line number of the SQL statement in this program, 
the name of the Natural library into which this program was stowed, 
the time stamp when this program was stowed. 

Once a statement has been prepared, it can be executed several times with different variable values, using the
dynamic SQL statement EXECUTE USING DESCRIPTOR or OPEN CURSOR USING DESCRIPTOR 
respectively.

When the full capacity of the statement table is reached, the entry for the next prepared statement overwrites the
entry for a free statement whose latest execution is the least recent one.

When a new SELECT statement is requested, a free entry in the statement table with the corresponding cursor is
assigned to it and all subsequent FETCH, UPDATE and DELETE statements referring to this SELECT
statement will use this cursor. Upon completion of the sequential scanning of the table, the cursor is released and
free for another assignment. While the cursor is open, the entry in the statement table is marked as used and
cannot be reused by another statement.

47Copyright © Software AG 2003

Internal Handling of Dynamic StatementsDynamic and Static SQL Support



If the number of nested FIND (SELECT) statements reaches the number of entries available in the statement
table, any further SQL statement is rejected at execution time and a Natural error message is returned.

The size of the statement table depends on the size specified for NDBIOMO. Since the statement table is
contained in the SQL/DS buffer area, the DB2SIZE parameter may not be sufficient and may need to be 
increased.

Processing of SQL Statements Issued by Natural 

The embedded SQL uses cursor logic to handle SELECT statements. The preparation and execution of a
SELECT statement is done as follows: 

The typical SELECT statement is prepared by a program flow which contains the following embedded SQL
statements (note that X and SQLOBJ are SQL variables, not program labels, and that the question marks
below are parameter markers which indicate where values are to be inserted at execution time.): 

DECLARE SQLOBJ STATEMENT

DECLARE X CURSOR FOR SQLOBJ

INCLUDE SQLDA (copy SQL control block)

Then, the following statement is moved into SQLSOURCE: 

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES
 WHERE NAME IN (?, ?)
   AND AGE BETWEEN ? AND ?

PREPARE SQLOBJ FROM SQLSOURCE

Then, the SELECT statement is executed as follows: 

OPEN X  USING DESCRIPTOR SQLDA
FETCH X USING DESCRIPTOR SQLDA

The descriptor SQLDA is used to indicate a variable list of program areas. When the OPEN statement is
executed, it contains the address, length and type of each value which replaces a parameter marker in the
WHERE clause of the SELECT statement. When the FETCH statement is executed, it contains the address,
length and type of all program areas which receive fields read from the table. When the FETCH statement is
executed for the first time, it sets the Natural system variable *NUMBER to a non-zero value if at least one
record is found that meets the search criteria. Then, all records satisfying the search criteria are read by
repeated execution of the FETCH statement. 
Once all records have been read, the cursor is released by executing the following statement: 

CLOSE X

Copyright © Software AG 200348

Dynamic and Static SQL SupportProcessing of SQL Statements Issued by Natural



Preparing Natural Programs for Static Execution
Static SQL is generated in Natural batch mode for one or more Natural applications which can consist of one or
more Natural object programs. The number of programs that can be modified for static execution in one run of
the generation procedure is limited to 999. 

During the generation procedure, the database access statements contained in the specified Natural objects are
extracted, written to work files and transformed into a temporary Assembler program. If no Natural program is
found that contains an SQL access or if any error occurs during static SQL generation, batch Natural terminates
and condition code 40 is returned, which means that all further JCL steps should no longer be executed.

The temporary Assembler program is written to a temporary file (the Natural work file CMWKF06) and
precompiled. During precompilation, a static SQL/DS package (access module) is created and after the
precompilation, the precompiler output is extracted from the Assembler program and written to the
corresponding Natural objects, which means that the Natural objects are modified (prepared) for static execution.
The temporary Assembler program is no longer used and deleted.

Note:
Since the Assembler precompiler of SQL/DS does not support GRAPHIC field types, you cannot generate a
static Assembler program if your Natural program(s) contain any references to GRAPHIC-type columns. 

The Natural subprogram NDBDBRM can be used to check whether a Natural program contains an SQL access
and whether it has been modified for static execution.

This section covers the following topics: 

Creating a Static SQL/DS Package under VSE/ESA 
Generation Procedure - CMD CREATE Command 
Modification Procedure - CMD MODIFY Command 

Creating a Static SQL/DS Package under VSE/ESA 

Under VSE/ESA, a static SQL/DS package is created by using the sample job I075.

The job I075 consists of the following steps:

Step 1: Generate the Static Assembler Program

Define six Natural work files for output. 
Define as PHASE search library the library that contains the Natural batch module and the library where
you installed this Natural for SQL/DS version (since the static generation process uses the Natural modules
NDBSTAT and NDBCHNK). 
Define the necessary Natural commands and the Natural input for the static generation procedure. 

The output (CMWKF06) consists of a temporary Assembler program which contains all the database access
statements of the Natural objects involved and serves as input for the precompilation step below.

49Copyright © Software AG 2003

Preparing Natural Programs for Static ExecutionDynamic and Static SQL Support



Step 2: Precompile the Generated Assembler Program

Define as PHASE search library the library where you installed SQL/DS. 
Define the necessary precompiler options and specify your SQL user ID and password. 

The precompiler output consists of a static SQL/DS package and a precompiled temporary Assembler program
(IJSYSPH) which contains all the database access statements transformed from SQL into Assembler statements
and serves as input for the modification step below.

Step 3: Modify the Natural Objects

Define as PHASE search library the library that contains the Natural batch module. 
Define the necessary Natural commands and the Natural input for the object modification procedure. 

The output consists of a modified Natural object which contains all required SQL/DS access information.

Generation Procedure - CMD CREATE Command 

To generate static SQL for Natural programs, LOGON to library SYSSQL.

Note:
Since a new SYSSQL library has been created when installing Natural for SQL/DS, ensure that it contains
all Predict interface programs necessary to run the static SQL generation. These programs are loaded into
SYSSQL during Predict installation (see the relevant Predict documentation).

Then specify the CMD CREATE command and the Natural input necessary for the static SQL generation
process; the CMD CREATE command has the following syntax:

CMD CREATE DBRM  static-name USING using-clause 

{application-name,object-name,excluded-object} 

: 

: 

The generation procedure reads but does not modify the specified Natural objects. If one of the specified
programs was not found or had no SQL access, return code 4 is returned at the end of the generation step.

Static Name

If the PREDICT DOCUMENTATION option is to be used, a corresponding Predict static SQL entry must be
available and the static-name must correspond to the name of this entry. In addition, the static-name must
correspond to the name of the static SQL/DS package to be created during precompilation. The static-name can
be up to 8 characters long and must conform to Assembler naming conventions.

Copyright © Software AG 200350

Dynamic and Static SQL SupportGeneration Procedure - CMD CREATE Command



USING Clause

The using-clause specifies the Natural objects to be contained in the static SQL/DS package. These objects can
either be specified explicitly as INPUT DATA in the JCL or obtained as PREDICT  DOCUMENTATION from 
Predict.

INPUT DATA
PREDICT DOCUMENTATION

WITH XREF
YES
NO
FORCE

[LIB lib-name] 

If the parameters to be specified do not fit in one line, specify the command identifier (CMD) and the various
parameters in separate lines and use both the input delimiter (as specified with the ID parameter; default is ",")
and the continuation indicator (as specified with the CF parameter; default is "%") as shown in the example 
below.

Example: 

CMD
CREATE,DBRM,static ,USING,PREDICT,DOCUMENTATION,WITH,XREF,NO,%
LIB, library

Alternatively, you can also use abbreviations as shown in the following example:

Example: 

CMD CRE DBRM static  US IN DA W XR Y LIB library

The sequence of the parameters USING, WITH and LIB is optional.

51Copyright © Software AG 2003

Generation Procedure - CMD CREATE CommandDynamic and Static SQL Support



INPUT DATA

As input data, the applications and names of the Natural objects to be included in the static SQL/DS package
must be specified in the subsequent lines of the job stream (application-name,object-name). A subset of these
objects can also be excluded again (excluded-objects). Objects in libraries whose name begins with "SYS" can be
used for static generation, too.

The applications and names of Natural objects must be separated by the input delimiter (as specified with the ID
parameter; default is ","). If you wish to specify all objects whose name begins with a specific string of
characters, use an object-name or excluded-objects name that ends with asterisk notation (*). To specify all
objects in an application, use asterisk notation only.

Example: 

LIB1,ABC*
LIB2,A*,AB*
LIB2,*
...

The specification of applications/objects must be terminated by a line that contains a period (.) only.

PREDICT DOCUMENTATION

As Predict supports static SQL for SQL/DS, you can also have Predict supply the input data for creating static
SQL by using already existing PREDICT DOCUMENTATION.

WITH XREF Option

As Predict Active References supports static SQL for SQL/DS, the generated static SQL/DS package can be
documented in Predict and the documentation can be used and updated with Natural.

WITH XREF is the option which enables you to store cross-reference data for a static SQL entry in Predict each
time a static SQL/DS package is created (YES). You can instead specify that no cross-reference data are stored
(NO) or that a check is made to determine whether a Predict static SQL entry for this static SQL/DS package
already exists (FORCE). If so, cross-reference data are stored; if not, the creation of the static SQL/DS package
is not allowed. For more information on Predict Active References, refer to the Predict documentation.

When WITH XREF (YES/FORCE) is specified, XREF data are written for both the Predict static SQL entry (if
defined in Predict) and each generated static Natural program. However, static generation with WITH XREF
(YES/FORCE) is possible only if the corresponding Natural programs have been cataloged with XREF ON.

WITH XREF FORCE only applies to the USING INPUT DATA option.

Note:
If you do not use Predict, the XREF option must be omitted or set to NO and the module NATXRF2 need not be
linked to the Natural nucleus.

Copyright © Software AG 200352

Dynamic and Static SQL SupportGeneration Procedure - CMD CREATE Command



Library Option - LIB

With the LIB option, a Predict library other than the default library (*SYSSTA*) can be specified to contain the
Predict static SQL entry and XREF data. The name of the library can be up to eight characters long.

Modification Procedure - CMD MODIFY Command 

The modification procedure modifies the Natural objects involved by writing precompiler information into the
object and by marking the object header with the static-name as specified with the CMD CREATE command.

In addition, any existing copies of these objects in the Natural global buffer pool (if available) are deleted and
XREF data are written to Predict (if specified during the generation procedure).

To perform the modification procedure, LOGON to SYSSQL and specify the CMD MODIFY command which
has the following syntax:

CMD MODIFY  [ XREF ] 

The input for the modify step is the precompiler output which must reside on a dataset defined as the Natural
work file CMWKF01.

The output consists of precompiler information which is written to the corresponding Natural objects. In
addition, a message is returned telling you whether it was the first time an object was modified for static
execution ("modified") or whether it had been modified before ("re-modified").

If the XREF option is specified, the Natural work file CMWKF02 must be defined to contain the resulting list of
cross-reference information concerning the statically generated SQL statements (see also Assembler/Natural 
Cross-References).

53Copyright © Software AG 2003

Modification Procedure - CMD MODIFY CommandDynamic and Static SQL Support



Assembler/Natural Cross-References
If you specify the XREF option of the MODIFY command, an output listing is created on the work file
CMWKF02, which contains the static SQL/DS package name and the Assembler statement number of each
statically generated SQL statement together with the corresponding Natural source-code line number, program
name, library name, database ID and file number.

Example: 

------------------------------------------------------------------------
 DBRMNAME STMTNO      LINE NATPROG  NATLIB   DB    FNR   COMMENT        
------------------------------------------------------------------------
 DEM2S    000087      0170 DEM2SUPD HGK      00010 00032 SELECT         
          000111      0230                               UPD/DEL        
 DEM2S    000121      0370 DEM2SINS HGK      00010 00032 INSERT         
 DEM2S    000131      0150 DEM2SDEL HGK      00010 00032 SELECT         
          000155      0170                               UPD/DEL        
 DEM2S    000165      0040 DEM2SDL2 HGK      00010 00032 UPD/DEL

 

Column Explanation 

DBRMNAME Name of the static SQL/DS package which contains the static SQL statement. 

STMTNO Assembler statement number of the static SQL statement. 

LINE Corresponding Natural source code line number. 

NATPROG Name of the Natural program that contains the static SQL statement. 

NATLIB Name of the Natural library that contains the Natural program. 

DB / FNR Natural database ID and file number. 

COMMENT Type of SQL statement. 

Copyright © Software AG 200354

Dynamic and Static SQL SupportAssembler/Natural Cross-References



Execution of Natural in Static Mode
To be able to execute Natural in static mode, all users of Natural must have the SQL/DS RUN privilege for the
static SQL/DS package created at precompilation.

To execute static SQL start Natural and execute the corresponding Natural program. Internally, the Natural
runtime interface evaluates the precompiler data written to the Natural object and then performs the static 
accesses.

To the user there is no difference between dynamic and static execution.

Static SQL with Natural Security
Static generation can be disallowed with Natural Security by: 

restricting access to library SYSSQL, 
disallowing the module CMD, 
restricting access to the libraries that contain the relevant Natural objects, 
disallowing one of the commands CATALOG or STOW for a library that contains relevant Natural objects. 

If a library is defined in Natural Security and the DBID and FNR of this library are different from the default
specifications, the static generation procedure automatically switches to the DBID and FNR specifications
defined in Natural Security.

Mixed Dynamic/Static Mode
It is possible to operate Natural in a mixed static and dynamic mode where static SQL is generated for some 
programs.

The mode in which a program is run is determined by the Natural object program itself. If a static SQL/DS
package is referenced in the executing program, all statements in this program are executed in static mode.

Note:
Natural programs which return a runtime error do not automatically execute in dynamic mode. Instead,
either the error must be corrected or, as a temporary solution, the Natural program must be recataloged to be
able to execute in dynamic mode.

Within the same Natural session, static and dynamic programs can be mixed without any further specifications.
The decision which mode to use is made by each individual Natural program.

55Copyright © Software AG 2003

Execution of Natural in Static ModeDynamic and Static SQL Support



Messages and Codes
This section lists the error messages that may be issued during static generation.

STAT9001 Object buffer allocation failed. RC = return code

Expl.: Program NDBCHNK has been invoked to allocate space for Natural object load, but the allocation has
failed; retry or increase the free storage pool.

STAT9002 Write on object area failed. RC = return code

Expl.: Program NDBCHNK has been invoked to write a Natural object row into the appropriate buffer, but the
write has failed; this is probably a NDBCHNK program error.

STAT9003 Statement entry retrieve error. RC = return code

Expl.: Program NDBSTAT has been invoked to retrieve next SQL/DS statement information from the Natural
object loaded in main storage, but the retrieval has failed (RC was neither 0 (OK) nor 4 (EOP)); the probable
cause is a Natural object inconsistency.

STAT9004 Unsupported Adabas command: command

Expl.: Program NDBSTAT has been invoked to retrieve next SQL/DS statement information from the Natural
object loaded in main storage, but the Adabas command code returned was invalid; the probable cause is a
Natural object inconsistency.

STAT9005 Freemain failed. RC = return code

Expl.: Program NDBCHNK has been invoked to free the area allocated for Natural object load, but the release
has failed; this is probably a program error.

STAT9006 Call for timestamp of program failed. RC = return code 

Expl.: Program NDBSTAT has been invoked to know the time stamp associated to the loaded Natural object, but
the call has failed; this is probably a program error.

STAT9007 A-List item retrieve failed. RC = return code

Expl.: Program NDBSTAT has been invoked to retrieve the next compilation A-list element, but the retrieval has
failed (RC was neither 0 (OK) nor 20 (EOL)); the probable cause is a Natural object inconsistency.

STAT9009 Invalid database field format: format

Expl.: Program NDBSTAT has been invoked to retrieve the next compilation A-list element, but the SQL/DS
format code returned is invalid; the probable cause is a Natural object inconsistency.

STAT9011 Mailbox length exceeds maximum.

Expl.: The SQL/DS precompiler parameter (mailbox length) does not fit into a halfword, which means that the
SQL statement contains too many variables.

STAT9014 Warning, may indicate a problem: second select table reset. 

Expl.: The table for a second selection logs the statement number of all second SELECT statements. The table is
reset if there are more than 100 entries, which means with many nested program loops. If the table is reset, no
second UPDATE or DELETE statements are generated.

Copyright © Software AG 200356

Dynamic and Static SQL SupportMessages and Codes



STAT9016 Versions of NDBSTAT and SQLGEN Natural programs do not match. 

Expl.: The versions of the Natural programs used for the static generation (library SYSSQL) must be the same as
one of the dynamically loaded Assembler program NDBSTAT.

STAT9017 address of program program in library library not found.

Expl.: A Natural object address was not found and the object cannot be modified. Either the object was not found
or the address was wrong.

STAT9019 *** Warning: Natural terminates abnormally, run may continue. ***

Expl.: Natural terminates abnormally with RC=4. A Natural member was explicitly entered which does not exist
or does not have SQL access. The static generation can continue.

STAT9020 Start run of SQLGEN for DBRM dbrm.

STAT9021 Start merging temporary datasets.

STAT9022 Precompile input input written to temporary dataset.

Expl.: The temporary assembler program for the precompiler input was written to a temporary dataset (Natural
work file 5).

STAT9023 *** END OF DATA ***

STAT9024 No program with SQL access found.

Expl.: None of the programs processed by the CMD command accessed an SQL system.

STAT9025 Program program in library  library not found.

STAT9026 DB access module names module and module do not match.

Expl.: The module name specified with the CMD CREATE command must be the same as the name of the
DBRM specified in the DBRMLIB job card of the precompilation step.

STAT9027 Error error purging program, library in buffer pool. Run continues.

STAT9028 Number of programs to be generated exceeds 999.

Expl.: The number of programs to be generated statically into one DBRM exceeds the maximum of 999.

STAT9029 Limit of limit NULL indicators per SQL statement exceeded.

Expl.: The maximum number of 1500 NULL indicators per SQL statement has been exceeded.

STAT9030 Number of variables to be generated exceeds 9999.

Expl.: The number of variables to be generated statically for one program exceeds the maximum of 9999.

STAT9031 XREF option "NO" and Predict DDA default "YES" do not match.

Expl.: The Predict DDA default setting for static SQL XREF is set to "YES", but the XREF option in the CMD
command is set to "NO".

STAT9032 XREF option "FORCE" but no Predict documentation found.

57Copyright © Software AG 2003

Messages and CodesDynamic and Static SQL Support



Expl.: With the XREF option FORCE, the static generation continues and writes XREF data only if Predict
documentation exists for a given DBRM. If there is no Predict documentation available, static generation is not 
performed.

STAT9033 No XREF data exist for member member.

Expl.: Either the Natural program which is to be statically generated cannot be cataloged with XREF=ON or the
XREF data are not on the used Predict file.

STAT9034 XREF option "YES" or "NO" but Predict DDA default "FORCE".

Expl.: The Predict DDA default setting for static SQL XREF is set to "FORCE", but the XREF option in the
CMD command is set to "NO" or "YES.

STAT9036 Given DBRM library not defined as 3GL Predict application. 

Expl.: The library for the DBRM entered with the LIB option is not defined as 3GL application in Predict. Check
the library name in Predict which contains the DBRM.

STAT9039 Library name must not be blank.

STAT9040 CATALOG or STOW not allowed for library  library. 

Expl.: The commands CATALOG or STOW are not allowed in your security environment. However, the
CATALOG or STOW privilege is needed for static generation.

STAT9041 Natural Security restriction. Message code: message code

STAT9050 No Predict documentation for specified DBRM found.

Expl.: No documentation was found in Predict for the DBRM specified with the CMD command. Either the
DBRM is not documented in the used Predict file or a wrong DBRM name has been specified.

STAT9062 No Predict installed. 

STAT9063 XREF interface not linked. XREF option reset, run continues. 

STAT9064 XREF option not set. Predict DDA default default taken.

Expl.: The Predict DDA default setting for static SQL XREF is read, because no XREF option is specified in the
CMD command and the XREF interface and Predict are installed.

STAT9065 DBRM name must start with an uppercase character.

STAT9066 No Predict installed. 

STAT9072 DBRM name must not be blank.

STAT9073 Invalid syntax for parameter/option specified. 

STAT9092 Error occurred. XREF data for DBRM will be deleted.

STAT9093 Error error occurred in program program in line line.

STAT9094 Return code return code on call of program.

STAT9095 Error in parameter parameter on call of program.

Copyright © Software AG 200358

Dynamic and Static SQL SupportMessages and Codes



Statements and System Variables
This section contains special considerations concerning Natural DML statements, Natural SQL statements and
Natural system variables when used with SQL/DS.

It mainly consists of information also contained in the Natural documentation set where each Natural statement
and system variable is described in detail.

This section covers the following topics: 

Natural DML Statements 
Natural SQL Statements 
Natural System Variables 
Error Handling 

Natural DML Statements
Summarized below are particular points you have to consider when using Natural DML statements with 
SQL/DS.

Any Natural statement not mentioned in this section can be used with SQL/DS without restriction. 

BACKOUT TRANSACTION 
DELETE 
END TRANSACTION 
FIND 
GET 
HISTOGRAM 
READ 
STORE 
UPDATE 

59Copyright © Software AG 2003

Statements and System VariablesStatements and System Variables



BACKOUT TRANSACTION 

This statement undoes all database modifications made since the beginning of the last logical transaction.
Logical transactions can start either after the beginning of a session or after the last SYNCPOINT, END
TRANSACTION or BACKOUT TRANSACTION statement.

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode, only changes made to the database since the last terminal
I/O are undone. This is due to CICS-specific transaction processing.

Note:
Be aware that with terminal input in SQL/DS database loops, Natural switches to conversational mode.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must not
be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own ROLLBACK command if the Natural program issues database calls,
too. The calling Natural program should issue the BACKOUT TRANSACTION statement on behalf of the
external program.

DELETE 

The DELETE statement is used to delete a row from an SQL/DS table which has been read with a preceding
FIND, READ or SELECT statement. It corresponds to the SQL statement DELETE WHERE CURRENT OF 
cursor-name, which means that only the row which was read last can be deleted.

Example: 

 FIND EMPLOYEES WITH NAME = ’SMITH’
       AND FIRST_NAME = ’ROGER’
 DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR 1 CURSOR FOR
SELECT FROM EMPLOYEES
 WHERE NAME = ’SMITH’ AND FIRST_NAME = ’ROGER’
DELETE FROM EMPLOYEES
 WHERE CURRENT OF CURSOR1

Both the SELECT and the DELETE statement refer to the same cursor. 

Natural translates a DML DELETE statement into an SQL DELETE statement in the same way it translates a 
FIND statement into an SQL SELECT statement.

A row read with a FIND SORTED BY cannot be deleted due to SQL/DS restrictions explained with the FIND 
statement. A row read with a READ LOGICAL cannot be deleted either.

Copyright © Software AG 200360

Statements and System VariablesBACKOUT TRANSACTION



END TRANSACTION 

This statement indicates the end of a logical transaction and releases all SQL/DS data locked during the
transaction. All data modifications are made permanent.

Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT command.

As all cursors are closed when a logical unit of work ends, the END TRANSACTION statement must not be
placed within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own COMMIT command if the Natural program issues database calls,
too. The calling Natural program should issue the END TRANSACTION statement on behalf of the external 
program.

Note:
With SQL/DS, the END TRANSACTION statement cannot be used to store transaction data.

FIND 

The FIND statement corresponds to the SQL SELECT statement.

Example: 

Natural statements:

FIND EMPLOYEES WITH NAME = ’BLACKMORE’
     AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
   FROM EMPLOYEES
      WHERE NAME = ’BLACKMORE’
          AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement. The SELECT statement is
executed by an OPEN CURSOR command followed by a FETCH command. The FETCH command is executed
repeatedly until either all records have been read or the program flow exits the FIND processing loop. A CLOSE
CURSOR command ends the SELECT processing; See Processing of SQL Statements Issued by Natural.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The basic
search criterion for a SQL/DS table can be specified in the same way as for an Adabas file. This implies that only
database fields which are defined as descriptors can be used to construct basic search criteria and that descriptors
cannot be compared with other fields of the Natural view (that is, database fields) but only with program
variables or constants.

Note:
As each database field (column) of a SQL/DS table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by the Natural processor after the rows have been
selected via the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can
be compared with other database fields.

61Copyright © Software AG 2003

END TRANSACTIONStatements and System Variables



Note:
SQL/DS does not have sub-, super-, or phonetic descriptors. 

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT(*) clause. The
number of rows found is returned in the Natural system variable *NUMBER.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the FIND
UNIQUE statement is referenced by an UPDATE statement, a non-cursor ("searched") UPDATE operation is
generated instead of a cursor-oriented (positioned) UPDATE operation. Therefore, it can be used if you want to
update an SQL/DS primary key. It is, however, recommended to use Natural SQL (""searched"" UPDATE 
statement) to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated into a SELECT SINGLE 
statement.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY clause, which
follows the search criterion. Because this produces a read-only result table, a row read with a FIND statement
that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation. If this limit is exceeded, a Natural
error message is returned.

Copyright © Software AG 200362

Statements and System VariablesFIND



GET 

This statement is ISN-based and, therefore, cannot be used with SQL/DS tables.

HISTOGRAM 

The HISTOGRAM statement returns the number of rows in a table which have the same value in a specific
column. The number of rows is returned in the Natural system variable *NUMBER.

Example: 

Natural statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
  WHERE AGE> -999
  GROUP BY AGE
  ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the control
flow is similar to the flow explained for the FIND statement.

63Copyright © Software AG 2003

GETStatements and System Variables



READ 

The READ statement can also be used to access SQL/DS tables. Natural translates a READ statement into an
SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN, however, cannot be used, as there is no
SQL/DS equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement - which produces a
read-only table -, a row read with a READ LOGICAL statement cannot be updated or deleted (see Example 1
below). The start value can only be a constant or program variable; any other field of the Natural view (that is,
any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and can,
therefore, be updated or deleted (see Example 2 below).

Example 1: 

Natural statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
   WHERE NAME>= ’ ’
     ORDER BY NAME

Example 2:

Natural statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor afterthe
rows have been selected according to the descriptor value(s) specified as search criterion.

Copyright © Software AG 200364

Statements and System VariablesREAD



STORE 

The STORE statement is used to add a row to an SQL/DS table. The STORE statement corresponds to the SQL
statement INSERT.

Example: 

Natural statement:

STORE RECORD IN EMPLOYEES
      WITH PERSONNEL_ID = ’2112’
           NAME = ’LIFESON’
           FIRST_NAME = ’ALEX’

Equivalent SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
   VALUES (’2112’, ’LIFESON’, ’ALEX’)

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses cannot be used.

65Copyright © Software AG 2003

STOREStatements and System Variables



UPDATE 

The Natural DML UPDATE statement updates a row in an SQL/DS table which has been read with a preceding
FIND, READ or SELECT statement. It corresponds to the SQL statement UPDATE WHERE CURRENT OF 
cursor-name (positioned UPDATE), which means that only the row which was read last can be updated.

UPDATE with FIND/READ

As explained with the FIND statement, Natural translates a FIND statement into an SQL SELECT statement.
When a Natural program contains a DML UPDATE statement, this statement is translated into an SQL
UPDATE statement and a FOR UPDATE OF clause is added to the SELECT statement.

Example: 

FIND EMPLOYEES WITH SALARY < 5000
   ASSIGN SALARY = 6000
   UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
   FOR UPDATE OF SALARY
UPDATE EMPLOYEES SET SALARY = 6000
   WHERE CURRENT OF CURSOR1

Both the SELECT and the UPDATE statement refer to the same cursor. 

Due to SQL/DS logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF clause;
otherwise updating this column (field) is rejected. Natural includes automatically all columns (fields) into the
FOR UPDATE OF clause which have been modified anywhere in the Natural program or which are input fields
as part of a Natural map.

However, an SQL/DS column is not updated if the column (field) is marked as "not updateable" in the Natural
DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any warning or error
message. The columns (fields) contained in the FOR UPDATE OF list can be checked with the LISTSQL 
command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

Copyright © Software AG 200366

Statements and System VariablesUPDATE



The following table shows the ranges that apply:

Short-Name Range Type of Field 

AA - N9 non-key field that can be updated 

Aa - Nz non-key field that can be updated 

OA - O9 primary key field 

PA - P9 ascending key field that can be updated 

QA - Q9 descending key field that can be updated 

RA - X9 non-key field that cannot be updated 

Ra - Xz non-key field that cannot be updated 

YA - Y9 ascending key field that cannot be updated 

ZA - Z9 descending key field that cannot be updated 

1A - 9Z non-key field that cannot be updated 

1a - 9z non-key field that cannot be updated 

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can only be
updated by using a non-cursor UPDATE operation.

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to SQL/DS
limitations as explained with the FIND statement). A row read with a READ LOGICAL cannot be updated either
(as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the whole
column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting mode you
can use the OBTAIN statement (as described in the Natural Statements documentation), which must be applied
to all field occurrences in the column to be updated. In structured mode, however, all these occurrences must be
defined in the corresponding Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK) or
BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note:
If a length indicator field or null indicator field is updated in a Natural program without updating the field
(column) it refers to, the update of the column is not generated for SQL/DS and thus no updating takes place. 

67Copyright © Software AG 2003

UPDATEStatements and System Variables



UPDATE with SELECT

In general, the DML UPDATE statement can be used in both structured and reporting mode. However, after a
SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [ RECORD ]  [ IN ] [ STATEMENT ] [( r )]  

This is due to the fact that in combination with the SELECT statement the DML UPDATE statement is only
allowed in the special case of:

   ...
SELECT ...
   INTO VIEW view-name
   ...

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example: 

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
  02 NAME
  02 AGE
END-DEFINE
...
SELECT *
  INTO VIEW PERS
  FROM SQL-PERSONNEL
  WHERE NAME LIKE ’S%’
    ...
    IF NAME = ’SMITH’
      ADD 1 TO AGE
    UPDATE
    END-IF
  ...
END-SELECT
    ...

In combination with the DML UPDATE statement, any other form of the SELECT statement is rejected and an
error message is returned.

In all other respects, the DML UPDATE statement can be used with the SELECT statement in the same way as
with the Natural FIND statement described in the Natural Statements documentation.

Copyright © Software AG 200368

Statements and System VariablesUPDATE



Natural SQL Statements
Summarized in the following section are particular points you have to consider when using Natural SQL
statements with SQL/DS. These SQL/DS-specific points partly consist in syntax enhancements which belong to
the Extended Set of Natural SQL syntax. The Extended Set is provided in addition to the Common Set to support
database-specific features. It also includes features not supported by SQL/DS. 

Common Syntactical Items 
COMMIT 
DELETE 
INSERT 
PROCESS SQL 
ROLLBACK 
SELECT 
UPDATE 

Common Syntactical Items 

The following syntactical items are either SQL/DS-specific and do not conform to the standard SQL syntax
definitions (that is, to the Common Set of Natural SQL syntax) or impose restrictions when used with SQL/DS
(see also SQL Statements in the Natural Statements documentation). 

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant. When
running dynamically, however, the use of host variables is restricted by SQL/DS. For further details, refer to the
relevant literature on SQL/DS.

comparison

The comparison operators specific to DB2 belong to the Natural Extended Set. For a description, refer to 
Comparison Predicate in Search Conditions, Natural SQL Statements (Statements Grouped by Functions,
Natural Statements documentation).

factor

The following three factors are specific to SQL/DS and belong to the Natural Extended Set:

special-register
scalar-function (scalar-expression, ...) 
scalar-expression unit 
case-expression 

69Copyright © Software AG 2003

Natural SQL StatementsStatements and System Variables



scalar-function

A scalar-function is a built-in function that can be used in the construction of scalar computational expressions.
Scalar functions are specific to SQL/DS and belong to the Natural Extended Set.

The following scalar functions are supported:

CHAR
DATE
DAY
DAYS
DECIMAL
DIGITS
FLOAT
HEX
HOUR
INTEGER
LENGTH
MICROSECOND
MINUTE
MONTH
SECOND
STRIP
SUBSTR
TIME
TIMESTAMP
TRANSLATE
VALUE
VARGRAPHIC
YEAR

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one another by 
commas.

Example:

SELECT 
 NAME INTO NAME FROM SQL-PERSONNEL WHERE SUBSTR ( NAME, 1, 3 ) = ’Fri’ ...

scalar-operator

The concatenation operator (CONCAT or "||") does not conform to standard SQL. It is specific to SQL/DS and
belongs to the Natural Extended Set. 

Copyright © Software AG 200370

Statements and System VariablesCommon Syntactical Items



special-register

The following special registers do not conform to standard SQL. They are specific to SQL/DS and belong to the
Natural Extended Set:

USER
CURRENT TIMEZONE
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

A reference to a special register returns a scalar value.

units

Units, also called "durations", are specific to SQL/DS and belong to the Natural Extended Set.

The following units are supported:

YEAR
YEARS
MONTH
MONTHS
DAY
DAYS
HOUR
HOURS
MINUTE
MINUTES
SECOND
SECONDS
MICROSECOND
MICROSECONDS

71Copyright © Software AG 2003

Common Syntactical ItemsStatements and System Variables



COMMIT

The SQL COMMIT statement indicates the end of a logical transaction and releases all SQL/DS data locked
during the transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural END TRANSACTION statement.

As all cursors are closed when a logical unit of work ends, the COMMIT statement must not be placed within a
database loop; instead, it has to be placed outside such a loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own COMMIT command if the Natural program issues database calls,
too. The calling Natural program should issue the COMMIT statement on behalf of the external program.

DELETE 

Both the "cursor-oriented" or "positioned" and the "non-cursor" or ""searched"" SQL DELETE statement are
supported as part of Natural SQL; the functionality of the "positioned" DELETE statement corresponds to that of
the Natural DML DELETE statement.

With SQL/DS, a table name in the FROM clause of a "searched" DELETE statement can be assigned a 
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs to the
Natural Extended Set.

INSERT 

The INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the SQL/DS-specific syntactical items described
above apply.

Copyright © Software AG 200372

Statements and System VariablesCOMMIT



PROCESS SQL 

The PROCESS SQL statement is used to issue SQL statements to the underlying database. The statements are
specified in a statement-string, which can also include constants and parameters.

The set of statements which can be issued is also referred to as Flexible SQL and comprises those statements
which can be issued with the SQL statement "EXECUTE". 

In addition, Flexible SQL includes the SQL/DS-specific statement CONNECT.

With the PROCESS SQL statement you can also specify the statement-string SQLDISCONNECT to release the
connection to your SQL/DS application server. SQLDISCONNECT is transformed into the SQL/DS
ROLLBACK WORK RELEASE command.

Execution of SQLDISCONNECT is only allowed if no transaction (logical unit of work) is open. Therefore, an
explicit COMMIT (END TRANSACTION) or ROLLBACK (BACKOUT TRANSACTION) statement is
required before executing SQLDISCONNECT, otherwise an error message is returned.

Note:
To avoid transaction synchronization problems between the Natural environment and SQL/DS, the
COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

ROLLBACK 

The SQL ROLLBACK statement undoes all database modifications made since the beginning of the last logical
transaction. Logical transactions can start either after the beginning of a session or after the last COMMIT/END
TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records held during the
transaction are released.

ROLLBACK is a synonym for the Natural BACKOUT TRANSACTION statement.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must not
be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural program, this
external program should not contain its own ROLLBACK command if the Natural program issues database calls,
too. The calling Natural program should issue the ROLLBACK statement on behalf of the external program.

73Copyright © Software AG 2003

PROCESS SQLStatements and System Variables



SELECT

Cursor-Oriented Selection

Like the Natural FIND statement, the cursor-oriented SELECT statement is used to select a set of rows (records)
from one or more SQL/DS tables, based on a search criterion. Since a database loop is initiated, the loop must be
closed by a LOOP (reporting mode) or END-SELECT statement. With this construction, Natural uses the same
database loop processing as with the FIND statement.

In addition, no cursor management is required from the application program; it is automatically handled by 
Natural.

Non-Cursor Selection - SELECT SINGLE

The Natural SELECT SINGLE statement provides the functionality of a non-cursor selection (singleton
SELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since SQL/DS supports the singleton SELECT command in static SQL only, in dynamic mode, the Natural
SELECT SINGLE statement is executed like a set-level SELECT statement, which results in a cursor operation.
However, Natural checks the number of rows returned by SQL/DS. If more than one row is selected, a
corresponding error message is returned.

UPDATE

Both the "cursor-oriented" or "positioned" and the "non-cursor" or ""searched"" SQL UPDATE statement are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With SQL/DS, the name of a table or Natural view to be referenced by a "searched" UPDATE can be assigned a 
correlation-name. This does not correspond to the standard SQL syntax definition and, therefore, belongs to the
Natural Extended Set.

The "searched" UPDATE statement must be used, for example, to update a primary key field, since SQL/DS
does not allow updating of columns of a primary key by using a positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE OF and
SET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise a negative
SQLCODE is returned by SQL/DS.

Copyright © Software AG 200374

Statements and System VariablesSELECT



Natural System Variables
When used with SQL/DS, the following restrictions apply to the following Natural system variables: 

*ISN 
*NUMBER 

*ISN 

As there is no SQL/DS equivalent to Adabas ISNs, the system variable *ISN in not applicable to SQL/DS tables.

*NUMBER 

When used with a FIND NUMBER or HISTOGRAM statement, *NUMBER contains the number of rows
actually found.

When applied to data from an SQL/DS table in any other case, the system variable *NUMBER only indicates
whether any rows have been found. If no rows have been found, *NUMBER is "0". Any value other than "0"
indicates that at least one row has been found; however, the value contained in *NUMBER has no relation to the
number of rows actually found.

The reason is that if *NUMBER was to produce a valid number, Natural would have to translate the
corresponding FIND statement into an SQL SELECT statement including the special function COUNT(*);
however, a SELECT containing a COUNT function would produce a read-only result table, which would not be
available for updating. In other words, the option to update selected data was given priority in Natural over
obtaining the number of rows that meet the search criteria.

To obtain the number of rows affected by the Natural SQL statements "searched" UPDATE, "searched"
DELETE and INSERT, the Natural subprogram NDBNROW is provided. Or you can use the Natural system
variable *ROWCOUNT as described in the Natural System Variables documentation.

Error Handling
In contrast to the normal Natural error handling, where either an ON ERROR statement is used to intercept
runtime errors or standard error message processing is performed and program execution is terminated, the
enhanced error handling of Natural for SQL/DS provides an application-controlled reaction to the encountered
SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error handling
and to check the encountered SQL error for the returned SQL code. This functionality replaces the "E" function
of the DB2SERV interface, which is still provided but no longer documented.

See further information on Natural subprograms provided for SQL/DS.

75Copyright © Software AG 2003

Natural System VariablesStatements and System Variables



Example:

DEFINE DATA LOCAL
01 #SQLCODE             (I4)
01 #SQLSTATE            (A5)
01 #SQLCA               (A136)
01 #DBMS                        (B1)
END-DEFINE
*
*       Ignore error from next statement
*
CALLNAT ’NDBNOERR’
*
*       This SQL statement produces an SQL error
*
INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
  VALUES (’SAG’, ’MYTABLE’, ’3’)
*
*       Investigate error
*
CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBMS
*
IF #DBMS NE 3                                   /* not SQL/DS
  MOVE 3700 TO *ERROR-NR
END-IF
*
DECIDE ON FIRST VALUE OF #SQLCODE
  VALUE 0, 100                                  /* successful execution
    IGNORE
  VALUE -803                                    /* duplicate row
    /* UPDATE existing record
    /*
    IGNORE
  NONE VALUE
    MOVE 3700 TO *ERROR-NR
END-DECIDE
*
END

Copyright © Software AG 200376

Statements and System VariablesError Handling



Interface Subprograms
Several Natural and non-Natural subprograms are available to provide you with either internal information from
the Natural interface to SQL/DS or specific functions that are not available within the interface itself.

From within a Natural program, Natural subprograms are invoked with the CALLNAT statement and
non-Natural subprograms are invoked with the CALL statement.

This section covers the following topics: 

Natural Subprograms 
The DB2SERV Interface 

Natural Subprograms
All Natural subprograms are provided in the library SYSSQL and should be copied to the SYSTEM or steplib
library, or to any library where they are needed. The corresponding parameters must be defined by using either
the DEFINE DATA statement in structured mode or the RESET statement in reporting mode.

The following subprograms are provided: 

Subprogram Function 

NDBDBRM Checks whether a Natural program contains SQL access and whether it has been modified for
static execution. 

NDBDBR2 Checks whether a Natural program contains SQL access and whether it has been modified for
static execution. 

NDBERR Provides diagnostic information on the most recently executed SQL call. 

NDBISQL Executes SQL statements in dynamic mode. 

NDBNOERR Suppresses normal Natural error handling. 

NDBNROW Obtains the number of rows affected by a Natural SQL statement. 

NDBSTMP Provides an SQL/DS TIMESTAMP column as an alphanumeric field and vice versa. 

77Copyright © Software AG 2003

Interface SubprogramsInterface Subprograms



The NDBDBRM Subprogram

The Natural subprogram NDBDBRM is used to check whether a Natural program contains SQL access and
whether it has been modified for static execution. It is also used to obtain the corresponding package name from
the header of a Natural program generated as static (see also Preparing Natural Programs for Static Execution).

A sample program called CALLDBRM is provided on the installation tape; it demonstrates how to invoke
NDBDBRM. A description of the call format and of the parameters is provided in the text member 
NDBDBRMT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBDBRM’ #LIB #MEM #DBRM #RESP

The various parameters are described in the following table:

Parameter Format/Length Explanation 

#LIB A8 Contains the name of the library of the program to be checked. 

#MEM A8 Contains the name of the program (member) to be checked. 

#DBRM A8 Returns the package name. 

#RESP I2 Returns a response code. The possible codes are listed below. 

The #RESP parameter can contain the following response codes:

Code Explanation 

0 The member #MEM in library #LIB has SQL access; it is static if #DBRM contains a value. 

-1 The member #MEM in library #LIB has no SQL access. 

-2 The member #MEM in library #LIB does not exist. 

-3 No library name has been specified. 

-4 No member name has been specified. 

-5 The library name must start with a letter. 

<-5 Further negative response codes correspond to error numbers of Natural error messages. 

> 0 Positive response codes correspond to error numbers of Natural Security messages. 

Copyright © Software AG 200378

Interface SubprogramsThe NDBDBRM Subprogram



The NDBDBR2 Subprogram 

The Natural subprogram NDBDBR2 is used to check whether a Natural program contains SQL access and
whether it has been modified for static execution. It is also used to obtain the corresponding DBRM name from
the header of a Natural program generated as static (see also Preparing Natural Programs for Static Execution)
and the time stamp generated by the precompiler.

A sample program called CALLDBR2 is provided on the installation tape; it demonstrates how to invoke
NDBDBR2. A description of the call format and of the parameters is provided in the text member NDBDBR2T.

The calling Natural program must use the following syntax:

CALLNAT ’NDBDBR2’ #LIB #MEM #DBR2  #TIMESTAMP #PCUSER #PCRELLEV #ISOLLEVL #DATEFORM #TIMEFORM #RESP

The various parameters are described in the following table:

Parameter Format/Length Explanation 

#LIB A8 Contains the name of the library of the program to be checked. 

#MEM A8 Contains the name of the program (member) to be checked. 

#DBR2 A8 Returns the package name. 

#TIMESTAMP B8 Consistency token generated by precompiler. 

#PCUSER A1 User ID used at precomplile. 

#PCRELLEV A1 Release level of precompiler. 

#ISOLLEVL A1 Precomplier isolation level. 

#DATEFORM A1 Date format. 

#TIMEFORM A1 Time format. 

#RESP I2 Returns a response code. The possible codes are listed below. 

The #RESP parameter can contain the following response codes:

Code Explanation 

0 The member #MEM in library #LIB has SQL access; it is static if #DBR2 contains a value. 

-1 The member #MEM in library #LIB has no SQL access. 

-2 The member #MEM in library #LIB does not exist. 

-3 No library name has been specified. 

-4 No member name has been specified. 

-5 The library name must start with a letter. 

<-5 Further negative response codes correspond to error numbers of Natural error messages. 

> 0 Positive response codes correspond to error numbers of Natural Security messages. 

79Copyright © Software AG 2003

The NDBDBR2 SubprogramInterface Subprograms



The NDBERR Subprogram 

The Natural subprogram NDBERR replaces the "E" function of the DB2SERV interface (which is still provided
but no longer documented). It provides diagnostic information on the most recent SQL call. It also returns the
database type which returned the error. NDBERR is typically called if a database call returns a non-zero SQL
code (which means a NAT3700 error); see also Error Handling.

A sample program called CALLERR is provided on the installation tape; it demonstrates how to invoke
NDBERR. A description of the call format and of the parameters is provided in the text member NDBERRT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The various parameters are described in the following table:

Parameter Format/Length Explanation 

SQLCODE I4 Returns the SQL return code. 

SQLSTATE A5 Returns a return code for the output of the most recently executed SQL
statement. 

SQLCA A136 Returns the SQL communication area of the most recent SQL/DS access. 

DBTYPE B1 Returns the identifier (in hexadecimal format) for the currently used database
(where X’03’ identifies SQL/DS). 

The NDBISQL Subprogram 

The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically (according to the Adabas SQL Server
documentation) can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation tape; it demonstrates how to invoke
NDBISQL. A description of the call format and of the parameters is provided in the text member NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBISQL’  #FUNCTION #TEXT-LEN #TEXT (*) #SQLCA #RESPONSE

The various parameters are described in the following table:

Parameter Format/Length Explanation 

#FUNCTION A8 For valid functions, see below. 

#TEXT-LEN I2 Length of the SQL statement or of the buffer for the return area. 

#TEXT A1(1:V) Contains the SQL statement or receives the return code. 

#SQLCA A136 Contains the SQLCA. 

#RESPONSE I4 Returns a response code. 

Copyright © Software AG 200380

Interface SubprogramsThe NDBERR Subprogram



Valid functions for the #FUNCTION parameter are:

Function Parameter Explanation 

CLOSE  Closes the cursor for the SELECT statement. 

EXECUTE #TEXT-LEN
#TEXT (*) 

Executes the SQL statement. 

Contains the length of the statement. 

Contains the SQL statement. 
The first two characters must be blank. 

FETCH #TEXT-LEN
#TEXT (*) 

Returns a record from the SELECT statement. 

Size of #TEXT (in bytes). 

Buffer for the record. 

TITLE #TEXT-LEN
#TEXT (*) 

Returns the header for the SELECT statement. 

Size of #TEXT (in bytes);
receives the length of the header (= length of the record). 

Buffer for the header line. 

The #RESPONSE parameter can contain the following response codes:

Code Function Explanation 

5 EXECUTE The statement is a SELECT statement. 

6 TITLE, FETCH Data are truncated;
only set on first TITLE or FETCH call. 

100 FETCH No record / end of data. 

-2  Unsupported data type (for example, GRAPHIC). 

-3 TITLE, FETCH No cursor open;
probably invalid call sequence or statement other than SELECT. 

-4  Too many columns in result table. 

-5  SQL code from call. 

-6  Version mismatch. 

-7  Invalid function. 

-10  Interface not available. 

-11 EXECUTE First two bytes of statement not blank. 

81Copyright © Software AG 2003

The NDBISQL SubprogramInterface Subprograms



Call Sequence

The first call must be an EXECUTE call. If the statement is a SELECT statement (that is, response code 5 is
returned), any sequence of TITLE and FETCH calls can be used to retrieve the data. A response code of 100
indicates the end of the data.

The cursor must be closed with a CLOSE call.

Note:
Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE call
for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE, FETCH
or CLOSE call that refers to the same statement.

The NDBNOERR Subprogram 

The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the next SQL call.
This allows a program controlled continuation if an SQL statement produces a non-zero SQL code. After the
SQL call has been performed, NDBERR is used to investigate the SQL code; see also Error Handling.

A sample program called CALLNOER is provided on the installation tape; it demonstrates how to invoke
NDBNOERR. A description of the call format and of the parameters is provided in the text member 
NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNOERR’

There are no parameters provided with this subprogram.

Note:
Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and also only errors caused by the
following SQL call.

Restrictions with Database Loops

If NDBNOERR is called before a statement that initiates a database loop and an initialization error occurs,
no processing loop will be initiated, unless the IF NO RECORDS FOUND clause has been specified. 
If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but only to
the SQL statement subsequently executed inside this loop. 

Copyright © Software AG 200382

Interface SubprogramsThe NDBNOERR Subprogram



The NDBNROW Subprogram 

The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural SQL
statements "searched" UPDATE, "searched" DELETE and INSERT. The number of rows affected is read from
the SQL communication area (SQLCA). A positive value represents the number of affected rows, whereas a
value of "-1" indicates that all rows of a table in a segmented tablespace have been deleted;  see also *NUMBER.

A sample program called CALLNROW is provided on the installation tape; it demonstrates how to invoke
NDBNROW. A description of the call format and of the parameters is provided in the text member 
NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNROW’ #NUMBER

The parameter #NUMBER (I4) contains the number of rows affected.

83Copyright © Software AG 2003

The NDBNROW SubprogramInterface Subprograms



The NDBSTMP Subprogram 

For SQL/DS, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format 
"YYYY-MM-DD-HH.MM.SS.MMMMMM"; see also List Columns of an SQL Table.

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP is provided
to enable this kind of functionality. It converts Natural time variables to SQL/DS time stamps and vice versa, and
performs SQL/DS time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation tape which demonstrates how to invoke
NDBSTMP. A description of the call format and of the parameters is provided in the text member NDBSTMPT.

The functions available are:

Code Explanation 

ADD 
Adds time units (labeled durations) to a given SQL/DS time stamp and returns a Natural time variable
and a new SQL/DS time stamp. 

CNT2 
Converts a Natural time variable (format T) into an SQL/DS time stamp (column type TIMESTAMP)
and labeled durations. 

C2TN 
Converts an SQL/DS time stamp (column type TIMESTAMP) into a Natural time variable (format T)
and labeled durations. 

DIFF Builds the difference between two given SQL/DS time stamps and returns labeled durations. 

GEN 
Generates an SQL/DS time stamp from the current date and time values of the Natural system variable
*TIMX and returns a new SQL/DS time stamp. 

SUB 
Subtracts labeled durations from a given SQL/DS time stamp and returns a Natural time variable and a
new SQL/DS time stamp. 

TEST Tests a given SQL/DS time stamp for valid format and returns "TRUE" or "FALSE". 

Note:
Labeled durations are units of year, month, day, hour, minute, second and microsecond.

Copyright © Software AG 200384

Interface SubprogramsThe NDBSTMP Subprogram



The DB2SERV Interface
DB2SERV is an Assembler program entry point which can be called from within a Natural program.

DB2SERV performs either of the following functions: 

Function "D", which performs the SQL statement EXECUTE IMMEDIATE; 
Function "U", which calls the database connection services (VSE/ESA batch mode only). 

The parameter or variable values returned by each of these functions are checked for their format, length and 
number.

Function "D"

Function "D" performs the SQL statement EXECUTE IMMEDIATE. This allows SQL statements to be issued
from within a Natural program.

The SQL statement string that follows the EXECUTE IMMEDIATE statement must be assigned to the Natural
program variable STMT. It must contain valid SQL statements allowed with the EXECUTE IMMEDIATE
statement as described in the relevant IBM documentation. Examples can be found below and in the
demonstration programs DEM2* in library SYSSQL.

Note:
The conditions that apply to issuing Natural END TRANSACTION or BACKOUT TRANSACTION statements
also apply when issuing SQL COMMIT or ROLLBACK statements.

Command Syntax

CALL ’DB2SERV’ ’D’ STMT STMTL SQLCA RETCODE

The variables used in this command are described in the following table:

Variable Format/Length Explanation 

STMT Annn Contains a command string which consists of SQL syntax as described above. 

STMTL I2 Contains the length of the string defined in STMT. 

SQLCA A136 Returns the current contents of the SQL communication area. 

RETCODE I2 Returns an interface return code. The following codes are possible:

0 No warning or error occurred. 

4 SQL statement produced an SQL warning. 

8 SQL statement produced an SQL error. 

12    Internal error occurred;the corresponding Natural error message number
can be displayed with SYSERR. 

85Copyright © Software AG 2003

The DB2SERV InterfaceInterface Subprograms



The current contents of the SQLCA and an interface return code (RETCODE) are returned. The SQLCA is a
collection of variables that are used by SQL/DS to provide an application program with information on the
execution of its SQL statements.

The following example shows you how to use DB2SERV with function "D":

Example of Function "D" - DEM2CREA:

  **************************************************************************
  *  DEM2CREA - CREATE TABLE NAT.DEMO                                      *
  **************************************************************************
  *
  DEFINE DATA
  LOCAL USING DEMSQLCA
  LOCAL
  *                                   Parameters for DB2SERV
  1 STMT         (A250)
  1 STMTL        (I2)     CONST <250>
  1 RETCODE      (I2)
  *
  END-DEFINE
  *
  COMPRESS  ’CREATE TABLE NAT.DEMO’
    ’(NAME        CHAR(20)     NOT NULL,’
    ’ ADDRESS     VARCHAR(100) NOT NULL,’
    ’ DATEOFBIRTH DATE         NOT NULL,’
    ’ SALARY      DECIMAL(6,2),’
    ’ REMARKS     VARCHAR(500))’
    INTO STMT
  CALL ’DB2SERV’ ’D’ STMT STMTL SQLCA RETCODE
  *
  END TRANSACTION
  *
  IF RETCODE = 0
    WRITE ’Table NAT.DEMO created’
  ELSE
    FETCH ’SQLERR’
  END-IF
  END
  **************************************************************************

Note:
The functionality of the DB2SERV function "D" is also provided with the PROCESS SQL statement (see also
the section SQL Statements in the Natural Statements documentation). 

Copyright © Software AG 200386

Interface SubprogramsFunction "D"



Function "U" 

Function "U" calls the database connection services when running in batch mode under VSE/ESA; see also 
Sample Batch Verification Job (VSE/ESA only).

The user ID and password for the connection to SQL/DS must be assigned to the Natural program variables
USER-ID and PASSWORD, respectively. An interface return code (RETCODE) is returned.

Command Syntax

the CALL ’DB2SERV’ ’U’ USER-ID PASSWORD RETCODE

The variables used in this command are described in the following table:

Variable Format/Length Explanation 

USER-ID A8 A Natural variable that contains the user ID for the connection to SQL/DS. 

PASSWORD A8 A Natural variable that contains the user password for the connection to
SQL/DS. 

RETCODE I2 A Natural variable that returns an interface return code.
The following codes are possible:

0 No warning or error occurred. 

4 SQL statement produced an SQL warning. 

8 SQL statement produced an SQL error. 

12   Internal error occurred; 
information on this error can be displayed with SYSERR. 

87Copyright © Software AG 2003

Function "U"Interface Subprograms



Environment-Specific Considerations
Natural for SQL/DS can be run in the TP-monitor environment CICS and in VSE/ESA batch mode. 

As all dynamic access to SQL/DS is performed by NDBIOMO, all users of Natural for SQL/DS must have RUN
privilege on the package NDBIOMO. If running in static mode, users must also have RUN privilege on all static
SQL/DS packages.

This section covers the following topics: 

Natural for SQL/DS under CICS 
Natural for SQL/DS in VSE/ESA Batch Mode 

Natural for SQL/DS under CICS
Under CICS, Natural uses the SQL/DS online support to access SQL/DS. Therefore ensure that this attachment
is started. If not, the Natural session is abnormally terminated with CICS abend code AEY9, which leads to
Natural error message NAT0954 if the Natural profile parameter DU is set to "OFF".

Since Natural for SQL/DS does not issue any explicit CONNECT statements, it takes advantage of the implicit
CONNECT facility of the SQL/DS online support.

Under CICS, a Natural program which accesses an SQL/DS table can also be run in pseudo-conversational
mode. Then, at the end of a CICS task, all SQL/DS cursors are closed, and there is no way to reposition an
SQL/DS cursor when the task is resumed.

To circumvent the problem of CICS terminating a pseudo-conversational transaction during loop processing and
thus causing SQL/DS to close all cursors and lose all selection results, Natural switches from
pseudo-conversational mode to conversational mode for the duration of a Natural loop which accesses an
SQL/DS table.

To enable multiple Natural sessions to run concurrently, all Natural areas are written to the threads just before a
terminal I/O operation is executed. When the terminal input is received, storage is acquired again, and all Natural
areas are read from the threads.

Natural for SQL/DS in VSE/ESA Batch Mode
An explicit connection to the database must be performed. The sample program DEM2CONN can be used for
this purpose. DEM2CONN calls the DB2SERV module with function code "U" which in turn calls the database
connect services.

Copyright © Software AG 200388

Environment-Specific ConsiderationsEnvironment-Specific Considerations


	Cover Page
	page 2

	Table of Contents
	Natural for SQL/DS - Overview
	General Information
	Accessing an SQL/DS Table
	Integration with Predict
	Natural System Messages Related to SQL/DS

	Installing Natural for SQL/DS
	Installation Jobs
	Using System Maintenance Aid
	Prerequisites
	Installation under CMS
	Installation Tape
	Copying the Tape Contents to Disk

	Preparing the Installation
	Installation Procedure
	Step 1: Generate the NSQ I/O module NDBIOMO
	Step 2: Precompile and assemble NDBIOMO
	Step 3: Modify and assemble the NSQ parameter module NDBPARM
	Step 4: Modify NATPARM
	Step 5: Modify NAT$LOAD LOADLIST
	Step 6: Generate a Natural module
	Step 7: Load Natural objects and error messages into system file


	Installation under VSE/ESA
	Installation Tape
	Copying the Tape Contents to Disk
	Step 1 - Copy data set COPYTAPE.JOB from tape to disk
	Step 2 - Modify COPYTAPE.JOB
	Step 3 - Submit COPYTAPE.JOB

	Installation Procedure
	Step 1: Generate the NSQ I/O Module NDBIOMO - Job I055, Step 1600
	Step 2: Precompile and Assemble NDBIOMO - Job I055, Steps 1610 and 1620
	Step 3: Modify and Assemble the NSQ Parameter Module NDBPARM - Job I055, Step 1640
	Step 4: Modify and Reassemble NATPARM
	Step 5: Relink your Natural Nucleus
	Step 6: Load Natural Objects Into System File - Job I061, Step 1600
	Step 7: Load Natural Error Messages into System File - Job I061, Step 1620


	Installation Verification
	Prepare your SQL/DS Environment
	Online Verification Methods
	SQL Services
	 DEM2* Sample Programs

	Sample Batch Verification Job - VSE/ESA only

	Natural Parameter Modification for SQL/DS
	DB2SIZE Parameter
	NTDB Macro
	Performance Considerations for the DB2SIZE Parameter

	Parameter Module NDBPARM
	BTIGN - Ignore Error after late BACKOUT TRANSACTION
	CONVERS - Allows Conversational Mode under CICS
	DELIMID
	MAXLOOP - Maximum Number of Nested Database Loops
	REFRESH
	RWRDONL
	STATDYN - Allow Static to Dynamic Switch


	Database Management
	SYSSQL Utility
	Fixed Mode
	Creating an SQL/DS Table
	Altering an SQL/DS Table

	Free Mode
	The Free-Mode Editor


	Natural System Commands for SQL/DS
	LISTSQL Command
	EXPLAIN Command

	SQLERR Command
	LISTDBRM Command


	DDM Generation
	Natural Data Definition Module - DDM
	SQL Services
	Select SQL Table from a List
	Generate DDM from an SQL Table
	DBID/FNR Assignment
	Long Field Redefinition
	Length Indicator for Variable Length Fields - VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC
	Null Values

	List Columns of an SQL Table


	Dynamic and Static SQL Support
	General Information
	Internal Handling of Dynamic Statements
	NDBIOMO
	Statement Table
	Processing of SQL Statements Issued by Natural

	Preparing Natural Programs for Static Execution
	Creating a Static SQL/DS Package under VSE/ESA
	Step 1: Generate the Static Assembler Program
	Step 2: Precompile the Generated Assembler Program
	Step 3: Modify the Natural Objects

	Generation Procedure - CMD CREATE Command
	Static Name
	USING Clause
	INPUT DATA
	PREDICT DOCUMENTATION
	WITH XREF Option
	Library Option - LIB

	Modification Procedure - CMD MODIFY Command

	Assembler/Natural Cross-References
	Execution of Natural in Static Mode
	Static SQL with Natural Security
	Mixed Dynamic/Static Mode
	Messages and Codes

	Statements and System Variables
	Natural DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	GET
	HISTOGRAM
	READ
	STORE
	UPDATE
	UPDATE with FIND/READ
	UPDATE with SELECT


	Natural SQL Statements
	Common Syntactical Items
	atom
	comparison
	factor
	scalar-function
	scalar-operator
	special-register
	units

	COMMIT
	DELETE
	INSERT
	PROCESS SQL
	ROLLBACK
	SELECT
	Cursor-Oriented Selection
	Non-Cursor Selection - SELECT SINGLE

	UPDATE

	Natural System Variables
	*ISN
	*NUMBER

	Error Handling

	Interface Subprograms
	Natural Subprograms
	The NDBDBRM Subprogram
	The NDBDBR2 Subprogram
	The NDBERR Subprogram
	The NDBISQL Subprogram
	Call Sequence

	The NDBNOERR Subprogram
	Restrictions with Database Loops

	The NDBNROW Subprogram
	The NDBSTMP Subprogram

	The DB2SERV Interface
	Function "D"
	Command Syntax

	Function "U"
	Command Syntax



	Environment-Specific Considerations
	Natural for SQL/DS under CICS
	Natural for SQL/DS in VSE/ESA Batch Mode



